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Abstract

Strongly correlated quantum systems exhibit striking physical properties that cannot be described by
standard one-body theories, such as band theory for instance. To understand the origin of these phenomena,
all particles have to be treated together with their interactions: one talks about the many-body problem. If
modern analytical methods give a qualitative understanding of the mechanisms at work in these materials,
numerical approaches can provide quantitative and reliable results. This Thesis is about developing novel
algorithms to study strongly correlated materials, both in and out of equilibrium.

First, we focus on the equilibrium properties of the layered perovskite Sr2IrO4, a compound isostruc-
tural to the superconducting cuprate La2CuO4. Using a continuous-time quantum Monte Carlo algorithm
as an impurity solver in a 2-site dynamical mean-field theory setup, we are able to precisely compare pho-
toemission results to experimental data. Moreover, we prove the existence of a pseudogap and describe the
electronic structure of this material upon doping.

Then, in order to address the thermodynamic limit of lattice problems, we develop extensions of de-
terminant Monte Carlo algorithms to compute dynamical quantities such as the self-energy. We show how
a factorial number of diagrams can be regrouped in a sum of determinants, hence drastically reducing the
fermionic sign problem. By comparing results for the two-dimensional Hubbard model with those obtained
from diagrammatic Monte Carlo, we show that we can reach higher perturbation orders and greater accu-
racy for the same computational effort.

In the second part, we turn to the description of nonequilibrium phenomena in correlated systems, where
the emergence of even richer physics can be expected. Such materials are very difficult to model because
the time evolution has to be solved on top of the quantum many-body problem. We start by revisiting the
real-time diagrammatic Monte Carlo recent advances in a new basis where all vacuum diagrams directly
vanish. In an importance sampling procedure, this implies that only interaction times in the vicinity of the
measurement time contribute, and such an algorithm can directly address the long-time limit needed in the
study of steady states in out-of-equilibrium systems. We also present a detailed discussion on the origin and
limitations of the fermionic sign problem in real-time algorithms.

Finally, we study the insulator-to-metal transition induced by an electric field in Ca2RuO4, which coex-
ists with a structural transition. As numerically exact methods are still too primitive to capture the complex
physics of this multi-orbital material, we develop a steady-state quantum impurity solver based on the
Non-Crossing Approximation, that we couple with a dynamical mean-field theory setup. This allows us
to compute the current as a function of crystal-field splitting in this material, and we present encouraging
preliminary results in and out of equilibrium.
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Résumé

Les systèmes d’électrons fortement corrélés sont le siège de phénomènes physiques fascinants qui ne
peuvent être expliqués par une théorie des bandes. Afin de comprendre ces propriétés, il faut traiter l’en-
semble des particules et leurs interactions : on parle du problème à N corps. Les méthodes analytiques mo-
dernes permettent d’obtenir une compréhension qualitative des mécanismes à l’œuvre dans ces matériaux,
mais il est nécessaire d’employer des méthodes numériques pour obtenir des résultats fiables et quantitatifs.
Cette Thèse porte sur le développement de nouveaux algorithmes pour l’étude des propriétés d’équilibre et
hors d’équilibre des systèmes d’électrons fortement corrélés.

Nous nous intéressons tout d’abord aux propriétés d’équilibre de la pérovskite Sr2IrO4, un matériau
structurellement équivalent au cuprate supraconducteur La2CuO4. Nous utilisons un algorithme de Monte
Carlo en temps continu comme solveur d’impureté dans un modèle de champ moyen dynamique à deux
sites, ce qui nous permet de comparer précisément nos résultats théoriques à des expériences de photoémis-
sion. Nous mettons également en évidence l’existence d’un pseudogap et décrivons la structure électronique
de ce matériau en fonction du dopage.

Nous développons ensuite des extensions aux algorithmes de Monte Carlo déterminantaux pour l’étude
de quantités dynamiques comme l’énergie propre. Nous montrons qu’il est possible de regrouper un nombre
factoriel de diagrammes en une somme de déterminants, réduisant ainsi fortement le problème de signe fer-
mionique. En comparant nos résultats pour le modèle de Hubbard bidimensionnel à ceux obtenus par le
Monte Carlo diagrammatique, nous montrons que le même temps de calcul permet d’atteindre des ordres
de perturbation plus élevés et une meilleure précision.

Dans un deuxième temps, nous décrivons les systèmes fortement corrélés hors d’équilibre, où nous nous
attendons à l’émergence d’une physique encore plus riche. Il est très difficile de modéliser ces matériaux
car l’évolution temporelle doit être traitée en plus du problème à N corps quantique. Nous commençons par
revisiter le Monte Carlo diagrammatique en temps réel dans une nouvelle base qui permet aux diagrammes
du vide de s’annuler directement. Au cours d’un échantillonnage statistique, cette propriété implique que
seuls contribuent les temps en interaction proches du temps de mesure. Ceci permet d’atteindre la limite
de long temps nécessaire à l’étude des états stationnaires des systèmes hors d’équilibre. Nous discutons
également en détail l’origine et les limitations du problème de signe fermionique dans les algorithmes en
temps réel.

Pour terminer, nous étudions la transition métal-isolant induite par un champ électrique de Ca2RuO4,
qui coexiste avec une transition structurelle. Les méthodes numériques exactes étant encore trop primitives
pour rendre compte d’une physique aussi complexe que celle de ce matériau, nous développons un solveur
d’impureté quantique stationnaire basé sur "l’approximation sans croisement", que nous couplons à une
théorie du champ moyen dynamique. Ceci nous permet de calculer le courant en fonction du champ crystal-
lin dans ce matériau, et nous présentons d’encourageants résultats préliminaires à l’équilibre ainsi que hors
d’équilibre.
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Chapter 1
General Introduction

Condensed matter physics aims at studying organized forms of matter and predicting the properties of
materials based on their microscopic structure. As theoreticians, our ultimate goal would be to start from
the positions of atoms and electrons in order to understand why a given compound might conduct electricity,
reflect light, or − in the case of superconductors − levitate above a magnet.

We typically deal with 1022−1023 particles: A sand grain indeed contains a number of atoms compara-
ble to the number of stars within the observable universe! Macroscopic phenomena therefore emerge from
the collective structure and motion of all these building blocks. As an example, let us consider diamond and
graphite (from which pencils are made). Both are only made of carbon atoms, one of the simplest elements
in nature. Still, because they crystallize in very different structures, one compound is transparent, extremely
hard and insulating, while the other one is black, brittle and conducts electricity. Recently, even more exotic
materials have been engineered solely from carbon atoms, among which fullerenes, carbon nanotubes, and
graphene. One can easily be convinced that this whole bestiary cannot be predicted from the properties
of a single atom. As P.W. Anderson beautifully summarized in an eponymous article in 1972: “More is
different.” [8]

In many systems, particles can however be described as if they were independent. For example, it is
often a good approximation to assume that a given electron does not “see” individually all other electrons,
but rather that its motion only depends on an effective medium constructed from the general structure of the
material and the overall presence of other particles. This way of describing the system, called band theory,
works remarkably well for a wide range of materials, and allows one to understand properties of simple
metals as well as semiconductors.

Strongly correlated materials cannot be described by band theory, usually because interactions between
electrons become important. This is for instance the case for Mott insulators, in which the electrons remain
localized because the cost in Coulomb energy is too high for them to move. If the reader ever had to ride
the subway in Paris or New York at rush hour, he or she might have been unable to enter the train. However,
there technically is some space left if you were to pile commuters on top of one another! But “human
interaction”, of course, prevents you from doing so. As soon as electronic correlations come into play, we
have to consider the full system where all particles influence each other: this is the quantum many-body
problem.

The full Hamiltonian describing a piece of matter containing Na atoms and Ne electrons is actually
very easy to write

H =

Na∑

i=1

P2
i

2Mi
+

Ne∑

i=1

p2
i

2me
+

1

2

∑

1≤i6=j≤Ne

e2

4πε0|ri − rj |

−
Na∑

i=1

Ne∑

j=1

Zie
2

4πε0|Ri − rj |
+

1

2

∑

1≤i 6=j≤Na

Z2
i e

2

4πε0|Ri −Rj |
,

(1.1)

where an electron, with mass me, is located at ri and has a momentum pi, while an atom, with a number
of protons Zi and a mass Mi, is located at Ri and has momentum Pi. ε0 is the dielectric constant.
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CHAPTER 1. GENERAL INTRODUCTION

(a) Hubbard model (b) Quantum dot model

Figure 1.1 – Minimal models used to describe strongly correlated materials.

The wavefunction ψ of the system is then obtained through Schrödinger equation

i~
∂ψ

∂t
= Hψ. (1.2)

As compact as this expression looks like, ψ actually has... 1023 variables, and all the atoms of the universe
would not provide enough matter to store it on hard drives! Without additional symmetries, it is in practice
impossible to directly solve this model when Na and Ne exceed 16. 1 This paradigm led Paul Dirac to state
in 1929: [43]

The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main features of complex atomic systems
without too much computation.

This is the path we choose in this Thesis: We start from minimal models that contain the key ingredients
to capture the physics we are interested in. As these remain impossible to solve analytically, we then
develop numerical methods to study their properties. Let us now give some examples of exciting physical
phenomena that would not exist without strong correlations and introduce the most common models we use
to describe them.

1.1 Interesting properties of strongly correlated materials and toy
models

Materials where strong correlations matter are often complex: they either imply sophisticated layered
structures, heavy atoms, or multiple orbitals. However, as theoreticians, we like to design models that
seem to oversimplify the problem at hand, but actually minimally include key ingredients to see the physics
emerge: this is the infamous spherical cow. In the case of strongly correlated materials, two competing
energy scales are at the heart of their rich physics: the kinetic energy that comes from the motion of the
electrons in the material, and the potential energy coming from the Coulomb interaction between electrons.

Let us see how they give rise to some of the most intriguing phenomena of condensed matter physics.

1.1.1 High-temperature superconductivity
Superconductivity was first discovered in 1911 by Kamerlingh Onnes, who realized that mercury’s re-

sistivity drops to zero when cooled down below 4.2K. Usually, current in a material comes with energy
losses due to particles colliding (this is the reason why laptops heat up for instance). In superconductors,
electrons form a state where they flow smoothly without any collision: the current they create then lasts
forever, under the condition that the system is kept at low enough temperature. Materials such as mercury
are known as “conventional superconductors”, and their critical temperatures are low, reaching at most 10K
for simple metals. A microscopic explanation of this phenomenon was found by Bardeen, Cooper, and

1. See Chapter 2 for more details.
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1.1. INTERESTING PROPERTIES OF STRONGLY CORRELATED MATERIALS AND TOY MODELS

(a) Phase diagram of common superconductors, as as func-
tion of electron and hole doping. [182]

(b) Spectral intensity of Ca2−xNaxCuO2Cl2,
x = 0.10, in the top right corner of the Bril-
louin zone. [149]

Figure 1.2 – Some properties of high-temperature superconductors.

Schrieffer who were awarded the Nobel prize in 1972.

In the late 1980s, a new type of superconductivity was discovered in layered ceramics, cuprates, com-
posed of copper-oxygen planes separated by bigger atoms. Their critical temperature was found to reach up
to 150K, hence their name of high-temperature, or unconventional, superconductors. The low energy band
structure of these materials is characterized by a half-filled energy band, however cuprates are Mott insu-
lators with a sizable energy gap of 2 eV (not a natural candidate when looking for a new superconductor!)
[121].

The Hubbard model, depicted in Fig. 1.1a, is widely used to describe the two-dimensional properties of
cuprates. It describes a square lattice where electrons can hop between different sites with amplitude γ, and
experience the Coulomb repulsion U when being on the same physical site. Its Hamiltonian writes

H = −γ
∑

ij,σ

c†iσcjσ + U
∑

i

ni↑ni↓ (1.3)

where c†iσ (resp. ciσ) is the operator creating (resp. annihilating) an electron with spin σ on site i, and
niσ = c†iσciσ is the density operator.

A very rich and complex phase diagram, with a superconducting dome, appears when doping either with
holes or electrons, as is sketched in Fig. 1.2a. Apart from superconductivity, another salient phenomenon
in cuprates is the appearance of a ‘pseudogap’ in the underdoped part of the phase diagram, whose origin is
still very debated today. It was first observed in 1989 as a sharp decrease in the Nuclear Magnetic Resonance
(NMR) response [3], but it is also characterized by a suppression of coherent quasiparticles in the antinodal
region of the Brillouin zone. This yields a momentum-differentiation of the spectral intensity and so-called
Fermi arcs that were observed both experimentally, see Fig. 1.2b, and theoretically [149, 48].

1.1.2 Hund’s metals
Rich physics also emerges when studying multi-orbital materials. In these systems, the energy scale

associated with the intra-atomic exchange, the Hund’s coupling J , also has to be considered. J influences
the electronic correlations as it lowers the effective Coulomb repulsion when two electrons are on different
orbitals with parallel spins as opposed to when they are on the same orbital.

The importance of Hund’s coupling was pointed out early on for insulators [162, 163]. More recently,
its relevance to the physics of multi-orbital correlated metals was emphasized, starting with two pioneering
papers [172, 70]. It quickly became apparent that Hund’s coupling plays a crucial role in a broad family of
materials, including transition-metal oxides of the 4d series such as ruthenates (especially Sr2RuO4 [111]),
as well as iron pnictides or chalcogenides (for a review, see e.g. Ref. [54]). The term ‘Hund’s metals’,
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CHAPTER 1. GENERAL INTRODUCTION

onto the composite object suppress the coherence scale
[16–20], which corresponds to the Kondo scale of the
effective impurity model below which the atomic multiplet
is screened out. Further numerical and analytical results are
given in the supporting material [14].

Now we examine how the different influences of the
Hund’s rule coupling are manifested in the physical prop-
erties of transition-metal oxides. First, a word of warning.
Often these materials do not have perfect cubic symmetry.
The distortions mix the orbitals, reduce the bandwidths
and induce crystal fields which lower the atomic degener-
acy further. These effects usually enhance the correlations
and promote insulating behavior, which can often be de-
scribed by an effective model with a smaller number of
orbitals (as some are emptied or filled by the crystal fields)
[21–23]. For illustrative purposes, we choose a set of
materials indicated on Fig. 2. In [14], the discussion is
extended to other materials for which the lifting of orbital
degeneracies is stronger.

We begin with oxides of 3d transition metals with a
half-filled t2g shell, such as SrMnO3 and LaCrO3. A typical
ratio of the Coulomb repulsion to half-bandwidth for
these materials is U=D ’ 4 eV=1 eV. This exceeds sub-
stantially the insulating limit for this case, explaining why
no metallic 3t32g oxides are known [1,24]. Conversely, at a

comparable value of U=D, the 3t12g cubic SrVO3 is a

moderately correlated metal with Z!1 ¼ m#=m ’ 2 [1].
LDAþ DMFT explicitly demonstrates (see [14]), that
SrVO3 would be significantly more correlated [4] were it
not for the decorrelating action of Hund’s rule at this fill-
ing. For 3t22g materials, still within the same range of U=D

(Fig. 2), strongly correlated bad-metal behavior caused by

the Janus-faced action of J is found. Observable signatures
of bad-metals are large values (beyond the Mott limit [25])
of the non-T2 but metalliclike resistivity in the extended
temperature range above a very low T# and a large, poorly
screened moment, prone to itinerant magnetism. A pos-
sible realization among 3d oxides is SrCrO3 [26,27].
Oxides of 4d transition metals are characterized by

smaller values of U=D ’ 2, due to the larger bandwidths
and smaller screened interaction associated with the more
extended 4d orbitals. We consider the series SrMO3 and
Sr2MO4 with M ¼ Mo, Tc, Ru, and Rh (Fig. 2). The
Technetium compounds are special among those: they
are located very close to the metal-insulator transition.
We are not aware of transport measurements on these
compounds, but a recent study [28] indeed reports antifer-
romagnetism with a very large Néel temperature TN ’
1000 K for SrTcO3. Simple model considerations do sug-
gest that the vicinity of the Mott critical coupling leads to
largest values of TN. As a test of our classification, we
predict that Sr2TcO4 is an insulator or a very strongly
correlated metal.
The Mo-, Ru- ,and Rh- based compounds are metallic.

For tetragonal 214’s an orbital average of the measured
values yields Z!1 ¼ m#=m% 2 for Sr2MoO4 (4t22g) [29],

%4 for Sr2RuO4 (4t
4
2g) [1] and%2 for Sr2RhO4 (4t

5
2g) [30].

These variations are explained by a closer examination of
the electronic structure of these materials. For example,
values for Sr2MoO4 and Sr2RuO4 differ because the t2g
density of states is not particle-hole symmetric: the ruth-
enate has the Fermi level close to a van Hove singularity
and therefore a smaller effective bandwidth [7]. On the
other hand, relatively large correlations found in rhodates
occur due to the bandwidth narrowing and the orbital
polarization induced by rotations of the octahedra. In the
regime of weak to moderate correlations with 2 electrons
(Fig. 1), Z has a steep dependence on U=D: this explains
that SrMoO3 has an unusually large metallic conductivity
among oxides [31]. 4d materials can be driven also to
the extreme bad-metal regime by rotation-induced narrow-
ing of the bandwidths achieved by Ca substitution. An
example is Sr1!xCaxRuO3, which at x ¼ 1 has m#=m > 5
and remains incoherent down to lowest temperatures
measured [32].
There is thus a class of Hund’s correlated materials

which are strongly correlated but driven by J rather than
the proximity to a Mott insulator. In this respect, we note
that the importance of the Hund’s rule coupling has also
been emphasized for the iron-based superconductors
[2,5,6]. With 6 electrons in 5 active orbitals, the bad-metal
behavior observed for these materials can be attributed to
the conflicting action of the Hund’s rule coupling. This
puts pnictides on the map of Hund’s correlated material
along with SrCrO3 and SrRuO3 but also raises important
questions. What is the nature of such materials above the
coherence scale and how do they differ from materials

FIG. 2 (color online). Quasiparticle weight Z in a model with 3
orbitals, for J=U ¼ 0:15, as a function of the interaction strength
U and the number of electrons—from empty (0) to full (6).
Darker regions correspond to good metals and lighter regions to
bad metals. The black bars signal the Mott-insulating phases.
One notes that, among integer fillings, the case of 2 electrons (2
holes) displays bad-metal behavior in an extended range of
coupling. Specific materials are schematically placed on the
diagram (see text).

PRL 107, 256401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

256401-3

Figure 1.3 – Colour map of the degree of correlation (as measured by the quasiparticle weight z) for
a Hubbard-Kanamori model with 3 orbitals. U/D is the Coulomb interaction normalized to the half-
bandwidth, and n is the number of electrons per site. J = 0.15U . Black bars are the Mott insulating
regions. [42]

coined in Ref. [186], is generically used to refer to these strongly correlated but itinerant systems. Several
of these materials also display superconductivity− with distinctive properties in comparison to single band
cuprates given their multi-band nature.

The atomic Hamiltonian describing the t2g orbitals of these systems is called the Kanamori Hamiltonian
and writes [78, 58, 155]

H =
∑

aσ

εanaσ + J
∑

a6=b

(
d†a↑db↑d

†
b↓da↓ + d†a↑db↑d

†
a↓db↓

)

+ U
∑

a

na↑na↓ + (U − 2J)
∑

a6=b
na↑nb↑ + (U − 3J)

∑

a<b,σ

naσnbσ.
(1.4)

Here a = xy, xz, yz denotes one of the t2g orbitals, d†aσ (resp. daσ) creates (resp. destroys) an electron on
orbital a with spin σ, and naσ = d†aσdaσ is the number operator. εa is the energy level of orbital a, U the
Coulomb interaction and J the Hund’s coupling. When a hopping term is introduced on a lattice composed
of different sites described by the above model, one talks about the Hubbard-Kanamori Hamiltonian.

Recent theoretical studies show that the Hund’s coupling plays a crucial role in multi-orbital metals
with moderate Coulomb interaction U . The Hund’s coupling has been characterized as being ‘Janus faced’,
since it is responsible for two competing effects. It indeed drives the system away from the Mott transition,
but at the same time it makes the system more correlated by decreasing the quasiparticle coherent scale
[42, 54]. This is summarized in Fig. 1.3 for a Hubbard-Kanamori model with 3 orbitals. The ‘degree of
correlation’ 2 is studied as a function of U and of the number of electrons n in the orbitals. Light yellow
denotes a strongly correlated material while darker colors are the sign of a good metal with relatively few
interactions. The value of the Hund’s coupling is set to J = 0.15U and black bars denote Mott insulating
regimes. Specific materials are schematically placed on the diagram.

1.1.3 Quantum dots
Up to now, we have presented physical phenomena occurring in lattice systems, where many strongly

correlated sites are connected together. Quantum dots, on the other hand, are made of a single atom en-
capsulated between large noninteracting reservoirs, as depicted in Fig. 1.1b. Electrons can hop between the
impurity and the leads, but only experience Coulomb repulsion on the impurity. The first experimental re-
alization of such a system was obtained at the interface of GaAs/AlGaAs heterostructures [40, 56, 57, 145].

2. As measured by the quasiparticle weight z, see Section 2.1.3 for more details.
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1.1. INTERESTING PROPERTIES OF STRONGLY CORRELATED MATERIALS AND TOY MODELS
1.2. THE KONDO EFFECT IN QUANTUM DOTS

d

dot

Reservoir 1

Reservoir 2

Figure 1.3: Scanning electron microscope top view of a 2DEG quantum dot.
Adapted from Goldhaber-Gordon et al. [43]. Negative potential in the gates (light
gray areas) repulse the 2DEG which is then confined in the black areas. The quan-
tum dot (middle) is connected by tunnel junctions to two large reservoirs (top and
bottom).

of electrons which can be changed at will by adjusting the charging energy with a gate
voltage Vg. Coulomb repulsion between electrons is directly related to the radius of the
dot, and therefore can be adjusted by design.

Other nanotechnologies can be used to build quantum dots or similar devices where
the Kondo e↵ect can be observed, such as carbon nanotubes [76, 120] or nanowires [88]
bridging two electrodes. More recently, single molecules have been used as quantum dots,
attached to two electrodes by electrostatic forces or deposited on a metallic surface [65].
In 2DEG, quantum rings also form quantum dots [81], allowing to use the magnetic flux
through the ring as an extra control parameter. The more exotic N -channel Kondo e↵ect
have also been reproduced in single molecules [122, 137] as well as in a nanoelectronic
device [73, 74].

The Anderson impurity model and its relation with the Kondo model

Quantum dots are well described by the Anderson impurity model [8]. We consider
an empty dot. The leads form baths of conduction electrons. A first electron can enter
the dot with a charging energy ✏d, and a second electron with charging energy ✏d + U .
U � 0 is the energy of the Coulomb repulsion between the two electrons. We neglect the
possibility to bring more electrons in.

The Hamiltonian of this single orbital Anderson impurity model is made of a one-body
part H0 and a Hubbard–like interaction part of strength U :

H ⌘ H0 + Un"n# (1.16a)

H0 ⌘ Hbath + Hbath–dot + ✏d(n" + n#) (1.16b)

n� are operators counting the number of electrons with spin � in the dot. Hbath is
the Hamiltonian of the leads and Hbath–dot of the coupling between the leads and the
dot. For example, if the leads are modeled by semi-infinite tight-binding chains with

19

Figure 1.4 – Top view of a quantum dot (middle) created at the interface between two reservoirs (top and
bottom). [57]

A top view of this setup in provided in Fig. 1.4, where we see the dot (middle part) connected by tunnel
junctions to the reservoirs (top and bottom).

In the case of a left (L) and a right (R) lead, and the impurity being a single-energy level ε, the Hamil-
tonian of a quantum dot writes

H = ε
∑

σ

d†σdσ + Und↑nd↓ −
∑

kσ
α=L,R

γk
(
d†σcαkσ + h.c.

)
+
∑

kσ
α=L,R

εkαc
†
αkσcαkσ (1.5)

where d†σ (resp. dσ) is the operator creating (resp. annihilating) an electron with spin σ on the impurity,
and ndσ = d†σdσ is the density operator. c†αkσ (resp. cαkσ) is the operator creating (resp. annihilating) an
electron with spin σ in the α lead with a momentum k. The εkα describe the energy spectra of the leads,
γk is a hopping term between the impurity and the leads, and U is the Coulomb repulsion. Note that this
model is easily driven out-of-equilibrium by changing the filling of the two leads. When only one lead is
present, it is called the Anderson impurity model and was originally used to describe magnetic impurities in
materials [7]. It is nowadays one of the basic blocks of Dynamical Mean-Field Theory, as we will discuss
in the next Chapter.

