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Introduction

Understanding the microscopic world, whether it’s at the atomic or the protein scale, is a challenge

for it is, in most cases, simply impossible to observe. Even if we had a magical microscope, allowing

us to magnify at will an image, very small particles would still remain puzzling. They do not follow the

uses of our macroscopic experience, ruled by our habitual Newtonian dynamics, and are governed by

quantum mechanics, which can be very counter-intuitive.

All hope is however not lost, thanks the computer simulation tool. In silico experiments provide us

with this extraordinary lense, allowing one to observe as closely as wanted the wobbling of atoms, the

dance of molecules, the complex breathing of proteins. But there is a much greater power yet for the

user to experiment: to play God within the tiny box that is being simulated. One can, as a demiurge,

decide to turn o� speci�c forces, to see exactly what their in�uence on the system is. This absolute

freedom extends widely in this in silico world: parameters, such as temperature, pressure, intensity of

interactions can be changed at will; entities, such as atoms, molecules, proteins can bemodi�ed, added,

extracted; the properties of every single atom, from position and velocity to charges or polarizability

can be controlled; all that happens can be fully decided by the maker of the model.

The remaining di�culty is to make sure that what is being simulated corresponds to reality, and this

imperative drives the development, re�nement, study of all models used for these numerical experi-

ments.

In silico simulations of atomic behaviour split in two main families, the quantum and the classical

models. They share a porous frontier, as tuning the classical models is usually done using results from

ab initio quantum computations; QM/MM calculation, distinguishing a quantumly-treated system and

its classical environment, show their possible collaboration.

Quantum models are more precise, since quantum physics properly describe the behaviour of mi-
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croscopic particles. They explicitly takes into account electrons, using wavefunctionsmethods (HF, post-

HF...), or electronic density (DFT), but come with a computational cost that can be prohibitive (the full

CI method scales asO (Ne− !), with Ne− the number of electrons). Typical system sizes don’t exceed one

or two hundred of atoms in DFT, even less when using wavefunction methods.

The second framework does not explicitly represents electrons. Instead, atoms are represented as

a punctual mass, possibly carrying a charge, and all interactions between them are modeled through

classical energy terms. Less universal, this approach requires the �tting of parameters (bond strengths,

angular and torsion constants, etc.) to reproduce at best quantum calculation and experimental data.

The use of classical (Newtonian) mechanics nonetheless greatly simpli�es the simulations, allowing for

much bigger systems that can count millions of atoms.

Looking for a compromise between computation complexity and accuracy of the model, polarizable

force �eld were introduced, adding a term taking into account the polarizability of the electronic density

around the atoms. While more expensive to use than a so-called "classical" force �eld, polarizable force

�eld represent an important step in the modelization for they allow a more accurate description of

various systems, from the biological domain to ionic liquids.

Progressing side to side with the physical models and parametrizations, the algorithms used for the

simulations are also in constant evolution. They play a key role in theoretical chemistry, allowing the

more and more involved physical models to be tested, on systems of increasing size. From the bound-

ary conditions treatment to the management of parallel architectures, every aspect of the numerical

simulation has to be well built to keep pushing the limits of in silico experiment.

Although considerable progresses have been made since the very �rst, two-dimensional simula-

tions, some frontiers are still to be broken, both time-scale and size-wise. For example, simulating a

whole cell using explicit atoms is out of reach. Computation of binding free-energies, especially relevant

in the pharmaceutical domain, that would be both fast and reliable, is still one of the biggest challenges

in computational biochemistry. All various models developed along the years, even when it comes to

describing water molecules, su�er from their respective limitations. Besides, the study of problems of

increasing complexity (drug testing, protein interactions) requires bigger and bigger supercomputers,

working always longer, and e�ectively consuming substantial quantities of electrical power.
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We thus need to do better: faster simulations, able to go on for longer periods, designed for large

systems. This objective can only be achieved relying on the two pillars presented above: intelligent

physical models and well designed algorithms, working in synergy.

The aim for this thesis was therefore to develop strategies to improve the performances of polarizable

molecular dynamics. In the �rst chapter, the reader will �nd a brief introduction of the framework of

this thesis, starting from the general scope of molecular dynamics, and presenting the most standard

integrators. Classical force �elds follow, then particular attention is given to polarizable force �elds, as

they are heart of our work. This chapter closes on a more practical aspect, the Tinker-HP code, in which

all testing and implementations were carried out.

The second chapter focuses on the polarization issue, and begins with an overview of the current

polarization solvers, from their mathematical causes to the algorithms they use. We then present the

Truncated Conjugate Gradient, a new algorithm designed to improve polarizable solvers, both in terms

of stability and speed. Implementation strategies and numerical results are then given.

In the third chapter, we discuss free energies, through a small presentation of the thermodynamic

quantity itself, and of the methods used to compute it. We then discuss the performance of the Trun-

cated Conjugate Gradient applied on free energies calculations.

Finally, in the last chapter, we look for another method to accelerate simulations by focusing on

molecular dynamics integrators. After establishing a brief framework, we proceed to search for an

optimal integration strategy, aiming at using very large time-steps having a minimal cost on accuracy.
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Chapter 1

Molecular Dynamics – An overview

Contents

1.1 Introducing molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Integrating dynamics using �nite di�erences . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Force �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Classical force �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Polarizable force �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Polarization models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 A massively parallel framework for Molecular Dynamics: Tinker-HP . . . . . . . . . . . . 27

1.5.1 Parallel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 Boundary conditions and the Particle Mesh Ewald . . . . . . . . . . . . . . . . . 30

Historically, the very �rst numerical experiments were carried out by Fermi, Pasta, Ulam and Tsingou

in 19551 on a purely theoretical system to study energy repartition in a chain of oscillators. The �rst

condensed-phasemolecular dynamics calculation was undertaken by Adler andWainwright in 1957.2 The

authors studied equilibrium properties for a system consisting in hard spheres, computing its equation

of state. The force �eld here was only square well potentials of attraction between particles.

Thankfully, Molecular Dynamics have considerably developed since then, as this �rst chapter will

illustrate. Here, the reader will �nd a – succinct – presentation of the conceptual andmaterial framework
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11 CHAPTER 1. MOLECULAR DYNAMICS – AN OVERVIEW

on which the improvements described in next chapters are based. Should they be needed, references to

more specialized work are given to allow for a deeper study.

The Molecular Dynamics technique will be explained, supplemented with a presentation of its most

usual integrators. Force �elds will then be introduced, both the classical and polarizable case. Finally,

Tinker-HP, the code in which all developments are implemented, is described.

1.1 Introducing molecular dynamics

Let us start by de�ning the system we want to study and simulate,S, contained in a box of arbitrary size
and shape. We will suppose that S contains N atoms. Given an arbitrary index i between 1 and N , the

three-dimensional vector representing the position of atoms i in Cartesian coordinates will be noted

®ri . Equivalent notations will be adopted for the velocity ®vi , the momentum ®pi , and the acceleration ®ai .
By writingmi the mass of atom i , we have ®pi = mi ®vi . For the sake of clarity and simplicity, we will also
write

©«

®r1

®r2

...

®rN

ª®®®®®®®®®®®®®¬

= r ,

©«

®v1

®v2

...

®vN

ª®®®®®®®®®®®®®¬

= v ,

©«

®p1

®p2

...

®pN

ª®®®®®®®®®®®®®¬

= p ,

©«

®a1

®a2

...

®aN

ª®®®®®®®®®®®®®¬

= a (1.1)

The massesmi may also be conveniently gathered as a diagonal matrix M such that

M =

©«

m1 (0)

m2

. . .

(0) mN

ª®®®®®®®®®®®®®¬

and p = Mv (1.2)
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There are many objectives behind molecular simulations in theoretical chemistry. It can be simply

aimed at observing the movement of atoms or molecules, in order to understand chemical or even

biological phenomena (molecular arrangement, protein folding...). Questions more relevant to the sta-

tistical mechanics �eld, like computing properties such as free energies, can also be addressed using

molecular dynamics. A wide variety of systems can be studied, both spanning a wide range of sizes

(from tens to hundreds of thousands of atoms) and types (monoatomic gases, water phases, solvated

proteins, ionic liquids...).

Statistical mechanics provide a secure framework, with strong mathematical and physical founda-

tions, that will ensure our future numerical experiments and analysis are meaningful.

The focus of the study will then de�ne the statistical ensemble in which simulations should be done.

Each statistical ensemble is de�ned by a set of properties of the system that should remain �xed

throughout the simulation.

For example, let us imagine an isolated system, with no environment. Its number of particles then

remains �xed, and no energy can be be exchanged either. If we then suppose that the simulation

box remains constant, the corresponding ensemble is the microcanonical ensemble, where N ,V (the

volume of the simulation box) and E (the system’s total energy) are �xed.

If, on the other hand, we want to look at a system in contact with a thermostat (modelling, for

example, the reaction medium, the surrounding cell...), where the temperature remains constant, but

the energy can �uctuate, the proper statistical ensemble is the canonical one, where N ,V andT are

�xed.

By allowing the simulation box to evolve with time, it is also possible to work within the isobaric

ensemble, with constant number of particles, temperature and pressure (N , P ,T ).

In a given ensemble, the average value of a quantity b , noted 〈b〉, is de�ned as follows:

〈b〉 =
∫
drdpb(p, r)ρ(r, p)∫

drdpρ(r, p)
(1.3)

where ρ is the density of states in phase space. The simple integral symbol here is used to avoid too

heavy notations, and designates an integration over each component of position and momentum for
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each atom: ∫
dr dp ≡

∫
d3 ®r1...

∫
d3 ®rN

∫
d3 ®v1 ...

∫
d3 ®vN (1.4)

One usually de�nes thewidely used partition functionZ =

∫
d rdpρ(r, p) to rewrite ensemble averages

as

〈b〉 = 1

Z

∫
d rdpb(p, r)ρ(r, p) (1.5)

Any thermodynamical property that one would like to extract from a system can be computed using

these integrals.

So, if onewere to study toy systems, such as a one-dimensional harmonic oscillator, analytic solutions

to describe thermodynamic properties could simply be derived from these integrals. But for our real

systems, muchmore complex, that option disappears: when studying a solvated protein, an integral over

the phase space of thousands of atoms seems quite out of range if we wanted to compute it analytically

(or would cost dramatic approximations, abandoning a lot of information on the system). A di�erent

way to evaluate this kind of integral is thus necessary.

If we suppose that for an in�nitely long simulation, all the accessible phase space would be explored

following the right probabilities (with high energy conformations being less visited than the low energy

ones), then the system is considered to be ergodic, ensuring that

〈b〉 =
∫
drdpb(p, r)ρ(r, p)∫

drdpρ(r, p)
= lim

T→∞
1

T

∫ T

0

dt b(rt , pt ) (1.6)

This opens the door to numerical experiments: simulating in silico the evolution of our system over a

given period of time, a portion of the phase space will be explored, and we can average the properties

we’re looking for. Such a simulation can be seen as a (complicated) thought experiment3 approximating

real physical systems.

Having understood the relevance – and the need – for simulations, we have to de�ne how to carry it

out. And thus we enter the realm of Molecular Dynamics.

The main idea behind Molecular Dynamics (MD) is to model the interactions occurring at the micro-

scopic level using classical models, and simulate the time evolution of the system through Newtonian

dynamics. No explicit electrons are described (which, considering the classical and Newtonian nature
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of the approach, is rather reassuring). In this work, we will focus on all-atoms simulations, where all

atoms are explicitly represented. Coarse grain approximations,4 where groups of atoms are modelled

using single pseudo-atoms, or implicit solvents,5 describing the surrounding solvation molecules as a

continuous medium, have not been studied here.

So far, we have de�ned a system S, a simulation box, a statistical ensemble to work in. To carry out
simulations, we need two extra tools: one for computing forces acting on the atoms, namely a force-�eld,

and one for updating r and p after a time-step δt has elapsed, namely an integrator.

In the following sections, we will present themost typical and straightforward numerical integrators,

then an overview of force �elds.

1.2 Integrating dynamics using �nite di�erences

Let us assume that at a given time t , we know the positions rt and velocities vt , and that we also have

computed the forces acting on each atom ®Fi for each i (this will be the subject of sections 1.3 and 1.4).
Let us also de�ne δt , a small length of time, as our time-step. It designates the time elapsed between

two successive computation of the systems position and velocities. Starting from these data, we want

to compute the positions and velocities at time t + δt (rt+δt and vt+δt ).

Newton’s third law links the dynamical variables and the computed forces using

®Fi = m ®ai (1.7)

A simple Euler approximation gives us the following expression for the accelerations and velocities.

a(t + δt ) = v(t + δt ) − v(t )
δt

, v(t + δt ) = r(t + δt ) − r(t )
δt

(1.8)

Combining these two together yields

a(t + δt ) = r(t + δt ) − r(t ) − (r(t ) − r(t − δt ))
δt 2

(1.9)
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Inverting this relation to extract the positions at t + δt gives the basic Strömer-Verlet scheme:6

r(t + δt ) = 2r(t ) − r(t − δt ) + a(t )δt 2 +O (δt 2) (1.10)

Velocities can here be computed a posteriori using the mean value theorem:

v(t ) = r(t + δt ) − r(t − δt )
2δt

+O (δt 2) (1.11)

Using this integration scheme requires knowledge of the positions of the last two time-steps, r(t )
and r(t − δt ), which is in fact problematic when starting the dynamics.

To avoid this, one can use the Velocity-Verlet algorithm.7 This second algorithm also explicitly com-

putes the velocities at each time-step, which are useful when computing physical quantities such as

the temperature. It is divided in three steps.

1. Unlike the Strömer-Verlet, we now start from a second order Taylor expansion of the positions:

r(t + δt ) = r(t ) + v(t )δt + 1

2
a(t )δt 2 +O (δt 2) (1.12)

2. From the forces ®Fi , one computes the accelerations a(t + δt ) using Newton’s second law (1.7) .

3. One �nally has access to the velocities through

v(t + δt ) = v(t ) + 1

2
[a(t + δt ) − a(t )] δt 2 +O (δt 2) (1.13)

A more widely used implementation of the Velocity-Verlet uses half-step velocities, and expands to

four steps (the computational cost will be sensibly equal to the previous implementation, as no extra

expensive steps are taken).

1. Compute the "half-step" velocities (i.e. the velocities at time t + δt/2)

v(t + δt

2
) = v(t ) + δt

2
a(t ) (1.14)
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2. Compute the positions at next time-step using the half-step velocities:

r(t + δt ) = r(t ) + δt v(t + δt

2
) (1.15)

3. Update the forces and thus the accelerations a(t + δt ) using the newly computed positions

4. Compute the "full-step" velocities:

v(t + δt ) = v(t + δt

2
) + δt

2
a(t + δt ) (1.16)

These methods ensure time-reversibility of the dynamics, which means that, starting from the posi-

tions and velocities at time t+δt , and using the Verlet or Velocity-Verlet algorithm to compute positions

and velocity at time t (i.e. with a negative time-step −δt ), we would recover the original phase-space
point (r(t ), v(t )).

Using such integrators also conserves symplecticity, which can be seen as conservation of the phase-

space volume throughout dynamics. We won’t go in further details here, as the reader can �nd more

extensive explanations in [3].

Another family of integrators was proposed by Scho�eld and Beeman8, 9 providing improved accuracy.

These methods are based on the combined use of predictors and correctors, allowing for time savings.

Unfortunately, for most methods, such speedups come at the cost of time-reversibility.

Now that the framework for our simulations is well de�ned, and we have a proper integration

method, the only missing part is the force �elds.

1.3 Force �elds

A "force �eld" designates a set of mathematical models which associates an energy term to any atomic

interactions the model takes into account. An important point that should be clari�ed before going any

further is that we won’t consider any chemical reaction in this worki.

iFor taking reactivity into account, force �elds such as ReaxFF10 (among others) have been developed for years now.
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tion r0:

Ebond = kbond(ri j − r0)2 (1.18)

(kbond is a sti�ness constant �tted beforehand, ri j is the distance between atoms i and j ). Of

course, this expansion can be extended to higher orders, to include anharmonic corrections.

• Considering three atoms i , j and k , with i and k chemically bonded to j , and denoting θi j k the

angle formed between i j and j k bonds, then the same harmonic approach can be adopted to

account for the angle variation:

Eangle = kangle(θi j k − θ0)2 (1.19)

Again, higher order of this expansion can be taken into account for more re�ned description of

the atomic behaviour.

• A torsion term is also to be added here to account for the conformation barrier when rotating an

atom around an axe as shown in 1.1. Considered to be less sti�,15 this torsion term is modelled

using cosine functions rather than a harmonic approximation.

Etorsion =Vtorsion cos(nφ − φ0) (1.20)

Here,Vtorsion is the energy of the barrier height, φ the angle as shown in �gure 1.1, n the rotation

periodicity, φ0 the equilibrium angle (where the energy is minimal).

• One last energy term allows to reproduce the behaviour of planar (or locally planar) molecules,

as for example around sp2 carbon atoms. This is usually called improper torsion terms.

Eimproper = k imp(ω − ω0)2 (1.21)

ω and ω0 are the angle measuring deviation to the plane and the equilibrium one, respectively.
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Intermolecular terms

Intermolecular terms represent all interactions betweenmolecules at any distance. In the classical force

�eld domain, there are two main terms: the electrostatic interactions, and the van der Waals ones.

• Electrostatic interactions, in the simplest form, aremodelled through Coulomb’s law, and account

for the force arising between pairs of point-charges (the atoms). Considering atoms i and j and

their respective point-charges qi and q j , the electric potential created at position ®ri by atom j is

Vj (i ) =
q j

ri j
(1.22)

Then, the energy arising from interaction of charge qi with this potential reads

ECoulomb = qiVj (i ) =
qiq j

ri j
(1.23)

While being a satisfying �rst order when describing long range interactions, atomic orbitals have

an anisotropic e�ect (for the p and d ones), and are thus not well described. The point-charge

model is in fact the �rst order of a point-multipole expansion, that can be expanded to dipoles,

quadrupoles, or even octupoles.

We will write ®µP ,i and ΘP ,i the permanent dipole and quadrupole located on atom i (not to

be confused with the induced dipoles that will be studied later); and ®Ej (i ) the electric �eld
experienced at atom i ’s position, generated by another atom j . Then, the electrostatic energy

term arising from the permanent multipoles of atom i under the in�uence of the �eld created by

atom j is

Eelectrostat = qiVj (i ) + ®µP ,i . ®Ej (i ) + ΘP ,i : +( ®Ej (i )) (1.24)

(+( ®Ej (i ) is the 3 × 3 tensor containing the gradients of every component of the electric �eld

®Ej (i ), and the ":" operator designates a simple contraction).

• The van der Waals interactions are usually represented using a Lennard-Jones potential, which

shows a quite simple form:

ELJ = 4ǫ

[(
σ

ri j

)12
−
(
σ

ri j

)6]
(1.25)
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ǫ characterizes the depth of the potential well, or more physically, the highest attraction energy

between atoms i and j ; σ is the distance for which the interaction is zero. Two terms are easily

extractible from this formula.
(
σ
ri j

)12
accounts for the repulsive part when two atoms are really

close (it grows to very high energy if ri j ≤ σ). −
(
σ
ri j

)6
, on the other hand, accounts for the

attractive interaction that occurs at long distance.

These terms depend on atomic positions, but also on parameters �xed beforehand, such as the

harmonic constant kbond, kangle, or the ǫ and σ involved in Lennard-Jones potential. For example, let us

imagine a diatomic molecule, whose chemical bond would be modelled as presented in eq. 1.18. Here,

de�ning k and r0 are very opened choices.

One may want to use the results of quantum computations, basing the model on ab initio calcu-

lations. One could also imagine using results from experiments (such as spectroscopy) for these two

parameters. By a (slower) �tting process, another possibility would be to �t this length such that macro-

scopic properties computed through simulations would reproduce experimental ones.

Given the dependence of the bonding on the atom types involved, every possible pair of bonded

atoms A,B should have its speci�c constant kbond(A,B): this �tting should thus be repeated for every
atom pair that one wants to see bonded in a simulation.

This can even be pushed further, for the sake of accuracy of the model. The oxygen-oxygen bond

in the O2 gas is completely di�erent from the bond linking the same atoms in a carboxylic acid, just

like the carbon-hydrogen bonds in benzene and in methane are expected to have di�erent behaviours.

There can thus be, for a parameter as simple as this spring constant k , many di�erent values, possibly

�tted for a speci�c molecule or type of molecule.

Fitting these parameters appears as a very system-dependent process, and over the years, force �elds

with very various domains of applications have been developed. A wide zoology of classical force �elds

thus exists, with di�erences in their parametrization and models. UFF16 (Universal Force Field) is a

force �eld with parametrization for all elements in the periodic table, including the actinids. CFF17

(Consistent Force Field) targets more organic compounds, but also polymers and metals. CHARMM18

early versions (Chemistry at HARvardMacromolecular Mechanics) and AMBER19 (AssistedModel Building

with Energy Re�nement) are also classical force �elds, both aiming at simulating biochemical systems
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such as nucleic acids and proteins. OPLS20 (Optimized Potentials for Liquid Simulations) was speci�cally

�tted to reproduce liquid phase properties. This list is of course not extensive, and the interested reader

could refer to [21], section II.D, for a wider zoology.

The search for more accurate and realistic simulations is of course limited by the deafening silence of

electrons in classical force �elds (apart maybe from the anisotropy of point-multipole expansions in the

electrostatic terms). We will see in next section we can get closer to this conceptual border.

1.4 Polarizable force �elds

While explicit electrons are out of the picture, given our classical mechanics framework, one could argue

that all the energy terms presented so far actually implicitly take electrons into account, i.e. in covalent

terms and electrostatics. The chemical bond for example, which wemodel as a Taylor expansion around

an equilibrium position, is directly the consequence of electrons and nuclei interacting. The same can

be said about all intramolecular terms in 1.3.1.

Non-bonded terms, and more speci�cally the electrostatics using multipolar expansion, represent

the electronic density and its anisotropic nature. Yet the electronic density around an atom is not only

directional: it changes with time, under the in�uence of the external electric �eld. Amongst others,

this is represented by the polarizability (eq. 1.27). This electronic mobility will be taken into account in

our model as a supplementary term that will follow us for quite some time in this work: the induced

polarization. Rigorously speaking, denoting ρ(®r ) as the electronic density at position ®r , the dipolar
moment can be expressed as:

®µ =

∫
ρ(®r )®r d®r (1.26)

and the polarizability is then simply the partial derivative of this vector with respect to the electric �eld

®E
α =

∂ ®µ
∂ ®E

(1.27)

As one could expect, this e�ect plays an important role when looking at systems including highly

polarizable molecules, such as ionic liquids or electrolytes.22, 23
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Working within the Born-Oppenheimer approximation, we consider that the movement of the nuclei

can be decoupled from the one of electrons, the latter being much faster than the former. Induced

polarization will thus be computed at each time-step of the simulation. For this reason, we need a

model for this electronic e�ect, and its computational cost must stay acceptable.

1.4.1 Polarization models

Mean-�eld approximations

In early developments, polarization was not taken explicitly into account. Indeed, it was implicitly in-

cluded as part of the van derWaals through parametrization. In practice, the induced dipole term simply

modi�ed the parameters in the Lennard-Jones (or equivalent) potential. Such strategy can be called a

mean-�eld approximation. Of course, it comes with the cost of a lost anisotropy (directionality of the

induced polarization). All the so-called "classical force �elds" use this approximation, and provided

over the years very extensive results on many �elds of application ranging from biology (CHARMM,24

AMBER25) to ionic liquids.26

Fluctuating charges

Considering that atomic nuclei charges are partially screened by their surrounding electrons, a �rst

measure of the electronic density distribution could be done by looking at partial charges (within a

molecule, if the partial charge on an atom i is high, then it could describe the polarization of the

electrons away from it, subsequently diminishing the screening e�ect).

The �uctuating charges model (also called "electronegativity equalization") is based on such a re-

distribution of atomic partial charges within a molecule to recreate the �uctuation of the electronic

density. Di�erent implementations were proposed, relying on di�erent invariants to perform the time

integration. The most straightforward supposes conservation of the total molecular charge.27 It is used

in force �elds such as CHARMM-FQ.28, 29

Because of the punctual nature of the partial charge distribution, however, the subsequent polar-

ization e�ects are completely dependent on the geometry of the molecule. Indeed, when considering

a planar one (such as benzene), redistributing charges allows for polarization parallel to the plane, but

none perpendicular to it. Anisotropy of the polarization e�ects is thus not fully reproduced using this
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model. Furthermore, charge conservation of the system is usually implemented by a global Lagrange

multiplier leading to non-physical coupling between atoms regardless of their distance, which induces

long-range charge-transfer that should not be observed.30

Drude oscillators

Another possible point of view to describe the electronic cloud, seemingly oversimpli�ed, would be to

represent its center (the mean position of the electrons) as a single �ctitious point, bearing a (nega-

tive) partial charge. The Drude oscillatorii model uses this approach, and links this point-charge to its

nuclei through a harmonic springiii. Fluctuations of the electrostatic environment will then have direct

repercussions on the point charge’s dynamic, as a charge moving in an external electric �eld.

In the model, three energy terms are necessary. If we note ND the total number of atoms with

a Drude �ctitious particle, rD (i ) the position of the Drude particle attached to atom i , qD its partial

charge, ri the position of atom i , kD the sti�ness constant of the spring, the total energy when using

Drude oscillators is

EDrude =

N∑
i=1

1

2
kD (rD (i ) − ri )2 +

i,j∑
i=1,N
j=1,ND

qD (j )qi
|rD (j ) − ri |

+

ND∑
i ,j=1
i<j

qD (j ) − qD (i )
|rD (j ) − rD (i )|

(1.28)

By order of appearance in eq. 1.28, it consists in the harmonic spring’s energy, and two additional

electrostatic energies: the interaction between atomic charge on atoms and Drude particles, and the

interaction of Drude particles pairs.

This total energy term can be seen as an energy functional EDrude[rD ], which has to be minimized
for each time-step to �nd the correct position of Drude’s �ctitious particles. This minimization can be

rewritten as a linear system to solve, or equivalently, as a matrix that one needs to invert.

To avoid the high cost of this method, Drude particles are traditionally used as supplementary

degrees of freedom, in an extended Lagrangian scheme. Themass of each concerned atom is partitioned

between the �ctitious particle and the parent atom to which it is attached. If the mass attached to the

�ctitious particle is too small, it will result in very high-frequency motions, which will require very small

iiAlso known as "core-shell model" in the solid state community.
iiiOnly non-hydrogen atoms carry this �ctitious "Drude particle"
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time-steps to be correctly simulated. On the other hand, if it is too heavy, the response of the Drude

particles will not be fast compared to the evolution of the nuclei, which is contradictory with the Born-

Oppenheimer approximation.

The motion of all particles is then computed with usual integration methods. This avoids the need

for expensivematrix iterations, yet is not so computationally cheap. Indeed, the number of electrostatic

interactions is larger (it now contains the three extra terms presented in equation 1.28). Furthermore,

Drude oscillators treated within an extended Lagrangian scheme do not allow for large time-step inte-

gration methods (as presented in chap. 4), so they can not bene�t from this important acceleration.

This model is implemented in various packages, such as CHARMM-Drude,31 GROMACS,32 OpenMM,33

NAMD34 (amongst others).

Induced dipoles

A simple mathematical object to represent polarization could be a vector, whose direction would signify

the polarization spatial distribution, and whose norm would measure the intensity of the e�ect. In the

limit of an in�nitely small vector, on obtains a point dipole (similar to the multipolar expansion used

in the electrostatic treatment in 1.3.1)iv.

Since the electric �eld perceived at an atom’s position drives the polarization of its electronic

density, we will adopt the simplest possible relation between these two quantities, and assume that

the induced dipole ®µi is proportional to ®Ei :

®µi = αi ®Ei (1.29)

withα being the polarizability. Since we are talking about vectors here, α should be a 3×3 tensor rather
than a simple scalar. Indeed, using a simple scalar would mean that every component of the induced

dipoles would be proportional only to the same component of the electric �eld (e.g. µi ,x = αEi ,x ).

This does not allow for anisotropy in the origin of the polarization (the x component of the �eld has

no in�uence on the y component of the dipoles).

ivThe Drude oscillator model, by using a couple of opposite charges each on a di�erent point in space, actually de�nes
such a dipole. Starting from this model, and looking at the limit where the distance between the atom and the Drude particle
tends to zero, one recovers the induced dipole model.



25 CHAPTER 1. MOLECULAR DYNAMICS – AN OVERVIEW

Using a tensor, however, one can rewrite eq. 1.29 as

®µi =

©«

αxx αx y αxz

αyx αy y αy z

αzx αz y αzz

ª®®®®®®®®®¬

©«

Ei ,x

Ei ,y

Ei ,z

ª®®®®®®®®®¬

(1.30)

which allows for cross terms, as for example µi ,x = αxxEi ,x + αx ,yEi ,y + αx ,zEi ,z .

That being said, models usually use null cross-terms (αx y = αxz = 0), which essentially means

that a simple proportionality holds between same components of both vector (µi ,β = αββEi ,β ).

For future reference, we will write α the 3N × 3N matrix containing all polarizability tensors:

α =

©«

α1 0

. . .

0 αN

ª®®®®®®®®®¬

with αi =

©«

αi ,xx 0 0

0 αi ,y y 0

0 0 αi ,zz

ª®®®®®®®®®¬

(1.31)

Induced dipoles have proven to be best suited for highly polarizable systems, such as ionic liquids,

yielding slightly better accuracy23, 35, 36 than Drude oscillator. Their real advantage is their �exibility

in terms of time integration. Contrary to Drude oscillators simulations, where the movement of the

�ctitious particles is a fast motion limiting the possibilities to use large time-step integration, induced

dipoles allow for higher time-steps. This designates this model as a better candidate for experiments

on the integration methods, as chapter 4 will illustrate.

Another advantage over the Drude oscillator is in a simpli�ed parametrization. The explicit presence

of polarizabilities (αi ) allows direct use of experimental or ab initio results,37 whereas Drude requires

a non-trivial balancing between kD and qD to reproduce correct polarizabilities.

It should also be pointed out that, contrary to the Fluctuating Charges model, there is no risk of

non-physical charge transfer here, as atomic charges are purely �xed parameters.

The induced point-dipoles model is the choice that we will work with in the remainder of this work.

They are implemented in AMBER,38 in the AMOEBA force �eld39 within Tinker packages,40, 41, 42 to only
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cite a few. As such, we should also remind the approximations it supposes before further investigations.

• Firstly, the assumption that electronic density can simply be represented using point dipoles is

quite strong, as it is known that its spatial extension is much more complex.

• Secondly, choosing a simpli�ed polarizability tensor makes sense from a computational point

of view, as a more involved choice would imply severe complications in the implementation.

However, it supposes that the polarizability, eventhough it results from polarization of highly

anisotropic entities (the atomic orbitals), will yield non-directional results.

• Thirdly, the electrostatic interactions are assumed to be stopped after the dipole-dipole term.

Yet one could suppose that more complex shapes, in order to better represent the polarization,

should be taken into account here (induced quadrupoles, for example). Here again, the e�ort

needed to reach this higher order description would be tremendous.

The polarization catastrophe and Thole damping

One can de�ne molecular polarizability as the inverse of the polarization matrixa

restricted to the atoms within a singlemolecule. It relates to themolecular induced

dipole moment, since for a diatomic molecule AB, ®µmol = ®µA + ®µB .
Applequist et al. showed that the molecular polarizabilities could diverge (reach

in�nite values) when atoms are close,43 deriving a simple example on a diatomic

molecule. This e�ect is known as the "polarization catastrophe". Applequist’s �rst

answer was to choose lower polarizability parameters, to reduce the molecular

polarizabilities amplitudes. Thole et al. proposed a more general solution in the

shape of a damping function compensating the divergence at short distances, ef-

fectively avoiding the catastrophe in simulation.44

asee chapter 2.

The zoology of force �elds is of course wide, and this section is by no means an exhaustive study.

Polarizable force �elds have also been treated using topological atoms and machine learning.45, 46 Ab

initio force �elds, encompassing more short-range quantum e�ects, were also developed: the SIBFA
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model (Sum of Interactions Between Fragments Ab initio computed)47 is a force �eld taking exchange-

repulsion and charge transfer into account, thanks to a careful �tting based on ab initio calculations.

Cisneros et al. also proposed a force �eld based on electronic density called GEM (Gaussian Electrostatic

Model).48, 49, 50

Having chosen a physical model to carry out our simulations, we now �nally need an infrastructure

where we can develop and explore polarizable molecular dynamics: this is where our Tinker-HP code

comes into play.

1.5 Amassively parallel framework for Molecular Dynamics: Tinker-HP

All the developments and computations that will be presented in the next chapters were carried out us-

ing Tinker-HP (see [42], reproduced in Appendix). Tinker-HP is a high-performance version of the Tinker

package,40 initially developed by Jay Ponder at Washington University. It inherited from its simplicity in

terms of implementation, and user-friendliness. Indeed, Tinker was primarily designed as a sandpit for

experimenting, testing, creating force �elds, algorithms and models.

Nevertheless, the initial Tinker implementations were really slow, and not competitive with the

state-of-the-art simulation programs such as NAMD,51 GROMACS,52 etc. Tinker-HP, while maintaining

the most useful features of the Tinker original package, is designed for high performance computa-

tions. Its MPI parallel structure can make e�cient use of thousands of cores, and e�orts were put in

proper vectorization of the code, yielding substantial gains in computation speed53 to take advantage of

present petascale high-performance supercomputers but also to simply o�er acceleration on everyday

laboratory computer clusters.

The following sections brie�y present the algorithms and methods on which these improvements

were based. An introduction to the Particle Mesh Ewald treatment of boundary conditions is then given.

1.5.1 Parallel implementation

Spatial decomposition

When working with large computational resources, the goal is to e�ciently divide the workload between

the cores. In Tinker-HP, this is based on a three dimensional spatial decomposition. The simulation box
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Figure 1.3: On the left, a homogeneous system divided in four subdomains. On the center and right, an
inhomogeneous system, with an adaptated division in subdomains on the right panel.

To achieve a correct work balance between cores, a reasonably homogeneous system is the simplest

and best candidate (it should be the case for liquid phase simulation). Indeed, discrepancies in the spa-

tial distribution of the particles would mean that some processors would have more to do than others,

e�ectively slowing down the whole computation. Resizing domains to have them contain approximately

the same number of atoms can also be undertaken to avoid this problem (subdomains should be bigger

in low-density regions and smaller in high-density ones). See �g. 1.3.

Midpoint technique

Communications can become a computational bottleneck in the parallel calculations, e�ectively slowing

down the simulationn. This is especially the case when considering high numbers of CPU (or very large

systems), where a lot of information has to be exchanged between processors. To minimize this loss

of time, one can consider the pairwise nature of the elementary components of the forces driving

our simulations: noting ®fj /i a force applied on atom i from atom j , Newton’s third law insures that

®fj /i = −®fi /j .

Consequently, considering a pair of atoms a and b in two di�erent subdomains, hence under the

responsibility of two di�erent processors, one has to choose one of the two processors to perform the

computation and then communicate the result to the other. Very simple (almost naive) geometrical

arguments could be invoked here (choosing the domain with the biggest x , y or z component for

example), but following Shaw et al.,54 Tinker-HP uses the midpoint technique, a choice adapted for

many-body interactions minimizing the amount of information required for each processor.
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summed. We will illustrate the method presented in this section through this charge-charge term only,

although permanent dipoles and quadrupoles are also used in our simulations.

A di�culty arises here, as each atom of our system now has an in�nity of neighbors (represented in

1.32 by the in�nite sum over ®n) – which would mean an in�nity of non-bonded interactions to compute.

Fortunately, the terms in this sum are decreasing as 1

r
. This means that, past a certain distance rC ,

we can neglect the value of the interaction for being small enough. This distance rC is called a cuto�,

and acts as a limit for the interaction ranges. Practically, this means that given an atom i , its interaction

with atom j (whether in the original simulation box or in one of the replicas) is only computed if the

distance ri j is smaller than the cuto� (ri j < rC ). The typical values that are used in this cuto� have

the same order of magnitude as the simulation box size. For each atom, the number of interactions to

be computed is thus of the order N ; as a consequence, the complexity of computing such a pairwise

interaction, when using periodic boundary conditions and a cuto�, scales asO (N 2).

This cost can however be improved. Ewald summation56 splits this sum into two absolutely converging

sums, a direct sum and a reciprocal sum, supplemented by a small correction term:

Eelec = Edirect + Erecip + Eself (1.33)

This splitting is controlled by a a real, positive number β , whose value de�nes a distance separating

the direct and reciprocal terms of the total sum. If β is such that only the simulation box, without any

periodic image, is taken into account in theEdirect interactions terms, we can detail this sum as hereafter.

Again, we are only looking at the simplest electrostatic termhere, i.e. the sumof all interactions between

vIf we note ®a , ®b and ®c the vectors de�ning the simulation box (the lattice vectors), then each ®n are de�ned as ®n =

ia ®a + ib ®b + ic ®c , where ia , ib , ic are three integers.
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point-charges.

Edirect =

N∑
i=1

N∑
j=i+1

qiq j
erfc

(
βri j

)
ri j

(1.34)

Erecip =

N∑
i=1

N∑
j=i+1

qiq jΦrec
(®ri j ; β ) (1.35)

Eself =
β√
π

N∑
i=1

q2

i (1.36)

erfc is the complementary error function, which allows for a smooth switching o� of the direct

contribution as a function of the distance ri j vi. The Φrec(®r , β ) potential is

Φrec(®r , β ) =
1

πV

∑
®m,®0

exp
(
−π2 ®m2

β 2

)
®m2

e2π i ®m .®r (1.38)

Here, the vectors ®m are de�ned as linear combinations of the reciprocal lattice vectors ®a∗, ®b∗, ®c∗, such
that ®m = ia ®a∗ + ib ®b∗ + ic ®c∗ with ia , ib and ic are integers. The parameter β can be chosen such that

the total complexity of the computation drops toO (N 3/2) if it is well chosen (see [57]).

Darden proposed amethod to improve the computation of the reciprocal sum (eq. 1.35) called Particle

Mesh Ewald (PME).57 The complex exponential terms of equation 1.38 are interpolated on a grid. This

allows one to rewrite Φrec as a convolution product. Thankfully, when switching to the Fourier space,

a convolution becomes a simple product. The procedure followed to compute this sum is thus: �rstly,

putting the charges on the grid; secondly, using a Fourier transform to compute the charge distribution

in Fourier space; thirdly, compute the convolution product in Fourier space; �nally, use a backwards

Fourier transform to extract the reciprocal sum’s value.

The use of Fourier transform e�ectively accelerates the computation of this expensive term, and

using fast Fourier transforms (FFTs), the complexity becomes of order O (N log(N )), which is a signi-
�cative improvement. As a consequence, if one chooses β such that the direct-space sum scales with

viThe complementary error function is de�ned as

erfc(x ) = 2√
π

∫ ∞

x

e−t
2

dt (1.37)
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O (N ), the total computational complexity becomesO (N log(N )) .
Analytical derivatives were introduced thanks to the use of B-spline functions for interpolation.58

Extension to multipoles was later derived by Sagui et al.,59 and induced dipoles by Toukmaji et al.60

Finally, the consistent formulation and derivation of themultipole expansion and induced dipoles Ewald

self terms were given by Stamm et al.61
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2.1.1 The linear problem

The polarization matrix

Let us �rst de�ne the energy functional describing the induced polarization. Since we assume that

at any time during our simulation, the electrons will be at equilibrium, the correct induced dipoles

themselves will be obtained by minimizing this functional.

Three terms should be taken into account here:1

• the interaction between the induced dipole and the electric �eld generated at its position by the

permanent distribution of charges,

• the self-energy of the polarization (one could describe it as the energy of interaction between

one dipole and the electric �eld that it generates),

• and the interaction between two distinct induced dipoles

The total then reads

Epol[µ] = −
∑
i=1,N
β=x ,y ,z

E
β

i
µ
β

i
+
1

2

∑
i=1,N

β ,γ=x ,y ,z

[α−1i ]βγµ
β

i
µ
γ

i
+
1

2

∑
i=1,N
j,i

∑
β ,γ=x ,y ,z

T
βγ

i j
µ
β

i
µ
γ

j
(2.1)

Here, E β

i
stands for the β component of the electric �eld experienced at atom i , andTi j is the tensor

accounting for the interaction between dipoles ®µi and ®µj , de�ned as follows:

T
βγ

i j
= −

δβγ

r 3
i j

+ 3

r
β

i j
r
γ

i j

r 5
i j

(2.2)

To illustrate it, let us say that Ti j ®µj is the electric �eld created by dipole j on site i , which leads to
®µi TTi j ®µj representing the interaction energy between these two induced dipoles.

Given the polarizability tensor presented in 1.4.1 as well as the interaction ones introduced above, we

can now write the full polarization matrix T, using 3 × 3 blocks, as:
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T =

©«

α−1
1

−T12 −T13 . . . −T1N

−T21 α−1
2

−T23 . . . −T2N

−T31 −T32

. . .

...
...

...

−TN 1 −TN 2 . . . α−1
N

ª®®®®®®®®®®®®®®®®®®¬

(2.3)

Here, we voluntarily omitted the Thole damping factors, as they would only weigh down the nota-

tionsi.

T is symmetric, positive and de�nite. While the symmetry is obvious (the interaction Ui j between

dipoles i and j is equivalent toUj i ). Positive de�nite means that all its eigenvalues should be strictly

positive: this is ensured by the Thole damping1 (see 1.4.1).

For future reference, we can also write the polarization matrix as T = α
−1 − T , with T the matrix

containing all the o�-diagonal blocksTi j .

Energy functional

Keeping notations presented in 1.1, we will write ®Ei (respectively ®µi ) the (three-dimensional) electric
�eld experienced (respectively the induced dipole) on one atom, and E (respectively µ) the 3N vector

containing all ®Ei (respectively all ®µi ).
Using the polarization matrix as de�ned above, we can �nally simplify equation 2.1 as

Epol[µ] =
1

2
〈µ, Tµ〉 − 〈µ, E〉 (2.4)

Minimizing this energy functional, by equalizing its derivative along µ to zero, can easily be done

using the more explicit eq. 2.1:

∂Epol[µ]
∂µ

β

i

= −E β

i
+ [α−1i ]βγµ

β

i
+

∑
i,j

T
βγ

i j
µ
γ

j
= 0 (2.5)

iTheir explicit expressions can be found in [1].
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Using our previously de�ned notations, this �nally gives the following linear system:

Tµ = E (2.6)

and the polarization energy then reads:

Epol = −
1

2
〈µ, E〉 (2.7)

The whole polarization question, when choosing the induced dipoles model, is essentially contained

in this linear problem in equation 2.6: for each time-step, we will have to �nd the vector µ solution, or

equivalently invert the T matrix. Of course, computation of energies and forces will be necessary, but

their computational cost do not exceed the price paid for solving this linear problem, as we will see in

the next sections.

2.1.2 Solving the linear problem

Having identi�ed the linear problem governing our model, we now need to propose a way to solve it. In

the following, we will thus present the various polarization solvers that one can use.

Direct methods

When trying to invert a matrix, the �rst family of methods coming to mind are the direct ones, as they

are exact. One can cite the LU decomposition,2 which decomposes thematrix to be inverted in a product

of a lower triangular one (L) with an upper triangular one (U ). This allows one to change the non-trivial

linear problem (Ax = b) in two successive straightforward operations (solving Ly = b for y , then

solvingUx = y ).

Another candidate is the Cholesky decomposition,2 only applicable to positive de�nite matrices.

Much as the LU-decomposition, it expresses the matrix to be inverted as a matrix product, this time of

a triangular matrix L and its conjugate transpose L∗.

Matrix inversion being a very common problem, the list of these methods is long and diverse, with

re�nements having been developed to exploit the various matrix shapes and properties.3

Their computational cost, however, is usually scaling as the cube of the matrix size (O (N 3)), which
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becomes problematic as we want to to simulate systems containing tens to hundreds of thousands

of atoms (when considering solvated proteins). Eventhough the computing resources are in constant

progress, we still can not a�ord to perform such operations – even more so if it’s required at each

time-step of a simulation !

Predictor methods

A predictor is an approximation using the previous induced dipoles (µcorr(t − ∆t ), µcorr(t − 2∆t )...) to
evaluate the induced dipoles at time t , namelyµpred(t ). The electric �eld arising from this set of induced

dipoles (Epred) is then used to propose a corrected version of the dipoles µcorr(t ), more precise, that is
then to be used in the following iterations as a basis for the predictors.

The simplest predictor version would be to use... the previous induced dipoles as the current ones:

µpred(t ) = µcorr(t − ∆t ) (2.8)

The �rst order predictor reads:

µpred(t ) = 2µcorr(t − ∆t ) − µcorr(t − 2∆t ) (2.9)

Ahlström et al.4 proposed an algorithm which only used an iterative solver every n time-step (n ≃ 5).

It was deemed to keep satisfyingly conservative results by the authors, and used a predictor for every

other time-step. The authors propose a range of predictors up to third order, but their result show a

much better behaviour of the �rst-order one (eq. 2.9). The method, although it accelerates simulations,

does not allow for stable simulations over long times.

Kolafa designed an "Always Stable Predictor-Corrector" (ASPC), to be used at each time-step at a

cost of one self-consistent iteration, exhibiting better stability.5 Although e�orts were made to improve

time-reversibility,6 using data from previous time-steps (in this case the induced dipoles values) pre-

vents proper conservation of this property. Time-reversibility is important as it guarantees a proper

conservation of energy over the course of the simulationii.

iiLet us imagine our system at initial positions and velocities q0 and v0. After simulating a time t , suppose that an error ǫ
was accumulated. One can then carry out a backwards integration of the system, which would bring the system back to the
original q0 and v0. Yet it would also have accumulated an error ǫ, totaling into a 2ǫ error: for the system to come back to
its exact initial position and velocity – that is, if the dynamics is truly time-reversible – this error must necessarily be ǫ = 0.
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Section 2.1.3 proposes iterative methods as an answer to the self-consistency problem, whose cost

depends on the number of iterations needed to reach an acceptable solution. Kolafa’s predictors pre-

sented above compute dipoles close to the converged solution that can be used as initial guess for the

iterative solvers, such that the number of iterations required afterwards is minimized, at the cost of the

time-reversibility of the dynamics.

Extended Lagrangians

Another approach to propose good approximate values for the induced dipoles before any self-

consistent iteration is the extended Lagrangian scheme.7 Induced dipoles are treated as independent

degrees of freedom, a�ected with �ctitious masses (as would be done in Car-Parrinello Molecular Dy-

namics8 for molecular orbitals). We can write their associated kinetic energy as

T =

∑
i=1,N

1

2
mp Ûµi 2 (2.10)

(where Ûµi denotes the time-derivative of µi , and mp is the �ctitious mass evoked above), while the

energy functional de�ned in 2.1 can be used as the potential energy.

This allows one to derive equations of motion that will govern the dynamics of the induced dipoles,

based on the de�nition of a so-called extended Lagrangian (description of the Lagrangian mechanics

are beyond the scope of this work, and the reader can �nd more details in specialized work such as ref.

