Preface

The aim of this manuscript is to describe the 3D multi-physic framework for finite element analysis of composite magnetoelectric (ME) developed in our thesis work. Application on ME materials is of great interest nowadays. The development of innovative devices based on these materials is becoming intensive, their research plays a key role. It is essential to develop the modeling tools investigating the materials and optimizing the structures. ME materials exhibit the magneto-electro-elastic multi-physics coupling. There are two types of ME materials: the intrinsic and the composite (extrinsic), where the ME composite is more interesting because of its higher ME coupling coefficient. The composite material is composed of piezoelectric and magnetostrictive phases. The piezoelectric phase exhibits the electric-elastic coupling, whereas the magnetostrictive phase presents the magnetic-elastic coupling.

In order to investigate the material ME for application on energy harvesting, our laboratory has developed a 2D model. Simulation results show good concordance with the measurements but only valid for simple structures with plane strain or plane stress assumption. In fact, for application in energy transducers, the ME structure is required to be more effective. Thus, the investigation of the influence of the geometry dimension to the output deliverable power is required. A simulation tool which can properly consider the structure effect of the complex interaction is needed for optimal design of the future ME structures, and thus the 3D development is highly required.

The manuscript of the thesis is organized in five chapters.

Chapter 1 is a background review of ME materials and their multiphysics equations. Firstly, the definition of ME effect is introduced and the classification of ME material following the type of coupling effects (single phase and ME composite). Since the class of ME composites generates more power, we focus on this class of ME materials by presenting the principles of ME coupling in the composite as well as in its components (the piezoelectric layer, magnetostrictive layers), for the three types of ME composite (ME laminate composite, ME fiber composite, ME particulate composite). Secondly, some applications of ME materials are reported. Nowadays, the Internet of Things is pervasive which requires the autonomous energy of objects, energy harvesting using ME composite can be very interesting. The final section refers to the multiphysics equations of ME materials. The constitutive laws (coupled and uncoupled), the general equations (mechanic equilibrium, Maxwell-Ampère equation, Gauss law) as well as some existing ME modeling methods will be shortly recalled.

Chapter 2 introduces the 3D multiphysic framework of magnetoelectric (ME) modeling.

After a short introduction, we describe the magnetoelectric problem treated in our work. The analysis in both static and dynamic regimes is considered. Next, the finite element method is introduced. The differential forms (the Whitney forms) approach is used in our study for the discretization of different variables. The linear shape functions associated with the tetrahedral element for node element, edge element, facet element and volume element are reported. Under this framework, the static analysis of ME problem is firstly considered. The general physics equations, the constitutive laws, the state variable equations and the finite element formulations will be all detailed. After that, the methods used to solve the nonlinear problem of magnetostrictive materials are reported. Finally, the harmonic analysis ME considering the eddy current effect will be presented.

In the chapter 3, the behavior of ME laminate composites is examined. Two classes of laminate composites (circular section and rectangular section) will be considered. We perform the nonlinear static analysis firstly to determine the material coefficient of the magnetostrictive layers. When all coefficients are obtained, the linear harmonic analysis is performed in taking into account the eddy currents effect. Novel structure and the influence of geometric parameters are analyzed.

Chapter 4 presents the homogenization of two other types of ME composite, the fiber composite and the particulate composite. Finite element analysis of a representative elementary volume and the homogenization principle are described. The effective coefficients are determined and compared with the analytical results by using the analytical approach existed in the literature. Finally, the dynamic and the nonlinear behavior of the effective magnetoelectric coefficient are analyzed.

In the last chapter, the conclusions and the future perspective of this work are presented.
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Magnetoelectric (ME) effect

The ME effect is firstly reported in 1888 by Wilhelm Röntgen who discovered the magnetization of dielectric material moving in an electric field [START_REF] Röntgen | Ueber die Compressibilität des Wassers[END_REF]. In 1894, the possibility of intrinsic ME effect in a non-moving material was reported by Pierre Curie while investigate the symmetry in the physical phenomenon [2].

The magnetoelectric (ME) effect

magnetization induced by an electric field or polarization induced by a magnetic field. --------- The ME behavior is characterized by the ME coefficient α V . A magnetic field H is applied on a sample where the polarization can be induced as in Figure 1.1. This will generate an electric potential V .

+++++++++++

• In static regime:

α V = V H (1.1)
• In dynamic regime:

αV = ∆V ∆H (1.2)

Two types of material which exhibit the ME effect:

Single-phase multiferroics: some materials (RMnO 3 , BaMF 4 ,. . . ) exhibit the ME effect. The asymmetry between the magnetic polar sub lattices of the crystal structure plays a key role [3]. The magnetic-electric coupling in single phase ME is interesting. However, only few materials exhibit this effect at room temperature. For this type of material, the ME coupling is weak and prevents their immediate applications [4], [START_REF] Eibschütz | Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni)[END_REF].

Multiferroic composite: is a combination of the magnetostrictive material and the piezoelectric material (Figure 1.2). The magnetostrictive material exhibits the mechanic-magnetic coupling while the piezoelectric presents the mechanic-electric
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coupling. The composite exhibits a magnetic-electric coupling which does not belong to any of its individual constituent phases. In fact, in a ME composite, the achieved ME coefficient is in the order of magnitude larger than that in intrinsic multiferroics [START_REF] Nan | Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[END_REF]. In addition, the design and synthesis of ME composites offers more flexibility, resulting in cost-effectiveness and freedom in meeting the shape and size constraints. Therefore, our researches will only focus on the ME composite.

+++++++++++++

Magnetostrictive materials

The magnetic-mechanic coupling can be marked in Joule magnetostriction [START_REF] Esq | XVII. On the effects of magnetism upon the dimensions of iron and steel bars[END_REF], [START_REF] Kikuchi | Magnetostrictive materials and applications[END_REF] and Villari effect [START_REF] Jiles | Theory of the magnetomechanical effect[END_REF].

Magnetostrictive effect:

Joule magnetostriction: the material is deformed under a magnetic field [START_REF] Esq | XVII. On the effects of magnetism upon the dimensions of iron and steel bars[END_REF].

Villari effect:

The magnetization of material changes when it is subjected to mechanical stress [START_REF] Jiles | Theory of the magnetomechanical effect[END_REF]. 

Magnetostrictive Driving Force

Although t'he magnetostrictive &rain is usually extremely small a very large force is necessary in order to prevent any dimensional change. This force is equal to where E is Young's modulus of elasticity and X the area of the surface to which it is applied. This force is the magnetrostrictive driving force; a magnetostrictive transducer produces sound waves in the medium to which it is coupled. ers, fish finders, and SONAR utilize m transducers. The reflected sound from liq faces provides the signal received in these timing between transmitted and received distance to target.

Magnetostrictive vibrators are also u ult,rasonic energy for such devices as cavita degassification, homogenization, dispersio glomeration, oxidation, emulsification, depo high polymers, etc.[l] The energy from thes also be used for cleaning in applications ra laboratory-size devices to those used in tex The calculated changes in magnetic induction for values of parameters close to those of Birss ef al [START_REF] Jiles | Theory of the magnetomechanical effect[END_REF] are shown in figure [START_REF] Clark | Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium[END_REF]. In these cases the starting value of the magnetic induction was along the initial magnetization curve far from the anhysteretic. Therefore, the dependence of magnetic induction on stress according to the model is approximately quadratic under these conditions, with the rate of change dependent on the applied field strength. The form of the modelled curves is very similar to that observed by Birss et d and the numerical values of AB,, and AB,,, as shown in table 1, are also in good agreement.

The calculated change in magnetic induction with stress under conditions similar to those investigated by Jiles and Atherton [START_REF] Gautschi | Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers[END_REF] in high-strength steel is shown in figure 11. These calculations show a monotonic increase in the maximum change in induction AB,, at 140 MPa under field strengths of 0.32, 0.96, 1.6 and 3.2 kA m-'. It can be seen that the increment in AB,, began to decline at the higher field strength 

(that is, ABmar (3.2 kA m-')-AB,, (1. 
kA m-').
This is in agreement with experimental observations. A comparison of the numerical values is also given in table 1, which again shows good quantitative agreement between the calculations and experimental observations.

c = 0.1, yli = 4 x A-' m2 A-* m2 Pa-', m1 = 2 x lo-" A ' m' , A-' m' Pa-', 6 = 1.1 x lo8 Pa and

Conclusions

The model theory described in this paper has been developed to explain the apparently disparate range of observations of the magnetomechanical effect that have been reported. The equations have been derived based on the concept that, under a changing applied stress at The magnetostriction phenomenon was first found in ferromagnetic materials such as Fe, Ni, Co but it is very hard to be recognized. In 1960s, highly magnetostrictive materials which are rare earths elements samarium (Sm), terbium (Tb), dysprosium (Dy) were discovered with the magnetostriction on the order of 200 times larger than nikel [START_REF] Clark | Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium[END_REF], [START_REF] Legvold | Giant Magnetostriction in Dysprosium and Holmium Single Crystals[END_REF]. However, this reduces to zeros at room temperature. After that, Terfenol-D, which is an alloy of terbium, iron and dysprosium, is synthetized. The new material can generate high strain under magnetic field at room temperature [START_REF] Clark | Modern magnetostrictive materials: classical and nonclassical alloys[END_REF]. Somehow, the application of Terfenol-D is limited in 1D geometry such as rods or bars because of its brittleness. To overcome low tensile strength of Terfenol-D, Gafenol which is an alloy of Fe and Ga was developed [START_REF] Khachaturyan | Structurally Heterogeneous Model of Extrinsic Magnetostriction for Fe-Ga and Similar Magnetic Alloys: Part I. Decomposition and Confined Displacive Transformation[END_REF], [START_REF] Mudivarthi | Origin of magnetostriction in Fe-Ga[END_REF].

Some applications of magnetostrictive materials:

Magnetostrictive actuator: as shown in Figure 1.4, the actuator can be constituted by a Terfenol-D bar assembled in the electric coil and the magnetic armature. When the electric current in the coil changes, the Terfenol-D bar will be deformed and generates output displacement. Ultrasonic transducer: The magnetostrictive transducer is composed by a small driving/sensing coil, a biasing magnet, and a magnetostrictive waveguide. (Figure 1.5) Sensor application: The sensor basically consists of a two-part cylinder, with a conducting inner core, preferably made of copper or aluminium, and an outer magnetic thin layer, deposited on the conducting inner core (Figure 1.6 ) local break of the symmetry of the elastic waves, which in turn results in a propagating elastic wave. The elastic wave is then detected using a search coil, fixed at the one end of the twopart cylinder. The main advantage of this principle is that the transverse sound velocity is about one-half of the longitudinal one. Therefore, the obtained sensitivity and uncertainty can be 0.1 mm up to 50 µm and ∼150-200 ppm respectively. Another advantage is that this sensor is cordless, meaning that the moving coil does not involve any movement of electric wires, which is important from many points of view, like noise inducing, compatibility with industrial environments, etc. In order to maintain the advantage of cordless operation and improve the sensitivity and uncertainty of measuring tapes based on the MDL technique, a new sensor, illustrated in figure 11, may be used. The sensing element (1) is a MDL in the form of ribbon or wire. A short excitation coil (2) is set around the one end of the MDL and an array of short, singlelayer coils (3), connected in series and named hereinafter 'search coils', is spread around the MDL along its length, being used as the sensor output. A moving hard magnet (4), able to be displaced parallel to the sensing material, is the active core of the sensor. Without any loss of generality, in a specific application, the moving magnet was used as the end part of a hydraulic piston. Details of such an arrangement can be found in [201]. The sensor operates as follows: pulsed current is transmitted through the excitation coil, generating an elastic pulse, which propagates along the MDL length. The propagating elastic pulse induces a pulsed voltage train in the serially connected search coils, with pulse intervals corresponding to the distance between consequent coils. These 

Piezoelectric materials

Compare to magnetostrictive materials, the piezoelectric materials are more popular. Huge amounts of research about this materials have been presented. The piezoelectric effect is understood as the linear electromechanical interaction between the mechanical and the electrical state in crystalline materials with no inversion symmetry [START_REF] Gautschi | Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers[END_REF].

Piezoelectric effect:

Direct piezoelectric effect: the material is electric polarized when it is subjected to mechanical stress.

Inverse piezoelectric effect:

The magnetization is deformed under electric field.

The piezoelectric effect was first discovered by Jacques et Pierre Curie in 1880 [START_REF] Curie | Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées[END_REF]. This is a reversible process, the materials exhibit the direct effect also perform the inverse effect.

Some applications of piezoelectric materials:

Vibration control: The piezoelectric, which is inserted on the stator, converts the vibration into a voltage output (Figure 1.7). When the voltage reaches the maximum value, this can be reversed by synchronized switch damping on inductor.
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M STATOR ions, it is impormostly influence y the mechanical lement model of ws that, for the m, three vibra-, with a resonant the current is ine, some of these operation. Fig. 7 n the machine's nonsymmetrical n modes 2 and 4 ission. and compared to the finite-element results. For the simplicity of implementation, the considered PZT inserts are rectangular plates with electrodes on both sides. Degrees of freedom are the angular position θ 0 of an insert, its thickness t p , and width w p (Fig. 8). The length L p is the same as that of the stator.
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Here, only the effect of one magnetic phase is taken into account. Geometry and optimal location of the PZT insert are determined relatively to this hypothesis. Considering the vibration mode 2, the motion is ruled by the classical mechanical equation [START_REF] Röntgen | Ueber die Compressibilität des Wassers[END_REF], where [M 2 ], [C 2 ], and [K 2 ] are, respectively, the mass, damping, and stiffness matrix, and a 2 the displacement expressed in the modal base for mode 2. The generalized force F 2 expressed in ( 2) is related to the external pressure p ext generated by the PZT insert and the mode shape X 2 of the vibration PZT (a) 

[M 2 ] ä2 + [C 2 ] ȧ2 + [K 2 ] a 2 = F 2 (1) 
F 2 = S p ext X 2 (θ) dS. ( 2 
)
Considering the displacements of mode 2 (Fig. 3), Ansys simulations show that the mode shape can be approximated by (3), with X a constant:

X 2 (θ) = X cos (2θ) . ( 3 
)
The expression of the external pressure is obtained using the bending moment M 0 (4) due to the piezoelectric inserts, where h is the stator thickness and σ s the stress in the stator depending on the radial position x considered (x = 0 at the average diameter of the stator). These hypothesis lead, for mode 2, to the analytical expression (5) of the generalized force F 2 [START_REF] Clark | Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium[END_REF]:

M 0 = h/2 -h/2 σ s (x)x dx (4) 
F 2 = cos (2θ 0 ) 2M 0 (t p ) R 2 2w p R 1 - w p 2R 2 . (5) 
According to ( 6) and ( 7) [START_REF] Clark | Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium[END_REF], the bending moment M 0 (t p ) depends only on the PZT insert thickness, its d 31 piezoelectric factor, and the electric field E. Y s and Y p are the Young's modulus of the stator and the piezoelectric insert, and d 31 is a piezoelectric coefficient. Thus, this analytical method allows to simply determine the insert locations and geometry maximizing the generalized force. These results are used in Section VI in the case of the single-phase structure:

M 0 = f (t p ) E (6) f (t p ) = Y s Y p h 2 d 31 t p (h + t p ) Y s h 2 + 6Y p (ht p + 2t 2 p + (4t 3 p /3h)) . (7) 
IV. SEMIACTIVE APPROACH When driven by a mechanical excitation, a piezoelectric insert develops a voltage in phase with the strain. In the proposed approach, whose circuit is schematically represented in Fig. 9, this voltage can be forced to zero [synchronized switch damping on short-circuit (SSDS)] or can be reversed [synchronized switch damping on inductor source (SSDI)] each time a maximum of the voltage is reached. This process is simply obtained by closing an electronic switch (MOSFET transistors) for a brief period of time, synchronously with the voltage extremum. If forcing the voltage to zero with a short-circuit is straightforward, the voltage inversion is simply obtained by an oscillating discharge of the piezoelectric insert capacitance C 0 through an inductor L and reopening the circuit after exactly half an L-C 0 oscillation period [START_REF] Kikuchi | Magnetostrictive materials and applications[END_REF], [START_REF] Legvold | Giant Magnetostriction in Dysprosium and Holmium Single Crystals[END_REF]. As a result, the piezoelectric voltage is greatly magnified and time-shifted nearly a quarter of period with the strain, as shown in Fig. 10. An energy-conversion analysis can be derived from piezoelectric equations (8) written according to IEEE standards, where {T}, {S}, {E}, and {D} are, respectively, the stress vector, the strain vector, the electric field vector, and the electrical induction vector. The piezoelectric material physical properties are the elastic stiffness matrix determined at constant electric field [c E ], the piezoelectric stress matrix [e], and the permittivity matrix at constant strain [ε S ]. "t" refers to matrix transpose:

T D = c E -e e t ε S S E . (8) 
Depending on the piezoelectric insert geometry and coupling used, either axial or lateral strains and stresses as well as the proper elastic and piezoelectric coefficients may be considered, leading to the simplified scalar expressions:

T = c E S -eE D = eS + ε S E. ( 9 
)
For frequencies lower than piezoelectric insert resonances, (9) can be expressed as a function of the displacement u, the piezoelectric voltage V, and the mechanical force F leading to [START_REF] Clark | Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium[END_REF], where t p is the thickness between electrodes and w p is the width in the direction of the considered strain. A is the electrode surface: A finite element model is established using the Optimization Module of COMSOL Multiphysics to design the 8-channel transducer within weight (<25 mg) and volume (<0.1 cm 3 ) constraints. The total volume and mass of the device were 5 × 5×0.2 mm 3 and 12.2 mg, respectively, which are much lower than the limitations of the system. In order to characterize the device properties accurately, mechanical, electrical and squeeze film damping parameters are inserted to the COMSOL finite element simulations [START_REF] Nan | Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases[END_REF]. Fig. 3 shows the proposed 8-channel multi-frequency struc-ture, where each cantilever corresponds to a selected frequency band in cochlea.