One of the most studied phenomena in quantum dots is the Kondo effect [40, 56, 57, 145]. The local
magnetic moment of the impurity antiferromagnetically couples with the bath electrons, resulting in the
formation of a spin singlet between the atom and the bath. At low enough temperature, the impurity moment
is screened and the scattering rate of the bath electrons increases: This results in an enhancement of transport
properties. In the presence of strong correlations, the current can however be easily suppressed through
Coulomb blockade [1]. Understanding the interplay between electronic correlations and the Kondo effect
is thus of great interest to build new nanoelectronic devices.

Quantum dots have also been considered as possible candidates for the construction of quantum qubits
[97, 127].

1.1.4 U = 0 and γ = 0 limits: towards perturbation expansion

We have seen that, in the study of strongly correlated systems, two parameters matter and actually
compete with each other:

— the hoppping term γ > 0, that allows electrons to move in the material, 3

— the Coulomb repulsion U > 0 between electrons.
Setting either the Coulomb repulsion or the hopping amplitude to zero is interesting, as both these limits

are completely understood from a theoretical point of view. If U = 0, correlations vanish and electrons
freely flow in the material. This problem can be solved using band theory and electrons behave as plane
waves. If γ = 0, atoms become independent and electrons are then strongly localized. It is interesting

3. Note that the hopping term is usually denoted t but, as we will consider out-of-equilibrium physics, we keep this variable to
denote times.
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CHAPTER 1. GENERAL INTRODUCTION

to note that the wave-particle duality of electrons, one of the key principles of quantum mechanics, is
embodied in these two limits.

The richness of the physics observed in strongly correlated materials comes from values of U and γ that
are typically comparable, so that we cannot easily discard one of the two. However, these two limits pave
the way for the methods we develop in this Thesis. Among the many theoretical approaches to the quantum
many-body problem, we choose to focus on perturbation expansions, either in U or γ, 4 therefore taking
advantages of a well-understood starting point. Note that these approaches are not truncated explicitly at
a given order, such as second-order perturbation theory for instance, as we express physical quantities as
infinite series that we then resum.

1.2 Overview of the Thesis
Chapter 2 aims at giving a broad overview of the formalism and techniques used to study strongly

correlated materials. We start with the imaginary-time formalism for equilibrium physics, introducing
Green’s functions, spectral functions, self-energies and hybridization functions. We then review modern
computational methods for the many-body problem, before presenting the Dynamical Mean-Field Theory
(DMFT) approximation.

This manuscript is then divided in four independent parts that correspond to four different physics
project that were studied during the Thesis.

First, we focus on the equilibrium properties of the layered perovskite Sr2IrO4, a compound isostructural
to the superconducting cuprate La2CuO4. In Chapter 3, we present recent angular resolved photoemission
spectra that reveal a strong momentum differentiation in the Brillouin zone. Then, we construct a minimal
model of the low-energy electronic structure of doped Sr2IrO4. Correlations are included using a 2-site
dynamical mean-field theory setup where an hybridization-based quantum Monte Carlo algorithm is used
as impurity solver.

In Chapter 4, the effects of doping on the electronic structure of this material are studied. A rapid col-
lapse of the Mott gap is found, and we prove the existence of a pseudogap which causes the momentum
differentiation of the spectral intensity. There is an overall excellent qualitative agreement between our
results and experimental data.

In a second part, we address new developments in determinant Monte Carlo algorithms for fermionic
systems. In Chapter 5, we start by a general introduction to continuous-time quantum Monte Carlo algo-
rithms. These are based on an expansion of the partition function Z either in the Coulomb repulsion (CT-
INT) or the hybridization function (CT-HYB), and they aim at sampling the quantity of interest (Green’s
function, density, self-energy, ...) at different perturbation orders using contributions to Z as weights in a
Monte Carlo sampling.

These methods being mainly limited to quantum impurity problems, we introduce in Chapter 6 an
alternative and complementary technique that can directly be used on the lattice. Diagrammatic Monte
Carlo algorithms are based on an expansion in U and they compute physical quantities such as the Green’s
function by sampling diagrammatic contributions. Recently, the Connected Determinant (CDet) algorithm
has been shown to greatly improve the fermionic sign problem when computing correlators by regrouping
topologies of diagrams in a sum of 3n determinants at order n.

When studying strongly correlated systems, one however needs to go beyond the study of Green’s func-
tions and compute dynamical quantities such as the self-energy. In Chapter 7, we therefore present an
extension of the CDet algorithm that allows to sum contributions from one-particle-irreducible diagrams in
the Monte Carlo weight using determinants. By comparing results for the two-dimensional Hubbard model
with those obtained from state-of-the-art Diagrammatic Monte Carlo, we show that we can reach higher
perturbation orders and greater accuracy for the same computational effort.

We then move to the description of nonequilibrium phenomena in correlated systems. Such materials
are very difficult to model because the time evolution has to be solved on top of the quantum many-body
problem. In Chapter 8, we start by introducing the Keldysh formalism to compute observables in real time.
Then, we present an early attempt of real-time quantum Monte Carlo algorithm which is a direct extension

4. Technically, it will be an expansion in the hybridization function ∆ and not in the hopping γ, see later for more details.
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1.2. OVERVIEW OF THE THESIS

of CT-INT on the Keldysh contour. It suffers from a dynamical sign problem that prevents the technique
from reaching long times. A route explored to cure this problem is the real-time diagrammatic quantum
Monte Carlo algorithm that directly samples contributions to the density using an explicit summation of 2n

determinants at order n in the Monte Carlo weight. This exponential sum has been shown to cancel vacuum
diagrams, greatly reduce the sign problem, and allow the computation of observables in the infinite-time
steady-state limit.

This exponential scaling of the computation of the Monte Carlo weight limits our capability to compute
high orders with great precision. In Chapter 9, we show that we can obtain the cancellation of diagrams and
the long-time clusterization property without summing an exponential number of terms. Using the Larkin-
Ovchinnikov (LO) basis, we rewrite the integrand as a sum of 4n determinants, but show that diagrammatic
rules in this basis are such that every diagram has the clusterization property. In other words, the elimination
of vacuum diagrams is directly achieved in the diagrammatics without the need of an exponential sum.
When implementing this property in a Monte Carlo algorithm, we face a huge sign problem originating
from massive cancellations between LO configurations that are only performed stochastically.

In Chapter 10, we present a detailed discussion on the origin and limitations of the fermionic sign
problem in this algorithm. More specifically, we are interested in understanding whether there is a way
of regrouping contributions in the LO basis that would optimize it and thus reduce the overall error bar.
We start by exhibiting grouping patterns found heuristically before presenting a machine learning approach
based on deep Haar scattering networks. We are able to greatly reduce the obtained variance, but not enough
to compete with the original real-time diagrammatic quantum Monte Carlo algorithm.

The last part of the Thesis focuses on the study of the insulator-to-metal transition driven by an electric-
field in Ca2RuO4. Its transition indeed appears to be driven at room temperature using a dry-battery level
voltage, resulting in a suprisingly low threshold fieldEth ∼ 40 V/cm. The multiorbital nature of this material
and the need to reach the steady-state limit prevent us from using the numerically exact diagrammatic
methods that are still too primitive. It is therefore desirable to use a more economical way to solve the
quantum impurity model that still captures the essential physics of the system. In Chapter 11, we present the
Non-Crossing Approximation (NCA), a simple approximation in the hybridization function that analytically
sums a subset of diagrams without crossing hybridization lines. We first present the equilibrium version
of NCA to introduce the formalism, before exposing the out-of-equilibrium equations on the full Baym-
Kadanoff triple contour.

As we are only interested in the steady-state regime of Ca2RuO4 driven out-of-equilibrium, we would
like to avoid solving the full transient regime. In Chapter 12, we first present an out-of-equilibrium version
of the NCA approximation working on the Keldysh contour. We then derive the infinite-time limit of
the equations in order to obtain a solver directly tackling the non-equilibrium steady-state limit. These
algorithms are benchmarked by computing the current flowing through a quantum dot.

In Chapter 13, we start by presenting the recent experiments where a switching from the insulating
state to a metallic one is observed when applying an electric field. We reexpress the effects of the static
electric field as a linear voltage drop in the material, which allows us to construct a tight-binding model
for the material in the steady-state regime. Correlations are introduced using the dynamical mean-field
approximation, and we use the long-time limit NCA impurity solver developed in Chapter 12. Preliminary
results are then presented both for the equilibrium and out-of-equilibrium material.
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Chapter 2
Overview of many-body techniques for
strongly correlated systems

This Chapter aims at giving a broad overview of the formalism and techniques used to study strongly
correlated materials. We start by reviewing the imaginary-time formalism for equilibrium physics, in-
troducing Green’s functions, spectral functions, self-energies and hybridization functions. Note that the
introduction to the Keldysh formalism to compute observables in real-time is postponed to Chapter 8. We
then review modern computational methods for the many-body problem, before presenting the Dynamical
Mean-Field Theory (DMFT) approximation.

2.1 Basic equilibrium formalism
In this Section, we introduce the theoretical objects and notations used throughout this Thesis. For a

complete introduction to the many-body formalism, see for instance Ref. [25].
In the following, we consider a system described by a Hamiltonian H with inverse temperature β. c†ka

(resp. cka) creates (resp. annihilates) a fermion with momentum k, a being a composite index denoting
other possible degrees of freedom: spin, orbital, ...

2.1.1 Green’s function
Introducing the Heisenberg representation cka(τ) = eτHckae−τH, the imaginary-time Green’s func-

tion, also called Matsubara Green’s function, is defined for every momentum k in the Brillouin zone,
τ ∈ [0, β], as

Gab(k, τ) = −
〈
Tτ cka(τ)c†kb(0)

〉
, (2.1)

where the time-ordering operator Tτ is

Tτ cka(τ)c†kb(τ
′) = θ(τ − τ ′)cka(τ)c†kb(τ

′)− θ(τ ′ − τ)c†ka(τ ′)ckb(τ). (2.2)

In the following, we use the ˆ notation to denote a matrix form. The Green’s function is extended to all real
numbers as being antiperiodic of period β

Ĝ(k, τ + β) = −Ĝ(k, τ). (2.3)

The Fourier transform of the Matsubara Green’s function is

Ĝ(k, iωn) =

∫ β

0

eiωnτ Ĝ(k, τ)dτ, (2.4)

where the discrete frequency variables ωn are called Matsubara frequencies and satisfy

ωn =
(2n+ 1)π

β
, n ∈ Z. (2.5)

11
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The Green’s function for spinless fermions described by a band dispersion εk is for instance

G(k, iωn) =
1

iωn + µ− εk
, (2.6)

where µ is the chemical potential of the system.
The real-frequency Green’s function 1 can be obtained from its Matsubara counterpart using analytical

continuation
Ĝ(ω) = Ĝ(iωn → ω + iη), (2.7)

where η is a positive infinitesimal. Although this procedure is well defined on paper, it involves in practice
the inversion of a nearly-singular matrix. This is responsible for huge error bars on Ĝ(ω) that are difficult
to quantify and possibly biased, especially for large ω. As most equilibrium algorithms work in imaginary
time and/or frequency, it is therefore of paramount importance to pursue the development of methods that
are able to directly compute equilibrium properties in real time / frequency.

2.1.2 Spectral function
The spectral function is defined as

Â(k, ω) = − 1

π
ImĜ(k, ω). (2.8)

Experimentalists can probe the trace of this observable using Angular-Resolved PhotoEmission Spec-
troscopy (ARPES), shining light on the material and determining the momentum of the extracted electrons.
Examples of such spectral intensities are displayed in Chapter 3 where we present the physics of Sr2IrO4.

Noticing that

Aab(k, ω = 0) = lim
ω→0
− 1

π
ImGab(k, ω) = lim

iωn→0
− 1

π
ImGab(k, iωn), (2.9)

the inspection of the extrapolation of the imaginary part of the Matsubara Green’s function in the T = 0
limit provides a criterion to distinguish between a metal and an insulator:

— If Im Tr
[
Ĝ(iωn)

]
→ 0 when iωn → 0, no states are present at the Fermi level and the system is an

insulator,
— If Im Tr

[
Ĝ(iωn)

]
→ C 6= 0 when iωn → 0, the system is a metal.

In the case of spinless fermions described by a band dispersion εk, A simply writes

A(k, ω) = δ(ω + µ− εk). (2.10)

In real materials, these peaked dispersions are dampened by the finite lifetime of the particles.

2.1.3 Self-energy and hybridization function
When studying strongly correlated materials, it is useful to introduce the noninteracting Green’s function

ĝ, always denoted by a lower case letter throughout this Thesis. The effect of correlations in the system are
then encoded in the self-energy Σ̂ defined through Dyson’s equation

Σ̂(k, iωn) = ĝ(k, iωn)−1 − Ĝ(k, iωn)−1. (2.11)

Labelling ε̂k the noninteracting energy dispersion in the system, µ the chemical potential, and 1 the identity
matrix, the fully interacting Green’s function of the system then writes

Ĝ(k, iωn) =
[
(iωn + µ)1− ε̂k − Σ̂(k, iωn)

]−1

. (2.12)

If the system is noninteracting, Σ̂ is null and Ĝ = ĝ.

1. Technically the retarded component of the real-frequency Green’s function. See Chapters 8 and 9 for a full introduction to
real-time formalism.
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It is instructive to consider the scalar case and expand the self-energy at first order

Σ(k, iωn) = Σ′k + iΣ′′k + iωn(1− z−1
k ), (2.13)

where Σ′k = limiωn→0 ReΣ(k, iωn) and Σ′′k = limiωn→0 ImΣ(k, iωn). The Green’s function then writes

G(k, iωn) =
zk

iωn + zk(µ− εk − Σ′k)− izkΣ′′k
. (2.14)

The energy bands are thus shifted by the real part of the self-energy and renormalized by zk, as well as
dampened by the imaginary part of the self-energy times zk. In the uniform case, if z ∼ 1 there is almost
no difference with the noninteracting case and the system has a well-defined energy dispersion. On the
other hand, if z ∼ 0 the spectral weight at the Fermi level is suppressed and a gap opens: the system is a
Mott insulator. z is therefore often used as order parameter to study the Mott transition.

When the strongly interacting system we study is coupled to a bath, this can be encoded in a hybridiza-
tion function ∆̂, so that the noninteracting Green’s function writes

ĝ(k, iωn) =
[
(iωn + µ)1− ε̂k − ∆̂(iωn)

]−1

. (2.15)

The full Green’s function is

Ĝ(k, iωn) =
[
(iωn + µ)1− ε̂k − ∆̂(iωn)− Σ̂(k, iωn)

]−1

. (2.16)

∆̂ will prove useful for many lattice systems in the context of dynamical mean-field theory, where a site is
singled out and treated as an impurity self-consistently embedded in the material, see Section 2.3.

Let us consider the case of the quantum dot located between a left and a right lead introduced in Section
1.1.3 as an example. The hybridization function takes the form

∆σ(iωn) =
∑

α=L,R

∑

k

γ2
k

iωn − εkα
. (2.17)

2.2 Overview of numerical approaches
Computational methods for many-body quantum systems have seen considerable progress in the last 30

years thanks to new algorithms as well as new concepts and approximations. As the development of numer-
ical techniques plays a central role in this Thesis, we provide here a broad overview of modern algorithms
used to tackle the many-body problem in and out of equilibrium. Those might either be used successfully
on full lattice systems (such as the Hubbard model of Section 1.1.1) or for quantum impurity problems. The
latter will turn particularly useful in the context of dynamical mean-field theory that we present next.

First, semi-analytical approximate methods, such as Iterated Perturbation Theory (IPT) [53] or the Non-
crossing Approximation (NCA) [81, 59, 90, 131, 16, 17, 69] provide fast and easy-to-implement quantum
impurity solvers. These techniques consist in keeping a subclass of contributions to the self-energy in a
perturbation expansion. The error introduced by these approximations cannot be precisely quantified, and
they are nowadays considered as too primitive for the study of correlated systems at equilibrium. They are
however still largely employed when modelling out-of-equilibrium phenomena where numerically exact
methods cannot reach relevant regimes of parameters yet [45, 95, 102, 126]. NCA will for instance be used
in Chapter 13 to describe Ca2RuO4 subject to an electric-field.

A large class of methods are interested in the ground state properties of materials, hence working in the
T = 0 limit. All of these techniques are nonperturbative in the system parameters.

Exact Diagonalization (ED) directly addresses the Schrödinger equation Hψ = Eψ on a lattice system
ofN sites using an iterative matrix eigenvalue solver, such as Lanczos algorithm. It provides a versatile and
unbiased method, but is very much limited by the number of sites that can be treated. The current record is
set at N = 50 interacting spins using symmetries and many computational tricks [179].
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The Numerical Renormalization Group (NRG) approach aims at treating the small energy scales of an
impurity coupled to a bath through a logarithmic discretization of the bath [180, 27, 28]. The system is then
diagonalized starting from the impurity site alone and iteratively adding degrees of freedom of the bath. The
exponentially growing Hilbert space is truncated by only keeping the lowest-lying many-particle states.

The Density Matrix Renormalization Group (DMRG) method is also based on a truncation of the Hilbert
space using a bond dimensionD [176, 177]. It has a very natural interpretation in one dimension, where the
wavefunction is represented by a product of matrices of size D ×D. The method can treat system sizes up
to several hundreds of sites and its accuracy can be systematically controlled by increasing D. Extensions
for T 6= 0 or dimensions higher than 1 (called tensor networks) face strong limitations due to entanglement
entropy [164, 165].

All of these methods have been extended to treat time-dependent impurity Hamiltonians [5, 6, 146] as
well as transport through open systems [4] but remain strongly limited by the size of the Hilbert space and
the entanglement entropy, and can therefore only treat low dimensions and low temperatures.

On the other hand, many numerical methods start from well-defined limits at high temperature and try
to reach lower temperatures using Monte Carlo techniques. In all these algorithms, the contributions to the
quantity we accumulate, such as the Green’s function or the partition function, have alternating signs due to
the anticommutation relations between fermionic operators. This leads to cancellations between individual
measurements and exponentially growing errors: it is the sign problem. More details are provided in Section
5.3.1.

The auxiliary-field quantum Monte Carlo (AF-QMC) algorithm tries to recover the ground state wave-
function by applying the e−βH operator to an initial wavefunction and taking the β → ∞ limit [188, 151,
150]. This method uses imaginary-time path integrals that are stochastically evaluated with the help of
auxiliary fields introduced by a Hubbard-Stratanovich transformation. The inherent sign problem can be
managed using a constrained-path approximation, but this can introduce a systematic error that has to be
controlled.

Continuous-time quantum Monte Carlo (CT-QMC) algorithms have been a breakthrough in finding
solutions of quantum impurity problems [139, 140, 171, 173, 61, 62]. These methods are based on a
perturbation expansion of the partition function, but do not truncate the series at a specific order so that
they are numerically exact in the limit of long computational time. The two most popular approaches, that
we present in more details in Chapter 5, are the CT-INT, based on an expansion in the Coulomb repulsion
U , and the CT-HYB, based on an expansion in the hybridization function ∆. Both methods face a strong
limitation with the system size N . The hybridization expansion is limited because of the exponentially
growing size of the Hilbert space, while the interaction expansion faces an average perturbation order in the
sampling of the partition function scaling as UβN .

Diagrammatic Monte Carlo methods can directly address the thermodynamic limit, that is the limit
of infinite system size with fixed density of particles. Based on an expansion in the Coulomb interaction
U , they compute physical quantities, such as the Green’s function, by directly sampling their diagrammatic
contributions [129, 130, 88, 73, 22, 135]. A strong reduction of the sign problem has recently been achieved
in algorithms using a sum of determinants to express contributions from different topologies of diagrams
[135, 110, 168]. These ideas are exposed in Chapters 6 and 7.

Early attempts of real-time quantum Monte Carlo algorithms were direct extensions of the CT-QMC
methods on the Keldysh contour. They sampled the partition function Z, both using strong-coupling and
weak-coupling expansions [112, 175, 174, 144]. They however faced a ‘dynamical’ sign problem that wors-
ens when trying to reach longer times. Current efforts to build real-time quantum Monte Carlo methods
mainly explore two routes: the inchworm algorithm [37, 35, 36, 32, 33, 9, 21] and the so-called diagram-
matic QMC [128, 15, 14, 109]. The latter is the subject of Chapters 8 and 9.

Considerable efforts have recently been put in comparing the strengths and limitations of many of the
above methods on lattice models [93, 143].

2.3 DMFT or the importance of the quantum impurity problem
In Sections 1.1.3 and 2.2, we have presented quantum impurity models and efficient techniques to solve

them. An important effort has indeed been made in this direction because one can design a mapping be-
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Figure 2.1 – DMFT mapping of a lattice site to an impurity self-consistently embedded into a bath.

tween the full lattice problem and a single site embedded in a bath: this is the Dynamical Mean-Field
Theory (DMFT). For a complete review on the subject, see Ref. [53].

Let us consider a lattice system. According to Section 2.1, the interacting Green’s function writes

Ĝ(k, iωn) =
[
(iωn + µ)1− ε̂k − Σ̂(k, iωn)

]−1

, (2.18)

where ε̂k is the energy dispersion of the noninteracting system, µ the chemical potential and Σ̂(k, iωn) the
lattice self-energy. The key idea is then to isolate a single lattice site and embed it into an effective bath
with which it can exchange electrons through a hybridization function ∆̂(iωn), as depicted in Fig. 2.1. The
impurity Green’s function is

Ĝimp(iωn) =
[
(iωn + µ)1− ε̂d − ∆̂(iωn)− Σ̂imp(iωn)

]−1

. (2.19)

The embedding requires the local Green’s function on the lattice to be equal to the impurity one

Gloc =
∑

k

Ĝ(k, iωn) = Ĝimp(iωn). (2.20)

At this point, the equations are still exact as we have only introduced a representation of the local Green’s
function as an impurity coupled to a bath, and the above equation should be understood as a functional
equation that determines the hybridization function.

The DMFT approximation consists in stating that the lattice self-energy does not depend on k and is
given by the impurity model self-energy

Σ̂(k, iωn) = Σ̂imp(iωn). (2.21)

The hybridization function now has to be self-consistently adjusted in order for Eq. (2.20) to be satisfied.
Note that the ‘dynamical’ refers to the ability of this approximation to handle different time scales or

energy scales involved in the excitation spectra of the system, and not to out-of-equilibrium physics. This
scheme is exact in the atomic limit (∆̂ = 0) as well as in the noninteracting case (Σ̂ = 0), so that it is
thought to be a good candidate to obtain physical results in the intermediate regime where both the interac-
tion and the hybridization matter. This approximation has also been shown to be exact in the limit of infinite
lattice coordination (Bethe lattice). Moreover, as it approximates the lattice self-energy by the impurity one,
it yields meaningful results for systems that have a localized self-energy.

In practice, this approximation is solved using the following iterative scheme:

1. Start from a noninteracting local Green’s function ĝ(iωn).

2. Solve the impurity model in order to obtain Σ̂imp(iωn).

3. Construct the local interacting Green’s function

Gloc =
∑

k

[
(iωn + µ)1− ε̂k − Σ̂imp(iωn)

]−1

. (2.22)
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4. Construct the new noninteracting Green’s function using Dyson’s equation

ĝ(iωn) =
[
Ĝ−1

loc (iωn) + Σ̂imp(iωn)
]−1

. (2.23)

5. Loop until convergence.

Extensions of DMFT have been developed in order to go beyond Eq. (2.21). A first approach is to add
more sites in the impurity model. In the Dynamical Cluster Approximation (DCA) formulation, the Bril-
louin zone is thus partitioned into area tiles and the self-energy is approximated as a piecewise function of
momentum in each tile [72, 71, 99]. The Cellular Dynamical-Mean Field Theory (CDMFT) scheme con-
siders on the other hand a real-space cluster extension of the self-energy [87, 99]. Translational symmetry
is however usually broken and periodization schemes have to be used. In Chapter 4, we use 2-site CDMFT
to study the electronic properties of electron-doped Sr2IrO4.

Another route is to include spatial correlations by making a higher order object than the self-energy
local. In DΓA, the two-particle analog of the self-energy, the fully irreducible two-fermion scattering vertex
Λ, is assumed to be purely local [80, 159]. In TRILEX, it is the three-leg interaction vertex that is assumed
to be local [12, 13]. Both methods are computationally heavy due to the evaluation of these higher order
vertices.

The DMFT approximation has also been extended to study out-of-equilibrium strongly correlated sys-
tems [10], and we will use it in Chapter 13 to model Ca2RuO4 subject to an electric field.
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Chapter 3
Experiments and Model

In Chapter 1, we presented the properties of high-temperature superconductors. One of the biggest
challenges of modern condensed matter physics consists in understanding the emergence of the pseudogap
and its interplay with superconductivity. In this respect, the Sr2IrO4 iridate is a very interesting playground
as it closely resembles these materials.