[9], with a clarity and conciseness that yours truly could not hope to have). Essentially, Euler-Lagrange

equation allows one to derive motion equations from the Lagrangian, guided by the minimization of the

system’s action. This yields a cheap method to compute induced dipoles, although they are not always

exactly at the minimum of the polarization energy energy proposed in eq. 2.4.

Another use of the extended Lagrangian was later introduced by Niklasson et al.10 in the Born-

Oppenheimer Molecular Dynamics framework, where they proposed to use auxiliary degrees of free-

dom within the Car-Parrinello/extended Lagrangian framework. The role of these auxiliary degrees of

freedom was in this case to serve as an initial guess of a Self-Consistent Field problem, in order to reach

convergence faster (it is exactly the same purpose as presented in section 2.1.4).

Following this same idea, Head-Gordon et al. proposed to use auxiliary degrees of freedom to
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describe induced dipoles11 within polarizatble MD (a set µ(N ) of auxiliary induced dipoles is thus used,

and is constrained to stay close to the accurate value of the "real" induced dipoles). Although it means

more equations to be integrated for each time-step, the gain obtained by minimizing the number of

self-consistent iterations still makes it a valuable strategy for computing dipoles.

Another advantages here is the improved energy conservation allowed by the simple expression of

the equations of motion of the supplementary degrees of freedom. However, the need for an additional

thermostat for the auxiliary degrees of freedom is potentially problematic, as it introduces additional

parameters. In practice, this extended Lagrangian strategy forbids the use of usual large time-steps

integration such as RESPA, as themovement of the auxiliary degrees of freedomhas to be �nely resolved

so as not to blow up.

2.1.3 Iterative solvers

Iterative solvers constitute an important family of solvers that has not been cited yet, although they are

arguably the most used ones. They avoid the overwhelming cost of direct methods, while ensuring a

better control over the precision on the computed dipoles.

The general idea behind iterative solvers is a trade-o� between computation cost and precision:

instead of fully inverting the matrix, which would yield the perfect solution of the linear problem (in

our case, the exact induced dipoles), one decides to re�ne the solution until a certain convergence

criterion is reached. This criterion can be chosen in di�erent ways: it could be a threshold value on the

residue norm, or on the norm of the di�erence between dipoles from one iteration to the next, amongst

other choices.

Of course, this type of solver is only a valid solution if two requirements are met:

• the computational cost for one iteration must stay reasonable, so that there is indeed a gain

in computation time; in practice, for the methods presented in the following, it scales with the

cost of the operation which corresponds to the computational bottleneck in the solver. In our

case, this operation is the matrix-vector product, such that their number are often used as the

measuring standard to evaluate algorithms costs.

• for the same reasons, the total number of iterations should be as small as possible, as this will

determine the overall cost of the solver.
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In the following, we will present two distinct families of such methods, namely the �xed-point and

Krylov ones.

Fixed point methods: the Jacobi example

Fixed point methods (or stationary methods) are built by splitting the matrix to invert: in the case of

the polarization, we can write

T = α
−1 − T (2.11)

changing our linear problem (2.6) into

α
−1
µ = Tµ + E (2.12)

the solution then writes

µ = α(E + Tµ) (2.13)

Here, µ appears as the �xed point of a mapping. Starting from an initial guess µ0, and computing the

sequence of µn de�ned as

µn+1 = α(E + Tµn) = µn + αrn (2.14)

Picard’s �xed point theorem12 shows us that this sequence converges towards the solution of our linear

problem. This is however only insured if the spectral radius of matrixαT , noted ρ(αT) is smaller than
1, which means that some cases may not converge.13, 14

This method thus illustrates itself through its simplicity, both in derivation and �nal algorithmic

shape. The non-convergence risk, however, advocates for a more careful choice of the inversion algo-

rithm. The properties of the polarization matrix also encourage us in looking for a method that would

be more speci�c, and hopefully more e�cient, to solve our linear problem.
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Jacobi over Relaxation

An extra step can be performed at the end of an iterative solver’s algorithm: by

choosing a relaxation parameter ω, one can re�ne the Jacobi method as follows

µn+1 = (1 − ω)µn + ω(µn + αrn) = µn + ωαrn (2.15)

It supposes no extra cost if both µn and rn have already been computed, and yields

an improved set of induced dipoles. It is convergent if ρ(Id − ωαT) < 1. This is

called the Jacobi over relaxation scheme, usually abbreviated as JOR. It may be

observed that setting ω = 1, the JOR method comes back to a simple Jacobi step.

Asymptotically (i.e. for a large number of iterations), the optimal value for ω is the

value that minimizes the spectral radius ρ(Id − ωαT). In our symmetric positive
de�nite case,it corresponds to

ωopt =
2

λmin + λmax
(2.16)

where λmin and λmax are the smallest and biggest eigenvalue of matrix αT. This

value can be computed e�ciently using Lanczos algorithm.15

ExPT and OPTn methods: a re�tted Jacobi procedure

Recently, Simmonett et al.16, 17 developed a new class of methods called ExPT and then OPTn, based on a

perturbative approach of the induced dipole derivation. We can show that this is in fact a reexpression

of the Jacobi iterations presented above.

Indeed, let us express the induced dipoles obtained by Jacobi iterations as a sum of dipoles of

increasing order:

µn =

n∑
i=0

µ(i ) (2.17)

Taking the direct �eld αE as the zero-th order µ(0) = µ0, applying 2.14 that the �rst order gives

µ1 = αE + αTαE (2.18)



2.1. POLARIZATION SOLVERS – STATE OF THE ART 52

The second order term µ(1) is thus de�ned as αTαE, and pushing this derivation further shows the
following expression for the i -th order term

µ(i ) = α (αT)i E (2.19)

By truncating this method after two iterations (n = 3), and using a linear combination of the odd

dipoles, one de�nes the ExPT method:16

µExPT = c1µ1 + c3µ3 (2.20)

Interestingly, this expression is not iterative, and thus provides the user with an analytical expres-

sion of the dipoles. It means that di�erentiating the dipoles with respect to space would give simple,

but analytical derivatives, that can then be used to improve the precision over the simulations, as will

be shown in 2.2. It also exhibits a quite small computational cost (as it boils down to three matrix-vector

products).

Nevertheless, the coe�cients c1 and c3 are determined through a �tting procedure, and thus should

be subject to cautious use, as they may yield wrong results for untested systems, since (as explained

previously) Jacobi iterations are not necessary convergent.

This approach was then broadened to further orders in the follow-up OPTn methods,17 encompass-

ing µ(i ) up to the fourth order. Improved results were obtained, particularly on heterogeneous and

biological systems, but a �tting procedure remains nevertheless necessary here.

As for the extended Lagrangianmethods evoked before, OPTn methods can count on analytical deriva-

tives, which is a very good asset regarding the energy conservation along the simulation. However, they

also share the same drawback: they both rely on parametric formulations (for the �ctitious masses in

the extended Lagrangian, and for the ci coe�cients here), which can sometimes lead to inconsistent

energy values. Further e�orts are thus needed to keep the good features (analyticity) while keeping a

non-empirical concept.
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Direct Inversion in the Iterative Subspace

The Direct Inversion in Iterative Subspace (DIIS) procedure was introduced by Pu-

lay18, 19 to improve the convergence rate of self-consistent calculations used in

quantummechanics. Themethod assumes that a good estimation of the �nal solu-

tion µf can be expressed as a linear combination ofm previous iterative solutions.

This can be written

µDIIS =

m∑
i=1

µi =

m∑
i=1

ci (µf + ei ) = µf

m∑
i=1

ci +

m∑
i=1

ci ei (2.21)

using ei to denote the di�erence µf −µi , which is unknown, with
∑m

i=1 ci = 1. This

last condition can be used as a constraint within a Lagrange multiplier method in

order to minimize the norm of the error
∑

i ci ei . This allows one to extract a good

set of coe�cients ci that can be used two generate the estimate µDIIS.

This is a very general method, and it can be used on any iterative self-consistent

solver. Practically, one would simply compute an iteration of the chosen solver,

then carry out the DIIS procedure (whose cost is negligible compared to a solver

iteration). If the obtained µDIIS reaches the chosen convergence criterion, self-

consistent iterations can be stopped.

When used in a linear case, DIIS corresponds to the GMRES subfamily of the Krylov

methods.20

Krylov subspace methods and the Conjugate Gradient

Krylovmethods follow a di�erent idea: with each successive iteration, a subset of space (called Krylov

subspace) grows, and a functional is minimized over that subspace.

Given an initial guess for the dipoles µ0 (or more generally of the vector solution of 2.6), let us de�ne

its associated residual r0 as

r0 = E − Tµ0 (2.22)

The Krylov subspace of order p is de�ned as span{r0, Tr0, T2r0, ..., Tp−1r0}.
Since the dimension of the Krylov susbpace grows with each iteration, minimization is performed over
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an always increasing domain, which ensures that the method will converge to the exact solution µ, in a

number of iterations n i ≤ 3N .

The functional that is chosen to be minimized determines which Krylov method is used: if one

were to minimize the l 2-norm of the residue (| |rn | |l 2 ), the method used would be GMRES.15 If Epol is
minimized (provided that T is symmetric positive and de�nite), it’s the Conjugate Gradient (CG). The

Conjugate Gradient is optimal, in the sense that the dipoles values at iteration i are fully minimized

over the Krylov subspace on which they were built. Otherwise put, no other vector built on the Krylov

subspace that is used at iteration i would give a lower value of the polarization energy (or would be

closer to the exactly minimized dipoles µf ). For matrices very�ng less strong conditions than our T

matrix, several other methods have been proposed, such as the BiCG or Minres algorithms (see [15]).

The Conjugate Gradient works with two distinct vectors, both belonging to the iteratively growing

Krylov subspace: the descent direction pi and the residual ri . The descent direction represents the

research vector along which the (iterative) solution is updated, and the residual is T-orthogonaliiito the

descent direction of previous iteration, thus allows the building of the next research subspace (see [13]).

Its initialization reads as follows:




µ0 = αE or 0

r0 = E − Tµ0

p0 = r0

(2.23)

One can note that this initialization costs (in computational time) one matrix-vector product if a non-

zero guess is used.

iiiLetA denote amatrix. Matrix-orthogonality does not di�ermuch, in its de�nition, from the vector orthogonality. Without
overburdening the reader with details, we will simply note that, for two vectors u and v to be A-orthogonal, the scalar
product 〈u,Av 〉 must be equal to zero.
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One iteration of the algorithm is then:




γi =
〈ri ,ri 〉
〈pi ,Tpi 〉

µi+1 = µi + γipi

ri+1 = ri − γi Tpi

βi+1 =
〈ri+1,ri+1〉
〈ri ,ri 〉

pi+1 = ri+1 + βi+1pi

(2.24)

〈u, v〉 designates the scalar product between two vectors u and v . At iteration i ,

• γi , the optimal distance to move along the search direction pi is computed,

• the induced dipoles are updated (µi+1),

• the residual is computed, e�ectively increasing the Krylov subspace size,

• the next search direction is computed.

The costly part in terms of computation is the matrix-vector product (Tpi ) necessary for each itera-

tion.

As the optimal iterative solver when considering symmetric positive de�nite matrices, and given

its guaranteed convergence, the Conjugate Gradient appears as the method of choice for treating our

polarization problem.

2.1.4 Reach convergence faster

After choosing the Conjugate Gradient, since it is optimal for our problem, its convergence properties

can be improved in several manners. This may seem counter-intuitive: if CG is optimal, how could we

hope to improve it ?

The optimality of CG means that, for a given number of iterations, no other solver could yield a

better result. Put in other words, to minimize the number of iterations required to reach a convergence
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criterion, CG is the best choice. Further improving its performances can thus only be done by acting

on the "input" of the algorithm: two vectors (E and µ0) and the polarization matrix T (see eq. 2.23).

Of course, the computational cost for this better "preparation" must stay negligible compared to the

subsequent acceleration gained.

In the following, we describe two such leads, one by acting on the matrix to be inverted, the second

by choosing a good starting point for the solver.

Preconditioning

When considering Krylov subspaces methods, one can show15 that the convergence rate of an iterative

solver depends on the condition number of the matrix to be inverted. This condition number κ is, in

our symmetric, positive, de�nite case, is de�ned as

κ(T) = λmax

λmin
(2.25)

where λmax and λmin are the biggest and smallest eigenvalues, respectively. The smaller κ is, the better

the matrix is conditioned, and the faster the iterative solver will work.

Suppose one has access to a matrix P whose inverse is somewhat "close" to the matrix T. Then the

conditioning of PT will be better than the one of T (we have κ(P−1T) ≤ κ(T)). One can then change the
original linear problem Tµ = E into the better conditioned one

P−1Tµ = P−1E (2.26)

Using our iterative solver on this new problemwill then yield a faster convergence rate, thus accelerating

the dynamics.

The only drawback here is the P matrix itself: it has to be both close to the T matrix and easily

inverted. An ideal candidate here is the block-diagonal matrix of inverse polarizabilities (usually noted
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(2.27)

Inverting this matrix is indeed trivial and negligible in cost. However, it is a really rough approximation

of the original T matrix and its e�ect will be subsequently limited.

Among the other preconditioner candidates, Wang and Skeel21 propose the following: starting from

T = (α−1 − T) = α
−1(I − αT) (2.28)

one has

T−1 = α(I − αT)−1 (2.29)

which can be approximated as

T−1 ≃ α(I + αT) (2.30)

This approximation can be combined with a cuto� on the interactions in the T matrix. Being closer

than the previous matrix P presented to T, the e�ect on the convergence rate are better, but come with

a higher cost for each iteration (see [22]).

Other names, such as the incomplete Cholesky preconditioner, can be cited here. The "pure" Cholesky

decomposition designates the rewriting of a positive-de�nite matrix as product of a triangular matrix

and its transpose (M = LLT ), allowing for an e�cient direct solution of linear systems. The incomplete

one is an approximation of this decomposition that can be used as a preconditioner.15

Divide and Conquer

Nocito and Beran proposed a good block-Jacobi preconditioner based on a divide and conquer strat-

egy23 (see [15] for a description of the block-Jacobi method). One �rst breaks the polarization matrix

in spatial blocks (or subclusters), following the expectation that atoms will polarize their closest coun-
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terparts the strongest. This is done through the K-means,24 a method that concentrates the largest

matrix elements along the diagonal, based on a distance criterion. Provided that the subclusters are

small enough, or equivalently that the breakdown is su�ciently �ne, one can solve the polarization

equations within each subcluster using direct methods (see the Direct methods subsection in 2.1.2).

The remaining interactions, between the induced dipoles in di�erent subclusters, are computed in

an iterative fashion using block-Jacobi iterations coupled with DIIS: the Divide and Conquer algorithm

can thus be seen as a Jacobi method with a very e�cient preconditioner.

This method was implemented within the Tinker-HP code and showed its good applicability to

parallel computations,25 allowing for acceleration of the simulations.

Using a guess

Accelerated convergence can also be obtained by considering the starting point of the algorithm: if

one knows an estimate of the induced dipoles prior to the computation, one can use it as a beginning

point for the solver, and the convergence criterion should be reached in a lower number of iterations.

This would e�ectively speed the computation. Simply put, the guess is a way to start the computation

closer to the �nal solution. As for the preconditioner however, computing the guess should remain a

negligible cost compared to the actual iterations of the algorithm.

A �rst possible choice would be to use the �rst order induced dipoles, that is, the one given by the

polarizability and the external electric �eld with no dipole-dipole interaction

µ0 = αE (2.31)

More involved guesses have been proposed, amongst which the predictor guesses. Predictors use

the information from previous iterations (i.e. the induced dipoles obtained at earlier time-steps) to

build more stable and e�cient guesses. The simplest idea here would be to use the dipoles obtained

from previous iteration, but it has been shown1 that it requires tight convergence to allow stable simu-

lations.

Kolafa et al. proposed a systematically improvable predictor6 exhibiting good stability and gain

in computational time when used as a guess.26 For the memory demands to stay reasonable, Kolafa

suggested a sixth order predictor, and it is thus the one implemented in Tinker-HP. More recently, Nocito
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and Beran showed that extending this up to the sixteenth order yielded substantial acceleration (see

[27]), while the overhead and memory usage were not problematic.

Such approaches are very appealing, as speedups reaching 50% can be achieved for 1 and 2 fs

timesteps. The use of memory in the dynamics integration however prevents proper time-reversibility

and phase-space volume conservation.26, 22 The ASPC also exhibits problems regarding volume preser-

vation,21 which can a�ect speci�c types of dynamics. Moreover, the improvements do not apply for time-

steps larger than 2 fs, although this is a likely situation when considering RESPA integration schemes

(as will be detailed in chap. 4).

2.1.5 The need for improved algorithms

Out of all the algorithms that were described so far, none veri�es simultaneously all the properties

we could hope for. We are looking for a polarization solver that would produce accurate polarization

energies, conserve the energy, but also be computationally e�cient.

Indeed, after choosing the most adapted solver for our linear problem, and despite the auxiliary

e�orts to improve it, two important drawbacks still undermine the polarizable molecular dynamics.

Firstly, the computational speed: although many re�nements are used to improve the convergence

rate, polarizable molecular dynamics using induced dipoles are still slower than their non-polarizable

counterparts. As a rule of thumb, one can consider that polarizatble molecular dynamics simulations

are around ten times slower.

The algorithm performances are of course strongly dependent on the level of accuracy requested.

As usual when talking about simulations, a compromise has to be found between the computation

precision and its cost (or equivalently, the time required to perform them). Lipparini et al. showed1 that

the convergence criterion should be carefully chosen (e.g. with an error threshold of 10−6 D) to ensure

energy conservation. In the most conservative choices, the number of matrix-vector products needed

to compute the induced dipoles can reach a dozen !

Secondly, the energy drift: let us recall that in molecular dynamics, the forces are de�ned as the

(spatial) gradients of the energies. In particular, when considering the polarization energy

®Fpol = −®+Epol (2.32)
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Using a simple chain rule, this di�erentiation can be explicited as a sum over several terms. Let us

consider a single component of the gradient to simplify notations:

dEpol

dr α
i

=
∂Epol

∂r α
i

+
∂Epol

∂µ

∂µ

∂r α
i

(2.33)

The second term in this equation involves partial derivatives of the induced dipoles. Since these are

assumed to be converged to the value minimizing the energy, one could expect ∂Epol
∂µ

to be equal to zero.

This assumption is made in any polarizable molecular dynamics code, considering that the convergence

criterion chosen is enough to ensure that property.

It is however not true, since the induced dipoles are computed using an iterative algorithm, not

perfectly converged. As a consequence, a small discrepancy exists between the polarization energy

and the forces arising from it in most polarizable simulations. This error will cumulate as a drift over

time, and can lead to unstable simulation if carried for too long (see [1]). The only possible answer is

then to choose a tighter convergence criterion on the polarization energy, which will reverberate on the

computation time itself.

This section gave the reader a quick overview of the treatment of induced polarization in contempo-

rary simulations. Despite the various methods, algorithms, re�nements available, one conclusion still

painfully hinders polarizable molecular dynamics: the cost of simulations is still high.

In the following section, we will present a new algorithm to tackle the problems evoked above.

2.2 Truncated Conjugate Gradient: a new polarization solver

Knowing the limits of the common polarization solvers, a truncation of the well-known Conjugate

Gradient algorithm was proposed, introducing the Truncated Conjugate Gradient (TCG).22 In this �rst

part, the reader will �nd a presentation of the algorithm and its main features. Simulation results will

be presented in 2.3.

Truncating the algorithm means that instead of verifying, at each iteration, the value of a numerical

quantity (energy, norm of the residual...), the total number of iterations to be performed is �xed before-
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hand. The polarization solver thus becomes non-iterative, and gains advantages as described below.

Moreover, as any Krylov method, this builds a class of method that are systematically improvable.

2.2.1 Simulation stability

Using this method, the expression for the induced dipoles becomes analytical, only depending on the

input vectors (the guess µ0 and the residual r0). Let us write nTCG the truncation order, then for nTCG = 1,

we have:

µTCG1 = µ0 +
〈r0, r0〉
〈r0, Tr0〉

r0 (2.34)

The induced dipoles are now expressed as a linear combination of the Krylov basis vectors (r0, Tr0...),

with scalar coe�cients involving their scalar products. When nTCG increases, this formula becomes

more and more complex, and some notations were adopted "on the �y" during the derivation. To avoid

overburdening this section, they are reproduced in the appendix.

µTCG1 = µ0 + t4r0 (2.35)

µTCG2 = µ0 + (γ1t2 + t4)r0 − γ1t4P1 (2.36)

µTCG3 = µ0 + (t4 + γ1t2 + γ2 + γ2β2t2)r 0 − (γ1t4 + γ2t4 + γ2β2t4)P1 − γ1γ2P2 (2.37)

Having access to the induced dipole analytical formula, the polarization energy

Epol, TCGn = −1
2
〈µTCGn , E〉 (2.38)

can thus also be expressed analytically, and more importantly, so does its gradient. This means that

using the TCG, one has access to gradients – and subsequently, forces – that are exactly consistent

with the computed induced dipoles, thus erasing the drift shown in section 2.1.5, and one can count on

excellent energy conservation (this will be illustrated in the numerical results section). The derivation

of these gradients is quite cumbersome and requires careful implementation to stay e�cient, as will

be discussed in section 2.2.4.

It is however important to note that this de�nition of the polarization energy corresponds to the
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variational minimum of the functional Epol[µ] = 1

2
〈µ, Tµ〉 − 〈µ, E〉 (equation 2.4). Nevertheless, in our

case, our induced dipole vector is not fully converged, since we use iterative methods, and we are thus

using a slightly di�erent de�nition of the polarization energy when using equation 2.38 above. This

does not revoke the analytical consistency of our derivatives, and the claim on the energy conservation

remains true. In fact, the di�erence between both polarization energy de�nitions is small if the dipoles

are close to the variational minimum, a condition that should hold in our simulations. In addition, and

from a more practical point of view, using the pure variational functional would yield very involved

expressions. The missing term 1

2
〈µ, Tµ〉 would be extremely cumbersome to di�erentiate, and even

worse, would require an extramatrix-vector product, whichwould be the exact opposite of our objective.

In practice, this additional e�ort would not bring any substantial improvement to the method.

2.2.2 Computational cost

The second main advantage the TCG gives us is a full control over the computational e�ort devoted to

polarization. Indeed, by choosing a truncation order, one limits the number of matrix-vector products

performed. Ideally, a small number of iterations would be su�cient to yield satisfying results, but we

also know that a correctly converged Conjugate Gradient could require around 10 iterations. A correct

middle ground has to be found – as it is always the case in numerical simulations – between precision

and e�ciency. We show in section 2.3 that a very limited nTCG (one or two) is enough to produce very

satisfying results, partially thanks to the re�nement of the methods presented below.

In terms of parallel implementation, the method is equivalent to n iterations of the Conjugate Gra-

dient solver, we will thus be able to reuse the machinery already developed and optimized to compute

our truncation, and its associated gradients.

2.2.3 Re�nements of the solver

Now that the iteration number is �xed, the objective is to improve the quality of the computed induced

dipoles while respecting the �xed computational cost: increasing the truncation order would have the

same e�ect as selecting a tighter convergence criterion for the Conjugate Gradient, but here our goal

remains to accelerate dynamics, so we will refrain ourselves from this solution.
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Preconditioner and guess

Exactly like in the Conjugate Gradient’s case, using a better starting point for the solver or improving the

problem’s conditioning before starting the resolution are two good leads to improve the results. One

could note that in this new situation, we won’t reduce the number of iterations, as it is already �xed:

we now want to improve the accuracy of the solution obtained with this nTCGn iterations.

The two solutions evoked earlier (2.1.4) thus still apply here: preconditioning the polarizationmatrix,

as well as using an initial guess, will improve the precision on the �nal set of induced dipoles. However,

one should keep in mind that the analytical formulae promised by the TCG come with a complexity cost.

Let us imagine using a guess based on previous time-steps (such as the ASPC). Every vector quantity

from the previous set of dipoles should be stored, and linearly combined. Although this should not be

a problem memory-wise, the gradients will quickly become a nightmare to compute at each time-step.

The same remark can be done on the advanced preconditioners, where any spatial dependency (as is

it the case for Cholesky preconditioners) would imply heavy expressions for the gradients.

The choice to use a guess also implies that an extra matrix-vector product will be required to com-

pute the initial residue, as seen in the initialization equations (2.23), since we have:

r0 = E − Tµ0 (2.39)

Peek-step

Wang and Skeel,21 noting that computing the initial residue costs an extra matrix-vector product when

using a guess, proposed a method to save that extra cost using a peek step (also known as Picard step).

As explained earlier, at each iteration i , the descent direction that will be followed at iteration i + 1 is

computed. Calculating the exact distance that should be travelled along this direction would require

an extra matrix-vector product, but one can do a supplementary �xed-step iteration:

µTCG, peek,n = µTCGn + ωαrn+1 = µTCGn + ωµpeek,n (2.40)

This is exactly equivalent to performing an extra Jacobi over-relaxation step after the CG iterations. The

usefulness of this extra step directly depends on ω, whose choice is not trivial. ωopt (as de�ned in

2.16) is optimal in the asymptotic limit, that is, when a large number of iterations of the JOR step are
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computed. Since this is not our case, one should not expect this ω value to necessarily yield the best

possible result. ωopt is tested and compared to other possible ω values in 2.3.

To avoid having to compute the spectrum of the matrix, one can note that ωopt, by improving the

convergence on µn , would minimize both the RMS error on the induced dipoles, and thus (as a con-

sequence) the polarization energy. Yet one can choose to �t ω so that the "peeked" dipoles obtained

reproduce as closely as possible the polarization energy. To do so, one �rst needs to compute the

fully converged dipoles (using for example the Conjugate Gradient solver with a very tight convergence

criterion). Then, looking at the energy expression

Epol = −1
2
〈µTCGn peek, E〉 (2.41)

= −1
2
〈µTCGn , E〉 −

ω

2
〈αrn+1, E〉 (2.42)

one can simply de�ne ω�t as

ω�t = −
2E (ref)

pol + 〈µTCGn , E〉
〈αrn+1, E〉

=
〈µCG,ref − µTCGn , E〉
〈αrn+1, E〉

(2.43)

Where E (ref)
pol designates the reference polarization energy obtained when using a tightly converged

Conjugate Gradient, and µCG,ref the induced dipoles obtained through this same procedure.

One could note that this can be rewritten as:

ω�t =
〈T−1rn , E〉
〈αrn+1, E〉

(2.44)

Computing the induced dipoles using a fully, tightly converged Conjugate Gradient comes however

at a high cost, and it is precisely what we were trying to avoid. This �tting procedure will hence be

carried out every n�t timesteps only. A more detailed study on this �tting will be presented in section

2.3.

A particular case: the orthogonal peek-step

Particular care has to be taken when trying to combine the re�nements that were presented in 2.1.4,

in particular when trying to use a peek-step with a preconditioner. When using a peek-step, the �nal
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expression for the polarization energy is given by eq. 2.42. However, assuming that we use a diagonal

preconditioner, then the vector quantities in TCG aremultiplied byα−1. This means that one can rewrite

µpeek,n as

µpeek,n = α
−1.αrn+1 = rn+1 (2.45)

Besides, when using the Conjugate Gradient, the residuals vectors are computed iteratively in such a

way that two di�erent residuals vectors ri and rj are orthogonal:

〈ri , rj 〉 = 0 [j , i (2.46)

Yet, looking at eq. 2.23, we have

r0 = E − Tµ0 (2.47)

meaning that when no guess µ0 is used, the initial residual vector r0 is equal to E. In this case, the

polarization energy arising from the peek term is

〈µpeek,n , E〉 = 〈rn+1, r0〉 = 0 (2.48)

Practically, this has a very simple but important consequence on the choice of a setup for the TCG:

if no guess is used, then the peek-step can not be used in the computation.

2.2.4 Computation of the forces

As stated in 1.3, the forces driving our simulation are expressed as gradients of the energies, and the

polarization terms are no exception. In this section, we will show how a naive implementation of the

forces arising from polarization could in fact completely negate our e�orts to accelerate the simulation.

We then present a strategy to preserve our acceleration during computations.

Keeping the notations adopted earlier, the formal derivative of the induced dipoles for the �rst two

orders of TCG are:

µ
′
TCG1 = µ

′
0
+ t4r′0 + t ′

4
r0 (2.49)

µ
′
TCG2 = µ

′
0
+ (t4 + γ1t2)r′0 + (t ′4 + γ′

1
t2 + γ1t

′
2
)r0 + (γ′1t4 + γ1t

′
4
)P1 + γ1t4P′1 (2.50)
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Let us recall that our collective vectors have a 3N size. If one were to di�erentiate one such vector

with respect to 3N spatial coordinates, it would yield a 3N × 3N matrix. Looking at two arbitrarily

chosen atoms with indiced i and j , the force experienced by atom i arising from atom j reads

®fj /i =

©«

−dEi j

dr α
i j

−dEi j

dr
β

i j

−dEi j

dr δ
i j

ª®®®®®®®®®¬

(2.51)

where r α
i j
is the α component of the vector ®ri j = ®rj − ®ri , and Ei j is the energy of interaction between

i and j . Firstly, the total force experienced by each atom in the simulation is the sum of all the forces

arising from the (N − 1) other atoms, or, to put it in other words, of all the N − 1 derivatives of the

interaction energies. With thus have a total of N × (N − 1) forces coming into play (which is equivalent
toN 2 for highN ). Using Newton’s third law, this number can actually be divided in two (we simply have

®fi /j = − ®fj /i ), but the order of magnitude remains at O (N 2) (when using Smooth Particle Mesh Ewald,
this costs drops to O (N logN )). Computing a set of forces is thus already a non-negligible part, with
the cost arising from computing all the ri j distances.

Secondly, storing such quantities would be heavy on the memory, and performing any operation

(scalar products, combinations...) has to be carefully done, as it could considerably slow down the

computations. In particular, using the analytical expressions in 2.49 and 2.50 without reconsideration

will repeat the same operations several times, thus slowing down the computation for no good reason.

There is an even worse threat: in the explicit expression of the induced dipoles, di�erentiation

(in order to compute the gradient), terms involving a squared polarization matrix exist (e.g. T2r0).

Computing the derivative of such a term would involve a term of the shape TT′r0 which e�ectively

would boil down to a matrix-matrix product: this would be computationally too expensive.

A careful implementation for computing the forces has thus been proposed in [28]. It is based on a

direct computation of the gradients of the energy, storing a minimal number of intermediate quantities,

and speci�cally no intermediate vector or matrix derivative. Implementing such a method supposes

a careful bookkeeping of the many terms involved to end up with the smallest computational e�ort
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possible.

Let us consider the derivative of the polarization energy in order to extract general properties that

would allow us to make its computation more e�cient.

E ′pol, TCGn = −1
2
〈µ′TCGn , E〉 −

1

2
〈µTCGn , E′〉 (2.52)

Each vector in equations 2.49 and 2.50 can be expressed as a combination of simpler vectors which

are increasing powers of T applied to the initial residual r0, and the scalars (such as γ1 or t4) are in fact

scalar products of these vectors as well. In other words, it means that every term in equations 2.49 and

2.50 can be expressed using r0, Tr0, T2r0, T3r0...

The general shape of these vectors can be written Tmr0, with m a positive integer. A formal di�er-

entiation of such an expression would yield three types of terms:

• Tmr′
0
,

• T′Tm−1r0 (ifm ≥ A)

• Tm−k−1T′Tk r0 (withm ≥ k + 1)

One should recall that the polarization matrix is symmetric. As such, we have 〈A, TB〉 = 〈TA, B〉.
This means that scalar products involving Tmr′

0
can be rewritten in the shape of 〈r′

0
, TmA〉, which will

prove to be useful in the next paragraphs. The same rewriting can be done when looking at terms

like 〈Tm−k−1T′Tk r0, A〉, who were initially impossible to compute in reasonable time since they would
involve matrix-matrix products: one can express them as 〈T′Tk r0, Tm−k−1A〉 .

If one were to develop this equation (using the expressions for µ′TCGn presented earlier), one could

see that every single term in the overall sum involves a di�erentiated quantity, within a scalar product,

which would either be the electric �eld itself (〈A, E′〉) or a di�erentiated polarization matrix (〈A, T′B〉).
This is also true when using a guess. Indeed, we explained earlier that for computational e�ciency

reasons, we would limit ourselves to using direct �eld as a guess. In this case,

r0 = E − Tµ0 (2.53)

= E − TαE (2.54)
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gives

r′
0
= E′ − T′αE − TαE′ (2.55)

Here, as announced, the di�erentiated terms are either E′ or a polarization matrix T′.

By analogy, we can assimilate these two types of terms to forces, where 〈A, E′〉 would correspond to
a force produced by the interaction of a set of dipoles A with the electric �eld, and 〈A, T′B〉 would be
the force arising from the interaction between two sets of dipoles A and B. The computation of such

quantities, as explained earlier, is expensive, as one needs the distance between every pair of atoms

i -j (i , j ) to compute the interaction. To minimize this cost, every force computation of this shape will

be computed in a single double-loop: theO (N 2) (orO (N logN ) in SPME) is thus only counted once.

To minimize the number of operations involving di�erentiated terms, as their impact on the compu-

tation will be important, a simple gathering of terms that should be taken as scalar product with the

same di�erentiated vector has to be done. For example, considering that V′ is a di�erentiated vector

(either V′ = E′ or V′ = T′W), and A and B are two other vectors, if one needs to compute 〈A, V′〉+ 〈B, V′〉,
it is much more e�cient to prepare a third vector C = A + B, and then to perform the scalar product

〈C, V′〉. The idea is not complicated, but implies quite involved expressions that the reader can �nd in
the Appendix. It could be noted that the choice to use a guess or a peek-step in the computation, as it

adds terms to the �nal induced dipoles expressions, complicates these formula even further.

Ultimately, three strategies were followed to ensure an e�cient implementation of the gradients

calculations:

• over-expensive terms were avoided through smart scalar products and thanks to the symmetry

of the polarization matrix,

• the most expensive (O (N 2)) operations were grouped an performed in a single loop,

• scalar products with di�erentiated vectors were organized so as to minimize the number of times

they needed to be called.
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To illustrate this strategy, we reproduce here the expression of the derivative of the �rst-order TCG

polarization energy.

E ′TCG1 = −
1

2

(
〈r′
0
, a
(1)
1,0
E + a

(1)
1,1
r0 + a

(1)
1,2
Tr0〉 + 〈T′r0, a (1)2,1r0〉

)
(2.56)

• a
(1)
1,0

= t4

• a
(1)
1,1

=
2sp0
t1

+ t4

• a
(1)
1,2

= −2sp0n0

t 2
1

• a
(1)
2,1

= − sp0n0

t 2
1

The expressions accounting for further orders, as well as the peek-step ones, can be found in the

appendix.

Bearing in mind that future implementations of themethod could pose the same problems to anyone

interested, and that this bookkeeping task of bringing every terms together in a proper way should not

be done over and over again by other innocent coders, this somewhat involved process was summed up

in an article of the Journal of Chemical Physics reproduced hereafter.
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In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180–190 (2017)], we proposed the

Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in

polarizable molecular simulations. The method consists in truncating the conjugate gradient algo-

rithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered

“non-iterative.” This gives the possibility to derive analytical forces avoiding the usual energy con-

servation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation

of the analytical gradients, which is more complex than that with a usual solver. In this paper, after

reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient

implementation of the TCG calculation. The complete cost of the approach is then measured as it

is tested using a multi-time step scheme and compared to timings using usual iterative approaches.

We show that the TCG methods are more efficient than traditional techniques, making it a method of

choice for future long molecular dynamics simulations using polarizable force fields where energy

conservation matters. We detail the various steps required for the implementation of the complete

method by software developers. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985911]

INTRODUCTION

Polarizable force field simulations using point dipole

models are not slow anymore. Indeed, in recent years, the

computational cost of the explicit evaluation of the many-

body polarization energy and associated forces has been sig-

nificantly reduced using state of the art mathematical tech-

niques. More precisely, the bottleneck of such approaches is

the mandatory resolution of a large set of linear equations

(i.e., requiring a matrix inversion) whose size depends on

the number of polarizable sites, which is very large in prac-

tice (for example, up to several tens of thousands of atoms

for medium sized proteins in water). Therefore, direct matrix

inversion approaches are unfeasible, and one has to resort

to iterative methods1 such as the Preconditioned Conjugate

Gradient (PCG) or the Jacobi/Direct Inversion of the Itera-

tive Subspace (JI/DIIS). Both methods have the advantages to

ensure convergence and to be compatible with a massively par-

allel implementation2 coupled to Smooth Particle Mesh Ewald

(SPME),3 enabling the possibility to tackle large systems of

interest that range from materials to biophysics. However,

iterative techniques have to address two aspects simultane-

ously: a low computational cost and a high accuracy on both

a)
Authors to whom correspondence should be addressed: louis.lagardere@
upmc.fr and jpp@lct.jussieu.fr

energy and forces. But the standard way of computing the

forces assumes that the dipoles are fully converged and thus

these forces are not the exact opposite of the gradient of the

polarization energy. This means that to avoid energy drifts,

users have to enforce the quality of the non-analytical forces

by choosing a tighter convergence criterion of 10 5–10 8 D

for the dipoles, leading to a strong increase in the number

of iterations required to reach convergence. This degrades

the computational efficiency of the solvers, limiting the use

of molecular dynamics with polarizable force fields. In that

context, several strategies have been explored to prevent this

drift while ensuring accurate results and a low computational

overhead.

In this paper, we review the present status of the polar-

ization solvers before introducing the truncated conjugate

gradient (TCG), a method presented in Ref. 4 to propose

an efficient solution to these challenges. We then address

the issue of the fast computation of the analytical gradi-

ents for TCG by presenting a general way to formulate the

TCG polarization forces. Analytical formulas are given for

the TCG1 and the TCG2 methods, as well as for their refine-

ments with the use of a preconditioner and peek steps.4 Indeed

as a preconditioner improves the convergence of the polar-

ization computation, a peek step allows us to perform an

additional but inexpensive Jacobi/Picard pseudo-iteration that

does not require any matrix-vector product as it uses the

available residual obtained from the TCG process. Finally,

0021-9606/2017/147(16)/161724/9/$30.00 147, 161724-1 Published by AIP Publishing.
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timings to compute these forces in a production context of

a reversible reference system propagator algorithm (RESPA)

integrator are given and compared to the ones obtained

with standard iterative solvers and different levels of con-

vergence as well as different predictor guesses for these

solvers.

POLARIZATION SOLVERS: PRESENT STATUS

Several iterative solvers applied to the polarization equa-

tions have been presented and tested, such as the Jacobi Over

Relaxation (JOR) method, the (preconditioned) conjugate gra-

dient method, the Jacobi/DIIS method (see Refs. 1 and 2), or

the recently introduced potentially faster divide and conquer

block-Jacobi/DIIS method.5

Considering an iterative solver, several techniques can be

used to reduce the computational cost to reach convergence

by reducing the number of necessary iterations. In the con-

text of Krylov methods such as the conjugate gradient, it is,

for example, possible to use a preconditioner. It consists in

choosing a matrix P such that P 1 is close to T 1 (where T is

the polarization matrix to be inverted, presented in the section

titled TCG: Notations) and in applying the iterative method to

the modified linear system where the matrix and the right hand

side are multiplied by P 1. The convergence of the solver is

then accelerated because of the clustering of the eigenvalues

of the matrix P 1T. Efficient preconditioners for the polariza-

tion equations have been designed, such as the ones proposed

by Wang and Skeel,6 which provide a reduction in the number

of iterations to reach convergence up to 10%–20%, depending

on the system (i.e., on the condition number of the matrix that

one needs to invert).

Another way to improve convergence of an iterative solver

is to choose an initial “predictor” guess as close as possible

to the actual solution of the linear equations. This guess can

be constructed using information from one or a few of the

past values of the dipoles. The most naive way to do so is to

choose the value of the dipoles at the previous time step (pre-

vious guess) but more elaborate and efficient strategies have

been designed, such as Kolafa’s Always Stable Predictor Cor-

rector (ASPC)7 or Skeel’s Least Square Predictor Corrector

(LSPC),6 which can reduce the number of iterations required

to reach convergence up to a factor two in a standard produc-

tion context.1 Nevertheless, these two ways to construct initial

guesses lose their efficiency when one uses larger time steps,

as it the case with the RESPA (Reversible reference System

Propagator Algorithm) multiple time step integrator8 (insta-

bilities occur when such predictors are used with time steps

larger than 2 fs).

Note that the two refinements (preconditioning and choos-

ing the initial guess of the solver wisely) can be coupled

without problem.

In the same spirit, it is also possible to speed up con-

vergence by introducing an extended Lagrangian scheme to

propagate a set of dipoles that are used as initial guess to

standard iterative solvers (iEL/SCF or Extended Lagrangian

Self-Consistent Field, see Ref. 9). This approach, derived

from ab initio MD,10,11 significantly reduces the number of

iterations of the solver (by the same order of magnitude as

the ASPC predictor) but requires using an additional thermo-

stat in order to prevent energy flows between the degrees of

freedom.

However, whatever the different speedup strategies

applied to the popular iterative production methods such as

PCG or JI/DIIS, they still suffer from an important drawback in

link to the way the associated forces are computed. Indeed, they

do not address the polarization energy drifting issues that will

be encountered in long simulations of large non-homogeneous

complexes, such as proteins in water or highly charged ionic

liquids. In such a case, the mathematical problem, i.e., the

matrix inversion, is costlier to solve as the polarization matrix

itself is worse conditioned than in simple bulk water. There-

fore, to ensure stability of very long time scale simulations

towards microseconds where errors accumulate, they should

all employ a tighter dipole convergence criterion (10 7–10 8

D) leading to a higher number of iterations than usually dis-

cussed in benchmarks for short simulations, where the 10 5 D

standard is employed, effectively causing really degraded real

life performances.

Another set of methods address this issue by considering

analytical formulas for the polarization energy.

The first idea in that direction was introduced by Wang,12

who used Chebyshev polynomials to get analytical expres-

sions of the polarization energy and its derivatives, which

automatically ensures that the source of the energy drift pre-

viously evoked is removed. Unfortunately, the approach pro-

vided energy surfaces that were too far from the ones obtained

with tightly converged iterative method and was thus not fur-

ther investigated. Significant progresses were recently made

in the same direction by Simmonett et al.13 who proposed a

revisitation of Wang’s proposal through the ExPT (Extrapo-

lated Perturbation Theory) perturbation approach, which is

equivalent to the truncation of the Jacobi iterative method

at a predetermined order combined with the use of a few

parameters.

If the parametric aspect of their approach initially lim-

ited its global applicability to any type of system, the authors

recently improved their method which is now denoted as OPT3

(OPT = Orders of Perturbation Theory)14 by pushing it to

higher order of perturbation and providing a systematic way for

the parametrization, extending the applicability of the method.

One advantage of the approach is its reduced cost compared

to the best iterative approaches.

Alternatively, one can also consider the actual induced

dipoles as new degrees of freedom and build an extended

Lagrangian defining the way to propagate them during the

dynamics without any SCF cycles.15 The first results using

this strategy are promising, and the method indeed does not

require any iteration. On the performance side, one could argue

that using a production PCG solver with a 10 5 D conver-

gence threshold, a RESPA integrator with a 2 fs time step

for the non-bonded forces coupled to Kolafa’s ASPC is twice

faster than the sequential iEL/0-SCF method with a 1 fs time

step.15 Nevertheless, this PCG speed advantage is only “appar-

ent” as it does not solve the energy drift issue for long time

scales whereas the iEl/0-SCF method has been shown to have

improved energy conservation properties. This nice improve-

ment is due to the use of thermostats and, therefore, iEL/0-SC
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unfortunately suffers from the drawbacks of any extended

Lagrangian approach that cannot use time steps larger than

1 fs.6 As we stated before, if iterative methods do not have

any theoretical upper limit to the time step they can be used

with,6 it requires not to use information from the past such

as predictor-correctors, removing such speed advantage when

using RESPA.

As we see from this discussion, the question of which

method to adopt is complex as it appears difficult to combine

all possible improvements.

In fact, we can state that reducing the computational cost

of an iterative method to compute the polarization energy

and forces always comes with degraded energy conservation.

Energy conservation is tricky as it depends on the chemical

nature of the system (charged or not, homogeneous or not).

For example, polarization of bulk water systems requires less

iterations to converge with PCG solvers. On the other hand,

the ExPT method behaves poorly for the ionic liquid system

that will be studied in the section titled “TCG: Notations,”4

and the Jacobi method does not even converge in that case.

A major difficulty to compute the polarization energy

and its gradient for future microsecond simulations is to offer

a non-empirical strategy applicable to any kind of systems,

embodying the following properties.

Indeed, such a method should be systematically improv-

able in order to allow the user to set the accuracy of the sim-

ulation depending on its goal. For example, the simple Jacobi

method has been shown not to converge in several cases2 and

adding iterations would not improve the results. It should show

good conservation of the total energy during a microcanonical

simulation, ensuring good accuracy on the forces driving the

dynamics. It should also be non-parametric to provide a close

reproduction of any type of potential energy surface, with-

out having to resort to force-field model reparametrization. In

practice, a polarization scheme should also be affordable with

a computational cost as reduced as possible. It should allow

us to use larger time steps through multiple time step schemes

such as RESPA. In the end, the selected criterion to compare

computational efficiencies of the various schemes should be

the global cost of computing both energy and derivatives with

similar energy conservation capabilities for a given trajectory

length.

TCG: CONTEXT

To address all these required features, we recently intro-

duced a non-empirical and non-iterative strategy denoted as

the Truncated Conjugate Gradient (TCG).4 TCG is derived

by explicitly writing down all numerical operations of a finite

number of conjugate gradient cycles of iteration which can be

user-chosen (be TCG-n, n = 1,3). As the number of operations

in the TCG approach is fixed once and for all, it is possible

to derive an exact analytical expression of the gradient of the

energy like in ExPT/OPT3,14 avoiding by construction any

energy drift in microcanonical simulations and thus ensuring

energy conservation in that context. The higher the TCG level

is, the higher its accuracy is, as TCG inherits from the proper-

ties of the conjugate gradient and benefits from the fact that it

is a Krylov method in which the associated error is monotoni-

cally reduced at each iteration. It can be shown in that context

that the CG-method is mathematically optimal, meaning that

it minimizes exactly the polarization energy on the so-called

Krylov subspaces at each iteration and therefore guarantees

that the number of the required matrix-vector products (1 per

iteration in any iterative approach) is reduced to a minimum

compared to other iterative methods. Moreover, the TCG accu-

racy can be improved at negligible costs (i.e., without any

additional matrix-vector product) (i) by using preconditioners

as presented above leading to the Truncated Preconditioned

Conjugate Gradient (TPCG); (ii) by using the residue of the

final CG step, available without any additional cost, to perform

an additional “peek” iteration, equivalent to one step of Jacobi

Over Relaxation (JOR) with a relaxation parameter which can

be found adaptively.

Overall, the TCG approach was found to accurately repro-

duce energy surfaces at a reduced computational cost provid-

ing analytical forces. As it does not rely on history, it does

not suffer from MD perturbations such as the ones arising

when predictor guesses, which break the time-reversibility of

the simulation, are used in polarization solvers. It is for the

same reasons compatible with the use of a large time step

with multi-time step integrators. Also, being based on the

conjugate gradient and thus relying essentially on matrix vec-

tor products and computation of electric fields, it can replace

standard solvers in a regular implementation including linear

scaling ones using smooth particle mesh Ewald. Furthermore,

it does not require additional advanced thermostating nor any

additional parameter.

