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Abstract

Legacy telephony terminals and infrastructure typically operate with bandwidths
of 0.3-3.4kHz. At such narrow bandwidths, speech quality and intelligibility can
be poor, especially for consonant sounds. Today’s terminals and infrastructure, in
contrast, operate at wider bandwidths for which speech quality and intelligibility
is greatly improved. Naturally, though, the complete transition from narrowband
to wideband (0.05-7kHz) and super-wideband (0.05-14kHz) communications will
require considerable time. As a result, wide and super-wideband technology must
interoperate with narrowband technology. In this case, users will experience
substantial variations in speech quality and intelligibility. Artificial bandwidth
extension (ABE) algorithms have been developed to improve speech quality and
intelligibility in situations where wideband (or super-wideband) capable technology
is used alongside narrowband (or wideband) terminals or infrastructure. ABE
involves the automatic estimation of missing higher frequency components from
available lower frequency components.

Most ABE algorithms exploit contextual information or memory captured via
the use of static or dynamic features extracted from neighbouring speech frames.
The use of memory leads to higher dimensional features and increased computational
complexity. When information from look-ahead frames is also utilised, then latency
also increases. Past work points toward the benefit to ABE of exploiting memory
in the form of dynamic features with a standard regression model. Even so,
the literature is missing a quantitative analysis of the relative benefit of explicit
memory inclusion. The research presented in this thesis assesses the degree to
which explicit memory is of benefit and furthermore reports a number of different
techniques that allow for its inclusion without significant increases to latency
and computational complexity. Benefits are shown through both a quantitative
analysis with an information-theoretic measure and subjective listening tests. Key
contributions relate to the preservation of computational efficiency through the
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use of dimensionality reduction in the form of principal component analysis, semi-
supervised stacked autoencoders and conditional variational auto-encoders. The
two latter techniques optimise dimensionality reduction to deliver superior ABE
performance.

The potential gain in speech quality when extending from wide to superwide
band speech is much less than when extending from narrow to wideband speech.
In this case, increases to computational complexity can be difficult to justify.
The final key contributions reported in this thesis involve the development of an
especially efficient approach to super-wideband ABE based on linear prediction
analysis-synthesis which avoids the statistical estimation of missing higher frequency
components. In addition to computational efficiency, the solution delivers speech of
superior quality to wideband speech signals processed with an adaptive-multirate
wideband codec.

ii



Contents
Abstract i

List of Abbreviations ix

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Evolution of communication systems . . . . . . . . . . . . . . . . . 2

1.1.1 Analog and digital telephony . . . . . . . . . . . . . . . . . . 2
1.1.2 Wireless cellular networks . . . . . . . . . . . . . . . . . . . 3

1.2 Speech production . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Spectral characteristics of speech sounds . . . . . . . . . . . 8
1.2.3 Effect of bandwidth on speech quality and intelligibility . . . 9

1.3 Speech coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Narrowband coding . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Wideband coding . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Super-wideband or full band coding . . . . . . . . . . . . . . 15

1.4 Artificial bandwidth extension . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Non-blind methods . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Blind methods . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Motivation and applications . . . . . . . . . . . . . . . . . . 19

1.5 Super-wide bandwidth extension . . . . . . . . . . . . . . . . . . . . 23
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Literature survey 31
2.1 Non-model based ABE approaches . . . . . . . . . . . . . . . . . . 31

iii



Contents

2.2 ABE approaches based on source-filter model . . . . . . . . . . . . 32
2.2.1 Extension of spectral envelope . . . . . . . . . . . . . . . . . 32
2.2.2 Extension of excitation . . . . . . . . . . . . . . . . . . . . . 37

2.3 ABE approaches based on direct modelling of spectra . . . . . . . . 39
2.4 End-to-end approaches to ABE . . . . . . . . . . . . . . . . . . . . 40
2.5 ABE with modified loss functions . . . . . . . . . . . . . . . . . . . 41
2.6 Feature selection and memory inclusion for ABE . . . . . . . . . . . 42

2.6.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.2 Memory inclusion . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Evaluation of speech quality . . . . . . . . . . . . . . . . . . . . . . 44
2.7.1 Assessement of different ABE algorithms . . . . . . . . . . . 47

2.8 Approaches to super-wide bandwidth extension (SWBE) . . . . . . 49
2.8.1 SWBE for audio signals (speech and music) . . . . . . . . . 49
2.8.2 SWBE for speech only . . . . . . . . . . . . . . . . . . . . . 50

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Baseline, databases and metrics 53
3.1 ABE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 Resynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.1 TIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 TSP speech database . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 CMU-Arctic database . . . . . . . . . . . . . . . . . . . . . 64
3.2.4 3GPP database . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Data pre-processing and distribution . . . . . . . . . . . . . . . . . 65
3.3.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Training, validation and test data . . . . . . . . . . . . . . . 66

3.4 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Subjective assessment . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Objective assessment metrics . . . . . . . . . . . . . . . . . 67
3.4.3 Mutual information assessment . . . . . . . . . . . . . . . . 69

4 ABE with explicit memory inclusion 71
4.1 Memory inclusion for ABE . . . . . . . . . . . . . . . . . . . . . . . 72

iv



Contents

4.2 Brief overview of memory inclusion for ABE via delta features: Past
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Memory inclusion scenarios . . . . . . . . . . . . . . . . . . 73
4.2.2 Highband certainty . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Analysis and results . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Assessing the benefit of explicit memory to ABE . . . . . . . . . . . 77
4.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Need for dimensionality reduction . . . . . . . . . . . . . . . 82

4.4 ABE with explicit memory inclusion . . . . . . . . . . . . . . . . . 84
4.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 Resynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Experimental setup and results . . . . . . . . . . . . . . . . . . . . 85
4.5.1 Implementation details and baseline . . . . . . . . . . . . . . 86
4.5.2 Objective assessment . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3 Subjective assessment . . . . . . . . . . . . . . . . . . . . . . 88
4.5.4 Mutual information assessment . . . . . . . . . . . . . . . . 88
4.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 ABE with memory inclusion using semi-supervised stacked auto-
encoders 93
5.1 Unsupervised dimensionality reduction . . . . . . . . . . . . . . . . 94

5.1.1 Principal component analysis . . . . . . . . . . . . . . . . . 94
5.1.2 Stacked auto-encoders . . . . . . . . . . . . . . . . . . . . . 95

5.2 ABE using semi-supervised stacked auto-encoders . . . . . . . . . . 99
5.2.1 Semi-supervised stacked auto-encoders . . . . . . . . . . . . 100
5.2.2 Application to ABE . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.1 SSAE training, configuration and optimisation . . . . . . . . 102
5.3.2 Databases and metrics . . . . . . . . . . . . . . . . . . . . . 104

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 Speech quality assessment . . . . . . . . . . . . . . . . . . . 105
5.4.2 Mutual information assessment . . . . . . . . . . . . . . . . 107

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

v



Contents

6 Latent representation learning for ABE 109
6.1 Variational auto-encoders . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Variational lower bound . . . . . . . . . . . . . . . . . . . . 111
6.1.2 Reparameterisation trick . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Relation to conventional auto-encoders . . . . . . . . . . . . 113
6.1.4 VAEs for real valued Gaussian data . . . . . . . . . . . . . . 114

6.2 Conditional variational auto-encoders . . . . . . . . . . . . . . . . . 115
6.3 Application to ABE . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 Extracting latent representations . . . . . . . . . . . . . . . 119
6.3.3 Direct estimation using CVAE-DNN . . . . . . . . . . . . . 122

6.4 Experimental setup and results . . . . . . . . . . . . . . . . . . . . 122
6.4.1 CVAE configuration and training . . . . . . . . . . . . . . . 123
6.4.2 Analysis of weighting factor α . . . . . . . . . . . . . . . . . 124
6.4.3 Objective assessment . . . . . . . . . . . . . . . . . . . . . . 126
6.4.4 Subjective assessment . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Super-wide bandwidth extension 131
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Past work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3 Super-wide bandwidth extension (SWBE) . . . . . . . . . . . . . . 133

7.3.1 High frequency component estimation . . . . . . . . . . . . . 134
7.3.2 Low frequency component upsampling . . . . . . . . . . . . 134
7.3.3 Resynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4 Spectral envelope extension . . . . . . . . . . . . . . . . . . . . . . 135
7.4.1 Effect of sampling frequency . . . . . . . . . . . . . . . . . . 135
7.4.2 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Experimental setup and results . . . . . . . . . . . . . . . . . . . . 139
7.5.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . 140
7.5.3 Assessment and baseline algorithm . . . . . . . . . . . . . . 141
7.5.4 Objective assessment . . . . . . . . . . . . . . . . . . . . . . 142
7.5.5 Subjective assessment . . . . . . . . . . . . . . . . . . . . . . 143
7.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vi



Contents

8 Conclusions and future directions 147
8.1 Contributions and conclusions . . . . . . . . . . . . . . . . . . . . . 147
8.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 151

vii





List of Abbreviations

1G 1st generation

2G 2nd generation

3G 3rd generation

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

4G 4th generation

ABE artificial bandwidth extension

ACELP algebraic code-excited linear prediction

ACR absolute category rating

ADPCM adaptive differential pulse code modulation

AE auto-encoder

AM amplitude modulation

AMPS Advanced Mobile Telephone System

AMR adaptive multi-rate

AMR-WB adaptive multi-rate wideband

ASR automatic speech recognition

CCITT International Telegraph and Telephone Consultative Committee

CCR comparison category rating

ix



List of Abbreviations

CDMA code division multiple access

CELP code-excited linear prediction

CGM conditional generative model

CI confidence interval

CMOS comparison mean opinion score

CS-ACELP conjugate-structure algebraic code-excited linear prediction

CVAE conditional variational auto-encoder

DCR degradation category rating

DFT discrete Fourier transform

DNN deep neural network

EFR enhanced full rate

ELBO evidence lower bound

ETSI European Telecommunications Standards Institute

EVS Enhanced voice services

FDMA Frequency Division Multiple Access

FFT fast Fourier transform

FM frequency modulation

FT Fourier transform

GMM Gaussian mixture model

GMMR Gaussian mixture model regression

GPU graphics processing unit

GSM Global System for Mobile

HB highband

HD high definition

x



List of Abbreviations

HF high frequency

HMM hidden Markov model

HPF highpass filter

IMT-2000 international mobile telecommunications-2000

IRS intermediate reference system

ISDN integrated services digital network

ITU International Telecommunication Union

ITU-T Telecommunication Standardization Sector of the International

Telecommunication Union

kbps kilobits per second

KLT Karhunen–Loève transform

LDA linear discriminant analysis

LF low frequency

logMFE log-Mel filter energy

LP linear prediction

LPC linear predictive coding

LPF lowpass filter

LPS log power spectrum

LSD logarithmic spectral distortion

LSF line spectral frequency

MAP maximum a posteriori

MDCT modified discrete cosine transform

MFB Mel filterbank

MFCC mel-frequency cepstral coefficients

xi



List of Abbreviations

MI mutual information

ML maximum likelihood

MMSE minimum mean square error

MOS mean opinion score

MSIN mobile station input

MVN mean and variance normalisation

NB narrowband

NMT Nordic Mobile Telephone (NMT)

OLA overlap and add

PCA principal component analysis

PCM pulse code modulation

PDF probability density function

PESQ perceptual evaluation of speech quality

PGM probabilistic graphical model

PS power spectrum

PSTN public switched telephone network

RE reconstruction error

RMS root-mean-square

RPCA robust principal component analysis

RPE-LTP regular pulse excitation with long-term prediction (codec)

SAE stacked auto-encoder

SGD stochastic gradient descent

SGVB stochastic gradient variational Bayes (SGVB)

SLP selective linear prediction

xii



List of Abbreviations

SNR signal-to-noise ratio

SSAE semi-supervised stacked auto-encoder

SWB super-wideband

SWBE superwide bandwidth extension

UMTS Universal Mobile Telecommunication System

VAE variational auto-encoder

VoIP voice over Internet Protocol

VQ vector quantisation

WB wideband

xiii





List of Figures

1.1 An evolution of mobile handsets with advancements in the cellular
communication systems reproduced from [9]. . . . . . . . . . . . . . 4

1.2 Model of human speech production mechanism (adapted from [10]). 6

1.3 An illustration of phone calls at different bandwidths at receiving mo-
bile terminal (adapted from [60]). A NB far-end terminal transmits
a NB signal through a NB network and the near-end-user receives
(a) NB speech through a NB terminal, (b) artificially bandwidth-
extended speech through a NB terminal (with ABE), (c) artificially
bandwidth-extended speech through a WB terminal (with ABE). A
WB far-end terminal transmits speech in NB if either the network
is NB or the receiver is a NB terminal; the user then receives (d)
artificially bandwidth-extended speech if the terminal includes ABE.
WB transmission is achieved only when (e) both the terminals and
the network support WB. . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Outline of the thesis and connections among various chapters. . . . 28

3.1 A block diagram of the baseline ABE system. A modified version of
the ABE system presented in [78]. sNB

t denotes a NB speech frame
at a sampling rate of 16kHz. . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Illustration of concatenation of lowband (LB), narrowband (NB)
and estimated highband (HB) power spectra to obtain the estimated
wideband (WB) power spectrum PWB

t (k) calculated according to
Eq. 3.10 for 1024-point FFT. . . . . . . . . . . . . . . . . . . . . . . 58

xv



List of Figures

3.3 Illustration of excitation extension via spectral translation with mod-
ulation frequency fm = 6.8kHz. Plot (a) represents the magnitude
spectrum |ÛNB
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Chapter 1

Introduction

The quality of speech offered by communication systems is highly dependent on
the bandwidth of speech signals. Due to the bandwidth limitations imposed by
communication systems, speech signals often lack higher frequency content and
thus suffer from limited quality and intelligibility. Artificial bandwidth extension
(ABE) algorithms have thus been developed to improve the quality of speech signals
by artificially estimating the missing frequency components. Higher bandwidths
lead to better, more comfortable conversations due to increased speech quality and
intelligibility.

This thesis concerns the research topic of ABE for speech signals and its
applications. This chapter provides an introduction to the topic. Section 1.1
provides a brief history on the evolution of telephony systems from analog to
digital and from wired to wireless modes of communication. The speech production
mechanism and physiology is discussed in Section 1.2 and describes different
speech sounds and their spectral characteristics. The effect of bandwidth on
speech quality and intelligibility is also explained. In Section 1.3 different types
of speech coding methods (or codecs) based on their operational bandwidths are
explained. Section 1.4 then introduces narrowband-to-widebandwith extension
and its applications. Wideband-to-super-wide bandwidth extension is explained in
Section 1.5. Sections 1.6 and 1.7 present contributions and an outline of this thesis
respectively.

1



Chapter 1. Introduction

1.1 Evolution of communication systems
This section presents a brief overview of the evolution of communication systems
from analog to digital and from wired to wireless modes of communication.

1.1.1 Analog and digital telephony

The transmission of the very first sentence “Mr. Watson, come here, I want to see
you,” uttered by Graham Bell over an electric telephone in 1876 laid the foundation
for enormous progress in communication systems [1]. This led to the installation of
over 3000 telephones and the first public telephone exchange in the US by 1878 [2].
Different operators started providing telephone services, however, subscribers to
different services could not communicate with each other. American Telephone and
Telegraph (AT&T) started providing an universal service and an unified telephone
network to subscribers, allowing them to make long-distance telephone calls by
the 1950s [3, Section 1.2.4]. By then, the telephone networks, referred to as public
switched telephone networks (PSTNs)1, were still analog utilizing frequency division
multiplexing (FDM). The speech signals, limited to a frequency range of 0.3-3.4Hz
referred to as narrowband (NB), were transmitted over different frequency channels
with a frequency separation of 4kHz. The narrowband limitation of transmission
comes from the characteristics of the transducers and hardware (such as copper
lines) employed in PSTNs2.

A demonstration of wireless the transmission of Morse code signals by Guglielmo
Marconi in 1895 started parallel developments of radio communications. The first
wireless voice transmission in 1915 signaled a start to the convergence of radio
and telephony [3, Section 1.2.3]. In 1937, Alex Reeves conceived the idea of pulse
code modulation (PCM) based on the time-division multiplexing principle [5].
The development of PCM marked the first step towards digitization for voice
communications. Due to the invention of transistors, the commercial use of PCM
was possible only in the late 1950s [6] when the era of digital transmission of
speech over telephone networks started. In accordance with the then existing

1Also known as plain old telephone services (POTSs).
2The lower limit, i.e., 300Hz was chosen to decrease susceptibility to interference caused by

AC electric power lines. The analysis presented in [4] showed that a bandwidth of 3 or 3.1kHz
provided good quality both in terms of articulation and naturalness. The suggested bandwidth
was a economical choice to achieve desired transmission quality and thus the upper limit of the
telephone band was set 3.4kHz.
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1.1. Evolution of communication systems

PSTNs, PCM adopted the typical bandwidth of 0.3-3.4kHz3 for communication
and therefore, for many years, subscribers were offered only NB communication
services.

1.1.2 Wireless cellular networks

After Marconi’s successful attempt at wireless transmission, engineers and scientists
started research on developing efficient means of communications using radio
frequency (RF)/radio waves. The idea of cellular telephone systems started to be
explored in the 1970s. The concept involved the division of a geographical area
into adjacent, non-overlapping, hexagonal-shaped cells [3, Section 1.2.6]. In this
scheme, all mobile units in a given cell could communicate via a transmitter and a
receiver dedicated to each cell (referred to as the base station); communication (or
handoff) between the units crossing cell boundaries was coordinated via a mobile
switching station. The first generation (1G) wireless mobile phone system was
developed by Martin Cooper at Motorola in 1973 but not commercialised until
1984. Wireless communications have progressed remarkably in last few decades.
Mobile handsets have also advanced alongside the generations (from 1G to 4G)
with added functionalities. An illustration of the typical mobile devices introduced
in different generations is shown in Fig 1.1. As of today, current wireless mobile
telephone systems can be divided into four generations.

The first generation cellular systems, introduced in the 1980s, used analogue
cellular and cordless telephone technology. The cordless telephone was connected
to PSTNs over radio. The Advanced Mobile Telephone System (AMPS) and
Nordic Mobile Telephone (NMT) are notable examples of 1G analogue standards.
A frequency division multiple access (FDMA) technique was utilised enabling
multiple users to share the same frequency spectrum. Transmissions over radio
were susceptible to eavesdropping and could be easily intercepted by a standard
radio receiver [5, Section 1.4.1].

Second generation (2G) systems, introduced in the late 1980s, used digital

3In 1960s, the bandwidth of the PSTN was standardized by Consultative Committee for
International Telephony and Telegraphy (CCITT) to 0.3-3.4Hz. CCITT was later renamed to
International Telecommunication Union for Telecommunication standardization sector (ITU-T).
According to ITU-T Rec. G.120 [7] the attenuation in the NB should not exceed 9dB compared
to the value for 1020Hz whereas the attenuation distortion at 0.3kHz and 3.4kHz should never
exceed 3dB.
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Figure 1.1: An evolution of mobile handsets with advancements in the cellular
communication systems reproduced from [9].

speech transmission. These systems supported additional services such as voice
mail, text transmission, speed dialing, roaming, etc. 2G systems used advanced
coding and compression techniques to utilise the allocated spectrum more efficiently.
Network-control techniques were improved to conserve bandwidth and privacy was
improved to prevent eavesdropping [5, Section 1.4.2]. Widespread 2G standards
are the Global System for Mobile communications (GSM), IS-136 and IS-954. 2G
services were designed specifically for voice transmission and were not efficient for
data transmission [8, page 321].

Third-generation systems, introduced in the early 2000s, provide advanced
voice and high-speed data services that could not be delivered via 2G technology.
While data transmission is done via packet switching, voice is transmitted using
circuit-switching technology. The most common 3G technologies are Universal
Mobile Telecommunication System (UMTS) or wideband CDMA (WCDMA), time
division-synchronous CDMA (TD-SCDMA) and CDMA2000. These are collectively
referred to as International Mobile Telecommunications-2000 (IMT-2000) [8, page
324]. Most GSM operators upgraded (from 2G) to UMTS/WCDMA 3G services.
Upgrades usually required changes to existing infrastructure in the form of more
base stations and the replacement of time-division access by code-division access.

Fourth generation (4G) systems employ an all-internet packet infrastructure

4The standards IS-136 and IS-95 employ time-division multiple access (TDMA) and code
division multiple access (CDMA) techniques respectively
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1.2. Speech production

that supports data rates of 100Mbps. Packet switching technology is used for both
voice as well as data. Worldwide Interoperability for Microwave Access 2 (WiMAX
2) and Long-Term Evolution Advanced (LTE-Advanced) are the two popular 4G
protocols, also referred to together as IMT advanced [8, page 332].

1.2 Speech production
A study of the underlying anatomy and physiology of the human speech production
system provides useful insights in order to analyse different acoustic as well as
articulatory properties of speech signals. These properties help to understand
spectral and temporal characteristics of various speech sounds. A model of the
human speech production system is illustrated in Fig. 1.2. A speech signal is
produced by a speaker at his/her mouth or lips in the form of pressure waves.
The organs that are involved in the speech production mechanism are: the lungs,
larynx and vocal tract. The lungs produce an airflow which is modulated by vocal
chords or vocal folds of the larynx. The airflow passing through the glottis – a
slit-like orifice between the two vocal folds – is converted to either a quasi-periodic
or noisy airflow by vibration of the vocal folds. The resultant airflow source excites
the vocal tract that comprises oral, nasal and pharynx cavities. The vocal tract
performs spectral shaping or colouring of the excitation source. The subsequent
variation of air pressure at the lips is radiated in the form of travelling waves
called speech [10, Section 3.1]. Speech signals can be seen as the output of a
filtering operation in which the vocal tract system (or filter) is excited by the
modulation of an excitation source or airflow. The mechanism is typically known
as the source-filter model of speech production which allows the modelling of speech
signals as a convolution of the impulse response of the vocal tract filter5 and the
excitation source (also referred to as glottal flow).

Speech is a non-stationary signal consisting of different speech sounds, each
of which is characterised by a distinct position of the vocal tract articulators
(vocal folds, tongue, lips, teeth, velum, jaw) [11, Section 3.1]. Speech sounds are,
therefore classified according to: the nature of the excitation source (which is mainly
categorised as periodic, noisy, impulsive or combinations of the three) and the shape

5The vocal tract can be modelled as a linear time-invariant filter which exhibits resonance
frequencies, typically known as formant frequencies or formants. Generally vocal tract takes form
an all-pole filter – the approach referred to as linear prediction analysis – where the conjugate
poles represent the formants.
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Figure 1.2: Model of human speech production mechanism (adapted from [10]).

of the vocal tract (which can be described by the place and manner of articulation
(or constriction) in the vocal tract) [10, Section 3.4]. This section provides a brief
overview of different speech sounds, their spectral characteristics and how the
bandwidth limitations imposed by telephone filter results in intelligibility and
quality.

1.2.1 Speech sounds

Speech sounds are broadly divided into two categories: vowels and consonants.

Vowels form the largest group of phonemes. The characteristics of vowels
differ based on the position of the tongue – that mainly determine the vocal tract
shape – towards the front, centre or back of the oral cavity. Each vowel phoneme
thus corresponds to an unique, stable vocal tract configuration during most of
the sound generation. The excitation source has quasi-periodic nature which is
generated by vibration of the vocal folds at a certain fundamental frequency (also
knowns as pitch frequency or pitch).

Consonants form the second largest group of phonemes which are sub-
categorised into nasals, plosives, fricatives, whispers and affricates.
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1.2. Speech production

• Nasals or murmurs are closest to vowels and are produced at the nostrils
by the quasi-periodic airflow only through the nasal cavity; the oral cavity
remains constricted. Depending upon the place of constriction that is formed
by the tongue across the oral cavity, nasals are distinguished, e.g. /m/ as in
“mo” and /n/ as in “no”.

• Fricatives are of two types. Unvoiced fricatives (e.g., /sh/ in “should”) are
characterised by a noise source generated due to turbulent airflow near the
vocal tract constriction. The noise source is spectrally shaped depending
upon the location and the degree of constriction formed by the tongue at the
teeth or lips or along the oral cavity. In contrast, voiced fricatives (e.g. /z/
as in “zebra”) are generated by the simultaneous generation of noise at the
constriction and vibration of the vocal folds. These sounds thus are formed
by a combination of a noisy and periodic airflow.

• During production of plosive or stop sounds, the air pressure is first built up
due to closure of the oral cavity. The pressure is then released over a very
short duration. This results in a burst or impulsive source that excites the
vocal tract at the constriction. In unvoiced plosives (e.g., /k/ in “baker”),
the burst is followed by aspiration6 caused by turbulence at the open vocal
folds. In voiced plosives (e.g., /g/ in “go”) there is little or no aspiration as
the vocal folds are also vibrating.

• Whisper sounds are similar to unvoiced fricatives, however, the turbulence
occurs at the glottis rather than at a vocal tract construction, e.g, /h/ as in
“he”. The size of the glottis influences the spectral characteristics of whisper
sounds.

There is another category of phones which represents transitional speech sounds.
These are associated with changes or transitions during movement of articulators
from one position to another. Such sounds are “non stationary” and are associated
with the rapid spectral changes during transition between two articulatory states
corresponding to two different sounds. This phenomenon is known as coarticulation.

• Diphthongs are produced by vibrating vocal folds similar to vowels, however,
the vocal tract does not remain steady (as in vowels) but varies smoothly

6Aspiration is caused due to turbulence of the glottal airflow at the glottis when the vocal
folds are open. The vocal folds do not vibrate, or remain fixed partly or completely leading to
whispered and breathy voice respectively [10, page 64].
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between two vowel configurations. Diphthongs are thus characterised by
formant transitions as the vocal tract articulation changes gradually between
two vowel positions. The examples of diphthongs are /Y/ as in “hide”, /W/
as in “out”, /O/ as in “boy” and /JU/ as in “new”.

• Semi-vowels or sonorants are categorised into glides and liquids. Glides (e.g.,
/w/ as in “we” and /y/ in “you”) are dynamic and transitional sounds that
often occur before a vowel or between vowels. In the later case, they are similar
to diphthongs, however the constriction of the oral tract is narrower and the
transition between two vowels in quicker than in diphthongs. Thus glides
are characterised with faster formant transitions and weaker articulation.
Liquids (e.g. /r/ as in “read” and /l/ as in “let”) exhibit different types of
constriction formed by the tongue than in glides.

• Affricates are the sounds representing transitions from plosives to fricatives,
e.g., affricate /tS/ as in “chew” representing a transition from the plosive /t/
to the fricative /S/.

1.2.2 Spectral characteristics of speech sounds

Different speech sounds are characterised by different temporal and spectral char-
acteristics. They can be distinguished from each other based upon their acoustic
properties such as rapid transitions in spectral content, abrupt changes in amplitude,
presence or lack or combination of voicing and aspiration and, the spectral shape
attributed to the vocal tract configuration [12]. The spectral content of speech
sounds is mainly dependant upon the nature of the glottal airflow or excitation
source and the shape of the vocal tract7. Based on their spectral properties, speech
sounds can be classified into voiced and unvoiced sounds.

• The voiced sounds are the result of excitation of the vocal tract by a quasi-
periodic glottal airflow. They are characterised by a quasi-periodic time-
domain waveform with large variations in amplitude. The periodicity is
measured in terms of the pitch period. The magnitude spectra of voiced
sounds thus exhibit harmonic structure with peaks at integer multiples of the
fundamental frequency or pitch, especially in the lower frequency region. The

7The shape of the vocal tract is defined by the place (or manner) of constriction (also referred
to as articulation.
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spectral envelope (smoothed version of the speech spectrum) is characterised
by the presence of peaks which correspond to formants of the vocal tract
filter.

Vowels and diphthongs (except when whispered) are mainly voiced sounds
which ranging from 50 to 400 ms duration in normal speech. While vowels
exhibit line spectra with energy concentrated at multiples of F0, the spectra
primarily are characterised by the first three formants: F1, F2 and F3. They
occur on average every 1kHz for adult males [11, Section 3.4.2].

Voiced sounds generally have low-pass characteristics and most of the energy
is concentrated in the lower part (below 1kHz) of the audio spectrum. Thus,
a significant portion of the voiced spectrum is covered adequately by NB or
telephone speech despite the bandwidth limitations. While the fundamental
frequency might be missing, the human ear is nonetheless capable of hearing
pitch properly [13, Section 2.2.1].

• Unvoiced sounds are characterised by time domain waveforms with relatively
lower amplitude than voiced sounds, however, with rapid variations due to
noise-like nature of the excitation source. Thus, the spectrum of unvoiced
speech extends over the entire audio spectrum. Unvoiced sounds contain
significant energy above 3.4kHz and thus a larger portion of information is
missing in NB speech signals.

Fricatives fall into the category of unvoiced sounds. Fricatives are char-
acterised by a lack of energy at lower frequencies. They have a highpass
spectrum and therefore, most of the energy is concentrated above 2.5-3.2kHz
frequency region.

1.2.3 Effect of bandwidth on speech quality and intelligi-
bility

The choice of cut-off frequencies (0.3kHz and 3.4kHz) and characteristics of the
telephone filter specified in ITU-T Rec. G.120 [7] was based on the bandwidth
limitations imposed by analog transmission systems. The choices were motivated by
results obtained from subjective listening tests [14, Section 10.1]. In order to retain
compatibility with existing analogue PSTNs, initial progress in digital telephony
have occurred with bandwidth constraints of 0.3-3.4kHz, e.g, the bandwidth of
PCM. After digitisation of voice transmission, speech coding techniques were
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developed in order to compress speech signals to lower bit rates than that in PCM,
without degrading speech quality. Therefore, the bandwidth available for voice
transmission was dictated by both the development of cellular systems and speech
coding techniques. However, the frequency content of speech signals range from
60Hz to 20kHz. The limitations upon the telephone bandwidth thus result in a
lack of distinctive spectral properties of speech sounds.

Some fricatives such as /f/ and /s/ differ in the location of the lowest spectral
peak, which occur typically around 2.5kHz and 4kHz for a male adult speaker
respectively. Such distinctive properties are lost in typical telephone speech, which
often causes troubles to the listener in distinguishing between different fricative
sounds [15, 1.1.3.1]. Some plosives (/t/ and /d/) are characterised by higher energy
bursts occurring around 3.9kHz. Others (/b/, /p/) also exhibit similar energy
bursts albeit with less intensity. These distinct properties are lost in NB speech,
once again leading to reduced intelligibility and naturalness for plosives. Nasals are
too affected. They are dominated by the first formant F1 which typically occurs
around 250Hz. This is also lost due to the lower cut-off of the telephone band.

Due to the loss of such important information, the intelligibility of syllables
can be degraded. During a telephone call, sometimes high frequency sounds such
as /f/ and /s/ (or /p/ and /t/) are thus difficult to differentiate and, in the
absence of informative contextual information, must be spelled out for effective
communications. Improvements in intelligibility are thus necessary to reduce the
listening effort, in order to provide comfortable communications [16].

The perceived quality as well as the intelligibility of speech signals increases
with increases in acoustic bandwidth, particularly for unvoiced sounds. This is
because they contain a substantial portion of their spectral content above 3.4kHz.
A transition from NB to WB communication then naturally leads to an increase
in syllable and sentence intelligibility from 90% and 99.3% to 98% and 99.9%
respectively [16, 17]. The speech quality is also improved by 1.42 MOS points [17].
The quality of communication is further improved at super-wide bandwidths.

Even though intelligibility relates to the recognisability of speech sounds, speech
quality measures are mainly used to evaluate the performance of speech codecs in
transmission systems. Similarly, ABE algorithms are also evaluated in terms of
speech quality by using either subjective or objective measures.
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1.3 Speech coding
Speech coding or speech compression algorithms have the goal of estimating the
compact digital representations of analogue voice signals for their efficient storage
and transmission [18]. In the 1990s, the increased number of mobile phones and the
increase in demands to mobile communications brought new challenges for digital
speech transmission systems, especially regarding the limitations of bandwidth and
its implications upon PCM speech quality [13, Chapter 1].

The digital transmission of speech involves the use of codecs in order to con-
vert analogue signals into digital format. A codec consists of an encoder at the
transmitter end that converts an analogue signal into compressed, digital bits.
These bits can be transmitted over digital landlines or wireless networks. At the
receiver, the digital bitstream is converted back to an analogue signal using a
decoder. Codecs are used in telephones, cellular networks, televisions, set-top boxes
and TV transmitters and receivers [8, page 18]. The purpose of speech coding is
to compress data so that speech transmission can be performed at lower bit rates
while maintaining high speech quality [19, Section 3.5]. Speech codecs should thus
operate at low bit rates with low complexity and limited delay; these requirements
are especially important in mobile communications considering the limited number
of radio network resources and requirement for low power consumption in mobile,
battery powered devices [14, Section 8.1], [19, Section 3.5].

Various speech coding standards and speech codecs have proposed in the past
decades. They can be categorised in terms of their operational bandwidths.