It is indeed isostructural to La2CuO4 [133], and its low-energy electronic structure is well described by
a single half-filled band because of strong spin-orbit (SO) coupling as shown by electronic structure calcula-
tions in the Local Density Approximation (LDA) [83, 100]. Angular Resolved PhotoEmission Spectroscopy
(ARPES), optical spectroscopy, and resonant inelastic X-ray scattering experiments [83, 84, 41, 24, 158] as
well as scanning tunneling microscopy [120] demonstrate that the ground-state of this material is a Mott in-
sulator. This conclusion is also supported by electronic structure calculations taking into account electronic
correlations [100, 187, 94].

In this Chapter, we present recent ARPES experiments emphasizing a momentum-differentiation of the
spectral intensity in the Brillouin zone, and we develop a minimal model to capture the physics of Sr2IrO4.
Results concerning the electronic structure of this material upon doping are presented in the next Chapter.

3.1 Motivation

3.1.1 Material
Sr2IrO4 is a layered transition metal oxide. The electronic configuration of the Ir4+ ions is {Xe}4f145d5

and the compound crystallizes in the K2NiF4 tetragonal structure, as La2CuO4 or Sr2RhO4, with planar

(a) Sr2IrO4 structure. Orange dots denote oxygen
atoms, and blue ones strontium atoms. Iridium atoms
are located at the center of the octahedra. [31]
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(a) 0.85 Potassium monolayer deposited on the
parent compound. [85]

(b) La substitution: (Sr1−xLax)2IrO4 for x =
0.05. [41]

Figure 3.2 – ARPES experiments on electron-doped samples of Sr2IrO4.

IrO2 layers forming a square lattice of Ir4+ ions [133]. The IrO6 octahedra are rotated about the c-axis by
∼ 11 deg., generating a doubled unit cell [39]. The structure of this material is sketched on Fig. 3.1a. The
iridium ions are at the center of the grey octahedra defined by the position of the oxygen atoms (orange).
The strontium atoms (blue) separate the layers in the material.

The 5d5 electronic configuration would naively yield a metallic state in a band theory approach. Sr2RhO4,
having an identical atomic arrangement with nearly the same lattice constants and bond angles, is in-
deed found to be a Fermi liquid metal [167]. Sr2IrO4 however has a very strong spin-orbit (SO) cou-
pling, a property which was shown to modify the electronic structure near the Fermi level in 5d sys-
tems [152, 138, 184, 100, 187].

As pictured in Fig. 3.1b, the 5d structure of Sr2IrO4 is indeed split in two eg and three t2g bands due
to the crystal field. Through the action of spin-orbit, the t2g manifold then splits into a low-lying effective
momentum jeff = 3/2 quadruplet, and a higher-lying effective total angular momentum jeff = 1/2 doublet.
This compound then effectively reduces to a half-filled jeff = 1/2 single band near the Fermi surface, a
configuration which makes it prone to the opening of a Mott gap as a result of repulsive interactions.

As a result, despite very different electronic structures, the effective low-energy physics of Sr2IrO4

can be described by the same minimal model as developed for cuprates. One of the outstanding questions
concerning this material is therefore to discover if this analogy can be extended to the metallic phase, and
especially if we can find high-temperature superconductivity and the occurence of a pseudogap.

3.1.2 Photoemission experiments

The noninteracting Fermi surface of this material being electron-like, the hole-doped regime of high-Tc
cuprates (see for instance Fig. 1.2) is to be compared with the electron-doped regime of Sr2IrO4. Several
experimental groups performed ARPES measurements on this material to investigate the doped compound
further [85, 41, 24, 158]. We reproduce in Fig. 3.2 the spectral intensity at the Fermi surface obtained by
growing a potassium layer on top of the undoped material (Fig. 3.2a), and by performing a La substitution
of the Sr atoms, (Sr1−xLax)2IrO4 (Fig. 3.2b). The spectral intensity exhibits a strong momentum differ-
entiation, leading to the appearance of pockets in the ‘nodal’ region located around (π/2, π/2), while the
ARPES spectra in the ‘antinodal’ region around (π, 0) are suggestive of a pseudogap. 1

More insight is gained from probing the quasiparticle bands below the Fermi surface, see Fig. 3.3, where
the fully gapped parent insulator (left) is compared to the doped system at x = 0.05 (right). The intensity
is displayed along the nodal (top) and antinodal (bottom) directions. A clear ‘collapse’ of the Mott gap
is found upon doping, that is the two bands become much closer to each other. In the doped compound,
bands around (π/2, π/2) extrapolate to a Dirac point at −0.1 eV and cross the Fermi surface with linear
dispersion, resulting in the sharp pockets observed in Fig. 3.2b. Along the antinodal direction, bands shift
towards the Fermi energy with a rather round and spread behavior.

1. Note that the ‘nodal/antinodal’ terminology is inherited from the cuprate context and does not refer to the nodes of a supercon-
ducting gap − up to now no unambiguous evidence of superconductivity has been established.
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Figure 3.3 – ARPES experiments probing the spectral intensity below the Fermi surface of Sr2IrO4, both for
the insulating parent compound (left) and the electron-doped material (right). Intensities are shown along
the nodal (upper panels) and the antinodal (lower panels) directions. [41]

Note that, because of the stoichiometry of the material, the x = 0.05 La doping in the experiments of
Ref. [41] corresponds to a nominal electron doping of 10%.

In the following Section, we construct a theoretical model for the low-energy electronic structure of
doped Sr2IrO4, and we then treat electronic correlation effects in the framework of cellular dynamical
mean-field theory (CDMFT). In the next Chapter, we present our results, demonstrating the existence of a
pseudogap and reproducing the momentum-differentiation in the Fermi surface spectral intensity maps (see
Fig. 4.4).

3.2 Minimal model

3.2.1 Tight-binding model

Our starting point is the tight-binding (TB) model introduced in Refs. [76, 30] describing t2g bands in
the presence of a spin-orbit coupling. Because of the rotation of the IrO6 octahedra around the c-axis, the
Sr2IrO4 unit cell is composed of two inequivalent sites A and B. The tight-binding Hamiltonian is then
written as

H0 =
∑

k∈RBZ

ψ†kH0(k)ψk, (3.1)

where the momentum sum is over the
√

2 ×
√

2 reduced Brillouin zone and the components of ψk are the
electron annihilation operators for all 12 orbitals in the unit cell {ckτασ|τ = A,B;α = dxy, dyz, dzx;σ =↑
, ↓}. It is convenient to order the basis according to (cAdxy↑, cAdyz↓, cAdzx↓, [A ↔ B]) followed by their
time-reversed partners ([↑↔↓]). There is no coupling between these two blocks as the system is time-
reversal invariant and we can thus only consider the first half of the basis, taking into account that all bands
are two-fold degenerate.

The remaining 6× 6 tight-binding matrix H0 writes

H0(k) =

(
O(k) P (k)
P †(k) O(k)

)
, (3.2)
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Figure 3.4 – Left: Projection of the tight-binding model for the t2g bands (Eq. (3.2)) on the jeff = 1/2 states.
The value of the projection ranges from 0 (black) to 1 (yellow). Right: Comparison between the full t2g
model and the effective jeff = 1/2 model from Eq. (3.10) with E = 0.

where P describes the hopping part of the Hamiltonian

P (k) = e−i
kx+ky

2



−4γ1(k) 0 0

0 −2γ2(k) 0
0 0 −2γ3(k)


 , (3.3)

with γ1(k) = γ0 cos kx2 cos
ky
2 , γ2(k) = γ0 cos

kx+ky
2 and γ3(k) = γ0 cos

kx−ky
2 . Here k = (kx, ky) is

expressed in terms of the reciprocal vectors forming the reduced Brillouin zone.
O describes the on-site part of the Hamiltonian. It includes the spin-orbit coupling λLi · Si and reads

O(k) =




∆t + e1(γ1(k)/γ0)2 λ/2 −iλ/2
λ/2 0 −iλ/2
iλ/2 iλ/2 0


 , (3.4)

where ∆t is an on-site energy difference of the dxy orbital relative to dyz and dzx, and λ is the spin-
orbit coupling parameter. The additional term e1(γ1/γ0)2 accounts for the hybridization between dxy and
dx2−y2 [76]. In the following we consider ∆t = 0.15 eV, γ0 = 0.35 eV, e1 = −1.5 eV and λ = 0.57
eV. It has been shown that these values yield a band structure in good agreement with LDA+SO calcula-
tions [76, 41].

We plot in Fig. 3.4 (left) the six bands resulting from the diagonalization of H0(k) along the (0, 0) −
(π/2, π/2) − (π, 0) − (0, 0) path of the full Brillouin zone. When the eigenvalues are projected on the
jeff = 1/2 states ∣∣∣∣jeff =

1

2
,±1

2

〉
= ∓ 1√

3
[|dxy,±〉 ± (|dyz〉,∓)± i|dzx,∓〉)] , (3.5)

it can be seen that the low-energy bands essentially have jeff = 1/2 character, as highlighted in Refs [83,
76, 30, 41]. It is therefore natural to look for an effective reduced 2×2 Hamiltonian describing these states.

3.2.2 Effective jeff = 1/2 model
We rewrite H0 in the basis (| 12 , 1

2 〉A, | 12 , 1
2 〉B , | 32 , 1

2 〉A, | 32 , 1
2 〉B , | 32 , − 3

2 〉A, | 32 ,− 3
2 〉B)

H0(k) =

(
H1/2(k) M(k)
M†(k) H3/2(k)

)
, (3.6)

where, labelling l(k) = e−i
kx+ky

2 , u1(k) = l(k)γ1(k), u2(k) = l(k) (γ2(k)− γ3(k)),

H1/2(k) =




1
3

[
∆t + e1

(
γ1(k)
γ0

)2
]

+ λ − 8
3
u1(k)

− 8
3
u†1(k) 1

3

[
∆t + e1

(
γ1(k)
γ0

)2
]

+ λ


 , (3.7)
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M†(k) =




−
√
2

3

[
∆t + e1

(
γ1(k)
γ0

)2
]

2
√
2

3
u1(k)

2
√
2

3
u†1(k) −

√
2

3

[
∆t + e1

(
γ1(k)
γ0

)2
]

0 1√
3
u2(k)

1√
3
u†2(k) 0



, (3.8)

and

H3/2(k) =




2
3

[
∆t + e1

(
γ1(k)
γ0

)2
]
− λ

2
− 10

3
u1(k) 0 1√

3
u2(k)

− 10
3
u1(k) 2

3

[
∆t + e1

(
γ1(k)
γ0

)2
]
− λ

2
1√
3
u†2(k) 0

0 1√
3
u2(k) −λ

2
−2u1(k)

1√
3
u†2(k) 0 −2u†1(k) −λ

2



. (3.9)

An effective Hamiltonian is then obtained by projecting H0 onto the jeff = 1/2 subspace

Heff
1/2(k) = H1/2(k) +M(k)

[
E × 14×4 −H3/2(k)

]−1
M†(k), (3.10)

where 14×4 is the 4×4 unit matrix and E an energy scale that is adjusted in order to best match the original
band structure.

While it is difficult to obtain a compact expression for this reduced Hamiltonian, one can easily diago-
nalize Heff

1/2 numerically for every k point of interest. This is shown (red lines) in Fig. 3.4 (right) together
with the complete t2g band structure (black lines) for E = 0. The effective model appears to be in excellent
agreement with the two low-energy bands exhibiting a jeff = 1/2 character.

As mentioned earlier, the Sr2IrO4 crystal has a two-atom unit cell, and we expressed the tight-binding
models above in the reduced Brillouin zone in order to make contact with experiments. Let us however
emphasize that all sites are actually equivalent from a purely electronic point of view in these models. An
inspection of the band structure in the reduced Brillouin zone indeed reveals that it results from the folding
of half as many bands defined over the full Brillouin zone. This can be seen e.g. from the degeneracy of the
bands along the (π/2, π/2)− (π, 0) path. As a result, the effective model in Eq. (3.10) can be written as a
simple tight-binding model on a square lattice

HTB
1/2 =

∑

ij

γijc
†
i cj , (3.11)

where the hopping amplitudes γij are shown as a function of the distance |i− j| in Fig. 3.5 (left). We obtain
a good approximation of the band structure by only keeping the nearest and next-nearest neighbor hopping
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CDMFT model

16

We introduce correlations on the Ir atoms through:

Self-consistent bath

H = Heff
1/2 + U∑

i

[niA↑niA↓ + niB↑niB↓]

Cellular Dynamical Mean-Field Approximation (CDMFT):

A. Georges et al., RMP 68, 13 (1996) 
G. Kotliar et al., PRL 87, 186401 (2001)

ΣAA ΣAAΣAB

A. Moutenet - 05/2019 Université de Sherbrooke

Figure 3.6 – Cellular DMFT approximation.

terms (for an almost perfect agreement it is necessary to keep 8 hopping parameters). This yields the simple
energy dispersion

ε(k) = ε0 + 2γ(cos kx + cos ky) + 4γ′ cos kx cos ky, (3.12)

where ε0 = −0.174 eV, γ = −0.219 eV, γ′ = −0.082 eV and k = (kx, ky) is now expressed in the
basis of the full Brillouin zone. The folding of this band in the reduced Brillouin zone is shown together
with the effective jeff = 1/2 band structure previously derived in Fig. 3.5 (right). Let us mention that a
similar tight-binding model was derived in Ref. [170] with the difference that the dx2−y2 admixture was not
included in their work.

In the following, we use the effective Hamiltonian derived in Eq. (3.10), Heff
1/2 =

∑
kH

eff
1/2(k), to

describe the low-energy excitations of the system.

3.3 Introducing correlations: Cellular DMFT
We model the effect of electronic correlations in Sr2IrO4 by introducing an energy cost for having two

electrons on the same Ir atom
H = Heff

1/2 + U
∑

i,τ

niτ↑niτ↓, (3.13)

where niτσ is the occupation number on the jz = σ orbital of the Ir atom τ = A,B in the unit cell i. In the
following we use U = 2 eV [76, 41] and a temperature T = 1/β = 1/200 eV ' 58 K.

This model is studied using cellular dynamical mean-field theory [87, 53]: The original lattice Hamil-
tonian (3.13) is mapped on a two-site auxiliary cluster model embedded in a self-consistent medium (see
Fig. 3.6). The self-energy of the cluster model Στ,τ ′ is used to construct an approximation of the lattice
self-energy where only intra unit cell components are non-vanishing, i.e. Σlatt

iτ,iτ ′ = Στ,τ ′ . Note that the
orbitals at sites A and B are electronically equivalent and therefore ΣAA = ΣBB and ΣAB = ΣBA. We
obtain the following expression for the lattice Green’s function

Ĝlatt(iωn,k) =
{

(iωn + µ)1−Heff
1/2(k)− Σ̂(iωn)

}−1

, (3.14)

where k is defined in the reduced Brillouin zone and both Ĝlatt and Σ̂ are 2 × 2 matrices associated with
the two Ir atoms in the unit cell. The CDMFT self-consistency imposes that the cluster Green’s function Ĝ
be the same as the unit cell Green’s function of the lattice:

Ĝ(iωn) =
∑

k∈RBZ

Ĝlatt(iωn,k) =
∑

k∈RBZ

{
(iωn + µ)1−Heff

1/2(k)− Σ̂(iωn)
}−1

. (3.15)

These quantities can be expressed in the basis {| 12 , 1
2 〉A, | 12 , 1

2 〉B} of the jeff = 1/2 orbitals on sites A
and B. However, because A and B are electronically equivalent, it is convenient to work in the basis B of
even and odd combinations of the jeff = 1/2 orbitals, defined by

∣∣∣±
〉

=
1√
2

(∣∣∣∣
1

2
,

1

2

〉

A

±
∣∣∣∣
1

2
,

1

2

〉

B

)
. (3.16)
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In this basis, the cluster self-energy is diagonal because A and B sites are electronically equivalent

Σ̂(iωn) =

(
Σ+(iωn) 0

0 Σ−(iωn)

)
. (3.17)

Note that for a given k point, Ĝlatt(iωn,k) is not diagonal. One can however show that, for a generic 2× 2

diagonal matrixM in the B basis,
∑

k∈RBZ

[
Heff(k) +M

]−1
is a diagonal matrix too. As a result, the

CDMFT self-consistency Eq. (3.15) implies that both cluster quantities Ĝ and Σ̂ are diagonal in the B basis.
This equation is solved iteratively in the following way: At the iteration step n, the quantum impurity

model is described by a diagonal noninteracting Green’s function ĝ(n) and a local interaction Hamiltonian
that has the following expression in the B basis

Hint =
U

2

∑

s=±

(
ns↑ns↓ + ns↑ns̄↓ + c†s↑c

†
s↓cs̄↓cs̄↑ + c†s↑c

†
s̄↓cs↓cs̄↑

)
. (3.18)

This cluster model is solved using the CT-HYB quantum impurity solver 2 [148, 171, 173, 62], directly in
the B basis. It yields both the cluster Green’s functions Ĝ(n) and self-energies Σ̂(n). The self-consistency
condition is used to construct a local diagonal lattice Green’s function

Ĝ
(n)
loc (iωn) =

∑

k∈RBZ

{
(iωn + µ)1−Heff

1/2(k)− Σ̂(n)(iωn)
}−1

. (3.19)

This allows one to get a new expression for the noninteracting cluster Green’s function ĝ via Dyson’s
equation [

ĝ(n+1)
]−1

=
[
Ĝ

(n)
loc

]−1

+ Σ̂(n). (3.20)

This procedure is iterated until convergence. Codes were developed using the TRIQS library [123].

This model is used to introduce electronic correlations on top of the tight-binding Hamiltonian Heff
1/2.

In the next Chapter, we present the electronic structure obtained when doping the Mott insulator Sr2IrO4.
A strong momentum differentiation is found in the Brillouin zone, as well as the onset of a pseudogap.

2. An introduction to continous-time quantum Monte Carlo solvers is provided in Chapter 5.
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Chapter 4
Electronic structure and emergence of a
pseudogap

In this Chapter, we present results concerning the effects of correlations on the electronic structure of the
Mott insulator Sr2IrO4 upon electron doping. The electronic structure displays a strong momentum-space
differentiation at low doping level: The Fermi surface consists of pockets centered around (π/2, π/2), while
a pseudogap opens near (π, 0). Its physical origin is shown to be related to short-range spin correlations.
The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of
the spectral intensity along the Fermi surface persists to higher doping levels. The work presented in this
Chapter has been published in Ref. [108], the full text being reproduced in Appendix VII.

We recall the parameters we use in our calculations: ∆t = 0.15 eV, γ0 = 0.35 eV, e1 = −1.5 eV,
λ = 0.57 eV, U = 2 eV and T = 1/β = 1/200 eV ' 58 K.

4.1 Doping regimes

4.1.1 Density and spectral intensity

As discussed in Section 3.3, the cluster quantities Ĝ and Σ̂, obtained by solving the CDMFT equations,
can be expressed in the basis of even and odd combinations of the jeff = 1/2 orbitals, where they are

0.6 0.8 1.0 1.2 1.4 1.6
chemical potential µ

1.00

1.05

1.10

1.15

1.20

de
ns

it
y
n

MI

PG Diff

UM

Cluster density

Periodized density

(a) Density of states as a function of the chemical po-
tential µ.

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
chemical potential µ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sp
ec

tr
al

in
te

ns
it

y
A

(0
)

MI

PG Diff

UM

A+

A−

(b) Spectral intensity at the Fermi level A(0) as a
function of the chemical potential µ.

Figure 4.1 – Dotted lines separate the four doping regimes: the Mott-insulating phase (MI), the pseudogap
regime (PG), the differentiation region (Diff), and the uniform metal (UM).
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diagonal

Ĝ =

(
G+ 0
0 G−

)
Σ̂ =

(
Σ+ 0
0 Σ−

)
. (4.1)

As we discuss later, G± and Σ± have a direct physical interpretation. The physics close to the node
(π/2, π/2) is indeed essentially controlled by G− and Σ− while the physics at the antinode (π, 0) is con-
trolled by G+ and Σ+. The reason for this, anticipating on Sec. 4.3 and Fig. 4.7, is that the nodal Fermi-
surface pocket at (π/2, π/2) is associated with the upper band (which has an antibonding/odd character)
while the nodal states are associated with the lower bonding band with even character. The analysis of these
quantities will reveal the existence of four distinct regimes upon doping: a Mott insulator phase (MI), a
pseudogap regime (PG), a differentiation region (Diff) and finally a uniform Fermi liquid state (UM).

The electronic density n is shown as a function of the chemical potential µ in Fig. 4.1a (blue curve). It
displays a clear plateau at n = 1 for µ between 0.56 eV and 1.16 eV, confirming that the system is a Mott
insulator at half-filling [83, 100, 187]. The width of the plateau ' 0.6 eV is consistent with Ref. [24].

In Fig. 4.1b and 4.2 are displayed the spectral intensities A±(ω = 0) at the Fermi level as well as the
zero-frequency self-energies Σ±(ω = 0) as a function of the chemical potential µ. These quantities are
obtained by extrapolating to zero Matsubara frequencies results obtained by Monte Carlo

A±(0) = − 1

π
lim

iωn→0
ImG±(iωn), (4.2)

Σ±(0) = lim
iωn→0

Σ±(iωn). (4.3)

For completeness, we have included plots of the Matsubara frequency Green’s functions and self-energies
for several chemical potentials in Appendix A.1.

4.1.2 The four doping regimes
These results allow to identify four distinct doping regimes. For chemical potentials smaller than µ =

1.16 eV, the system is in a Mott insulating regime and both the even (+) and odd (−) components of the
spectral intensity at the Fermi level are zero, A±(0) = 0 (also both Matsubara Green’s functions G±(iωn)
have clear insulating character, see Appendix A.1). This is compatible with the location of the Mott plateau
in Fig. 4.1a.

Correlation effects are especially visible in the real parts of the self-energies. As both imaginary parts
vanish, the effective low-energy band structure is split by the real parts of the self-energy in Eq. (3.15) and
no excitations exist at zero frequency. More precisely, the quasiparticle equation

det
{

(ω + µ)1−Heff
1/2(k)− Σ̂(ω)

}
= 0 (4.4)
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Figure 4.3 – Statistical weights of states dominating the Monte Carlo sampling on the dimer cluster of
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has no solutions at ω = 0 for all values of k.
When µ lies between 1.16 eV and 1.32 eV, the system enters a pseudogap regime. The even component

of the Green’s function, that provides a coarse-grained picture of the physics close to the antinode k =
(π, 0), maintains its insulating character (A+(0) = 0) while the odd component, describing the nodal region
close to k = (π/2, π/2), becomes metallic (A−(0) 6= 0). This describes a metal that only has coherent
quasiparticles close to the node. Antinodal particles are suppressed by lifetime effects, as can be seen
from the negative imaginary part of the even self-energy ImΣ+(0). It reaches −0.1 eV in Fig. 4.2, while
ImΣ−(0) remains very small. This regime is very reminiscent of the pseudogap region of superconducting
cuprates, and we indeed show below that the spectral function exhibits a pseudogap at k = (π, 0) in this
region.

As the electron doping is further increased, for 1.32 ≤ µ ≤ 1.45 eV, spectral weight starts to appear
in A+(0), an indication that quasiparticles form at the antinode as well. However, there are still visible
differences between the even and odd components of the self-energies. 1 The regime is therefore character-
ized by a visible k-space differentiation where lifetime effects are stronger at the antinode than at the node
(ImΣ+(0) < ImΣ−(0)) but do not completely destroy quasiparticles.

Eventually, for µ above 1.45 eV, a uniform metallic regime settles where both self-energies are identical
and k-space differentiation has disappeared. This regime would be well described by a single-site DMFT
calculation.

It should be emphasized that boundaries delimiting these different regimes correspond to crossovers and
hence are here defined in a qualitative manner.

The physical mechanism responsible for the formation of the pseudogap and the strong nodal-antinodal
dichotomy observed at low doping can be revealed by studying the many-body states associated with the
2-site cluster. Calculating these states’ histogram, we identify those that contribute most to the stochastic
sampling within the CT-HYB quantum impurity solver. This is shown in Fig. 4.3, where it is clear that the
system is dominated by the intra-dimer singlet state at low doping levels. This is a strong indication that
physics in this regime is governed by the formation of short-range antiferromagnetic correlations between
neighboring sites.

