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Introduction

Understanding the microscopic world, whether it's at the atomic or the protein scale, is a challenge
for it is, in most cases, simply impossible to observe. Even if we had a magical microscope, allowing
us to magnify at will an image, very small particles would still remain puzzling. They do not follow the
uses of our macroscopic experience, ruled by our habitual Newtonian dynamics, and are governed by
qguantum mechanics, which can be very counter-intuitive.

All hope is however not lost, thanks the computer simulation tool. In silico experiments provide us
with this extraordinary lense, allowing one to observe as closely as wanted the wobbling of atoms, the
dance of molecules, the complex breathing of proteins. But there is a much greater power yet for the
user to experiment: to play God within the tiny box that is being simulated. One can, as a demiurge,
decide to turn off specific forces, to see exactly what their influence on the system is. This absolute
freedom extends widely in this in silico world: parameters, such as temperature, pressure, intensity of
interactions can be changed at will; entities, such as atoms, molecules, proteins can be modified, added,
extracted; the properties of every single atom, from position and velocity to charges or polarizability
can be controlled; all that happens can be fully decided by the maker of the model.

The remaining difficulty is to make sure that what is being simulated corresponds to reality, and this
imperative drives the development, refinement, study of all models used for these numerical experi-

ments.

In silico simulations of atomic behaviour split in two main families, the quantum and the classical
models. They share a porous frontier, as tuning the classical models is usually done using results from
ab initio quantum computations; QM/MM calculation, distinguishing a quantumly-treated system and
its classical environment, show their possible collaboration.

Quantum models are more precise, since quantum physics properly describe the behaviour of mi-



croscopic particles. They explicitly takes into account electrons, using wavefunctions methods (HF, post-
HF...), or electronic density (DFT), but come with a computational cost that can be prohibitive (the full
Cl method scales as O(Ng-!), with N- the number of electrons). Typical system sizes don't exceed one

or two hundred of atoms in DFT, even less when using wavefunction methods.

The second framework does not explicitly represents electrons. Instead, atoms are represented as
a punctual mass, possibly carrying a charge, and all interactions between them are modeled through
classical energy terms. Less universal, this approach requires the fitting of parameters (bond strengths,
angular and torsion constants, etc.) to reproduce at best quantum calculation and experimental data.
The use of classical (Newtonian) mechanics nonetheless greatly simplifies the simulations, allowing for

much bigger systems that can count millions of atoms.

Looking for a compromise between computation complexity and accuracy of the model, polarizable
force field were introduced, adding a term taking into account the polarizability of the electronic density
around the atoms. While more expensive to use than a so-called "classical" force field, polarizable force
field represent an important step in the modelization for they allow a more accurate description of

various systems, from the biological domain to ionic liquids.

Progressing side to side with the physical models and parametrizations, the algorithms used for the
simulations are also in constant evolution. They play a key role in theoretical chemistry, allowing the
more and more involved physical models to be tested, on systems of increasing size. From the bound-
ary conditions treatment to the management of parallel architectures, every aspect of the numerical

simulation has to be well built to keep pushing the limits of in silico experiment.

Although considerable progresses have been made since the very first, two-dimensional simula-
tions, some frontiers are still to be broken, both time-scale and size-wise. For example, simulating a
whole cell using explicit atoms is out of reach. Computation of binding free-energies, especially relevant
in the pharmaceutical domain, that would be both fast and reliable, is still one of the biggest challenges
in computational biochemistry. All various models developed along the years, even when it comes to
describing water molecules, suffer from their respective limitations. Besides, the study of problems of
increasing complexity (drug testing, protein interactions) requires bigger and bigger supercomputers,

working always longer, and effectively consuming substantial quantities of electrical power.



We thus need to do better: faster simulations, able to go on for longer periods, designed for large
systems. This objective can only be achieved relying on the two pillars presented above: intelligent

physical models and well designed algorithms, working in synergy.

The aim for this thesis was therefore to develop strategies to improve the performances of polarizable
molecular dynamics. In the first chapter, the reader will find a brief introduction of the framework of
this thesis, starting from the general scope of molecular dynamics, and presenting the most standard
integrators. Classical force fields follow, then particular attention is given to polarizable force fields, as
they are heart of our work. This chapter closes on a more practical aspect, the Tinker-HP code, in which
all testing and implementations were carried out.

The second chapter focuses on the polarization issue, and begins with an overview of the current
polarization solvers, from their mathematical causes to the algorithms they use. We then present the
Truncated Conjugate Gradient, a new algorithm designed to improve polarizable solvers, both in terms
of stability and speed. Implementation strategies and numerical results are then given.

In the third chapter, we discuss free energies, through a small presentation of the thermodynamic
quantity itself, and of the methods used to compute it. We then discuss the performance of the Trun-
cated Conjugate Gradient applied on free energies calculations.

Finally, in the last chapter, we look for another method to accelerate simulations by focusing on
molecular dynamics integrators. After establishing a brief framework, we proceed to search for an

optimal integration strategy, aiming at using very large time-steps having a minimal cost on accuracy.
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Chapter 1

Molecular Dynamics - An overview

Contents
11 Introducing molecular dynamics . . . . . . . . . .. ... 11
1.2 Integrating dynamics using finite differences . . . . . . . . ... .. L L oL, 14
13 Forcefields . . . . . . . L e 16
1314 Classicalforcefields . . . . . ... ... . L 17
1.4 Polarizable force fields . . . . . . . . . e 21
141 Polarizationmodels . . . . . ... e 22
1.5 A massively parallel framework for Molecular Dynamics: Tinker-HP . . . . . .. ... .. 27
151 Parallelimplementation . . . . . . . . ... . e 27
1.5.2 Boundary conditions and the Particle Mesh Ewald . . . .. ... ... ...... 30

Historically, the very first numerical experiments were carried out by Fermi, Pasta, Ulam and Tsingou
in 1955" on a purely theoretical system to study energy repartition in a chain of oscillators. The first
condensed-phase molecular dynamics calculation was undertaken by Adler and Wainwright in 1957.7 The

authors studied equilibrium properties for a system consisting in hard spheres, computing its equation

of state. The force field here was only square well potentials of attraction between particles.

Thankfully, Molecular Dynamics have considerably developed since then, as this first chapter will

illustrate. Here, the reader will find a - succinct — presentation of the conceptual and material framework

10
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on which the improvements described in next chapters are based. Should they be needed, references to

more specialized work are given to allow for a deeper studly.

The Molecular Dynamics technique will be explained, supplemented with a presentation of its most
usual integrators. Force fields will then be introduced, both the classical and polarizable case. Finally,

Tinker-HP, the code in which all developments are implemented, is described.

11 Introducing molecular dynamics

Let us start by defining the system we want to study and simulate, S, contained in a box of arbitrary size
and shape. We will suppose that S contains N atoms. Given an arbitrary index / between 1 and N, the
three-dimensional vector representing the position of atoms / in Cartesian coordinates will be noted
7;. Equivalent notations will be adopted for the velocity v;, the momentum p;, and the acceleration ;.
By writing m; the mass of atom /, we have p; = m,V;. For the sake of clarity and simplicity, we will also

write

r Vi P as
r V2 p2 a2
=r, =v, =p, =a (1)
N VN PN an
The masses m; may also be conveniently gathered as a diagonal matrix M such that
my 0)
my
M= and p=Mv (1.2)

©0) my
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There are many objectives behind molecular simulations in theoretical chemistry. It can be simply
aimed at observing the movement of atoms or molecules, in order to understand chemical or even
biological phenomena (molecular arrangement, protein folding...). Questions more relevant to the sta-
tistical mechanics field, like computing properties such as free energies, can also be addressed using
molecular dynamics. A wide variety of systems can be studied, both spanning a wide range of sizes
(from tens to hundreds of thousands of atoms) and types (monoatomic gases, water phases, solvated
proteins, ionic liquids...).

Statistical mechanics provide a secure framework, with strong mathematical and physical founda-

tions, that will ensure our future numerical experiments and analysis are meaningful.

The focus of the study will then define the statistical ensemble in which simulations should be done.
Each statistical ensemble is defined by a set of properties of the system that should remain fixed
throughout the simulation.

For example, let us imagine an isolated system, with no environment. Its number of particles then
remains fixed, and no energy can be be exchanged either. If we then suppose that the simulation
box remains constant, the corresponding ensemble is the microcanonical ensemble, where N, V (the
volume of the simulation box) and E (the system’s total energy) are fixed.

If, on the other hand, we want to look at a system in contact with a thermostat (modelling, for
example, the reaction medium, the surrounding cell...), where the temperature remains constant, but
the energy can fluctuate, the proper statistical ensemble is the canonical one, where N, V and T are
fixed.

By allowing the simulation box to evolve with time, it is also possible to work within the isobaric

ensemble, with constant number of particles, temperature and pressure (N, P, T).

In a given ensemble, the average value of a quantity b, noted (b), is defined as follows:

_ [ drdpb(p, r)p(r, p)

[ drdpp(r, p) 02

(b)

where p is the density of states in phase space. The simple integral symbol here is used to avoid too

heavy notations, and designates an integration over each component of position and momentum for



13 CHAPTER 1. MOLECULAR DYNAMICS - AN OVERVIEW

each atom:

/drdpz/d3r_’1.../d3r7\//d3\71 .../d3v7v (1.4)

One usually defines the widely used partition function Z = / drdpp(r, p) to rewrite ensemble averages

as

(b) = %/drdpb(p, r)o(r, p) (1.5)

Any thermodynamical property that one would like to extract from a system can be computed using

these integrals.

So, if one were to study toy systems, such as a one-dimensional harmonic oscillator, analytic solutions
to describe thermodynamic properties could simply be derived from these integrals. But for our real
systems, much more complex, that option disappears: when studying a solvated protein, an integral over
the phase space of thousands of atoms seems quite out of range if we wanted to compute it analytically
(or would cost dramatic approximations, abandoning a lot of information on the system). A different
way to evaluate this kind of integral is thus necessary.

If we suppose that for an infinitely long simulation, all the accessible phase space would be explored
following the right probabilities (with high energy conformations being less visited than the low energy
ones), then the system is considered to be ergodic, ensuring that

drdpb(p, > '
_ [ drdpb(p, r)p(r, p) ~ Um 1 dtb(rs, py) (16)

[drdpp(r,p)  T==T Jo

(b)

This opens the door to numerical experiments: simulating in silico the evolution of our system over a
given period of time, a portion of the phase space will be explored, and we can average the properties
we're looking for. Such a simulation can be seen as a (complicated) thought experiment® approximating

real physical systems.

Having understood the relevance - and the need - for simulations, we have to define how to carry it
out. And thus we enter the realm of Molecular Dynamics.

The main idea behind Molecular Dynamics (MD) is to model the interactions occurring at the micro-

scopic level using classical models, and simulate the time evolution of the system through Newtonian

dynamics. No explicit electrons are described (which, considering the classical and Newtonian nature
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of the approach, is rather reassuring). In this work, we will focus on all-atoms simulations, where all
atoms are explicitly represented. Coarse grain approximations,* where groups of atoms are modelled
using single pseudo-atoms, or implicit solvents,®> describing the surrounding solvation molecules as a

continuous medium, have not been studied here.

So far, we have defined a system S, a simulation box, a statistical ensemble to work in. To carry out
simulations, we need two extra tools: one for computing forces acting on the atoms, namely a force-field,

and one for updating r and p after a time-step &t has elapsed, namely an integrator.

In the following sections, we will present the most typical and straightforward numerical integrators,

then an overview of force fields.

1.2 Integrating dynamics using finite differences

Let us assume that at a given time ¢, we know the positions r; and velocities v¢, and that we also have
computed the forces acting on each atom I:'), for each 7 (this will be the subject of sections 1.3 and 1.4).
Let us also define &t, a small length of time, as our time-step. It designates the time elapsed between
two successive computation of the systems position and velocities. Starting from these data, we want

to compute the positions and velocities at time ¢t + &t (ryys: and Veis¢).

Newton’s third law links the dynamical variables and the computed forces using

-

Fi = ma, (1.7)

A simple Euler approximation gives us the following expression for the accelerations and velocities.

v(t +8t) —v(t) r(t + 6t) —r(t)

a(t + 6t) = v(t+ 6t) = 8
Combining these two together ylelds
t+6t)—r(t)— t)—r(t -6t

5t?



15 CHAPTER 1. MOLECULAR DYNAMICS - AN OVERVIEW

Inverting this relation to extract the positions at t + 5t gives the basic Stromer-Verlet scheme:®
r(t + 5t) = 2r(t) — r(t — 5t) + a(t)5t% + O(5t%) (110)

Velocities can here be computed a posteriori using the mean value theorem:

r(t + 6t) —r(t — &t)
26t

v(t) = + O(6t2) (121)

Using this integration scheme requires knowledge of the positions of the last two time-steps, r(t)

and r(t — &t), which is in fact problematic when starting the dynamics.

To avoid this, one can use the Velocity-Verlet algorithm.” This second algorithm also explicitly com-
putes the velocities at each time-step, which are useful when computing physical quantities such as

the temperature. It is divided in three steps.

1. Unlike the Stromer-Verlet, we now start from a second order Taylor expansion of the positions:

r(t + 6t) = r(t) + v(t)6t + %a(t)6t2 + O(5t?) (112)

2. From the forces l:'),', one computes the accelerations a(t + &t) using Newton'’s second law (1.7) .

3. One finally has access to the velocities through

v(t +6t) = v(t) + % [a(t + 6t) — a(t)] 5t + O(5t?) (143)

A more widely used implementation of the Velocity-Verlet uses half-step velocities, and expands to
four steps (the computational cost will be sensibly equal to the previous implementation, as no extra

expensive steps are taken).

1. Compute the "half-step" velocities (i.e. the velocities at time t + §¢/2)

5t

v(t + %) =v(t) + 7a(t) (1.14)
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2. Compute the positions at next time-step using the half-step velocities:

r(t + 8t) = r(t) + Stv(t + %) (115)

3. Update the forces and thus the accelerations a(t + &t) using the newly computed positions

4. Compute the "full-step" velocities:

v(t+6t) =v(t+ %) + %a(t + 6t) (1.16)

These methods ensure time-reversibility of the dynamics, which means that, starting from the posi-
tions and velocities at time t+&t, and using the Verlet or Velocity-Verlet algorithm to compute positions
and velocity at time ¢t (i.e. with a negative time-step —&t), we would recover the original phase-space
point (r(t), v(t)).

Using such integrators also conserves symplecticity, which can be seen as conservation of the phase-
space volume throughout dynamics. We won’t go in further details here, as the reader can find more

extensive explanations in [3].

Another family of integrators was proposed by Schofield and Beeman® ® providing improved accuracy.
These methods are based on the combined use of predictors and correctors, allowing for time savings.
Unfortunately, for most methods, such speedups come at the cost of time-reversibility.

Now that the framework for our simulations is well defined, and we have a proper integration

method, the only missing part is the force fields.

1.3 Force fields

A "force field" designates a set of mathematical models which associates an energy term to any atomic
interactions the model takes into account. An important point that should be clarified before going any

further is that we won't consider any chemical reaction in this work'.

"For taking reactivity into account, force fields such as ReaxFF' (among others) have been developed for years now.
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The forces that will drive the molecular dynamics are computed as gradients of the force field’s

energy terms. More explicitly, the force acting on particle / and arising from particle j is defined as

dE,'j
_dTij

- ) =| dEj
f)/l grad (EI_/) _Wij‘ (147)

dEj;
- dz;

where B;; denotes the B (B = x, y, z) component of the vector FJ - Fj, and Ej; is the interaction energy
between particles 7 and J.

Pioneering work was done by Westheimer," originally trying to link an energy measure with a molecules
geometry; they were later implemented and improved by Hendrickson.™ This was focused on organic
chemistry compounds (the ballet of cyclohexane conformations is a wonderful problem for geometry
optimization). The first popular force field (MM1) was then proposed by NL Allinger," closely followed

by MM2 in 1977.™

1.31 Classical force fields
Bonded terms

The very first force fields only aimed at understanding molecular conformation, and thus only encom-
passed intramolecular terms. Here, we can distinguish three types of energy terms: bond stretching,

angle bending, and torsions.

Figure 1.1: Intramolecular energy terms. From left to right : Epond, Eangles Etorsion @aNd Eimproper as pre-
sented in the text.

« The bond stretching are modelled using a simple Taylor expansion around an equilibrium posi-
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tion rp:

Epond = kbond(rij - r0)2 (128)

(kbong is a stiffness constant fitted beforehand, rij is the distance between atoms / and J). of

course, this expansion can be extended to higher orders, to include anharmonic corrections.

+ Considering three atoms /, j and k, with / and k chemically bonded to /, and denoting 8;;« the
angle formed between /j and jk bonds, then the same harmonic approach can be adopted to

account for the angle variation:
2
Eangle = kangle(eijk —6o) (1219)

Again, higher order of this expansion can be taken into account for more refined description of

the atomic behaviour.

+ Atorsion term is also to be added here to account for the conformation barrier when rotating an
atom around an axe as shown in 11. Considered to be less stiff,™ this torsion term is modelled

using cosine functions rather than a harmonic approximation.

Etorsion = Viorsion COS(nQb - ¢O) (1.20)
Here, Viorsion iS the energy of the barrier height, ¢ the angle as shown in figure 1.4, n the rotation
periodicity, ¢o the equilibrium angle (where the energy is minimal).
+ One last energy term allows to reproduce the behaviour of planar (or locally planar) molecules,
as for example around sp? carbon atoms. This is usually called improper torsion terms.
Eimproper = kimp(w - w0)2 (1.21)

w and wq are the angle measuring deviation to the plane and the equilibrium one, respectively.
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Intermolecular terms

Intermolecular terms represent all interactions between molecules at any distance. In the classical force

field domain, there are two main terms: the electrostatic interactions, and the van der Waals ones.

- Electrostatic interactions, in the simplest form, are modelled through Coulomb’s law, and account
for the force arising between pairs of point-charges (the atoms). Considering atoms / and j and

their respective point-charges g; and g, the electric potential created at position r; by atom j is

V(i) = ;’—f (122)
1

Then, the energy arising from interaction of charge g; with this potential reads

qiq;

f,j

Ecoutomb = q:’vj(i) = (1.23)

While being a satisfying first order when describing long range interactions, atomic orbitals have
an anisotropic effect (for the p and d ones), and are thus not well described. The point-charge
model is in fact the first order of a point-multipole expansion, that can be expanded to dipoles,

quadrupoles, or even octupoles.

We will write pfa,; and ©p; the permanent dipole and quadrupole located on atom / (not to
be confused with the induced dipoles that will be studied later); and Ef(/) the electric field
experienced at atom /’s position, generated by another atom j. Then, the electrostatic energy
term arising from the permanent multipoles of atom / under the influence of the field created by

atom j is

Eelectrostat = ql\/j(l) +/7P,,'.Ej(l') +0Op;: V(EJ(/)) (1.2)

(V(Ef(i) is the 3 X 3 tensor containing the gradients of every component of the electric field

E;(i), and the ":" operator designates a simple contraction).

« The van der Waals interactions are usually represented using a Lennard-Jones potential, which

- 12 o 6
ELJ =4e [(r—) - (r—) ] (1-25)
ij ij

shows a quite simple form:
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€ characterizes the depth of the potential well, or more physically, the highest attraction energy

between atoms / and j; o is the distance for which the interaction is zero. Two terms are easily

12
extractible from this formula. (%) accounts for the repulsive part when two atoms are really
1y
6
close (it grows to very high energy if r;; < o). — (%) , on the other hand, accounts for the
ij

attractive interaction that occurs at long distance.

These terms depend on atomic positions, but also on parameters fixed beforehand, such as the
harmonic constant Kpond, Kangle, OF the € and o involved in Lennard-Jones potential. For example, let us
imagine a diatomic molecule, whose chemical bond would be modelled as presented in eq. 1.18. Here,
defining k and rp are very opened choices.

One may want to use the results of quantum computations, basing the model on ab initio calcu-
lations. One could also imagine using results from experiments (such as spectroscopy) for these two
parameters. By a (slower) fitting process, another possibility would be to fit this length such that macro-
scopic properties computed through simulations would reproduce experimental ones.

Given the dependence of the bonding on the atom types involved, every possible pair of bonded
atoms A, B should have its specific constant kponq(A, B): this fitting should thus be repeated for every
atom pair that one wants to see bonded in a simulation.

This can even be pushed further, for the sake of accuracy of the model. The oxygen-oxygen bond
in the 02 gas is completely different from the bond linking the same atoms in a carboxylic acid, just
like the carbon-hydrogen bonds in benzene and in methane are expected to have different behaviours.
There can thus be, for a parameter as simple as this spring constant k, many different values, possibly

fitted for a specific molecule or type of molecule.

Fitting these parameters appears as a very system-dependent process, and over the years, force fields
with very various domains of applications have been developed. A wide zoology of classical force fields
thus exists, with differences in their parametrization and models. UFF'® (Universal Force Field) is a
force field with parametrization for all elements in the periodic table, including the actinids. CFF"”
(Consistent Force Field) targets more organic compounds, but also polymers and metals. CHARMM™
early versions (Chemistry at HARvard Macromolecular Mechanics) and AMBER™ (Assisted Model Building

with Energy Refinement) are also classical force fields, both aiming at simulating biochemical systems
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such as nucleic acids and proteins. OPLS*° (Optimized Potentials for Liquid Simulations) was specifically
fitted to reproduce liquid phase properties. This list is of course not extensive, and the interested reader

could refer to [21], section II.D, for a wider zoology.

The search for more accurate and realistic simulations is of course limited by the deafening silence of
electrons in classical force fields (apart maybe from the anisotropy of point-multipole expansions in the

electrostatic terms). We will see in next section we can get closer to this conceptual border.

1., Polarizable force fields

While explicit electrons are out of the picture, given our classical mechanics framework, one could argue
that all the energy terms presented so far actually implicitly take electrons into account, i.e. in covalent
terms and electrostatics. The chemical bond for example, which we model as a Taylor expansion around
an equilibrium position, is directly the consequence of electrons and nuclei interacting. The same can

be said about all intramolecular terms in 1.3.1.

Non-bonded terms, and more specifically the electrostatics using multipolar expansion, represent
the electronic density and its anisotropic nature. Yet the electronic density around an atom is not only
directional: it changes with time, under the influence of the external electric field. Amongst others,
this is represented by the polarizability (eq. 1.27). This electronic mobility will be taken into account in
our model as a supplementary term that will follow us for quite some time in this work: the induced
polarization. Rigorously speaking, denoting p(F) as the electronic density at position r, the dipolar

moment can be expressed as:

i- / p(F)FdF (1.26)

and the polarizability is then simply the partial derivative of this vector with respect to the electric field
E
_ o

- (1.27)
oE

o

As one could expect, this effect plays an important role when looking at systems including highly

polarizable molecules, such as ionic liquids or electrolytes.?* %
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Working within the Born-Oppenheimer approximation, we consider that the movement of the nuclei
can be decoupled from the one of electrons, the latter being much faster than the former. Induced
polarization will thus be computed at each time-step of the simulation. For this reason, we need a

model for this electronic effect, and its computational cost must stay acceptable.

1.4 Polarization models
Mean-field approximations

In early developments, polarization was not taken explicitly into account. Indeed, it was implicitly in-
cluded as part of the van der Waals through parametrization. In practice, the induced dipole term simply
modified the parameters in the Lennard-Jones (or equivalent) potential. Such strategy can be called a
mean-field approximation. Of course, it comes with the cost of a lost anisotropy (directionality of the
induced polarization). All the so-called "classical force fields" use this approximation, and provided
over the years very extensive results on many fields of application ranging from biology (CHARMM,**

AMBER®) to ionic liquids.?®

Fluctuating charges

Considering that atomic nuclei charges are partially screened by their surrounding electrons, a first
measure of the electronic density distribution could be done by looking at partial charges (within a
molecule, if the partial charge on an atom / is high, then it could describe the polarization of the
electrons away from it, subsequently diminishing the screening effect).

The fluctuating charges model (also called "electronegativity equalization") is based on such a re-
distribution of atomic partial charges within a molecule to recreate the fluctuation of the electronic
density. Different implementations were proposed, relying on different invariants to perform the time
integration. The most straightforward supposes conservation of the total molecular charge. It is used
in force fields such as CHARMM-FQ.?8 2°

Because of the punctual nature of the partial charge distribution, however, the subsequent polar-
ization effects are completely dependent on the geometry of the molecule. Indeed, when considering
a planar one (such as benzene), redistributing charges allows for polarization parallel to the plane, but

none perpendicular to it. Anisotropy of the polarization effects is thus not fully reproduced using this
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model. Furthermore, charge conservation of the system is usually implemented by a global Lagrange
multiplier leading to non-physical coupling between atoms regardless of their distance, which induces

long-range charge-transfer that should not be observed.*°

Drude oscillators

Another possible point of view to describe the electronic cloud, seemingly oversimplified, would be to
represent its center (the mean position of the electrons) as a single fictitious point, bearing a (nega-
tive) partial charge. The Drude oscillator’ model uses this approach, and links this point-charge to its
nuclei through a harmonic spring'’. Fluctuations of the electrostatic environment will then have direct
repercussions on the point charge’s dynamic, as a charge moving in an external electric field.

In the model, three energy terms are necessary. If we note Np the total number of atoms with
a Drude fictitious particle, rp(i) the position of the Drude particle attached to atom /, gp its partial
charge, r; the position of atom /, kp the stiffness constant of the spring, the total energy when using

Drude oscillators is

Sk & _aol)ar <R 9o0) = ao(i)
Ebrude = -k )= ri 2 . I - : 28
e = 2 gkol0) =+ )y Bt Lol Y
J=1.Np i<j

By order of appearance in eq. 1.28, it consists in the harmonic spring’s energy, and two additional
electrostatic energies: the interaction between atomic charge on atoms and Drude particles, and the

interaction of Drude particles pairs.

This total energy term can be seen as an energy functional Epyge[rp], which has to be minimized
for each time-step to find the correct position of Drude’s fictitious particles. This minimization can be
rewritten as a linear system to solve, or equivalently, as a matrix that one needs to invert.

To avoid the high cost of this method, Drude particles are traditionally used as supplementary
degrees of freedom, in an extended Lagrangian scheme. The mass of each concerned atom is partitioned
between the fictitious particle and the parent atom to which it is attached. If the mass attached to the

fictitious particle is too small, it will result in very high-frequency motions, which will require very small

iAlso known as "core-shell model” in the solid state community.
""Only non-hydrogen atoms carry this fictitious "Drude particle"
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time-steps to be correctly simulated. On the other hand, if it is too heavy, the response of the Drude
particles will not be fast compared to the evolution of the nuclei, which is contradictory with the Born-
Oppenheimer approximation.

The motion of all particles is then computed with usual integration methods. This avoids the need
for expensive matrix iterations, yet is not so computationally cheap. Indeed, the number of electrostatic
interactions is larger (it now contains the three extra terms presented in equation 1.28). Furthermore,
Drude oscillators treated within an extended Lagrangian scheme do not allow for large time-step inte-

gration methods (as presented in chap. 4), so they can not benefit from this important acceleration.

This model is implemented in various packages, such as CHARMM-Drude,?' GROMACS,3* OpenMM,33

NAMD3* (amongst others).

Induced dipoles

A simple mathematical object to represent polarization could be a vector, whose direction would signify
the polarization spatial distribution, and whose norm would measure the intensity of the effect. In the
limit of an infinitely small vector, on obtains a point dipole (similar to the multipolar expansion used
in the electrostatic treatment in 1.3.1)".

Since the electric field perceived at an atom’s position drives the polarization of its electronic
density, we will adopt the simplest possible relation between these two quantities, and assume that

the induced dipole f; is proportional to E,-:
,J,' = a,-E,- (1.29)

with a being the polarizability. Since we are talking about vectors here, a should be a 3x3 tensor rather
than a simple scalar. Indeed, using a simple scalar would mean that every component of the induced
dipoles would be proportional only to the same component of the electric field (e.g. pjx = aEjx).
This does not allow for anisotropy in the origin of the polarization (the x component of the field has

no influence on the y component of the dipoles).

VThe Drude oscillator model, by using a couple of opposite charges each on a different point in space, actually defines
such a dipole. Starting from this model, and looking at the limit where the distance between the atom and the Drude particle
tends to zero, one recovers the induced dipole model.
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Using a tensor, however, one can rewrite eq. 1.29 as

Axx Qxy Qxz Eix

(1.30)

RS

I

m
<

Ayx QAyy Ayz

Azx Azy QAzz Ei.

which allows for cross terms, as for example p; x = axxEjx + ax yEj, + ax Ej ;.
That being said, models usually use null cross-terms (ax, = ax, = 0), which essentially means
that a simple proportionality holds between same components of both vector (1, g = aggE; g).

For future reference, we will write a the 3N X 3N matrix containing all polarizability tensors:

an 0 X xx 0 0
o = withaj = o g ,y O (1.31)
0 an 0 0 qjzz

Induced dipoles have proven to be best suited for highly polarizable systems, such as ionic liquids,
yielding slightly better accuracy®®3>3% than Drude oscillator. Their real advantage is their flexibility
in terms of time integration. Contrary to Drude oscillators simulations, where the movement of the
fictitious particles is a fast motion limiting the possibilities to use large time-step integration, induced
dipoles allow for higher time-steps. This designates this model as a better candidate for experiments
on the integration methods, as chapter 4 will illustrate.

Another advantage over the Drude oscillator is in a simplified parametrization. The explicit presence
of polarizabilities (a;) allows direct use of experimental or ab initio results,” whereas Drude requires
a non-trivial balancing between kp and gp to reproduce correct polarizabilities.

It should also be pointed out that, contrary to the Fluctuating Charges model, there is no risk of

non-physical charge transfer here, as atomic charges are purely fixed parameters.

The induced point-dipoles model is the choice that we will work with in the remainder of this work.

They are implemented in AMBER,3 in the AMOEBA force field® within Tinker packages,** “"“2 to only
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cite a few. As such, we should also remind the approximations it supposes before further investigations.

- Firstly, the assumption that electronic density can simply be represented using point dipoles is

quite strong, as it is known that its spatial extension is much more complex.

+ Secondly, choosing a simplified polarizability tensor makes sense from a computational point
of view, as a more involved choice would imply severe complications in the implementation.
However, it supposes that the polarizability, eventhough it results from polarization of highly

anisotropic entities (the atomic orbitals), will yield non-directional results.

- Thirdly, the electrostatic interactions are assumed to be stopped after the dipole-dipole term.
Yet one could suppose that more complex shapes, in order to better represent the polarization,
should be taken into account here (induced quadrupoles, for example). Here again, the effort

needed to reach this higher order description would be tremendous.

The polarization catastrophe and Thole damping

One can define molecular polarizability as the inverse of the polarization matrix®
restricted to the atoms within a single molecule. It relates to the molecular induced
dipole moment, since for a diatomic molecule AB, timoi = Ha + HB.

Applequist et al. showed that the molecular polarizabilities could diverge (reach
infinite values) when atoms are close,* deriving a simple example on a diatomic
molecule. This effect is known as the "polarization catastrophe". Applequist’s first
answer was to choose lower polarizability parameters, to reduce the molecular
polarizabilities amplitudes. Thole et al. proposed a more general solution in the

shape of a damping function compensating the divergence at short distances, ef-

fectively avoiding the catastrophe in simulation.*

%see chapter 2.

The zoology of force fields is of course wide, and this section is by no means an exhaustive study.
Polarizable force fields have also been treated using topological atoms and machine learning.*>“ Ab

initio force fields, encompassing more short-range quantum effects, were also developed: the SIBFA
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model (Sum of Interactions Between Fragments Ab initio computed)* is a force field taking exchange-
repulsion and charge transfer into account, thanks to a careful fitting based on ab initio calculations.
Cisneros et al. also proposed a force field based on electronic density called GEM (Gaussian Electrostatic

Model).48 49, 50

Having chosen a physical model to carry out our simulations, we now finally need an infrastructure
where we can develop and explore polarizable molecular dynamics: this is where our Tinker-HP code

comes into play.

1.5 Amassively parallel framework for Molecular Dynamics: Tinker-HP

All the developments and computations that will be presented in the next chapters were carried out us-
ing Tinker-HP (see [42], reproduced in Appendix). Tinker-HP is a high-performance version of the Tinker
package,* initially developed by Jay Ponder at Washington University. It inherited from its simplicity in
terms of implementation, and user-friendliness. Indeed, Tinker was primarily designed as a sandpit for
experimenting, testing, creating force fields, algorithms and models.

Nevertheless, the initial Tinker implementations were really slow, and not competitive with the
state-of-the-art simulation programs such as NAMD,”' GROMACS,>? etc. Tinker-HP, while maintaining
the most useful features of the Tinker original package, is designed for high performance computa-
tions. Its MPI parallel structure can make efficient use of thousands of cores, and efforts were put in
proper vectorization of the code, yielding substantial gains in computation speed? to take advantage of
present petascale high-performance supercomputers but also to simply offer acceleration on everyday
laboratory computer clusters.

The following sections briefly present the algorithms and methods on which these improvements

were based. An introduction to the Particle Mesh Ewald treatment of boundary conditions is then given.

154 Parallel implementation
Spatial decomposition

When working with large computational resources, the goal is to efficiently divide the workload between

the cores. In Tinker-HP, this is based on a three dimensional spatial decomposition. The simulation box
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Figure 1.2: Division of the simulation box in 27 subdomains

is divided in d sub-domains of space, as schematized on figure 1.2. If we count a total of N, processors,
all computations concerning one sub-domain is realized by a subset of N,/ d processors. Each of these
processor subsets is thus responsible for a specific region of the simulation box.

This division is based on assumption that interactions that are to be taken into account are short
range enough, such that it makes sense to group near atoms, as the forces they experience will mostly
be the consequence of their nearest neighbours. Usually, the use of cutoffs justifies this assumption
(this is the case e.g. for PME's direct part).

Two main jobs thus fall to the processors:

1. the computation, which encompasses the calculation of forces given a subset of the atomic po-

sitions (see the Midpoint technique), and the update of positions and velocities using the forces;

2. the communication, which supposes to send (and receive) the quantities needed for the cal-
culation of the forces, then to send (and receive) the result of the computations to the correct
processors. It also contains the reassigning process: when an atom crosses its subdomain bound-
ary to reach another one, it will be treated by a new processor. The list of atoms that are under

the "responsibility" of one processor is thus updated at each time-step.
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Figure 1.3: On the left, a homogeneous system divided in four subdomains. On the center and right, an
inhomogeneous system, with an adaptated division in subdomains on the right panel.

To achieve a correct work balance between cores, a reasonably homogeneous system is the simplest
and best candidate (it should be the case for liquid phase simulation). Indeed, discrepancies in the spa-
tial distribution of the particles would mean that some processors would have more to do than others,
effectively slowing down the whole computation. Resizing domains to have them contain approximately
the same number of atoms can also be undertaken to avoid this problem (subdomains should be bigger

in low-density regions and smaller in high-density ones). See fig. 1.3.

Midpoint technique

Communications can become a computational bottleneck in the parallel calculations, effectively slowing
down the simulationn. This is especially the case when considering high numbers of CPU (or very large
systems), where a lot of information has to be exchanged between processors. To minimize this loss
of time, one can consider the pairwise nature of the elementary components of the forces driving
our simulations: noting 6/,- a force applied on atom 7 from atom j, Newton's third law insures that

- -

fiji = —fij.

Consequently, considering a pair of atoms a and b in two different subdomains, hence under the
responsibility of two different processors, one has to choose one of the two processors to perform the
computation and then communicate the result to the other. Very simple (almost naive) geometrical
arguments could be invoked here (choosing the domain with the biggest x, y or z component for
example), but following Shaw et al.,>* Tinker-HP uses the midpoint technique, a choice adapted for

many-body interactions minimizing the amount of information required for each processor.
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15.2 Boundary conditions and the Particle Mesh Ewald

When trying to model condensed phase, solvation effects are particularly important. To deal with the
electrostatic and polarization interactions composing these effects, one can use continuum solvation
models, representing the solvent molecules implicitly as a continuous medium. In our case, however,
we work with fully explicit models, describing the solvent at the molecular level. A very simple, but
fundamental problem then arises: how does one mimic an infinite medium using our finite computa-
tions ? The answer comes from the boundary treatment, where we can choose to use periodic boundary
conditions (PBC). Periodic boundary conditions suppose that the simulation box (we will assume it is

shaped as a parallelepiped) is repeated in every direction of space, as illustrated in fig. 1.4.
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Figure 1.4: Illustration of the Periodic Boundary Conditions in two dimensions. The central square,

colored, is the initial system’s simulation box. All around are the replica.

Let us look at one of the simplest non-bonded energy terms here, namely the electrostatic interac-

() qiq;

Eqq = — (1.32)

7 ZH: ,-;N||fij+n||
i<j

tion between charges. It reads

where the sum over all 77 is the infinite sum over all the PBC replica, with each 71 vector representing a

translation towards a specific replica’. ). (") means that for /i = 0, the terms with / = J should not be
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summed. We will illustrate the method presented in this section through this charge-charge term only,

although permanent dipoles and quadrupoles are also used in our simulations.

A difficulty arises here, as each atom of our system now has an infinity of neighbors (represented in

1.32 by the infinite sum over 1) - which would mean an infinity of non-bonded interactions to compute.

Fortunately, the terms in this sum are decreasing as 1; This means that, past a certain distance re¢,
we can neglect the value of the interaction for being small enough. This distance r¢ is called a cutoff,
and acts as a limit for the interaction ranges. Practically, this means that given an atom /, its interaction
with atom j (whether in the original simulation box or in one of the replicas) is only computed if the
distance r;; is smaller than the cutoff (r;; < r¢). The typical values that are used in this cutoff have
the same order of magnitude as the simulation box size. For each atom, the number of interactions to
be computed is thus of the order N; as a consequence, the complexity of computing such a pairwise

interaction, when using periodic boundary conditions and a cutoff, scales as O(N?).

This cost can however be improved. Ewald summation®® splits this sum into two absolutely converging

sums, a direct sum and a reciprocal sum, supplemented by a small correction term:
Eciec = Egirect + Erecip + Eserr (1.33)

This splitting is controlled by a a real, positive number 3, whose value defines a distance separating
the direct and reciprocal terms of the total sum. If B is such that only the simulation box, without any
periodic image, is taken into account in the Egjrect interactions terms, we can detail this sum as hereafter.

Again, we are only looking at the simplest electrostatic term here, i.e. the sum of all interactions between

VIf we note 3, b and ¢ the vectors defining the simulation box (the lattice vectors), then each 77 are defined as 7 =
i@+ ipb + i.C, where i,, ip, i are three integers.
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point-charges.

erfc (Br.
Egirect = Z qiqj—— U) (1.34)
i=1 j=i+1 Fij
N N
Erecip = Z Z qiq;jPrec (Fuyﬁ) (1.35)
=1 j=it1

self -

N
Z (1.36)
i=1

erfc is the complementary error function, which allows for a smooth switching off of the direct

5l

contribution as a function of the distance r,-j"i. The ®c(7, B) potential is

CreclF, ) = — Z MEQ’”’T"F (1.38)

m#0

Here, the vectors m are defined as linear combinations of the reciprocal lattice vectors 5*, b*, 5*, such
that m = iag* + ipb* + icg* with /,, ip and i are integers. The parameter B can be chosen such that

the total complexity of the computation drops to O(N3/2) if it is well chosen (see [57]).

Darden proposed a method to improve the computation of the reciprocal sum (eq. 1.35) called Particle
Mesh Ewald (PME).>” The complex exponential terms of equation 1.38 are interpolated on a grid. This
allows one to rewrite @, as a convolution product. Thankfully, when switching to the Fourier space,
a convolution becomes a simple product. The procedure followed to compute this sum is thus: firstly,
putting the charges on the grid; secondly, using a Fourier transform to compute the charge distribution
in Fourier space; thirdly, compute the convolution product in Fourier space; finally, use a backwards
Fourier transform to extract the reciprocal sum’s value.

The use of Fourier transform effectively accelerates the computation of this expensive term, and
using fast Fourier transforms (FFTs), the complexity becomes of order O(N log(/N)), which is a signi-

ficative improvement. As a consequence, if one chooses S such that the direct-space sum scales with

ViThe complementary error function is defined as

erfc(x) = % /Do e dt (1.37)
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O(N), the total computational complexity becomes O(N log(N)) .

Analytical derivatives were introduced thanks to the use of B-spline functions for interpolation.>®
Extension to multipoles was later derived by Sagui et al.,*® and induced dipoles by Toukmaji et al.?°
Finally, the consistent formulation and derivation of the multipole expansion and induced dipoles Ewald

self terms were given by Stamm et al.*'
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23.5 TCG:afirstconclusion . . . . . . . . . . e e 100

After setting up the Molecular Dynamics framework, and choosing the induced dipoles model for po-
larization, we will focus in this chapter on the self-consistent field problem. We first present an overview
of the state-of-the-art solvers, and we then propose a new algorithm to improve the polarization treat-

ment, both stability and velocity-wise: the Truncated Conjugate Gradient (TCG).

24 Polarization solvers - state of the art

A quick look at the very nature of the induced polarization model demonstrates how non-trivial re-
searching new solvers will be. Indeed, let us consider two atoms A and B, each having an associated
induced dipole vector (4 and i, respectively). Under the influence of the external electric field E, tis
will be modified (in order to minimize the dipole/field interaction, the dipole will have a tendency to

align itself with the surrounding field).

Since the electric field arises from both the permanent multipoles distribution and the induced
dipoles contribution, a change in 4 results in a modification of the electric field experienced in B (EB).
As it was the case for A, the induced dipole in B will thus align itself with the field, effectively changing...

And as a consequence, have an influence of the electric field experienced in A (EA).

[

Figure 2.1: The induced dipoles: a self-consistent problem

This problem appears as quite involved, and will iterate until self-consistency between dipoles and
field is reached. The following section first expresses the problem in mathematical terms, and then

presents the strategies currently adopted to solve it.
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214 The linear problem
The polarization matrix

Let us first define the energy functional describing the induced polarization. Since we assume that
at any time during our simulation, the electrons will be at equilibrium, the correct induced dipoles

themselves will be obtained by minimizing this functional.

Three terms should be taken into account here:’

- the interaction between the induced dipole and the electric field generated at its position by the

permanent distribution of charges,

+ the self-energy of the polarization (one could describe it as the energy of interaction between

one dipole and the electric field that it generates),
+ and the interaction between two distinct induced dipoles

The total then reads

1 _ 1
il =~ Y B S Py Y S T e

i=1,N i=1,N i=1,N B,y=x,y,z
B=x,y,z B.y=x,y,z J#E

Here, El.ﬁ stands for the B component of the electric field experienced at atom /, and Tj; is the tensor

accounting for the interaction between dipoles f; and ,Jj, defined as follows:

By
5 rerl
ify:_%+3 Jsj (2.2)
ri r

To illustrate it, let us say that T,-j/.Tj is the electric field created by dipole j on site /, which leads to

/Y;TT,-j/Tj representing the interaction energy between these two induced dipoles.

Given the polarizability tensor presented in 1.4.1 as well as the interaction ones introduced above, we

can now write the full polarization matrix T, using 3 X 3 blocks, as:
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a;' -T2 -Tis -Tin
T a' -Tn —Ton

T=| -Tsi Tz (23)
—Tn1 —Tn2 . .. a;/]

Here, we voluntarily omitted the Thole damping factors, as they would only weigh down the nota-
tions'.

T is symmetric, positive and definite. While the symmetry is obvious (the interaction U;; between
dipoles / and j is equivalent to Uj;). Positive definite means that all its eigenvalues should be strictly
positive: this is ensured by the Thole damping’ (see 1.4.1).

For future reference, we can also write the polarization matrixas T = a~ ' — 7, with 7 the matrix

containing all the off-diagonal blocks Tj;.

Energy functional

Keeping notations presented in 1.1, we will write E,- (respectively f;) the (three-dimensional) electric
field experienced (respectively the induced dipole) on one atom, and E (respectively u) the 3N vector
containing all E; (respectively all ;).

Using the polarization matrix as defined above, we can finally simplify equation 2.1 as

1
Epallp] = 5 (p. ) = {p. E) (2.4)

Minimizing this energy functional, by equalizing its derivative along u to zero, can easily be done

using the more explicit eq. 2.1:

OE,
polﬁ[ﬂ] EP 4 (o P +Z7-ﬂr Y =0 (2.5)
a,ul. i#j

iTheir explicit expressions can be found in [1].
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Using our previously defined notations, this finally gives the following linear system:
Tu=E (2.6)
and the polarization energy then reads:

1
Epol = _§<ﬂ’ E) (27)

The whole polarization question, when choosing the induced dipoles model, is essentially contained
in this linear problem in equation 2.6: for each time-step, we will have to find the vector u solution, or
equivalently invert the T matrix. Of course, computation of energies and forces will be necessary, but
their computational cost do not exceed the price paid for solving this linear problem, as we will see in

the next sections.

21.2 Solving the linear problem

Having identified the linear problem governing our model, we now need to propose a way to solve it. In

the following, we will thus present the various polarization solvers that one can use.

Direct methods

When trying to invert a matrix, the first family of methods coming to mind are the direct ones, as they
are exact. One can cite the LU decomposition,? which decomposes the matrix to be inverted in a product
of a lower triangular one (L) with an upper triangular one (U). This allows one to change the non-trivial
linear problem (Ax = b) in two successive straightforward operations (solving Ly = b for y, then
solving Ux = y).