1.3.1 Narrowband coding

NB coding techniques compress speech signals to between 0.3-3.4kHz.
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Pulse-code modulation (PCM)

PCM [20] is a simple waveform8 based coding method that performs discrete-time,
discrete-amplitude approximation of analog signals in the time domain. Signals are
sampled at a sampling rate of 8kHz and quantised using non-uniform quantisation
levels at 64kbps. PCM supports narrowband (0.3-3.4kHz) communication that is
compatible with older analog telephone systems. The transmission characteristics
of PCM for voice signals are standardised in ITU-Recs. G.711 [21] and G.712 [22].
PCM coding is widely used in PSTNs and mobile networks.

For economical and complexity reasons, higher bit rates (e.g., 64kbps employed
with PCM) are reduced to between 4 and 32kbps in radio cellular systems such as
cordless phones and cellular radio networks while maintaining similar narrowband
speech quality of PCM. To achieve this, most coding algorithms are based on the
source-filter model of speech production and also exploit properties of the human
auditory system [14, Chapter 8].

An extension of PCM, known as adaptive differential PCM (ADPCM), stan-
dardised in ITU-T Rec. G.726 [23], supports multiple bit rates of 16, 24, 32 and
40kbps. In ADPCM quantisation of residual error signal instead of the speech
waveform itself is performed [24, Chapter 10]. ADPCM is typically used in cordless
phones.

GSM full rate (FR) and enhanced full rate (EFR) codecs

The regular pulse excitation with long-term prediction (RPE-LTP) codec, also
referred to as the GSM full rate (GSM-FR) codec, is based on linear predictive
coding (LPC) which uses short-term LP analysis for spectral envelope modelling
and long-term LP analysis to obtain residual error signal. The error signal is then
quantised using ADPCM [24, Section 10.2]. The scheme operates at 13kbps and
was adopted by ETSI in the GSM 6.10 standard (ETSI Rec. GSM 06.10 [25]) in

8Waveform coding methods aim to achieve lower bit rates through quantisation of either speech
signal itself or residual error obtained via linear prediction (LP) analysis (e.g, PCM, ADPCM).
Parametric coders (also called vocoders), e.g., linear predictive coding (LPC) vocoder, encode a
set of model parameters instead of the time domain waveforms. These parameters represent the
vocal tract system configuration, e.g., LP coefficients. While sufficient intelligibility is achieved at
lower bit rates, produced speech still sounds synthetic. Hybrid methods exploit advantages of
both the schemes; coefficients of the synthesis filter are transmitted as side information whereas
quantisation of LP residual error signal is performed, e.g., code-excited linear prediction (CELP)
coding [14, Section 8.1]
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1992 for digital mobile radio communications.

GSM-FR was further improved using an efficient vector quantisation technique
for residual error signal using algebraic code-excited LP (ACELP) algorithm [26,27].
It was standardised as the GSM enhanced full rate (GSM-EFR) codec in ETSI
Rec. GSM 06.60 [28] in 1996 and operates at 12.2kbps. The GSM-EFR codec
achieved speech quality equivalent to that of ADPCM at 32kbps [14, Section
8.5.3.3].

G.729

The codec standardised in ITU-T Rec. G.729 [29] in 1995 operates at 8kbps and is
based on so-called conjugate-structure ACELP (CS-ACELP). It is widely used in
VOIP infrastructures.

Adaptive mulit-rate (AMR)

An extension of the EFR codec with eight possible bit rates ranging from 4.75 to
12.2 kbps, known as the AMR codec, was standardised for GSM (2G) and UMTS
networks (3G) by ETSI (ETSI Rec. GSM 06.90 [30]). The quality at the highest
bit rate is equivalent to that of the EFR codec. 3GPP adopted AMR as the default
speech codec for 3G wideband systems such as UMTS and CDMA2000 (3GPP
TS 26.090 [31]). AMR coding involves the transcoding of AMR-coded speech
signals to/from PCM format [32]. Signals are thus encoded and decoded twice in
succession which leads to added complexity and reduced speech quality.

1.3.2 Wideband coding

In order to support wideband transmission in telephone networks (at least) new
terminals need to include front-ends with better electro-acoustic, improved analogue
to digital (A/D) converters and new speech codecs. Cellular radio networks also
need expensive base station modifications [14, Section 10.1]. As WB transmission
improves the quality of voice transmission, there is increasing demand for WB
communication services in fixed and mobile networks at lower bits rates. WB
coding aims at voice communication at broader bandwidths of 0.05-7kHz.

The first WB speech codec for ISDN and teleconferencing was standardised
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in 1985 by CCITT [14, Section 10.1]. The ITU-T Rec. G.722 [33] specifies the
characteristics of an audio WB coding system in which a frequency band is split
into two, lower and higher, sub-bands such that both are encoded using ADPCM
(the technique referred to as sub-band ADPCM (SB-ADPCM)). The codec supports
bit rates of 4, 56 and 64 kbps and a fall-back capability to NB standards. The
G.722 standard is usually used as a reference for the evaluation of other codecs [24,
Appendix C]. In 1999, a low-complexity WB codec was introduced in ITU-T Rec
G.722.1 [34] for hands-free applications. It achieved comparable speech quality at
reduced bit rates of 24 and 32 kbps.

Adaptive multi-rate wideband (AMR-WB)

The breakthrough in WB speech coding and quality was brought by a wideband
extension to the AMR codec, referred to as AMR-WB, which encodes speech within
bandwidth of 0.05-7kHz. The AMR-WB codec was first standardised in 2001 by
3GPP (3GPP TS 26.190 [35]) for 3G cellular networks. It is based on the ACELP
technique and employs artificial bandwidth extension for signal resynthesis beyond
6.4kHz. It is also adopted by ITU-T for WB speech coding and is specified in
ITU-T Rec. G.722.2 [36]. It supports nine bit rates ranging from 6.6 to 23.85 kbps.
The AMR-WB codec operating at 8.85 kbps achieves higher speech quality than
AMR at 12.2kbps [37].

Voice transmission by AMR-WB provides significantly better quality than NB
telephony due to the increased bandwidth. Therefore, conversations are more
natural, thereby improving the user experience. AMR-WB technology is generally
referred to as high-definition (HD) voice. HD voice also improves hearing in noisy
environment. By May, 2016, 164 mobile operators (17 on GSM (2G), 130 on UMTS
(3G) and 63 on LTE (4G) networks)9 have launched commercial HD voice services
in 88 countries [32]. HD voice services work best when two HD mobile phones
are in communication over a HD-voice compatible network. Improved acoustic
properties and noise reduction capabilities of the most recent HD smart phones
also improve call quality.

The transmission of WB voice over GSM or UMTS networks needs tandem-free
(TFO) or transcoder-free operation (TrFO). In TFO, the coded WB parameters
are transmitted within the PCM bitstream to achieve WB speech quality. However,

9Some operators offer HD voice service on more than one network.
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this requires a bit rate of 64kbps. In TrFO, double encoding can be avoided when
the end-to-end transmission links both employ the same type of codec [13, Section
3.4]. Therefore, the combination of TFO and TrFO operations makes WB calls
possible between all types of network.

The transmission of voice packets over LTE networks is referred to as voice
over LTE (VoLTE). LTE systems, being all-IP and optimised specifically for data
transfer, do not support circuit switching which is needed for voice and SMS
services. Voice calls are thus handled using circuit switched fall back (CSFB)
when the data connection “falls back” to 2G or 3G network connection before call
initiation [32].

G.729.1

ITU-T Rec. G.729.1 [38] defines an extension to the G.729 codec providing for
the scalable narrowband and wideband coding of speech and audio signals from
8-32kbps. G729.1 is the first layered10 codec that is designed with an embedded
scalable structure in order to extend the functionalities of the existing G.729
standard [39, Section 4.2.1.1].

1.3.3 Super-wideband or full band coding

SWB or FB voice communications, also referred to as full HD voice services,
transmit almost the entire human voice spectrum which makes conversations much
more natural and understandable than in the case of NB or WB communications.
Full HD voice thus improves the call experience beyond that obtained by HD voice
services, bringing quality closer to what is achieved in face-to-face conversations.

10Before G.729.1, the WB codecs did not extend the operation of existing NB codecs. Such
extension requires, (i) detection of bandwidth of an incoming signal before encoding and (ii)
the interoperability among various mobile networks and devices (which support different coding
standards). Layered extension of existing codecs provides these features. In layered coding,
the core layer of a codec is overlaid with multiple enhancement layers, e.g, the core layer is
designed for NB coding whereas the enhancement layers provide more improvements at the cost
of additional bit rate. Such scheme provides the features of bandwidth scalability [39, Section
4.1.2].
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G.729.1 Annex E

G.729.1 Annex E [40] extends the 32kbps mode of the G.729 codec to super-
wideband mode providing bit rates in the range of 36-64kbps. The codec uses
MDCT coding. A SWB extension to the scalable WB codec G.729.1 proposed
in [41] achieves improved audio quality (especially for music signals) in comparison
to the existing SWB extension G.722.1 Annex E with ≈ 18% reduction in bitrate.

Extended AMR-WB (AMR-WB+)

The AMR-WB+ standard (3GPP TS 26.290 [42]) is an super-wide extension to the
AMR-WB codec that operates up to an increased frequency range of 16kHz and
bit rates up to 32kbps [14, Section 10.1]. It is a hybrid codec that combines linear
predictive and transform coding techniques depending on the signal type, e.g.,
speech or audio. AMR-WB+ provides high quality for audio or music signals while
meeting the strict requirements for multimedia codec bit rates and complexity [43].

G.719

A low-complexity coding algorithm for full-band speech and audio signals is de-
scribed in ITU-T Rec. G.719 [44]. The coding technique offers bitrates from 32 up
to 128 kbps.

HE-AAC

The high-efficiency advanced audio codec (HE-AAC) uses a so-called spectral band
replication (SBR) [45,46] approach for efficient coding of audio signals. HE-AAC
was developed by the International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC) Moving Picture Experts Group (MPEG)
by subsequent extension of the established Advanced Audio Coding (AAC) archi-
tecture [47]. The SBR technique exploits properties of the human auditory system
– that the higher frequencies in audio spectrum contribute marginally to perception
– and it is mainly focused on generic audio (speech and music) signals. The audio
content above 8kHz can thus be encoded efficiently to achieve higher compression
rates. HE-AAC is employed in mobiles, internet streaming, TV digital radio and
TV broadcasting mainly for music and audio content [47].
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Over the top (OTT) conversational codecs

Over the top (OTT) service providers (e.g., Skype) provide point-to-point services
for VoIP. The use of proprietary codecs such as SiLK allows for conventional NB
voice services to be shifted towards WB and SWB communications via the use of
broadband IP services [48].

Opus11 is another high quality codec which combines technologies from Skype’s
SilK and Xiph.Org’s CELT12 audio codecs, providing bit rates of 6 kbps (for NB
mono speech) to 510 kbps (for high quality stereo music). It was standardised by
the Internet Engineering task force (IETF). It is used for interactive speech and
music transmission (supporting audio bandwidth from NB to FB) over the Internet.
Opus performs hybrid coding which involves the coding of frequencies up to 8kHz
using the SiLK codec. Frequencies above 8kHz are coded using CELT [39, 4.2.2.1].
Opus provides SWB or FB transmission at, and above 24 kbps. Unfortunately,
however, the bit rate is too high for efficient use of radio resources for speech and
audio in mobile systems [48].

Enhanced voice services

3GPP carried out a preliminary study [49] in 2010 in order to investigate use-cases
of enhanced voice services (EVS) over the packet system of LTE networks. The
study further led to the standardisation of the EVS codec in 2014. EVS is the first
conversational (low delay) codec that can encode speech as well as other audio
signals with a SWB (0.05-14kHz) at bit rates as low as 9.6kbps [39, 4.2.3]. It
operates at four different bandwidths, namely, NB (0.02-4kHz), WB (0.05-7kHz),
SWB (0.05-16kHz) and FB (0.05-20kHz)13. The key features of EVS include: (i)
enhanced quality for mixed signal content such as speech as well as music leading
to improved user experience via features such as in-call music; (ii) improved coding
efficiency for NB and WB communications thereby providing better quality than
existing AMR and AMR-WB codecs at similar bit rates; (iii) backward compatibility
to the AMR and AMR-WB codecs; (iv) improved robustness to packet loss, frame
erasures and jitter [48]. EVS supports twelve bit rates ranging from 5.9 to 128 kbps
with SWB and FB services starting at or above 9.6 and 16.4kbps respectively [48].

11http://www.opus-codec.org/
12Constrained Energy Lapped Transform
13The quality offered by the use of these bandwidths is equivalent to that of NB telephones,

AM, FM and compact discs (CD) respectively.

17



Chapter 1. Introduction

EVS combines LPC for speech and modified discrete cosine transform (MDCT)
based coding for audio signals. It switches automatically between these two coding
modes in real time depending upon the type of signal. Subjective listening tests
have shown that EVS outperforms all existing conversational voice and audio
codecs across all bit rates and bandwidths [50]. Detailed technical details of EVS
can be found in [51,52,53,54].

Due to the key features that the EVS codec provides, mobile operators have
started enabling their networks for EVS support. As of September 2018, 17 mobile
operators have already introduced EVS services in their networks; 153 EVS-enabled
mobile devices from 12 different vendors are available in the market [55]. EVS
services are also marketed as “HD voice plus” or “ultra HD voice”. While deployment
of EVS codec enabled devices and networks is speeding up, there is a long way to
go before it becomes a ubiquitous technology [55].

1.4 Artificial bandwidth extension
Artificial bandwidth extension algorithms have been developed to improve NB
speech quality by estimating missing highband (HB) components at 3.4-8kHz from
available NB components. ABE is based on the assumption that spectral content
in NB and HB are correlated as the entire speech spectrum is generated by the
same physical and acoustical configuration of the human speech production system.
ABE can be performed with or without the use of an additional side information
for reconstruction of HB components and thus categorised into blind and non-blind
methods.

1.4.1 Non-blind methods

HB frequency components are highly correlated with NB components but contain
relatively little information [39, Section 4.1.4.5]. The spectral content at higher
frequencies thus can be represented with fewer bits in comparison to NB fre-
quency components. Non-blind ABE methods thus recover missing high frequency
components at the receiving-end (or near-end) from auxiliary side information
related to higher frequencies which is encoded into a data stream together with
NB components. However, the inclusion of such side information typically incurs
an additional burden of 1-5 kbps [56]. Non-blind approaches are codec specific and

18



1.4. Artificial bandwidth extension

require a matching decoder in order to recover missing frequency components.

Most speech coding techniques, therefore, usually perform non-blind ABE in
order to achieve lower bit rates while maintaining speech quality. Notable examples
are Qualcomm’s enhanced AMR (eAMR) codec [57], the HE-AAC codec [45,46],
and the AMR-WB codec (in 23.85 kbps mode) [31].

1.4.2 Blind methods

In contrast, blind ABE methods estimate missing HB components using only
the available NB components. Such ABE14 solutions thus exploit the correlation
between NB and HB components of speech and estimate missing HB components
using a regression model learned from WB speech training data. ABE algorithms
thus mainly focus on the better modelling of correlation via improved regression
models. In contrast to non-blind alternatives, blind methods do not incur any
additional bit-rate burden and are codec-neutral.

While non-blind methods (typically employed in speech coders) provide better
WB speech quality (which is quite obvious because the HB information is recon-
structed via some side-information), blind methods provide an alternative to WB
speech coding where WB speech at the receiver is reconstructed using the input
NB speech only. WB services can thus be provided independently of networks and
codecs used in mobile devices.

1.4.3 Motivation and applications

This section describes the applications of ABE in different scenarios.

When network and/or mobile terminals do not support WB communi-
cation:

As discussed in the previous section, in order to improve speech quality offered by
traditional telephony infrastructure, speech signals should be transmitted at higher
bandwidths. This requirement has led to the development of coding techniques

14The term ABE refers to blind ABE unless mentioned explicitly throughout the remainder of
this thesis.
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to compress information at higher bandwidths (Section 1.3). Calls at higher-
bandwidths are possible only if the entire communication path supports operations
at the same bandwidths, e.g. the WB call at the receiving terminal (or near-end)
is possible only if the mobile device at the transmitting terminal (or far-end) and
the network both support WB communication. Lack of either leads to a reduction
in bandwidth and thereby a reduction in speech quality.

In today’s scenario, telecommunications involve a combination or intercon-
nection of different networks and mobile devices supporting NB, WB and SWB
communications15. This is because the entire processing chain that exists between
speech codecs and the network terminals requires a complete redesign to support
higher bandwidth communications [58]. While deployment of WB codecs and
networks is in progress, it is slow as it incurs costs to the network operators as well
as end users. Additionally, a phone call may involve a landline device which restricts
in the bandwidth to NB by default. Therefore, even today, a significant portion
of calls operate in NB mode whereas the migration to WB will take considerable
time [59]. NB and WB networks and devices (or terminals) will thus coexist for
some years to come, leading to mobile phone calls of different bandwidths at the
receiving terminal. An illustration of hybrid NB and WB phone calls is shown in
Fig 1.3. The scenarios illustrated in Fig. 1(b), Fig. 1(c) and Fig. 1(d) exploit
the potential of ABE to improve speech quality from NB to WB, provided the
receiving terminal supports ABE functionality [60].

When a WB-to-NB handover occurs during a phone call:

Due to the presence of heterogeneous communication networks [61], the process
of bandwidth switching from WB to NB may occur during an ongoing phone
call, especially when the user is moving (e.g., in train, bus or car). This may
happen either due to handovers between two different networks (e.g. when the user
enters a network cell supporting NB communication from a WB network) or due
to decreases in network resources that causes dynamic fall back from WB to NB
mode [62,63]. This can lead to abrupt changes in quality and thus an annoying user
experience. According to [60], a WB-to-NB handover leads to perceived speech
quality even below NB.

A possible solution to avoid this problem is to switch to WB communication

15Typically the NB, WB and SWB calls involve the AMR, AMR-WB and EVS codecs.
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far-end 

 terminal
 network

near-end  
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Figure 1.3: An illustration of phone calls at different bandwidths at receiving mobile
terminal (adapted from [60]). A NB far-end terminal transmits a NB signal through
a NB network and the near-end-user receives (a) NB speech through a NB terminal,
(b) artificially bandwidth-extended speech through a NB terminal (with ABE), (c)
artificially bandwidth-extended speech through a WB terminal (with ABE). A WB
far-end terminal transmits speech in NB if either the network is NB or the receiver
is a NB terminal; the user then receives (d) artificially bandwidth-extended speech
if the terminal includes ABE. WB transmission is achieved only when (e) both the
terminals and the network support WB.
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as soon as the network resources are increased. However, subjective tests have
indicated that the switching from NB to WB speech is perceived as an impairment
unless the transition happens early enough or at the beginning of the call [63].
According to [62], WB transmission should continue at least for 30 seconds after
switching in order to benefit from improved speech quality. Therefore, instead of
switching from NB to WB (which also includes waiting time until the network
resources are reallocated to support WB communication), ABE can be used as
soon as the call falls back to NB mode thereby mitigating the need for a true
WB call. A comparison between the subjective quality of two switching schemes,
namely transitions between WB (AMR-WB coded) and NB (AMR coded) speech
and transitions between WB and bandwidth-extended NB (AMR coded) speech is
reported in 3GPP TR 26.976 [64]. The case with bandwidth extension was mainly
preferred in three different noise conditions (clean, street noise, car noise).

When there is a bandwidth-mismatch between training and testing
data:

For certain applications such as speaker recognition, large amounts of NB or
telephone speech data is available for model training. In order to operate upon
NB data, the conventional approach is to perform downsampling from WB to NB.
However, this leads to the loss of useful spectral content in WB speech. ABE can
thus be used to reduce the bandwidth mismatch between speech data recorded at
different sampling rates. NB speech data can be artificially bandwidth-extended
and then used with available WB data. This is helpful in two aspects. First, the
amount of WB training data can be increased (using bandwidth-extended NB data)
for the training of WB models. Second, already trained WB models can still be
used (with the application of ABE) in the case that test data is NB; re-training of
the models with NB data is no longer needed.

The use of ABE thus allows for only one model to be trained while still
supporting different bandwidths modes. ABE has been investigated for applications
such as speaker recognition [65], automatic speech recognition (ASR) [66,67,68],
speaker identification [69] or speaker verification [70] in order to improve the
performance of WB models by increasing the amount of WB training data via
ABE.
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When users have hearing impairments

People with impaired hearing use hearing-aids or cochlear implants (CIs) and often
face difficulties during telephone calls due to bandwidth limitations. ABE can be
used to improve intelligibility and quality of NB speech for such users [71]. The
study reported in [72] showed that users with hearing impairments can tolerate
overestimated energies in the bandwidth-extended speech sounds, thereby providing
increased intelligibility.

1.5 Super-wide bandwidth extension
With the progress in recent times in super-wideband or full-band speech coding
techniques and the introduction of the EVS codec (Section 1.3), many smart devices
and networks now support high-quality speech communication services at super-
wide bandwidths. However, in today’s heterogeneous networks, SWB devices are
often used with other devices and networks which support only narrowband (NB) or
wideband (WB) communications. While they usually offer backward compatibility,
users of SWB devices will then be restricted to NB or WB communications. Super-
wide bandwidth extension (SWBE) thus aims to recover high-frequency (HF)
components between 8 and 16kHz in order to improve the quality of WB speech
signals.

Similar to ABE, which helps to improve speech quality via NB-to-WB extension
(illustrated in Fig 1.3), SWBE16 has the goal of improving the gap in quality
between WB and SWB communications.

1.6 Contributions
ABE performance can be improved either by developing a better regression model,
by designing more compact, informative front-end features, or through the com-
bination of both approaches. One approach to improve feature extraction is to
exploit dynamic (temporal as well as spectral) properties of speech signals in the
form of features extracted from neighbouring speech frames. This is in addition

16While approaches to NB-to-WB and WB-to-SWB extension both are a form of bandwidth
extension, the former is referred to as ABE and the later is referred to as SWBE for simplicity
throughout this thesis work.
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to the use of conventional static features. Contextual information captured via
front-end features can be incorporated via the concatenation of instantaneous static
features with either static or dynamic delta features obtained from neighbouring
speech frames. This is referred to as front-end memory inclusion. Another solution
is to model such temporal dependencies via statistical modelling techniques such as
hidden Markov models (HMMs), recurrent neural networks (RNNs) or long short-
term memory (LSTM) networks. The use or modelling of contextual information or
memory helps to model interframe dependencies or the dynamics of speech signals,
a technique common to many speech processing applications, including ABE.

Memory inclusion has two drawbacks. First, the inclusion of memory produces
higher-dimensional features. Traditional statistical models such as GMMs and
HMMs tend not to handle high-dimensional data efficiently. This is because the
number of parameters and the number of training samples needed for reliable
density estimation grows exponentially. This problem is referred to as the curse
of dimensionality. Deep neural network (DNN) based approaches also require
deeper networks and longer convergence time if used with higher-dimensional input
features. In other words, the inclusion of memory leads to regression models
of increased complexity. Second, the use of memory involves the extraction of
contextual information from future (or look-ahead) frames which increases the
latency or delay of an ABE algorithm.

The ABE literature addresses the importance of front-end memory inclusion in
the form of delta features under the constraint of fixed dimensionality. The inclusion
of memory has been reported previously, even without affecting the complexity of
a standard regression model. This is achieved by replacing higher order static NB
and/or HB feature coefficients with lower order dynamic delta coefficients. The
use of memory has been studied and investigated from an information theoretic
perspective. However, delta coefficients are non-invertible and are discarded during
HB reconstruction, resulting in the loss of information and practically suboptimal
performance.

While past work points towards the importance of memory to ABE, it raises the
questions of what degree of contextual information is of benefit to ABE and how it
can best be harnessed without increasing the latency and computational complexity
of a standard regression model. The work reported in this thesis addresses these
questions; a quantitative analysis via the mutual information (MI) measure is
presented which compares the benefit of utilising memory in an otherwise fixed ABE
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algorithm. Contextual information captured in the form of static features extracted
from neighbouring speech frames is referred to as explicit memory throughout this
thesis work. The benefit is further confirmed via improvements in ABE performance
without affecting the complexity of the regression model. Principal component
analysis (PCA) is employed as a dimensionality reduction technique. The topic
of ABE is further presented as a feature extraction problem where higher-level,
compact NB features are learned from higher dimensional log-spectral data resulting
from the inclusion of explicit memory. The use of deep learning architectures such
as semi-supervised stacked auto-encoders (SSAEs) and conditional variational
auto-encoders (CVAEs) for dimensionality reduction (or feature extraction) is
proposed. A comparison of different dimensionality reduction techniques such as
principal component analysis (PCA), conventional stacked auto-encoders (SAE),
SSAEs, variational auto-encoders (VAEs) and CVAEs is reported. The results show
that some form of supervision is important to the optimisation of dimensionality
reduction techniques to ABE.

The contributions17 of the research work in this thesis are divided into two parts.
The first part, which forms a significant portion of the work, reports contributions
in NB-to-WB extension. The second part reports an approach to WB-to-SWB
extension. The proposed approach is based on linear prediction-based analysis
synthesis and performs SWBE without statistical estimation of missing frequency
components. The following presents a summary of the key contributions:

Explicit memory inclusion under the constraint of fixed di-
mensionality

This contribution relates to a comparative, quantitative analysis of explicit memory
obtained via static features extracted from neighbouring speech frames. Mutual
information (MI) is used as a standard information theoretic measure to show the
benefit of memory inclusion. Three different front-end features are investigated.
Considering practical requirements of ABE solutions, inclusion of explicit memory
is performed without significant increases to latency or computational complexity.
Specifically, log-Mel filter (logMFE) and linear prediction (LP) coefficients are

17In order to support reproducible research, the implementations of all the proposed ABE ap-
proaches reported in this thesis are publicly available at: https://github.com/bachhavpramod/
bandwidth_extension. The speech samples produced during this research work are also available
at: http://audio.eurecom.fr/content/media.
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used as front-end narrowband and highband features respectively; principal com-
ponent analysis (PCA) is used as a dimensionality reduction transform. In order
to highlight the improvements obtained specifically from the modelling of explicit
memory under the fixed dimensionality constraint, conventional GMM regression
mapping is used as a regression model. Finally, the findings are validated through
objective and subjective assessments of an ABE system which uses memory with
only negligible increases to latency and computational complexity.

Part of this work was published in:

1. P. Bachhav, M. Todisco, and N. Evans, “Exploiting explicit memory inclusion
for artificial bandwidth extension,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5459–63, 2018, Calgary, Canada.

Memory inclusion with semi-supervised stacked auto-encoders

This contribution relates to the application of semi-supervised stacked auto-encoders
(SSAEs) to ABE for non-linear dimensionality reduction. As an unsupervised,
linear approach to dimensionality reduction, PCA aims only to produce a low
dimensional representation which retains as much as possible the variation in the
input representation. The hypothesis is that supervised or semi-supervised and non-
linear dimensionality reduction techniques offer potential to learn lower dimensional
representations tailored specifically to ABE, thereby giving better performance.
Thus, the ability of SSAEs to learn higher-level representations is exploited to learn
compact narrowband features. It is shown that the low-dimensional representations
learned from log power spectral (LPS) coefficients lead to discernible improvements
to speech quality in comparison to those learned from logMFE features. Features
extracted directly from log-spectra can be used by a standard regression model
without augmenting complexity. The benefit of compact NB features learned via
SSAE is confirmed by an information theoretic analysis. The merit of the approach
is further demonstrated with different objective metrics and is confirmed by the
findings of informal listening tests.

Part of this work was published in:
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2. P. Bachhav, M. Todisco, and N. Evans,“Artificial bandwidth extension with
Memory inclusion using semi-supervised stacked auto-encoders,” in Proc. IN-
TERSPEECH,pp. 1185–89, 2018 Hyderabad, India.

Latent representation learning using conditional variational
auto-encoders

This contribution relates to the first application of conditional variational auto-
encoders (CVAEs) for supervised dimensionality reduction specifically tailored
to ABE. CVAEs, a form of directed, graphical model, are used to model higher-
dimensional log-spectral data to extract latent narrowband representations. The
idea in this work is that the conditioning variable of a CVAE can be optimised
via an auxiliary neural network in order to learn higher-level NB features, features
that are tailored to improve the estimation of missing HB components. Reported
is an approach to combine CVAEs with a probabilistic encoder in the form of an
auxiliary neural network which derives the conditioning variable. A technique
for their joint optimisation is presented. Objective and subjective assessments
are reported to show that the probabilistic latent representations learned with
CVAEs produce bandwidth-extended speech signals of notably better quality when
compared to that obtained with alternative dimensionality reduction techniques.

Part of this work was published in:

3. P. Bachhav, M. Todisco, and N. Evans, “Latent representation learning for
artificial bandwidth extension using a conditional variational auto-encoder,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7010–7014, 2019, Brighton, United Kingdom.

Efficient approach to SWBE using linear prediction analysis-
synthesis

This contribution relates to an efficient approach to SWBE which avoids the use of
statistical models for estimation of missing higher frequencies, thereby reducing
the complexity. The algorithm is based upon a classical source filter model in
which spectral envelope and residual error information are extracted from a WB
signal using conventional linear prediction analysis. A form of spectral mirroring is
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5: ABE using semi-supervised stacked auto-encoders 

Figure 1.4: Outline of the thesis and connections among various chapters.

then used to extend the residual error component before an extended SWB signal
is derived from its combination with the original WB envelope. Improvements
to speech quality are confirmed with both objective and subjective assessments.
It is demonstrated that the quality of SWB speech, derived from the bandwidth
extension of wideband speech, is comparable to that of speech processed with
the standard EVS codec with a bitrate of 13.2kbps. In addition, consistent im-
provements in quality over WB speech processed with the AMR-WB codec with
a bitrate of 12.65kbps are reported. Without the need for statistical estimation
of missing super-wideband components, the proposed algorithm is highly efficient
and introduces only negligible latency.

Part of this work was published in:

4. P. Bachhav, M. Todisco, and N. Evans, “Efficient super-wide bandwidth
extension using linear prediction based analysis synthesis,“ in Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 5429–5433,
2018, Calgary, Canada.
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Other contributions

Some research work carried out during this PhD is not included in this thesis. This
work resulted in the following publication:

5. P. Bachhav, M. Todisco, and N. Evans, “Artificial bandwidth extension using
the constant Q transform,” in Proc. IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 5550–5554, New Orleans, USA.

Other publications prior to the undertaking of this PhD include:

6. N. Shah, P. Bachhav, and H. Patil, “A novel filtering-based F0 estimation
algorithm with an application to voice conversion,” in Proc. IEEE Asia-Pacific
Signal and Information Processing Association (APSIPA) Annual Summit and
Conference, 2017, Kuala Lumpur, Malaysia.

7. P. Bachhav and H. Patil, “A novel filter bank for epoch estimation,” in Proc.
European Signal Processing Conference (EUSIPCO), 2017, Kos island, Greece.

8. P. Bachhav, H. Patil and T. Patel, “A novel filtering based approach for
epoch extraction”, in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2015, Brisbane, Australia.

1.7 Outline of the thesis
An outline of the thesis is shown in Fig. 1.4. An extensive survey of prior works
related to artificial bandwidth extension is presented in Chapter 2. Chapter 3
describes a memoryless baseline ABE algorithm which is used to evaluate the
benefit to ABE performance of explicit memory inclusion. The databases (used
for training, validation and testing of ABE approaches), objective and subjective
assessment metrics including the mutual information measure are also discussed.
Chapters 4, 5, 6 and 7 report the novel contributions outlined above. Conclusions
and, directions for future work are presented in Chapter 8.
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Chapter 2

Literature survey

Artificial bandwidth extension algorithms (ABE) aim to estimate missing higher
frequency components at 3.4-8kHz. In this chapter, a survey of approaches to ABE
is presented. ABE algorithms are mainly divided into four categories: non-model
based approaches (Section 2.1), approaches based on the classical source-filter model
(Section 2.2), approaches based on direct modelling of spectra (Section 2.3) and end-
to-end ABE approaches (Section 2.4). While most approaches use regression models
that are trained via standard mean square error (MSE) optimisation criterion,
some approaches use perceptually motivated cost functions (Section 2.5). Some
approaches focus on modelling of contextual or temporal information to improve
ABE performance (Section 2.6). While ABE approaches focus on NB-to-WB
extension, SWBE approaches for WB-to-SWB extension are developed to bridge
the quality gap between WB and SWB communication (Section 2.8).

2.1 Non-model based ABE approaches
The non-model based ABE approaches do not use a priori knowledge about speech
production mechanism and employ simple operations to introduce missing frequency
components. The operations include spectral translation or shifting (fixed or
adaptive), generation of high frequency components via non-linear operations on
time-domain signals, bandpass filtering on white noise etc. Some approaches also
perform spectral shaping of the generated frequency components using some gain
control parameter or an empirically determined filter. The first commercial use
of such ABE methods by the British Broadcasting Corporation (BBC) [73] is
reported in 1972 where the acoustical bandwidth of telephone speech in broadcast

31



Chapter 2. Literature survey

programmes is improved. The notable examples are [74, 75,76,77].