4.2 Fermi surface and pseudogap

4.2.1 Periodization of the self-energy
Within CDMFT, the lattice Green’s function given by Eq. (3.14) breaks translational symmetry [87],

hence making a direct comparison to momentum-resolved ARPES experiments difficult. The lattice self-
energy in CDMFT only having components inside a unit cell but not between different unit cells is the

1. See also Appendix A.1.
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Figure 4.4 – Spectral intensity at the Fermi surface upon increasing doping level.

reason for the symmetry breaking. A natural way to restore the translational symmetry is to periodize
the self-energy by propagating the intersite contribution ΣAB over all links on the lattice. An artefact of
this scheme is that it prevents the formation of a Mott insulator and gives a wrong description of the low-
doping physics. 2 We therefore design a different periodization that yields physical results and preserves
the existence of the Mott insulator. In this scheme, the lattice self-energy is given by

Σ̃latt(iωn,k) =

(
ΣAA ΣAB × e−i

k1+k2
2

ΣAB × ei
k1+k2

2 ΣAA

)
, (4.5)

where k = (k1, k2) is expressed in the reduced Brillouin zone. With this self-energy, we then define a
periodized lattice Green’s function G̃latt according to

G̃latt(iωn,k) =
{
iωn + µ−Heff

1/2(k)− Σ̃latt(iωn,k)
}−1

. (4.6)

This Green’s function preserves all the symmetries of the lattice and will be the basis of our analysis below.
As a consistency check we first compute in Fig. 4.1a the electronic density n as a function of µ obtained

from G̃ (orange curve). Comparing it to the cluster density (blue curve) discussed in Sec. 4.1, we see that
plateaus at n = 1 match well, confirming the existence of a Mott insulator within our periodization scheme.
However, the periodized density generally has a slightly lower value compared to the cluster density for a
given chemical potential. In the following, we discuss our results for specific values of µ and thus indicate
two corresponding values of the electron doping: the cluster and the periodized one (resp. δcluster and δper).

4.2.2 Spectral intensities
We plot in Fig. 4.4 the spectral intensity at the Fermi surface for four values of the chemical potential.

At small doping levels, for µ ≤ 1.30 eV, nodal pockets with coherent quasiparticles develop while the
antinodal intensity is completely suppressed. A close inspection of the spectral function at k = (π, 0)
for µ = 1.30 eV confirms the presence of a clear pseudogap, as discussed previously: Fig. 4.5 shows the
leading edge of the spectrum being shifted away from zero energy. We attribute its formation to short-range
antiferromagnetic correlations (manifested here as the dominance of inter-site singlet dimer formation in
our cluster as revealed by the histogram of states, see Fig. 4.3).

As the electron doping is increased, the (π/2, π/2) pockets grow and spectral intensity starts to appear
around (π, 0), see panel c) of Fig. 4.4, leading to an extension of the Fermi surface over the Brillouin zone.

2. See Appendix A.2 for more details.
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Figure 4.5 – Left: Spectral intensity TrA(ω,kAN) (Energy Distribution Curve - EDC) at the antinode
kAN = (π, 0) for µ = 1.3 eV. Right: Spectral intensity at the Fermi surface for the same µ.

Figure 4.6 – Left: Spectral intensity at the Fermi surface TrA(ω = 0,k) (Momentum Distribution Curve -
MDC) for µ = 1.36 eV taken along the nodal (blue) and the antinodal (green) directions. Right: Spectral
intensity at the Fermi surface for the same µ.

Quasiparticles are however far more incoherent and broader at the antinode, as can be seen from momentum
cuts across the node or the antinode (Fig. 4.6). While sharp coherent quasiparticles are found at the node,
those at the antinode display a lower spectral intensity that is broadened over a greater region of k-space.
This corresponds to the momentum-differentiation regime introduced above.

At larger doping, the self-energy becomes finally uniform and the resulting Fermi surface displays
coherent quasiparticles both at the node and the antinode, as shown in the panel d) of Fig. 4.4.

4.3 Electronic band structure

4.3.1 Quasiparticle bands
We now turn to an analysis of the dispersion of quasiparticle bands in Sr2IrO4. This requires to ana-

lytically continue our imaginary-frequency data to the real axis. We use Padé approximants [166] to find
Σ̃latt(ω,k) from the knowledge of the periodized lattice self-energy Σ̃latt(iωn,k). The resulting band
structure is shown in Fig. 4.7 where we compare the insulating state at µ = 0.8 eV (left) and the electron
doped state at µ = 1.36 eV, δper = 7%, δcluster = 10% (right). On the upper panels, we show the noninter-
acting bands obtained by diagonalizing the TB + SO HamiltonianHeff

1/2 (dashed lines) and the quasiparticle
bands obtained from the solutions of

det
{

(ω + µ)1−Heff
1/2(k)− Σ̃latt(ω,k)

}
= 0. (4.7)

Bands are plotted along the (π, π)− (π/2, π/2)− (0, 0)− (π, 0)− (2π, 0) path of the full Brillouin zone.
Lower panels display the corresponding total spectral intensity TrA(ω,k).

In the insulating region, the Mott gap is clearly visible. The band structure indicates that correlation
effects have split the original noninteracting bands. This is compatible with the observation that, at µ =
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Figure 4.7 – Band dispersion of the insulating (a-c), µ = 0.8eV, and doped (b-d), µ = 1.36 eV, Sr2IrO4.
Upper panels: Comparison between the non-interacting bands obtained from the TB + SO Hamiltonian
Heff

1/2 (dashed lines) and the quasiparticle bands. Lower panels: Spectral intensities.

0.8 eV, the cluster self-energies take very different values ReΣ+(0) 6= ReΣ−(0). Lifetime effects are also
not very strong and the bands are fairly coherent, consistent with the fact that ImΣ±(0) ' 0. The top of
the lower band is located at ' −0.4 eV at the node and at ' −0.2 eV at the antinode. This in in good
agreement with the position of the bands observed in ARPES experiments and presented in Fig. 3.3.

There is a direct gap to the unoccupied states of the order of 0.8 eV at k = (π/2, π/2), while the small-
est overall gap is indirect and of order 0.6 eV. Note that the latter value is consistent with the width of the
Mott plateau in Fig. 4.1a.

As we move to the doped region, the Mott gap first closes at the nodal point k = (π/2, π/2) and the
quasiparticle bands merge. The crossing of the upper band at two points close to (π/2, π/2) is a signature
of the pocket seen in the previous spectral intensities. Around these points, a clear renormalization of the
Fermi velocities by a factor 1/4 is visible as compared to the non-interacting bands. For µ = 1.36 eV there
is still a gap between the bands at k = (π, 0) but the lower band just reaches the Fermi level, yielding some
antinodal spectral weight. It is interesting to note that the correlation effects are much stronger on the lower
band than on the upper band. Quasiparticles are then better defined at (π/2, π/2) (they correspond to a
crossing of the upper band) than at (π, 0) where they are associated with the lower band. This is explained
by the fact that the physics of the lower band is mainly controlled by the cluster Σ+, while the upper band
is controlled by Σ−. As a result, the larger negative imaginary part of Σ+ (see Fig. 4.2) induces stronger
lifetime effects at the antinode, while the smaller imaginary part of Σ− maintains coherent quasiparticles at
the node.

This ‘collapse’ of the Mott gap (i.e the two bands becoming much closer to each other) is also found
in the ARPES experiments, see Fig. 3.3. The location of the top of the band at the ‘node’ (−0.4 eV) and
‘antinode’ (−0.2 eV) are in good quantitative agreement with the experiments, as well as the rather round
and spread behavior of the band at the node. On the other hand, the nodal part does not appear to be as
narrow as it is observed.

We finally display in Fig. 4.8 a spectral intensity map along the (π/2, π/2)− (π, 0) Brillouin zone path,
which corresponds to the path along which the non-interacting bands are degenerate. ARPES data along
this path have not appeared in print to our knowledge, and our results could be useful in the context of future
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Figure 4.8 – Spectral intensity of the doped compound (µ = 1.36eV) along the degenerate path (0, 0) −
(π/2, π/2)− (π, 0)− (0, 0) in the full Brillouin zone

analysis of ARPES experiments.

4.3.2 Discussion and conclusions
Overall, there is excellent qualitative agreement between our results and ARPES experiments conducted

on doped Sr2IrO4. The ‘nodal-antinodal’ differentiation and formation of a pseudogap near the ‘antinode’
is also consistent with the experimental observations [41, 85]. Here, the pseudogap is linked to short-
range spin correlations, which would indicate the same physical origin as in superconducting cuprates (see
e.g. Refs. [64, 183] for recent studies). Note that our results are also in good agreement with the recent
theoretical approach from Ref. [101].

The value of the interaction parameter U = 2 eV for which we chose to perform our calculations should
also be discussed in the context of experimental measurements, especially determinations of the Mott gap.
With this value, we find a Mott gap which is indirect and of order ∼ 0.6 eV − corresponding to the
transition between the top of the lower Hubbard band at (π, 0) and the bottom of the upper Hubbard band
at (π/2, π/2) in Fig. 4.7a. It is also the width of the Mott plateau in Fig. 4.1a. The value of the optical gap
would be slightly larger. In Ref. [24], Sr2IrO4 was studied under both hole (Rh) and electron (La) doping,
allowing for a determination of a Mott gap of order 0.7 eV, in rather good agreement with the present work.
Optical spectroscopy measurements (see e.g Fig. 4 in Ref. [83]) do reveal a sharp increase of absorption in
that frequency range, but a rather slow onset of the optical conductivity is observed with spectral weight
below this scale, possibly suggesting a significantly smaller value of the actual gap (although a precise
determination is difficult). This suggests that the value of U used in the present work may be a bit too large.
Accordingly, we note that the Fermi surface renormalizations obtained above appear to be somewhat larger
than the values reported in Ref. [41].
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Part III

Developments in determinant Monte
Carlo algorithms for fermionic systems
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Chapter 5
Continuous-time quantum Monte Carlo
algorithms for fermionic systems

As presented in Chapter 2, quantum impurity problems play an important role in strongly correlated
physics, either as representations of quantum dots, or as auxiliary problems used within the Dynamical
Mean-Field Theory (DMFT) framework. However, designing robust methods to solve impurity problems
over a wide range of temperatures and energy scales is in itself a great challenge.

Continuous-time quantum Monte Carlo (CT-QMC) algorithms [139, 140, 171, 173, 61, 62] have been
a breakthrough in finding solutions of quantum impurity problems [53, 86, 72, 96, 87, 99]. These methods
are based on a perturbation expansion of the partition function. The latter is then used as a probability
distribution function in a Monte Carlo sampling of the quantity of interest (Green’s function, density, ...).
The series is not explicitly truncated at a specific order so that they are numerically exact in the limit of
long computational time.

In this Chapter, we focus on two of them: the CT-INT, based on an expansion in the Coulomb repulsion
U , and the CT-HYB, based on an expansion in the hybridization function ∆.

5.1 Perturbation expansion of the partition function
We consider a correlated impurity coupled to uncorrelated bath. Its Hamiltonian writes

H = H0
loc +HIloc +Hhyb +Hbath, (5.1)

with H0
loc describing the non-interacting quadratic part of the impurity, HIloc the correlations on the impu-

rity,Hbath the non-interacting bath, andHhyb the hybridization between the impurity and the bath.
For the sake of simplicity in upcoming formulas, we consider the single-impurity single-orbital Ander-

son model [7], whose Hamiltonian is

H =
∑

σ

εd†σdσ + Und↑nd↓ +
∑

kσ

(
γkc
†
kσdσ + h.c.

)
+
∑

kσ

εkc
†
kσckσ, (5.2)

where ε is the energy level of the impurity, d†σ (resp. dσ) is the creation (resp. annihilation) operator for an
electron with spin σ on the impurity, εk describes the energy spectrum of the bath, c†kσ (resp. ckσ) is the
creation (resp. annihilation) operator for an electron with spin σ and momentum k in the bath, and finally
γk is a coupling constant between the energy level of momentum k of the bath and the impurity.

This can be reformulated as an action using an imaginary-time path integral [119]

S =
∑

σ

∫ β

0

dτd†σ(τ) (∂τ + ε) dσ(τ) + U

∫ β

0

dτ nd↑(τ)nd↓(τ)

+
∑

σ

∫ β

0

dτdτ ′d†σ(τ)∆σ(τ − τ ′)dσ(τ ′)

(5.3)
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The hybridization function ∆ is defined in Matsubara frequency as ∆σ(iωn) =
∑

k
|γk|2
iωn−εk . The partition

function is then expressed as an integral over Grassmann variables

Z =

∫
D[d†σ, dσ]e−S , (5.4)

and the interacting Green’s function of the impurity is

Gσ(τ) = − 1

Z

∫
D[d†σ, dσ]e−Sdσ(τ)d†σ(0) = − 1

β

δlnZ

δ∆σ(−τ)
. (5.5)

Eq. (5.4) is the starting point of the development of CT-QMC algorithms, which construct a perturbation
expansion of the partition function, either in the Coulomb interaction U or in the hybridization function ∆.
This expansion is then used in an importance sampling of another quantity of interest such as the Green’s
function.

5.1.1 Expansion in the Coulomb interaction
We define the bare part of the action to be

S0 =
∑

σ

∫ β

0

dτd†σ(τ) (∂τ + ε) dσ(τ) +
∑

σ

∫ β

0

dτdτ ′d†σ(τ)∆σ(τ − τ ′)dσ(τ ′)

= −
∑

σ

∫ β

0

dτdτ ′d†σ(τ)g−1
σ (τ − τ ′)dσ(τ ′),

(5.6)

where g−1
σ (iωn) = iωn − ε − ∆σ(iωn) is the noninteracting Green’s function. The associated partition

function is Z0 =
∫
D[d†σ, dσ]e−S0 and the average of an operator A with respect to S0 is

〈A〉0 =

∫
D[d†σ, dσ]e−S0A. (5.7)

The partition function of the full system now rewrites

Z =

∫
D[d†σ, dσ]e−S = Z0

〈
Tτe
−U

∫ β
0

dτnd↑(τ)nd↓(τ)
〉

0

= Z0

∑

n

∫ β

0

dτ1 . . . dτn
(−U)n

n!

∏

σ

〈Tτndσ(τ1) . . . ndσ(τn)〉0 .
(5.8)

Because S0 describes a noninteracting system, we use Wick’s theorem [178] to express the above expecta-
tion values as determinants

Z = Z0

∑

n

∫ β

0

dτ1 . . . dτn
(−U)n

n!
detD↑ndetD↓n, (5.9)

where (Dσ
n)ij = gσ(τi − τj). Note that the 1/n! factor, originating from the expansion of the exponential,

ensures the convergence of the series. We are not considering a “weak-coupling” limit here: the series is
infinite and not explicitly truncated at low orders.

As we will discuss in more detail in Section 5.2, the CT-INT algorithm samples the partition function
(5.9) using Monte Carlo techniques in order to compute the physical quantities of interest [139, 62].

5.1.2 Expansion in the hybridization function
The local part of the action is defined to be

Sloc =
∑

σ

∫ β

0

dτd†σ(τ) (∂τ + ε) dσ(τ) + U

∫ β

0

dτ nd↑(τ)nd↓(τ), (5.10)

38



5.2. EVALUATING THE PARTITION FUNCTION: MONTE CARLO SAMPLING

associated with the local Hamiltonian

Hloc =
∑

σ

εd†σdσ + Und↑nd↓. (5.11)

This action is not quadratic in the d operators, and Wick’s theorem cannot be applied. The local partition
function is Zloc = Tr

(
−eβHloc

)
and the average of an operator A with respect to Sloc is

〈A〉loc =
Tr
(
e−βHlocA

)

Zloc
. (5.12)

In this expansion, the partition function of the full system writes

Z = Zloc

〈
Tτe
−∑

σ

∫ β
0

dτdτ ′d†σ(τ)∆σ(τ−τ ′)dσ(τ ′)
〉

loc

= Tr

(
Tτe
−βHloc

∏

σ

∑

n

(−1)n

n!

∫ β

0

dτ1 . . . dτ
′
n

n∏

i=1

d†σ(τi)∆σ(τi − τ ′i)dσ(τ ′i)

)
.

(5.13)

This expression can be simplified as

Z =
∑

n↑,n↓

∫ β

0

dτ↑1 . . . dτ
′↑
n↑

∫ β

0

dτ↓1 . . . τ
′↓
n↓

(∏

σ

det∆̂σ
n

(nσ!)2

)
×

Tr

(
Tτe
−βHloc

∏

σ

d†σ(τσi )dσ(τ
′σ
i )

)
,

(5.14)

where
(

∆̂σ
n

)
ij

= ∆σ(τσi − τ
′σ
j ). We see that the evaluation of the partition function now relies on a trace

over atomic states, which will severely restrict the number of orbitals that can be considered. Note once
again that the 1/(nσ!)2 factor ensures the convergence of the series.

The CT-HYB algorithm now aims at sampling the partition function (5.14) using Monte Carlo tech-
niques (see below), in order to compute physical quantities of interest [171, 173, 62].

5.2 Evaluating the partition function: Monte Carlo sampling
In both expansions, the partition function is written as an infinite series with some expansion parameter

(either the Coulomb repulsion or the hybridization function)

Z =
∑

n

Zn, (5.15)

where the order-n contribution can be written as a multi-dimensional integral over “inner variables” xi

Zn =

∫
dx1 . . . dxn Z(x1, . . . , xn). (5.16)

Evaluating multi-dimensional integrals is a very complex problem, and an efficient way to tackle it is
by using a Monte Carlo sampling. In this Section, we recall the basics of such procedures on a general
level, 1 and focus on the two perturbation expansions we saw above by describing the CT-INT and CT-HYB
algorithms.

5.2.1 Monte Carlo basics
Let us start with a simple 1D example: the evaluation of the integral of a function f defined on the real

axis. We decompose f as ω× g, such that ω can be interpreted as a probability distribution function: ω ≥ 0
and

∫
ω = 1. The Monte Carlo sampling consists in rewriting the integral over f in the following way:

∫
dx f(x) =

∫
dx ω(x)g(x) ∼

MC∑

c

g(c). (5.17)

1. For a detailed introduction to Monte Carlo methods, see for instance [91] and [89].
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Instead of computing ω×g for all points x on the real axis, we evaluate g over a subset of points distributed
according to ω. Each of these points is called a configuration and denoted c. We define the weight of a
configuration as wc = ω(c). Note that we add a ‘MC’ superscript on the sum to denote that it is computed
using Monte Carlo techniques. When there is a possible ambiguity, we might also specify which function
is used as a weight. 2

For a finite number N of uncorrelated configurations visited, the Monte Carlo sum only provides an
estimate of the final result (hence the ∼ notation). However, the central limit theorem states that the stan-
dard deviation of the distribution scales as 1/

√
N , meaning that for a long enough computational time,

the algorithm will converge to the exact value of the integral. Methods following this property are called
numerically exact.

Going back to the problem at hand, we define a configuration to be the perturbation order n as well as
a set of inner variables:

c = {n;x1, . . . , xn}. (5.18)

Those will typically be the imaginary time variables that appear in Eqs. (5.9) and (5.14). The weight of
a configuration is chosen to be wc = |Z(x1, . . . , xn)| = |Z(c)|, so that the order-n contribution to the
partition function writes

Zn =

∫
dx1 . . . dxn |Z(x1, . . . , xn)| sgn (Z(x1, . . . , xn)) ∼

MC∑

c

sgn Z(c). (5.19)

For the CT-INT algorithm, which aims at sampling Eq. (5.9), we define a configuration by the pertur-
bation order n and a set of imaginary times: c = {n; τ1, . . . , τn}, and the Monte Carlo weight is

wc =
Un

n!

∣∣detD↑ndetD↓n
∣∣ . (5.20)

The partition function now rewrites

Z = Z0

MC∑

c

(−1)n sgn

(∏

σ

detDσ(c)

)
. (5.21)

For the CT-HYB algorithm, which aims at sampling Eq. (5.14), a configuration is defined by the per-
turbation orders n↑ and n↓, and nσ “segments” {τσi , τ

′σ
i } for each spin: c = {n↑, n↓; {τσi , τ

′σ
i }1≤i≤nσ},

and the Monte Carlo weight is

wc =

∣∣∣∣∣

(∏

σ

det∆̂σ
n

(nσ!)2

)
× Tr

(
Tτe
−βHloc

∏

iσ

d†σ(τσi )dσ(τ
′σ
i )

)∣∣∣∣∣ . (5.22)

The partition function now rewrites

Z =

MC∑

c

sgn

((∏

σ

det∆̂σ(c)

)
× Tr

(
Tτe
−βHloc

∏

iσ

d†σ(τσi )dσ(τ
′σ
i )

))
. (5.23)

In the CT-QMC algorithms, we therefore accumulate the sign of the partition function over configu-
rations sampled according to the absolute value of Z. The partition function can then be seen as a ‘tool’
to move into configuration space, the main goal of the algorithm being the sampling of physical quanti-
ties such as the density or the Green’s function, see Section 5.2.3. In fermionic simulations, Z(c) often
becomes negative due to the anticommutation relations between fermionic operators, which can lead to a
drastic increase in error bars known as the sign problem. We discuss this effect in more detail in Sec. 5.3.1.

2. This will be the case in Chapter 9 where we discuss out-of-equilibrium diagrammatic MC algorithms.
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5.2.2 Markov chain
In a Monte Carlo algorithm, new configurations have to be chosen in order to efficiently sample the

probability distribution function. A common way to do so is to construct a Markov chain in configuration
space using the Metropolis-Hastings algorithm [107, 67]. Knowing the probability Tcc′ to propose config-
uration c′ after configuration c, the new configuration c′ is accepted or rejected according to the Metropolis
ratio

paccept
c→c′ = min

(
1,
Tc′cwc′

Tcc′wc

)
. (5.24)

For the CT-INT, two kinds of moves are in general enough for the algorithm to be ergodic: the insertion
and the removal of an imaginary time. Common moves for the CT-HYB are the addition of a new segment,
the removal of an existing one, and the cutting of a segment into two new ones.

5.2.3 Measurements
The sampling of Z is generally used as a tool to measure more interesting quantities for the model we

are considering: the Green’s function, the density, the self-energy... Let us denote such an object by M,
that we express in the form

M =

∫
dx1 . . . dxnM(x1, . . . , xn)Z(x1, . . . , xn) ∼

MC∑

c

M(c)sgn Z(c). (5.25)

In the Monte Carlo algorithm, configurations are therefore sampled according to wc = |Z(c)|, but we can
measure any quantity of interest by accumulatingM(c)sgn Z(c).

Let us consider the specific case of the Green’s function, which is linked to the partition function through
Eq. (5.5). Combining this with Eq. (5.21), gives the expression of G in the CT-INT algorithm

Gσ(τ) = gσ(τ)− 1

βZ
gσ(−τ)2

MC∑

c∈C
(−1)n

∑

ij

(Dσ(c))
−1
ij δ(τi − τj + τ)× sgn

(∏

σ′

detDσ′(c)

)
(5.26)

For the CT-HYB algorithm, the Green’s function is obtained as

Gσ(τ) =− 1

βZ

MC∑

c∈C

∑

ij

(∆̂σ(c))−1
ij δ(τi − τj + τ)

× sgn

((∏

σ′

det∆̂σ′(c)

)
Tr

(
Tτe
−βHloc

∏

σ′

d†σ′(τ
σ′

i )dσ′(τ
′σ′

i )

)) (5.27)

Note that in both algorithms, a given configuration will only allow us to accumulate contributions at
imaginary times that correspond to the difference of two τi because of the delta function.

5.3 Strengths and limitations of CT-QMC algorithms

5.3.1 The fermionic sign problem
In all CT-QMC algorithms, the physical quantity we accumulate, such as the Green’s function, is pro-

portional to the sign of the partition function. In fermionic simulations, individual contributions to Z may
have alternating signs due to the anticommutation relations between operators that can lead to cancellations
between individual measurements and exponentially growing errors.

To quantify this effect, we reproduce here the argument of Ref. [62]. Let us consider the average value
of the sign of contributions to the partition function

〈sgn〉 =

∫
dx1 . . . dxn sgn (Z(x1, . . . , xn)) |Z(x1, . . . , xn)|∫

dx1 . . . dxn |Z(x1, . . . , xn)| =
Z

Z̄
= e−β∆F , (5.28)
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where Z̄ is the partition function of the system without sign problem, and ∆F the difference in free energy
between this system and the original one. The variance of the sign is

var sgn = 〈sgn2〉 − 〈sgn〉2 = 1− e−2β∆F , (5.29)

which is very close to 1 as soon as the system is quantitatively different from the bosonic system. The
relative error after N masurements is defined as the error bar divided by the mean value

∆sgn =

√
var sgn√
N

× 1

〈sgn〉 '
eβ∆F

√
N
. (5.30)

This equation shows why we talk about a sign problem: the relative error grows exponentially when in-
creasing the system size or decreasing the temperature. Though it depends on the representation chosen, its
magnitude is an inherent property of the system at hand. For example, the Anderson impurity problem has
no sign problem. More generally, it worsens when the number of sites of orbitals in the system increases.
Impurity problems thus tend to have less severe sign problems than comparable finite-size lattice models.
It is believed to be nondeterministic polynomial (NP) hard [160].