Another candidate is the Cholesky decomposition,? only applicable to positive definite matrices.
Much as the LU-decomposition, it expresses the matrix to be inverted as a matrix product, this time of
a triangular matrix L and its conjugate transpose L™,

Matrix inversion being a very common problem, the list of these methods is long and diverse, with
refinements having been developed to exploit the various matrix shapes and properties.

Their computational cost, however, is usually scaling as the cube of the matrix size (O(N?)), which



47 CHAPTER 2. ACCELERATING THE POLARIZATION

becomes problematic as we want to to simulate systems containing tens to hundreds of thousands
of atoms (when considering solvated proteins). Eventhough the computing resources are in constant
progress, we still can not afford to perform such operations - even more so if it's required at each

time-step of a simulation !

Predictor methods

A predictor is an approximation using the previous induced dipoles (U, (t — At), feon(t — 2At)...) to
evaluate the induced dipoles at time ¢, namelyppred(t). The electricfield arising from this set of induced
dipoles (Epreq) is then used to propose a corrected version of the dipoles p . (t), more precise, that is
then to be used in the following iterations as a basis for the predictors.

The simplest predictor version would be to use... the previous induced dipoles as the current ones:

”pred(t) = ycorr(t — At) (2.8)

The first order predictor reads:

”pred(t) = 2ﬂcorr(t - At) - I‘lcorr(t - 2At) (2.9)

Ahlstrom et al.* proposed an algorithm which only used an iterative solver every n time-step (n = 5).
It was deemed to keep satisfyingly conservative results by the authors, and used a predictor for every
other time-step. The authors propose a range of predictors up to third order, but their result show a
much better behaviour of the first-order one (eq. 2.9). The method, although it accelerates simulations,
does not allow for stable simulations over long times.

Kolafa designed an "Always Stable Predictor-Corrector" (ASPC), to be used at each time-step at a
cost of one self-consistent iteration, exhibiting better stability.”> Although efforts were made to improve
time-reversibility,® using data from previous time-steps (in this case the induced dipoles values) pre-
vents proper conservation of this property. Time-reversibility is important as it guarantees a proper

conservation of energy over the course of the simulation".

T et us imagine our system at initial positions and velocities qq and vo. After simulating a time £, suppose that an error €
was accumulated. One can then carry out a backwards integration of the system, which would bring the system back to the
original qg and vg. Yet it would also have accumulated an error ¢, totaling into a 2¢€ error: for the system to come back to
its exact initial position and velocity - that is, if the dynamics is truly time-reversible - this error must necessarily be € = 0.
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Section 2.1.3 proposes iterative methods as an answer to the self-consistency problem, whose cost
depends on the number of iterations needed to reach an acceptable solution. Kolafa's predictors pre-
sented above compute dipoles close to the converged solution that can be used as initial guess for the
iterative solvers, such that the number of iterations required afterwards is minimized, at the cost of the

time-reversibility of the dynamics.

Extended Lagrangians

Another approach to propose good approximate values for the induced dipoles before any self-
consistent iteration is the extended Lagrangian scheme.” Induced dipoles are treated as independent
degrees of freedom, affected with fictitious masses (as would be done in Car-Parrinello Molecular Dy-

namics® for molecular orbitals). We can write their associated kinetic energy as

T=> %mppﬂ (210)
i=1,N
(where gi; denotes the time-derivative of y;, and myp is the fictitious mass evoked above), while the
energy functional defined in 2.1 can be used as the potential energy.

This allows one to derive equations of motion that will govern the dynamics of the induced dipoles,
based on the definition of a so-called extended Lagrangian (description of the Lagrangian mechanics
are beyond the scope of this work, and the reader can find more details in specialized work such as ref.
[9], with a clarity and conciseness that yours truly could not hope to have). Essentially, Euler-Lagrange
equation allows one to derive motion equations from the Lagrangian, guided by the minimization of the
system’s action. This yields a cheap method to compute induced dipoles, although they are not always
exactly at the minimum of the polarization energy energy proposed in eq. 2.4.

[."° in the Born-

Another use of the extended Lagrangian was later introduced by Niklasson et a
Oppenheimer Molecular Dynamics framework, where they proposed to use auxiliary degrees of free-
dom within the Car-Parrinello/extended Lagrangian framework. The role of these auxiliary degrees of
freedom was in this case to serve as an initial guess of a Self-Consistent Field problem, in order to reach

convergence faster (it is exactly the same purpose as presented in section 2.1.4).

Following this same idea, Head-Gordon et al. proposed to use auxiliary degrees of freedom to
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describe induced dipoles™ within polarizatble MD (a set/.l(N) of auxiliary induced dipoles is thus used,
and is constrained to stay close to the accurate value of the "real" induced dipoles). Although it means
more equations to be integrated for each time-step, the gain obtained by minimizing the number of
self-consistent iterations still makes it a valuable strategy for computing dipoles.

Another advantages here is the improved energy conservation allowed by the simple expression of
the equations of motion of the supplementary degrees of freedom. However, the need for an additional
thermostat for the auxiliary degrees of freedom is potentially problematic, as it introduces additional
parameters. In practice, this extended Lagrangian strategy forbids the use of usual large time-steps
integration such as RESPA, as the movement of the auxiliary degrees of freedom has to be finely resolved

so as not to blow up.

24.3 Iterative solvers

Iterative solvers constitute an important family of solvers that has not been cited yet, although they are
arguably the most used ones. They avoid the overwhelming cost of direct methods, while ensuring a
better control over the precision on the computed dipoles.

The general idea behind iterative solvers is a trade-off between computation cost and precision:
instead of fully inverting the matrix, which would yield the perfect solution of the linear problem (in
our case, the exact induced dipoles), one decides to refine the solution until a certain convergence
criterion is reached. This criterion can be chosen in different ways: it could be a threshold value on the
residue norm, or on the norm of the difference between dipoles from one iteration to the next, amongst
other choices.

Of course, this type of solver is only a valid solution if two requirements are met:

+ the computational cost for one iteration must stay reasonable, so that there is indeed a gain
in computation time; in practice, for the methods presented in the following, it scales with the
cost of the operation which corresponds to the computational bottleneck in the solver. In our
case, this operation is the matrix-vector product, such that their number are often used as the

measuring standard to evaluate algorithms costs.

- for the same reasons, the total number of iterations should be as small as possible, as this will

determine the overall cost of the solver.
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In the following, we will present two distinct families of such methods, namely the fixed-point and

Krylov ones.

Fixed point methods: the Jacobi example

Fixed point methods (or stationary methods) are built by splitting the matrix to invert: in the case of

the polarization, we can write

T=a '-T (221)
changing our linear problem (2.6) into
a 'y =Tu+E (212)
the solution then writes
pH=a(E+Tu (213)

Here, u appears as the fixed point of a mapping. Starting from an initial guess u,, and computing the
sequence of u, defined as

Hni1 = a(E + Tpn) =H, +ar, (2.14)

Picard’s fixed point theorem™ shows us that this sequence converges towards the solution of our linear
problem. This is however only insured if the spectral radius of matrix @7, noted p(a7") is smaller than

1, which means that some cases may not converge.” ™

This method thus illustrates itself through its simplicity, both in derivation and final algorithmic
shape. The non-convergence risk, however, advocates for a more careful choice of the inversion algo-
rithm. The properties of the polarization matrix also encourage us in looking for a method that would

be more specific, and hopefully more efficient, to solve our linear problem.
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Jacobi over Relaxation

An extra step can be performed at the end of an iterative solver’s algorithm: by

choosing a relaxation parameter w, one can refine the Jacobi method as follows

Hpp = (1 -, +w(p, +ar,) = u, +war, (215)

It supposes no extra cost if both y, and r, have already been computed, and yields
an improved set of induced dipoles. It is convergent if p(Iy — waT) < 1. This is
called the Jacobi over relaxation scheme, usually abbreviated as JOR. It may be
observed that setting w = 1, the JOR method comes back to a simple Jacobi step.
Asymptotically (i.e. for a large number of iterations), the optimal value for w is the
value that minimizes the spectral radius p(Iy — waT). In our symmetric positive

definite case,it corresponds to

2
Wopt = 75— (2.16)
Amin + /lmax

where Anyin and Aax are the smallest and biggest eigenvalue of matrix &T. This

value can be computed efficiently using Lanczos algorithm.™

ExPT and OPTn methods: a refitted Jacobi procedure

Recently, Simmonett et al."® "7 developed a new class of methods called ExPT and then OPTn, based on a
perturbative approach of the induced dipole derivation. We can show that this is in fact a reexpression

of the Jacobi iterations presented above.
Indeed, let us express the induced dipoles obtained by Jacobi iterations as a sum of dipoles of

increasing order:
n
Hy= Z#(i) (247)
i=0

Taking the direct field E as the zero-th order o), = Mo, applying 2.14 that the first order gives

Ui =aE+ a7 aE (218)
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The second order term 4y is thus defined as a7 aE, and pushing this derivation further shows the

following expression for the j-th order term

Hip=a (aT)E (2.19)

By truncating this method after two iterations (n = 3), and using a linear combination of the odd

dipoles, one defines the EXPT method:"®

Hexpr = C1H1 + C3H3 (2.20)

Interestingly, this expression is not iterative, and thus provides the user with an analytical expres-
sion of the dipoles. It means that differentiating the dipoles with respect to space would give simple,
but analytical derivatives, that can then be used to improve the precision over the simulations, as will
be shown in 2.2. It also exhibits a quite small computational cost (as it boils down to three matrix-vector

products).

Nevertheless, the coefficients ¢1 and c3 are determined through a fitting procedure, and thus should
be subject to cautious use, as they may yield wrong results for untested systems, since (as explained

previously) Jacobi iterations are not necessary convergent.

This approach was then broadened to further orders in the follow-up OPTn methods,"” encompass-
ing H(j) up to the fourth order. Improved results were obtained, particularly on heterogeneous and

biological systems, but a fitting procedure remains nevertheless necessary here.

As for the extended Lagrangian methods evoked before, OPTn methods can count on analytical deriva-
tives, which is a very good asset regarding the energy conservation along the simulation. However, they
also share the same drawback: they both rely on parametric formulations (for the fictitious masses in
the extended Lagrangian, and for the ¢; coefficients here), which can sometimes lead to inconsistent
energy values. Further efforts are thus needed to keep the good features (analyticity) while keeping a

non-empirical concept.
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Direct Inversion in the Iterative Subspace

The Direct Inversion in Iterative Subspace (DIIS) procedure was introduced by Pu-
lay'™ ™ to improve the convergence rate of self-consistent calculations used in
quantum mechanics. The method assumes that a good estimation of the final solu-
tion ps can be expressed as a linear combination of m previous iterative solutions.

This can be written

m m m m
Hous = Zﬂ/ = Z ci(Hr +ej) = pe Z ci + Z cie; (2.21)
i=1 i i=1 i=1

=

using e; to denote the difference s — p;, which is unknown, with 27;1 c¢; = 1. This
last condition can be used as a constraint within a Lagrange multiplier method in
order to minimize the norm of the error ); c;e;. This allows one to extract a good
set of coefficients ¢; that can be used two generate the estimate ys.

This is a very general method, and it can be used on any iterative self-consistent
solver. Practically, one would simply compute an iteration of the chosen solver,
then carry out the DIIS procedure (whose cost is negligible compared to a solver
iteration). If the obtained up,s reaches the chosen convergence criterion, self-
consistent iterations can be stopped.

When used in a linear case, DIIS corresponds to the GMRES subfamily of the Krylov

methods.?°

Krylov subspace methods and the Conjugate Gradient

Krylovmethods follow a different idea: with each successive iteration, a subset of space (called Krylov
subspace) grows, and a functional is minimized over that subspace.

Given an initial guess for the dipoles u (or more generally of the vector solution of 2.6), let us define
its associated residual rgy as

ro=E—Tu, (2.22)

The Krylov subspace of order p is defined as span{ro, Tro, T2r0, S Cal ro}.

Since the dimension of the Krylov susbpace grows with each iteration, minimization is performed over
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an always increasing domain, which ensures that the method will converge to the exact solution g, in a

number of iterations n; < 3N.

The functional that is chosen to be minimized determines which Krylov method is used: if one
were to minimize the /2-norm of the residue (||r,||;2), the method used would be GMRES.™ If £, is
minimized (provided that T is symmetric positive and definite), it's the Conjugate Gradient (CG). The
Conjugate Gradient is optimal, in the sense that the dipoles values at iteration / are fully minimized
over the Krylov subspace on which they were built. Otherwise put, no other vector built on the Krylov
subspace that is used at iteration / would give a lower value of the polarization energy (or would be
closer to the exactly minimized dipoles u,). For matrices veryfing less strong conditions than our T

matrix, several other methods have been proposed, such as the BiCG or Minres algorithms (see [15]).

The Conjugate Gradient works with two distinct vectors, both belonging to the iteratively growing
Krylov subspace: the descent direction p; and the residual r;. The descent direction represents the
research vector along which the (iterative) solution is updated, and the residual is T-orthogonal''to the

descent direction of previous iteration, thus allows the building of the next research subspace (see [13]).

Its initialization reads as follows:

Ho=aEor0
ro=E— Ty, (2.23)
Po =10

One can note that this initialization costs (in computational time) one matrix-vector product if a non-

zero guess is used.

iii ot A denote a matrix. Matrix-orthogonality does not differ much, in its definition, from the vector orthogonality. Without
overburdening the reader with details, we will simply note that, for two vectors v and v to be A-orthogonal, the scalar
product (u, Av) must be equal to zero.
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One iteration of the algorithm is then:

R <I‘j,|’j>
Vi = o101y

Hivt = H; TYiPi
Fie1 =t = YiTpj (224)

Bi — (rivurivg)
N ()

Pi+1 = Fis1 + Bis1Pi
(u, v) designates the scalar product between two vectors v and v. At iteration /,

* ¥i, the optimal distance to move along the search direction p; is computed,

« the induced dipoles are updated (u;,4),

the residual is computed, effectively increasing the Krylov subspace size,
- the next search direction is computed.

The costly part in terms of computation is the matrix-vector product (Tp;) necessary for each itera-
tion.

As the optimal iterative solver when considering symmetric positive definite matrices, and given
its guaranteed convergence, the Conjugate Gradient appears as the method of choice for treating our

polarization problem.

21.4 Reach convergence faster

After choosing the Conjugate Gradient, since it is optimal for our problem, its convergence properties
can be improved in several manners. This may seem counter-intuitive: if CG is optimal, how could we

hope to improve it ?

The optimality of CG means that, for a given number of iterations, no other solver could yield a

better result. Put in other words, to minimize the number of iterations required to reach a convergence
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criterion, CG is the best choice. Further improving its performances can thus only be done by acting
on the "input" of the algorithm: two vectors (E and uy) and the polarization matrix T (see eq. 2.23).
Of course, the computational cost for this better "preparation" must stay negligible compared to the

subsequent acceleration gained.

In the following, we describe two such leads, one by acting on the matrix to be inverted, the second

by choosing a good starting point for the solver.

Preconditioning

When considering Krylov subspaces methods, one can show™ that the convergence rate of an iterative
solver depends on the condition number of the matrix to be inverted. This condition number « is, in

our symmetric, positive, definite case, is defined as

/1max

(2.25)

k(T) =

min

where Ayax and Anin are the biggest and smallest eigenvalues, respectively. The smaller « is, the better

the matrix is conditioned, and the faster the iterative solver will work.

Suppose one has access to a matrix P whose inverse is somewhat "close" to the matrix T. Then the
conditioning of PT will be better than the one of T (we have k(P™'T) < k(T)). One can then change the

original linear problem Ty = E into the better conditioned one
P 'Tu=P'E (2.26)

Using our iterative solver on this new problem will then yield a faster convergence rate, thus accelerating

the dynamics.

The only drawback here is the P matrix itself: it has to be both close to the T matrix and easily

inverted. An ideal candidate here is the block-diagonal matrix of inverse polarizabilities (usually noted
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a;’ ©)

a ' = (2.27)

(0) ay

Inverting this matrix is indeed trivial and negligible in cost. However, it is a really rough approximation
of the original T matrix and its effect will be subsequently limited.

Among the other preconditioner candidates, Wang and Skeel*' propose the following: starting from

T=(a ' - =a'(-a7T) (2.28)
one has
T'=all-a7)! (2.29)
which can be approximated as
T'~al+aT) (2.30)

This approximation can be combined with a cutoff on the interactions in the 7 matrix. Being closer
than the previous matrix P presented to T, the effect on the convergence rate are better, but come with

a higher cost for each iteration (see [22]).

Other names, such as the incomplete Cholesky preconditioner, can be cited here. The "pure" Cholesky
decomposition designates the rewriting of a positive-definite matrix as product of a triangular matrix
and its transpose (M = LL"), allowing for an efficient direct solution of linear systems. The incomplete

one is an approximation of this decomposition that can be used as a preconditioner.™

Divide and Conquer

Nocito and Beran proposed a good block-Jacobi preconditioner based on a divide and conquer strat-
egy?® (see [15] for a description of the block-Jacobi method). One first breaks the polarization matrix

in spatial blocks (or subclusters), following the expectation that atoms will polarize their closest coun-
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terparts the strongest. This is done through the K-means,®* a method that concentrates the largest
matrix elements along the diagonal, based on a distance criterion. Provided that the subclusters are
small enough, or equivalently that the breakdown is sufficiently fine, one can solve the polarization
equations within each subcluster using direct methods (see the Direct methods subsection in 2.1.2).

The remaining interactions, between the induced dipoles in different subclusters, are computed in
an iterative fashion using block-Jacobi iterations coupled with DIIS: the Divide and Conquer algorithm
can thus be seen as a Jacobi method with a very efficient preconditioner.

This method was implemented within the Tinker-HP code and showed its good applicability to

parallel computations,® allowing for acceleration of the simulations.

Using a guess

Accelerated convergence can also be obtained by considering the starting point of the algorithm: if
one knows an estimate of the induced dipoles prior to the computation, one can use it as a beginning
point for the solver, and the convergence criterion should be reached in a lower number of iterations.
This would effectively speed the computation. Simply put, the guess is a way to start the computation
closer to the final solution. As for the preconditioner however, computing the guess should remain a
negligible cost compared to the actual iterations of the algorithm.

A first possible choice would be to use the first order induced dipoles, that is, the one given by the

polarizability and the external electric field with no dipole-dipole interaction

Ho = aE (2.31)

More involved guesses have been proposed, amongst which the predictor guesses. Predictors use
the information from previous iterations (i.e. the induced dipoles obtained at earlier time-steps) to
build more stable and efficient guesses. The simplest idea here would be to use the dipoles obtained
from previous iteration, but it has been shown" that it requires tight convergence to allow stable simu-
lations.

Kolafa et al. proposed a systematically improvable predictor® exhibiting good stability and gain
in computational time when used as a guess.?® For the memory demands to stay reasonable, Kolafa

suggested a sixth order predictor, and it is thus the one implemented in Tinker-HP. More recently, Nocito
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and Beran showed that extending this up to the sixteenth order yielded substantial acceleration (see

[27]), while the overhead and memory usage were not problematic.

Such approaches are very appealing, as speedups reaching 50% can be achieved for 1and 2 fs
timesteps. The use of memory in the dynamics integration however prevents proper time-reversibility
and phase-space volume conservation.? 22 The ASPC also exhibits problems regarding volume preser-
vation,”” which can affect specific types of dynamics. Moreover, the improvements do not apply for time-
steps larger than 2 fs, although this is a likely situation when considering RESPA integration schemes

(as will be detailed in chap. 4).

21.5 The need for improved algorithms

Out of all the algorithms that were described so far, none verifies simultaneously all the properties
we could hope for. We are looking for a polarization solver that would produce accurate polarization
energies, conserve the energy, but also be computationally efficient.

Indeed, after choosing the most adapted solver for our linear problem, and despite the auxiliary
efforts to improve it, two important drawbacks still undermine the polarizable molecular dynamics.

Firstly, the computational speed: although many refinements are used to improve the convergence
rate, polarizable molecular dynamics using induced dipoles are still slower than their non-polarizable
counterparts. As a rule of thumb, one can consider that polarizatble molecular dynamics simulations
are around ten times slower.

The algorithm performances are of course strongly dependent on the level of accuracy requested.
As usual when talking about simulations, a compromise has to be found between the computation
precision and its cost (or equivalently, the time required to perform them). Lipparini et al. showed” that
the convergence criterion should be carefully chosen (e.g. with an error threshold of 107 D) to ensure
energy conservation. In the most conservative choices, the number of matrix-vector products needed
to compute the induced dipoles can reach a dozen !

Secondly, the energy drift: let us recall that in molecular dynamics, the forces are defined as the

(spatial) gradients of the energies. In particular, when considering the polarization energy

'Epol = _ﬁEpol (2.32)
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Using a simple chain rule, this differentiation can be explicited as a sum over several terms. Let us

consider a single component of the gradient to simplify notations:

dEpol B OEp N OEpol Ou

drf B or? ou orf (233)

The second term in this equation involves partial derivatives of the induced dipoles. Since these are
aEpol

assumed to be converged to the value minimizing the energy, one could expect o to be equal to zero.
This assumption is made in any polarizable molecular dynamics code, considering that the convergence
criterion chosen is enough to ensure that property.

It is however not true, since the induced dipoles are computed using an iterative algorithm, not
perfectly converged. As a consequence, a small discrepancy exists between the polarization energy
and the forces arising from it in most polarizable simulations. This error will cumulate as a drift over
time, and can lead to unstable simulation if carried for too long (see [1]). The only possible answer is

then to choose a tighter convergence criterion on the polarization energy, which will reverberate on the

computation time itself.

This section gave the reader a quick overview of the treatment of induced polarization in contempo-
rary simulations. Despite the various methods, algorithms, refinements available, one conclusion still
painfully hinders polarizable molecular dynamics: the cost of simulations is still high.

In the following section, we will present a new algorithm to tackle the problems evoked above.

2.2 Truncated Conjugate Gradient: a new polarization solver

Knowing the limits of the common polarization solvers, a truncation of the well-known Conjugate
Gradient algorithm was proposed, introducing the Truncated Conjugate Gradient (TCG).?? In this first
part, the reader will find a presentation of the algorithm and its main features. Simulation results will

be presented in 2.3.

Truncating the algorithm means that instead of verifying, at each iteration, the value of a numerical

quantity (energy, norm of the residual...), the total number of iterations to be performed is fixed before-
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hand. The polarization solver thus becomes non-iterative, and gains advantages as described below.

Moreover, as any Krylov method, this builds a class of method that are systematically improvable.

2.21 Simulation stability

Using this method, the expression for the induced dipoles becomes analytical, only depending on the
input vectors (the guess u, and the residualrp). Let us write nrcg the truncation order, then for nycg = 1,

we have:

(ro, ro)

1o, Tr0) 0 (2.34)

Hicer = Ho +

The induced dipoles are now expressed as a linear combination of the Krylov basis vectors (rg, Tro...),
with scalar coefficients involving their scalar products. When nqcg increases, this formula becomes
more and more complex, and some notations were adopted "on the fly" during the derivation. To avoid

overburdening this section, they are reproduced in the appendix.

Hicer = Mo+ taro (2.35)
Hicca = Mo+ (yito + t4)ro — y1taP; (2.36)

Hicgs = Mo+ (ta+yita+y2 +y2Bata)ro— (yits + yata + y2B2t4)P1 — yi1y2P2 (2.37)

Having access to the induced dipole analytical formula, the polarization energy

1
Epol, TCGn = _§<FTCGn, E) (2.38)

can thus also be expressed analytically, and more importantly, so does its gradient. This means that
using the TCG, one has access to gradients — and subsequently, forces — that are exactly consistent
with the computed induced dipoles, thus erasing the drift shown in section 2.1.5, and one can count on
excellent energy conservation (this will be illustrated in the numerical results section). The derivation
of these gradients is quite cumbersome and requires careful implementation to stay efficient, as will
be discussed in section 2.2.4.

It is however important to note that this definition of the polarization energy corresponds to the
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variational minimum of the functional Epq[u] = %(/.l, Tu) — (u, E) (equation 2.4). Nevertheless, in our
case, our induced dipole vector is not fully converged, since we use iterative methods, and we are thus
using a slightly different definition of the polarization energy when using equation 2.38 above. This
does not revoke the analytical consistency of our derivatives, and the claim on the energy conservation
remains true. In fact, the difference between both polarization energy definitions is small if the dipoles
are close to the variational minimum, a condition that should hold in our simulations. In addition, and
from a more practical point of view, using the pure variational functional would yield very involved
expressions. The missing term %(p,Tp) would be extremely cumbersome to differentiate, and even
worse, would require an extra matrix-vector product, which would be the exact opposite of our objective.

In practice, this additional effort would not bring any substantial improvement to the method.

2.2.2 Computational cost

The second main advantage the TCG gives us is a full control over the computational effort devoted to
polarization. Indeed, by choosing a truncation order, one limits the number of matrix-vector products
performed. Ideally, a small number of iterations would be sufficient to yield satisfying results, but we
also know that a correctly converged Conjugate Gradient could require around 10 iterations. A correct
middle ground has to be found - as it is always the case in numerical simulations — between precision
and efficiency. We show in section 2.3 that a very limited ncg (one or two) is enough to produce very

satisfying results, partially thanks to the refinement of the methods presented below.

In terms of parallel implementation, the method is equivalent to n iterations of the Conjugate Gra-
dient solver, we will thus be able to reuse the machinery already developed and optimized to compute

our truncation, and its associated gradients.

2.2.3 Refinements of the solver

Now that the iteration number is fixed, the objective is to improve the quality of the computed induced
dipoles while respecting the fixed computational cost: increasing the truncation order would have the
same effect as selecting a tighter convergence criterion for the Conjugate Gradient, but here our goal

remains to accelerate dynamics, so we will refrain ourselves from this solution.
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Preconditioner and guess

Exactly like in the Conjugate Gradient’s case, using a better starting point for the solver or improving the
problem’s conditioning before starting the resolution are two good leads to improve the results. One
could note that in this new situation, we won’t reduce the number of iterations, as it is already fixed:
we now want to improve the accuracy of the solution obtained with this nycg, iterations.

The two solutions evoked earlier (2.1.4) thus still apply here: preconditioning the polarization matrix,
as well as using an initial guess, will improve the precision on the final set of induced dipoles. However,
one should keep in mind that the analytical formulae promised by the TCG come with a complexity cost.
Let us imagine using a guess based on previous time-steps (such as the ASPC). Every vector quantity
from the previous set of dipoles should be stored, and linearly combined. Although this should not be
a problem memory-wise, the gradients will quickly become a nightmare to compute at each time-step.
The same remark can be done on the advanced preconditioners, where any spatial dependency (as is
it the case for Cholesky preconditioners) would imply heavy expressions for the gradients.

The choice to use a guess also implies that an extra matrix-vector product will be required to com-

pute the initial residue, as seen in the initialization equations (2.23), since we have:

ro =E—Tu, (2.39)

Peek-step

Wang and Skeel,”" noting that computing the initial residue costs an extra matrix-vector product when
using a guess, proposed a method to save that extra cost using a peek step (also known as Picard step).
As explained earlier, at each iteration /, the descent direction that will be followed at iteration / + 1 is
computed. Calculating the exact distance that should be travelled along this direction would require

an extra matrix-vector product, but one can do a supplementary fixed-step iteration:

HrcG, peek,n = H1can twarpi1 = Hyegp + WH peek,n (2.40)

This is exactly equivalent to performing an extra Jacobi over-relaxation step after the CG iterations. The
usefulness of this extra step directly depends on w, whose choice is not trivial. wqp: (as defined in

2.16) is optimal in the asymptotic limit, that is, when a large number of iterations of the JOR step are
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computed. Since this is not our case, one should not expect this w value to necessarily yield the best
possible result. wop; is tested and compared to other possible w values in 2.3.

To avoid having to compute the spectrum of the matrix, one can note that wqp, by improving the
convergence on i, would minimize both the RMS error on the induced dipoles, and thus (as a con-
sequence) the polarization energy. Yet one can choose to fit w so that the "peeked" dipoles obtained
reproduce as closely as possible the polarization energy. To do so, one first needs to compute the
fully converged dipoles (using for example the Conjugate Gradient solver with a very tight convergence

criterion). Then, looking at the energy expression

1
EPOl = _§<”TCGn peek> E) (2.41)

1 W
_§</JTCGn’ E) — §(drn+1, E) (2.42)

one can simply define wg; as

(ref)
_2Epol + <I'lTCGn’ E> _ <IJCG,ref — H1cens E>
<arn+1’ E> <arn+1, E>

Wt = (2.43)

Where EF()r;lf) designates the reference polarization energy obtained when using a tightly converged

Conjugate Gradient, and pg o the induced dipoles obtained through this same procedure.

One could note that this can be rewritten as:

_ <T_1 rn, E>

= (@t E) (2.46)

Wit

Computing the induced dipoles using a fully, tightly converged Conjugate Gradient comes however
at a high cost, and it is precisely what we were trying to avoid. This fitting procedure will hence be
carried out every ng; timesteps only. A more detailed study on this fitting will be presented in section

2.3.

A particular case: the orthogonal peek-step

Particular care has to be taken when trying to combine the refinements that were presented in 2.1.4,

in particular when trying to use a peek-step with a preconditioner. When using a peek-step, the final
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expression for the polarization energy is given by eq. 2.42. However, assuming that we use a diagonal

preconditioner, then the vector quantities in TCG are multiplied by &~". This means that one can rewrite

lJpeek,n as

=1
”peekvn = .Arp1 = pp (2~45)

Besides, when using the Conjugate Gradient, the residuals vectors are computed iteratively in such a

way that two different residuals vectors r; and r; are orthogonal:
(ri,r;)) =0 Vj#i (2.46)

Yet, looking at eq. 2.23, we have

ro =E—Tu, (2.47)

meaning that when no guess g is used, the initial residual vector rg is equal to E. In this case, the

polarization energy arising from the peek term is
<I"peek,n, E) = (rps1,r0) =0 (2.48)

Practically, this has a very simple but important consequence on the choice of a setup for the TCG:

if no guess is used, then the peek-step can not be used in the computation.

2.2.4 Computation of the forces

As stated in 1.3, the forces driving our simulation are expressed as gradients of the energies, and the
polarization terms are no exception. In this section, we will show how a naive implementation of the
forces arising from polarization could in fact completely negate our efforts to accelerate the simulation.
We then present a strategy to preserve our acceleration during computations.

Keeping the notations adopted earlier, the formal derivative of the induced dipoles for the first two

orders of TCG are:

Hrcqr = Mo+ tary + tyro (2.49)

I'l',I'CGz = [16 + (t4 + 7 tz)l‘é + (l’;r + }’1/ try + 1 té)ro + ()/1’ ts + 11 t:l)P1 + Y t4P’1 (2.50)
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Let us recall that our collective vectors have a 3/ size. If one were to differentiate one such vector
with respect to 3N spatial coordinates, it would yield a 3N X 3N matrix. Looking at two arbitrarily

chosen atoms with indiced / and j, the force experienced by atom / arising from atom j reads

dE,'j
T dre
U

dE/j
dr@

ij

dEj;
dr®

ij

(2.51)

where r,.‘j’.‘ is the a component of the vector r7j = F} —r;,and Ejj is the energy of interaction between
i and j. Firstly, the total force experienced by each atom in the simulation is the sum of all the forces
arising from the (N — 1) other atoms, or, to put it in other words, of all the N — 1 derivatives of the
interaction energies. With thus have a total of N x (N — 1) forces coming into play (which is equivalent
to N2 for high V). Using Newton'’s third law, this number can actually be divided in two (we simply have
f}_;j = —ff/,-), but the order of magnitude remains at O(N?) (when using Smooth Particle Mesh Ewald,
this costs drops to O(N log N)). Computing a set of forces is thus already a non-negligible part, with

the cost arising from computing all the r;; distances.

Secondly, storing such quantities would be heavy on the memory, and performing any operation
(scalar products, combinations...) has to be carefully done, as it could considerably slow down the
computations. In particular, using the analytical expressions in 2.49 and 2.50 without reconsideration
will repeat the same operations several times, thus slowing down the computation for no good reason.

There is an even worse threat: in the explicit expression of the induced dipoles, differentiation
(in order to compute the gradient), terms involving a squared polarization matrix exist (e.g. T?rp).
Computing the derivative of such a term would involve a term of the shape TT'rg which effectively

would boil down to a matrix-matrix product: this would be computationally too expensive.

A careful implementation for computing the forces has thus been proposed in [28]. It is based on a
direct computation of the gradients of the energy, storing a minimal number of intermediate quantities,
and specifically no intermediate vector or matrix derivative. Implementing such a method supposes

a careful bookkeeping of the many terms involved to end up with the smallest computational effort
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possible.
Let us consider the derivative of the polarization energy in order to extract general properties that

would allow us to make its computation more efficient.

Er;ol, TCGn = _%W%cem E) — %(l"TCGn’ E') (2.52)
Each vector in equations 2.49 and 2.50 can be expressed as a combination of simpler vectors which
are increasing powers of T applied to the initial residual rp, and the scalars (such as y; or t4) are in fact
scalar products of these vectors as well. In other words, it means that every term in equations 2.49 and
2.50 can be expressed using rg, Trg, Tzro, T3ro...
The general shape of these vectors can be written T”rp, with m a positive integer. A formal differ-
entiation of such an expression would yield three types of terms:

« TT r6,

« TT" g (if m > A)
« TR TR (with m > k + 1)

One should recall that the polarization matrix is symmetric. As such, we have (A,TB) = (TA,B).
This means that scalar products involving T"r; can be rewritten in the shape of (ry, T"A), which will
prove to be useful in the next paragraphs. The same rewriting can be done when looking at terms
like (T™*~1T'TXry, A), who were initially impossible to compute in reasonable time since they would
involve matrix-matrix products: one can express them as (T'T¥rg, T"%~TA) .

If one were to develop this equation (using the expressions for u’ ., presented earlier), one could
see that every single term in the overall sum involves a differentiated quantity, within a scalar product,
which would either be the electric field itself ((A, E’)) or a differentiated polarization matrix ((A, T'B)).
This is also true when using a guess. Indeed, we explained earlier that for computational efficiency

reasons, we would limit ourselves to using direct field as a guess. In this case,

E-— Ty, (2.53)

ro

E—-TaE (2.54)
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gives

ro=E —TaE - TaF (2.55)

Here, as announced, the differentiated terms are either E’ or a polarization matrix T'.

By analogy, we can assimilate these two types of terms to forces, where (A, E’) would correspond to
a force produced by the interaction of a set of dipoles A with the electric field, and (A, T'B) would be
the force arising from the interaction between two sets of dipoles A and B. The computation of such
quantities, as explained earlier, is expensive, as one needs the distance between every pair of atoms
i-j (i # j)to compute the interaction. To minimize this cost, every force computation of this shape will

be computed in a single double-loop: the O(N?) (or O(N log N) in SPME) is thus only counted once.

To minimize the number of operations involving differentiated terms, as their impact on the compu-
tation will be important, a simple gathering of terms that should be taken as scalar product with the
same differentiated vector has to be done. For example, considering that V' is a differentiated vector
(either V' = E’ or V' = T'W), and A and B are two other vectors, if one needs to compute (A, V') + (B, V'),
it is much more efficient to prepare a third vector C = A + B, and then to perform the scalar product
(C,V’). The idea is not complicated, but implies quite involved expressions that the reader can find in
the Appendix. It could be noted that the choice to use a guess or a peek-step in the computation, as it

adds terms to the final induced dipoles expressions, complicates these formula even further.

Ultimately, three strategies were followed to ensure an efficient implementation of the gradients

calculations:

« over-expensive terms were avoided through smart scalar products and thanks to the symmetry

of the polarization matrix,

- the most expensive (O(N?)) operations were grouped an performed in a single loop,

- scalar products with differentiated vectors were organized so as to minimize the number of times

they needed to be called.
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To illustrate this strategy, we reproduce here the expression of the derivative of the first-order TCG

polarization energy.

1

— (M () (1) re (1
Etcer = > ((ro, a; oE + a; ;ro + a; ,Tro) + (T'ro, @, ;ro)
() . (1) _ _2spong
o= ta 2= e
) 2spo ..M — _Spono
ca =St a1 2

(2.56)

The expressions accounting for further orders, as well as the peek-step ones, can be found in the

appendix.

Bearing in mind that future implementations of the method could pose the same problems to anyone

interested, and that this bookkeeping task of bringing every terms together in a proper way should not

be done over and over again by other innocent coders, this somewhat involved process was summed up

in an article of the Journal of Chemical Physics reproduced hereafter.
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In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the
Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in
polarizable molecular simulations. The method consists in truncating the conjugate gradient algo-
rithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered
“non-iterative.” This gives the possibility to derive analytical forces avoiding the usual energy con-
servation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation
of the analytical gradients, which is more complex than that with a usual solver. In this paper, after
reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient
implementation of the TCG calculation. The complete cost of the approach is then measured as it
is tested using a multi-time step scheme and compared to timings using usual iterative approaches.
We show that the TCG methods are more efficient than traditional techniques, making it a method of
choice for future long molecular dynamics simulations using polarizable force fields where energy
conservation matters. We detail the various steps required for the implementation of the complete
method by software developers. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985911]

INTRODUCTION

Polarizable force field simulations using point dipole
models are not slow anymore. Indeed, in recent years, the
computational cost of the explicit evaluation of the many-
body polarization energy and associated forces has been sig-
nificantly reduced using state of the art mathematical tech-
niques. More precisely, the bottleneck of such approaches is
the mandatory resolution of a large set of linear equations
(i.e., requiring a matrix inversion) whose size depends on
the number of polarizable sites, which is very large in prac-
tice (for example, up to several tens of thousands of atoms
for medium sized proteins in water). Therefore, direct matrix
inversion approaches are unfeasible, and one has to resort
to iterative methods' such as the Preconditioned Conjugate
Gradient (PCG) or the Jacobi/Direct Inversion of the Itera-
tive Subspace (JI/DIIS). Both methods have the advantages to
ensure convergence and to be compatible with a massively par-
allel implementation® coupled to Smooth Particle Mesh Ewald
(SPME),? enabling the possibility to tackle large systems of
interest that range from materials to biophysics. However,
iterative techniques have to address two aspects simultane-
ously: a low computational cost and a high accuracy on both
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energy and forces. But the standard way of computing the
forces assumes that the dipoles are fully converged and thus
these forces are not the exact opposite of the gradient of the
polarization energy. This means that to avoid energy drifts,
users have to enforce the quality of the non-analytical forces
by choosing a tighter convergence criterion of 1075-10"8 D
for the dipoles, leading to a strong increase in the number
of iterations required to reach convergence. This degrades
the computational efficiency of the solvers, limiting the use
of molecular dynamics with polarizable force fields. In that
context, several strategies have been explored to prevent this
drift while ensuring accurate results and a low computational
overhead.

In this paper, we review the present status of the polar-
ization solvers before introducing the truncated conjugate
gradient (TCG), a method presented in Ref. 4 to propose
an efficient solution to these challenges. We then address
the issue of the fast computation of the analytical gradi-
ents for TCG by presenting a general way to formulate the
TCG polarization forces. Analytical formulas are given for
the TCG1 and the TCG2 methods, as well as for their refine-
ments with the use of a preconditioner and peek steps.* Indeed
as a preconditioner improves the convergence of the polar-
ization computation, a peek step allows us to perform an
additional but inexpensive Jacobi/Picard pseudo-iteration that
does not require any matrix-vector product as it uses the
available residual obtained from the TCG process. Finally,

Published by AIP Publishing.
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timings to compute these forces in a production context of
a reversible reference system propagator algorithm (RESPA)
integrator are given and compared to the ones obtained
with standard iterative solvers and different levels of con-
vergence as well as different predictor guesses for these
solvers.

POLARIZATION SOLVERS: PRESENT STATUS

Several iterative solvers applied to the polarization equa-
tions have been presented and tested, such as the Jacobi Over
Relaxation (JOR) method, the (preconditioned) conjugate gra-
dient method, the Jacobi/DIIS method (see Refs. 1 and 2), or
the recently introduced potentially faster divide and conquer
block-Jacobi/DIIS method.’

Considering an iterative solver, several techniques can be
used to reduce the computational cost to reach convergence
by reducing the number of necessary iterations. In the con-
text of Krylov methods such as the conjugate gradient, it is,
for example, possible to use a preconditioner. It consists in
choosing a matrix P such that P~! is close to T~ (where T is
the polarization matrix to be inverted, presented in the section
titled TCG: Notations) and in applying the iterative method to
the modified linear system where the matrix and the right hand
side are multiplied by P~'. The convergence of the solver is
then accelerated because of the clustering of the eigenvalues
of the matrix P~'T. Efficient preconditioners for the polariza-
tion equations have been designed, such as the ones proposed
by Wang and Skeel,® which provide a reduction in the number
of iterations to reach convergence up to 10%—-20%, depending
on the system (i.e., on the condition number of the matrix that
one needs to invert).

Another way to improve convergence of an iterative solver
is to choose an initial “predictor” guess as close as possible
to the actual solution of the linear equations. This guess can
be constructed using information from one or a few of the
past values of the dipoles. The most naive way to do so is to
choose the value of the dipoles at the previous time step (pre-
vious guess) but more elaborate and efficient strategies have
been designed, such as Kolafa’s Always Stable Predictor Cor-
rector (ASPC)’ or Skeel’s Least Square Predictor Corrector
(LSPC).° which can reduce the number of iterations required
to reach convergence up to a factor two in a standard produc-
tion context.! Nevertheless, these two ways to construct initial
guesses lose their efficiency when one uses larger time steps,
as it the case with the RESPA (Reversible reference System
Propagator Algorithm) multiple time step integrator® (insta-
bilities occur when such predictors are used with time steps
larger than 2 fs).

Note that the two refinements (preconditioning and choos-
ing the initial guess of the solver wisely) can be coupled
without problem.

In the same spirit, it is also possible to speed up con-
vergence by introducing an extended Lagrangian scheme to
propagate a set of dipoles that are used as initial guess to
standard iterative solvers (iEL/SCF or Extended Lagrangian
Self-Consistent Field, see Ref. 9). This approach, derived
from ab initio MD,'%!! significantly reduces the number of
iterations of the solver (by the same order of magnitude as
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the ASPC predictor) but requires using an additional thermo-
stat in order to prevent energy flows between the degrees of
freedom.

However, whatever the different speedup strategies
applied to the popular iterative production methods such as
PCG or JI/DIIS, they still suffer from an important drawback in
link to the way the associated forces are computed. Indeed, they
do not address the polarization energy drifting issues that will
be encountered in long simulations of large non-homogeneous
complexes, such as proteins in water or highly charged ionic
liquids. In such a case, the mathematical problem, i.e., the
matrix inversion, is costlier to solve as the polarization matrix
itself is worse conditioned than in simple bulk water. There-
fore, to ensure stability of very long time scale simulations
towards microseconds where errors accumulate, they should
all employ a tighter dipole convergence criterion (10~/-1078
D) leading to a higher number of iterations than usually dis-
cussed in benchmarks for short simulations, where the 1075 D
standard is employed, effectively causing really degraded real
life performances.

Another set of methods address this issue by considering
analytical formulas for the polarization energy.

The first idea in that direction was introduced by Wang,'?
who used Chebyshev polynomials to get analytical expres-
sions of the polarization energy and its derivatives, which
automatically ensures that the source of the energy drift pre-
viously evoked is removed. Unfortunately, the approach pro-
vided energy surfaces that were too far from the ones obtained
with tightly converged iterative method and was thus not fur-
ther investigated. Significant progresses were recently made
in the same direction by Simmonett et al.'* who proposed a
revisitation of Wang’s proposal through the ExPT (Extrapo-
lated Perturbation Theory) perturbation approach, which is
equivalent to the truncation of the Jacobi iterative method
at a predetermined order combined with the use of a few
parameters.

If the parametric aspect of their approach initially lim-
ited its global applicability to any type of system, the authors
recently improved their method which is now denoted as OPT3
(OPT = Orders of Perturbation Theory)!# by pushing it to
higher order of perturbation and providing a systematic way for
the parametrization, extending the applicability of the method.
One advantage of the approach is its reduced cost compared
to the best iterative approaches.

Alternatively, one can also consider the actual induced
dipoles as new degrees of freedom and build an extended
Lagrangian defining the way to propagate them during the
dynamics without any SCF cycles.!> The first results using
this strategy are promising, and the method indeed does not
require any iteration. On the performance side, one could argue
that using a production PCG solver with a 107 D conver-
gence threshold, a RESPA integrator with a 2 fs time step
for the non-bonded forces coupled to Kolafa’s ASPC is twice
faster than the sequential iEL/0-SCF method with a 1 fs time
step.!> Nevertheless, this PCG speed advantage is only “appar-
ent” as it does not solve the energy drift issue for long time
scales whereas the iEl/0-SCF method has been shown to have
improved energy conservation properties. This nice improve-
ment is due to the use of thermostats and, therefore, iEL/0-SC
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unfortunately suffers from the drawbacks of any extended
Lagrangian approach that cannot use time steps larger than
1 fs.° As we stated before, if iterative methods do not have
any theoretical upper limit to the time step they can be used
with,® it requires not to use information from the past such
as predictor-correctors, removing such speed advantage when
using RESPA.

As we see from this discussion, the question of which
method to adopt is complex as it appears difficult to combine
all possible improvements.

In fact, we can state that reducing the computational cost
of an iterative method to compute the polarization energy
and forces always comes with degraded energy conservation.
Energy conservation is tricky as it depends on the chemical
nature of the system (charged or not, homogeneous or not).
For example, polarization of bulk water systems requires less
iterations to converge with PCG solvers. On the other hand,
the ExPT method behaves poorly for the ionic liquid system
that will be studied in the section titled “TCG: Notations,”*
and the Jacobi method does not even converge in that case.