Such methods, however, produce extended WB speech signals with audible
processing artefacts and distortions. This is because energy of the generated
frequency components is either too weak or too strong compared to the NB
component [78, Section 1.3]. Additionally, quality of extended speech signals
depends upon the effective bandwidth of the original input signal, e.g., such
methods surprisingly work well for SWBE (WB-to-SWB extension) when the
input signal is WB but perform poorly when the input signal is NB [79, Section
5.4.1]. Readers are encouraged to refer to [79, Section 5.4] and [78, Section
1.3], [15, Section 2.2] for more details on non-model based algorithms.

2.2 ABE approaches based on source-filter model
The model-based ABE algorithms use a priori knowledge about characteristics of
speech signals and the human speech production mechanism. Since beginning of
the nineties, most ABE algorithms started exploiting the classical source-filter
model [80] of speech production where a NB speech signal is represented by
an excitation source and a vocal tract filter. The frequency content of these
two components can be extended through independent processing before a WB
signal is resynthesised. The extension of NB speech is thus divided into two tasks;
(1) estimation of HB or WB spectral envelope from input NB features via some form
of an estimation technique and (2) generation of HB or WB excitation components
via some form of time-domain non-linear processing, spectral translation or spectral
shifting methods. The HB component is usually parametrised with some form of
linear prediction (LP) coefficients whereas the NB component is parametrised by a
variety of static and/or dynamic features.

2.2.1 Extension of spectral envelope

In practice most approaches focus on the extension of the spectral envelope since it
has the dominant impact on speech quality. Different techniques such as linear and
codebook mapping, Gaussian mixture models (GMMs), hidden-Markov models
(HMMs) and deep neural networks (DNNs) are used for estimation.

The use of many different feature representations for NB and HB components
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has been reported, e.g. linear prediction coefficients (LPCs) [81,82], line spectral
frequencies (LSFs) [83,84] and Mel-frequency cepstral coefficients (MFCCs) [85]. A
mixed approach reported in [16] uses NB auto-correlation coefficients to estimate
HB cepstral coefficients. Some additional features are also added to the NB feature
set to improve estimation performance [78,86,87].

2.2.1.1 Codebook mapping

The very first approaches to ABE use codebook mapping [88, 89, 90, 91,92] method
for estimation. It involves training of two codebooks. A primary codebook is trained
on NB feature vectors x via vector quantisation (VQ), e.g, using the well-known
LBG algorithm [93]. This is equivalent to clustering of the training vectors into N
clusters where centroids of the clusters form entries of the primary codebook. For
every entry in the primary codebook, average of corresponding WB vectors y form
the corresponding entry in the shadow codebook. During extension, for each NB
speech frame, NB feature vector x is compared with the primary codebook entries.
The closest entry is selected and corresponding entry in the shadow codebook gives
the estimated WB spectral envelope. Some methods use interpolation methods to
improve performance of the codebook based ABE approaches. In this case, instead
of choosing one WB envelope from the shadow codebook, the weighted sum of all or
most probable codebook entries is used. The use of split codebook is also reported
where separate codebooks for voiced and unvoiced frames are used given that the
voiced and unvoiced spectral envelopes are characterised by different shapes [94].

The performance of the codebook mapping methods depends on the sizes of
the codebooks. Higher the number of entries in the codebooks, better is the
estimation performance, however, at the cost of increased memory required to save
the codebooks. The performance also strongly depends on the choice of features
x and y. More details on codebook mapping can be found in [95, Section 6.6]
and [92, Section 3.1].

2.2.1.2 Linear mapping

In linear mapping based methods [94,96,97], the HB or WB feature vectors y are
estimated using a linear transformation defined according to ŷ = ATx where A is
a matrix with dimensions m× n, x and y are column vectors with dimensions m
and n respectively. The transformation matrix A is obtained during training.
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The relationship between NB and HB frequency components is not simply linear
and thus the estimation can be further improved by introduction of a classifier
before linear mapping, the method is referred to as piecewise linear mapping [94,98].
This approach helps to improved modelling of non-linear dependency between x
and y. During training, the feature vectors x are classified into a predefined number
of classes (via vector quantisation or hard or soft decision schemes) and then a
transformation matrix is learned between only those vectors x and y which belong
to a particular class. During extension, first classification of input vectors x is
performed and then estimated vectors ŷ are obtained using a transformation matrix
corresponding to the estimated class.

2.2.1.3 GMM based mapping

In codebook mapping, the continuous acoustic space is modelled by a discrete set of
codebook entries obtained via VQ. This approach thus involves hard classification
of input NB feature vectors into N classes defined by the codebooks entries.
The resulting extended speech signals thus comprise discontinuities and annoying
artefacts. In linear mapping, the acoustic space is assumed to exhibit very simple
linear relation between NB and HB components. Linear mapping thus involves an
oversimplification of the ABE problem leading to inferior speech quality. Codebook
and linear mapping approaches are have deterministic and quantising nature.
Statistical modelling techniques, in contrast, provide a probabilistic framework to
produce a continuous approximation of the complex, non-linear acoustic space [15,
Section 2.3.3.4].

GMM based statistical modelling is widely used in the ABE literature. GMMs
are capable of modelling acoustic space of a speaker’s voice into set of underlying
acoustic classes; the classes are represented by phonetic events such as vowels,
fricatives, or nasals. Typically, the spectral shape (represented by some form
feature representation) of the ith acoustic class is modelled by the mean µi of the
ith Gaussian mixture component and the variations of the average spectral shape
are modelled by the covariance matrix Σi [99]. From another perspective, GMMs
can form smooth approximations of arbitrary continuous probability distribution
functions via modelling of discrete set of Gaussian functions.

The ability of GMMs (of modelling complex data distributions) is thus exploited
in oder to model joint density p(x,y) of NB and HB feature vectors obtained from
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training data. The parameters of the GMM are estimated using the EM algorithm
during training and are used to obtain the MMSE estimates ŷ during extension.
The joint density modelling via GMMs helps to capture the correlations between
NB and HB features spaces.

Drawing upon the successful use for spectral transformation in speaker conver-
sion systems in [100,101], the first use of GMM based mapping for ABE is reported
in [81]. It is shown that the speech signals extended using GMM-based technique
are of superior quality that those extended using codebook-based methods. Fol-
lowing their successful use, the numerous approaches [83, 85, 102,103,104,105,106]
employ GMM regression (GMMR) technique1 for ABE.

2.2.1.4 HMM based mapping

The codebook and GMM based mapping methods do not model the temporal
dependencies of the speech signals and thus, the use of the first-order Hidden
Markov Models (HMMs) for ABE is proposed in [16,107,108]. The states of the
HMM are defined via centroids of the codebook which obtained by performing VQ
on HB spectral envelopes extracted from training data. During training, the HMM
parameters are estimated using Baum-Welch algorithm. The parameters include
initial and state transition probabilities, state observation likelihoods which are
modelled by continuous probability distribution functions via GMMs. Each state is
thus associated with a GMM. During extension, the sequences of input NB feature
vectors are decoded using the pre-trained HMM to obtain the posterior probabilities
(the probabilities that the input sequence belongs to each state). Based on these
posterior probabilities, a pre-trained codebook and different estimation rules, the
HB feature vectors are estimated. The estimation rules are based on maximum
likelihood (ML), maximum a posteriori (MAP) and MMSE criteria. While ML and
MAP based estimation rules take a form of classification and therefore the estimated
features are limited to the discrete codebook entries only, continuous estimation is
performed via the MMSE rule. Further details can be found in [78, Section 6.4]

In classification-based approaches, the false acceptances and rejections of high
frequency sounds (e.g., /s/,/z/) lead to overestimation and underestimation (respec-
tively) of their energies which cause artefacts in reconstructed speech signals. The
work in [109] thus aims to modify the HMM based ABE algorithm in [78] in order to

1The GMM-based mapping is referred to as GMM regression (GMMR) throughout this thesis.
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incorporate a priori knowledge of speech acoustic classes via phonetic transcription;
the ABE training and estimation both are performed using phonetic information
(an offline version). An online version is also presented in [110,111,112] where the
estimation is done without the use of phonetic transcription. The improvements
are reported in terms of both speech intelligibility and quality due to reduction in
artefacts when ABE application used for automotive hands free systems as well
as for hearing-impaired people. The performance of the online version is further
improved in [113] by employing a DNN based classifier in order to estimate phonetic
classes prior to ABE processing. More details related to these approaches can be
found in [87]. There are several other approaches [114,115,116,117,118,119,120,121]
which exploit capabilities of HMMs to model inter-frame dependencies.

2.2.1.5 Deep neural networks

Deep neural networks (DNNs) are capable of modelling complex non-linear re-
lationships in the data. The early approaches to ABE [98, 122] which employed
DNNs have not shown superior performance in terms of speech quality on speaker-
independent ABE task. This is perhaps because of the use of shallow neural
networks; it was not possible to train DNNs on large amounts of data due to lack
of efficient hardware and training algorithms. However, in last two decades many
machine learning techniques and computer hardware have evolved to efficiently
train the DNNs that contain many hidden layers with large number of hidden
activation units [123].

A modification of HMM-based ABE approach from [109] is presented in [86]
in order to perform a direct comparison between the GMM and DNN based
acoustic models for HB spectral envelope estimation. The posterior probabilities
of the states (as defined by the centroids of a codebook trained on HB feature
vectors) are calculated (via a GMM-HMM, hybrid DNN-HMM or DNN-only
system) followed by MMSE estimation. While different DNN topologies showed no
discernible performance, the improvement in speech quality was shown to attributed
towards the improved estimation of the HB energy parameter than that of the
spectral envelope. Further investigations of different input NB features (such as
autocorrelation coefficients (AC) and log-mel filter bank coefficients), activation
functions (such as rectified linear units (ReLUs) and sigmoids) and regularisation
techniques (such as dropout) on ABE performance are presented in [124]; a DNN
based regression approach is shown to outperform the GMM and DNN-based
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classification schemes.

Several other approaches exploit superiority of DNNs to model linear and
non-linear relationship between NB and HB components by employing DNNs
with unsupervised pre-training [125], Gaussian Bernoulli restricted boltzmann
machines (GBRBMs), deep recurrent-neural networks (RNNs) with Long short-
term memory (LSTM) cells [126, 127, 128], conditional restricted Boltzmann
machines (CRBMs) [129], recurrent temporal restricted Boltzmann machines
(RTRBMs) [130].

2.2.2 Extension of excitation

According to the source-filter model of speech production, the excitation signal can
be modelled by quasi-periodic impulse train for voiced sounds and by white noise
for unvoiced sounds. In both the cases, the spectrum of the modelled excitation
signal is flat [78, Section 2.1.1]. ABE algorithms exploit this simple structure of
the excitation signal and also the insensitivity of the human auditory system to
distortions in the excitation signal above 3.4kHz. The excitation extension is thus
usually performed using similar operations that are used for non-model based ABE
(section 2.1).

Non-linear processing involves the use of quadratic or cubic functions, half-
wave or full-wave rectification on the time-domain excitation signal. Non-linear
operations have two key properties: (1) they produce harmonics when applied
to periodic signals and (2) depending on the effective bandwidth of the input
signal they produce frequency components beyond Nyquist frequency. The NB
time-domain excitation signal thus has to be upsampled to adequate sampling
frequency before application of non-linear operations.

Modulation in the time domain corresponds to translation in the frequency
domain; this property is usually used to generate HB components from the available
NB excitation components. The spectral translation can be performed by multiply-
ing the time domain NB excitation signal with a real-valued cosine function at a
modulation frequency ΩM. The HB components are then extracted via high pass or
bandpass filtering. Typically ΩM is chosen to be 3.1kHz which results in translation
of NB (0.3-3.4kHz) frequency components from 3.4 to 6.5kHz. Bandwidth of the
resulting extended signal (i.e., 6.5kHz) is dictated by the upper limit of NB (i.e.,
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3.4kHz). The fixed modulation frequency creates inconsistent pitch harmonics
in voiced phonemes of the extended speech signals resulting in metallic sounds.
Pitch-adaptive modulation technique can then be employed where the modulation
frequency ΩM is adjusted in such a way that the shifted frequency components of
the NB excitation correspond to harmonics of the pitch in the missing band. In
this case, however, a very accurate pitch detection algorithm is required to reduce
the artefacts.

When ΩM = π i.e., the Nyquist frequency, spectral translation corresponds to
spectral folding or mirroring; the spectrum of the input NB excitation is folded
or mirrored at the half of the Nyquist frequency, i.e., π/2. As the HB frequency
components are exact folded copy of NB components, no filtering operation is
needed. The spectral folding operation is equivalent to zero insertion in the time
domain. During extension of telephone speech, a spectral gap is generated between
3.4 and 4.6kHz.

The initial contributions to the approaches to excitation extension which are
explained above come from the works reported in [73,88,131,132,133,134]. While
most ABE approaches, which employ the source-filter model, mainly focus on
estimation of spectral envelope, they use one of the excitation extension methods
reported in this section. Slightly different approaches to excitation extension
are reported in [102, 125, 135]. ABE methods also perform some form of post-
processing in order to match the assumption of spectral flatness for the generated
HB frequency components; it is important to match energy of the generated HB
excitation components to that of the NB components [136, Chapter 4.5]. The
additional details on excitation extension methods can be found in [78, Chapter
3], [79, Section 5.5.1], [136, Chapter 4], [15, Section 2.3.2].

The spectral gaps created in extended WB signals due to spectral folding do
not adversely affect the speech quality if the envelope extension works reasonably
well [16]. The listening tests reported in [137] showed that the adaptive pitch
alignment which helps to reduce harmonic distortions in the HB spectrum do not
yield significant improvements in speech quality relative to the required additional
cost of complexity and memory.
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2.3 ABE approaches based on direct modelling
of spectra

Some ABE approaches (which are not based on source-filter model) operate directly
on the higher dimensional complex speech spectra.

Some handful of ABE approaches [138,139,140] directly operate on DFT co-
efficients in which first missing frequency components are generated by a simple
non-linear operation, e.g., spectral mirroring. The generated HB frequency compo-
nents are then spectrally shaped by a set of parameters. An adaptive spline neural
network (ASNN) is employed in [141] to directly map the NB DFT coefficients to
the missing HB coefficients. The work in [138] combines the use of spline interpola-
tion and a neural network to estimate a set sub band powers; the parameters which
are then used to adaptively tune the spectral shape of the missing HB. A spectral
magnitude shaping curve (defined by five control points) is constructed or learned
using cubic spline interpolation [142] and neuro-evolutive neural network [139]; the
curve is then used to shape the magnitude spectral coefficients of HB components.
Further improvements to the ABE approach in [142] are obtained by a more
accurate control of the HB spectral shape which are reported in [140,143].

Other approaches directly estimate the spectral coefficients of the missing HB
via statistical models. Magnitude of log-power spectrum (LPS) coefficients for
missing HB are estimated using a DNN in [144]. ABE estimation performance using
a DNN improved via the use of rich acoustic features for input NB representation;
the oversmoothing problem of DNNs is reduced using global variance equalisation
as a post-processing technique in [145]. The work in [146] uses deep bidirectional
Long Short Term Memory (BLSTM)-based RNN. The target HB spectral features
are generated through a weighted linear combination of real target exemplars; the
method is used as a post-processing step to reduce the estimation errors2. Inspired
by their use in automatic speech recognition (ASR), the ABE approach reported
in [147] exploits the BN features [148] that are extracted using a DNN-based
classifier to capture the linguistic information from the input NB speech. A deep
LSTM-based RNN is then employed for estimation of HB components from these
BN features which are supposed to capture phone-dependent characteristics and
energy distributions of HB spectra.

2According to [145,146], the techniques of global variance equalisation and exemplar based
sparse representation are usually used in voice conversion and speech enhancement.
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An ABE approach based on sum-product networks (SPNs), a form of probabilis-
tic graphical models (PGMs), for the estimation of missing HB log-spectrograms is
reported in [149]. A comparison of SPNs to different generative models such as
Gaussian-Bernoulli RBMs (GBRBMs), conditional RBMs, higher order contractive
auto-encoders (HCAEs) and generative stochastic networks (GSNs) is presented
in [150]. Sparsity of the spectral features is exploited in [151] to learn joint dictio-
naries for the NB and WB spectral components in a coupled manner; the trained
dictionary is then used during estimation of the HB components.

While the magnitude spectrum of HB components is estimated via statistical
modelling, the HB phase spectrum is generated via imaged copy of NB phase3 [144].
Alternately, the extended WB speech signals can also be reconstructed using
magnitude spectrum only via Griffin and Lim algorithm (proposed in [152]) as
in [150].

2.4 End-to-end approaches to ABE
Convolutional neural networks (CNNs) are capable of extracting useful features
by directly operating on raw speech waveforms. Inspired by the success of
WaveNet [153] and dilated convolutional architectures [154, 155], an approach
to ABE is proposed in [156] using stacked dilated CNNs. The method avoids
spectral analysis and phase modelling issues via direct modelling and generation
of time-domain speech waveforms. The NB speech signals (at a sampling rate
of 16kHz) are first fed to dilated CNNs to generate either HB or WB speech
signals. The generated waveforms are then added to the available NB signals after
appropriate highpass filtering. Modelling of HB speech waveforms at output of the
CNNs was found to be more effective than that of WB waveforms. Inspired by
SampleRNN architecture [157], the use of Hierarchical recurrent neural networks
(HRNNs) composed of LSTM cells and feedforward layers is investigated in [158]
for ABE. A comparison of several waveform modelling techniques is presented.
HRNNs were shown to achieve better speech quality and run-time efficiency than
the dilated CNNs. The major drawback of the waveform-based ABE methods
is low run-time efficiency; they are time-consuming during generation of speech
samples.

3Typically, phase spectrum of input NB speech frame is flipped to the upper half of the
spectrum and then minus sign is added to the phase.
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A light-weight approach to audio super-resolution is proposed in [159] where a
deep CNN with residual (or skip) connections is trained increase sampling rate of
input NB time series. The approach reported in [160] exploits information from
speech signals in both the time and frequency domains using a time-frequency
network (TFNet) that can be trained end-to-end. TFNet comprise two branches
which are used to predict the high resolution (HR) audio samples and their spectral
magnitude at output layers. Both outputs are then combined via a spectral fusion
layer to synthesise the final HR output. An efficient alternative to the WaveNet, a
deep learning architecture, referred to as FFTNet [161], is employed in [162] for
ABE.

2.5 ABE with modified loss functions
Most ABE approaches usually employ standard mean-square error (MSE) criterion
for optimisation which leads to over-smoothing problem. This is because the MSE
loss function is minimised by averaging all plausible outputs. A regression model
trained with a MSE loss function thus performs reasonably well in the average sense,
however it fails to model the energy dynamics of different voiced and unvoiced
sounds. Generative adversarial networks (GANs) [163] provide an alternative to
the MSE loss function via adversarial learning wherein the HB features produced
by a generator network are compared against the true HB features and classified
as real or fake by a discriminator network. The goal of the adversarial learning is
thus to make generated HB features indistinguishable from the true HB features
and thereby producing perceptually better samples. The first application of GANs
to ABE is reported in [163]. The work in [164] showed further improvements in
ABE performance via the use of conditional GANs [165]. The approach in [166]
employs GANs with stabilised training procedure – by adding penalty on the
weighted gradient-norms of the discriminator network (proposed in [167]) – for
ABE4. Another variant of GANs, also referred to as cycleGANs [168], trained with
cycle loss is explored in [67] for the application of ASR.

In addition to estimation of spectral envelope parameters, ABE algorithms also
estimate HB energy parameter; better estimation of HB energy reduces processing
artefacts. ABE approaches usually suffer from the problem of HB energy over-

4In [166], ABE is alternately referred to as speech super-resolution (SSR). A GAN based
approach is investigated for 2x (NB-to-WB extension) and 4x (NB-to-SWB extension) SSR task.
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estimation which leads to audible and annoying artefacts. The work in [169]
introduced an asymmetric cost function in the MMSE estimation of the energy
ratio (between NB and HB); the cost function penalises the over-estimates of the
HB energy more in comparison to the under-estimates. Reduction in artefacts
was observed in the extended speech signals with the modified MMSE estimates.
Importance of discriminative training of regression DNNs to avoid over-smoothing
problem is investigated in [170]. It is suggested to add a discriminative term to
the conventional MSE loss function during training in order to force DNNs to
preserve the differences between speech sounds such as fricatives and vowels. Such
discriminative training when used for GANs and cGANs is found to improve quality
of extended speech signals [164].

2.6 Feature selection and memory inclusion for
ABE

Few approaches to ABE have focused on investigation of feature selection and
memory inclusion to improve estimation performance. They are discussed in brief
in the following.

2.6.1 Feature selection

The first investigation of correlation between NB and HB features is reported
in [171]. It is suggested that the ABE algorithms should not rely only on MI
between NB and HB components and they should exploit the perceptually-relevant
properties of speech. The work reported in [172] investigated the correlation of
several NB features with HB cepstral coefficients in terms of mutual information
(MI) as well as separability5. The analysis includes auto-correlation coefficients
(ACs), LP coefficients, line spectral frequencies (LSFs), cepstral coefficients and
MFCCs. The correlation properties of scalar, energy-based features6 are also
studied to include the information related to voice activity in the front-end features.

5While MI between two feature representations x and y provides the information gained on y
from the knowledge of x, separability measures the discriminative ability of the feature set x for
a given classification problem.

6These features include gradient index, zero crossing rate, pitch period, local kurtosis, spectral
centroid, spectral flatness, normalised relative frame energy, etc. These features provide good
discriminative properties for distinction of different voice and unvoiced sounds [78, Section 5.3].
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It is suggested that the chosen NB features should exhibit not only higher MI
but also higher separability in order to improve ABE performance. The work
further aims to combine different NB features heuristically based on their MI
and separability to extract diverse information. Low-dimensional composite NB
feature vectors with maximal compactness are then obtained by employing linear
discriminant analysis (LDA). The work reported in [117] employs PCA instead, for
dimensionality reduction.

In order to maintain a low complexity for ABE algorithms, the input NB
features should be chosen optimally; the length of feature vectors should be low.
An application of forward selection approach (proposed in [173]) for a regression
DNN is reported in [174] in order to select a minimal input feature set – from
a pool of many NB features – that yields a good estimation performance. The
use the feature selection approach is also reported for a two-class DNN classifier
which is used to discriminate between the sharp fricatives (/s/ and /z/) and other
phonemes. The optimal feature set is shown to maintain the similar speech quality
in comparison to that obtained with the full set while reducing the computational
complexity.

2.6.2 Memory inclusion

ABE approaches exploit inter-frame temporal dependencies of speech signals to
improve estimation performance. The contextual information or memory can be
incorporated either via front-end memory inclusion or with back-end regression
models or both.

Back-end memory inclusion

Several statistical models have inherent capability of modelling temporal informa-
tion of speech signals. The speech dynamics in the form of temporal correlations
between neighbouring speech frames can be captured implicitly via specific back-
end regression models. Notable examples are Hidden Markov models (HMMs),
temporally-extended Gaussian mixture models [175] and LSTM based RNNs,
CRBMs, recurrent temporal RBMs (RTRBMs); all are capable of capturing mem-
ory.
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Front-end memory inclusion

Other ABE approaches which employ GMMs or DNNs capture contextual infor-
mation via front-end NB features. Memory can be incorporated by concatenation
of the instantaneous static features with either dynamic delta features or static
features extracted from neighbouring speech frames [86,144,145]. Such inclusion of
memory leads to higher-dimensional features thereby increasing complexity of the
regression model (refer to Section 1.6).

Drawing upon the work to optimise front-end feature extraction reported
in [172], the first attempt to quantify the importance of front-end memory inclusion
is reported in [85,103,104]. The work demonstrates the benefit of using memory in
the form of delta features with a standard GMMR under the constraint of fixed
dimensionality. The superior class-separability properties of MFCCs (as reported
in [172]) are further exploited to improve cross-band correlations between NB and
HB dynamic (static+delta) MFCC features.

2.7 Evaluation of speech quality
The evaluation of ABE performance is a sensitive problem in itself. Evaluation
is often performed using estimates of speech quality, involving a comparison of
extended WB speech signals to the original NB and WB speech signals. According
to [176, Section 2.1], the content (text) of a speech signal has a strong influence on
how its acoustic form is perceived by a listener. A human listener establishes a
relationship between the content and the form of speech to give a judgment, referred
to as speech quality. The perceived quality of speech is highly subjective, reflecting
many dimensions such as naturalness, clarity, brightness and pleasantness [177].
Reliable evaluation of speech quality is an important factor and thus, an active
field of research. Individual human listeners have their own perceptions of the
speech quality and therefore, subjective tests should involve a substantial number
of participants to obtain, on average, a reliable estimate.

The most reliable and meaningful approach to ABE assessment involves subjec-
tive listening tests. Such tests, however, when conducted over multiple sessions,
often of substantial duration, may not yield meaningful results. This is because the
listeners’ ratings are highly dependent on psychological factors such as motivation,
emotional state and fatigue. Obtaining reliable quality estimates via subjective
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listening tests is thus time-consuming, expensive and cumbersome. Accurate predic-
tion of speech quality that is perceived by user is important in the design of speech
communication systems. Objective assessment measures thus have been developed
in order to estimate automatically quality from speech signals. These measures
provide a quick and inexpensive tool for speech quality evaluation and provide
convenience during development of speech coding algorithms and communication
systems [19]. Objective measures approximate the human perception mechanism
in order to estimate speech quality. However, speech quality estimates are not as
reliable as fully fledged subjective listening tests which remain the only reliable
ground truth [178, Section 15.1.2].

Subjective assessment

Subjective tests involve the active participation of human listeners and the recording
of their personal opinions. These opinions are typically referred to as opinion
scores and reflect the perception of the quality of speech signals under test. The
average quality ratings obtained from a pool of listeners is obtained thus giving
speech quality estimates in terms of mean opinion score (MOS). Listening-only
or conversational methods have been developed for the subjective assessment
of telephony communication systems quality [179]. Conversational test setups
have a more realistic nature in the sense that quality measure derived from them
reflect actual service for listeners, therefore giving more reliable or meaningful
measurements. However, such tests are generally infeasible during the initial
development phase. In this case listening-opinion tests are thus conducted as a
feasible option. are used instead.

Conversation-opinion tests: Conversation-opinion test methodology is ex-
plained in ITU-T Rec. P.800 [180] and ITU-T Rec. P.805 [179]. The tests are
designed in order to assess the effect on the speech quality because of impairments
caused during a telephone conversation; the impairments such as delay, packet
loss, echo, clipping, noise, interruptions. The aim is to move a step closer to a real
conversation over a telephone system where two subjects, who participate in the
conversation, are placed in two sound proof rooms and rate the speech or voice
quality. The telephone users may consider various aspects such as intelligibility,
loudness, listening effort, or naturalness of the conversation during assessment [181].
The arithmatic mean over the subjective quality judgements of all the test sub-
jects, gives MOS-Conversational Quality Score(MOS-CQS) as defined in ITU-T
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Rec. P.800.1 [182].

In comparison to the listening-only tests, the conversational tests are complex
and difficult to design and conduct [183, Section 2.2.3.2]. For further details, an
overview of conversational tests can be found in [176] whereas relationship between
listening and conversational speech quality is presented in [184].

Listening-only tests: In subjective listening-only tests (LOTs), a pair of pre-
recorded and processed speech signals of shorter duration is presented to human
listeners who are asked to give their personal opinion about the quality on a
pre-defined scale [181]. Such tests are directed i.e. the perception of the subject is
affected by listening test design factors and rating procedures [185]. In listening tests,
subjects focus only on the acoustic form of the signal - that includes perturbations
caused in signal characteristics due to codec, packet loss, transmission channel
noise - rather than on its content [186, Section 9.5.2]. Therefore, LOTs do not
provide as realistic measurements as conversational tests, however, they are of
comparatively shorter duration and are less expensive and thus, allow the testing
of more systems and conditions in certain duration.

The most popular used LOT in ITU-T Rec. P.800 [179] is the Absolute Category
Rating (ACR) method. In this test, the quality of speech samples is rated on a
5-point listening-quality(LQ) scale, as defined in ITU-T Rec. P.800.1 [179]. The
discrete rating scale ranges from 1 to 5 corresponding to bad, poor, fair, good and
excellent speech quality. The arithmetic mean of all these scores represent the
speech quality in terms of MOS subjective listening quality (MOS-LQS), as defined
in ITU-T Rec. P800.1 [182]. For good quality systems, the ACR method has low
sensitivity in terms of its distinguishing capacity.

Alternately, the Degradation Category Rating (DCR) method, degradations
caused due to the system under test are compared in comparison with a high quality
reference on the five-point annoyance or degradation category scale. The scale scores
(very annoying, annoying, slightly annoying, audible but not annoying, inaudible)
degradations in a processed speech sample relative to an unprocessed (reference)
sample, in a range from 1 to 5 (respectively). The reference speech sample is always
presented first, followed by the same but processed sample. The quantity measured
using these scores is referred as degradation MOS (DMOS). The DCR method with
these modifications over ACR test, offers higher sensitivity in evaluation of good
quality speech and it is suitable particularly when the degradations are small [179].
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The comparison Category Rating (CCR) approach, a variation of the DCR test,
measures quality rather than degradation of a processed speech sample. A single
test involves a comparison between the processed sample and a reference. Listeners
rate the test signal on a scale of -3 (much worse), -2 (slightly worse), -1 (worse),
0 (about the same), 1 (slightly better), 2 (better), 3 (much better). In contrast
to DCR test, the order in which the speech samples are presented to a listener is
shuffled for half of the test pairs [179] and quality of the second sample is judged
compared to that of the first. CCR methods can thus be used to evaluate both
the degradation or the improvement in the quality of speech, measured in terms of
comparison MOS (CMOS)7.

Objective assessment

Objective or instrumental metrics exploit signal characteristics for automatic
evaluation of speech quality. Some of these are distance metrics which calculate the
amount of distortion created in a processed signal in comparison to a reference signal.
Notable examples include the segmental signal-to-noise ratio (segSNR), mean square
error, or spectral distance measures (such as root mean square log spectral distance
(RMS-LSD), COSH distortion). However, according to investigations in [187], these
measures typically exhibit moderate correlation with subjective quality scores.
Therefore, other measures try to mimick the human perception mechanism in order
to judge speech quality as it would be rated by human listeners [13], e.g., perceptual
evaluation of speech quality (PESQ) [188] and its WB extension [189], POLQA (a
successor of PESQ which supports for quality evaluation of FB signals) [190], a
quality measure for artificially bandwidth-extended (QABE) signals [191].

2.7.1 Assessement of different ABE algorithms

As discussed before, the assessment of different ABE algorithms is still an open
issue. The results of a formal listening tests in three different languages (American
English, Mandarin Chinese, Russian) are reported in [192,193]. After application of
ABE to AMR-NB coded signals, quality of speech is shown to improve significantly.
However, different variants of a same ABE algorithm were evaluated. The work
reported in [194] evaluated performance of five different ABE algorithms in terms

7Before averaging the opinion scores (to obtain CMOS), sign of the scores for half of the test
pairs are reversed in order to normalise the order of presentation.
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of WB-PESQ, POLQA and ACR subjective listening tests. No statistical difference
was found between G.711-coded NB speech signals and their bandwidth-extended
versions. WB-PESQ was shown to exhibit significant Pearson correlation (0.93)
with the results of subjective listening tests in comparison to POLQA (0.87). The
objective measures failed to predict correct rank order of the ABE algorithms under
assessment.

In [195], four different algorithms are evaluated. Both WB-PESQ and POLQA
failed to predict rank orders correctly as given by the ACR subjective listening tests
and it is concluded that no objective measure is fully capable of replacing subjective
assessments. Subjective test results showed correlation of 0.82 for WB-PESQ and
0.75 for POLQA. While one ABE algorithm was found to be of equivalent speech
quality as AMR-NB codec in ACR test, it was rated with significantly better
quality in CCR test; subjective ratings also showed inconsistency. It is suggested
that ACR listening tests are more suitable for quality assessment when a NB call
is followed by a WB call whereas CCR tests better represent a handover scenario
where the call switches between NB and WB modes. In [196], the quality of
AMR-NB coded signals extended by three different ABE algorithms and those
processed with different standard speech codecs is evaluated; background noise
condition is also considered. The results showed different results that POLQA
correlates better than WB-PESQ with the subjective quality ratings. Evaluation
of six different ABE algorithms in four different languages (American English,
Korean, Chinese and German) is reported in [197]. While no ABE algorithm
gave consistent improvements in all the languages, every approach failed to give
statistically significant improvements over AMR-NB signals in Chinese.