The purpose of this paper is to address one delicate

point which is the main bottleneck of the TCG method:

the complex derivation of its gradients. If TCG answers all

the desired discussed properties for a polarization solver, a

naive derivation of the energy gradients can lead to an unde-

sired additional computational cost, while the method should

remain analytical and accurate but cheap as well. The goal

here is to detail a strategy enabling the fast computation of

the analytical gradients that would allow developers to effi-

ciently implement the TCG approach in the software of their

choice. We will first present the technical aspect of TCG and

its notations, and then we will detail the optimal computa-

tion of gradients in a form that could be implemented by

developers.

TCG: NOTATIONS

We will place ourselves in the context of the AMOEBA

force field16 and consider a system of N atoms, each embody-

ing a multipole expansion (up to quadrupoles) as permanent

charge density and a polarizability tensor αi. We will denote

E as the 3N vector gathering all electric fields ~Ei created

by the permanent charge density at atomic position i, and

µ is the equivalent 3N vector gathering the induced dipoles

experienced at each atomic site. T is the 3N × 3N polariza-

tion matrix, defined by blocks as follows. It bears the 3 × 3

polarizability tensors αi along its diagonal block, and the inter-

action between the ith and jth dipoles is represented as the T ij
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tensor,

T =

*...........
,

α−1
1

−T12 −T13 . . . −T1N

−T21 α−1
2

−T23 . . . −T2N

−T31 −T32

. . .

...
...

...

−TN1 −TN2 . . . α−1
N

+///////////
-

.

This matrix is symmetric and positive definite. Thanks to

the Thole damping of the electric field at a short range, any

polarization catastrophe is prevented. Indeed, the Thole damp-

ing acts on the eigenvalues; without Thole damping, negative

eigenvalues could be found which is a problem for conjugate

gradient methods.1

Using these notations, the total polarization energy can be

expressed as follows:

Epol =
1

2
µ

T Tµ − µ
T E, (1)

where µ
T E represents the scalar product of vectors µ and E

(also noted hµ, Ei). One can easily see that the dipole vector

µ minimizing (1) verifies the following linear system:

Tµ = E (2)

giving the minimized polarization energy

Epol = −
1

2
µ

T E. (3)

As explained earlier, the TCG method that we use to solve

this equation derives from the conjugate gradient algorithm.

It uses three vectors upon starting: the guess µ0, the initial

residual r0 = Tµ0 −E, and an initial descent direction p0 that

we set to be equal to r0. It reads as follows:

8>>>>>>>>>>><>>>>>>>>>>>:

γi =
rT

i
ri

pT
i

Tpi

µi+1 = µi + γipi

ri+1 = ri − γiTpi

βi+1 =
rT

i+1
ri+1

rT
i

ri

pi+1 = ri+1 + βi+1pi

. (4)

Instead of using a convergence criterion as a condition to stop

iterating, as this is usually done, one can choose to arbitrar-

ily fix the number of iterations and to unfold a finite number

of computational operations that makes it fixed cost and non-

iterative, as explained above. This defines our Truncated Con-

jugate Gradient (TCG) method. Besides the obvious advantage

of drastically reducing the computational cost of each induced

polarization calculation, it allows one to simulate perfectly sta-

ble molecular dynamics, without drift over time, as explained

in Ref. 4. This advantage is not limited to MD and could be

exploited in Monte Carlo simulations.

The exact, total derivative of the energy with respect to

the nuclear position should be

dEpol

dri

=

@Epol

@µ

@µ

@ri

+
@Epol

@ri

. (5)

When using an iterative method, the provided solution µ

is inexact (approached only); thus the energy is not perfectly

minimized with respect to the dipoles (the term @Epol/@µ is

not zero). One usually still makes this erroneous assumption,

giving dEpol/dri = @Epol/@ri. This leads to computing forces

that do not perfectly correspond to the system and thus to an

unavoidable drift in the subsequent simulations.

If one fixes the number of iterations, it is however possible

to “unroll” the analytical formula for the final polarization

vector, expressed as a function of the starting quantities (µ0,

r0). Noting µTCGn vector, with n the truncation order (i.e., the

number of iterations of the algorithm), one obtains the TCGn

family of methods that reads up to order three,

µTCG1 = µ0 + t4r0, (6)

µTCG2 = µ0 + (γ1t2 + t4)r0 − γ1t4P1, (7)

µTCG3 = µ0 + (t4 + γ1t2 + γ2 + γ2 β2t2)r0

− (γ1t4 + γ2t4 + γ2 β2t4)P1 − γ1γ2P2. (8)

All quantities used in the previous equations are defined

in the Appendix. In practice, we showed that one could stop

as the TCG2 level, as it is accurate enough.

FAST COMPUTATION OF THE GRADIENTS

In this section, we first explain that computing the gradi-

ents of the energy, even though an analytical expression is at

our disposal, is not straightforward. We then show how to pass

the different hurdles encountered.

Having the analytical, exact expression of the dipoles

allows one to differentiate them in an equally exact manner.

A formal differentiation, with a prime “ 0 ” denoting it, would

give for the first two orders,

µ
0
TCG1 = µ

0
0 + t4r00 + t 04r0, (9)

µ
0
TCG2 = µ

0
0 + (t4 + γ1t2)r00 + (t 04 + γ01t2 + γ1t 02)r0

+ γ01t4P1 + γ1t 04P1 + γ1t4P01. (10)

However, the differentiation of a 3N vector with respect

to 3N spatial coordinates would build a 3N × 3N matrix.

This leads to three obstacles that slow down the gradient

computation:

• First, a scalar product of one such derivative A0 with

another vector B would lead to a (3N)2 operation, which

is a non-negligible cost, repeated for all products of this

hA0, Bi form.

• Second, these products, when using the analytical

expressions [Eqs. (9) and (10)] “as is,” are repeated

an unnecessary number of times, effectively making

this slow-down a pure stop.

• Third, one can see that there are two types of vectors

building µTCGn: the electric field E, but also the product

of the residue with successive powers of the polariza-

tion matrix (r0, Tr0 = P1, more generally Tmr0, with

m an integer). Differentiating T
m

r0 exhibits, amongst

others, a TpT0Tqr0 term (with p and q two integers

verifying p + q + 1 = m); computing such a T · T0A

product is equivalent to a matrix-matrix product, which

is also computationally too expensive.

This makes a naive implementation of our method effectively

unusable. Yet to run a classical simulation, one needs the
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forces, i.e., the gradients of the polarization energy, rather

than the derivatives of the dipoles themselves. What one really

needs is thus the derivative of the following scalar product:

Epol =
1

2
hE, µTCGni, (11)

that is, formally,

E 0pol =
1

2
hE0, µTCGni +

1

2
hE, µ0TCGni. (12)

First, developing Eq. (12) shows that all scalar products

involved a differentiated quantity: either a differentiated matrix

(like hA, T0Bi) or the derivative of the field itself (E0). An

analogy, or dimensional analysis, allows us to compare these

terms to forces, with hA, E0i corresponding to a force produced

by the interaction of the dipoles A with the electric field, and

hB, T0Ci to a force arising from the interaction between two

sets of dipoles B and C. The expensive part of computing

such quantities lies in the calculation of distances. All of these

forces can be computed in a single double loop [whose cost

is O(N2) for direct calculations and O(N log N) when using

SPME] to minimize the computational cost and compute the

said distances only once. This addresses the first hurdle evoked

earlier.

We can also reorganize the gradient computation in order

to minimize the number of the expensive scalar products

involving a vector and a differentiated vector, by grouping

all these scalar products and performing them all at once

(given three vectors A, B, and C, if one needs to compute

hA, B0i + hC, B0i, it is much more efficient to first prepare a

vector D = A + C and then to compute hD, B0i). This opti-

mization, though quite simple in principle, actually requires

quite involved expressions (see the Appendix). It is a simple

solution to the second obstacle we listed.

Third, since T is a symmetric matrix, we have hTA, Bi

= hA, TBi for any two vectors A and B. In particular, for our

generic vectors Tmr0,

hTpT0Tqr0, Ai = hT0Tqr0, TpAi. (13)

Considering scalar products thus allows us to get rid of the

matrix-matrix (TT0) products, our third hurdle.

Overall, the solution to overcome our obstacles came from

considering the polarization energy instead of the induced

dipole themselves.

To illustrate our solution, one can write the analytical

formulas as follows, for the TCG at order one and two,

respectively:

E 0pol, TCG1 =
1

2

(

hr00, a
(1)

1,0
E + a

(1)

1,1
r0 + a

(1)

1,2
Tr0i+ hT

0r0, a
(1)

2,1
r0i
)

,

(14)

E 0pol, TCG2 =
1

2

(

hE0, µTCG2i + hµ00, Ei +
〈

r00, a
(2)

1,0
E + a

(2)

1,−1
TE

+ a
(2)

1,1
r0 + a

(2)

1,2
Tr0 + a

(2)

1,3
T2r0 + a

(2)

1,4
T3r0

〉

+ hT0r0, a
(2)

2,0
E + a

(2)

2,1
r0 + a

(2)

2,2
Tr0 + a

(2)

2,3
T2r0i

+ hT0Tr0, a
(2)

3,1
r0 + a

(2)

3,2
Tr0i + hT0T2r0, a

(2)

4,1
r0i
)

,

(15)

where the coefficients a
(k)

i,j
are the result of the cumbersome

derivation evoked earlier; their explicit expression can be

found in the Appendix.

As stated earlier in this paper, the so-called peek-step is a

supplementary JOR iteration based on the last obtained resid-

ual rn. It simply improves the solution to reach the following

expression:

µ
(peek)

TCGn
= µTCGn + !αrn, (16)

where α is the relaxation parameter mentioned earlier; more

precisions on its choice can be found in Ref. 4. Defining

µpeek, TCGn = !αrn, the supplementary contribution of the

peek step can be also written as follows:

E 0peek, TCG1 = hµpeek, TCG1, E0i + hr00, a
(1,p)

1,α0
αE + a

(1,p)

1,1α
TαE

+ a
(1,p)

1,1
r0 + a

(1,p)

1,2
Tr0i

+ hT0r0, a
(1,p)

2,1
r0 + a

(1,p)

2,α0
αEi, (17)

E 0peek, TCG2 = hµpeek, TCG2, E0i

+ hr00, a
(2,p)

1,0α
αE + a

(2,p)

1,1α
TαE + a

(2,p)

1,2α
T2

αE

+ a
(2,p)

1,1
r0 + a

(2,p)

1,2
Tr0 + a

(2,p)

1,3
T2r0 + a

(2,p)

1,4
T3r0i

+ hT0r0, a
(2,p)

2,α0
αE + a

(2,p)

2,1α
TαE + a

(2,p)

2,1
r0

+ a
(2,p)

2,2
Tr0 + a

(2,p)

2,3
T2r0i

+ hT0Tr0, a
(2,p)

3,α0
αE + a

(2,p)

3,1
r0 + a

(2,p)

3,2
Tr0i

+ hT0T2r0, a
(2,p)

4,1
r0i (18)

(the coefficients a
(k,p)

i,j
, as well as an explicit formula for the

µpeek vectors, are reproduced in the Appendix). One should

then simply sum the corresponding terms to obtain the final

expression for the polarization energy gradients in a computa-

tionally feasible way, for example, the scalar product hr0
0
, r0i

should now be multiplicated by coefficient a
(1)

1,1
+ a

(1,p)

1,1
to get

the correct gradients for TCG1.

All these formulas have been tested and validated against

gradients obtained via finite differences. Such details could

be useful to allow anyone to implement the fast evaluation

of the forces necessary to the use of TCG. The source code

of this method will be freely available in Tinker-HP version

1.1.17

To sum up, the implementation of the gradient calcula-

tion that we propose here follows these three steps: First,

we compute the successive matrix-vector products to build

the successive Tmr0 vectors needed; second, we perform the

various scalar products appearing in our analytical formulas,

allowing us to assemble (through weighted sums) a second

set of vectors; finally, we perform simultaneously on all these

assembled vectors a “force-like” calculation. The choice to

use—or not—a peek step only changes the assembled vectors

on step two, through an extra set of coefficients as presented

above.

NUMERICAL RESULTS

In this section, we report the timings of the implemen-

tation presented above for different systems as it has been

added to the software Tinker-HP. More precisely, we report
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the cost of the calculation of the polarization energy and the

associated forces with different methods: a standard diago-

nally preconditioned conjugate gradient (PCG) with a 10 5 D

convergence threshold, the same method with a tighter 10 8

D convergence threshold (that ensures energy conservation

as explained above), and the TPCG1 and the TPCG2 meth-

ods with the “direct field”1
αE as guess µ0 with a Jacobi

peek step (! = 1). For the two PCG solver settings, the aver-

age number of iterations is also reported in parentheses. Note

that the computational cost of these two methods would be

the same with any other kind of peek steps whose cost is

negligible, as described in Ref. 4. For the PCG solvers, we

report timings using the simple “direct field” as a guess [noted

“PCG (10 x D)” in Table I] and also timings using the ASPC

predictor [noted “PCG (10 x D, ASPC)”].7 These methods

are timed in the nowadays standard context of the RESPA

integrator8 used with a 2 fs time step for the non-bonded

forces.

The systems that are tested here are the same than in

our previous work:4 three solvated protein droplets (the HIV

nucleocapsid ncp7 made of 18 518 atoms, the ubiquitin made

of 9737 atoms, and the dihydrofolate reductase, dhfr, with

23 558 atoms) and an ionic liquid, the dimethyl-imidazolium

[dmim+][Cl ] (3672 atoms). No boundary conditions are used

in these tests; therefore, each matrix-vector product and force

computation involved in the PCG solvers and in the TCG

formulas has a O(N2) computational cost. However, these

matrix-vector products can be easily re-expressed following

the possible choices for the boundary conditions that will give

rise to slightly different forms of the polarization matrix. For

example, TCG being really close to PCG, it can either be

applied in the context of the particle mesh Ewald2,18 method

with a O(N ln N) cost, or using the fast multipole summa-

tion technique19 with a O(N) cost. These operations are by

far the costliest in the computation of the dipoles and of

the polarization forces. This is why we report the timings

as their proportional cost compared to the PCG solver with

a convergence threshold of 10 5 D and the direct field as a

guess, as these proportions would be the same when using

other boundary conditions. We chose these settings to be our

reference.

All these (sequential) timings were obtained on an HP 620

Workstation made of Intel Xeon E5-2665 CPUs at 2.4 GHz and

were averaged over 100 ps of NVT trajectories at 300 K for

the protein droplets and at 425 K for the ionic liquid.

TABLE I. Average time for the computation of the polarization energy and

the associated forces for different methods, using the PCG converged at 10 5

D as the reference, for a RESPA(2 fs) time step. In parentheses, mean number

of iterations needed.

Ubiquitin ncp7 dhfr [dmim+][Cl ]

PCG (10 5 D) 100% (8) 100% (8) 100% (8) 100% (8)

PCG (10 5 D, ASPC) 88% (6) 85% (6) 88% (6) 84% (5)

PCG (10 8 D) 136% (15) 138% (15) 143% (16) 138% (15)

PCG (10 8 D, ASPC) 125% (13) 127% (13) 125% (13) 117% (12)

TPCG1 43% 43% 44% 44%

TPCG2 61% 62% 63% 63%

We observe that both the TPCG methods are signifi-

cantly faster compared to standard production settings (10 5

D). Compared to more strict settings using a convergence

criterion of 10 8 D for the PCG solver, which guarantees

energy conservation during the MD simulation, differences

are even more striking because the computational cost of

the TPCG1 and TPCG2 methods is found to be, respec-

tively, more than three times faster and more than twice faster,

respectively.

This means that using these methods with the implemen-

tation described in this paper enables not only to guarantee

energy conservation but also to save a considerable amount of

time during the computation of the polarization energy and the

associated forces.

Concerning the use of ASPC, a striking result at a time

step of 2 fs is the smaller reduction of iterations necessary to

reach convergence compared to the reduction observed at 1

fs1 where a 50% gain was observed for a 10 5 D threshold.

In other words, ASPC guess is less efficient when using a

bigger time step. Following intuition, the shorter the time step,

the more efficient the ASPC is. Moreover, in line with our

previous study,1 we also observed that the proportional gain

in that regard is even smaller for a tighter dipole convergence

criterion (such as 10 8 D), making very long simulations a

daunting challenge.

Another remark concerns the use of even larger time steps

with the RESPA integrator. It has been indeed shown that one

can use a 3 fs time step for the non-bonded forces, provided

that masses of the hydrogen atoms of the system are appro-

priately redistributed among heavy atom carriers.20 But such

large time steps limit the use of predictor such as the ASPC,

and no gain in the number of iterations can be obtained with

these methods. On the contrary, the computational cost of the

T(P)CG family of methods does not suffer from such a change

as no history is taken into account. The computational cost at

3 fs would remain the same as that in the 2 fs context, offering

an automatic 1.5 acceleration for the same trajectory length at

no cost, increasing the global speedup offered by the use of

T(P)CG.

CONCLUSION

As we have seen, one can reformulate the analytical

expressions for the gradients of the truncated conjugate gra-

dient using a clear strategy. We detailed for interested devel-

opers the various steps required for the implementation of the

complete TCG method including fast force computations.

This strategy allows the implementation of these gradients

to be fast enough for the computational cost of an evaluation of

the polarization energy and the associated forces to be greatly

reduced compared to standard production settings using iter-

ative methods. The TPCG2 method is more than 1.6 times

faster than the PCG solver with a 10 5 D convergence crite-

rion and the direct field as a guess using a RESPA integrator

with a 2 fs time step (1.4 when ASPC is used). Moreover, it

is more than 2 times faster than a PCG with a convergence

criterion of 10 8 D and the same predictor guess, such set-

tings being mandatory to guarantee energy conservation with

the standard PCG for long simulations. As the number of
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operations in the TCG method is fixed and does not rely on

history (i.e., no previous dipole guess nor predictor guess),

it can be applied with larger time steps for the same fixed

computational cost.

The TCG approach provides an accurate reproduction of

energy surfaces4 at a reduced computational cost, providing

analytical forces that avoid by construction the drift issues

without relying on complex parametrization nor adding extra

degrees of freedom limiting the settings than one can use to

integrate MD trajectories. That is why it should be a method

of choice for long time scale and stable simulations using

polarizable force fields. Since all TCG’s analytical formulas

involve the expressions of electric fields as well as matrix-

vector products, these latter are easily and directly transposable

in different boundary conditions. In particular, the extension to

smooth particle mesh Ewald is straightforward. For the same

reasons, the parallel implementation of these methods within

the context of spatial decomposition follows any PCG one and

will be described in a future paper dedicated to the massively

parallel Tinker-HP package. In that context, capabilities of the

AMOEBA force field using a TCG/SPME coupling will be

tested by comparing various properties obtained with these

methods.
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APPENDIX: COEFFICIENTS AND PEEK STEP
FORMULAS

We introduce the following notations to express the ana-

lytical formulas of the induced dipoles, as well as their deriva-

tives. Each term can be expressed using the starting vectors

(r0 and µ0) and the polarization matrix T.

Vectors:

• r0 = E − Tµ0, • P2 = t2P1 t4T2r0,

• p0 = r0, • P3 = (1 + β2t2)Tr0 − (t4 + β2t4)TP1 − γ1TP2.

• P1 = Tr0,

Scalars:

• n0 = rT
0

r0, • t8 = t5 = t2||P1||2 t4t9, • b1 = sp0 − γ1sp1,

• t1 = rT
0

P1, • t9 = rT
0

T3r0, • b2 = sp0t2 t4sp1,

• t2 =
n0 | |P1 | |

2

t2
1

, • t10 = t2
1
− n0 | |P1 | |

2, • spp1 = hαE, Ei,

• t3 = t1PT
1 P2, • γ1 =

t2
1
− n0 | |P1 | |

2

t3
,

• t4 =
n0

t1
, • sp0 = rT

0
E,

• t5 = PT
1 P2, • sp1 = PT

1 E = ET Tr0, • spp2 = hαTr0, Ei,

• β2 =
n0 + t2

4
| |P1 | |

2 + γ2
1
| |P2 | |

2 − 2t1t4 − 2γ1t4 | |P1 | |
2 + 2γ1t4t5

(t2 − 1)n0

,

• γ2 =
n0 + t2

4
| |P1 | |

2 + γ2
1
| |P2 | |

2 − 2t1t4 − 2γ1t4 | |P1 | |
2 + 2γ1t4t5

(1 + β2t2)rT
0

P3 − (t4 + β2t4)PT
1 P3 + γ1PT

2 P3

.

1. Peek-step formulas

µpeek, TCG1 = !αr0 − !t4αP1, (A1)

µpeek, TCG2 = !αr0 − !t4αP1 − !αγ1t2P1 − !αγ1t4T2r0. (A2)

2. Coefficients for the analytical expressions

The superscript number, between parentheses, indicates the truncation number (1 or 2). p indicates that the coefficient

corresponds to the peek-step derivative and needs to be added to the energy derivative coefficient itself.
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Derivation of Epol, TCG1:

• a
(1)

1,0
= t4, • a

(1)

1,2
= −

2sp0n0

t2
1

,

• a
(1)

1,1
=

2sp0

t1
+ t4, • a

(1)

2,1
= −

sp0n0

t2
1

.

Peek-step for TCG1:

• a
(1,p)

1,α0
= !, • a

(1,p)

1,2
=

2n0spp1!

t2
1

,

• a
(1,p)

1,1α
= −t4!, • a

(1,p)

2,α0
= −t4!,

• a
(1,p)

1,1
= −

2spp1!

t1
, • a

(1,p)

2,1
=

n0spp1!

t2
1

.

TCG2:

• a
(2)

1,0
= t4 + γ1t2, • a

(2)

2,0
= −γ1t4,

• a
(2)

1,−1
= −γ1t4, • a

(2)

2,1
= −

n0b1

t2
1

+ 2
t1b2

t3
−

n0t9t10b2

t1t2
3

+ 2
t2np1t10b2

t2
3

−
t8t10b2

t2
3

− 2
n0np1sp0γ1

t3
1

,

• a
(2)

1,1
=

2b1

t1
−

2np1b2

t3
− 2

np2
1
t10b2

t2
3
t1

+ 2
t9t10b2

t2
3

+ 2
np1sp0γ1

t2
1

, • a
(2)

2,2
= −

n0b2

t3
− 2

t1t2t10b2

t2
3

+
n0sp0γ1

t2
1

,

• a
(2)

1,2
= −2

n0b1

t2
1

+ 4
t1b2

t3
− 2

n0t9t10b2

t1t2
3

+ 4
t2np1t10b2

t2
3

• a
(2)

2,3
=

t1t4t10b2

t2
3

,

− 2
t8t10b2

t2
3

− 4
4n0np1sp0γ1

t3
1

, • a
(2)

3,1
= −

n0b2

t3
− 2

t1t2t10b2

t2
3

+
n0γ1sp0

t2
1

,

• a
(2)

1,3
= −4

t1t2t10b2

t2
3

− 2
n0b2

t3
+ 2

n0sp0γ1

t2
1

, • a
(2)

4,1
=

t1t4t10b2

t2
3

,

• a
(2)

1,4
= 2

t1t4t10b2

t2
3

, • a
(2)

3,2
=

t1t4t10b2

t2
3

.

Peek-step for TCG2:

• a
(2,p)

1,0α
= !, • a

(2,p)

1,2α
= −!t4γ1,

• a
(2,p)

1,1α
= −!(t2γ1 + t4),

• a
(2,p)

1,1
= −

2np1

t2
1

!γ1spp1 + (!t2spp1 + !t4spp2)

×

(

2np1

t3
+

2np2
1
t10

t1t2
3

−
2t9t10

t2
3

)

− 2
t1

(!γ1spp2 + !spp1),

• a
(2,p)

1,2
=

4n0np1

t3
1

!γ1spp1 + (!t2spp1 + !t4spp2)

×

(

−
4t1
t3

+
2n0t9t10

t1t2
3

−
4np1t2t10

t2
3

+
2t8t10

t2
3

)

+
2n0

t2
1

(!γ1spp2 + !spp1),

• a
(2,p)

1,3
= −

2n0

t2
1

γ1!spp1 + (!t2spp1 + !t4spp2)

(

4t1t2t10

t2
3

+
2n0

t3

)

,

• a
(2,p)

1,4
= −(!t2spp1 + !t4spp2)

2t1t4t10

t2
3

, • a
(2,p)

2,1α
= −!t4γ1,

• a
(2,p)

2,α0
= −!(γ1t2 + t4),

• a
(2,p)

2,1
=

2n0np1

t3
1

!γ1spp1 + (!t2spp1 + !t4spp2)

×

(

−
2t1
t3

+
n0t9t10

t1t2
3

−
2np1t2t10

t2
3

+
t8t10

t2
3

)

+
n0

t2
1

(!γ1spp2 + !spp1),

• a
(2,p)

2,2
= −

n0

t2
1

!γ1spp1 + (!t2spp1 + !t4spp2)

(

n0

t3
+

2t1t2t10

t2
3

)

,

• a
(2,p)

2,3
= −(!t2spp1 + !t4spp2)

t1t4t10

t2
3
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2.3 Assessment of the TCG on static and dynamic properties

In this section, the reader will �nd results obtained with various options and orders of the TCG. The pre-

vious claim that a small order of truncation (or equivalently as small number of matrix-vector products)

is enough to have satisfying simulations will be supported throughout the following paragraphs.

We will �rst present tests on static properties of various systems, computing various energies and

verifying proper functioning of the simulations. Then we turn to the di�usion coe�cient, in order to

also be able to characterize the dynamical quality of our trajectories.

Finally, timings of the various TCG orders and setups are presented, and we propose a synthesis

of these numerical tests. All results presented in the following were obtained using AMOEBA force-

�eld.29 AMOEBA encompasses point-multipoles up to quadrupoles to represent the permanent density

of charges, and is of course polarizable. It was calibrated for water,30 nucleic acids and other various

molecules.29

2.3.1 Static properties

What we call static properties designates properties that can be computed as ensemble averages, using

integrals as presented in chapter 1 (eq. 1.5). These are thus quantities that will give us insight on how

well the phase space is explored and whether con�gurations of the system are properly probed. We will

report various energies and radial distribution functions to illustrate in this work. The movement of

particles (molecules, atoms) is not under scrutiny here, and only their positions matter: no conclusion

on the quality of our systems dynamics should be drawn from these results.

Various systems of interest were subject to tests here: liquid water boxes of various sizes, a small

set of solvated proteins, but also ionic liquids.

Preliminar studies: CG dynamics

We will �rstly present a set of results obtained using post-treatment of dynamics using the Conjugate

Gradient solver. 100 ps simulations were carried out using a tightly converged Conjugate Gradient.

One con�guration frame was extracted every picosecond. The induced dipole vector, as well as the

subsequent polarization energy, were then recalculated using the TCG with various settings (di�erent

orders and re�nements) for each frame. An average was then performed over the hundred values, and
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presented below.

The purpose of this "preliminary" study is to test whether a truncation as we proposed for TCG is

indeed viable, and worthy of more developments. Simulations using the exact gradients (as derived in

2.2.4) will be presented after these �rst results.

Let us �rst look at the polarization energies obtained on three water systems (S1 containing 27 water

molecules, S2 containing 216 water molecules and S3 4000). All were done in the NVT ensemble, using a

Bussi thermostat, thermalizing the system at 300 K. We present the polarization energies obtained for

various preconditioners and truncation orders in table 2.1.

Solver Prec. S1 (27 w.m.) S2 (216 w.m.) S3 (4000 w.m.)

Ref - -81.03 -803.33 -15229.87

TCG1 - -73.50 (+8%) -728.73 (+9%) 13813.35 (+9%)

TCG1 diag -74.98 (+7%) -741.91 (+8%) -14028.18 (+8%)

TCG1 Skeel -78.63 (+3%) -779.17 (+3%) -14743.48 (+3%)

TCG2 - -80.69 (+0.4%) -800.32 (+0.3%) -15173.15 (+0.3%)

TCG2 diag -80.81 (+0.2%) -801.61 (+0.2%) -15194.87 (+0.2%)

TCG2 Skeel -81.03 (<0.1%) -803.11(<0.1%) -15222.53 (<0.1%)

TCG3 - -81.24 (-0.2%) -805.20 (-0.2%) -15265.65 (-0.2%)

TCG3 diag -81.20 (-0.2%) -805.26 (-0.2%) -15268.43 (-0.2%)

TCG3 Skeel -81.06 (-0.4%) -803.64 (<0.1%) -15236.03 (<0.1%)

Table 2.1: Preconditioners - Polarization energies in kcal/mol for water systems, with di�erent TCG and
preconditioners, using a direct �eld guess (µ0 = αE). The reference results were obtained using CG
with a 10−8 convergence criterion on the norm of the residual. "Prec" stands for the preconditioner,
with "diag" being the diagonal one and "Skeel" the one proposed by Wang and Skeel.21 Percentages
given in brackets are the relative error with respect to the reference.

Looking at table 2.1, and focusing on the TCG computations were no preconditioner was used, the

�rst order of truncation (TCG1) shows a decent agreement with the reference Conjugate Gradient, with

less than 10% error overall, eventhough it may appear as a quite rough approximation. Errors drop

under 1% when moving to the second order (TCG2), which is already behind the statistical uncertainty

from our simulations: this already seems to con�rm the early allegation that a low-order truncation

is enough to correctly account for the induced polarization. In fact, precision obtained using simply



81 CHAPTER 2. ACCELERATING THE POLARIZATION

the second truncation order are accurate enough – and this will be further probed and veri�ed using

the various re�nements of section 2.2.3 in the next paragraphs – for us to consider that the third order

(TCG3) is not even necessary.

On a side note, one could notice that the TCG sometimes gives energies that are lower than the

reference, i.e. that appear to be more converged (this can be observed for TCG3). This is an artifact

coming from the fact that the functional that is minimized during the Conjugate Gradient procedure

(Epol[µ] = 1

2
〈µ, Tµ〉 − 〈µ, E〉) is not exactly the same as what we compute as polarization energy

(−1

2
〈µ, E〉).
Table 2.1 also gives a particular insight on the e�ect of the preconditioner. For the �rst two orders

of truncation, the use of the diagonal preconditioner slightly improves the accuracy on the energiesiv.

Skeel’s preconditioner, more involved, yields better improvements, as it is most obvious when looking at

the TCG1 energies. This is quite expected, as the diagonal preconditioner is a quite poor approximation

of the inverse of the polarization matrix, whereas Skeel’s version is more complex and precise (see

section 2.1.4, equation 2.30).

TCG order Prec. S1 S2 S3

TCG1 - 6.3 × 10−3 7.0 × 10−3 7.1 × 10−3

TPCG1 diag 4.9 × 10−3 5.6 × 10−3 5.8 × 10−3

TPCG1 Skeel 2.2 × 10−3 2.6 × 10−3 2.7 × 10−3

TCG2 - 1.7 × 10−3 1.9 × 10−3 1.9 × 10−3

TPCG2 diag 9.2 × 10−4 1.1 × 10−3 1.1 × 10−3

TPCG2 Skeel 3.0 × 10−4 3.9 × 10−4 4.2 × 10−4

TCG3 - 4.7 × 10−4 5.4 × 10−4 5.5 × 10−4

TPCG3 diag 3.8 × 10−4 3.8 × 10−4 3.9 × 10−4

TPCG3 Skeel 6.6 × 10−5 9.5 × 10−5 1.0 × 10−4

Table 2.2: Preconditioners - Induced dipoles RMS. A direct �eld guess was used (µ0 = αE). "Prec" stands
for the preconditioner, "diag" for the diagonal one, "Skeel" for the one proposed by Skeel21 .

To provide another measure of the accuracy of the method, we also calculated the RMS (Root Mean

Square) error on the induced dipoles. For each frame of the 100 ps simulation, the RMS error between
ivThis e�ect should also be the same for the third order (TCG3), but the errors become so small that they fall beyond the

statistical uncertainty.
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the CG and the TCG induced dipole vector was computed. This RMS error was then averaged over all

hundred values, and presented in tables 2.2 and 2.4 for the water systems. In table 2.2, the e�ect of

the preconditioner is even easier to see: for every order of truncation in the TCG, activating a simple

preconditioner (the diagonal one) sligltly reduces the RMS error, and this e�ect is strengthened when

using better preconditioners such as Skeel’s one.

TCG order Prec. Peek S1 S2 S3

Ref - - -81.03 -803.33 -15229.87

TCG1 - - -73.50 (+8%) -728.73 (+9%) 13813.35 (+9%)

TCG1 - ω = 1 -81.41 (-0.4%) -806.83 (-0.4%) -15315.13 (-0.5%)

TCG1 diag ω = 1 -79.88 (+1%) -791.51 (+1%) -15001.40 (+1%)

TCG1 diag ωopt -78.98 (+3%) -780.94 (+3%) -14789.04 (+3%)

TCG1 diag ω�t -81.06 (<1%) -803.42 (<0.1%) -15230.10 (<0.1%)

TCG2 - - -80.69 (+0.4%) -800.32 (+0.3%) -15173.15 (+0.3%)

TCG2 - ω = 1 -80.23 (+1%) -794.49 (+1%) -15061.22 (+0.1%)

TCG2 diag ω = 1 -80.98 (<0.1%) -802.74 (<0.1%) -15218.27 (<0.1%)

TCG2 diag ωopt -80.95 (<1%) -802.50 (<0.1%) -15213.17 (+0.1%)

TCG2 diag ω�t -81.02 (<1%) -803.06 (<0.1%) -15231.14 (<0.1%)

TCG3 - - -81.24 (-0.2%) -805.20 (-0.2%) -15265.65 (-0.2%)

TCG3 - ω = 1 -80.78 (+0.3%) -800.83 (+0.3%) -15181.55 (+0.3%)

TCG3 diag ω = 1 -81.03 (<0.1%) -803.27 (<0.1%) -15228.74 (<0.1%)

Table 2.3: Peek-step – Polarization Energies in kcal/mol, presented for various peek-steps, using a
direct �eld guess (µ0 = αE). The reference simulations were done using PCG with a tight convergence
criterion. "Prec" stands for the preconditioner, "diag" for the diagonal one. "Peek" designates the use of
a peek-step, using a scaling ω reproduced in the corresponding column. Percentage given in brackets
are the relative error with respect to the reference.

Table 2.3 focuses on the in�uence of the peek-step (as presented in section 2.2.3). The RMS error on

the induced dipole is also reproduced in table 2.4. The choice of a scaling factor ω for the peek-step is

far from trivial, as will be discussed in the following paragraphs.

Firstly, results obtained with peek-steps comfort the idea that a low order truncation enable good

results, as once again, the polarization energies obtainedwith TCG1 and TCG2 are in very good agreement
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with the PCG reference. The RMS errors, related in table 2.4, also showdecreases when using a peek-step.

The use of a Jacobi Over-Relaxation step (JOR), i.e. the choice ω = 1 yields improvements in the

energies for the �rst truncation order (TCG1), but this is not the case anymore for TCG2 and 3. Its e�ect

on the RMS, however, is always positive (the error on the induced dipoles is lowered).

The more complex choices ω�t and ωopt seem to have two di�erent roles to play there. ωopt being

aimed at a better convergence asymptotically, it improves the results on the RMS error, but does not

systematically give energies that are better than a JOR step would yield. On the other hand, ω�t is

designed for the reproduction of energies, and as such, reproduces themwith a high accuracy. However,

this comes with a slight cost on the RMS error on the dipoles, that can in fact be higher than when using

a ω = 1 or ωopt.

TCG order Prec Peek S1 S2 S3

TCG1 - - 6.3 × 10−3 7.0 × 10−3 7.1 × 10−3

TCG1 - ω = 1 3.6 × 10−3 3.9 × 10−3 3.7 × 10−3

TCG1 diag ω = 1 2.2 × 10−3 2.6 × 10−3 2.7 × 10−3

TCG1 diag ωopt 2.3 × 10−3 2.7 × 10−3 2.8 × 10−3

TCG1 diag ω�t 2.6 × 10−3 3.0 × 10−3 3.0 × 10−3

TCG2 - - 1.7 × 10−3 1.9 × 10−3 1.9 × 10−3

TCG2 - ω = 1 1.5 × 10−3 1.7 × 10−3 1.8 × 10−3

TCG2 diag ω = 1 4.1 × 10−4 5.0 × 10−4 5.2 × 10−4

TCG2 diag ωopt 3.9 × 10−4 4.6 × 10−4 4.7 × 10−4

TCG2 diag ω�t 5.3 × 10−4 7.0 × 10−4 1.0 × 10−3

TCG3 - - 4.7 × 10−4 5.4 × 10−4 5.5 × 10−4

TCG3 - ω = 1 4.6 × 10−4 4.9 × 10−4 4.8 × 10−4

TCG3 diag ω = 1 1.3 × 10−4 1.5 × 10−4 1.6 × 10−4

Table 2.4: Peek-step – RMS of the induced dipole vector compared to the reference for water systems.
The peek-step is multiplied by an ω stated in the "Peek" column.



2.3. ASSESSMENT OF THE TCG ON STATIC AND DYNAMIC PROPERTIES 84

Extension to other systems

This study was also applied to several other systems, much more heterogeneous, in order to investigate

on the versatility of the TCG solver. Three solvated proteins were used as test cases, namely

• the nucleocapsid ncp7, containing two ZnII cations, totaling 18 515 atoms (including solvating

water molecules as well as counter-ions);

• the dihydrofolate reductase (dhfr), consisting in about 2 500 atoms and surrounded in a seven

thousand water molecules droplet;

• the ubiquitin protein, whose nucleic acid chain is made of 1233 atoms, solvated in a 2835 water

molecules droplet.

An exemple of ionic liquid was also investigated, the dimethylimidazolium with chlorine counter-ions

([dmim+][Cl-]). While all other simulations were run at 300 K, this system was thermalized at 415 K,

following recommendations in ref. [31].

As observed earlier on water systems, the non-re�ned TCG1 (i.e. the �rst order TCG without any

re�nement), or TCG1 with a simple preconditioner, yield errors that can reach 10%. For the other TCG

setups tested (higher truncation orders, use of peek-step), the polarization energies presented in table

2.5 show an excellent agreement with the reference values, obtained with a tightly converged Conjugate

Gradient. This is a �rst proof of the adaptability of the Truncated Conjugate Gradient.

This good behaviour, very similar to the one obtained on water, is also reproduced when focusing

on the RMS errors on the dipoles, as shown in tables 2.6 and 2.7. As observed earlier, the RMS error

diminishes as one uses more advanced preconditioners; the distinction made between ω�t and ωopt

still holds (ωopt systematically improves the RMS, while ω�t is more suited for enhancing the energy

results).

A few preliminary conclusions can be drawn from these simulations. The Truncated Conjugate Gradi-

ent appears to give good results, no matter the system under study. Polarization energies stay within

a 10% error limit with the �rst order of truncation, and drop under a few percents when moving to the

second order. As one could have expected, a higher truncation order also means a systematic decrease



85 CHAPTER 2. ACCELERATING THE POLARIZATION

Solver Prec. Peek ncp7 ubiquitin dhfr [dmim+][Cl-]

Ref - - -24202.54 -11154.87 -28759.01 -1476.79

TCG1 - - -21733.63 -9897.22 -25583.50 -1428.35

TCG1 - ω = 1 -24481.14 -11231.35 -28986.08 -1477.08

TCG1 diag ω = 1 -23532.73 -10829.84 -27972.41 -1493.58

TCG1 diag ωopt -22773.65 -10513.24 -27079.47 -1484.24

TCG1 diag ω�t -24161.11 -11162.02 -28766.40 -1479.06

TCG2 - - -23922.79 -11031.67 -28463.51 -1420.00

TCG2 - ω = 1 -23965.96 -11009.06 -28384.49 -1465.73

TCG2 diag ω = 1 -24123.65 -11128.14 -28683.52 -1471.34

TCG2 diag ωopt -23938.70 -11066.44 -28504.96 -1468.29

TCG2 diag ω�t -24205.30 -11154.21 -28753.60 -1475.08

TCG3 - - -24262.87 -11174.93 -28812.99 -1450.22

TCG3 - ω = 1 -24121.02 -11105.78 -28635.73 -1441.95

TCG3 diag ω = 1 -24194.37 -11150.95 -28749.68 -1478.83

Table 2.5: Polarization Energies of protein droplet and ionic liquids, using various peek-steps. A direct
�eld guess µ0 is used here. "Prec" stands for "Preconditioner", "diag" designates the diagonal one.
"Peek" deignates the peek-step, using a scaling ω reproduced in the corresponding columns.

of the RMS error on the induced dipoles vector. Lastly, re�nements derived in 2.2.3 proved their worth,

as the peek-step in particular, appearing as a very e�cient and �exible tool.

Dynamics using TCG forces

After these preliminary tests, essential to measure the viability of the Truncated Conjugate Gradient

algorithm, we developed the full machinery that allows the computation of the exact forces, as derived

in 2.2.4. This implementation was somewhat cumbersome, given the complexity and the number of

terms involved, as well as the speci�cities of our highly parallel framework. Adaptation to the PME

framework (sec. 1.5.2) in particular proved to be time-consuming.

Nevetheless, thanks to these e�orts, the Truncated Conjugate Gradient became a fully useable

method for polarizable molecular dynamics, and we propose here a more extensive assessments of

its capacities based on the study of a fourth water system (S4), containing 500 water molecules, for



2.3. ASSESSMENT OF THE TCG ON STATIC AND DYNAMIC PROPERTIES 86

System Prec. ncp7 ubiquitin dhfr [dmim+][Cl-]

TCG1 - 8.9 × 10−3 8.8 × 10−3 8.8 × 10−3 1.1 × 10−2

TCG1 diag 8.6 × 10−3 8.0 × 10−3 8.1 × 10−3 6.9 × 10−3

TCG1 Skeel 5.5 × 10−3 4.4 × 10−3 4.5 × 10−3 5.6 × 10−3

TCG2 - 3.5 × 10−3 3.2 × 10−3 3.2 × 10−3 7.2 × 10−3

TCG2 diag 2.5 × 10−3 2.0 × 10−3 2.2 × 10−3 3.4 × 10−3

TCG2 Skeel 9.0 × 10−4 7.7 × 10−4 7.8 × 10−4 1.5 × 10−3

TCG3 - 2.1 × 10−3 1.7 × 10−3 1.7 × 10−3 5.3 × 10−3

TCG3 diag 7.1 × 10−4 6.5 × 10−4 7.2 × 10−4 7.9 × 10−4

TCG3 Skeel 2.1 × 10−4 1.8 × 10−4 1.9 × 10−4 3.2 × 10−4

Table 2.6: In�uence of the preconditioner – RMS of the dipole vector for our second set of systems.
Notations are identical to the previous RMS tables.

which dynamics were carried out using the proper analytical forces of the TCG.

The �rst notable thing here is that the error on the energies is higher than what was obtained using

PCG dynamics. This is consistent with the fact that we are not exploring exactly the same potential

energy surface. This can also be linked to the various other methods discussed earlier, as some of them

were not able to reproduce the reference fully-converged PCG potential energy surface. Nevertheless,

the TCG remains viable, as this error drops to a few percents quite easily, either by using the second

order TCG, or by using re�nements such as the peek-step. A TCG2 using a �tted peek-step (ω�t) yields

indeed excellent results, as does the TCG1 when all re�nements are activated.

It can also be noted that the error on the fully re�ned TCG (using a diagonal preconditioner, a direct-

�eld guess and a peek-step), although it remains under 1.5%, is slightly worse for the ω�t peeking. This

may be explained by ω�t’s computation which was done, in earlier versions of the code, through a

dichotomy and thus with a possible slight loss of precision. Both errors nevertheless stay within the

standard deviation, such that it is complicated to seize the importance of this e�ect. As of now, we have

no full certainty and we need to further explore this issue.

Conclusion The �rst objective behind these computations was to show the applicability of the TCG

method, and more speci�cally for a low truncation order. Here, TCG1 gives a �rst approximation that is

already good given the very cheap computational price paid. TCG2 provides results in very good agree-
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Water Box Prec. Peek ncp7 ubiquitin dhfr [dmim+][Cl-]

TCG1 diag ω = 1 4.4 × 10−3 3.9 × 10−3 4.1 × 10−3 3.2 × 10−3

TCG1 diag ωopt 5.1 × 10−3 4.7 × 10−3 4.8 × 10−3 3.8 × 10−3

TCG1 diag ω�t 4.9 × 10−3 4.5 × 10−3 4.6 × 10−3 4.5 × 10−3

TCG2 diag ω = 1 1.7 × 10−3 1.4 × 10−3 1.7 × 10−3 1.6 × 10−3

TCG2 diag ωopt 1.3 × 10−3 1.0 × 10−3 1.1 × 10−3 1.9 × 10−3

TCG2 diag ω�t 2.2 × 10−3 1.7 × 10−3 2.1 × 10−3 2.0 × 10−3

TCG3 diag ω = 1 4.3 × 10−4 3.8 × 10−4 4.8 × 10−4 4.5 × 10−4

Table 2.7: In�uence of the peek-step – RMS of the dipole vector compared to the reference, for the
inhomogeneous systems, using a peek-step. Notations from previous RMS tables were kept.

ment with the reference ones, and one should note that this remains true when considering systems

renowned for being complicated to simulate, such as ionic liquids. TCG3 further re�nes the results, as

one should expect. Yet, given the level of precision already reached using TCG2, especially when using

some of the available re�nements (preconditioning, peek-step...), the third order does not appear to be

necessary.

This versatility of the TCG, exhibiting convergence for any kind of system, is an inheritance from

the Conjugate Gradient method: using this algorithm to perform our truncation proves to be the right

choice.

Vaporization enthalpies of water

Continuing our tests, and staying with static properties, we will now present vaporization enthalpy

computations.

The enthalpy of vaporization, also called heat of vaporization, measures the energy required to

vaporize a quantity of a substance, that is, to change its state from liquid to gas. It is usually written

∆Hvap.

Being a state function, the enthalpy di�erence of a compound between his liquid and gas phase can

be calculated following any path we want. If we suppose that the liquid must �rst break the intermolec-

ular interaction keeping it together, then expand by exerting a pressure on its environment, two terms
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Solver Setup Energies

order Prec. Guess Peek-step Polarization Potential

Ref - - - -2198.81 -4490.46

TCG1 - - - -1634.53 (-34%) -4036.61 (-11%)

TCG1 diag - - -1928.79 (-14%) -4303.58 (-4.3%)

TCG1 diag • - -1897.15 (-16%) -4288.86 (-4.7%)

TCG1 - • ω = 1 -2083.40 (-5.4%) -4410.06 (-1.8%)

TCG1 - - ω�t -2032.14 (-8.1%) -4378.03 (-2.6%)

TCG1 diag • ω�t -2160.03 (-1.7%) -4459.29 (-0.7%)

TCG2 - - - -2018.17 (-8.8%) -4384.94 (-2.4%)

TCG2 diag - - -2152.34 (-2.0%) -4461.86 (-0.6%)

TCG2 - • - -2230.36 ( 1.5%) -4521.98 ( 0.7%)

TCG2 diag • - -2210.11 ( 0.6%) -4504.63 ( 0.3%)

TCG2 - - ω�t -2188.46 (-0.4%) -4488.46 (<0.1%)

TCG2 - • ω = 1 -2186.38 (-0.5%) -4483.44 (-0.2%)

TCG2 diag • ω = 1 -2194.71 (-0.1%) -4489.88 (<0.1%)

TCG2 diag • ω�t -2169.09 (-1.3%) -4463.73 (-0.6%)

Table 2.8: TCG dynamics – 500watermolecules. This table compiles polarization and potential energies
obtained for various setups of the TCG (order, re�nements used are varying here). "Prec": preconditioner.
Guess: use of the direct �eld guess (αE). Energies are given in kcal/mol.

arise. Using classical thermodynamic notations, it can be written as

∆Hvap = ∆Uvap − p∆V (2.57)

with ∆Uvap measuring the internal energy necessary to overcome the intermolecular interactions

∆Uvap = Ugaz −Uliq (2.58)

and p∆V is the work exerted against the external pressure.