A major difficulty to compute the polarization energy
and its gradient for future microsecond simulations is to offer
a non-empirical strategy applicable to any kind of systems,
embodying the following properties.

Indeed, such a method should be systematically improv-
able in order to allow the user to set the accuracy of the sim-
ulation depending on its goal. For example, the simple Jacobi
method has been shown not to converge in several cases® and
adding iterations would not improve the results. It should show
good conservation of the total energy during a microcanonical
simulation, ensuring good accuracy on the forces driving the
dynamics. It should also be non-parametric to provide a close
reproduction of any type of potential energy surface, with-
out having to resort to force-field model reparametrization. In
practice, a polarization scheme should also be affordable with
a computational cost as reduced as possible. It should allow
us to use larger time steps through multiple time step schemes
such as RESPA. In the end, the selected criterion to compare
computational efficiencies of the various schemes should be
the global cost of computing both energy and derivatives with
similar energy conservation capabilities for a given trajectory
length.

TCG: CONTEXT

To address all these required features, we recently intro-
duced a non-empirical and non-iterative strategy denoted as
the Truncated Conjugate Gradient (TCG).* TCG is derived
by explicitly writing down all numerical operations of a finite
number of conjugate gradient cycles of iteration which can be
user-chosen (be TCG-n, n = 1,3). As the number of operations
in the TCG approach is fixed once and for all, it is possible
to derive an exact analytical expression of the gradient of the
energy like in EXPT/OPT3,'# avoiding by construction any
energy drift in microcanonical simulations and thus ensuring
energy conservation in that context. The higher the TCG level
is, the higher its accuracy is, as TCG inherits from the proper-
ties of the conjugate gradient and benefits from the fact that it

J. Chem. Phys. 147, 161724 (2017)

is a Krylov method in which the associated error is monotoni-
cally reduced at each iteration. It can be shown in that context
that the CG-method is mathematically optimal, meaning that
it minimizes exactly the polarization energy on the so-called
Krylov subspaces at each iteration and therefore guarantees
that the number of the required matrix-vector products (1 per
iteration in any iterative approach) is reduced to a minimum
compared to other iterative methods. Moreover, the TCG accu-
racy can be improved at negligible costs (i.e., without any
additional matrix-vector product) (i) by using preconditioners
as presented above leading to the Truncated Preconditioned
Conjugate Gradient (TPCG); (ii) by using the residue of the
final CG step, available without any additional cost, to perform
an additional “peek” iteration, equivalent to one step of Jacobi
Over Relaxation (JOR) with a relaxation parameter which can
be found adaptively.

Overall, the TCG approach was found to accurately repro-
duce energy surfaces at a reduced computational cost provid-
ing analytical forces. As it does not rely on history, it does
not suffer from MD perturbations such as the ones arising
when predictor guesses, which break the time-reversibility of
the simulation, are used in polarization solvers. It is for the
same reasons compatible with the use of a large time step
with multi-time step integrators. Also, being based on the
conjugate gradient and thus relying essentially on matrix vec-
tor products and computation of electric fields, it can replace
standard solvers in a regular implementation including linear
scaling ones using smooth particle mesh Ewald. Furthermore,
it does not require additional advanced thermostating nor any
additional parameter.

The purpose of this paper is to address one delicate
point which is the main bottleneck of the TCG method:
the complex derivation of its gradients. If TCG answers all
the desired discussed properties for a polarization solver, a
naive derivation of the energy gradients can lead to an unde-
sired additional computational cost, while the method should
remain analytical and accurate but cheap as well. The goal
here is to detail a strategy enabling the fast computation of
the analytical gradients that would allow developers to effi-
ciently implement the TCG approach in the software of their
choice. We will first present the technical aspect of TCG and
its notations, and then we will detail the optimal computa-
tion of gradients in a form that could be implemented by
developers.

TCG: NOTATIONS

We will place ourselves in the context of the AMOEBA
force field'® and consider a system of N atoms, each embody-
ing a multipole expansion (up to quadrupoles) as permanent
charge density and a polarizability tensor «;. We will denote
E as the 3N vector gathering all electric fields E; created
by the permanent charge density at atomic position #, and
p is the equivalent 3N vector gathering the induced dipoles
experienced at each atomic site. T is the 3N X 3N polariza-
tion matrix, defined by blocks as follows. It bears the 3 x 3
polarizability tensors «; along its diagonal block, and the inter-
action between the ith and jth dipoles is represented as the T';
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a;' T -Ti =T
-Tn o' -Txn —Ton
T=|-Ts1 -Tn
-1
_TNl —TN2 ce a'N

This matrix is symmetric and positive definite. Thanks to
the Thole damping of the electric field at a short range, any
polarization catastrophe is prevented. Indeed, the Thole damp-
ing acts on the eigenvalues; without Thole damping, negative
eigenvalues could be found which is a problem for conjugate
gradient methods.

Using these notations, the total polarization energy can be
expressed as follows:

1
Epol = 50" T = p'E, (1)
where u”E represents the scalar product of vectors u and E
(also noted (u, E)). One can easily see that the dipole vector
¢ minimizing (1) verifies the following linear system:

Tu=E )

giving the minimized polarization energy
1
Epol = —5 1" E. 3)

As explained earlier, the TCG method that we use to solve
this equation derives from the conjugate gradient algorithm.
It uses three vectors upon starting: the guess p, the initial
residual ro = Ty, — E, and an initial descent direction pg that
we set to be equal to ry. It reads as follows:

i
Yi= p; Tp;
Hipr = B +YiP;
riy =1r;—yTp;, . “4)
rl v
Bir1 = ﬁ

Pir1 = Fis1 + Bis1P;

Instead of using a convergence criterion as a condition to stop
iterating, as this is usually done, one can choose to arbitrar-
ily fix the number of iterations and to unfold a finite number
of computational operations that makes it fixed cost and non-
iterative, as explained above. This defines our Truncated Con-
jugate Gradient (TCG) method. Besides the obvious advantage
of drastically reducing the computational cost of each induced
polarization calculation, it allows one to simulate perfectly sta-
ble molecular dynamics, without drift over time, as explained
in Ref. 4. This advantage is not limited to MD and could be
exploited in Monte Carlo simulations.
The exact, total derivative of the energy with respect to
the nuclear position should be
dEp : O0Epq 8_# N 0E o1 5)
dry — Ou dri O
When using an iterative method, the provided solution u
is inexact (approached only); thus the energy is not perfectly
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minimized with respect to the dipoles (the term 0Ep/dp is
not zero). One usually still makes this erroneous assumption,
giving dE,o1/dr; = 0E01/0r;. This leads to computing forces
that do not perfectly correspond to the system and thus to an
unavoidable drift in the subsequent simulations.

If one fixes the number of iterations, it is however possible
to “unroll” the analytical formula for the final polarization
vector, expressed as a function of the starting quantities (p,),
ro). Noting pt1cg, vector, with n the truncation order (i.e., the
number of iterations of the algorithm), one obtains the TCGn
family of methods that reads up to order three,

Hrce1 = Ho + 14X, (6)
Hrcy = Mo+ (Yita +ta)rg — y114Py, (7)
Hregs = Mo+ (Ta+ yita +y2 + y2 B2t2)r

= (ita +yata + 2 Bota)P1 — y1v2P2. (8)

All quantities used in the previous equations are defined
in the Appendix. In practice, we showed that one could stop
as the TCG2 level, as it is accurate enough.

FAST COMPUTATION OF THE GRADIENTS

In this section, we first explain that computing the gradi-
ents of the energy, even though an analytical expression is at
our disposal, is not straightforward. We then show how to pass
the different hurdles encountered.

Having the analytical, exact expression of the dipoles
allows one to differentiate them in an equally exact manner.
A formal differentiation, with a prime “’” denoting it, would
give for the first two orders,

”’TCG] = ﬂé + t4r(/) + t!‘l'o, (9)
Hicgy = B + (ta +y102)r) + (13 + {2 + y115)r0
+y{uP+ 1P +y14P]. (10)

However, the differentiation of a 3N vector with respect
to 3N spatial coordinates would build a 3N X 3N matrix.
This leads to three obstacles that slow down the gradient
computation:

o First, a scalar product of one such derivative A’ with
another vector B would lead to a (3N)? operation, which
is anon-negligible cost, repeated for all products of this
(A’, B) form.

e Second, these products, when using the analytical
expressions [Egs. (9) and (10)] “as is,” are repeated
an unnecessary number of times, effectively making
this slow-down a pure stop.

e Third, one can see that there are two types of vectors
building prcg,: the electric field E, but also the product
of the residue with successive powers of the polariza-
tion matrix (rg, Tro = Py, more generally T"r(, with
m an integer). Differentiating 7"'r( exhibits, amongst
others, a T?T'TYr( term (with p and g two integers
verifying p + ¢ + 1 = m); computing such a T - T'A
product is equivalent to a matrix-matrix product, which
is also computationally too expensive.

This makes a naive implementation of our method effectively
unusable. Yet to run a classical simulation, one needs the



161724-5 Aviat, Lagardére, and Piquemal

forces, i.e., the gradients of the polarization energy, rather
than the derivatives of the dipoles themselves. What one really
needs is thus the derivative of the following scalar product:

1
Epol = §<E’IJTCGH>’ (11)

that is, formally,

’ 1 !’ 1 ’
Eo = §<E s Hrcgn) + §<E’ H1cgn)- (12)

First, developing Eq. (12) shows that all scalar products
involved a differentiated quantity: either a differentiated matrix
(like (A, T’B)) or the derivative of the field itself (E’). An
analogy, or dimensional analysis, allows us to compare these
terms to forces, with (A, E’) corresponding to a force produced
by the interaction of the dipoles A with the electric field, and
(B, T’C) to a force arising from the interaction between two
sets of dipoles B and C. The expensive part of computing
such quantities lies in the calculation of distances. All of these
forces can be computed in a single double loop [whose cost
is O(N?) for direct calculations and O(N log N) when using
SPME] to minimize the computational cost and compute the
said distances only once. This addresses the first hurdle evoked
earlier.

We can also reorganize the gradient computation in order
to minimize the number of the expensive scalar products
involving a vector and a differentiated vector, by grouping
all these scalar products and performing them all at once
(given three vectors A, B, and C, if one needs to compute
(A,B’) + (C,B’), it is much more efficient to first prepare a
vector D = A + C and then to compute (D, B’)). This opti-
mization, though quite simple in principle, actually requires
quite involved expressions (see the Appendix). It is a simple
solution to the second obstacle we listed.

Third, since T is a symmetric matrix, we have (TA, B)
= (A, TB) for any two vectors A and B. In particular, for our
generic vectors T"'ry,

(TPT'T%r, A) = (T'Tro, T’A). (13)

Considering scalar products thus allows us to get rid of the
matrix-matrix (TT’) products, our third hurdle.

Overall, the solution to overcome our obstacles came from
considering the polarization energy instead of the induced
dipole themselves.

To illustrate our solution, one can write the analytical
formulas as follows, for the TCG at order one and two,
respectively:

’

! r (D (1) (1) ’ (1)
bl TCG1 = 5 (¢rp. @i E +al ro +ai, Tro) +(T'ro, af | xo)),

(14)

1
’ _ ’ ’ r (2 2)
Ejo teca = 3 (<E s Hrcaa) + (Mg, E) +(rg, ajoE+a” | TE
2 2 2 2
+ a(l’il’() + a(l’;TI‘() + a(l,;IQI'() + a(l’iT*%ro)
2 2 2 2
+ <T’l’0, a(z())E + a(zjl‘() + a;’%Tl’o + a;’;Tzro)
+(T'Tro, a5 \xo + a§y Tro) + (T'T?ro, a} ro)),

(15)
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where the coefficients al(.fc.) are the result of the cumbersome
derivation evoked earlier; their explicit expression can be
found in the Appendix.

As stated earlier in this paper, the so-called peek-step is a
supplementary JOR iteration based on the last obtained resid-
ual r,,. It simply improves the solution to reach the following
expression:

(peek) _
”TCG}Z = I'lTCGn +wary,, (16)
where « is the relaxation parameter mentioned earlier; more
precisions on its choice can be found in Ref. 4. Defining

Hpeck, TCGn = waTy, the supplementary contribution of the
peek step can be also written as follows:

’ _ ’ s (Lp) (Lp)
Epeek, TCGl — <”peek, TCG1> E > + <r0, al’aOaE + al’laTa'E
(Lp) (Lp)
+a1’lp ro+ a1’2p Trp)
+(T'rg, a\Prg + a” aE) (17)
0,1 10T 85 00 )

!’ ’
Epeek, tcca = (Mpeek, TcG2> E)
r (2p) 2.p) 2p)p2
+(r, al’OaaE + aLmTa/E + al,ZaT aE

2 2 2 2
+a§ ’lp)l'o + a(] ﬁp)Tl‘O + a(l ,’;p)Tzl‘o + a(l AP)TSI‘(Q

2 2 2
+(T'ro,dy. hy B + a5 D TaE + a3 rg

2.p) 2.p)2
+a272 Try +a2’3 Trg)

+(T'Tro,a ) @B +al'rg + al Tro)

+(T'T?rg, a7 ro) (18)

(the coefficients a?ﬁ’p ), as well as an explicit formula for the

Hpeex Vectors, are reproduced in the Appendix). One should
then simply sum the corresponding terms to obtain the final
expression for the polarization energy gradients in a computa-
tionally feasible way, for example, the scalar product (r(, ro)

(Lp)

11 toget

should now be multiplicated by coefficient a(lli +a
the correct gradients for TCG1. ’

All these formulas have been tested and validated against
gradients obtained via finite differences. Such details could
be useful to allow anyone to implement the fast evaluation
of the forces necessary to the use of TCG. The source code
of this method will be freely available in Tinker-HP version
1.1.7

To sum up, the implementation of the gradient calcula-
tion that we propose here follows these three steps: First,
we compute the successive matrix-vector products to build
the successive T"'ry vectors needed; second, we perform the
various scalar products appearing in our analytical formulas,
allowing us to assemble (through weighted sums) a second
set of vectors; finally, we perform simultaneously on all these
assembled vectors a “force-like” calculation. The choice to
use—or not—a peek step only changes the assembled vectors
on step two, through an extra set of coefficients as presented
above.

NUMERICAL RESULTS

In this section, we report the timings of the implemen-
tation presented above for different systems as it has been
added to the software Tinker-HP. More precisely, we report
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the cost of the calculation of the polarization energy and the
associated forces with different methods: a standard diago-
nally preconditioned conjugate gradient (PCG) with a 107> D
convergence threshold, the same method with a tighter 1078
D convergence threshold (that ensures energy conservation
as explained above), and the TPCGI1 and the TPCG2 meth-
ods with the “direct field”! @E as guess u, with a Jacobi
peek step (w = 1). For the two PCG solver settings, the aver-
age number of iterations is also reported in parentheses. Note
that the computational cost of these two methods would be
the same with any other kind of peek steps whose cost is
negligible, as described in Ref. 4. For the PCG solvers, we
report timings using the simple “direct field” as a guess [noted
“PCG (107" D)” in Table I] and also timings using the ASPC
predictor [noted “PCG (10~ D, ASPC)”].” These methods
are timed in the nowadays standard context of the RESPA
integrator® used with a 2 fs time step for the non-bonded
forces.

The systems that are tested here are the same than in
our previous work:* three solvated protein droplets (the HIV
nucleocapsid ncp7 made of 18 518 atoms, the ubiquitin made
of 9737 atoms, and the dihydrofolate reductase, dhfr, with
23558 atoms) and an ionic liquid, the dimethyl-imidazolium
[dmim+][Cl-] (3672 atoms). No boundary conditions are used
in these tests; therefore, each matrix-vector product and force
computation involved in the PCG solvers and in the TCG
formulas has a O(N?) computational cost. However, these
matrix-vector products can be easily re-expressed following
the possible choices for the boundary conditions that will give
rise to slightly different forms of the polarization matrix. For
example, TCG being really close to PCG, it can either be
applied in the context of the particle mesh Ewald>!'® method
with a O(N InN) cost, or using the fast multipole summa-
tion technique!® with a O(NV) cost. These operations are by
far the costliest in the computation of the dipoles and of
the polarization forces. This is why we report the timings
as their proportional cost compared to the PCG solver with
a convergence threshold of 107 D and the direct field as a
guess, as these proportions would be the same when using
other boundary conditions. We chose these settings to be our
reference.

All these (sequential) timings were obtained on an HP 620
Workstation made of Intel Xeon E5-2665 CPUs at 2.4 GHz and
were averaged over 100 ps of NVT trajectories at 300 K for
the protein droplets and at 425 K for the ionic liquid.

TABLE I. Average time for the computation of the polarization energy and
the associated forces for different methods, using the PCG converged at 107
D as the reference, for a RESPA(2 fs) time step. In parentheses, mean number
of iterations needed.

Ubiquitin ncp7 dhfr [dmim+][Cl-]
PCG (107° D) 100% (8) 100% (8) 100% (8) 100% (8)
PCG (10~ D, ASPC)  88% (6) 85% (6) 88% (6) 84% (5)
PCG (1078 D) 136% (15) 138% (15) 143% (16)  138% (15)
PCG (1078 D, ASPC) 125% (13) 127% (13) 125% (13) 117% (12)
TPCG1 43% 43% 44% 44%
TPCG2 61% 62% 63% 63%

J. Chem. Phys. 147, 161724 (2017)

We observe that both the TPCG methods are signifi-
cantly faster compared to standard production settings (107>
D). Compared to more strict settings using a convergence
criterion of 1073 D for the PCG solver, which guarantees
energy conservation during the MD simulation, differences
are even more striking because the computational cost of
the TPCG1 and TPCG2 methods is found to be, respec-
tively, more than three times faster and more than twice faster,
respectively.

This means that using these methods with the implemen-
tation described in this paper enables not only to guarantee
energy conservation but also to save a considerable amount of
time during the computation of the polarization energy and the
associated forces.

Concerning the use of ASPC, a striking result at a time
step of 2 fs is the smaller reduction of iterations necessary to
reach convergence compared to the reduction observed at 1
fs! where a 50% gain was observed for a 10~ D threshold.
In other words, ASPC guess is less efficient when using a
bigger time step. Following intuition, the shorter the time step,
the more efficient the ASPC is. Moreover, in line with our
previous study,! we also observed that the proportional gain
in that regard is even smaller for a tighter dipole convergence
criterion (such as 1078 D), making very long simulations a
daunting challenge.

Another remark concerns the use of even larger time steps
with the RESPA integrator. It has been indeed shown that one
can use a 3 fs time step for the non-bonded forces, provided
that masses of the hydrogen atoms of the system are appro-
priately redistributed among heavy atom carriers.”’ But such
large time steps limit the use of predictor such as the ASPC,
and no gain in the number of iterations can be obtained with
these methods. On the contrary, the computational cost of the
T(P)CG family of methods does not suffer from such a change
as no history is taken into account. The computational cost at
3 fs would remain the same as that in the 2 fs context, offering
an automatic 1.5 acceleration for the same trajectory length at
no cost, increasing the global speedup offered by the use of
T(P)CG.

CONCLUSION

As we have seen, one can reformulate the analytical
expressions for the gradients of the truncated conjugate gra-
dient using a clear strategy. We detailed for interested devel-
opers the various steps required for the implementation of the
complete TCG method including fast force computations.

This strategy allows the implementation of these gradients
to be fast enough for the computational cost of an evaluation of
the polarization energy and the associated forces to be greatly
reduced compared to standard production settings using iter-
ative methods. The TPCG2 method is more than 1.6 times
faster than the PCG solver with a 107 D convergence crite-
rion and the direct field as a guess using a RESPA integrator
with a 2 fs time step (1.4 when ASPC is used). Moreover, it
is more than 2 times faster than a PCG with a convergence
criterion of 1078 D and the same predictor guess, such set-
tings being mandatory to guarantee energy conservation with
the standard PCG for long simulations. As the number of
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operations in the TCG method is fixed and does not rely on
history (i.e., no previous dipole guess nor predictor guess),
it can be applied with larger time steps for the same fixed
computational cost.

The TCG approach provides an accurate reproduction of
energy surfaces* at a reduced computational cost, providing
analytical forces that avoid by construction the drift issues
without relying on complex parametrization nor adding extra
degrees of freedom limiting the settings than one can use to
integrate MD trajectories. That is why it should be a method
of choice for long time scale and stable simulations using
polarizable force fields. Since all TCG’s analytical formulas
involve the expressions of electric fields as well as matrix-
vector products, these latter are easily and directly transposable
in different boundary conditions. In particular, the extension to
smooth particle mesh Ewald is straightforward. For the same
reasons, the parallel implementation of these methods within
the context of spatial decomposition follows any PCG one and
will be described in a future paper dedicated to the massively
parallel Tinker-HP package. In that context, capabilities of the

J

J. Chem. Phys. 147, 161724 (2017)

AMOEBA force field using a TCG/SPME coupling will be
tested by comparing various properties obtained with these
methods.
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APPENDIX: COEFFICIENTS AND PEEK STEP
FORMULAS

We introduce the following notations to express the ana-
lytical formulas of the induced dipoles, as well as their deriva-
tives. Each term can be expressed using the starting vectors
(ro and p) and the polarization matrix T.

Vectors:
oeryg=E - T[lo, oPr,=1P - l4T21‘0,
® po =Ty, o P3 = (1 + Bo12)Trg — (t4 + B2t4) TPy — v TP,.
o P; =Try,
Scalars:
g =rlro, o 15 =ts5 = LlIPI> — tato, ® by = spy — ¥15p1,
e = I‘gPh ® g = l"gT3l‘o, ® by = spots — t4Sp1,
no| P[>
o= — 2 o 110 = 17 — no|[Py1]%, e spp1 = (@E,E),
1
2 2
- P
] [3 = th’{PZ’ [ ] Y = M,
I3
_ o _ T
o Iy = l‘1’ OSp()—l‘OE,
15 =P[P,, e sp; =P/E =E"Tr, e sppr = {aTrg, E),
no + 21[P112 + ¥ P22 = 20114 — 2y114] [P1[1? + 2y 114t5
° ﬂz = s
(&2 = Dng
2 2., .2 2 2

. no + 1 [[P117 + y{[IP211° = 28184 = 2124 |P1 117 + 211425

Y2 = .

1. Peek-step formulas

Hpeck, TCG1 = WaT) — wia Py,

2
Hpeek, TCG2 = wary — wtyaPy — u)()”yll‘QPl - a)(Y)/1I4T ro.

2. Coefficients for the analytical expressions

(1+ Bat)r{P3 — (14 + Bot4)PP3 + v P P;

(AD)
(A2)

The superscript number, between parentheses, indicates the truncation number (1 or 2). p indicates that the coefficient
corresponds to the peek-step derivative and needs to be added to the energy derivative coefficient itself.
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Derivation of EpOL TCG1:

D
10

oD
ay)

(1) _ _ 2spong
la, 12 - tlz ’
2spg (1) _ __Spono
R+ 1, ha =7

Peek-step for TCG1:

2 - (1,]7) 2nosppiw
® 4 ,a0 =w, 1 2 tlz P
a' = - S0
1 laa — 140, 2(10 law,
(l P _ _2spprw (] P _ mosppio
1 1 = H ’ 2 1 ’12 .
TCG2:
(2) = a? =
=14+ Y1, al) = ~yits,
( ) == (2) _ _moby tiby _ nototiohs
o = TNl *dy = +2 12
+2f2n1712?10b2 _ lsllgbz _ 2”0”1’1;[’071
13 [3 tl
a? = 2k ZnPitlobz +2t9t10b2 g YUIL i 0 g — _mb _ 2l112téob2 4 Mooyt
a1 1 13 21 2 2 22 e —t3 e
(2) — 2"()bl +4t1b2 2}’[0!9),‘]0}72 +4l‘2np|l|0b2 o a(z) _ 1tatioba
1,2 1 tz t3 2.3 tg_,
_2t8t13b2 _ 44nonp13SP071 , ° a(2) — _noby _ 2t1t2t%0b2 n "0)’125170’
5 n 3,1 13 2 t_l
0a? = _4% _nnoby PRI o d?® _ t1t4t210b2 ’
. E S i 4.1 2
@ = M 2) _ titat10b)
*ay =270 Ca =T
’ 3
Peek-step for TCG2:
@2p) _ @p
.aIOOz w, .a12a = —wiyy],
a0 —
A 1a = —w(hy1 + 1a),
2p) _  2n
*a = —,f' wY1Spp1 + (Whspp + wiasppr)
i
2npl znp%tlﬂ 219t
X F+ = = T ) = 2 (wyisppa + wsppi),
143 [
o 2P — 4nonp1
ajy = —5-wyi1spp1 + (Whspp1 + wiaspps)
4
% (_47? * % — N0 4 2800 ) 4 20wy spps + wSpp1),
113 3 13 1
@p) _ 4111yt ny
*a ;3" = Yla)sppl +(wirspp1 + wigsppy) (=30 + T2,
2p) _ 2t tat ep
ea . = —(G)IZSPpl + wt4SPP2) : 4 =, (12 la = —wlhy1,
X 3
2.p) _
® a0 = —wW(yi1l2 +14),
2p) _ 2n0np1
*a,; = =5 wyi1spp1 + (Whspp1 + wl4sppr)
2i
X —2,% + M0 SN0 4 800 ) 4 2wy spp2 + wsppi),
113 13 13 f
@p) _ ny | 2nnt
*dy = wVISPPI + (whspp1 + wiasppr) ( e 10) ,
| 3
= tat e _
cayy = —(wtzsppl + Whysppy) L, o ay = —wyily,
3 2 ‘
2,p) m 20t
cayi = leSPPl +(whsppi +wt4sppz)( o %)
) 3
2, 2
(] aggp) = —(cutzspm + a)l4SPp2)tlmlO ° a;, —(whsppy + wt4spp2)m4t1°
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2.3 Assessment of the TCG on static and dynamic properties

In this section, the reader will find results obtained with various options and orders of the TCG. The pre-
vious claim that a small order of truncation (or equivalently as small number of matrix-vector products)
is enough to have satisfying simulations will be supported throughout the following paragraphs.

We will first present tests on static properties of various systems, computing various energies and
verifying proper functioning of the simulations. Then we turn to the diffusion coefficient, in order to
also be able to characterize the dynamical quality of our trajectories.

Finally, timings of the various TCG orders and setups are presented, and we propose a synthesis
of these numerical tests. All results presented in the following were obtained using AMOEBA force-
field.?®> AMOEBA encompasses point-multipoles up to quadrupoles to represent the permanent density
of charges, and is of course polarizable. It was calibrated for water,° nucleic acids and other various

molecules.?®

2.31 Static properties

What we call static properties designates properties that can be computed as ensemble averages, using
integrals as presented in chapter 1 (eq. 1.5). These are thus quantities that will give us insight on how
well the phase space is explored and whether configurations of the system are properly probed. We will
report various energies and radial distribution functions to illustrate in this work. The movement of
particles (molecules, atoms) is not under scrutiny here, and only their positions matter: no conclusion
on the quality of our systems dynamics should be drawn from these results.

Various systems of interest were subject to tests here: liquid water boxes of various sizes, a small

set of solvated proteins, but also ionic liquids.

Preliminar studies: CG dynamics

We will firstly present a set of results obtained using post-treatment of dynamics using the Conjugate
Gradient solver. 100 ps simulations were carried out using a tightly converged Conjugate Gradient.
One configuration frame was extracted every picosecond. The induced dipole vector, as well as the
subsequent polarization energy, were then recalculated using the TCG with various settings (different

orders and refinements) for each frame. An average was then performed over the hundred values, and
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presented below.
The purpose of this "preliminary" study is to test whether a truncation as we proposed for TCG is
indeed viable, and worthy of more developments. Simulations using the exact gradients (as derived in

2.2.4) will be presented after these first results.

Let us first look at the polarization energies obtained on three water systems (S1 containing 27 water
molecules, S2 containing 216 water molecules and S3 4000). All were done in the NVT ensemble, using a
Bussi thermostat, thermalizing the system at 300 K. We present the polarization energies obtained for

various preconditioners and truncation orders in table 2.1.

Solver | Prec. $1 (27 w.m.) S2 (216 w.m.) S3 (4000 w.m.)
Ref - -81.03 -803.33 -15229.87
TCG1 - -73.50 (+8%)  -728.73 (+9%) 13813.35 (+9%)
TCG1 | diag | -74.98 (+7%) -761.91 (+8%) -14028.18 (+8%)
TCG1 | Skeel | -78.63 (+3%) 7797 (+3%) -14743.48 (+3%)
TCG2 - -80.69 (+0.4%) -800.32 (+0.3%) -15173.15 (+0.3%)

TCG2 | diag | -80.81(+0.2%) -801.61(+0.2%)  -15194.87 (+0.2%)
TCG2 | Skeel | -81.03(<01%) -80311(<04%) -15222.53 (<0.1%)

TCG3 - -81.24 (-0.2%) -805.20 (-0.2%)  -15265.65 (-0.2%

(
TCG3 | diag | -81.20(

) )
0.2%) -805.26 (-0.2%) -15268.43 (-0.2%)
)

TCG3 | Skeel | -81.06 (-0.4%) -803.64(<0.1%) -15236.03 (<0.1%)

Table 2.1: Preconditioners - Polarization energies in kcal/mol for water systems, with different TCG and
preconditioners, using a direct field guess (uy = oE). The reference results were obtained using CG
with a 1078 convergence criterion on the norm of the residual. "Prec" stands for the preconditioner,
with "diag" being the diagonal one and "Skeel" the one proposed by Wang and Skeel.?" Percentages
given in brackets are the relative error with respect to the reference.

Looking at table 2.1, and focusing on the TCG computations were no preconditioner was used, the
first order of truncation (TCG1) shows a decent agreement with the reference Conjugate Gradient, with
less than 10% error overall, eventhough it may appear as a quite rough approximation. Errors drop
under 1% when moving to the second order (TCG2), which is already behind the statistical uncertainty
from our simulations: this already seems to confirm the early allegation that a low-order truncation

is enough to correctly account for the induced polarization. In fact, precision obtained using simply
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the second truncation order are accurate enough — and this will be further probed and verified using
the various refinements of section 2.2.3 in the next paragraphs - for us to consider that the third order
(TCG3) is not even necessary.

On a side note, one could notice that the TCG sometimes gives energies that are lower than the
reference, i.e. that appear to be more converged (this can be observed for TCG3). This is an artifact
coming from the fact that the functional that is minimized during the Conjugate Gradient procedure
(Epollp] =
(=5 (1, E)).

Table 21 also gives a particular insight on the effect of the preconditioner. For the first two orders

%(p,Tp) — (M, E)) is not exactly the same as what we compute as polarization energy

of truncation, the use of the diagonal preconditioner slightly improves the accuracy on the energies".
Skeel's preconditioner, more involved, yields better improvements, as it is most obvious when looking at
the TCG1 energies. This is quite expected, as the diagonal preconditioner is a quite poor approximation
of the inverse of the polarization matrix, whereas Skeel’s version is more complex and precise (see

section 2.1.4, equation 2.30).

TCG order | Prec. S1 S2 S3
TCG1 - [63%x103 7.0x103 7.1x1073
TPCG1 | diag | 4.9%x 1073 56x103 58x1073
TPCG1 | Skeel | 2.2x 1073 2.6x 1073 2.7x1073
TCG2 - [ 1.7x107% 19%x103 1.9x%x1073
TPCG2 | diag [ 9.2x10™* 1.1x1072 1.1x1073
TPCG2 | Skeel [ 3.0x 107* 3.9x10™* 4.2x10™*
TCG3 - | 47x10™* 54x10* 55x10™*
TPCG3 | diag [ 3.8x107* 3.8x10™* 39x10™*
TPCG3 | Skeel | 6.6 x 107> 9.5x 10> 1.0x 107

Table 2.2: Preconditioners - Induced dipoles RMS. A direct field guess was used (4o = aE). "Prec" stands
for the preconditioner, "diag" for the diagonal one, "Skeel" for the one proposed by Skeel*' .

To provide another measure of the accuracy of the method, we also calculated the RMS (Root Mean

Square) error on the induced dipoles. For each frame of the 100 ps simulation, the RMS error between

VThis effect should also be the same for the third order (TCG3), but the errors become so small that they fall beyond the
statistical uncertainty.
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the CG and the TCG induced dipole vector was computed. This RMS error was then averaged over all
hundred values, and presented in tables 2.2 and 2.4 for the water systems. In table 2.2, the effect of
the preconditioner is even easier to see: for every order of truncation in the TCG, activating a simple
preconditioner (the diagonal one) sligltly reduces the RMS error, and this effect is strengthened when

using better preconditioners such as Skeel’s one.

TCG order | Prec.  Peek $1 S2 S3

Ref - - -81.03 -803.33 -15229.87
TCG - - -73.50 (+8%) -728.73 (+9%) 13813.35 (+9%)
TCG1 - w=1| -84 (-04%) -806.83(-0.4%) -15315.13 (-0.5%)
TCG1 diag w=1 -79.88 (+1%) -791.51 (+1%) -15001.40 (+1%)
TCG1 diag  wopt -78.98 (+3%) -780.94 (+3%) -14789.04 (+3%)
TCG1 diag  wgt -81.06 (<1%)  -803.42 (<0.1%) -15230.10 (<01%)
TCG2 - - -80.69 (+0.4%) -800.32 (+0.3%) -15173.15 (+0.3%)
TCG2 - w=1 -80.23 (+1%) -794.49 (+1%) -15061.22 (+0.1%)

TCG2 diag w =1 -80.98(<0a%) -80274(<01%) -15218.27 (<0.1%)

)
TCG2 diag  wopt | -80.95(<1%) -802.50 (<0.1%)  -15213.17 (+0.1%)

TCG2 diag Wht -81.02 (<1%)  -803.06 (<01%) -1523114 (<0.1%)
TCG3 - - -81.24 (-0.2%)  -805.20 (-0.2%)  -15265.65 (-0.2%)
TCG3 - w=1/|-8078(+0.3%) -800.83(+0.3%) -15181.55 (+0.3%)
TCG3 diag w=1/] -81.03(<0a%) -803.27(<01%) -15228.74(<01%)

Table 2.3: Peek-step - Polarization Energies in kcal/mol, presented for various peek-steps, using a
direct field guess (1, = aE). The reference simulations were done using PCG with a tight convergence
criterion. "Prec” stands for the preconditioner, "diag" for the diagonal one. "Peek" designates the use of
a peek-step, using a scaling w reproduced in the corresponding column. Percentage given in brackets
are the relative error with respect to the reference.

Table 2.3 focuses on the influence of the peek-step (as presented in section 2.2.3). The RMS error on
the induced dipole is also reproduced in table 2.4. The choice of a scaling factor w for the peek-step is
far from trivial, as will be discussed in the following paragraphs.

Firstly, results obtained with peek-steps comfort the idea that a low order truncation enable good

results, as once again, the polarization energies obtained with TCG1and TCG2 are in very good agreement
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with the PCG reference. The RMS errors, related in table 2.4, also show decreases when using a peek-step.

The use of a Jacobi Over-Relaxation step (JOR), i.e. the choice w = 1 yields improvements in the
energies for the first truncation order (TCG1), but this is not the case anymore for TCG2 and 3. Its effect

on the RMS, however, is always positive (the error on the induced dipoles is lowered).

The more complex choices wg: and wyp: Seem to have two different roles to play there. wqp being
aimed at a better convergence asymptotically, it improves the results on the RMS error, but does not
systematically give energies that are better than a JOR step would yield. On the other hand, ws; is
designed for the reproduction of energies, and as such, reproduces them with a high accuracy. However,

this comes with a slight cost on the RMS error on the dipoles, that can in fact be higher than when using

aw =1o0rwypt.

TCG order | Prec  Peek S1 S2 S3
TCG - - 163x1073 7.0x103 7.1x1073
TCG1 - w=1|36x103 39x10% 37x1073
TCGA diag w=1[22x10"3 26x103 27x1073
TCG1 | diag  wepr | 2.3% 1073 2.7x 1073 2.8x1073
TCG1 | diag  ws | 2.6x1073 3.0x1072 3.0x1073
TCG2 - - 1.7x1073 19x107% 19x1073
TCG2 - w=1|15x103 1.7x10% 1.8x1073
TCG2 |diag w=1]41x10* 50x10* 52x10™*
TCG2 | diag wop | 3.9x107* 4.6x10* 47x10™*
TCG2 | diag  ws | 5.3x10™* 7.0x10™* 1.0x1073
TCG3 - - | 47x10* 54x10™* 55x107*
TCG3 - w=1|46x10"% 49x10™* 48x10™*
TCG3 |diag w=1[13x10"%* 15x10* 1.6x107*

Table 2.4: Peek-step - RMS of the induced dipole vector compared to the reference for water systems.

The peek-step is multiplied by an w stated in the "Peek" column.
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Extension to other systems

This study was also applied to several other systems, much more heterogeneous, in order to investigate

on the versatility of the TCG solver. Three solvated proteins were used as test cases, namely

- the nucleocapsid ncp7, containing two Zn" cations, totaling 18 515 atoms (including solvating

water molecules as well as counter-ions);

« the dihydrofolate reductase (dhfr), consisting in about 2 500 atoms and surrounded in a seven

thousand water molecules droplet;

- the ubiquitin protein, whose nucleic acid chain is made of 1233 atoms, solvated in a 2835 water

molecules droplet.

An exemple of ionic liquid was also investigated, the dimethylimidazolium with chlorine counter-ions
([dmim*][Cl’]). While all other simulations were run at 300 K, this system was thermalized at 415 K,

following recommendations in ref. [31].

As observed earlier on water systems, the non-refined TCG1 (i.e. the first order TCG without any
refinement), or TCG1 with a simple preconditioner, yield errors that can reach 10%. For the other TCG
setups tested (higher truncation orders, use of peek-step), the polarization energies presented in table
2.5 show an excellent agreement with the reference values, obtained with a tightly converged Conjugate
Gradient. This is a first proof of the adaptability of the Truncated Conjugate Gradient.

This good behaviour, very similar to the one obtained on water, is also reproduced when focusing
on the RMS errors on the dipoles, as shown in tables 2.6 and 2.7. As observed earlier, the RMS error
diminishes as one uses more advanced preconditioners; the distinction made between wg: and wopt
still holds (wopt Systematically improves the RMS, while ws; is more suited for enhancing the energy

results).

A few preliminary conclusions can be drawn from these simulations. The Truncated Conjugate Gradi-
ent appears to give good results, no matter the system under study. Polarization energies stay within
a 10% error limit with the first order of truncation, and drop under a few percents when moving to the

second order. As one could have expected, a higher truncation order also means a systematic decrease
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Solver | Prec.  Peek ncp7 ubiquitin dhfr [dmim*][Cl]

Ref - - -24202.54  -11154.87  -28759.01 -1476.79
TCG1 - - -21733.63  -9897.22  -25583.50 -1428.35
TCG1 - w=1/| 2448114 -11231.35 -28986.08 -1477.08
TCG1 | diag w =1 | -23532.73 -10820.84  -27972.41 -1493.58
TCG1 | diag  wopt | -22773.65 -10513.24  -27079.47 -1484.24

TCG1 | diag  wst -2(16111  -11162.02  -28766.40 -1479.06

TCG2 - - -23922.79  -11031.67  -28463.51 -1420.00
TCG2 - w=1/|-2396596 -11009.06 -28384.49 -1465.73
TCG2 | diag w =1 | -24123.65 -11128.14  -28683.52 -1471.34

TCG2 | diag  woept | -23938.70 -11066.44  -28504.96 -1468.29
TCG2 | diag  wsr | 2420530  -11154.21  -28753.60 -1475.08
TCG3 - - -24262.87  -11174.93  -28812.99 -1450.22

TCG3 - w="1 -24121.02 -11105.78 -28635.73 -1441.95

TCG3 | diag w =1 | -24194.37 -11150.95 -28749.68 -1478.83

Table 2.5: Polarization Energies of protein droplet and ionic liquids, using various peek-steps. A direct
field guess pg is used here. "Prec" stands for "Preconditioner", "diag" designates the diagonal one.
"Peek" deignates the peek-step, using a scaling w reproduced in the corresponding columns.

of the RMS error on the induced dipoles vector. Lastly, refinements derived in 2.2.3 proved their worth,

as the peek-step in particular, appearing as a very efficient and flexible tool.

Dynamics using TCG forces

After these preliminary tests, essential to measure the viability of the Truncated Conjugate Gradient
algorithm, we developed the full machinery that allows the computation of the exact forces, as derived
in 2.2.4. This implementation was somewhat cumbersome, given the complexity and the number of
terms involved, as well as the specificities of our highly parallel framework. Adaptation to the PME
framework (sec. 1.5.2) in particular proved to be time-consuming.

Nevetheless, thanks to these efforts, the Truncated Conjugate Gradient became a fully useable
method for polarizable molecular dynamics, and we propose here a more extensive assessments of

its capacities based on the study of a fourth water system (S4), containing 500 water molecules, for
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System | Prec. ncp7 ubiquitin dhfr [dmim+][Cl-]

TCG1 - 1 89x%x107% 88x103 8.8x107% 1.1x1072
TCG1 diag | 8.6x 103 80x10% 81x103 69x1073
TCG1 | Skeel | 5.5x 1073 4.4x1073 45x1073 56x1073
TCG2 - | 35%x107% 32x103 32x1073 7.2x1073
TCG2 diag | 2.5%x1073 20x1073 22x103 34x1073
TCG2 | Skeel | 9.0x 107 7.7x10™* 7.8x10™* 1.5x1073
TCG3 - 121x107% 1.7x103% 1.7x10% 53x1073
TCG3 diag | 7.1x10™* 6.5x107% 7.2x10™* 79x107*
TCG3 | Skeel [ 2.1x107™% 1.8x10™* 19x10% 3.2x107*

Table 2.6: Influence of the preconditioner - RMS of the dipole vector for our second set of systems.
Notations are identical to the previous RMS tables.

which dynamics were carried out using the proper analytical forces of the TCG.

The first notable thing here is that the error on the energies is higher than what was obtained using
PCG dynamics. This is consistent with the fact that we are not exploring exactly the same potential
energy surface. This can also be linked to the various other methods discussed earlier, as some of them
were not able to reproduce the reference fully-converged PCG potential energy surface. Nevertheless,
the TCG remains viable, as this error drops to a few percents quite easily, either by using the second
order TCG, or by using refinements such as the peek-step. A TCG2 using a fitted peek-step (wst) yields
indeed excellent results, as does the TCG1 when all refinements are activated.

It can also be noted that the error on the fully refined TCG (using a diagonal preconditioner, a direct-
field guess and a peek-step), although it remains under 1.5%, is slightly worse for the wg; peeking. This
may be explained by wg:'s computation which was done, in earlier versions of the code, through a
dichotomy and thus with a possible slight loss of precision. Both errors nevertheless stay within the
standard deviation, such that it is complicated to seize the importance of this effect. As of now, we have

no full certainty and we need to further explore this issue.

Conclusion The first objective behind these computations was to show the applicability of the TCG
method, and more specifically for a low truncation order. Here, TCG1 gives a first approximation that is

already good given the very cheap computational price paid. TCG2 provides results in very good agree-
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Water Box | Prec.  Peek ncp7 ubiquitin dhfr [dmim+][Cl-]
TCGA diag w=1[44x103 39x103 41x103 32x1073
TCG1 diag  wopt | 5.1x107° 47x103 48x103 3.8x1073
TCG diag  wp | 49x103 45%x1073 46x103 45x1073
TCG2 diag w=1[17x103 14x103 1.7x103 1.6x1073
TCG2 diag  wopr | 1.3x1073 1.0x1073 1.1x102 1.9x1073
TCG2 diag  ws [ 22%x103 1.7x1072 21x102 20x1073
TCG3 diag w=1]43x10"* 38x10* 48x10* 45x10™*

Table 2.7: Influence of the peek-step — RMS of the dipole vector compared to the reference, for the
inhomogeneous systems, using a peek-step. Notations from previous RMS tables were kept.

ment with the reference ones, and one should note that this remains true when considering systems
renowned for being complicated to simulate, such as ionic liquids. TCG3 further refines the results, as
one should expect. Yet, given the level of precision already reached using TCG2, especially when using
some of the available refinements (preconditioning, peek-step...), the third order does not appear to be

necessary.

This versatility of the TCG, exhibiting convergence for any kind of system, is an inheritance from
the Conjugate Gradient method: using this algorithm to perform our truncation proves to be the right

choice.

Vaporization enthalpies of water

Continuing our tests, and staying with static properties, we will now present vaporization enthalpy

computations.

The enthalpy of vaporization, also called heat of vaporization, measures the energy required to
vaporize a quantity of a substance, that is, to change its state from liquid to gas. It is usually written
AH,ap.