In this Thesis, one of our main focus is the development of novel quantum algorithms, both in imaginary
and real time, that aim at taming this sign problem by taking care of cancellations directly in the computation
of the MC weight.

Redefinition of non-interacting propagators: the α-shift

In the interaction-expansion based CT-INT algorithm, the sign problem can be strongly mitigated, or
even completely cured in some cases, by a redefinition of both the local interaction and the noninteracting
propagators [140, 128, 137, 183].

The action of Eq. (5.3) and (5.6) can be seen as a function of U

S[U ] = −
∑

σ

∫ β

0

dτdτ ′d†σ(τ)g−1
σ (τ − τ ′)dσ(τ ′) + U

∫ β

0

dτ nd↑(τ)nd↓(τ). (5.31)

Let us label Uϕ the physical value of U that we are interested in. In order to optimize the sign problem, we
introduce a modified action depending on two scalars α↑ and α↓

S̃[U ] = −
∑

σ

∫ β

0

dτdτ ′d†σ(τ)
[
g−1
σ (τ − τ ′)− Uϕασ̄δ(τ − τ ′)

]
dσ(τ ′)

+ U

∫ β

0

dτ(n↑(τ)− α↑)(nd↓(τ)− α↓),
(5.32)

so that S[U = Uϕ] = S̃[U = Uϕ] up to an unessential constant. The series in U of S̃ is therefore
fundamentally different from the one of S, but both coincide for the physical value of the interaction we are
interested in.

Upon the implementation of this α-shift, the partition function still writes

Z = Z0

∑

n

∫ β

0

dτ1 . . . dτn
(−U)n

n!
detD↑ndetD↓n, (5.33)

except now (Dσ
n)ij = g̃σ(τi − τj)− ασδij , where g̃ is the redefined noninteracting propagator

g̃σ(iωn) =
1

iωn − ε−∆σ(iωn)− Uϕασ̄
. (5.34)

Tuning α can then drastically reduce the sign problem.
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5.3.2 Domains of application
Let us first discuss in what regimes the CT-INT and CT-HYB algorithms work best [62].
The CT-HYB algorithm, due to the expansion in the hybridization expansion, can treat arbitrarily com-

plicated interactions, and it does not have a strong limitation in temperature. However, the implementation
of the trace in Eq. (5.14) requires dealing with matrices whose sizes grow exponentially with the Hilbert
space, hence limiting the number of orbitals and sites accessible. The algorithm also suffers from a very
strong sign problem if the hybridization function has off-diagonal components. As a result, it is often used
to describe the properties of systems with partially filled d and f shells, where it can treat the full complex-
ity of general multiplet interactions. For example, it has recently allowed precise computations of the Hall
coefficient in Sr2RuO4 [189]. The results on the electronic structure of Sr2IrO4 presented at the beginning
of this Thesis were also obtained using this algorithm.

The CT-INT algorithm, however, scales as a power law with system size, which makes it more suitable
for clusters extensions of dynamical mean-field theory. On the other side, it faces strong limitations in tem-
perature and it is mostly limited to density-density interactions. The auxiliary-field version of this algorithm
has for example been used to compute the superconducting phase diagram of the 2D Hubbard model [63].

Taking a broader perspective, one of the reasons for the success of the continuous-time quantum Monte
Carlo algorithms is that they are based on a perturbation expansion of the partition function Z. As we saw
previously, contributions to Z can be reorganized into determinants that effectively sum a factorial number
of perturbation diagrams and automatically take care of some cancellations between them. As a result, large
perturbation orders can be computed.

Sampling the partition function is also a drawback of CT-QMC algorithms. As useful as they are to
solve impurity problems, these methods face a strong limitation with the system size N . For the CT-HYB,
we have seen that it is the size of the Hilbert space that prevents us to reach large systems. For the CT-INT,
the average perturbation order in the sampling of the partition function scales as UβN . In realistic systems,
it is then common to reach perturbation order 100 to 200. In both cases, the algorithm faces an exponential
sign problem.

Those limitations are the reason why novel methods have been developed, that directly work in the
thermodynamic limit by sampling the diagrammatic expansion of the quantities of interest on the lattice, as
we present in the next Chapter.
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Chapter 6
Towards the thermodynamic limit:
diagrammatic Monte Carlo algorithms

The continuous-time quantum Monte Carlo algorithms presented in Chapter 5 work remarkably well
for quantum impurity models but face strong limitations when it comes to problems defined on large (or
infinite) lattices. It is therefore desirable to develop methods that can address the thermodynamic limit, that
is the limit of infinite system size with fixed density of particles.

In this Chapter, we present alternative and complementary methods to CT-QMC algorithms. Based on
an expansion in the Coulomb interaction U , they directly sample contributions to the physical quantities,
such as the Green’s function, and not the partition function. A pictorial representation in terms of Feynman
diagrams is used, hence their name of ‘diagrammatic’ algorithms [129, 130, 88, 73, 22, 135]. We also de-
scribe recent advances that show how one can use determinants to sum all topologies of diagrams relevant
for correlators in the Monte Carlo weight [135].

In the following, we consider lattice models described by a noninteracting action S0 and a local inter-
action of the form Uni↑ni↓ where i is a site index. The noninteracting Green’s function associated with S0

is labelled g.

6.1 Diagrammatic Monte Carlo
We start with a brief introduction to Feynman diagrams, before showing how we expand physical quan-

tities such as the Green’s function or the self-energy as infinite series of diagrams. We then present dia-
grammatic Monte Carlo that aims at stochastically sampling the individual contributions to these series.

6.1.1 Introduction to Feynman diagrams: the expansion of the partition function
revisited

We have seen in Section 5.1.1 that the partition function can be expressed as a series in the Coulomb
interaction U

Z = Z0

∑

n

∫
dx1 . . . dxn

(−U)n

n!

〈∏

σ

Tτnσ(x1) . . . nσ(xn)

〉

0

, (6.1)

where xi is now a composite index encapsulating both the position on the lattice and the imaginary time:
xi = (~ri, τi). The notation

∫
dxi is a compact way of writing

∫ β
0

dτi
∑
~ri.

Instead of rewriting the average value 〈. . .〉0 as a product of determinants, we now choose to represent it
using Feynman diagrams. 1 It is a powerful method that illustrates operator contractions in Wick’s theorem,
therefore expressing each term of the perturbation series as a picture composed of noninteracting lines and

1. For a complete introduction to Feynman diagrams and their construction, we refer the reader to [119] and [25].
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interaction vertices. They are composed of two main ingredients: straight lines represent noninteracting
Green’s functions σ

x2 x1 = gσ(x1, x2), (6.2)

and interaction vertices are pictured by wiggly lines between propagators with opposite spins.
Note that every fermion loop in a Feynman diagram brings an additional (−1) factor.

For example, the following diagram is a compact way to represent an order-2 contribution to the parti-
tion function:

x1 x2

↑

↓

= U2

∫
dx1dx2

∏

σ

gσ(x1, x2)gσ(x2, x1). (6.3)

Eq. (6.1) can now be rewritten as

Z

Z0
=
∑

n

∫
dx1 . . . dxn

∑

F∈Fn
F(x1, . . . , xn), (6.4)

where Fn represents all possible diagrams at order n. Contributions to the partition function indeed involve
all topologies of diagrams, whether they are connected or disconnected. These are called vacuum diagrams,
and there are (n!)2 of them at order n.

This expression can be evaluated using Monte Carlo techniques, where we sample both the interaction
vertices and the diagram topology, and then measure the value of each diagram associated with a given set
of xi. Such an algorithm would however yield very large error bars, as many Feynman diagrams do cancel
each other: this is the fermionic sign problem described in Section 5.3.1. The strength of the CT-INT algo-
rithm was to rewrite this sum over diagrams as a product of determinants to take care of the cancellations.
Note that it also allowed to sum a factorial number of diagrams in a polynomial time, O(n3).

In the remainder of this Section, we present a similar construction using Feynman diagrams for physical
observables. In this case, there is no obvious way to rewrite the sum over diagrams using determinants, and
the algorithm which directly samples them turns out to be very efficient.

6.1.2 Diagrammatic expansion of physical observables

Computing correlators

A general correlation function C of two operators A and B is defined as

C(xout, xin) = −〈TτB(xout)A(xin)〉. (6.5)

We can also expand it as a series in the Coulomb repulsion U :

C(xout, xin) = − 1

Z

∫
D[d†, d]e−SB(xout)A(xin)

= −Z0

Z

∑

n

(−U)n

n!

∫
dx1 . . . dxn

〈
Tτ

[∏

σ

nσ(x1) . . . nσ(xn)

]
B(xout)A(xin)

〉

0

.

(6.6)

As for the partition function, these average values with respect to the noninteracting system may be rep-
resented as an infinite sum of Feynman diagrams. The main difference with Z is that only connected
topologies now subsist in the computation of correlators.

To illustrate this, let us consider the example of the Green’s function

Gσ(xout, xin) = −Z0

Z

∑

n

(−U)n

n!

∫
dx1 . . . dxn

〈
Tτndσ(x1) . . . ndσ(xn)dσ(xout)d

†
σ(xin)

〉
0

× 〈Tτndσ̄(x1) . . . ndσ̄(xn)〉0 ,
(6.7)

46
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where d†σ(xi) (resp. dσ(xi)) is the operator creating (resp. annihilating) a spin-σ fermion at xi, and σ̄ =
1−σ. Using the linked-cluster theorem,G itself can be represented as an infinite sum of Feynman diagrams

Gσ(xout, xin) = xin xout (bare propagator) +
xin xoutx1

(Hartree term)

+
xin xoutx1 x2

+
xin xoutx1 x2

+

xin xoutx1

x2 + . . .

(6.8)

which can be formally written as

Gσ(xout, xin) =
∑

n

∫
dx1 . . . dxn

∑

F∈Fconn
n

F(xout, xin;x1, . . . , xn), (6.9)

where Fconn
n represents connected topologies at order n.

Beyond correlators: what about the self-energy?

Let us consider the self-energy
Σσ = g−1

σ −G−1
σ . (6.10)

It can be represented as an infinite series of Feynman diagrams

Σσ =

xin = xout

+
xin xout

+

xin = xout

x1 + . . . (6.11)

where only one-particle irreducible (1PI) diagrams appear, that is diagrams that do not become two inde-
pendent pieces when a straight line is cut. This equation can be formally written as

Σσ(xout, xin) =
∑

n

∫
dx1 . . . dxn

∑

F∈F1PI
n

F(xout, xin;x1, . . . , xn), (6.12)

where F1PI
n represents one-particle irreducible topologies at order n.

6.1.3 Diagrammatic Monte Carlo
The order-n contribution to a generic physical observable M can therefore be expressed as a multi-

dimensional integral over interaction vertices and topologies of Feynman diagrams

Mn(xout, xin) =

∫
dx1 . . . dxn

∑

F∈F̄n

F(xout, xin;x1, . . . , xn), (6.13)

where F̄n is the family of order-n diagrams that are either connected, 1PI, ... given the quantity we want to
compute.

According to Section 5.2, Eq. (6.13) can be evaluated using stochastic sampling via Monte Carlo tech-
niques: this is the diagrammatic Monte Carlo (DiagMC) algorithm [129, 130, 88, 73, 22, 135]. A configu-
ration is defined to be the perturbation order n, interaction vertices, and a Feynman diagram topology 2

c = {n;x1, . . . , xn;F}. (6.14)

The weight is then
wc = |F(xout, xin;x1, . . . , xn)| = |F(xout, xin; c)| , (6.15)

so that

Mn(xout, xin) ∼
MC∑

c

sgn F(xout, xin; c). (6.16)

2. One can also choose to add the external vertices xin and xout in the configuration to sample them as well.
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New configurations are proposed through a Metropolis-Hastings algorithm, defining a Markov chain
in the space of Feynman diagrams. Usual updates are the insertion or the removal of a wiggly line. Note
that the new diagram has to belong to F̄n, and keeping track of the allowed topologies is a complicated
algorithmic problem in itself.

DiagMC thus directly computes the quantity of interest thanks to a stochastic sampling of Feynman
diagrams. Sampling individual topologies brings a severe sign problem, which typically limits the number
of orders accessible to n ∼ 7, although this may be enough for some applications. The series can become
divergent, especially for large interactions, as poles appear in the complex plane. Resummation techniques
then have to be used in order to evaluate the series beyond its convergence radius [183, 14, 136].

As stressed earlier, the most important aspect of the CT-INT algorithm presented in Chapter 5 is the
use of determinants that allows to sum an exponential number of diagrams in a polynomial time. As
determinants describe all topologies of diagrams, they are well suited for the partition function but their use
is less straightforward when computing quantities such as the Green’s function or the self-energy.

6.2 Computing correlators using determinants: the CDet algorithm
In this Section, we describe recent advances from Ref. [135] that show how one can use determinants to

sum all topologies of diagrams in the MC weight relevant for correlators: this is the Connected Determinant
(CDet) algorithm. The next Chapter presents our advances concerning the use of determinants to compute
dynamical quantities such as the self-energy.

6.2.1 Formalism
Let us consider a generic correlation function C defined according to Eq. (6.5). At a given order n in the

perturbation series, a diagram contributing to C(xout, xin) is characterized by the set of its internal vertices
V = {x1, ..., xn} where xl is associated with the l-th interaction vertex. In the standard DiagMC tech-
nique, we have seen that individual connected diagrams are stochastically sampled in a way that preserves
their connectivity, with a probability given by the absolute value of their contribution to C(xout, xin). This
technique however yields a severe sign problem.

The idea of the CDet algorithm is to regroup all diagrams sharing the same internal vertices V in a
contribution CV (xout, xin), and then stochastically sample the sets V . The stochastic weight of this group
of diagrams in the Monte Carlo sampling of C(xout, xin) is the absolute value of their sum, which is only
a function of V . One could naturally expect that summing this factorial number of diagrams would come
with a factorial cost, but it was shown that it can actually be achieved exponentially [135].

The sum of connected diagrams entering CV (xout, xin) is expressed as the sum of all diagrams (con-
nected and disconnected ones) from which the disconnected components are recursively subtracted . This
can be formalized as follows

CV (xout, xin) = DV (xout, xin)−
∑

S V
CS(xout, xin)DV \S(∅),

C

V

xin

xout

=
All vert. in V
(incl. disc.)

xin

xout

−
∑

S V

C

S

xin

xout

× All vert. in V \S
(incl. disc.)

(6.17)

where DV (xout, xin) denotes the sum of all diagrams (including disconnected ones) with internal vertices
V , external vertices xin and xout. DV (∅) is the sum of all diagrams with vertices V and no external vertices.
The cancellation of disconnected diagrams is illustrated in the second line of Eq. (6.17). A key feature of
this recursive sum is that DV terms can be expressed as determinants (hence at a polynomial computational
cost) [134]. At a given perturbation order n, the computational cost of evaluating a given CV (xout, xin) is
O(3n).

First, determinantsDS are computed for all subsets S of V . It has been shown that this can be done with
a total effort O(2n) [60, 168]. The leading complexity however comes from the progressive computation,
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from low to high orders, of the CS . More precisely, if all CS′ are known for subsets S′ with less than p ≤ n
vertices, one can compute a given p-order CS using Eq. (6.17) with V = S, in 2p operations (see r.h.s
of Eq. (6.17)). This has to be done for all the

(
n
p

)
subsets S at order p before computing contributions at

the next order p + 1. The final result is obtained when this has been done for all p ≤ n and the leading
complexity of the algorithm to compute CV (xout, xin) is therefore

∑n
p=0

(
n
p

)
2p = 3n. This complexity can

in principle be improved to O(n22n) using fast subset convolutions [19].
Note that this idea of cancelling disconnected diagrams will be revisited in Chapter 8 for out-of-

equilibrium diagrammatic quantum Monte Carlo algorithms, where correlators are expressed as a sum of
2n determinants thanks to Keldysh diagrammatic techniques [128].

6.2.2 Monte Carlo implementation
Once Eq. (6.17) has been established, the Monte Carlo implementation is quite straightforward. A

configuration is the perturbation order n, external vertices xout and xin, 3 and a set of n internal vertices

c = {n;xout, xin;x1, . . . , xn}. (6.18)

The MC weight is then wc = |CV (xout, xin)| = |C(c)|, so that the order-n contribution to C is obtained
by sampling the sign of each exponential sum of determinants. The computation of wc is numerically
expensive and is at the origin of the exponential complexity of the algorithm. In order to compute it, we
have seen that we need the values of all Cs(xout, xin) with S  V . We therefore recursively compute all
these contributions starting from S = ∅ and store them in a 2n array.

We use a standard Metropolis [107] algorithm to generate a Markov chain distributed according to
wc. Remembering that x is a composite index for a site index and an imaginary time, x = (i, τ), a new
configuration c′ is proposed by applying one of the following updates to a given configuration c:

1. Pick one of the interaction vertices in c and change its position and imaginary time. One can increase
the probability of the move being accepted by choosing a new position either among the neighbors
of the chosen vertex or from a Gaussian distribution. The imaginary time can be chosen uniformly.

2. Remove a randomly chosen internal interaction vertex from c.
3. Add a new internal interaction vertex in c. The new lattice site can be chosen from a Gaussian

distribution around the center of gravity of the vertices in c. The imaginary time can be chosen with
uniform probability.

Note that the use of an α-shift that redefines the noninteracting propagator and the interaction vertex, as
introduced in Section 5.3.1, allows to greatly improve the convergence properties of the perturbation series
in some regimes of parameters [183].

This algorithm will sample the configurations according to the weights wc, however it is necessary to
normalize the result. To do so, it is convenient to restrict the Monte Carlo simulation to only two consecutive
orders,m andm+1. A vertex can be added (resp. removed) only if the current c is at orderm (resp. m+1).
In the lowest order m the following normalization quantity is measured

Nm =
∑

xin,xout

∑

Vm

|CVm(xout, xin)| , (6.19)

while at order m + 1, both Nm+1 and the contribution to C are measured. The knowledge of the expected
value for Nm allows us to find the normalization factor and obtain a normalized value for the contribution
to C and Nm+1 at order m + 1. The latter can then be used to normalize a further simulation at orders
m + 1 and m + 2, and so on. The contribution at m = 0 is computed analytically, allowing for a precise
determination of N0.

In the specific case of a single correlated site, useful for benchmark purposes for instance, it is possible
to restrict the simulation to a fixed order m and propose updates that only change the imaginary time of a
randomly chosen interaction vertex. The normalization is obtained by computing an integral whose value
is known. The simple choice

Im =

∫ β

0

dτindτoutdτ1 . . . dτm = βm+2

3. So that we can stochastically sample C(xout, xin) without doing multiple MC runs.
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fermionic sign problem. The crucial advantage of this
technique over DiagMC simulations is that we eliminate
topologies from configuration space. In the case where all
diagrams have the same sign, this is not a big advantage.
However, in fermionic models this is not at all the case,
there is an almost perfect cancellation between different
diagram topologies occurring with opposite signs. The
cancellations are so strong that the sum over the diagrams at
a certain order divided by the same sum taken with absolute
values goes to zero factorially like the number of diagrams;
this can be seen as a consequence of having a finite radius
of convergence. This means that if one samples topologies
one by one, like in DiagMC simulations, a factorial “sign
problem” is encountered (see Ref. [24] for a more detailed
discussion). We see, therefore, that the trick of summing
over all connected topologies allows us to greatly alleviate
this reminiscence of the sign problem, leaving us with a
sign problem from the integration over the space-time
positions of interaction vertices that increases at most
exponentially with the number of vertices. One might
wonder if paying an exponential cost to remove discon-
nected topologies is really worth it, as we could compute
the sum of all topologies in polynomial time, as it is done in
DDMC simulations. The advantage of considering only
connected diagrams is that we do not suffer from the
traditional form of sign problem, that is, the prohibitive
scaling of computational time with system size. An
analogous situation was found in the context of out-of-
equilibrium impurity models [25], where in order to
consider the long time evolution it was found advantageous
to pay an exponential cost for each Monte Carlo step to
explicitly eliminate disconnected diagrams [26]. For these
reasons, we are able to reach higher orders than DiagMC
simulations, even without resumming classes of diagrams
more complicated than tadpoles (for the Hubbard model
DiagMC simulations arrive at order ∼6 for both the bare
and bold series). Unlike DDMC simulations, the sign
problem does not limit us to work at half filling or with
attractive interactions.
We now discuss the results obtained by implementing this

method for the two-dimensional Hubbard model. Without
loss of generality we can set the hopping parameter t to one.
We consider inverse temperature β ¼ 8, repulsive on-site
interaction parameter U ¼ 2, at density n ¼ 0.875 00ð2Þ
near to half filling.All our error bars correspond to 1 standard
deviation. We resum all bare tadpole diagrams, whose effect
is to shift the chemical potential μðUÞ ¼ μ0 þUn0=2, where
μ0 is the chemical potential needed to get the densityn0 in the
absence of interactions (this corresponds to the first-order
semibold scheme introduced in Ref. [27]). This is useful
because one has a smaller density shift as a function of U.
We compare thermodynamical quantities with DiagMC
benchmarks from Ref. [9]. We find compatible results, with
error bars 1 order of magnitude smaller (see Fig. 2). We
estimate the chemical potential at fixed density n ¼ 0.875

to be μ ¼ 0.55978ð7Þ, while DiagMC simulation gives
μDiag ¼ 0.558ð3Þ. For the energy per site, we have E ¼
−1.25992ð6Þ, while EDiag ¼ −1.2600ð6Þ. As the entropy is
relevant for experiments in optical lattices, we also give the
value of the entropy per site S ¼ 0.1958ð4Þ.We have pushed
the computations up to eleven orders for the pressure (let us
note that for the pressurewe have 1 ordermore for free) as the
error bars continued to stay bounded (see Fig. 3), spending
seven thousand CPU hours. Let us only remark here that the
exponential cost to go to higher orders is compensated by an
exponential convergence as a function of the order for a
convergent series, resulting in an error bar that decays as a
power law as a function of computer time [24]. We have
estimated the radius of convergence of the series in U by
looking at coefficients; see Fig. 4. This is compatible with a
phase transition happening atU ¼ −5.1ð1Þ, when the system
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Figure 6.1 – Double occupancy as a function of truncation order computed with the CDet algorithm, for the
2D Hubbard model, β = 8, U = 2 and n = 0.875, from [135]. The DiagMC number is taken from [93].

turns out to provide a good normalization.

6.2.3 Comparison to DiagMC
The CDet approach leads to an important reduction of statistical error with respect to the DiagMC and

has allowed for great progress in the computation of static properties. For instance, we reproduce in Fig. 6.1
the double occupancy for the two-dimensional Hubbard model as a function of the perturbation order [135].
The inverse temperature is β = 8, the Coulomb interaction U = 2, and the density n = 0.875. Comparing
it with DiagMC benchmarks from Ref. [93], the error bars are found to be one order of magnitude smaller
when using the CDet algorithm.

This method, however, has to be adapted in order to efficiently compute the frequency-dependence
of dynamical quantities, such as the Green’s function or the self-energy. We investigate how this can be
achieved in the next Chapter.
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Chapter 7
New diagrammatic algorithms for
dynamical quantities in fermionic systems

In this Chapter, we are interested in the computation of frequency-dependent (‘dynamical’) quantities
using determinantal algorithms, focusing on the self-energy Σ as it encodes electronic correlations. We
introduce and compare three different algorithms. Two of them are directly based on the CDet approach
presented in the previous Chapter, one using Dyson’s equation, the other one equations of motion (EOM) for
the Green’s function. A generalization of the use of determinants to directly sample one-particle-irreducible
(1PI) diagrams is then derived, the corresponding algorithm being labelled ΣDet. This work has been
published in Ref. [110], the full text being reproduced in Appendix VII.

7.1 CDet-based approaches to self-energy computation

7.1.1 Dyson’s equation
The most straightforward way to compute the self-energy Σσ is to first compute the Green’s functionGσ

with the CDet algorithm and then use Dyson’s equation Σσ = g−1
σ −G−1

σ , where gσ is the noninteracting
Green’s function. We show in Section 7.6 that it is very difficult to obtain precise data with this method
because of the inversion of G that dramatically increases the stochastic noise.