Let us come back to our microscopic realm, and now consider quantities per unit (from now on, we
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assume that ∆Hvap is in energy/mol or energy/molecule). The internal energy of a gas water molecule

Ugaz can be computed using a single molecule in vacuum, thus not interacting with anything else.

On the other hand,Uliq can be computed using a simulation of bulk liquid water (which is the case

for our water systems S1-4). We only have to divide the obtained potential energy by the total number

of water molecules in the simulation, to be able to compare it withUgaz.

Finally, assuming an ideal gas behaviour for the gas phase water gives us pV = nRT , which allows

us to rewrite eq. 2.57 as

∆Hvap = 〈Ugas〉 −
〈Uliq〉
N

+ RT (2.59)

This formula was applied, with 〈Ugas〉 obtained after a one nanosecond of a single water molecule
in gas phase. Table 2.9 presents the heat of vaporization obtained with various TCG options. Simulations

were done in the NPT ensemble (we want the pression to remain constant here) using a Monte-Carlo

barostat, with at least 100 ps of equilibration and 300 ps of e�ectively analyzed run.

Method Prec. Guess Peek Potential energy ∆Hvap Relative error vs. ref.

Ref -4628.97 10.74 (± 0.05) –

TCG1 - - - -4014.6 9.51 (± 0.23) 11%

TCG1 • - - -4442.77 10.36 (± 0.17) 3%

TCG1 - - ω�t -4437,25 10.36 (± 0.18) 3%

TCG1 • • ω = 1 -4568.16 10.62 (± 0.05) 1%

TCG1 • • ω�t -4568.79 10.62 (± 0.1) 1%

TCG2 - - - -4557.3 10.60 (± 0.1) 1%

TCG2 • - - -4572.39 10.63 (± 0.12) 1%

TCG2 - - ω�t -4601.38 10.68 (± 0.12) 0,4%

TCG2 • • ω = 1 -4628.05 10,73 (± 0,07) < 0.1 %

TCG2 • • ω�t -4571.78 10.63 (± 0.1) 1%

Table 2.9: Vaporization enthalpies of water. All energies are expressed in kcal/mol. Reference is a 400
ps simulation, including 100 ps of equilibration, using the PCG solver for polarization, converged with
a (tight) criterion of 10−8 on the residual norm. "Prec","Guess" and "Peek" respectively show whether
the diagonal preconditioner, the direct �eld guess, and/or the Peek-step were used or not. The ω value
given in the peek column deisgnates the scalar value which multiplies the peek-step (as seen in 2.2.3).

Although the method seems to always underestimate the reference results, agreement becomes re-
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ally good, as for previous properties, when considering second order TCG, or when using the re�nements

such as the peek-step and preconditioner as developed earlier.

One can also notice a slight deterioration of the values when using a peek-step with a �tted ω.

Radial distribution functions

Radial distribution functions (g ) measure the variation of density at any distance from a reference

particle. It can be simply understood as follow: given a particle i , g (r ) gives the probability to �nd an-
other particle at a distance r of i . Water exhibits strong intermolecular interactions (including hydrogen

bonds), which causes strong ordering of the molecules. When considering liquid water, this ordering

translates into an equivalent of a solvation radius for water molecules themselves: if one looks at the

gOO radial distribution function, measuring the proability to �nd an oxygen at any distance from an-

other oxygen, a very distinct peak signals that space between neighbouring water molecules is quite

well de�ned. Peaks can be seen at multiples of this average distance, though they quickly vanish, show-

ing that this structural ordering persists over a few molecules. gHH (r ), measuring probability to �nd
a hydrogen atom at distance r from another one, also shows a – perhaps even more obvious – peak

corresponding to the average distance between the two hydrogen atoms within a water molecules. Be-

ing able to reproduce accurately radial distribution functions is thus a good insight on the simulation

accuracy.

We reproduced the Oxygen-Oxygen radial distribution functions obtained with TCG1 in �gure 2.2, and

the other ones, obtained with TCG2, in �gure 2.3. In both case, a reference g (r ) function was computed
using the Conjugate Gradient and reproduced on the �gures. For the �rst truncation order, discrepancies

with the reference curves can be observed in particular for the non-re�nedv TCG. The additional use of

a diagonal preconditioner brings the curve closer to the reference, yet it is not su�cient to be exact.

There again, the peek-step plays a key role, as it reduces almost completely the gap. The "full-option"

TCG1, �nally, yields a curve which is basically confounded with the reference one.

Looking at TCG2, we now have excellent agreement with the PCG reference, excepted for the non-

re�ned version, seemingly too rough to yield a perfect radial distribution.

vwith no re�nement, i.e. no preconditioner, no guess, and no peek-step.
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Using Einstein’s formula, di�usion constants were computed using eq. 2.64, with positions extracted

from dynamics. We computed di�usion constants for watermolecules, as the interesting value here con-

cernsmolecule as whole entities, without the intra-atomic movements. Tinker package comes with a set

of analysis executables, including one designed for di�usion constant calculations. It uses molecules’

centers of mass to compute the average squared displacement.

Di�usion constant were computed for our 500 water molecule system at 300 K, in the NVT ensemble.

Maginn32 reported that using NVE simulations was a better practice, given the possible e�ect of thermal

(and/or pressure) thermostats on the dynamics. The di�usion constants computed, in our case, did not

di�er in both ensembles.

Solver Prec Guess Peek D Error (%)

Ref 1.96 ±0.02 0.0

TCG1 - - - 3.29 ±0.04 40.4

TCG1 Diag - - 2.37 ±0.02 17.3

TCG1 Diag • - 2.22 ±0.03 11.7

TCG1 - - ω�t 1.65 ±0.00 -18.7

TCG1 - • ω = 1 2.15 ±0.03 8.8

TCG1 Diag • ω�t 1.89 ±0.04 -3.7

TCG2 - - - 2.16 ±0.02 9.2

TCG2 Diag - - 2.01 ±0.01 2.2

TCG2 - • - 1.77 ±0.04 -11.1

TCG2 Diag • - 1.81 ±0.01 -8.5

TCG2 - • ω = 1 1.94 ±0.04 -1.3

TCG2 - - ω�t 1.95 ±0.02 -0.4

TCG2 Diag • ω = 1 1.91 ±0.01 -2.9

TCG2 Diag • ω�t 1.997 ±0.02 1.8

Table 2.10: Water self-di�usivity constants. D are given in ×10−5 cm2/s . "Ref." is the reference, it was
computed using a PCG solver, converged with a criterion of 10−5 on the residual norm. "Prec","Guess"
and "Peek" respectively show whether the diagonal preconditioner, the direct �eld guess, and/or the
Peek-step were used or not. The ω value given in the peek column designates the scalar value which
multiplies the peek-step (as seen in 2.2.3).
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Simulations were run for 2 ns in total, including 400 ps of equilibration and 1.6 ns of production

used to compute the mean square displacements.

Focusing on the results obtained by the TCG, the trend that appeared earlier on static properties

seem to be con�rmed here: �rst orders of the TCG method show decent results when used with re�ne-

ments, and TCG2 show improvements lowering errors to a few percents. However, �rst order truncation

when not re�ned enough seems to struggle much more when it comes to reproducing dynamic vari-

ables. A di�usion constant of 3.3 would indeed vouch for a very "liquid" and mobile water, above the

experimental observations Dexp ≃ 2.29 (see, amongst many others, [33]).

Nevertheless, a properly used TCG proves to be a method able reproduce correctly not only the

static properties of a system, but also the dynamic ones, making it a versatile polarization solver not

only in terms of the variety of possible systems, but also the type of studies to be carried out.

Strikingly, when using a preconditioner and a guess, theω�t peek-step now gives better results than

the ω = 1 one, which seems in contradiction with our previous observations regarding these setups.

2.3.3 Parametrization of the peek-step, variations ofω�t

The use of a peek-step scaled with a ω�t proved to be an excellent method to reproduce very accurate

energy, as it is specially �tted in this regard. While it is a quite simple tool to use, it deserves a slightly

more involved study to better understand its capabilities.

For one, one should monitor the range to which the peek-step is allowed to go. More precisely, it

should be noted that de�nition 2.43 will always give a value for ω�t, including if, for any reason, the

error on the induced dipoles were to be important,ω�t could theoretically reach any real value, as large

as it may be. One should however remember that these values will have a direct in�uence on the dipoles

as well: should the correction, say, exceed the magnitude of the original µTCGn ones, then the peek-step

"correction" would turn into a straight error.

For several systems (the S2 water system containing 216 molecules, the solvated ubiquitin, and

the GAG proteinvi), we plotted the evolution of the RMS error on the induced dipoles (using a tightly

converged PCG as a reference) as a function of the value of ω, as well as the subsequent value of the

viGAG is a very small protein; when solvated it builds a system containing about 8000 atoms.
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Comparing the position of ωmin with ω�t �rstly shows that these two values are di�erent, as the

results obtained earlier foreshadowed. But it also shows that these two value are quite close to each

other, on both well- and ill-conditioned systems (water as well as solvated proteins). This shows us that

ω�t �tting does not yield crazily high (or low) values, at least for the various tested systems.

During these simulations, ω�t was re�tted every 100 time-step, in order to evaluate the variation it

undergoes over the course of the simulation. We observed that these variations depend on the level

of convergence that the polarization solver reached before the peek-step is applied. Explicitly, if the

di�erence between TCG and the reference is substantial regarding the polarization energy, as it would be

the case for a �rst order TCGwith little to no re�nement,ω�t remains very stable along the simulation. On

the contrary, when using a very accurate TCG version (second order using all re�nements for example),

ω�t has a rather important range of variation that can reach ±0.6.

This could be explained by the importance of the correction required: when using a TCG1 with no

re�nement, the error between TCG’s polarization energy and the fully converged CG reference is rather

important, such that the scaling of the contribution to the energy from the peek-step remains stable.

On the other hand, when using a fully-re�ned TCG2, the error between TCG’s polarization energy (before

the peek-step is used) and the reference polarization energy is much smaller (see for example the 0.6%

of error in table 2.8 for the TCG2 using a preconditioner and a guess). The correction required from the

peek-step is thus much smaller, and hence more sensitive to the small �uctuations of TCG’s polarization

energy. This could explain the higher �uctuation of ω�t.

This reasoning is only possible providing that there is no brutal change to the system itself, that is to

say that the peek-step energy contribution 〈µpeek-step, E〉 does not change much along the simulation.

This analysis is empirical and would need further tests, and is only here as a proposed explanation.

An excellent precision on the energies can be reached by the use of a �tted peek-step (with ω�t), as

showed in the previous sections. Monte-Carlo simulation methods are based on non-physical moves

whose likeliness are controlled by the change of energy they would cause. As such, their accuracy are

very closely depending on the precision on the evaluation of the energy of a con�guration. For this

reason, TCG re�ned with a �tted peek-step thus appears as a method of choice for such simulations.

This becomes even clearer when considering the timings, given that no gradients have to be com-

puted to carry out Monte-Carlo simulations. The TCG would thus be an ideal candidate for such exper-
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iments, especially when considering badly conditioned systems (such as ionic liquids), since they yield

the most impressive speedups.

This adaptability to the Monte-Carlo scheme comes from the fact that TCG does not need to stay

within a Molecular Dynamics framework. Other methods such as the extended Lagrangian ones (as seen

in section 2.1.2) do require a full MD framework to function, and can thus not be used as Monte-Carlo

polarization solvers.

2.3.4 Timings

We are left with one of the most important of TCG’s properties to assess: its computational speed. To

that end, we performed simulations of a thousand time-steps using various setups of the solver, and

measured for each the production in ns/day. By �xing the timestep length to 1 fs for all the simulations,

the number of ns/day is directly the number of timestep multiplied by the time-step length δt . We

thus have a direct measurement of the computational time spent per time/step, or equivalently, of the

speed of the computation.

Simulations on the system S4, containing 500 water molecules, were run on a node of 24 processors.

Simulations for the ubiquitin and [dmim+] systems were run on two nodes of 24 processors, i.e. 48

processors total. Results were compiled in table 2.11, with a PCG solver converged to 10−5 as reference.

This PCG reference was computed without using the ASPC guess presented in section 2.1.4, in order to

compare methods with good time-reversibility and volume preserving properties.
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Solver Re�nements Water (S4) Ubiquitin [dmim+][Cl-]

order Prec. Guess Peek ns/day di�. ns/day di�. ns/day di�.

Ref. 3.06 0.0 0.58 0.0 1.57 0.0

PCG8 2.25 -26.6 0.40 -31.6 1.11 -29.1

TCG1 - - - 4.68 52.9 1.16 96.3 3.21 104.2

TCG1 • - - 4.65 51.8 1.16 97.8 3.21 104.2

TCG1 - • - 3.67 19.9 0.8 37.0 2.15 36.9

TCG1 - - ω�t 4.01 31.1 0.84 43.8 2.24 42.5

TCG1 • • ω = 1 3.53 15.4 0.79 35.6 2.13 35.7

TCG1 • • ω�t 3.57 16.6 0.77 32.6 2.08 32.5

TCG2 - - - 3.89 27.2 0.89 52.8 2.47 57.5

TCG2 • - - 3.86 26.1 0.89 52.0 2.45 55.8

TCG2 - • - 2.98 -2.6 0.63 7.9 1.68 7.0

TCG2 • • - 3.03 -0.9 0.63 7.6 1.68 7.2

TCG2 - - ω�t 3.35 9.6 0.64 9.6 1.72 9.6

TCG2 • • ω = 1 2.88 -5.9 0.59 1.7 1.57 0.1

TCG2 • • ω�t 2.83 -7.6 0.58 -0.5 1.55 -1.6

Table 2.11: Timings for various TCG setups. For each simulation, 1000 1 fs time-steps were run. Simu-

lations on the water system S4 were performed using 24 cores; ubiquitin and the dimethylimidazolium

solution with 48 cores. All timings are given in ns/day. The reference timings were obtained using a PCG

solver with a 10−5 convergence criterion. "PCG8" stands for the Preconditioned Conjugate Solver with

a 10−8 convergence criterion. "Di�." designates the relative di�erence, in percents, with respect to the

reference.
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Firstly, one can note that the simpler the method is, the faster the acceleration obtained: the best

speedups are obtained when using non-re�ned TCG1, while the fully-re�ned TCG2 can yield slower

dynamics than the PCG reference.

This may seem counter-intuitive, but it arises from the expressions of the gradients that were de-

rived in the previous section. The rewriting of the derivatives, a vital point in the feasability of the TCG,

can indeed require up to two extra matrix-vector products (one accounting for the use of a guess, as

showed by equation 2.39, another for the supplementary terms that the peek-step requires).

A second general observation concerns the variation of performance depending on the systems in

consideration. Indeed, one can note that the performance gains are systematically higher when looking

at the most heterogeneous systems (for example, TCG1 accelerates the water system’s simulation by

slightly more than 50%, and the ionic liquid’s by more than a hundred).

This can be explained by the conditioning of the polarization matrices (see eq. 2.25) which would

be better when looking at a homogeneous system. This means that, for a given level of convergence,

a greater number of Conjugate Gradient iterations would be required when calculating the induced

dipoles vector on a heterogeneous system. When compared to the �xed number of iterations that TCG

requires, the di�erence will thus be more important when looking at the inhomogeneous systems; the

speedup provided by TCG will hence be larger.

From a more practical point of view, several simple guidelines can be drawn from these results. The

diagonal preconditioner that was implemented has a really limited impact on the timings, while it

allows a substantial improvement of the simulation’s qualities (as shown by the di�usion coe�cient

and the computed energies). Thus, if one wishes to use a really cheap method, the best way to go is

to use the diagonal preconditioner, without any guess or peek-step, baring in mind that not using the

preconditioner would barely mean any savings in computation time.

On another hand, the fully re�ned TCG o�ers no e�ective speedup as is; and for simple simulations,

we would suggest to use a peek-step with a �tted ω. We showed in the previous sections the quality of

the simulations obtained with this options, and we now observe that this still ensures a roughly 10%

speedup.

The timings presented were computed using a quite standard 1 fs time-step. Sensibly equivalent
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results can be observed when using a RESPA integrator with a 2 fs time-step (see Appendix). However,

one should keep in mind that this comes with an important improvement regarding the polarization

forces, which are now exactly consistent with the polarization energy. This means, as explained in 2.2.1,

that there should be no drift arising from polarization in the simulation.

This increase in stability is a direct advantage to explore integration using larger time-steps, and this

becomes even more critical as usual accelerations, such as the ASPC, are not viable when exceeding the

2 fs limit. The applicability of the Truncated Conjugate Gradient to large time-step methods will be

explored extensively in chapter 4.

2.3.5 TCG: a �rst conclusion

To sum up this �rst study on the performances and viability of the Truncated Conjugate Gradient, a few

main points should be put forth:

• As always in computational experiment, a good balance has to be found between numerical

accuracy and computation time. Thanks to the many di�erent setups of the TCG, the user can

�nely tune the solver to his will in order to control this balance.

• The diversity of solver setups is more generally a good sign that TCG could be used in various

roles, as the following chapter will illustrate.

• The stability of the method allows one to consider larger time-steps,34 which could yield decisive

accelerations, while the commonly used method are still limiting in this regard.

Looking at the various results, the TCG2 using a �tted peek-step (withω�t) appears as a setup of choice,

with a very good cost e�ectiveness. It indeed provides speedups and a reasonably easy implementa-

tion, avoiding the use of a guess and its supplementary matrix-vector product, and ensures very good

precision.

Finally, it is worth noting that the reference we used throughout this chapter (a Preconditioned Con-

jugate Gradient with a 10−5 convergence threshold on the residual norm) is known to yield drift in the

total energy of the simulation, thus distorting the dynamics. If we wanted to reach the stability allowed

by the TCG, this criterion should be tightened to 10−8 (as demonstrated by Lipparini et al.1).
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Indeed, the drift produced by a simulation where the convergence criterion is �xed at 10−5 disap-

pears in the short term, but will accumulate on larger time-scales, e�ectively preventing the simulation

of long dynamics. In the 10−8 case, more iterations of the Conjugate Gradient are required, e�ectively

slowing down the computations. Tables 2.11 (and 10 in Appendix) show this slowdown. The speedups

allowed by TCG are much more interesting compared to this tighter reference: even the fully re�ned

version becomes 25 to 45% faster (depending on the system) ! When considering long simulations, TCG

is thus de�nitely a much faster choice.

Perspectives

Amongst the possible improvements proposed to further exploit TCG’s potential, one could propose a

splitting of the physical system in "zones" of di�erent conditioning of the Tmatrix, that should be treated

with di�erent precision levels (as for QM-MM, where a subset is treated using quantummechanics while

its environment is treated classically). The fact that several orders of the TCG have been developed could

indeed lead to a divisions of the systemwith amore precise polarization treatment of themost sensitive

zones. One could for example imagine a protein treated using TCG2 while the bulk water is described

using TCG1 only.

The question of linking these two (or more) domains, especially given the complexity of the equa-

tions driving the polarization, can be answered using a mathematical tool called the Schur complement.

By rewriting the polarization matrix, it allows for an approximation of its inverse under certain condi-

tions (see [15] for more details). One could compute the induced polarization using TCG1, then, using

the Schur complement, obtain an approached value of the TCG2 order for the particles of interest (e.g. a

protein’s active site). However, the possible gains, in terms of accuracy and computation speed, remain

marginal. It was thus decided not to spend time implementing it, in order to focus on more e�cient

acceleration strategies.

The reader could note that, more than a single algorithm, the Truncated Conjugate Gradient actu-

ally de�nes a family of algorithms with increasing computational cost and accuracy. Up to now, only

the �rst few order have been extensively used and studied, and proved to be adequate for a wide va-

riety of systems. Yet, if there was ever the need for a higher order truncation, its derivation should

remain straightforward, although quite involved in terms of formulae. Such further developments may
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be implemented using automatic di�erentiation35 in order to ease the coding task, as the gradients

expression will progressively get more and more complex.

Moreover, this family of algorithms and its various setups span a large choice of polarization solvers

with speci�c acceleration and accuracy properties, such that one could imagine having various "golden"

TCG standards for di�erent systems.

The Truncated Conjugate Gradient concept was �rst introduced in an article of the Journal of Chemical

Theory and Computation, reproduced hereafter.
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ABSTRACT: We introduce a new class of methods, denoted as Truncated
Conjugate Gradient(TCG), to solve the many-body polarization energy and
its associated forces in molecular simulations (i.e. molecular dynamics (MD)
and Monte Carlo). The method consists in a fixed number of Conjugate
Gradient (CG) iterations. TCG approaches provide a scalable solution to
the polarization problem at a user-chosen cost and a corresponding optimal
accuracy. The optimality of the CG-method guarantees that the number of
the required matrix-vector products are reduced to a minimum compared to
other iterative methods. This family of methods is non-empirical, fully
adaptive, and provides analytical gradients, avoiding therefore any energy
drift in MD as compared to popular iterative solvers. Besides speed, one
great advantage of this class of approximate methods is that their accuracy is
systematically improvable. Indeed, as the CG-method is a Krylov subspace
method, the associated error is monotonically reduced at each iteration. On
top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads
to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is
available, one additional Picard fixed point iteration (“peek”), equivalent to one step of Jacobi Over Relaxation (JOR) with
relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to
find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/
mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products:
three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost
(three matrix-vector products) and offers new perspectives for long polarizable MD as a production algorithm. The T(P)CG-
1(ω) level provides less accurate solutions for inhomogeneous systems, but its applicability to well-conditioned problems such as
water is remarkable, with only two matrix-vector product evaluations.

1. INTRODUCTION

In recent years, the development of polarizable force fields has
led to new methodologies incorporating more physics. There-
fore, higher accuracy in the evaluation of energies can be
achieved.1 Indeed, the explicit inclusion of the many-body
polarization energy offers a better treatment of intermolecular

interactions, with immediate applications in various fields of

application ranging from biomolecular simulations to material

science. However, adding polarization to a force field is
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associated with a significant increase of the overall computational
cost. In that context, various strategies have been introduced,
including Drude oscillators,2 fluctuating charges,3 Kriging
methods,4 and induced dipoles.1,5 Among them, the induced
dipole approach has been shown to provide a good balance
between accuracy and computational efficiency, and can be
implemented in a scalable fashion.6

One issue with this approach is the mandatory resolution of a
set of linear equations the size of which depends on the number
of atoms (or polarizable sites). In practice, for the large systems
of interest of force fields methods, a direct matrix inversion
approach using the LU or Cholesky decomposition is not
computationally feasible because of its cubic cost in the number
of atoms. Luckily, iterative methods provide a remedy. We
showed in a recent paper6,7 that techniques such as the
Preconditioned Conjugate Gradient (PCG) or the Jacobi/Direct
Inversion of the Iterative Subspace (JI/DIIS) were efficient for
large scale simulations as they offer the possibility of a massively
parallel implementation coupled to fast summation techniques
such as the Smooth Particle Mesh Ewald (SPME).8 The overall
cost is then directly proportional to the number of iterations
necessary to achieve a good convergence. In that context,
predictor-corrector strategies have been introduced to reduce
this number using the information on the previous time-steps.9,10

Extended Lagrangian formulations inspired by efficient ab initio
methods have also been introduced in order to limit the
computational cost, but they require additional thermostats.11 In
practice, iterative methods are now standard but suffer from
energy conservation issues due to their nonanalytical evaluation
of the forces. Moreover, force fields are optimized to reach a
precision for 10−1 to 10−2 kcal/mol in the polarization energy.
Such a precision can easily be reached using a convergence
threshold of 10−3 to 10−4 Debye on the induced dipoles.
However, when using iterative schemes, one needs to enforce the
quality of the nonanalytical forces in order to guarantee the
energy conservation. Hence, a tighter convergence criterion of
10−5 to 10−7 Debye must be used for its computation. This leads
to a very significant increase of the number of iterations. Overall,
this additional computational cost is not linked to the accuracy of
the polarization energy but only ensures the numerical stability of
the MD scheme. In that context, in their 2005 seminal paper12

(see also ref. 13), Wang and Skeel postulated that another
strategy would be possible if one could offer a method allowing
analytical derivatives and therefore avoiding by construction the
risk of loss of energy conservation (i.e. the drift). Such a method
would be associated with a fixed number of iterations and could
extend the applicability of polarizable simulations. Wang
explored such strategies based on modified Chebyshev
polynomials but noticed that even if the intended analytical
expression was obtained, it offered little accuracy compared to
fully converged iterated results. In that context, Simmonett et
al.14,15 recently proposed to revisit this assumption of a
perturbation approach evaluating an approximated polarization
energy denoted as ExPT. They proposed a parametric equation
offering analytical derivatives and a good accuracy for some class
of systems. However, the parametric aspect of the approach
limits its global applicability to other types of systems. The
purpose of this paper is to introduce a nonempirical strategy
based on the same goals: analytical derivatives in order to
guarantee energy conservation, limited number of iterations and
reasonable accuracy.
We will first present the variational formulation of the

polarization energy and the associated linear system. Then, we

will look at iterative methods that are commonly used to solve it
and discuss how they can cause problems in molecular
simulations. Following this, we will describe two classes of
iterative methods, the fixed point methods and the Krylov
methods, and see how one can compute the polarization energy
and its associated forces analytically (therefore avoiding the
energy drift mentioned above). Finally, we will show some
numerical results and discuss the accuracy of the new methods.

2. CONTEXT AND NOTATIONS

In the context of force fields, several techniques are used in order
to take polarization into account. Everything that will be
presented in this paper concerns the widely used induced dipole
model. In this model, each or some of the atomic sites are
associated with a 3 × 3 polarizability tensor, so that induced
dipoles appear on these sites because of the electric fields created
by the permanent charge density and by the other induced
dipoles.

2.1. Notations. In the rest of the paper, we will assume that
the studied system consists of N atoms, each of them bearing an
invertible 3 × 3 polarizability tensor αi. We will denote by E⃗i the
electric field created by the permanent density of charge on site i,
and by μ⃗i the induced dipole on site i. The 3N vectors collecting
these vectors will respectively be noted E and μ. Furthermore, for
i ≠ j, we will denote by Tij the 3 × 3 tensor representing the
interaction between the ith and the jth induced dipole, so that
Tijμ⃗j is the (possibly damped) electric field created by μ⃗j on site i.
We are now able to define by blocks the so-called polarization
matrix of the system block by block:

α

α

α
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− − −

− − −

− − ⋱
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− −

−

−

−
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T T T

T T

T T

T

...

...

...

N

N

N N N

1
1

12 13 1

21 2
1

23 2

31 32

1 2
1

This matrix is symmetric and we assume that it is also positive
definite (thanks to the damping of the electric fields at short-
range) so that the energy functional defined below has a
minimum and “the polarization catastrophe”16 is avoided.

2.2. Variational Formulation of the Polarization Energy
and the Associated Linear System. Given these notations,
one can express the polarization energy of the studied system in
the context of an induced dipole polarizable force field as follows:

μ μ μ= −E T E
1

2
T T

pol (1)

The dipoles μ of the quadratic energy functional are determined
by the first optimality condition in the form of the following
linear system:

μ =T E (2)

so that finally:

μ= −E E
1

2
T

pol (3)

for the minimizing dipoles μ. The linear system expressed above
has to be solved at each time step of a MD trajectory, so that a
computationally efficient technique must be used to solve it. Two
kinds of methods exist to solve a linear system, the direct ones
and the iterative ones. The first approaches, such as the LU or
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Cholesky decomposition, yield exact results (up to round-off
errors) but their computational cost grows proportionally to N3

and their memory requirements proportionally to N2, making
them hardly usable for large systems of biological interest.

3. ITERATIVE METHODS

In contrast, iterative techniques yield approximate results
depending on a convergence criterion, but their computional
cost is proportional to the number of iterations times the cost of
one iteration (dominated by the cost of a matrix-vector product).
This implies that the iterative techniques can be used in
conjunction with an efficient matrix-vector multiplication
method such as the Smooth Particle Mesh Ewald or the Fast
Multipoles.8,17

Several issues arise when using an iterative method to solve the
polarization energy. The first one is related to the way the
associated forces are computed. Indeed, the polarization energy
is a function of the induced dipoles and of the atomic positions,
so that one can rely on the chain rule to express the total
derivative of this energy with respect to the atomic positions. The
induced dipoles are then assumed to be completely minimizing

Epol so that
μ

∂

∂

Epol is assumed to be zero, yielding the following

expression (that is analogous to the Hellman−Feynman theorem
in quantum mechanics):

μ

μ
=

∂

∂

∂

∂
+

∂

∂
=

∂

∂

E

r

E

r

E

r

E

r

d

d i i i i

pol pol pol pol

(4)

As the iterative method for the resolution of the induced dipoles
is never perfectly converged, the previous assumption is never
perfectly satisfied. Consequently, the forces calculated using this
method are not exactly the negative of the first derivative of Epol
(eq 3) with respect to the nuclear positions, potentially giving
rise to an energy drift in a MD simulation. This is illustrated by
the following graph (Figure 1) representing the evolution of the
total energy for a water box of 27 molecules, using the
(diagonally) PCG with different convergence thresholds, namely
10−3, 10−4, 10−5, 10−6, and 10−7. An initial guess not issued from
the past iterations was used, for a short MD simulation of 10 ps,
using a time step of 0.25 fs. Such a small time step was used in

order to minimize the numerical error coming from time-
integration. One can directly observe the relation between the
convergence threshold and the energy conservation.
The second issue is the computational cost of the iterative

methods, proportional to the number of iterations times the cost
of one iteration. Solving the polarization equations costs usually
(depending on the settings of the simulation) more than 60% of
the total cost of an MD step. It has already been shown that
carefully choosing the iterative techique employed and taking an
initial guess μ0 using information from the past (by using
predictor guesses9,10) can yield an important reduction of the
number of iterations required to reach a satisfactory convergence
threshold. Nevertheless, some limitations exist due to the
imperfect time reversibilty and volume preservation that they
imply. Furthermore, the ability to parallelize the method
efficiently also influences the choice of the optimal method.6,7

These issues motivate the derivation of a computationally
cheap analytical approximation of the polarization energy in
polarizable MD. We aim also for such an approximation to be as
close as possible to the exact results (or at least within the
accuracy of the force field) so that it would not require a
reparametrization of the force fields. For the forces to be
analytical, the computation of the induced dipoles must be
history free and should therefore avoid the use of predictors.

4. FIXED POINT METHODS AND RELATIONWITH ExPT

This first class of methods regroups the fixed point methods, also
called stationary methods. In this case, one splits the matrix into
two parts in order to re-express the solution of the linear system
as a fixed point of a mapping associated with the splitting. For the
polarizationmatrix one can re-expressT as the sum of its (block-)
diagonal and off-diagonal part:

α= −−T 1 (5)

yielding the following expression of the solution μ:

μ α μ= +E( ) (6)

where μ appears as the fixed point of a mapping. Then, Picard’s
fixed point theorem18 tells us that starting from any guess μ0 and
computing the following sequence of dipoles (denoted by rn the
residual associated with μn):

μ α α μ μ α= + = ++ E r
n n n n1 (7)

we converge toward the solution if αρ <( ) 1, with ρ(M)
denoting the spectral radius of a given matrix M. The method
that was described above is the Jacobi method and if we had split
the matrix between its upper triangular part and the remaining
terms, we would have obtained the Gauss−Seidel method.
A direct refinement of the Jacobi method consists in choosing

a “relaxation” parameter ω and the following (relaxed) scheme:

μ μ μ α μ αω ω ω= − + + = ++ r r(1 ) ( )
n n n n n n1 (8)

which is convergent if ρ(Id −ωαT) < 1. In the rest of the text we
will denote this method as JOR (Jacobi over Relaxation).19,20

One way to get analytical approximations of the polarization
energy is to truncate one of these methods at a fixed order. One
could for example choose to truncate the Jacobi method at some
order n to obtain an analytical approximation to the solutions of
the induced dipoles which we rearrange as:

μ μ μ μ= + + +...
n n(0) (1) ( ) (9)

with

Figure 1. Evolution of the total energy of a water box of 27 molecules
computed with PCG and different convergence thresholds (AMOEBA),
and with the TPCG2(ωfit) method, with P = diag. The drift on the total
energy is fully related to the polarization contribution, the TPCG2(ωfit)
converges to the 10−7 PCG results without any drift.
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μ α α= E( )
n

n
( ) (10)

which is exactly the formulation of the perturbation theory (PT)
method proposed by Simmonett et al.,14 even though they follow
another reasoning related to perturbation theory. The ExPT
method that they propose is then made by truncating this
expansion at order two and by using a linear combination of μ1
and μ3

μ μ μ= +c c
ExPT 0 0 1 3 (11)

in order to provide the following expression for the
approximation of the polarization energy:

μ= −E E
1

2
T

pol,ExPT ExPT (12)

The computational cost of this method is then equivalent to
making three matrix-vector multiplication and its accuracy is
good in many cases but it has the disadvantage of using two
parameters that need to be fitted. Simmonett and co-workers
recently extended the ExPT technique to higher orders, giving
the OPTn class of methods,15 that lead to improved results but
require even more empirical parameters.

5. KRYLOV METHODS: PRECONDITIONED
CONJUGATE GRADIENT

The point of view of the Krylov methods is completely
different.21 It consists in minimizing some energy functional at
each iteration over some growing subspaces.
Starting from some initial guess μ0, let us define the associated

residual:

μ= −r E T0 0 (13)

We are now able to define the so-called Krylov subspaces of order
∈ p :

= −K r T rspan( , Tr , ..., )p
p

0 0
1
0 (14)

We clearly have the following inclusion of spaces:

⊆̲ ⊆̲K K ...1 2 (15)

Then, μn is determined as the minimum of the energy functional
over μ0 + Kp. As one is minimizing at each iteration the energy
functional over some increasing sequence of embedded spaces,
the error (as measured by the functional) is necessarily
decreasing. One can show that there exists a p ≤ 3N such that
the exact solution μ belongs to μ0 + Kp, meaning that these
methods always converge and even provide the exact solution
after a finite number of steps, the worst case being when they
converge in 3N iterations. In practice, however, only very few
iterations are needed to obtain accurate solutions.
The different Krylov methods are determined by the quantity

that is minimized over the Krylov subspaces: if one minimizes
Epol then one obtains the conjugate gradient (given the
assumption that T is symmetric definite positive), if one
minimizes ∥rn∥l2 then one gets the GMRES method21 (which
is equivalent to some version of the JI/DIIS22). But many other
methods exist, such as the Minres algorithm23 or the BiCG
method21 for nonsymmetric matrices.
The conjugate gradient algorithm updates three vectors at

each iteration: a descent direction, a dipole vector, and the
associated residual. These vectors are updated using three scalars
that are obtained by making some scalar products over these

vectors. After the following initialization (using here the direct
field αE as an initial guess):

μ α

μ

=

= −

=

⎧

⎨
⎪

⎩
⎪

E

r E T

p r

0

0 0

0 0 (16)

the algorithm reads as follows:
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1 1 1 (17)

where pi is the descent direction at iteration i, μi the associated
dipole vector, and ri the associated residual. The magic of the
conjugate gradient algorithm is that this simple recursion scheme
still guarantees μi to be the optimum over the entire Krylov-
subspace of order i.
There are several techniques to accelerate the convergence of

this algorithm. A widely used strategy is to use preconditioners.
Indeed, one can show that the convergence rate of the conjugate
gradient, and more generally of Krylov subspace methods,
depends on the condition number of the matrix that is being
inverted: the lower this number is (it is always greater than 1), the
faster the conjugate gradient will converge. In the case of
symmetric positive definite (s.p.d.) matrices as the polarization
matrix, this number can be expressed such as

κ
λ

λ
=T( ) max

min (18)

where λmax and λmin are the largest and smallest eigenvalues of the
polarization matrix. A preconditioner is then a matrix P that is
”close” to the inverse of T, such that the matrix P is easily applied
to a vector, κ(PT)≤ κ(T), and κ(PT) is close to 1. The conjugate
gradient algorithm is then applied to the matrix PT with PE as a
right-hand side. We first chose to use one of the simplest forms of
preconditioner: the diagonal or Jacobi preconditioner, in which P
is the inverse of the (block-)diagonal part of the polarization
matrix. The advantage of this choice in our context is that
multiplying a matrix by a diagonal matrix is computationaly
almost free and that the diagonal of T does not depend on the
positions of the atoms of the system that is studied. As a
consequence, this choice does not complicate the expression of
the gradients very much. On the down side, the diagonal of T is
not a perfect approximation of it, so that we do not expect the
acceleration of convergence to be the highest among the possible
choices of preconditioners. This is why we also considered a
more efficient preconditioner designed for the polarization
problem which we will present below. Wang and Skeel12 start
from the expression

α α= −− −IT ( )d
1 1

(19)

giving the first approximation

α α≈ +− IT ( )d
1

(20)
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which is in fact equivalent to one Jacobi iteration. A second
approximation is then made by only considering the interactions
within a certain cutoff in the matrix . A typical value for this
cutoff is 3 Å, a value that we also used for our numerical tests
presented below. This preconditioner has a bigger impact on
reducing the condition number of the polarization matrix than
the Jacobi one but it also has a higher computational cost per
iteration. This cost is typically a bit less than half a real space
matrix-vector product within a Particle Mesh Ewald simulation
with usual settings for the value we chose (7 Å cutoff). The
parallel implementation of this preconditioner would require
additional communications before and after the application of
this preconditioner.6 Finally, as it depends on the atoms
positions, the expression of the gradients of the associated
dipoles would be very involved (therefore in the following
sections we will only retain the diagonal preconditionner). To
illustrate the different rates of convergence of these iterative
methods we plotted in Figure 2 their convergence as well as the

one of JI/DIIS wich is described in ref. 7 (represented by the
norm of the increment) as a function of the number of iterations
in the context of the AMOEBA polarizable force field for the
ubiquitin protein in water. Note that the Jacobi iterations are not
convergent in this case and that both the JI/DIIS and the
Preconditioned Conjugate Gradient converge twice as fast as the
JOR (as supported by the theory, as the convergence rate of JOR
depends on the condition number, while the rate of Krylov
methods depends on its square root).
We will now explain how to truncate the preconditioned

conjugate gradient to get analytical expressions that approximate
the polarization energy.

6. TRUNCATED PRECONDITIONED CONJUGATE
GRADIENT

Let us define μTCGn, the approximation of the induced dipoles
obtained by truncating the conjugate gradient at order n. We
immediately have the result that Epol(μ) ≤ Epol(μTCGn) ≤

Epol(μTCGm) if n ≥ m, with Epol written as in eq 1, and μ being the
exact solution of the linear system. In other words, the quality of
the approximation is systematically improvable. One can then
unfold the algorithm at order one and two. Using the following
notations:
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3 (21)

one obtains the cumbersome but analytical approximations for
the dipoles corresponding to the conjugate gradient truncated at
order one and two, thus allowing the derivation of analytical
forces that are the exact negative of the gradients of the energy:

μ μ= + t r
TCG1 0 4 0 (22)

μ μ γ γ= + + −t t tr P( )
TCG2 0 4 1 2 0 1 4 1 (23)

As in the ExPT approach, one can take the following expression
as approximation of the polarization energy:

μ= −E E
1

2
n n

T
pol,TCG TCG (24)

Note that both these expressions would be exact if the dipole
vectors were exact and that the closer these vectors are to the fully
converged dipoles, the closer these energies will be to the actual
polarization energy.
Indeed, we have:

μ μ μ μ μ μ| − | = − +E E E ET( ) ( )
1

2

1

2
n

T T T
pol T(P)CG

(25)

μ μ μ μ| − | = | − |E E ET( ) ( )
1

2
( )n

T
pol T(P)CG (26)

leading to the following inequatlity:

μ μ μ| − | ≤ ∥ ∥ ·∥ ∥E E r( ) ( )
1

2
n l n lpol T(P)CG 2 2

(27)

These energies are not the expression minimized over the Krylov
subspaces at each iteration of the conjugate gradient (CG)
algorithm (see eq 1), but they coincide at convergence which
should almost be the case if our method is accurate.
These results are naturally extended to the preconditioned

conjugate gradient (PCG). One can of course also choose to
truncate the (P)CG at a superior order and still be analytical to
obtain a more accurate approximation, at the price however of
additional computational time, and the analytical expression of
the energy and its derivatives will be incrementely more complex,
thus cumbersome to implement. In the following section, where
numerical results are presented, we will limit ourselves to TCG3
as the highest order of truncation.
Moreover, having chosen an order of truncation of the (P)CG,

one can exploit the residual (if it is computed to monitor the
accuracy) of the last iteration of the truncated algorithm in order
to get closer to the converged value by computing one step of a

Figure 2. Norm of the increment as a function of the number of
iterations for different iterative methods (AMOEBA), computed on
ubiquitin.
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fixed point iterative method. As did Wang and Skeel,12 we will
call this operation a peek step. Indeed, many fixed point iterative
methods such as the Jacobi and more generally the JOR only
require to know a starting value of the dipoles and the associated
residual to be applied at each iteration. Note that the Jacobi
method can be seen as a particular case of the JOR method with
ω = 1 and that this operation is not computationally expensive, as
it only requires a matrix-vector product with a diagonal matrix if
the residual is known. As for any fixed-point method of a linear
system, the asymptotic convergence of the JORmethod depends
on the spectral radius of the iteration matrix. More precisely, the
condition

αρ ω− <I T( ) 1d (28)

guarantees that the JOR method is convergent. Asymptotically,
the best convergence rate is obtained with the value of ω that
minimizes this spectral radius. One can show that if T is
symmetric positive definite, this value is

ω
λ λ

=
+

2
opt

min max (29)

λmin and λmax being, respectively, the smallest and largest
eigenvalue of αT.
As these results are asymptotic, one cannot necessarily expect

the associated methods to give the best results if only the so-
called peek step is applied, as this depends on the composition of
the current approximation (which is in our case provided by the
T(P)CG) in the eigenvector-basis of T.
Since we cannot rely on asymptotic results for one iteration,

we also explored another strategy that can be of use in cases in
which one is particularly interested in the values of the energies,
as for example inMonte Carlo simulations. Theωopt based on the
spectrum intends to further optimize all the modes of the
polarization matrix after the (P)CG steps (independently of the
actual approximation) and should therefore asymptotically
improve both the energy and the RMS. However, other values
of ω that take into account the actual approximation can be used
to further improve the accuracy. This explains why we tried,
starting from one or two iterations of (P)CG, to choose the value
of ω that gave the closest approximate polarization energy to the
fully converged one. Since the optimal parameter (in this new
sense) requires another matrix-vector multiplication, we tried to
obtain values of this parameter on the fly by fitting one or several
energies against the energies obtained with the fully converged
dipoles or a superior truncation of (P)CG. It will be called ωfit.
Starting for example from μTCG2, and noting:

μ μ αω= + r
TCG2,peek TCG2 2 (30)

one can see this procedure as a line search: given the starting
point μ2, one further tries to optimize the energies along the
parametrized line μ2 + ωαr2 for ω ∈ .
Once one of these methods is chosen, analytical expressions of

the associated forces can be naturally obtained, thus ensuring that
the forces are (up to round off errors) the opposite of the exact
gradients of the polarization energy, and thus avoiding an energy
drift. Gradients of the energies have been derived and are
presented in a technical appendix at the end of the manuscript.

7. NUMERICAL RESULTS

7.1. Energy Conservation of the T(P)CGn Approaches.
We first emphasize that Figure 1 already displays an important
result: the TCGn methods ensure total energy conservation as

they use analytical evaluation of the forces. All further
refinements discussed in section 6 lead to the same behavior,
incremently closer to the reference energy.

7.2. Stability of the Spectrum. Before presenting the
complete numerical tests, we analyze here the spectrum of the
polarization matrix during a MD simulation. Indeed, as pointed
out in the theory section, some refinements of the TCG rely on
the extreme eigenvalues of T and αT. We followed the evolution
of these eigenvalues during 100 ps ofMD. Those tests were made
with the Lanczos algorithm since all the matrices we are
interested in are symmetric. Indeed, one great advantage of the
Lanczos method is that it reduces the computational cost
compared to direct methods (such as the one available in the
LAPACK library). That way, if direct eigenvalue solvers force the
user to compute the full spectrum (i.e all the eigenvalues),
Lanczos method allows rapid access to the extreme eigenvalues
by constructing a much smaller tridiagonal matrix whose
spectrum is close to the one of the original matrix, leading to
almost identical extreme eigenvalues that can then be obtained in
a few iterations. We observed that in all cases these values are
stable over the 100 ps of the MD trajectories as pointed out by
Skeel.12 This can be seen for S3 and the ubiquitin system in
Figures 3 and 4. This result motivated our choice to computeωopt

and ωfit for the first geometry of our equilibrated systems and to
keep this value for all the others geometries. Both our Lanczos

Figure 3. Evolution of the extreme eigenvalues of αT for S3 and
ubiquitin.