Being a state function, the enthalpy difference of a compound between his liquid and gas phase can
be calculated following any path we want. If we suppose that the liquid must first break the intermolec-

ular interaction keeping it together, then expand by exerting a pressure on its environment, two terms
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Solver Setup Energies
order | Prec. Guess Peek-step Polarization Potential
Ref - - - -2198.81 -4490.46
TCGA - - - -1634.53 (-34%)  -4036.61 (-11%)
TCG1 | diag - - -1928.79 (-14%)  -4303.58 (-4.3%)
TCG1 | diag ° - -1897.15 (-16%)  -4288.86 (-4.7%)
TCG1 - ° w =1 -2083.40 (-5.4%)  -44,10.06 (-1.8%)
TCG1 - - Wit -203214 (-84%)  -4378.03 (-2.6%)
TCG1 | diag ° Wrt -2160.03 (-1.7%)  -4459.29 (-0.7%)
TCG2 - - - 201817 (-8.8%)  -4384.94 (-2.4%)
TCG2 | diag - - -2152.34 (-2.0%)  -4461.86 (-0.6%)
TCG2 - ° - -2230.36 ( 1.5%)  -4521.98 ( 0.7%)
TCG2 | diag ° - -221011(0.6%)  -4504.63 ( 0.3%)
TCG2 - - Wht -2188.46 (-0.4%) -4488.46 (<0.1%)
TCG2 - ° w=1 | -2186.38(-05%) -4483.44(-0.2%)
TCG2 | diag ° w =1 -2194.71 (-01%)  -4489.88 (<0.1%)
TCG2 | diag ° Wit -2169.09 (-1.3%)  -4463.73 (-0.6%)

Table 2.8: TCG dynamics - 500 water molecules. This table compiles polarization and potential energies
obtained for various setups of the TCG (order, refinements used are varying here). "Prec": preconditioner.
Guess: use of the direct field guess (aE). Energies are given in kcal/mol.

arise. Using classical thermodynamic notations, it can be written as

AHyap = AUyap — pAV (2.57)

with AU,ap measuring the internal energy necessary to overcome the intermolecular interactions
AUvap = Ugaz -

Uiiq (2.58)

and pAV is the work exerted against the external pressure.

Let us come back to our microscopic realm, and now consider quantities per unit (from now on, we



89 CHAPTER 2. ACCELERATING THE POLARIZATION

assume that AH,4p, is in energy/mol or energy/molecule). The internal energy of a gas water molecule
Uga; can be computed using a single molecule in vacuum, thus not interacting with anything else.

On the other hand, U;jq can be computed using a simulation of bulk liquid water (which is the case
for our water systems S1-4). We only have to divide the obtained potential energy by the total number
of water molecules in the simulation, to be able to compare it with Ug,,.

Finally, assuming an ideal gas behaviour for the gas phase water gives us pV = nRT, which allows
us to rewrite eq. 2.57 as

<Uliq> 4

AHvap = <Ugas> - = RT (2.59)

This formula was applied, with (Ug,s) obtained after a one nanosecond of a single water molecule
in gas phase. Table 2.9 presents the heat of vaporization obtained with various TCG options. Simulations
were done in the NPT ensemble (we want the pression to remain constant here) using a Monte-Carlo

barostat, with at least 100 ps of equilibration and 300 ps of effectively analyzed run.

Method | Prec. Guess Peek | Potential energy AH,qp Relative error vs. ref.
Ref -4,628.97 10.74 (£ 0.05) -
TCG1 - - - -4014.6 9.51 (£ 0.23) 1%
TCG1 ° - - -L4442.77 10.36 (+ 0.17) 3%
TCG1 - - Wrt -4437,25 10.36 (+ 0.18) 3%
TCG1 ° ° w =1 -4568.16 10.62 (+ 0.05) 1%
TCG1 ° o Wit -4,568.79 10.62 (+ 0.1) 1%
TCG2 - - - -4557.3 10.60 (+ 0.1) 1%
TCG2 ° - - -4572.39 10.63 (+ 0.12) 1%
TCG2 - - Wht -4601.38 10.68 (+ 0.12) 0,4%
TCG2 ° ° w=1 -4628.05 10,73 (+ 0,07) <01%
TCG2 ° ° Wrt -4571.78 10.63 (+ 0.1) 1%

Table 2.9: Vaporization enthalpies of water. All energies are expressed in kcal/mol. Reference is a 400
ps simulation, including 100 ps of equilibration, using the PCG solver for polarization, converged with
a (tight) criterion of 1078 on the residual norm. "Prec""Guess" and "Peek" respectively show whether
the diagonal preconditioner, the direct field guess, and/or the Peek-step were used or not. The w value
given in the peek column deisgnates the scalar value which multiplies the peek-step (as seen in 2.2.3).

Although the method seems to always underestimate the reference results, agreement becomes re-
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ally good, as for previous properties, when considering second order TCG, or when using the refinements
such as the peek-step and preconditioner as developed earlier.

One can also notice a slight deterioration of the values when using a peek-step with a fitted w.

Radial distribution functions

Radial distribution functions (g) measure the variation of density at any distance from a reference
particle. It can be simply understood as follow: given a particle /, g(r) gives the probability to find an-
other particle at a distance r of /. Water exhibits strong intermolecular interactions (including hydrogen
bonds), which causes strong ordering of the molecules. When considering liquid water, this ordering
translates into an equivalent of a solvation radius for water molecules themselves: if one looks at the
goo radial distribution function, measuring the proability to find an oxygen at any distance from an-
other oxygen, a very distinct peak signals that space between neighbouring water molecules is quite
well defined. Peaks can be seen at multiples of this average distance, though they quickly vanish, show-
ing that this structural ordering persists over a few molecules. gy (r), measuring probability to find
a hydrogen atom at distance r from another one, also shows a — perhaps even more obvious - peak
corresponding to the average distance between the two hydrogen atoms within a water molecules. Be-
ing able to reproduce accurately radial distribution functions is thus a good insight on the simulation
accuracy.

We reproduced the Oxygen-Oxygen radial distribution functions obtained with TCG1in figure 2.2, and
the other ones, obtained with TCG2, in figure 2.3. In both case, a reference g(r) function was computed
using the Conjugate Gradient and reproduced on the figures. For the first truncation order, discrepancies
with the reference curves can be observed in particular for the non-refined TCG. The additional use of
a diagonal preconditioner brings the curve closer to the reference, yet it is not sufficient to be exact.
There again, the peek-step plays a key role, as it reduces almost completely the gap. The "full-option"
TCG1, finally, yields a curve which is basically confounded with the reference one.

Looking at TCG2, we now have excellent agreement with the PCG reference, excepted for the non-

refined version, seemingly too rough to yield a perfect radial distribution.

Ywith no refinement, i.e. no preconditioner, no guess, and no peek-step.
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Figure 2.2: Oxygen-Oxygen radial distribution fonction of water, using various TCG1 setups.

2.3.2 Adynamical property: the diffusion constant

In its most general definition, the diffusion constant, or diffusion coefficient, is a measure of the drifting

of particles in a system under the influence of an external force or gradient.

Starting from the classical (macroscopic) Fick’s first law of diffusion, one can describe the flux of
particlesf as

j(F,t) = =DVn(7, t) (2.60)
with D the diffusion coefficient and n the density.

The conservation of matter links the time variation of the concentration with the exchange of matter

with the environment:
on(r,t) = -

+V.j(r,t)=0 2.6
5 J(r,t) (2.61)
Combining equations 2.60 and 2.61 gives

on(r,t .

oY) _ b2 gy (2.62)

ot
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Figure 2.3: Oxygen-Oxygen radial distribution fonction of water, using various TCG2 setups.

Noting that the mean square displacement can be computed following

<Gm—RmW%i/¥er—ﬂmfwﬁﬂ (.63

integrating both sides of 2.62 and using Green’s theorem, one gets (in three dimensions) the Einstein
relationship:

D = L (70 - F(t0))) (2.60)
6dt 0 '

A different integration leads us to the Green-Kubo expression, reading

0

D = 1 / dt (v(t).v(to)) (2.65)
3J4

When considering a pure water system, the question essentially boils down to measuring the mean

square displacement of the molecules. It can also be called, in this case, a self-diffusivity coefficient. A

correct diffusion constant is indicative of a proper behaviour of the simulation dynamic-wise. On the

opposite, a diffusion coefficient lower than experimental data shows that the movement of particles is

dampened, as if the system was more viscous than expected.
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Using Einstein’s formula, diffusion constants were computed using eq. 2.64, with positions extracted
from dynamics. We computed diffusion constants for water molecules, as the interesting value here con-
cerns molecule as whole entities, without the intra-atomic movements. Tinker package comes with a set
of analysis executables, including one designed for diffusion constant calculations. It uses molecules’

centers of mass to compute the average squared displacement.

Diffusion constant were computed for our 500 water molecule system at 300 K, in the NVT ensemble.
Maginn3 reported that using NVE simulations was a better practice, given the possible effect of thermal
(and/or pressure) thermostats on the dynamics. The diffusion constants computed, in our case, did not

differ in both ensembles.

Solver | Prec Guess Peek D Error (%)
Ref 1.96 +0.02 0.0
TCG1 - - - 3.29 +0.04 4O.4
TCG1 | Diag - - 2.37 £0.02 17.3
TCG1 | Diag ° - 2.22 +0.03 11.7
TCG1 - - wfe | 1.65 £0.00 -18.7
TCG1 - ° w=1] 215+0.03 8.8
TCG1 | Diag ° Wt 1.89 +0.04 -3.7
TCG2 - - - 216 £0.02 9.2
TCG2 | Diag - - 2.01 +0.01 2.2
TCG2 - ° - 1.77 £0.04 -11.1
TCG2 | Diag ° - 1.81 £0.01 -8.5
TCG2 - ° w =11 194 +0.04 -1.3
TCG2 - - Wht 1.95 +0.02 -0.4
TCG2 | Diag ° w=11| 191+0.01 -2.9
TCG2 | Diag ° Wt 1.997 +0.02 1.8

Table 2.10: Water self-diffusivity constants. D are given in X107> cm?/s . "Ref" is the reference, it was
computed using a PCG solver, converged with a criterion of 107> on the residual norm. "Prec""Guess"
and "Peek" respectively show whether the diagonal preconditioner, the direct field guess, and/or the
Peek-step were used or not. The w value given in the peek column designates the scalar value which
multiplies the peek-step (as seen in 2.2.3).
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Simulations were run for 2 ns in total, including 400 ps of equilibration and 1.6 ns of production

used to compute the mean square displacements.

Focusing on the results obtained by the TCG, the trend that appeared earlier on static properties
seem to be confirmed here: first orders of the TCG method show decent results when used with refine-
ments, and TCG2 show improvements lowering errors to a few percents. However, first order truncation
when not refined enough seems to struggle much more when it comes to reproducing dynamic vari-
ables. A diffusion constant of 3.3 would indeed vouch for a very "liquid" and mobile water, above the
experimental observations Dey, =~ 2.29 (see, amongst many others, [33]).

Nevertheless, a properly used TCG proves to be a method able reproduce correctly not only the
static properties of a system, but also the dynamic ones, making it a versatile polarization solver not
only in terms of the variety of possible systems, but also the type of studies to be carried out.

Strikingly, when using a preconditioner and a guess, the wg; peek-step now gives better results than

the w = 1 one, which seems in contradiction with our previous observations regarding these setups.

2.3.3 Parametrization of the peek-step, variations of wg;

The use of a peek-step scaled with a ws; proved to be an excellent method to reproduce very accurate
energy, as it is specially fitted in this regard. While it is a quite simple tool to use, it deserves a slightly

more involved study to better understand its capabilities.

For one, one should monitor the range to which the peek-step is allowed to go. More precisely, it
should be noted that definition 2.43 will always give a value for wst, including if, for any reason, the
error on the induced dipoles were to be important, ws: could theoretically reach any real value, as large
as it may be. One should however remember that these values will have a direct influence on the dipoles
as well: should the correction, say, exceed the magnitude of the original p., ones, then the peek-step
"correction" would turn into a straight error.

For several systems (the S2 water system containing 216 molecules, the solvated ubiquitin, and
the GAG protein"'), we plotted the evolution of the RMS error on the induced dipoles (using a tightly

converged PCG as a reference) as a function of the value of w, as well as the subsequent value of the

VIGAG is a very small protein; when solvated it builds a system containing about 8000 atoms.
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polarization energy. We reprodyce the ubiquitin graph in figure 2.4 (figures 5 and 6 in the Appendix

present the water and gag ones). The TCG solver here had no preconditioner, nor guess, activated.
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Figure 2.4: Ubiquitin - Influence of w. Polarization energy and RMS on the induced dipoles plotted as a
function of w.

Let us first look at the evolution of the RMS error. For all systems, and each TCG order, a common
behaviour can be observed: the general shape of the curve exhibits a minimum located at a particular
value wnin.

Meanwhile, if we look at the energy, we have on one hand a black dashed line representing the
reference (PCG) polarization energy, and on the other hand, one line for each TCG order that corresponds
to the peeked polarization energy. This line represents the affine function (y = ax + b) defined
by function 2.42, with y the total polarization energy E,|, w as X, %<l"TCGn’ E) for y-intercept, and
15(0\'r,7+1 ,E) for slope. We can search for the intersection of the black dashed line, corresponding to the
reference polarization energy, with a colored line, in order to understand the fitting of the peek-step
(at the intersection, Epq, ref = Epol, peeked)- Otherwise put, the w corresponding to the abscissa of this

interaction will be wg, as illustrated on figure 2.4.
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Comparing the position of wni, with ws; firstly shows that these two values are different, as the
results obtained earlier foreshadowed. But it also shows that these two value are quite close to each
other, on both well- and ill-conditioned systems (water as well as solvated proteins). This shows us that
ws: fitting does not yield crazily high (or low) values, at least for the various tested systems.

During these simulations, ws; was refitted every 100 time-step, in order to evaluate the variation it
undergoes over the course of the simulation. We observed that these variations depend on the level
of convergence that the polarization solver reached before the peek-step is applied. Explicitly, if the
difference between TCG and the reference is substantial regarding the polarization energy, as it would be
the case for a first order TCG with little to no refinement, ws; remains very stable along the simulation. On
the contrary, when using a very accurate TCG version (second order using all refinements for example),
wst has a rather important range of variation that can reach +0.6.

This could be explained by the importance of the correction required: when using a TCG1 with no
refinement, the error between TCG's polarization energy and the fully converged CG reference is rather
important, such that the scaling of the contribution to the energy from the peek-step remains stable.
On the other hand, when using a fully-refined TCG2, the error between TCG's polarization energy (before
the peek-step is used) and the reference polarization energy is much smaller (see for example the 0.6%
of error in table 2.8 for the TCG2 using a preconditioner and a guess). The correction required from the
peek-step is thus much smaller, and hence more sensitive to the small fluctuations of TCG's polarization
energy. This could explain the higher fluctuation of wg;.

This reasoning is only possible providing that there is no brutal change to the system itself, that is to
say that the peek-step energy contribution (ppeek_step, E) does not change much along the simulation.

This analysis is empirical and would need further tests, and is only here as a proposed explanation.

An excellent precision on the energies can be reached by the use of a fitted peek-step (with wg;), as
showed in the previous sections. Monte-Carlo simulation methods are based on non-physical moves
whose likeliness are controlled by the change of energy they would cause. As such, their accuracy are
very closely depending on the precision on the evaluation of the energy of a configuration. For this
reason, TCG refined with a fitted peek-step thus appears as a method of choice for such simulations.

This becomes even clearer when considering the timings, given that no gradients have to be com-

puted to carry out Monte-Carlo simulations. The TCG would thus be an ideal candidate for such exper-
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iments, especially when considering badly conditioned systems (such as ionic liquids), since they yield

the most impressive speedups.

This adaptability to the Monte-Carlo scheme comes from the fact that TCG does not need to stay
within a Molecular Dynamics framework. Other methods such as the extended Lagrangian ones (as seen
in section 2.1.2) do require a full MD framework to function, and can thus not be used as Monte-Carlo

polarization solvers.

2.3.4 Timings

We are left with one of the most important of TCG’s properties to assess: its computational speed. To
that end, we performed simulations of a thousand time-steps using various setups of the solver, and
measured for each the production in ns/day. By fixing the timestep length to 1 fs for all the simulations,
the number of ns/day is directly the number of timestep multiplied by the time-step length &¢t. We
thus have a direct measurement of the computational time spent per time/step, or equivalently, of the

speed of the computation.

Simulations on the system Sg, containing 500 water molecules, were run on a node of 24 processors.
Simulations for the ubiquitin and [dmim*] systems were run on two nodes of 24 processors, i.e. 48
processors total. Results were compiled in table 2.11, with a PCG solver converged to 1073 as reference.
This PCG reference was computed without using the ASPC guess presented in section 2.4, in order to

compare methods with good time-reversibility and volume preserving properties.
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Solver Refinements Water (Sz) Ubiquitin [dmim*][Cl]
order | Prec. Guess Peek | ns/day diff. | ns/day diff. | ns/day diff.
Ref. 3.06 0.0 0.58 0.0 1.57 0.0
PCG8 2.25 -26.6 | 0.40 -31.6 11 -29.1
TCG1 - - - 468 529 116 963 | 321 1042
TCG1 ° - - 4.65 51.8 116 97.8 321 104.2
TCG1 - ° - 3.67 19.9 0.8 37.0 2.15 36.9
TCG1 - - Wht 4.01 3141 0.84  43.8 | 224 42.5
TCG1 ° ° w="1 3.53 15.4 079 356 213 35.7
TCG1 ° ° Wt 3.57 16.6 077 326 | 2.08 32,5
TCG2 - - - 3.89 27.2 0.89 52.8 | 2.47 57.5
TCG2 ° - - 3.86 26.1 0.89 52.0 | 245 55.8
TCG2 - ° - 2.98 -2.6 0.63 7.9 1.68 7.0
TCG2 ° ° - 3.03 -0.9 | 0.63 7.6 1.68 7.2
TCG2 - - Wht 3.35 9.6 0.64 9.6 1.72 9.6
TCG2 ° ° w="1 2.88 -5.9 0.59 17 1.57 0.1
TCG2 ° ° Wht 2.83 -7.6 058 -0.5 1.55 -1.6

Table 2.11: Timings for various TCG setups. For each simulation, 1000 1 fs time-steps were run. Simu-

lations on the water system S4 were performed using 24 cores; ubiquitin and the dimethylimidazolium

solution with 48 cores. All timings are given in ns/day. The reference timings were obtained using a PCG

solver with a 107> convergence criterion. "PCG8" stands for the Preconditioned Conjugate Solver with

a 1078 convergence criterion. "Diff" designates the relative difference, in percents, with respect to the

reference.
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Firstly, one can note that the simpler the method is, the faster the acceleration obtained: the best
speedups are obtained when using non-refined TCG1, while the fully-refined TCG2 can yield slower
dynamics than the PCG reference.

This may seem counter-intuitive, but it arises from the expressions of the gradients that were de-
rived in the previous section. The rewriting of the derivatives, a vital point in the feasability of the TCG,
can indeed require up to two extra matrix-vector products (one accounting for the use of a guess, as

showed by equation 2.39, another for the supplementary terms that the peek-step requires).

A second general observation concerns the variation of performance depending on the systems in
consideration. Indeed, one can note that the performance gains are systematically higher when looking
at the most heterogeneous systems (for example, TCG1 accelerates the water system’s simulation by
slightly more than 50%, and the ionic liquid’s by more than a hundred).

This can be explained by the conditioning of the polarization matrices (see eq. 2.25) which would
be better when looking at a homogeneous system. This means that, for a given level of convergence,
a greater number of Conjugate Gradient iterations would be required when calculating the induced
dipoles vector on a heterogeneous system. When compared to the fixed number of iterations that TCG
requires, the difference will thus be more important when looking at the inhomogeneous systems; the

speedup provided by TCG will hence be larger.

From a more practical point of view, several simple guidelines can be drawn from these results. The
diagonal preconditioner that was implemented has a really limited impact on the timings, while it
allows a substantial improvement of the simulation’s qualities (as shown by the diffusion coefficient
and the computed energies). Thus, if one wishes to use a really cheap method, the best way to go is
to use the diagonal preconditioner, without any guess or peek-step, baring in mind that not using the
preconditioner would barely mean any savings in computation time.

On another hand, the fully refined TCG offers no effective speedup as is; and for simple simulations,
we would suggest to use a peek-step with a fitted w. We showed in the previous sections the quality of
the simulations obtained with this options, and we now observe that this still ensures a roughly 10%
speedup.

The timings presented were computed using a quite standard 1 fs time-step. Sensibly equivalent
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results can be observed when using a RESPA integrator with a 2 fs time-step (see Appendix). However,
one should keep in mind that this comes with an important improvement regarding the polarization
forces, which are now exactly consistent with the polarization energy. This means, as explained in 2.2,
that there should be no drift arising from polarization in the simulation.

Thisincrease in stability is a direct advantage to explore integration using larger time-steps, and this
becomes even more critical as usual accelerations, such as the ASPC, are not viable when exceeding the
2 fs limit. The applicability of the Truncated Conjugate Gradient to large time-step methods will be

explored extensively in chapter 4.

2.3.5 TCG: a first conclusion

To sum up this first study on the performances and viability of the Truncated Conjugate Gradient, a few

main points should be put forth:

+ As always in computational experiment, a good balance has to be found between numerical
accuracy and computation time. Thanks to the many different setups of the TCG, the user can

finely tune the solver to his will in order to control this balance.

- The diversity of solver setups is more generally a good sign that TCG could be used in various

roles, as the following chapter will illustrate.

+ The stability of the method allows one to consider larger time-steps,** which could yield decisive

accelerations, while the commonly used method are still limiting in this regard.

Looking at the various results, the TCG2 using a fitted peek-step (with wg;) appears as a setup of choice,
with a very good cost effectiveness. It indeed provides speedups and a reasonably easy implementa-
tion, avoiding the use of a guess and its supplementary matrix-vector product, and ensures very good

precision.

Finally, it is worth noting that the reference we used throughout this chapter (a Preconditioned Con-
jugate Gradient with a 10> convergence threshold on the residual norm) is known to yield drift in the
total energy of the simulation, thus distorting the dynamics. If we wanted to reach the stability allowed

by the TCG, this criterion should be tightened to 1078 (as demonstrated by Lipparini et al.").
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Indeed, the drift produced by a simulation where the convergence criterion is fixed at 107> disap-
pears in the short term, but will accumulate on larger time-scales, effectively preventing the simulation
of long dynamics. In the 1078 case, more iterations of the Conjugate Gradient are required, effectively
slowing down the computations. Tables 2.11 (and 10 in Appendix) show this slowdown. The speedups
allowed by TCG are much more interesting compared to this tighter reference: even the fully refined
version becomes 25 to 45% faster (depending on the system) ! When considering long simulations, TCG

is thus definitely a much faster choice.

Perspectives

Amongst the possible improvements proposed to further exploit TCG's potential, one could propose a
splitting of the physical system in "zones" of different conditioning of the T matrix, that should be treated
with different precision levels (as for QM-MM, where a subset is treated using quantum mechanics while
its environment is treated classically). The fact that several orders of the TCG have been developed could
indeed lead to a divisions of the system with a more precise polarization treatment of the most sensitive
zones. One could for example imagine a protein treated using TCG2 while the bulk water is described
using TCG1 only.

The question of linking these two (or more) domains, especially given the complexity of the equa-
tions driving the polarization, can be answered using a mathematical tool called the Schur complement.
By rewriting the polarization matrix, it allows for an approximation of its inverse under certain condi-
tions (see [15] for more details). One could compute the induced polarization using TCG1, then, using
the Schur complement, obtain an approached value of the TCG2 order for the particles of interest (e.g. a
protein’s active site). However, the possible gains, in terms of accuracy and computation speed, remain
marginal. It was thus decided not to spend time implementing it, in order to focus on more efficient

acceleration strategies.

The reader could note that, more than a single algorithm, the Truncated Conjugate Gradient actu-
ally defines a family of algorithms with increasing computational cost and accuracy. Up to now, only
the first few order have been extensively used and studied, and proved to be adequate for a wide va-
riety of systems. Yet, if there was ever the need for a higher order truncation, its derivation should

remain straightforward, although quite involved in terms of formulae. Such further developments may
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be implemented using automatic differentiation® in order to ease the coding task, as the gradients
expression will progressively get more and more complex.

Moreover, this family of algorithms and its various setups span a large choice of polarization solvers
with specific acceleration and accuracy properties, such that one could imagine having various "golden"

TCG standards for different systems.

The Truncated Conjugate Gradient concept was first introduced in an article of the Journal of Chemical

Theory and Computation, reproduced hereafter.
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ABSTRACT: We introduce a new class of methods, denoted as Truncated — ~***
Conjugate Gradient(TCG), to solve the many-body polarization energy and

its associated forces in molecular simulations (i.e. molecular dynamics (MD)  -806
and Monte Carlo). The method consists in a fixed number of Conjugate
Gradient (CG) iterations. TCG approaches provide a scalable solution to
the polarization problem at a user-chosen cost and a corresponding optimal
accuracy. The optimality of the CG-method guarantees that the number of
the required matrix-vector products are reduced to a minimum compared to
other iterative methods. This family of methods is non-empirical, fully =
adaptive, and provides analytical gradients, avoiding therefore any energy ' v
drift in MD as compared to popular iterative solvers. Besides speed, one

great advantage of this class of approximate methods is that their accuracy is ™% 5000 10000 L O U
systematically improvable. Indeed, as the CG-method is a Krylov subspace umherosiens

method, the associated error is monotonically reduced at each iteration. On

top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads
to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is
available, one additional Picard fixed point iteration (“peek”), equivalent to one step of Jacobi Over Relaxation (JOR) with
relaxation parameter @, can be made at almost no cost. This method is denoted by TCG-n(w). Black-box adaptive methods to
find good choices of @ are provided and discussed. Results show that TPCG-3(w) is converged to high accuracy (a few kcal/
mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products:
three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(w) provides robust results at a reduced cost
(three matrix-vector products) and offers new perspectives for long polarizable MD as a production algorithm. The T(P)CG-
1(w) level provides less accurate solutions for inhomogeneous systems, but its applicability to well-conditioned problems such as
water is remarkable, with only two matrix-vector product evaluations.
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1. INTRODUCTION interactions, with immediate applications in various fields of
In recent years, the development of polarizable force fields has application ranging from biomolecular simulations to material
led to new methodologies incorporating more physics. There- science. However, adding polarization to a force field is
fore, higher accuracy in the evaluation of energies can be
achieved." Indeed, the explicit inclusion of the many-body Received: October 6, 2016
polarization energy offers a better treatment of intermolecular Published: November 22, 2016
ACS Publications  © 2016 American Chemical Society 180 DOI: 10.1021/acs jctc.6b00981
g J. Chem. Theory Comput. 2017, 13, 180—190
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associated with a significant increase of the overall computational
cost. In that context, various strategies have been introduced,
including Drude oscillators,” fluctuating charges,3 Kriging
methods,” and induced dipoles.”” Among them, the induced
dipole approach has been shown to provide a good balance
between accuracy and computational efficiency, and can be
implemented in a scalable fashion.®

One issue with this approach is the mandatory resolution of a
set of linear equations the size of which depends on the number
of atoms (or polarizable sites). In practice, for the large systems
of interest of force fields methods, a direct matrix inversion
approach using the LU or Cholesky decomposition is not
computationally feasible because of its cubic cost in the number
of atoms. Luckily, iterative methods provide a remedy. We
showed in a recent paper®” that techniques such as the
Preconditioned Conjugate Gradient (PCG) or the Jacobi/Direct
Inversion of the Iterative Subspace (JI/DIIS) were efficient for
large scale simulations as they offer the possibility of a massively
parallel implementation coupled to fast summation techniques
such as the Smooth Particle Mesh Ewald (SPME).® The overall
cost is then directly proportional to the number of iterations
necessary to achieve a good convergence. In that context,
predictor-corrector strategies have been introduced to reduce
this number using the information on the previous time-steps.”"
Extended Lagrangian formulations inspired by efficient ab initio
methods have also been introduced in order to limit the
computational cost, but they require additional thermostats.'' In
practice, iterative methods are now standard but suffer from
energy conservation issues due to their nonanalytical evaluation
of the forces. Moreover, force fields are optimized to reach a
precision for 107" to 1072 kcal/mol in the polarization energy.
Such a precision can easily be reached using a convergence
threshold of 107 to 10™* Debye on the induced dipoles.
However, when using iterative schemes, one needs to enforce the
quality of the nonanalytical forces in order to guarantee the
energy conservation. Hence, a tighter convergence criterion of
1075 to 1077 Debye must be used for its computation. This leads
to a very significant increase of the number of iterations. Overall,
this additional computational cost is not linked to the accuracy of
the polarization energy but only ensures the numerical stability of
the MD scheme. In that context, in their 2005 seminal paper'”
(see also ref. 13), Wang and Skeel postulated that another
strategy would be possible if one could offer a method allowing
analytical derivatives and therefore avoiding by construction the
risk of loss of energy conservation (i.e. the drift). Such a method
would be associated with a fixed number of iterations and could
extend the applicability of polarizable simulations. Wang
explored such strategies based on modified Chebyshev
polynomials but noticed that even if the intended analytical
expression was obtained, it offered little accuracy compared to
fully converged iterated results. In that context, Simmonett et
al.""* recently proposed to revisit this assumption of a
perturbation approach evaluating an approximated polarization
energy denoted as ExPT. They proposed a parametric equation
offering analytical derivatives and a good accuracy for some class
of systems. However, the parametric aspect of the approach
limits its global applicability to other types of systems. The
purpose of this paper is to introduce a nonempirical strategy
based on the same goals: analytical derivatives in order to
guarantee energy conservation, limited number of iterations and
reasonable accuracy.

We will first present the variational formulation of the
polarization energy and the associated linear system. Then, we
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will look at iterative methods that are commonly used to solve it
and discuss how they can cause problems in molecular
simulations. Following this, we will describe two classes of
iterative methods, the fixed point methods and the Krylov
methods, and see how one can compute the polarization energy
and its associated forces analytically (therefore avoiding the
energy drift mentioned above). Finally, we will show some
numerical results and discuss the accuracy of the new methods.

2. CONTEXT AND NOTATIONS

In the context of force fields, several techniques are used in order
to take polarization into account. Everything that will be
presented in this paper concerns the widely used induced dipole
model. In this model, each or some of the atomic sites are
associated with a 3 X 3 polarizability tensor, so that induced
dipoles appear on these sites because of the electric fields created
by the permanent charge density and by the other induced
dipoles.

2.1. Notations. In the rest of the paper, we will assume that
the studied system consists of N atoms, each of them bearing an
invertible 3 X 3 polarizability tensor a;. We will denote by E; the
electric field created by the permanent density of charge on site i,
and by Ji; the induced dipole on site i. The 3N vectors collecting
these vectors will respectively be noted E and . Furthermore, for
i # j, we will denote by T, the 3 X 3 tensor representing the
interaction between the ith and the jth induced dipole, so that
Tfi; is the (possibly damped) electric field created by fi; on site i.
We are now able to define by blocks the so-called polarization
matrix of the system block by block:

-1

5t —lp Ths — 4N
-1
-, o —Ty —Tn
T= _T31 _Tsz
~Ty, -T, ay'
N1 N2 N

This matrix is symmetric and we assume that it is also positive
definite (thanks to the damping of the electric fields at short-
range) so that the energy functional defined below has a
minimum and “the polarization catastrophe”'® is avoided.

2.2. Variational Formulation of the Polarization Energy
and the Associated Linear System. Given these notations,
one can express the polarization energy of the studied system in
the context of an induced dipole polarizable force field as follows:

L r T
E =—puTu—-—puE
pol 2” 14 14 (1 )
The dipoles p of the quadratic energy functional are determined
by the first optimality condition in the form of the following
linear system:

Tu =E (2)
so that finally:
1 r
E,=—-——weE
pol 2” (3)

for the minimizing dipoles p. The linear system expressed above
has to be solved at each time step of a MD trajectory, so that a
computationally efficient technique must be used to solve it. Two
kinds of methods exist to solve a linear system, the direct ones
and the iterative ones. The first approaches, such as the LU or

DOI: 10.1021/acs.jctc.6b00981
J. Chem. Theory Comput. 2017, 13, 180—190



Journal of Chemical Theory and Computation

Cholesky decomposition, yield exact results (up to round-off
errors) but their computational cost grows proportionally to N*
and their memory requirements proportionally to N?, making
them hardly usable for large systems of biological interest.

3. ITERATIVE METHODS

In contrast, iterative techniques yield approximate results
depending on a convergence criterion, but their computional
cost is proportional to the number of iterations times the cost of
one iteration (dominated by the cost of a matrix-vector product).
This implies that the iterative techniques can be used in
conjunction with an efficient matrix-vector multiplication
method such as the Smooth Particle Mesh Ewald or the Fast
Multipoles.*"”

Several issues arise when using an iterative method to solve the
polarization energy. The first one is related to the way the
associated forces are computed. Indeed, the polarization energy
is a function of the induced dipoles and of the atomic positions,
so that one can rely on the chain rule to express the total
derivative of this energy with respect to the atomic positions. The

induced dipoles are then assumed to be completely minimizing
OF,
pol

E,q so that is assumed to be zero, yielding the following

expression (that is analogous to the Hellman—Feynman theorem
in quantum mechanics):

dEpol _ aEpol 0_”

dr.  ou or,

OF,q  OE,,

or; or; )

As the iterative method for the resolution of the induced dipoles
is never perfectly converged, the previous assumption is never
perfectly satisfied. Consequently, the forces calculated using this
method are not exactly the negative of the first derivative of E,,
(eq 3) with respect to the nuclear positions, potentially giving
rise to an energy drift in a MD simulation. This is illustrated by
the following graph (Figure 1) representing the evolution of the
total energy for a water box of 27 molecules, using the
(diagonally) PCG with different convergence thresholds, namely
1073,107*107°, 107%, and 107”. An initial guess not issued from
the past iterations was used, for a short MD simulation of 10 ps,
using a time step of 0.25 fs. Such a small time step was used in
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Figure 1. Evolution of the total energy of a water box of 27 molecules
computed with PCG and different convergence thresholds (AMOEBA),
and with the TPCG2(wy,) method, with P = diag. The drift on the total
energy is fully related to the polarization contribution, the TPCG2(wy,)
converges to the 1077 PCG results without any drift.
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order to minimize the numerical error coming from time-
integration. One can directly observe the relation between the
convergence threshold and the energy conservation.

The second issue is the computational cost of the iterative
methods, proportional to the number of iterations times the cost
of one iteration. Solving the polarization equations costs usually
(depending on the settings of the simulation) more than 60% of
the total cost of an MD step. It has already been shown that
carefully choosing the iterative techique employed and taking an
initial guess p, using information from the past (by using
predictor guesses”'”) can yield an important reduction of the
number of iterations required to reach a satisfactory convergence
threshold. Nevertheless, some limitations exist due to the
imperfect time reversibilty and volume preservation that they
imply. Furthermore, the ability to parallelize the method
efficiently also influences the choice of the optimal method.®”

These issues motivate the derivation of a computationally
cheap analytical approximation of the polarization energy in
polarizable MD. We aim also for such an approximation to be as
close as possible to the exact results (or at least within the
accuracy of the force field) so that it would not require a
reparametrization of the force fields. For the forces to be
analytical, the computation of the induced dipoles must be
history free and should therefore avoid the use of predictors.

4. FIXED POINT METHODS AND RELATION WITH ExPT

This first class of methods regroups the fixed point methods, also
called stationary methods. In this case, one splits the matrix into
two parts in order to re-express the solution of the linear system
as a fixed point of a mapping associated with the splitting. For the
polarization matrix one can re-express T as the sum of its (block-)
diagonal and off-diagonal part:

T=a'-7T ©)
yielding the following expression of the solution p:
p=a(E+ Tp) (6)

where p appears as the fixed point of a mapping. Then, Picard’s
fixed point theorem'® tells us that starting from any guess g, and
computing the following sequence of dipoles (denoted by r, the
residual associated with p,,):

H, =aE+aTp =p +ar, (7)
we converge toward the solution if p(@7) < 1, with p(M)
denoting the spectral radius of a given matrix M. The method
that was described above is the Jacobi method and if we had split
the matrix between its upper triangular part and the remaining
terms, we would have obtained the Gauss—Seidel method.

A direct refinement of the Jacobi method consists in choosing
a “relaxation” parameter @ and the following (relaxed) scheme:

(8)

which is convergent if p(I; — @aT) < 1. In the rest of the text we
will denote this method as JOR (Jacobi over Relaxation).'**°

One way to get analytical approximations of the polarization
energy is to truncate one of these methods at a fixed order. One
could for example choose to truncate the Jacobi method at some
order n to obtain an analytical approximation to the solutions of
the induced dipoles which we rearrange as:

B = Fo) T By + -t

p,, =0-op +op +ar,)=p + oar,

)
with
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K,y = a(Ta)'E (10)
which is exactly the formulation of the perturbation theory (PT)
method proposed by Simmonett et al.,"* even though they follow
another reasoning related to perturbation theory. The ExPT
method that they propose is then made by truncating this
expansion at order two and by using a linear combination of y,
and p;

Propr = Cty + oy (11)

in order to provide the following expression for the
approximation of the polarization energy:

L 7
Epol,ExPT = _EﬂEXPT

(12)
The computational cost of this method is then equivalent to
making three matrix-vector multiplication and its accuracy is
good in many cases but it has the disadvantage of using two
parameters that need to be fitted. Simmonett and co-workers
recently extended the ExPT technique to higher orders, giving
the OPTn class of methods,"” that lead to improved results but
require even more empirical parameters.

5. KRYLOV METHODS: PRECONDITIONED
CONJUGATE GRADIENT

The point of view of the Krylov methods is completely
different.”" It consists in minimizing some energy functional at
each iteration over some growing subspaces.

Starting from some initial guess g, let us define the associated
residual:

r, = E - Tp, (13)

We are now able to define the so-called Krylov subspaces of order
S N:

K, = span(ry, Try, ..., TV 'ry) (14)
We clearly have the following inclusion of spaces:
KCK,c.. (15)

Then, y1, is determined as the minimum of the energy functional
over fy + K. As one is minimizing at each iteration the energy
functional over some increasing sequence of embedded spaces,
the error (as measured by the functional) is necessarily
decreasing. One can show that there exists a p < 3N such that
the exact solution g belongs to py + K, meaning that these
methods always converge and even provide the exact solution
after a finite number of steps, the worst case being when they
converge in 3N iterations. In practice, however, only very few
iterations are needed to obtain accurate solutions.

The different Krylov methods are determined by the quantity
that is minimized over the Krylov subspaces: if one minimizes
E,, then one obtains the conjugate gradient (given the
assumption that T is symmetric definite positive), if one
minimizes ||r, || then one gets the GMRES method”' (which
is equivalent to some version of the JI/DIIS**). But many other
methods exist, such as the Minres algorithm™ or the BiCG
method®' for nonsymmetric matrices.

The conjugate gradient algorithm updates three vectors at
each iteration: a descent direction, a dipole vector, and the
associated residual. These vectors are updated using three scalars
that are obtained by making some scalar products over these
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vectors. After the following initialization (using here the direct
field @E as an initial guess):

#, =aE
15 = E — Ty,
(P = %o (16)
the algorithm reads as follows:
( ',
" ey
Py =W, 1R
1%+ =15~ ¥ Tp
By = %
I x
P =t t AP (17)

where p; is the descent direction at iteration i, y; the associated
dipole vector, and r; the associated residual. The magic of the
conjugate gradient algorithm is that this simple recursion scheme
still guarantees g; to be the optimum over the entire Krylov-
subspace of order i.

There are several techniques to accelerate the convergence of
this algorithm. A widely used strategy is to use preconditioners.
Indeed, one can show that the convergence rate of the conjugate
gradient, and more generally of Krylov subspace methods,
depends on the condition number of the matrix that is being
inverted: the lower this number is (it is always greater than 1), the
faster the conjugate gradient will converge. In the case of
symmetric positive definite (s.p.d.) matrices as the polarization
matrix, this number can be expressed such as

max

k(T) = (18)

where A, and A, are the largest and smallest eigenvalues of the
polarization matrix. A preconditioner is then a matrix P that is
“close” to the inverse of T, such that the matrix P is easily applied
to avector, k(PT) < k(T), and k(PT) is close to 1. The conjugate
gradient algorithm is then applied to the matrix PT with PE as a
right-hand side. We first chose to use one of the simplest forms of
preconditioner: the diagonal or Jacobi preconditioner, in which P
is the inverse of the (block-)diagonal part of the polarization
matrix. The advantage of this choice in our context is that
multiplying a matrix by a diagonal matrix is computationaly
almost free and that the diagonal of T does not depend on the
positions of the atoms of the system that is studied. As a
consequence, this choice does not complicate the expression of
the gradients very much. On the down side, the diagonal of T is
not a perfect approximation of it, so that we do not expect the
acceleration of convergence to be the highest among the possible
choices of preconditioners. This is why we also considered a
more efficient preconditioner designed for the polarization
problem which we will present below. Wang and Skeel'” start
from the expression

min

T ! = a(l, - al)! (19)
giving the first approximation
T ~ a(l; + aT) (20)
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which is in fact equivalent to one Jacobi iteration. A second
approximation is then made by only considering the interactions
within a certain cutoff in the matrix 7. A typical value for this
cutoff is 3 A, a value that we also used for our numerical tests
presented below. This preconditioner has a bigger impact on
reducing the condition number of the polarization matrix than
the Jacobi one but it also has a higher computational cost per
iteration. This cost is typically a bit less than half a real space
matrix-vector product within a Particle Mesh Ewald simulation
with usual settings for the value we chose (7 A cutoff). The
parallel implementation of this preconditioner would require
additional communications before and after the application of
this preconditioner.’ Finally, as it depends on the atoms
positions, the expression of the gradients of the associated
dipoles would be very involved (therefore in the following
sections we will only retain the diagonal preconditionner). To
illustrate the different rates of convergence of these iterative
methods we plotted in Figure 2 their convergence as well as the

JOR, w=0.75
Jacobi
JI/DIIS

PCG

10 15 20 25

Number of iterations

30 35 40

Figure 2. Norm of the increment as a function of the number of
iterations for different iterative methods (AMOEBA), computed on
ubiquitin.

one of JI/DIIS wich is described in ref. 7 (represented by the
norm of the increment) as a function of the number of iterations
in the context of the AMOEBA polarizable force field for the
ubiquitin protein in water. Note that the Jacobi iterations are not
convergent in this case and that both the JI/DIIS and the
Preconditioned Conjugate Gradient converge twice as fast as the
JOR (as supported by the theory, as the convergence rate of JOR
depends on the condition number, while the rate of Krylov
methods depends on its square root).

We will now explain how to truncate the preconditioned
conjugate gradient to get analytical expressions that approximate
the polarization energy.

6. TRUNCATED PRECONDITIONED CONJUGATE
GRADIENT

Let us define pircg,, the approximation of the induced dipoles
obtained by truncating the conjugate gradient at order n. We
immediately have the result that E () < Ej(frce,) <
Epol(I‘TCGm) if n > m, with E written as in eq 1, and p being the
exact solution of the linear system. In other words, the quality of
the approximation is systematically improvable. One can then
unfold the algorithm at order one and two. Using the following
notations:
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T
ny = Il
b = Tr,
t = roP,
__ mlRl
, =
t;
PZ = Tpl
t, =  4P/P,
n
t, = =2
t
2 2
_ = nol| B |
}/1 =

t3 (21)

one obtains the cumbersome but analytical approximations for
the dipoles corresponding to the conjugate gradient truncated at
order one and two, thus allowing the derivation of analytical
forces that are the exact negative of the gradients of the energy:

Hrcgi = My T Xy (22)

”TCGZ = ”O + (t4 + }’1f2)l‘o - }’1f4P1 (23)

As in the ExPT approach, one can take the following expression
as approximation of the polarization energy:

1 7

Epoyrcan = _?‘chnE

24
Note that both these expressions would be exact if the dipole
vectors were exact and that the closer these vectors are to the fully
converged dipoles, the closer these energies will be to the actual
polarization energy.

Indeed, we have:

1 1
|Epol(ﬂ) — Expycen®) = EﬂTTﬂ -p'E+ szE

(25)
L T
Epoi(1) — Expycaa®)! = 5'/‘ (T — E)| (26)
leading to the following inequatlity:
1
|Epol(ﬂ) - ET(p)CGn(ﬂ)| < 5””“12.”1-71”12 27)

These energies are not the expression minimized over the Krylov
subspaces at each iteration of the conjugate gradient (CG)
algorithm (see eq 1), but they coincide at convergence which
should almost be the case if our method is accurate.

These results are naturally extended to the preconditioned
conjugate gradient (PCG). One can of course also choose to
truncate the (P)CG at a superior order and still be analytical to
obtain a more accurate approximation, at the price however of
additional computational time, and the analytical expression of
the energy and its derivatives will be incrementely more complex,
thus cumbersome to implement. In the following section, where
numerical results are presented, we will limit ourselves to TCG3
as the highest order of truncation.

Moreover, having chosen an order of truncation of the (P)CG,
one can exploit the residual (if it is computed to monitor the
accuracy) of the last iteration of the truncated algorithm in order
to get closer to the converged value by computing one step of a
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fixed point iterative method. As did Wang and Skeel,"* we will
call this operation a peek step. Indeed, many fixed point iterative
methods such as the Jacobi and more generally the JOR only
require to know a starting value of the dipoles and the associated
residual to be applied at each iteration. Note that the Jacobi
method can be seen as a particular case of the JOR method with
@ =1 and that this operation is not computationally expensive, as
it only requires a matrix-vector product with a diagonal matrix if
the residual is known. As for any fixed-point method of a linear
system, the asymptotic convergence of the JOR method depends
on the spectral radius of the iteration matrix. More precisely, the
condition

p(; — waT) < 1 (28)

guarantees that the JOR method is convergent. Asymptotically,
the best convergence rate is obtained with the value of @ that
minimizes this spectral radius. One can show that if T is
symmetric positive definite, this value is

o 2
P A A

min

(29)

Amin and A, being, respectively, the smallest and largest
eigenvalue of aT.