The failure of WB-PESQ and POLQA measures for speech quality assessment
is perhaps because they are not designed to test ABE conditions. A QABE quality
measure specifically designed to assess ABE performance is proposed in [191] which
is shown to outperform WB-PESQ and POLQA in terms of three metrics used
to assess the instrumental measures. The analyses on quality assessment of ABE
methods show that a careful design of a subjective listening test setup is important;
the instrumental measures of speech quality such as WB-PESQ and POLQA are
not suitable to assess different ABE algorithms, particularly to predict their rank
orders; subjective as well as instrumental assessment of speech quality is still an
open topic in ABE research.
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2.8 Approaches to super-wide bandwidth exten-
sion (SWBE)

The extensive body of research in the ABE literature targets mostly the extension
of NB speech signals to WB speech signals. In this case there is substantial
potential to improve speech quality because significant information between the
NB limit of 4kHz and the WB limit of 8kHz can be recovered reliably using ABE.
SWB speech signals extend the limit to 16kHz. Super-wide bandwidth extension
(SWBE) approaches can then be employed to recover missing high-frequency (HF)
components between 8kHz and 16kHz using the available low-frequency (LF)
components between 0.05-8kHz.

2.8.1 SWBE for audio signals (speech and music)

Few approaches perform SWBE for audio (speech as well as music) signals via
non-linear prediction methods which exploit principles of audio signals and the
characteristics of the human ear. First, LF MDCT coefficients are modelled
using a time-series; second, the phase spectrum of LF MDCT coefficients is then
reconstructed via so-called phase space reconstruction (PSR) methods; and finally
the HF MDCT coefficients are recovered using non-linear prediction techniques.
The approach in [198] uses chaotic prediction theory8 for PSR and the sub-band
energies of the estimated HF MDCT coefficients are normalised with respect to that
of LF MDCT coefficients in order to reduce large prediction errors. In [199, 200], a
radial basis function (RBF) neural network is employed for non-linear estimation of
HF MDCT coefficients. While voltera series based non-linear prediction technique
is adopted to recover HF MDCT coefficients in [201], their energies are adjusted via
the use of GMM and codebook mapping. A PSR technique from [202] is adopted
for SWBE in [203] wherein LF MDCT coefficients of WB audio are converted
to a multi-dimensional space and the HF MDCT coefficients reconstructed by a
non-linear prediction model.

The modulated lapped transform (MLT) based PSR approaches for SWBE
are reported in [56,204]. While a non-linear prediction method based on nearest-

8According to the chaotic characteristics of audio spectrum, the phase spectrum of the
MDCT coefficients for LF components can be reconstructed in order to predict the HF MDCT
coefficients [199].
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neighbour matching (NNM) is proposed to estimate HF MLT coefficients of WB
audio signals, the HF sub-band energies are estimated via GMMs [204] or HMMs [56,
205].

A source-filter model based SWBE approach is presented in [206] combining
ensemble echo state networks (ESNs) with HMMs for estimation of HF spectral
envelopes. In [207] temporal information from audio signals is extracted in the form
of temporal smoothing cepstral coefficient (TSCC) features. The TSCC features
when used with conventional GMMR are shown to provide higher MI than the
MFCCs and improved speech quality.

An approach reported in [208], referred to as efficient high-frequency bandwidth
extension (EHBE), performs a non-linear operation on audio signals in the time-
domain in order to generate missing HF components. Full-wave rectification9 is
employed in order to generate the missing HF components from those available in
the highest octave of WB signal.

2.8.2 SWBE for speech only

Most SWBE approaches reported above are designed for audio signals. A small
number of attempts, e.g. [209,210], have been made to improve SWBE performance
while focusing on properties of only speech signals. The approach presented in [210]
performs direct manipulation of DFT coefficients corresponding to 6 to 7kHz band
via a pitch-scaling operation to obtain HF spectral content. The use of a conditional
codebook mapping (CCM) method for SWBE is reported in [211] to overcome
shortcomings of conventional codebook mapping (CM) methods. The work in [209]
employs a DNN regression model for SWBE of WB signals coded with the EVS
codec.

2.9 Summary
This chapter presents a thorough review of existing solutions to NB-to-WB and WB-
to-SWB artificial bandwidth extension. The ABE algorithms are mainly categorised
into: non-model based approaches, approaches based on the source-filter model,

9Full-wave rectification is an efficient method of harmonic generation in which the resulting
spectrum consists of even harmonics of the fundamental frequency [95, Section 2.3.2.2].
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approaches based on direct modelling of spectral coefficients or approaches which
operate on raw speech waveforms (end-to-end approaches). The existing ABE
approaches are also reviewed according to other perspectives such as those utilise
perceptually motivated cost functions; feature selection and memory inclusion for
bandwidth extension. Evaluation of speech quality is critical for assessment of
ABE algorithms; review of typical subjective and objective methods is presented;
the works which focus on evaluation of different ABE algorithms are also discussed.
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Chapter 3

Baseline, databases and metrics

This chapter describes the baseline ABE algorithm used throughout this thesis.
Adapted from [78], it is based upon a classical source-filter model of speech produc-
tion whereby a narrowband speech signal is modelled by two distinct components:
a vocal tract filter and an excitation source. Both components are extended
in bandwidth separately before a wideband speech signal is resynthesised. The
baseline algorithm differs to that presented in [78] in the choice of narrowband
and highband features as well as in the choice of the statistical regression model.
Narrowband features are log Mel filter energy coefficients. Highband features take
the form of linear prediction coefficients. A conventional Gaussian mixture model
based mapping or regression technique is employed for statistical estimation of
missing highband components.

Also presented in this chapter are the databases used for training, validation
and testing of the ABE algorithms developed throughout the thesis. Finally,
objective metrics and subjective listening tests for ABE performance assessments
are presented. Particular attention is given to information theoretic analysis via
mutual information as a measure of correlation between narrowband and highband
features.

3.1 ABE algorithm
The baseline ABE algorithm is illustrated in Fig. 3.1. It comprises three distinct
blocks:
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3.1. ABE algorithm

• Training (top block) uses parallel NB and WB1 speech signals for GMM
modelling.

• Estimation (middle block) of missing HB LP coefficients is performed from
NB speech parametrised by some form of features.

• Resynthesis (bottom block) is performed using original NB speech and
estimated HB LP coefficients.

Each step corresponding to the three blocks of Fig. 3.1 are explained in detail in
the following.

3.1.1 Training

The training process is illustrated to the top of Fig. 3.1. Parallel NB and WB
signals (both at a sampling rate of 16kHz)2 are processed frame-by-frame. Frames
are represented by sNB

t and sWB
t , where t denotes the frame index. The framing

operation is performed with sliding Hann windows of 20ms duration and 50%
overlap. A 1024-point fast Fourier transform (FFT) is used to perform discrete
Fourier Transform (DFT) operations.

Feature extraction is performed to obtain NB and HB features. NB features
(xNB

t - top line in training block) with 10 coefficients are extracted from the input
NB speech frame sNB

t . HB features (yHB
t - bottom line in training block) consist

of 9 LP coefficients aHB
t and a gain coefficient gHB

t extracted by applying selective
linear prediction (SLP)3 to the HB frequency components of parallel WB speech
frame sWB

t . Both feature sets are mean and variance normalised (mvnx and mvny)
giving xNB

t,mvn and yHB
t,mvn. Feature extraction is followed by the statistical modelling

of NB and HB features vectors which involves the fitting of a GMM to joint vectors
z = [xNB

t,mvn yHB
t,mvn]T . This is achieved by maximising the likelihood of the data

using the expectation-maximisation (EM) algorithm [214, Section 9.2.2]. Thus, the
probability distribution of the vectors z is given by a mixture of M multi-variate

1The data pre-processing steps applied to generate parallel NB and WB speech data are
discussed in Section 3.3.1.

2NB speech signals are upsampled to 16kHz before training.
3SLP [212] is a spectral modelling technique that fits an all-pole or auto-regressive model

to a specific frequency region of a signal. A detailed explanation of SLP analysis can be found
in [213, Section 6.4], [78, Section 4.1.2].
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Gaussians as follows:

p(z; Θ) =
M∑
m=1

πmN (z;µm,Σm) (3.1)

=
M∑
m=1

p(λm)N (z;µm,Σm) (3.2)

where the mth multi-variate Gaussian distribution N (z;µm,Σm) is represented by
the mean vector µm and covariance matrix Σm. Given a discrete random variable
Λ that takes values {λm}mε{1,...,M}, the parameters πm represent mixing coefficients
or weights such that, ∑M

m=1 πm = 1 and πm = p(λm) ≥ 0,∀m. p(λm) can be viewed
as the prior probability that the observation z is generated by the mth Gaussian
component.

The GMM is randomly initialised with 128 Gaussian densities modelled using
full-covariance matrices4. The parameters Θ = {πm, µm,Σm}mε{1,...,M} are esti-
mated using 100 iterations of the EM algorithm. These parameters are then used
for estimation of HB frequency components.

3.1.2 Estimation

Estimation of HB components (middle block of Fig. 3.1) begins with input NB
speech signals which are again processed frame-by-frame. Upsampling is performed
to produce NB speech frames sNB

t at 16kHz. NB features xNB
t are extracted from

NB speech frames sNB
t . Mean-variance normalisation (mvnx) is applied using means

and variances obtained from training data to produce features xNB
t,mvn. HB features

ŷHB
t,mvn are then estimated according to the minimum mean-square error (MMSE)

criterion. The latter is applied to minimise E[‖yHB
t,mvn − ŷHB

t,mvn‖2] which represents
the MSE between the true HB features yHB

t,mvn and their estimates ŷHB
t,mvn. For NB

features xNB
t,mvn, the MMSE estimate of HB features ŷHB

t,mvn is thus given by:

ŷHB
t,mvn = E[yHB

t,mvn|xNB
t,mvn] (3.3)

4In order to achieve the same level of ABE performance, the GMMs with diagonal-covariance
matrices are more computationally expensive than with full-covariance matrices [15, Section
3.3.3]. This motivates the use of full-covariance GMMs in our work.
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3.1. ABE algorithm

By introducing a discrete random variable Λ that takes values {λm}mε{1,...,M} such
that p(x,y) = ∑M

i=1 p(x,y, λm), Eq. 3.3 can be re-written as:

ŷHB
t,mvn =

M∑
m=1

p(λm|xNB
t,mvn)E[yHB

t,mvn|xNB
t,mvn, λm] (3.4)

Variables {λm}mε{1,...,M} represent the parameters of the joint probability den-
sity function (PDF) p(x,y) which is modelled using a GMM with M -Gaussian
components.

If a random vector z = [x y]T has a multivariate Gaussian PDF with mean

vector µ = [µx µy]T and covariance matrix Σ =
Σxx

m Σxy
m

Σyx
m Σyy

m

 then the conditional

PDF p(y|x) is also Gaussian [215, Theorem 10.1], [214, Section 2.3.1] with a mean
vector given by:

E(y|x) = µy + ΣyxΣxx−1(x− µx) (3.5)

The marginal distribution p(x) is also Gaussian, i.e:

p(x) ∼ N (x;µx,Σxx) (3.6)

Therefore, according to Bayes’ theorem and Eq. 3.6, the first term p(λm|x̂HB
t,mvn)

of Eq. 3.4 can be written as:

p(λm|xHB
t,mvn) =

p(λm)p(xNB
t,mvn|λm)

M∑
n=0

p(λn)p(xNB
t,mvn|λn)

=
πmN (xNB

t,mvn;µx
m,Σxx

m )
M∑
n=0

πmN (xNB
t,mvn;µx

m,Σxx
m )

(3.7)

Eq. 3.7 represents the posterior probability of λm given NB features xNB
t,mvn.

Similarly, using Eq. 3.5, the second term of Eq. 3.4 can be written as:

E[yHB
t,mvn|xNB

t,mvn, λm] = µy
m + Σyx

m Σxx−1

m (xNB
t,mvn − µx

m) (3.8)

Finally, combining Eqs. 3.7 and 3.8 and using parameters πm, µm =
µx

m

µy
m

 and Σm =
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 |𝐻 𝑡
NB 𝑘 |2 

 𝑃 𝑡WB 𝑘   

𝑘 = 0, … , 2(𝑙2 − 𝑙1 − 1) − 1 

𝑘 = 0, … , 𝑁 − 1 

𝑘 = 0, … , 𝑁 − 1 

𝑘 = 0, … , 2(𝑙3 − 𝑙2 − 1) − 1 

0 

0 

0 

0 

mirroring operation  
 𝑃 𝑡WB 𝑁 − 𝑘   

(a) 

(b) 

(c) 

(d) 

 |𝐻 𝑡
HB 𝑘 |2 

 |𝑆 𝑡
NB 𝑘 |2 

Figure 3.2: Illustration of concatenation of lowband (LB), narrowband (NB) and
estimated highband (HB) power spectra to obtain the estimated wideband (WB)
power spectrum PWB

t (k) calculated according to Eq. 3.10 for 1024-point FFT.

Σxx
m Σxy

m

Σyx
m Σyy

m

 learned during GMM training (Section 3.1.1), HB features ŷHB
t,mvn are

estimated according to5:

ŷHB
t,mvn =

M∑
m=1

πmN (xNB
t,mvn;µx

m,Σxx
m )

M∑
n=0

πnN (xNB
t,mvn;µx

n,Σxx
n )

[µy
m + Σyx

m Σxx−1

m (xNB
t,mvn − µx

m)] (3.9)

Using means and variances obtained from the training data, inverse mean and
variance normalisation (mvn−1

y ) is then applied to ŷHB
t,mvn to estimate HB features

ŷHB
t , thus giving estimated HB LP coefficients âHB

t and gain ĝHB
t .

5Refer to [15, Section 3.3.1] for a detailed derivation of Eqs. 3.4–3.9.
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3.1. ABE algorithm

3.1.3 Resynthesis

After estimation of HB spectral envelope parameters for an input NB speech frame,
resynthesis of the extended WB signal is performed according to the three distinct
steps illustrated by the numbered sub-blocks to the bottom of Fig. 3.1.

Step 1 – WB spectral envelope estimation:

In order to resynthesise bandwidth-extended WB speech frames, LP coefficients
âWB
t and gain coefficient ĝWB

t corresponding to the WB spectral envelope are first
calculated from the NB speech frame sNB

t and estimated HB parameters âHB
t and

ĝHB
t . These are determined from the auto-correlation coefficients (ACs) obtained
from application of the inverse fast Fourier transform (IFFT) to the WB power
spectrum P̂WB

t (k), followed by application of the Levinson-Durbin recursion.

Let ŜNB
t (k) represent the FFT of input NB speech frame sNB

t . The WB
power spectrum P̂WB

t (k) is obtained by concatenation of lowband and narrowband
power spectra (both extracted from NB speech frame sNB

t ) with the estimated HB
power spectrum (extracted using the estimated WB LP parameters âHB

t and ĝHB
t )

according to:

P̂WB
t (k) =



1
N
|ŜNB
t (k)|2 for 0 ≤ k ≤ l1 (lowband power spectrum)

1
N
|ĤNB

t (k − l1 − 1)|2 for l1 < k ≤ l2 (narrowband power spectrum)
1
N
|ĤHB

t (k − l2 − 1)|2 for l2 < k ≤ l3 (highband power spectrum)
PWB
t (N − k) for l3 < k ≤ l4

(3.10)
where

• l1, l2, l3 and l4 represent the discrete DFT bins (or indices) corresponding
to frequencies of 300, 3400 and 8000 and 16000 Hz. For a 1024-point FFT,
according to fHz = Fs

N
(k − 1), these values are l1 = 19, l2 = 218, l3 =

512, l4 = 10246;

6The DFT bins l1 and l2 correspond to exact frequencies of 296.875Hz and 3406.3Hz respec-
tively.
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• The transfer functions,

ĤNB
t (k) = ĤNB

t (z)
∣∣∣
z=e

j 2π
L1

k for k = 0, . . . , L1 − 1 with L1 = 2(l2 − l1 + 1),

ĤHB
t (k) = ĤHB

t (z)
∣∣∣
z=ej

2π
L2 k

for k = 0, . . . , L2 − 1 with L2 = 2(l3 − l2 + 1)

represent NB and estimated HB synthesis filters respectively defined according
to:

ĤNB
t (z) = ĝNB

t

1 +∑p
i=1 â

NB
t (i)z−i and

ĤHB
t (z) = ĝHB

t

1 +∑p
i=1 â

HB
t (i)z−i .

The concatenation procedure according to Eq. 3.10 is illustrated in Fig. 3.2. The
one-sided WB power spectrum, shown in Fig. 3.2(d)), is obtained by concatenation
of: (1) LB components7 (shown by blue lines) extracted from power spectrum
|ŜNB
t (k)|2, shown in Fig. 3.2(a); (2) NB components (shown by grey lines) extracted

from power spectrum |ĤNB
t (k)|2, shown in Fig. 3.2(b); (3) HB components (shown

by red lines) extracted from power spectrum |ĤHB
t (k)|2, shown in Fig. 3.2(c). The

double-sided power spectrum8 P̂WB
t (k) is then obtained using a mirroring operation.

Step 2 – WB excitation estimation:

In order to obtain the extended WB excitation, first, the NB speech frame ŝNB
k

(at 16kHz) is filtered using a LP analysis filter, ANB(z) = 1
HNB(z) , to obtain the

NB excitation uNB
k (at 16kHz). The NB excitation is then extended via spectral

translation9 with a modulation frequency fm of 6.8kHz.

The modulated excitation uM
t (n)10 and the corresponding spectrum UM

t (f) are
7Note that the power spectrum can be calculated in two ways, either by performing the FFT

on the speech frame directly or from the LP spectral envelope of the speech frame. Therefore the
lowband components of PWB

t (k) (in the frequency range 0-300Hz) can also be calculated using
the lowband LP spectral envelope obtained via SLP.

8The power spectrum PWB
t (k) in the frequency range 0-3.4kHz can be obtained in one step

(without separate calculation of its lowband (0-300Hz) and narrowband (0.3-3.4kHz) components
as in Eq. 3.10). However, the later option can be easily modified if low-bandwidth extension
needs to be employed.

9Spectral folding leads to a spectral gap in the extended WB speech frame whereas spectral
translation with modulation frequency fm = 3.4kHz generates an extended frame that is band
limited to 6.8kHz. Choice of fm = 6.8kHz avoids these problems.

10Note that uM
t (n) denote samples of the vector uNB

k for given n.
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Figure 3.3: Illustration of excitation extension via spectral translation with modula-
tion frequency fm = 6.8kHz. Plot (a) represents the magnitude spectrum |ÛNB

t (f)|
of a narrowband (NB) speech frame ŝNB

k (at 16kHz) with a bandwidth of 3.4kHz.
Plots (b) and (c) illustrate the translated copies of |ÛNB

t (f)| after modulation with
a cosine signal of frequency 6.8kHz. Plot (d) shows the magnitude spectrum of
the resulting modulated frame to which a HPF is applied to extract the highband
(HB) excitation components.

given by:
uM
t (n) = 2uNB

t (n)cos(2πfMn), and

UM
t (f) = UNB

t (f − fM) + UNB
t (f + fM).

An illustration of spectral translation with fm = 6.8kHz is presented in Fig. 3.3.
The spectrum UNB

t (f) of the NB excitation frame (at 16kHz) that is bandlimited to
3.4kHz is shown in Fig. 3.3(a). Two translated copies UNB

t (f−fm) and UNB
t (f+fm)

of the spectrum UNB
t (f) are generated after multiplication of uNB

t (n) in the time do-
main with a cosine signal cos(2πfMn). These are shown in Fig. 3.3(c) and (d). The
spectrum of the modulated frame UM

t (f) is the sum of the resulting shifted spectra
(see Fig. 3.3(d)). The spectrum UM

t (f) (for fm = 6.8kHz) within the frequency
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range 3.4-8kHz is, therefore, a sum of two aliased frequency components. The
frequency components of the spectrum UNB

t (f) from -3.4 to 1.2kHz are translated
to the 3.4-8kHz band whereas those from 12.6 to 13.8kHz are translated to the
5.8-8kHz band. This leads to some overlap between frequency components in the
frequency range 5.8-8kHz. Spectral translation thus introduces some distortion
in the extended band. However, such distortion at frequencies above 3.4kHz is
typically inaudible and does not significantly degrade the quality of extended
WB speech. This is assuming that spectral envelope estimation works reasonably
well [16]. The spectrum UM

t (f) is filtered by a HPF with a cut-off frequency of
3.4kHz to extract HB excitation ûHB

t which is then added to appropriately delayed
(D) NB excitation uNB

t to give the extended WB excitation ûWB
t .

Step 3 – Time domain resynthesis:

In the final step, the estimated WB excitation ûWB
t is filtered using a synthesis

filter defined by ĝWB
t and âWB

t in order to resynthesise the extended WB speech
frame ŝWB

t . The extended WB speech signal is then obtained with an overlap and
add (OLA) method.

In most real-time speech applications including ABE, the speech signal is
processed frame-by-frame, where each frame is processed with the application of an
appropriate window function. The desired modifications or transformations in the
speech signal are achieved via an analysis-modification-synthesis operation where
analysis corresponds to the transformation from the time to the frequency-domain,
e.g. via STFT, and synthesis involves the reconstruction of the corresponding
modified time-domain signal. In case of no modifications, the analysis-synthesis
operation should give perfect reconstruction which is possible only if the analysis
window a[n] and the synthesis window s[n] with length M for hop size or frame
shift L satisfy: ∑

l

a[n− lL]s[n− lL] = 1 ∀n ∈ Z (3.11)

This property is referred to as the overlap-add (OLA) constraint which is necessary
for perfect reconstruction [216, Section 12.1.1].

If there is no synthesis window, then Eq. 3.11 is written as:

∑
l

a[n− lL] =
∑
l

wPR[n− lL] = 1 ∀n ∈ Z (3.12)
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where wPR represents a window function that satisfies the perfect reconstruction
property.

In practice, the sequence of overlapping window functions (e.g., Hann or Ham-
ming) sum up, according to Eq 3.12, to a constant value K 6= 1. Therefore, given
a window function wK , wPR can be designed as follows:

wPR = wK
K

(3.13)

where K is given by [217, Section 5.3.1]

K = 1
L

M−1∑
m=0

wK [m].

When the same analysis and synthesis windows are used, we have:

a[n] = s[n] = √wPR =
√
wK
K

In this work, wK is the Hann window.

3.2 Databases
Standard databases are chosen for the training and evaluation of the baseline ABE
algorithm. The same databases are also used for other experiments reported in the
thesis. They are all discussed below.

3.2.1 TIMIT

The TIMIT database [218] consists of 6300 utterances recorded at a sampling rate
of 16kHz. They were produced by 630 speakers from 8 major dialect regions of the
United states, all of whom contribute 10 utterances each. The text material of the
TIMIT speech corpus consists of:

• 2 dialect (referred to as SA) sentences – spoken by each speaker thereby
producing 1260 utterances,
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• 450 phonetically balanced (referred to as SX) sentences – each sentence
spoken by 7 different speakers thus producing 3150 utterances and

• 1890 phonetically-diverse (referred to as SI) sentences – each sentence is
spoken only by one speaker thereby producing 1890 utterances.

The TIMIT corpus is typically divided into two partitions: a training set and a
complete test set. The SA dialect sentences are usually removed from both subsets.
The training set consists of 3696 utterances spoken by 462 speakers. The complete
test set consists of 1344 utterances spoken by 168 speakers. The complete test set
consists of a subset which represents core test subset. It consists of 192 unique
utterances spoken by 24 speakers (2 male and 1 female speaker from each dialect).

3.2.2 TSP speech database

The TSP speech database [219] consists of 1378 utterances, recorded at a sampling
rate of 48kHz. It is collected from 12 male and 12 female speakers. The text
material is a subset of the Harvard sentences [220] which are grouped into 72 lists of
10 sentences each. 60 utterances (from 6 lists) are spoken by each speaker. Speech
data is recorded mostly in Canadian English with a small portion covering other
dialects of English11.

3.2.3 CMU-Arctic database

The CMU Arctic database [221] is a set of single-speaker speech databases, recorded
at a sampling rate of 32kHz. Each consists of 1132 phonetically balanced utterances
collected from each of the three (two male and one female) English speakers. Each
speech signal is recorded with an additional, parallel electroglottograph (EGG) or
laryngograph signal. EGG signals capture glottal activity during production of
the corresponding speech signal. Additional information which includes phonetic
labels and pitch markers is also available for every speech file. The database is
used widely in speech synthesis research [222].

11Some speech files are missing or they were overwritten during data collection, leading to 1378
files.
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3.2.4 3GPP database

The 3GPP database provides test signals which are commonly used for the objective
evaluation of speech quality in telephonometry. 4 phonetically balanced utterances
collected from 4 English speakers with a sampling rate of 48kHz were chosen from
the 3GPP database, details of which can be found in annexure B and clause 7.3 of
ITU-T recommendation P.501 [223].

3.3 Data pre-processing and distribution
ABE training, validation and testing is performed using parallel NB and WB speech
signals obtained from speech databases recorded at sampling rates of 16kHz or
higher.

3.3.1 Data pre-processing

Data pre-processing steps are illustrated in Fig. 3.4. First, WB signals xwb are
obtained by downsampling12 to 16kHz if the sampling rate is higher than 16kHz (e.g.
TSP speech database). Using software provided as a part of the ITU-T software
tool library (STL)13 [225] WB speech signals are processed in order to simulate
the effect of a telephone channel. Mobile station input (MSIN) characteristics
are simulated using a highpass filter with an approximate cut-off frequency of
195 Hz [226] followed by level adjustment to an active speech level of -26 dBov
(dBov represents dBs relative to the overload point of a recording system [227]).
NB signals xnb are then obtained by downsampling to 8kHz followed by lowpass
filtering with a cut-off frequency of 3.4kHz. Delays due to filtering are adjusted so
as to obtain time-aligned, parallel NB and WB speech signals.

12Downsampling was performed using the ResampAudio tool contained in the AFsp pack-
age [224].

13The software tool library (STL) can be found at:
https://github.com/openitu/STL or
https://www.itu.int/rec/T-REC-G.191-200509-S/en (Last accessed : March, 2019)
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(a) (b) Figure 3.4: Data pre-processing protocol used for ABE. LA = level alignment
to -26 dBov. MSIN = mobile station input filtering.

3.3.2 Training, validation and test data

ABE algorithms presented in Chapters 4, 5 and 6 used the TIMIT and the TSP
speech databases for training, validation and testing according to the following:

• The work presented in Chapter 4 used the TIMIT training set for statistical
modelling via GMM (Section 3.1.1) and the complete test set was used for
evaluation.

• In order to increase the quantity of data necessary for the training of neural
networks, the work presented in Chapters 5 and 6 used training data pooled
from the TIMIT training set and 1152 utterances from the complete test
set (excluding the core test subset). Network optimisation and validation is
performed using the TIMIT core test subset. The acoustically-different TSP
speech database was used for testing.

3.4 Performance assessment
Performance improvement of ABE approaches proposed in this thesis work in
comparison to the baseline ABE algorithm is measured via subjective as well as
objective assessment techniques. MI is employed as a information theoretic tool to
quantify the correlation between NB and HB features.
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3.4.1 Subjective assessment

A form of comparison category rating (CCR) approach, a type of listening-only
test, was used for all work reported here for subjective assessment of speech quality.
Refer to Section 2.7 for further details.

3.4.2 Objective assessment metrics

Objective measures of speech quality used in the work reported in this thesis include:
(i) root mean square log spectral distance (RMS-LSD), (ii) COSH distortion and
(iii) perceptual evaluation of speech quality (PESQ). They are described in the
following.

Root mean square log spectral distance (RMS-LSD):

The log spectral distance (LSD), also referred to in the literature as the log spectral
distortion or deviation, is a distance metric that is defined by the difference between
the spectra of two signals on a logarithmic scale. The spectrum of a signal can be
calculated using either the FT or an all-pole smoothed LP spectrum. The latter
allows closer examination of the distortion measure [228, Section 4.5.1].

The RMS-LSD between two power spectra P (f) = g2/|A(f)|2 and P̂ (f) =
ĝ2/|Â(f)|2 is defined as the L2 norm of the log spectral distance V (f) = ln

(
P (f)
P̂ (f)

)
as follows:

dRMS-LSD(P, P̂ ) =
[ 1
∆F

∫
∆F
|V (f)|2df

] 1
2

(3.14)

where 4F is the frequency range of the estimated HB components over which the
distance measure is calculated. A(f) and Â(f) represent the LP inverse filters of
the original and estimated WB speech frames; g and ĝ are their respective LP
gains. Eq. 3.14 should be multiplied with factor 10/ln(10) = 4.34 to obtain the L2

measure in decibels (dB). In practice, the integral in Eq. 3.14 with normalisation
factor 4F is approximated using the sample mean.

Since the perception of signal loudness is approximately logarithmic, the
dRMS-LSD is a perceptually relevant distortion measure for the subjective assessment
of sound difference. However, it weights both positive or negative logarithmic
differences |V (f)| equally along the frequency axis and therefore, does not take
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into account the perceptual masking effect [228, Section 4.5.1].

COSH distortion:

COSH distortion is defined as:

dCOSH(P, P̂ ) = 1
2
[
dIS(P, P̂ ) + dIS(P̂ , P )

]
= 1
4F

∫
4F

[cosh(V (f))− 1] df (3.15)

where the Ikatura-Saito(IS) distortion (dIS) is given by:

dIS(P, P̂ ) = 1
4F

∫
4F

[
eV (f) − V (f)− 1

]2
df

= 1
4F

∫
4F

[
P (f)

ˆP (f)
− lnP (f)

P̂ (f)
− 1

]2

df (3.16)

Eqs. 3.15 and 3.16 must also be multiplied with a factor of 4.34 to convert dCOSH

and dIS measures to units of dB.

The COSH distortion metric weights the larger log spectral differences more
than the RMS-LSD distortion metric. Heavier weighting of larger deviations in the
spectrum, especially around formant regions, is important in speech processing [229]
and therefore the COSH measure, a symmetric version of the IS distortion, has a
perceptual relevance.

Perceptual evaluation of speech quality (PESQ):

In order to evaluate end-to-end speech quality of narrowband speech codecs and
telephone networks, ITU-T has standardized an objective measure in ITU-T Rec.
P.862 [188]. The measure is referred to as PESQ. It is based on a perceptual
model that includes transformations of both original and degraded signals to
an internal representation that takes into account perceptual frequency (Bark)
and loudness (Sone). It tries to match psychophysical representations of audio
signals in the human auditory system. Additionally, PESQ takes into account
the filtering operations and delays involved in the communication systems along
with distortions created by the channels and low bit-rate codecs. For 22 unknown
ITU benchmark experiments and 8 other validation experiments (that were not
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used for PESQ development), the PESQ score was found to exhibit the average
correlation of 0.935 with subjective scores [188]. The raw scores provided by the
perceptual model of PESQ14 are mapped to the MOS-objective listening quality
(denoted by MOS-LQO) estimates according to a mapping function standardized
in ITU-T Rec. P.862.1 [230]. The MOS-LQO estimates are comparable to the
subjective scores (MOS-LQS) obtained using ACR listening tests.

A WB extension to the PESQ model, referred to as WB-PESQ, is presented
in ITU-T Rec. P.862.2 [189] for the assessment of WB telephone networks and
codecs. Quality estimates obtained using the WB-PESQ model represent, or are
equivalent to, mean opinion scores obtained when a listener uses WB headphones.
Throughout this thesis the WB-PESQ is employed to obtain objective MOS
estimates for artificially extended WB signals and are denoted by (MOS-LQOWB).

As reported in [194,195] MOS-LQOWB estimates fail to give reliable estimates
of speech quality. In particular, rank orders of different ABE algorithms under
evaluation were not predicted reliably. ABE systems under investigation in this
work are different variants of the same ABE algorithm. They differ only in use of
front-end features to the input of GMM regression (GMMR) model, with other
processing blocks remaining unchanged. Therefore, it is assumed that speech
quality estimates MOS-LQOWB obtained using WB-PESQ provide a meaningful
tool in our experimental setup.

3.4.3 Mutual information assessment

ABE algorithms estimate missing HB frequency components from available NB
components based on an assumption that the NB and HB frequency components
of a speech signal exhibit correlation. In the ABE literature, for given NB and
HB feature sets, the reliability of estimation performance is often measured in
terms of mutual information (MI) between the HB and the NB components of a
speech frame. MI quantifies the benefit of one variable for the estimation of the
other. It reflects both linear and non-linear dependencies between two random
variables [78, Section 4.3.3]. This is in contrast to linear correlation which only

14The PESQ scores defined in ITU-T Rec. P.862 provide raw scores in the range of -0.5 to
4.5. These raw scores are mapped to the objective estimates MOS-LQO in the range of 1.02 to
4.56 that correspond to the subjective scores of ACR listening-only tests. The mapping function
is trained on a large corpus of test samples collected from voice over Internet Protocol (VoIP),
wireless applications.
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takes into account the linear dependencies. This section describes estimation of
MI via GMM modelling as a standard information theoretic approach to quantify
the correlation between NB and HB components.