F A = c E u w p + e V t p . ( 10 
)
Table 1 lists the obtained piezoelectric output voltage, sensitivity to sound and quality factor for each frequency. Results demonstrate that the proposed design has a clear frequency selectivity with a minimum quality factor of 1285 and mimics the natural operation of cochlea. Both the sensitivity and the quality factor of the proposed system are higher than the state-of-the-art piezoelectric transducers [START_REF] Hristoforou | Magnetostrictive delay lines: engineering theory and sensing applications[END_REF]. Results show that the device generates rotor can be directly placed and rested on the stator without extra fixation. The stator comes into contact with the ring rotor at the three branch tips A, B and C, forming three pairs of mechanical fits, to which careful attention should be paid. If the clearance between the arc surfaces of the branch tips and the inner ring surface of the rotor is too large, the vibration of the Here, in our design, a clearance of about 10 µm is adopted according to testing results. Alternatively, the Y-shaped stator can be treated as three beams with different dimensions and one common end. When one beam is excited by a piezoelectric vibration (shown in figure 4(a) with double black arrows), all three beams vibrate flexurally along different orientations (shown in figure 4(a) Figure 1.9: Schemes of the piezoelectric motor [START_REF] Zhou | A bio-inspired piezoelectric motor with simple structured asymmetric stator[END_REF] Energy harvesting: The piezoelectric materials can be used for energy conversion. 
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harvesting allows the device to operate independently of the relative position between the device and the speaker. Regions I, II and III in Fig. 2d correspond to locating the speaker next to the device, gradually changing the position of the speaker, and placing the speaker above the device, respectively.

Broadband operation is advantageous for many applications in energy harvesting. Figure 2e-h shows a design configured towards this goal. The structure involves a buckled bi-stable serpentine (PVDF, 9 μ m in thickness, 50 μ m in ribbon width) and a proof mass (Cu, 500 μ m × 500 μ m × 500 μ m). The overall lateral dimensions are 3 mm × 3 mm and the height is 1.5 mm (the inset in Fig. 2e and Supplementary Fig. 14b). Here, the buckled shape provides two stable states, with a serpentine layout that, together with the proof mass, reduce the energy barrier between these two states, thereby facilitating the excitation of nonlinear vibrational responses. As such, under an out-of-plane vibration with an acceleration of 4 g, this 3D system can generate electrical power across a range of frequencies spanning two orders of magnitude (that is, from 5 Hz to 

Magnetoelectric composites

Many researches have been conducted to find the ME composites which can exhibit such a strain-mediated ME effect at room temperature. Many of them have been used in various applications. According to the geometry structure formed by magnetostrictive and piezoelectric phases, the ME composites can be categorized into three groups [START_REF] Newnham | Connectivity and piezoelectricpyroelectric composites[END_REF]: the 0-3, 2-2, 1-3 where the number refers to the connectivity of each phase (Figure 1. [START_REF] Legvold | Giant Magnetostriction in Dysprosium and Holmium Single Crystals[END_REF].

Th e composite ME eff ect can therefore be described as follows [START_REF] Nan | Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[END_REF]. Magnetoelectric laminate composite: The laminated ME composites are very promising ME materials at which the good coupling can be obtained at the ferroelectric and ferromagnetic interfaces. For this type of structure, the material can have much better ME coupling, larger ME anisotropy and higher resonance response in a wide frequency range [START_REF] Nan | Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[END_REF], [START_REF] Priya | Recent advancements in magnetoelectric particulate and laminate composites[END_REF], [START_REF] Liu | CoFe2o4/BaTiO3 Composites via Spark Plasma Sintering with Enhanced Magnetoelectric Coupling and Excellent Anisotropy[END_REF].

Magnetic
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Magnetoelectric fiber composite: A known fiber composite structure is a selfassembled nanostructured thin film formed on the substrate [START_REF] Zheng | Multiferroic BaTiO3-CoFe2o4 Nanostructures[END_REF]. The heterostructure consists of piezoelectric matrix reinforced by nanopillars ferromagnetic. This structure performs a strong ME coupling.

Magnetoelectric particulate composite:

To compare with the laminate composite, the 0-3 type particulate ME composites are interesting because of easy processing and it does not require additional adhesives for mechanical contact [START_REF] Nan | Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers[END_REF]. Due to the brittleness of Terfenol-D, the magnetic particles are often embedded in a piezoelectric matrix.

Beside the three types of composite, there are also novel designs which are the combination of these ideas to overcome the shortcomings of the classical composite. In [START_REF] Li | Magnetoelectric quasi-(0-3) nanocomposite heterostructures[END_REF], the magnetoelectric quasi (0-3) nanocomposite heterostructures are presented. The new structures get over the limitation of film connectivity of laminated composite [START_REF] Lefki | Measurement of piezoelectric coefficients of ferroelectric thin films[END_REF] and also significantly suppress the leakage current paths due to the low resistivity of the interconnected ferromagnetic phase.

The composites can generate ME behavior by combining the magnetostrictive and the piezoelectric materials which in themselves do not exhibit the ME effect. Thanks to the mechanical coupling, an applied magnetic field induces electric polarization [START_REF] Nan | Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases[END_REF].

Properties of ME composites:

Nonlinear behavior: The ME composites have nonlinear dependencies with respect to the magnetic field (Figure 1.12) because of the nonlinear magnetostrictive response.

When the magnetic field increase, the achieved ME coefficient increase until the maximal value (saturation magnetization) and decrease after that. In practical, to obtain the optimal configuration, the composite is applied by a dynamic magnetic field pre-magnetized by magnetostatic biasing. The optimal value of magnetic static field is at which the ME coefficient is maximal. On présente sur la figure 6.13 le coefficient ME statique obtenu pour l'échantillon de référence. Pour chacune des mesures, nous allons sélectionner le parcours du champ décroissant, et donc fixer le champ optimal pour ce parcours. Par exemple pour l'échantillon de référence, ce champ sera H opt dc = 600 Oe. La raison de ce choix est que le champ magnétique statique de ce banc de mesure est calibré par rapport au pas 0 qui correspond au champ maximum. Ainsi pour fixer le champ optimal pour la mesure dynamique, 107 Figure 1.12: Measurement of ME coefficient for sample laminate composite [START_REF] Malleron | Etude expérimentale d'un transducteur magnétoélectrique pour les besoins de la télé-alimentation de capteurs biomédicaux implantés[END_REF] Frequency dependence: Especially for laminate composite, the obtain ME coefficient 1 Introduction is observed very high at resonance frequency (Figure 1.13 [START_REF] Zhai | Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates[END_REF]). This particular property has attracted many scientific researches. Working around the resonance frequency will make the materials more effective. In another aspect, as the magentostrictive layer is conductive, the effect of eddy currents is important at higher frequency. E was 7.2 V / cm Oe under H dc = 8 Oe: ater than the largest value previously er Terfenol-D/PMN-PT longitudinal inates. 10 S is the dielectric constant of rial at constant strain, and d 33,m and nal piezomagnetic and transverse pi-, respectively. Although the magneto-1 was only 42 ppm ͓Fig. 2͑b͔͒, which giant magnetostriction of Terfenol-D, its effective piezomagnetic coefficient reported types, offering potential in practical applications. In addition, a large phase shift from 0°to 180°was found under small dc bias changes on the order of 1 Oe, as shown on the right-hand axis of Fig. 2͑a͒, further offering ability to read the sign of a small moment or spin.

The three-layer sandwich laminate of Fig. 1͑b͒ has a symmetric structure. Under a H ac applied along the length axis, the Metglas layers will elongate and shrink along that direction. This will force the thin PVDF layers to undergo an ac longitudinal strain, inducing a dielectric polarization change in its thickness or transverse direction. As can be seen in Fig. 3, V ME for the three-layer sandwich laminate was flat with frequency over the bandwidth of the subresonant range, experiencing a dramatic resonance enhancement at the first longitudinal mode f = 50 kHz, with a peak value of V ME = 238 V / cm Oe.

However, the two-layer unimorph laminate of Fig. 1͑c͒ has an unsymmetrical structure. Figure 3 also shows V ME as a function of frequency for this unimorph with H ac =1 Oe applied along the length of the sample. In addition to a principle longitudinal mode resonance near 50 kHz, a very low bending-mode resonance frequency was found. The inset of Fig. 3 shows a low frequency ͑ϳ110 Hz͒ resonance with a maximum V ME of 25 V / cm Oe ͑resonant-bending enhancement of approximately five times͒. Such low-frequency enhancement in V ME was not observed for the three-layer structure: although, both laminate types were found to have a strong ME enhancement ͑three-layer, 238 V / cm Oe; unimorph, 310 V / cm Oe͒ near 50 kHz at the longitudinal resonance frequency.

Next, we determined the sensitivity of our three-layer Metglas/PVDF laminates to small variations in ac and dc magnetic fields. Figure 4͑a͒ shows the voltage induced by 

The evolution of internet and IoT

The research on the internet design was started in 1973; the network became operational in 1983. The internet was firstly reserved for technological, academic, research elite. From the very early days when it was a group of machines all hooked together with email and very little functional, the internet is evolved to a platform where people can share knowledge, find information, have tele-conferences or meetings that may be miles away. The internet is changing in profound ways, it's no longer just means of communication. The Internet of Things (IoT) means the internet doesn't just collect and distribute information, it can also feel and intelligently respond.

Smart cities -IoT scenarios

The evolution of internet creates the IoT connecting physical devices and everyday objects. These objects are embedded with sensors and internet connectivity to communicate and interact with other objects. For example, IoT brings a new concept of smart cities [START_REF] Batty | Smart cities of the future[END_REF] which contain intelligent, virtual, digital, information cities. The design of smart city is
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changing depending on the information and communication technology. In general way, municipalities around the globe use IoT sensors to collect data in order to enhance their services, reduce costs and improve interaction [START_REF] Mclaren | Sharing Cities: A Case for Truly Smart and Sustainable Cities[END_REF]. The smart city innovation is expected to improve human life with more efficient water supply, an innovative solution to traffic congestion, more reliable public transportation, energy-efficient buildings, improved public safety. . . Contribute to the development of smart cities, more and more IoT devices are fabricated.

Connected devices in billions However, the main problem remains on that of the energy supply modes. The object interconnection project is seen on a large scale. The recovery of information is envisaged on very numerous objects but also physically spaced from each other, sometimes on huge surfaces. The objects are therefore considered autonomous, without any wire. When the data is exchanged without wires, the energy stays wired. The use of batteries remains the main way to overcome this problem. However, this requires recharging or replacing the batteries by an outside operator, but it is sometimes very difficult to access the objects.

To solve the energy need problem, the self-powering remote sensors using wireless power transmission techniques can be the solution.

Magnetoelectric transducer -self-powering devices

Many researches on energy harvester are being conducted to solve the power requirements problem of wireless sensor networks. There are ways of energy collection from environment using materials such as piezoelectric, magnetoelectric, inductive, photovoltaic, dielectric . . . materials. The efficiency of the materials is optimized following various applications

1 Introduction [START_REF] Lefeuvre | Power and frequency bandwidth improvement of piezoelectric energy harvesting devices using phaseshifted synchronous electric charge extraction interface circuit[END_REF], [START_REF] Xie | Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process[END_REF], [START_REF] Soares | Magnetic levitation-based electromagnetic energy harvesting: a semianalytical non-linear model for energy transduction[END_REF]. For a wireless network, magnetic field energy harvesting by magnetoelectric composite provides a great potential.

For energy harvesting applications, the working principle of the ME composite is shown in Figure 1.15. The composite is magnetized by a dynamic magnetic field H ac with an additional DC magnetic bias. Since the material behavior is nonlinear, it is necessary to find the optimum magnetic DC bias so that the ME composite can generate maximum output voltage. When a dynamic magnetic field is applied, the magnetostrictive layers will be deformed. This results a stress field on the piezoelectric layer. The electrodes is put on the opposite surfaces of piezoelectric layer for the electric polarization, which are also going to allow an electrical contact and connect the output load of the transducer ME that represents the object to supply the electric energy. The number of investigation of ME energy harvesting is still limited. From 2000 to 2010, several researches on energy recovery from unused sources and for self-powered sensors were developed [START_REF] Beeby | Energy harvesting vibration sources for microsystems applications[END_REF], [START_REF] Paradiso | Energy scavenging for mobile and wireless electronics[END_REF], [START_REF] Priya | Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes[END_REF], [START_REF] Kambale | Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3nb2/3)O3-Pb(Zr,Ti)O3 single crystal/Ni cantilever[END_REF], [START_REF] Martins | Polymer-Based Magnetoelectric Materials[END_REF], [START_REF] Srinivasan | Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides[END_REF]. In [START_REF] Li | A MAGNETOELECTRIC ENERGY HAR-VESTER AND MANAGEMENT CIRCUIT[END_REF], the fork composite structure with power management circuit to increase the output power is presented. To improve the way the sensors utilizing ME phenomenon in the absence of a DC magnetic field, a self-biased magnetoelectric energy harvester can be considered [START_REF] Zhou | 7 -Magnetoelectric energy harvester[END_REF], [START_REF] Kumari | Room temperature large self-biased magnetoelectric effect in non-lead based piezoelectric and magnetostrictive (0-3) particulate composite system[END_REF].

Other applications

Beside the energy transducer applications, the ME composites exhibiting strong coupling coefficient have been used for various applications [START_REF] Cheng | Recent development and status of magnetoelectric materials and devices[END_REF].

Magnetic sensor

ME composite can be integrated in an ultra-sensitive magnetic sensor for brain activity recording technique based on measurement of magnetic fields generated by brain. Because of the natural properties and self-powered operation at room temperature, this can replace other expensive techniques which require cryogenic conditions. Figure 15 is an illustration of resonant magnetic field sensor. An ultra-sensitive DC magnetic field detective for electro-magneto-brain activity was presented in [START_REF] Nan | Self-Biased 215mhz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection[END_REF]. Research in [START_REF] Guduru | Mapping the Brain's electric fields with Magnetoelectric nanoparticles[END_REF] proposed novel technique using ME effect of multiferroic nanoparticles for examine local electric fields in
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response to neural activity in real time. A ME microcantilever, which capable of measuring minimum magnetic field up to 1 * 10 -12 T, consists of Terfenol-D and PZT is introduced in [START_REF] Lee | Ultra-sensitive magnetoelectric microcantilever at a low frequency[END_REF]. To overcome the detection limit, a thin film ME heterostructures was investigated in [START_REF] Röbisch | Pushing the detection limit of thin film magnetoelectric heterostructures[END_REF].

romechanical performances were r Q ≈ 511 and electromechanical ≈ 1.63%). This first prototype was nt magnetic field levels from 0 to ency sensitivity of ~ 1 Hz/nT and 10 nT.

magnetic materials into MEMS d much attention in recent years, tages in sensing technology [START_REF] Röntgen | Ueber die Compressibilität des Wassers[END_REF]. t magnetic field sensors based on ance frequency variation of tors with incorporated magnetic ly demonstrated [START_REF] Röntgen | Ueber die Compressibilität des Wassers[END_REF]2] but, because lectromechanical performance of es and their relatively low ng, they showed limited values of the use of complex and off-chip mechanisms. Moreover, all the s were based on low frequency ures; which limits both sensitivity he resonant sensor [3]. stepping stone towards the -miniaturized, power efficient and netic field sensor is set by prototype of a high frequency Nitride / Iron-Gallium-Boron no-plate resonant (NPR) magnetic transduction of a high frequency in a strongly magnetostrictive he main challenge associated with gh performance MEMS resonant . This fundamental challenge is The efficient on-chip piezoelectric f a high frequency bulk acoustic nano-plate structure, instead of a ication of a high frequency and resonator with power efficient self-biased soft magnetic FeGaB netostriction constant of 70 ppm the resonant body of an AlN NPR agnetomechanical coupling. The coupling between the FeGaB e AlN piezoelectric nano-plate tra-high sensitivity of the device magnetic field. Furthermore, the

DESIGN AND FABRICATION

The 3-dimensional schematic representation of the proposed MEMS resonant magnetic field sensor is shown in Figure 1. The sensor consists of a bilayer (magnetostrictive layer and piezoelectric layer) nano-plate in which an interdigital transducer (IDT) is employed to excite and sense a higher order contour-extensional mode of vibrations by piezoelectric transduction [3]. The resonance frequency of the device is sensitive to external magnetic field through the equivalent Young's Modulus, E eq , change induced by the external magnetic field (Eq. 1).

Figure 1: 3D schematic representation of the proposed MEMS resonant magnetic field sensor. It consists of top magnetostrictive material, bottom IDT and piezoelectric material in between.

The resonance frequency of the proposed device is determined by the pitch, W 0 , of the finger electrodes forming the interdigital transducer (IDT) (Figure 2 (a)), and the material properties: equivalent Young's Modulus E eq and density ρ eq , by (1) [START_REF] Nan | Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[END_REF]. When the sensor is exposed to an external magnetic field, the equivalent Young's Modulus of the overall structure is changed due to the magnetostrictive effect [4] of the magnetic material, resulting in a shift of the device resonance frequency.

݂ ൌ ଵ ଶௐ బ ට ா ఘ (1)
The bilayer nano-plate-resonant magnetic field sensor proposed in this work was implemented using FeGaB as magnetic layer and AlN as piezoelectric layer (Figure 1). The fabricated device is shown in Figure 2. The effective device sensing area was designed to be 100 µm (W) × 200 in [START_REF] Hui | MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator[END_REF] in which the variation of Ј vs H is nonlinear. For E = 0, one observes a smooth variation in vs f and an expected discontinuity at f = 9.6 GHz. Application of E = 7.5 kV/ cm to PZT resulted in a downshift in frequency ␦f = 6 MHz and a corresponding differential phase shift of ␦ = 180°Data on ␦ reveal a rapid change in the phase shift for small E, and it levels off for higher E. Figure 3 shows phase characteristics for H 0 = 2720 Oe, a bias field corresponding to a linear variation of Ј with H. The frequency shift for E = 5 kV/ cm is 2 MHz, and ␦ is small compared to the data in Fig. 2. But one observes a linear variation in ␦ with E. Similar phase characteristics were measured at 5 GHz. The insertion loss varied from a minimum of 1.5-2 dB at 5 GHz to a maximum of 3 -4 dB at 9.6 GHz.