As these results are asymptotic, one cannot necessarily expect
the associated methods to give the best results if only the so-
called peek step is applied, as this depends on the composition of
the current approximation (which is in our case provided by the
T(P)CG) in the eigenvector-basis of T.

Since we cannot rely on asymptotic results for one iteration,
we also explored another strategy that can be of use in cases in
which one is particularly interested in the values of the energies,
as for example in Monte Carlo simulations. The @, based on the
spectrum intends to further optimize all the modes of the
polarization matrix after the (P)CG steps (independently of the
actual approximation) and should therefore asymptotically
improve both the energy and the RMS. However, other values
of o that take into account the actual approximation can be used
to further improve the accuracy. This explains why we tried,
starting from one or two iterations of (P)CG, to choose the value
of w that gave the closest approximate polarization energy to the
fully converged one. Since the optimal parameter (in this new
sense) requires another matrix-vector multiplication, we tried to
obtain values of this parameter on the fly by fitting one or several
energies against the energies obtained with the fully converged
dipoles or a superior truncation of (P)CG. It will be called wy,.

Starting for example from pi1cg,, and noting:

+ war,

HBrccopeek = Prcca (30)

one can see this procedure as a line search: given the starting
point g, one further tries to optimize the energies along the
parametrized line y, + war, for ® € R.

Once one of these methods is chosen, analytical expressions of
the associated forces can be naturally obtained, thus ensuring that
the forces are (up to round off errors) the opposite of the exact
gradients of the polarization energy, and thus avoiding an energy
drift. Gradients of the energies have been derived and are
presented in a technical appendix at the end of the manuscript.

7. NUMERICAL RESULTS

7.1. Energy Conservation of the T(P)CGn Approaches.
We first emphasize that Figure 1 already displays an important
result: the TCGn methods ensure total energy conservation as
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they use analytical evaluation of the forces. All further
refinements discussed in section 6 lead to the same behavior,
incremently closer to the reference energy.

7.2. Stability of the Spectrum. Before presenting the
complete numerical tests, we analyze here the spectrum of the
polarization matrix during a MD simulation. Indeed, as pointed
out in the theory section, some refinements of the TCG rely on
the extreme eigenvalues of T and @T. We followed the evolution
of these eigenvalues during 100 ps of MD. Those tests were made
with the Lanczos algorithm since all the matrices we are
interested in are symmetric. Indeed, one great advantage of the
Lanczos method is that it reduces the computational cost
compared to direct methods (such as the one available in the
LAPACK library). That way, if direct eigenvalue solvers force the
user to compute the full spectrum (ie all the eigenvalues),
Lanczos method allows rapid access to the extreme eigenvalues
by constructing a much smaller tridiagonal matrix whose
spectrum is close to the one of the original matrix, leading to
almost identical extreme eigenvalues that can then be obtained in
a few iterations. We observed that in all cases these values are
stable over the 100 ps of the MD trajectories as pointed out by
Skeel.'” This can be seen for S3 and the ubiquitin system in

Figures 3 and 4. This result motivated our choice to compute @,

3.0

2.0

Amin for S3
Amaz for S3

—  Auin for ubiquitin
Amaz fOr ubiquitin

1.0

Highest and lowest eigenvalues of aT

0.0

10 60
Simulation time in ps

0 20 80 100

Figure 3. Evolution of the extreme eigenvalues of aT for S3 and
ubiquitin.

and oy, for the first geometry of our equilibrated systems and to
keep this value for all the others geometries. Both our Lanczos

0.78‘v\/'v\fv\—vx/\,««\/"\/\—v\/\/vv‘\j\j\,\/\A/\J‘-\/—

—  wey fOr S3
wep fOr ubiquitin

0 20 40 60
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Figure 4. Evolution of @, for S3 and ubiquitin.

opt
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implementation and the energy fitting procedure are fast enough
to be used on the fly while being negligeable over a 100 ps MD
simulation. In our tests, the adaptive reevaluation of the @’s was
nevertheless never required.

7.3. Computational Details and Notations. In this
section, we will present some numerical results from the
methods presented above. All the tests presented here were
made using the AMOEBA polarizable force field**** imple-
mented in our Tinker-HP code.”® The proposed benchmarks
deal with homogeneous and inhomogeneous systems: water
clusters and protein in water droplets as well as an ionic liquid
system. The three water systems will be called S1, S2, and S3 and
contain respectively 27 molecules (81 atoms), 216 molecules
(648 atoms), and 4000 molecules (12000 atoms). We chose
difficult systems ranging from usual proteins to metalloproteins
and highly charged ionic liquids.”” The protein droplets are,
respectively, a metalloprotein containing two Zn(II) cations
(nucleocapsid protein ncp7) with water (18515 atoms including
counterions), the ubiquitin protein with water (9737 atoms), and
the dhfr protein with water (23558 atoms). The ionic liquid
system is made of [dmim+][Cl—] (1—3 dimethylimidazolium)
ions, making it a highly charged system of 3672 atoms with a very
different regime of polarization interactions. All the results
presented in this section were averaged over 100 geometries that
were extracted from a 100 ps MD NVT trajectory (one geometry
was saved every picosecond) at 300 K for all systems, except the
[dmim+][CL—] at 425 K. The results, that will give indications
about the accuracy of the approximate methods compared to the
fully converged iterative results, will give two different and
complementary aspects of this accuracy. We will first compare
the polarization energies (in kcal/mol) obtained with dipoles
converged with a very tight criterion (RMS of the residual under
1077) to the ones obtained with T(P)CG. We will then present
the RMS of the difference between the fully converged dipole
vectors and the approximate methods. This RMS is a good
indicator of the quality of T(P)CG forces compared to the
reference: the smaller this RMS is, the closer the approximated
but analytical forces will be to the reference force.

Tables 1 to 4 describe the water systems and Tables S to 8
describe the protein droplets and ionic liquid. We will denote by
“ref” the results obtained with dipoles converged up to 10~ in
the RMS of the residual; by “ExPT” the results obtained with the
method of Simmonnet et al. presented in section 3; by “TCGn”
(with n =1, 2, and 3) the results obtained with the CG truncated
atorder 1,2, and 3; by “TPCGn” (P = diag) (withn=1,2,and 3)
the results obtained with the preconditioned (with the diagonal)
CG truncated at order 1,2 and 3; by “TPCGn” (P = Skeel) (with
n =1, 2, and 3) the results obtained with the preconditioned
(using Wang and Skeel’s preconditioner) CG truncated at order
1,2, and 3.

Furthermore, we will present results obtained with different
kinds of peek steps. We will first denote by TCGn(w = 1) (with n
=1, 2, and 3) the results obtained with the CG truncated at
different orders when a Jacobi peek step is made after the last
conjugate gradient iteration. We will also denote by TPCGn (P =
diag) the results where the same peek step is made after different
numbers of iterations of the PCG with a diagonal preconditioner.

We will also denote by TPCGn(P = diag)(@,,,) (with n = 1
and 2) the results obtained with 1 and 2 iterations of diagonally
preconditioned CG and a JOR peek step with an “optimal” @,
in the sense of section 6 (that depends whether a preconditioner
is used or not).
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As explained in the previous section we also explored a strategy
where the damping parameter of the JOR step is fitted to
reproduce energy values. In the following tables, the damping
parameter will be denoted by wg,.

7.4. Numerical Results. A first observation to make is that
given a particular matrix (preconditioned or not) and with or
whithout a JOR peek step, the results are always better in terms of
energy and RMS when one performs more matrix-vector
products, that is, going to a higher order of truncation. This is
naturally explained in the context of the Krylov methods: an
additional matrix-vector product increases the dimension of the
Krylov subspace on which the polarization functional (see eq 1)
is minimized, and thus systematically improves the associated
results. We should also recall here that the functional that is
minimized over growing subspaces is not exactly the same as the
one we are taking as the polarization energy and that this explains
the nonvariationality of some of our results: there are many cases
where the energy associated TCGS3 is slightly lower than the one
associated with the fully converged dipoles (see discussion in
section 6).

Table 1. Polarization Energies of Water Systems

water box S1 S2 S3
ref —81.03 —803.33 —15229.87
ExPT —69.54 —660.95 —12822.79
TCG1 —73.50 —728.73 —13814.35
TCG2 —80.69 —800.32 —15173.15
TCG3 —81.24 —805.20 —15265.65
TPCG1 (P = diag) —74.98 —741.91 —14028.18
TPCG2 (P = diag) —80.81 —801.61 —15194.87
TPCG3 (P = diag) —81.20 —805.26 —15268.43
TPCG1 (P = Skeel) —78.63 =779.17 —14743.48
TPCG2 (P = Skeel) —81.03 —803.11 —15222.53
TPCG3 (P = Skeel) —81.06 —803.64 —15236.03
Table 2. Polarization Energies of Water Systems, Using a
Peek-Step
water box S1 S2 S3
ref —81.03 —803.33 —15229.87
TCGl(w = 1) —81.41 —806.83 —15315.13
TCG2(w = 1) —80.23 —794.49 —15061.22
TCG3(w = 1) —80.78 —800.83 —15181.55
TPCG1 (P = diag)(w = 1) —79.88 —791.51 —15001.40
TPCG2 (P = diag)(w = 1) —80.98 —802.74 —1521827
TPCG3 (P = diag)(w = 1) —81.03 —803.27 —15228.74
TPCG1 (P = diag)(@,p,) —78.98 —780.94 —14789.04
TPCG2 (P = diag)(@,p0) —80.95 —802.50 —15213.17
TPCG1 (P = diag)(wp,) —81.06 —803.42 —15230.10
TPCG2 (P = diag)(wp,) —81.02 —803.06 —15231.14

We can also see on the numerical tests that using a
preconditioner systematically reduces the associated RMS.
Concerning the energy, the improvement is less systematic and
depends on the type of preconditioner: the diagonal is less
accurate than the one described by Wang et al.,'* a result that was
anticipated.

Nevertheless, preconditioning is important when coupled with
a peek step: a combination of any preconditioner with the peek is
better than the peek alone. However, concerning the peek itself,
one observes a systematic improvement of both RMS and energy
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Table 3. RMS of the dipole vector compared to the reference
for water systems

water box S1 S2 S3
ExPT 14X 1072 2.5%X 1072 2.6 X 1072
TCG1 63 %1073 7.0 X 1073 7.1%x 1073
TCG2 1.7 x 1073 19x 1073 19x 1073
TCG3 47 x 107* 54x107* 5.5x 107"
TPCGI (P = diag) 49 x 1073 5.6%x 1073 5.8 %1073
TPCG2 (P = diag) 92 x107* 11X 1073 L1X 1073
TPCGS3 (P = diag) 3.8%x107* 3.8x107* 39x107*
TPCGI1(P = Skeel) 22x107° 2.6 % 1073 2.7 x 1073
TPCG2 (P = Skeel) 3.0x 107* 3.9%x 107 42 x107*
TPCG3 (P = Skeel) 6.6 X 107° 9.5%107° 1L.ox 107*
Table 4. RMS of the Dipole Vector Compared to the
Reference for Water Systems, Using a Peek-Step
water box S1 S2 S3
TCGl(w=1) 361072 39x107° 37x1073
TCG2(w = 1) 15X 107 1L7x107° 1.8x 1073
TCG3(w =1) 46x 107 49x10*  48x107*
TPCG1(P = diag)(w = 1) 22x 1073 2.6x 1073 2.7 x 1073
TPCG2 (P = diag)(w = 1) 41x107*  sox107* 52 %107
TPCG3 (P = diag)(w = 1) 1.3x 1074 1.5x 1074 1.6 x 1074
TPCG1 (P = diag) (@) 23%x 1073 2.7 %1073 2.8 %1073
TPCG2 (P = diag)(w,y) 39107 46x107*  47x107*
TPCGI (P = diag)(wg,) 26%x107°  30x107°  3.0x107
TPCG2 (P = diag)(wy,) 53x 10 70x107* 1.0x 1073

Table 5. Polarization Energies of Protein Droplet and Ionic
Liquids

[dmim+]
system ncp7 ubiquitin dhfr [Cl-]

ref —24202.54 —11154.87 —28759.01 —1476.79

ExPT —27362.70 —10919.77 —28076.62 —5841.73

TCG1 —21733.63 —9897.22 —25583.50 —1428.35

TCG2 —23922.79 —11031.67 —28463.51 —1420.00

TCG3 —24262.87 —11174.93 —28812.99 —1450.22

TPCG1 (P = —21438.14 —9907.09 —25588.07 —1465.66
diag)

TPCG2 (P = —23613.31 —10948.32 —28206.73 —1462.22
diag)

TPCG3 —24219.49 —11164.62 —28775.53 —1469.89
(P = diag)

TPCG1 (P = —22489.55 —10458.44 —27030.86 —1424.49
Skeel)

TPCG2 —24056.53 —11090.36 —28637.35 —1469.05
(P = Skeel)

TPCG3 —24208.22 —11144.53 —28763.55 —1477.02
(P = Skeel)

with and without preconditioning. In particular this is the case
when @ = 1 (Jacobi peek step).

As the spectrum is stable (see section 7.2), one can use an
adaptive @, coefficient computed on one geometry using a few
iterations of the Lanczos method. In that case, the energies are
slighlty less accurate than the ones obtained with @ = 1.
Concerning the RMS, we observe a systematic reduction by a
factor 2 for TPCG2 and TPCG3 but not for TPCG1. This occurs
because, if the asymptotic coefficient @, is the same, the starting
point of the peek step is different and is significantely better for
TPCG2 and TPCG3 as additional matrix-vector products have
been computed.
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The results obtained with wg, after 1, 2, or 3 iterations of PCG
show that it is possible to stay close to the converged value of the
polarization energy with only one or two matrix-vector products
and a ® parameter that is only fitted once during a 100 ps
dynamic. But we can also see that this is made at the cost of
slightly degrading the RMS compared to the results obtained
with @, or with @ = 1. Overall, these RMS are of the same order
of magnitude than the ones obtained with @, and @ = 1. This
balance between RMS and energy depending on the choice of @
as the relaxation parameter for a JOR peek step can be seen as the
choice to favor the minimization of the error along some modes
of the polarization matrix: the energy is more sensitive to modes
corresponding to large eigenvalues whereas the RMS is sensitive
to all of them. Overall, a @ = 1 Jacobi peek step tends to improve
both RMS and the energy whereas @, favors RMS and wy
favors energies. As we showed, TPCG1 should not be used with a
@, peek step but with one corresponding to @ = 1 and wyg, but
all options are open for TPCG2 and TPCGS3.

A choice can then be made depending on the simulation that
one wants to run. For a Monte Carlo simulation it is essential to
have accurate energies: the strategy of using an adaptative
parameter (refittable at a negligeable cost) that allows the correct
reproduction of the energies with only one or two iterations of
the (P)CG would hence produce excellent results. On the other
side, during a MD simulation, one wants to get the dynamics
right; in this case, choosing the method that minimizes the RMS
and thus the error made on the forces may produce improved
results. For example, using TPCG2(P = diag)(wopt) is a good
strategy to fulfill this purpose. However, the procedure leading to
g, only slightly degrades the RMS and provides RMS far beyond
the usual values for which the force field models are
parametrized. One has also to keep in mind that other source
of errors exist in MD, such as the ones due to the PME
discretization or van der Waals cutoffs, that are larger than the
error discussed in this section. Nevertheless, none of the
refinements will compete with a full additional matrix-vector
product because an additional CG step is optimal. We see clearly
that TPCG3(wy,) reaches high accuracy on both RMS and
energies.

Concerning preconditioning, we confirm the very good
behavior of the Skeel preconditioner. However, its cost is non-
negligible in terms of computations, in terms of necessary
communications arising when running in parallel, and in terms of
complexity of implementation. We recommend therefore the use
of the simpler yet efficient diagonal preconditioner. Overall,
possibilities of tayloring TCG approaches are infinite. In practice,
one could design more adapted preconditioners combining
accuracy and low computational cost.

To conclude, a striking result is obtained for well conditioned
systems such as water: computations show that they will require a
smaller order of truncation than the proteins to obtain the same
level of accuracy.

8. CONCLUSION

We proposed a general way to derive an analytical expression of
the many-body polarization energy that approximates the inverse
of T using a truncated preconditioned conjugate gradient
approach. The general method gives analytical forces, guarantee-
ing that they are the opposite of the exact gradients of the
energies, parameter free, and can replace the usual many-body
polarization solvers in popular codes with little effort. The
proposed technique allows by construction a true energy
conservation as it is based on analytical derivatives. The method
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Table 6. Polarization Energies of Protein Droplet and Ionic Liquids, Using a Peek-Step

system ncp7
ref —24202.54
TCGl(w = 1) —24481.14
TCG2(w = 1) —23965.96
TCG3(w = 1) —24121.02
TPCGI (P = diag)(w = 1) —23532.73
TPCG2 (P = diag)(w = 1) —24123.65
TPCG3 (P = diag)(w = 1) —24194.37
TPCGI1 (P = diag)(wgpt) —22773.65
TPCG2 (P = diag) (mopt) —23938.70
TPCGI (P = diag)(wy,) —24161.11
TPCG2 (P = diag)(wyg,) —2420S5.30

ubiquitin dhfr [dmim+][CI-]
—11154.87 —28759.01 —1476.79
—11231.35 —28986.08 —1477.08
—11009.06 —28384.49 —1465.73
—11105.78 —28635.73 —1441.95
—10829.84 —27972.41 —1493.58
—11128.14 —28683.52 —1471.34
—11150.95 —28749.68 —1478.83
—10513.24 —27079.47 —1484.24
—11066.44 —28504.96 —1468.29
—11162.02 —28766.40 —1479.06
—11154.21 —28753.60 —1475.08

Table 7. RMS of the Dipole Vector Compared to the
Reference for Protein Droplets and Ionic Liquids

[dmim+]
water box ncp7 ubiquitin dhfr [CL]

ExPT 81x1072 52x107% 54x107% 13x107!

TCG1 89X 107 88x107° 88x107° 11x107?

TCG2 35x107°  32x107°  32x107°  72x107°

TCG3 21x107°  17x107°  17x107°  53x107°

TPCG1 (P = 86%x107° 80x107° 81x107° 69x1073
diag)

TPCG2 25%107°  20x107°  22x107°  34x107°
(P = diag)

TPCG3 71x107*%  65x107*  72x107*  79x107*
(P= diag)

TPCGI1 55%107°  44x107°  45x107°  56x107°
(P = Skeel)

TPCG2 (P = 9.0x107*  77x107*  78x107* 1§5x107°
Skeel)

TPCG3 (P = 21x107*%  18x107*  19x107* 32x107*
Skeel)

minimizes the energy over the (preconditioned) Krylov space
which leads to superior accuracy than fixed point inspired
methods such as ExPT and associated methods. It does not use
any history of the previous steps and is therefore fully time
reversible and is compatible with multitimestep integrators.””
The best compromise between accuracy and speed appears to be
the TPCG-2 approach that consists of two iterations of PCG
with a computational cost of three matrix vector multiplications
for the energy (one for the descent direction plus two for the
iterations). The analytical derivatives have a cost equivalent to an
additional matrix vector product. The overall computational cost
is therefore identical to that of the ExPT. We showed that the
method allows the computation of potential energy surfaces very
close to the exact ones and that it is systematically improvable

using a final peek step. Strategies for adaptative JOR coeflicients
have been discussed and allows an improvement of the desired
quantities at a negligeable cost. Overall, among all the derived
methods, TPCG3(wyg,) provides high accuracy in both energy
and RMS. Concerning the future improvements of the accuracy
of the method, one could find dedicated preconditionners
improving the efficiency of the CG steps. Nevertheless, the final
choice of ingredients will be a trade-off between accuracy,
computational cost, and communication cost when running in
parallel. We will address this issue in the context of the Tinker-
HP package. The TPCGn approaches will be coupled to a
domain decomposition infrastructure with linear scaling
capabilities, thanks to a SPME® implementation, which is
straightforward in link with our previous work on PCG. Future
work will then include validation of the methods by comparing
condensed-phase properties obtained using different orders of
TCG. Given the level of accuracy already obtained on induced
dipoles and energies, we expect the majority of these properties
to be conserved by using T(P)CG2 and higher-order methods.

B TECHNICAL APPENDIX

A.1. Analytical Gradients and Polarization Energies for TCG
In this section, we will present the analytical derivatives of the
polarization energies associated with the polarization energies
E, g mcer and Epopreg, with respect to the positions of the atoms
of the system. The extension to E, (p-diag)Tcg1 2nd
Ejo1,(p-ding)TCG2 I8 Straightforward, as is the expressions including
a final JOR peek step. We don’t report here the expression of the
analytical gradients of E,,; rcg3 as it follows the same logic but is
just incremently complex.

These gradients have been validated against the ones obtained
with finite differences of the energies and an implementation of
these equations will be accessible through the Tinker-HP

Table 8. RMS of the Dipole Vector Compared to the Reference for Protein Droplets and Ionic Liquids, Using a Peek-Step

water box ncp7
TCGl(w=1) 46x1073
TCGR2(w=1) 29 %1073
TCG3(w = 1) 1.6 X 1073
TPCGI (P = diag)(w = 1) 44 %1073
TPCG2 (P = diag)(w = 1) 1.7 x 1073
TPCG3 (P = diag)(w = 1) 43x107*
TPCGI (P = diag)(@qp) 51%x 1073
TPCG2 (P = diag) (@) 1.3 x 1073
TPCGI (Jacobi)(wg,) 49x 1073
TPCG2 (Jacobi)(wg,) 22% 1073

ubiquitin dhfr [dmim+][Cl-]
44 %1073 45x 1073 7.0 x 1073
25% 1073 2.5x 1073 55x 1073
1.1x1073 11x 1073 41 %1073
39x107° 4.1x 1073 32x%x 1073
1.4 x 1073 1.7 x 1073 1.6 X 1073
3.8x107* 48 x 107* 45%x107*
47 x 1073 48 x 1073 3.8x 1073
1.0x 1073 1.1x 1073 1.9x 1073
45%x 1073 46%x 1073 45x 1073
1.7 x 1073 2.1x 1073 20% 1073
188 DOI: 10.1021/acs.jctc.6b00981
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software public distribution. Since we are in the context of the
AMOEBA force field, we will consider that each atom site
embodies a permanent multipole expansion up to quadrupoles.

For site i, the components of this expansion will be denoted by

qi)ﬁp,ifgi'

Furthermore, since the permanent dipoles and quadrupoles
are expressed in a local frame that depends on the positions of
neighboring atoms, they are rotated in the lab frame with rotation
matrices depending on these positions, so that we now have to
deal with partial derivatives of the dipole and quadrupole

components: the “torques”. Therefore, the derivative of the

s . 1T
polarization energy €, written as H E for g = prcgr or Prega

with respect to the f-component of the kth site is given by

de Z Z Z oe aea'},
drlf a’k i=1,N a=1,3 y=1,3 9(117 aﬁ
l
p,
i=1,N a=1,3 ark” (31)
Formally, these derivatives can be written as
e = _l(”/TE +ﬂTE/)
2 (32)

Hence different types of derivatives are involved:
o derivatives of the rotated permanent multipoles
o derivatives of the permanent electric field with respect to

the spatial components of the different atoms

o derivatives of the permanent electric field with respect to

the permanent multipoles

e derivatives of the induced dipole vector () with respect to

spatial components

o derivatives of the induced dipole vector with respect to the

permanent multipole components

As these quantities are standard except for the ones concerning
the approximate dipole vector, these are the only one we will
express here.

Using the same notation as before we have
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r, = E—- Ty,
PO = 1
T
no = roro
P = Tr,
t, = rgpl
A nolIB 1>
2 tlz
P, = Tpl
t; = PP,
"oy
t, = —
4 tl
. = tf — nol B
=
t3
t, = PIp,
5 = no + GIBIP + B2IBIP — 268, — 254,lIBI° + 2yt
> (fz - 1)"0
P, = (14 p,5)Tr, — (t, + f,t,) TP, — 3 TP,
. - no + tIRIE + 72IBIP — 24, — 2t IBIP + 2xtts
: (1+ /jztz)l'oTP3 —(t + ﬁ2t4)P1TP3 + }EPZP3
(33)
So that
Prcgr = Hy T 1aXo (34)
Brcgy =Hy T (71t2 + t)r — NP (39)
Hrcos = Ho  (t+ 1ty + 1 + 1Bit)r
= (nts + nts + BAEIR — 1Py (36)

We then need to differentiate these expressions with respect to

space and multipole components, respectively. Using the

following formal development for the spatial derivative:
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r, = E —Tu, — Ty,

0
ny = ZrOTrO’
P’ = T'ry+ Try
23 T
(IBl°)" = 2P P,
= rgl)I, + PlTl'o'
’ 2 2\7\ .2 2 ’
, (”0 ”P1|| + ”‘0(“1’1” ) )tl - (”o||P1” )2t1t1
t, = g
12}
P/ = TP + TP
ty = t/P|P, + t,PiP/ + t,P| P,
(= ny'ty — noty’
4 tlz

, 1 , / '
no= (@ = IRIF = n(IRIP) )ty
3
— (t7 = nollBIP)ty")
(37)
we obtain

”TCGI, = ”0, + t41'0/ + t4,l'0 (38)

”TCGZ/ = I‘Ol + (t4 + ?ﬁtz)rO, + (t4/ + 7’1/t2 + J’Itzl)l‘o

+ B LP + )P+ B (39)
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2.3. ASSESSMENT OF THE TCG ON STATIC AND DYNAMIC PROPERTIES 114

As of now, we have a new polarization solver that enables simulations both with improved stability and
increased computational efficiency. To provide a more severe test, we will now focus on the computations

of free energies, trying to evaluate TCG’s ability for this sensitive task.
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Chapter 3

Towards faster free energies
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Beyond the properties we have computed so far (energies, radial distribution functions, diffusion

constants), there is the free energy. The free energy is a quantity of prime interest in a number of fields

that requires complex methods and careful attention to be computed.

In this chapter, we will firstly give a small presentation of the free energy itself, then explain some of

the common methods used to compute it. We then move on to exploit the Truncated Conjugate Gradient

built in the previous chapter to observe its applicability when facing such a difficult task.
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31 Free energy

Like the entropy or the internal energy, free energy is a thermodynamic state function. Strictly speaking,
a difference of free energy is defined as the amount of work needed to perform a thermodynamic
transformation of a system from one state to another, provided that this transformation follows a

reversible path.

It is a useful quantity, as it indicates whether the given transformation is thermodynamically fa-
vorable (if the free energy difference decreases) or not (if the free energy difference increases). Its
magnitude is linked to the probability for the transformation to occur. For example, the binding of a
ligand by a protein’s active site can be characterized with a free energy difference between the "un-
bounded" and the "bound" states. If this free energy difference is smaller for a ligand 1 than for a ligand
2, then it will indicate that ligand 1 will bind more easily with the protein. This quantity is therefore very

relevant in biochemistry, or even drug-design.
Two free energy state functions actually exist, namely the Helmholtz and the Gibbs one. Helmholtz
free energy, noted A, is defined as
AN,V,T)=E(N,V,S)-TS(N,V,T) (31)

with T the temperature, E the internal energy, S the entropy. It is used when temperature and volume

are fixed (in the canonical ensemble).

Gibbs free energy is the equivalent for the isobaric ensemble, with
G(N,P,T)=A(N,V(P), T)+ PV(P) (3:2)
It measures the work needed to perform a transformation this time at fixed pressure and temperature.
It should also be noted that the free energy is function of the internal energy and so includes a

potential energy. As such, the free energy of one single system depends on the "zero" chosen, and one

will rather look at free energy differences (usually denoted AA or AG), more meaningful.
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Another important point should be made about free energy. Any state function obeys the following
property: considering any thermodynamic transformation, the change of a state function only depends
on the initial and final states.

This will hence also be the case for free energy, meaning that the calculation of a AG (or AA) only
requires knowledge of the beginning and final state. As we will see in the next sections however, the
computation may be numerically impeded if these two state are too different. In this case, the process
can be divided in several short stages, changing a transformation A — Binto A —» a1 — ap —

. — B. Any such sequence of intermediate states starting from the initial and finishing at the final
state can thus be used to compute free energy differences. Such a sequence is called a thermodynamic

path (or sometimes, perhaps slightly imprecisely, a thermodynamic cycle).

341 Calculation method

We stated in the beginning of section 3.1that, since it carries a potential energy contribution, free energy

is usually computed as differences between two states.

Assuming we have two well defined states A and B, we will present in the following sections a few

of the methods that can be used to compute AA 4z, the free energy difference between states A and B.

We then quickly evoke another type of free energy calculation, designed for dealing with rare events.

Free Energy Perturbation (FEP)

Focusing on the Helmholtz free energy for the remainder of this chapter, we will first introduce a few
notations. We will first focus on partition functions. In the canonical ensemble, the partition function

of a system is usually written as

Q(N,V,T) =

N, N _ _—BH(rp)
N!h3N/d rd"pe (3.3)

where h is Planck’s constant, and H is the system’s Hamiltonian

2

-2
H(p) = ) 25

i=1

+ U(r) (3.4)
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(U designates the potential energy). Integration of the momenta allows one to rewrite the partition

Z(N,V, T
dNr e BUM = ¥ (3.5)
N!A-j’g

function as

QN.V.T) = —
NI3Y

where Ag4p is the de Broglie thermal wavelength. This defines a new quantity Z called the configura-

tional partition function, which depends on the positions and the potential energy: Z = [ dVgq e Y@
One can show that the free energy can be written as
A(N,V,T)=—kT In(Q(N,V,T)) (3.6)

equivalently, a free energy difference between two states A and B would yield:

Z
AAug = As— Ag = —kT In (@) = —kTIn (—B) (7)
Qa Za

This rewriting does however notyield a straightforward quantity to be computed, as molecular dynamics

do not give access directly to partition functions.

Yet one can rewrite one of the configurational partition functions as

Zs = / V¢ o=BUs () g—BUAR) SUA) (2.8)

_ / ANy e=BUANg=B(Us()-Ua() (39)

The ratio Zg/ Z4 becomes

Z 1
2 - / 4Ny & BUAD gBWUs())-Ua() (310)
A A
_ <e—/3(UB(r)—UA(r))>A (311)

where (...)4 stands for an average with respect to the distribution of the state A. The free energy
difference becomes

AAsg = —kT In <e—ﬁ<UB<'>—UA<')>>A (312)
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Note that the inverse pathway is also possible, and leads to the mirror formula

AAup = kT In <e—ﬁ<UA<'>—UB<'>)>B (313)

with 312 usually referred to as "forward FEP" and 343 as "backward FEP".

Computing an average such as the one in 3.10 supposes to first simulate the system in state A, using
the potential correctly describing this state and storing the positions adopted by the system along this
trajectory. Then, using the stored configurations, compute exp(Ug(r)) (and exp(Ux(r)), if that was not
already saved during the dynamics) for each of them. Finally, a simple statistical average has to be

done.

The mathematical shape of the average taken here raises an important caveat. For any configuration
such that the potential energy difference Uy — Ug is large, then e #(Y4=Us) will become very small. The
concerned configuration will thus have a very little weight in the total average.

This method thus requires the probed states to be reasonably close, such that there is a sufficient
overlap in the potential energy surfaces (PES). If this is not the case, one possible solution is to divide
the thermodynamic path A — B in several smaller steps A —» a1 — ... > as — B, where the
difference between two intermediate steps a; and aj,q potential energy surfaces would be smaller
(and thus the overlap of the potential energy surfaces better).

One can then compute, for each pair of states, the associated free energy difference AAg,q;,,, t0

finally sum them all as
s—1

Apg = AAyq, + Z AAga;, + AAa, (314)

i=1
(s represents the number of intermediates steps). This assumes that a simple procedure can be found
for designing this intermediate steps. The computation of hydration free energies in this work will

present one such possibility.

Thermodynamical integration

The Free Energy Perturbation approach, as seen above, is based on a discrete sequence of intermediate
states (from aq to as), built so that the overlap between two successive potential energy surface is

important enough for the average to be computed smoothly.
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Yet one may want to find a more continuous approach, for which there would not be a set of inter-

mediate states but where the system evolves continuously from state A to state B.

To implement this idea using the framework we defined in the previous section, one can introduce

a A parameter, varying between o and 1. A new potential can then be defined as follows

U(r, A) = (1 = A)Ux(r) + AUg(r) (315)

such that, when A = 0, U = Uy (in other words, the system is in state A) and when A = 1, U = Ug (the

system is in state B).

Let us then start by differentiating equation 3.6 with respect to our parameter A:

oA = _kT oz (316)
oA Z 0A

- ; dNr’Ex( ﬁ)aU AU®A) (318)
= <z—lj> (319)

Using this result in the simple following relation
AAug = / | ar 22 (3.20)

0 oA

one gets 1

AAsg :/o dA <?j> (3.21)

Here, {...)x stands for an average over the ensemble whose probability distribution is exp (U(r, A)).

Given the very simple shape of our potential (3.15), this equation simply becomes

1
AAsg = / dA (Ug — Ua)r (3.22)
0
However, the potential U can be changed to use more complex switching functions of the A parameter

U(r, 2) = A(AUA(r) + f2(A)Us(q) (3.23)



3.1. FREE ENERGY 126

provided that /1(0) = 1, f1(1) = 0, /,(0) = 0 and (1) = 1. This allows for more efficient integration

schemes.’

S

ol

Ai >)L,-

In practice, one defines a set of n, values of A. For each A;, a simulation is carried out, and <

Q

is computed. The final result is then obtained by numerical integration.

Bennett Acceptance Ration (BAR)

In order to improve the precision of the Free Energy Perturbation method, C. Bennett® proposed a
method using simulations of both states A and B (instead of one state only for the FEP). Inspired from
the Monte-Carlo jumps, the method imagines a different kind of move, where the configuration is kept
but the potential is switched from U4 to Ug (or vice-versa).

Such a "jump" would change the energy by a quantity AU, and the probability for it to be accepted

would be M(BAU), with the Metropolis function M(x) = min[1, exp(—x)].

The detailed balance condition that must be respected reads
M [BUs(r) — BUAN] e VA0 = M [BUA(Y) — BUB(r)] e P (3.24)

Integrating over phase space, and multiplying by % on the left hand side and by g—i on the right hand

side gives:

[ dNr M [BUB(r) — BUA(r)] e PU4W [ dNr M [BUA(r) — BUp(r)] e PUe®
ZA = ZB

2
Z Z (3.25)

Recognizing configurational averages on both sides of the equation above, we can rewrite it as

Za _ AM[BWUA) ~ Us()]) 5
Zg (M [B(Us(r) — Ua(r)]) 4

(3.26)

which gives us access to the ?—2 ratio, and thus to the free energy through equation 3.7.

Bennett extended this to any weighting function W(q) to replace the Metropolis function, and

showed that the optimal (most accurate) choice of weighting function changed equation 3.26 into

Za _{FUA-Us+C))s
Zg (F(Up—Ua—C)a

xp(C) (3.27)
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with f the Fermi function f(x) = 1/(1 + exp(x)), and

C =1In(Zgna/Zang) (3.28)

a constant, n4 and ng the number of statistically independent configurations from state A and B.

This shapes a procedure to compute free energies as follows.
1. Carry out a simulation of the system in state A, another in state B. Store both trajectories.
2. Compute U4 and Ug for each configuration in trajectory A, then B.

3. Calculate the C value as the fixed point of an iterative sequence.

Computation of C

Let us write C as an iterative sequence C,. Starting with Cy = 0, one can calculate
the left-hand side of equation 3.27, namely %. Given the definition of C (eq. 3.28),

this gives
ZB na

2
Zans (3.29)

Ci=In

C; can then be reintroduced in 3.27, to yield a new value for §—2 The general

sequence reads

(3.30)

g—i being a function of C,,. This sequence will converge towards the value C veri-

fying 3.27.

The conditions for a FEP calculation to converge are more stringent, and one expects the BAR method
to converge easier. This can be explained by the necessity of overlap between potential energy surfaces
(PES) that drives both methods; with BAR, the use of trajectories produced using both PES minimizes

the overlap problem. The BAR was hence the method we chose to evaluate free energies in this work.
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Nevertheless, a separation in intermediates steps is still possible, as explained in 311 (eq. 3.14) if

the overlap between potential energy surfaces of states A and B was still not sufficient.

Free energy bootstrap

In order to improve the estimation of statistical quantities, one can use the boot-
strap method. Although no "extra" information can be gained from a finite set of
data through this method, it allows to refine the quality of the statistical quantities
that were computed.

The bootstrap procedure, in its simplest form?, consists firstly in repeating the

following two steps k times:
1. extract a random subset of the whole dataset one is analyzing;
2. compute and store statistical quantities (averages, standard deviations).

Using the k averages and standard deviations obtained, one can then compute an

"average of averages", which improves the statistical uncertainty.

%A wide variety of bootstrap types exist, depending on the type of problem being studied. We
will narrow our description to the simplest case, which we are effectively using.

341.2 Sampling rare events

Let us suppose that we are interested in the unfolding of a protein. Keeping our notations, A would be
the folded state and B the unfolded one. The complexity of proteins raises an important problem if one
wants to use the methods presented above: how does one define the intermediate hamiltonians used
to describe the evolution from A to B ? Besides, the time scale on which a protein folds or unfolds is

generally unreachable for typical simulations, as it is usually in the microsecond range.

To measure whether the folding is happening, one can define reaction coordinates (or "collective
variables"), which is a function of a subset of the particles coordinates. As a (very simple) example, in
our protein folding case, it could be the distance between the nucleic acids at each extremity of the
proteic chain (rcg = ||r1 — ra||). When this distance is, say r¢, the protein is considered to be folded,

while when it reaches a certain distance r, > ry, it is considered to be unfolded.
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One possible solution to force the slow process to happen at a much faster pace than normal would
then be to restrain the system, forcing him to follow the reaction coordinate. This is the objective of
the umbrella sampling technique, which adds a bias to the potential. To that end, one can define a
sequence of progressing values s; of the reaction coordinate, such that s1 accounts for the value of
the reaction coordinate in the initial state, and s, is its equivalent in the final state. The bias is then
chosen as a harmonic potential whose equilibrium values is the value s;, so that the movements of the

reaction coordinate is restrained between the s values.
1 2
Upias(rcr 8i) = EK(rCR - 5j) (3.31)

One can then perform a sequence of molecular dynamics simulation, using the biasing Upias(7cr, S1),
then Upias(rcr, S1) and so on until Upias(rcr, Sn)- It gives access to the probability distribution of the

value of the reaction coordinate knowing that a bias was added to restrain it around s;.

This method enforces the system to undergo the required transformation. However, it uses a modified
potential, and the results of the simulations can not be directly analyzed to produce the free energies, as
one needs to unbias them. This is usually done using the WHAM (Weighted Histogram Analysis Model),’
allowing one to extract the most accurate free-energy differences values and minimizing statistical
errors. Without entering further in details, several other rare-events sampling methods exist, although
they may appear as being more complex (e.g. the Blue Moon ensemble,* Steered Molecular Dynamics,’

OSRW®).

3.2 TCG vs Free energies

3.21 Hydration free energy

In this work, we computed hydration free energies. These are the energy difference between a system
in the vacuum and a system solvated in water. A hydration free energy provides two informations on

the hydration (or solvation in water):

- firstly, the energy difference arising from the switching from solute-solute and solvent-solvent

interactions to solute-solvent ones, which could be designated as dissolution energy;



3.2. TCG VS FREE ENERGIES 130

- secondly, the entropy difference between the ordering of the pure solvent and the disorder in-

troduced by the solute, that we could designate as dissolution entropy.

A much broader interest can be seen in these computations, thanks to the state function nature
of the free energy. The use of thermodynamic paths is a very powerful tool to use when considering
complicated processes. Let us imagine for example a protein and a ligand, for which we want to evaluate
the binding free energy. The binding process can be complicated and usually occurs at time-scales that
are very long. This complexity is worsened by the presence of the water solvent, which occupy the active
sites where the ligand should connect with the protein, on top of being an important computational
additional cost for the simulation.

Instead of having to perform very long simulations, hoping for the binding to occur, a smarter path

can be followed, as illustrated in figure 3.1. One could first compute the free energy corresponding to

AApina,(g)
(Y
AA
~AA, (P+ L) ()
‘ Adping
D »
H,O

Figure 3.1: Thermodynamic pathway for the computation of the binding free energy of a protein P with
a ligand L, forming the complex C.

the desolvation of both protagonists (the protein and the ligand), which would be the opposite of the
hydration free energy (~AApy4(P + L) on the figure). On the other end, the hydration free energy for
the complex (where the ligand has attached to the protein) can be computed (AApy4,(C) on the figure).

The missing step is finally the binding one, which will be much easier to carry out in gas phase, without
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solvent molecules (AAbind,(g)). The total pathway can be summarized as

AAping = —AApyar(P + L) + AAping,g) + AAnyar(C) (3.32)

Hydration free energies are thus a convenient tool in order to simplify complex free energy calcu-

lations.

3.2.2 Hydration free energies of ions

In order to test our Truncated Conjugate Gradient algorithm, we computed hydration free energies for
the sodium cation. lons are a good starting point for free energies, as they have been extensively studied
in the past. Their small size is also helpful as it limits the computational effort, and will allow us to run
a good amount of tests in order to assess the TCG's behaviour. Lastly, they represent a model validation

before switching to more important and interesting systems like proteins.

The hydration process was decomposed in a three-steps thermodynamical path. Firstly, the solute is
discharged in a vacuum, meaning that its charge is reduced to zero. Then, the solute is placed in the
solvent, and the van der Waals interactions are turned on, while electrostatic terms are still null. Finally,

the electrostatic interactions are reactivated.

The first step of the thermodynamical path supposes no energy change, as there is no interaction
involved, and thus no energy difference between the charged ion in the vacuum (initial state) and the
non-charged ion in the vacuum (final state).

The challenge comes from the second and third steps. Focusing on the activation of the van der
Waals force, the strategy used was the following. A scaling parameter Ayqw was used, with initial value
Avaw = O (where there is no van der Waals interaction) and final value Aygw = 1 (where van der Waals
interactions are fully taken into account). Seven intermediate steps between these boundaries in the
thermodynamic path were done (Aygw = {0.4,0.5,0.6,0.65,0.7,0.8,0.9}).

The same progressive approach was followed during the third step for reactivating the charges: a
scaling parameter Aqec Was switched from o to 1 progressively in eight steps

(Aetec = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}). Overall, we thus considered 19 states, whose
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potential depended on these two parameters U(Aygw, Aetec)-
For each of these states, also commonly referred to as "windows", a 2 ns simulation in the NVT
ensemble was performed. The first 400 ps of each trajectory were discarded as thermalization and

equilibration, and BAR calculations were carried out using the last 1.6 fs.

Solver | 6t Prec Guess Peek AApygr (kcal/mol)  Error (%)
pcgsA | 2 -91.67 0.0
TCG1 2 - - - -58.07 -57.8
TCG1 | 2 ° - - -80,37 -14
TCG1 | 2 ° ° - -74.06 -23.7
TCG1 2 - - ws = 1.153 -68.86 -3341
TCG1 | 2 ° ° w =1 -86.94 -5.4
TCG1 2 ° ° ws = 1.234 -90.86 -0.9
TCG2 | 1 - - - -91.75 0.1
TCG2 | 2 - - - -83.27 -104
TCG2 | 2 ° - - -89.32 -2.6
TCG2 | 2 ° - w =1 -89.17 -2.8
TCG2 2 - - wq = 1.153 -91.95 0.3
TCG2 | 2 ° ° w =1 -91.46 -0.2
TCG2 | 2 ° ° wse = 1.518 -92.97 1.4

Table 3.1: Free energy values computed with BAR calculation method, using different polarization
solvers". A = ASPC for the PCG ones

Note that, in this table, wg; is presented as a fixed value. Computation of ws; was indeed done prior
to the sequence of thermodynamic windows, in order to prevent problems in the free energy integration
(a detailed explanation is provided in the next section).

At first glance, the behaviour that was observed earlier regarding TCG performances seems to be
reproduced here, with TCG1 allowing for a good first approximation for a low computational price, while

TCG2 provides results much more accurate, comparable to the reference (PCG) values, and come with a

iTo be able to compare these values to experiments and previous computations,” one needs to account for the standard
state difference: in simulation, it is 1 mol/L, where in experiment it is one atom only. A free energy difference thus ensues:

—RT In (\Z:—:‘;;"L) = 1.84 kcal/mol, which needs to be added to the simulation results.
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slightly higher price.

However, one can observe that free energy computations are very sensitive. Where relative errors
were rather small when looking at potential or polarization energies, larger deviations are measured
here. Even more striking, the "naked" first order (TCG1 without any refinement) yielded trajectories on
which BAR or FEP calculations could simply not converge. This could be fixed by adding extra steps in the
scaling parameters switching (Aygw and Agiec), in order to reduce the difference between two successive
potential energy surfaces (i.e. obtaining a better overlap), and improve the precision of the BAR and

FEP calculations.

This would however mean more simulations, and it might be wiser to simply choose a better pre-
cision version of the TCG, agreeing to pay the extra-price it supposes, so as to ultimately reduce the
total computation price. Nevertheless, TCG appears as a perfectly viable method to compute hydration
free energies, provided that we use refinement - and using a proper wg;, as we will discuss in the next

session.

It is also interesting to note the difference of behaviour regarding the integration time-step: for the
non-refined TCG2, we computed the whole set of simulations (switching Ayqw then Agec) once using a
1fs time-step, and another time using a 2 fs time-step (using the RESPA integration, as presented in next
chapter). The results were considerably improved, and this is quite easily explained: the configuration
obtained after integrating over a large time-step will carry a bigger error, and a "rougher" TCG (such as
TCG2 without any refinement) will have a harder time projecting back on the correct potential energy
surface. Results show how helpful the peek-step can be in this regard. On the contrary, with a smaller
(1 fs) time-step, the error accumulated is smaller, and it is therefore easier for a less advanced version

of the TCG to correct it.