The mutual information I(x; y) between two continuous random variables x
and y with the joint PDF p(x,y) and the marginal PDFs p(x) and p(y) is defined
as the relative entropy or Kullback-Leibler distance (DKL) between their joint
distribution p(x,y) and the product distribution p(x)p(y) [231]:

I(x; y) =
∫ ∫

p(x,y) log2

(
p(x,y)
p(x)p(y)

)
dxdy (3.17)

= DKL(p(x,y), p(x)p(y)) (3.18)

The true distributions p(x), p(y) and p(x,y) are unknown in practice and usually
approximated with a GMM. Therefore, if p(x,y) takes the form of a Gaussian mix-
ture model (GMM), then Eq. 3.17 can be written as an expectation approximated
by the sample mean over L data vectors (xt,yt) as follows:

I(x; y) ≈ 1
L

L∑
t=1

log2

(
p(xt,yt)
p(xt)p(yt)

)
(3.19)

Eq. 3.19 can be used to estimate the MI between NB and HB components of speech
parametrised with features x and y [171,172] respectively.

In Chapter 4, MI is estimated using the TIMIT dataset (excluding dialect
(SA) sentences). First, the WB speech signals are processed according to the
steps explained in Section 3.3.1 and then they are processed with some form of
feature extraction to give NB and HB features x and y respectively. Mean and
variance normalisation (MVN) is applied to all features vectors. All signals are
processed in frames of 20ms duration with 10ms overlap to give approximately
1.52× 106 feature vectors. All speech frames are windowed using square root Hann
window (refer to OLA processing described in Section 3.1.3). A 128 component,
full-covariance GMM is learned on data vectors to obtain estimates of the densities
used in Eq. 3.19. In Chapter 5, the MI assessment is performed using TSP speech
database over approximately 3.19× 105 feature vectors.
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ABE with explicit memory
inclusion

Artificial bandwidth extension (ABE) algorithms have been developed to improve
speech quality when wideband devices are used in conjunction with narrowband
devices or infrastructure. This chapter introduces the concept of explicit memory
and how it can be utilised efficiently to improve ABE performance. It draws
upon past work which shows how memory can be included via delta features
under the constraint of fixed dimensionality. While contextual information or
memory for ABE is beneficial, a quantitative analysis of the relative benefit of
explicit memory inclusion is presented. Its potential is investigated via the use
of a standard information theoretic approach. Findings are validated through
objective and subjective assessments of an ABE system which uses memory with
only negligible increases to latency and computational complexity. Listening tests
results are reported which show that narrowband signals whose bandwidth is
artificially extended with, rather than without the inclusion of memory, are of
consistently improved quality.

Section 4.1 discusses memory inclusion for ABE. Section 4.2 briefly describes
the past work which includes memory via the use of dynamic/delta features.
Section 4.3 reports an investigation of the benefit to ABE of using different degrees
of contextual information or explicit memory in the form of static features obtained
from neighbouring speech frames. Section 4.4 describes modifications in the baseline
ABE algorithm (presented in the previous chapter) in order to include memory
using a dimensionality reduction transform. Section 4.5 discusses the experimental
setup with objective and subjective assessment results. An information theoretic
analysis is also presented. It takes the form of the mutual information between NB
and HB features.
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4.1 Memory inclusion for ABE
ABE algorithms exploit the correlation between NB and HB frequency components
of speech. This correlation is learned via the statistical modelling of NB and
HB components obtained from WB training data. For ABE methods based on
classical source-filter model, the HB component is usually parametrised with some
form of linear prediction (LP) coefficients whereas the NB component can be
parameterised by a variety of static and/or dynamic spectral estimates. Use of
contextual information or memory, obtained from neighbouring frames, is common
to speech processing applications, including ABE. Speech is afterall a signal with
dynamic temporal and spectral properties.

In addition to being captured through front-end features, dynamic information,
or memory can also be captured with specific back-end regression models that
can model inter-frame dependencies (refer to Section 2.6.2). Front-end memory is
captured in the form of either well-known delta coefficients, commonly referred to
as dynamic features, or static features extracted from neighbouring speech frames.
The later form, is referred as explicit memory throughout this work. The first
attempt to quantify the importance of front-end memory inclusion is reported
in [85,103,104]. The work quantifies the importance of memory inclusion in the
form of delta features without affecting the complexity of a standard regression
model. Memory inclusion is performed either by replacing or appending higher
order static feature coefficients with lower order dynamic delta coefficients. This
is achieved for either only NB features or both NB and HB features. In the
latter scenario, the work in [15] reports a significant improvement in MI, however,
the lower order delta features are non-invertible and should be discarded during
reconstruction of HB components, thus resulting in a loss of information. Therefore,
the inclusion of memory necessitates the loss of informative higher-order static HB
features in order to accommodate dynamic delta features.

The use of higher number of neighbouring speech frames in order to extract
this extra informations leads to increased latency (because the use of future
frames introduce look-ahead delay) which is not suitable for ABE, which is a real-
time application. Additionally, it increases the computational complexity of the
regression model. While a body of the previous work on memory inclusion via delta
features points towards the importance of dynamic information to ABE, it raises
the questions of what degree of contextual or explicit memory information is of
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benefit and how can it be harnessed without increasing latency and computational
complexity. Therefore, a quantitative analysis of explicit memory and its inclusion
to improve performance of a fixed ABE algorithm is focus of the research work
presented in this chapter.

4.2 Brief overview of memory inclusion for ABE
via delta features: Past work

This section describes previous work which reported the benefit to ABE of mem-
ory inclusion via delta features. Memory inclusion using delta features can be
implemented:

• by appending delta coefficients to the existing static coefficients for NB and/or
HB features (referred to as scenario A), this increases the complexity of the
associated regression model due to increase in dimensionality of the features;

• by substituting a subset of higher-order static coefficients with the delta
coefficients of the remaining lower-order static coefficients (referred to as
scenario S), in this case, the dimensionality of the resulting feature set is
preserved.

The features resulting from such memory inclusion are referred to as dynamic
(static+delta) features.

4.2.1 Memory inclusion scenarios

The memory inclusion via delta features can be performed for both NB and/or
HB features. This can be done in four ways represented by scenarios A1, A2, S1
and S2, which are explained in the following [15, 4.4.3.1]. Given dnb-dimensional
NB features xNB, dhb-dimensional HB features yHB and ∆xNB and ∆yHB, their
respective, corresponding delta features, the resulting dynamic spaces for the 4
possible memory inclusion cases are represented by the following features:

Scenario A1: xNB
∆ = [xNB ∆xNB]T ∈ R2×dnb and yHB ∈ Rdhb

Scenario A2: xNB
∆ = [xNB ∆xNB]T ∈ R2×dnb and yHB

∆ = [yHB ∆yHB]T ∈ R2×dhb
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Scenario S1 : xNB
∆ = [xNB

lower ∆xNB
lower]T ∈ Rdnb and yHB ∈ Rdhb

Scenario S2 : xNB
∆ = [xNB

lower ∆xNB
lower]T ∈ Rdnb and yHB

∆ = [yHB
lower ∆yHB

lower]T ∈ Rdhb

where lower coefficients correspond to the first few coefficients of the feature vectors
xNB and yHB. Features xNB

∆ and xHB
∆ represent dynamic NB and HB features

respectively.

While A1 and S1 cases involve dynamic features only for NB, they are obtained
for both NB and HB in cases A2 and S2. A brief overview of results obtained using
these memory inclusion scenarios are discussed in sections 4.2.3 and 4.2.4.

4.2.2 Highband certainty

In order to quantify the usefulness of memory inclusion via delta features (rep-
resented by four memory inclusion cases A1, A2, S1, S2), in the work presented
in [15], the correlation between NB features xNB and HB features yHB is quantified
in terms of an information-theoretic measure of highband certainty (as proposed
in [171]). It is given by the ratio of the mutual information between xNB and yHB

to the discrete entropy of the HB representation yHB:

C(yHB|xNB) = I(xNB; yHB)
H(yHB)

In the cases, A1 and S1, of incorporating memory into NB features only, the
change in HB certainty is given by [15, 4.4.3.1]:

∆C1 = C(yHB|xNB
∆ )− C(yHB|xNB)

= I(xNB
∆ ; yHB)
H(yHB) − I(xNB; yHB)

H(yHB)

= 1
H(yHB) [I(xNB

∆ ; yHB)− I(xNB; yHB)] (4.1)

It means that in case of memory inclusion for NB features only, the change in
certainty is dependent only on the change in MI.

In second scenario of memory inclusion in both NB and HB, the change in HB
certainty is much more complex (in this case the change also depends upon the
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change in the entropy of the HB itself) and given by:

∆C2 = C(y∆
HB|xNB

∆ )− C(yHB|xNB)

= I(xNB
∆ ; yHB

∆ )
H(yHB

∆ ) − I(xNB; yHB)
H(yHB) (4.2)

4.2.3 Analysis and results

The importance of memory inclusion via delta features was studied and analysed
in [15, Section 4.3.3.2] in terms of its effect on the change in the high band certainty.
The analysis was presented for two feature representations, namely, line spectral
frequencies (LSFs) and Mel-frequency cepstral coefficients (MFCCs). The key
results and conclusions (relevant to the work presented in this thesis) are discussed
in the following.

• The improvement in HB certainty gain (∆C1) relative to the static HB
certainty C(yHB|xNB), i.e., ∆C1

C(yHB|xNB) is very little in A1 and S1 cases. Case
A1 showed modest improvement of ≈ 2.3% and ≈ 5.0% for LSFs and MFCCs
respectively.

Case S1 showed no improvement at all, thereby signifying the fact that
NB delta features contain less information about the static HB than do the
higher-order NB static features they replace.

• The dynamic (static+delta) features of both NB and HB are highly correlated
with each other translating into the significant increase in certainty about the
dynamic representation yHB

∆ of HB given the dynamic representation xNB
∆ of

NB. This certainty is denoted by C(y∆
HB|xNB

∆ ). Case A2 shows ≈ 115% and
≈ 99% of relative improvements in the certainty gains for LSFs and MFCCs
respectively. However, this improvement is achieved at the cost of increased
feature dimensionality.

In case S2 (in which the dimensionality of the features is preserved), the
relative improvements fall to ≈ 10% and ≈ 78% for LSFs and MFCCs
respectively. It was concluded that the MFCCs show superior correlation
properties in comparison to LSFs in the context of memory inclusion via delta
features under the fixed dimensionality constraint; which exhibit relatively
higher certainty gains in case S2.
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4.2.4 Discussion

There are some drawbacks associated with such type of memory inclusion:

• With memory inclusion via delta features under the constraint of fixed dimen-
sionality, the dynamic HB representation takes form yHB

∆ = [yHB
lower ∆yHB

lower].
As the delta features ∆yNB

lower are non-invertible, only static HB coefficients
yHB

lower are used during reconstruction of HB speech components. In con-
trast, all coefficients yHB are used during reconstruction when memory is not
included.

This leads to the reduced spectral resolution for HB representation, spectra
now represented by fewer coefficients, especially if the HB representation is
not MFCC. In case of MFCCs, if a higher number of Mel scale filters is used
during MFCC extraction, the spectrum with higher resolution can still be
generated using fewer, lower-order coefficients. This is because the extraction
of MFCCs involves a DCT operation which attempts to compress Mel-filter
energies into fewer coefficients. The truncation operation thus does not result
in considerable loss of spectral information.

• Without increasing the dimensionality and therefore subsequent complexity
of the ABE algorithm, only MFCC features showed significant improvement
in HB certainty. This would suggest a corresponding improvement in ABE
estimation performance. However, during resynthesis of bandwidth-extended
speech, the achieved HB certainty gains are offset by artefacts involved
inversion of HB MFCCs. This is because MFCC extraction involves lossy
(non-invertible) operations such as use of the magnitude of complex spectrum,
Mel-scale filter bank binning and removal/truncation of higher-order cepstral
coefficients [85].

• In memory inclusion scenario S2, relative improvements1 of ≈ 78% in the
HB certainty C(yHB

∆ |xNB
∆ ) (especially for MFCC features) showed promis-

ing potential for improvements in estimation performance of HB dynamic
(static+delta) features yHB

∆ given NB dynamic (static+delta) features xNB
∆ .

While delta coefficients ∆yHB
lower are non-invertible, only static features yHB

lower

are invertible and useful during reconstruction. Any improvement in HB
certainty C(yHB

∆ |xNB
∆ ) (i.e., the improved cross-band correlation between

1See Section 4.2.3.
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the dynamic (static+delta) representations yHB
∆ and xNB

∆ ) is thus useful for
ABE performance only if leads the improved correlation between dynamic
(static+delta) NB features xNB

∆ and static HB features yHB
lower. This means

that the HB certainty C(yHB
lower|xNB

∆ )S2
2, i.e., the certainty about the static

HB features yHB
lower given the dynamic NB features xNB

∆ should be increased.

Analysis in [15, Section 5.3.3.2] showed that the certainty C(yHB
lower|xNB

∆ )S2

was lower than the certainty C(yHB|xNB) obtained with an equivalent, mem-
oryless baseline. Therefore, further optimisations were performed in order
to obtain optimal NB and HB feature dimensionality which brought mod-
est improvements over the baseline. Additionally, the relative improvement
in certainty C(yHB

lower|xNB
∆ )S2 was only a small fraction of the certainty gain

C(y∆
HB|xNB

∆ ) (that was obtained for MFCCs in scenario S2). This confirmed
that, while delta features help to improve cross-band correlation between
dynamic features xNB

∆ and yHB
∆ , their non-invertibility puts restrictions on

achieving the equivalent improvements in correlation between features xNB
∆

and yHB
lower. This results in no or very little improvements in estimation of

the static HB features yHB
lower. This was further confirmed by modest improve-

ments in performance of the memoryless ABE system with front-end memory
inclusion [15, Section 5.3.4].

4.3 Assessing the benefit of explicit memory to
ABE

Speech signals are quasi-periodic in nature. During speech production, the con-
figuration of the vocal tract and the nature of its source vary with time. Even
though they are time-varying, speech signals can be considered stationary over
short durations, typically 20-30ms. This is because it is assumed that the vocal
tract changes its characteristics relatively slowly over such short-time interval.
Transfer function of the vocal tract filter thus can be assumed to be fixed or nearly
fixed. Therefore, speech signals are processed in terms of short duration frames
after applying appropriately chosen sliding windows3. Windows slide at a frame

2C(yHB|xNB
∆ )S2 represents the HB certainty calculated in scenario S2 which involves modelling

of joint-dynamic feature space [xNB
∆ yHB

∆ ]T using a GMM. This is in contrast to the certainty
estimations in scenarios A1 and S1 that involve GMM modelling of joint space [xNB

∆ yHB]T .
3Based on their specific shape, different windows provide different time and frequency resolution

properties. They are characterised by different main lobe and side lobe structure, e.g., the
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Chapter 4. ABE with explicit memory inclusion

interval (typically 5-10ms) that is sufficient to follow the changing events in speech
signals [10, Section 5.2].

ABE algorithms estimate HB frequency components from available NB com-
ponents. As the dynamics of the speech signal vary slowly, the HB frequency
components of a speech frame exhibit a significant correlation with the NB fre-
quency components in surrounding speech frames. In order to verify this hypothesis,
the quantification and study of the correlation via the standard MI measure4 is
presented in this section.

4.3.1 Analysis

The estimation and analysis of MI requires a choice of features. Approaches
to ABE use different features for NB and HB spectral content. Due to the
ease in time domain reconstruction, the most widely used HB features are LP
coefficients [81], line spectral frequencies (LSFs) [83] and cepstral coefficients [16].
Few algorithms use Mel-frequency cepstral coefficients (MFCCs) [85]. Study
reported in [172] investigated the selection of front-end NB features based on
information theoretic measures. It is suggested that the features offering maximal
MI and class separability offer potential to improve ABE performance.

For analysis of the MI reported in this chapter, three feature representations are
chosen for NB frequency components. They include log-Mel filter energy (logMFE)
coefficients, LP coefficients and autocorrelation coefficients (ACs). LP coefficients
are chosen for HB features. Each WB speech frame obtained from the entire
TIMIT dataset (excluding dialect (SA) sentences) is processed (refer to Section
3.3.1 for data pre-processing details) in order to extract NB and HB features
respectively, which form the vector pairs (xt,yt) for MI estimation according to
Eq. 3.19 (Section 3.4.3). Mean and variance normalisation (MVN) is applied to all
feature vectors before MI estimation.

rectangular window has a narrower main lobe structure than the Hamming window, but the
higher side lobe structure.

4Note that the work presented in [103, 171] suggested that in context of ABE, the MI,
I(xNB; yHB) alone is not sufficient rather the highband certainty, I(xNB;yHB)

H(yHB) , gives a more relevant
measure that quantifies cross-band dependence. This ratio quantifies the certainty about the
chosen HB parametrisation given a NB parametrisation. The work throughout this thesis employs
only LP coefficients for HB feature representations, thus, making the MI measure equivalent to
the HB certainty.
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Figure 4.1: An Illustration of mutual information (MI) estimation with contextual
information from neighbouring frames. Vertical bars represent NB (bottom) and
HB (top) feature vectors. Red boxes represent the pair of NB (xt+δ, δ = −1, 0, 1)
and HB (yt) components used for MI calculations.

Each WB speech frame is processed to extract 200-dimensional power spectrum
(PS) coefficients PNB

t corresponding to the NB frequency range. logMFE features
are then calculated by applying a Mel filter bank (MFB) to PNB

t . The MFB consists
of 10 filters with triangular frequency responses in the frequency range 0.3-3.4kHz.
The filter centre frequencies are linearly spaced according to the Mel-scale5. NB
LP coefficient features of 10 dimensions including the gain parameter are obtained
through SLP [212]. Conventional AC features consist of the first 10 normalised
auto-correlation coefficients obtained by applying the IFFT to PNB

t . Similarly
10-dimensional HB features are extracted through an application of SLP to HB
components, also giving 9 LP coefficients and a gain parameter. Note that the LP
gain obtained from LP analysis is an important property of a spectral envelope
and it is related to the power of the residual error – which acts as an excitation to
the vocal tract during production of a particular speech sound – and, therefore, it
is included in the LP features.

Eq. 3.19 is then used with a GMM of 128 components to estimate the MI
between instantaneous HB features and NB features at different time instances.
This procedure is illustrated in Fig. 4.1 where yt is the instantaneous HB component
at time t and where xt+δ is the NB component at time t+ δ where δ ∈ Z.

5Mel-scale converts frequency from linear scale (f) to logarithmic scale according to: m(f) =
2595 log10(1+f/700). The mapping is approximately linear in frequency unto 1kHz and logarithmic
at higher frequencies.
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Figure 4.2: An illustration of the variation in mutual information (MI) between
static highband (HB) features yt and static narrowband (NB) features xt+δ, (blue
profiles) extracted from neighbouring frames and delta features ∆xt,L (red profiles).

Typical phonetic events span in the order of 50ms [11, Section 6.10.1]. However,
some shorter sounds like plosives, stop bursts, stop onsets, releases and phone
boundaries invoke more rapid spectral changes. Therefore, in this analysis we
consider 1 to 5 neighbouring speech frames (i.e., 1 to 5 frames from past and future)
in order to cover phonetic events within 50ms on either side of t. Another reason
to confine our analysis to not more than 5 neighbouring speech frames is to avoid
problem of increased latency due to higher number of future (or look ahead) frames.
Next section illustrates how on average, for a given speech frame, NB features
obtained from neighbouring speech frames are correlated with instantaneous HB
features.

4.3.2 Findings

Blue profiles in Fig. 4.2 show the MI (vertical axis) between instantaneous HB
features yt and NB features xt+δ for δ ∈ [-5, +5] (horizontal axis). The three
profiles correspond to logMFE, LP coefficients and AC features. As expected, for
all three profiles, the MI is greatest for δ = 0 for which NB and HB features are
extracted from the same frame. For δ 6= 0, the MI is symmetrically lower. The
highest MI is obtained with logMFE coefficients and for δ = 1, 2 the MI falls by
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17% and 36% respectively relative to that obtained for δ = 0.

Fig. 4.2 also shows the MI between static HB and dynamic or delta NB features
(red profiles). Delta features or coefficients ∆xt,L are extracted for a frame with
index t by a first-order regression, known as a time-derivative. They are calculated
using linearly weighted differences between L neighbouring static feature vectors
on either side of t according to:

∆xt,L =
∑L
l=1 l.(xt+l − xt−l)

2∑L
l=1 l

2 (4.3)

where L ∈ [1, 5] (same horizontal axis in Fig. 4.2) is the number of static frames
considered either side of t. The MI between static HB and delta NB features is
considerably less than for static NB features. This observation corroborates the
findings reported in [15, Section 5.3.3.1], namely that NB delta features are of
little use to ABE; they provide comparatively little information about static HB
features.

This same finding suggests that ABE algorithms should use explicit memory, i.e.
static features extracted from neighbouring frames, instead of dynamic information
captured in delta features. The two research hypotheses under investigation in this
thesis are thus that:

• the inclusion of memory for ABE via front-end NB features in such a way
that it should help better modelling of phonetic events or sequences, and
should thus improve estimation of the HB features, thereby, giving bandwidth
extended speech of enhanced quality, and

• crucial to this work, however, is that the inclusion of such additional infor-
mation should not have prohibitive impacts on latency or computational
complexity.

Since the aim of the work presented in this chapter is to investigate the
contribution of memory to ABE and since the highest level of MI is obtained with
logMFE features, they are used as NB representations for all subsequent experiments
reported in this chapter. However, it is expected that the hypothesis remains
valid for any other front-end feature as confirmed through the MI assessments
illustrated in Fig. 4.2, namely the hypothesis that neighbouring static NB features
exhibit correlation with instantaneous static HB features irrespective of the NB
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representation. In addition, the use of energy based coefficients such as zero crossing
rate, gradient index, normalised relative frame energy, local kurtosis and spectral
centroid, e.g. as used in [16], is not considered here; it is assumed that their use
will further enhance the performance of any ABE system.

4.3.3 Need for dimensionality reduction

The results presented above show that NB features obtained from neighbouring
speech frames exhibit considerable correlation (measured in terms of MI) with
the instantaneous HB features. This correlation decreases gradually with increase
in δ on either side of t (see Fig. 4.2). The question we address here is how this
extra information can be incorporated in the context of ABE. One trivial approach
to explicit memory inclusion is through the concatenation of instantaneous NB
features with NB static features obtained from neighbouring speech frames to
obtain higher dimensional NB composite vectors (also referred to as a supervectors)
that can be used for estimation of HB components.

These supervectors are further processed with a dimensionality reduction trans-
form in order to obtain a compact, lower-dimensional NB feature vectors. This is
because of the following two reasons. (1) In practice, from an information theoretic
viewpoint, the MI between HB feature vectors and NB composite vectors (obtained
by combination of different lower-dimensional NB feature vectors) is not the result of
the simple addition of the MI between HB feature vectors and individual NB feature
vectors, i.e., for given feature vectors x1,x2,y, I(x1,x2; y) ≤ I(x1; y)+I(x2; y) [78,
Section 4.3.3]. (2) Higher-dimensional supervectors increase the complexity of tra-
ditional regression models and thus restrict the number of primary features to be
added to obtain the supervector. For example, the GMM regression technique
can’t handle high-dimensional data and suffers from the curse of dimensionality
where the number of training samples required for reliable estimation of probability
densities grows exponentially with the number of features [232].

The well-known and widely used dimesionality reduction transforms in the
ABE literature are linear discriminant analysis (LDA) [109,113,172], and principal
component analysis (PCA) [117]. LDA transform obtains the lower-dimensional
feature vectors while retaining the discriminative power as much as possible.
This is achieved through a linear transformation that maximises the ratio of
between-class to within-class covariance of the target vector in a projected, lower-
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Chapter 4. ABE with explicit memory inclusion

dimensional space; the ratio also known as class separability. LDA involves
offline learning of the transformation matrix using labelled training data, i.e., the
class to which each feature vector belongs is known [172]. PCA, also known as
the Karhunen–Loève transform (KLT), is a linear transformation in which the
higher-dimensional data is projected into a lower-dimensional orthogonal space
(known as the principal subspace) such that the variance of the projected data is
maximised [214, Section 12.1]. Unlike LDA, PCA does not need labelled training
data to learn the transformation matrix and is therefore the chosen dimensionality
reduction technique in this chapter.

4.4 ABE with explicit memory inclusion
The ABE algorithm with memory inclusion is illustrated in Fig. 4.3. It corresponds
to the baseline ABE algorithm discussed in Chapter 3 (refer to Fig. 3.1), with the
following modifications:

• NB feature extraction is performed by calculation of logMFE features (purple
box), and

• memory is included from neighbouring speech frames and a PCA transforma-
tion is employed in order to reduce feature dimensionality and computational
complexity (red box), for both during training and estimation.

Since the full details are available in Section 3.1, only the key modifications are
provided here. Each step corresponding to the three blocks of Fig. 4.3 are explained
in brief as follows:

4.4.1 Training

Parallel NB and WB signals (both at a sampling rate of 16kHz) are processed
frame-by-frame. Each NB speech frame sNB

t is processed to extract 10-dimensional
logMFE features which are mean-variance normalised to obtain the NB features
(xNB

t,mvn - top line in training block). HB features extracted from WB speech frame
sWB
t consist of 9 LP coefficients aHB

t and a gain coefficient gNB with mean-variance
normalisation (yHB

t,mvn - bottom line in training block).

Memory inclusion: NB features at time t are concatenated with neighbouring
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features extracted from δ frames on either side of t thus giving 10× (2δ + 1)-dimensional
features:

xt,conc_δ =
[
xNB
t−δ,mvn, ...,xNB

t,mvn, ...,xNB
t+δ,mvn

]T
(4.4)

In order that the complexity of subsequent steps is unaffected, principal com-
ponent analysis (PCA) is applied to reduce xt,conc_δ to 10-dimensional features
xNB
t,pca_δ. The PCA matrix WPCA is learned from training data and retained for use

in the estimation step. Finally, a 128-component, full-covariance GMM is learned
from the training data using joint vectors z = [xNB

t,pca_δ,yHB
t,mvn]T .

4.4.2 Estimation

During estimation, logMFE features are extracted from upsampled NB speech
frames sNB

t to obtain features xNB
t followed by mean-variance normalisation (mvnx)

(using means and variances obtained from training) to produce features xNB
t,mvn.

Memory is included according to the same procedure used during training, thereby
giving 10-dimensional features xNB

t,pca_δ. HB features ŷHB
t,mvn are then estimated

according to:

ŷHB
t,mvn =

M∑
m=1

πmN (xHB
t,pca_δ;µx

m,Σxx
m )

M∑
n=0

πnN (xHB
t,pca_δ;µx

n,Σxx
n )

[µy
m + Σyx

m Σxx−1

m (xHB
t,pca_δ − µx

m)] (4.5)

where πm, µm,Σm are the GMM parameters learned during training. Inverse mean
and variance normalisation (mvn−1

y ) is then applied to estimate HB LP coefficients
âHB
t and gain ĝHB

t . For further details, refer to Section 3.1.2.

4.4.3 Resynthesis

After estimation of the HB spectral envelope parameters for a input NB speech
frame, resynthesis of the extended WB signal is performed in the three distinct
steps as explained in Section 3.1.3.

4.5 Experimental setup and results
This section presents an assessment of the ABE algorithm with memory inclusion
in comparison to the ABE system without it. While objective and subjective
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assessment results are reported in order to demonstrate improvements in qual-
ity of bandwidth extended signals, the correlation of new NB lower-dimensional
representations with HB features is reported via MI measurements.

ABE experiments were performed on TIMIT dataset (see Section 3.2). While
the TIMIT training set is used for GMM training, the complete test set was used
for assessment (see Section 3.3.2).

4.5.1 Implementation details and baseline

The ABE algorithm with memory is denoted as Mδ where δ indicates the number of
neighbouring speech frames which form the memory. The baseline algorithm which
does not utilise any memory is denoted as B1 (= M0). Note that the key difference
between two ABE systems Mδ and B1 is that, during training and estimation,
they use features xNB

t,pca_δ and xNB
t features respectively, both being 10-dimensional.

Therefore, the performance of the system Mδ is completely attributed to the memory
inclusion performed via features xNB

t,pca_δ and not to any other system difference.

For comparison to the past work in [85] which exploits front-end memory inclu-
sion in the form of delta features, assessment includes a second baseline, denoted B2.
System B2 uses 5-dimensional static features appended with 5-dimensional delta
features for both NB and HB parametrisations (logMFE and LP coefficients in the
context of our implementation), thereby satisfying the constraint of fixed dimension-
ality. This is equivalent to the S2 (Section 4.2.1) memory inclusion scenario, where
higher order coefficients (6 to 10) of the (10-dimensional) NB and HB features are
replaced by the delta coefficients of lower order static coefficients (1 to 5). During
resynthesis, delta coefficients from the estimated HB features were eliminated with
only the first 5 static HB LP features being used.

All ABE algorithms were implemented with Hann windows of 20ms duration
and 10ms overlap, thereby supporting perfect OLA reconstruction (Section 3.1.3).
A 1024-point FFT was used for all frequency domain operations.

4.5.2 Objective assessment

Objective assessment is performed by evaluation of speech quality using the two dis-
tance metrics dRMS-LSD, dCOSH and objective estimates of MOS scores MOS-LQOWB
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Table 4.1: Objective assessment results (with mean and standard deviation values).
RMS-LSD and dCOSH are distance measures (lower values indicate better perfor-
mance) in dB whereas MOS-LQOWB values reflect quality (higher values indicate
better performance).

ABE method dRMS-LSD dCOSH MOS- LQOWB

B1 9.2 (1.24) 2.4 (0.66) 2.4 (0.40)

B2 10.1 (1.22) 3.6 (1.20) 2.2 (0.37)

M1 8.2 (0.95) 2.2 (0.64) 2.8 (0.43)

M2 8.1 (0.89) 2.1 (0.65) 2.9 (0.42)

M3 8.2 (0.89) 2.2 (0.68) 2.8 (0.41)

(Section 3.4.2). Objective assessment results are illustrated in Tab. 4.1. While
all ABE systems with memory outperform both baselines B1 and B2, system M2,
which uses memory contained within two neighbouring frames, performs best.
Performance of system M2 is improved (in comparison to that of system B1) in
terms of distance metrics dRMS-LSD and dCOSH by 0.9dB (9.2→ 8.1dB) and 0.3dB
(2.4→ 2.1dB) showing 15% and 14% of relative improvements respectively. The
MOS estimates MOS-LQOWB are improved from 2.4 to 2.9 signifying 21% of rel-
ative improvement. The performance of system M3 is less, however insignificant,
than that of M2 despite it utilising relatively higher amounts of memory. This is
perhaps because of the constraints imposed by the fixed-dimensionality. PCA –
the employed dimensionality reduction technique – possibly fails to conserve the
extra information obtained from a higher number of static, neighbouring frames
into the only 10-dimensional features.

Surprisingly, baseline system B2 gives worse performance than B1. This is
caused by the inclusion of memory through delta features with the constraint of
fixed dimensionality. The latter necessitates the loss of informative higher-order
static HB features in order to accommodate dynamic delta features. On account
of these findings, costly, time-consuming subjective assessments were performed
with systems B1 and M2 only.
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Chapter 4. ABE with explicit memory inclusion

Table 4.2: Subjective assessment results in terms of CMOS (with corresponding
95% confidence interval (CI95)).

Comparison B → A CMOS [CI95]

M2 → NB 0.69 [0.42; 0.96]

M2 → B1 0.51 [0.36; 0.66]

M2→ WB -0.78 [-0.97; -0.59]

Table 4.3: Mutual information assessment results. I(x; y) denotes the MI between
features x and y.

Comparison logMFE

I(xNB
t ; yHB

t ) (System B1) 1.24

I(xNB
pca_2; yHB

t ) (System M2) 1.34

4.5.3 Subjective assessment

Subjective assessments were performed using CCR listening tests (Section 3.4.1)
in order to compare performance in terms CMOS. Tests were performed by 14
listeners who were asked to compare the quality of 14 pairs of speech signals A and
B. They were asked to rate the quality of signal B with respect to A according
to the CCR scale. : -3 (much worse), -2 (slightly worse), -1 (worse), 0 (about
the same), 1 (slightly better), 2 (better), 3 (much better). The samples were
played using DT 770 PRO headphones. Tab. 4.2 shows the CMOS results with
corresponding 95% confidence interval (CI95). CMOS results of 0.69 and 0.51 show
that bandwidth extended speech produced by system M2 is preferred to original
NB speech and that produced by memoryless system B1. The bandwidth-extended
speech obtained relatively 0.78 CMOS points below the WB speech quality.

4.5.4 Mutual information assessment

The explicit memory inclusion presented in this chapter, from another viewpoint,
can be seen as obtaining a 10-dimensional compact NB representation from addi-
tional information in the form of static NB features extracted from neighbouring
speech frames. These NB features are further utilised by the underlying GMM
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regression model to improve estimation of HB features. The benefit is confirmed
though the findings of both objective and subjective assessments. These findings
are further validated by showing the improvement in mutual information (MI)
brought by the inclusion of memory. MI is estimated, between the two features
sets extracted from the entire TIMIT dataset (excluding dialect (SA) sentences),
according to Eq. 3.19 (Section 3.4.3).