For the analysis of the phase shifter, we first consider the coupling between the microstriplines and the ME resonator that is given by 9

k = 2V + Љz 0 h 2 Z ͩ arctan Z z 0 ͱ + 1 3 arctan 3Z z 0 ͱ ͪ 2 , ͑1͒
where

+ Љ = 8M 0 ⌬H ,
V is the volume of ME resonator, + Љ is the imaginary part of magnetic susceptibility, z 0 is the characteristic impedance of the microstripline, is the relative dielectr the thickness of the alumina substrate, and Z is the free space wave resistance. The magnitude and phase of the trans are given by

͉T͉ = ͱ ͑1 -k 2 + 2 ͒ + ͑2k͒ 2 ͑1 + k͒ 2 + 2 , = arctan 2k 1 -k 2 + 2 ,
where k is the coefficient of coupling. detuning factor of dc bias field from res given by

= H r -H 0 + ␦H E ⌬H ,
where ⌬H is the half-width of FMR, and magnetic field under the action of an ext

The shift ␦H E is estimated from

␦H E = -AE = -BE 2 .
Here A and B are the linear and nonlin respectively. 

Phase shifter

Microware phase shifters are used in oscillators and phased array antenna systems. A ME phases shifter composed by YIG and PZT was studied in [START_REF] Nan | Self-Biased 215mhz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection[END_REF]. This technique reduces power dissipation compared with traditional phase shifter based on Faraday rotation for electromagnetic waves. 

Resonator

Resonator is a device generating waves of specific frequencies, used in phased array radars, filters and phase shifters. The employments of ME composite, replacing ferrite materials, are less noisy, low power consumption.

Inductors

A novel application of ME composite is inductor, one of three fundamental components for electronic circuits. The principle of the variable inductance, using the ME material, is as follows: the static electric field induces the deformation of the piezo- 

Transformateur magnéto-électrique

Le principe du transformateur magnéto-électrique consiste à en dynamique qui crée une tension dynamique à la sortie, c'est à di électrodes de l'élément piézoélectrique [Dong et al., 2009]. A la fr nance, le coefficient ME atteint une valeur maximale qui correspo du rapport de conversion du transformateur. Un champ magnét ajouté par un courant statique pour changer le point de polarisa magnétostrictif et permet de contrôler la tension de sortie. Un te est présenté sur la figure 1 

Physical equations of ME materials 1.3.1 Constitutive laws

The ME composite functionality interacts with many physical phenomena at different scales. The coupled effects are the interaction between the magnetics, the mechanics and the electrostatics while the thermal effect is ignored. For example, the magnetostrictive behavior is recognized when the material deformed under magnetic field whereas the piezoelectric behavior is the electric polarization under stress. The response of material under applied loading depends on the constitutive laws. In general, the loading can be mechanical force, magnetic or electric field. For energy transducer, it's the magnetic field. The response is the strain, magnetic induction or electric displacement. In this section, the uncoupled behavior is presented firstly, the coupled behavior is afterwards.

Uncoupled constitutive laws

• Mechanics

In linear elasticity, the Cauchy stress T (N/m 2 ) refers to the force divided by area. Under an applied force, the mechanical strain S can be obtained by Hooke's law:

T = cS, (1.3)
where T and S are second-order tensors (3x3) and c is called the stiffness tensor (N/m 2 ) which is a fourth-order tensor (3x3x3x3). The expression of the Hooke's law needs the use of quantities with four indexes, which can be somewhat cumbersome and heavy. Therefore, some simplified notations have been proposed. As T and S are both symmetric, they have six independent entries. They allow the representation by a vector (6x1), the fourth-rank tensor is switched to 6x6 square symmetric matrix. The most well-known of the matrix formalisms for anisotropic elasticity is that of Voigt [START_REF] Voigt | Lehrbuch der Kristallphysik[END_REF]. The Voigt representation is presented in Appendix A.1.
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The mechanical response of material can be also expressed in the displacement field u (m), which is linked with the strain tensor S by the following:

s = Du = 1 2 (grad u + grad t u), (1.4)
where u is a vector (3x1), refers to three directions of movement. The operation X t denotes the transposition operation over X.

• Magnetics

In uncoupled-magnetic problem, the magnetic induction B (T) can be computed from the magnetic field H (A/m) through:

B = µH, ( 1.5) 
where B and H are vectors (3x1), µ (H/m) is the permeability which is a second-order tensor (3x3).

• Electrostatics

In uncoupled-electrostatic problem, the electric displacement D (C/m 2 ) can be computed from the electric field E (V/m) through:

D = εE, (1.6) 
where D and E are vectors (3x1), is ε (F/m) is permittivity which is a second-order tensor (3x3).

Coupled constitutive laws

• Linear piezoelectricity

For linear piezoelectricity, the mechanical-piezoelectric coupling refers to the relation between electric the displacement D, the stress T and the electric field E, the strain S (following IEEE standard [START_REF]IEEE Standard on Piezoelectricity[END_REF]).

T = c E S -(e) t E D = eS + ε S E (1.7)
where c E and ε S are respectively, the elastic under constant electric field and permittivity coefficient under constant strain. e (NV-1m-1) denotes the piezoelectric coefficient (6x3). An alternative system to present the constitutive laws is also widely used:

S = s E T -(d) t E D = dT + ε T E (1.8)
where s E and ε T are respectively, the compliance at constant electric field, permittivity at constant stress, d (6x3) is the piezoelectric coefficient (C/N). This leads the following relations:

s E = [c E ] -1 (1.9)
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e = dc E (1.10) ε S = ε T -de T (1.11)
The matrix presentation of these coefficients is given in the Appendix A.2

• Linear magnetostrictive laws

The magnetic-mechanical coupling refers to the relations between the stress, the magnetic field and the strain, the magnetic induction (IEEE standard [START_REF]IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature[END_REF])

T = c B S -(h) t B H = -hS + ν S B (1.12)
where c B and ν S are respectively, the elastic coefficient under constant magnetic induction and the reluctivity under constant strain. h (NA -1 m -1 ) denotes the piezomagnetic coefficient (6x3). We can also re-write:

S = s H T -(d m ) t H B = -d m T + µ T H (1.13)
where s H and µ T are respectively, the compliance at constant magnetic field, permeability at constant stress, d (6x3) is the piezomagnetic coefficient (m/A).

• Nonlinear magnetostrictive laws

Considering nonlinear behaviors, the material properties is expressed as functions of magnetic field and stress state

S = s(H, T )T -(d m (H, T )) t H B = -d m (H, T )T + µ(H, T )H (1.14)
The determination of material properties c(H, T ), h(H, T ), µ(H, T ) is needed for the FEM analysis. In order to compute material coefficients, we can use the B-H, S-H curves which are obtained from experimental or numerical model.

ζ =     µ S = ∂B ∂H (H 0 , T 0 ) d m = ∂B ∂T (H 0 , T 0 ) d t m = ∂S ∂H (H 0 , T 0 ) s H = ∂S ∂T (H 0 , T 0 )     (1.15)
Jiles-Atherton model is a popular model to describe the magnetic hysteresis [START_REF] Jiles | Theory of ferromagnetic hysteresis[END_REF]. This approach is only valid for isotropic materials. The other analytic model is to use polynomial which is fitted with the measurement [START_REF] Kim | Finite element analysis for acoustic characteristics of a magnetostrictive transducer[END_REF]. However, application of these models in 3D problem seems to be complex. Armstrong models [START_REF] Armstrong | An incremental theory of magneto-elastic hysteresis in pseudocubic ferro-magnetostrictive alloys[END_REF] or multi-scale model [START_REF] Daniel | An Analytical Model for the Effect of Multiaxial Stress on the Magnetic Susceptibility of Ferromagnetic Materials[END_REF] developed energy-averaged models based on the energy-weighted of the domains orientation and evaluate the energy contributions of these domains. Nevertheless, the model
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requires energy estimation for all possible orientations which are time consuming. Evans and Dapino [START_REF] Evans | Efficient magnetic hysteresis model for field and stress application in magnetostrictive Galfenol[END_REF] presented the discrete energy averaged model (DEAM), reducing the number of directions to six easy axis. It is this model adopted in our study. Its principle is shortly described below.

Firstly, the magnetic induction and the strain in magnetostrictive phase is determined by the relation:

S = sT + S m B = µ 0 (H + M ) (1.16)
where the strain S is decomposed purely in mechanical part and in magnetostriction S m . M (3x1) denotes the magnetization (A/m) and µ 0 is the permeability of the free space (4π10 -7 Hm -1 ). The magnetization and the magnetostriction are determinated by averaging these values along six easy axis:

S m = Σ 6 k=1 ξ k an S k m M = M s Σ 6 k=1 ξ k an m k (1.17)
where m k , S k m , ξ k an is the magnetization, the magnetostriction and the averaged anhysteretic volume fraction of each orientation, which are related to energy minimization of the easy axis. The energy of a domain close to the easy axis c k is estimated by:

G k = 1 2 K k |m k -c k | 2 -S k m • T -µ 0 M s m k • H, (1.18)
and simplified as

G k = 1 2 m k • K k m k -m k • B k (1.19)
with

K k =         K k -3λ 100 T 1 -3λ 111 T 4 -3λ 111 T 6 -3λ 100 T 4 K k -3λ 100 T 2 -3λ 111 T 5 -3λ 111 T 6 -3λ 111 T 5 K k -3λ 100 T 3         B k = c k 1 K k + µ 0 M s H 1 c k 2 K k + µ 0 M s H 2 c k 3 K k + µ 0 M s H 3 t
The minimization problem is formulated as eigenvalue problem

(K -γI)m k = B k (1.20)
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where I is the sixth order matrix, γ is unknown eigenvalue. The solution for m k is given as following:

m k = (K k ) -1 B k + 1 -c k • (K k ) -1 B k c k • (K k ) -1 B k c k (1.21)
From that, S m can be obtained by :

S m =                      3 2 λ 100 (m k 1 ) 2 3 2 λ 100 (m k 2 ) 2 3 2 λ 100 (m k 3 ) 2 3λ 111 m k 1 m k 2 3λ 111 m k 3 m k 2 3λ 111 m k 1 m k 3                      (1.22)
These results allow us to determine the energy in equation 1.19, the anhysteretic can be computed by:

ξ k an = exp(-G k /Ω) Σ 6 j=1 exp(-G j /Ω) (1.23)
Finally, the magnetostriction and magnetization in equation 1.16 can be estimate to characterize the nonlinear behavior of the material.

General physical equations

To study the magnetoelectric problem, we consider in this section respectively the mechanic, the electric and the magnetic problems. The influence of temperature is neglected.

• Mechanic equilibrium

In mechanic static, the balance of linear momentum can be expressed as:

div T + f = 0, (1.24) 
where f (Newton) is the volume force vector (3x1).
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Under dynamic excitation:

div T + f = ρ d 2 u dt 2 (1.25)
where ρ (kg/m 3 ) is the density.

• Electrostatic field equation

curl E = 0 (1.26)
We can introduce scalar electric potential

V E = -grad V (1.27)

• Gauss's law

Gauss's law states how electric field behave around electric charge

div D = ρ V (1.28)
ρ V is the electric charge density

• Maxwell-Faraday equation

The electromagnetic induction is described as

curl E = dB dt (1.29)
• Maxwell-Ampere equation

The Maxwell-Ampere law relates electric currents and magnetic field, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic.

curl

H = J + dD dt (1.30)
Where J denotes free current density (A.m -2 )
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• Gauss's law for magnetism

div B = 0 (1.31)
Due to the Helmholtz decomposition theorem, a magnetic vector potential can be introduced

B = -curl a (1.32) • Ohm's law
Since the magnetostrictive layer is conductive material, the vector form of Ohm's law describes the eddy current induced in magnetostrictive layer:

J c = σE (1.33)
with J c is the current density and σ (Siemens) is conductivity constant which depends on the material properties.

Existing models

The ME composites have attracted scientific interests for applications such as energy harvesters, sensors, resonators, phase shifters . . . The requirement for engineering applications is a high ME voltage coefficient, which can be upgraded by the synthesis of new materials or the optimal design of ME structures. Many experimental researches have been conducted to improve the performance of ME composite. However, the laborious tests can be overlong and expensive. Therefore, numerical simulation methods are highly desired.

The numerical modeling of the ME composite exists in electronic scale, atomic scale and mmacrocopic scale. At the electronic scale, density function theory (DFT) predicts electronic and lattice contributions to the ME coupling of these materials [START_REF] Íñiguez | First-Principles Approach to Lattice-Mediated Magnetoelectric Effects[END_REF], [START_REF] Bousquet | Unexpectedly Large Electronic Contribution to Linear Magnetoelectricity[END_REF]. Understanding low-energy states of ME materials under various condition rely on effective Hamiltonian approach at the atomistic scale [START_REF] Prosandeev | Magnetoelectricity in BiFeO 3 films: First-principles-based computations and phenomenology[END_REF], [START_REF] Ren | Size effects in multiferroic BiFeO 3 nanodots: A firstprinciples-based study[END_REF]. On the macroscale, the approaches are based on the constitutive laws and equilibrium equations. Our works focus on the modelling of ME composite at the macroscopic scale as an application for energy harvester.

The development of analytical or numerical models of constitutive laws is necessary to analyze the multiphysics behavior and to investigate the ME composite voltage coefficient or to investigate the output deliverable power when the ME composite is used as an energy transducer. The first linear model for magnetostrictive materials is presented in [START_REF] Butterworth | The equivalent circuit of the magnetostriction oscillator[END_REF] considering no hysteresis effects. For laminate magnetoelectric composite, based on the constitutive equations and the averaging method, the static response of ME composite has been performed [START_REF] Srinivasan | Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides[END_REF], [START_REF] Mori | Magnetoelectric coupling in Terfenol-Bibliography D/polyvinylidenedifluoride composites[END_REF], [START_REF] Avellaneda | Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer (2-2) Composites[END_REF], [START_REF] Osaretin | Theoretical model for the magnetoelectric effect in magnetostrictive/piezoelectric composites[END_REF]. As these approaches do not take into
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account the coupled equation of motion for the laminate, a magneto-elasto-electric coupling equivalent circuits in [START_REF] Dong | Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites[END_REF] analyzes ME effect of Terfenol-D/PZT at low-frequency and resonance-frequency. Moreover, an analytical approach using the simultaneous solution of electrostatic, magnetostatic and elasto-dynamic equations in [START_REF] Filippov | Magnetoelectric effect in hybrid magnetostrictive-piezoelectric composites in the electromechanical resonance region[END_REF], [START_REF] Bichurin | Magnetoelectric Effect in Electromechanical Resonance Region[END_REF] estimates the frequency dependence of ME voltage coefficient. In order to consider the geometrydependence, [START_REF] Wang | Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites[END_REF] develop an average-field method. Following this, the impact of length and width fractions for the piezoelectric or magnetostrictive components on ME composite performance is evaluated. Next, because the response of magnetostrictive materials depends on the magnetic bias field, [START_REF] Zhou | An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings[END_REF] employed the equivalent circuit method to establish an analytical nonlinear magnetic-mechanical-electric coupling model in which nonlinear magnetostrictive constitutive relations are adopted. Furthermore, the influence of residual stress during the processing and preparation of magnetoelectric devices is prefigured also. For the Terfenol-D or Galfenol, the conductivity is usually strong (≈ 10 6 S/m), [START_REF] Liu | Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites[END_REF], [START_REF] Davino | Stress-Induced Eddy Currents in Magnetostrictive Energy Harvesting Devices[END_REF] introduced the complex permittivity model to take into account the losses due to the eddy currents effect inside a magnetostrictive layer. In brief, the analytical models have been developed in many physical aspects. In some cases, these models are very practical in calculation of ME behavior. Nevertheless, they are only valid in 1D assumption for simplified canonical forms (laminate rectangular tri-layer or bi-layer).

H-M Zhou et al lectric layer in the re respectively the ezoelectric material, and the permittivity n that magnetostricmagneto-mechanical agnetic field and nstants, such as the c coefficient and the ions of the magnetic without considering able to completely anical coupling in iu model, expressed

λ s M 2 s M 2 2σ σ s λ s M 2 s M 2 (3) s M 2 s M λ s 0 M 2 s M (4) 
ss, E s the saturation netostriction coeffie magnetization, M s nitial magnetization the permeability of the Terfenol-D along tion expressions are l Young's modulus) The constitutive model is linear in its form, however its nonlinear character enters in that the material constants are functions of the pre-stress and magnetic bias field in the constitutive model. Here, the left superscript m represents physical quantities belonging to magnetostrictive materials. B 1 , H 1 , m ε 1 and m σ 1 are longitudinal magnetic flux density, magnetic field, strain and stress, respectively; m s 11 (H 1 , m σ 1 ), m d 11 (H 1 , m σ 1 ) and m µ 11 (H 1 , m σ 1 ) are the elastic compliance coefficient, the longitudinal piezomagnetic coefficient and the magnetic permeability of the magnetostrictive material under constant stress m σ 1 and magnetic field H 1 , respectively.

According to the magnetostrictive and piezoelectric constitutive equations (equations (1), (2), ( 5) and ( 6)), we obtain an equivalent circuit for the MPM magnetoelectric laminated structure (figure 1) by the equivalent circuit method. A = 2A 1 + A 2 = (2t m + t p )w = tw is the crosssectional area of the laminated plates, n = 2A 1 /A = 2t m /t is the magnetostrictive layers thickness fraction, ρ = (2ρ m A 1 + ρ p A 2 )/A is the average density of the laminated plates, where ρ m , ρ p are the densities of the magnetostrictive material and the piezoelectric material respectively, u1 , u2 are the velocities of the end faces z = 0 and l of laminated plates, and thus one can obtain the low-frequency equivalent circuit of the MPM laminated material in the LT mode [START_REF] Zheng | Multiferroic BaTiO3-CoFe2o4 Nanostructures[END_REF], as shown in figure 2.