Figure 4. Evolution of ωopt for S3 and ubiquitin.
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implementation and the energy fitting procedure are fast enough
to be used on the fly while being negligeable over a 100 ps MD
simulation. In our tests, the adaptive reevaluation of the ω’s was
nevertheless never required.
7.3. Computational Details and Notations. In this

section, we will present some numerical results from the
methods presented above. All the tests presented here were
made using the AMOEBA polarizable force field24,25 imple-
mented in our Tinker-HP code.26 The proposed benchmarks
deal with homogeneous and inhomogeneous systems: water
clusters and protein in water droplets as well as an ionic liquid
system. The three water systems will be called S1, S2, and S3 and
contain respectively 27 molecules (81 atoms), 216 molecules
(648 atoms), and 4000 molecules (12000 atoms). We chose
difficult systems ranging from usual proteins to metalloproteins
and highly charged ionic liquids.27 The protein droplets are,
respectively, a metalloprotein containing two Zn(II) cations
(nucleocapsid protein ncp7) with water (18515 atoms including
counterions), the ubiquitin protein with water (9737 atoms), and
the dhfr protein with water (23558 atoms). The ionic liquid
system is made of [dmim+][Cl−] (1−3 dimethylimidazolium)
ions, making it a highly charged system of 3672 atoms with a very
different regime of polarization interactions. All the results
presented in this section were averaged over 100 geometries that
were extracted from a 100 ps MDNVT trajectory (one geometry
was saved every picosecond) at 300 K for all systems, except the
[dmim+][CL−] at 425 K. The results, that will give indications
about the accuracy of the approximate methods compared to the
fully converged iterative results, will give two different and
complementary aspects of this accuracy. We will first compare
the polarization energies (in kcal/mol) obtained with dipoles
converged with a very tight criterion (RMS of the residual under
10−9) to the ones obtained with T(P)CG. We will then present
the RMS of the difference between the fully converged dipole
vectors and the approximate methods. This RMS is a good
indicator of the quality of T(P)CG forces compared to the
reference: the smaller this RMS is, the closer the approximated
but analytical forces will be to the reference force.
Tables 1 to 4 describe the water systems and Tables 5 to 8

describe the protein droplets and ionic liquid. We will denote by
“ref” the results obtained with dipoles converged up to 10−9 in
the RMS of the residual; by “ExPT” the results obtained with the
method of Simmonnet et al. presented in section 3; by “TCGn”
(with n = 1, 2, and 3) the results obtained with the CG truncated
at order 1, 2, and 3; by “TPCGn” (P = diag) (with n = 1, 2, and 3)
the results obtained with the preconditioned (with the diagonal)
CG truncated at order 1,2 and 3; by “TPCGn” (P = Skeel) (with
n = 1, 2, and 3) the results obtained with the preconditioned
(using Wang and Skeel’s preconditioner) CG truncated at order
1, 2, and 3.
Furthermore, we will present results obtained with different

kinds of peek steps. We will first denote by TCGn(ω = 1) (with n
= 1, 2, and 3) the results obtained with the CG truncated at
different orders when a Jacobi peek step is made after the last
conjugate gradient iteration. We will also denote by TPCGn (P =
diag) the results where the same peek step is made after different
numbers of iterations of the PCGwith a diagonal preconditioner.
We will also denote by TPCGn(P = diag)(ωopt) (with n = 1

and 2) the results obtained with 1 and 2 iterations of diagonally
preconditioned CG and a JOR peek step with an “optimal” ωopt

in the sense of section 6 (that depends whether a preconditioner
is used or not).

As explained in the previous section we also explored a strategy
where the damping parameter of the JOR step is fitted to
reproduce energy values. In the following tables, the damping
parameter will be denoted by ωfit.

7.4. Numerical Results. A first observation to make is that
given a particular matrix (preconditioned or not) and with or
whithout a JOR peek step, the results are always better in terms of
energy and RMS when one performs more matrix-vector
products, that is, going to a higher order of truncation. This is
naturally explained in the context of the Krylov methods: an
additional matrix-vector product increases the dimension of the
Krylov subspace on which the polarization functional (see eq 1)
is minimized, and thus systematically improves the associated
results. We should also recall here that the functional that is
minimized over growing subspaces is not exactly the same as the
one we are taking as the polarization energy and that this explains
the nonvariationality of some of our results: there are many cases
where the energy associated TCG3 is slightly lower than the one
associated with the fully converged dipoles (see discussion in
section 6).

We can also see on the numerical tests that using a
preconditioner systematically reduces the associated RMS.
Concerning the energy, the improvement is less systematic and
depends on the type of preconditioner: the diagonal is less
accurate than the one described byWang et al.,12 a result that was
anticipated.
Nevertheless, preconditioning is important when coupled with

a peek step: a combination of any preconditioner with the peek is
better than the peek alone. However, concerning the peek itself,
one observes a systematic improvement of both RMS and energy

Table 1. Polarization Energies of Water Systems

water box S1 S2 S3

ref −81.03 −803.33 −15229.87

ExPT −69.54 −660.95 −12822.79

TCG1 −73.50 −728.73 −13814.35

TCG2 −80.69 −800.32 −15173.15

TCG3 −81.24 −805.20 −15265.65

TPCG1 (P = diag) −74.98 −741.91 −14028.18

TPCG2 (P = diag) −80.81 −801.61 −15194.87

TPCG3 (P = diag) −81.20 −805.26 −15268.43

TPCG1 (P = Skeel) −78.63 −779.17 −14743.48

TPCG2 (P = Skeel) −81.03 −803.11 −15222.53

TPCG3 (P = Skeel) −81.06 −803.64 −15236.03

Table 2. Polarization Energies of Water Systems, Using a
Peek-Step

water box S1 S2 S3

ref −81.03 −803.33 −15229.87

TCG1(ω = 1) −81.41 −806.83 −15315.13

TCG2(ω = 1) −80.23 −794.49 −15061.22

TCG3(ω = 1) −80.78 −800.83 −15181.55

TPCG1 (P = diag)(ω = 1) −79.88 −791.51 −15001.40

TPCG2 (P = diag)(ω = 1) −80.98 −802.74 −15218.27

TPCG3 (P = diag)(ω = 1) −81.03 −803.27 −15228.74

TPCG1 (P = diag)(ωopt) −78.98 −780.94 −14789.04

TPCG2 (P = diag)(ωopt) −80.95 −802.50 −15213.17

TPCG1 (P = diag)(ωfit) −81.06 −803.42 −15230.10

TPCG2 (P = diag)(ωfit) −81.02 −803.06 −15231.14
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with and without preconditioning. In particular this is the case
when ω = 1 (Jacobi peek step).
As the spectrum is stable (see section 7.2), one can use an

adaptive ωopt coefficient computed on one geometry using a few
iterations of the Lanczos method. In that case, the energies are
slighlty less accurate than the ones obtained with ω = 1.
Concerning the RMS, we observe a systematic reduction by a
factor 2 for TPCG2 and TPCG3 but not for TPCG1. This occurs
because, if the asymptotic coefficientωopt is the same, the starting
point of the peek step is different and is significantely better for
TPCG2 and TPCG3 as additional matrix-vector products have
been computed.

The results obtained with ωfit after 1, 2, or 3 iterations of PCG
show that it is possible to stay close to the converged value of the
polarization energy with only one or two matrix-vector products
and a ω parameter that is only fitted once during a 100 ps
dynamic. But we can also see that this is made at the cost of
slightly degrading the RMS compared to the results obtained
withωopt or withω = 1. Overall, these RMS are of the same order
of magnitude than the ones obtained with ωopt and ω = 1. This
balance between RMS and energy depending on the choice of ω
as the relaxation parameter for a JOR peek step can be seen as the
choice to favor the minimization of the error along some modes
of the polarization matrix: the energy is more sensitive to modes
corresponding to large eigenvalues whereas the RMS is sensitive
to all of them. Overall, a ω = 1 Jacobi peek step tends to improve
both RMS and the energy whereas ωopt favors RMS and ωfit

favors energies. As we showed, TPCG1 should not be used with a
ωopt peek step but with one corresponding to ω = 1 and ωfit, but
all options are open for TPCG2 and TPCG3.
A choice can then be made depending on the simulation that

one wants to run. For a Monte Carlo simulation it is essential to
have accurate energies: the strategy of using an adaptative
parameter (refittable at a negligeable cost) that allows the correct
reproduction of the energies with only one or two iterations of
the (P)CG would hence produce excellent results. On the other
side, during a MD simulation, one wants to get the dynamics
right; in this case, choosing the method that minimizes the RMS
and thus the error made on the forces may produce improved
results. For example, using TPCG2(P = diag)(ωopt) is a good
strategy to fulfill this purpose. However, the procedure leading to
ωfit only slightly degrades the RMS and provides RMS far beyond
the usual values for which the force field models are
parametrized. One has also to keep in mind that other source
of errors exist in MD, such as the ones due to the PME
discretization or van der Waals cutoffs, that are larger than the
error discussed in this section. Nevertheless, none of the
refinements will compete with a full additional matrix-vector
product because an additional CG step is optimal. We see clearly
that TPCG3(ωfit) reaches high accuracy on both RMS and
energies.
Concerning preconditioning, we confirm the very good

behavior of the Skeel preconditioner. However, its cost is non-
negligible in terms of computations, in terms of necessary
communications arising when running in parallel, and in terms of
complexity of implementation. We recommend therefore the use
of the simpler yet efficient diagonal preconditioner. Overall,
possibilities of tayloring TCG approaches are infinite. In practice,
one could design more adapted preconditioners combining
accuracy and low computational cost.
To conclude, a striking result is obtained for well conditioned

systems such as water: computations show that they will require a
smaller order of truncation than the proteins to obtain the same
level of accuracy.

8. CONCLUSION

We proposed a general way to derive an analytical expression of
the many-body polarization energy that approximates the inverse
of T using a truncated preconditioned conjugate gradient
approach. The general method gives analytical forces, guarantee-
ing that they are the opposite of the exact gradients of the
energies, parameter free, and can replace the usual many-body
polarization solvers in popular codes with little effort. The
proposed technique allows by construction a true energy
conservation as it is based on analytical derivatives. The method

Table 3. RMS of the dipole vector compared to the reference
for water systems

water box S1 S2 S3

ExPT 1.4 × 10−2 2.5 × 10−2 2.6 × 10−2

TCG1 6.3 × 10−3 7.0 × 10−3 7.1 × 10−3

TCG2 1.7 × 10−3 1.9 × 10−3 1.9 × 10−3

TCG3 4.7 × 10−4 5.4 × 10−4 5.5 × 10−4

TPCG1 (P = diag) 4.9 × 10−3 5.6 × 10−3 5.8 × 10−3

TPCG2 (P = diag) 9.2 × 10−4 1.1 × 10−3 1.1 × 10−3

TPCG3 (P = diag) 3.8 × 10−4 3.8 × 10−4 3.9 × 10−4

TPCG1(P = Skeel) 2.2 × 10−3 2.6 × 10−3 2.7 × 10−3

TPCG2 (P = Skeel) 3.0 × 10−4 3.9 × 10−4 4.2 × 10−4

TPCG3 (P = Skeel) 6.6 × 10−5 9.5 × 10−5 1.0 × 10−4

Table 4. RMS of the Dipole Vector Compared to the
Reference for Water Systems, Using a Peek-Step

water box S1 S2 S3

TCG1(ω = 1) 3.6 × 10−3 3.9 × 10−3 3.7 × 10−3

TCG2(ω = 1) 1.5 × 10−3 1.7 × 10−3 1.8 × 10−3

TCG3(ω = 1) 4.6 × 10−4 4.9 × 10−4 4.8 × 10−4

TPCG1(P = diag)(ω = 1) 2.2 × 10−3 2.6 × 10−3 2.7 × 10−3

TPCG2 (P = diag)(ω = 1) 4.1 × 10−4 5.0 × 10−4 5.2 × 10−4

TPCG3 (P = diag)(ω = 1) 1.3 × 10−4 1.5 × 10−4 1.6 × 10−4

TPCG1 (P = diag)(ωopt) 2.3 × 10−3 2.7 × 10−3 2.8 × 10−3

TPCG2 (P = diag)(ωopt) 3.9 × 10−4 4.6 × 10−4 4.7 × 10−4

TPCG1 (P = diag)(ωfit) 2.6 × 10−3 3.0 × 10−3 3.0 × 10−3

TPCG2 (P = diag)(ωfit) 5.3 × 10−4 7.0 × 10−4 1.0 × 10−3

Table 5. Polarization Energies of Protein Droplet and Ionic
Liquids

system ncp7 ubiquitin dhfr
[dmim+]
[Cl−]

ref −24202.54 −11154.87 −28759.01 −1476.79

ExPT −27362.70 −10919.77 −28076.62 −5841.73

TCG1 −21733.63 −9897.22 −25583.50 −1428.35

TCG2 −23922.79 −11031.67 −28463.51 −1420.00

TCG3 −24262.87 −11174.93 −28812.99 −1450.22

TPCG1 (P =
diag)

−21438.14 −9907.09 −25588.07 −1465.66

TPCG2 (P =
diag)

−23613.31 −10948.32 −28206.73 −1462.22

TPCG3
(P = diag)

−24219.49 −11164.62 −28775.53 −1469.89

TPCG1 (P =
Skeel)

−22489.55 −10458.44 −27030.86 −1424.49

TPCG2
(P = Skeel)

−24056.53 −11090.36 −28637.35 −1469.05

TPCG3
(P = Skeel)

−24208.22 −11144.53 −28763.55 −1477.02
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minimizes the energy over the (preconditioned) Krylov space
which leads to superior accuracy than fixed point inspired
methods such as ExPT and associated methods. It does not use
any history of the previous steps and is therefore fully time
reversible and is compatible with multitimestep integrators.28

The best compromise between accuracy and speed appears to be
the TPCG-2 approach that consists of two iterations of PCG
with a computational cost of three matrix vector multiplications
for the energy (one for the descent direction plus two for the
iterations). The analytical derivatives have a cost equivalent to an
additional matrix vector product. The overall computational cost
is therefore identical to that of the ExPT. We showed that the
method allows the computation of potential energy surfaces very
close to the exact ones and that it is systematically improvable

using a final peek step. Strategies for adaptative JOR coefficients
have been discussed and allows an improvement of the desired
quantities at a negligeable cost. Overall, among all the derived
methods, TPCG3(ωfit) provides high accuracy in both energy
and RMS. Concerning the future improvements of the accuracy
of the method, one could find dedicated preconditionners
improving the efficiency of the CG steps. Nevertheless, the final
choice of ingredients will be a trade-off between accuracy,
computational cost, and communication cost when running in
parallel. We will address this issue in the context of the Tinker-
HP package. The TPCGn approaches will be coupled to a
domain decomposition infrastructure with linear scaling
capabilities, thanks to a SPME8 implementation, which is
straightforward in link with our previous work on PCG. Future
work will then include validation of the methods by comparing
condensed-phase properties obtained using different orders of
TCG. Given the level of accuracy already obtained on induced
dipoles and energies, we expect the majority of these properties
to be conserved by using T(P)CG2 and higher-order methods.

■ TECHNICAL APPENDIX

A.1. Analytical Gradients and Polarization Energies for TCG

In this section, we will present the analytical derivatives of the
polarization energies associated with the polarization energies
Epol,TCG1 and Epol,TCG2 with respect to the positions of the atoms
of the system. The extension to Epol,(P=diag)TCG1 and
Epol,(P=diag)TCG2 is straightforward, as is the expressions including
a final JOR peek step. We don’t report here the expression of the
analytical gradients of Epol,TCG3 as it follows the same logic but is
just incremently complex.
These gradients have been validated against the ones obtained

with finite differences of the energies and an implementation of
these equations will be accessible through the Tinker-HP

Table 6. Polarization Energies of Protein Droplet and Ionic Liquids, Using a Peek-Step

system ncp7 ubiquitin dhfr [dmim+][Cl-]

ref −24202.54 −11154.87 −28759.01 −1476.79

TCG1(ω = 1) −24481.14 −11231.35 −28986.08 −1477.08

TCG2(ω = 1) −23965.96 −11009.06 −28384.49 −1465.73

TCG3(ω = 1) −24121.02 −11105.78 −28635.73 −1441.95

TPCG1 (P = diag)(ω = 1) −23532.73 −10829.84 −27972.41 −1493.58

TPCG2 (P = diag)(ω = 1) −24123.65 −11128.14 −28683.52 −1471.34

TPCG3 (P = diag)(ω = 1) −24194.37 −11150.95 −28749.68 −1478.83

TPCG1 (P = diag)(ωopt) −22773.65 −10513.24 −27079.47 −1484.24

TPCG2 (P = diag)(ωopt) −23938.70 −11066.44 −28504.96 −1468.29

TPCG1 (P = diag)(ωfit) −24161.11 −11162.02 −28766.40 −1479.06

TPCG2 (P = diag)(ωfit) −24205.30 −11154.21 −28753.60 −1475.08

Table 7. RMS of the Dipole Vector Compared to the
Reference for Protein Droplets and Ionic Liquids

water box ncp7 ubiquitin dhfr
[dmim+]
[Cl-]

ExPT 8.1 × 10−2 5.2 × 10−2 5.4 × 10−2 1.3 × 10−1

TCG1 8.9 × 10−3 8.8 × 10−3 8.8 × 10−3 1.1 × 10−2

TCG2 3.5 × 10−3 3.2 × 10−3 3.2 × 10−3 7.2 × 10−3

TCG3 2.1 × 10−3 1.7 × 10−3 1.7 × 10−3 5.3 × 10−3

TPCG1 (P =
diag)

8.6 × 10−3 8.0 × 10−3 8.1 × 10−3 6.9 × 10−3

TPCG2
(P = diag)

2.5 × 10−3 2.0 × 10−3 2.2 × 10−3 3.4 × 10−3

TPCG3
(P = diag)

7.1 × 10−4 6.5 × 10−4 7.2 × 10−4 7.9 × 10−4

TPCG1
(P = Skeel)

5.5 × 10−3 4.4 × 10−3 4.5 × 10−3 5.6 × 10−3

TPCG2 (P =
Skeel)

9.0 × 10−4 7.7 × 10−4 7.8 × 10−4 1.5 × 10−3

TPCG3 (P =
Skeel)

2.1 × 10−4 1.8 × 10−4 1.9 × 10−4 3.2 × 10−4

Table 8. RMS of the Dipole Vector Compared to the Reference for Protein Droplets and Ionic Liquids, Using a Peek-Step

water box ncp7 ubiquitin dhfr [dmim+][Cl-]

TCG1(ω = 1) 4.6 × 10−3 4.4 × 10−3 4.5 × 10−3 7.0 × 10−3

TCG2(ω = 1) 2.9 × 10−3 2.5 × 10−3 2.5 × 10−3 5.5 × 10−3

TCG3(ω = 1) 1.6 × 10−3 1.1 × 10−3 1.1 × 10−3 4.1 × 10−3

TPCG1 (P = diag)(ω = 1) 4.4 × 10−3 3.9 × 10−3 4.1 × 10−3 3.2 × 10−3

TPCG2 (P = diag)(ω = 1) 1.7 × 10−3 1.4 × 10−3 1.7 × 10−3 1.6 × 10−3

TPCG3 (P = diag)(ω = 1) 4.3 × 10−4 3.8 × 10−4 4.8 × 10−4 4.5 × 10−4

TPCG1 (P = diag)(ωopt) 5.1 × 10−3 4.7 × 10−3 4.8 × 10−3 3.8 × 10−3

TPCG2 (P = diag)(ωopt) 1.3 × 10−3 1.0 × 10−3 1.1 × 10−3 1.9 × 10−3

TPCG1 (Jacobi)(ωfit) 4.9 × 10−3 4.5 × 10−3 4.6 × 10−3 4.5 × 10−3

TPCG2 (Jacobi)(ωfit) 2.2 × 10−3 1.7 × 10−3 2.1 × 10−3 2.0 × 10−3

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00981
J. Chem. Theory Comput. 2017, 13, 180−190

188



software public distribution. Since we are in the context of the

AMOEBA force field, we will consider that each atom site

embodies a permanent multipole expansion up to quadrupoles.

For site i, the components of this expansion will be denoted by

qi,μ⃗p,i,θi.

Furthermore, since the permanent dipoles and quadrupoles

are expressed in a local frame that depends on the positions of

neighboring atoms, they are rotated in the lab frame with rotation

matrices depending on these positions, so that we now have to

deal with partial derivatives of the dipole and quadrupole

components: the “torques”. Therefore, the derivative of the

polarization energy ϵ, written as μ ET1

2
for μ = μTCG1 or μTCG2,

with respect to the β-component of the kth site is given by
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Formally, these derivatives can be written as

μ μϵ′ = − ′ + ′E E
1

2
( )T T

(32)

Hence different types of derivatives are involved:

• derivatives of the rotated permanent multipoles

• derivatives of the permanent electric field with respect to

the spatial components of the different atoms

• derivatives of the permanent electric field with respect to

the permanent multipoles

• derivatives of the induced dipole vector (μ) with respect to

spatial components

• derivatives of the induced dipole vector with respect to the

permanent multipole components

As these quantities are standard except for the ones concerning
the approximate dipole vector, these are the only one we will
express here.

Using the same notation as before we have
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So that

μ μ= + t r
TCG1 0 4 0 (34)

μ μ γ γ= + + −t t tr P( )
TCG2 0 1 2 4 0 1 4 1 (35)

μ μ γ γ γ β
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We then need to differentiate these expressions with respect to

space and multipole components, respectively. Using the

following formal development for the spatial derivative:
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we obtain

μ μ′ = ′ + ′ + ′t tr r
TCG1 0 4 0 4 0 (38)

μ μ γ γ γ
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Schnieders, M.; Ren, P.; Maday, Y.; Piquemal, J.-P. J. Chem. Theory
Comput. 2015, 11, 2589−2599.
(7) Lipparini, F.; Lagarder̀e, L.; Stamm, B.; Cances̀, E.; Schnieders, M.;
Ren, P.; Maday, Y.; Piquemal, J.-P. J. Chem. Theory Comput. 2014, 10,
1638−1651.
(8) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577−8593.
(9) Kolafa, J. J. Comput. Chem. 2004, 25, 335−342.
(10) Gear, C. W. Commun. ACM 1971, 14, 176−179.
(11) Albaugh, A.; Demerdash, O.; Head-Gordon, T. J. Chem. Phys.
2015, 143, 174104.
(12) Wang, W.; Skeel, R. D. J. Chem. Phys. 2005, 123, 164107.
(13) Wang, W. Fast Polarizable Force Field Computation in
Biomolecular Simulations. Ph.D. Thesis, University of Illinois at
Urbana-Champaign, 2013.
(14) Simmonett, A. C.; Pickard, F. C., IV; Shao, Y.; Cheatham, T. E.,
III; Brooks, B. R. J. Chem. Phys. 2015, 143, 074115.
(15) Simmonett, A. C.; Pickard, F. C., IV; Ponder, J. W.; Brooks, B. R. J.
Chem. Phys. 2016, 145, 164101.
(16) Thole, B. T. Chem. Phys. 1981, 59, 341−350.
(17) Cheng, H.; Greengard, L.; Rokhlin, V. J. Comput. Phys. 1999, 155,
468−498.
(18) Picard, E. J. Math. Pures Appl. 1890, 6, 145−210.
(19) Ryaben’kii, V. S.; Tsynkov, S. V. A Theoretical Introduction to
Numerical Analysis; CRC Press, 2006.
(20) Quarteroni, A.; Sacco, R.; Saleri, F. In Numerical Mathematics;
Springer Science & Business Media, 2010; Vol. 37.
(21) Saad, Y. In Iterative Methods for Sparse Linear Systems; Siam, 2003.
(22) Rohwedder, T.; Schneider, R. J. Math. Chem. 2011, 49, 1889−
1914.
(23) Paige, C. C.; Saunders, M. A. SIAM journal on numerical analysis
1975, 12, 617−629.
(24) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.;
Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio,
R. A.; Head-Gordon, M.; Clark, G. N. I.; Johnson, M. E.; Head-Gordon,
T. J. Phys. Chem. B 2010, 114, 2549−2564.
(25) Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J. W.; Ren, P. J.
Chem. Theory Comput. 2013, 9, 4046−4063.
(26) Tinker-HP. http://www.ip2ct.upmc.fr/tinkerHP/, 2015.
(27) Starovoytov, O. N.; Torabifard, H.; Cisneros, G. A. s. J. Phys.
Chem. B 2014, 118, 7156−7166.
(28) Tuckerman, M.; Berne, B. J.; Martyna, G. J. J. Chem. Phys. 1992,
97, 1990−2001.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00981
J. Chem. Theory Comput. 2017, 13, 180−190

190
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As of now, we have a new polarization solver that enables simulations both with improved stability and

increased computational e�ciency. To provide amore severe test, we will now focus on the computations

of free energies, trying to evaluate TCG’s ability for this sensitive task.
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Beyond the properties we have computed so far (energies, radial distribution functions, di�usion

constants), there is the free energy. The free energy is a quantity of prime interest in a number of �elds

that requires complex methods and careful attention to be computed.

In this chapter, we will �rstly give a small presentation of the free energy itself, then explain some of

the common methods used to compute it. We then move on to exploit the Truncated Conjugate Gradient

built in the previous chapter to observe its applicability when facing such a di�cult task.
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3.1 Free energy

Like the entropy or the internal energy, free energy is a thermodynamic state function. Strictly speaking,

a di�erence of free energy is de�ned as the amount of work needed to perform a thermodynamic

transformation of a system from one state to another, provided that this transformation follows a

reversible path.

It is a useful quantity, as it indicates whether the given transformation is thermodynamically fa-

vorable (if the free energy di�erence decreases) or not (if the free energy di�erence increases). Its

magnitude is linked to the probability for the transformation to occur. For example, the binding of a

ligand by a protein’s active site can be characterized with a free energy di�erence between the "un-

bounded" and the "bound" states. If this free energy di�erence is smaller for a ligand 1 than for a ligand

2, then it will indicate that ligand 1 will bind more easily with the protein. This quantity is therefore very

relevant in biochemistry, or even drug-design.

Two free energy state functions actually exist, namely the Helmholtz and the Gibbs one. Helmholtz

free energy, noted A, is de�ned as

A(N ,V ,T ) = E (N ,V , S ) −T S (N ,V ,T ) (3.1)

withT the temperature, E the internal energy, S the entropy. It is used when temperature and volume

are �xed (in the canonical ensemble).

Gibbs free energy is the equivalent for the isobaric ensemble, with

G (N , P ,T ) = A(N ,V (P ),T ) + PV (P ) (3.2)

It measures the work needed to perform a transformation this time at �xed pressure and temperature.

It should also be noted that the free energy is function of the internal energy and so includes a

potential energy. As such, the free energy of one single system depends on the "zero" chosen, and one

will rather look at free energy di�erences (usually denoted ∆A or ∆G ), more meaningful.
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Another important point should be made about free energy. Any state function obeys the following

property: considering any thermodynamic transformation, the change of a state function only depends

on the initial and �nal states.

This will hence also be the case for free energy, meaning that the calculation of a ∆G (or ∆A) only

requires knowledge of the beginning and �nal state. As we will see in the next sections however, the

computation may be numerically impeded if these two state are too di�erent. In this case, the process

can be divided in several short stages, changing a transformation A → B into A → α1 → α2 →
... → B . Any such sequence of intermediate states starting from the initial and �nishing at the �nal

state can thus be used to compute free energy di�erences. Such a sequence is called a thermodynamic

path (or sometimes, perhaps slightly imprecisely, a thermodynamic cycle).

3.1.1 Calculation method

We stated in the beginning of section 3.1 that, since it carries a potential energy contribution, free energy

is usually computed as di�erences between two states.

Assuming we have two well de�ned states A and B, we will present in the following sections a few

of the methods that can be used to compute ∆AAB , the free energy di�erence between states A and B.

We then quickly evoke another type of free energy calculation, designed for dealing with rare events.

Free Energy Perturbation (FEP)

Focusing on the Helmholtz free energy for the remainder of this chapter, we will �rst introduce a few

notations. We will �rst focus on partition functions. In the canonical ensemble, the partition function

of a system is usually written as

Q (N ,V ,T ) = 1

N !h3N

∫
dN r dN pe−βH (r,p) (3.3)

where h is Planck’s constant, and H is the system’s Hamiltonian

H (r, p) =
N∑
i=1

®pi 2
2mi

+U (r) (3.4)
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(U designates the potential energy). Integration of the momenta allows one to rewrite the partition

function as

Q (N ,V ,T ) = 1

N !λ3N
dB

∫
dN r e−βU (r) =

Z (N ,V ,T )
N !λ3N

dB

(3.5)

where λdB is the de Broglie thermal wavelength. This de�nes a new quantity Z called the con�gura-

tional partition function, which depends on the positions and the potential energy: Z =

∫
dN q e−βU (q)

One can show that the free energy can be written as

A(N ,V ,T ) = −kT ln(Q (N ,V ,T )) (3.6)

equivalently, a free energy di�erence between two states A and B would yield:

∆AAB = AA − AB = −kT ln
(
QB

QA

)
= −kT ln

(
ZB

ZA

)
(3.7)

This rewriting does however not yield a straightforward quantity to be computed, asmolecular dynamics

do not give access directly to partition functions.

Yet one can rewrite one of the con�gurational partition functions as

ZB =

∫
dN r e−βUB (r)e−βUA(r)eβUA(r) (3.8)

=

∫
dN r e−βUA(r)e−β (UB (r)−UA(r)) (3.9)

The ratio ZB/ZA becomes

ZB

ZA

=
1

ZA

∫
dN r e−βUA(r)e−β (UB (r)−UA(r)) (3.10)

=

〈
e−β (UB (r)−UA(r))

〉
A

(3.11)

where 〈...〉A stands for an average with respect to the distribution of the state A. The free energy

di�erence becomes

∆AAB = −kT ln
〈
e−β (UB (r)−UA(r))

〉
A

(3.12)
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Note that the inverse pathway is also possible, and leads to the mirror formula

∆AAB = kT ln
〈
e−β (UA(r)−UB (r))

〉
B

(3.13)

with 3.12 usually referred to as "forward FEP" and 3.13 as "backward FEP".

Computing an average such as the one in 3.10 supposes to �rst simulate the system in state A, using

the potential correctly describing this state and storing the positions adopted by the system along this

trajectory. Then, using the stored con�gurations, compute exp(UB (r)) (and exp(UA(r)), if that was not
already saved during the dynamics) for each of them. Finally, a simple statistical average has to be

done.

The mathematical shape of the average taken here raises an important caveat. For any con�guration

such that the potential energy di�erenceUA −UB is large, then e−β (UA−UB ) will become very small. The

concerned con�guration will thus have a very little weight in the total average.

This method thus requires the probed states to be reasonably close, such that there is a su�cient

overlap in the potential energy surfaces (PES). If this is not the case, one possible solution is to divide

the thermodynamic path A → B in several smaller steps A → α1 → ... → αs → B , where the

di�erence between two intermediate steps αi and αi+1 potential energy surfaces would be smaller

(and thus the overlap of the potential energy surfaces better).

One can then compute, for each pair of states, the associated free energy di�erence ∆Aαiαi+1 , to

�nally sum them all as

∆AB = ∆AAα1 +

s−1∑
i=1

∆Aαj αj+1 + ∆AαsB (3.14)

(s represents the number of intermediates steps). This assumes that a simple procedure can be found

for designing this intermediate steps. The computation of hydration free energies in this work will

present one such possibility.

Thermodynamical integration

The Free Energy Perturbation approach, as seen above, is based on a discrete sequence of intermediate

states (from α1 to αs ), built so that the overlap between two successive potential energy surface is

important enough for the average to be computed smoothly.
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Yet one may want to �nd a more continuous approach, for which there would not be a set of inter-

mediate states but where the system evolves continuously from state A to state B.

To implement this idea using the framework we de�ned in the previous section, one can introduce

a λ parameter, varying between 0 and 1. A new potential can then be de�ned as follows

U (r, λ) = (1 − λ)UA(r) + λUB (r) (3.15)

such that, when λ = 0,U = UA (in other words, the system is in state A) and when λ = 1,U = UB (the

system is in state B).

Let us then start by di�erentiating equation 3.6 with respect to our parameter λ:

∂A

∂λ
= −kT

Z

∂Z

∂λ
(3.16)

= −kT
Z

∫
dN r

∂

∂λ

[
e−βU (r,λ)

]
(3.17)

= − 1

Z

∫
dN r

1

β
× (−β )∂U

∂λ
e−βU (r,λ) (3.18)

=

〈
∂U

∂λ

〉
(3.19)

Using this result in the simple following relation

∆AAB =

∫
1

0

dλ
∂A

∂λ
(3.20)

one gets

∆AAB =

∫
1

0

dλ
〈
∂U

∂λ

〉
λ

(3.21)

Here, 〈...〉λ stands for an average over the ensemble whose probability distribution is exp (U (r, λ)).
Given the very simple shape of our potential (3.15), this equation simply becomes

∆AAB =

∫
1

0

dλ 〈UB −UA〉λ (3.22)

However, the potentialU can be changed to use more complex switching functions of the λ parameter

U (r, λ) = f1(λ)UA(r) + f2(λ)UB (q) (3.23)
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provided that f1(0) = 1, f1(1) = 0, f2(0) = 0 and f2(1) = 1. This allows for more e�cient integration

schemes.1

In practice, one de�nes a set of nλ values of λ. For each λi , a simulation is carried out, and
〈
∂U
∂λi

〉
λi

is computed. The �nal result is then obtained by numerical integration.

Bennett Acceptance Ration (BAR)

In order to improve the precision of the Free Energy Perturbation method, C. Bennett2 proposed a

method using simulations of both states A and B (instead of one state only for the FEP). Inspired from

the Monte-Carlo jumps, the method imagines a di�erent kind of move, where the con�guration is kept

but the potential is switched fromUA toUB (or vice-versa).

Such a "jump" would change the energy by a quantity ∆U , and the probability for it to be accepted

would beM (β∆U ), with the Metropolis functionM (x ) = min [1, exp(−x )].

The detailed balance condition that must be respected reads

M [βUB (r) − βUA(r)] e−βUA(r) = M [βUA(r) − βUB (r)] e−βUB (r) (3.24)

Integrating over phase space, and multiplying by ZA

ZA
on the left hand side and by ZB

ZB
on the right hand

side gives:

ZA

∫
dN r M [βUB (r) − βUA(r)] e−βUA(r)

ZA

= ZB

∫
dN r M [βUA(r) − βUB (r)] e−βUB (r)

ZB

(3.25)

Recognizing con�gurational averages on both sides of the equation above, we can rewrite it as

ZA

ZB

=
〈M [β (UA(r) −UB (r))]〉B
〈M [β (UB (r) −UA(r))]〉A

(3.26)

which gives us access to the ZA

ZB
ratio, and thus to the free energy through equation 3.7.

Bennett extended this to any weighting function W (q) to replace the Metropolis function, and
showed that the optimal (most accurate) choice of weighting function changed equation 3.26 into

ZA

ZB

=
〈f (UA −UB + C )〉B
〈f (UB −UA − C )〉A

exp(C ) (3.27)
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with f the Fermi function f (x ) = 1/(1 + exp(x )), and

C = ln(ZBnA/ZAnB ) (3.28)

a constant, nA and nB the number of statistically independent con�gurations from state A and B .

This shapes a procedure to compute free energies as follows.

1. Carry out a simulation of the system in state A, another in state B. Store both trajectories.

2. ComputeUA andUB for each con�guration in trajectory A, then B.

3. Calculate the C value as the �xed point of an iterative sequence.

Computation of C

Let us writeC as an iterative sequenceCn . Starting withC0 = 0, one can calculate

the left-hand side of equation 3.27, namely ZA

ZB
. Given the de�nition ofC (eq. 3.28),

this gives

C1 = ln
ZBnA

ZAnB
(3.29)

C1 can then be reintroduced in 3.27, to yield a new value for ZA

ZB
. The general

sequence reads




C0 = 0

Cn+1 = ln
[
nA
nB
× ZB

ZA

] (3.30)

ZB

ZA
being a function of Cn . This sequence will converge towards the value C veri-

fying 3.27.

The conditions for a FEP calculation to converge are more stringent, and one expects the BAR method

to converge easier. This can be explained by the necessity of overlap between potential energy surfaces

(PES) that drives both methods; with BAR, the use of trajectories produced using both PES minimizes

the overlap problem. The BAR was hence the method we chose to evaluate free energies in this work.



3.1. FREE ENERGY 128

Nevertheless, a separation in intermediates steps is still possible, as explained in 3.1.1 (eq. 3.14) if

the overlap between potential energy surfaces of states A and B was still not su�cient.

Free energy bootstrap

In order to improve the estimation of statistical quantities, one can use the boot-

strap method. Although no "extra" information can be gained from a �nite set of

data through this method, it allows to re�ne the quality of the statistical quantities

that were computed.

The bootstrap procedure, in its simplest forma, consists �rstly in repeating the

following two steps k times:

1. extract a random subset of the whole dataset one is analyzing;

2. compute and store statistical quantities (averages, standard deviations).

Using the k averages and standard deviations obtained, one can then compute an

"average of averages", which improves the statistical uncertainty.
aA wide variety of bootstrap types exist, depending on the type of problem being studied. We

will narrow our description to the simplest case, which we are e�ectively using.

3.1.2 Sampling rare events

Let us suppose that we are interested in the unfolding of a protein. Keeping our notations, A would be

the folded state and B the unfolded one. The complexity of proteins raises an important problem if one

wants to use the methods presented above: how does one de�ne the intermediate hamiltonians used

to describe the evolution from A to B ? Besides, the time scale on which a protein folds or unfolds is

generally unreachable for typical simulations, as it is usually in the microsecond range.

To measure whether the folding is happening, one can de�ne reaction coordinates (or "collective

variables"), which is a function of a subset of the particles coordinates. As a (very simple) example, in

our protein folding case, it could be the distance between the nucleic acids at each extremity of the

proteic chain (rCR = | |r1 − rn | |). When this distance is, say rf , the protein is considered to be folded,
while when it reaches a certain distance ru > rf , it is considered to be unfolded.
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One possible solution to force the slow process to happen at a much faster pace than normal would

then be to restrain the system, forcing him to follow the reaction coordinate. This is the objective of

the umbrella sampling technique, which adds a bias to the potential. To that end, one can de�ne a

sequence of progressing values s i of the reaction coordinate, such that s1 accounts for the value of

the reaction coordinate in the initial state, and sn is its equivalent in the �nal state. The bias is then

chosen as a harmonic potential whose equilibrium values is the value s i , so that the movements of the

reaction coordinate is restrained between the s values.

Ubias(rCR, s i ) =
1

2
κ(rCR − s i )2 (3.31)

One can then perform a sequence of molecular dynamics simulation, using the biasing Ubias(rCR, s1),
then Ubias(rCR, s1) and so on until Ubias(rCR, sn). It gives access to the probability distribution of the
value of the reaction coordinate knowing that a bias was added to restrain it around s i .

This method enforces the system to undergo the required transformation. However, it uses amodi�ed

potential, and the results of the simulations can not be directly analyzed to produce the free energies, as

one needs to unbias them. This is usually done using the WHAM (Weighted Histogram Analysis Model),3

allowing one to extract the most accurate free-energy di�erences values and minimizing statistical

errors. Without entering further in details, several other rare-events sampling methods exist, although

they may appear as being more complex (e.g. the Blue Moon ensemble,4 Steered Molecular Dynamics,5

OSRW6).

3.2 TCG vs Free energies

3.2.1 Hydration free energy

In this work, we computed hydration free energies. These are the energy di�erence between a system

in the vacuum and a system solvated in water. A hydration free energy provides two informations on

the hydration (or solvation in water):

• �rstly, the energy di�erence arising from the switching from solute-solute and solvent-solvent

interactions to solute-solvent ones, which could be designated as dissolution energy;
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• secondly, the entropy di�erence between the ordering of the pure solvent and the disorder in-

troduced by the solute, that we could designate as dissolution entropy.

A much broader interest can be seen in these computations, thanks to the state function nature

of the free energy. The use of thermodynamic paths is a very powerful tool to use when considering

complicated processes. Let us imagine for example a protein and a ligand, for which we want to evaluate

the binding free energy. The binding process can be complicated and usually occurs at time-scales that

are very long. This complexity is worsened by the presence of the water solvent, which occupy the active

sites where the ligand should connect with the protein, on top of being an important computational

additional cost for the simulation.

Instead of having to perform very long simulations, hoping for the binding to occur, a smarter path

can be followed, as illustrated in �gure 3.1. One could �rst compute the free energy corresponding to

H2O

−∆#ℎ%&'(( + ))
∆#ℎ%&'(*)

∆#!"#$,(')

∆#!"#$

Figure 3.1: Thermodynamic pathway for the computation of the binding free energy of a protein P with
a ligand L, forming the complex C.

the desolvation of both protagonists (the protein and the ligand), which would be the opposite of the

hydration free energy (−∆Ahydr(P + L) on the �gure). On the other end, the hydration free energy for
the complex (where the ligand has attached to the protein) can be computed (∆Ahydr(C ) on the �gure).
The missing step is �nally the binding one, which will be much easier to carry out in gas phase, without
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solvent molecules (∆Abind,(g)). The total pathway can be summarized as

∆Abind = −∆Ahydr(P + L) + ∆Abind,(g) + ∆Ahydr(C ) (3.32)

Hydration free energies are thus a convenient tool in order to simplify complex free energy calcu-

lations.

3.2.2 Hydration free energies of ions

In order to test our Truncated Conjugate Gradient algorithm, we computed hydration free energies for

the sodium cation. Ions are a good starting point for free energies, as they have been extensively studied

in the past. Their small size is also helpful as it limits the computational e�ort, and will allow us to run

a good amount of tests in order to assess the TCG’s behaviour. Lastly, they represent a model validation

before switching to more important and interesting systems like proteins.

The hydration process was decomposed in a three-steps thermodynamical path. Firstly, the solute is

discharged in a vacuum, meaning that its charge is reduced to zero. Then, the solute is placed in the

solvent, and the van der Waals interactions are turned on, while electrostatic terms are still null. Finally,

the electrostatic interactions are reactivated.

The �rst step of the thermodynamical path supposes no energy change, as there is no interaction

involved, and thus no energy di�erence between the charged ion in the vacuum (initial state) and the

non-charged ion in the vacuum (�nal state).

The challenge comes from the second and third steps. Focusing on the activation of the van der

Waals force, the strategy used was the following. A scaling parameter λVdW was used, with initial value

λVdW = 0 (where there is no van der Waals interaction) and �nal value λVdW = 1 (where van der Waals

interactions are fully taken into account). Seven intermediate steps between these boundaries in the

thermodynamic path were done (λVdW = {0.4, 0.5, 0.6, 0.65, 0.7, 0.8, 0.9}).
The same progressive approach was followed during the third step for reactivating the charges: a

scaling parameter λelec was switched from 0 to 1 progressively in eight steps

(λelec = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}). Overall, we thus considered 19 states, whose
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potential depended on these two parametersU (λVdW, λelec).
For each of these states, also commonly referred to as "windows", a 2 ns simulation in the NVT

ensemble was performed. The �rst 400 ps of each trajectory were discarded as thermalization and

equilibration, and BAR calculations were carried out using the last 1.6 fs.

Solver δt Prec Guess Peek ∆Ahydr (kcal/mol) Error (%)

pcg5A 2 -91.67 0.0

TCG1 2 - - - -58.07 -57.8

TCG1 2 • - - -80,37 -14

TCG1 2 • • - -74.06 -23.7

TCG1 2 - - ω�t = 1.153 -68.86 -33.1

TCG1 2 • • ω = 1 -86.94 -5.4

TCG1 2 • • ω�t = 1.234 -90.86 -0.9

TCG2 1 - - - -91.75 0.1

TCG2 2 - - - -83.27 -10.1

TCG2 2 • - - -89.32 -2.6

TCG2 2 • - ω = 1 -89.17 -2.8

TCG2 2 - - ω�t = 1.153 -91.95 0.3

TCG2 2 • • ω = 1 -91.46 -0.2

TCG2 2 • • ω�t = 1.518 -92.97 1.4

Table 3.1: Free energy values computed with BAR calculation method, using di�erent polarization
solversii. A = ASPC for the PCG ones

Note that, in this table, ω�t is presented as a �xed value. Computation ofω�t was indeed done prior

to the sequence of thermodynamic windows, in order to prevent problems in the free energy integration

(a detailed explanation is provided in the next section).

At �rst glance, the behaviour that was observed earlier regarding TCG performances seems to be

reproduced here, with TCG1 allowing for a good �rst approximation for a low computational price, while

TCG2 provides results much more accurate, comparable to the reference (PCG) values, and come with a

iiTo be able to compare these values to experiments and previous computations,7 one needs to account for the standard
state di�erence: in simulation, it is 1 mol/L, where in experiment it is one atom only. A free energy di�erence thus ensues:
−RT ln

(
V1at om

V1mol /L

)
= 1.84 kcal/mol, which needs to be added to the simulation results.
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slightly higher price.

However, one can observe that free energy computations are very sensitive. Where relative errors

were rather small when looking at potential or polarization energies, larger deviations are measured

here. Even more striking, the "naked" �rst order (TCG1 without any re�nement) yielded trajectories on

which BAR or FEP calculations could simply not converge. This could be �xed by adding extra steps in the

scaling parameters switching (λVdW and λelec), in order to reduce the di�erence between two successive

potential energy surfaces (i.e. obtaining a better overlap), and improve the precision of the BAR and

FEP calculations.

This would however mean more simulations, and it might be wiser to simply choose a better pre-

cision version of the TCG, agreeing to pay the extra-price it supposes, so as to ultimately reduce the

total computation price. Nevertheless, TCG appears as a perfectly viable method to compute hydration

free energies, provided that we use re�nement – and using a proper ω�t, as we will discuss in the next

session.

It is also interesting to note the di�erence of behaviour regarding the integration time-step: for the

non-re�ned TCG2, we computed the whole set of simulations (switching λVdW then λelec) once using a

1 fs time-step, and another time using a 2 fs time-step (using the RESPA integration, as presented in next

chapter). The results were considerably improved, and this is quite easily explained: the con�guration

obtained after integrating over a large time-step will carry a bigger error, and a "rougher" TCG (such as

TCG2 without any re�nement) will have a harder time projecting back on the correct potential energy

surface. Results show how helpful the peek-step can be in this regard. On the contrary, with a smaller

(1 fs) time-step, the error accumulated is smaller, and it is therefore easier for a less advanced version

of the TCG to correct it.

As observed in the previous chapter, we also note here that, when using a fully re�ned TCG2, there

seems to be better results when the peek-step is scaled by ω = 1 than when it is scaled by ω�t. This

may be partly caused by the �xing of ω�t that we will explain in next section, but this is also consistent

with previous observation.

Again, the very good results obtained by a TCG2 with no other re�nement than the peek-step using

ω�t is clear here, which con�rms its usefulness (foreseen in 2.3.5) as a fast and accurate solver.
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3.2.3 Theω�t question

In chapter 2, we saw the usefulness of the peek-step regarding the improvement of TCG results. In

particular, the use of a �tted ω scalar allows one to obtain excellent agreement on the energies, and

appears as the method of choice. One should however be very cautious when trying to compute free

energies using this re�nement.

Indeed, as was shown in 3.1.1, the free energy calculation methods (whether we talk about Free En-

ergy Perturbation, Bennett Acceptance Ratio or Thermodynamic Integration) all rest on the computation

of ensemble averages that are de�ned by a potential. It is therefore of predominant importance that

this potential is well de�ned. This is the case when using the Truncated Conjugate Gradient. As detailed

in the previous chapter, the polarization energy follows an analytical formula, and is thus very precisely

de�ned.

However, the implementation presented earlier for the peek-step using �tting is based on a regular

recomputation of the ω�t scalar to reproduce as closely as possible the polarization energy. While this

is the key element for very accurate reproduction of energies, this also means that, for every time ω�t

is recomputed, the total potential energy changes, and the potential energy surface being explored is

also di�erent. To put it otherwise, the de�nition of the polarization energy changes.

As a consequence, when computing the free energy di�erence using values ofω�t re�tted "on the �y",

the resulting free energy does not only account for the apparition of a charged solute in a solvent, but

also... for the change in the polarization energy, even though it does not correspond to any physically

meaning transformation. The �nal extracted result would thus be polluted with an artifact arising from

the ongoing change in the polarization energy de�nition.

It appears clearly that one should decide on a �xed value forω beforehand, and keep this value over

the course of the numerical simulations. For the same reason, it should also be the same for every

"window" (every value of the λVdW and λelec parameter).

Choosing this �xed value is not an obvious question. To explore the di�erent values thatω�t adopts

over a free energy calculation, we focused on a TCG2 computation. For each windows, we started from

a con�guration equilibrated over 2 ns using a tightly converged PCG solver. We then switched to the

Truncated Conjugate Gradient, using a diagonal preconditioner, the direct �eld guess, and a peek-step
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using an ω�t re�tted every 1000 steps. After a 400 ps run, successive ω�t values were extracted and

averaged.