7.1.2 Equations of motion
We present a diagrammatic approach to compute the self-energy based on the computation of a different

correlator with the CDet algorithm. Let us first write the self-energy as the sum of a constant Hartree term
and a frequency-dependent part

Σσ(xout, xin) = ΣHσ δxin,xout + Σ̃σ(xout, xin). (7.1)

We recall that x is a combined index (i, τ), where i is the lattice site and τ the imaginary time. The Hartree
term contribution is given by

ΣHσ = UGσ̄(0−) =
Gσ̄(0−)

(7.2)

It can be directly computed from the knowledge of the Green’s function Gσ̄ which is a connected correlator
that can be obtained from Eq. (6.17). The self-energy Σσ can then be recursively computed using the
following expression

Σσ = ΣHσ + F̄σ − ΣσGσΣσ, (7.3a)

Σσ =
Gσ̄(0−)

+
All vertices
(connected) −

Σσ
Gσ

Σσ

(7.3b)
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where the correlation function F̄σ is defined by

F̄σ(xout, xin) = −U2〈Tτnσ̄cσ(xout)nσ̄c
†
σ(xin)〉. (7.4)

Eq. (7.3) can be derived from the equations of motion (EOM) for the Green’s function, as detailed in Ap-
pendix B.1 [26, 65]. It has a simple diagrammatic interpretation, see the second line of Eq. (7.3), that
illustrates how 1PI diagrams are isolated. Indeed, according to Eq. (7.1), the self-energy is the sum of
contributions with a single external vertex (Hartree term ΣHσ ) and contributions with two external vertices
(Σ̃σ). The former is easy to compute, and the latter is the sum of all 1PI diagrams with two external vertices.
The term F̄σ on the r.h.s of Eq. (7.3) represents the sum of all connected diagrams with the same external
vertices as Σ̃σ . From this, one then has to subtract all non-1PI diagrams, which can always be expressed in
the form ΣσGσΣσ .

We now transform the above equation in order to be able to compute the contributions to the self-energy
at a given perturbation order just from the knowledge of the contributions to F̄σ and ΣHσ . We first multiply
Eq. (7.3) by gσ on the right and we obtain

Σσgσ = ΣHσ gσ + F̄σgσ − ΣσGσΣσgσ. (7.5)

Reorganizing the terms,
F̄σgσ + ΣHσ gσ = Σσ[gσ +GσΣσgσ] = ΣσGσ. (7.6)

Substituting this expression for ΣσGσ in Eq. (7.3), we find

Σσ = ΣHσ + F̄σ − [F̄σgσ + ΣHσ gσ]Σσ. (7.7)

Contributions to the self-energy can be recursively computed for all perturbation orders. Because F̄σ is at
least of order 2 in U and ΣHσ is at least of order 1 in U , the computation of contribution to the self-energy at
order n on the l.h.s can indeed be obtained from the knowledge of contributions to F̄ and to the self-energy
at orders strictly lower than n on the r.h.s. As a result, Σ can be computed without any inversion and there
is no noise amplification as in Dyson’s equation. We therefore expect this approach to be more efficient
than the one presented in Section 7.1.1.

The algorithm is implemented by computing the Green’s function Gσ and the correlator F̄σ using the
CDet algorithm. As it is based on the equations of motion, we will use the label ‘EOM’ to unambiguously
refer to this method. Then, Eq. (7.7) is used to recursively compute the contributions to Σσ at a given
order. As we use the CDet algorithm to obtain two correlators, and the self-energy is only computed in a
post-processing part, the complexity of this algorithm naturally scales as O(3n).

7.2 Generalizing the CDet to 1PI diagrams: the ΣDet algorithm
We now introduce an extension of the CDet algorithm to efficiently compute the sum of all one-particle

irreducible diagrams of a perturbation series. At a given perturbation order n in the interaction U , a self-
energy diagram is characterized by xin, xout, its internal interaction vertices V = {x1, . . . , xn−2}, and the
adjacency matrices that connect the vertices. Note that we choose n− 2 points in the set of internal vertices
V because xin and xout both carry an interaction vertex as well.

We wish to group all diagrams that share the same internal vertices V into a contribution ΣσV (xout, xin)
so that

Σσ(xout, xin) =
∑

V

ΣσV (xout, xin) (7.8)

=
∑

V

(
ΣH,σV δxin,xout + Σ̃σV (xout, xin)

)
.

The contribution ΣσV (xout, xin) is theoretically a sum of a factorial number of diagrams, but we express it
with the help of a recursion, very much in the spirit of Section 6.2, that only involves connected correlators
that can be computed with exponential effort using Eq. (6.17). The numerical effort to obtain ΣσV (xout, xin)
will then turn out to also be exponential.
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Based on Eq. (7.3), the frequency-dependent part of the self-energy Σ̃σV (xout, xin) can be expressed via
the following recursive formula

Σ̃σV (xout, xin) = F̄σV (xout, xin)−
∑

x′∈V
S⊆V \{x′}

S′=V \(S∪{x′})

FσS′(xout, x
′)Σ̃σS(x′, xin)−

∑

S⊆V
S′=V \S

FσS′(xout, xin)
(
UGσ̄S(0−)

)

(7.9a)

Σ̃σV

xin

xout

=
All vertices in V

(connected)

xin

xout

−
∑

x′∈V
S⊆V \{x′}

S′=V \(S∪{x′})

Σ̃σS
x′ }FσS′

Gσ
Σσ

xin

xout

−
∑

S⊆V
S′=V \S

Gσ
Gσ̄S(0−)

} FσS′Σσ

xin

xout

(7.9b)

where the correlation function Fσ is given by [27]

Fσ(xout, xin) = ΣσGσ(xout, xin) (7.10)

= −U〈Tτnσ̄cσ(xout)c
†
σ(xin)〉, (7.11)

and F̄σ by Eq. (7.4). The starting point of the recursion is the order-2 diagram

Σ̃σ∅xin xout =
xin xout

(7.12)

The second line of Eq. (7.9) illustrates the cancellation of non-1PI diagrams. The self-energy contri-
butions Σ̃σV that are calculated recursively are indicated as red circles, while blue diagrams correspond to
the correlation function Fσ = ΣσGσ . An explicit example of this formula at third order is shown in Ap-
pendix B.2. Let us note that, in this formula, the starting point of the recursion is already an order-2 diagram
while it is an order-0 diagram in Eq. (6.17), justifying a set V with n− 2 vertices.

The first term F̄σV (xout, xin) on the r.h.s of Eq. (7.9) is the contribution to the correlation function
F̄σ(xout, xin) for the set of internal vertices V . It is the sum of all connected diagrams that have inter-
action vertices at xin, xout and all x ∈ V as interaction vertices. In order to obtain the contributions to the
self-energy Σ̃σV (xout, xin), one has to subtract from this term all diagrams that are not 1PI. These ones can
be expressed in the form

ΣσGσΣσ = FσΣσ = Fσ(ΣHσ + Σ̃σ), (7.13)

and there are therefore two families of diagrams to subtract for a given set of vertices V : first all terms
FσS′(xout, xin)ΣH,σS such that StS′ = V , then all terms FσS′(xout, x

′)Σ̃σS(x′, xin) such that St{x′}tS′ = V .
In the latter family, note that S  V is a proper subset of V , so that the calculation of Σ̃σV involves only
some Σ̃σS that have been previously computed in the recursion.

We have therefore derived a recursive formula for the contributions Σ̃σV (xout, xin) that involves the com-
putation of only connected correlation functions. The recursion is completed in two steps. First, all corre-
lators F̄σ , Fσ and Gσ have to be enumerated, the main effort coming from the FσS that have to be computed
for all pairs of external vertices (as a consequence of the explicit use of an intermediate vertex point x′ in
Eq. (7.9)). The computational cost for the precomputation is thus dominated by n23n. Second, the recur-
sion has to be implemented, as in the CDet, by computing the contributions Σ̃σS starting from low to higher
orders. At a given order p, it takes an effort p2p to get a given Σ̃σS(x′, xin). This has to be done for all subsets
S at order p and all x′ before computing contributions at the next order p + 1 and requires a total effort(
n
p

)
p22p. All in all the recursion will take

∑n
p=0

(
n
p

)
p22p with a complexity n23n. The leading complexity

of the algorithm is then O(n23n).
We show in Section 7.6 that despite this additional n2 factor, this method leads to smaller error bars

compared to the approaches from Section 7.1. It also gives more accurate results than the state-of-the-art
DiagMC calculations for the same computational effort.
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7.3 Monte Carlo implementation
In this Section, we describe how to compute the different quantities that appear in the algorithms pre-

sented above using a Monte Carlo (MC) method. 1 We generically denote the function we want to compute
as Mσ . The Green’s function Gσ has to be computed for all three approaches. In addition F̄σ must be
computed for the equations of motion algorithm and Σ̃σ for the direct sampling of the self-energy (ΣDet).
We writeMσ as a sum over all contributions described by a set Vm with m internal vertices

Mσ(xout, xin) =

∞∑

m=0

∑

Vm

Mσ
Vm(xout, xin). (7.14)

Note that a configuration with m internal vertices contributes, in the perturbation series in U , to the coeffi-
cient of order n = m for the Green’s function, n = m+ 1 for Fσ and n = m+ 2 for Σ̃σ .

In order to computeMσ(xout, xin), we stochastically generate Monte Carlo configurations that sample
the r.h.s terms of the sum. A configuration c is described by the number of internal vertices m, the spin σ
and the set of all vertices

c = {m;σ;xin, xout;x1, . . . , xm}, (7.15)

and its weight in the Monte Carlo sampling is

wc =
∣∣Mσ

Vm(xout, xin)
∣∣ . (7.16)

We use a standard Metropolis [107] algorithm to generate a Markov chain distributed according to wc.
Starting from a given c, a new configuration c′ is following the same updates as the CDet ones described in
Section 6.2.2, as well as the flipping of the spin σ ← 1−σ. The new configuration c′ is accepted or rejected
with the usual Metropolis ratio

paccept
c→c′ = min

(
1,
Tc′c wc′

Tcc′ wc

)
, (7.17)

where Tcc′ is the probability to propose c′ after c.

As detailed in Section 6.2.2, results have to be normalized, so that we restrict the Monte Carlo simulation
to only two consecutive orders. Let us note that statistical errors in the normalization factor propagate from
one order to the other. One must therefore be careful in the computation of error bars using e.g. a binning or
jackknife analysis. An α-shift can also be used to improve the fermionic sign problem and the convergence
of the series, see Section 5.3.1.

7.4 Models
In the following Sections, we present actual computations of the self-energy according to the imple-

mentations described in Sections 7.1 and 7.2. For clarity, we use the following convention for names and
colors: Dyson (green) denotes the use of Dyson’s equation, EOM (orange) of the equations of motion and
ΣDet (blue) the use of the direct calculation of the self-energy from the sum of 1PI diagrams. Red symbols
denote benchmarks, as introduced below.

We consider two models in the following. The first is a single correlated electronic level, that we will
refer to as a Hubbard atom, described by the Hamiltonian

Hatom = Un↑n↓ + ε(n↑ + n↓), (7.18)

where nσ is the number of the spin-σ fermion, U the onsite repulsion and ε the energy of the electronic
level. This model has an analytical solution and allows us to both benchmark and compare the different
methods introduced above. We use β = 10, U = 1, ε = −0.2.

The second model is the prototypical two-dimensional Hubbard model given by

HHubbard = −γ
∑

〈i,j〉σ
c†iσcjσ + U

∑

i

ni↑ni↓, (7.19)

1. For a complete introduction to Monte Carlo techniques, see Section 5.2.
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Figure 7.1 – Benchmarks with the analytical solution (left) and DiagMC simulations (right).

where c†iσ creates a spin-σ electron on the site i of a square lattice, γ > 0 is the nearest-neighbor hopping
and U is the onsite interaction. This is the model that we eventually aim to solve in its thermodynamic limit
(infinite lattice). In our results, γ = 1 will be our energy unit. On the lattice, results from our approaches are
compared to results obtained by Wei Wu using the standard DiagMC algorithm [129, 130, 88, 73, 22]. This
implementation of the algorithm has been benchmarked and used in earlier calculations, see e.g. Ref. [183].
We use a 32× 32 lattice with βγ = 2, 2 U = 4γ, µ = 0 and a uniform α-shift α↑ = α↓ = 1.53γ.

7.5 Benchmarks
We present benchmarks for the three methods and check their theoretical complexity. We first consider

the simple problem of a Hubbard atom. Its self-energy is given by

Σσ(iωn) = 〈nσ̄〉U +
〈nσ̄〉(1− 〈nσ̄〉)U2

iωn − ε− (1− 〈nσ̄〉)U
, (7.20)

and the contributions to Σ̃(iωn) at different orders in U can be computed analytically. In Fig. 7.1a, we show
results for the contributions to Σ̃(iωn) at order 5 as obtained from the proposed algorithms. Red squares
are the analytical solution, and all simulations lasted 1200 CPU hours. The results clearly agree with the
analytical values within the error bars.

Next we consider the Hubbard model on a 32× 32 square lattice. In Fig. 7.1b we plot the momentum-
dependent self-energy Σ̃~k(iω0) at its first Matsubara frequency along the ~k = (0, 0)−(π, 0)−(π, π)−(0, 0)
path of the Brillouin zone. Results are shown at order 4. The DiagMC simulation lasted 400 CPU hours,
while all other simulations lasted 1440 CPU hours. Results agree with the benchmark DiagMC calculation
within error bars.

A measurement of the time to perform one MC step allows us to study the complexity of the algorithms.
This is shown on a semilog scale in Fig. 7.2, where the time for a single step is shown both for the direct
measurement of the self-energy using the ΣDet and for the measurement of G using the CDet, that is then
used in Dyson’s equation. Each curve is fitted by its expected high-n behavior: γΣn

23n for the ΣDet (dotted
red line) and γG3n for Dyson (dashed red line), where γG = 0.0464 and γΣ = 0.0012 are implementation-
dependent constants. We know that the EOM method has twice the CDet complexity so we consider these
two methods together in this study. The expected high-order behavior n23n for the self-energy measurement
and 3n for the CDet is found.

At smaller perturbation orders, the asymptotic behavior is not yet settled. At orders smaller than 5, the
self-energy measurement takes less time mainly because the algorithm starts at order 2 (The recursion starts

2. For this value of β the Hubbard model is in its thermodynamic limit on this lattice.
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Figure 7.3 – Amplification of the numerical noise in Dyson’s equation.

with the pair-bubble diagram, see Eq. (7.12)). On the contrary, the CDet algorithm for the Green’s function
starts at order 0. As a consequence, the direct measurement of the self-energy is only about a factor 3 slower
than the CDet approach at order 10 (see inset of Fig. 7.2) which is the order that is currently accessible with
reasonable error bars.

7.6 Results
We now compare the three different methods between them, showing that ΣDet performs better both

on the isolated atom and on the lattice. This method is finally shown to also improve state-of-the-art results
from recent DiagMC calculations.

We recall the regimes of parameters used: β = 10, U = 1 and ε = −0.2 for the Hubbard atom; β = 2,
U = 4, µ = 0 for the Hubbard model.

7.6.1 Comparison with Dyson’s equation
Until now, no dynamical quantities have been computed with the CDet algorithm and it is therefore

instructive to see how the use of Dyson’s equation compares to the calculation of the self-energy from the
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EOM and ΣDet methods. All simulations lasted 120 CPU hours.
We first consider the Hubbard atom. Fig. 7.3a shows the contribution to the imaginary part of the Mat-

subara frequency self-energy Σ̃σ(iωn) at perturbation order 8. The direct measurement of the self-energy
and the EOM method yield results that have very small error bars (smaller than the symbol size) and that
are in perfect agreement (both curves lie on top of one another). In contrast, starting from the Green’s
function as obtained by Eq. (6.17), the results for the self-energy display large statistical errors that increase
with the Matsubara frequency index. The reason is simple and expected: when Dyson’s equation is used
to compute the self-energy, there is an amplification of the numerical noise because of the inversion of the
Green’s function. In practice, it becomes quickly impossible to obtain accurate data. This is problematic
because it would for instance make the analytical continuation of the results to the real axis very difficult.

Fig. 7.3b shows results for the two-dimensional Hubbard model. At order 3, the contribution to the
self-energy taken at the first Matsubara frequency ω0 obtained from ΣDet on the ~k = (0, 0) − (π, 0) −
(π, π)− (0, 0) path in the Brillouin zone is in perfect agreement with the EOM method, and error bars for
both methods are very small (smaller than symbol size, both curves being on top). The computation of Σσ
from the Green’s function is noisier. Error bars actually increase with the Matsubara frequency index when
using Dyson’s equation, resulting in reasonable results only for the first few frequencies even for small
perturbation orders. Again, the reason for this large noise is the amplification due to the inversion of the
Green’s function. Also, on the lattice, a direct measurement of the self-energy has the advantage of mainly
sampling fairly local diagrams. Indeed, at a temperature T = γ/2, the self-energy very quickly vanishes for
non-local components. The same is not true for the Green’s function that has a slower decay; its stochastic
sampling is therefore less efficient.

7.6.2 Comparison between the equations of motion and the direct sampling of the
self-energy

We now compare the use of equations of motion (EOM) to the direct sampling of the self-energy ex-
pressed as a sum of 1PI diagrams (ΣDet). It is not clear at first which method is more efficient, as the
ΣDet allows for a precise cancellation of diagrams and directly samples the quantity of interest but scales
as n23n, while the EOM method cancels diagrams on average but has a better scaling as 3n. All simulations
lasted 120 CPU hours.

We first consider the Hubbard atom. In Fig. 7.4 (left) are shown the contributions to the imaginary part
of the Matsubara frequency Σ̃σ(iωn) at order 12 for both methods. The equations of motion method has
error bars about one order of magnitude greater than the ΣDet ones. In order to quantify the efficiency more
accurately, we plot in Fig. 7.4 (right) the variance at the first Matsubara frequency ω0 as a function of the
perturbation order for both methods. We see from this plot that ΣDet performs better at low perturbation
order, and that both methods tend to become equivalent at higher orders.
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The comparison of the resulting self-energies on the lattice Hubbard model (Fig. 7.5) shows an even
more pronounced difference between the two approaches. At order 6, the contribution to the self-energy
taken at the first Matsubara frequency (left) obtained from ΣDet on the chosen path ~k = (0, 0) − (π, 0) −
(π, π)− (0, 0) in the Brillouin zone is very well converged and the error bars for this method are very small
(smaller than symbol size). The computation of Σσ from the equations of motion is less accurate, even if it
agrees with the ΣDet within its error bars. We then look at the Matsubara frequency evolution for a given
reciprocal lattice vector ~k = (π, π/2) (right panel of Fig. 7.5). The error bar for the EOM method is seen
to be large for all Matsubara frequencies.

To be quantitative, we plot in Fig. 7.6 the variance at the first Matsubara frequency ω0 for this same
value of ~k = (π, π/2) as function a of the perturbation order. We see from this plot that ΣDet always
performs better than the EOM method, by about one order of magnitude.

We believe the explanation for this behavior comes from two ingredients. First, the cancellation of non-
one-particle-irreducible diagrams is done on average in the EOM approach, while it is exact in the ΣDet
algorithm. The latter is therefore more efficient to measure the self-energy, and it is particularly visible on
the lattice that has more degrees of freedom. Second, the self-energy Σσ is more local on the lattice than
the correlator F̄ . Hence the direct MC sampling of the self-energy still performs better even though its
numerical complexity is increased by a factor n2. Let us note here that the EOM approach could be useful
in the context of the real-time algorithm of Ref. [128]. There the complexity of the EOM approach would
be 2n while a direct self-energy approach would scale as n23n.
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7.6.3 Comparison between ΣDet and DiagMC algorithms
As the direct calculation of the self-energy ΣDet proves to be a very accurate method to get the self-

energy, it is natural to compare it to the state-of-the-art DiagMC results on the two-dimensional Hubbard
model. To this end, we compute in Fig. 7.7 the contribution to the first Matsubara frequency ω0 of the
self-energy at perturbation order 7 for the ΣDet (blue) method and compare it to the DiagMC (red) results
obtained by Wei Wu. Simulations lasted 1440 CPU hours for the ΣDet and 4000 CPU hours for the Di-
agMC. Error bars at this perturbation order, the highest currently reachable with DiagMC techniques, are
much smaller with the ΣDet algorithm than with the standard DiagMC approach for simulations of the
same length.

This algorithm cancelling directly non-1PI diagrams in the MC sampling is therefore an interesting al-
ternative to the current diagrammatic Monte Carlo approach.

As a final illustration of the method, we compute contributions to the local self-energy up to order 9 on
the 2D Hubbard model with the parameters discussed above: β = 2, U = 4, µ = 0. The resummed self-
energy is shown in Fig. 7.8. We observe that, with a reasonable choice of the α-shift (α↑ = α↓ = 1.53), one
can completely converge the results with an uncertainty below 1%. In this high-temperature, low electronic
correlations examples, other approaches, such as determinant quantum Monte Carlo (DQMC) [20], also
converge and can be used as benchmarks.

In the regime of parameters used in Ref. [183] to study the onset of the pseudogap in the Hubbard model,
the ΣDet algorithm would perform well to reach lower temperatures in the computation of contributions to
the perturbation series. The latter however becomes strongly divergent as poles appear in the complex plane.
An equally difficult algorithmic challenge thus consists in using resummation techniques to evaluate the
series beyond its convergence radius and recent developments addressing this problem should be considered
[168, 14, 136].
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Chapter 8
Introduction to Keldysh formalism and
real-time quantum Monte Carlo algorithms

Up to this point, we have only considered strongly correlated systems at equilibrium, therefore devel-
oping formalisms and methods working in imaginary time and/or Matsubara frequencies. We have seen
that such advances allow us to understand detailed properties of materials and consider unbiased numerical
solutions, for instance of the 2D Hubbard model.

By contrast, the nonequilibrium properties of strongly correlated quantum systems are much less well
understood, despite many experimental realizations. 1 The basic formalism has been developed in the early
1960s by Schwinger, Kadanoff, Baym and Keldysh but, since then, mostly approximate approaches have
been proposed. The formulation of numerically exact methods is therefore of paramount importance.

In this Chapter, we start by introducing the Keldysh formalism to compute observables in real time,
before presenting state-of-the-art Monte Carlo algorithms to sample them.

8.1 The Keldysh contour

In this section, we briefly motivate and describe the Keldysh formalism for real-time Green’s functions.
For a complete introduction to nonequilibrium physics, see for example Ref. [153] or [77].

8.1.1 Motivation

Let us consider a strongly correlated system prepared in a noninteracting state at t < 0, described by
the Hamiltonian H0. We denote its density matrix ρ0. If the initial state is at equilibrium, then ρ0 =
e−βH0/Tr

(
e−βH0

)
. Otherwise, ρ0 does not have a simple expression as a function of H0, and simply

describes how states are populated.
At t = 0, interactions in the system are turned on through a term V (t). The full Hamiltonian of the

system therefore writes
H = H0 + θ(t)V (t). (8.1)

Let us consider an observable A, with Heisenberg representation A(t) = eiHtAe−iHt. 2 Its average value
at a given time t > 0 writes

〈A(t)〉 = Tr (ρ0A(t)) . (8.2)

We introduce the interaction picture representation of A

AI(t) = eiH0tAe−iH0t, (8.3)

1. See for example the quantum dots presented in Chapter 1 or the electric-field driven Ca2RuO4 from Chapter 13.
2. Note that the above time-dependent V (t) is not in the Heisenberg representation.
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as well as the evolution operators

U(t) = Te−i
∫ t
0
VI , (8.4a)

U†(t) = Ť ei
∫ t
0
VI , (8.4b)

where T and Ť are respectively the time-ordering and anti-time-ordering operators in real time. This leads
to the following expression for the average value of A

〈A(t)〉 = Tr
(
ρ0Ť e

i
∫ t
0
VIAI(t)Te

−i
∫ t
0
VI
)
. (8.5)

As in the imaginary-time case, we would like 〈A(t)〉 to be expressed as a simple time-ordered product.
This can be achieved by working in the Keldysh formalism [147, 82, 132]. In this framework, operators act
on the so-called Keldysh contour C consisting of a forward branch, from the initial time 0 to a given time
tmax, and a backward branch, from tmax to 0. A Keldysh point k on C is defined as a pair k = (t, α) with a
time t ∈ [0, tmax] and a Keldysh index α ∈ {±} indicating which branch is to be considered. The + (resp.
−) index denotes the forward (resp. backward) branch, as depicted below.

0

+

- tmax
Note that both branches are along the real axis and are displaced only for graphical purposes. In the follow-
ing, Greek letters refer to ± indices unless otherwise stated. We define a contour operator TC that follows
the arrows on the above picture: TC coincides with the time-ordering operator T on the + branch, with Ť
on the − branch, and considers all Keldysh points on the backward branch to be later than points on the
forward branch.