Tab. 4.3 compares MI estimated between features xNB
t and yHB

t (denoted by
I(xNB

t ,yHB
t )) with that between features xNB

t,pca_2 and yHB
t (denoted by I(xNB

t,pca_2),yHB
t ).

NB features with memory xNB
t,pca_2 exhibit 8.1% higher MI relative to features xNB;

the MI improves from 1.24 to 1.34. These results show that the inclusion of
memory results in notably higher MI; memory helps to better model missing HB
information.

4.5.5 Discussion

Objective, subjective and mutual information improvements

In the past work, and as discussed in Section 4.2, the inclusion of memory via delta
features improved HB certainty relatively by 78% (in S2 scenario) for dynamic
(static+delta) NB and HB MFCC representations. In other words, reliability of esti-
mation of dynamic HB features was improved significantly. However, the estimated
dynamic features consist of static as well as non-invertible delta features. Latter
are thus discarded during reconstruction of HB components. The improvement in
HB certainty thus did not reflect into corresponding improvement in actual ABE
performance.

In the work reported here, however, the new NB representation obtained via
explicit memory inclusion exhibits 8% relative improvement in MI and this gain
translates to improvements in speech quality of 0.51 CMOS points over memoryless
ABE. Improved ABE performance in this case suggests that explicit memory
inclusion successfully exploits the correlation between HB features and static NB
features obtained from neighbouring frames. These findings are further validated
through MI assessment results.
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Figure 4.4: A comparison of true wideband (WB) linear prediction (LP) gain gWB
true

to estimated WB LP gain ĝWB for ABE systems M2 and B1. A comparison of
corresponding speech spectrograms is shown in Fig 4.5.
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Figure 4.5: A comparison of spectrograms of wideband (WB) speech signals
artificially bandwidth-extended using ABE systems (a) B1 and (b) M2 to that of
(c) original WB speech signal. The comparison is shown for the utterance “Not
surprisingly, this approach did not work” from the TIMIT test set.
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Latency and complexity

Most ABE algorithms reported in the literature, especially those that exploit the
complex, higher dimensional data modelling capacities of DNNs, incorporate higher
number of static neighbouring features to provide input to the DNN regression
model. The relative performance improvements obtained, however, are perhaps
impractical due to the amount of latency (or look-ahead delay) introduced by higher
number of future frames. According to [216, Section 18.4], end-to-end transmission
delays in a two-way communication system should not exceed 150 ms for effective
voice interaction. To meet this requirement the algorithmic delay introduced only
by encoder/decoder (codec) should not exceed 20-30 ms6.

The aforementioned improvements in quality of extended speech signals using
explicit memory inclusion are achieved at the modest cost of latency and complexity.
The ABE system with memory Mδ involves a look-ahead of δ frames giving rise
to an algorithmic delay of δ multiplied by the frame shift. The best performing
ABE system M2 introduces a delay of 20ms which is within the practical limits. In
practice, this delay can be further reduced if the ABE framing scheme matches
that of the decoder.

The only factor contributing to increased complexity is the weight matrix
WPCA with size 50× 10 ((2δ + 1)dnb × dhb) that is involved in computations for
dimensionality reduction. This is manageable considering high computing power
available with today’s smart communication devices.

Improvemnts in gain estimation

Additional informal listening test results showed that the inclusion of memory helps
to reduce processing artefacts in extended speech, thereby resulting in enhanced
quality. This is perhaps because of the improved estimation of the LP gain gWB. To
illustrate this, a comparison of the WB LP gains (estimated using ABE systems M2

and B1) ĝWB and the true WB LP gain ĝWB
true is shown in Fig. 4.4. The gain values

were calculated for all frames over a speech utterance. It can be observed that the
trajectory of the estimated gain with memory inclusion follows more closely that
of the true gain than in case of gain estimation without memory. Improvements in
gain estimation thus help to reduce overestimation or underestimation of energy

6Apart from delay introduced by codec, the actual end-to-end delay includes other sources of
delay, e.g., delay introduced by transmission network, audio post-processing, etc.
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levels of the individual speech sounds thereby helping to reduce perceived processing
artefacts, improvements which are confirmed by reductions in RMS-LSD. This can
also be confirmed from a comparison of respective spectrograms shown in Fig 4.5.

4.6 Summary
This chapter reports an approach to artificial bandwidth extension that incorporates
explicit memory for better estimation of the missing highband speech components.
The work builds upon and extends prior work that studied the benefit of capturing
font-end memory via dynamic delta features; memory that can be exploited by
traditional statistical models such as GMM regression. The key contributions of
the work reported in this chapter are as follows.

• A thorough study and analysis of explicit memory that can captured through
static features extracted from neighbouring speech frames is performed
through information theoretic analyses.

• The effective inclusion of explicit memory in a memoryless ABE system using
feature dimensionality reduction (under the constraint of fixed dimensionality)
to improve estimation performance is demonstrated. This improvement is
achieved via modest increase in complexity and an algorithmic delay of 20ms.
The results show that the higher number of future frames should be avoided
as they do not provide further improvements, however, lead to the increased
latency.

• The potential of this approach is validated though both objective and sub-
jective assessments. The corresponding improvements obtained with new
narrowband compact representation are further validated by showing the
improvement in mutual information.

The work reported in this chapter employs principal component analysis – a
linear, unsupervised approach to dimensionality reduction that preserves the input
variation as much as possible. This motivates us to investigate and explore other
dimensionality reduction techniques designed to preserve quality rather than feature
variance. In particular, deep learning based approach to dimensionality reduction
is explored and presented in next chapter.
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Chapter 5

ABE with memory inclusion
using semi-supervised stacked
auto-encoders

The utilisation of contextual information in the form of dynamic features or
explicit memory captured from neighbouring frames is common to ABE research,
however the use of additional cues augments complexity and can introduce latency.
The previous chapter showed that unsupervised, linear dimensionality reduction
technique can help to reduce complexity and latency can be reduced with the use of
no more than two look-ahead speech frames. This chapter reports a semi-supervised,
non-linear approach to dimensionality reduction using a stacked auto-encoder. In
further contrast to the work reported in the previous chapter, it directly operates on
spectral coefficients, from which low dimensional narrowband features are learned
automatically in a data-driven manner. The objective speech quality measures show
that the new features can be used with a standard regression model to improve
ABE estimation performance. Improvements in the mutual information between
learned narrowband and highband features are also observed whereas improvements
in speech quality are corroborated by informal listening tests.

Section 5.1 describes the two unsupervised dimensionality reduction techniques,
namely principal component analysis and stacked auto-encoders. Section 5.2 the
explains need of supervision for regression tasks such as ABE and how semi-
supervised stacked auto-encoder can be used to improve ABE performance under
the constraint of fixed dimensionality. Section 5.3 describes experiments, training
and optimisation details whereas assessment results are presented in Section 5.4.
Summary of the chapter is presented in Section 5.5.
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5.1 Unsupervised dimensionality reduction
The work in the previous chapter presents a quantitative analysis of the benefit
of explicit memory inclusion in a fixed ABE solution. That work builds upon
previous investigations of front-end feature extraction for ABE [172] and of
memory inclusion via delta features under the constraint of fixed dimensionality [15].
Principal component analysis (PCA) is employed in order to incorporate memory
without increasing feature dimensionality; regression complexity is unaffected.
While retaining the amount of variation in the input NB features as much as
possible, PCA being an unsupervised approach to dimensionality reduction does
not take into account the output HB features. The hypothesis of the research
presented in this chapter is that supervised or semi-supervised and non-linear
dimensionality reduction techniques may offer potential to learn lower dimensional
representations tailored specifically to ABE, thereby giving better performance.

The two unsupervised techniques for dimensionality reduction, namely PCA
and stacked auto-encoders (SAEs) are explained in brief in the following.

5.1.1 Principal component analysis

PCA, also known as the Karhunen–Loève transform (KLT), is a linear transforma-
tion that is defined as an orthogonal projection of higher dimensional data into a
lower dimensional space. This is achieved by maximising the variance of the input
data in the projected space, also known as the principal subspace. The variables
of the input data set are transformed to a new set of uncorrelated variables, also
referred to as principal components, which are ordered so that first few preserve
most of the variation in the original input data [233, Chapter 1]. PCA is widely
used for different applications such as dimensionality reduction or lossy compression
for higher dimensional data, feature extraction and data visualisation [214, Section
12.1]. As an unsupervised, linear approach to dimensionality reduction, PCA aims
only to produce a low dimensional NB representation which retains as much as
possible the variation in the original representation. For a specific task such ABE
considered in this thesis – where 10 dimensional HB features are estimated using a
standard regression model from the 10-dimensional compact NB features extracted
from higher dimensional NB data with memory – the new features may not be
optimised. This is because the compact NB features may not contain information
related to HB features.
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5.1.2 Stacked auto-encoders

With the increased computational power of graphics processing units (GPUs) and
availability of training data, the numerous research topics are influenced by the
success of deep learning techniques. Deep neural networks (DNNs) are well-known
for their ability to model highly complex, non-linear functions from training data.
The most commonly used non-linear technique to dimensionality reduction in the
deep learning literature is that of stacked auto-encoders (SAEs)1. SAEs have been
widely studied and investigated in the last decade. In contrast to linear PCA,
SAEs offer a non-linear solution to dimensionality reduction or feature extraction.
They have been applied to many speech processing tasks, e.g., phoneme/speech
recognition [148,234,235], speech synthesis [236], spoofing detection for automatic
speaker recognition [237], speech compression [238] and voice conversion [239, 240].
Common to most of these examples is the use of SAEs to learn so-called bottleneck
features, namely compact feature representations tailored to pattern recognition
and classification.

Auto-encoders

An auto-encoder (AE) is an artificial neural network that is widely used for the
learning of higher-level data representations. An AE consists of an encoder and a
decoder as shown in Fig. 5.1(a). The encoder fθ(·) maps an input vector x ∈ Rd

to a hidden representation h ∈ Rdh according to:

h = fθ(x) = s(Wx + b) (5.1)

where θ = {W,b} is the parameter set of weight matrix W (of dimension d×dh) and
bias vector b (of dimension dh×1). The function s(·) is a non-linear transformation
(or an activation function). The encoder is followed by a decoder gθ′ (·) which aims
to reconstruct the original input x from the learned representation y according to:

x̂ = gθ′(h) = s′(W′h + b′) (5.2)

where θ′ = {W′,b′} and s′(·) is either a linear or a non-linear transformation
depending on the nature of input x. For real-valued inputs, parameters {θ, θ′} are

1SAEs are alternatively referred to as deep auto-encoders (DAEs). The literature also refers
to stacked auto-associators (SAAs).
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Figure 5.1: The architecture of (a) an auto-encoder (AE) and (b) stacked (deep)
auto-encoder (SAE).

optimised according to a mean squared error (MSE) objective loss function which
reflects the difference between the input and the reconstructed output.

When the dimension of the hidden representation h is lower than that of the
input x, i.e., dh < d, then the AE is referred to as undercomplete. This form of
structure is used for dimensionality reduction or feature extraction [241, Section
14.1]. With linear activations and a squared error loss function, an AE learns to
span the same subspace as PCA [242]. A non-linear AE may also perform PCA
like transformations if the inputs to the non-linear hidden activations stay in the
linear region of the sigmoid function [243]. However, when the layer inputs stay
away from the linear range of the sigmoid activation function, then AEs can learn
a nonlinear generalisation of PCA [244].

Stacked auto-encoders

The modelling of complex and high-dimensional data distributions using shallow
neural networks would require a very large number of parameters in comparison
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to deeper networks. DNNs are formed by composing multiple levels of non-linear
operations via the use of more than one hidden layer with non-linear activation
functions [245, 246]. In comparison to the shallow architectures, they are hence
inherently capable of learning highly non-linear and complex functions, efficiently.
The depth of an AE can be increased by stacking multiple layers of encoders
and decoders, thereby forming a stacked auto-encoder (SAE) as illustrated in
Fig. 5.1(b).

Evolution of training strategies in deep learning

DNNs have a tendency to get stuck in local minima as their size increases. Different
techniques to improve the optimisation of DNNs have been proposed. These
methods seem to improve gradient-descent optimisation, thereby encouraging DNNs
towards global minima and better generalisation. A selection of such techniques
that are most relevant to the work presented in this chapter, is discussed in below.

Weight initialisation: The training of SAEs (or DNNs) becomes increasingly
difficult because of the difficulty in finding global minima during optimisation.
With large initial weights, SAEs usually find local minima whereas with small initial
weights the gradients in the initial layers become very small thus making training
of SAEs infeasible. Therefore, initialisation of the network weights becomes an
important factor for efficient optimisation [247].

Some form of pre-training is usually employed to initialise network weights. Pop-
ular solutions include weight initialisation via the layer-by-layer learning of deeper
networks, also known as unsupervised pre-training, using restricted Boltzmann
machines (RBMs) [247] and denoising AEs [248]. Individual layers are stacked
after pre-training and subsequently fine-tuned according to a particular task of
interest. Such greedy layer-wise pretraining helps optimisation through the better
initialisation of hidden layers; hidden layers then represent more meaningful repre-
sentations of the input. This helps in improved generalisation [249]. Pretraining
has been shown to act as a regulariser [250,251].

Further studies [252] have shown that the use of logistic sigmoid and tanh
activation functions drive top/last hidden layers of a randomly initialised deep
network into a saturation. This prevents the backward flow of the gradients and
therefore, the lower/initial layers are prevented from learning useful representations.
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An alternative empirical approach to weight initialisation, also known as normalised
initialisation2 is proposed in [252]. It is designed to maintain the same variance
for all activation outputs and back-propagated gradients across all layers upon
initialisation. While this method theoretically assumes that the network operates
in the linear regime of its activation function, the technique is reported to perform
reasonably well with hyperbolic tangent (tanh) and softsign [253] non-linearities.

The study reported in [254] derives the improved weight initialisation technique
for extremely deep networks (with 30 hidden layers) with rectified linear units
(ReLUs). The derivation takes into account the non-linear behaviour of the rectified
activation units.

Rectifier linear units (ReLUs): Rectified (or hinge) activation units, also
known as rectifiers, are a better model of biological neurons and give equivalent or
better performance than the logistic sigmoid or tanh activations, even without the
need of unsupervised pretraining [255]. However, a ReLU is activated only when
its input is above 0. This can cause a problem in some cases during gradient-based
optimisation when a small number of inactive units may never be learned reliably
due to zero gradients. The use of ReLUs is thus adapted slightly in order to allow
small, non-zero gradients during back-propagation when the unit is saturated or
inactive. The ReLUs or their variants (e.g., leaky ReLUs (LReLUs) [256], parametric
ReLUs (PReLUs) [254], exponential linear units(ELUs) [257]) have all shown
improved results on tasks such as image recognition and text classification [255],
image classification [258] and speech recognition [256,259].

Dropout: Dropout [260] is a technique to improve the performance of DNNs
by reducing overfitting. It involves randomised dropping out of a unit (hidden or
visible) in each layer (except the output layer) of a DNN with some fixed probability
p (that is independent of the other units) for each training sample in a mini-batch
optimisation procedure. The hidden unit cannot then rely on the presence of the
other units in the network during training. This reduces the so-called co-adaptation
among hidden units so that they are forced to learn more robust features. From
another point of view, dropout is an approximate and efficient model averaging
technique where the huge number of different architectures of a DNN are trained
in a reasonable time and all the networks share the same weights for the hidden
units that are present. During testing, outgoing weights of each unit are multiplied

2In deep learning literature, alternatively it is also referred as Xavier or Glorot initialisation.
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by the scaling factor (1 − p) where p represents the probability with which the
unit was dropped during training. Dropout is also considered as a regularisation
technique that is similar to the addition of noise to hidden units as in the case of
denoising AEs, the noise in this case being generated by the dropping of the units
with a certain probability [261].

Batch-normalisation: The distribution of inputs to each hidden layer of a
DNN keep changing during training because of the change in the parameters of
the previous layer leading to a problem of internal covariance shift. The effect
leads to the saturation of the neurons which, in turn, slows down convergence
making the optimisation inefficient. This problem is tackled by normalising the
inputs to each layer for each mini-batch where the normalisation parameters for
each layer are learned during training. This mechanism is referred to as batch-
normalisation (BN) [262]. It helps to achieve a stable distribution of the activation
values throughout training thereby reducing the chances of the network getting
stuck in the saturation regime of non-linearity. BN thus also makes the optimisation
process less sensitive to the higher learning rates and initial weight initialisation.
It also acts as a regulariser thereby making the use of dropout unnecessary [262].

With incorporation of some methods3 (e.g.: use of rectifiers and weight initiali-
sation techniques to avoid saturation regime and local minima during optimisation;
techniques such as dropout and batch-normalisation that help to reduce overfitting)
during DNN training, the pretraining is often no longer needed as it does not bring
any significant improvements [241, Section 15.1].

5.2 ABE using semi-supervised stacked auto-encoders
This section reports the use of SAEs for non-linear dimensionality reduction in ABE,
specifically the use of SAEs trained in a semi-supervised manner. The objectives
are to (i) harness memory in a compact, low dimensional representation in order to
improve the reliability of estimated HB components and (ii) to learn NB features
directly from spectral coefficients instead of hand-crafted features. The merit
of both contributions is assessed through objective assessment, an information

3Numerous techniques for weight initialisation and regularisation for better optimisation of
DNNs are reported in the literature. Only few techniques are discussed here in brief and explored
in our experiments. This is because it is well known that no particular technique gives consistent
results and the choice is mostly dependent on the task of interest. The tuning of hyperparameters
thus becomes important.
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theoretic approach and informal listening tests.

The ABE algorithm presented in the previous chapter uses unsupervised, linear
dimensionality reduction, i.e., PCA, so that the complexity of the standard regres-
sion model learned in training and used in estimation, remains unchanged as a
result of memory inclusion. It is used as a baseline algorithm. We seek to further
improve ABE performance using a SAE trained in a semi-supervised manner.

5.2.1 Semi-supervised stacked auto-encoders

With a reconstruction-based objective loss function, SAEs are trained to maximise
the lower bound on the mutual information between the input x and the learned
representation h; the significant information about the input x is retained in
h. However, such training criterion may not necessarily yield the most useful
representation because SAEs can simply learn a trivial identity mapping between
the input and the reconstructed output, rather than a meaningful, high-level
representation [248]. Additionally, being unsupervised, features extracted from the
bottleneck layer of a conventional SAE are not expressly designed for classification
or regression; they will likely be suboptimal in this respect.

Supervised (or discriminative) fine-tuning of DNNs after unsupervised pretrain-
ing for robust feature extraction in recognition or classification tasks is important.
The partially-supervised pre-training of AEs was shown in [249] to be beneficial,
especially for regression tasks. Specifically, a mixed training criterion was used
to pretrain each layer that is a combination of both supervised and unsupervised
objectives. The unsupervised objective thus helps to model or reconstruct the
input whereas the supervised objective helps to predict the target.

Drawing upon this work, we have explored the semi-supervised training of
SAEs in order to learn compact representations designed specifically for regression
modelling and ABE. The resulting semi-supervised SAE (SSAE) architecture with
2 output layers is illustrated in Fig. 5.2. While one output layer is learned to
reconstruct the input NB features (AE output) as with a conventional SAE, the
other output layer is learned to estimate the missing HB features (regression
output). This is achieved though a joint objective loss function given by:

Ltotal = c ∗ Lreg + (1− c) ∗ Lae
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Figure 5.2: A semi-supervised stacked auto-encoder (SSAE).

where Lreg and Lae are the objective loss functions for regression and AE outputs
respectively and where c ∈ [0, 1] weights the contribution of individual losses. As
the input NB and output HB features are real-valued, optimisation is performed
with a MSE objective loss function.

5.2.2 Application to ABE

After training, the AE output layer of the SSAE can be discarded and the resulting
feedforward architecture can also be used to estimate the HB components directly
from the regression layer. A similar CNN based architecture designed to regularise
the mapping of short i-vectors to long i-vectors for a speaker verification task is
reported in [263]. The focus here is different, i.e., to regularise/supervise dimen-
sionality reduction so that it preserves information critical to ABE, information
that is further exploited by an otherwise standard regression model. Therefore,
after SSAE training, the decoder is discarded and only the encoder (red box in
Fig. 5.2) is retained.

In order to investigate the merit of the SSAE-based approach to dimensionality
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reduction and ABE, the weight matrix WPCA in Fig. 4.3 (red boxes) is replaced by
the SSAE encoder. Extracted low dimensional features are then mean and variance
normalised4. GMM training and estimation are performed in the same manner
described in Section 4.4.

Also reported here in this chapter is a variation on this approach whereby the
low dimensional NB representation is derived directly from NB log power spectrum
(LPS) coefficients instead of logMFE features. This is achieved quite simply by
replacing logMFE features with LPS coefficients given by PNB

t (refer to Section 4.3.1
for details related to the calculation of PNB

t ).

5.3 Experimental setup
The ABE algorithm with explicit memory inclusion and dimensionality reduction
using PCA presented in Chapter 4 is used as a baseline. Experiments are designed
to compare the performance of the baseline ABE system using PCA dimensionality
reduction MPCA_2 to that of the same system using SSAE dimensionality reduction
MSSAE_2. Systems MPCA_2 and MSSAE_2 use 10-dimensional features xNB

t,pca_2 and
xNB
t,ssae_2,mvn respectively, obtained using static features extracted from 2 neighbour-

ing speech frames. This section describes the details of the configuration, training
and optimisation of the SSAE architecture.

5.3.1 SSAE training, configuration and optimisation

Training

The SSAE was implemented with the Keras toolkit [264]. Consistent with the work
presented in the previous chapter, features xNB

t,conc_2 at time t (obtained from the
concatenation of features extracted from 2 preceding and 2 proceeding frames) are
fed to the input of the SSAE. Whereas the AE output is the same as the input,
the regression output is set to HB features yHB

t,mvn. So as to improve the rate of
convergence to global minima, the SSAE is initialised according to the approach
described in [254]. With a MSE criterion, optimisation is performed according to
the procedure described in [265], referred to as Adam optimisation, with an initial

4The mean-variance normalisation (MVN) is found to be critical to ABE performance using
SSAE features. Further analysis and results with and without MVN are discussed in detail in the
next chapter.
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learning rate of 10−3 and hyperparameters β1 = 0.9, β2 = 0.999 and ε = 10−8.

Configuration

We investigated two 6-layer conventional symmetric SSAE structures with different
numbers of units in the hidden layers:

1. 512, 256, 10, 256, 512 (denoted as Arch-1);

2. 1024, 512, 10, 512, 1024 (denoted as Arch-2).

The number of units in the middle hidden layer is chosen to be 10 in order to satisfy
the constraint of fixed dimensionality imposed by the GMM regression model used
for subsequent ABE. The analysis of previously reported DNN-based solutions to
ABE have shown that increasing the number of hidden layers or the number of units
does not significantly improve estimation performance [86, 124, 147]. Therefore
the search space for optimisation is reduced by selecting only two topologies
mentioned above with the assumption that they provide the best trade-offs between
performance and complexity.

Output layers consists of 50 (AE) and 10 (regression) units. Hidden layers
have tanh or ReLU activation units whereas output layers have linear activation
units. In order to discourage over-fitting, the use of dropout (dr) [261] and batch-
normalisation (bn) [262] techniques are also investigated. The learning rate is
reduced by half in the case that the validation loss increases between 2 consecutive
epochs. Regression and AE loss weights were both set to c=0.5. Networks are
trained for 30 epochs and the model with the lowest validation loss is used for
subsequent analysis.

Optimisation

Performance in terms of MSE, on training (T) and validation (V) data, for the
two different architectures (Arch-1 and Arch-2) and four different combinations
of dropout (dr) and batch-normalisation performed either after (bn-a) or before
(bn-b) activation is shown in Table 5.1. Dropout is applied before all hidden layers.

Relatively low values of MSE are achieved without dropout or batch normal-
isation (configuration A), although performance is poor for Arch-2 with ReLU
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Table 5.1: MSE for different SSAE configurations with either ReLU or tanh
activation functions, with and without dropout (dr) and batch normalisation (bn)
either after (a) or before (b) activation. dr value represents fraction (p) of randomly
chosen hidden units being set to 0. Results are illustrated for the each SSAE
configuration on training (T) and validation (V) datasets.

dr bn
Arch-1 Arch-2

ReLU tanh ReLU tanh

T

A - - 0.454 0.439 1.000 0.445

B - a 0.434 0.436 0.428 0.444

C - b 0.437 0.438 0.436 0.438

D 0.2 - 1.000 0.486 1.000 0.492

V

A - - 0.474 0.461 1.012 0.467

B - a 0.460 0.461 0.461 0.467

C - b 0.459 0.459 0.460 0.460

D 0.2 - 1.012 0.504 1.012 0.509

activation. The use of dropout without batch-normalisation (configuration D)
results in poorly regularized networks, especially for ReLU activation. Similar
observations are reported in [124], namely that the use of dropout with filterbank
based features does not improve performance on training and validation data and
does not help to reduce overfitting. The use of either form of batch-normalisation
without dropout gives consistently low values of MSE, with the best results being
obtained with a bn-b configuration (C) on validation data. This configuration is
thus used for further experiments related to ABE.

5.3.2 Databases and metrics

ABE performance is assessed with three objective metrics and informal listening
tests. The correlation between NB features (obtained using SSAE and PCA) and
HB features is measured via mutual information (MI).

ABE experiments were performed on TIMIT and TSP speech datasets described
in Sections 3.2.1 and 3.2.2 respectively. While the TIMIT dataset is used for training
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and optimisation of SSAE parameters, the TSP speech dataset is used for testing
(Section 3.3.2).

5.4 Results
This section presents improvements in ABE performance using SSAE-based di-
mensionality reduction approach in comparison to PCA. Results are reported for
both the configurations, Arch-1C and Arch-2C. The assessment of speech quality is
performed via three objective speech quality measures and informal listening tests.
MI results are also reported.

5.4.1 Speech quality assessment

The objective metrics include the two distance metrics dRMS-LSD, dCOSH and objec-
tive estimates of MOS scores MOS-LQOWB (Section 3.4.2). Objective performance
obtained for the testing set and for both the baseline MPCA_2 and SSAE-based
approach MSSAE_2 to ABE are illustrated in Table 5.2. With only one exception
(i.e., the case of dRMS-LSD for Arch-2C with ReLUs), spectral distortion metric
results show lower values for SSAE than for the baseline. MOS-LQOWB scores
for SSAE systems are consistently higher. The Arch-2C SSAE system with a
tanh activation performs best; the distance metrics dRMS-LSD, dCOSH are improved
by 3.1% (7.34 → 7.11 dB) and 5.9% (1.52 → 1.43 dB) relative to the baseline
system. The MOS-LQOWB results are improved by 0.11 points (2.96 → 3.11)
leading to 3.7% of relative improvement. Unfortunately, though, despite convincing
improvements in objective performance metrics, informal listening tests showed
little discernible differences between the quality of speech signals produced by the
baseline and SSAE systems.

Objective performance measures for the two best performing SSAE configura-
tions, Arch-1C and Arch-2C both with tanh activations, trained using LPS inputs
instead of logMFE features are illustrated in Table 5.3. Distortion measures are
consistently lower, whereas MOS-LQOWB scores are consistently higher than results
for all other SSAE-based systems. Specifically, the best SSAE system (Arch-2C
with tanh activation) improves ABE performance in terms of dRMS-LSD, dCOSH and
MOS-LQOWB measures by 6.3% (7.34→ 6.88 dB), 13.4% (1.52→ 1.34 dB) and
7.1% (2.96 → 3.17) relative in comparison to the baseline system. In contrast
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Table 5.2: Objective performance metric results (with mean and standard deviation
values) for ABE system MSSAE_2. dRMS-LSD and dCOSH are spectral distortion
measures in dB (lower values indicate better performance) whereas MOS-LQOWB
values reflect quality (higher values indicate better performance).

Objective metrics
Arch-1C Arch-2C

Baseline
ReLU tanh ReLU tanh

dRMS-LSD
7.28
(0.70)

7.12
(0.68)

7.38
(0.69)

7.11
(0.67)

7.34
(0.70)

dCOSH
1.48
(0.35)

1.44
(0.36)

1.49
(0.35)

1.43
(0.34)

1.52
(0.38)

MOS-LQOWB
2.99
(0.34)

3.06
(0.34)

2.99
(0.34)

3.07
(0.34)

2.96
(0.34)

Table 5.3: Objective assessment results for ABE system MSSAE_2 using log power
spectrum (LPS) inputs in place of log-Mel filter energy (logMFE).

SSAE configuration dRMS-LSD dCOSH MOS-LQOWB

Arch-1C, tanh 6.90 (0.63) 1.37 (0.34) 3.16 (0.33)

Arch-2C, tanh 6.88 (0.62) 1.34 (0.33) 3.17 (0.33)

Table 5.4: Mutual information assessment results. I(x; y) denotes the MI between
features x and y.

I(xNB
t,pca_2; yt), Baseline 1.55

I(xNB
t,ssae_2; yt), Arch-1C (with logMFE input) 1.69

I(xNB
t,ssae_2; yt), Arch-2C (with logMFE input) 1.71

I(xNB
t,ssae_2; yt), Arch-1C (with LPS input) 1.84

I(xNB
t,ssae_2; yt), Arch-2C (with LPS input) 1.90

to findings for the SSAE systems that operate using logMFE features, informal
listening tests show discernible improvements to speech quality compared to speech
produced using the baseline ABE system.
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5.4.2 Mutual information assessment

A final set of results aims to further validate the findings of both objective metrics
and informal listening tests. This is achieved by observing improvements to the
mutual information (MI) between the learned NB representation and true HB rep-
resentation measured using the testing set. A 128-component full-covariance GMM
trained with joint vectors (obtained from the testing set) formed by learned NB and
true HB features is used for the MI estimation according to Eq. 3.19 (Section 3.4.3).

MI results presented in Table 5.4 show that the Arch-2C SSAE system with
tanh activations trained using LPS inputs gives a relative increase in MI of ≈ 23%
(1.55 → 1.90) over the baseline system. This result corroborates the findings
presented above, namely that semi-supervised techniques which operate on log
spectral inputs are capable of learning better representations that can be exploited
to deliver improved ABE performance.

5.5 Summary
This chapter presents a non-linear, semi-supervised approach to dimensionality
reduction for artificial bandwidth extension. The work aims to further improve
ABE system performance with explicit memory inclusion that uses PCA – a linear
unsupervised approach to dimensionality reduction. The key contribution to this
work are as follows:

• The ability of stacked auto-encoders trained in semi-supervised fashion to
learn higher-level representations is explored to learn compact narrowband
features directly from log spectra. The merit of the approach is demonstrated
with different objective metrics and is confirmed by the findings of informal
listening tests. The benefit of the approach is confirmed by information
theoretic analysis.

• The narrowband feature representation is learned automatically from log
spectral coefficients in a data-driven manner. The learned low-dimensional
features are further used by a standard regression model without augmenting
complexity. Therefore, artificial bandwidth extension is presented as a feature
learning problem where the compact NB representation can be learned from
higher dimensional spectral data resulting from memory inclusion. The aim is
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to learn front-end NB features that can improve HB estimation performance
under the constraint of fixed dimensionality.

The work presented in this chapter points towards a number of directions
for future work that should investigate potential spectral modelling transforms
and their further optimisation to learn features for ABE. The investigation of
the combination of semi-supervised auto-encoders with unsupervised or partially
supervised pre-training methods is also of interest. These directions may offer
even greater potential to improve the quality of artificially bandwidth-extended
speech. Generative models such as variational auto-encoders can also be explored
for improved feature learning. This idea is the subject of research presented in the
next chapter.
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Latent representation learning for
ABE

Artificial bandwidth extension (ABE) algorithms improve speech quality when
wideband devices are used with narrowband devices or infrastructure. Most
ABE solutions employ some form of memory, implying high-dimensional feature
representations that increase both latency and complexity. The work presented in
previous chapters showed that dimensionality reduction techniques can be employed
to preserve efficiency. These entail the extraction of compact, low-dimensional
narrowband representations that are then used with a standard regression model
to estimate high-band components. The previous chapter showed that some
form of supervision is crucial to the optimisation of dimensionality reduction
techniques for ABE. In extending this work, this chapter reports the first application
of conditional variational auto-encoders (CVAEs) for supervised dimensionality
reduction specifically tailored to ABE. CVAEs, a form of directed, graphical models,
are exploited to model higher-dimensional log-spectral data to extract the latent
narrowband representations. When compared to results obtained with alternative
dimensionality reduction techniques, objective and subjective assessments show that
the probabilistic latent representations learned with CVAEs produce bandwidth-
extended speech signals of notably better quality.