In figure 2, V is the polarized voltage of the piezoelectric layer, F 1 , F 2 are external stresses applied on the ends of the laminated plate, Z 1 = jρvA tan kl 2 , Z 2 = ρvA j sin kl are the equivalent mechanical impedances; C 0 = lwε 33 t p is the one-dimensional cut-off capacitor of the piezoelectric layer; Similarly, in accordance with the definition of the compliance coefficient, the compliance coefficient m s 11 (H 1 , m σ 1 ) can be obtained from the derivative of the strain with respect to the stress in equation ( 3), that is ∂ε(σ,H) ∂σ . Calculating the partial derivative of equation ( 3) with respect to σ , then

∂ε(σ, H) ∂σ = 1 E s +                                                λ s σ s sec h 2 σ σ s 1 + M 2 M 2 s + 2λ s M 2 s 1 -tanh σ σ s M ∂M ∂σ σ σ s ≥ 0 λ s σ s sec h 2 2σ σ s 1 + M 2 M 2 s + λ s M 2 s 2 -tanh 2σ σ s M ∂M ∂σ σ σ s < 0. ( 14 
)
The derivative of equation [START_REF] Clark | Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium[END_REF] with respect to σ is

∂M ∂σ =                              2kλ s 1 -tanh σ σs M µ 0 Ms -csc h 2 M 1 +M -2 1 -2kλ s σ -σ s ln cosh σ σs σ σ s ≥ 0 kλ s 2 -tanh 2σ σs M µ 0 Ms -csc h 2 M 2 +M -2 2 -2kλ s σ -σs 4 ln cosh 2σ σs σ σ s < 0. ( 15 
)
Substituting equation ( 15) into ( 14), we obtain structure. Thus we can obtain a nonlinear analytical magnetic-mechanical-electric coupling effect model.

m s 11 = 1 E s +                               M 1 -tanh σ σs λs σs sec h 2 σ σs + 2 1 -tanh σ σs λsM M 2 s µ 0 Ms 2kλs M -2 1 -csc h 2 M 1 -σ -σ s ln cosh σ σs - λ s M 2 sec h 2 σ σs σ s M 2 s σ σ s ≥ 0 M 1 -1 2 tanh 2σ σs λs σs sec h 2 2σ σs + 2 1 -1 2 tanh 2σ σs λsM M 2 s

Validity of the model

Before verifying the nonlinear magnetoelectric coupling model, we verify the explicit nonlinear expressions of the material constants of the giant magnetostrictive material. The expressions come from the strict mathematical derivation from Zheng-Liu's model [START_REF] Curie | Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées[END_REF], so they are effective. As there are few experimental results on piezomagnetic coefficient and compliance coefficient, which change with the pre-stress and magnetic bias field, we set the pre-stress at 0 MPa, and compare the piezomagnetic coefficient without pre-stress in equation ( 13) with the experimental results [START_REF] Nan | Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers[END_REF]; the comparison is shown in figure 4 In order to improve the performance of future ME composite ( energy transducer or sensors), it is necessary to procure a numerical multiphysics modeling in which all physical coupling phenomena are taken into account, whatever the studied structural forms. At first, a 2D multiphysics code based on the finite element method (FEM) [START_REF] Talleb | Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting[END_REF], [START_REF] Nguyen | Modélisation par éléments finis de matériaux composites magnétoélectriques[END_REF], [START_REF] Nguyen | Finite element harmonic modeling of magnetoelectric effect[END_REF], [START_REF] Nguyen | Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect[END_REF], [START_REF] Malleron | Finite-Element Modeling of Magnetoelectric Energy Transducers With Interdigitated Electrodes[END_REF], [START_REF] Galopin | Finite Element Modeling of Magnetoelectric Sensors[END_REF], which uses a a -V formulation (mixed magnetic vector potential a -electric scalar potential V ) and triangular nodal elements, has been developed as a first approach to investigate rectangular structures. Among the macroscopic numerical methods, the finite element method is one of the methods of discretization adapted to complex geometry problems. In the literature, for each coupling considered (magneto-mechanical or electromechanical), the finite element modeling research work already exists.

For piezoelectric materials, the finite element modeling on electric-mechanic behavior has been investigated by several groups. Piefort's work [START_REF] Piefort | Finite Element Modelling of Piezoelectric Active Structures[END_REF] focuses on the modeling of piezo-
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electric multilayers in static and dynamic modes. The state variables considered are the deformation and the electric field, and the constitutive laws are assumed to be linear. The variational method was used to obtain the finite element formulation. The code has been applied to a piezoelectric actuator.

For magnetostrictive materials, Azoum's model [START_REF] Azoum | Contribution à la modélisation numérique de phénomènes magnétoélastiques : étude de dispositifs à base de matériaux magnétostrictifs[END_REF] is a model of magneto-mechanical coupling in static regime. The constitutive laws are non-linear. The total deformation is decomposed into a deformation of mechanical origin and a magnetostriction deformation. Magnetostriction deformation is modeled by a quadratic function of magnetic induction. Following these studies, the Galopin model [START_REF] Galopin | Modélisation et caractérisation de matériaux actifs pour la conception de dispositifs magnéto-électriques[END_REF] is a model of magneto-electric coupling in static regime. In order to update the model with relevant magneto-elastic constitutive laws, a platform for the characterization of magnetostrictive materials has been developed. The model was applied on a displacement sensor. The numerical results were compared with the experimental results of [START_REF] Ueno | Magnetic sensor for high temperature using a laminate composite of magnetostrictive material and piezoelectric material[END_REF]. Belahcen [START_REF] Belahcen | Magnetoelasticity, magnetic forces and magnetostriction in electrical machines[END_REF] proposed to determine constitutive laws from Helmholtz's free energy. This model has been experimentally validated and applied to the calculation of vibrations in electrical machines. Combination of 2D FEM formulation for piezoelectric and magnetostrictive material, the FEM is developed to investigate the ME effect. In [START_REF] Nguyen | Finite element harmonic modeling of magnetoelectric effect[END_REF], A numerical study of ME composite in dynamic regime is introduced for magnetic sensor application. Multiphysics modeling of ME energy transducer employing FEM was afterward [START_REF] Talleb | Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting[END_REF], [START_REF] Talleb | Multiphysics modeling of a magnetoelectric composite Rosen-type device[END_REF], [START_REF] Talleb | Multiphysics modeling of multiferroic artificial materials by the finite element method[END_REF]. The piezoelectric behavior is assumed linear, the nonlinear magnetostrictive is considered either using quadratic function of magnetization or Jile-Atherton model [START_REF] Jiles | Theory of the magnetomechanical effect[END_REF], [START_REF] Dapino | A Coupled Structural-Magnetic Strain and Stress Model for Magnetostrictive Transducers[END_REF], [START_REF] Yang | Contribution to modelling of magnetoelectric composites for energy harvesting[END_REF]. Several important phenomenal physics are taken into account: the non-linearities of the magnetomechanical couplings, the mechanical frequency effect of the structure, electromagnetic coupling by Maxwell's equations under dynamic excitation. These approaches make it easier to understand the ME sensor/transducer working principle. Although the simulation results have shown good concordances with the measurement ones, the model limits to rectangular structures and cannot consider more complex structures such as trilayer laminar-disks. Moreover, in a 2D model, the influence of the eddy currents in magnetody-

Physical equations of ME materials

namic regime is approximately addressed since only the normal component of the potential vector a is considered. Recently, Spark plasma sintering (SPS) has been reported as an efficient fabrication process of ME composites. The short time and low temperature requirement of SPS make it possible to get the ME response close to the value predicated by the theoretical calculations [START_REF] Jiang | Magnetoelectric Bibliography composites of nickel ferrite and lead zirconnate titanate prepared by spark plasma sintering[END_REF]. The induced magnetic anisotropy in the direction of applied pressure during SPS process enhanced actually the magnetoelectric effect [START_REF] Aubert | Enhancement of the Magnetoelectric Effect in Multiferroic CoFe 2 O 4 /PZT Bilayer by Induced Uniaxial Magnetic Anisotropy[END_REF]. Employing this fabrication approach, the obtained structure is in cylinder form. For this type of geometry or when the stress is no longer uniform, the 2D FEM can't be applied. In order to investigate different ME structure with more complicated strain and stress state, 3D FE analyses is highly demanded as they are more flexible to model configurations and capable to obtain full field numerical solutions.

Generally, the 3D FE analysis of piezoelectric is introduced in numerous researches and exists in commercial software. The piezoelectric ultrasonic transducer motion is analyzed by ATILA software and experimentally compared in [START_REF] Hsiao | 3d finite element analysis and experiment on the piezoelectric ultrasonic transducer motion[END_REF]. Braess [START_REF] Braess | Efficient 3d-finite element formulation for thin mechanical and piezoelectric structures[END_REF] developed a formulation for thin film material to compute the deformation of structure exited by piezoelectric actuators. In another hand, magnetostrictive models are recently developed. In [START_REF] Schinnerl | A Survey in Mathematics for Industry An efficient method for the numerical simulation of magneto-mechanical sensors and actuators[END_REF], magnetic and elastic problems are studied individually where different discretization techniques are applied for the mechanical and magnetic fields. This technique requires mesh projection and coupling interaction procedure which demands simulation times. Evans

1 Introduction [START_REF] Evans | Dynamic Model for 3-D Magnetostrictive Transducers[END_REF] proposes a strongly coupled magnetostrictive model discretizing mechanical displacement and vector magnetic potential by nodal elements. However, Considering Whitney elements or vector basis functions can be more advantageous [START_REF]The Finite Element Method in Electromagnetics[END_REF] and the aφ formulation is proved to be more stable and have better convergence rate, especially in magneto-dynamic problems [START_REF] Bíró | Edge element formulations of eddy current problems[END_REF]. In this context, Zhi [START_REF] Qin | Finite Element Modeling and PGD Based Model Reduction for Piezoelectric & Magnetostrictive Materials[END_REF] developed multiphysic framework and constitutive models for piezoelectric and magnetostrictive materials in our laboratory. The 3D FE analysis is based on the equilibrium of electro-magnetic, elastic and thermals field, Whitney elements are employed. Piezoelectric model is applied for piezoelectric bimorph and surface acoustic wave (SAW) [START_REF] Qin | Finite-element modeling of thermoelastic attenuation in piezoelectric surface acoustic wave devices[END_REF]. The magnetostrictive model used the aφ formulation for magnetodynamic, implemented the Discrete Energy-Averaged Model (DEAM), modified Armstrong model [START_REF] Armstrong | An incremental theory of magneto-elastic hysteresis in pseudocubic ferro-magnetostrictive alloys[END_REF], to describe the nonlinear magnetostrictive response [START_REF] Evans | Efficient magnetic hysteresis model for field and stress application in magnetostrictive Galfenol[END_REF], [START_REF] Dapino | Modeling of 3d Magnetostrictive Systems with Application to Galfenol and Terfenol-D Actuators[END_REF].

Finally, based on the formulation developed by Zhi, our objective of the thesis is to build a 3D FE framework to investigate the ME energy transducers. The proposed 3D formulation combines the linear model of the piezoelectric layer introduced in [START_REF] Qin | Finite-element modeling of thermoelastic attenuation in piezoelectric surface acoustic wave devices[END_REF] and the non-linear dependence of the magnetic permeability B(H) model and mechanical stiffness S(H) model of the magnetostrictive layer. For that, the use of a magneto-elastic multi-scale model including hysteresis effect such as the Discrete Energy-Averaged Model (DEAM) [START_REF] Chakrabarti | Nonlinear finite element model for 3d Galfenol systems[END_REF], [START_REF] Tari | Robust solution procedure for the discrete energy-averaged model on the calculation of 3d hysteretic magnetization and magnetostriction of iron-gallium alloys[END_REF] or multiscale approach [START_REF] Daniel | An Analytical Model for the Effect of Multiaxial Stress on the Magnetic Susceptibility of Ferromagnetic Materials[END_REF] is fundamental. These models extend the energy-weighted averaging class of magnetomechanical models by developing an efficient implementation for magnetic hysteresis due to both the applied magnetic field H and stress T . This approach is applied to compute the behavior of ME laminate composite, particulate inclusion, fiber composite for energy harvester application.

Conclusion

In this chapter, the definition of the ME effect, the magnetostrictive effect, the piezoelectric effect and the principle of ME composite have been introduced, as well as some applications of these effects. The evolution of IoT requires novel technique responding to power demand of the connected objects and electronic devices. The ME composites
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have attracted scientific interests by the capability of transforming the magnetic energy to electric energy at room temperature.

So far, numerical approaches have been presented to investigate ME composites mostly by analytical methods or 2D FE based method. The goals of our work are to develop a multiphysic model allowing the 3D FE analysis of ME composite and optimize the ME structure configuration for energy harvester applications.

In next chapter, the 3D FEM analysis of ME composite will be introduced in both static and dynamic regimes. The constitutive laws of magnetic-mechanic-electric coupling and the FE formulations are established.

Introduction

The objective of this chapter is to present the multiphysic modeling framework of magnetoelectric (ME) composites. Firstly, the magnetoelectric problem is described. The analysis of ME materials in both static and dynamic regimes is proposed. The suggested assumptions are described.

Secondly, the finite element method is introduced. The differential forms (the Whitney forms) approach is used in our study for the discretization of different variables. The linear shape functions associated with the tetrahedral element for node element, edge element, facet element and volume element are reported.

Next, static analysis of ME problem using this FEM framework is considered. The general physical equations, the constitutive laws, the state variable equations, and the FE procedure will be all detailed. To take into account the nonlinear property of magnetostrictive materials, we implement the DEAM into the 3D model.

Finally, the harmonic analysis of ME considering the effect of eddy currents will be presented.

Description and configuration

During the past years, the L2E laboratory developed a 2D FE multiphysics model that considers simultaneously the magnetic-mechanic-electric coupling [START_REF] Talleb | Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting[END_REF], [START_REF] Yang | Contribution to modelling of magnetoelectric composites for energy harvesting[END_REF], [START_REF] Malleron | Finite-Element Modeling of Magnetoelectric Energy Transducers With Interdigitated Electrodes[END_REF]. This model can be applied to investigate the performance of laminate composite with rectangular surface for applications in energy transducer. The experiment of ME measurement considered in the presented work and its illustration are given in Figure 2.1. As mentioned before, to have an optimal magnetoelectric coupling coefficient, the ME materials are excited by a dynamic magnetic field with a static magnetic bias. The ME sample is placed in a magnetic field created by the Helmholtz coil (the dynamic magnetic field) and the magnets (the static magnetic field).

In order to establish a mathematic model, the applied hypothesis are recapitulated as follows:

• The magnetic excitation is uniform.

• The assumption of small displacement is made and the linear strain-displacement relations are assumed.

• The influence of temperature is neglected.

• The piezoelectric coefficients are constants.

• Perfect mechanical contact on magnetotrictive/piezoelectric interface.

• The electric conductivity is constant in magneticstrictive materials and zero in other domains.

Finite Elements method

For electromagnetic problem, in order to preserve the field continuity properties, the differential forms based elements, called Whitney elements [START_REF] Bossavit | Computational Electromagnetism: Variational Formulations, Com-Bibliography plementarity, Edge Elements[END_REF], are employed.

Finite Elements method

Differential forms

In 3D application, four types of entries called k-forms are used. Firstly, a differential 1-form on an open subset of R 3 can be expressed

F (x, y, z)dx + G(x, y, z)dy + H(x, y, z)dz (2.1)
where F , G, H are defined function in R, (dx, dy, dz) is the basis. This form is integrated over a line, which is suited for the representation of field quantities such as the electric field having tangential continuity.

A 2-form, integrated over a surface, is an expression built using wedge products

F (x, y, z)dx ∧ dy + G(x, y, z)dy ∧ dz + H(x, y, z)dz ∧ dx (2.2)
The significance of 2-form is continuous in the normal direction, making it suitable for representing flux quantities.

Next, 3-form is integral over a region of space and constant in the volume. It can represent quantities like scalar densities.

f (x, y, z)dx ∧ dy ∧ dz (2.3)
with f (x, y, z) the R-valued function. Finally, 0-form f (x, y, z) is defined on a point, can be utilized to represent potential variables as it is continuous along all orientations.

So far, we apply derivative operator to k-form in order to obtain (k+1) form

{0 -form} function grad ---→ {1 -form} vector field curl --→ {2 -form} vector field div --→ {3 -form} function (2.4)

Linear shape function on tetrahedral elements

In our works, the domain is discretized using linear tetrahedrons (Figure 2.2). This element contains 4 nodes (x 1 , y Assuming the field values at 4 nodes of the tetrahedral element is

f 1 , f 2 , f 3 , f 4 , this satisfies            f 1 = a + bx 1 + cy 1 + dz 1 f 2 = a + bx 2 + cy 2 + dz 2 f 3 = a + bx 3 + cy 3 + dz 3 f 4 = a + bx 4 + cy 4 + dz 4 (2.6)
Solve equation 2.6 for a, b, c, d, we obtain

           f 1 = a 1 + b 1 x 1 + c 1 y 1 + d 1 z 1 f 2 = a 2 + b 2 x 2 + c 2 y 2 + d 2 z 2 f 3 = a 3 + b 3 x 3 + c 3 y 3 + d 3 z 3 f 4 = a 4 + b 4 x 4 + c 4 y 4 + d 4 z 4 (2.7)
Now, the equation 2.5 is rewritten
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f (x, y, z) = (a 1 + b 1 x + c 1 y + d 1 z)f 1 + (a 2 + b 2 x + c 2 y + d 2 z)f 2 + (a 3 + b 3 x + c 3 y + d 3 z)f 3 + (a 4 + b 4 x + c 4 y + d 4 z)f 4 = 4 i=1 λ i f i (2.8)
It is the introduction of the shape function λ i . Detail formulation of basis function is presented in Appendice.

In general, the Whitney k-form basis function is given by [START_REF] Bossavit | Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism[END_REF] 

w 0,...,k = k! k i=0 (-1) i λ i dλ 0 × • • • × dλ i-1 × λ i+1 × • • • × dλ k (2.9)
If k = 0, field values are interpolated by the node element

w i = λ i (2.