The average value of A now takes the form of a time-ordered product on the Keldysh contour C

〈A(t)〉 = Tr
(
ρ0TCe

−i
∫
C VIAI(t)

)
=
〈
TCe
−i

∫
C VIAI(t)

〉
0
, (8.6)

where −i
∫
C VI is −iα

∫ tmax

0
VI on the α contour.

Three important properties of the Keldysh contour easily follow from this definition. First, the evolution
of an operator on C does not depend on the branch it is evaluated on

A(t, α) = A(t). (8.7)

Second, the average value of the product of two operators at two different points of the Keldysh contour is

〈TCA(t, α)B(t′, α′)〉 =
〈
TCe
−i

∫
C VIAI(t, α)BI(t

′, α′)
〉

0
. (8.8)

Finally, the partition function simply evaluates to 1:

Z =
〈
TCe
−i

∫
C VI
〉

0
= 1. (8.9)

8.1.2 Green’s functions on the Keldysh contour
For the sake of simplicity, we consider in the following interacting electrons on a single energy level.

The operator cσ (resp. c†σ) destroys (resp. creates) an electron with spin σ =↑, ↓. We define the time-
dependent Green’s function as 3

Ĝσ(t, t′) = −i〈TCcσ(t)c†σ(t′)〉. (8.10)

It takes the form of a 2× 2 matrix in the {±} basis: Ĝσ =

(
G++
σ G<σ
G>σ G−−σ

)
, where

G+−
σ (t, t′) = G<σ (t, t′) = i〈c†σ(t′)cσ(t)〉, (8.11a)

G−+
σ (t, t′) = G>σ (t, t′) = −i〈cσ(t)c†σ(t′)〉, (8.11b)

G++
σ (t, t′) = −i〈Tcσ(t)c†σ(t′)〉, (8.11c)

G−−σ (t, t′) = −i〈Ť cσ(t)c†σ(t′)〉. (8.11d)

3. The notation ˆ denotes a matrix form.
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Out of those four Green’s functions, only two are independent as we have

G++
σ (t, t′) = θ(t− t′)G>σ (t, t′) + θ(t′ − t)G<σ (t, t′), (8.12a)

G−−σ (t, t′) = θ(t′ − t)G>σ (t, t′) + θ(t− t′)G<σ (t, t′). (8.12b)

At equilibrium, the greater and lesser components only depend on the time difference t−t′ and their Fourier
transforms are related through the fluctuation-dissipation theorem

G<(ω) = −e−βωG>(ω). (8.13)

8.2 Diagrammatics of an expansion in the Coulomb interaction U
The interaction term, turned on at t = 0, is considered to be V (t) = Un↑n↓, where nσ = c†σcσ is

the density operator, and U is the Coulomb interaction. We want to construct perturbation series in U for
physical observables of interest. As in the equilibrium case, 4 let us start from the partition function. From
now on, we omit the interaction representation subscript I for clarity. Because the interaction term is local
in time, its expansion in powers of U writes Z =

∑
n≥0 Zn,

Zn = (−iU)n
∫ tmax

0

dt1 . . . dtn
∑

α1...αn

α1 . . . αn
∏

σ

〈
TC

n∏

i=1

c†σ(ti, αi)cσ(ti, αi)

〉

0

, (8.14)

where integrals over times are now considered to be ordered (t1 < · · · < tn), hence cancelling the 1/n!
factor coming from the expansion of the exponential.

Every term in this expression can be pictorially represented using Feynman diagrams obeying rules we
now briefly summarize. 5 A straight line represents a noninteracting Green’s function, denoted by a lower
case letter

σ
t′, β t, α = igαβσ (t− t′). (8.15)

Note that the extra i factor compared to the imaginary time comes from the definition of real-time Green’s
functions, Eq. (8.11), so that the line is a 〈cc†〉 correlator.

Because the interaction has the local form Un↑n↓, an interaction vertex is characterized by a single
Keldysh point {t, α} and the indices of the four legs all have to be equal to the Keldysh index α

α, ↑

α, ↑

α, ↓

α, ↓

{t, α}= −iαU. (8.16)

Hence, for every interaction time t, there are two possible vertices.
Finally, note that each fermion loop in a Feynman diagram brings an additional (−1) factor.

According to Eq. (8.14), Z is now expressed as the sum of all topologies of diagrams, both connected
and disconnected. The property of Eq. (8.9) implies that all contributions of order n > 0 vanish:

∀n > 0,

∫ tmax

0

dt1 . . . dtn
∑

α1...αn

α1 . . . αn
∏

σ

〈
TC

n∏

i=1

c†σ(ti, αi)cσ(ti, αi)

〉

0

= 0. (8.17)

Vacuum diagrams thus cancel when summing over all topologies and integrating over times at a given order.

In the following, as we develop new algorithms for the real-time many-body problem, we will be inter-
ested in the computation of the simplest of correlators: the density of ↑ spins at the end point of the Keldysh
contour C

d = c†↑(tmax)c↑(tmax). (8.18)

4. See Chapter 5.
5. For a full derivation of Feynman diagrams representation out-of-equilibrium, see for instance Ref. [153].
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According to Eq. (8.11), d is proportional to the lesser component of the Green’s function

d = −iG<↑ (tmax, tmax) = −iG+−(tmax, tmax). (8.19)

The expansion in powers of U of the density takes the form d =
∑
n≥0 dn, where

dn = (−iU)n
∫ tmax

0

dt1 . . . dtn
∑

α1...αn

α1 . . . αn

〈
TC

n∏

i=1

c†↓(ti, αi)c↓(ti, αi)

〉

0

×
〈
TC

n∏

i=1

[
c†↑(ti, αi)c↑(ti, αi)

]
c†↑(tmax,+)c↑(tmax,−)

〉

0

.

(8.20)

We can therefore represent d as the sum of all connected diagrams ending with a measurement vertex
bearing time tmax, such that the ingoing and outgoing Keldysh indices are respectively + and −:

+

tmax

−
(8.21)

This representation will automatically form a fermion loop linked to the measurement, hence bringing a
(−1) when the density is computed. This is consistent with Eq. (8.19): at order 0, the density is −ig<↑ (0),
but the straight line represent and iĝ. To give a concrete example, the following diagram evaluates to

↑

↓

tmax

{t, α} = (−1)2

∫ tmax

0

dt
∑

α

(−iαU) ig+α
↑ (tmax − t) igα−↑ (t− tmax) igαα↓ (0). (8.22)

8.3 Continuous-time quantum Monte Carlo algorithms
The task at hand is to numerically sample the order-n contribution to the density, see Eq. (8.20). As

described in Chapter 5, continuous-time quantum Monte Carlo methods provide very efficient and flex-
ible tools to solve impurity problems at equilibrium. Early attempts of real-time quantum Monte Carlo
algorithms therefore were direct extensions of those on the Keldysh contour. They sampled the partition
function Z, both using strong-coupling and weak-coupling expansions [112, 175, 174, 144].

Let us briefly summarize the original algorithm based on the expansion in the Coulomb interaction
U [10, 175]. Using Wick’s theorem, one can rewrite Eq. (8.14) using determinants constructed from the
noninteracting Green’s function ĝ

Zn =

∫ tmax

0

dt1 . . . dtn
∑

α1...αn

Zn({ti, αi}1≤i≤n), (8.23)

where
Zn({ti, αi}1≤i≤n) = α1 . . . αn(iU)n

∏

σ

det [gαiαjσ (ti − tj)]1≤i,j≤n . (8.24)

The evaluation of such a multi-dimensional integral is well handled by standard Monte Carlo techniques. 6

We define a configuration by the perturbation order n and n points on the Keldysh contour

c = {n; t1, . . . , tn;α1, . . . αn}. (8.25)

The weight of a configuration is chosen to be wc = |Z(c)| = |Zn({ti, αi}1≤i≤n)|, so that the order-n
contribution to the partition function is evaluated as

Zn ∼
MC∑

c

sgnZ(c). (8.26)

6. See Section 5.2 for a complete introduction to Monte Carlo methods.
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New configurations are then constructed using an importance sampling based on the Metropolis-Hastings
algorithm [107, 67].

Concerning the density measurement, Eq. (8.20) can also be rewritten using determinants

dn =

∫ tmax

0

dt1 . . . dtn
∑

α1...αn

dn({ti, αi}1≤i≤n), (8.27)

where
dn({ti, αi}1≤i≤n) = −α1 . . . αni

n+1Un
∏

σ

detDσ({ti, αi}1≤i≤n). (8.28)

These determinants now have to take into account the density measurement at tmax:

D↑({ti, αi}1≤i≤n) =




[
g
αiαj
↑ (ti − tj)

]
1≤i,j≤n

gα1−
↑ (t1 − tmax)

...
gαn−↑ (tn − tmax)

g+α1

↑ (tmax − t1) . . . g+αn
↑ (tmax − tn) g+−

↑ (0)


 , (8.29)

and
D↓({ti, αi}1≤i≤n) =

[
g
αiαj
↓ (ti − tj)

]
1≤i,j≤n

. (8.30)

The order-n contribution to the density is then simply expressed as

dn ∼
MC∑

c

d(c)

|Z(c)| . (8.31)

The main issue these historical algorithms are facing is the “dynamical” sign problem arising from
the expansion of the evolution operator e−iHt: the convergence of the perturbation theory is oscillatory
rather than exponential (as it is in the equilibrium case when expanding e−τH). This results in a sign
problem which severely limits the maximum perturbation order on the real-time branches, and prevents the
algorithms from reaching the long-time steady-state limit in several regimes of parameters [175, 10]. It is
worth noting that weak-coupling CT-QMC has however enabled some pioneering nonequilibrium studies
of the Hubbard model [44, 161].

Current efforts to build real-time quantum Monte Carlo methods mainly explore two routes: the inch-
worm algorithm [37, 35, 36, 32, 33, 9, 21] and the so-called diagrammatic QMC [128, 15, 14] that we
present in the next Section.

8.4 Diagrammatic quantum Monte Carlo algorithm
First introduced in Ref. [128], the real-time diagrammatic QMC algorithm directly samples contribu-

tions to the density (and not the partition function) using an explicit summation over Keldysh indices αi,
which makes the computation of the weight scale as 2n for a given perturbation order n. However, this
exponential sum has been shown to cancel vacuum diagrams, a property also used in recent diagrammatic
equilibrium QMC methods, 7 and to allow the direct computation of observables in the infinite-time steady-
state limit. In this Section, we review the basis of this algorithm and we propose in the next Chapter new
developments based on it.

Note that, as in equilibrium (see Chapter 6), the series for the density may not be convergent for the
parameters considered. We will not tackle this question in this Thesis and refer the reader to Refs. [14, 15]
concerning resummation techniques in real time.

8.4.1 Cancellation of vacuum diagrams and steady-state limit
Cancellation of vacuum diagrams when summing over Keldysh indices

We have seen earlier that, when summing over Keldysh indices and integrating over times, contributions
to the partition function vanish at each perturbation order n. Reexpressed in terms of determinants, this

7. As we have seen in Chapters 6 and 7.
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means

∀n > 0,

∫ tmax

0

dt1 . . . dtn
∑

α1...αn

α1 . . . αn
∏

σ

det [gαiαjσ (ti − tj)]1≤i,j≤n = 0. (8.32)

Let us now consider a given set of n ordered interacting times t1 < · · · < tn. The matrix
[
g
αiαj
σ (ti − tj)

]
1≤i,j≤n

actually does not change when the Keldysh index associated with tn, αn, is flipped for + to −. Indeed, as
tn is the largest time, we have

gαi−σ (ti − tn) = δαi+g
<
σ (ti − tn) + δαi−g

>
σ (ti − tn) = gαi+σ (ti − tn), (8.33a)

g−αiσ (tn − ti) = δαi+g
>
σ (tn − ti) + δαi−g

<
σ (tn − ti) = g+αi

σ (tn − ti), (8.33b)

g−−σ (0) = g++
σ (0). (8.33c)

This implies

∑

α1...αn−1

α1 . . . αn−1

∏

σ

det
[
gαiαjσ (ti − tj)|αn=+

]
1≤i,j≤n

=
∑

α1...αn−1

α1 . . . αn−1

∏

σ

det
[
gαiαjσ (ti − tj)|αn=−

]
1≤i,j≤n

.
(8.34)

For every configuration of times {t1, . . . , tn}, vacuum diagrams therefore cancel when performing the
explicit 2n sum over Keldysh indices:

∀n > 0,∀{t1, . . . , tn} ∈ [0, tmax]n,
∑

α1...αn

α1 . . . αn
∏

σ

det [gαiαjσ (ti − tj)]1≤i,j≤n = 0. (8.35)

Note that, in principle, only the summation over the last Keldysh index αn is needed to obtain the cancel-
lation of the partition function, as was used for example in Ref. [174]. But to obtain the steady-state limit
and tame the sign problem in the computation of observables such as the density, the sum over all Keldysh
indices is needed (see Eq. (8.38) and the argument below).

As we have seen in Chapters 6 and 7, recent developments in imaginary-time diagrammatic QMC also
achieved, through an iterative procedure, the cancellation of disconnected and non one-particle irreducible
diagrams at every Monte Carlo step at an exponential cost in the perturbation order [135, 110, 168].

Direct access to the steady-state limit in the density computation

This cancellation of vacuum diagrams when summing over Keldysh indices directly implies the clus-
terization of interaction times near tmax in the density computation, therefore allowing us to address any
measurement time.

Let n be a given perturbation order, and t1 < t2 < · · · < tn n interaction times. Let us assume that the
first j times are located far away from the measurement time tmax, and that the last n− j times are located
in the vicinity of tmax. We can formally consider

∀1 ≤ i ≤ j, |ti − tmax| → ∞. (8.36)

Because the Green’s function is a local quantity, this means that for all t ∈ {t1, . . . , tj}, t′ ∈ {tj+1, . . . , tn; tmax}

||ĝσ(t− t′)|| → 0, ||ĝσ(t′ − t)|| → 0. (8.37)

Remembering that the density is expressed in terms of determinants, Eq. (8.28), we have

∑

α1...αn

α1 . . . αn
∏

σ

detDσ({ti, αi}1≤i≤n)

'


 ∑

α1...αj

α1 . . . αj
∏

σ

detAσ




 ∑

αj+1...αn

αj+1 . . . αn
∏

σ

detBσ


 ,

(8.38)
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(a) Contributions to d2(t1, t2;α1, α2). (b) Sum over α1 and α2 of d2(t1, t2;α1, α2).

Figure 8.1 – Pictorial representation of the clusterization of times around tmax = 10 in the density calcula-
tion. Adapted from Ref. [128].

with

Aσ =
[
(ĝσ)αiα′i(ti − ti′)

]
1≤i,i′≤j , (8.39a)

B↓ =
[
(ĝ↓)αiα′i(ti − ti′)

]
j+1≤i,i′≤n , (8.39b)

B↑ =




[
g
αiα
′
i

↑ (ti − ti′)
]
j+1≤i,i′≤n

g
αj+1−
↑ (tj+1 − tmax)

...
gαn−↑ (tn − tmax)

g
+αj+1

↑ (tmax − tj+1) . . . g+αn
↑ (tmax − tn) g+−

↑ (0)



. (8.39c)

However,
∑
α1...αj

α1 . . . αj
∏
σ Aσ is a contribution toZ at order j, and it vanishes according to Eq. (8.35).

Therefore ∑

α1...αn

α1 . . . αn
∏

σ

detDσ({ti, αi}1≤i≤n) ' 0, (8.40)

and this proves the clusterization of times around tmax in the computation of the density.
As a direct consequence, Monte Carlo algorithms based on an importance sampling will only consider

interaction times near tmax: They can address any measurement time, including the steady-state limit, when
earlier methods were limited to short-term measurements [112, 175, 174, 144].

To better understand understand this phenomenon, a pictorial representation of this cancellation is re-
produced from Ref. [128] in Fig. 8.1. Let us consider perturbation order n = 2, for which the contribution
to the density writes

d2(t1, t2;α1, α2) = iU2α1α2

∏

σ

detDσ, (8.41)

In Fig. 8.1a, this quantity is plotted as a function of t1 ∈ [0, 10] and t2 < t1 for the different Keldysh indices
α1 and α2. Contributions are uniformly distributed in time, and they can either be positive or negative. In
Fig. 8.1b the sum over Keldysh indices of these four terms is plotted: Huge cancellations indeed appear,
and we witness the clusterization of times around tmax.

8.4.2 Details of the Monte Carlo implementation
Direct sampling of the density

A configuration c is determined by a given perturbation order n and a set of n interaction times (and not
Keldysh points as in Section 8.3): c = {n; t1, . . . , tn}. The contribution to dn of a given configuration is

dn(t1, . . . tn) = −in+1Un
∑

α1...αn

α1 . . . αn
∏

σ

detDσ({ti, αi}1≤i≤n). (8.42)
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In the Monte Carlo algorithm, configurations are sampled stochastically according to their weight, which
we choose to be wc = |d(c)| = |dn(t1, . . . , tn)|. We then have

dn =

∫ tmax

0

dt1 . . . dtn dn(t1, . . . , tn) ∝
MC∑

c

sgn d(c). (8.43)

The heart of the algorithm consists in computing the sum of determinants over Keldysh indices

sc = −in+1
∑

α1...αn

α1 . . . αn
∏

σ

detDσ({ti, αi}1≤i≤n). (8.44)

It was pointed out in Ref. [128] that fast updates of determinants can be applied in this context using a
Gray code, so that the overall complexity scales as 2nn2. However, some of the matrices in this sum are
close to singular, propagating numerical errors. We found that, for all practical purposes, computing each
determinant of the sum from scratch actually leads to smaller error bars in the computation of the density,
even though it theoretically scales as 2nn3.

As detailed in Section 5.2, we use a standard Metropolis algorithm [107] to generate Markov chains
distributed according to the weights wc. Starting from an order-n configuration c, a new configuration c′ is
proposed according to one of the following two Monte Carlo updates:

1. Add a new interaction time t, that we choose according to a Cauchy law ρ (see below). The Metropo-
lis ratio is

Tc′cwc′

Tcc′wc
=

1/(n+ 1)

ρ(t)

Un+1|sc′ |
Un|sc|

=
U

(n+ 1)ρ(t)

∣∣∣∣
sc′

sc

∣∣∣∣ . (8.45)

2. Remove a randomly chosen interaction time t. The Metropolis ratio is

Tc′cwc′

Tcc′wc
=
nρ(t)

U

∣∣∣∣
sc′

sc

∣∣∣∣ . (8.46)

Proposition of times

We have shown previously that times clusterize around tmax. It is therefore more efficient to propose
times located around it instead of uniformly distributed between 0 and tmax. We consider a Cauchy law
determined by two parameters t0 and a

ρ(t) =
1

C

1

1 +
(
t−t0
a

)2 . (8.47)

C is a normalization factor such that the integral of ρ between 0 and tmax is 1. C = a [C2 − C1], where
C1 = arctan

(
− t0a

)
and C2 = arctan

(
tmax−t0
a

)
.

To obtain a new time that follows this probability law, one can perform these three steps:

1. Choose a random number u uniformly distributed between 0 and 1.

2. Construct

x =
1

2
+

1

π
[(1− u)C1 + uC2] , (8.48)

uniformly distributed between 1
2 + 1

πC1 and 1
2 + 1

πC2.

3. Compute

t = t0 + a tan

(
π

(
x− 1

2

))
, (8.49)

distributed between 0 and tmax according to ρ.

The parameters t0 and a are then obtained by fitting the 1D projection of times visited by the Monte
Carlo, accumulated during the first part of the computation.
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[31]. We also stress that the second-order approximation is
now very different from the correct result. The comparison
to the NRG data is still excellent.
Another advantage of the techniques described in this

article and its companion article [64] is that a single QMC
run provides the full dependence in both ω and U, which is
very time consuming in the NRG. Hence we show in
Fig. 12 the spectral function as a function of ω and U. One
can clearly observe the formation of the Kondo peak (which
gets thinner as one increases U and shifts toward ω ¼ 0 in
the asymmetric case) as well as the Hubbard bands at
ω ¼ "U=2. Note that the results are perfectly well behaved
(qualitatively correct) up to very large U (even above U ¼
12Γ shown in the plot) but become quantitatively inaccu-
rate at too large values ofU. Improving them would require
the use of higher perturbation orders.
The bare power series for the Green's functions com-

puted with QMC in this section can be found in
Supplemental Material [86].

V. OUT-OF-EQUILIBRIUM RESULTS

We finally turn to the out-of-equilibrium regime and
present some accurate computation of current-voltage
characteristics, as well as novel predictions for dynamical
observables in the presence of a finite bias voltage.
The bare power series for the nonequilibrium Green's

functions computed with QMC for typical sets of param-
eters can be found in Supplemental Material [86].

A. Splitting of the spectral function

Figure 13 shows the spectral function of the symmetric
impurity in the presence of various bias voltages from Vb ¼
0 to 4Γ. The results are obtained using the parabolic map on
the series of ΣωðU2Þ − iΓ (with an optimized frequency-
dependent parameter p=Γ2 ∈ ½−25;−200&). Upon increas-
ing the bias voltage, we find as expected from the NCA [22]
and perturbative [20] calculations that the Kondo resonance
simultaneously broadens and gets split into two peaks.
Previous results on the spectral function [35] are based on
the bold diagrammatic approach and are calculated at a
relatively high temperature (T ¼ Γ=3) while using a third
terminal for computing the spectral function.
Most of the results of this paper are obtained at a very

low temperature. We emphasize, however, that increasing
the temperature makes the calculations easier: Indeed, at a
finite temperature, the noninteracting Green’s functions
decrease exponentially as e−t=β instead of the algebraic
decay at a zero temperature. It follows that the support of
the integrals to be calculated is smaller and, hence, the
convergence of the calculation faster. We show a calcu-
lation at a finite temperature in Fig. 14, where we compute
the spectral density of the symmetric impurity at temper-
ature T ¼ Γ=50 under a bias voltage Vb ¼ 0.6Γ and
Vb ¼ 1.5Γ. A single Monte Carlo run allows us to observe
the splitting of the Kondo resonance asU is increased (top).
The result is quantitatively accurate up to U ≈ 8Γ (bottom)
but remains qualitatively meaningful at a higher interac-
tion (top).
The fate of the Kondo resonance out of equilibrium, in

the presence of a bias voltage, can be understood

FIG. 12. Color plot of the spectral density Aðω; UÞ in the
symmetric case (ϵd=Γ ¼ 0, upper) and asymmetric case
(ϵd=Γ ¼ 1, lower) as a function of ω and U. The data from
each panel are obtained in a single QMC run.

FIG. 13. Out-of-equilibrium spectral functions with interaction
strength U=Γ ¼ 5, in the symmetric (ϵd=Γ ¼ 0) model with a
symmetric voltage bias Vb. The resulting self-energy series is
resummed in a similar fashion as for the previous results. The
noninteracting spectral function is shown as a dotted line.

RECONSTRUCTING NONEQUILIBRIUM REGIMES OF … PHYS. REV. X 9, 041008 (2019)

041008-13

Figure 8.2 – Out-of-equilibrium spectral functions for a half-filled (εd/Γ = 0) impurity coupled to two
leads with a voltage bias Vb. The interaction strength is U/Γ = 5. The noninteracting spectral function is
shown as a dotted line. [14]

Redefinition of noninteracting propagators

As shown in Section 5.3.1, there is some freedom in the choice of the noninteracting propagator used to
construct the perturbation expansion through the α-shift. 8 The redefinition of the interaction term is taken
into account by subtracting α on the diagonal of the determinants, the shift in the chemical potential being
absorbed in a redefinition of the noninteracting propagators. In particular, it was shown that α can strongly
modify the radius of convergence of the perturbation series [128, 183].

Normalization procedure

As Monte Carlo results need to be normalized, we restrict our calculation to two consecutive orders, n
and n+ 1, and a time or vertex can be added (resp. removed) only if the current configuration c is at order
n (resp n+ 1). We measure both the density (dn and dn+1) and a normalization factor (ηn and ηn+1). The
latter is chosen to be the sum of the weights

ηn ∝
MC∑

c

wc, (8.50)

where the proportionality constant is the same as in the calculation of dn. If d̃n and η̃n are the unrenormal-
ized sums of the contributions accumulated in the Monte Carlo procedure, then the normalized values for
dn and ηn are obtained as

dn+1 =
ηn
η̃n
d̃n+1; ηn+1 =

ηn
η̃n
η̃n+1, (8.51)

and ηn is then used to normalize the following simulation between orders n+1 and n+2. The lowest order
is computed analytically to close the equations.