Distinct di�erences arise when comparing thermodynamic windows with each other: during the

activation of the van derWaals terms,ω�t doesn’t change, as it account only for the polarization between

the water molecules. Nevertheless, it drops from 1.8 to 1.5 during the activation of the charges terms,

as polarization involving the ion is progressively more and more important.

The choice was then made to use the value of ω�t for every thermodynamic window, in order to �t

as well as possible the energy when the solvated ion is fully recharged in the solvent. Admittedly, this

won’t give optimal results for all the other windows, but it will allow us to preserve a constant de�nition

of the polarization energy over the course of the computation, ultimately ensuring that the resulting

free-energy values are properly de�ned.

3.2.4 BAR reweighting: making more with less (a glimpse on the next step)

Pursuing on the objective of obtaining better results using cheaper computational methods, the

reweightingmethod8 (also named importance sampling) was proposed as a solution to use trajectories

performed at low accuracy level to extract informations corresponding to higher level dynamics.

The idea is to carry out a simulation using a fast model (such as for example TCG1), and then to use

the successive con�gurations extracted from this simulation to re-compute the energies using a more

accurate model (such as TCG2). As con�gurations are only saved every nsave time-steps, the amount of

calculation required to post-treat the trajectory will be negligible compared to the initial simulation.

Besides, the (expensive) gradients that would be needed for an accurate simulations are not computed

here, which is also a source of computation savings.

In this section, we will explain the principles of the reweighting. Let us imagine that one is trying to

compute the average of a function b(r). Let us note H1 and H2 two possible Hamiltonians to describe

the system, with H2 being more accurate than H2. The best ensemble average of function b would be

obtained using the most precise Hamiltonian, and thus reads

〈b(r)〉H2
=

∫
dN r b(r)e−βH2∫
dN r e−βH2

=

∫
dN r b(r)e−βU2∫
dN r e−βU2

(3.33)
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A simple multiplication by the neutral term exp(βH1 − βH1) then yields

∫
dN r b(r)e−βU2eβU1e−βU1∫
dN r e−βU2eβU1e−βU1

=

∫
dN r b(r)e−β (U2−U1)e−βU1∫
dN r e−β (U2−U1)e−βU1

(3.34)

By multiplying by the ratio Z1/Z1 (with Z1 the con�guration partition function associated to the

potentialU1) and de�ning ∆U = U2 −U1, one can recognize ensemble averages as

∫
dN r b(r)e−β∆H e−βU1

Z1

Z1∫
dN r e−β∆U e−βU1

=

〈
b(r)e−β∆U

〉
U1〈

e−β∆U
〉
U1

(3.35)

Finally, one has a formula that gives an ensemble average overH2 distribution as a ratio of ensemble

averages... over H1 distributions.

〈b(r)〉U2
=

〈
b(r)e−β∆U

〉
U1〈

e−β∆U
〉
U1

(3.36)

A practical implementation of this method would thus work as follows

1. perform a simulation using theU1 hamiltonian, storing potential energy values and the trajectory

(list of successive con�gurations of the system);

2. computeU2 for all con�gurations in the trajectory �le;

3. compute the averages at the right-hand side of equation 3.36.

As a �rst validation test, reweighting was applied to the computation of polarization and potential

energies. Trajectories of 200 ps were computed, with one frame extracted every ps.

Table 3.2 summarizes these �rst results. The reference simulation was carried out using a Conjugate

Gradient solver with a 10
−8 convergence criterion. The "fast" trajectory was computed using a non-

re�ned TCG1. Energies were then computed from this trajectory using the reweighting procedure. The

accurate Hamiltonian (H2) used here was the reference one (CG with a 10
−8 convergence criterion).

The objective was thus to measure how well we could reproduce the CG results using TCG1 with the

reweighting.
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Epol Error Epot Error

Ref. -2163 - -4470 -

TCG1 (non-re�ned) -1599 29% -4008 10%

Reweighting -1912 12% -4289 4%

Table 3.2: Reweighting applied to polarization and potential energies. Here, the "reweighting" gives
energy values obtained using the reweighting method, applied to a TCG1 simulation (with no re�nement
used), reweighted following a tightly converged CG solver. Reference is a Conjugate Gradient simulation
converged with a 10−8 criterion. Error is computed with respect to the reference value. Energies are
given in kcal/mol.

For both the polarization and potential energies, the error observed is divided by more than two

when using the reweighting scheme. The reweighting thus seems to allow for a good correction, even-

though it does not manage to fully reproduce the reference energies.

This reweighting can be applied in a straightforward way to the FEP (eq. 3.12) in order to compute the

average 〈exp[−β (UA −UB )]〉B . Reintroducing this in equation 3.36 simply gives

〈exp[−β (UA −UB )]〉B ,2 =
〈
e−β (UA−UB )e−β∆U

〉
B ,1〈

e−β∆U
〉
B ,1

, ∆U = U2 −U1 (3.37)

Here, 〈...〉B ,1 designates an ensemble average performed over the distribution generated by Hamilto-
nian HB ,1, that is, the Hamiltonian describing state B with the "low" accuracy level. 〈...〉B ,2 follows the
same notation, with HB ,2 the "high" accuracy level Hamiltonian describing state B .

The reweighting was tested on the FEP computation method on two thermodynamical windows (i.e

�rstly for λVdW = 0.7 to λVdW = 0.8, secondly for λelec = 0.9 to 1). Both forward and backward FEP were

computed (see equations 3.12 and 3.13).

These windows were randomly selected, and serve here as a simple proof of principle for the ap-

plicability of the reweighting to free energies. Of course, the long-term objective is rather to use this

process on the BAR computation method. Nevertheless, these preliminary results are very encouraging,

as they show good improvement of the free energy values on di�erent thermodynamic windows, and

with a reduced computational time consumed.
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λVdW = 0.7→ 0.8 λelec = 0.9→ 1

Backward FEP Forward FEP Backward FEP Forward FEP

Ref. -0.3979 -0.3446 -19.62 -19.53

TCG2 (non-re�ned) -0.2849 (28%) -0.3628 (5%) -19.01 (3%) -19.07 (2%)

Reweighting -0.3720 (7%) -0.3413 (1%) -19.55 (<1%) -19.47 (<1%)

Table 3.3: Reweighting applied to FEP. Here, the "reweighting" gives energy values obtained using the
reweighting method, applied to a TCG1 simulation (with no re�nement used), reweighted following
a tightly converged CG solver. Reference is a Conjugate Gradient simulation converged with a 10

−8

criterion. Next to the TCG2 and reweighted energies, the relative error with respect to the reference
value is given. Energies are given in kcal/mol.

Application to the BAR follows the same idea, though BAR already uses two trajectories (one following

Hamiltonian HA, the other following HB ). Adding the reweighting will thus require a total of four sets

of energy values: UA,1,UA,2,UB ,1 andUB ,2, with A and B denoting the thermodynamic states de�ning

the transformation, and 1 and 2 being the two levels of precision.

Two ensemble averages are needed in order to compute the BAR free energies: 〈f (UA −UB + C )〉B
and 〈f (UB −UA − C )〉B (see eq. 3.27). We’re trying to extract the best available precision there (corre-
sponding to Hamitonian H2) while using trajectories produced using the – less accurate – Hamiltonian

H1. The two ensemble averages of interest are thus 〈f (x )〉B ,2 and 〈f (−x )〉A,2, with x = UA −UB +C

Using the reweighting technique on each, one obtains:



〈f (UA −UB + C )〉B ,2 =

〈f (UA−UB+C ) exp[−β (UB ,2−UB ,1)]〉B ,1
〈exp[−β (UB ,2−UB ,1)]〉B ,1

〈f (UB −UA − C )〉A,2 =
〈f (UB−UA−C ) exp[−β (UA,2−UA,1)]〉A,1

〈exp[−β (UA,2−UA,1)]〉A,1

(3.38)

which e�ectively changes the �nal ratio to

ZA

ZB

=

〈
f (UA −UB + C ) exp

[
−β (UB ,2 −UB ,1)

]〉
B ,1〈

f (UB −UA − C ) exp
[
−β (UA,2 −UA,1)

]〉
A,1

〈
exp

[
−β (UA,2 −UA,1)

]〉
A,1〈

exp
[
−β (UB ,2 −UB ,1)

]〉
B ,1

exp(C ) (3.39)

Using this ratio, the BAR method can be computed as previously: using C0 = 0, one can compute

the ratio ZA

ZB
, which can then be used to compute an improved valueC1 for the C constant. This iteration
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is then repeated until the C(n) sequence converges. The only major di�culty here is the treatment of

all di�erent energetic values.

This method is rather representing the very near future of our computations, as we are con�dent that

it will yield good results while saving precious computational time.

We could also mention that this is an a posteriori solution to accelerate free energy computations.

Indeed, all the improvement presented in this work (both regarding polarization solver and integrators)

are all devoted to a more e�cient handling of the Molecular Dynamics, whereas the reweighting tech-

nique is based on a better, smarter analysis of the data after their production, which was less at the

heart of our focus.

The reweighting procedure �nally appears as a good method to accelerate accuracy demanding

computations such as free energies estimations. It however provides slightly degraded values. It should

therefore be used in situations were "quick and cheap" estimations are require without the need of

high precision. Such an approach could be used for example in high-throughput screening studies of

large numbers of compounds where an initial assessment at reasonable (but not full) accuracy of free

energies, aiming to eliminate low a�nity compounds, is su�cient.

3.2.5 Conclusion

To summarize, two strategies were proposed in this chapter to compute free energies. The �rst one is

the use of the Bennett Acceptance Ratio method, where TCG2 proved to be a perfectly viable candidate.

Care has to be taken if adding a peek-step, as ω�t has to be well controlled.

The second one allows the use of less accurate polarization solvers, but comes with a high gain in

terms of computational time. More tests have to be undertaken, but preliminary results are encouraging.

This appears as a good solution for anybody trying to compute fast free energies without requiring a

very high precision.

We can now a�rm that TCG solvers are perfectly viable when it comes to the sensitive computation

of free energies. We also have very convincing tests aiming at accelerated computation of free energies

using reweighting. Nevertheless, the amount of computation required to simulate all thermodynamic

windows in order to properly compute free energies is still quite heavy. Aggregating the various features
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that were presented so far, we will thus explore another way to further accelerate our computations: the

integrators.
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Chapter 4

Towards faster free energies, another strategy:

improved integrators
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4.1 Advanced integrators: multi-timestepping

After our developments regarding polarization solvers, we now focus on the role of molecular dynamics

integrators, and we will more speci�cally look into the case of Langevin dynamics. In this chapter, the
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reader will �nd a brief summary of the multi-timestep methods, then a step-by-step description of the

implementation of optimal integration algorithms.

4.1.1 Classical integrator

In order to study integrator shapes and properties, let us �rst introduce a few notations related to

classical mechanics.

We will �rstly write the HamiltonianH as

H(r, p) = Ekin + Epot =

N∑
i=1

| | ®pi | |2
2mi

+U (r) (4.1)

It is simply the total energy of a system. The position and momenta of all particles in our system de�ne

a point in the 6N dimensional domain called the phase space, that we could note x = (r, p). The
generic properties we considered in chapter 1, just like the Hamiltonian, are all functions of the phase

space vector x .

The time derivative of such a property, who has no explicit dependence in time (∂b
∂t

= 0), can be

expressed using the chain rule as:

db
dt

=

N∑
i=1

(
∂b

∂ ®ri
∂ ®ri
∂t

+
∂b

∂ ®pi
∂ ®pi
∂t

)
(4.2)

Hamilton’s equation1 give ∂ ®ri
∂t

=
∂H
∂ ®pi and

∂ ®pi
∂t

= −∂H
∂ ®ri , which leads to a �nal expression for this time

derivative:

db
dt

=

N∑
i=1

(
∂b

∂ ®ri
∂H
∂ ®pi

+
∂b

∂ ®pi
∂H
∂ ®ri

)
(4.3)

This can be said more simply
db
dt

= i Lb (4.4)

by de�ning the Liouville operator L as

i L =

N∑
i=1

∂H

∂ ®pi
∂

∂ ®ri
− ∂H

∂ ®ri
∂

∂ ®pi
(4.5)
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A formal solution of eq. 4.4 gives us b(xt ) = ei Ltb(xt ). When choosing the phase-space vector
itself for our b(xt ) function, we get

x (t ) = ei Lt x (0) (4.6)

which is a formal expression to write the time integration of our system, based on the so-called classical

propagator ei Lt . This simple expression hides the complexity of integration schemes: we have no

possibility to exactly express the result of eq. 4.6 in general (and especially for our N-particles systems).

Starting from this point, we will try to derive approximations to help us designing dynamics inte-

gration schemes.

4.1.2 Trotter theorem

The Liouville operator is the sum of two terms L1 and L2.

i L1 =

N∑
i=1

∂H

∂ ®pi
∂

∂ ®ri
=

N∑
i=1

Û®ri
∂

∂ ®ri
=

N∑
i=1

®pi
m

∂

∂ ®ri
(4.7)

corresponds to the kinetic part of the Liouville operator, and

i L2 =

N∑
i=1

−∂H
∂ ®ri

∂

∂ ®pi
=

N∑
i=1

− Û®pi
∂

∂ ®pi
=

N∑
i=1

F (r) ∂
∂ ®pi

(4.8)

corresponds to the forces.

However, these two operators do not commute and as such, we can’t express the classical propaga-

tor in 4.6 as a product of exponential:

ei Lt , ei L1t ei L2t (4.9)

This would allow us to evaluate these operator sequentially (computing �rst the result of the action of

ei L2t on our phase-space vector, then of ei L2t ), which we could do exactly !

One thus needs to resort to an approximation of the classical propagator. For that purpose, the

Trotter theorem2 (or Strang splitting3 formula) states that for two non-commuting operators A and B ,

eA+B = lim
P→∞

(
e

B
2P e

A
P e

B
2P

)P
(4.10)
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Applying this to our classical propagator, we have

ei Lt = lim
P→∞

(
ei L2

t
2P ei L1

t
P ei L2

t
2P

)P
(4.11)

By de�ning a time-step length ∆t = t/P , and taking the 1/P power of both sides, we �nally get an

approximation that will prove useful in the next steps of this work.

ei L∆t = ei L2
∆t
2 ei L1∆t ei L2

∆t
2 +O (∆t 2) (4.12)

4.1.3 The RESPA splits

If we consider the energies that have to be computed to integrate the dynamics at each time-step,

as shown in 1.3, we can see that two families are distinguished: the bonded terms (intramolecular

interactions) on one hand , and the non-bonded ones (intermolecular interactions) on the other. The

non-bonded energy terms are varying fast, given the sti�ness of the mathematical shape they follow,

and the physical reality they try to reproduce. The forces deriving from these energies also vary with

high frequency. If we want to properly observe these movements, we will need a �ne time-step δt .

Meanwhile, the non-bonded terms (van der Waals, electrostatics, polarization) vary much slower

(especially so at long distance), such that computing their derivatives as often as we compute the

bonded-term forces – as it is the case for example in the velocity-Verlet scheme – leads to considerable

amount of time spent on non-necessary calculations. Choosing to use a bigger time-step for all the

simulation would not allow to reproduce the fastly varying terms, and would lead to accumulation of

energy in these modes. It is thus not a viable solution. This loss is worsened by the complexity of the

non-bonded terms compared to the bonded ones: the Lennard-Jones potential and the electrostatic

interactions are computed between all pairs of atoms, and chapter 2 may have already convinced the

reader of the high price of polarization energy calculations.

An ideal integrator would thus juggle between two time-step lengths, one for the high-frequency

energy terms, the second for the low-frequency ones. The framework presented in sections 4.1.1 and

4.1.2 allows to design it in a rigorous manner.
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If we decide to explicitly distinguish the slow and fast evolving forces in L2, with:

i L2 = i Lf,slow + i Lf,fast =

N∑
i=1

[Fslow(r) + Ffast(r)]
∂

∂ ®pi
(4.13)

Then it is possible to rede�ne two operators (whose sum would still give the total Liouville operator)

i Lfast =

N∑
i=1

[
Ffast(r)

∂

∂ ®pi
+
®pi
m

∂

∂ ®ri

]
= i Lf,fast + i L1 (4.14)

i Lslow =

N∑
i=1

[
Fslow(r)

∂

∂ ®pi

]
= i Lf,slow (4.15)

Applying Trotter theorem here reads:

ei L∆t ≃ ei Lslow ∆t
2 ei Lfast∆t ei Lslow

∆t
2 (4.16)

But the Trotter theorem can also be applied to the exp(i Lfastδt ) term. If one de�nes a smaller time-step
δt = ∆t

n
, the same pathway leads to

ei Lfast∆t =
(
ei Lf,fast

δt
2 ei L1δt ei Lf,fast

δt
2

)n
(4.17)

Finally, by reusing expression 4.17 in 4.16, we get

ei L∆t = ei Lslow
∆t
2

(
ei Lf,fast

δt
2 ei L1δt ei Lf,fast

δt
2

)n
ei Lslow

∆t
2 (4.18)

The �nal expression here shows an operator to integrate our equations that is more �nely adapted

to the speci�cs of the dynamics: one can choose a ∆t that is adapted to describe the slowly varying

terms and a δt for the high-frequency ones, under the condition that ∆t = n × δt , with n an integer.

For a total simulation time T , this scheme also allows us to compute the most expensive terms

belonging to Lslow n/2 times less often than the fast ones, which will translate into substantial accel-
erations of the computation, as we will see in 4.2.1.

The time-step choice will become an important question to properly use this method. A few trials

and errors, monitoring the simulation properties, gives us an e�ective answer. Yet, following a more
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rigorous approach, one could also calculate the Fourier transformof the energy in a reference simulation

in order to extract the typical times that should be chosen.

RESPA1 – One step further

Quite naturally, onemay want to design integrators whichmarry the simulation frequencies even better.

A more re�ned splitting could be designed for that purpose, where force terms would divide between

fast, slow, and intermediate ones.

Introducing an extra splitting is quite straightforward, and would yield a propagator of the following

shape

e i L∆T = e i Lf,slow
∆T
2

[
e i Lf,interm

∆t
2

(
ei Lf,fast

δt
2 ei L1δt ei Lf,fast

δt
2

)n
e i Lf,interm

∆t
2

]m
e i Lf,slow

∆T
2 (4.19)

This would require three time-steps, here noted δt , ∆t and ∆T , with the conditions that




∆T = m∆t

∆t = nδt

(4.20)

The splitting of the forces that was adopted will be discussed in section 4.2.2.

4.2 An iterative search for the optimal integrator

Using the splittings proposed earlier, this section details the designing of an optimal integrator. The

objective is to be able to use the biggest possible time-steps (hence accelerating the computations)

while preserving the correctness of the simulations.

As a reference, we use a Velocity-Verlet integrator as presented in 1.2, with a 0.5 fs time-step. It is

a widely used algorithm giving us results we can trust. This time-step choice is quite small, to ensure

that we’re considering conservative dynamics. In general practices, however, the common choice for the

time-step of the Velocity-Verlet is rather 1 fs. As a consequence, while we will compare the simulation

accuracy with the 0.5 fs reference, we will calculate the speedup with respect to the 1 fs Velocity-Verlet.

This allows us to remain certain of the quality of the simulations, while not overselling the gains.

Lastly, the ASPC belong to the predictor-corrector family and can be seen as a particular guess
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involved in the polarization solver that accelerates the computation. Usually, such algorithm are used

at the cost of time-reversibility (see sec. 2.1.2). In this particular case, ASPC is designed to preserve

as much as possible time-reversibility making it a production algorithm for standard polarizable MD

simulations. Therefore, speedups are compared to a standard 1 fs Velocity-Verlet but but the algorithm

is not e�ective for timesteps larger than 2fs where computational gains disappear and instabilities

greatly increase.

For a better understanding and comparison of the algorithms, we shall give pseudocode expressions

detailing the integrators presented. For the Velocity-Verlet reference, this reads

Algorithm 1 : Velocity-Verlet

®pi ← ®pi + δt/2 × ®fi
®qi ← ®qi + δt × ®pi /mi

Compute forces using updated ®qi ’s.
®pi ← ®pi + δt/2 × ®fi

4.2.1 V-RESPA: a �rst splitting of the forces

Applying the RESPA logic detailed in 4.1, we split the terms of our AMOEBA force �eld between the bonded

and non-bonded ones, in order to integrate less frequently the slowly evolving terms. The Velocity-

Verlet shape is kept, as one can see in the algorithm hereafter, and we thus denoted this integrator as

V-RESPA, where "V" stands for Velocity-Verlet. The integration algorithm will read

Algorithm 2 : V-RESPA – Using ∆t = nδt

®pi ← ®pi + ∆t/2 × ®fi ,SLOW
for i = 1, n do
®pi ← ®pi + δt/2 × ®fi ,FAST
®qi ← ®pi + δt × ®pi /mi

Compute FAST forces using updated ®qi ’s.
®pi ← ®pi + δt/2 × ®fi ,FAST

end for
Compute SLOW forces using updated ®qi ’s.
®pi ← ®pi + ∆t/2 × ®fi ,SLOW

The advantage of using such a scheme clearly appears, as we directly see that the fast evolving

forces will be computed n times more than the slow ones.
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System Prop. Verlet 0.5fs 0.25/2 0.25/3

Water (S3)

Epot -4459 ±39 -4447 ±36 -4408 ±39
Epol -2169 ±41 -2145 ±39 -2108 ±39
D 2.08 ±0.03 2.13 ±0.02 2.25 ±0.02

Ubiquitin
Epot -27894 ±102 -27850 ± 105 -27628 ±95
Epol -13052 ±98 -12917 ±99 -12708 ±95

Speedup
(vs. ASPC) – 1.75 2.37

(vs. no ASPC) – 2.53 3.42

Table 4.1: V-RESPA integrators. Epot and Epol designate potential and polarization energy respectively,
both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). D is the di�usion
constant (expressed ×10−5 cm2/s) ii. Speedup are computed vs. a 1 fs Velocity-Verlet reference, both
with and without ASPC.

In order to assess the various integrators qualities, we performed computations on the system S3

introduced in chap. 2, a cubic box containing 500 water molecules, as well as on the solvated ubiquitin

protein (1233 atoms for the protein chain, plus 2835 water molecules). Simulations were run over 2 ns, in

the NVT ensemble withT = 300 K. Potential and polarization energies were calculated for both systems.

To check dynamical and structural properties, di�usion constants and radial distribution functions were

also calculated.

Table 4.2.1 presents the results obtained with V-RESPA integrators. Each is noted as δt /∆t , following

notations previously de�ned. For example, the "0.25/2" integrator means that the time-step for the

integration of the fast varying forces is 0.25 fs, and 2 fs for the slowly varying forces.

The errors obtained on the energies are very satisfactory, remaining under 3%. Di�usion coe�cient

also show the reliability of this integrator. In both case, the errors are maximal for the largest outer

time-step (∆t ) of 3 fs, indicating that the larger this time-step gets, the more inaccurate integration

becomes. The radial distribution functions, in �gure 4.1 also yield convincing results, in the shape of

a very good agreement with the reference curves. The �rst and second peaks, displayed with a larger

scale, are very well reproduced.

iiThe astute reader will remark a di�erence between the reference di�usion coe�cient given in this table and the one
given in chap. 2. These two sets of computation (chap. 2 and chap. 4) were in fact carried out using di�erent force-�eld
parameters (two di�erent versions of AMOEBA’s water). As this value is only useful as a reference point, this has no in�uence
on our reasoning.
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a switching function, so that the transition between the domains would not be brutal. For example,

the electrostatic terms between atoms separated by 5 Angstroms or less are treated as real short-range

terms, by 5 to 7 Angstroms as real long-range terms, and above 7 Angstroms as reciprocal terms in the

PME framework.

Switching function

The switching function S was de�ned as follows by Margul et al.4

S (r , rc, λ) =




1 if r ≤ rc − λ

g (r , rc, λ) if rc − λ ≤ r ≤ rc

0 if r ≤ rc

(4.21)

where r is the distance between two atoms, rc the short vs. long-range cuto�

distance, and λ is a switching parameter controlling the smoothing length (we used

λ = 0.5 Angstroms). The function g is de�ned as

g (r , rc, λ) = 1 + u3(15u − 6u2 − 10) (4.22)

u =
1

λ
(r − rc + λ) (4.23)

The corresponding pseudocode algorithm is reproduced hereunder; the "SLOW" forces are the long-

range intermolecular ones, the "INTERM" forces are the short-range intermolecular ones, and the "FAST"

forces are the intramolecular ones.
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Algorithm 3 : V-RESPA1 – Using ∆t = nδt and ∆T = m∆t

®pi ← ®pi + ∆T /2 × ®fi ,SLOW
for i = 1, m do

®pi ← ®pi + ∆t/2 × ®fi ,INTERM
for j = 1, n do

®pi ← ®pi + δt/2 × ®fi ,FAST
®qi ← ®qi + δt × ®pi /mi

Compute FAST forces using updated ®qi ’s.
®pi ← ®pi + δt/2×

end for

®qi ← ®qi + ∆t × ®pi /mi

Compute INTERM forces using updated ®qi ’s.
®pi ← ®pi + ∆t/2 × ®fi ,INTERM

end for

Compute SLOW forces using updated ®qi ’s.
®pi ← ®pi + ∆T /2 × ®fi ,SLOW

Three V-RESPA1 integrators were tested: 0.25/2/4, 0.25/2.5/5 and 0.25/2/6. These notations stand for

δt/∆t/∆T , i.e. the timesteps used for the integration of the fast/intermediate/slow evolving forces.

Note that, as required by equations 4.20, they are integer multiple of each other.

The results are compiled within table 4.2 and �gure 4.2. As one could expected, this method accel-

erates computation, further than the simple split of RESPA could, and one can reach a 3.7 speedup (2.53

vs. ASPC reference).

Looking at the water system’s energies, all three setups seem to give correct result. However,

the same can not be said when looking at the ubiquitin, particularly its polarization energy, for the

0.25/2.5/5 integrator, where the error rises to 7.5%. The better results obtained by the 0.25/2/6 integra-

tor (the relative error on the polarization energy drops back to 3.1%) should be subject to caution, as

they were obtained using an even larger outer timestep (∆T ). They may obtained through the re�ne-

ment of the inner timestep, but could also be a simple result of error compensation, as we can’t expect

results to improve in accuracy if we increase time-step size.
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System Prop. Verlet 0.5fs 0.25/2/4 0.25/2.5/5 0.25/2/6

Water (S3)

Epot -4459 ±39 -4433 ±37 -4517 ±39 -4522 ±37
Epol -2169 ±41 -2135 ±41 -2201 ±41 -2228 ±40
D 2.08 ±0.03 2.18 ±0.03 1.6 ±0.02 1.34 ±0.01

Ubiquitin
Epot -27894 ±102 -27766 ±91 -28876 ±110 -28333 ±98
Epol -13052 ±98 -12893 ±98 -14009 ±120 -13457 ±1000

Speedup
(vs. ASPC) – 1.72 2.43 2.53

(vs. no ASPC) – 2.5 3.5 3.7

Table 4.2: V-RESPA1 integrators. Epot and Epol designate potential and polarization energy respectively,
both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). D is the di�usion
constant (expressed×10−5 cm2/s). Speedup are computed vs. a 1 fs Velocity-Verlet reference, both with
and without ASPC.

Much more troubling are the radial distributions and the di�usion coe�cient: �gure 4.2 clearly

shows a discrepancy in the peaks with the 1 fs reference for the 0.25/2.5/5 and 0.25/2/6 integrators. The

di�usion constants measured are even worse, as they drop down by 36%. These two elements indicate

that the dynamics are poorly reproduced in the simulations, making this V-RESPA1 scheme non-viable

in our pursuit for dynamics acceleration.iii

We thus needed a solution to improve the quality of our integration without sacri�cing the speed

gains obtained so far.

4.2.3 Reconsidering Langevin dynamics integration with BAOAB

Let us focus, starting from this point, on simulations performed in the NVT ensemble, describing sys-

tems in contact with a thermostat. Although we brie�y presented the Molecular Dynamics framework in

the beginning of this work, some details were voluntarily left aside, including the functioning of ther-

mostats. In recent years, developments in Molecular Dynamics integration mostly come from mathe-

matics, and where mostly built unpon Langevin dynamics, which are better understood from a mathe-

matical point of view. Following these developments, let us present some of the ensuing derivation in

line with our TCG research.

Thermostatting a system is not a trivial task, and several di�erent algorithms can handle it. The

iiiThe �rst integrator (0.25/2/4) yields acceptable results, but the obtained speedup is not interesting enough.
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through its own noise). Of course, the intervention of a friction means that the dynamics are modi�ed,

if we compare to the Hamiltonian framework, which does not have friction.

Leimkuhler and Matthews5, 6 proposed a method to integrate these equations starting on the sep-

aration hereafter:


dq

dp


=


M−1p

0


dt +


0

−+U (q)


dt +


0

−γpdt + σM
1

2dW


(4.26)

The three elements colored on eq. 4.26 are designated as A (in red), B (in blue) and O (in green),

respectively.

Taking each of these elements separated, one can note that they build equations that can be exactly

solved. This is quite obvious for A and B, as they correspond to usual terms:

• A gives the update of the position given the velocities as



q(t + δt ) = q(t ) + p(t )M−1δt

p(t + δt ) = p(t )
(4.27)

• B updates the vitesses uing Newton’s second law



q(t + δt ) = q(t )

p(t + δt ) = p(t ) − +U (q)δt
(4.28)

The �nal term O has the following solution (see [6]):



q(t + δt ) = q(t )

p(t + δt ) = e−γδtp(t ) + σ√
2γ

√
1 − e−2γδtM 1

2Rδt

(4.29)

where Rδt follows a normal distribution. Given the presence of a stochastic process, an "exact" solution

means that the solution proposed here e�ectively yields the correct probability distribution.
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Several integration schemes could be chosen here. The most simple – maybe naively so – would be

to solve the A part �rst, with a time-step δt , then the B part with the same time-step, then the O part

with the same time-step. This would de�ne the "ABO" method.

Yet by splitting some of these elements in two, using half time-step integration, one can de�ne

the "BAOAB" method. If we note LA, LB and LO the operators associated with each piece presented

previously, the splitting (using Trotter theorem as presented earlier) gives:

ei Lδt = ei LB
δt
2 ei LA

δt
2 ei LO δt ei LA

δt
2 ei LB

δt
2 (4.30)

This de�nes a new algorithm, reproduced hereunder.

Algorithm 4 : BAOAB (formally)

(B) ®pi ← ®pi + δt/2 × ®fi
(A) ®qi ← ®qi + δt × ®pi /mi

(O) ®pi ← exp(−γδt ) × ®pi + σ
√

mi

2γ
(1 − exp(−2γδt )) ®Rδt

(A) ®qi ← ®qi + δt × ®pi /mi

Compute forces using updated ®qi ’s.
(B) ®pi ← ®pi + δt/2 × ®fi

This integrator scheme allowed Matthews and Leimkuhler to use bigger time-steps in their simu-

lation. Since this is precisely our objective, we will thus try a BAOAB implementation of our RESPA1

splitting. The algorithms that we built using both BAOAB and RESPA1 will be named "B-RESPA1" (as

opposed to "V-RESPA1" for the Velocity-Verlet ones). Here is a typical such algorithm:
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Algorithm 5 : B-RESPA1 – Using ∆t = nδt and ∆T = m∆t

®pi ← ®pi + ∆T /2 × ®fi ,SLOW
for i = 1, m do

®pi ← ®pi + ∆t/2 × ®fi ,INTERM
for j = 1, n do

(B) ®pi ← ®pi + δt/2 × ®fi ,FAST
(A) ®qi ← ®qi + δt × ®pi /mi

(O) ®pi ← exp(−γδt ) × ®pi + σ
√

mi

2γ
(1 − exp(−2γδt )) ®Rδt

(A) ®qi ← ®qi + δt × ®pi /mi

Compute FAST forces using updated ®qi ’s.
(B) ®pi ← ®pi + δt/2×

end for

®qi ← ®qi + ∆t × ®pi /mi

Compute INTERM forces using updated ®qi ’s.
®pi ← ®pi + ∆t/2 × ®fi ,INTERM

end for

Compute SLOW forces using updated ®qi ’s.
®pi ← ®pi + ∆T /2 × ®fi ,SLOW

This algorithm was tested using the same conditions, and we present the results in table 4.3 and

4.4, and in �gure 4.3.

System Prop. Verlet 0.5fs 0.25/2/4 0.25/2.5/5 0.25/2/6

Water (S3)
Epot -4459 ±39 -4454 ±45 -4436 ±43 -4415 ±45
Epol -2169 ±41 -2147 ±40 -2125 ±40 -2126 ±40

Ubiquitin
Epot -27894 ±102 -27891 ±105 -27708 ±114 -27662 ±108
Epol -13052 ±98 -12932 ±98 -12810 ±98 -12819 ±95

Speedup
(vs. ASPC) – 1.72 2.43 2.53

(vs. no ASPC) – 2.5 3.5 3.7

Table 4.3: V-RESPA1 integrators. Epot and Epol designate potential and polarization energy respectively,
both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). Speedup are
computed vs. a 1 fs Velocity-Verlet reference, both with and without ASPC.
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Errors obtained on the energies are below the 2% bar, even for the 0.25/2.5/5 integrator who yielded

incorrect polarization energies. This shows that the static properties are now back to a correct repre-

sentation.

BAOAB 1fs 0.25/2/4 0.25/2.5/5 0.25/2/6

D 1.82 ±0.01 1.84 ±0.02 1.92 ±0.03 1.96 ±0.01

Table 4.4: Di�usion coe�cients obtained using BAOAB-RESPA1 integrators. D is the di�usion constant
(expressed ×10−5 cm2/s). Note that the reference is now a pure BAOAB one (no RESPA splitting).

As explained previously, the dynamics are modi�ed since we are now in the Langevin framework,

and more speci�cally given the use of a friction term. One should thus expect to have a change in the

dynamical behaviour of the systems. This will re�ect on the di�usion constants values, and it would

make no sense to compare them to a Velocity-Verlet reference. As a consequence, we computed a new

reference value, using the BAOAB scheme but no splitting (no RESPA or RESPA1) of the forces. Di�usion

coe�cients obtained with the various splits are then compared to this value, in order to stay consistent.

As shown in table 4.4, the agreement is now much better (the biggest error is 8%).

This new reference is only necessary when trying to account for dynamic properties, as static and

structural ones are not in�uenced by the movement of the particles. Hence the BAOAB 1 fs reference is

required only here.

The same type of conclusions can be drawn from the radial distribution functions (�g. 4.3), where

while V-RESPA1 integrators exhibited discrepancies, the reference curves are now much better repro-

duced.

These various results show that the implementation of a BAOAB scheme in association with the

RESPA1 splitting allowed to solve the issues observed previously with the Verlet integrators. As claimed

by Leimkuhler and Matthews, the dynamics are stabilized and we can aim for higher time-steps.

Note that the speedup are exactly identical to the ones obtained with Velocity-Verlet. This is due to

the algorithms shapes: B-RESPA1 and V-RESPA1 are di�erent when it comes to the treatment of fast parts

only. The computations of the intermediate and slow terms, corresponding to the long range forces, is

the most expensive part, and it is treated equally in both algorithms.
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("elec", "VdW" and "pol" stand for electrostatic, Van der Waals and polarization, respectively).

Within Tinker-HP, Van der Waals terms are not treated using PME, but only with a cuto�. Therefore,

they don’t decompose in reciprocal and self-correction terms. Let us focus on the polarization terms

here, coloured in the previous equations. We have

Epol, total = Epol, real, short + Epol, real, long + Epol, recip + Epol, self (4.34)

which can easily be rewritten as

Epol, real, long + Epol, recip + Epol, self = Epol, total − Epol, real, short (4.35)

The INTERM and SLOW terms can thus be changed into

EINTERM = Eelec, real, short + EVdW, short + Epol, real, short (4.36)

ESLOW = Eelec, real, long + Eelec, recip + Eelec, self + EVdW, long +
[
Epol, total − Epol, real, short

]
(4.37)

This simple rewriting highlights that essentially two polarization terms are involved here: one for

the short range of the real part, and another for the whole energy term without range separation. This

means that one could chose to use two polarization solvers, one for each of these terms.

For the short-range real part Epol, real, short, the ideal solver would have to be fast (as it is evaluated

more often than the other), yet still exhibiting good properties, and in particular would ensure stability

of the dynamics. It would be further accelerated thanks to the use of a polarization matrix Treal,short

taking into account the range cuto�.

On the other hand, the long-range real part Epol, real, long has to be computed precisely, as it encom-

passes all the missing terms. This means that computation will be more expensive than for the �rst

solver. Fortunately, since this solver is only present in the "outer" time-step integration (it belongs to

the SLOW terms), which is computed less frequently, the impact of a more expensive computation will

hence be minimized.

We thus experimented using various solvers, and came up with the following pair.

• For the solution of the short-range real part, we used TCG1. It was developed precisely to compute

polarization at a lower computational cost, while ensuring good energy conservation: it is an
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ideal candidate. We used a preconditioner, but no guess or peek, as this allows for the fastest

computations while still making use of the cheapest re�nement we have.

• For the solution of the total polarization energy, we used a well converged PCG. As expected, it

is slower, but is a good solution to retrieve the small deviation to the exact solution that TCG1

would incur.

In terms of implementation, we thus designed a short-range version of the TCG solvers to compute

the Epol,real,short term, and the Epol,total term was computed as it used to be with no need for further

developments. To sum up, our strategy is the following: using an approximate but fast solver for the

high frequency terms, we hope to recover the low frequency terms by using a more precise solver at the

outer time-teps.

Numerical results obtained using these "BAOAB-RESPA+TCG1" integrators are reported in tables 4.5,

4.6.

System Verlet 0.5fs 0.25/2/4 0.25/2.5/5 0.25/2/6

Water (S3)
Epot -4459 ±39 -4457 ±44 -4433 ±43 -4411 ±45
Epol -2169 ±41 - 2146 ±40 -2124 ±39 -2119 ±40

Ubiquitin
Epot -27894 ±102 -27869 ±113 -27741 ±117 -27575 ±114
Epol -13052 ±98 -12919 ±98 -12819 ±98 -12746 ±102

Speedup
(vs. ASPC) – 2.32 2.7 2.9

(vs. no ASPC) – 3.4 3.9 4.2

Table 4.5: B-RESPA1+TCG1 integrators. Epot andEpol designate potential and polarization energy respec-
tively, both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). Speedup are
computed vs. a 1 fs Velocity-Verlet reference, both with and without ASPC.

We can see that the energies are well conserved, as they remain beyond 3% of relative error. Given

the way the polarization terms were splitted, this is not an obvious results. It is an a posteriori justi�-

cation for the resplitting of the terms we wrote in equation 4.35, e�ectively ensuring that our strategy

works.

Results shown on the di�usion constants (table 4.6) are also very satisfying, the error compared to

a BAOAB 1 fs reference remain roughly the same as the ones obtained previously without this particular
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BAOAB 1fs 0.25/2/4 0.25/2.5/5 0.25/2/6

D 1.82 ±0.01 1.92 ±0.02 1.94 ±0.02 1.88 ±0.04

Table 4.6: Di�usion constants obtained with B-RESPA1+TCG/HMR integrators. D is the di�usion constant
(expressed ×10−5 cm2/s). Note that the reference is now a pure BAOAB one (no RESPA splitting).

treatment of the polarization.

Thanks to this rewriting of the polarization energy terms, we could make use of our previous devel-

opments regarding polarization solvers, and more precisely of the rapidity and robustness of the TCG1

solver. This also allowed e�ective speedups to progress and reach a newmaximum (4.2 when comparing

with a no-ASPC reference).

4.2.5 Hydrogen Mass Repartitioning: the �nal blow ?

So far, we have described several methods to improve the maximal time-step that one can use, whether

it lies in the integration scheme itself, or in a re�ned treatment of the forces.

The bottleneck in this time-step race will always be the high frequency terms. Indeed, in order to

correctly reproduce a phenomenon occurring at a very short time period, one needs to select a time-step

several times smaller than this period. Looking at our classical molecular dynamics, it appears quite

logically that these terms will involve hydrogen atoms, as they are (by far) the lightest. Procedures such

as7 or LINCS8 work towards constraining these motions, but do not allow for time-steps bigger than

2 fs.9

In order to eliminate these motions, Feenstra et al.9 proposed to redistribute the mass of heavy

atoms onto the hydrogen ones, such that the high-frequency terms disappear from the dynamicsv. This

method is named Hydrogen Mass Repartitioning (HMR). This allows for much bigger time-steps (their

2 fs limit is pushed to a 7 fs one), thus accelerating considerably the simulations.

Notwithstanding, by redistributing masses, the systems dynamics are modi�ed. While the authors

claim that this has little e�ect on the motion of the main protein chains, they report bigger conse-

quences when looking at the movement of water molecules. Di�usion (and subsequently viscosity) is

vAnother version of the HMRmethod is implemented using dummy atoms in lieu of hydrogen ones, but we did not explore
this possibility, because it is much more complicated to implement and yields results that are further away from the usual
properties of the studied system.
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found to be largely di�erent.

One should therefore not expect to reproduce every property to a high level of accuracy, and in

particular not the dynamic ones.

We implemented the HMR on an integrator using PCG for polarization solver, and on a second inte-

grator using TCG1 as the solver for the short range real polarization as shown in previous section. Tables

4.7, 4.8 and �gure 4.4 present the results obtained using these integrators.

System Verlet 0.5fs 1/10
3
/10 1/10

3
(TCG1)/10(PCG)

Water (S3)
Epot -4459 ±39 -4442 ±44 -4442 ±43
Epol -2169 ±41 -2133 ±39 -2131 ±39

Ubiquitin
Epot -27894 ±102 -27611 ±114 -27523 ±118
Epol -13052 ±98 -12837 ±97 -12792 ±98

Speedup
(vs. ASPC) – 4 4.72 (4.91*)

(vs. no ASPC) – 5.8 6.8 (7.0*)

Table 4.7: B-RESPA1(+TCG) integrators, using HMR. Epot and Epol designate potential and polarization
energy respectively, both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs).
Speedup are computed vs. a 1 fs Velocity-Verlet reference, both with and without ASPC. *: numbers
obtained using a PCG for the largest time-step, re�ned with an advanced preconditioner (Cholesky).

Energies obtained using this ultimate acceleration method are still in excellent agreement with the

reference value, as attested in table 4.8. We can deduce that the modi�cation on the dynamics still

allow for proper ensemble averages, as con�gurational space seems to still be well explored.

Radial distribution functions, which can also be quite sensitive when looking at the peaks of the

function, are also very close to the reference (Verlet) ones, con�rming that the HMR addition has no

dreadful impact on the static properties.

The di�usion constants, however, su�er from a signi�cant drop. This is expected, as we are now

using a method which modi�es the dynamics by redistributing the atomic masses (we will discuss this

in more details in the following paragraphs).

The speedup obtained here are the maximal values we will present in this work. The combination of

all the previous technique, namely RESPA1 splitting, BAOAB integration scheme, TCG/PCG polarization

treatment and HMR, yields speedups close to 5 times (7 if we compare to reference simulations using
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will be moving at a very low pace, undergoing strong friction. It will thus take a considerably longer

time to correctly explore all possible con�gurations with consistent probabilities. This is the risk be-

hind modifying the dynamics used in our simulation, and the last results obtained should be taken

cautiously.

A middle ground between the simulation acceleration and the degradation of the dynamics qual-

ity has to be found there. The maximum decrease of the di�usion constant observed with the

1/10
3
(TCG)/10(PCG) remains quite acceptable if we compare it to other integration methods aiming at

large time-step integration. Albaugh et al.11 indeed proposed a very e�cient integration combining

extended Lagrangian and large time-step integration, but reported di�usion constants o� by a factor 5.

Assessment on free energy computations

As we did for the Truncated Conjugate Gradient, we close this study on the integrators by assessing

their capability to produce free energies. We tested the fastest methods that we derived in this chapter

(BAOAB-RESPA1 using TCG and HMR). We have seen how sensitive this kind of computation could be,

and will thus use it as an ultimate test for our integrators. The computation method is the same as

the one presented in chap. 3 (see section 3.2.2), relying on successive thermodynamical windows that

progressively activate Van der Waals, then electrostatic interactions.

Ref. 1/10
3
/10-HMR 1/10

3
(TCG1)/10-HMR

∆Ahydr Na+ (kcal/mol) -91.5 (±0.13) -91.5 (±0.13) -91.4 (±0.13)

Table 4.9: Hydration free energies for the Na+ cation. "Ref" designates the reference integrator, namely
a 0.5 fs Verlet. HMR denotes the use of Hydrogen Mass Repartitioning.

The results displayed in table 4.9 demonstrate the excellent adaptability of our newly designed in-

tegrators with the highest speedup gains. The complexity and sensitivity usually to be worried about

when computing free energies demonstrates the stability and applicability of these integrators, even-

though these �nal versions alter the dynamics.

Note that the non-re�ned ("naked") TCG1 was used here, i.e. the fastest TCG and "roughest" version.

The objective was to stay as simple as possible to create a proof of principle. Any other setup could

nevertheless be chosen here, and this represents another direction in which we could expand our tests.

Last but not least, we limited the range of our time-step increase to values that were preserving our
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computed properties. One could however choose to extend this range at the price of a certain accuracy

on the properties – essentially, this is once again a tradeo� between computational speed and accuracy,

and di�erent applications may have di�erent ideal balance between these two.

Through an iterative search, we assembled several pieces of the MD integration’s arsenal, as well as

our own TCG algorithm, in order to build the most e�cient integrators possible. Speedup was increased

through forces splitting, via RESPA then RESPA1; stabilization of the dynamics was obtained thanks to the

BAOAB integration scheme; through the use of TCG and careful consideration of the polarization terms;

and �nally via the Hydrogen Mass Repartitioning technique.

This work was published as a letter in the Journal of Physical Chemistry Letters, and is reproduced

hereafter.
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ABSTRACT: We propose an incremental construction of multi-time-step
integrators to accelerate polarizable point dipole molecular dynamics while
preserving sampling efficiency. We start by building integrators using
frequency-driven splittings of energy terms and a Velocity-Verlet evaluation
of the most rapidly varying forces and compare a standard bonded/
nonbonded split to a three-group split dividing nonbonded forces (including
polarization) into short- and long-range contributions. We then introduce new
approaches by coupling these splittings to Langevin dynamics and to
Leimkuhler’s BAOAB integrator in order to reach larger time steps (6 fs) for
long-range forces. We further increase sampling efficiency by (i) accelerating
the polarization evaluation using a fast/noniterative truncated conjugate
gradient (TCG-1) as a short-range solver and (ii) pushing the outer time step
to 10 fs using hydrogen mass repartitioning. The new BAOAB-RESPA1
integrators demonstrate up to a 7-fold acceleration over standard 1 fs (Tinker-HP) integration and reduce the performance gap
between polarizable and classical force fields while preserving static and dynamical properties.