10)

If k = 1, field values are interpolated by the edge element, let i and j are the vertices of an edge:

w ij = λ i gradλ j -λ j gradλ i (2.11)
If k = 2, field values are interpolated by facet element, let i, j and k are the vertices of a facet:

w ijk = 2(λ i gradλ j × gradλ k -λ j gradλ k × gradλ i + λ k gradλ i × gradλ j (2.12)
Finally, for k = 3, volume shape function w ijkl is constant on tetrahedral and zero elsewhere.
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Weak formulation

Let us consider a domain Ω ∈ R 3 that is composed of the material domain Ω U = Ω M ∪ Ω P (magnetostrictive + piezoelectric) and the air domain Ω A = Ω/Ω U enveloping Ω U . The boundary of the domain dΩ is also boundary of the air domain.

In static regime, the 3D finite element formulation of the MEC coupled problems is derived by combining the elastic equilibrium equation 1.24 with the magnetic and electric equilibrium equations, namely Ampère's and Gauss's laws given by equations 1.30 and 1.28:

       div T + f = 0 curl H = J div D = ρ V (2.13)
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In our case, J = 0 because there is no applied current in the study domain. ρ V = 0 because the piezoelectric layer is considered as a perfect dielectric.

The constitutive relations are the combination of the electro-mechanical constitutive laws 1.7 in the piezoelectric material and the magneto-mechanical constitutive laws 1.12 in the magnetostritive material:

       T = cS -e t E -h t B H = -hS + ν S B D = -eS + ε S E (2.14)
Substituting 2.14 into 2.13 leads to system equation

       div (cS -e t E -h t B) + f = 0 curl (-hS + ν S B) = 0 div (-eS + ε S E) = 0 (2.15)
The fields S, E and B can be expressed, respectively, by the state variables: the mechanical displacement u (m), the electric scalar potential V (V) and the magnetic vector potential a (Wb/m) equation 1.4, 1.27, 1.32.

       S = Du B = curl a E = -grad V (2.16)
The system equation of the coupled problem is obtained by substituting 2.16 into 2.15.

Next, the variational principle is applied in considering corresponding boundary conditions of the problem domain Ω which leads to the following finite element formulation:

               Ω Du (cDu + e t grad V -h t curl a)dΩ = Ω u f dΩ Ω curl a (-hDu + νcurl a)dΩ = 0 Ω grad V .(eDu -ε S grad V )dΩ = 0 (2.17)
where u , a , V are the test function.

Finite element discretization

The finite element discretization is realized by using the Galerkin approach. The nodal elements and the edge elements are respectively employed for the approximation of u, V and a. We use u h , V h and a h representing these quantities in element h of the domain,
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such that u h = w n u k h , V h = w n V k h and a h = w e a k h ; where w n and w e are respectively, the nodal and edge basis functions and u k h , V k h and a k h are the nodal and edge degrees of freedom of the element h. The use of edge elements for the vector potential a guarantees naturally its tangential continuity.

The basis function is chosen for the test functions, solving for one element h, the equation 2.17 becomes

                         ( Ω Dw n cDw n dΩ)u k h + ( Ω Dw n e t grad w n dΩ)V k h -( Ω Dw n h t curl w e dΩ)a k h = Ω w n f dΩ -( Ω curl w e hDw n dΩ)u k h + ( Ω curl w e ν s curl w e dΩ)a k h = 0 -( Ω grad w n eDw n dΩ)u k h + ( Ω grad w n ε s grad w n dΩ)a k h = 0
This involves the differentials of the shape functions.

B u = Dw n = [B 1 u B 2 u B 3 u B 4 u ]
with The term curl w e can be written as curl w e = w f C, where w f is the facet basis functions from 2.4, and C the incident matrix associated with the curl operator [START_REF] Bossavit | Computational Electromagnetism: Variational Formulations, Com-Bibliography plementarity, Edge Elements[END_REF].

B i u =                    ∂/∂x 0 0 0 ∂/∂y 0 0 0 ∂/∂z ∂/∂x ∂/∂y 0 0 ∂/∂y ∂/∂z ∂/∂x 0 ∂/∂z                    w n i and B V = grad w n =         ∂w n 1 /∂x
Set

K uu = Ω B t u cB u dΩ F u = Ω w n f dΩ and F a = Ω w e J dΩ K au = C t ( Ω w f α hB u dΩ) K uv = Ω B t u e t B V dΩ K aa = C t ( Ω w f,t α ν s w f α dΩ)C K vv = Ω B t V ε s B V dΩ
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The global matrix system is obtained from the discretization of equation 2.17

       K uu u k -K t au a k + K uv V k = F u -K au u k + K aa a k = 0 K t uv u k -K vv V k = 0 (2.18)
In our study, no external body force is considered, i.e. F u = 0.

For the magnetic problem, the magnetic excitation is implemented in considering a nonhomogenous Dirichlet condition of the magnetic vector potential a k on the boundary of the problem domain Ω. By this, we assign zero to all a k on the boundary surface, except for those crossing a randomly built path constituted of one layer of surface elements, so that a i , the line integral of a on i th edge across this path, equals to the applied magnetic flux crossing the study domain (see Figure 2.3). In this case, the right hand side can be written as F a = K aa a p . The index p denotes the set of edges across the one-layer elements path.

Boundary conditions

Let take an example of a ME composite, the solution domain is a cylinder introduced in Figure 2.3a, wrapped by the air boundary. The applied magnetics flux is assumed to be uniform in the domain.

Mechanical condition

Usually, the composite material is fixed in the magnetic field created by Helmholtz coil (Figure 2.1) by two fixed point at the center of top face and bottom face of the ME composite. With this configuration, the material can be freely deformed. In the model, we introduce these points as in the Figure 2.3a (orange color), and its Dirichlet boundary condition is used: u = 0

Magnetic condition

Suppose that we want to apply magnetic flux in x direction Bx . Consider a surface S and its boundary L in the Figure 2.3b, By Stokes' theorem, the magnetix flux through the surface S is measured by

Φ B = S BdS = L(S)
adl Therefore, one way to apply magnetic flux is building a set of edge elements a k at the air boundary surface (in red of Figure 2.3a). This set must create a line from the left end to the right end of the domain. The value of magnetic potential for these edge elements is where S 0 is the cross section surface of the cylinder. The magnetic potential of other edges on the boundary surface are null.

Electrical condition

In order to represent the electrodes on the upper face and lower face of the piezoelectric layer, the value of electric potential at node element on the electrode (Figure 2.3c) must be the same. To guarantee the solution of the electric potential, the Dirichlet condition V = 0 is applied on the air boundary of the solution domain.

Matrix equation

The equation 2.18 can be finally written in the following matrix form:

[K]{X} = [F ] (2.19)
where

[K] =        K uu -K t au K uv -K au K aa 0 K t uv 0 -K vv       
and {X} = {u a V } t . The values of F a are determined by the static magnetic bias H dc .
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In the magnetoelectric problem, the magnetostrictive coefficient must be determined firstly at bias-point (Figure 2.4) combining the nonlinear magnetostrictive analysis (nonlinear static piecewise procedure) and the static ME analysis to compute the state variables. After that, the performance of ME composite under dynamic magnetic field will be studied by the harmonic analysis. 

S t r a i n

Nonlinear magnetostrictive analysis 2.5.1 The multiscale model

For a given magnetic bias, because of the nonlinearity, the magnetostrictive material properties at a given location are determined by the state variables on that location. As the stress and the magnetic field are different from one location to the other, the material constants vary spatially (non-homogeneity) and depend on the applied static field. As a result, in the calculation of magnetoelectric response, the consideration of the material non-homogeneity and nonlinearity is necessary. The calculation of the nonlinear magnetostrictive coefficients involves a recursive algorithm: material coefficient constants are solved on the microscopic structure using the DEAM model (presented in section 1.3.1) which needs the state variable; while the state variables can be computed after solving FEM equations using material constants.

In Figure 2.5 we describe the variations of the magnetization and the magnetostriction as respectively function of the mechanical and magnetic bias conditions. These results are obtained using our implementation and in concordance with [START_REF] Chakrabarti | Fully coupled discrete energy-averaged model for Terfenol-D[END_REF]. 

Nonlinear magnetostrictive analysis

The nonlinear static piecewise procedure

After the implementation of the multi-scale model, the state variables are computed using the macroscopic laws determined by 1.16 in solving the matrix system 2.19 with a piecewise linear procedure.

The process of piecewise linear solution is presented in Figure 2.6 and summarized as follows. First, the DEAM model is used to evaluate the coefficients of the magnetostrictive material through the Jacobian matrix ζ under initially set of bias points (H 0 , T 0 ).

ζ =     µ S = ∂B ∂H (H 0 , T 0 ) d = ∂B ∂T (H 0 , T 0 ) d t = ∂S ∂H (H 0 , T 0 ) s H = ∂S ∂T (H 0 , T 0 )    
(2.20)

Linear harmonic magnetoelectric analysis

ζ -1 =    ν S -h -h t c B    (2.21)     ∆H ∆T     = ζ -1     ∆B ∆S     (2.22)

Linear harmonic magnetoelectric analysis

In the previous section, the solution of the static nonlinear problem has been presented. It allows the determination of incremental material constants for a given magnetostatic bias.

To model the dynamic behavior of the MEC, the small signal assumption is made. The dynamic field oscillates around the static bias field. The incremental material coefficients are considered as constants. The linear harmonic magnetoelectric analysis is used to investigate the performance of laminate composites.

Magnetostrictive material in dynamic regime

Under dynamic excitation, since the magnetostrictive material is conductive, it is essential to consider the non-vanishing electric conductivity, the effect of eddy currents. we formulate the magnetostrictive problem taking into account the eddy current in equation 2.23 and 2.24

         div T + f = ρ m d 2 u dt 2 curl H = J s + J c div J c = 0 (2.23)        T = cS -h t B H = -hS + νB J c = σ c E (2.24)
where ρ m (kg/m 3 ) is the mass density of the medium, , J s = 0 in our case, and J c = σ c E (A/m 2 ) is the eddy current density with σ c (S/m) the conductivity which is nonzero in magnetostrictive domain and vanishes in others, d 2 dt 2 denotes the two time derivative operator. The mechanical displacement u, the magnetic vector potential a and a scalar potential ψ (which is the time primitive of the aforementioned electric potential V used for the symmetry purpose) are introduced as the state variables:

3D Finite Elements Modeling of Magnetoelectric Composite

         S = Du B = curl a E = - d(a + gradψ) dt (2.25)
Appling 2.25 and 2.24 into 2.23 the variation formula take

                 Ω Du (cDu -h t curl a)dΩ + Ω u ρ m d 2 u dt 2 dΩ = Ω u f dΩ Ω [curl a (-hDu + νcurl a) + σ c a .( da dt + grad dψ dt )]dΩ = 0 Ω σ c gradψ .( da dt + grad dψ dt )dΩ = 0 (2.26)
The same finite element discretization procedure is employed, note that grad w n = w e G, the submatrices K xx takes the same forms as the previous section, while

The submatrices K xx takes the same forms as the previous section, while

M uu = e Ω (w n ) t ρ m w n dΩ, C aa = e Ω (w e ) t σ c w n dΩ, C aψ = ( e Ω (w e ) t σ c w n dΩ)G, C ψψ = G t ( e Ω (w e ) t σ c w n dΩ)G,
We obtain the global system equation

                 M uu d 2 u k dt 2 + K uu u k -K t au a k = F u -K au u k + K aa a k + C aa da k dt + C t aψ dψ k dt = F a C aψ da k dt + C ψψ dψ k dt = 0 (2.27)
where G is the incident matrix associated with the gradient operator [START_REF] Bossavit | Computational Electromagnetism: Variational Formulations, Com-Bibliography plementarity, Edge Elements[END_REF]. Same as the previous section, F u = 0 because no external body force exists in our case and the magnetic excitation is considered trough the line integrals of a along the edges of a randomly built path on the boundary surface, which leads to F a .

Piezoelectric layer in dynamic regime

The governing equations describing piezoelectricity are the elastic equilibrium and electrostatic (for a perfect dielectric i.e. no free charges) equations 2.28. The elastic-electrical coupled behavior laws are given in equation 2.29

     div T + f = ρ m d 2 u dt 2 div D = 0 (2.28)

Linear harmonic magnetoelectric analysis

T =cS -e t E D =εE + eS (2.29)
To be coherent with the formulation of the previous magnetostriction, the time primitive ψ of the scalar electric potential V is introduced:

     S =Du E = -grad dψ dt (2.30)
In order to preserve the symmetry of the system, the Gaussian law is modified by taking its derivative with respect to time.

d(divD) dt = 0 (2.31)
The weak formulation and the matrix system for piezoelectric material are as follows:

         Ω Du (cDu + e t grad dψ dt )dΩ + Ω u ρ m d 2 u dt 2 dΩ = Ω u f dΩ Ω gradψ (eDu -εgrad d 2 ψ dt 2 )dΩ = 0 (2.32)        M uu d 2 u k dt 2 + K uu u k + K t uψ dψ k dt =F u K uψ du k dt -K ψψ d 2 ψ k dt 2 =0
(2.33)

Magnetoelectric in dynamic regime

The overall system for a magnetoelectric composite from the previous systems is therefore the following:

                 M uu d 2 u k dt 2 + K uu u k -K t au a k + K t uψ dψ k dt =0 -K au u k + K aa a k + C aa da k dt + C t aψ dψ k dt =Σ i āi K uψ du k dt + C aψ da k dt + C ψψ dψ k dt -K ψψ d 2 ψ k dt 2 =0 (2.34)
To complete this equation system, it is necessary to add an supplementary equation to take into account the effects of an impedance load Z connected between the electrodes (top and bottom) of the piezoelectric layer. This impedance represents symbolically the input impedance of an electronic device. For this, the electrical charge Q across the electrodes becomes an additional unknown to be added to the resolution system. The additional equation is then given by the following Ohm's law [START_REF] Talleb | Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting[END_REF]:

2 3D Finite Elements Modeling of Magnetoelectric Composite U (t)K ψq -Z ∂(Q) ∂t = 0 (2.35)
where U (t) = V (t) is the output voltage across the impedance Z and K ψq is an incident vector in which the elements are respectively equal to 1 or -1 depending on whether the related node is associated to the top electrode or the bottom one, otherwise they take 0.

The final system for harmonic regime d dt → iω is as follows

[K]{X} = [F ] (2.36) with {X} = {u, a, ψ, Q} t , [F ] = {0, Σ i āi , 0, 0} t and [K] =           -ω 2 M uu + iωC uu + K uu -K t au iωK uψ 0 -K au iωC aa + K aa iωC aψ 0 iωK t uψ iωC t aψ iωC ψψ + ω 2 K ψψ -K ψq 0 0 -K t ψq iωZ          
where C uu = αM uu +βM uu is the mechanical damping matrix established by the Rayleigh coefficients. The parameters β and α depend on the energy dissipation characteristic of the structure. Damping values for materials are not provided by manufacturers. These parameters are determined by combining experimental and numerical techniques through the quality factor (Q m ) by measuring the admittance curves which are influenced by damping [START_REF] Nader | Determination of piezoelectric transducer damping by using experimental and finite element simulations[END_REF].

Conclusion

In this chapter, the equations of mechanic equilibrium and electromagnetic have been introduced both in static regime and dynamic regime. The constitutive laws of magneticmechanic-electric coupling have been presented, as well as the magnetostrictive and piezoelectric constitutive laws. The 3D finite element formulation is developed to study the responses of ME materials. The nonlinear response of magnetostrictive have been also considered. The multiscale DEAM model is implemented in the 3D FE model to taking into account the nonlinear behavior of magnetostrictive material.

In the next chapter, we apply the 3D model to investigate the performant of the most popular ME composite structure, the laminate composite. By using 3D model, different laminate structures can be examined, the influence of the geometry parameter will also be considered.

Introduction

In this chapter, the multiphysics model, will be applied to investigate the behavior of some magnetoelectric laminated composites. The simulation results are compared with the measurements available in our laboratory or in the literature for validation.

Firstly, a laminate composite with the circular section is examined. The geometry and the boundary conditions are respectively described. The nonlinear static analysis is considered to determine the material coefficients of the magnetostrictive layer for dynamic regime. When all the coefficients are obtained, the linear harmonic analysis is performed.

Secondly, we study a conventional laminate structure with the rectangular section, following the same procedure as the previous case of the laminate structure with the circular section.

Finally, some modifications of the structure are considered. A study on the influence of the geometry parameters to the performance of ME composite is conducted. From this, a novel structure can be suggested in order to improve the ME properties.

Introduction of ME laminate composites

The laminated ME composites are very promising ME materials. For this type of structure, the composite can have much better ME coupling, larger ME anisotropy and higher resonance response in a wide frequency range [START_REF] Nan | Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[END_REF], [START_REF] Priya | Recent advancements in magnetoelectric particulate and laminate composites[END_REF], [START_REF] Liu | CoFe2o4/BaTiO3 Composites via Spark Plasma Sintering with Enhanced Magnetoelectric Coupling and Excellent Anisotropy[END_REF]. Spark plasma sintering (SPS) is a widely used method for fabrication of the magnetoelectric materials. This method allows rapid consolidation to obtain ME ceramic composites with high density and purity. The laminate composite with circular section is investigated experimentally in [START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF]. The structure consisting of Galfenol and PZT is applied as magnetic sensor in [START_REF] Myers | Magnetoelectric laminate composite based tachometer for harsh environment applications[END_REF] which can operate in wide temperature range. In [START_REF] Zong | Cellulose-based magnetoelectric composites[END_REF] a cellulose-based magnetoelectric composite is investigated. In this chapter, we use the 3D model presented in the first chapter to study the response of a circular section ME composite. The simulation results are compared with the measurement in [START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF]. Next, the model is applied to simulate the behavior of different laminate structures.

ME laminate composite with circular section

Firstly, the 3D FEM is applied for ME laminate with its layer in disc form. Simulation results are compared with the measurement in [START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF], where the FeGa magnetostrictive alloy is grown by Bridgman method whereas the piezoelectric layer is BaTiO 3 .

ME laminate composite with circular section

Geometry and boundary condition

This section presents the simulation results of two tri-laminated MEC disks made of FeGa/BaTiO 3 /FeGa under the TT and LT modes, respectively, as shown in Figure 3.1.