The remainder of this chapter is organised as follows. Details of VAE and CVAE
architectures are presented in Sections 6.1 and 6.2 respectively. Section 6.3 explains
the proposed feature extraction scheme using VAEs and CVAEs. Experimental
results are presented in Section 6.4. Conclusions are summarised in Section 6.5.
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Figure 6.1: A variational auto-encoder (VAE) as a directed graphical model
(adapted from [266]). Solid lines represent the generative model pθ(x, z) =
pθ(z)pθ(x|z) with parameters θ (shown in (a)). Dashed lines represent the in-
ference of the true posterior pθ(z|x) performed via the variational approximation
qφ(z|x) with parameters φ (shown in (b)). Dashed and solid lines alternately rep-
resent encoding and decoding phases respectively. The shaded node represents the
observed variable x. The generative parameters θ and the variational parameters
φ are jointly learned during optimisation.

6.1 Variational auto-encoders
A variational auto-encoder (VAE) [266] is a generative model pθ(x, z) = pθ(z)pθ(x|z)
(with parameters θ) which assumes that a dataset D, consisting of N i.i.d. samples
or observations of a random variable x, is generated from a underlying continuous
unobserved (or latent) variable z. The generative process thus consists of two
steps. First, a value z(i) is generated from some prior distribution pθ(z). Second, a
value x(i) is generated from the conditional distribution pθ(x|z). Thus the aim is
to optimise the parameters θ such that the generated x(i) is similar to the samples
in the training dataset D with a high probability. This is achieved by maximising
the marginal likelihood pθ(x) of each datapoint x in the training data, given by:

pθ(x) =
∫
pθ(x, z)dz

=
∫
pθ(z)pθ(x|z)dz (6.1)

In practice, when the likelihood functions pθ(x|z) are complex (e.g. a neural
network with non-linear hidden layers), the integral in Eq. 6.1 is intractable and
therefore the marginal likelihood pθ(x) cannot be optimised directly w.r.t θ. The
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true posterior density pθ(z|x) = pθ(x|z)pθ(z)
pθ(x) is also thus intractable, prohibiting the

use of the EM algorithm for optimisation of θ [214, Chapter 10]. To alleviate this
problem, VAEs introduce a recognition/inference model qφ(z|x) as an approximation
to the posterior pθ(z|x) which allows to obtain a tractable lower bound on the data
likelihood, using the so-called reparameterisation trick. The data likelihood then
can be maximised by optimisation of the lower bound. A representation of VAE in
the form of a directed graphical model1 is shown in Fig. 6.1.

6.1.1 Variational lower bound

For a given inference model qφ(z|x), the marginal likelihood of a single datapoint
x is given by:

log pθ(x) = Eqφ(z|x)[log pθ(x)] (6.2)

= Eqφ(z|x)

[
log

[
pθ(x, z)
pθ(z|x)

]]
(6.3)

= Eqφ(z|x)

[
log

[
qφ(z|x)
qφ(z|x)

pθ(x, z)
pθ(z|x)

]]
(6.4)

= Eqφ(z|x)

[
log

[
qφ(z|x)
pθ(z|x)

]]
+ Eqφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
(6.5)

= DKL[qφ(z|x)||pθ(z|x)] + L(θ, φ; x) (6.6)

The first term in Eq. 6.6 represents the Kullback-Leibler (KL) divergence (DKL)
between the approximate and true posterior distributions. For simplicity, it is
assumed that the approximate and true posteriors are diagonal multivariate Gaus-
sian distributions whose respective parameters θ and φ are computed using two
different deep neural networks.

Since the KL divergence term is non-negative, the second term L(θ, φ; x) repre-
sents a variational lower bound, also called the evidence lower bound (ELBO), on

1Visualisation and analysis of complex joint probability distributions can be provided via their
diagrammatic representations referred to as probabilistic graphical models (PGMs). Conditional
independence properties of joint distributions thus can be easily inspected from their graphical
representations. A PGM consists of nodes, each of them represents a random variable. The nodes
are connected by links which represent the probabilistic relationship among the connected nodes.
The resulting graph then captures the joint distribution over all of the random variables and its
decomposition into the product of various conditional probability distributions [214, Chapter 8].
The type of PGMs in which the links are represented by arrows which have directional

significance are called directed graphical models (also called Bayesian networks).

111



Chapter 6. Latent representation learning for ABE

the marginal likelihood. It is given by:

L(θ, φ; x) = Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)] (6.7)
≤ log pθ(x) (6.8)

Since the ELBO has an expectation w.r.t. qφ(z|x) (which is a function of φ), Eq. 6.7
is differentiable w.r.t θ, but not φ, i.e.:

∇θL(θ, φ; x) = ∇θ Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)]
= Eqφ(z|x)[∇θ(log pθ(x, z)− log qφ(z|x))]
= Eqφ(z|x)[∇θ log pθ(x, z)] (6.9)

∇φL(θ, φ; x) = ∇φ Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)]
6= Eqφ(z|x)[∇φ(log pθ(x, z)− log qφ(z|x)] (6.10)

This prohibits the joint optimisation of the ELBO w.r.t. both θ and φ. In order to
alleviate this problem, VAEs exploit the reparameterisation trick.

6.1.2 Reparameterisation trick

The ELBO can be straightforwardly optimised w.r.t. both θ and φ by a change
of random variables from z ∼ qφ(z|x) to ε ∼ p(ε) using a some deterministic
differentiable transformation such that:

z = gφ(x, ε) (6.11)

This transformation is known as the reparameterisation trick. Accordingly, the
expectation of the ELBO (Eq. 6.7) w.r.t. qφ(z|x) can now be replaced with one
w.r.t. p(ε) such that:

L(θ, φ; x) = Ep(ε)[log pθ(x, gφ(x, ε))− log qφ(gφ(x, ε)|x)] (6.12)

where ε ∼ p(ε). The ELBO L(θ, φ; x) thus takes a form that can be differentiated
w.r.t. the parameters φ to obtain the gradients ∇φL(θ, φ; x).

Now, using Monte Carlo estimates for expectation over L samples, the generic
stochastic gradient variational Bayes (SGVB) estimator L̃(θ, φ; x) of the ELBO is
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Figure 6.2: An illustration of the variational auto-encoder (VAE) generative model
that learns a joint distribution pθ(x, z) = pθ(z)pθ(x|z). The latent space (with
prior distribution p(z)) is inferred using the probabilistic encoder qφ(z|x), that
approximates the true but intractable posterior pθ(z|x) of the generative model
pθ(x, z). The latent space is mapped back to the input space using the probabilistic
decoder pθ(x|z).

given according to:

L̃(θ, φ; x) = 1
L

L∑
l=1

[log pθ(x, gφ(x, ε(l)))− log qφ(gφ(x, ε(l))|x)] (6.13)

where ε ∼ p(ε). Eq. 6.13 can now be jointly optimised w.r.t. the parameters θ and
φ using stochastic gradient descent.

6.1.3 Relation to conventional auto-encoders

The ELBO given in Eq 6.7 can alternately be re-written as:

L(θ, φ; x) = −DKL[qφ(z|x)||p(z)] + Eqφ(z|x)[log pθ(x|z)] (6.14)

The first term DKL(·) in Eq. 6.14 acts as a regulariser which represents the KL
divergence between the prior p(z) and the approximate posterior qφ(z|x) and can
be computed analytically. The second term is the expected negative reconstruction
error and must be estimated by sampling. The optimisation of Eq. 6.14 is thus
equivalent to that of reconstruction error (as in conventional auto-encoders) with
an additional regularisation term.
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Thus, as illustrated in Fig. 6.2, VAEs consist of an inference model qφ(z|x) (also
referred to as probabilistic encoder) which, for every datapoint x ∈ D, estimates
the parameters of the posterior distribution over all possible values of the latent
variable z that may have generated the datapoint x. The probabilistic decoder,
i.e., pθ(x|z), then produces a distribution over all possible values of x for a given z.

6.1.4 VAEs for real valued Gaussian data

The VAE framework combines both inference and generative models which are
derived using neural networks and provides a simple method for their joint op-
timisation wherein the lower bound on the marginal log-likelihood of the data
is maximised. For real-valued data, the prior p(z), encoder qφ(z|x) and decoder
pθ(x|z) of the VAE framework are modelled as follows:

• The prior is assumed to be a centered isotropic multivariate Gaussian with
no free parameters, i.e., p(z) = N (z; 0, I).

• The probabilistic decoder, constructed using a DNN, models the multi-
variate Gaussian distribution with mean µx and covariance σ2I such that
pθ(x|z) = N (x; µx, σ

2I). The mean µx = µ(z; θ) is the output of a DNN
fθ(·) parameterised by θ whereas σ2 is a hyperparameter.

• For simplicity, the intractable posterior is assumed to be a multivariate Gaus-
sian distribution with diagonal covariance matrix. Therefore, the variational
approximation to the true posterior is given by: qφ(z|x) = N (z; µz, diag(σ2

z)).
The mean µz = µ(x;φ) and variance σ2

z = σ2(x;φ) are obtained using the
arbitrary non-linear deterministic transformations (µ(x;φ) and σ2(x;φ))
with parameters φ implemented via a DNN fφ(·) that models qφ(z|x).

With the above mentioned approximations, the DKL term in Eq. 6.14 can
usually be integrated analytically and approximated by:

−DKL[qφ(z|x)||p(z)] = −DKL[N (z; µz, diag(σ2
z))||N (z; 0, I)]

= 1
2

dz∑
j=1

[
1 + log(σ2

zj
)− µ2

zj
− σ2

zj

]
(6.15)

where dz is the dimensionality of the latent variable z and where µzj and σzj denote
the jth elements of the vectors µz and σz respectively. The second term in Eq. 6.14
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is estimated by sampling and is approximated by an expectation over L samples
drawn/sampled from the inference network qφ(z|x) according to:

Eqφ(z|x)[log pθ(x|z)] = 1
L

L∑
l=1

log pθ(x|z(l))

= 1
L

L∑
l=1

logN (x; µ(z(l); θ), σ2I)

= 1
L

L∑
l=1

[
C − ‖x− µ(z(l); θ)‖2

αvae

]
(6.16)

where C = dx
2 log(2π)− 1

2 log(σ2) is a constant that can be ignored during optimi-
sation and dx is the dimensionality of x. The sampling operation (that samples z
from the distribution qφ(z|x)) is non-differentiable. Accordingly, it is performed
via the reparameterisation trick such that:

z(l) = gφ(x, ε(l)) = µ(x;φ) + ε(l) � σ(x;φ)

where ε(l) ∼ N (ε; 0, I). The scalar αvae = 2σ2 can be seen as a weighting factor
between the KL-divergence and the reconstruction terms [267]. In practice, L = 1
sample is used per datapoint [266].

Combining Eqs. 6.14, 6.15 and 6.16, the SGVB estimator of the ELBO from
Eq. 6.13 can also be written as:

L̃(θ, φ; x) = 1
2

dz∑
j=1

[
1 + log(σ2

zj
)− µ2

zj
− σ2

zj

]
− 1
L

L∑
l=1

‖x− µ(gφ(x, ε(l)); θ)‖2

αvae
(6.17)

where ε(l) ∼ p(ε). The lower bound L̃(θ, φ; x) in Eq 6.17 forms the objective
function which can be optimized with respect to parameters θ and φ using a
stochastic gradient descent algorithm.

6.2 Conditional variational auto-encoders
A conditional variational auto-encoder (CVAE) [268,269] is a conditional gener-
ative model2 (CGM) of the form pθ(y, z|x) = pθ(z)pθ(y|z,x). For a given input
observation x, a latent variable z is drawn from a prior distribution pθ(z) from

2CVAEs are also referred to as conditional directed graphical models.
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which the distribution pθ(y|z,x) generates the output y. The purpose here is to
maximise the conditional likelihood pθ(y|x) given by:

pθ(y|x) =
∫
pθ(y, z|x)dz

=
∫
pθ(z)pθ(y|z,x)dz (6.18)

Note that in contrast to VAEs (that maximise the marginal likelihood pθ(x)),
CVAEs maximise the conditional likelihood pθ(y|x). Unfortunately, Eq. 6.18 is
often intractable. The posterior pθ(z|y) = pθ(y,z|x)

pθ(y|x) is therefore also intractable.
To deal with the intractability, similar to VAEs, CVAEs also use an approximate
posterior qφ(z|y)3. The conditional likelihood pθ(y|x) of a datapoint y given a
datapoint x is then written as follows:

log pθ(y|x) = Eqφ(z|y)[log pθ(y|x)]

= Eqφ(z|y)

[
log

[
pθ(y, z|x)
pθ(z|y)

]]

= Eqφ(z|y)

[
log

[
qφ(z|y)
qφ(z|y)

pθ(y, z|x)
pθ(z|y)

]]

= Eqφ(z|y)

[
log

[
qφ(z|y)
pθ(z|y)

]]
+ Eqφ(z|y)

[
log

[
pθ(y, z|x)
qφ(z|y)

]]

= DKL[qφ(z|y)||pθ(z|y)] + Eqφ(z|y)

[
log

[
pθ(z)pθ(y|z,x)

qφ(z|y)

]]

Since the DKL term is non-negative, the variational lower bound L(θ, φ; x,y) on
the conditional likelihood pθ(y|x) is then given by:

L(θ, φ; x,y) = Eqφ(z|y)

[
log

[
pθ(z)pθ(y|z,x)

qφ(z|y)

]]

= Eqφ(z|y)

[
log

[
pθ(z)
qφ(z|y)

]]
+ Eqφ(z|y) [log pθ(y|z,x)]

= DKL[qφ(z|y)||pθ(z)] + Eqφ(z|y) [log pθ(y|z,x)] (6.19)

3In our formulation, it is assumed that the true posterior is dependent only on y, i.e.,
pθ(z|x,y) = pθ(y,z|x)

pθ(y|x) = pθ(z|y). The true posterior is then approximated by the inference model
qφ(z|y). This is motivated by our task of interest, namely feature extraction/ dimensionality
reduction for ABE (discussed in next Section). The graphical representation of the CVAE model
is illustrated in Fig 6.3. Other CGM formulations [268,269] (e.g., pθ(y, z|x) = pθ(z|x)pθ(y|z,x))
include a prior pθ(z|x) and a inference model qφ(z|x,y) as an approximation to the true posterior
pθ(z|x,y). The choices of models are dependent on the task.
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Figure 6.3: A conditional variational auto-encoder (CVAE) model as a condi-
tional directed graphical model. The solid lines represent the generative model
pθ(y, z|x) = pθ(z)pθ(y|z,x) with parameters θ. The dashed lines represent the
inference of the true posterior pθ(z|y) performed via the variational approximation
qφ(z|y) with parameters φ. The observed variables x and y are represented by the
shaded nodes.

Here, similar to the VAE formulation, the prior is assumed to be a centred
isotropic multivariate Gaussian distribution, i.e., p(z) = N (z; 0, I). The two
conditional distributions pθ(y|z,x) and qφ(z|y) are also assumed to be multivariate
Gaussians given by pθ(y|z,x) = N (y; µy, σ

2I) and qφ(z|y) = N (z; µz, diag(σ2
z)).

The encoder network qφ(z|y) is modelled with a DNN with two output layers
which define the mean µz = µ(y;φ) and variance σ2

z = σ2(y;φ). The decoder
network pθ(y|z,x) is modelled using another DNN whose output layer defines
mean parameter µy = µ(z,x; θ). Similar to the VAE framework, the first term of
Eq. 6.19 can be calculated analytically whereas the second term is equivalent to
the negative reconstruction error.

Finally, the SGVB estimator of the variational lower bound of Eq. 6.19 is given
by:

L̃(θ, φ; x,y) = 1
2

dz∑
j=1

[
1 + log(σ2

zj
)− µ2

zj
− σ2

zj

]
− 1
L

L∑
l=1

‖y− µ(z(l),x; θ)‖2

αcvae
(6.20)

The expectation in the second term is calculated by a sampling operation that is
performed via the reparameterisation trick such that:

z(l) = gφ(y, ε(l)) = µ(y;φ)) + ε(l) � σ(y;φ)

where ε(l) ∼ p(ε) = N (ε; 0, I). The scalar αcvae = 2σ2 acts as a weighting factor
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between the KL-divergence and the reconstruction error.

6.3 Application to ABE
In this section we discuss how VAEs and CVAEs can be used for ABE.

6.3.1 Motivation

ABE algorithms exploit contextual information, or memory, to improve ABE
performance. While the use of memory improves ABE performance, it implies the
use of higher dimensional features and, therefore, more complex and computationally
demanding ABE regression models. This is undesirable given that ABE is often
required to function on battery-powered devices.

The work presented in Chapter 4 proposed an approach to include memory in
the form of static features from neighbouring speech frames. Principal component
analysis was used for dimensionality reduction and to preserve efficiency. The
subsequent work in Chapter 5 showed that memory in the form of log spectral coef-
ficients can be used to learn a compact, low dimensional NB feature representation
for ABE using semi-supervised stacked auto-encoders (SSAEs). This section aims
to explore the use of generative modelling techniques such as VAEs and CVAEs
to further improve ABE performance. The goal is to model the distribution of
higher-dimensional spectral data (that includes memory) and to extract higher-
level, lower-dimensional features that improve the reliability of the ABE regression
model, without affecting complexity. Essentially, we seek a form of dimensionality
reduction that is tailored specifically to ABE.

Deep PGMs such as VAEs and CVAEs are capable of modelling complex data
distributions. In contrast to bottleneck features learned by SAEs and SSAEs,
the latent representation is probabilistic and can be used to generate new data.
Inspired by their successful use in image processing [268,269,270], they have become
increasingly popular in numerous fields of speech processing, e.g., speech modelling
and transformation [271,272], voice conversion [273], speech synthesis [274], speech
enhancement for voice activity detection [275], emotion recognition [276] and audio
source separation [277].

CVAEs generate data via the combination of latent and so-called conditioning
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variables. The idea behind exploiting CVAEs for ABE in the framework of feature
extraction is that the conditioning variable can be optimised via an auxiliary neural
network in order to learn higher-level NB features, features that are tailored to the
estimation of missing HB components in an ABE task. The novel contributions
of this work are: (i) the first application of VAEs and CVAEs to dimensionality
reduction for regression tasks such as ABE; (ii) the combination of CVAE with
a probabilistic encoder in the form of an auxiliary neural network which derives
the conditioning variable; (iii) an approach to their joint optimisation; (iv) their
application to extract probabilistic NB latent representations for estimation of
missing HB data in an otherwise standard ABE framework and (v) use of the
proposed approach to deliver substantially improved ABE performance.

6.3.2 Extracting latent representations

This section describes the proposed scheme to jointly optimise VAEs and CVAEs
in order to learn latent representations tailored to ABE. The scheme is illustrated
in Fig. 6.4. NB and HB features are extracted from parallel NB and WB training
utterances, using frames of 20ms duration with 10ms overlap. 200-dimensional NB
LPS coefficients PNB

t obtained from 2 neighbouring frames are concatenated (after
MVN) according to Eq. 4.4. The resulting input data x = xNB

t,conc_2 thus consists
of 1000-dimensional NB features with memory. Refer to Section 4.3.1 for details
relating to the calculation of PNB

t . The output data y = yHB
t,mvn consists of 9 LP

coefficients and a gain parameter (with MVN) extracted from parallel HB data via
selective linear prediction (SLP).

First, the VAE is trained whereby the encoder qφx(zx|x) (left network of
Fig. 6.4(a)) is fed with input data x in order to predict the mean µzx = µ(x; θx)
and log-variance log(σ2

zx) = σ2(x; θx) that represent the posterior distribution
qφx(zx|x). A corresponding decoder pθx(x|zx) (right network in Fig. 6.4(a)) is fed
with input zx ∼ qφx(zx|x) in order to predict the mean µx = µ(zx;φx) of the
distribution pθx(x|zx). The latent variable zx is sampled using qφx(zx|x) via the
reparameterisation trick (see Section 6.1.2 and 6.1.4). Note that, at this stage
(referred to as Stage-I), the NB representation zx is learned without any supervision
from the HB data. The VAE decoder is then discarded. The encoder qφx(zx|x) is
then used as the conditioning variable of the CVAE (as shown in Fig. 6.4(b)).

The CVAE is then trained to model the distribution of the HB data y as
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Figure 6.4: A feature extraction scheme using (a) VAE and (b) CVAE.
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Figure 6.5: The proposed CVAE scheme as a conditional directed graphical model.
The solid lines represent the generative model pθ(y, zy|zx) = pθ(zy)pθ(y|zx, zy)
with parameters θ. The dashed lines represent the inference of the true posterior
pθ(zy|y) performed via the variational approximation qφ(zy|y) with parameters φ.
The observed variables x and y are represented by the shaded nodes.

follows. y is fed to the encoder qφy(zy|y) (top-left network in Fig. 6.4(b)) in order
to predict the mean µzy = µ(y; θy) and log-variance log(σ2

zy) = σ2(y; θy) of the
approximate posterior distribution qφy(zy|y). The predicted parameters are then
used to obtain the latent representation zy ∼ qφy(zy|y) of the output variable y
via the reparameterisation trick. Next, the latent variable zx ∼ qφx(zx|x) is used
as the CVAE conditioning variable. After concatenation, zx and zy are fed to
the decoder pθy(y|zx, zy) (top-right network in Fig. 6.4(b)) in order to predict the
mean µy = µ(zx, zy; θy) of the output variable y. Finally, the entire network is
trained to learn parameters φx, φy and θy jointly. The graphical representation of
the proposed CVAE scheme is illustrated in Fig. 6.5. From Eq. 6.19 and 6.20, the
equivalent variational lower bound under optimisation is given by:

log pθy(y|zx) ≥ L(θy, φy, φx; zx,y)

= −DKL[qφy(zy|y)||pθy(zy)] + Eqφy (zy|y)
[
log pθy(y|zx, zy)

]
= 1

2

dzy∑
j=1

[
1 + log(σ2

zyj
)− µ2

zyj
− σ2

zyj

]
− 1
L

L∑
l=1

‖y− µ(z(l)
y , zx; θ)‖2

αcvae

(6.21)

where zy
(l) = gφy(y, ε(l)) = µ(y;φy)) + ε(l) � σ(y;φy) and ε(l) ∼ p(ε) = N (ε; 0, I),

dzy is the dimensionality of the latent variable zy, µzyj and σzyj denote the jth

element of the vectors µzy and σzy respectively.
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It is expected that, during optimisation of Eq. 6.21, parameters φx of the
encoder qφx(zx|x) are updated so that the proposed CVAE framework encodes
the higher-dimensional NB data x into the latent representation zx that aids the
reconstruction of the HB data y. From another perspective, at this stage (referred
to as Stage-II), the lower-dimensional representation zx is learned using some form
of supervision from the HB data. It therefore encodes some useful information
about the HB representation.

Finally, the encoder qφx(zx|x) (signified by the red components in Fig. 6.4(b))
is used, instead of the weight matrix WPCA in Fig. 4.3 (red boxes), to estimate the
latent representation zx for every x. The GMM training is then performed using
joint vectors zx and y followed by the estimation in the same manner as described
in Section 4.4. Note that the latent representation zx extracted using the encoder
qφx(zx|x) at training stages I and II represent the features extracted using VAE
and CVAE architectures.

6.3.3 Direct estimation using CVAE-DNN

The networks qφx(zx|x) and pθy(y|zx, zy) of the proposed CVAE architecture
shown in Fig. 6.4(b) together form a DNN (referred to as a CVAE-DNN), with
two stochastic layers zx and zy. It can itself be used for ABE. In this case, there is
some discrepancy between training and testing phases since the HB output vector
y is available during training but not during testing or estimation. The schematic
of CVAE-DNN is illustrated in Fig. 6.6.

While during the training phase the inference model qφy(zy|y) is used to sample
the latent variables zy (for reconstruction of y using the decoder pθy(y|zx, zy)),
the CVAE uses the prior distribution pθy(zy) = N (zy; 0, I) (for prediction of y)
during the testing phase. The training and testing phases thus also correspond to
reconstruction and prediction phases of the output y respectively.

6.4 Experimental setup and results
Experiments are designed to compare the performance of an ABE system that
uses features learned from CVAE with systems that use alternative dimensionality
reduction techniques. In all cases, performance is assessed with and without mean
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and variance normalisation (MVN). The experimental setup, including databases
and metrics, is same as that used for the work presented in the previous chapter.

6.4.1 CVAE configuration and training

The CVAE architecture is implemented using the Keras toolkit [264]. Encoders
qφx(zx|x) and qφy(zy|y) consist of two hidden layers with 512 and 256 units, and
input layers with 1000 and 10 units respectively. Their outputs are Gaussian-
distributed latent variable layers zx and zy consisting of 10 units for the means µzx ,
µzy and log-variances log(σ2

zx), log(σ2
zy). The decoders pθx(x|zx) and pθy(y|zx, zy)

have 2 hidden layers with 256 and 512 units. Output layers have 1000 and 10
units respectively. All hidden layers have tanh activation units whereas Gaussian
parameter layers have linear activation units. The modelling of log-variances avoids
the estimation of negative variances. The CVAE architectures thus have a structure
of (512, 256, 10+10, 256, 512) hidden units in accordance with the best performing
SSAE architecure (Arch-1C)4 presented in previous Chapter.

Training is performed jointly in order to minimise the negative conditional
log-likelihood in Eq. 6.21 using the Adam stochastic optimisation technique [265]
with an initial learning rate of 10−3 and hyperparameters β1 = 0.9, β2 = 0.999
and ε = 10−8. Networks are initialised according to the approach described
in [254] so as to improve the rate of convergence. To discourage over-fitting, batch-
normalisation [262] is applied before every activation layer. The learning rate is
reduced by half when the validation loss increases between 5 consecutive epochs.
First, the VAE is trained on input data x for 50 epochs. The full CVAE is then
trained for a further 50 epochs using input x and output y data. The model giving
the lowest validation loss is used for subsequent processing.

CVAE performance is compared to alternative SAE, SSAE and PCA dimension-
ality reduction techniques. While the encoder of all architectures (that is used for
dimensionality reduction) has a common structure of (1000, 512, 256, 10) units5,
the PCA transformation consists of a weight matrix WPCA with size 1000× 10.

4As shown in Table 5.3, the difference between results obtained using SSAE architectures
Arch-1C and Arch-2C with tanh activations is insignificant and therefore, Arch-1C is chosen for
further experiments as it has relatively lower complexity.

5VAE and CVAE architectures have one extra output layer with 10 units that models log-
variances.
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Figure 6.6: A schematic of CVAE-DNN, a DNN formed using a CVAE with
stochastic layers zx and zy during (a) training (or reconstruction) and (b) testing
(or prediction) phases.

6.4.2 Analysis of weighting factor α

According to the previous discussion, the HB output can be estimated either
using the standard GMMR (where the latent representation zx is used as an
input) or using the CVAE-DNN (see Section 6.3.3). Since better estimation of HB
components is crucial to ABE performance, the latent representation zx should
contain information that is informative of y. We therefore studied the importance
of the weighing factor α on the reconstruction error (RE), ‖y − f(zy, zx; θy)‖2,
between the true and estimated HB data using both estimation methods.

For this purpose, VAE and CVAE networks are trained for different values of
αvae and αcvae. During training, the network weights with the best validation loss
are stored and then used for further processing.

CVAE-DNN

The trained CVAE-DNN is used to estimate the DKL and RE values on the
validation data, both during reconstruction (zy ∼ qφy(zy|y)) and prediction (zy ∼
pθy(zy) = N (zy; 0, I)) phases6. The observations that can be made from the results
illustrated in Table 6.1 are as follows:

• Lower values of α (= 1) lead to higher values of DKL (= 2.01), suggesting
that the approximate posterior qφy(zy|y) is far from the prior distribution

6Note that the terms reconstruction and prediction refer to the use of the approximate posterior
or prior for the sampling of zy (see Section 6.3.3).
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Table 6.1: Effect of weighing factor αcvae on DKL and RE during both training (or
reconstruction) and testing (or prediction) phases for CVAE-DNN. Results shown
for the validation dataset.

αcvae 1 2 5 10 20 30

DKL 2.01 0.96 0.21 3.3e-4 1.5e-4 9.7e-5
reconstruction

RE
3.15 4.73 7.40 8.93 8.97 8.97

reconstruction

RE
12.75 11.40 9.85 8.93 8.97 8.97

prediction

pθy(zy) = N (0, I). This hypothesis is confirmed by the observation of higher
REs during reconstruction (RE = 12.75) than during prediction (RE = 3.15).
This is because the decoder pθy(y|zx, zy) reconstructs the output y using
latent variables zy sampled from the prior during prediction phase, but from
the approximate posterior during reconstruction phase.

• Higher values of α (= 30) give lower values ofDKL (= 9.7e−5), suggesting that
the posterior distribution is closer to the prior distribution. This hypothesis
is confirmed by the observation of similar REs (= 8.97) for reconstruction and
prediction phases. These findings corroborate those of previous work [272].

GMMR

The performance of ABE in terms of RE is also investigated using the standard
GMMR technique employed in this thesis. Table 6.2 shows the RE values obtained
when the latent representation zx obtained from both VAE (via the encoder
qφx(zx|x) at stage-I) and CVAE (via the encoder qφx(zx|x) at stage-II) architectures
are fed to the GMMR. Note that the RE values obtained in this case are equivalent to
those obtained using CVAE-DNN during prediction phase (fourth row in Table 6.1).

While the RE values for VAE system (with and without MVN) increase with
the increase in α = αvae value (second row in Table 6.2), the RE performance for
CVAE system is consistent (third row in Table 6.2) for all values of α = αcvae. The
estimation performance of CVAE system, using a standard regression model, in
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Table 6.2: Effect of weighing factor αvae and αcvae on RE in case of estimation
using GMMR. Results shown for the validation dataset.

α 1 2 5 10 20 30

VAE 9.10 9.11 9.19 9.39 9.58 9.68

VAE + MVN 9.06 9.10 9.18 9.39 9.58 9.68

CVAE 8.91 8.92 8.93 9.00 9.02 9.02

CVAE + MVN 8.94 8.94 8.95 8.94 8.99 8.98

terms of RE is thus robust to the value of α. This is in contrast to the results
obtained using the CVAE-DNN where the RE performance during prediction phase
is inconsistent (fourth row in Table 6.1) for different values of α.

The aim of the work reported in this chapter is to use the latent representation
zx learned using a CVAE as a NB feature extraction technique for ABE. Consistent
with the work presented in previous chapters ABE performance is thus analysed in
the context of dimensionality reduction. All experiments reported in the remainder
of this chapter correspond to a value of αvae = 10 and α = 107.

6.4.3 Objective assessment

Consistent with the previous chapters, objective assessment is performed by evalua-
tion of speech quality using the two distance metrics dRMS-LSD, dCOSH and objective
estimates of MOS scores MOS-LQOWB (Section 3.4.2). The lower values of dis-
tance metrics and higher values of MOS-LQOWB indicate better speech quality.
Objective results are presented in Table 7.1. The key observations are discussed in
the following:

• The performance of PCA ABE system in terms of objective measures dRMS-LSD,
dCOSH, MOS-LQOWB is degraded in case of MVN (6.95→ 7.35dB, 1.43→
1.45dB, 3.21 → 3.14). In contrast, MVN improves performance for SAE
(12.45→ 7.54dB, 2.96→ 1.50dB, 1.95→ 3.03) and SSAE (10.50→ 6.80dB,

7From the results shown in Table 6.2 it is evident that the choice of αcvae does not affect the
RE performance of CVAE feature extraction system using GMMR. While VAE system achieves
the lowest RE value (9.06 with MVN and 9.10 without MVN) for α = 1, it is still inferior to the
CVAE performance. Thus, for simplicity, we fix the value α to 10 in our further analysis for both
VAE and CVAE systems.
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2.11 → 1.34dB, 2.26 → 3.28) techniques significantly. This is because the
features learned with conventional auto-encoders may not be orthonormal
and uncorrelated.

• ABE performance with PCA dimensionality reduction outperforms that
with SAE and VAE techniques, signifying the importance of supervised
learning or so-called discriminative fine tuning during feature extraction.
PCA ABE system shows better speech quality, in terms of objective measures
(dRMS-LSD, dCOSH, MOS-LQOWB) by 2.6%, 3.4%, 3.5% compared to SAE +
MVN system and by 17.6%, 11.7%, 9% compared to VAE system respectively.
The performance of VAE system is consistent with and without MVN. It
may provide better results for other values of α (e.g., for α = 1).

• SSAE + MVN ABE system outperforms PCA system relatively by %7.5
(7.35→ 6.80dB), %11 (1.45→ 1.34dB), %8 (3.14→ 3.28). This is expected
due to the use of semi-supervised feature extraction via SSAE architecture
(Section 5.2).

• The CVAE ABE system is the best performing of all and, interestingly,
performance is stable with and without MVN. This is likely due to the prob-
abilistic learning of latent representations. CVAE ABE system outperforms
PCA system relatively by %10.3 (7.35 → 6.59dB), %11 (1.45 → 1.31dB),
%8 (3.14 → 3.34). The relative performance improvement of CVAE sys-
tem w.r.t. SSAE + MVN system is given by %3.1 (6.80 → 6.59dB), %2.2
(1.34→ 1.31dB), %1.8 (3.28→ 3.34).