T he most straightforward way to speed up molecular
dynamics (MD)1,2 is to use larger time steps. In this

context, multi-time-step schemes emerged,3 but the largest
usable time step is limited by resonance effects.4,5 As pointed
out by various authors, it is possible to overcome these effects
by using modified dynamics that still sample the correct
measure, but these solutions alter the dynamical properties
(generalized Langevin equation (GLE);6 stochastic isokinetic
extended phase-space algorithm7−9). However, in practice, one
would like to accelerate MD while also preserving the
dynamics.6,10 This Letter addresses this problem in the
particular context of polarizable force fields (PFFs).11,12 This
class of methods is more computationally expensive than
classical force fields (FFs) because of the need to evaluate a
many-body polarizable energy.13,14 Multi-time-stepping is
therefore essential. The general consensus to ensure conserved
properties is to limit the use of reversible Reference System
Propagator Algorithm (RESPA) integrators3 to a bonded/
nonbonded force split and to use a 2 fs time step for the
nonbonded forces. Further splitting of the nonbonded forces is
not straightforward because of the many-body nature of
polarization but has been shown to be applicable.8,15 Indeed,
one can define a short-range polarization energy and evaluate,
at an outer time step, the slowly varying difference between the
actual polarization energy (and forces) and the short-range

ones. More precisely, one has to evaluate both the short-range
and total polarization terms at these outer time steps. The
reduced computational cost of the short-range polarization
contribution and the less frequent evaluation of the total one
effectively reduce the computational effort. Because the upper
limits of these strategies have not yet been evaluated by the
community, we will, in this Letter, assess this frontier to
improve simulation performances while respecting two
important constraints: (i) the mandatory need to preserve
static and dynamical properties and (ii) the possibility of a
black-box implementation allowing for strong computational
speedups without dependence to the studied system. In
everything that follows, tests have been made using the
AMOEBA PFF16 and the Tinker-HP software.17 Technical
details as well as various algorithmic setups are provided in the
Supporting Information (see section S1). A summary of our
incremental strategy is depicted in Figure 1. Interested
developers can also look at the code that will be available on
the Tinker-HP Web site18 and later on Github.19

A Popular Integrator: V-RESPA. Let us first evaluate the
limits of the bonded/nonbonded RESPA integrators for which
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all of the bonded terms are evaluated within a Velocity-Verlet20

loop (denoted as V-RESPA in the rest of the text) every 0.25 fs
and for which the nonbonded terms (van der Waals,
electrostatics, and polarization) are evaluated first at 2 and
then at 3 fs. To assess the accuracy of the associated
integrators, we ran simulations of 2 ns in the NVT ensemble
at 300 K with two test systems: a cubic box of 500 water

molecules, with a 24.66 Å edge, and a 9737 atoms box with
edges of 54.99 × 41.91 × 41.91 Å containing a solvated protein
(the ubiquitin). In both cases, periodic boundary conditions
for electrostatics and polarization were evaluated with Smooth
Particle Mesh Ewald (SPME)17,25,26 with standard parameters
(see the SI) as we chose a preconditioned conjugate gradient
(PCG) polarization solver using a diagonal preconditioner and
a 10−5 convergence threshold.13,14 For each of these systems
and for each integrator, we computed various static
observables: average potential energy, average polarization
energy, and for the bulk water system, radial distribution
functions. In this last case, we also computed the self-diffusion
coefficient, a dynamical property evaluated with the Einstein
formula by averaging over a series of time origins.27 The self-
diffusion coefficient is known to have a size dependency
vanishing at the infinite size limit,27 but here, these values are
only used as a means of comparison between integrators;
hence, these corrections were not applied. These tests were
performed in the canonical ensemble for which the choice of
the thermostat impacts the dynamics of the system. We ran
these tests using the global velocity rescaling thermostat
developed by Bussi et al. with a relaxation constant of 0.2 ps,
for which the dynamical properties are close to the one
obtained with pure Hamiltonian dynamics.28 These values
have been compared to the ones obtained with a Velocity-
Verlet integrator used at a 0.5 fs time step, which can be

Figure 1. “V-” (or “BAOAB-”) indicates that the numerical
integration scheme is Velocity-Verlet20 (or BAOAB21,22). “RESPA”
and “RESPA1” respectively mean the RESPA single-split (bonded vs.
nonbonded) strategy3 and the RESPA1 double-split (bonded, short-
range nonbonded, long-range nonbonded) one.23 “TCG” is the
acronym for truncated conjugate gradient, a fixed-cost noniterative
polarization solver.24 “HMR” stands for hydrogen mass repartition-
ing,10 implemented to avoid high-frequency motions.

Figure 2. Oxygen−oxygen radial distribution function for various integrators (see the text for notation). Radial distributions appear correct with
most of the setups. However, degraded results are obtained with the V-RESPA1 integrators using large outer time steps beyond 4 fs.
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considered as a reference. In the rest of the text, we will be
denoting the different time step lengths as a/b, a being the
bonded terms one and b the nonbonded terms one (both in
fs).
For both systems, the V-RESPA integrator where non-

bonded forces are evaluated at 2 fs gives similar results as the
reference (within statistical uncertainty), with a difference of
less than 2% for average energies (see Tables 1−3 of the SI).
With an outer time step of 3 fs, the error on the total potential
energy is still satisfactory (around 1%), but the error on the
polarization energy grows significantly (more than 2.5%). This
advocates for careful use of this setup.
Concerning O−O radial distribution function for water, no

significant differences with the reference Velocity-Verlet (0.5
fs) ones can be observed among these different methods (see
Figure 2).
The self-diffusion coefficients of water are also nicely

preserved for the V-RESPA integrator with a 2 fs outer time
step, though it is slightly off (around 8%) with a 3 fs outer time
step (see Table 1, SI).
Further Range Separation in Polarizable Force Fields: V-

RESPA1. As a second part, we will now evaluate the limits of
other RESPA integrators, for which the nonbonded terms are
further split in two parts, the short- and long-range. We are
now considering three terms: the bonded, the nonbonded
short-range, and the nonbonded long-range terms. Regarding
the split of the electrostatics and the polarization energies, we
chose to use the RESPA1 logic,23 where the short-range part of
the electrostatic (and polarization) energy is defined as the
short-range part of the real space SPME energy. In this case, it
has been shown that the stability of the integrator is less

dependent on the smoothing parameters used to switch
between short- and long-range.29 Details of the definition of
these short- and long-range forces as well as these smoothing
parameters can be found in the SI. We test various setups
within this context: the bonded forces are always evaluated
every 0.25 fs, but the short-range nonbonded ones are
evaluated either every 2 or 2.5 fs, and the time step of the
long-range forces (that has to be a multiple of the previous
one) is either 4, 5, or 6 fs. In the rest of the text, these
integrators will be denoted as V-RESPA1. We will be denoting
the different time step lengths of the integrators as a/b/c, a
being the bonded term time step length, b the short-range
nonbonded, and c the long-range ones (all in fs).
For the bulk water system (see Table 4 in the SI), we

observe that both the average potential and polarization
energies are preserved within 2% of the reference value for the
0.25/2/4 and the 0.25/2.5/5 setups but that the average
polarization energy is more than 2% off for the 0.25/2/6 setup.
Concerning the radial distribution functions of water, it is clear
that only the 0.25/2/4 integrator gives satisfactory results as
other choices diverge from the reference, as can be seen in
Figure 2. Furthermore, if the self-diffusion coefficient is stable
for the 0.25/2/4 integrator (see Table 5, SI), it exhibits a
dramatic decrease for the other ones (falling at 1.34 instead of
2.08 for the 0.25/2/6 setup). This shows not only that the
dynamical properties are not well preserved with these setups
but also that the computational gains expected due to the use
of a larger time step are counterbalanced by a lower sampling
rate.6,10

Indeed, as pointed out by Berendsen,6,10 such a decrease in
the self-diffusion coefficient is expected to reduce the sampling

Figure 3. Average potential and polarization energies (in kcal/mol) for a 500 molecule water box and solvated ubiquitin computed using various
integrators.
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efficiency by a similar amount because it is associated with an
increase of water viscosity and thus a slowing down of large-
scale motions. For the solvated ubiquitin, it is also clear that
only the 0.25/2/4 setup corresponds to satisfactory accuracy as
the other ones give average potential and polarization energies
off by more than 3% (see Table 6, SI).
Recovering Accuracy through Langevin Dynamics: The New

BAOAB-RESPA1 Integrator for Polarizable Force Fields. Thirdly,
another way to sample the canonical ensemble is Langevin
dynamics, where coupling to a heat bath is made through
additional local friction and dissipative stochastic terms. The
dynamics is then known to be altered compared to the pure
Hamiltonian one, but this impact is expected to be small for a
relatively small friction constant (less than 1 ps−1). In this
context, Leimkuhler and collaborators proposed an integrator
for Langevin dynamics based on operator splitting and a
particular ordering of the terms of the equations of motion
named BAOAB.21,22 They showed in various contexts21 that
this integrator has improved accuracy for configurational
sampling compared to other ones. We thus also tested the
previously presented splittings using this new integrator, with a
1 ps−1 friction constant (they will be denoted BAOAB-RESPA
and BAOAB-RESPA1 in the rest of the text ; see the SI for
additional description of these integrators), and noted a
significant improvement in terms of accuracy (reported in
Tables 7−9 of the SI).
Indeed, for the bulk water system (Table 7 of the SI), the

errors for the BAOAB-RESPA integrator with a bonded/
nonbonded split and a 3 fs outer time step are limited to less
than 1% for the average total potential energy and 2% for the
average polarization energy, in both cases staying within
statistical error, compared to 1.1 and 2.8% for the Velocity-
Verlet-based integrator. Figure 2 also shows improved
agreement with the reference for the water radial distribution
compared to RESPA. The same behavior can be observed on
the solvated ubiquitin, for which both of these values stay
respectively below 1 and 2%, within statistical error (see Table
9, SI). Because the dynamics is modified when running NVT
trajectories with Langevin, even if the differences are expected
to be small for a small friction, comparing values of the self-
diffusion coefficients obtained with these integrators only
makes sense by taking as a reference a numerical scheme
integrating Langevin dynamics with conservative parameters.
This is why we chose, as a reference for these values, the ones
obtained with a 1 fs BAOAB integrator and 1 ps−1 friction,
which as expected gives self-diffusion close to the reference
Velocity-Verlet one (1.82 versus 2.08). For the BAOAB-
RESPA integrators, we see that errors in the self-diffusion
coefficients (see Table 8, SI) are limited to 6% with a 3 fs outer
time step compared to 8% with a similar time step and a
Velocity-Verlet inner loop. The better performances of
BAOAB-based integrators with respect to the Velocity-Verlet
ones becomes obvious within a RESPA1 split. Indeed, we
computed the same observables for the BAOAB-RESPA1
integrators (see Tables 10−12, SI, and Figures 3 and 4),
equivalent to the V-RESPA1 integrators, and we see that the
average potential and polarization energies are strikingly more
stable and always within 2% error with respect to their
reference value, that is to say, within statistical uncertainty.
Similar comments can be made for the radial distribution
functions: unlike the Velocity-Verlet integrators, they almost
perfectly overlap with their references even with a 5 or 6 fs
outer time step. When using the Velocity-Verlet-based

RESPA1 integrators with an outer time step larger than the
most conservative (4 fs) one, the diffusion coefficient showed a
dramatic decrease (see Figure 3 and Table 5 in the SI). Yet, in
the BAOAB-RESPA1 case, this dynamical observable remains
far more stable for all integrator setups: even for the choice of
evaluating long-range nonbonded forces every 6 fs, the error is
less than 8%, whereas it exceeds 35% in the equivalent V-
RESPA1 setup. This highlights again that BAOAB-RESPA1
integrators are not only more accurate but also ensure a
conserved sampling rate, which is not the case for the V-
RESPA1 ones.
Concerning the effective speedups in our implementation,

Table 1 displays the gains obtained for the BAOAB-RESPA
and the BAOAB-RESPA1 integrators (compared to a regular 1
fs Velocity-Verlet). They are the same as the one obtained for
the V-RESPA and the V-RESPA1 integrators. We show two
entries in Table 1: one where a guess based on Kolafa’s Always
Stable Predictor Corrector30 (ASPC) is used for the induced
dipoles (standard Tinker-HP setting), but only at short-range
for the RESPA1 integrators, and one where the “direct field”
guess is used,13,14 showing that up to a 2.53 speedup (3.7
without ASPC) is achieved. Note that for the RESPA1
schemes, additional gains are made in the long-range
polarization solvers by using, at the same time step, the
short-range dipoles obtained as a guess for the long-range ones,
effectively reducing the number of iterations required to
converge. For the BAOAB-based integrators, the benefits of
using the RESPA1 splitting are clearly demonstrated as the
0.25/2.5/5 and 0.25/2/6 frameworks are both faster than the
0.25/3 RESPA integrator for a similar accuracy.
Speeding Up BAOAB-RESPA1: TCG-1 Solver for the Short-

Range Polarization and Hydrogen Mass Repartioning. When
using a RESPA1 multi-time-step integrator and a PFF, the sole
purpose of the short-range polarization energy is to eliminate
the high-frequency part of the total polarization energy.8,31

This is why an approximate but less computationally expensive
and nonparametric expression of the polarization energy can
be used to fill this role and provide an additional speedup. In
that context, we decided to use the recently introduced
truncated conjugate gradient (TCG)24,32 as a short-range
solver. TCG can be chosen to be minimal in cost (TCG-1 with

Figure 4. Self-diffusion (D) coefficient for various integrators (in 10−5

cm2 s−1).
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a diagonal preconditioner but without any guess and without a
peak step) to be the fastest possible. This coupling provides an
additional computational gain at a conserved accuracy (see
Tables 13−15, SI), corresponding to a final speedup of more
than 4 times compared to a regular MD of 1 fs with a Velocity-
Verlet integrator (see Table 1). Such a polarization setup offers
full energy conservation, and the static and dynamical
properties are marginally affected by this choice.13,14,24

At this point, we reached the performance limits if one wants
to preserve tight accuracy on the dynamics. One of the most
natural ways to further increase the size of the usable time step
when simulating a large biological system is to redistribute the
mass of the heavy atoms on the hydrogens that they are
carrying (a method named hydrogen mass repartitioning
(HMR)10), thus limiting the high-frequency stretching
motions of these atoms while keeping the same configurational
potential energy surface. In the following, we show that this
redistribution allows one to use even larger time steps while
maintaining satisfactory accuracy with a BAOAB-RESPA1
integrator and the same TCG-1 short-range polarization solver
as before (Tables 16−18, SI). As can be seen in Table 1, the
approach appears to be a very good compromise: large
speedups can be obtained by pushing the bonded force time
step to 1 fs, the short-range nonbonded forces time step up to
10

3
fs, and the outer one up to 10 fs. Details on how the mass

repartitioning is done can be found in SI (section S1). A
resulting acceleration of 4.72 (6.8 without ASPC) is obtained,
keeping the errors on the average energies below 2%,
maintaining an accurate evaluation of radial distribution
functions and a good enough evaluation of the self-diffusion
coefficient so that sampling efficiency is preserved. Because
PCG, as a Krylov method, is systematically improvable,13

additional small speedups can be obtained by focusing on the
long-range PCG solver performances. For example, besides
using a diagonal preconditioner, one could use more advanced
techniques such as those proposed by Skeel33 or by Beran.34

Improved performances of 3−4% are observed, reaching a
global acceleration of more than 7-fold, with the same accuracy
as a 1 fs Velocity-Verlet scheme without ASPC. Finally, beside
the net acceleration, another advantage of the TCG use lies in
the absence of use of a dipole history (as in predictor-
correctors such as ASPC), leading to a method free of time-
reversibilty and volume preservation issues.24 Finally, the small
decrease (8%) of the self-diffusion constant (see Figure 4)
observed in the most aggressive setup has to be compared with
actual available large step methods9 that, despite their qualities,
are not able to maintain accuracy on dynamical properties,
providing diffusion constants reduced by a factor of 5.9 Our
approach does not suffer from these problems: it remains
operational, maintaining sampling efficiency.
To illustrate the robustness of these approaches, we

performed several tests taking advantage of our massively

parallel AMOEBA production implementation in Tinker-HP.17

First, we checked the stability of the dynamics using the fastest
available setup. We provide a 15 ns simulation of ubiquitin (see
SI, section S3): the potential and polarization energies
normally fluctuate around their mean values, demonstrating
the stability of the approach. Furthermore, we computed the
average molecular dipole moments for the bulk water systems
and confirmed their full stability (see SI, section S4). Second,
we ran simulations on large systems of biological interest,
namely, the solvated dihydrofolate reductase protein (DHFR,
23358 atoms) and the solvated Satellite Tobacco Virus
(STMV, 1066628 atoms). The discussed speedup of 7-fold
(vs a 1 fs/Velocity-Verlet/PCG-10−5) is conserved as we
obtained a production of 22.2 ns/day on 680 cores for DHFR
and 1.2 ns/day on 10800 cores for STMV. Such results are of
major interest, as a 7-fold acceleration will enable one to save
millions of hours of computing time while enabling long and
accurate polarizable molecular dynamics studies on large
systems. Finally, we computed a more involved property that is
of key importance in biological simulations: hydration free
energies. We applied the Bennett acceptance ratio method,35 a
commonly used approach to compute free energy differences36

to evaluate the solvation free energy of a sodium cation in
water. Results are shown in Table 2, and practical details on

the choice of alchemical free energy difference windows can be
found in the SI (section S1). Even for the fastest setup, the
values obtained are within 0.1 kcal/mol of the 89.7 kcal/mol
for the reference,37 demonstrating the validity of these
acceleration schemes and their capability to preserve accuracy.
To conclude, after examining the limits of a standard

Velocity-Verlet integrator for PFFs used in combination with a
RESPA1 split, we introduced new BAOAB-RESPA1 Langevin
integrators coupled to a fast short-range noniterative TCG-1
polarization solver and HMR, achieving all together large
computational speedups. Two optimal BAOAB-RESPA1
setups were presented and compared to a 1 fs Velocity-Verlet
reference: (i) one (namely, 0.25/2(TCG)/6) for which all
properties are preserved while providing a global speedup of
more than 4-fold and (ii) a second (1/10

3
(TCG)/10+HMR)

for which dynamical properties are slightly affected but where
sampling remains efficient, offering a strong acceleration up to
7-fold. As accuracy is maintained and sampling efficiency is
preserved while being system-independent, the proposed
methodology can be used as a black-box in our Tinker-HP
framework, benefiting from its massive parallel implementation

Table 1. Speedup of BAOAB-RESPA and BAOAB-RESPA1 Integrators Calculated with Respect to the Velocity-Verlet
Integrator at 1 fsa

splits 0.25/2 0.25/3 0.25/2/4 0.25/2.5/5 0.25/2/6 0.25/2(TCG)/4 0.25/2.5(TCG)/5 0.25/2(TCG)/6 1/ /10
10

3
1/ (TCG)/10

10

3

ASPC 1.75 2.37 1.72 2.43 2.53 2.32 2.7 2.9 4 4.72 (4.91*)

No ASPC 2.53 3.42 2.5 3.5 3.7 3.4 3.9 4.2 5.8 6.8 (7.0*)

RESPA-type R R R1 R1 R1 R1 R1 R1 R1(HMR) R1(HMR)
aThe types of RESPA integrators are defined by R1 = RESPA1 and R = RESPA. Speedups obtained with V-RESPA and V-RESPA1 integrators are
identical. * = replacement of the PCG diagonal preconditioner by an improved technique;33,34 see the text.

Table 2. Hydratation Free Energies for the Na+ Cation

Velocity-
Verlet 0.5 fs ‐1/ /10 HMR

10

3
‐1/ (TCG1)/10 HMR

10

3

ΔGhydrat Na
+

(kcal/mol)
89.7(±0.13) 89.7(±0.13) 89.6(±0.13)
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and offering therefore further computational gains.17 Such
findings are game-changing as they extend the applicability of
polarizable MD to longer-time-scale simulations and larger
systems. In practice, the resulting performance gain helps
reduce the computational gap between point dipole PFFs such
as AMOEBA and more tractable models such as Drude38 or
even nonpolarizable force fields such as CHARMM39 or
AMBER.40
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Conclusion

Molecular dynamics is an essential tool for understanding the microscopic world, but requires the

development of meaningful, accurate models correctly accounting for the complexity of atomic and

molecular behaviours. From simple chemical reactions to biological systems interacting, a wide range

of methods, based on quantum and classical mechanics, have been studied and perfected.

Through careful numerical simulations of the systems of interest, MD gives access to invaluable

thermodynamical quantities, including free energies or phase change enthalpies, but also to dynamical

and structural ones, characterizing the movement of particles and their organization. Accuracy of the

simulations is directly dependent on the models chosen to reproduce physical interactions, namely the

force �elds. The family of force �elds is large, and comprises several generations, where the oldest ones

only mimick the strongest coupling terms using simple approximations. Polarizable force �elds, on the

other end, are the youngest generation. On top of using re�ned (second, third order) approximations

that were the mainspring of their predecessors, polarizable force �elds aim at taking the electronic

density into account, without spending the (very expensive) cost of quantum calculations. A fewmodels

were developed in order to explain the behaviour of this highly complex contributions as simply as

possible. Each comes with its own tools and calculation process, its perks and drawbacks.

This work focused on the induced dipole polarization model, assimilating the polarized electronic

density around atoms to a point-dipole vector. This model show the best accuracy amongs its fellows,

as well as being the most e�cient computationally-wise. However, using this approach requires the

implementation of a self-consistent solver which considerably slows down the simulation.

We thus proposed a new algorithm, the Truncated Conjugate Gradient (TCG), based on a truncation of

the state-of-the-art polarization solver. This new solver has several advantages over the previous one:

since the user can choose beforehand the number of solver iterations to be performed, the scheme
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becomes non-iterative, and its cost can be chosen to be low. Various simulations show that even at

very low order, the TCG yields very good results, which validates its interest as a faster polarization

solver.

The non-iterative nature of the method also means that one can derive exact formula for the in-

duced dipole values, their associated interaction energies, and the forces they elicit. As a consequence,

one can compute forces that are exactly consistent with the induced polarization model, ensuring a

much better energy conservation. Essentially, TCG dynamics can be described as very stable simula-

tions whose potential energy surface is o�setted by a small quantity.

Re�nements can be implemented to further improve the TCG’s performance in terms of accuracy.

The peek-step, in particular, is a parametrizable extra step in the polarization solving process allowing

to obtain very accurate polarization energies (and even to cancel the o�set evoked earlier).

These developments are conceptually quite simple, as they are merely the consequences of a trun-

cation of a very well studied algorithm, the Conjugate Gradient. However, they are quite involved in

terms of implementation, and producing a usable program is not trivial. We thus proposed a strategy

to properly code the TCG and its associated forces.

The new algorithm was tested on many di�erent systems such as liquid water boxes of di�erent

sizes, solvated proteins, and even ionic liquids. Static properties, such as polarization and potential

energies, a dynamical property (the di�usion coe�cient), radial distribution functions were computed

and compared to references. In every instance, TCG performed well, with the �rst order of truncation

(TCG1) appearing as a good choice for a very cheap polarization solver, while the second order (TCG2)

establishes itself as a perfectly viable alternative to the slower, state-of-the art solvers, exhibiting very

small errors in the results.

To assess the behaviour of TCG on more advanced properties, hydration free energies of Na+ cations

were computed. Free energies are very important thermodynamical quantities from the purely physical

problems to biochemical systems, but their estimation requires very �ne computations. TCG robustness

is rea�rmed, as the second order of truncation yields almost perfect results. The �rst order of trun-

cation plays again the role of a very cheap estimator carrying a more important error. Reconsidering

on the free energy calculation schemes, a reweighting technique to post-treat low-precision trajectory

using high-precision parameters allow to extract better values for a cheaper price was presented.
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Nevertheless, we observed that an important number of di�erent simulations had to be carried out

in order to extract reliable free energy values. Keeping our initial objective of acceleration of the polar-

izable simulations, we then turned towards a cornerstone of molecular dynamics: the integrator.

Simple (Euler) approximations can give stable integrator schemes. Yet an interesting zoology of

methods can be explored in order to improve these "primary" integrators. We presented step-by-step

improvements of the computational speed, following the developments hereafter. Using a slightly more

involved classical mechanics framework, splitting strategies such as RESPA and RESPA1 emerged. These

splitting treat motions di�erently depending on their typical frequency, so that adapted time-steps can

be used. Stabilization of the accelerated dynamics can be achieved thanks to the Langevin equations

and the BAOAB integration scheme. By reconsidering the splitting of the polarization forces, we put our

TCG to good use by exploiting its stability and rapidity properties. As a last e�ort, the Hydrogen Mass

Repartitioning, preventing motions of the highest frequency (involving hydrogen atoms), was added to

our new integration strategy.

Numerical tests were performed throughout this design process, allowing us to �nally propose two

optimal integrators. The �rst one is tightly conservative and reaches speedup up to �ve times the

standard (1 fs) integrators. The second one is slightly less precise when it comes to the dynamical

properties, but allows seven-fold speedups of the simulations, while maintaining very good accuracy

on static properties and even free energies.

The work presented in this thesis, initially started on the simple truncation of a polarization solver,

proved to surpass our initial expectations. Indeed, the Truncated Conjugate Gradient reshapes the

landscape of polarizablemolecular dynamics, bymaking it muchmore a�ordable as well asmore stable.

Through a lot of e�orts in implementation and testing, we now achieved a very good understanding of

its behaviour and its possible re�nements. The computational bottleneck that induced polarization

represented is now solved. Polarizable Molecular Dynamics can not be considered as "slow" anymore.

The numerical experiments already carried out using TCG proved its versatility and applicability, and

it was incorporated into the development of new MD integrators, who bene�ted from its acceleration

and even more strikingly from its improvements on steadiness of the dynamics with respect to large

time-steps. These new developments have already been used as production codes by several members

of our laboratory, who bene�ted from their steadiness and improved performances.
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Furthermore, all this work was done with a high-performance oriented mindset, and is highly par-

allel. It is implemented within Tinker-HP as one of the engines of the 1.2.0 release. Our seven-fold

acceleration and its excellent free energy results will thus be available for all and for all computational

resources. Thanks to these improvements, we hope to open the door to complex biological problems,

such as protein-protein interactions and docking processes, and to unlock very long scale simulations

aiming at the microsecond frontier. The proposed accelerations could greatly bene�t �elds such as

pharmacology, where computing accurate – and fast ! – free energies is important, enabling better

tools for predictions and drug design.

As a conclusion, this work is now growing branches in the MD integrators domain, in free energy

computations, and in Monte-Carlo simulations, overcoming the initial polarization problem. The math-

ematical basis on which the TCG was built makes it systematically improvable, while providing us with

well controlled methods; many more re�nements could be implemented (better guesses, new precon-

ditioners...) that have yet to be explored. Next implementation steps could bene�t from automatic

di�erentiation to avoid their complexity and therefore further increase accuracy through inclusion of

more advanced mathematics.

TCG opened the door to a whole family of polarization solvers, that we can only hope to explore in

the future.





Appendix

Notations for the Truncated Conjugate Gradient expressions

Vectors

• r0 = E − Tµ0

• p0 = r0

• P1 = Tr0

• P2 = t2P1 − t4T2r0

• P3 = (1 + β2t2)Tr0 − (t4 + β2t4)TP1 + γ1TP2

Scalars

• n0 = rT
0
r0

• t1 = rT
0
P1

• t2 =
n0 | |P1 | |2

t 2
1

• t3 = t1PT1 P2

• t4 =
n0

t1

• t5 = PT
1
P2

• t8 = t2 | |P1 | |2 − t4t9

• t9 = rT
0
T3r0

• t10 = t 2
1
− n0 | |P1 | |2

• γ1 =
t 2
1
− n0 | |P1 | |2

t3

• sp0 = rT
0
E

• sp1 = PT
1
E = ET Tr0

• b1 = sp0 − γ1sp1

• b2 = sp0t2 − t4sp1

• spp1 = 〈αE, E〉

• spp2 = 〈αTr0, E〉

185
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• β2 =
n0 + t 2

4
| |P1 | |2 + γ2

1
| |P2 | |2 − 2t1t4 − 2γ1t4 | |P1 | |2 + 2γ1t4t5

(t2 − 1)n0

• γ2 =
n0 + t 2

4
| |P1 | |2 + γ2

1
| |P2 | |2 − 2t1t4 − 2γ1t4 | |P1 | |2 + 2γ1t4t5

(1 + β2t2)rT0 P3 − (t4 + β2t4)PT1 P3 + γ1PT2 P3

Analytical expression of the gradients

Second-order TCG (no peek-step):

E ′pol, TCG2 =
1

2

(
〈E′, µTCG2〉 + 〈µ′0, E〉 + 〈r′0, a

(2)
1,0
E + a

(2)
1,−1TE + a

(1)
1,1
r0 + a

(2)
1,2
Tr0 + a

(2)
1,3
T2r0 + a

(2)
1,4
T3r0〉

+ 〈T′r0, a (2)2,0E + a
(2)
2,1
r0 + a

(2)
2,2
Tr0 + a

(2)
2,3
T2r0〉 + 〈T′Tr0, a (2)3,1r0〉 + 〈T

′T2r0, a
(2)
4,1
r0〉

)
(38)

• a
(2)
1,0

= t4 + γ1t2

• a
(2)
1,−1 = −γ1t4

• a
(2)
1,1

=
2b1
t1
− 2np1b2

t3
− 2np2

1
t10b2

t 2
3
t1

+ 2
t9t10b2

t 2
3

+

2
np1sp0γ1

t 2
1

• a
(2)
1,2

= −2n0b1
t 2
1

+ 4
t1b2
t3
− 2

n0t9t10b2
t1t

2

3

+

4
t2np1t10b2

t 2
3

− 2 t8t10b2
t 2
3

− 44n0np1sp0γ1

t 3
1

• a
(2)
1,3

= −4 t1t2t10b2
t 2
3

− 2n0b2
t3

+ 2
n0sp0γ1

t 2
1

• a
(2)
1,4

= 2
t1t4t10b2

t 2
3

• a
(2)
2,0

= −γ1t4

• a
(2)
2,1

= −n0b1
t 2
1

+2
t1b2
t3
− n0t9t10b2

t1t
2

3

+2
t2np1t10b2

t 2
3

−
t8t10b2

t 2
3

− 2n0np1sp0γ1

t 3
1

• a
(2)
2,2

= −n0b2
t3
− 2 t1t2t10b2

t 2
3

+
n0sp0γ1
t12

• a
(2)
2,3

=
t1t4t10b2

t 2
3

• a
(2)
3,1

= −n0b2
t3
− 2 t1t2t10b2

t 2
3

+
n0γ1sp0

t 2
1

• a
(2)
4,1

=
t1t4t10b2

t 2
3

Gradients of the TCG polarization energies using a peek-step

At �rst order:

E ′peek, TCG1 = 〈µpeek, TCG1, E′〉 + 〈r′0, a
(1,p)
1,α0

αE + a
(1,p)
1,1α

TαE + a
(1,p)
1,1

r0 + a
(1,p)
1,2

Tr0〉

+〈T′r0, a (1,p)2,1
r0 + a

(1,p)
2,α0

αE〉
(39)

using
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• a
(1,p)
1,α0

= ω

• a
(1,p)
1,1α

= −t4

• a
(1,p)
1,1

= −2spp1ω

t1
a

• a
(1,p)
1,2

=
2n0spp1ω

t 2
1

• a
(1,p)
2,α0

= −t4ω

• a
(1,p)
2,1

=
n0spp1ω

t 2
1

At second order:

E ′peek, TCG2 = 〈µpeek, TCG2, E′〉

+〈r′
0
, a
(2,p)
1,1α

TαE + a
(2,p)
1,2α

T2αE + a
(2,p)
1,1

r0 + a
(2,p)
1,2

Tr0 + a
(2,p)
1,3

T2r0 + a
(2,p)
1,4

T3r0〉

+〈T′r0, a (2,p)2,α0
αE + a

(2,p)
2,1α

TαE + a
(2,p)
2,1

r0 + a
(2,p)
2,2

Tr0 + a
(2,p)
2,3

T2r0〉

+〈T′Tr0, a (2,p)3,α0
αE + a

(2,p)
3,1

r0 + a
(2,p)
3,2

Tr0〉 + 〈T′T2r0, a (2,p)4,1
r0〉

(40)

• a
(2,p)
1,1α

= −ωt2γ1

• a
(2,p)
1,2α

= −ωt4γ1

• a
(2,p)
1,1

= −2np1ωγ1spp1

t 2
1

+(ωt2spp1 + ωt4spp2)
(
2np1
t3

+
2np2

1
t10

t1t
2

3

+
2t9t10
t 2
3

)
−

2ωγ1spp2
t1

• a
(2,p)
1,2

=
4n0np1ωγ1spp1

t 3
1

+ (ωt2spp1 +

ωt4spp2)
(
−4t1

t3
+

2n0t9t10
t1t

2

3

− 4np1t2t10

t 2
3

+
2t8t10
t 2
3

)
+

2n0ωγ1spp2

t 2
1

• a
(2,p)
1,3

= −2n0γ1ωspp1

t 2
1

+ (ωt2spp1 +

ωt4spp2)
(
4t1t2t10
t1t

2

3

+
2n0
t3

)

• a
(2,p)
1,4

= −(ωt2spp1 + ωt4spp2)2t1t4t10t 2
3

• a
(2,p)
2,α0

= −ωγ1t2

• a
(2,p)
2,1α

= −ωt4γ1

• a
(2,p)
2,1

=
2n0np1γ1ωspp1

t 2
1

+ (ωt2spp1 +

ωt4spp2)
(
−2t1

t3
+

n0t9t10
t1t

2

3

− 2np1t2t10

t 2
3

+
t8t10
t 2
3

)
+

n0ωγ1spp1

t 2
1

• a
(2,p)
2,2

= −n0ωγ1spp1

t 2
1

+ (ωt2spp1 +

ωt4spp2)
(
n0
t3
+

2t1t2t10
t 2
3

)

• a
(2,p)
2,3

= (ωt2spp1 + ωt4spp2) t1t4t10t 2
3

• a
(2,p)
3,α0

= −ωt4γ1

• a
(2,p)
3,1

= −n0γ1ωspp1

t 2
1

+ (ωt2spp1 +

ωt4spp2)
(
n0
t3
+

2t1t2t10
t 2
3

)

• a
(2,p)
3,2

= −(ωt2spp1 + ωt4spp2) t1t4t10t 2
3

• a
(2,p)
4,1

= −(ωt2spp1 + ωt4spp2) t1t4t10t 2
3
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TCG timings using a 2 fs time-step

Solver Re�nements Water (S4) Ubiquitin [dmim+][Cl-]

order Prec. Guess Peek ns/day di�. ns/day di�. ns/day di�.

Ref. 3.06 0.0 0.58 0.0 1.57 0.0

PCG8 2.25 -26.6 0.40 -31.6 1.11 -29.1

Ref. - - - 5.19 0.0 0.97 0.0 1.50 0.0

PCG8 - - - 4.02 -22.6 0.71 -27.6 1.07 -28.1

TCG1 - - - 7.51 44.7 1.67 71.0 2.86 91.5

TCG1 - • - 6.17 18.9 1.15 18.0 3.63 142.8

TCG1 • - - 7.40 42.6 1.67 71.3 2.73 82.9

TCG1 - - ω�t 6.61 27.4 1.32 35.2 2.08 38.9

TCG1 • • ω = 1 6.12 18.0 1.26 28.9 1.98 32.5

TCG1 • • ω�t 5.82 12.2 1.23 26.4 1.91 27.9

TCG2 - - - 6.37 22.7 1.34 37.8 2.26 51.4

TCG2 • - - 6.38 23.0 1.38 41.2 2.27 51.5

TCG2 • • - 5.29 1.9 1.04 7.0 1.57 5.3

TCG2 - • - 5.13 -1.1 1.02 4.7 2.96 98.0

TCG2 - - ω�t 5.59 7.7 1.06 8.3 1.62 8.3

TCG2 • • ω = 1 5.10 -1.8 1.00 2.2 1.50 0.1

TCG2 • • ω�t 5.01 -3.5 0.97 -0.1 1.46 -2.2

Table 10: Timings for various TCG setups. For each simulation, 1000 2 fs time-steps were run using the

RESPA integrator. Simulations on the water system S4 were performed using 24 cores; ubiquitin and the

dimethylimidazolium solution with 48 cores. All timings are given in ns/day. The reference timings were

obtained using a PCG solver with a 10−5 convergence criterion. "PCG8" stands for the Preconditioned

Conjugate Solver with a 10−8 convergence criterion. "Di�." designates the relative di�erence, in percents,

with respect to the reference.





Tinker-HP: a massively parallel molecular dynamics
package for multiscale simulations of large
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We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and

to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles

electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of

use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with

appliedmathematics, Tinker-HP allows for long polarizableMD simulations on large systems up tomillions of

atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition

to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative

polarization solvers. The design of the code allows the use of various computer systems ranging from

laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP

proposes therefore the first high-performance scalable CPU computing environment for the development

of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to

Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations

are also provided. The possibilities, performances and scalability of the software are demonstrated via

benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water

boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well

as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP

appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size

grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of

its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-

fold acceleration over a single-core computation is observed for the largest systems. The extension of the

present CPU implementation of Tinker-HP to other computational platforms is discussed.

1 Introduction

Over the last 60 years, classical Molecular Dynamics (MD) has

been an intense eld of research with a high rate growth.

Indeed, solving Newton equations of motion to resolve the time-

dependent dynamics of atoms within large molecules allows to

perform simulations in various elds of research ranging from

materials to biophysics and chemistry. For example, in the
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community of protein simulations, classical force elds (FF)

such as CHARMM,1 AMBER,2 OPLS,3 GROMOS4 and others,5

enabled large scale simulations on complex systems thanks to

the low computational cost of their energy function. In that

context, various simulation packages appeared, oen associ-

ated to these FF such as the popular CHARMM,6 GROMOS7 and

AMBER sowares.8 Among these, Tinker (presently version 8

(ref. 9)) was introduced in 1990 with the philosophy of being

both user friendly and to provide a reference toolbox for

developers. Later on, the evolution of computer systems

enabled the emergence of massively parallel sowares dedi-

cated to molecular simulations such as LAMMPS,10 NAMD,11

Gromacs,12 AMBER (PME-MD),13 DLPOLY,14 Genesis15 or Des-

mond.16 As they were granted the use of large computational

resources, access to million atoms systems and biological time

scales became possible.17 Nevertheless, up to now, such simu-

lations are mainly limited to rst-generation molecular

mechanics (MM) models that remains conned to a lower

resolution approximation of the true quantum mechanical

Born–Oppenheimer potential energy surfaces (PES). However,

beside these methods, more advanced second generation

“polarizable” force elds (PFF) emerged in the last 30 years.18–28

Grounded on Quantum Mechanics (QM) and usually calibrated

on the basis of Energy Decomposition Analysis (EDA),29 they go

beyond pairwise approximation by including explicit many-

body induction effects such as polarization and in some cases

charge-transfer. Fluctuating charges, classical Drude

approaches or point dipole coupled to point-charge models

using distributed polarizabilities are among the most studied

techniques aiming to include polarization effects.28 On the

accuracy side, some PFF go beyond the point charge approxi-

mation incorporating a more detailed representation of the

permanent and induced charge distributions using QM-derived

distributed multipoles and polarizabilities.18,19,24,26 Recently,

a third-generation PFF using distributed frozen electronic

densities in order to incorporate short-range quantum effects30

appeared. In term of PES, these advanced force elds clearly

tend to offer improved accuracy, better transferability and

therefore are hoped to be more predictive. Unfortunately,

everything has a cost: such elegant methods are more complex

by design, and are therefore computationally challenging. Until

recently themore advanced point dipole polarizable approaches

were thought to be doomed for the simulation of realistic

systems due to the evaluation cost of the polarization energy.

Large scale polarizable production MD simulations were

limited to the use of the Drude-type/point-charge model (using

an extended Lagrangian propagation scheme)31 that was found

to be more tractable than point dipole models (using iterative

solvers) coupled to multipolar representation of the permanent

charge distribution. Nevertheless, despite this scalability issue,

time was not lost and accurate models were developed such as

the Tinker package, original home of the multipolar AMOEBA

PFF,24 specialized in offering a dedicated development platform

with all required advanced algorithms for these accurate tech-

niques. Moreover, ten years ago, a hardware technical revolu-

tion in the eld of High Performance Computing (HPC), had

a profound impact on MD simulations with classical FF.32

Indeed, the introduction of Graphical Processing Units (GPUs)

offered a brute force hardware acceleration to MD packages

thanks to simple- or mixed-precision implementations.33 Tinker

beneted from the availability of this low cost but powerful type

of hardware. It led to a GPU version of the code denoted Tinker-

OpenMM.34 The code is based both on Tinker and on the

OpenMM library (now version 7 (ref. 35)) which pioneered the

use of GPUs with polarizable force elds. Tinker-OpenMM

offers a 200-fold acceleration compared to a regular single

core CPU computation giving access to accurate free energy

simulations. However, when one considers the need for

biophysical simulations, this acceleration remains not

sufficient.

The purpose of the present work is to push the scalability

improvements of Tinker through new algorithms to explore

strategies enabling a 1000-fold and more speedup. These new

developments aim towards modern “big Iron” petascale

supercomputers using distributed memory and the code design

also offers consequent speedups on laboratory clusters and on

multicore desktop stations. The philosophy here is to build

a highly scalable double precision code, fully compatible and

consistent with the canonical reference Tinker and Tinker-

OpenMM codes. As the new code remains a part of the Tinker

package, it is designed to keep its user-friendliness offered to

both developers and users but also to provide an extended

access to larger scale/longer timescale MD simulations on any

type of CPU platforms. The incentive to produce such a refer-

ence double precision code is guided by the will to also perform

scalable hybrid QM/MMMD simulations where rounding errors

must be eliminated. This will bring us not to cut any corners in

our numerical implementation with the key mantra that one

should not scale at any cost, as the algorithms developed in this

interdisciplinary project should be based on solidmathematical

grounds.

The paper is organized as follows. First, we will present the

newly developed extension of 3D spatial decomposition and

memory distribution to polarizable point dipole models that is

at the heart of Tinker-HP for short-range interactions. Then we

will detail the handling of long-range electrostatic and polari-

zation interactions with a new framework coupling Smooth

Particle Ewald to Krylov iterative and non iterative polarization

solvers. We will then introduce the possibilities of the soware

and show benchmarks for selected applications in the context

of the AMOEBA PFF.24,36 Finally, we will present functionalities

of Tinker-HP that go beyond MD simulations in periodic

boundary conditions as we conclude by drawing some

perspectives about evolutions of the code towards next HPC

platforms.

2 Accelerating polarizable molecular
dynamics using massively parallel 3D
spatial decomposition

In this section, we describe the rst extension of 3D spatial

decomposition to polarizable point dipoles models dedicated to

production simulations. Indeed, in the past, point dipole model

This journal is © The Royal Society of Chemistry 2018 Chem. Sci., 2018, 9, 956–972 | 957
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implementations in parallel have been limited to the use of

a few dozen processors.37 In this section, we detail the paralle-

lization strategy used in Tinker-HP to overcome this problem

and to deal with local interactions, including the direct-space

part of electrostatic and polarization interactions. The long-

range, reciprocal eld part of such interactions, is discussed

in Section 3.

2.1 State of the art in massively parallel implementation of

classical molecular dynamics simulations

Several strategies10–12,16 have been devised in order to treat short-

range interactions on large-scale parallel computers using

distributed memory parallelism. In Tinker-HP, we have imple-

mented a spatial decomposition (or domain decomposition)

method. In this approach, the simulation domain is decom-

posed in 3D blocks and each block is assigned to a processor.

Each processor then handles the computation of the forces and

the update of the coordinates for the atoms assigned to the

block at each time-step. This strategy is motivated by the fact

that the interactions considered are short-range, and that the

positions of the atoms do not change much between two

consecutive time-steps. An example of such a decomposition

with 3� 3� 3¼ 27 blocks is given in Fig. 1. One can show10 that

if the cutoff (rc) involved in the short-range interactions is

superior to the size of an edge of a block, which is the case with

a high number of processors, the amount of data to be

communicated in and out of each processor at each time step

(the so-called communication volume) scales like O
�

rc
3
�

(if the

density of the system is uniform) independently of the number

of processors. As a consequence, the communications are local

which is an advantage of this method over the other ones.

However, achieving a good load-balancing is harder using this

strategy when the density of the system is not uniform or when

the simulation box is not a parallelepiped.

Let us give more details about the algorithm and the main

steps required to perform a time step of MD using this method.

We assume that the simulated system resides in a box that has

been divided in as many 3D blocks as the number of processors

used. Let us focus on a processor that has been assigned a 3D

block and let us assume that this processor knows the current

positions, velocities and accelerations of the atoms currently

belonging to this block. In integrator schemes such as velocity

Verlet, the rst integration step consists of an update of the local

positions and a rst update of the velocities. Because of these

position changes, some atoms may cross the local block bound-

aries and need to be reassigned to neighboring blocks. This step,

that we will call “reassign step” only requires local communica-

tions between a small number of neighboring processes.

In the second step, the forces are computed and used for the

second update of the velocities. This requires the processor to

know the positions of all atoms within the interaction cutoff,

that have to be communicated from the processors assigned to

the blocks that are at distance inferior or equal to the cutoff. We

will call this step, which also involves local communications

(but that may involve more distant processors than the previous

one) “position comm” step. Once this is done, the algorithm

loops back to the rst step.

The communication volume involved in the position comm

step can be reduced by taking into account the pairwise nature

of the fundamental operations needed to compute the forces.

Given a pair of atoms, in fact, one needs to choose which

processor will perform the elementary force computation. This

can be done on the basis of a geometrical argument. Among the

various methods, that are also called neutral territory

approaches,38 we choose the one presented by Shaw et al.,16

known as the midpoint method.38 This method picks out the

processor that computes an interaction between two atoms as

the one assigned to the subdomain where the center of the

segment between the two atoms lies. As a consequence, each

processor only needs to import information about atoms

located at less than
rc

2
from its block: one can show that the

communication volume is then, with d being the size of an edge

of a subdomain, VMP ¼ 3d2rc þ
3

4
dprc

2 þ
1

6
prc

3 as represented

schematically in Fig. 2. This is a signicant reduction with

respect to the naive method,38 especially at a high processors

count. Note, however, that within this scheme, a processor

might need to compute the elementary interaction between

atoms that do not belong to its block.

Furthermore, once the elementary pairwise computation has

been done, we can take advantage of Newton's third law and

communicate the force back to both processors from which the

positions originated (“force comm” step). This additional

communication cost is in general negligible compared to the

computational gain represented by the reduction of the

computations of the forces by half.

Additionally, the midpoint approach is simple enough not to

complicate too much the implementation, which is ideal for

a platform like Tinker-HP, meant to be shared with a commu-

nity of developers. Nevertheless, more elaborate techniques are

interesting and have been shown to reduce asymptotically the

amount of data that need to be communicated in the “position

comm” step and in the “forces comm” step. We are currently

studying these methods in the context of PFF to compare them
Fig. 1 Example of 3D spatial decomposition.
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to the present midpoint approach. Some of them should appear

in future releases of our code.

The algorithmic structure of a parallel (short-range) MD step

with spatial decomposition is shown in Fig. 3.

To address load balancing issues that may appear in non-

homogeneous systems (when equally sized subdomains contain

a very different number of atoms), a procedure in which the size

of the subdomains is iteratively changed has been implemented.