In TT mode, the piezoelectric layer and the magnetostrictive layers are respectively, poled and magnetized along their thickness (transverse geometry). In LT mode, the magnetostrictive layers are magnetized along longitudinal direction. The MEC is connected to an electrical charge Z considered as a purely electrical resistive load R. The materials properties are given in Appendix B.1. As shown in Figure 3.2, the composite is fixed by two points on the outer surfaces of magnetostrictive layers (the center of the circle marked in yellow). For the piezoelectric layer, the upper and bottom surfaces are two electrodes. A cylindrical air domain is fixed around the material where the electric potential is null at the boundary surface. To consider the externally applied magnetic field, all the edge values of a are assigned to zero on the cylindrical surface, except for those crossing a randomly built path (from one end to the other end of the domain) Those edges are shown in red in Figure 3.2 , on which the circulations of a equal to the magnetic flux B • S 0 , where B is the externally applied magnetic induction and S 0 the vector surface of the cross section of the solution domain. In order to validate the proposed model, the study is performed in two steps: First step consists to simulate the behavior of the MEC voltage coefficient in low frequency regime so that the optimal bias point is found. Second step consists to simulate the MEC voltage coefficient in dynamic analysis while taking into account the effect of the eddy currents. ). The linear harmonic simulation is performed at 1 kHz with a small dynamic excitation magnetic h ac (t) equals to 1 Oe. It can be noticed that the MEC voltage coefficient V reaches its maximum around 700 Oe. The simulation results show a suitable agreement with the measurement ones (in TT-mode also) reported in [START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF] that we have reproduced here in dot-line. In Figure 3.4, the model is capable of representing the 3D diffusion of electric potential and magnetic flux in the domain. The polarization on piezoelectric layer is observed, electric potential vanishes at the boundary of the domain. As can be seen from the figures, magnetic flux are distorted around the material boundary, this is because the permeability of the magnetostrictive layer is relative larger than that of the free space.

Determination of the optimal magnetostatic bias

3 Study of magnetoelectric laminate composites 

Frequency response of the ME coefficient

As mentioned in section 2.6, under a dynamic magnetic field, the eddy currents may be induced in the magnetostrictive layer if its conductivity cannot be ignored. In this case, the performances of the MEC will be consequently degraded. Figure 3.5 is an illustration of the eddy currents when the MEC works in TT-mode. The circulating eddy currents

ME laminate composite with circular section

show clearly the skin effect as the frequency increases, which is in accordance with the following expression:

J = J S e (1+j)d/δ (3.1)
where J S is the current density saturation, δ = 1 πf µσ is the skin depth and d represents here the radius of the magnetostrictive layer, f stands for the frequency domain. 3.6c shows through the x-y plan the simulated eddy current distribution inside the FeGa when the structure works in TT-mode @ 1 kHz, 10 kHz and 100 kHz, respectively. It can be noticed that the eddy currents concentrate to the edges of the structures as the frequency increases, which demonstrate clearly the skin effect. two cases, the frequency resonances are close to 100 kHz and the ME response of the laminate reaches its maximum. The highest value in TT and LT modes are respectively 65mV, 450mV with the eddy currents and 170mV, 1050mV without. The output deliverable power has been extracted in according to the procedure presented in [START_REF] Malleron | Finite-Element Modeling of Magnetoelectric Energy Transducers With Interdigitated Electrodes[END_REF]. The highest value in TT and LT modes are respectively 1.75 µW, 100 µW and 8 µW, 350 µW with and without eddy currents, respectively. It is interesting to note that the maximum output power obtained in LT mode is 100 µW which is enough for application in energy transducer of small electronic devices. As previously, the simulation results in TT-mode show a suitable agreement with the measurement ones reported in [START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF] that we have reproduced here in dot-line. The difference between the simulations and the experiment in TT mode is likely due to the fact that the damping losses from the thin resin Epoxy used to stick the layers are not included in the simulation, which needs the further investigation. 

Conclusion for ME laminate composite with circular section

A 3D finite element multiphysics analysis of the performance of ME composites has been presented. The analysis includes two steps. The first step consists of the analysis of the static magnetic biasing which takes into account the non-linear property of the magnetostrictive material by using the DEAM method. The second studies the dynamical performance of the composites based on the small signal assumption using a linear model. The impact of eddy currents is considered in the dynamic modeling. Numerical investigation of a tri-layer laminated ME energy transducer with a circular geometry is taken as an example. The simulations are performed on a tri-layer laminated ME energy transducer disks in TT and LT modes. The results of TT mode show a suitable agreement with the experiment available in the literature and their discrepancy will be further investigated by considering the effect of the resin Epoxy in the future work. The 3D analysis method provides a useful tool to study the performances of ME composites as energy transducers or sensors with complex geometries.

ME laminate composite in rectangular form

In this section, the performance of ME laminate with rectangular section is examined Figure 3.10. The simulation results are compared with the measurement in our lab by Kevin Malleron.

In fact, numerous 1D models of ME composites of equivalent electric model type exist in the literature. Following the results of these models, magnetoelectric coefficient depends not only on the material properties, but also on the size of the sample. The size of the

ME laminate composite in rectangular form

sample is defined by the thickness of different layers, the width . . . It is important to study the ME laminate with rectangular section and the influence of geometry parameters by 3D model. 

Geometry and boundary conditions

In this section, the ME composite, consisting of Terfenol-D / P51 / Terfenol-D, is considered (Figure 3.11). The magnetostrictive layer with blue color has the dimension of 14x10x1 mm, whereas the piezoelectric in green color has the dimension of 20x10x1 mm. The material properties are presented in Appendix B.1. We consider a cylinder box of air around the material as the solution domain. As presented 3 Study of magnetoelectric laminate composites in chapter 2, the points in center of top and bottom faces of the composite are mechanically fixed. In order to introduce the magnetic flux in X direction, the cut line (in red) is build, on the edges of the cut line, the circulation of the magnetic potential is imposed. On the others edges they are assigned to zero. The boundary conditions for electrostatic problem are the same as reported in chapter 2.

Simulation results

Nonlinear magnetostrictive static analysis

Firstly, the nonlinear ME analysis is performed in LT mode. External DC magnetic field increases step by step from 0 Oe to 1000 Oe. At each step, the magnetostrictive coefficients are updated following piecewise linear solution procedure. The output voltage is computed through the harmonic analysis under magnetic field H ac = 5 Oe @ 1kHz using these coefficients. In Figure 3.12, the comparison between simulation result and measurements are depicted, the maximal output voltage are obtained at the magnetic field H dc = 650 Oe. 

Linear harmonic analysis

Next, the computed coefficient at maximal output voltage will be used for dynamic analysis. The magnetic field is H ac = 1 Oe and the frequency varies from 60 kHz to 80 kHz. The results for numerical computation and measurement are depicted in Figure 3.13. The output voltage reaches the peak at resonance frequency f = 70 kHz with V max ≈ 1.8 V. 

ME laminate composite in rectangular form

Field distributions

We present some results of field distributions obtained by 3D model. The magnetostrictive coefficients are obtained at the optimal static magnetic field H dc = 650 Oe. R is very large so that it can be considered as open circuit. The applied magnetic field is H ac = 5 Oe @ 1kHz.

The obtained magnetic induction is presented in Figure 3.14. As can be seen from the figure, the values of the magnetic induction are very large in the magnetostrictive layer, because the permeability of the magnetostrictive layer is larger than that of the free space and the piezoelectric layer.

Because of the magnetic-mechanic coupling, the magnetostrictive layer is deformed. Through mechanical contact, the piezoelectric layer is also deformed. The deformation of the material can be observed in Figure 3.15. It is symmetry through the axis connecting the two fixed points.

Since the piezoelectric layer is deformed, the electrical polarization is obtained in Figure 3.16. The electric field is concentrated in piezoelectric layer and vanishing near the air boundary.

3 Study of magnetoelectric laminate composites 

Study of novel structure

In fact, for application in energy transducer, it requires the ME composite being more effective. Thus, the investigation of the influence of the geometry dimension to the output deliverable power is required. A simulation tool which can properly consider the structure effect of the complex interaction is needed for optimal design of future ME structures. This section proposes to use the 3D FEM multiphysic code to investigate the effect of the layer width for the performance on rectangular laminated structure composed of Terfenol-D/PZT-5A/Terfenol-D.

Geometry and boundary condition

In this section, the 3D model is used to study the behavior of rectangular surface ME structures and the influence of the width parameter. The output power P = V 2 /R (W) is used to evaluate the performance of the structure, its capacity to supply a device represented by the electrical impedance Z. The simulation results in [START_REF] Wen | A coupling finite element model for analysis the nonlinear dynamic magnetoelectric response of tri-layer laminate composites[END_REF] show that a decrease in the width of the laminar ME composite generates a greater voltage. On the other hand, the decrease in the volume of material causes a decrease in the output power. 3 Study of magnetoelectric laminate composites of the top and bottom surfaces. The Dirichlet condition ψ = 0 is applied on the outer boundary of the solution domain. For the magnetic vector potential a, the Dirichlet condition is applied on the cylindrical surface. To consider the externally applied magnetic field, all the edge values of a are assigned to zero on the cylindrical surface, except for those crossing a randomly built path (from one end to the other end of the domain). Those edges are shown in red in Figure 3.18, on which the values of a equal to the magnetic flux B • S 0 , where B is the externally applied magnetic induction and S 0 the vector surface of the cross section of the solution domain. 

Linear harmonic magnetoelectric analysis

In order to compare the performance of these forms, the linear harmonic magnetostrictive analysis is carried out under a given magnetic bias. When dynamic excitations are of small magnitudes, material constants can be viewed invariant around the working points which are determined under the magnetic bias condition. Consequently, the underlying problem is linear and we consider also the piezoelectric material homogenous. The analysis provides the details regarding the voltage output and the power output. Additionally, it demonstrates the capability of the 3-D finite element model to take into account the eddy currents (Figure 3.19). In Figure 3.19a,3.19b, the eddy currents on a section perpendicular to the magnetic field direction are shown respectively under the frequency of 10kHz and under the resonance ( 82kHz). The skin effect is more pronounced at the higher frequency. The influence of eddy currents has been investigated in 3.3.3. Figure 3.19c compares the magnetoelectric coefficient αV as a function of frequency with and without the eddy currents for the structure B and shows clearly the impact of the eddy currents on the performance of magnetoelectric device. The evolution of the magnetoelectric coefficient αV as a function of frequency is shown in Figure 3.20 for the 3 structure forms. It can be noticed that the example C has an output voltage about 15 V/Oe, which is larger in comparison with the conventional rectangular forms A and B (about 8 V/Oe and 9 V/Oe, respectively). The resonance frequency of this new structure is 66 kHz, while those of the first two structures are around 82 kHz. 

Study of magnetoelectric laminate composites

The output power P (W) is calculated at the resonance frequency and is plotted against the electric load R in Figure 3.21 for the 3 structures to compare their performance. The new shape C generates the best power 3.2 mW. B has a higher output voltage than A (9 V/Oe and 8 V/Oe) but its output power is much lower (<1 mW for B and 2.2 mW for A). This is explained by the reduction of the electric current because the surface of the piezoelectric material is smaller. 

Study the influence of geometry parameter

The previous results motivated us to study the influence of the width of piezoelectric material w P on the performance of new form C. We therefore modeled structures with w P varying between 0.4 and 5 mm in order to obtain the optimal parameter for this new structure. It can be noticed that for the value of w P = 5mm, C is equivalent to A.

The results of voltage and output power as a function of the width w P are shown in Figure 3.22 and Figure 3.23. In Figure 3.22, it is observed that the maximum voltage corresponds to a width w P of the piezoelectric layer of 0.6 mm. With the structure becomes narrow, the internal magnetic field will approach the external one [START_REF] Wen | A coupling finite element model for analysis the nonlinear dynamic magnetoelectric response of tri-layer laminate composites[END_REF]. The increasing of the magnetic field causes a larger strain in magnetostrictive layers. As a result, the piezoelectric layer will be polarized and generate a stronger electrical field. In Figure 3.23, the highest output power, of the order of 3.5 mW, is obtained for a width w P of the piezoelectric layer of 0.8 mm. In terms of the dynamic response, the width dependence of resonance frequency is shown in the Figure 3.24. With the decrease in the width of the piezoelectric layer, resonance frequency decreases gradually. Since the width decreases, the structure has lower stiffness and consequently lower the resonance frequency [START_REF] Nader | Determination of piezoelectric transducer damping by using experimental and finite element simulations[END_REF].

3 Study of magnetoelectric laminate composites 

Conclusion

In this chapter, the linear harmonic analysis of the ME composite with circular section has been performed considering the influence of the eddy currents. The simulations are examined on a tri-layer laminated ME energy transducer disks in TT and LT modes.

The results of TT mode show a suitable agreement with the experiment available in the literature.

The simulation of ME laminate with rectangular section has been presented. The results show good agreement in terms of nonlinear behavior and the maximum output voltage at resonance. Some results of field distributions have been reported.

The 3D model can be a useful tool to study the performance of complex geometries. A new structure has been presented which have the potential to generate more power for energy harvester.

In the next chapter, the other type of ME composite will be considered, the fiber composite and the particulate composite. The researches of these structures are still limited. Unlike the laminate composite, it is difficult to apply the FEM in macroscopic scale because of the complicated structure. Therefore, we will use the theory of homogenization in the next chapter. A REV which consists of a matrix and an inclusion is chosen to be investigated. The 3D FE is applied on this REV and performs the calculation.

Introduction

The ME composites can be found in three types: the laminate structure (2-2 type), the rod matrix structure (1-3 type) and the particle matrix structure (0-3 type). Among them, the composite laminate is the most widely used and investigated, while the number of researches for the other structures is still limited. The 3D finite element (FE) code has been developed to investigate the 2-2 type ME materials laminated structures in the previous chapter. This approach proved to be practical for homogeneous materials. However, for the 0-3 type ME particulate structure, the size of particles is the order of micrometers or nanometers according to the fabrication method (Figure 4.1). The FE calculation at macroscopic scale for the device of millimeters is not suitable anymore to take into account the tiny size of particles. The mesh of this structure can be very dense and that requires high computation time. Many specialized numerical methods have been developed and connected for the description of material behavior from nanoscale to mesoscale [START_REF] Schmauder | Multiscale Materials Modeling: Approaches to Full Multiscaling[END_REF]. One of the strategies is considering a representative elementary volume (REV), a simple geometry with a particle embedded in a matrix for example, and performing the homogenization. Analytical methods have been proposed for estimating or formulating the effective properties of heterogeneous materials.

Fiber composite (1-3 type) was treated by non-self-consistent approach in [START_REF] Nan | Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases[END_REF] based on the Green's function method. Next, Li and Dunn [START_REF] Li | Micromechanics of Magnetoelectroelastic Composite Bibliography Materials: Average Fields and Effective Behavior[END_REF] propose the Mori-Tanaka method to calculate the effective electro-magneto-elastic moduli of cylinder fibrous.

To deal with the fiber or particle composite structure, Romain [START_REF] Corcolle | Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior[END_REF] employs homogenization techniques adapted to coupled phenomena. The state variables of coupled problem are decomposed to conserve the classical uncoupled homogenization rules. This approaches is efficient but often limited to specific simple structures [START_REF] Corcolle | Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior[END_REF] (fiber composite, for example). Numerical homogenization techniques overcome the limitations mentioned above.

In another way, the FE method can be appropriate to the homogenization procedure. This numerical calculation can be applied for complicated structures. The FE analysis

Finite element analysis of REV

of REV has been presented in [START_REF] Lee | Effective properties of three-phase electromagneto-elastic composites[END_REF] where the magnetic scalar potential is used for the magnetic formulation. However, this approach cannot take into account the eddy currents in dynamics.

In this chapter, the FE method, presented in Chapter 2 where the formulation is established in terms of the magnetic vector potential using the edge elements for magnetic problem, is used for the REV analysis. This approach allows us to consider the eddy currents in dynamic regime. In the homogenization procedure, the local fields are averaged to get the effective properties of REV in macroscopic scale. In section 4.2, the basic equations and the boundary value problem are given. In section 4.3, the homogenization of a cylindrical composite of a rod matrix structure (1-3 type) is considered and compared with the analytical result in [START_REF] Corcolle | Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior[END_REF] for the validation of the method. The proposed method is then extended to investigate the behavior of a cubic inclusion composite which is not enabled for the analytical model.

Finite element analysis of REV

A REV of a ME fiber or particulate structure is taken as the studied domain. The finite element formulation is applied to solve the three coupled physical equations. The physical equations and the finite element formulation of the ME composite problem have been reported in chapter 2. They are briefly recalled below for the sake of clarity.

General equation

We firstly consider the case in statics, i.e. the elastic, the magnetostatic and the electrostatic field equations:

       div T + f = 0 curl H = J div D = ρ (4.1)
where T is the mechanical stress tensor, f the external applied volume force, H the magnetic field, J the current density, D the displacement field and ρ the volume density of the free electric charge.

The constitutive relations are the combination of the electro-mechanical and the magnetomechanical constitutive laws of the respective magnetostrictive material and piezoelectric material [START_REF]IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature[END_REF]:

       T = cS -e t E -h t B H = -hS + νB D = -eS + εE (4.2)
where S denotes the mechanical strain, B the magnetic induction, E the electric field. The material coefficients h = qν , with q the piezomagnetic coefficient and ν the reluctivity, c the elastic stiffness under constant electric and magnetic induction fields, e the piezoelectric coefficient and ε the permittivity.

The fields S, E and B can be expressed, respectively, by the state variables: the mechanical displacement u, the electric scalar potential v and the magnetic vector potential a.

       S = Du B = curl a E = -grad v (4.
3)

It can be noticed that in our study, the assumption of small displacement is made and the linear strain-displacement relations is assumed.

FE matrix equation

The problem 4.1 is solved using the FE in 3D. Applying the variational principal to equation 4.1 in considering the equations 4.2 and 4.3, we get the following variational formulation.