As observed in the previous chapter, we also note here that, when using a fully refined TCG2, there
seems to be better results when the peek-step is scaled by w = 1 than when it is scaled by ws;. This
may be partly caused by the fixing of wg; that we will explain in next section, but this is also consistent

with previous observation.

Again, the very good results obtained by a TCG2 with no other refinement than the peek-step using

wst is clear here, which confirms its usefulness (foreseen in 2.3.5) as a fast and accurate solver.
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3.2.3 The wg question

In chapter 2, we saw the usefulness of the peek-step regarding the improvement of TCG results. In
particular, the use of a fitted w scalar allows one to obtain excellent agreement on the energies, and
appears as the method of choice. One should however be very cautious when trying to compute free
energies using this refinement.

Indeed, as was shown in 3.1, the free energy calculation methods (whether we talk about Free En-
ergy Perturbation, Bennett Acceptance Ratio or Thermodynamic Integration) all rest on the computation
of ensemble averages that are defined by a potential. It is therefore of predominant importance that
this potential is well defined. This is the case when using the Truncated Conjugate Gradient. As detailed
in the previous chapter, the polarization energy follows an analytical formula, and is thus very precisely

defined.

However, the implementation presented earlier for the peek-step using fitting is based on a regular
recomputation of the wy scalar to reproduce as closely as possible the polarization energy. While this
is the key element for very accurate reproduction of energies, this also means that, for every time wgt
is recomputed, the total potential energy changes, and the potential energy surface being explored is
also different. To put it otherwise, the definition of the polarization energy changes.

As a consequence, when computing the free energy difference using values of wg; refitted "on the fly",
the resulting free energy does not only account for the apparition of a charged solute in a solvent, but
also... for the change in the polarization energy, even though it does not correspond to any physically
meaning transformation. The final extracted result would thus be polluted with an artifact arising from

the ongoing change in the polarization energy definition.

It appears clearly that one should decide on a fixed value for w beforehand, and keep this value over
the course of the numerical simulations. For the same reason, it should also be the same for every
"window" (every value of the Ayqw and Agec parameter).

Choosing this fixed value is not an obvious question. To explore the different values that wg; adopts
over a free energy calculation, we focused on a TCG2 computation. For each windows, we started from
a configuration equilibrated over 2 ns using a tightly converged PCG solver. We then switched to the

Truncated Conjugate Gradient, using a diagonal preconditioner, the direct field guess, and a peek-step
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using an ws; refitted every 1000 steps. After a 400 ps run, successive wg; values were extracted and
averaged.

Distinct differences arise when comparing thermodynamic windows with each other: during the
activation of the van der Waals terms, ws; doesn’t change, as it account only for the polarization between
the water molecules. Nevertheless, it drops from 1.8 to 1.5 during the activation of the charges terms,

as polarization involving the ion is progressively more and more important.

The choice was then made to use the value of wg; for every thermodynamic window, in order to fit
as well as possible the energy when the solvated ion is fully recharged in the solvent. Admittedly, this
won't give optimal results for all the other windows, but it will allow us to preserve a constant definition
of the polarization energy over the course of the computation, ultimately ensuring that the resulting

free-energy values are properly defined.

3.2.4 BAR reweighting: making more with less (a glimpse on the next step)

Pursuing on the objective of obtaining better results using cheaper computational methods, the
reweighting method?® (also named importance sampling) was proposed as a solution to use trajectories
performed at low accuracy level to extract informations corresponding to higher level dynamics.

The idea is to carry out a simulation using a fast model (such as for example TCG1), and then to use
the successive configurations extracted from this simulation to re-compute the energies using a more
accurate model (such as TCG2). As configurations are only saved every nge time-steps, the amount of
calculation required to post-treat the trajectory will be negligible compared to the initial simulation.
Besides, the (expensive) gradients that would be needed for an accurate simulations are not computed

here, which is also a source of computation savings.

In this section, we will explain the principles of the reweighting. Let us imagine that one is trying to
compute the average of a function b(r). Let us note H; and H; two possible Hamiltonians to describe
the system, with H, being more accurate than H,. The best ensemble average of function b would be

obtained using the most precise Hamiltonian, and thus reads

[dNr b(re P2 [dNr b(r)e P2

<b(r)>H2 - /‘dNr e_.BHZ - der e_ﬁUZ (333)
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A simple multiplication by the neutral term exp(8H; — fH1) then yields

[ dVr b(r)ePU2ePlie Pl [Ny p(r)e PUa-Ui)e=FU

/ dNr e=BU2eBU1 o—BU; B /dNr e—B(Uz—Uy) a—BU (3.34)

By multiplying by the ratio Z;/Z; (with Z; the configuration partition function associated to the

potential U;) and defining AU = U, — U, one can recognize ensemble averages as

/dNr b(r)e PAH =AU Zi _ (b(")e_ﬁAU)U1

Z [Nk ePaUepL —  (ePAUY (335)

Finally, one has a formula that gives an ensemble average over H, distribution as a ratio of ensemble

averages... over Hj distributions.

(bme ey,

(e Pa0Y (3.36)

(b()y, =

U

A practical implementation of this method would thus work as follows

1. perform a simulation using the U; hamiltonian, storing potential energy values and the trajectory

(list of successive configurations of the system);
2. compute U, for all configurations in the trajectory file;
3. compute the averages at the right-hand side of equation 3.36.

As a first validation test, reweighting was applied to the computation of polarization and potential
energies. Trajectories of 200 ps were computed, with one frame extracted every ps.

Table 3.2 summarizes these first results. The reference simulation was carried out using a Conjugate
Gradient solver with a 1078 convergence criterion. The "fast" trajectory was computed using a non-
refined TCG1. Energies were then computed from this trajectory using the reweighting procedure. The
accurate Hamiltonian (H5) used here was the reference one (CG with a 1078 convergence criterion).
The objective was thus to measure how well we could reproduce the CG results using TCG1 with the

reweighting.
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Epot  Error | Epee  Error

Ref. -2163 - -4L470 -

TCG1 (non-refined) | -1599 29% | -4008 10%

Reweighting 1912 12% | -4289 4%

Table 3.2: Reweighting applied to polarization and potential energies. Here, the "reweighting" gives
energy values obtained using the reweighting method, applied to a TCG1 simulation (with no refinement
used), reweighted following a tightly converged CG solver. Reference is a Conjugate Gradient simulation
converged with a 1078 criterion. Error is computed with respect to the reference value. Energies are
given in kcal/mol.

For both the polarization and potential energies, the error observed is divided by more than two
when using the reweighting scheme. The reweighting thus seems to allow for a good correction, even-

though it does not manage to fully reproduce the reference energies.

This reweighting can be applied in a straightforward way to the FEP (eq. 3.12) in order to compute the

average (exp[—B(U4 — Up)])s. Reintroducing this in equation 3.36 simply gives

(e PUsUpigPOUY

<e_ﬁAU>B,1 ’

(exp[-B(Ua — Up)])B2 = AU = U, - Uy (3.37)
Here, (...)p,1 designates an ensemble average performed over the distribution generated by Hamilto-
nian Hp 1, that is, the Hamiltonian describing state B with the "low" accuracy level. (...)g 2 follows the

same notation, with Hp 7 the "high" accuracy level Hamiltonian describing state B.

The reweighting was tested on the FEP computation method on two thermodynamical windows (i.e
firstly for Ayqw = 0.7 to Aygw = 0.8, secondly for Agec = 0.9 to 1). Both forward and backward FEP were

computed (see equations 3412 and 3.13).

These windows were randomly selected, and serve here as a simple proof of principle for the ap-
plicability of the reweighting to free energies. Of course, the long-term objective is rather to use this
process on the BAR computation method. Nevertheless, these preliminary results are very encouraging,
as they show good improvement of the free energy values on different thermodynamic windows, and

with a reduced computational time consumed.
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Avaw = 0.7 — 0.8 Aetec = 0.9 = 1

Backward FEP Forward FEP | Backward FEP Forward FEP

Ref. -0.3979 -0.3446 -19.62 -19.53

TCG2 (non-refined) | -0.2849 (28%) -0.3628 (5%) | -19.01 (3%) -19.07 (2%)

Reweighting -0.3720 (7%)  -0.3413 (1%) | -19.55(<1%)  -19.47 (<1%)

Table 3.3: Reweighting applied to FEP. Here, the "reweighting" gives energy values obtained using the
reweighting method, applied to a TCG1 simulation (with no refinement used), reweighted following
a tightly converged CG solver. Reference is a Conjugate Gradient simulation converged with a 1078
criterion. Next to the TCG2 and reweighted energies, the relative error with respect to the reference
value is given. Energies are given in kcal/mol.

Application to the BAR follows the same idea, though BAR already uses two trajectories (one following
Hamiltonian Hy, the other following Hg). Adding the reweighting will thus require a total of four sets
of energy values: Uq 1, Ua 2, Ug,1 and Ug 2, with A and B denoting the thermodynamic states defining

the transformation, and 1 and 2 being the two levels of precision.

Two ensemble averages are needed in order to compute the BAR free energies: (f (Us — Ug + C))5
and (f (Ug — Us — C)) g (see eq. 3.27). We're trying to extract the best available precision there (corre-
sponding to Hamitonian H,) while using trajectories produced using the - less accurate - Hamiltonian

Hj. The two ensemble averages of interest are thus (f (x)) g, and (f (—=x)) 42, With x = Us - U+ C

Using the reweighting technique on each, one obtains:

_ (F(Ua-Up+C) exp[-B(Up2-Us,1 )]>B,1
(exp[-B(Up2-Us )]>B,1

_ {f(Us=Ua=C)exp[-B(Ua2-Uan]) o,
(f (Us =~ Ua - C)>A’2 B <9XP[—ﬁ(UA,2—UA,1)]>AJ

(F(Ua—Up+C))po
(3.38)

which effectively changes the final ratio to

Za (f (Ua—Us + C)exp [-B(Us2 — Up1)]) 51 (exp [-B(Un2 = Ua1)|) 4
Zg  (f(Us—Ua=C)exp [-BUaz = Uan]) 41 (exp [-BUs2 — Us1)]) 4,

exp(C) (3.39)

Using this ratio, the BAR method can be computed as previously: using Cy = 0, one can compute

the ratio g—;‘, which can then be used to compute an improved value Cy for the C constant. This iteration
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is then repeated until the C(,;) sequence converges. The only major difficulty here is the treatment of

all different energetic values.

This method is rather representing the very near future of our computations, as we are confident that
it will yield good results while saving precious computational time.

We could also mention that this is an a posteriori solution to accelerate free energy computations.
Indeed, all the improvement presented in this work (both regarding polarization solver and integrators)
are all devoted to a more efficient handling of the Molecular Dynamics, whereas the reweighting tech-
nique is based on a better, smarter analysis of the data after their production, which was less at the
heart of our focus.

The reweighting procedure finally appears as a good method to accelerate accuracy demanding
computations such as free energies estimations. It however provides slightly degraded values. It should
therefore be used in situations were "quick and cheap" estimations are require without the need of
high precision. Such an approach could be used for example in high-throughput screening studies of
large numbers of compounds where an initial assessment at reasonable (but not full) accuracy of free

energies, aiming to eliminate low affinity compounds, is sufficient.

3.2.5 Conclusion

To summarize, two strategies were proposed in this chapter to compute free energies. The first one is
the use of the Bennett Acceptance Ratio method, where TCG2 proved to be a perfectly viable candidate.
Care has to be taken if adding a peek-step, as ws; has to be well controlled.

The second one allows the use of less accurate polarization solvers, but comes with a high gain in
terms of computational time. More tests have to be undertaken, but preliminary results are encouraging.
This appears as a good solution for anybody trying to compute fast free energies without requiring a

very high precision.

We can now affirm that TCG solvers are perfectly viable when it comes to the sensitive computation
of free energies. We also have very convincing tests aiming at accelerated computation of free energies
using reweighting. Nevertheless, the amount of computation required to simulate all thermodynamic

windows in order to properly compute free energies is still quite heavy. Aggregating the various features
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that were presented so far, we will thus explore another way to further accelerate our computations: the

integrators.
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41 Advanced integrators: multi-timestepping

After our developments regarding polarization solvers, we now focus on the role of molecular dynamics

integrators, and we will more specifically look into the case of Langevin dynamics. In this chapter, the
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reader will find a brief summary of the multi-timestep methods, then a step-by-step description of the

implementation of optimal integration algorithms.

411 Classical integrator

In order to study integrator shapes and properties, let us first introduce a few notations related to
classical mechanics.

We will firstly write the Hamiltonian H as

N 12012
7—[(", p) = Exin + Epot = Z ||2prlrl'| +U(r) (4.1)
i=1 !

Itis simply the total energy of a system. The position and momenta of all particles in our system define
a point in the 6/N dimensional domain called the phase space, that we could note x = (r,p). The
generic properties we considered in chapter 1, just like the Hamiltonian, are all functions of the phase
space vector x.

The time derivative of such a property, who has no explicit dependence in time ( = 0), can be

expressed using the chain rule as:

N
d ob dr b ap,
N s pi (4.2)
dt dr, ot dp, ot
i=1
Hamilton’s equation’ give dr‘ = % and aa—p;" = _?3_7;-' which leads to a final expression for this time

derivative:

N
db ob 07{ ob oH
— = § — (4.3)
t pe dr, op; dp,- or;
This can be said more simply
db
iLb .
priakl (4.4)

by defining the Liouville operator L as

i_i_ OH o ws)
- or; aFi aﬁi '
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A formal solution of eq. 4.4 gives us b(x;) = e’L1b(x;). When choosing the phase-space vector
itself for our b(x;) function, we get

x(t) = 't x(0) (4.6)

which is a formal expression to write the time integration of our system, based on the so-called classical
propagator e’tt. This simple expression hides the complexity of integration schemes: we have no
possibility to exactly express the result of eq. 4.6 in general (and especially for our N-particles systems).

Starting from this point, we will try to derive approximations to help us designing dynamics inte-

gration schemes.

41.2 Trotter theorem

The Liouville operator is the sum of two terms L1 and L.

corresponds to the forces.

However, these two operators do not commute and as such, we can’t express the classical propaga-
torin 4.6 as a product of exponential:

eiLt + eiL1tefL2t (49)

This would allow us to evaluate these operator sequentially (computing first the result of the action of

e'L2t on our phase-space vector, then of e’L2?) which we could do exactly !

One thus needs to resort to an approximation of the classical propagator. For that purpose, the
Trotter theorem? (or Strang splitting? formula) states that for two non-commuting operators A and B,
A+B £

e = lim (eZPe
P—oo

A
P

N

) ’ (410)

e
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Applying this to our classical propagator, we have

P

: ) ot it it

efLt :P[|m (e’L22Pe’L1Pe’L22P) (4.11)
—00

By defining a time-step length At = t/P, and taking the 1/P power of both sides, we finally get an

approximation that will prove useful in the next steps of this work.

H ; At ; At
elLAt — eIL27e1L1AteIL27 + O(Atz) (l}.12)

41.3 The RESPA splits

If we consider the energies that have to be computed to integrate the dynamics at each time-step,
as shown in 1.3, we can see that two families are distinguished: the bonded terms (intramolecular
interactions) on one hand, and the non-bonded ones (intermolecular interactions) on the other. The
non-bonded energy terms are varying fast, given the stiffness of the mathematical shape they follow,
and the physical reality they try to reproduce. The forces deriving from these energies also vary with

high frequency. If we want to properly observe these movements, we will need a fine time-step &t.

Meanwhile, the non-bonded terms (van der Waals, electrostatics, polarization) vary much slower
(especially so at long distance), such that computing their derivatives as often as we compute the
bonded-term forces — as it is the case for example in the velocity-Verlet scheme - leads to considerable
amount of time spent on non-necessary calculations. Choosing to use a bigger time-step for all the
simulation would not allow to reproduce the fastly varying terms, and would lead to accumulation of
energy in these modes. It is thus not a viable solution. This loss is worsened by the complexity of the
non-bonded terms compared to the bonded ones: the Lennard-Jones potential and the electrostatic
interactions are computed between all pairs of atoms, and chapter 2 may have already convinced the

reader of the high price of polarization energy calculations.

An ideal integrator would thus juggle between two time-step lengths, one for the high-frequency
energy terms, the second for the low-frequency ones. The framework presented in sections 4.1.1 and

4.2 allows to design it in a rigorous manner.
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If we decide to explicitly distinguish the slow and fast evolving forces in L, with:

N
. . . o
ILy = /Lf,slow + /Lf,fast = Z [Fslow(r) + Ffast(r)] £

i=1 !

(4:43)

Then it is possible to redefine two operators (whose sum would still give the total Liouville operator)

N -

. 0 ;0 . )

ILfast = ; Ffast(r)a_ﬁi + %0_7/] = I Lgfast + 114 (4:124)
N )

ILsow = Z [FSIOW(r)a_ﬁ;] = ILtsiow (4.15)

i=1

Applying Trotter theorem here reads:

oLt o oilsiow’s giltastAt gilsion s (4.16)

But the Trotter theorem can also be applied to the exp(/ Ls,st6 t) term. If one defines a smaller time-step

ot = %, the same pathway leads to

. . . . n
e/LfastAt — (e/Lf,fast% e’L1 5te’Lf,fast%) (417)
Finally, by reusing expression 4.17 in 4.16, we get

. . . . . n .
ol LAt _ oilsow’y (elLf,fast%elL15te/Lf,fast%) eiLsow’s (4:18)

The final expression here shows an operator to integrate our equations that is more finely adapted
to the specifics of the dynamics: one can choose a At that is adapted to describe the slowly varying

terms and a &t for the high-frequency ones, under the condition that At = n X &t, with n an integer.

For a total simulation time T, this scheme also allows us to compute the most expensive terms
belonging to Loy n/2 times less often than the fast ones, which will translate into substantial accel-

erations of the computation, as we will see in 4.24.

The time-step choice will become an important question to properly use this method. A few trials

and errors, monitoring the simulation properties, gives us an effective answer. Yet, following a more
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rigorous approach, one could also calculate the Fourier transform of the energy in a reference simulation

in order to extract the typical times that should be chosen.

RESPA1 - One step further

Quite naturally, one may want to design integrators which marry the simulation frequencies even better.
A more refined splitting could be designed for that purpose, where force terms would divide between
fast, slow, and intermediate ones.

Introducing an extra splitting is quite straightforward, and would yield a propagator of the following

shape

. , . , , . n . m
e/LAT — e’Lf,slow% [e/Lf,interm% (e’Lf,fast%e/L15te/Lf,fast%) e/l-f,interm%:l e/Lf,slow% (419)

This would require three time-steps, here noted &¢, At and AT, with the conditions that

AT = mAt
(4.20)

At = nét

The splitting of the forces that was adopted will be discussed in section 4.2.2.

4.2 An iterative search for the optimal integrator

Using the splittings proposed earlier, this section details the designing of an optimal integrator. The
objective is to be able to use the biggest possible time-steps (hence accelerating the computations)
while preserving the correctness of the simulations.

As a reference, we use a Velocity-Verlet integrator as presented in 1.2, with a 0.5 fs time-step. It is
a widely used algorithm giving us results we can trust. This time-step choice is quite small, to ensure
that we're considering conservative dynamics. In general practices, however, the common choice for the
time-step of the Velocity-Verlet is rather 1 fs. As a consequence, while we will compare the simulation
accuracy with the 0.5 fs reference, we will calculate the speedup with respect to the 1 fs Velocity-Verlet.
This allows us to remain certain of the quality of the simulations, while not overselling the gains.

Lastly, the ASPC belong to the predictor-corrector family and can be seen as a particular guess
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involved in the polarization solver that accelerates the computation. Usually, such algorithm are used
at the cost of time-reversibility (see sec. 2.1.2). In this particular case, ASPC is designed to preserve
as much as possible time-reversibility making it a production algorithm for standard polarizable MD
simulations. Therefore, speedups are compared to a standard 1 fs Velocity-Verlet but but the algorithm
is not effective for timesteps larger than 2fs where computational gains disappear and instabilities
greatly increase.

For a better understanding and comparison of the algorithms, we shall give pseudocode expressions

detailing the integrators presented. For the Velocity-Verlet reference, this reads

Algorithm 1 : Velocity-Verlet

B — i+ 6t)2x 1,

gi < Gi + 8t x p;/mj

Compute forces using updated g;'s.
p_),' (—ﬁ,’+5t/2>(7?:’

4.21 V-RESPA: a first splitting of the forces

Applyingthe RESPA logic detailed in 4.1, we split the terms of our AMOEBA force field between the bonded
and non-bonded ones, in order to integrate less frequently the slowly evolving terms. The Velocity-
Verlet shape is kept, as one can see in the algorithm hereafter, and we thus denoted this integrator as

V-RESPA, where "V" stands for Velocity-Verlet. The integration algorithm will read

Algorithm 2 : V-RESPA - Using At = ndt

pi « pi + At/2 X fisiow
fori=1,ndo
pi < P+ 8t/2X fipast
gi < pi + 8t x pi/mj
Compute FAST forces using updated g;'s.
pi < pi + 8t/2 X fipast
end for
Compute SLOW forces using updated g;'s.
pi < pi + At/2 X fisiow

The advantage of using such a scheme clearly appears, as we directly see that the fast evolving

forces will be computed n times more than the slow ones.
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System Prop. | Verlet 0.5fs 0.25/2 0.25/3
Epot | -4459 +39 4447 £36  -4408 +£39
Water (S3) Epol | -2169 +41 2145 £39  -2108 +39

D | 2.08 £0.03 213 £0.02 2.25 +0.02

Epot -27894 £102  -27850 + 105 -27628 +95

Ubiquitin
Epol | -13052 £98 -12917 £99  -12708 95
(vs. ASPC) - 1.75 2.37
Speedup
(vs. no ASPC) - 2.53 3.42

Table 4.1: V-RESPA integrators. £, and Ep, designate potential and polarization energy respectively,
both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). D is the diffusion
constant (expressed X107 cm?/s) . Speedup are computed vs. a 1 fs Velocity-Verlet reference, both
with and without ASPC.

In order to assess the various integrators qualities, we performed computations on the system S3
introduced in chap. 2, a cubic box containing 500 water molecules, as well as on the solvated ubiquitin
protein (1233 atoms for the protein chain, plus 2835 water molecules). Simulations were run over 2 ns, in
the NVT ensemble with 7 = 300 K. Potential and polarization energies were calculated for both systems.
To check dynamical and structural properties, diffusion constants and radial distribution functions were

also calculated.

Table 4.21 presents the results obtained with V-RESPA integrators. Each is noted as 6t/ At, following
notations previously defined. For example, the "0.25/2" integrator means that the time-step for the

integration of the fast varying forces is 0.25 fs, and 2 fs for the slowly varying forces.

The errors obtained on the energies are very satisfactory, remaining under 3%. Diffusion coefficient
also show the reliability of this integrator. In both case, the errors are maximal for the largest outer
time-step (At) of 3 fs, indicating that the larger this time-step gets, the more inaccurate integration
becomes. The radial distribution functions, in figure 4.1 also yield convincing results, in the shape of
a very good agreement with the reference curves. The first and second peaks, displayed with a larger

scale, are very well reproduced.

IThe astute reader will remark a difference between the reference diffusion coefficient given in this table and the one
given in chap. 2. These two sets of computation (chap. 2 and chap. &) were in fact carried out using different force-field
parameters (two different versions of AMOEBA's water). As this value is only useful as a reference point, this has no influence
on our reasoning.
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—— Velocity-Verlet 0.5fs V-RESPA 0.25/2 —— V-RESPA 0.25/3
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Figure 4.: V-RESPA integrators. Oxygen-oxygen radial distribution function, comparerd to the Velocity-
Verlet reference using §t = 0.5 fs. Top- and bottom-right panels show a magnification of the black
and red boxes drawn on the left figure, corresponding to the first two peaks of the radial distribution
function.

The first integrator (0.25/2) rewards the user with a speedup of 1.75 (2.53 when comparing to the -
slower - non-ASPC Velocity-Verlet); the second (0.25/3) yields speedups of 2.37 (3.42 with a non-ASPC

reference). So far, we thus have faster dynamics while preserving accuracy.

4.2.2 RESPA1: pushing the splitting

To further pursue the integration acceleration, the splitting logic can be pushed in order to distinguish
three time-steps, following the RESPA1 logic. In the previous section, we splitted forces between the
bonded and non-bonded ones. Focusing on the latter, one could argue that their typical evolution times,
although longer than the intramolecular terms, span quite a wide range. Indeed, imagining two atoms
i and j, the closer they are together, the more a small variation of r;; (corresponding to a displacement
over one time-step) will impact the interaction. At long range, the value of :—n does not vary much, while
they do at short range. J

We thus splitted the non-bonded potential terms using a distance cutoff. It was smoothed out by
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a switching function, so that the transition between the domains would not be brutal. For example,
the electrostatic terms between atoms separated by 5 Angstroms or less are treated as real short-range
terms, by 5 to 7 Angstroms as real long-range terms, and above 7 Angstroms as reciprocal terms in the

PME framework.

Switching function

The switching function S was defined as follows by Margul et al.*

1 ifr<r.—A
S(rire,A) =9 glr,re,A) ifre—A<r<r. (4.21)
0 if r<rc

where r is the distance between two atoms, r. the short vs. long-range cutoff
distance, and A is a switching parameter controlling the smoothing length (we used

A = 0.5 Angstroms). The function g is defined as

g(r.re,A) =1+ u3(15u — 6u® — 10) (4.22)

u= %(r —re+A) (4.23)

The corresponding pseudocode algorithm is reproduced hereunder; the "SLOW" forces are the long-
range intermolecular ones, the "INTERM" forces are the short-range intermolecular ones, and the "FAST"

forces are the intramolecular ones.
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Algorithm 3 : V-RESPA1 - Using At = nét and AT = mAt

pi «— pi + AT /2% E,SLOW
fori=1,mdo
pi < pi + At/2 X Fi,lNTERM
for j=1,ndo
pi « p; +6t/2 % E,FAST
gi < Gi + 6t X p;/m;
Compute FAST forces using updated g;'s.
pi «— p;j+6t/2x
end for
gi < qGi + At X p;/m
Compute INTERM forces using updated §,'s.
pi — pi + At/2 X Fi,lNTERM
end for
Compute SLOW forces using updated g;'s.

5,- «— ,5,‘ + AT/2 X E,SLOW

Three V-RESPA1 integrators were tested: 0.25/2/4, 0.25/2.5/5 and 0.25/2/6. These notations stand for
&t/At/AT, i.e. the timesteps used for the integration of the fast/intermediate/slow evolving forces.
Note that, as required by equations 4.20, they are integer multiple of each other.

The results are compiled within table 4.2 and figure 4.2. As one could expected, this method accel-
erates computation, further than the simple split of RESPA could, and one can reach a 3.7 speedup (2.53
vs. ASPC reference).

Looking at the water system’s energies, all three setups seem to give correct result. However,
the same can not be said when looking at the ubiquitin, particularly its polarization energy, for the
0.25/2.5/5 integrator, where the error rises to 7.5%. The better results obtained by the 0.25/2/6 integra-
tor (the relative error on the polarization energy drops back to 3.1%) should be subject to caution, as
they were obtained using an even larger outer timestep (AT). They may obtained through the refine-
ment of the inner timestep, but could also be a simple result of error compensation, as we can’t expect

results to improve in accuracy if we increase time-step size.
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System Prop. | Verleto.sfs  0.25/2/4 0.25/2.5/5 0.25/2/6
Epot -4459 £39 -4433 £37 -4517 £39 -4522 +37
Water (S3) Epol | -2169 £41  -2135 +41 2201 +41 2228 +40
D | 2.08+0.03 218 +0.03 1.6 £0.02 1.34 +£0.01
o Epot | 27894 £102  -27766 £91  -28876 110  -28333 +98
Ubiquitin
Epol | -13052 £98  -12893 £98 -14009 +120  -13457 £1000
(vs. ASPC) - 172 2.43 2.53
Speedup
(vs. no ASPC) - 2.5 3.5 37

Table 4.2: V-RESPA1 integrators. £, and £, designate potential and polarization energy respectively,
both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). D is the diffusion
constant (expressed X1 07> cm?/s). Speedup are computed vs. a 1fs Velocity-Verlet reference, both with
and without ASPC.

Much more troubling are the radial distributions and the diffusion coefficient: figure 4.2 clearly
shows a discrepancy in the peaks with the 1 fs reference for the 0.25/2.5/5 and 0.25/2/6 integrators. The
diffusion constants measured are even worse, as they drop down by 36%. These two elements indicate
that the dynamics are poorly reproduced in the simulations, making this V-RESPA1 scheme non-viable
in our pursuit for dynamics acceleration./

We thus needed a solution to improve the quality of our integration without sacrificing the speed

gains obtained so far.

4.2.3 Reconsidering Langevin dynamics integration with BAOAB

Let us focus, starting from this point, on simulations performed in the NVT ensemble, describing sys-
tems in contact with a thermostat. Although we briefly presented the Molecular Dynamics framework in
the beginning of this work, some details were voluntarily left aside, including the functioning of ther-
mostats. In recent years, developments in Molecular Dynamics integration mostly come from mathe-
matics, and where mostly built unpon Langevin dynamics, which are better understood from a mathe-
matical point of view. Following these developments, let us present some of the ensuing derivation in
line with our TCG research.

Thermostatting a system is not a trivial task, and several different algorithms can handle it. The

iiThe first integrator (0.25/2/4) yields acceptable results, but the obtained speedup is not interesting enough.
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—— Velocity-Verlet 0.5fs ~ —— V-RESPA1 0.25/2.5/5
—— V-RESPA1 0.25/2/4 —— V-RESPA1 0.25/2/6

e —————
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Figure 4.2: V-RESPA1 integrators. Oxygen-oxygen radial distribution function, comparerd to the Velocity-
Verlet reference using §t = 0.5 fs. "V-RESPA" designates Velocity-Verlet-RESPA integrators. A difference
with the Velocity-Verlet reference becomes apparent for the V-RESPA1 0.25/2.5/6 and 0.25/2/6 integra-
tors.

most straightforward of them, albeit not the most physical, simply periodically rescales all velocities,
such that the kinetic energy obtained would correspond to the chosen temperature.
Another possibility would be to set aside the formalism used so far, to express the equations of

motion of our thermostatted system using Langevin equations:

1
d —pdt )
q uP (4.24)

-VU(q)dt — yvdt + oMZdW (4.25)

dp

Equation 4.24 contains the 2" law of Newton, while 4.25 encompasses a friction term controlled by a
friction coefficient y, and dW represents a vector infinitesimal Wiener process". This is a stochastic ther-

malization (given the Brownian intervention), wich acts locally (each degree of freedom is thermalized

VA Wiener process is a stochastic process, with each step being uncorrelated to the previous one, whose increments follow
a Gaussian distribution. It yields Brownian movement.
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through its own noise). Of course, the intervention of a friction means that the dynamics are modified,
if we compare to the Hamiltonian framework, which does not have friction.
Leimkuhler and Matthews® © proposed a method to integrate these equations starting on the sep-

aration hereafter:

dq M 'p 0 0
= dt + dt + (4.26)

dp 0 ~VU(q) —ypdt + oM2dW

The three elements colored on eq. 4.26 are designated as A (in red), B (in blue) and O (in green),
respectively.
Taking each of these elements separated, one can note that they build equations that can be exactly

solved. This is quite obvious for A and B, as they correspond to usual terms:

- A gives the update of the position given the velocities as

q(t + 6t) = q(t) + p(t)M~' 5t

(4.27)
p(t + 6t) = p(t)
+ B updates the vitesses uing Newton's second law
q(t + 6t) = q(t)
(4.28)
p(t + 6t) = p(t) — VU(q)5¢
The final term O has the following solution (see [6]):
q(t + 6t) = q(¢)
(4.29)

p(t + &t) = e 8tp(t) + JLz_yW — e 2r5tMzRs,

where Rs; follows a normal distribution. Given the presence of a stochastic process, an "exact" solution

means that the solution proposed here effectively yields the correct probability distribution.
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Several integration schemes could be chosen here. The most simple - maybe naively so - would be
to solve the A part first, with a time-step ¢, then the B part with the same time-step, then the O part

with the same time-step. This would define the "ABO" method.

Yet by splitting some of these elements in two, using half time-step integration, one can define
the "BAOAB" method. If we note L4, Lg and Lo the operators associated with each piece presented
previously, the splitting (using Trotter theorem as presented earlier) gives:

L8t _ eiLB%eiLA%e/LoateiLA%e/LB%

(4.30)

This defines a new algorithm, reproduced hereunder.

Algorithm 4 : BAOAB (formally)

(B) i « pi + 8t/2x f;

(A) Gi «— gi + &t x p;/m;

(0) i — exp(-y51) X ji + 0[5 (1~ exp(=2¢5)) R
(A) Gi < g + &5t x p;/m;

Compute forces using updated g,'s.

(B) i « pi + 8t/2x f;

This integrator scheme allowed Matthews and Leimkuhler to use bigger time-steps in their simu-
lation. Since this is precisely our objective, we will thus try a BAOAB implementation of our RESPA1
splitting. The algorithms that we built using both BAOAB and RESPA1 will be named "B-RESPA1" (as

opposed to "V-RESPA1" for the Velocity-Verlet ones). Here is a typical such algorithm:
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Algorithm 5 : B-RESPA1 - Using At = nét and AT =

mAt

pi < pi + AT /2 X Fi,SLow
fori=1,mdo
pi < pi + At/2 % E,INTERM
forj=1,ndo
(B) p; < pi + 6t/2 x E,FAST

(R) Gi «— gi + 5t x p;j/m;

(0) i exp(~y81) x i + 0.\ 52 (1~ exp(~2y51)) R

(A) C_]),' — C_]),' +5t><,5,-/m,-

Compute FAST forces using updated g;'s.

(B) ﬁ,‘ — ﬁ,‘ + 6t/2x
end for

Gi < qi + At X p;/m;

Compute INTERM forces using updated §,'s.

pi < pi + At/2 % E,INTERM
end for
Compute SLOW forces using updated g;'s.
pi < pi + AT /2% E,SLOW

This algorithm was tested using the same conditions, and we present the

4.4, and in figure 4.3.

results in table 4.3 and

System Prop. | Verlet 0.5fs 0.25/2/4 0.25/2.5/5 0.25/2/6
E pot -4459 £39 ~4454 £45 -4436 *+43 -4415 45
Water (S3)
Epol | -2169 11 -2147 +40 -2125 +40 -2126 +40
o Epot | 27894 £102  -27891 +105 -27708 +114  -27662 +108
Ubiquitin
Epol | -13052 £98  -12932 £98  -12810 +98  -12819 +95
(vs. ASPC) - 172 2.43 2.53
Speedup
(vs. no ASPC) - 2.5 3.5 3.7

Table 4.3: V-RESPA1 integrators. £, and £, designate potential and polarization energy respectively,
both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). Speedup are
computed vs. a 1 fs Velocity-Verlet reference, both with and without ASPC.



4.2. AN ITERATIVE SEARCH FOR THE OPTIMAL INTEGRATOR 160

Errors obtained on the energies are below the 2% bar, even for the 0.25/2.5/5 integrator who yielded
incorrect polarization energies. This shows that the static properties are now back to a correct repre-

sentation.

‘BAOAB1fs 0.25/2/t,  0.25/2.5/5 0.25/2/6

D ‘ 1.82 £0.01 1.84 +£0.02 1.92 £0.03 1.96 +£0.01

Table 4.4: Diffusion coefficients obtained using BAOAB-RESPA1 integrators. D is the diffusion constant
(expressed X107 cm?/s). Note that the reference is now a pure BAOAB one (no RESPA splitting).

As explained previously, the dynamics are modified since we are now in the Langevin framework,
and more specifically given the use of a friction term. One should thus expect to have a change in the
dynamical behaviour of the systems. This will reflect on the diffusion constants values, and it would
make no sense to compare them to a Velocity-Verlet reference. As a consequence, we computed a new
reference value, using the BAOAB scheme but no splitting (no RESPA or RESPA1) of the forces. Diffusion
coefficients obtained with the various splits are then compared to this value, in order to stay consistent.

As shown in table 4.4, the agreement is now much better (the biggest error is 8%).

This new reference is only necessary when trying to account for dynamic properties, as static and
structural ones are not influenced by the movement of the particles. Hence the BAOAB 1 fs reference is

required only here.

The same type of conclusions can be drawn from the radial distribution functions (fig. 4.3), where
while V-RESPA1 integrators exhibited discrepancies, the reference curves are now much better repro-

duced.

These various results show that the implementation of a BAOAB scheme in association with the
RESPA1 splitting allowed to solve the issues observed previously with the Verlet integrators. As claimed

by Leimkuhler and Matthews, the dynamics are stabilized and we can aim for higher time-steps.

Note that the speedup are exactly identical to the ones obtained with Velocity-Verlet. This is due to
the algorithms shapes: B-RESPA1 and V-RESPA1 are different when it comes to the treatment of fast parts
only. The computations of the intermediate and slow terms, corresponding to the long range forces, is

the most expensive part, and it is treated equally in both algorithms.
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—— Velocity-Verlet 0.5fs —— BAOAB-RESPA1 0.25/2.5/5
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Figure 4.3: B-RESPA1 integrators. Oxygen-oxygen radial distribution function, comparerd to the Velocity-
Verlet reference, using 6t = 0.5 fs.

4.2.4 A closer look at polarization: TCG strikes back

Let us now have a closer look at the RESPA1 splitting, namely the separation between the short and
long-range of the non-bonded forces. If we recall the shape of the energy terms when explicited within
the SPME framework, they become a sum of three terms: E, for direct space interactions, Erecp in
reciprocal space, and a self-correction term (arising from the PME derivation) Eger. Within the RESPA1
framework, a supplementary separation based on the distance is added. It affects the real term such
that

Ereal = Ereal, short Ereal, long (4.31)

Recalling that we work with the AMOEBA force field, let us then gather all the involved terms, sepa-

rating them depending on their typical times of evolution.

EINTERM = Eelec, real, short + EVdW, short + Epol, real, short (4-32)

Esiow = Eelec, real, long + Eelec, recip T Eelec, self + EVdW, long T Epol, real, long T Epol, recip T Epol, self (4.33)
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("elec", "vdW" and "pol" stand for electrostatic, Van der Waals and polarization, respectively).
Within Tinker-HP, Van der Waals terms are not treated using PME, but only with a cutoff. Therefore,
they don't decompose in reciprocal and self-correction terms. Let us focus on the polarization terms

here, coloured in the previous equations. We have

Epol, total = Epol, real, short + Epol, real, long + Epol, recip + Epol, self (4-34)

which can easily be rewritten as

Epol, real, long + Epol, recip + Epol, self = Epol, total — Epol, real, short (4-35)

The INTERM and SLOW terms can thus be changed into

EINTERM = Eelec, real, short + EVdW, short T Epol, real, short (4-36)

ESLOW = Eelec, real, long + Eelec, recip + Eelec, self + EVdW, long + [Epol, total — Epol, real, short] (4-37)

This simple rewriting highlights that essentially two polarization terms are involved here: one for
the short range of the real part, and another for the whole energy term without range separation. This
means that one could chose to use two polarization solvers, one for each of these terms.

For the short-range real part Epq, real, short, the ideal solver would have to be fast (as it is evaluated
more often than the other), yet still exhibiting good properties, and in particular would ensure stability
of the dynamics. It would be further accelerated thanks to the use of a polarization matrix Tyeal,short
taking into account the range cutoff.

On the other hand, the long-range real part Epq|, real, long has to be computed precisely, as it encom-
passes all the missing terms. This means that computation will be more expensive than for the first
solver. Fortunately, since this solver is only present in the "outer" time-step integration (it belongs to
the SLOW terms), which is computed less frequently, the impact of a more expensive computation will
hence be minimized.

We thus experimented using various solvers, and came up with the following pair.

- For the solution of the short-range real part, we used TCG1. It was developed precisely to compute

polarization at a lower computational cost, while ensuring good energy conservation: it is an
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ideal candidate. We used a preconditioner, but no guess or peek, as this allows for the fastest

computations while still making use of the cheapest refinement we have.

« For the solution of the total polarization energy, we used a well converged PCG. As expected, it
is slower, but is a good solution to retrieve the small deviation to the exact solution that TCG1

would incur.

In terms of implementation, we thus designed a short-range version of the TCG solvers to compute
the Epoirealshort term, and the Epgiiotal term was computed as it used to be with no need for further
developments. To sum up, our strategy is the following: using an approximate but fast solver for the
high frequency terms, we hope to recover the low frequency terms by using a more precise solver at the

outer time-teps.

Numerical results obtained using these "BAOAB-RESPA+TCG1" integrators are reported in tables 4.5,

4.6.
System Verlet 0.5fs 0.25/2/4 0.25/2.5/5 0.25/2/6
Water (S3) Epot -4459 +39 ~4457 44 -4433 £43 ~4411 £45
Epol | -2169 £ -2146 £40 2124439 -2119 +40
Ubiquitin Epot | 27894 £102  -27869 £113  -27741 £117  -27575 £114
Epol | -13052 £98  -12919 £98  -12819 £98  -12746 +102
Speedup (vs. ASPC) - 2.32 2.7 2.9
(vs. no ASPC) - 3.4 3.9 4.2

Table 4.5: B-RESPA1+TCG1 integrators. £, and Ep, designate potential and polarization energy respec-
tively, both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs). Speedup are
computed vs. a 1 fs Velocity-Verlet reference, both with and without ASPC.

We can see that the energies are well conserved, as they remain beyond 3% of relative error. Given
the way the polarization terms were splitted, this is not an obvious results. It is an a posteriori justifi-
cation for the resplitting of the terms we wrote in equation 4.35, effectively ensuring that our strategy
works.

Results shown on the diffusion constants (table 4.6) are also very satisfying, the error compared to

a BAOAB 1 fs reference remain roughly the same as the ones obtained previously without this particular
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‘BAOAB1fs 0.25/2/, 0.25/2.5/5 0.25/2/6

D ‘ 1.82 £0.01 1.92 £0.02 1.94 +0.02 1.88 +0.04

Table 4.6: Diffusion constants obtained with B-RESPA1+TCG/HMR integrators. D is the diffusion constant
(expressed X107 cm?/s). Note that the reference is now a pure BAOAB one (no RESPA splitting).

treatment of the polarization.

Thanks to this rewriting of the polarization energy terms, we could make use of our previous devel-
opments regarding polarization solvers, and more precisely of the rapidity and robustness of the TCG1
solver. This also allowed effective speedups to progress and reach a new maximum (4.2 when comparing

with a no-ASPC reference).

4.2.5 Hydrogen Mass Repartitioning: the final blow ?

So far, we have described several methods to improve the maximal time-step that one can use, whether
it lies in the integration scheme itself, or in a refined treatment of the forces.

The bottleneck in this time-step race will always be the high frequency terms. Indeed, in order to
correctly reproduce a phenomenon occurring ata very short time period, one needs to select atime-step
several times smaller than this period. Looking at our classical molecular dynamics, it appears quite
logically that these terms will involve hydrogen atoms, as they are (by far) the lightest. Procedures such
as’ or LINCS® work towards constraining these motions, but do not allow for time-steps bigger than
2fs.?

In order to eliminate these motions, Feenstra et al.” proposed to redistribute the mass of heavy
atoms onto the hydrogen ones, such that the high-frequency terms disappear from the dynamics'. This
method is named Hydrogen Mass Repartitioning (HMR). This allows for much bigger time-steps (their

2 fs limit is pushed to a 7 fs one), thus accelerating considerably the simulations.

Notwithstanding, by redistributing masses, the systems dynamics are modified. While the authors
claim that this has little effect on the motion of the main protein chains, they report bigger conse-

quences when looking at the movement of water molecules. Diffusion (and subsequently viscosity) is

YAnother version of the HMR method is implemented using dummy atoms in lieu of hydrogen ones, but we did not explore
this possibility, because it is much more complicated to implement and yields results that are further away from the usual
properties of the studied system.
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found to be largely different.
One should therefore not expect to reproduce every property to a high level of accuracy, and in

particular not the dynamic ones.

We implemented the HMR on an integrator using PCG for polarization solver, and on a second inte-
grator using TCG1 as the solver for the short range real polarization as shown in previous section. Tables

4.7, 4.8 and figure 4.4 present the results obtained using these integrators.

System Verlet 0.5fs 1/ % /10 1/ ?(TCG1)/10(PCG)
Water (3) Epot | -4459 39  -4442 *44 -L4L2 £43
Epol | -2169 21 -2133 £39 -2131 +£39
Ubiquitin Epot | -27894 £102  -27611 £114 -27523 +118
Epol | -13052 £98  -12837 97 -12792 +98
Speedup (vs. ASPC) - 4 4.72 (4.91%)
(vs. no ASPC) - 5.8 6.8 (7.0%)

Table 4.7: B-RESPA1(+TCG) integrators, using HMR. £,,; and E,, designate potential and polarization
energy respectively, both given in kcal/mol. Error computed with respect to the reference (Verlet 0.5 fs).
Speedup are computed vs. a 1 fs Velocity-Verlet reference, both with and without ASPC. *: numbers
obtained using a PCG for the largest time-step, refined with an advanced preconditioner (Cholesky).