2.2 Distributed memory for simulations using point dipole

models

Distributed memory parallelism allows one to scatter the

memory among the processors and thus to run simulations that

would not be possible because of memory limitations. In

Tinker-HP, almost all data are distributed, this being possible

by reallocation of dynamically allocated arrays at regular

intervals. For example, during the computation of the non-

bonded forces at a O(N) computational cost using the linked-

cell method,39 the neighbor lists used, that are the most

memory-consuming data structures of the program, are reallo-

cated at the same frequency as they are updated. This is an

important aspect allowing Tinker-HP to remain efficient on

small computer clusters and desktop stations as the list builder

will adapt to the situation.

Unfortunately, some data structures such as the arrays con-

taining the global parameters are allocated once and for all and

cannot be distributed. This is especially problematic for PFFs

such as AMOEBA, that require more parameters than the clas-

sical ones: replicating these arrays for each processor would be

prohibitive. This issue can be circumvented by using shared

memory segments that can bemanaged withMPI (3.X) directives.

This means that these data are allocated only once per node and

are accessible by every processor within the node, reducing thus

memory requirements by the number of processors of the node.

2.3 Adaptation of the 3D spatial decomposition to point

dipole polarizable force elds

In this section, we will explain how the global concepts of 3D

spatial decomposition can be adapted to the special case of the

computation of the polarization energy and forces in PFFs. To

our knowledge this is the rst functional production imple-

mentation of such a technique in that context. Indeed, some of

us proposed recently a 1D spatial decomposition40 imple-

mentation for AMOEBA. Here we propose a full extension to

a 3D spatial decomposition to benet from further performance

enhancements. We will limit ourselves to the induced dipole

model that is used in AMOEBA and that is the one implemented

in Tinker-HP but the methodology is general and can be applied

to various types of point dipole models.

The computation of the polarization energy in PFFs using

the induced dipole formulation consists of two steps. First, a set

of 3N (N being the number of polarizable sites) induced dipoles

has to be computed by minimizing the functional

Epol ¼
1

2
m
T
Tm� m

T
E;

where E is a 3N vector representing the electric eld produced

by the permanent density of charge at the polarizable sites. This

is equivalent to solving the 3N � 3N linear system

Tm ¼ E, (1)

where T is the polarization matrix. A detailed analysis of the

polarization matrix and of the iterative methods that can be

used to efficiently solve the linear system in eqn (1) can be

found in ref. 41. Tinker-HP relies on Krylov approaches such as

the Preconditioned Conjugate Gradient (PCG) and the Jacobi/

Direct Inversion of the Iterative Subspace (JI/DIIS) algorithms.

Their scalability and robustness have been discussed in

previous works.40,41 Additionally, we recently introduced

a powerful non-iterative Krylov solver with analytical derivatives

named the Truncated Conjugate Gradient42,43 (TCG). Such

a method has the same scalability as PCG but offers a reduced

Fig. 2 Illustration of the midpoint rule in 2D: the square of edge
d represents a subdomain assigned to a process and the blue line
delimits the area that has to be imported by the latter.

Fig. 3 Schematic representation of a velocity Verlet step.
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cost with conserved precision as it does not suffer from the

typical dri observed in polarizable MD scheme based on iter-

ative techniques. For all these iterative methods, the building

blocks are matrix-vector products and scalar products. Focusing

on the short-range, direct space part of the computation, each

matrix vector product (MVP) is analogous to a force computa-

tion (as described in the previous section). Indeed, each MVP is

analogous to computing a set of electric elds due to a set of

dipoles so that in the context of a parallel MD with 3D spatial

decomposition, communications of the “neighboring” dipoles

are mandatory before each matrix-vector product: this is

equivalent to the “position comm” step previously described.

Since Newton's third law is used, symmetrical communications

of some electric elds created by the local dipoles have to be

communicated aer the matrix-vector product computation:

this is equivalent to the “forces comm” described above. The

scalar products require a global reduction and are naturally

distributed among the processors independently of the paral-

lelization strategy.

The computation of the induced dipoles by iterative methods

represents not only an important additional computational

cost, but also an important communication cost, as at each

iteration two of the three communication steps described in

Section 2 are required.

An essential part of our parallelization strategy is masking

communication by computation in the parallel solvers when-

ever possible. This is achieved by using non-blocking MPI

routines and by starting the receptions and the sendings of data

as soon as possible, and, at the same time, verifying that the

communications are nished as late as possible in the code, so

that computations are being made between these two states. A

schematic representation of a typical iteration of a polarization

solver is shown in Fig. 4.

3 Parallel algorithm for point dipoles
using smooth particle mesh Ewald

We present here new developments concerning the use of SPME

(Smooth Particle Mesh Ewald) using distributed multipole

electrostatics and polarizable point dipole models. Building on

our previous work40 where we proposed a 1D decomposition of

the distributed SPME grids, we now extend this formalism to

the use of 2D pencil decomposition. Such an approach offers

strongly improved performances especially when coupled to

efficient iterative and non-iterative Krylov polarization solvers.

In the previous section we focused the discussion on the par-

allelization strategy for short-range interactions. These include

the bonded and van der Waals interactions, as well as the short

range portion of the electrostatic and polarization interactions.

The long-range part of such interactions needs to be handled

separately, with a strategy that depends on the boundary

conditions used for the simulation. Two main strategies exist in

this regard: explicit solvent in periodic boundary conditions

(PBC) and implicit solvation models. In this section, we focus

on PBC. The additional possibility offered by Tinker-HP of

treating the boundary with a polarizable continuum solvation

model, namely, the Conductor-like Screening Model44–46

(COSMO), is presented in Section 6.

As we stated before, the method that we adopt for PBC is the

Smooth Particle-Mesh Ewald47 (SPME). It has become a stan-

dard algorithm in modern biomolecular simulations to

compute electrostatic interactions in periodic boundary condi-

tions, thanks to its advantageous O ðN log NÞ scaling. The

method has been extended to PFFs48 as well as to multipolar

interactions,49 possibly including penetration effects.50

Let us explain the steps that are followed during a SPME

computation for the electrostatic potential produced by

distributed multipoles. The exact same considerations apply to

the computation of the electrostatic and polarization forces and

during a MVP computation during the iterative solution of the

polarization equations. The electrostatic interactions are

divided into two parts, one of which is short-range and is treated

in the direct space, while the other is long-range and is treated

in Fourier space. For the rst, short-range part, the consider-

ation made in Section 2 apply: we focus here on the reciprocal

space computation. Such a computation requires the denition

of a 3D grid and the use of Fast Fourier Transforms, which

requires a signicantly different parallelization strategy. The

most standard one uses a 1D or 2D decomposition of the 3D

grid and has been described elsewhere12,40 in detail. Let us

summarize its main steps and analyze the parallelization

strategy employed in Tinker-HP.

The SPME computation requires to distribute the multipoles

on the grid using a B-spline interpolation and then to solve

Poisson's equation in the reciprocal space. The distribution of

the 3D grid is therefore what drives the parallelization strategy.

Fig. 4 Schematic representation of an iteration of a polarization
solver.
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In Tinker-HP, the grid is decomposed into 2D pencils, and each

pencil is assigned to a processor. The rst step of SPME consists

into assigning charges or higher order multipoles to the grid-

points. As explained in our previous work,40 this operation

requires local communications between processors assigned to

neighboring portions of the grid.

The second step consist into switching to Fourier space by

applying a forward FFT to the grid that has just been lled. In

Tinker-HP, this is entirely handled by the 2DECOMP&FFT

library.51,52

Then, the convolution with a pair potential47 is done in

Fourier space, which is a simple multiplication that is naturally

distributed among the processors without any necessary

communication.

Finally, the result of this multiplication is transformed back

to real space by applying a backward FFT, which is also taken

care of by 2DECOMP&FFT in Tinker-HP.

A nal local set of communications between processors

responsible for neighboring portions of the grid is done, fol-

lowed by local multiplication with B-splines. A schematic

representation of these steps is shown in Fig. 5.

Naturally, because the Fourier space decomposition of the

gridmay not t exactly the 3D spatial decomposition, additional

communications of positions are required before starting the

reciprocal part of a SPME computation. Furthermore, when

electrostatic or polarization forces are computed in this way, or

aer a matrix-vector multiplication in an iteration of a polari-

zation solver, communication of some of these forces or dipoles

are required.

Lagardère et al. showed40 that the reciprocal part of SPME

presented just above does not scale as well as the direct part with

the number of processors, because of the relatively poor parallel

scaling of the FFTs. Furthermore, because reciprocal space and

direct space computations are independent and because recip-

rocal space is usually computationally cheaper, a usual strategy

is to assign a smaller group of processors to reciprocal space and

the rest to the direct space. This strategy can be used in Tinker-

HP for both permanent electrostatics and polarization.

In that case, a difficulty arises in PFF computations. The load

balancing between direct and reciprocal space computations is

in fact essential to achieve a good scalability. However, the

relative cost of direct and reciprocal computations is different

for permanent electrostatics and MVP required for the

computation of the induced dipoles. At this moment, only

heuristic strategies have been implemented in Tinker-HP to

handle this problem.

4 Software possibilities

Tinker-HP is part of the Tinker 8 package and consequently it is

fully compatible with the canonical Tinker and the Tinker-

OpenMM (GPU) codes. Therefore, all Tinker's analysis and

visualization tools are available with Tinker-HP. Details about

these possibilities are not described here and can be accessed

on the Tinker community website (http://tinkertools.org). The

Tinker-HP source code is freely available to the academic

community: details and downloading informations can be

found on the Tinker-HP website (http://www.ip2ct.upmc.fr/

tinkerHP). In the following section, we detail the possibilities

of the code that will be contained in the incoming public

releases.

4.1 Polarizable molecular dynamics engine features

List builder. As we stated in themethod section, Tinker-HP is

designed to be used on all types of CPU-based computer

systems ranging from desktop computer to supercomputers. To

do so, the package embodies a fast O(N) massively parallel list

builder that is designed for both an extensive use of a large

number of cores and to enable also an efficient treatment on

a small number of cores.

Polarization solvers. Massively parallel implementation of

various polarization Krylov solvers are present and includes

iterative methods such as PCG, JI/DIIS. Both approaches can be

used in connection with Kolafaś Alway Stable Predictor (ASPC)53

that reduces signicantly the iteration numbers for 1 fs and 2 fs

timesteps simulations (see ref. 43 for discussion). An efficient

non-iterative/xed cost approach is also available: the Trun-

cated Conjugate Gradient (TCG). TCG is implemented at the

TCG1 and TCG2 levels with various renements.42,43 The TCG

approaches are a strong asset of Tinker-HP as they accurately

reproduce energy surfaces at a reduced computational cost and

provide analytical forces. Such an approach avoids numerical

dris appearing with iterative methods and therefore brings

enhanced energy conservation for long simulations. It is also

fully time-reversible and compatible with the use of larger time-

steps.

It is important to point out that an important choice in the

Tinker-HP strategy is to keep accuracy to the maximum by

retaining a double-precision approach. By denition, GPUs

have the strong advantage of using mixed precision which has

been shown to produce more stability than simple precision

computations. The strategy here is to build on the availability of

Fig. 5 Schematic representation of the computation of the reciprocal
part of the electrostatic energy and forces with SPME.
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the double precision to use algorithms that should/could not be

used in mixed precision but are expected to be fully operational

and faster in our case. For example, any CG methods are

sensitive to precision (the symmetry of matrices being lost) as is

the case for predictor-correctors such as the ASPC. Tinker-HP

offers a full use of these strategies and compensates for the

extra computational cost of double precision by more depend-

able algorithms.

Integrators. Most of the integrators available in Tinker have

been implemented including, namely velocity Verlet, Beeman

and RESPA54 which allows production MD simulations with 2 fs

time steps, and 3 fs timesteps using H mass repartitioning.

Simulation ensembles and associated tools. NVE, NVT and

NPT simulations are possible. Bussi and Berendsen thermostats

are available. NPT simulations are also implemented with

a Berendsen barostat.

Restraints and so cores van der Waals. Position, distance,

angle, torsions and centroid based harmonic restraints as well

as socore van der Waals and scaled electrostatics for free

energy calculations are available.

Geometry optimization. To prepare large systems encom-

passing millions of atoms through geometry optimization,

Tinker-HP offers a massively parallel version of Tinker's limited

memory BFGS quasi-newton nonlinear optimization routine

(LBFGS).

4.2 Available force elds

Advanced point dipole polarizable force elds. Tinker-HP

allows for electrostatics to range from point charges to fully

distributed multipoles (up to quadrupoles), point dipole

polarization approaches using distributed polarizabilities41

coupled to Thole (or dual Thole) damping approaches as well as

van der Waals interactions using the Lennard-Jones or the

Halgren functions. This choice was motivated as these func-

tional forms have been extensively used by various research

groups that could therefore easily use Tinker-HP with their own

parametrizations. Presently, two polarizable force eld models,

both relying on the Thole/point dipole polarization model, are

available. The rst model is the AMBER f99 polarizable model.

It is limited to point charges to compute the permanent elec-

trostatics and uses a 6–12 Lennard Jones for the van der

Waals.20,55 The second is the AMOEBA polarizable model which

has been shown to have a wide applicability for systems ranging

from liquids to metals ions, including heavy ones, in solution

and to proteins and to DNA/RNA.24,36,37,56–58 A major difference

compared to the AMBER model is the replacement of the xed

partial charge model with polarizable distributed atomic

multipoles till quadrupoles moments, allowing accurate repro-

duction of molecular electrostatic potentials, and higher reso-

lution rendering of difficult directional effects in hydrogen

bonding and other interactions. van der Waals interactions are

also different and use the Halgren buffered 14–7 function.59 The

AMOEBA polarizable model responds to changing or heteroge-

neous molecular environments and its parameterization was

performed against gas phase experimental data and high-level

quantum mechanical results. The AMOEBA model includes

high accuracy water model as well as parametrization for

organic molecules, proteins,60 ions and DNA/RNA complexes.

Classical force elds. By construction, the soware is able to

perform classical force eld simulations following the canon-

ical Tinker initial implementation of the AMBER, CHARMM

and OPLS potentials. Such force elds also benet from the

speed up of the massively parallel framework but our objective

is to reach comparable performance to the AMBER and

CHARMM (Domdec61) CPU implementations. The detailed

analysis of such code capabilities being beyond the scope of this

paper, fully dedicated to polarizable models, and it will be

discussed elsewhere. However, it can be noted that classical MM

that requires much less work than PFFs allows for a 5–8 accel-

eration of the production per day over AMOEBA (depending on

the use of TCG vs. PCG solvers) on the same computational

platform, and will be used for hybrid simulations with PFFs

coupled to non-polarizable parts of the system. For higher

performances using Tinker, one could use the Tinker-OpenMM

access to the OpenMM library implementation of such classical

FF. For example, it is possible to produce 305 ns per day for

DHFR with the same GTX 1080 card (mixed precision) and

settings used in this work using the AMBER force eld.

5 Benchmarks and applications using
the AMOEBA polarizable force field

The present implementation has been extensively tested and

reaches exactly the same accuracy as the canonical Tinker for

polarizable force eld when considering analogous algorithms,

allowing Tinker-HP to produce reference computations. All the

proposed benchmarks use the AMOEBA force eld. We tested

the performances of Tinker-HP on various systems. We studied

the scalability of the code dealing with homogeneous systems

such as bulk water, and inhomogeneous systems ranging from

ionic liquids to proteins. Finally we tested our approach on very

large biosystems.

5.1 Computer platforms

All tests have been performed on the Occigenmachine at GENCI

(CINES, Montpellier, France) and at CYFRONET (Krakow,

Poland) on the Prometheus machine. Occigen is a Bullx DLC

with Intel Xeon E5-2690 v3 (24 Haswell cores at 2.6 GHz per

node) and Intel Xeon E5-2690 v4 (28 Broadwell cores at 2.6 GHz

per node), Inniband FDR and 128 Go of memory per node.

Prometheus is a HP Apollo 8000 with Intel Xeon E5-2680 v3 (24

Haswell cores at 2.5 GHz per node), Inniband and 128 Gb of

memory per node. For consistency, all results are given for

Haswell processors. We observed an average four per cent gain

in speed on the Broadwell conguration, especially for

a suboptimal number of cores, i.e. before the scaling limit.

Some timings have been obtained using Tinker-OpenMM on

GPU cards (NVIDIA GTX 970 and GTX 1080), the best GPU

results (GTX 1080) can be found in Table 3 below, the GTX 970

productions being roughly half of the GTX 1080 ones.
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5.2 Simulations setup

Benchmark simulations (except free energies) were made in the

NVT ensemble with a Verlet/RESPA multi-time step integrator

with either a 2 fs or a 3 fs time-step (using hydrogen mass re-

partitioning in the latter case) for the non-bonded forces and

half of this value for the bonded forces. Two Krylov solvers were

considered here: iterative PCG and non-iterative TPCG, both

using a diagonal preconditioner.41,42 Note that we report here

the rst results ever using TCG coupled to SPME. The conver-

gence criterion for the PCG iterative solver was set to 10�5 D.

Electrostatics and polarization interactions were treated using

the PME algorithm with a real space Ewald cutoff of 7.0 Å. The

van der Waals cutoff was set 9.0 Å without any long-range

correction.

5.3 Homogeneous systems: water boxes and ionic liquids

Water boxes. We rst benchmarked the code on cubic water

boxes of increasing size: from 96 000 atoms up to 23.3 millions

atoms. Table 1 summarizes the characteristics of these boxes:

their size in Angstroms, the number of atoms they contain, the

size of the associated PME grid and the name with which they

will be referenced in the rest of the paper.

Fig. 6 show the detailed scalability up to almost 1 million

atoms.

A very good scalability is observed in the three cases. Table 3

displays the best production timings in ns per day. The code

appears to be competitive with the GPU numbers extracted from

Tinker-OpenMM even for a system such as the smallest water-

box test (Puddle, 96 000 atoms). In this case, Tinker-HP is

already 1.5 faster than a GTX 1080 card (3 times for a GTX 970)

but with double precision compared to mixed precision arith-

metics used by GPUS. As we will discuss later in the case of

proteins, the newly introduced 3D domain decomposition

algorithmic for polarizable FF becomes more benecial when

the size of the system grows and a rst advantage of Tinker-HP

is to be able to use the distributed memory system of the CPU

platform. Also for such large systems numerical instabilities of

the polarization solvers that result in energy dris40–43 are a key

error that must be contained. Double precision is highly pref-

erable when one wants to use advanced conjugate gradient

solvers (and Krylov approaches in general). Tinker-HP has an

advantage as it affords mathematically robust solutions for

“dri-free” polarization solvers (Truncated Conjugate Gradient,

TCG42,43) with analytic forces. Such techniques allow for (very)

long simulations. A stable adaptation of these methods to

mixed precision hardware (i.e. GPUs) is underway but is math-

ematically non-trivial. Note that for short to medium simula-

tions of a few dozen ns, the discussion is without object as the

driing issue will remain negligeable offering a full applica-

bility of GPUs acceleration. However, towards and beyond the

microsecond, the analytical forces polarization solvers will be

key for stable polarizable simulations. For the other benchmark

cases, the speedup increases to a 5 and 6-fold over a GTX970 (2

and 3-fold over a GTX1080) for 288 000 atoms (Pond) and

864 000 atoms (Lake) water boxes respectively. For the Lake box,

a detailed analysis of the scaling against ideal scaling is

provided in ESI S2.†We then pushed the code towards its limits

by testing very large systems including 7 776 000 and

23 300 000 atoms respectively. At these levels, GPUs have

memory limitations that makes such simulations impossible,

which is not the case with supercomputers relying on distrib-

uted memory. These “computational experiments” took place

on the Prometheus supercomputer (CYFRONET, Krakow,

Poland) and enabled us to test for the validity of the code on

a very large scale. Results show that Tinker-HP is still opera-

tional beyond 20million atoms. Of course, the production really

slows down to a few dozen ps per day but the performance is

noticeable as it would be quite enough to compute properties

such as electrostatic potentials or even a short ns-scale molec-

ular dynamics. Thus, one can expect, depending on the

machine used, to produce a ns in a few weeks on the largest

Ocean water box using TCG2/RESPA (3 fs). It is worth noticing

that the largest computation was limited only by the computer

system availability and that presently larger systems are

potentially accessible with more computational resources.

However, such very large computations require a different setup

than the others due to memory limitations and communication

issues. Indeed, for such a large number of atoms, FFTs really

become severely time limiting and intra-node communications

strongly affect performances. One solution that was used for

Ocean was to only use a fraction of the cores of a node to take

advantage of the node memory without suffering from excessive

communications. That way, if the Ocean test ran on 12 288

cores on 512 nodes, we used only 6 cores/node (on 24) to

actually perform the computation. This gave us the possibility

to better use the bandwidth of the interconnect cards (by

reducing contention in MPI transfers between cores and cards),

a strategy that compensates for the lack of active cores and that

can be used for any system size. We used the same strategy to

a lower extent for Sea as 17 cores out of 24 were active. Overall,

a rough estimate for the fastest Broadwell CPU conguration

(Occigen) is that using a RESPA (3 fs)/TCG2 setup, a routine

production of 1 ns per day is reachable for a million atoms.

Such a value is a combination of various hardware setups that

are not only dependent on the CPU speed (and numbers), as the

interconnection cards have a strong inuence on the nal

results (Fig. 7).

Table 1 Water boxes used for benchmark purposes

System Puddle Pond Lake Sea Ocean

Number of atoms 96 000 288 000 8 640 000 7 776 000 23 328 000

Size (of an edge) in Angstroms 98.5 145 205.19 426.82 615.57

Size (of an edge) of the PME grid 120 144 250 432 648

This journal is © The Royal Society of Chemistry 2018 Chem. Sci., 2018, 9, 956–972 | 963
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Ionic liquids. Room temperature ionic liquids (ILs) are

molten salts at room temperature that are formed by the

combination of organic or inorganic cations with (generally)

inorganic anions. These compounds exhibit a wide variety of

useful properties that led to their use in numerous applica-

tions.62–65 The unusual properties observed in ILs arise from the

inter- and intra-molecular interactions of the constituent ions.

Thus, the computational simulations of these systems greatly

benet from the use of highly accurate potentials. Recently

AMOEBA parameters for several ILs have been developed and

applied for various systems.66–68 It is known that polarization

effects result in better reproduction of transport properties.69–72

In addition, ILs are viscous uids and it is thus necessary to

perform relatively long MD simulations. Therefore, Tinker-HP is

an ideal platform for these systems given its HPC capabilities

and implementation of signicantly more accurate and efficient

algorithms for the evaluation of the polarization component.

Indeed, ILs usually require a lot more iterations than standard

molecules with standard solvers such as JOR (Jacobi Over

Relaxation, see ref. 41), which is not the case with Krylov solvers

such as PCG or TCG, with which such systems have been tested.42

As a rst example, simulations were performed for 1,3-dime-

thylimidazolium imidazolium/chloride ([dmim+][cl�]) for 200 ns

using the parameters reported by Starovoytov et al.66 The results

calculated with Tinker-HP are in very good agreement with the

previously reported results, with the added advantage that

Tinker-HP provides excellent scaling, with production runs for

a system of 216 ion pairs (in a cubic box of 35.275 Å, a PME grid

of 48� 48� 48 and a 7 Å real space cutoff) of more than 11.5 ns

per day on 240 cores. Therefore, Tinker-HP enables simulations

of IL systems in the hundreds of ns up to ms timescales.

5.4 Speeding up free-energy computations: assessing large

water box hydration free energies computations

The observed speed-up on water boxes led us to test the

performance AND the accuracy of free energy computations

using large water boxes to compare them to initial works using

AMOEBA and the canonical Tinker soware. The hydration free

energies for water, benzene, K+ and Na+ were calculated by

summing up the free energies of three thermodynamic steps,

solute discharging in a vacuum, solute van der Waals coupling

with solvent, and solute recharging in solvent. For K+ and Na+,

Fig. 6 Performance gain for the [dmim+][cl�] ionic liquid system (A) and the Puddle (B), Pond (C) and Lake (D) water boxes.

964 | Chem. Sci., 2018, 9, 956–972 This journal is © The Royal Society of Chemistry 2018
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since the standard state in simulation was 1 mol L�1 and the

standard state in experiment was 1 atom, the free energy

difference between the two states of 1.87 kcal mol�1 was added

to the nal results. The socore van der Waals potential was

used as in our latest work with Tinker. A total of 21 alchemical

states were considered, and a 2 ns NVT simulation was per-

formed at each state. The RESPA (2 fs) integrator was employed

as the temperature was maintained at 298 K by the Bussi ther-

mostat. The vdW interaction was truncated at 12.0 Å as SPME

used a real-space cutoff of 8.0 Å and a 72 � 72 � 72 grid. The

Fig. 7 Performance gain for the ubiquitin protein in water (A), the dihydrofolate reductase protein (dhfr) in water (B), the COX-2 system in water
(C), the satellite tobacco mosaic virus in water (D) and the ribosome in water (E).

This journal is © The Royal Society of Chemistry 2018 Chem. Sci., 2018, 9, 956–972 | 965
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Bennet Acceptance Ratio (BAR)73 method was used to extract the

free energies between states. In order to test the computation

efficiency, the solute molecule was immersed in a large cubic

simulation box of 6000 water molecules. The length of the box

was 56 Å and 192 cores were used for each simulation with 48

dedicated cores for PME. This number of core is suboptimal but

already provides a very good speedup as all windows were

launched simultaneously on a total of 4032 cores, a computer

resource that is commonly accessible in modern computer

centers. Each total free energy evaluation took 18 hours to

complete using a PCG coupled to Kolafa's predictor-corrector

(ASPC) algorithm with a 10�5 convergence threshold. The

hydration free energies for water, benzene, sodium and potas-

sium are listed in the table of the ESI S1,† together with results

from previous work. For all four solute molecules, there is

excellent agreement between Tinker-HP and previous simula-

tions using either BAR or OSRW (Orthogonal Space Random

Walk) method.74 The values converge at 2 ns with a statistical

error of around 0.1 kcal mol�1. The hydration free energies for

potassium obtained from Tinker-HP and the Tinker published

results are slightly different because the Tinker historical work

did not use the socore van derWaals potential at that time, but

appears fully consistent with the present canonical Tinker

result. Overall, Tinker-HP appears reliable and very efficient for

the calculation of solvation free energies with huge gain in

terms of computation time. Of course, further tests on more

complex free energy computations are required to test all the

possible combinations of TCG and RESPA algorithms. If TCG2

is really accurate and fast, TCG1 is signicantly faster but these

procedures have not been extensively tested yet and their eval-

uation concerning their applicability to free energy computa-

tions will be the subject of a larger study. In any case, TCG2

would lead to a computing time reduction of the same

computations to roughly 14.5 hours and TCG1 to 12.5 hours.

Such studies will benet from the computational platform

introduced in Tinker-OpenMM that allows computing absolute

binding and relative alchemical approach as well as relative

binding affinities of ligands to the same host. As an immediate

other perspective, the OSRW results extracted from the canon-

ical Tinker are presented in the table. This approach leads to

very similar results to the BAR approach but requires up to 5

times less computer time. OSRW is currently under imple-

mentation in Tinker-HP. These results give an idea about the

new possibilities offered by massive parallelism for free ener-

gies evaluations: the discussed simulations that initially took

months are now possible within half a day and soon in a couple

of hours with OSRW within Tinker-HP.

5.5 From proteins to realistic biosystems

To study the scalability and applicability of the Tinker-HP

platform to complex non homogeneous systems, we tested

various systems starting from the “small” ubiquitin protein

(9737 atoms), and prototypic dihydrofolate reductase (dhfr,

23 558 atoms) which is the reference protein test case extracted

from the joint AMBER/CHARMM benchmark (http://

ambermd.org/amber10.bench1.html). We push the code

towards the simulation of very large biosystems tackling the

COX-2 dimer, the Satellite Tobacco Mosaic Virus (STMV) and

the ribosome full structures in polarizable water. All timings are

obtained for equilibrated systems.

The characteristics of the inhomogeneous systems simula-

tions boxes used for benchmark are summed up in Table 2.

Small proteins: ubiquitin and DHFR.We started our study by

testing Tinker-HP on small proteins were 3D domain decom-

position is expected not be fully efficient (our water boxe study

started at 96 000 atoms, which is 4 times the size of DHFR and

10 times that of Ubiquitin). Surprisingly, results remain

competitive with GPUs which are fully taking advantage of their

computing power for such a range of systems with low memory

requirements. DHFR allows to study in depth the code behavior

in that system size range. Indeed, the best production time for

a use of all cores of a node brings us to a 7.69 ns per day using

TCG2. This production time is really close to the 8.29 ns per day

exhibited by Tinker-OpenMM on a GTX1080 (see Table 3). If we

used the same number of cores distributed on more nodes, to

use the same technique we used on the large ocean and sea

water boxes, the performance extends to 8.79 ns per day. These

numbers make Tinker-HP very competitive for these small

systems on a reasonable number of cores that is easily acces-

sible onmodern supercomputers. In addition, one can note that

most of the recent machines use Broadwell Xeon that gives

slightly better performances by a few percents. In other words,

Tinker-HP is able to compensate for the computational burden

of the use of double precision thanks to its new algorithmics

compared to the accelerated mixed precision GPUs thus

reaching both speed and accuracy. A detailed analysis of the

DHFR scaling against ideal scaling is provided in ESI S2.† As

one could expect, the deviation to the ideal scaling is higher

than in the case of the previously larger Lake water box: larger

the system is, closer to the ideal scaling we get.

Larger systems: COX-2, STMV and ribosome solvated in

water. For larger systems, as it was shown for the water boxes,

the 3D domain decomposition speedup is taking full effect and

the distributed memory approach offers an access to systems

that were up to now restricted to classical non-polarizable force

elds implemented in HPC packages. The benchmarks of Table

3 show that the discussion is fully transferable to non-

homogeneous systems as realistic simulation times on

a reasonable number of cores are reachable for the COX-2,

STMV and ribosome systems allowing for meaningful simula-

tions. The table displays a test for the COX-2 dimer (part of the

Tinker benchmark suite, see https://dasher.wustl.edu/tinker/

distribution/bench/) for which 1.6 ns per day are possible on

2400 cores, a computer resource that is easily accessible in

supercomputer centers. If one wants to push the performances,

one ns simulation can be achieved in a little more than a day on

the STMV structure (taken from the NAMD website: http://

www.ks.uiuc.edu/Research/namd/) which is not accessible to

our GPU implementation due to memory requirements. Such

a result is really extremely promising, considering that STMV

encompasses more than a million atoms within the full virus

structure including its full genetic materials, the whole system

being fully solvated in water. Such simulations are indeed

966 | Chem. Sci., 2018, 9, 956–972 This journal is © The Royal Society of Chemistry 2018
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relatively recent even for classical force elds as the Schulten

group only produced the rst studies 10 years ago.75 The present

extension of the simulation capabilities to advanced multipolar

polarizable force elds opens new routes to the understanding

of complex biosystems. Indeed, as we have seen, Tinker-HP is

able to go far beyond the million atom scale and studies on the

ribosome become possible following early studies (see ref. 76

and references therein). We built a model for benchmark

purposes for the 70 s ribosome from Thermus thermophilus

containing nearly 5000 nucleotides and over 20 proteins, with

over 4100 sodium ions to neutralize the nucleic acid, and about

a million water molecules for a total of 3 484 755 atoms. Pres-

ently, three days are necessary to produce a ns allowing for

a very detailed study of such an important structure. We expect

even free energy studies to be feasible. Various incoming

studies will analyze more in-depth the use of PFFs to such

mostly important biosystems.

6 Beyond classical MD simulations in
periodic boundary conditions

So far, we have presented the capabilities of Tinker HP in the

context of PBC classical molecular dynamics simulations. We

have discussed the parallelization strategy and showed

benchmark results that demonstrate the scalability and perfor-

mances of the code. While Tinker-HP is mainly a molecular

dynamics code, it is not limited to PBC classical simulations and

can be used for different applications. In particular, Tinker-HP

offers the possibility of performing non-periodic MD simula-

tion with a polarizable force eld such as AMOEBA using

a polarizable continuum solvation model as a boundary. This

possibility is not our main choice for MD simulation and, as

a consequence, has not been as thoroughly optimized as the PBC

code. Furthermore, it involves a few computational steps that

scale quadratically with respect to the size of the system, making

it not suitable for the very large systems presented in Section 5.

However, the possibility of computing the energy and forces with

non-periodic boundary conditions and with a continuum

boundary opens the way for using Tinker-HP as a module to

handle the classical part in a polarizable QM/MM(/continuum)

calculations,77–81 including the computation of molecular prop-

erties and ab initio multiscale QM/MM MD simulations. These

calculations are usually dominated in computational cost by the

QM part, making the quadratic scaling of the classical part

a minor issue. Nevertheless, the scalability of Tinker-HP paves

the way to large-scale polarizable multiscale simulations.

In this section, we will describe the non-periodic code in

Tinker-HP, based on the recently proposed ddCOSMO,45,46,82,83

Table 2 Biosystems used for benchmark purposes

Systems Ubiquitin Dhfr COX-2 STMV Ribosome

Number of atoms 9732 23 558 174 219 1 066 228 3 484 755

Size (of an edge) in Angstroms 54.99 � 41.91 � 41.91 62.23 120 223 327.1

Size (of an edge) of the PME grid 72 � 54 � 54 64 128 270 360

Table 3 Best production time (ns per day) for the different test systems (AMOEBA force field) using various methods. Number of atoms and
optimal number of cores are given for each systems. All timings are given for Intel Haswell processors. Reference canonical Tinker CPU times are
given for Open-MP computations using 8 cores. All computations were performed using a RESPA (2 fs) integrator if not specified otherwise.
ASPC ¼ Always Stable Predictor Corrector.53 N.A. ¼ Non Applicable due to memory limitations. GPU production times were obtained using the
Tinker-OpenMM software34 (CUDA 7.5), the JI/DIIS solver and a GTX 1080 NVIDIA card

Systems Ubiquitin DHFR COX-2 STMV Ribosome

Number of atoms 9737 23 558 174 219 1 066 628 3 484 755

Tinker-HP number of CPU cores 480 680(960) 2400 10 800 10 800

PCG (10�5 D, ASPC) 8.4 6.3(7.2) 1.6 0.45 0.18

TPCG2 10.42 7.81(8.93) 1.98 0.56 0.22
TPCG2/RESPA (3 fs) 15.62 11.71(13.39) 2.98 0.84 0.34

CPU OPEN-MP 0.43 0.21 0.024 0.0007 N.A.

GPU (GTX 1080) 10.97 7.85 1.15 N.A. N.A.

Systems (water boxes) Puddle Pond Lake Sea Ocean

Number of atoms 96 000 288 000 864 000 7 776 000 23.3 � 106

Tinker-HP number of CPU cores 1440 2400 7200 7104 12 288

PCG (10�5 D, ASPC) 2.54 1.3 0.52 0.062 0.0077
TPCG2 3.10 1.59 0.63 0.076 0.01

TPCG2/RESPA (3 fs) 4.65 2.38 0.95 0.11 0.014

CPU OPEN-MP 0.050 0.014 0.003 N.A. N.A.

GPU (GTX 1080) 2.06 0.80 0.21 N.A. N.A.

This journal is © The Royal Society of Chemistry 2018 Chem. Sci., 2018, 9, 956–972 | 967
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a domain decomposition (dd) discretization of the conductor-

like screening model.44 We will then discuss two complemen-

tary QM/MM strategies that can be used to couple Tinker-HP to

a quantum-mechanical code.

6.1 Implicit solvent: ddCOSMO

Continuum solvation models84,85 (CSM) are a well-established

technology in both quantum chemistry and MD. The CSM

developed for MD are usually based on the Generalized Born

(GB) Ansatz, or its multipolar generalization, which approximate

the solution to the electrostatics equations in the presence of

a continuum with an additive energy term. Methods developed

in quantum chemistry rely, on the other hand, on a rigorous

numerical solution of Poisson's equation. Such models are

much more expensive than the GB counterpart; however, since

these models have been developed for quantum mechanical

calculations, and therefore for up to medium-sized systems,

their computational cost is not a real limitation in QM calcula-

tions. Nevertheless, it has always prevented their application to

MD simulations. The use of a polarizable CSM is of particular

interest when a PFF is used due to the natural consistency

between the two approaches. Recently, a new discretization to

COSMO has been proposed. Such a new discretization, named

ddCOSMO, has been developed when the molecular cavity is

made of interlocking spheres (i.e., van der Waals cavity) and has

been extensively described elsewhere.46 The dd approach offers

huge advantages since the matrix to be inverted to solve the

model at each time step is highly sparse: as a consequence, the

model scales naturally linearly with the size of the system and

the iterative solution to the ddCOSMO equations is perfectly

suited for a parallel implementation in which the spheres that

constitute the cavity are distributed among cores.

The parallelization strategy adopted for the ddCOSMO

implementation follows the spatial decomposition logic dis-

cussed in Section 2. Again, we divide the space occupied by the

system into blocks and assign a block to each CPU. The CPU is

then responsible for updating the positions, speeds and accel-

erations of the atoms belonging to it block. However, there are

two important differences compared to the spatial decomposi-

tion discussed for short-range interactions. First, the space

occupied by the solute is not a cube or a regular geometrical

conguration but rather a cavity whose shape depends on the

conguration of the solute. Second, the cavity is not xed

during the simulation as it evolves with the solute.

To address the rst issue, we dene the blocks by enclosing

the solute in the smallest parallelepiped containing it and we

divide this parallelepiped into smaller ones. This strategy

presents the advantage of allowing us to reuse the whole

machinery that has been described in Section 2. However, such

a strategy can imply potential load balancing issues that require

to be addressed, especially when a high number of processors is

used. Again, an iterative procedure has been implemented to

determine the optimal sizes of the sub-domains.

To solve the second issue, one should in principle recompute

the enclosing parallelepiped at each time step. To avoid the cost

of performing such an operation, we build a slightly larger

parallelepiped and recompute its geometry only once every few

MD steps (n ¼ 20 for example).

In Tinker-HP, the solution to the ddCOSMO linear equations

is computed by using the JI/DIIS iterative solver also used for

the polarization eqn (1). The iterative procedure requires to

compute MVP with the sparse ddCOSMO matrix, which can be

done both very efficiently and involving only local communi-

cations. However, the right-hand side of the ddCOSMO equa-

tions depends on the electrostatic potential created by the

solute's permanent and induced multipoles. In the current

implementation, the potential is computed via a double loop,

which implies a O

�

N2
�

computational cost. Furthermore, an

“all to all” communication of the positions of the system is

required prior to this computation.

Thus, the computational bottleneck in terms of both

computational complexity and parallel efficiency lies in the

computation of the right-hand side. If AMOEBA/ddCOSMO MD

simulations have been shown to be possible,46 this kind of

boundary is not competitive with SPME in term of pure polar-

izable MD production. However, as we stated at the beginning

of this section, the advantage of the ddCOSMO implementation

is to provide a boundary condition for multiscale simulations.

In particular, having non-periodic boundary conditions is ideal

when working with localized basis functions in QM

computations.

Detailed benchmark results of the current parallel imple-

mentation are presented in ESI S3.†

6.2 Multiscale modeling and polarizable QM/MM

The PFF/ddCOSMO framework described in this section is

a starting point for multiscale, polarizable QM/MM simula-

tions. This is a fundamental direction for Tinker-HP as PFFs

such as AMOEBA provide a high-quality embedding strategy for

QM systems with various potential applications. For instance,

in a recent publication, some of us showed how a DFT-based

QM/AMOEBA description is able to model electronic excita-

tions in aqueous solution80 for systems that interact in a specic

and structured way with the environment. An ab initio QM/MM

MD strategy has also been recently proposed.81

The present QM/MM possibilities of Tinker-HP follow two

complementary strategies. Tinker-HP can be used as an external

embedding tool, or can be directly coupled to a QM code in

order to obtain a fully self-consistent polarizable QM/MM

implementation.

The rst strategy is the one followed in LICHEM77 (Layered

Interacting CHEmical Model), that provides a QM/MM interface

with unmodied quantum chemistry soware suites such as

Gaussian,86 PSI4,87 and NWChem88 to perform QM/MM calcu-

lations using the AMOEBA force eld. This is done by approxi-

mating AMOEBA's multipolar distribution, with a set of point

charges,89 which can then be read by the QM code. This choice

is motivated by the idea of developing an interface with existing

QM codes with non-native multipolar QM/MM capabilities.

LICHEM extracts forces and energies from unmodied QM

packages to perform a variety of calculations for non-bonded

and bonded QM/MM systems, the latter by using the

968 | Chem. Sci., 2018, 9, 956–972 This journal is © The Royal Society of Chemistry 2018
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pseudobond formalism explicitly extended for QM/MM with

PFFs.77,90,91 The calculations available in LICHEM include

geometry and reaction path optimizations, single-point energy

calculations, Monte Carlo, PIMD, etc.

Currently, the polarization component for the QM/MM

interaction term in LICHEM is not fully self-consistent due to

the use of unmodied QM codes. This is because only the eld

from the permanent multipoles from the MM subsystem is

included in the effective Hamiltonian for the polarization

component of the QM/MM interaction. However, as has been

shown previously, this approximation, coupled with the fact

that the QM and MM subsystem polarization is fully considered

results into the recovery of over 80% of the total QM/MM self-

consistent polarization.77,92

For the computation of electronic properties and full hybrid

MD simulations, a second QM/MM approach can be pursued.

This approach proposes a fully self-consistent treatment of the

electronic density and the MM polarization and requires

a modication of the QM self-consistent eld routines. A QM/

AMOEBA implementation that couples Tinker-HP to a locally

modied version of the Gaussian suite of programs86 has been

recently introduced.80,81 Such a strategy enables to use a DFT/

AMOEBA based polarizable QM/MM strategy to compute the

energy and response properties of an embedded system, as well

as to perform Born–Oppenheimer (BO) hybrid QM/MM MD.

The latter is accelerated through the use of an extended BO

Lagrangian approach (XL-BO),93 which provides enhanced

guess for the electronic density at every time step and allows for

a stable hybrid MD with enhanced energy conservation.

In short, Tinker-HP offers additional advanced QM/MM

functionalities with polarizable force elds. The continuous

investigation efforts in our groups have the objective to bring

sampling capabilities in a multiscale polarizable environment

dedicated to electronic structure as sampling has been shown to

be a key issue for predictive studies.80

7 Conclusion and perspectives

Our results demonstrate that molecular dynamics simulations

with advanced point dipole polarizable force elds using

distributed multipoles should no longer be qualied as slow

anymore. The Tinker-HP soware offers an efficient environ-

ment that enables one to perform large scale relatively long MD

simulations on various complex systems encompassing several

million atoms thanks to the new extension of 3D spatial

decomposition to polarizable models coupled to advanced

Krylov polarization solvers. It is able to ensure accuracy and

speed as it exploits double precision, thanks to its new algo-

rithmics able to circumvent the computational burden

providing both additional speedups and mathematical robust-

ness. For small systems, Tinker-HP is competitive with the

present GPU implementation of Tinker (Tinker-OpenMM)

whereas strong gains are observed for medium systems

offering several thousand-fold acceleration compared to single

core computations. For large systems, Tinker-HP remains the

only operational Tinker code as it is able to efficiently distribute

memory among nodes. We believe that this new tool will be of

interest for the community of modelers, who will be able to

perform meaningful simulations to test the applicability and

discuss advantages of polarizable potentials. Of course, such

developments will rst nd an echo in the eld of chemistry

where extreme accuracy matters, for example using embeddings

of QM methods by PFFS that are benecial to compute prop-

erties and where double precision is mandatory. For biophysics,

where extreme sampling is required, the full application of PFFs

remains a daunting task as present AMOEBA simulations,

despite the discussed acceleration on large systems, still require

weeks of computation. However, a few microseconds simula-

tions are now technically possible and some applications such

as free energy computations are completely accessible. In some

way, PFFs are now able to produce simulations that classical

force elds were able to generate a few years ago on similar

platforms. The one-order of magnitude difference in speed of

PFFs compared to classical FFs (when one considers the same

computational platform, i.e. CPU or GPU), will remain due to

the lower functional form complexity of the latter. However, the

acceleration gains observed in optimal timings for codes like

AMBER, NAMD, GROMACS or equivalent, are all obtained using

GPU accelerators and through many years of optimization. Still,

an important point to evaluate the future of PFF simulations is

the fact that we have been really conservative in our present

discussed benchmarks and optimization is only starting. Issues

of precision, cutoffs, convergence criteria and vectorization will

be addressed and will generate strongly improved perfor-

mances. Note that the Tinker-HP methodology is not limited to

CPUs. Indeed, the Tinker-HP FORTRAN legacy code will benet

from GPU acceleration as FORTRAN portability strategies exist

and are under investigation (Hybrid-Fortran94 and OpenACC95).

For CPUs, we also expect strong performance gains on new

generation “big core” Xeon (Skylake and successors) and “small

core” Xeon-Phi (Knight Landings) processors thanks to vecto-

rization efforts exploiting AVX512 instructions without sacri-

cing double precision. Finally, Tinker-HP will be synchronized

with Tinker-OpenMM34 opening our developments to the

OpenMM community. Various method developments, already

present in the Tinker community, will be integrated in the next

version of the code, keeping in mind the mandatory philosophy

to include only well-understood and scalable techniques. The

high-performance implementation of additional multipolar

polarizable force elds will be performed including the SIBFA26

(in progress), MPID96 (multipole and induced dipoles, the

mapping of the CHARMM Drude polarizable force eld on

induced dipoles) and AMOEBA 2 models. Efforts will also be

devoted to the porting of the third generation GEM (Gaussian

Electrostatic Model) polarizable force eld that relies on frozen

distributed densities.30,97,98 The present technology will be

complemented by massively parallel Monte-Carlo approaches,

Langevin, constant-pH and various types of accelerated molec-

ular dynamics. Advanced sampling techniques such as OSRW74

and replica exchange will be added. Concerning multiscale QM/

MM simulations, studies towards coupling with linear scaling

QM approaches will be pursued to continue to speed up hybrid

MD simulations.
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50 C. Narth, L. Lagardère, É. Polack, N. Gresh, Q. Wang,

D. R. Bell, J. A. Rackers, J. W. Ponder, P. Y. Ren and

J.-P. Piquemal, J. Comput. Chem., 2016, 37, 494–506.

51 N. Li and S. Laizet, Cray User Group 2010 conference,

Edinburgh, 2010.

52 M. Frigo and S. G. Johnson, Proc. IEEE, 2005, 93, 216–231,

Special issue on “Program Generation, Optimization, and

Platform Adaptation”.

53 J. Kolafa, J. Comput. Chem., 2004, 25, 335–342.

54 M. Tuckerman, B. J. Berne and G. J. Martyna, J. Chem. Phys.,

1992, 97, 1990–2001.

55 J. Wang, P. Cieplak, Q. Cai, M.-J. Hsieh, J. Wang, Y. Duan and

R. Luo, J. Phys. Chem. B, 2012, 116, 7999–8008.

56 Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu, J. W. Ponder and

P. Ren, J. Chem. Theory Comput., 2013, 9, 4046–4063.

57 A. Marjolin, C. Gourlaouen, C. Clavaguéra, P. Y. Ren,
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