               Ω Du (cDu + e t grad v -h t curl a)dΩ = Ω u f dΩ Ω curl a (-hDu + νcurl a)dΩ = 0 Ω grad v .(eDu -ε S grad v)dΩ = 0 (4.4)
where u , v , a are the test functions.

Equation 4.4 is discretized using the Galerkin approach. The nodal elements are applied for the mechanical displacement u and the electric scalar potential v, whereas the edge elements are used for the magnetic vector potential a. The degrees of freedom are respectively the nodal displacement, the nodal electric potential and the line integral of a along edges. We obtain the matrix equation:

[K]{X} = [F ] (4.5)
with {X} = {u, a, v} t and

[K] =        K uu -K t au K uv -K au K aa 0 K t uv 0 -K vv       

Periodic boundary condition

According to the periodicity in the composite structure (Figure 4.2), the periodic boundary conditions for all the elastic, electric and magnetic fields are applied. As a result, the boundary meshes on the opposite boundary surfaces of the REV are made the same as presented in Figure 4.3. Let us denote k i a point on the boundary surface normal to the i(i = x, y, z) direction, k i + i is then its counterpart on the opposite surface, where d i is the ith component of the vector of periodicity [START_REF] Lee | Effective properties of three-phase electromagneto-elastic composites[END_REF].

Considering firstly the displacement field u. To ensure the periodicity of the stain field, the jth component of the displacement u j at the k i + d i point must satisfy:

u j (k i + d i ) = u j (k i ) + Sji d i (4.6)
where Sji is the average strain. The microscopic displacement field on the RVE boundary u j (k i + d i ) can be decomposed into two parts: the mean part Sji d i and the fluctuation part u j (k i ) based on [START_REF] Nguyen | Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation[END_REF].

In the same way for the electric scalar potential v, to guarantee the periodicity of the electric field, the scalar potentials on the opposite boundary surfaces are related by

v(k i + d i ) = v(k i ) + Ēi d i (4.7)
with Ēi the average i t h component of the electric field.

Next, for the magnetic vector potential a, to guarantee the periodicity of the magnetic induction, we can impose the edge values of a (the circulation a along edges) to be equal on the boundary edges of the opposite sides (k i1 , k i2 ) and (k i1 +d i , k i2 +d i ). This treatment is however not satisfactory because it will not allow the magnetic flux passing through the REV, since the line integral of the vector potential a on a close contour passing two pairs of opposite boundary surfaces will be identically zero. To overcome this problem, a random cutting path composed of cutting edges is introduced on the boundary surfaces for each direction as shown in the Figure 4.3. On each cutting edge of the cutting path, a value φ j is added, where φ j is the magnetic flux crossing the surface in j direction, perpendicular to the surface of the cutting edge. With this treatment, the edge values of the magnetic potential on the edges of opposite boundary surfaces fulfill the following relation:

a(k i1 + d i , k i2 + d i ) = a(k i1 , k i2 ) + c j φ j + c k φ k (4.8)
where i, j, k can be respectively x, y, z, c j = 1 or -1 if the edge belongs to the randomly build cutting path and c j = 0 for the other edges.

Homogenization

The homogenization procedure is illustrated in Figure 4.4. To compute the effective macroscopic coefficients of the ME composite, the matrix equation 4. The volume average of the stress, the magnetic field and the electric displacement are further computed to estimate the effective material coefficients: T

= 1 V T dV , H = 1 V HdV , D = 1 V DdV .
The effective properties of the magnetoelectric composite are finally defined as relations between the volume averages of these fields and the excitation fields over the REV of the ME composite according to the following effective constitutive relation:

Finite element analysis of REV

        T H D        =         C - ht -ẽ t h ν αt H ẽ αH ε                 S B Ē        (4.9)
where αH represents the coupling effect between the magnetic and electric fields, which does not exist in local scale, h the effective magnetostrictive coefficient, ẽ the effective piezoelectric coefficient, C, ν, ε are respectively effective stiffness, reluctivity, permittivity.

To determine the effective coefficients, it is essential to apply individually six constant strain states, three uniaxial constant electric fields and three uniaxial constant magnetic fields. For instant, a strain state is applied S11 , the other state should be zero averaged by employing periodic boundary condition, we obtain

                                           T11 T22 T33 T23 T31 T12 H1 H2 H3 D1 D2 D3                                            =         C - ht -ẽ t h ν αt H ẽ αH ε                                                    S11 0 0 0 0 0 0 0 0 0 0 0                                            (4.10)
From 4.10, the following effective coefficients can be computed: C11 , C12 , C13 , C14 , C15 , C16 , h11 , h12 , h13 , ẽ11 , ẽ12 , ẽ13 . Since the magnetostrictive and piezoelectric materials are isotropic transversal, the important coefficients are: C11 , C12 , C13 , C22 , C23 , C33 , h11 , h22 , h33 , ẽ11 , ẽ22 , ẽ33 .

4 Homogenization of magnetoelectric 0-3 type and 1-3 type composites Procédure d'homogénéisation

! 26 T H D = C -ht -ẽt h ν αt H ẽ αH ε S B Ē Solve equation [K]{X} = [F] {X} = {u a V} t

S, B, E

State equations

S = 1/2(grad + grad t )u B = curl a E = -grad V

T, H, D

Local constitutive laws 
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Homogenization of a cylindrical composite

First, we examine a cylindrical composite (1-3 type) constituted of a magnetostrictive matrix (CoFe 2 O 4 ) and piezoelectric fibers (BaTiO 3 ) (Figure 4.5). This composite has been investigated by an analytical method presented in [START_REF] Corcolle | Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior[END_REF], where the material properties of each phase can be found. As we work in the case of linear materials, the cubic REV is studied with the normalized dimension and variable fiber volume fractions. Using the proposed FE formulation described in the previous section, the effective proper-4 Homogenization of magnetoelectric 0-3 type and 1-3 type composites ties of the cylindrical ME composite are evaluated for the range of the fiber volume fraction f = 0 to f = 0.8. The field excitation of each component of S, B or E is respectively applied to determine the average fields T , H and D, and then the effective coefficients of 4.9.

Homogenization of a cylindrical composite

The averaged results of the piezomagnetic coefficient and the magnetoelectric coefficient are compared with the analytical results of [START_REF] Corcolle | Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior[END_REF].

Uniaxial magnetic excitation

Firstly the magnetic field is applied according to two directions X-axis (Figure 4.6) and direction Z-axis (Figure 4.9). Since the magnetic reluctivity of the piezoelectric material is higher than which of the magnetostrictive material, the magnetic induction in magnetostrictive phase is larger. X, Y, Z correspond, respectively, to the indices 1, 2, 3 of matrix representation. Since the magnetic induction is applied in X direction, the magnetic field H 1 is oriented in X direction (Figure 4.8). The following coefficients can be determined: 

Homogenization of a cylindrical composite

Uniaxial electric excitation

When electric field Ēi is applied, this induces electric potential distribution ( The following coefficients can be determined: 

Mechanic excitation

Finally, we apply mechanic displacement to determine the mechanical properties. 4 Homogenization of magnetoelectric 0-3 type and 1-3 type composites

Homogenization of a cubic inclusion composite

In this section, the magnetoelectric composite in Figure 4.25 made of a piezoelectric matrix (PZT-5A) and cubic magnetostrictive inclusions (Terfenol-D) is considered. For this type of structure, the analytical method is no longer suitable. The FE analysis is applied to investigate the macroscopic properties of this composite. The material properties for Terfenol-D and PZT-5A are given in the Appendix. The ME effective properties are evaluated for the inclusion volume fraction f = 0 to f = 0.9. To illustrate the field distribution inside of the REV, we take the example of the applied magnetic field component H3 . Figure 26 shows respectively the magnetic field, the displacement field, the electric field and the electric potential distributions on a cutting plan under this excitation when the volume fraction f = 0.5. Next, the example of applying an electric Ē3 is considered. The electric potential distribution, the results of electric field and electric displacement are presented in Figure 4.30.

Homogenization of a cubic inclusion composite

The piezoelectric constant and the permittivity can be evaluated. 

Nonlinear magnetostrictive analysis

In this section, the behavior of magnetostrictive composite under large signal static magnetic excitation is performed. Taking into account the nonlinear magnetostriction, the piecewise linear approach, which have been presented in chapter 2, is implemented in 

Dynamic analysis

In this section, the method is applied to perform the behavior of ME composite under small magnitude of dynamic excitation. The eddy current term is added in the coupled physics equations. In the homogenization procedure, the local fields are averaged to get the effective properties of REV in macroscopic scale. The periodic conditions for unknown variables are applied on the boundary of the REV. The final system in harmonic regime is obtained by expressing ∂ ∂t → iw: The piezoelectric matrix reinforced by cube magnetostrictive inclusion and the magnetostrictive matrix reinforced by fiber piezoelectric are, respectively, examined. These composites are introduced in section 4.3 and 4.4. We consider a REV of 1 mm with the frequency vary from 1 Hz to 10 MHz.

[K]{X} = [F ] ( 4 
For the cube magnetostrictive inclusion, the magnetic field H 3 and the eddy current distribution at 300 kHz and 3 MHz are presented respectively in Figure 4.36 and Figure 4.37. At higher frequency, the magnetic field and the current density are larger near the interface between magnetostrictive and piezoelectric because of the skin effect. For magnetostrictive matrix reinforced by fiber piezoelectric material, the current density is larger at four corners of the REV when the frequency increases, as shown in The frequency dependence of magnetoelectric effective constant for the REV of ME composite with fiber piezoelectric material is presented in Figure 4.40. The eddy current effect is observed at higher frequency (≈ 100 kHz).

Conclusion

In this chapter, the FE multiphysics analysis is applied to investigate the REV of ME composites to determine the effective properties by using the periodic boundary conditions. The homogenized composite exhibits a macroscopic ME coupling although the piezoelectric and the magnetostrictive phases which does not exist in local scale. The model is validated in comparison with the analytical method in a cylindrical inclusion composite. It was further extended to homogenize the cubic magnetostrictive inclusion composite. This analysis allows also the optimization of the volume fraction of the composites. We implement DEAM into the FEM and the homogenization procedure to analyze the nonlinear behavior of magnetostrictive material. Finally, the proposed method has been extended to the dynamic case to investigate the REV under the dynamic regime.

Chapter 5 Conclusion and perspective

Numerical modeling of active materials is rapidly developing to meet the needs for improvement of existing devices or the implementation of innovative systems. Several approaches (equivalent circuit method, homogenization, etc.) are possible. In this context, it is essential to have a robust tool which can take into account the influence of mechanical, magnetic and electric aspects to the performance of materials.

The objective of this thesis is to develop a 3D finite element multiphysics model for magnetic-mechanic-electric coupling based on the 3D analysis tool for magnetostrictive materials and piezoelectric material existing at the L2E laboratory. This method is developed to investigate different magnetoelectric composite structures under static to dynamic regimes and from the large to small signals.

From the application point of view, the magnetoelectric (ME) composite with the capacity of transforming the magnetic energy to electric energy attracts the scientific interest. Generating significantly ME coefficient at resonance, this material can be applied for magnetic sensor, inductor, energy transducer. . . In our laboratory, we are interested in using the ME material for energy harvesting. The purpose is responding to power demand of connected objects embedded in electronic devices. It is important that the composite performs efficiently and provide a significant ME coefficient with dimensions from mm to µm.

At the formulation step, the multiphysic model is established from Maxwell equations and mechanical equilibrium equation. Next, we introduced the multiphysic constitutive laws describing the magnetic-mechanic and mechanic-electric coupling. Applying the finite elements method (FEM), the Whitney edge elements have been applied to discretize the magnetic vector potential. Utilizing the edge elements for the magnetic vector potential allows us to compute the eddy currents, so that their effect on the material performance in dynamic regime could be considered. Under large signal, due to non-homogeneity and nonlinear behavior of magnetostrictive materials, we implemented the discrete energy averaged model (DEAM) to describe the nonlinearity. The nonlinear procedure is divided step by step adopting the piecewise linear strategy. In a iterative procedure, the FEM results were utilized to extract inputs (state variables magnetic field, tress) for DEAM, whereas the DEAM results were employed for matrices assembling of FEM. In brief, the 3D model can perform nonlinear static analysis of composite ME and the linear harmonic analysis.

Conclusion and perspective

We used this model to investigate foremost the behavior of ME laminate composite. Firstly, the laminate with circular section is considered. The calculations of the output voltage and the power have been shown. In linear harmonic analysis, the resonance frequency can be observed and the influence of eddy currents on magnetostrictive layers is included. In addition, the distributions of the magnetic field, the electric field, the mechanic deformation, the magnetic induction, the electric displacement, the stress field are reported in 3D. The simulation results have shown suitable agreement with the measurement in the reference. The difference can be the effect of the resin Epoxy, the effect of damping. Two functional modes have been examined to find a more efficient configuration. Secondly, the laminate with rectangular section is examined. The simulation results are compared with the experimental results in our laboratory. Finally, thanks to the 3D, we have studied the influence of geometry on ME coefficient output. From this work, we have proposed a novel structure which can improve the material performance.

Next, the non-homogeneous composite is analyzed. To overcome the limit of FEM which requires expensive computation time on meshing the tiny particulate or fiber structure, the homogenization theory is applied. We have performed the finite element analysis on a representative elementary volume and implement the homogenization procedure afterwards. At first, the ME fiber composite is considered. Six effective coefficients have been computed, the simulation results shown a good agreement with the analytical results. After that, we extended this approach to ME composite laminate with cubic inclusion. The nonlinear magnetostrictive analysis and the dynamic analysis are performed in order to study the capacity and the influence of eddy currents on the behavior of the composite particulate and fiber composites.

In the meanwhile, some perspectives to this work are suggested as following:

• In the modeling aspect, DEAM was employed to describe the nonlinear behavior of the magnetostriction. However, this model requires many parameters and time computation. Other formulations for characterizing nonlinear magnetostrictive materials can be tested. The effect of the resin Epoxy can be investigated. Furthermore, the effect of mechanical damping and eddy currents need to be properly examined. We can consider low frequency at first, the effect of eddy currents is neglected and we study the mechanical damping. When we have the coefficient for this effect, the effect of eddy currents will be considered at higher frequency.

• From the computational aspect, the FEM is versatile and able to provide detailed visualization in the simulated system. However, this approach also demands more computing resources, especially in cases of transient and parametric analysis. In order to preserve advantages of FEM while reduce time computation and memory requirement, the model order reduction can be considered, for example, by the proper generalized decomposition method. Moreover, the Matlab solver finds rapidly solution for a matrix of 10 5 × 10 5 but very slow for 10 6 × 10 6 matrix. A robust method for solving large matrix equation is needed. 

Appendix A Formulation

A.1 Voigt notation

The most well-known of the matrix formalisms for anisotropic elasticity is Voigt notation. The stress and strain tensors are written as follows: There is a perfect coincidence between E ijkl and the c pq . However, for the inverse of Hooke's law

T =                 T 1 = T 11
S ij = Z ijkl T kl
In matrix form S = [s]T so :

[s ij ] =    Z ppqq 2Z pprs sym 4Z pqrs   

A.2 Matrix representation

The coefficients of coupling as e, h, d are in (6x3) matrix form: Let consider P is a point inside the tetrahedral. The tetrahedron is divided into four sub-tetrahedrons

V 1 = V P 234 , V 2 = V P 134 , V 3 = V P 124 , V 4 = V P 123
The volume can be determined by

V 0 = 1 6
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, V 2 = 1 6
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A.4 Whitney element formulation basis function

Based on linear interpolation, the barycentric coordinates of the point P are given by

λ i = V i V 0 .
The determinant V 0 is related to the determinant of the so-called Jacobian, denoted by J which can be obtained from 
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 114 Figure 1.4: Magnetostrictive actuator [15]
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 15 Figure 1.5: Schematic of magnetostrictive transducer design. [16]
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 16 Figure 1.6: Schematic diagram of the magnetostrictive delay lines in measuring position[START_REF] Hristoforou | Magnetostrictive delay lines: engineering theory and sensing applications[END_REF] 
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 8 Fig. 8. Parameters for the analytical model (only one SRM phase represented).
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 9 Fig. 9. Schematic diagram of the circuit used for the SSDI technique.
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 10 Fig. 10. Strain, open-circuit voltage, SSDI voltage, and SSDI current versus time.
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 17 Figure 1.7: Piezoelectric actuator for vibration control in electric motor. (a) PZT integrated in switched reluctance machine (b) Schematic diagram of the circuit used for the synchronized switch damping on inductor technique [20]
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 40461 Fig. 1. The proposed system for sensing the sound with close-up views of the cochlea and the cantilever array.

Fig. 2 .