Energies obtained using this ultimate acceleration method are still in excellent agreement with the
reference value, as attested in table 4.8. We can deduce that the modification on the dynamics still
allow for proper ensemble averages, as configurational space seems to still be well explored.

Radial distribution functions, which can also be quite sensitive when looking at the peaks of the
function, are also very close to the reference (Verlet) ones, confirming that the HMR addition has no
dreadful impact on the static properties.

The diffusion constants, however, suffer from a significant drop. This is expected, as we are now
using a method which modifies the dynamics by redistributing the atomic masses (we will discuss this
in more details in the following paragraphs).

The speedup obtained here are the maximal values we will present in this work. The combination of
all the previous technique, namely RESPA1 splitting, BAOAB integration scheme, TCG/PCG polarization

treatment and HMR, yields speedups close to 5 times (7 if we compare to reference simulations using
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Figure 4.4: B-RESPA1+TCG1 integrators. Oxygen-oxygen radial distribution function, comparerd to the
Velocity-Verlet reference, using 6t = 0.5 fs.

‘1/%/10 1/13—°(TCG1)/10(PCG)

D ‘ 1.6 £0.01 1.6 £0.02

Table 4.8: Diffusion constant using B-RESPA1+HMR integrators. D is the diffusion constant (expressed
%107 cm?/s).

no ASPC).

One could however wonder how far it is advisable to go in disturbing the dynamical behaviour of the
system. Naturally, if one wants to study diffusion coefficients, HMR should not be used. This is also true
for the BAOAB integration and, more generally, the use of Langevin dynamics. As we saw in previous
section, this already has a substantial effect.

To broaden the discussion, Berendsen® as well as Morrone™ pointed out that the diffusion coeffi-
cient (or inversely, the viscosity) would have an incidence on the sampling efficiency of a method.

Indeed, if one wants to sample the configurational space of a very viscous system, the molecules
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will be moving at a very low pace, undergoing strong friction. It will thus take a considerably longer
time to correctly explore all possible configurations with consistent probabilities. This is the risk be-
hind modifying the dynamics used in our simulation, and the last results obtained should be taken
cautiously.

A middle ground between the simulation acceleration and the degradation of the dynamics qual-
ity has to be found there. The maximum decrease of the diffusion constant observed with the
1/§(TCG)/10(PCG) remains quite acceptable if we compare it to other integration methods aiming at
large time-step integration. Albaugh et al.™ indeed proposed a very efficient integration combining

extended Lagrangian and large time-step integration, but reported diffusion constants off by a factor 5.

Assessment on free energy computations

As we did for the Truncated Conjugate Gradient, we close this study on the integrators by assessing
their capability to produce free energies. We tested the fastest methods that we derived in this chapter
(BAOAB-RESPA1 using TCG and HMR). We have seen how sensitive this kind of computation could be,
and will thus use it as an ultimate test for our integrators. The computation method is the same as
the one presented in chap. 3 (see section 3.2.2), relying on successive thermodynamical windows that

progressively activate Van der Waals, then electrostatic interactions.

Ref. 1/2/10-HMR  1/12(TCG1)/10-HMR

AApygr Na* (kcal/mol) | -91.5(+£013)  -91.5 (+0.13) -91.4 (+£0.13)

Table 4.9: Hydration free energies for the Na* cation. "Ref" designates the reference integrator, namely
a 0.5 fs Verlet. HMR denotes the use of Hydrogen Mass Repartitioning.

The results displayed in table 4.9 demonstrate the excellent adaptability of our newly designed in-
tegrators with the highest speedup gains. The complexity and sensitivity usually to be worried about
when computing free energies demonstrates the stability and applicability of these integrators, even-
though these final versions alter the dynamics.

Note that the non-refined ("naked") TCG1 was used here, i.e. the fastest TCG and "roughest" version.
The objective was to stay as simple as possible to create a proof of principle. Any other setup could
nevertheless be chosen here, and this represents another direction in which we could expand our tests.

Last but not least, we limited the range of our time-step increase to values that were preserving our
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computed properties. One could however choose to extend this range at the price of a certain accuracy
on the properties — essentially, this is once again a tradeoff between computational speed and accuracy,

and different applications may have different ideal balance between these two.

Through an iterative search, we assembled several pieces of the MD integration’s arsenal, as well as
our own TCG algorithm, in order to build the most efficient integrators possible. Speedup was increased
through forces splitting, via RESPA then RESPA1; stabilization of the dynamics was obtained thanks to the
BAOAB integration scheme; through the use of TCG and careful consideration of the polarization terms;

and finally via the Hydrogen Mass Repartitioning technique.

This work was published as a letter in the Journal of Physical Chemistry Letters, and is reproduced

hereafter.
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ABSTRACT: We propose an incremental construction of multi-time-step
integrators to accelerate polarizable point dipole molecular dynamics while
preserving sampling efficiency. We start by building integrators using
frequency-driven splittings of energy terms and a Velocity-Verlet evaluation
of the most rapidly varying forces and compare a standard bonded/
nonbonded split to a three-group split dividing nonbonded forces (including
polarization) into short- and long-range contributions. We then introduce new
approaches by coupling these splittings to Langevin dynamics and to
Leimkuhler’s BAOAB integrator in order to reach larger time steps (6 fs) for
long-range forces. We further increase sampling efficiency by (i) accelerating
the polarization evaluation using a fast/noniterative truncated conjugate
gradient (TCG-1) as a short-range solver and (ii) pushing the outer time step
to 10 fs using hydrogen mass repartitioning. The new BAOAB-RESPA1

integrators demonstrate up to a 7-fold acceleration over standard 1 fs (Tinker-HP) integration and reduce the performance gap
between polarizable and classical force fields while preserving static and dynamical properties.

he most straightforward way to speed up molecular

dynamics (MD)"? is to use larger time steps. In this
context, multi-time-step schemes emerged,” but the largest
usable time step is limited by resonance effects.” As pointed
out by various authors, it is possible to overcome these effects
by using modified dynamics that still sample the correct
measure, but these solutions alter the dynamical properties
(generalized Langevin equation (GLE);® stochastic isokinetic
extended phase-space algorithm’~”). However, in practice, one
would like to accelerate MD while also preserving the
dynamics.”'" This Letter addresses this problem in the
particular context of polarizable force fields (PFFs)."'"'* This
class of methods is more computationally expensive than
classical force fields (FFs) because of the need to evaluate a
many-body polarizable energy.'”'* Multi-time-stepping is
therefore essential. The general consensus to ensure conserved
properties is to limit the use of reversible Reference System
Propagator Algorithm (RESPA) integrators’ to a bonded/
nonbonded force split and to use a 2 fs time step for the
nonbonded forces. Further splitting of the nonbonded forces is
not straightforward because of the many-body nature of
polarization but has been shown to be applicable.”'* Indeed,
one can define a short-range polarization energy and evaluate,
at an outer time step, the slowly varying difference between the
actual polarization energy (and forces) and the short-range

i i © 2019 American Chemical Society
~g7 ACS Publications
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ones. More precisely, one has to evaluate both the short-range
and total polarization terms at these outer time steps. The
reduced computational cost of the short-range polarization
contribution and the less frequent evaluation of the total one
effectively reduce the computational effort. Because the upper
limits of these strategies have not yet been evaluated by the
community, we will, in this Letter, assess this frontier to
improve simulation performances while respecting two
important constraints: (i) the mandatory need to preserve
static and dynamical properties and (ii) the possibility of a
black-box implementation allowing for strong computational
speedups without dependence to the studied system. In
everything that follows, tests have been made using the
AMOEBA PFE'® and the Tinker-HP software.'” Technical
details as well as various algorithmic setups are provided in the
Supporting Information (see section S1). A summary of our
incremental strategy is depicted in Figure 1. Interested
developers can also look at the code that will be available on
the Tinker-HP Web site'® and later on Github."”

A Popular Integrator: V-RESPA. Let us first evaluate the
limits of the bonded/nonbonded RESPA integrators for which
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Figure 1. “V-” (or “BAOAB-”) indicates that the numerical
integration scheme is Velocity-Verlet”® (or BAOAB>"*?). “RESPA”
and “RESPA1” respectively mean the RESPA single-split (bonded vs.
nonbonded) strategy® and the RESPA1 double-split (bonded, short-
range nonbonded, long-range nonbonded) one.®> “TCG” is the
acronym for truncated conjugate gradient, a fixed-cost noniterative
polarization solver.”* “HMR” stands for hydrogen mass repartition-
ing,10 implemented to avoid high-frequency motions.

all of the bonded terms are evaluated within a Velocity-Verlet*’
loop (denoted as V-RESPA in the rest of the text) every 0.25 fs
and for which the nonbonded terms (van der Waals,
electrostatics, and polarization) are evaluated first at 2 and
then at 3 fs. To assess the accuracy of the associated
integrators, we ran simulations of 2 ns in the NVT ensemble
at 300 K with two test systems: a cubic box of 500 water

molecules, with a 24.66 A edge, and a 9737 atoms box with
edges of 54.99 X 41.91 X 41.91 A containing a solvated protein
(the ubiquitin). In both cases, periodic boundary conditions
for electrostatics and polarization were evaluated with Smooth
Particle Mesh Ewald (SPME)""**?¢ with standard parameters
(see the SI) as we chose a preconditioned conjugate gradient
(PCG) polarization solver usin§ a diagonal preconditioner and
a 10™° convergence threshold."”'* For each of these systems
and for each integrator, we computed various static
observables: average potential energy, average polarization
energy, and for the bulk water system, radial distribution
functions. In this last case, we also computed the self-diffusion
coeflicient, a dynamical property evaluated with the Einstein
formula by averaging over a series of time origins.”” The self-
diffusion coefficient is known to have a size dependency
vanishing at the infinite size limit,*” but here, these values are
only used as a means of comparison between integrators;
hence, these corrections were not applied. These tests were
performed in the canonical ensemble for which the choice of
the thermostat impacts the dynamics of the system. We ran
these tests using the global velocity rescaling thermostat
developed by Bussi et al. with a relaxation constant of 0.2 ps,
for which the dynamical properties are close to the one
obtained with pure Hamiltonian dynamics.”® These values
have been compared to the ones obtained with a Velocity-
Verlet integrator used at a 0.5 fs time step, which can be

— Velocity-Verlet 0.5fs — Velocity-Verlet 0.5fs — BAOAB-RESPA1 0.25/2.5/5
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Figure 2. Oxygen—oxygen radial distribution function for various integrators (see the text for notation). Radial distributions appear correct with
most of the setups. However, degraded results are obtained with the V-RESPA1 integrators using large outer time steps beyond 4 fs.
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Figure 3. Average potential and polarization energies (in kcal/mol) for a S00 molecule water box and solvated ubiquitin computed using various

integrators.

considered as a reference. In the rest of the text, we will be
denoting the different time step lengths as a/b, a being the
bonded terms one and b the nonbonded terms one (both in
fs).

For both systems, the V-RESPA integrator where non-
bonded forces are evaluated at 2 fs gives similar results as the
reference (within statistical uncertainty), with a difference of
less than 2% for average energies (see Tables 1—3 of the SI).
With an outer time step of 3 fs, the error on the total potential
energy is still satisfactory (around 1%), but the error on the
polarization energy grows significantly (more than 2.5%). This
advocates for careful use of this setup.

Concerning O—O radial distribution function for water, no
significant differences with the reference Velocity-Verlet (0.5
fs) ones can be observed among these different methods (see
Figure 2).

The self-diffusion coeflicients of water are also nicely
preserved for the V-RESPA integrator with a 2 fs outer time
step, though it is slightly off (around 8%) with a 3 fs outer time
step (see Table 1, SI).

Further Range Separation in Polarizable Force Fields: V-
RESPAI. As a second part, we will now evaluate the limits of
other RESPA integrators, for which the nonbonded terms are
further split in two parts, the short- and long-range. We are
now considering three terms: the bonded, the nonbonded
short-range, and the nonbonded long-range terms. Regarding
the split of the electrostatics and the polarization energies, we
chose to use the RESPAL1 logic,”* where the short-range part of
the electrostatic (and polarization) energy is defined as the
short-range part of the real space SPME energy. In this case, it
has been shown that the stability of the integrator is less
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dependent on the smoothing parameters used to switch
between short- and long-range.” Details of the definition of
these short- and long-range forces as well as these smoothing
parameters can be found in the SI. We test various setups
within this context: the bonded forces are always evaluated
every 025 fs, but the short-range nonbonded ones are
evaluated either every 2 or 2.5 fs, and the time step of the
long-range forces (that has to be a multiple of the previous
one) is either 4, 5, or 6 fs. In the rest of the text, these
integrators will be denoted as V-RESPA1. We will be denoting
the different time step lengths of the integrators as a/b/c, a
being the bonded term time step length, b the short-range
nonbonded, and ¢ the long-range ones (all in fs).

For the bulk water system (see Table 4 in the SI), we
observe that both the average potential and polarization
energies are preserved within 2% of the reference value for the
0.25/2/4 and the 0.25/2.5/5 setups but that the average
polarization energy is more than 2% off for the 0.25/2/6 setup.
Concerning the radial distribution functions of water, it is clear
that only the 0.25/2/4 integrator gives satisfactory results as
other choices diverge from the reference, as can be seen in
Figure 2. Furthermore, if the self-diffusion coefficient is stable
for the 0.25/2/4 integrator (see Table S, SI), it exhibits a
dramatic decrease for the other ones (falling at 1.34 instead of
2.08 for the 0.25/2/6 setup). This shows not only that the
dynamical properties are not well preserved with these setups
but also that the computational gains expected due to the use
of a 61::}1(')ger time step are counterbalanced by a lower sampling
rate.”

Indeed, as pointed out by Berendsen,”'’ such a decrease in
the self-diffusion coefficient is expected to reduce the sampling
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efficiency by a similar amount because it is associated with an
increase of water viscosity and thus a slowing down of large-
scale motions. For the solvated ubiquitin, it is also clear that
only the 0.25/2/4 setup corresponds to satisfactory accuracy as
the other ones give average potential and polarization energies
off by more than 3% (see Table 6, SI).

Recovering Accuracy through Langevin Dynamics: The New
BAOAB-RESPALI Integrator for Polarizable Force Fields. Thirdly,
another way to sample the canonical ensemble is Langevin
dynamics, where coupling to a heat bath is made through
additional local friction and dissipative stochastic terms. The
dynamics is then known to be altered compared to the pure
Hamiltonian one, but this impact is expected to be small for a
relatively small friction constant (less than 1 ps™'). In this
context, Leimkuhler and collaborators proposed an integrator
for Langevin dynamics based on operator splitting and a
particular ordering of the terms of the equations of motion
named BAOAB.”"*” They showed in various contexts’' that
this integrator has improved accuracy for configurational
sampling compared to other ones. We thus also tested the
previously presented splittings using this new integrator, with a
1 ps~! friction constant (they will be denoted BAOAB-RESPA
and BAOAB-RESPAL in the rest of the text ; see the SI for
additional description of these integrators), and noted a
significant improvement in terms of accuracy (reported in
Tables 7—9 of the SI).

Indeed, for the bulk water system (Table 7 of the SI), the
errors for the BAOAB-RESPA integrator with a bonded/
nonbonded split and a 3 fs outer time step are limited to less
than 1% for the average total potential energy and 2% for the
average polarization energy, in both cases staying within
statistical error, compared to 1.1 and 2.8% for the Velocity-
Verlet-based integrator. Figure 2 also shows improved
agreement with the reference for the water radial distribution
compared to RESPA. The same behavior can be observed on
the solvated ubiquitin, for which both of these values stay
respectively below 1 and 2%, within statistical error (see Table
9, SI). Because the dynamics is modified when running NVT
trajectories with Langevin, even if the differences are expected
to be small for a small friction, comparing values of the self-
diffusion coeflicients obtained with these integrators only
makes sense by taking as a reference a numerical scheme
integrating Langevin dynamics with conservative parameters.
This is why we chose, as a reference for these values, the ones
obtained with a 1 fs BAOAB integrator and 1 ps™' friction,
which as expected gives self-diffusion close to the reference
Velocity-Verlet one (1.82 versus 2.08). For the BAOAB-
RESPA integrators, we see that errors in the self-diffusion
coefficients (see Table 8, SI) are limited to 6% with a 3 fs outer
time step compared to 8% with a similar time step and a
Velocity-Verlet inner loop. The better performances of
BAOAB-based integrators with respect to the Velocity-Verlet
ones becomes obvious within a RESPA1 split. Indeed, we
computed the same observables for the BAOAB-RESPAI
integrators (see Tables 10—12, SI, and Figures 3 and 4),
equivalent to the V-RESPA1 integrators, and we see that the
average potential and polarization energies are strikingly more
stable and always within 2% error with respect to their
reference value, that is to say, within statistical uncertainty.
Similar comments can be made for the radial distribution
functions: unlike the Velocity-Verlet integrators, they almost
perfectly overlap with their references even with a S or 6 fs
outer time step. When using the Velocity-Verlet-based
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Figure 4. Self-diffusion (D) coefficient for various integrators (in 107>
cm? s’l).

RESPAL integrators with an outer time step larger than the
most conservative (4 fs) one, the diffusion coefficient showed a
dramatic decrease (see Figure 3 and Table S in the SI). Yet, in
the BAOAB-RESPAL case, this dynamical observable remains
far more stable for all integrator setups: even for the choice of
evaluating long-range nonbonded forces every 6 fs, the error is
less than 8%, whereas it exceeds 35% in the equivalent V-
RESPALI setup. This highlights again that BAOAB-RESPA1
integrators are not only more accurate but also ensure a
conserved sampling rate, which is not the case for the V-
RESPAL ones.

Concerning the effective speedups in our implementation,
Table 1 displays the gains obtained for the BAOAB-RESPA
and the BAOAB-RESPAL1 integrators (compared to a regular 1
fs Velocity-Verlet). They are the same as the one obtained for
the V-RESPA and the V-RESPALI integrators. We show two
entries in Table 1: one where a guess based on Kolafa’s Always
Stable Predictor Corrector’® (ASPC) is used for the induced
dipoles (standard Tinker-HP setting), but only at short-range
for the RESPA1 integrators, and one where the “direct field”
guess is used,"”'* showing that up to a 2.53 speedup (3.7
without ASPC) is achieved. Note that for the RESPAl
schemes, additional gains are made in the long-range
polarization solvers by using, at the same time step, the
short-range dipoles obtained as a guess for the long-range ones,
effectively reducing the number of iterations required to
converge. For the BAOAB-based integrators, the benefits of
using the RESPALI splitting are clearly demonstrated as the
0.25/2.5/5 and 0.25/2/6 frameworks are both faster than the
0.25/3 RESPA integrator for a similar accuracy.

Speeding Up BAOAB-RESPAI: TCG-1 Solver for the Short-
Range Polarization and Hydrogen Mass Repartioning. When
using a RESPA1 multi-time-step integrator and a PFF, the sole
purpose of the short-range polarization energy is to eliminate
the high-frequency part of the total polarization energy.””'
This is why an approximate but less computationally expensive
and nonparametric expression of the polarization energy can
be used to fill this role and provide an additional speedup. In
that context, we decided to use the recently introduced
truncated conjugate gradient (TCG)*™* as a short-range
solver. TCG can be chosen to be minimal in cost (TCG-1 with
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Table 1. Speedup of BAOAB-RESPA and BAOAB-RESPA1 Integrators Calculated with Respect to the Velocity-Verlet
Integrator at 1 fs*

splits 0.25/2 025/3 025/2/4 025/2.5/5 025/2/6 025/2(TCG)/4 025/2.5(TCG)/5 025/2(TCG)/6 1 /%/ 10 1 /%(TCG) /10
ASPC 1.75 237 1.72 243 2.53 232 2.7 2.9 4 4.72 (4.91%)
No ASPC 253 342 2.5 3.5 3.7 34 3.9 42 5.8 6.8 (7.0%)
RESPA-type R R R1 R1 R1 R1 R1 R1 R1(HMR) R1(HMR)

“The types of RESPA integrators are defined by R1 = RESPA1 and R = RESPA. Speedups obtained with V-RESPA and V-RESPAL1 integrators are
identical. * = replacement of the PCG diagonal preconditioner by an improved technique;**** see the text.

a diagonal preconditioner but without any guess and without a parallel AMOEBA production implementation in Tinker-HP.'”
peak step) to be the fastest possible. This coupling provides an First, we checked the stability of the dynamics using the fastest
additional computational gain at a conserved accuracy (see available setup. We provide a 15 ns simulation of ubiquitin (see
Tables 13—1S, SI), corresponding to a final speedup of more SI, section S3): the potential and polarization energies
than 4 times compared to a regular MD of 1 fs with a Velocity- normally fluctuate around their mean values, demonstrating
Verlet integrator (see Table 1). Such a polarization setup offers the stability of the approach. Furthermore, we computed the
full energy conservation, and the static and dynamical average molecular dipole moments for the bulk water systems
properties are marginally affected by this choice.'>'*** and confirmed their full stability (see SI, section S4). Second,
At this point, we reached the performance limits if one wants we ran simulations on large systems of biological interest,
to preserve tight accuracy on the dynamics. One of the most namely, the solvated dihydrofolate reductase protein (DHFR,
natural ways to further increase the size of the usable time step 23358 atoms) and the solvated Satellite Tobacco Virus
when simulating a large biological system is to redistribute the (STMV, 1066628 atoms). The discussed speedup of 7-fold
mass of the heavy atoms on the hydrogens that they are (vs a 1 fs/Velocity-Verlet/PCG-107°) is conserved as we
carrying (a method named hydrogen mass repartitioning obtained a production of 22.2 ns/day on 680 cores for DHFR
(HMR)'’), thus limiting the high-frequency stretching and 1.2 ns/day on 10800 cores for STMV. Such results are of
motions of these atoms while keeping the same configurational major interest, as a 7-fold acceleration will enable one to save
potential energy surface. In the following, we show that this millions of hours of computing time while enabling long and
redistribution allows one to use even larger time steps while accurate polarizable molecular dynamics studies on large
maintaining  satisfactory accuracy with a BAOAB-RESPA1 systems. Finally, we computed a more involved property that is
integrator and the same TCG-1 short-range polarization solver of key importance in biological simulations: hydration free
as before (Tables 16—18, SI). As can be seen in Table I, the energies. We applied the Bennett acceptance ratio method,‘%gg
approach appears to be a very good compromise: large commonly used approach to compute free energy differences’
speedups can be obtained by pushing the bonded force time to evaluate the solvation free energy of a sodium cation in
step to 1 fs, the short-range nonbonded forces time step up to water. Results are shown in Table 2, and practical details on

19 f5, and the outer one up to 10 fs. Details on how the mass R
3 Table 2. Hydratation Free Energies for the Na® Cation
repartitioning is done can be found in SI (section S1). A

resulting acceleration of 4.72 (6.8 without ASPC) is obtained, Velocity- o -

keeping the errors on the average energies below 2%, Vedet 05 & 1/57/10-HMR  1/5(TCGL)/10-HMR
maintaining an accurate evaluation of radial distribution A(Gl:zgin/tnl:{i; 89.7(x0.13)  89.7(0.13) 89.6(+0.13)
functions and a good enough evaluation of the self-diffusion

coefficient so that sampling efficiency is preserved. Because
PCG, as a Krylov method, is systematically improvable,"
additional small speedups can be obtained by focusing on the
long-range PCG solver performances. For example, besides
using a diagonal preconditioner, one could use more advanced
techniques such as those proposed by Skeel®® or by Beran.”*
Improved performances of 3—4% are observed, reaching a
global acceleration of more than 7-fold, with the same accuracy
as a 1 fs Velocity-Verlet scheme without ASPC. Finally, beside
the net acceleration, another advantage of the TCG use lies in
the absence of use of a dipole history (as in predictor-
correctors such as ASPC), leading to a method free of time-
reversibilty and volume preservation issues.”* Finally, the small
decrease (8%) of the self-diffusion constant (see Figure 4)
observed in the most aggressive setup has to be compared with
actual available large step methods” that, despite their qualities,

the choice of alchemical free energy difference windows can be
found in the SI (section S1). Even for the fastest setup, the
values obtained are within 0.1 kcal/mol of the 89.7 kcal/mol
for the reference,”” demonstrating the validity of these
acceleration schemes and their capability to preserve accuracy.

To conclude, after examining the limits of a standard
Velocity-Verlet integrator for PFFs used in combination with a
RESPAL split, we introduced new BAOAB-RESPA1 Langevin
integrators coupled to a fast short-range noniterative TCG-1
polarization solver and HMR, achieving all together large
computational speedups. Two optimal BAOAB-RESPAI
setups were presented and compared to a 1 fs Velocity-Verlet
reference: (i) one (namely, 0.25/2(TCG)/6) for which all
properties are preserved while providing a global speedup of

more than 4-fold and (ii) a second (1/?(TCG)/10+HMR)

are not able to maintain accuracy on dynamical properties, for which dynamical properties are slightly affected but where
providing diffusion constants reduced by a factor of 5.” Our sampling remains efficient, offering a strong acceleration up to
approach does not suffer from these problems: it remains 7-fold. As accuracy is maintained and sampling efficiency is
operational, maintaining sampling efficiency. preserved while being system-independent, the proposed
To illustrate the robustness of these approaches, we methodology can be used as a black-box in our Tinker-HP
performed several tests taking advantage of our massively framework, benefiting from its massive parallel implementation
2597 DOI: 10.1021/acs.jpclett.9b00901
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and offering therefore further computational gains.'” Such
findings are game-changing as they extend the applicability of
polarizable MD to longer-time-scale simulations and larger
systems. In practice, the resulting performance gain helps
reduce the computational gap between point dipole PFFs such
as AMOEBA and more tractable models such as Drude®® or
even nongolarizable force fields such as CHARMM™ or
AMBER.*
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Conclusion

Molecular dynamics is an essential tool for understanding the microscopic world, but requires the
development of meaningful, accurate models correctly accounting for the complexity of atomic and
molecular behaviours. From simple chemical reactions to biological systems interacting, a wide range
of methods, based on quantum and classical mechanics, have been studied and perfected.

Through careful numerical simulations of the systems of interest, MD gives access to invaluable
thermodynamical quantities, including free energies or phase change enthalpies, but also to dynamical
and structural ones, characterizing the movement of particles and their organization. Accuracy of the
simulations is directly dependent on the models chosen to reproduce physical interactions, namely the
force fields. The family of force fields is large, and comprises several generations, where the oldest ones
only mimick the strongest coupling terms using simple approximations. Polarizable force fields, on the
other end, are the youngest generation. On top of using refined (second, third order) approximations
that were the mainspring of their predecessors, polarizable force fields aim at taking the electronic
density into account, without spending the (very expensive) cost of quantum calculations. A few models
were developed in order to explain the behaviour of this highly complex contributions as simply as
possible. Each comes with its own tools and calculation process, its perks and drawbacks.

This work focused on the induced dipole polarization model, assimilating the polarized electronic
density around atoms to a point-dipole vector. This model show the best accuracy amongs its fellows,
as well as being the most efficient computationally-wise. However, using this approach requires the

implementation of a self-consistent solver which considerably slows down the simulation.

We thus proposed a new algorithm, the Truncated Conjugate Gradient (TCG), based on a truncation of
the state-of-the-art polarization solver. This new solver has several advantages over the previous one:

since the user can choose beforehand the number of solver iterations to be performed, the scheme
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becomes non-iterative, and its cost can be chosen to be low. Various simulations show that even at
very low order, the TCG yields very good results, which validates its interest as a faster polarization
solver.

The non-iterative nature of the method also means that one can derive exact formula for the in-
duced dipole values, their associated interaction energies, and the forces they elicit. As a consequence,
one can compute forces that are exactly consistent with the induced polarization model, ensuring a
much better energy conservation. Essentially, TCG dynamics can be described as very stable simula-
tions whose potential energy surface is offsetted by a small quantity.

Refinements can be implemented to further improve the TCG's performance in terms of accuracy.
The peek-step, in particular, is a parametrizable extra step in the polarization solving process allowing
to obtain very accurate polarization energies (and even to cancel the offset evoked earlier).

These developments are conceptually quite simple, as they are merely the consequences of a trun-
cation of a very well studied algorithm, the Conjugate Gradient. However, they are quite involved in
terms of implementation, and producing a usable program is not trivial. We thus proposed a strategy

to properly code the TCG and its associated forces.

The new algorithm was tested on many different systems such as liquid water boxes of different
sizes, solvated proteins, and even ionic liquids. Static properties, such as polarization and potential
energies, a dynamical property (the diffusion coefficient), radial distribution functions were computed
and compared to references. In every instance, TCG performed well, with the first order of truncation
(TCG1) appearing as a good choice for a very cheap polarization solver, while the second order (TCG2)
establishes itself as a perfectly viable alternative to the slower, state-of-the art solvers, exhibiting very
small errors in the results.

To assess the behaviour of TCG on more advanced properties, hydration free energies of Na* cations
were computed. Free energies are very important thermodynamical quantities from the purely physical
problems to biochemical systems, but their estimation requires very fine computations. TCG robustness
is reaffirmed, as the second order of truncation yields almost perfect results. The first order of trun-
cation plays again the role of a very cheap estimator carrying a more important error. Reconsidering
on the free energy calculation schemes, a reweighting technique to post-treat low-precision trajectory

using high-precision parameters allow to extract better values for a cheaper price was presented.
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Nevertheless, we observed that an important number of different simulations had to be carried out
in order to extract reliable free energy values. Keeping our initial objective of acceleration of the polar-
izable simulations, we then turned towards a cornerstone of molecular dynamics: the integrator.

Simple (Euler) approximations can give stable integrator schemes. Yet an interesting zoology of
methods can be explored in order to improve these "primary" integrators. We presented step-by-step
improvements of the computational speed, following the developments hereafter. Using a slightly more
involved classical mechanics framework, splitting strategies such as RESPA and RESPA1 emerged. These
splitting treat motions differently depending on their typical frequency, so that adapted time-steps can
be used. Stabilization of the accelerated dynamics can be achieved thanks to the Langevin equations
and the BAOAB integration scheme. By reconsidering the splitting of the polarization forces, we put our
TCG to good use by exploiting its stability and rapidity properties. As a last effort, the Hydrogen Mass
Repartitioning, preventing motions of the highest frequency (involving hydrogen atoms), was added to
our new integration strategy.

Numerical tests were performed throughout this design process, allowing us to finally propose two
optimal integrators. The first one is tightly conservative and reaches speedup up to five times the
standard (1 fs) integrators. The second one is slightly less precise when it comes to the dynamical
properties, but allows seven-fold speedups of the simulations, while maintaining very good accuracy

on static properties and even free energies.

The work presented in this thesis, initially started on the simple truncation of a polarization solver,
proved to surpass our initial expectations. Indeed, the Truncated Conjugate Gradient reshapes the
landscape of polarizable molecular dynamics, by making it much more affordable as well as more stable.
Through a lot of efforts in implementation and testing, we now achieved a very good understanding of
its behaviour and its possible refinements. The computational bottleneck that induced polarization
represented is now solved. Polarizable Molecular Dynamics can not be considered as "slow" anymore.

The numerical experiments already carried out using TCG proved its versatility and applicability, and
it was incorporated into the development of new MD integrators, who benefited from its acceleration
and even more strikingly from its improvements on steadiness of the dynamics with respect to large
time-steps. These new developments have already been used as production codes by several members

of our laboratory, who benefited from their steadiness and improved performances.
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Furthermore, all this work was done with a high-performance oriented mindset, and is highly par-
allel. It is implemented within Tinker-HP as one of the engines of the 1.2.0 release. Our seven-fold
acceleration and its excellent free energy results will thus be available for all and for all computational
resources. Thanks to these improvements, we hope to open the door to complex biological problems,
such as protein-protein interactions and docking processes, and to unlock very long scale simulations
aiming at the microsecond frontier. The proposed accelerations could greatly benefit fields such as
pharmacology, where computing accurate — and fast ! - free energies is important, enabling better

tools for predictions and drug design.

As a conclusion, this work is now growing branches in the MD integrators domain, in free energy
computations, and in Monte-Carlo simulations, overcoming the initial polarization problem. The math-
ematical basis on which the TCG was built makes it systematically improvable, while providing us with
well controlled methods; many more refinements could be implemented (better guesses, new precon-
ditioners...) that have yet to be explored. Next implementation steps could benefit from automatic
differentiation to avoid their complexity and therefore further increase accuracy through inclusion of
more advanced mathematics.

TCG opened the door to a whole family of polarization solvers, that we can only hope to explore in

the future.
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Notations for the Truncated Conjugate Gradient expressions
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TCG timings using a 2 fs time-step

Solver Refinements Water (Sz) Ubiquitin [dmim*][Cl’]
order | Prec. Guess Peek | ns/day diff. | ns/day diff. | ns/day diff.
Ref. 3.06 0.0 0.58 0.0 1.57 0.0
PCG8 225 266 | 0.40 -31.6 111 -29.1
Ref. - - - 519 0.0 0.97 0.0 1.50 0.0
PCG8 - - - 402 226 | 071 276 | 1.07  -284
TCG1 - - - 7.51 44.7 1.67 71.0 | 2.86 91.5
TCG1 - ° - 6.17 18.9 115 18.0 | 3.63  142.8
TCG1 ° - - 7.40 42.6 1.67 71.3 273 82.9
TCG1 - - wWht 6.61 27.4 1.32 352 | 2.08 389
TCG1 ° ° w="1 6.12 18.0 126 28.9 | 198 32,5
TCG1 ° ° wht 5.82 12.2 1.23 26.4 1.91 27.9
TCG2 - - - 6.37 22.7 134 37.8 | 2.26 51.4
TCG2 ° - - 6.38  23.0 1.38 (1.2 2.27 51.5
TCG2 ° ° - 5.29 1.9 1.04 7.0 1.57 5.3
TCG2 - ° - 513 -1 1.02 4.7 296  98.0
TCG2 - - wWht 5.59 7.7 1.06 8.3 1.62 8.3
TCG2 ° ° w =1 5.10 -1.8 1.00 2.2 1.50 0.1
TCG2 L o Wit 5.01 -3.5 0.97 -0 1.46 -2.2

Table 10: Timings for various TCG setups. For each simulation, 1000 2 fs time-steps were run using the

RESPA integrator. Simulations on the water system S were performed using 24 cores; ubiquitin and the

dimethylimidazolium solution with 48 cores. All timings are given in ns/day. The reference timings were

obtained using a PCG solver with a 107> convergence criterion. "PCG8" stands for the Preconditioned

Conjugate Solver with a 1078 convergence criterion. "Diff" designates the relative difference, in percents,

with respect to the reference.



189 BIBLIOGRAPHY

Parametrization of the peek-step, variations of w
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Figure 5: Water - Influence of w. Polarization energy and RMS on the induced dipoles plotted as a
function of w, for 216 water molecules. The dashed black line represents the reference polarization

energy, obtained with PCG.
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Figure 6: GAG - Influence of w. Polarization energy and RMS on the induced dipoles plotted as a function

of w, computed on the GAG protein.
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We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and
to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles
electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of
use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with
applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of
atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition
to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative
polarization solvers. The design of the code allows the use of various computer systems ranging from
laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP
proposes therefore the first high-performance scalable CPU computing environment for the development
of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to
Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations
are also provided. The possibilities, performances and scalability of the software are demonstrated via
benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water
boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well
as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP
appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size
grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of
its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-
fold acceleration over a single-core computation is observed for the largest systems. The extension of the
present CPU implementation of Tinker-HP to other computational platforms is discussed.
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Indeed, solving Newton equations of motion to resolve the time-
dependent dynamics of atoms within large molecules allows to

1 Introduction

Over the last 60 years, classical Molecular Dynamics (MD) has
been an intense field of research with a high rate growth.
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community of protein simulations, classical force fields (FF)
such as CHARMM,' AMBER,> OPLS,> GROMOS* and others,*
enabled large scale simulations on complex systems thanks to
the low computational cost of their energy function. In that
context, various simulation packages appeared, often associ-
ated to these FF such as the popular CHARMM,®* GROMOS’ and
AMBER softwares.® Among these, Tinker (presently version 8
(ref. 9)) was introduced in 1990 with the philosophy of being
both user friendly and to provide a reference toolbox for
developers. Later on, the evolution of computer systems
enabled the emergence of massively parallel softwares dedi-
cated to molecular simulations such as LAMMPS,'* NAMD,"*
Gromacs,"” AMBER (PME-MD),"”* DLPOLY,** Genesis*® or Des-
mond."® As they were granted the use of large computational
resources, access to million atoms systems and biological time
scales became possible.'” Nevertheless, up to now, such simu-
lations are mainly limited to first-generation molecular
mechanics (MM) models that remains confined to a lower
resolution approximation of the true quantum mechanical
Born-Oppenheimer potential energy surfaces (PES). However,
beside these methods, more advanced second generation
“polarizable” force fields (PFF) emerged in the last 30 years.'*>
Grounded on Quantum Mechanics (QM) and usually calibrated
on the basis of Energy Decomposition Analysis (EDA),* they go
beyond pairwise approximation by including explicit many-
body induction effects such as polarization and in some cases
charge-transfer.  Fluctuating charges, classical Drude
approaches or point dipole coupled to point-charge models
using distributed polarizabilities are among the most studied
techniques aiming to include polarization effects.”® On the
accuracy side, some PFF go beyond the point charge approxi-
mation incorporating a more detailed representation of the
permanent and induced charge distributions using QM-derived
distributed multipoles and polarizabilities.'®*****® Recently,
a third-generation PFF using distributed frozen electronic
densities in order to incorporate short-range quantum effects*
appeared. In term of PES, these advanced force fields clearly
tend to offer improved accuracy, better transferability and
therefore are hoped to be more predictive. Unfortunately,
everything has a cost: such elegant methods are more complex
by design, and are therefore computationally challenging. Until
recently the more advanced point dipole polarizable approaches
were thought to be doomed for the simulation of realistic
systems due to the evaluation cost of the polarization energy.
Large scale polarizable production MD simulations were
limited to the use of the Drude-type/point-charge model (using
an extended Lagrangian propagation scheme)®* that was found
to be more tractable than point dipole models (using iterative
solvers) coupled to multipolar representation of the permanent
charge distribution. Nevertheless, despite this scalability issue,
time was not lost and accurate models were developed such as
the Tinker package, original home of the multipolar AMOEBA
PFF,** specialized in offering a dedicated development platform
with all required advanced algorithms for these accurate tech-
niques. Moreover, ten years ago, a hardware technical revolu-
tion in the field of High Performance Computing (HPC), had
a profound impact on MD simulations with classical FF.*?

This journal is © The Royal Society of Chemistry 2018
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Indeed, the introduction of Graphical Processing Units (GPUs)
offered a brute force hardware acceleration to MD packages
thanks to simple- or mixed-precision implementations.*® Tinker
benefited from the availability of this low cost but powerful type
of hardware. It led to a GPU version of the code denoted Tinker-
OpenMM.** The code is based both on Tinker and on the
OpenMM library (now version 7 (ref. 35)) which pioneered the
use of GPUs with polarizable force fields. Tinker-OpenMM
offers a 200-fold acceleration compared to a regular single
core CPU computation giving access to accurate free energy
simulations. However, when one considers the need for
biophysical simulations, this
sufficient.

The purpose of the present work is to push the scalability
improvements of Tinker through new algorithms to explore
strategies enabling a 1000-fold and more speedup. These new
developments aim towards modern “big Iron” petascale
supercomputers using distributed memory and the code design
also offers consequent speedups on laboratory clusters and on
multicore desktop stations. The philosophy here is to build
a highly scalable double precision code, fully compatible and
consistent with the canonical reference Tinker and Tinker-
OpenMM codes. As the new code remains a part of the Tinker
package, it is designed to keep its user-friendliness offered to
both developers and users but also to provide an extended
access to larger scale/longer timescale MD simulations on any
type of CPU platforms. The incentive to produce such a refer-
ence double precision code is guided by the will to also perform
scalable hybrid QM/MM MD simulations where rounding errors
must be eliminated. This will bring us not to cut any corners in
our numerical implementation with the key mantra that one
should not scale at any cost, as the algorithms developed in this
interdisciplinary project should be based on solid mathematical
grounds.

The paper is organized as follows. First, we will present the
newly developed extension of 3D spatial decomposition and
memory distribution to polarizable point dipole models that is
at the heart of Tinker-HP for short-range interactions. Then we
will detail the handling of long-range electrostatic and polari-
zation interactions with a new framework coupling Smooth
Particle Ewald to Krylov iterative and non iterative polarization
solvers. We will then introduce the possibilities of the software
and show benchmarks for selected applications in the context
of the AMOEBA PFF.>**® Finally, we will present functionalities
of Tinker-HP that go beyond MD simulations in periodic
boundary conditions as we conclude by drawing some
perspectives about evolutions of the code towards next HPC
platforms.

acceleration remains not

2 Accelerating polarizable molecular
dynamics using massively parallel 3D
spatial decomposition

In this section, we describe the first extension of 3D spatial

decomposition to polarizable point dipoles models dedicated to
production simulations. Indeed, in the past, point dipole model

Chem. Sci,, 2018, 9, 956-972 | 957
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implementations in parallel have been limited to the use of
a few dozen processors.*” In this section, we detail the paralle-
lization strategy used in Tinker-HP to overcome this problem
and to deal with local interactions, including the direct-space
part of electrostatic and polarization interactions. The long-
range, reciprocal field part of such interactions, is discussed
in Section 3.

2.1 State of the art in massively parallel implementation of
classical molecular dynamics simulations

Several strategies'**>'® have been devised in order to treat short-
range interactions on large-scale parallel computers using
distributed memory parallelism. In Tinker-HP, we have imple-
mented a spatial decomposition (or domain decomposition)
method. In this approach, the simulation domain is decom-
posed in 3D blocks and each block is assigned to a processor.
Each processor then handles the computation of the forces and
the update of the coordinates for the atoms assigned to the
block at each time-step. This strategy is motivated by the fact
that the interactions considered are short-range, and that the
positions of the atoms do not change much between two
consecutive time-steps. An example of such a decomposition
with 3 x 3 x 3 =27 blocks is given in Fig. 1. One can show'’ that
if the cutoff (r.) involved in the short-range interactions is
superior to the size of an edge of a block, which is the case with
a high number of processors, the amount of data to be
communicated in and out of each processor at each time step
(the so-called communication volume) scales like ¢ (r.*) (if the
density of the system is uniform) independently of the number
of processors. As a consequence, the communications are local
which is an advantage of this method over the other ones.
However, achieving a good load-balancing is harder using this
strategy when the density of the system is not uniform or when
the simulation box is not a parallelepiped.

Let us give more details about the algorithm and the main
steps required to perform a time step of MD using this method.
We assume that the simulated system resides in a box that has
been divided in as many 3D blocks as the number of processors

Fig. 1 Example of 3D spatial decomposition.
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used. Let us focus on a processor that has been assigned a 3D
block and let us assume that this processor knows the current
positions, velocities and accelerations of the atoms currently
belonging to this block. In integrator schemes such as velocity
Verlet, the first integration step consists of an update of the local
positions and a first update of the velocities. Because of these
position changes, some atoms may cross the local block bound-
aries and need to be reassigned to neighboring blocks. This step,
that we will call “reassign step” only requires local communica-
tions between a small number of neighboring processes.

In the second step, the forces are computed and used for the
second update of the velocities. This requires the processor to
know the positions of all atoms within the interaction cutoff,
that have to be communicated from the processors assigned to
the blocks that are at distance inferior or equal to the cutoff. We
will call this step, which also involves local communications
(but that may involve more distant processors than the previous
one) “position comm” step. Once this is done, the algorithm
loops back to the first step.

The communication volume involved in the position comm
step can be reduced by taking into account the pairwise nature
of the fundamental operations needed to compute the forces.
Given a pair of atoms, in fact, one needs to choose which
processor will perform the elementary force computation. This
can be done on the basis of a geometrical argument. Among the
various methods, that are also called neutral territory
approaches,* we choose the one presented by Shaw et al.,'
known as the midpoint method.*® This method picks out the
processor that computes an interaction between two atoms as
the one assigned to the subdomain where the center of the
segment between the two atoms lies. As a consequence, each
processor only needs to import information about atoms

T .
located at less than EC from its block: one can show that the
communication volume is then, with d being the size of an edge
. 3 1
of a subdomain, Vyp = 3d?r. + Zd*ﬂ:rc2 + Ewrcs as represented

schematically in Fig. 2. This is a significant reduction with
respect to the naive method,*® especially at a high processors
count. Note, however, that within this scheme, a processor
might need to compute the elementary interaction between
atoms that do not belong to its block.

Furthermore, once the elementary pairwise computation has
been done, we can take advantage of Newton's third law and
communicate the force back to both processors from which the
positions originated (“force comm” step). This additional
communication cost is in general negligible compared to the
computational gain represented by the reduction of the
computations of the forces by half.

Additionally, the midpoint approach is simple enough not to
complicate too much the implementation, which is ideal for
a platform like Tinker-HP, meant to be shared with a commu-
nity of developers. Nevertheless, more elaborate techniques are
interesting and have been shown to reduce asymptotically the
amount of data that need to be communicated in the “position
comm” step and in the “forces comm” step. We are currently
studying these methods in the context of PFF to compare them
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rc/2

Fig. 2 Illustration of the midpoint rule in 2D: the square of edge
d represents a subdomain assigned to a process and the blue line
delimits the area that has to be imported by the latter.

to the present midpoint approach. Some of them should appear
in future releases of our code.

The algorithmic structure of a parallel (short-range) MD step
with spatial decomposition is shown in Fig. 3.