6.4.4 Subjective assessment

Speech quality performance is also assessed via comparative, subjective CCR
listening tests. Tests were performed by 15 listeners who were asked to compare
the quality of 12 pairs of speech signals A and B listened to using DT 770 PRO
headphones. They were asked to rate the quality of signal A with respect to B
according to the following scale: -3 (much worse), -2 (worse), -1 (slightly worse),
0 (about the same), 1 (slightly better), 2 (better), 3 (much better). For further
details of CCR listening tests, refer to Section 3.4.1.

The results of subjective tests are illustrated in Table 6.4 in the form of CMOS
with corresponding 95% confidence interval (CI95). Speech files whose bandwidth is
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Table 6.3: Objective assessment results (with mean and standard deviation values).
RMS-LSD and dCOSH are distance measures (lower values indicate better perfor-
mance) in dB, whereas MOS-LQOWB values reflect quality (higher values indicate
better performance).

Dimensionality
reduction method dRMS-LSD (dB) dCOSH (dB) MOS-LQOWB

PCA 6.95 (0.68) 1.43 (0.40) 3.21 (0.35)

PCA + MVN 7.35 (0.70) 1.45 (0.36) 3.14 (0.34)

SAE 12.45 (1.42) 2.96 (0.71) 1.95 (0.20)

SAE + MVN 7.54 (0.74) 1.51 (0.36) 3.03 (0.37)

SSAE 10.50 (1.12) 2.11 (0.48) 2.26 (0.24)

SSAE + MVN 6.80 (0.66) 1.34 (0.32) 3.28 (0.35)

VAE 8.64 (0.79) 1.67 (0.35) 2.75 (0.35)

VAE + MVN 8.60 (0.79) 1.67 (0.35) 2.75 (0.35)

CVAE 6.59 (0.66) 1.31 (0.36) 3.34 (0.35)

CVAE + MVN 6.69 (0.68) 1.30 (0.35) 3.31 (0.35)

Table 6.4: Subjective assessment results for the ABE systems with CVAE, SSAE
+ MVN and PCA dimensionality reduction techniques in terms of CMOS points
with corresponding 95% confidence interval (CI95).

Comparison A → B CMOS [CI95]

CVAE → NB 0.90 [0.65; 1.16]

CVAE → PCA 0.13 [0.02; 0.25]

CVAE → SSAE + MVN 0.10 [-0.02; 0.22]

CVAE → WB -0.96 [-1.16; -0.77]

extended using the proposed CVAE approach were judged to be of superior quality
in comparison to original NB signals with a significant CMOS of 0.90. CVAE
system produces speech of better quality than PCA and SSAE + MVN systems
with CMOS of 0.13 and 0.10. The quality of extended speech signals is still inferior
to original WB signals, reflecting from a CMOS of -0.96 points. This shows the
scope for further improvements.
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6.5 Summary
Conditional variational auto-encoders (CVAE) are directed graphical models that
are used for generative modelling. This chapter presents their first application to
dimensionality reduction for computationally efficient artificial bandwidth extension
(ABE). The key contributions of the work are as follows:

• The strength of CVAEs to model highly complex data distributions is ex-
ploited to extract probabilistic, low-dimensional narrowband features from
high-dimensional log spectral coefficients with memory.

• The latent representations produced using the proposed approach are shown
to improve ABE performance using a standard regression model in comparison
to other dimensionality reduction techniques, confirmed by both objective
and subjective assessments.

• The probabilistic features are learned in a data-driven manner via generative
modelling that does not need any post-processing such as mean and vari-
ance normalisation. This is in contrast to bottleneck features learned using
conventional stacked auto-encoders.

• Improvements are attributed to the better modelling of high-dimensional
spectral data using CVAEs. Crucially, they are achieved without augmenting
the complexity of the regression model.

Future work should compare or combine CVAEs with other generative models
such as adversarial networks. Better CVAEs training strategies should bring further
improvements to ABE performance. A thorough comparison of ABE performance
using CVAE with other dimensionality reduction techniques such as robust PCA
(RPCA) is also of interest.
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Super-wide bandwidth extension

Many smart devices now support high-quality speech communication services at
super-wide bandwidths. Often, however, speech quality is degraded when they
are used with networks or devices which lack super-wideband support. Artificial
bandwidth extension can then be used to improve speech quality. While approaches
to wideband extension have been reported the previous chapters, this chapter
proposes an approach to super-wide bandwidth extension (SWBE). The algorithm
is based upon a classical source filter model in which the spectral envelope and
residual error information are extracted from a wideband signal using conventional
linear prediction analysis. A form of spectral mirroring is then used to extend
the residual error component before an extended super-wideband signal is derived
from its combination with the original wideband envelope. Experiments confirm
improvements to speech quality via both objective and subjective assessments.
These show that the quality of super-wideband speech, derived from the bandwidth
extension of wideband speech, is comparable to that of speech processed with the
standard enhanced voice services (EVS) codec with a bitrate of 13.2kbps. Without
the need for statistical estimation of missing super-wideband components, the
proposed algorithm is highly efficient.

This chapter is organised as follows. Section 7.1 describes the motivation for the
work reported. Section 7.2 presents a brief review of related, past work. Section 7.3
describes the proposed SWBE algorithm. The spectral envelope extension method
is explained in detail in Section 7.4. Section 7.5 describes the experimental setup
and both subjective and objective assessments. A summary of all the work and
contribution is presented in Section 7.6.
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7.1 Motivation
The quality of speech offered by modern communications systems and devices has
improved enormously in recent times. Whereas many devices were, and continue
to be restricted to narrow and wide bandwidths, today’s technology such as the
enhanced voice services (EVS) codec [51,52] (Section 1.3.3) developed by the 3rd
Generation Partnership Project (3GPP) in 2014, increasingly supports communica-
tions at super-wide bandwidths. When used with other devices and networks with
compatible support for super-wideband (SWB) services, such technology offers
extremely high quality communications.

Often, though, SWB devices are used with other devices and networks which
support only narrowband (NB) or wideband (WB) communications. Typically,
AMR-NB [31] (Section 1.3.1) and AMR-WB [35] (Section 1.3.2) codecs are used
during NB and WB calls respectively. While they usually offer backward compati-
bility, users of SWB devices will then be restricted to NB or WB communications.
A reduction in bandwidth accompanies a reduction in speech quality. Here too,
there is potential to improve quality. The extensive body of ABE research in the
literature involves the extension of NB to WB speech signals which is the focus
of research in earlier chapters of this thesis. In these cases there is substantial
potential to improve quality; significant speech components between the NB limit of
3.4 (or 4) kHz and the WB limit of 7 (or 8) kHz can be recovered reliably using ABE.
SWB speech signals extend the limit to 16kHz. Super-wide bandwidth extension
(SWBE) approaches can then be employed to recover missing high frequency (HF)
components between 7 (or 8) kHz and 16kHz from available low frequency (LF)
components between 50 Hz to 7 (or 8) kHz.

This chapter presents an efficient approach to SWBE. It is based upon a classical
source-filter model in which a WB signal is extended using conventional linear
prediction (LP) analysis.

7.2 Past work
Only few approaches to SWBE are reported in the literature (Section 2.8.2). This is
perhaps because the potential gain in quality for speech signals from the extension
of WB to SWB is much less than the potential when extending from NB to WB. As
a result, even modest processing artefacts can no longer be tolerated. Most of the
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existing solutions use statistical estimation models which can be computationally
demanding for real-time implementations.

In the SWBE approach presented in [210], the spectral content from 6 to
7kHz of a WB speech signal is inserted into the 8 to 12kHz frequency band via a
time-scaling operation. This is done via the direct manipulation of DFT coefficients
corresponding to the 6-7kHz frequency range without relying on statistical esti-
mation. The proposed approach is shown to outperform the HMM-based SWBE
method in [16] while maintaining relatively lower computational complexity.

A generic approach for efficient high-frequency bandwidth extension (EHBE)
is proposed in [208] for music and speech signals. The missing HF components
are estimated from those in the highest octave of the WB signal. The approach
exploits the properties of non-linear operations (e.g., full-wave rectification) to
generate harmonics in the HF range. While improvements in quality are reported,
the use of non-linear processing typically tends to produce audible intermodulation
distortion. However, subjective assessment results for the SWBE approaches
reported in [56, 203,205] – the methods which require the statistical estimation of
missing HF components – show that performance is mostly comparable to that
of the EHBE algorithm. These works show that SWBE approaches proposed
in [208, 210] are thus appealing alternatives to the approaches which are based
on statistical estimation techniques, at least for SWBE (WB-to-SWB extension).
This is because they have lower computational complexity while maintaining
comparable speech quality. Since it performs as well as more recent techniques
while not requiring statistical estimation procedure, the EHBE algorithm is used
as a baseline approach in this work.

7.3 Super-wide bandwidth extension (SWBE)
A block diagram of the proposed approach to SWBE is presented in Fig. 7.1. There
are four key components. First (box 1), the WB input signal xwb is windowed for
subsequent frame-by-frame processing. Second (box 2), missing HF components
are estimated from available LF components. Third (box 3), the original LF
components are extracted from the input WB frame. Finally (box 4), an extended
SWB output signal x̂swb is obtained by combining LF and HF components.
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Figure 7.1: A block diagram of the proposed approach to super-wide bandwidth
extension (SWBE).

7.3.1 High frequency component estimation

The HF component of the input WB signal sampled at 16 kHz is estimated frame-
by-frame via the blue-coloured components illustrated in Fig. 7.1 (box 2). Speech
frames xwb[n] are processed to obtain standard linear prediction (LP) coefficients
awb and the residual component ewb[n] with conventional LP analysis of order
p = 16. The LP coefficients are used to determine the frequency response H(ω)
from the transfer function H(z), which characterises the spectral envelope of the
WB signal.

The residual component êswb[n] is extended by zero insertion in the time domain
to obtain ewb[n]. As a form of spectral mirroring, the operation is equivalent to an
up-sampling operation without an anti-aliasing filter [131]. The complex frequency
domain representation of the excitation signal Êswb(ω) is obtained from the extended
residual êswb[n] using the fast Fourier transform (FFT) and then combined by
multiplication with the filter/envelope H(ω). Since the output is a composite of
estimated HF components and distorted LF components, the latter are removed
via high pass filtering (HPF), thereby preserving HF components only.

7.3.2 Low frequency component upsampling

The LF component of the input signal xwb is also extracted frame-by-frame. The
processing involved is illustrated by the red-coloured components in Fig. 7.1 (box 3).
Each frame xwb[n] is up-sampled in the time domain using zero insertion. An
anti-aliasing low pass filter (LPF) is then applied. The result is an interpolated time
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domain signal at a sampling rate of 32kHz comprising only frequency components
below 8kHz. Typically, this operation is common to all bandwidth extension
algorithms.

7.3.3 Resynthesis

Resynthesis of the extended output x̂swb is performed via the green-coloured
elements of Fig. 7.1 (box 4). A time domain frame containing only estimated
HF components is obtained via the inverse FFT (IFFT). After synchronisation
(S) to compensate for delays introduced by the different processes involved in
the estimation of LF and HF components, a SWB speech frame with a sampling
frequency of 32kHz is obtained from their addition. Synchronisation is also a
component of every approach to bandwidth extension. Resynthesis is accomplished
using a conventional overlap-add (OLA) [216, Section 12.1.1], [217, Section 5.3.1]
technique in order to avoid discontinuities at frame edges.

7.4 Spectral envelope extension
The extension of WB spectral envelope in the proposed SWBE approach is per-
formed by extrapolation. This operation is simply performed by upsampling of
residual component via zero insertion while keeping the WB spectral envelope H(ω)
unchanged. This section explains the procedure of spectral envelope estimation for
the proposed SWBE algorithm.

7.4.1 Effect of sampling frequency

In order to understand the spectral envelope estimation employed in the proposed
SWBE approach, first the effect of the sampling rate on the effective frequency
response of a filter is explained. A typical system for the processing of continuous-
time signals is illustrated in Fig 7.2(a) which comprises a cascade of a continuous-
to-discrete-time (C/D) converter, a discrete-time system h[n] and a discrete-to-
continuous-time converter. The overall system (shown in the dashed-rectangular
box) converts the continuous-time input signal xc(t) to the continuous-time output
signal yr(t). Its properties are dependent on the choices of the discrete-time system
h[n] and the sampling rate Fs = 1/Ts of the C/D and D/C converters [278, Section
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Figure 7.2: (a) Discrete-time processing of continuous-time signals. (b) Frequency
response of the discrete-time system h[n]. (c) Corresponding effective continuous-
time frequency response for the bandlimited input xc(t). Adapted from [278, Section
4.4].

4.4].

The overall system is equivalent to a linear time-invariant (LTI), continuous-
time system with effective frequency response (shown in Fig 7.2(b) and (c)) given
according to:

Heff (Ω) =

H(w), |Ω| < π/Ts

0, |Ω| ≥ π/Ts.
(7.1)

where Ω (radians per second) and ω (radians per sample) are the frequencies1

for continuous-time and discrete-time signals. They are related according to:
Ω = ω/Ts [279, Section 1.4.1].

Therefore, the sampling frequency Fs – at which the signal xc(t) is sampled

1Instead of Ω and ω, continuous-time (or analogue) and discrete-time frequencies are also
represented by F (cycles per second or hertz (Hz)) and f (cycles per sample) respectively where
Ω = 2πF , ω = 2πf [279, Section 1.3].
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Figure 7.3: Illustration of the envelope extension process for an arbitrary voiced
speech frame. (a) wideband (WB) spectral envelope represented by the filter
H(ω), (b) spectrum of residual component ewb[n], (c) spectrum of the upsampled
excitation component êswb[n], (d) the effective frequency response of the filter H(ω)
for the input êswb[n].

to obtain the discrete-time signal x[n] – determines the effect of the frequency
response H(w) on the output signal yr(t).

7.4.2 Extension

As discussed above, the effective frequency response H(ω) of a filter depends on
the sampling frequency (Fs) of the input signal. The proposed SWBE approach
exploits this property to generate missing HF components.

Illustration of the envelope extension process are shown in Fig 7.3 for an
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arbitrary voiced speech frame. During analysis, a WB speech frame is represented
by a vector of WB LP coefficients awb and residual error component ewb[n] according
to the source-filter model. Fig 7.3(a) illustrates the frequency response of the vocal
tract filter defined by the WB LP coefficients according to:

H(ω) = H(z)|z=ejω

where
H(z) = 1

1 +∑p
k=1 a

wb
k z−k

.

The LP order (p) is 16. Fig 7.3(b) shows the spectrum of the corresponding WB
residual component ewb[n].

The WB residual component (Fs = 16kHz) is then umpsampled to a sampling
frequency of 16kHz via zero insertion to obtain êswb[n] whereas the WB LP
coefficients are kept unchanged. The spectrum of the upsampled residual component
is shown in Fig 7.3(c).

During synthesis, the extended excitation êswb[n] is combined with the filter
H(ω). The upsampling operation on the residual component êwb[n] to obtain
êswb[n] thus corresponds to stretching of the WB LP spectral envelope. This can
be observed from the effective frequency response H(ω) for the input signal êswb[n]
which is illustrated in Fig 7.3(d). Only the HF components, contained within the
green boxes in Fig. 7.3(c) and (d), bear influence on the resulting SWB signal.
They are extracted by high-pass filtering.

7.4.3 Comparison

A comparison of the SWB spectral envelopes extracted from extended (using the
proposed SWBE algorithm) and true SWB speech is illustrated in Fig. 7.4 for
an arbitrary unvoiced speech frame. Blue and dashed-black profiles in Fig. 7.4(a)
show the spectral envelopes of true WB (p = 16) and SWB (p = 32) speech frames
respectively. The red profile shows the stretched copy of the WB spectral envelope;
it represents the effective frequency response of the filter H(ω) to the extended
residual component êswb[n]. The spectral envelopes (dashed black profiles) extracted
from true SWB (p = 32) and extended SWB (p = 32) speech frames are shown
in Fig. 7.4(b) and Fig. 7.4(c) respectively. The corresponding speech spectra are
also shown (green profiles). The dashed-blue boxes highlight the HF components
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Figure 7.4: A comparison of spectral envelopes for an arbitrary unvoiced speech
frame. (a) Spectral envelope profiles are shown for true WB (blue, p = 16), true
SWB (dashed-black, p = 32) speech frames with stretched copy of WB envelope
(red). Spectral envelopes (dashed-black profiles, p = 32) extracted from (b) true
and (c) extended SWB speech frames are shown with spectra of respective speech
frames (green profiles).

that are generated within the 8-16kHz frequency range. It is hypothesised that, in
this region, profiles of the true SWB (Fig. 7.4(b)) and the extended (Fig. 7.4(c))
speech frames follow spectral shapes which are sufficiently similar to support SWBE.
Similar comparison for a voiced speech frame is shown in Fig. 7.5.

7.5 Experimental setup and results
This section reports both objective and subjective assessments of the proposed
SWBE algorithm.
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Figure 7.5: A comparison of spectral envelopes similar to that shown in Fig. 7.4
for an arbitrary voiced speech frame.

7.5.1 Databases

All experiments reported here were performed using speech data from the CMU Arc-
tic (Section 3.2.3), TSP speech (Section 3.2.2) and 3GPP (Section 3.2.4) databases.
All three databases contain phonetically balanced utterances.

7.5.2 Data pre-processing

Data pre-processing steps are illustrated in Fig. 7.6. All data in the TSP and
3GPP databases were first downsampled to SWB signals so that all three databases
then have a common sampling rate of 32kHz. Downsampling was performed using
the ResampAudio tool contained in the AFsp package [224]. The active speech
level of all utterances in all three databases was then adjusted to -26dBov [227] to
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Figure 7.6: Protocol used for data pre-processing. LA = level alignment to -26
dBov.

give SWB data xswb
2. They are further encoded and decoded using the EVS [280]

codec with active discontinuous transmission in channel aware mode to produce
EVS processed signals xevs. The codec operates at a bitrate of 13.2kbps.

SWB signals xswb were then downsampled to 16kHz and passed through a send-
side bandpass filter [226] according to ITU-T Rec. P.341 [281], thereby limiting
the bandwidth to 50Hz-7kHz, to obtain WB data xwb. This data was in turn
processed with the AMR-WB codec [282] at 12.65kbps in default mode to produce
AMR-WB processed signals xamr. AMR-WB data xamr forms the input to the
SWBE algorithm (xwb in Fig. 7.1 is replaced by xamr).

7.5.3 Assessment and baseline algorithm

The proposed bandwidth extension algorithm is assessed against AMR-WB and
EVS processed speech signals, with the EHBE algorithm [208] being used as a
baseline. Since EVS encodes frequencies up to 14kHz when operating at 13.2kbps,
bandwidth extended signals produced using either the baseline or the proposed
approach are also bandlimited to 14kHz. With a 1024-point FFT, the proposed
algorithm was implemented with Hann windows of 25ms duration and 50% overlap,
with OLA conditions necessary for perfect reconstruction [216,217].

2Indices [n] (as illustrated in Fig. 7.1) are dropped for convenience.
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Figure 7.7: An approach to efficient high-frequency bandwidth extension
(EHBE) [208]

EHBE baseline algorithm

The baseline algorithm is illustrated in Fig. 7.7. A WB speech signal xwb is first
upsampled to 32kHz. The highest octave (i.e., 4-8kHz frequency band) present in
the input WB signal is extracted using a band-pass filter (BPF). The resulting signal
is processed with a non-linear device (NLD), e.g., full-wave rectifier to produce
frequency components within 8-16kHz frequency band. The HF components are
then extracted using a HPF. The input signal xwb (after synchronisation (S) to
compensate for delays introduced by filtering operations) is then added to the HF
components to obtain extended SWB signal x̂swb. The EHBE baseline algorithm
was implemented in the time domain without framing, as described in [208].

Input WB signals are processed with AMR-WB codec with a bitrate of 12.65kbps
because no significant improvement in quality is obtained beyond this bitrate [283].
At 12.65kbps encoding then operates over a frequency range of 0-6.4kHz whereas
components up to 8kHz are added during decoding through noise filling [35]. Input
signals to both the proposed and baseline algorithms thus extend to 8kHz.

7.5.4 Objective assessment

Objective assessment is performed using the RMS-LSD metric (Section 3.4.2).
The average RMS-LSD is determined for estimated HF components only, i.e. in
the frequency range 8-14kHz (LF components are not taken into account). It is
used to compare EVS-processed and bandwidth-extended speech signals produced
using either the proposed algorithm or the EHBE baseline. Comparisons are made
with original SWB signals xswb. All signals were time-aligned before evaluation to
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Table 7.1: RMS-LSD results in dB (standard deviation).

Proposed EHBE EVS
CMU Arctic 10.13 (1.68) 11.74 (2.03) 5.00 (0.48)
3GPP 11.06 (1.90) 13.56 (2.30) 4.87 (0.39)
TSP speech 9.29 (0.84) 10.20 (1.04) 4.74 (0.51)
Average 9.92 (1.56) 11.36 (1.96) 4.94 (0.50)

account for any delay introduced by encoding/decoding.

Results presented in Table 7.1 show that the proposed algorithm gives a lower
RMS-LSD than the EHBE algorithm. An average RMS-LSD of 9.92dB corresponds
to an improvement of 1.44dB over the baseline. As expected, EVS processed signals
show lower RMS-LSD values. This is because the EVS codec performs non-blind
ABE during decoding exploiting side information related to missing HF information;
reconstruction thus results in better RMS-LSD estimates. While results for the
proposed algorithm are inferior to those of EVS processed signals, they suggest
that it gives a better estimate of the HF spectral shape than the baseline.

7.5.5 Subjective assessment

Subjective assessments were performed using CCR listening tests (Section 3.4.1)
in order to compare performance in terms CMOS. Each set of tests involves the
pairwise comparison of bandwidth extended signals with (i) AMR-WB signals, (ii)
EVS processed signals and (iii) those extended via the EHBE baseline algorithm.
Each set of tests was performed by 14 listeners. They were asked to compare the
quality of 15 (5 chosen randomly from each of the 3 databases) randomly ordered
pairs of speech signals A and B, one of which was treated with the proposed
bandwidth extension algorithm. Listeners were asked to rate the quality of signal
A with respect to B according to the following scale: -3 (much worse), -2 (slightly
worse), -1 (worse), 0 (about the same), 1 (slightly better), 2 (better), 3 (much
better). The samples were played using DT 770 PRO headphones.

Subjective assessment results are illustrated in Fig. 7.8. Each group of three
bars shows average listener preferences for each of the three comparisons. Blue bars
show the percentage of tests in which signals treated with the proposed SWBE
algorithm were judged to be of superior quality (scores>0). Green bars show the
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Figure 7.8: Subjective test results in terms of CMOS for bandwidth extended
speech generated with the proposed (Prop) algorithm (A) versus either AMR-WB,
EVS or EHBE processed speech (B). Each bar indicates the relative frequency
that (blue bars) A was preferred to B (score>0), that (green bars) quality was
indistinguishable (score=0), or that (red bars) B was preferred to A (score< 0).
Scores illustrated to the top are CMOS points with corresponding CI95.

percentage of trials where the same signals were judged to be of inferior quality
(scores<0). Red bars show the percentage of tests for which relative quality was
indistinguishable (scores=0).

Compared to AMR-WB signals, 49% of speech files treated with the proposed
algorithm were judged to be of superior quality. In comparison to EVS processed
signals, 32% of trials were found to be of equivalent quality, while 31% were judged
to be of superior quality. Quality was found to be inferior for 37% of trials. Up to
73% of comparisons to the EHBE baseline showed no discernible difference. CMOS
results (with corresponding 95% confidence interval (CI95)) illustrated to the top of
Fig. 7.8 also illustrate the improvement in quality compared to AMR-WB signals
and equivalence to EVS and EHBE processed signals. The proposed approach
outperforms AMR-WB speech quality by significant CMOS points of 0.486. The
EVS and EHBE processed speech signals showed slightly higher preference signified
by the CMOS points of -0.05 and -0.005 respectively. Overall, these results show
that the proposed SWBE algorithm improves consistently on speech quality than
AMR-WB signals and to the levels comparable with EVS and EHBE processed
speech.
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Figure 7.9: Spectrograms of a AMR-WB processed speech segment extended by
the proposed algorithm (a) and the EHBE baseline (b) compared to true SWB
speech (c). LF components (0-8kHz) in plots (a) and (b) are different than those
in plot (c) due to AMR-WB processing.

7.5.6 Discussion

Fig. 7.9 shows a comparison of spectrograms for speech signals after bandwidth
extension using (a) the proposed and (b) the baseline algorithms with the true SWB
spectrogram illustrated in (c). The spectral gap in both (a) and (b) around 8kHz
which arises through AMR-WB processing is generally imperceptible [16]. The
comparison of spectrograms in (a) and (b) shows that HF components estimated
by the proposed method reflect more reliably the HF components in the true SWB
spectrogram (c). This finding confirms the improvements found with objective
RMS-LSD assessments. However, subjective assessments show that time domain
processing without framing can lead to fewer processing artefacts.

Even though RMS-LSD objective assessment results show that the proposed
SWBE algorithm produces speech of lower quality than that produced by the EVS
codec, subjective assessment results show only marginal difference. This is because
the level discrimination reduces drastically at higher frequencies (especially beyond
8kHz) [284]. As a result resynthesized SWB speech is perceived to be of similar
quality.

Lastly, whereas the EHBE algorithm operates on the speech signal directly, the
proposed algorithm is based on a classical source filter model. Therefore, when used
in combination with a WB codec which employs some form of linear prediction (e.g.
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AMR-WB codec), the proposed SWBE algorithm avoids an additional re-synthesis
step and therefore introduces lower complexity.

7.6 Summary
This chapter presents an approach to super-wide bandwidth extension that is based
on a classical source filter model. The key contributions of this work are as follows:

• An efficient super-wide bandwidth extension algorithm is presented which
introduces negligible complexity and is thus well suited to real time imple-
mentations. The complexity is reduced by extrapolation of wideband spectral
envelope to obtain missing high-frequency spectral envelope information,
without requiring statistical estimation.

• Super-wide bandwidth extension is performed for AMR-WB processed speech
signals and a comparison of the extended super-wideband speech signals
with those processed with the latest EVS-processed is reported. Results of
subjective assessments showed that the proposed approach produces speech
of notably higher quality than wideband input signals and of comparable
quality to speech signals processed with the EVS codec.

• Being codec neutral, the proposed algorithm can be used to improve the
speech quality offered by wideband networks and devices and can also be
used to preserve quality when super-wideband devices are used alongside
wideband services. When used in combination with a wideband codec which
operates on some form of linear prediction coefficients, the proposed approach
avoids an additional resynthesis step to obtain super-wide bandwidth signals,
thereby reducing the complexity.
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Conclusions and future directions

Artificial bandwidth extension (ABE) algorithms estimate missing higher frequency
components from available lower frequency components. The research presented
in this thesis tackles the problem of using higher dimensional features resulting
from explicit memory inclusion for efficient ABE. The focus was to improve ABE
performance under the constraints of fixed dimensionality, especially when using tra-
ditional regression techniques such as Gaussian mixture model regression (GMMR).
The work presents novel, efficient solutions to both narrow-to-wideband and wide-
to-super-wideband extension. Solutions are based on the classical source-filter
model of speech.

8.1 Contributions and conclusions
The contributions and conclusions derived from the research presented in this thesis
are explained as follows:

• In Chapter 4, the benefit of using explicit memory that can be captured through
static features extracted from neighbouring speech frames is studied via infor-
mation theoretic analysis. The performance of the memoryless baseline ABE
system (presented in Chapter 3) is shown to be improved via explicit memory
inclusion under the constraint of fixed dimensionality. Improvements in speech
quality are obtained with modest increases in complexity and an algorithmic
delay (latency) of 20ms. Comparison category rating (CCR) subjective lis-
tening tests show that the quality of narrowband speech signals is improved
by 0.69 CMOS points. The baseline system employs a GMMR technique to
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estimate 10-dimensional highband (HB) linear prediction (LP) coefficients from
10-dimensional narrowband (NB) log-Mel filter energy (logMFE) coefficients.
The complexity of the GMMR model resulting from the use of memory is tackled
by employing principal component analysis (PCA) as a dimensionality reduction
technique. The resulting 10-dimensional, compact NB representation is shown
to improve mutual information (MI) by 8.1% relative compared to NB logMFE
features. The analysis also shows that memory included from more than two
neighbouring speech frames (under the constraint of fixed dimensionality) do
not further improve ABE performance. In this case, latency is compatible with
the constraints of real-time ABE.

• With a focus only upon the retention of variation in the input NB features, being
an unsupervised approach to dimensionality reduction, PCA is not optimised
for the estimation of HB information, and is likely a suboptimal solution. The
use of semi-supervised stacked auto-encoders (SSAEs) as a better alternative
to dimensionality reduction is proposed in Chapter 5. SSAEs are explored to
extract low dimensional representations tailored specifically to ABE, with the
expectation of better estimation performance. The 10-dimensional higher-level
NB features learned via SSAEs when trained on higher-dimensional input NB
log power spectrum (LPS) coefficients (with memory inclusion) show significant
improvements to speech quality than those obtained from input NB logMFE
coefficients. The newly learned NB features learned from LPS and logMFE
inputs (with memory) lead to the relative MI improvements of ≈ 23% and 9%
over 10-dimensional NB logMFE features respectively. Improvements to speech
quality are confirmed by informal listening tests.

• Chapter 6 describes the first application of conditional variational auto-encoders
(CVAEs) to supervised dimensionality reduction specifically tailored to ABE.
CVAEs, a form of directed, graphical model, are utilised to model the distribution
of higher-dimensional log-spectral data (that includes memory) to extract higher-
level, compact, latent NB features that are tailored to improve the estimation
of missing HB components. This work introduces an approach to the joint
optimisation of a CVAE with a probabilistic encoder in the form of an auxiliary
neural network which derives its conditioning variable. Speech signals extended
using the proposed CVAE feature extraction scheme show improved quality
compared to NB signals by 0.90 CMOS points. They are also found to be of
superior quality than those extended using PCA and SSAE ABE systems by
CMOS points of 0.13 and 0.10 respectively. In contrast to bottleneck features
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learned by SSAEs, latent (or probabilistic) features learned by CVAEs also show
consistent performance with or without mean-variance normalisation.

• Following standardisation in 2014, the deployment of the enhanced voice services
(EVS) codec by telecom operators is increasing rapidly. However, users of super-
wideband (SWB) devices will still be restricted to narrowband or wideband
communications until the operational bandwidth of devices and networks moves
completely to SWB. Chapter 7 proposes a super-wide bandwidth extension
(SWBE) algorithm which is based on the classical source filter model. The
approach is based on linear prediction based analysis-synthesis whereby missing
higher frequency components are generated from the combination of the WB
residual error signal after zero insertion in the time domain with the original
WB spectral envelope. SWB speech produced by the proposed approach shows
superior quality to WB speech signal processed with the adaptive multi-rate
WB (AMR-WB) codec (at 12.65 kbps). CMOS results show significant im-
provements by 0.486 points. Results also show that bandwidth-extended signals
are comparable in terms of speech quality to signals processed with the EVS
codec (at 13.2kbps) with only slightly higher preference observed for the lat-
ter. While the proposed approach shows slightly inferior results in subjective
listening tests, this is perhaps attributed to the specific implementation. Time
domain processing without framing, as used for the baseline system, leads to
fewer processing artefacts. The proposed approach, however, avoids an extra
resynthesis step when used with a wideband codec that employs some form of
linear prediction and thus provides a efficient solution to SWBE with no need
for statistical estimation.

8.2 Future directions
The research work carried out in this thesis highlights a number of research
directions for future exploration.

• The thesis investigates the importance to ABE of explicit memory. Further-
more, memory captured from NB static features extracted from neighbouring
speech frames is exploited without implications for computational complexity.
Memory is included via the use of dimensionality reduction and a traditional
regression technique using Gaussian mixture models. It should be interesting
to investigate and study the relative improvements in ABE performance due
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to explicit memory inclusion using hidden Markov models (HMMs) which
inherently capture interframe dependancies. The relative improvements in
performance of DNN-based ABE algorithms should also be of interest.

• An important aspect of the work presented in this thesis is that deep learn-
ing based dimensionality reduction techniques without supervised training
perform poorly in comparison to PCA. This motivates the consideration of
other dimensionality reduction approaches for ABE.

• Previous works on the assessment of speech quality have illustrated that no
ABE algorithm shows consistent results for different languages and codecs.
This is perhaps due to the mismatch in training and testing conditions
involved during assessment. The training of DNN based models using data
that captures such variation may provide better, more robust solutions.

• SWBE approaches which operate without statistical estimation perform well
and also reduce computational complexity. Performance can be further im-
proved via statistical estimation of only gain or energy parameters. This is
because the estimation of the energy or gain of the HB spectral envelope is
especially important to ABE performance. The particular, focused considera-
tion of energy or gain parameter offers potential for better performance.
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