 2 Fig. 2. Schematic view of the transducer.
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 3 Fig. 3. Simulation results showing the frequency response of all channels with a close-up view of channel 3 (operating at 900 Hz).
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 181 Figure 1.8: Schematic of piezoelectric acoustic transducer[START_REF] İlik | Thin film piezoelectric acoustic transducer for fully implantable cochlear implants[END_REF] 
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 2 Figure 2. Envisaged motor structure (a) and its motion: step one (b), step two (c) and final status (d).
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 3 Figure 3. Schemes of the motor with a Y-shaped stator (a) and the rotor with a step structure (b).
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 1 Introduction ure 1.10 presents a 3D piezoelectric microsystem that consists of a layer of piezoelectric polymer and metals electrodes on the top and bottom surfaces.
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 1 Fig. 1 | 3D mesoscale piezoelectric frameworks and ultralow-stiffness mesostructures. a, Exploded-view schematic illustrations (left) and SEM image (right) of a 3D PVDF mesostructure with top and bottom metal electrodes. b, SEM images of representative 3D mesoscale networks in PVDF, including an array of filamentary serpentines (left), mixed collection of membranes and filaments (middle left), folded sheets (middle right), and overlapping networks (right). c, Process for assembly of mesostructures with ultralow stiffnesses. d,e, FEA predictions (d) and corresponding SEM images (e) of ultralowstiffness PVDF mesostructures, including examples that consist of first-(left) and second-order (middle) fractal curves and a Hilbert geometry (right). Scale bars, 500 μ m.
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 a110 Figure 1.10: Piezoelectric for energy harvesting[START_REF] Han | Three-dimensional piezoelectric polymer microsystems for vi-Bibliography brational energy harvesting, robotic interfaces and biomedical implants[END_REF] 
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 2 Figure 2. Schematic illustration of three kinds of ME composite nanostructures with common connectivity schemes: (a) 0-3 particulate nanocomposite fi lms with magnetic particles (0) embedded in a ferroelectric fi lm matrix (3); (b) 2-2 horizontal heterostructure with alternating ferroelectric (2) and magnetic (2) layers, or simply a ferroelectric (or magnetic) thin fi lm grown on a magnetic (or ferroelectric) substrate; and (c) 1-3 vertical heterostructure with one-phase nanopillars (1) embedded in a matrix of another phase (3).
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 111 Figure 1.11: Three types of two-phase composite materials (a) 0-3 particulate nanocomposite films with magnetic particles (0) embedded in a ferroelectric film matrix (3); (b) 2-2 horizontal heterostructure with alternating ferroelectric (2) and magnetic (2)layers, or simply a ferroelectric (or magnetic) thin film grown on a magnetic (or ferroelectric) substrate; and (c) 1-3 vertical heterostructure with one-phase fiber (1) embedded in a matrix of another phase (3).[START_REF] Wang | Multiferroic magnetoelectric composite nanostructures[END_REF] 
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 3113121 FIG. 3. ͑Color online͒ Frequency dependence ͑10 2 Ͻ f Ͻ 10 5 Hz͒ of the ME voltage coefficient of both three-layer Metgals͑SA1͒/PVDF and unimoprh Metglas͑CO͒/PVDF laminates measured under H dc = 8 Oe and H ac =1 Oe. The inset shows the ME voltage coefficient of both laminate types at low frequencies, illustrating a bending-mode enhancement in the unimorph at 110 Hz.
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 114 Figure 1.14: IoT connected devices installed worlwide from 2015 to 2025. Source: IoT platforms: enabling the Internet of Things, March 2016 [37].
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 115 Figure 1.15: Working principle of ME energy harvesting
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 116 Figure 1.16: 3D schematic representation of the proposed MEMS resonant magnetic field sensor in [51]
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 117 FIG. 1. ͑Color online͒ Schemat ͑ME͒ nonreciprocal microwave ME resonator of yttrium iron g dolinium gallium garnet ͑GGG lead zirconate titanate ͑PZT͒, a ers and stubs.
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 118 Figure1.8 -Inductance variable[START_REF] Lou | Electrostatically tunable magnetoelectric inductors with large inductance tunability[END_REF] 
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 119 Figure 1.19:Tunable inductor[START_REF] Lou | Electrostatically tunable magnetoelectric inductors with large inductance tunability[END_REF] 
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 2 Figure 2. Magnetic-mechanical-electric equivalent circuit.

  Smart Mater. Struct. 22 (2013) 035018 H-M Zhou et al

Figure 4 .

 4 Figure 4. Experimental results and prediction of piezomagnetic coefficient versus magnetic bias field.
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 120 Figure 1.20: The theoretical model developped by zhou [80]. (a) magnetic-mechanical-electric equivalent circuit. (b) analytical results compared with the measurement of piezomagnetic coefficient.
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Figure 1 . 21 :

 121 Figure 1.21: Simulation result of magnetostriction behavior by Belahcen
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 22122 Figure 2.17 The studied ME composite
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 123 Figure 1.23: ME laminate composite of circular section which 3D analysis is needed.
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 21 Figure 2.1: Measurement of ME coefficient
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 22 Figure 2.2: Tetrahedral element
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 23 Figure 2.3: Boundary conditions
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 24 Figure 2.4: Bias-point in magnetoelectric analysis
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 25 Figure 2.5: Simulation results of Terfenol-D using data of reference
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 31 Figure 3.1: MEC disks in TT and LT modes connected to a resistance load. BaTiO 3 (grey layer) : thickness 1.5mm, Φ12mm; FeGa (lavender layers) : thickness 1mm, Φ10mm.

Figure 3 . 2 :

 32 Figure 3.2: Mesh and boundary condition magnetostrictive layer in blue color and piezoelectric layer in green color

Figure 3 .

 3 Figure 3.3 shows the MEC voltage coefficient V from the structure in TT-mode in function of H dc (from 0 to 1350 Oe) and under different discrete values of the electrical resistance load R (1 kΩ, 10 kΩ, 50 kΩ, 90 kΩ). The nonlinear simulations have been performed with the piecewise linear solution using at step of ∆H dc = 1.35 Oe (1350/1000). The linear harmonic simulation is performed at 1 kHz with a small dynamic excitation magnetic h ac (t) equals to 1 Oe. It can be noticed that the MEC voltage coefficient V reaches its maximum around 700 Oe. The simulation results show a suitable agreement with the measurement ones (in TT-mode also) reported in[START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF] that we have reproduced here in dot-line.
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 33 Figure 3.3: ME voltage coefficient as a function of DC magnetic field (H dc ) under various electrical resistance load values for the ME laminated composite with h ac (t) = 1 Oe @ 1 kHz.
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 34 Figure 3.4: Simulation results of the model
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 35 Figure 3.5: Illustration of the eddy-current for TT-mode.

Figure 3 .

 3 Figure 3.6a, Figure 3.6b and Figure3.6c shows through the x-y plan the simulated eddy current distribution inside the FeGa when the structure works in TT-mode @ 1 kHz, 10 kHz and 100 kHz, respectively. It can be noticed that the eddy currents concentrate to the edges of the structures as the frequency increases, which demonstrate clearly the skin effect.
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 36 Figure 3.6: Distribution of the eddy current magnitude on the FeGa layer in plan x-y
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 37 Figure 3.7: Frequency dependence of MEC voltage coefficient αV for both modes (the measure-ment data in TT mode is extracted from[START_REF] Wang | Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites[END_REF]).
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 39 Figure 3.9: The output voltage as a function of frequency (100Hz -20kHz).
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 310 Figure 3.10: Illustration of ME samples with the thicknesses of different layers.
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 311 Figure 3.11: The mesh for simulation of ME composite with rectangular section.
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 312 Figure 3.12: ME voltage coefficient as a function of DC magnetic field (H dc ).
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 313 Figure 3.13: The output voltage in resonance frequency.
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 314 Figure 3.14: The magnetic flux in X direction from XZ view.

  From these observations we opted to model the laminar composite structures by modifying the width of the material. Three different forms are considered: (A) Example A is the standard structure of 5 mm width for all layers; (B) Example B uses a width of 1 mm for all layers; (C) Example C is a new shape like " H -shape" with 5 mm width
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 315 Figure 3.15: The deformation of the composite.
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 318 Figure 3.18: The study domain enveloping the magnetoelectric device. In red the cutting path on which nonzero edge values of a are applied to impose the magnetic flux.
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 319 Figure 3.19: The ME eddy current induced in a X-Z plan (a) under 10kHz (b) and under the resonance frequency (c), and the effect of eddy currents for the structure B.
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 320 Figure 3.20: Frequency (f) dependence of ME coefficient for the three forms of ME laminated composite.
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 321 Figure 3.21: The output power P as a function of electrical resistance load for the three forms ME composite.
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 322 Figure 3.22: The ME coefficient as the function of w P .
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 323 Figure 3.23: The output power P as the function of w P .
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 324 Figure 3.24: The frequency resonance as the function of w P .
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 41 Figure 4.1: Microstructure of ME based perticulate composite[START_REF] Vadla | Magnetoelectric coupling in 0.5pb(Ni1/3nb2/3)O3-0.35pbtio3-0.15pbzro3 and CoFe2o4 based particulate composites[END_REF] 
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 4243 Figure 4.2: The square periodic arrangement and a representative elementary volume. (REV)
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 44 Figure 4.4: Illustration of homogenization procedure
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 45 Figure 4.5: Cylindrical composite
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 )4643 Figure 4.6: Uniaxial magnetic induction B1 is applied
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 47 Figure 4.7: Zero boundary condition of electric potential
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 48 Figure 4.8: Magnetic field H 1 distribution of magnetoelectric composite reinforced by fiber piezoelectric when B 1 is applied
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 4941043411412 Figure 4.9: Uniaxial magnetic field B 3 is applied
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 413413 Figure 4.13: Effective permeability as the function of volume fraction f of piezoelectric phase.
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 414 Figure 4.14: Effective piezomagnetic moduli as the function of volume fraction f of piezoelectric phase.
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 415 Figure 4.15: Effective magnetoelectric moduli as the function of volume fraction f of piezoelectric phase.
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 4 16) and electric field distribution (Figure 4.17, Figure 4.19), which results the electric displacement of Figure 4.18 and Figure 4.20.
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 416417 Figure 4.16: Illustration of electric potential when (a) E 1 is applied (b) E 3 is applied
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 41843 Figure 4.18: Electric displacement D 3 distribution when E 3 is applied
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 419 Figure 4.19: Electric field E 1 is applied
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 420 Figure 4.20: Electric displacement D 3 distribution when E 3 is applied

  shown in the Figure 4.21 and Figure 4.22, the simulation results are in good agreement with the analytical results in term of piezoelectric constant and permittivity.
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 421 Figure 4.21: Effective piezoelectric moduli as the function of volume fraction f of piezoelectric phase.
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 422 Figure 4.22: Effective permitivity as the function of volume fraction f of piezoelectric phase.
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 4 [START_REF] Han | Three-dimensional piezoelectric polymer microsystems for vi-Bibliography brational energy harvesting, robotic interfaces and biomedical implants[END_REF] presents the mechanical deformation and the electric field distribution in the REV.
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 423 Figure 4.23: Displacement field U 3 is applied
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 424 Figure 4.24: Effective stiffness as the function of volume fraction f of piezoelectric phase.
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 425 Figure 4.25: The composite with the piezoelectric matrix reinforced by the cubic magnetostrictive inclusion.
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 42621063331427 Figure 4.26: The magnetic field (a), displacement field (b) the electric field (c) and the electric potential (d) distributions on a cutting plan when H3 is applied.
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 4288891133 Figure 4.28: The piezomagnetic constant as a function of volumetric fraction.
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 429 Figure 4.29: The magnetoelectric constant as a function of volumetric fraction.
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 4309083311431 Figure 4.30: The electric potential 3D view (a), electric potential on cutting plane (b) the electric field (c) and the electric displacement (d) distributions on a cutting plan when Ē3 is applied.
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 432 Figure 4.32: The piezoelectric effective as a function of volumetric fraction.
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 6435 Figure 4.35: Magnetostrictive composite structure.
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 436437 Figure 4.36: Magnetic field (a) and eddy current (b) @ 300kHz

Figure 4 .

 4 Figure 4.38 shows the frequency dependence of magnetoelectric effective constant for the REV of ME composite with cube magnetostrictive inclusion. The influence of eddy current can be observed from 20kHz.
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 6438 Figure 4.38: The effective magnetoelectric as a function of frequency.
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 439 Figure 4.39: Eddy current
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 2233342353161112223334235316162636465666 Thanks to the introduction of coefficients in 2 equation above, the Hooke's lawT ij = E ijkl S klCan be represented in matrix form

d 11 d 12 d 13 d 14 d 15 d 16 d 12 d 22 d 23 d 24 d 25 d 26 d 13 d 23 d 33 d 34 d 35 d 36 µ 11 µ 12 µ 13 µ 12 µ 22 µ 23 µ 13 µ 23 µ 33 1 Figure A. 1 :

 16263613233311 Figure A.1: Tetrahedron element

J = (e 1 × e 2 )AElastic constants under electric field constant in 10 9 N m - 2 .e 31 = 24 Permittivityε 11 = 3 B. 1 . 2 B- 3

 12923124113123 • e 3 = 6V 0 Since the λ i are first order function, their gradients are constant:grad(λ 1 ) = e 4 × e 5 6V 0 , grad(λ 2 ) = e 2 × e 3 6V 0 , grad(λ 3 ) = e 3 × e 1 6V 0 , grad(λ 1 ) = e 1 × e 2 6V 0 E 22 = 127.21, c E 33 = 117.44, c E 12 = c E 21 = 80.21, c E 13 = c E 31 = c E 23 = c E 32 = 84.68, c E 44 = c E 55 = 22.99, c E 66 = 23.47 Piezoelectric coefficients in C.m -2 . e 32 = -6.62, e 24 = e 15 = 17.03, e 33 = 23.ε 22 = 1704, ε 33 = 1433 Density ρ E = 7500 kg.m -PZT-5A Density: (ρ) = 7600 kg.m -3 Elastic stiffness (GPa): c 11 = c 22 = 138.5, c 12 = 77.37, c 13 = c 23 = 73.64, c 33 = 114.7, c 44 = c 55 = 25.6, c 66 = 30.6 Piezoelectric coefficients (C.m -2 ): e 31 = e 32 = -5.2, e 24 = e 15 = 12.72, e 33 = 15.08 Relative permittivity: ε 11 = ε 22 = 1730, ε 33 = 1700 Relative permeability: µ 11 = µ 22 = µ 33 = 5.0 Elastic stiffness: E y = 60 GPa, ν v = 0.36 Piezoelectric coefficients (10 -12 m/v): d 31 = 186, d 33 = 600 Relative permittivity: ε 11 = ε 22 = ε 33 = 2200
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	Additional Information:

  1 , z 1 ), (x 2 , y 2 , z 2 ), (x 3 , y 3 , z 3 ), (x 4 , y 4 , z 4 ), 6 edges e 1 , e 2 , e 3 , e 4 , e 5 , e 6 ,

	4 faces f 1 234 , f 2 134 , f 3 124 , f 4 123 and 1 volume.

  5 is solved by applying, respectively, a constant field component of S, B or E while maintaining other components null. This will be done by using periodic boundary conditions of u,a and v given in 4.6, 4.7, 4.8. Once the equation 4.5 is solved, the field distribution of S, B or E are computed from the state variable u,a and v using the relation 4.3, while the field distribution of T , H or D are determined by the local constitutive laws 4.2.

Table 4 . 1

 41 

		: Material properties	
		BaTiO3 piezoelectric phase CoFe2O4 magnetostrictive phase
	c 11 (GPa)	166	286
	c 12 (GPa)	77	173
	c 13 (GPa)	78	170.5
	c 33 (GPa)	162	269.5
	c 44 (GPa)	43	45.3
	ε 11 (C 2 /N m 2 ) x10 -10	112	0.8
	ε 33 (C 2 /N m 2 ) x10 -10	126	0.93
	ν 11 (m/H) x10 3	200	1.695
	ν 33 (m/H) x10 3	100	6.370
	e 31 (C/ m 2 )	-4.4	0
	e 33 (C/ m 2 )	18.6	0
	e 15 (C/ m 2 )	11.6	0
	q 31 (N/A m)	0	580.3
	q 33 (N/A m)	0	699.7
	q 15 (N/A m)	0	550

  .11) with {X} = {u, a, ψ} t , [F ] = {0, Σ i āi , 0} t and

	[K] =	       -ω 2 M uu + iωC uu + K uu -K au iωK t uψ	-K t au iωC aa + K aa iωC t aψ	iωK uψ iωC aψ iωC ψψ + ω 2 K ψψ	      

•

  Some works can be proposed to improve the performance of ME materials: analyze the response of ME materials at dynamic regime under larger amplitudes of signals, study experimentally the influence of geometry parameters for novel structures, con-sider different ME structures like disk-ring ME composite, investigate the energy extraction circuit based on ME material to improve energy harvesting.
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Study of magnetoelectric laminate composites (a) Electric potential diffused on ME composite (b) Electric potential on section A

Homogenization of magnetoelectric 0-3 type and 1-3 type composites (a) 3D view (b) View on plan XY

Homogenization of magnetoelectric 0-3 type and 1-3 type composites (a) 3D view (b) XY view

Homogenization of magnetoelectric 0-3 type and 1-3 type composites Figure 4.40: The effective magnetoelectric as a function of frequency.

3D Finite Elements Modeling of Magnetoelectric Composite

Second, the inversion of the Jacobian matrix given by 2.21 is used to extract the incremental coefficients µ S , h, c B . In this way, the values of the incremental solutions ∆B and ∆S prevailing inside the MEC are extracted after computing the global matrix system 2.19.

The submatrices K xx takes the same forms as the previous section. The values of the incremental set bias points (∆H, ∆T ) inside the MEC are then computed through the constitutive laws given by 2.22. This procedure can preserve the spatial inhomogeneity in the distribution of the field and stress in the magnetostrictive material. 

Chapter

Study of magnetoelectric laminate composites

Low frequency response

For a better understanding on the influence of eddy current, we calculate the response of composite with circular section under low frequency (from 100Hz to 20kHz). As can be seen from the Figure 3.9, taking to account the effect eddy current, the ME coefficient decreases from 2kHz. The solution domain considered in this study is a cylindrical air box enveloping the magnetoelectric device (Figure 3.18). The zero displacement condition is applied on the middle

Chapter

Homogenization of magnetoelectric 0-3 type and 1-3 type composites Summary FEM and homogenization procedure. Since the magnetic excitation is divided into small step, the local constitutive law (in Figure 4.4) is still linear.

We consider an example presented in [START_REF] Corcolle | Optimal Design of Magnetostrictive Composites: An Analytical Approach[END_REF] of Terfenol-D/glass composite (Figure 4.33). The Terfenol-D, which is sphere inclusion, is in the matrix to improve its mechanical properties. In Figure 4.34, the FEM results show qualitatively a good agreement with experiment in [START_REF] Zhou | Modeling of magnetostriction in particulate composite materials[END_REF]. Next, we apply to Terfenol-D/Epoxy composite, the same effect as analytical in [START_REF] Corcolle | Optimal Design of Magnetostrictive Composites: An Analytical Approach[END_REF] is obtained G 1 4 2 4 3 4 2 3 1 3 1 2

In our problem, the dimension of incident matrices C and G can be expressed as n f × n e and n e × n n where n f , n e , n n are respectively number of facets, edges and nodes. The value of incident matrix can be -1, 1 and 0. C ij = 0 when the j th edge does not locate with the i th facet. Otherwise, j th edge is one of the constituting of i th facet.