To address load balancing issues that may appear in non-
homogeneous systems (when equally sized subdomains contain
a very different number of atoms), a procedure in which the size
of the subdomains is iteratively changed has been implemented.

2.2 Distributed memory for simulations using point dipole
models

Distributed memory parallelism allows one to scatter the
memory among the processors and thus to run simulations that
would not be possible because of memory limitations. In
Tinker-HP, almost all data are distributed, this being possible
by reallocation of dynamically allocated arrays at regular

Update velocities
Update positions

Reassign atoms
Position comm.

Compute forces

Update accelerations
Update velocities

tTdt

Fig. 3 Schematic representation of a velocity Verlet step.
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intervals. For example, during the computation of the non-
bonded forces at a O(N) computational cost using the linked-
cell method,* the neighbor lists used, that are the most
memory-consuming data structures of the program, are reallo-
cated at the same frequency as they are updated. This is an
important aspect allowing Tinker-HP to remain efficient on
small computer clusters and desktop stations as the list builder
will adapt to the situation.

Unfortunately, some data structures such as the arrays con-
taining the global parameters are allocated once and for all and
cannot be distributed. This is especially problematic for PFFs
such as AMOEBA, that require more parameters than the clas-
sical ones: replicating these arrays for each processor would be
prohibitive. This issue can be circumvented by using shared
memory segments that can be managed with MPI (3.X) directives.
This means that these data are allocated only once per node and
are accessible by every processor within the node, reducing thus
memory requirements by the number of processors of the node.

2.3 Adaptation of the 3D spatial decomposition to point
dipole polarizable force fields

In this section, we will explain how the global concepts of 3D
spatial decomposition can be adapted to the special case of the
computation of the polarization energy and forces in PFFs. To
our knowledge this is the first functional production imple-
mentation of such a technique in that context. Indeed, some of
us proposed recently a 1D spatial decomposition* imple-
mentation for AMOEBA. Here we propose a full extension to
a 3D spatial decomposition to benefit from further performance
enhancements. We will limit ourselves to the induced dipole
model that is used in AMOEBA and that is the one implemented
in Tinker-HP but the methodology is general and can be applied
to various types of point dipole models.

The computation of the polarization energy in PFFs using
the induced dipole formulation consists of two steps. First, a set
of 3N (N being the number of polarizable sites) induced dipoles
has to be computed by minimizing the functional

Epol = %uTTu —u'E,
where E is a 3N vector representing the electric field produced
by the permanent density of charge at the polarizable sites. This
is equivalent to solving the 3N x 3N linear system

Tu=E, (1)

where T is the polarization matrix. A detailed analysis of the
polarization matrix and of the iterative methods that can be
used to efficiently solve the linear system in eqn (1) can be
found in ref. 41. Tinker-HP relies on Krylov approaches such as
the Preconditioned Conjugate Gradient (PCG) and the Jacobi/
Direct Inversion of the Iterative Subspace (JI/DIIS) algorithms.
Their scalability and robustness have been discussed in
previous works.*>** Additionally, we recently introduced
a powerful non-iterative Krylov solver with analytical derivatives
named the Truncated Conjugate Gradient*>** (TCG). Such
a method has the same scalability as PCG but offers a reduced
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cost with conserved precision as it does not suffer from the
typical drift observed in polarizable MD scheme based on iter-
ative techniques. For all these iterative methods, the building
blocks are matrix-vector products and scalar products. Focusing
on the short-range, direct space part of the computation, each
matrix vector product (MVP) is analogous to a force computa-
tion (as described in the previous section). Indeed, each MVP is
analogous to computing a set of electric fields due to a set of
dipoles so that in the context of a parallel MD with 3D spatial
decomposition, communications of the “neighboring” dipoles
are mandatory before each matrix-vector product: this is
equivalent to the “position comm” step previously described.
Since Newton's third law is used, symmetrical communications
of some electric fields created by the local dipoles have to be
communicated after the matrix-vector product computation:
this is equivalent to the “forces comm” described above. The
scalar products require a global reduction and are naturally
distributed among the processors independently of the paral-
lelization strategy.

The computation of the induced dipoles by iterative methods
represents not only an important additional computational
cost, but also an important communication cost, as at each
iteration two of the three communication steps described in
Section 2 are required.

An essential part of our parallelization strategy is masking
communication by computation in the parallel solvers when-
ever possible. This is achieved by using non-blocking MPI
routines and by starting the receptions and the sendings of data
as soon as possible, and, at the same time, verifying that the
communications are finished as late as possible in the code, so
that computations are being made between these two states. A
schematic representation of a typical iteration of a polarization
solver is shown in Fig. 4.

3 Parallel algorithm for point dipoles
using smooth particle mesh Ewald

We present here new developments concerning the use of SPME
(Smooth Particle Mesh Ewald) using distributed multipole
electrostatics and polarizable point dipole models. Building on
our previous work*® where we proposed a 1D decomposition of
the distributed SPME grids, we now extend this formalism to
the use of 2D pencil decomposition. Such an approach offers
strongly improved performances especially when coupled to
efficient iterative and non-iterative Krylov polarization solvers.
In the previous section we focused the discussion on the par-
allelization strategy for short-range interactions. These include
the bonded and van der Waals interactions, as well as the short
range portion of the electrostatic and polarization interactions.
The long-range part of such interactions needs to be handled
separately, with a strategy that depends on the boundary
conditions used for the simulation. Two main strategies exist in
this regard: explicit solvent in periodic boundary conditions
(PBC) and implicit solvation models. In this section, we focus
on PBC. The additional possibility offered by Tinker-HP of
treating the boundary with a polarizable continuum solvation
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Meatrix-vector product
Scalar products

Update dipales

Check
convergence

if not
converged

if converged

Compute forces

Fig. 4 Schematic representation of an iteration of a polarization
solver.

model, namely, the Conductor-like Screening Model***
(COSMO), is presented in Section 6.

As we stated before, the method that we adopt for PBC is the
Smooth Particle-Mesh Ewald*” (SPME). It has become a stan-
dard algorithm in modern biomolecular simulations to
compute electrostatic interactions in periodic boundary condi-
tions, thanks to its advantageous ¢(N log N) scaling. The
method has been extended to PFFs*® as well as to multipolar
interactions,*® possibly including penetration effects.>

Let us explain the steps that are followed during a SPME
computation for the electrostatic potential produced by
distributed multipoles. The exact same considerations apply to
the computation of the electrostatic and polarization forces and
during a MVP computation during the iterative solution of the
polarization equations. The electrostatic interactions are
divided into two parts, one of which is short-range and is treated
in the direct space, while the other is long-range and is treated
in Fourier space. For the first, short-range part, the consider-
ation made in Section 2 apply: we focus here on the reciprocal
space computation. Such a computation requires the definition
of a 3D grid and the use of Fast Fourier Transforms, which
requires a significantly different parallelization strategy. The
most standard one uses a 1D or 2D decomposition of the 3D
grid and has been described elsewhere'>*® in detail. Let us
summarize its main steps and analyze the parallelization
strategy employed in Tinker-HP.

The SPME computation requires to distribute the multipoles
on the grid using a B-spline interpolation and then to solve
Poisson's equation in the reciprocal space. The distribution of
the 3D grid is therefore what drives the parallelization strategy.

This journal is © The Royal Society of Chemistry 2018
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In Tinker-HP, the grid is decomposed into 2D pencils, and each
pencil is assigned to a processor. The first step of SPME consists
into assigning charges or higher order multipoles to the grid-
points. As explained in our previous work,* this operation
requires local communications between processors assigned to
neighboring portions of the grid.

The second step consist into switching to Fourier space by
applying a forward FFT to the grid that has just been filled. In
Tinker-HP, this is entirely handled by the 2DECOMP&FFT
library.>>**

Then, the convolution with a pair potential”” is done in
Fourier space, which is a simple multiplication that is naturally
distributed among the processors without any necessary
communication.

Finally, the result of this multiplication is transformed back
to real space by applying a backward FFT, which is also taken
care of by 2DECOMP&FFT in Tinker-HP.

A final local set of communications between processors
responsible for neighboring portions of the grid is done, fol-
lowed by local multiplication with B-splines. A schematic
representation of these steps is shown in Fig. 5.

Naturally, because the Fourier space decomposition of the
grid may not fit exactly the 3D spatial decomposition, additional
communications of positions are required before starting the
reciprocal part of a SPME computation. Furthermore, when
electrostatic or polarization forces are computed in this way, or
after a matrix-vector multiplication in an iteration of a polari-
zation solver, communication of some of these forces or dipoles
are required.

Lagardere et al. showed® that the reciprocal part of SPME
presented just above does not scale as well as the direct part with
the number of processors, because of the relatively poor parallel
scaling of the FFTs. Furthermore, because reciprocal space and
direct space computations are independent and because recip-
rocal space is usually computationally cheaper, a usual strategy
is to assign a smaller group of processors to reciprocal space and
the rest to the direct space. This strategy can be used in Tinker-
HP for both permanent electrostatics and polarization.

In that case, a difficulty arises in PFF computations. The load
balancing between direct and reciprocal space computations is
in fact essential to achieve a good scalability. However, the
relative cost of direct and reciprocal computations is different
for permanent electrostatics and MVP required for the
computation of the induced dipoles. At this moment, only
heuristic strategies have been implemented in Tinker-HP to
handle this problem.

4 Software possibilities

Tinker-HP is part of the Tinker 8 package and consequently it is
fully compatible with the canonical Tinker and the Tinker-
OpenMM (GPU) codes. Therefore, all Tinker's analysis and
visualization tools are available with Tinker-HP. Details about
these possibilities are not described here and can be accessed
on the Tinker community website (http://tinkertools.org). The
Tinker-HP source code is freely available to the academic
community: details and downloading informations can be

This journal is © The Royal Society of Chemistry 2018
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(end their derivatives)

Fig.5 Schematic representation of the computation of the reciprocal
part of the electrostatic energy and forces with SPME.

found on the Tinker-HP website (http://www.ip2ct.upme.fr/
tinkerHP). In the following section, we detail the possibilities
of the code that will be contained in the incoming public
releases.

4.1 Polarizable molecular dynamics engine features

List builder. As we stated in the method section, Tinker-HP is
designed to be used on all types of CPU-based computer
systems ranging from desktop computer to supercomputers. To
do so, the package embodies a fast O(N) massively parallel list
builder that is designed for both an extensive use of a large
number of cores and to enable also an efficient treatment on
a small number of cores.

Polarization solvers. Massively parallel implementation of
various polarization Krylov solvers are present and includes
iterative methods such as PCG, JI/DIIS. Both approaches can be
used in connection with Kolafa$ Alway Stable Predictor (ASPC)*
that reduces significantly the iteration numbers for 1 fs and 2 fs
timesteps simulations (see ref. 43 for discussion). An efficient
non-iterative/fixed cost approach is also available: the Trun-
cated Conjugate Gradient (TCG). TCG is implemented at the
TCG1 and TCG2 levels with various refinements.*»** The TCG
approaches are a strong asset of Tinker-HP as they accurately
reproduce energy surfaces at a reduced computational cost and
provide analytical forces. Such an approach avoids numerical
drifts appearing with iterative methods and therefore brings
enhanced energy conservation for long simulations. It is also
fully time-reversible and compatible with the use of larger time-
steps.

It is important to point out that an important choice in the
Tinker-HP strategy is to keep accuracy to the maximum by
retaining a double-precision approach. By definition, GPUs
have the strong advantage of using mixed precision which has
been shown to produce more stability than simple precision
computations. The strategy here is to build on the availability of
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the double precision to use algorithms that should/could not be
used in mixed precision but are expected to be fully operational
and faster in our case. For example, any CG methods are
sensitive to precision (the symmetry of matrices being lost) as is
the case for predictor-correctors such as the ASPC. Tinker-HP
offers a full use of these strategies and compensates for the
extra computational cost of double precision by more depend-
able algorithms.

Integrators. Most of the integrators available in Tinker have
been implemented including, namely velocity Verlet, Beeman
and RESPA** which allows production MD simulations with 2 fs
time steps, and 3 fs timesteps using H mass repartitioning.

Simulation ensembles and associated tools. NVE, NVT and
NPT simulations are possible. Bussi and Berendsen thermostats
are available. NPT simulations are also implemented with
a Berendsen barostat.

Restraints and soft cores van der Waals. Position, distance,
angle, torsions and centroid based harmonic restraints as well
as softcore van der Waals and scaled electrostatics for free
energy calculations are available.

Geometry optimization. To prepare large systems encom-
passing millions of atoms through geometry optimization,
Tinker-HP offers a massively parallel version of Tinker's limited
memory BFGS quasi-newton nonlinear optimization routine
(LBFGS).

4.2 Available force fields

Advanced point dipole polarizable force fields. Tinker-HP
allows for electrostatics to range from point charges to fully
distributed multipoles (up to quadrupoles), point dipole
polarization approaches using distributed polarizabilities**
coupled to Thole (or dual Thole) damping approaches as well as
van der Waals interactions using the Lennard-Jones or the
Halgren functions. This choice was motivated as these func-
tional forms have been extensively used by various research
groups that could therefore easily use Tinker-HP with their own
parametrizations. Presently, two polarizable force field models,
both relying on the Thole/point dipole polarization model, are
available. The first model is the AMBER f99 polarizable model.
It is limited to point charges to compute the permanent elec-
trostatics and uses a 6-12 Lennard Jones for the van der
Waals.**** The second is the AMOEBA polarizable model which
has been shown to have a wide applicability for systems ranging
from liquids to metals ions, including heavy ones, in solution
and to proteins and to DNA/RNA.>*?%37°¢58 A major difference
compared to the AMBER model is the replacement of the fixed
partial charge model with polarizable distributed atomic
multipoles till quadrupoles moments, allowing accurate repro-
duction of molecular electrostatic potentials, and higher reso-
lution rendering of difficult directional effects in hydrogen
bonding and other interactions. van der Waals interactions are
also different and use the Halgren buffered 14-7 function.* The
AMOEBA polarizable model responds to changing or heteroge-
neous molecular environments and its parameterization was
performed against gas phase experimental data and high-level
quantum mechanical results. The AMOEBA model includes
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high accuracy water model as well as parametrization for
organic molecules, proteins,® ions and DNA/RNA complexes.
Classical force fields. By construction, the software is able to
perform classical force field simulations following the canon-
ical Tinker initial implementation of the AMBER, CHARMM
and OPLS potentials. Such force fields also benefit from the
speed up of the massively parallel framework but our objective
is to reach comparable performance to the AMBER and
CHARMM (Domdec®) CPU implementations. The detailed
analysis of such code capabilities being beyond the scope of this
paper, fully dedicated to polarizable models, and it will be
discussed elsewhere. However, it can be noted that classical MM
that requires much less work than PFFs allows for a 5-8 accel-
eration of the production per day over AMOEBA (depending on
the use of TCG vs. PCG solvers) on the same computational
platform, and will be used for hybrid simulations with PFFs
coupled to non-polarizable parts of the system. For higher
performances using Tinker, one could use the Tinker-OpenMM
access to the OpenMM library implementation of such classical
FF. For example, it is possible to produce 305 ns per day for
DHFR with the same GTX 1080 card (mixed precision) and
settings used in this work using the AMBER force field.

5 Benchmarks and applications using
the AMOEBA polarizable force field

The present implementation has been extensively tested and
reaches exactly the same accuracy as the canonical Tinker for
polarizable force field when considering analogous algorithms,
allowing Tinker-HP to produce reference computations. All the
proposed benchmarks use the AMOEBA force field. We tested
the performances of Tinker-HP on various systems. We studied
the scalability of the code dealing with homogeneous systems
such as bulk water, and inhomogeneous systems ranging from
ionic liquids to proteins. Finally we tested our approach on very
large biosystems.

5.1 Computer platforms

All tests have been performed on the Occigen machine at GENCI
(CINES, Montpellier, France) and at CYFRONET (Krakow,
Poland) on the Prometheus machine. Occigen is a Bullx DLC
with Intel Xeon E5-2690 v3 (24 Haswell cores at 2.6 GHz per
node) and Intel Xeon E5-2690 v4 (28 Broadwell cores at 2.6 GHz
per node), Infiniband FDR and 128 Go of memory per node.
Prometheus is a HP Apollo 8000 with Intel Xeon E5-2680 v3 (24
Haswell cores at 2.5 GHz per node), Infiniband and 128 Gb of
memory per node. For consistency, all results are given for
Haswell processors. We observed an average four per cent gain
in speed on the Broadwell configuration, especially for
a suboptimal number of cores, i.e. before the scaling limit.
Some timings have been obtained using Tinker-OpenMM on
GPU cards (NVIDIA GTX 970 and GTX 1080), the best GPU
results (GTX 1080) can be found in Table 3 below, the GTX 970
productions being roughly half of the GTX 1080 ones.
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5.2 Simulations setup

Benchmark simulations (except free energies) were made in the
NVT ensemble with a Verlet/RESPA multi-time step integrator
with either a 2 fs or a 3 fs time-step (using hydrogen mass re-
partitioning in the latter case) for the non-bonded forces and
half of this value for the bonded forces. Two Krylov solvers were
considered here: iterative PCG and non-iterative TPCG, both
using a diagonal preconditioner.*"** Note that we report here
the first results ever using TCG coupled to SPME. The conver-
gence criterion for the PCG iterative solver was set to 10> D.
Electrostatics and polarization interactions were treated using
the PME algorithm with a real space Ewald cutoff of 7.0 A. The
van der Waals cutoff was set 9.0 A without any long-range
correction.

5.3 Homogeneous systems: water boxes and ionic liquids

Water boxes. We first benchmarked the code on cubic water
boxes of increasing size: from 96 000 atoms up to 23.3 millions
atoms. Table 1 summarizes the characteristics of these boxes:
their size in Angstroms, the number of atoms they contain, the
size of the associated PME grid and the name with which they
will be referenced in the rest of the paper.

Fig. 6 show the detailed scalability up to almost 1 million
atoms.

A very good scalability is observed in the three cases. Table 3
displays the best production timings in ns per day. The code
appears to be competitive with the GPU numbers extracted from
Tinker-OpenMM even for a system such as the smallest water-
box test (Puddle, 96 000 atoms). In this case, Tinker-HP is
already 1.5 faster than a GTX 1080 card (3 times for a GTX 970)
but with double precision compared to mixed precision arith-
metics used by GPUS. As we will discuss later in the case of
proteins, the newly introduced 3D domain decomposition
algorithmic for polarizable FF becomes more beneficial when
the size of the system grows and a first advantage of Tinker-HP
is to be able to use the distributed memory system of the CPU
platform. Also for such large systems numerical instabilities of
the polarization solvers that result in energy drifts**** are a key
error that must be contained. Double precision is highly pref-
erable when one wants to use advanced conjugate gradient
solvers (and Krylov approaches in general). Tinker-HP has an
advantage as it affords mathematically robust solutions for
“drift-free” polarization solvers (Truncated Conjugate Gradient,
TCG***) with analytic forces. Such techniques allow for (very)
long simulations. A stable adaptation of these methods to
mixed precision hardware (i.e. GPUs) is underway but is math-
ematically non-trivial. Note that for short to medium simula-
tions of a few dozen ns, the discussion is without object as the

Table 1 Water boxes used for benchmark purposes
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drifting issue will remain negligeable offering a full applica-
bility of GPUs acceleration. However, towards and beyond the
microsecond, the analytical forces polarization solvers will be
key for stable polarizable simulations. For the other benchmark
cases, the speedup increases to a 5 and 6-fold over a GTX970 (2
and 3-fold over a GTX1080) for 288 000 atoms (Pond) and
864 000 atoms (Lake) water boxes respectively. For the Lake box,
a detailed analysis of the scaling against ideal scaling is
provided in ESI S2.7 We then pushed the code towards its limits
by testing very large systems including 7 776 000 and
23 300 000 atoms respectively. At these levels, GPUs have
memory limitations that makes such simulations impossible,
which is not the case with supercomputers relying on distrib-
uted memory. These “computational experiments” took place
on the Prometheus supercomputer (CYFRONET, Krakow,
Poland) and enabled us to test for the validity of the code on
a very large scale. Results show that Tinker-HP is still opera-
tional beyond 20 million atoms. Of course, the production really
slows down to a few dozen ps per day but the performance is
noticeable as it would be quite enough to compute properties
such as electrostatic potentials or even a short ns-scale molec-
ular dynamics. Thus, one can expect, depending on the
machine used, to produce a ns in a few weeks on the largest
Ocean water box using TCG2/RESPA (3 fs). It is worth noticing
that the largest computation was limited only by the computer
system availability and that presently larger systems are
potentially accessible with more computational resources.
However, such very large computations require a different setup
than the others due to memory limitations and communication
issues. Indeed, for such a large number of atoms, FFTs really
become severely time limiting and intra-node communications
strongly affect performances. One solution that was used for
Ocean was to only use a fraction of the cores of a node to take
advantage of the node memory without suffering from excessive
communications. That way, if the Ocean test ran on 12 288
cores on 512 nodes, we used only 6 cores/node (on 24) to
actually perform the computation. This gave us the possibility
to better use the bandwidth of the interconnect cards (by
reducing contention in MPI transfers between cores and cards),
a strategy that compensates for the lack of active cores and that
can be used for any system size. We used the same strategy to
a lower extent for Sea as 17 cores out of 24 were active. Overall,
a rough estimate for the fastest Broadwell CPU configuration
(Occigen) is that using a RESPA (3 fs)/TCG2 setup, a routine
production of 1 ns per day is reachable for a million atoms.
Such a value is a combination of various hardware setups that
are not only dependent on the CPU speed (and numbers), as the
interconnection cards have a strong influence on the final
results (Fig. 7).

System Puddle Pond Lake Sea Ocean
Number of atoms 96 000 288 000 8 640 000 7 776 000 23 328 000
Size (of an edge) in Angstroms 98.5 145 205.19 426.82 615.57
Size (of an edge) of the PME grid 120 144 250 432 648

This journal is © The Royal Society of Chemistry 2018
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Fig. 6 Performance gain for the [dmim*][cl™] ionic liquid system (A) and the Puddle (B), Pond (C) and Lake (D) water boxes.

Ionic liquids. Room temperature ionic liquids (ILs) are
molten salts at room temperature that are formed by the
combination of organic or inorganic cations with (generally)
inorganic anions. These compounds exhibit a wide variety of
useful properties that led to their use in numerous applica-
tions.®>*® The unusual properties observed in ILs arise from the
inter- and intra-molecular interactions of the constituent ions.
Thus, the computational simulations of these systems greatly
benefit from the use of highly accurate potentials. Recently
AMOEBA parameters for several ILs have been developed and
applied for various systems.®*®® It is known that polarization
effects result in better reproduction of transport properties.®">
In addition, ILs are viscous fluids and it is thus necessary to
perform relatively long MD simulations. Therefore, Tinker-HP is
an ideal platform for these systems given its HPC capabilities
and implementation of significantly more accurate and efficient
algorithms for the evaluation of the polarization component.
Indeed, ILs usually require a lot more iterations than standard
molecules with standard solvers such as JOR (Jacobi Over
Relaxation, see ref. 41), which is not the case with Krylov solvers
such as PCG or TCG, with which such systems have been tested.**

964 | Chem. Sci,, 2018, 9, 956-972

As a first example, simulations were performed for 1,3-dime-
thylimidazolium imidazolium/chloride ([dmim*][cl ]) for 200 ns
using the parameters reported by Starovoytov et al.*® The results
calculated with Tinker-HP are in very good agreement with the
previously reported results, with the added advantage that
Tinker-HP provides excellent scaling, with production runs for
a system of 216 ion pairs (in a cubic box of 35.275 A, a PME grid
of 48 x 48 x 48 and a 7 A real space cutoff) of more than 11.5 ns
per day on 240 cores. Therefore, Tinker-HP enables simulations
of IL systems in the hundreds of ns up to ps timescales.

5.4 Speeding up free-energy computations: assessing large
water box hydration free energies computations

The observed speed-up on water boxes led us to test the
performance AND the accuracy of free energy computations
using large water boxes to compare them to initial works using
AMOEBA and the canonical Tinker software. The hydration free
energies for water, benzene, K" and Na" were calculated by
summing up the free energies of three thermodynamic steps,
solute discharging in a vacuum, solute van der Waals coupling
with solvent, and solute recharging in solvent. For K" and Na',

This journal is © The Royal Society of Chemistry 2018
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since the standard state in simulation was 1 mol L™" and the
standard state in experiment was 1 atom, the free energy
difference between the two states of 1.87 kcal mol ' was added
to the final results. The softcore van der Waals potential was
used as in our latest work with Tinker. A total of 21 alchemical

This journal is © The Royal Society of Chemistry 2018

states were considered, and a 2 ns NVT simulation was per-
formed at each state. The RESPA (2 fs) integrator was employed
as the temperature was maintained at 298 K by the Bussi ther-
mostat. The vdW interaction was truncated at 12.0 A as SPME
used a real-space cutoff of 8.0 A and a 72 x 72 x 72 grid. The
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Bennet Acceptance Ratio (BAR)” method was used to extract the
free energies between states. In order to test the computation
efficiency, the solute molecule was immersed in a large cubic
simulation box of 6000 water molecules. The length of the box
was 56 A and 192 cores were used for each simulation with 48
dedicated cores for PME. This number of core is suboptimal but
already provides a very good speedup as all windows were
launched simultaneously on a total of 4032 cores, a computer
resource that is commonly accessible in modern computer
centers. Each total free energy evaluation took 18 hours to
complete using a PCG coupled to Kolafa's predictor-corrector
(ASPC) algorithm with a 107> convergence threshold. The
hydration free energies for water, benzene, sodium and potas-
sium are listed in the table of the ESI S1, together with results
from previous work. For all four solute molecules, there is
excellent agreement between Tinker-HP and previous simula-
tions using either BAR or OSRW (Orthogonal Space Random
Walk) method.” The values converge at 2 ns with a statistical
error of around 0.1 kecal mol~". The hydration free energies for
potassium obtained from Tinker-HP and the Tinker published
results are slightly different because the Tinker historical work
did not use the softcore van der Waals potential at that time, but
appears fully consistent with the present canonical Tinker
result. Overall, Tinker-HP appears reliable and very efficient for
the calculation of solvation free energies with huge gain in
terms of computation time. Of course, further tests on more
complex free energy computations are required to test all the
possible combinations of TCG and RESPA algorithms. If TCG2
is really accurate and fast, TCG1 is significantly faster but these
procedures have not been extensively tested yet and their eval-
uation concerning their applicability to free energy computa-
tions will be the subject of a larger study. In any case, TCG2
would lead to a computing time reduction of the same
computations to roughly 14.5 hours and TCG1 to 12.5 hours.
Such studies will benefit from the computational platform
introduced in Tinker-OpenMM that allows computing absolute
binding and relative alchemical approach as well as relative
binding affinities of ligands to the same host. As an immediate
other perspective, the OSRW results extracted from the canon-
ical Tinker are presented in the table. This approach leads to
very similar results to the BAR approach but requires up to 5
times less computer time. OSRW is currently under imple-
mentation in Tinker-HP. These results give an idea about the
new possibilities offered by massive parallelism for free ener-
gies evaluations: the discussed simulations that initially took
months are now possible within half a day and soon in a couple
of hours with OSRW within Tinker-HP.

5.5 From proteins to realistic biosystems

To study the scalability and applicability of the Tinker-HP
platform to complex non homogeneous systems, we tested
various systems starting from the “small” ubiquitin protein
(9737 atoms), and prototypic dihydrofolate reductase (dhfr,
23 558 atoms) which is the reference protein test case extracted
from the joint AMBER/CHARMM benchmark (http://
ambermd.org/amber10.bench1.html). We push the code
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towards the simulation of very large biosystems tackling the
COX-2 dimer, the Satellite Tobacco Mosaic Virus (STMV) and
the ribosome full structures in polarizable water. All timings are
obtained for equilibrated systems.

The characteristics of the inhomogeneous systems simula-
tions boxes used for benchmark are summed up in Table 2.

Small proteins: ubiquitin and DHFR. We started our study by
testing Tinker-HP on small proteins were 3D domain decom-
position is expected not be fully efficient (our water boxe study
started at 96 000 atoms, which is 4 times the size of DHFR and
10 times that of Ubiquitin). Surprisingly, results remain
competitive with GPUs which are fully taking advantage of their
computing power for such a range of systems with low memory
requirements. DHFR allows to study in depth the code behavior
in that system size range. Indeed, the best production time for
a use of all cores of a node brings us to a 7.69 ns per day using
TCG2. This production time is really close to the 8.29 ns per day
exhibited by Tinker-OpenMM on a GTX1080 (see Table 3). If we
used the same number of cores distributed on more nodes, to
use the same technique we used on the large ocean and sea
water boxes, the performance extends to 8.79 ns per day. These
numbers make Tinker-HP very competitive for these small
systems on a reasonable number of cores that is easily acces-
sible on modern supercomputers. In addition, one can note that
most of the recent machines use Broadwell Xeon that gives
slightly better performances by a few percents. In other words,
Tinker-HP is able to compensate for the computational burden
of the use of double precision thanks to its new algorithmics
compared to the accelerated mixed precision GPUs thus
reaching both speed and accuracy. A detailed analysis of the
DHEFR scaling against ideal scaling is provided in ESI S2.1 As
one could expect, the deviation to the ideal scaling is higher
than in the case of the previously larger Lake water box: larger
the system is, closer to the ideal scaling we get.

Larger systems: COX-2, STMV and ribosome solvated in
water. For larger systems, as it was shown for the water boxes,
the 3D domain decomposition speedup is taking full effect and
the distributed memory approach offers an access to systems
that were up to now restricted to classical non-polarizable force
fields implemented in HPC packages. The benchmarks of Table
3 show that the discussion is fully transferable to non-
homogeneous systems as realistic simulation times on
a reasonable number of cores are reachable for the COX-2,
STMV and ribosome systems allowing for meaningful simula-
tions. The table displays a test for the COX-2 dimer (part of the
Tinker benchmark suite, see https://dasher.wustl.edu/tinker/
distribution/bench/) for which 1.6 ns per day are possible on
2400 cores, a computer resource that is easily accessible in
supercomputer centers. If one wants to push the performances,
one ns simulation can be achieved in a little more than a day on
the STMV structure (taken from the NAMD website: http://
www.ks.uiuc.edu/Research/namd/) which is not accessible to
our GPU implementation due to memory requirements. Such
a result is really extremely promising, considering that STMV
encompasses more than a million atoms within the full virus
structure including its full genetic materials, the whole system
being fully solvated in water. Such simulations are indeed
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Table 2 Biosystems used for benchmark purposes
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Systems Ubiquitin Dhfr COX-2 STMV Ribosome
Number of atoms 9732 23 558 174 219 1066 228 3484 755
Size (of an edge) in Angstroms 54.99 x 41.91 x 41.91 62.23 120 223 327.1

Size (of an edge) of the PME grid 72 X 54 x 54 64 128 270 360

Table 3 Best production time (ns per day) for the different test systems (AMOEBA force field) using various methods. Number of atoms and
optimal number of cores are given for each systems. All timings are given for Intel Haswell processors. Reference canonical Tinker CPU times are
given for Open-MP computations using 8 cores. All computations were performed using a RESPA (2 fs) integrator if not specified otherwise.
ASPC = Always Stable Predictor Corrector.>®* N.A. = Non Applicable due to memory limitations. GPU production times were obtained using the
Tinker-OpenMM software®** (CUDA 7.5), the JI/DIIS solver and a GTX 1080 NVIDIA card

Systems Ubiquitin DHFR COX-2 STMV Ribosome
Number of atoms 9737 23 558 174 219 1 066 628 3484 755
Tinker-HP number of CPU cores 480 680(960) 2400 10 800 10 800
PCG (10° D, ASPC) 8.4 6.3(7.2) 1.6 0.45 0.18
TPCG2 10.42 7.81(8.93) 1.98 0.56 0.22
TPCG2/RESPA (3 fs) 15.62 11.71(13.39) 2.98 0.84 0.34

CPU OPEN-MP 0.43 0.21 0.024 0.0007 N.A.

GPU (GTX 1080) 10.97 7.85 1.15 N.A. N.A.
Systems (water boxes) Puddle Pond Lake Sea Ocean
Number of atoms 96 000 288 000 864 000 7 776 000 23.3 x 10°
Tinker-HP number of CPU cores 1440 2400 7200 7104 12 288
PCG (10~° D, ASPC) 2.54 1.3 0.52 0.062 0.0077
TPCG2 3.10 1.59 0.63 0.076 0.01
TPCG2/RESPA (3 fs) 4.65 2.38 0.95 0.11 0.014
CPU OPEN-MP 0.050 0.014 0.003 N.A. N.A.

GPU (GTX 1080) 2.06 0.80 0.21 N.A. N.A.

relatively recent even for classical force fields as the Schulten
group only produced the first studies 10 years ago.” The present
extension of the simulation capabilities to advanced multipolar
polarizable force fields opens new routes to the understanding
of complex biosystems. Indeed, as we have seen, Tinker-HP is
able to go far beyond the million atom scale and studies on the
ribosome become possible following early studies (see ref. 76
and references therein). We built a model for benchmark
purposes for the 70 s ribosome from Thermus thermophilus
containing nearly 5000 nucleotides and over 20 proteins, with
over 4100 sodium ions to neutralize the nucleic acid, and about
a million water molecules for a total of 3 484 755 atoms. Pres-
ently, three days are necessary to produce a ns allowing for
a very detailed study of such an important structure. We expect
even free energy studies to be feasible. Various incoming
studies will analyze more in-depth the use of PFFs to such
mostly important biosystems.

6 Beyond classical MD simulations in
periodic boundary conditions
So far, we have presented the capabilities of Tinker HP in the

context of PBC classical molecular dynamics simulations. We

have discussed the parallelization strategy and showed

This journal is © The Royal Society of Chemistry 2018

benchmark results that demonstrate the scalability and perfor-
mances of the code. While Tinker-HP is mainly a molecular
dynamics code, it is not limited to PBC classical simulations and
can be used for different applications. In particular, Tinker-HP
offers the possibility of performing non-periodic MD simula-
tion with a polarizable force field such as AMOEBA using
a polarizable continuum solvation model as a boundary. This
possibility is not our main choice for MD simulation and, as
a consequence, has not been as thoroughly optimized as the PBC
code. Furthermore, it involves a few computational steps that
scale quadratically with respect to the size of the system, making
it not suitable for the very large systems presented in Section 5.
However, the possibility of computing the energy and forces with
non-periodic boundary conditions and with a continuum
boundary opens the way for using Tinker-HP as a module to
handle the classical part in a polarizable QM/MM(/continuum)
calculations,””®*" including the computation of molecular prop-
erties and ab initio multiscale QM/MM MD simulations. These
calculations are usually dominated in computational cost by the
QM part, making the quadratic scaling of the classical part
a minor issue. Nevertheless, the scalability of Tinker-HP paves
the way to large-scale polarizable multiscale simulations.

In this section, we will describe the non-periodic code in
Tinker-HP, based on the recently proposed ddCOSMO,*>*¢:8%83
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a domain decomposition (dd) discretization of the conductor-
like screening model.** We will then discuss two complemen-
tary QM/MM strategies that can be used to couple Tinker-HP to
a quantum-mechanical code.

6.1 Implicit solvent: ddCOSMO

Continuum solvation models®**** (CSM) are a well-established
technology in both quantum chemistry and MD. The CSM
developed for MD are usually based on the Generalized Born
(GB) Ansatz, or its multipolar generalization, which approximate
the solution to the electrostatics equations in the presence of
a continuum with an additive energy term. Methods developed
in quantum chemistry rely, on the other hand, on a rigorous
numerical solution of Poisson's equation. Such models are
much more expensive than the GB counterpart; however, since
these models have been developed for quantum mechanical
calculations, and therefore for up to medium-sized systems,
their computational cost is not a real limitation in QM calcula-
tions. Nevertheless, it has always prevented their application to
MD simulations. The use of a polarizable CSM is of particular
interest when a PFF is used due to the natural consistency
between the two approaches. Recently, a new discretization to
COSMO has been proposed. Such a new discretization, named
ddCOSMO, has been developed when the molecular cavity is
made of interlocking spheres (i.e., van der Waals cavity) and has
been extensively described elsewhere.*® The dd approach offers
huge advantages since the matrix to be inverted to solve the
model at each time step is highly sparse: as a consequence, the
model scales naturally linearly with the size of the system and
the iterative solution to the ddCOSMO equations is perfectly
suited for a parallel implementation in which the spheres that
constitute the cavity are distributed among cores.

The parallelization strategy adopted for the ddCOSMO
implementation follows the spatial decomposition logic dis-
cussed in Section 2. Again, we divide the space occupied by the
system into blocks and assign a block to each CPU. The CPU is
then responsible for updating the positions, speeds and accel-
erations of the atoms belonging to it block. However, there are
two important differences compared to the spatial decomposi-
tion discussed for short-range interactions. First, the space
occupied by the solute is not a cube or a regular geometrical
configuration but rather a cavity whose shape depends on the
configuration of the solute. Second, the cavity is not fixed
during the simulation as it evolves with the solute.

To address the first issue, we define the blocks by enclosing
the solute in the smallest parallelepiped containing it and we
divide this parallelepiped into smaller ones. This strategy
presents the advantage of allowing us to reuse the whole
machinery that has been described in Section 2. However, such
a strategy can imply potential load balancing issues that require
to be addressed, especially when a high number of processors is
used. Again, an iterative procedure has been implemented to
determine the optimal sizes of the sub-domains.

To solve the second issue, one should in principle recompute
the enclosing parallelepiped at each time step. To avoid the cost
of performing such an operation, we build a slightly larger
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parallelepiped and recompute its geometry only once every few
MD steps (n = 20 for example).

In Tinker-HP, the solution to the ddCOSMO linear equations
is computed by using the JI/DIIS iterative solver also used for
the polarization eqn (1). The iterative procedure requires to
compute MVP with the sparse ddCOSMO matrix, which can be
done both very efficiently and involving only local communi-
cations. However, the right-hand side of the ddCOSMO equa-
tions depends on the electrostatic potential created by the
solute's permanent and induced multipoles. In the current
implementation, the potential is computed via a double loop,
which implies a ¢(N?) computational cost. Furthermore, an
“all to all” communication of the positions of the system is
required prior to this computation.

Thus, the computational bottleneck in terms of both
computational complexity and parallel efficiency lies in the
computation of the right-hand side. If AMOEBA/ddCOSMO MD
simulations have been shown to be possible,* this kind of
boundary is not competitive with SPME in term of pure polar-
izable MD production. However, as we stated at the beginning
of this section, the advantage of the ddCOSMO implementation
is to provide a boundary condition for multiscale simulations.
In particular, having non-periodic boundary conditions is ideal
when working with localized basis functions in QM
computations.

Detailed benchmark results of the current parallel imple-
mentation are presented in ESI S3.7

6.2 Multiscale modeling and polarizable QM/MM

The PFF/ddCOSMO framework described in this section is
a starting point for multiscale, polarizable QM/MM simula-
tions. This is a fundamental direction for Tinker-HP as PFFs
such as AMOEBA provide a high-quality embedding strategy for
QM systems with various potential applications. For instance,
in a recent publication, some of us showed how a DFT-based
QM/AMOEBA description is able to model electronic excita-
tions in aqueous solution® for systems that interact in a specific
and structured way with the environment. An ab initio QM/MM
MD strategy has also been recently proposed.®*

The present QM/MM possibilities of Tinker-HP follow two
complementary strategies. Tinker-HP can be used as an external
embedding tool, or can be directly coupled to a QM code in
order to obtain a fully self-consistent polarizable QM/MM
implementation.

The first strategy is the one followed in LICHEM?” (Layered
Interacting CHEmical Model), that provides a QM/MM interface
with unmodified quantum chemistry software suites such as
Gaussian,® PSI4,* and NWChem® to perform QM/MM calcu-
lations using the AMOEBA force field. This is done by approxi-
mating AMOEBA's multipolar distribution, with a set of point
charges,® which can then be read by the QM code. This choice
is motivated by the idea of developing an interface with existing
QM codes with non-native multipolar QM/MM capabilities.
LICHEM extracts forces and energies from unmodified QM
packages to perform a variety of calculations for non-bonded
and bonded QM/MM systems, the latter by using the
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pseudobond formalism explicitly extended for QM/MM with
PFFs.”?>°' The calculations available in LICHEM include
geometry and reaction path optimizations, single-point energy
calculations, Monte Carlo, PIMD, etc.

Currently, the polarization component for the QM/MM
interaction term in LICHEM is not fully self-consistent due to
the use of unmodified QM codes. This is because only the field
from the permanent multipoles from the MM subsystem is
included in the effective Hamiltonian for the polarization
component of the QM/MM interaction. However, as has been
shown previously, this approximation, coupled with the fact
that the QM and MM subsystem polarization is fully considered
results into the recovery of over 80% of the total QM/MM self-
consistent polarization.””>

For the computation of electronic properties and full hybrid
MD simulations, a second QM/MM approach can be pursued.
This approach proposes a fully self-consistent treatment of the
electronic density and the MM polarization and requires
a modification of the QM self-consistent field routines. A QM/
AMOEBA implementation that couples Tinker-HP to a locally
modified version of the Gaussian suite of programs® has been
recently introduced.®”® Such a strategy enables to use a DFT/
AMOEBA based polarizable QM/MM strategy to compute the
energy and response properties of an embedded system, as well
as to perform Born-Oppenheimer (BO) hybrid QM/MM MD.
The latter is accelerated through the use of an extended BO
Lagrangian approach (XL-BO),” which provides enhanced
guess for the electronic density at every time step and allows for
a stable hybrid MD with enhanced energy conservation.

In short, Tinker-HP offers additional advanced QM/MM
functionalities with polarizable force fields. The continuous
investigation efforts in our groups have the objective to bring
sampling capabilities in a multiscale polarizable environment
dedicated to electronic structure as sampling has been shown to
be a key issue for predictive studies.*

7 Conclusion and perspectives

Our results demonstrate that molecular dynamics simulations
with advanced point dipole polarizable force fields using
distributed multipoles should no longer be qualified as slow
anymore. The Tinker-HP software offers an efficient environ-
ment that enables one to perform large scale relatively long MD
simulations on various complex systems encompassing several
million atoms thanks to the new extension of 3D spatial
decomposition to polarizable models coupled to advanced
Krylov polarization solvers. It is able to ensure accuracy and
speed as it exploits double precision, thanks to its new algo-
rithmics able to circumvent the computational burden
providing both additional speedups and mathematical robust-
ness. For small systems, Tinker-HP is competitive with the
present GPU implementation of Tinker (Tinker-OpenMM)
whereas strong gains are observed for medium systems
offering several thousand-fold acceleration compared to single
core computations. For large systems, Tinker-HP remains the
only operational Tinker code as it is able to efficiently distribute
memory among nodes. We believe that this new tool will be of
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interest for the community of modelers, who will be able to
perform meaningful simulations to test the applicability and
discuss advantages of polarizable potentials. Of course, such
developments will first find an echo in the field of chemistry
where extreme accuracy matters, for example using embeddings
of QM methods by PFFS that are beneficial to compute prop-
erties and where double precision is mandatory. For biophysics,
where extreme sampling is required, the full application of PFFs
remains a daunting task as present AMOEBA simulations,
despite the discussed acceleration on large systems, still require
weeks of computation. However, a few microseconds simula-
tions are now technically possible and some applications such
as free energy computations are completely accessible. In some
way, PFFs are now able to produce simulations that classical
force fields were able to generate a few years ago on similar
platforms. The one-order of magnitude difference in speed of
PFFs compared to classical FFs (when one considers the same
computational platform, i.e. CPU or GPU), will remain due to
the lower functional form complexity of the latter. However, the
acceleration gains observed in optimal timings for codes like
AMBER, NAMD, GROMACS or equivalent, are all obtained using
GPU accelerators and through many years of optimization. Still,
an important point to evaluate the future of PFF simulations is
the fact that we have been really conservative in our present
discussed benchmarks and optimization is only starting. Issues
of precision, cutoffs, convergence criteria and vectorization will
be addressed and will generate strongly improved perfor-
mances. Note that the Tinker-HP methodology is not limited to
CPUs. Indeed, the Tinker-HP FORTRAN legacy code will benefit
from GPU acceleration as FORTRAN portability strategies exist
and are under investigation (Hybrid-Fortran® and OpenACC®).
For CPUs, we also expect strong performance gains on new
generation “big core” Xeon (Skylake and successors) and “small
core” Xeon-Phi (Knight Landings) processors thanks to vecto-
rization efforts exploiting AVX512 instructions without sacri-
ficing double precision. Finally, Tinker-HP will be synchronized
with Tinker-OpenMM?** opening our developments to the
OpenMM community. Various method developments, already
present in the Tinker community, will be integrated in the next
version of the code, keeping in mind the mandatory philosophy
to include only well-understood and scalable techniques. The
high-performance implementation of additional multipolar
polarizable force fields will be performed including the SIBFA*®
(in progress), MPID** (multipole and induced dipoles, the
mapping of the CHARMM Drude polarizable force field on
induced dipoles) and AMOEBA 2 models. Efforts will also be
devoted to the porting of the third generation GEM (Gaussian
Electrostatic Model) polarizable force field that relies on frozen
distributed densities.*®*”*® The present technology will be
complemented by massively parallel Monte-Carlo approaches,
Langevin, constant-pH and various types of accelerated molec-
ular dynamics. Advanced sampling techniques such as OSRW”™*
and replica exchange will be added. Concerning multiscale QM/
MM simulations, studies towards coupling with linear scaling
QM approaches will be pursued to continue to speed up hybrid
MD simulations.
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