8.4.3 Example of numerical results
The problem at hand being much more complicated to treat, real-time diagrammatic methods are still in

their infancy compared to their equilibrium counterparts. The algorithm presented above has therefore only
been applied to quantum impurity models. Static quantities were first computed, and, more recently, the
Green’s function has been addressed [15, 14, 104]. We present in this Section out-of-equilibrium spectral
functions for a quantum dot between two noninteracting leads as computed in Ref. [14].

8. Note that in this context α does not denote a Keldysh index but a scalar, in order to be consistent with the existing literature.
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A correlated quantum impurity with energy level εd is placed on site i = 0 of a 1D chain, between two
non-interacting leads (i > 0 and i < 0). The Hamiltonian of the system is

H = εd(n↑ + n↓) + Uθ(t)

(
n↑ −

1

2

)(
n↓ −

1

2

)
+

+∞∑

i=−∞
γi

(
c†iσci+1σ + h.c.

)
, (8.52)

where c†iσ (resp. ciσ) creates (resp. annihilates) an electron with spin σ on site i of the chain, and nσ =

c†0σc0σ is the density operator on the impurity. γi is a hopping constant between adjacent sites of the chain.
We set γi = 1 except for γ0 = γ−1 = γ which connect the impurity to the leads.

The tunneling rate Γ = 2πγ2ρF from the impurity to the electrons is introduced, where ρF is the den-
sity of states of the electron reservoirs at the Fermi level. In the following, Γ is our energy unit.

Let us consider the half-filled impurity (ε/Γ = 0) subject to a bias-voltage Vb, the interaction being set
to U/Γ = 5. We reproduce in Fig. 8.2 the out-of-equilibrium spectral functions obtained using the real-
time diagrammatic Monte Carlo algorithm for different values of Vb. The black dotted line represents the
noninteracting spectral function. The Kondo resonance at Vb = 0 is seen to be split into two broad peaks
when the voltage bias is increased, as was expected from NCA and perturbative calculations [181, 51].

Note that, up to error bars that are smaller than symbol size, this plot is an exact solution of the model
described by Eq. (8.52) and a bias-voltage Vb in the steady-state regime.
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Chapter 9
Novel quantum Monte Carlo algorithms in
the Larkin-Ovchinnikov basis

We have seen in the previous Chapter that summing over Keldysh indices in the real-time diagram-
matic quantum Monte Carlo allows to reach the long-time limit in the computation of contributions to the
perturbation theory. However, the exponential scaling of the Monte Carlo weight limits our capability to
compute high orders with great precision (we typically are limited to 10 of them). Even though Bayesian
techniques can overcome noise amplification occurring in the resummation of the series [14], this prevents
the algorithm from reaching very large U .

In this Chapter, we show that we can obtain the cancellation of diagrams and the long-time clusterization
property without summing an exponential number of terms. Using the Larkin-Ovchinnikov (LO) basis in
Keldysh space, we rewrite the integrand as a sum of 4n determinants, but we show that diagrammatic rules
in this basis are such that every diagram has the clusterization property. In other words, the elimination of
vacuum diagrams is directly achieved in the diagrammatics without the need of an exponential sum. We
then implement and compare different Monte Carlo algorithms based on this mathematical property. This
work has been published in Ref. [109], the full text being reproduced in Appendix VII.

9.1 Green’s functions in the Larkin-Ovchinnikov formalism
Starting from the expression of the Green’s function Ĝσ on the Keldysh contour we define its counterpart

in the LO basis through the following transformation [82, 92]

ĜLO
σ (t, t′) = L†τ3Ĝσ(t, t′)L, (9.1)

where L = 1√
2

(
1 1
−1 1

)
and τ3 =

(
1 0
0 −1

)
. The Green’s function now takes the 2× 2 form

ĜLO
σ =

(
Rσ Kσ

0 Aσ

)
, (9.2)

where R, K, and A are respectively the retarded, Keldysh and advanced Green’s functions defined as

Rσ(t, t′) = −iθ(t− t′)〈{cσ(t), c†σ(t′)}〉, (9.3a)

Aσ(t, t′) = iθ(t′ − t)〈{cσ(t), c†σ(t′)}〉, (9.3b)

Kσ(t, t′) = −i〈[cσ(t), c†σ(t′)]〉. (9.3c)

The advanced and retarded Green’s functions are linked through

Aσ(t, t′) = R∗σ(t′, t), (9.4)

so that we only have two independent functions in this basis. A common choice is to work with R and K.
The Keldysh index α ∈ {±} is replaced by an LO index 0 or 1. In the following, l will always denote such
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an index unless otherwise stated.

R, A and K are related to the ± Green’s functions of Eq. (8.11) through

Rσ(t, t′) = G++
σ (t, t′)−G<σ (t, t′) = G>σ (t, t′)−G−−σ (t, t′), (9.5a)

Aσ(t, t′) = G++
σ (t, t′)−G>σ (t, t′) = G<σ (t, t′)−G−−σ (t, t′), (9.5b)

Kσ(t, t′) = G++
σ (t, t′) +G−−σ (t, t′) = G>σ (t, t′) +G<σ (t, t′). (9.5c)

At equilibrium, the fluctuation-dissipation theorem now takes the form

Kσ(ω) = tanh

(
βω

2

)
[Rσ(ω)−Aσ(ω)] . (9.6)

9.2 Diagrammatics of an expansion in the Coulomb interaction U
As in the previous Chapter, we consider an interaction term, turned on at t = 0, of the form V (t) =

Un↑n↓. First, we describe a set of naive rules, but show that they bring eight possible diagrams for each
interaction vertex. Then we introduce a redefinition of the bare propagator that allows to reduce the number
of diagrams.

9.2.1 Naive diagrammatic rules
Diagrammatic rules in the LO basis are obtained by applying the transformation from Eq. (9.1) to the

rules derived in Section 8.2, keeping in mind that, for a given set of interacting times, the sum over LO
indices has to be the same as the sum over Keldysh indices.

First, a straight line represents a non-interacting Green’s function

σ
t′, l′ t, l = i (ĝσ)ll′ (t− t′). (9.7)

To derive the expression of the 4-leg interaction vertex, we first note that the sum of the different {±}
configurations from Eq. (8.16) can be written in theH↑ ⊗H↓ space, in the form

− iU (m+ ⊗m+ −m− ⊗m−) , (9.8)

where m+ =

(
1 0
0 0

)
and m− =

(
0 0
0 1

)
are matrices in the {±} basis, and Hσ is the Hilbert space for

spin σ. The m+ and m− matrices transform as

L†τ3m+L =
1

2

(
1 1
1 1

)
=

1

2
τ↑, (9.9a)

L†τ3m−L =
1

2

(
−1 1
1 −1

)
=

1

2
τ↓. (9.9b)

Hence the sum of different LO contributions can be written

− iU

4
(τ↑ ⊗ τ↑ − τ↓ ⊗ τ↓) . (9.10)

We write τ↑ = τ + 1 and τ↓ = τ − 1, where τ =

(
0 1
1 0

)
and 1 is the 2 × 2 identity matrix. The above

sum can then be rewritten 1

− iU

2
(1⊗ τ + τ ⊗ 1). (9.11)

Diagramatically, this means that the two sides of an interaction vertex (associated to opposite spins) are now
asymmetric: if we have the identity flowing on the σ side, then the σ̄ side bears the τ part of the interaction.

1. Note that this is consistent with Ref. [18].
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An interaction vertex in the LO basis can therefore be represented as

l, ↑

l, ↑

l′, ↓

l̄′, ↓

{t, l, l′} or

l, ↑

l̄, ↑

l′, ↓

l′, ↓

{t, l, l′} (9.12)

There are eight possible configurations for a given interaction time t, and therefore 8n at perturbation
order n, instead of 2n in the {±} basis. This is a drastic increase, especially as we want to overcome
this exponential scaling. We see next that we can reduce the number of diagrams to 4n by redefining the
noninteracting propagator.

However, it is important to stress at this point that each vacuum diagram already vanishes in this formal-
ism. Indeed, as we will show in Section 9.3, it is the identity part of the vertex, already present in Eq. (9.11),
that is essential in the proof of the cancellation of vacuum diagrams and the clusterization of times in the
computation of observables.

9.2.2 Redefinition of the noninteracting propagator and reduction of the number
of diagrams

In order to reduce the number of indices involved in the diagrammatics, we first rewrite the sum of LO
contributions to the 4-leg vertex in the form

− iU

4
(τ↑ ⊗ τ↑ − τ↓ ⊗ τ↓) = − iU

2
(1⊗ τ↓ + τ↑ ⊗ 1) . (9.13)

Noticing that τ↑ and τ↓ are rank-1 matrices: τ↑ = v↑v>↑ with v↑ =

(
1
1

)
and τ↓ = v↓(−v>↓ ) with v↓ =

(
1
−1

)
, it is possible to absorb the τσ part of the vertex in a redefinition of the noninteracting propagator.

We store the information about both the bare propagator ĝLO
σ and the nature of the vertices it connects in

the form of a 3 × 3 renormalized matrix ˆ̃gσ . With the convention that σ =↑ should be understood as +1
and σ =↓ as −1, the different components of this matrix are

i
(

ˆ̃gσ

)
ll′

(t− t′) =
σ

t′, l′ t, l = i
(
ĝLO
σ

)
ll′

(t− t′), (9.14a)

i
(

ˆ̃gσ

)
l2

(t− t′) =
σ

t′, τσ t, l = i
(
ĝLO
σ (t− t′)vσ

)
l
, (9.14b)

i
(

ˆ̃gσ

)
2l

(t− t′) =
σ

t′, l′ t, τσ = i
(
σv>σ ĝ

LO
σ (t− t′)

)
l
, (9.14c)

i
(

ˆ̃gσ

)
22

(t− t′) =
σ

t′, τσ t, τσ = iσv>σ ĝ
LO
σ (t− t′)vσ. (9.14d)

We obtain

ˆ̃gσ =



rσ kσ rσ + σkσ
0 aσ σaσ
σrσ σkσ + aσ σ[rσ + aσ] + kσ


 . (9.15)

Note that this 3× 3 form of the Green’s function comes from the absorption of the τσ part of the vertex and
has nothing to do with the Baym-Kadanoff L-shaped contour used in thermal real-time computations.

An LO vertex can therefore be characterized by a tuple {t, iτ , l}, where t ∈ [0, tmax], iτ ∈ {−1, 1} and
l ∈ {0, 1}. iτ = 1 (resp. −1) indicates that the ↑ (resp. ↓) spin is carrying the τ↑ (resp. τ↓) side, and l is the
LO index entering the identity-part of the vertex. To simplify upcoming equations, we express the indices
of ˆ̃g↑ and ˆ̃g↓ at a vertex {t, iτ , l} in the form of two composite indices L↑ and L↓:

Lσ =

{
2 if iτ = σ,
l otherwise. (9.16)
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With this convention, the interaction vertex, now proportional to 1⊗τ↓+τ↑⊗1
2 , has the following diagram-

matic representation

L↑, ↑

L↑, ↑

L↓, ↓

L↓, ↓

{t, iτ , l} = − iU
2

(δiτ1δL↑2δL↓l + δiτ−1δL↓2δL↑l) . (9.17)

As there are two possible choices both for iτ and for l, there are 4n LO configurations for a given set of
n interaction times. This is a huge gain compared to the 8n configurations of the naive diagrammatics, but
still has to be compared with the 2n possibilities of the {±} basis. However, we show in Section 9.3 that
vacuum diagrams now directly cancel in this formalism, without the need to perform an explicit sum over
indices.

9.2.3 Equal times: the special case of the closed loop
In order to have complete diagrammatic rules, we need to specify the equal-time limit of ˆ̃g, that is the

expression of rσ(0), aσ(0) and kσ(0). Once again, we want the LO formalism to be consistent with the
{±} one when summing over indices.

Let us start with the expression of the following fermionic bubble in the {±} basis

σ
σ̄

α α{t, α}
= αUgαασ̄ (0) = αUg<σ̄ (0), (9.18)

the last equality being due to the form of the interaction term. Furthermore, an interaction of the form
hc†σcσ in the Hamiltonian would give rise to 2-leg vertices of the form

σ

{t, α}
h

α α = −iαh. (9.19)

These do not appear directly in the diagrammatics but allow us to reformulate the above fermionic bubble
as a 2-leg vertex with a iUg<σ̄ (0) field

σ
σ̄

α α{t, α}
= σ {t, α}

iUg<σ̄ (0)
α α (9.20)

Now we are going to express both sides of this equality in the LO basis to understand what conditions
rσ(0), aσ(0) and kσ(0) must fulfil.

First, the fermionic bubble (left side of Eq. (9.20)) is expressed in the LO basis as

σ
σ̄

Lσ Lσ{t, iτ , l}
=

U

2
δLσ2 [rσ̄(0) + aσ̄(0)] +

U

2
δLσl [σ̄rσ̄(0) + σ̄aσ̄(0) + kσ̄(0)] . (9.21)

Then, we note that the sum over Keldysh indices of the 2-leg vertex in the {±} basis, Eq. (9.19), reads
−ih(m+ −m−) in bothH↑ andH↓ spaces. As m+ −m− transforms into the 2× 2 identity matrix in the
LO basis, a 2-leg vertex is simply characterized by an interaction time t and an LO index l. A term hc†σcσ
in the Hamiltonian would then give rise to the following vertex

σ

{t, l}
h

Lσ Lσ = −ihδLσl. (9.22)

The 2-leg vertex with a iUg<σ̄ (0) field, right side of Eq. (9.20), is therefore expressed in the LO basis as

σ {t, l}
iUg<σ̄ (t, t)

Lσ Lσ = Ug<σ̄ (0)δLσl. (9.23)
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In order for Eq. (9.21) and Eq. (9.23) to be equal, the retarded, advanced and Keldysh Green’s functions
therefore have to satisfy

kσ(0) = 2g<σ (0), (9.24a)
rσ(0) + aσ(0) = 0. (9.24b)

In the following, we work with a stronger requirement, setting

rσ(0) = aσ(0) = 0. (9.25)

We see in Section 9.3 that this choice allows every vacuum diagram in the LO basis to vanish.

9.2.4 Density of ↑ spins at tmax

In order to understand how to write the density of ↑ electrons in the LO basis, we use the following
property of the Keldysh formalism: the average value of an operator does not depend on the branch of C
where it is computed.

Considering d on the + branch of the contour, the computation of the density can be understood as the
action of the m+ matrix in the {±} basis, which transforms in the 1

2τ↑ matrix in the LO basis according to
Eq. (9.9a). Hence we can represent the measurement vertex as a “special" interaction vertex at time tmax
with iτ = 1, and no l: τ↑

tmax
(9.26)

This representation will automatically form a fermion loop linked to the measurement, hence bringing
a (−1) when the density is computed, which is consistent with Eq. (8.21). For example, the following
diagram evaluates to

↑

↓

tmax

{t, iτ , l} = (−1)2

(
− iU

4

)∫ tmax

0

dt
∑

l

[
i(ˆ̃g↑)22(t− tmax) i(ˆ̃g↑)22(tmax − t) i(ˆ̃g↓)ll(0)

+i(ˆ̃g↑)l2(t− tmax) i(ˆ̃g↑)2l(tmax − t) i(ˆ̃g↓)22(0)
]
.

(9.27)

One can easily check that this is consistent with Eq. (8.22).
The order-n contribution to the density can be written in terms of determinants as

dn =

∫
dt1 . . . dtn

∑

iτ1 ...iτn
l1...ln

dn ({ti, iτi , li}1≤i≤n) , (9.28)

where

dn ({ti, iτi , li}1≤i≤n) = − i
n+1Un

2n+1

∏

σ

detDLO
σ ({ti, iτi , li}1≤i≤n). (9.29)

These matrices are defined by taking into account the measurement time tmax

DLO
↑ ({ti, iτi , li}1≤i≤n) =




[
(ˆ̃g↑)L↑iL

↑
j
(ti − tj)

]
1≤i,j≤n

(ˆ̃g↑)L↑12(t1 − tmax)

...
(ˆ̃g↑)L↑n2(tn − tmax)

(ˆ̃g↑)2L↑1
(tmax − t1) . . . (ˆ̃g↑)2L↑n

(tmax − tn) (ˆ̃g↑)22(0)



,

(9.30)
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and
DLO
↓ ({ti, iτi , li}1≤i≤n) =

[
(ˆ̃g↓)L↓iL

↓
j
(ti − tj)

]
1≤i,j≤n

. (9.31)

We emphasize here that, for a given set of interacting times {t1, . . . , tn}, contributions to d summed
over Keldysh indices are equal to the ones summed over LO indices

∑

α1...αn

dn ({ti, αi}1≤i≤n) =
∑

iτ1 ...iτn
l1...ln

dn ({ti, iτi , li}1≤i≤n) . (9.32)

This property will prove extremely useful in Section 9.5 to understand the performance of the Monte Carlo
algorithms in the LO basis.

9.3 Direct cancellation of vacuum diagrams and steady-state limit
Now that we have established the diagrammatic rules in the LO formalism, we can show the following

property: every vacuum diagram vanishes, without any summation required. As in the {±} basis, this
allows the computation of observables in the infinite-time steady-state limit, but this time without the 2n

exponential cost.

9.3.1 Direct cancellation of all vacuum diagrams
The order-n expansion of the partition function in the Coulomb repulsion U is obtained by transforming

Eq. (8.23) in the LO basis:

Zn =

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

Zn ({ti, iτi , li}1≤i≤n) , (9.33)

where

Zn ({ti, iτi , li}) =

(
iU

2

)n∏

σ

det
[
(ˆ̃gσ)Lσi Lσj (ti, tj)

]
1≤i,j≤n

. (9.34)

Let us consider an order n ≥ 1 diagram contributing to Z in the LO basis. The interacting times are
denoted t1, . . . , tn. We assume that, for all i < n, ti < tn. 2 We label σ the spin on the identity side of the
(1⊗ τ↓+ τ↑⊗1)/2 interaction vertex at tn, and l the corresponding LO index. For simplicity, we consider
σ =↑, but the derivation would remain similar for ↓ spin. The interaction vertex takes the form

ln, ↑

ln, ↑

2, ↓

2, ↓

{tn,−1, ln} (9.35)

Let us follow the diagrammatic line of spin ↑. If tn is surrounded by no other interaction vertex (it is a
fermionic bubble), the diagram is then proportional to

(ˆ̃g↑)ll(0) = δl0r↑(0) + δl1a↑(0) = 0. (9.36)

In the case where tn is surrounded by at least one other interaction vertex, we label its surrounding interac-
tion times (that can be equal) ti and tj , i, j 6= n, with corresponding composite indices L↑i , L↑j . We then
obtain

(ˆ̃g↑)L↑j l
(tj − tn) = δL↑j 2δl1 [k↑(tj − tn) + a↑(tj − tn)]

+ δL↑j 1δl1a↑(tj − tn) + δL↑j 0δl1kσ(tj − tn),
(9.37)

2. We can rearrange indices if this is not the case.
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and

(ˆ̃g↑)lL↑i
(tn − ti) = δL↑i 2δl0 [r↑(tn − ti) + k↑(tn − ti)]

+ δL↑i 1δl0k↑(tn − ti) + δL↑i 0δl0r↑(tn − ti).
(9.38)

The full diagram is then proportional to δl0δl1 = 0. Hence every diagram contributing to Z in the LO basis
is exactly equal to 0: This formalism directly cancels vacuum diagrams.

Finally, we note that this proof relies only on having the identity on one side of the interaction vertex,
and not on the explicit contraction with τ↑, τ↓. Had we kept the diagrammatics with ĝLO lines instead of ˆ̃g
ones, we would also have obtained the cancellation of vacuum diagrams.

In terms of determinants, these massive cancellations imply

∀n >0,∀{t1, . . . , tn} ∈ [0, tmax]n,∀{iτ1 , . . . , iτn} ∈ {−1, 1}n,
∀{l1, . . . , ln} ∈ {0, 1}n,

∏

σ

det
[
(ˆ̃gσ)Lσi Lσj (ti, tj)

]
1≤i,j≤n

= 0
(9.39)

9.3.2 Direct access to the steady-state limit in the density computation
Just as in the {±} basis, the cancellation of vacuum diagrams directly implies the clusterization of

interaction time near tmax in the density computation, therefore allowing us to address any measurement
time. The proof is very similar to the one given in Section 8.4.1, without the exponential sum over Keldysh
indices.

Let n be a given perturbation order, and t1 < t2 < · · · < tn n interacting times. Let us assume that the
first j times are located far away from the measurement time tmax, and that the last n− j times are located
in the vicinity of tmax. We can formally consider

∀1 ≤ i ≤ j, |ti − tmax| → ∞. (9.40)

Because the Green’s function is a local quantity in time, this means that for all t ∈ {t1, . . . , tj}, t′ ∈
{tj+1, . . . , tn; tmax}

||ˆ̃gσ(t, t′)|| → 0, ||ˆ̃gσ(t′, t)|| → 0. (9.41)

We therefore have
∏

σ

detDLO
σ ({ti, iτi , li}1≤i≤n) '

∏

σ

detAσ
∏

σ

detBσ, (9.42)

with

Aσ =
[
(ˆ̃g)Lσi Lσi′ (ti − ti′)

]
1≤i,i′≤j

, (9.43a)

B↓ =
[
(ˆ̃g)L↓iL

↓
i′

(ti − ti′)
]
j+1≤i,i′≤n

, (9.43b)

B↑ =




[
(ˆ̃g↑)L↑iL

↑
i′

(ti − ti′)
]
j+1≤i,i′≤n

(ˆ̃g↑)L↑j+12(tj+1 − tmax)

...
(ˆ̃g↑)L↑n2(tn − tmax)

(ˆ̃g↑)2L↑j+1
(tmax − tj+1) . . . (ˆ̃g↑)2L↑n

(tmax − tn) (ˆ̃g↑)22(0)



. (9.43c)

However,
∏
σ Aσ is a contribution to Z at order j, and it vanishes according to Eq. (9.39). Therefore∏

σ detDLO
σ ' 0, and this proves the clusterization of times around tmax in the computation of the density.

Let us note that the cancellation of vacuum diagrams also implies that, out of the 4n possible configu-
rations for the density, half of them vanish.

We consider a given set {ti, iτi , li}1≤i≤n of LO vertices at order n, and we assume that for all i < n,
ti < tn. If iτn = 1, then the ↓ spin is carrying the identity side of the vertex. As we measure the density on
the ↑ spin, the argument used in the cancellation vacuum diagrams applies again andDLO

↓ ({ti, iτi , li}1≤i≤n)
is the n×n null matrix. If iτn = −1, the contribution does not vanish. Hence, when computing the density,
at every order n and for every set of n interaction times, 4n/2 LO configurations are exactly zero.
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9.4 Diagrammatic quantum Monte Carlo algorithms
In this Section, we describe how to compute the density d introduced above using quantum Monte Carlo

(MC) techniques. We present two different algorithms based on the LO formalism.

9.4.1 Sampling of the density
A configuration c is determined by a given perturbation order n and a set of n interaction LO vertices:

c = {n; y1, . . . , yn}, where yi = {ti, iτi , li}.
In what we define as the LO algorithm, we simply sample the contributions to dn, Eq. (9.29). Because

the density is a real quantity, we consider

d(c) = − Un

2n+1
Re

(
in+1

∏

σ

detDLO
σ (c)

)
. (9.44)

Defining the statistical weight of c in the Monte Carlo to be wLO
c = |d(c)|, then

dn =

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

d(c) ∝
MC LO∑

c

sgn d(c). (9.45)

The second algorithm that we study is a mixed algorithm that samples the configurations according to
their LO weight wLO

c but computes dn in the original {±} basis, from the contributions 3

d±(c) = Unsc, (9.46)

where sc is defined in Eq. (8.44). The idea is to use the LO weight to construct the Markov chain, but to
measure the exact contribution to d as summed over the 2n Keldysh indices. We therefore obtain

dn =

∫ tmax

0

dt1 . . . dtnd
± ({ti}1≤i≤n)

=
1

N

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

∣∣wLO
c

∣∣ d
±(c)

|wLO
c |
∝ 1

N
MC LO∑

c

d±(c)

|wLO
c |

,
(9.47)

whereN is the number of non-zero LO configurations. When computing the density,N = 4n/2 at order n
(see Section 9.3.2).

As detailed in Section 5.2, we use a standard Metropolis algorithm [107] to generate Markov chains
distributed according to the weight wLO

c . In both algorithms, starting from an order-n configuration c, a new
configuration c′ is proposed according to one of the following two Monte Carlo updates:

1. Add a new interaction LO vertex. The new interaction time is chosen according to a Cauchy law (as
in the± algorithm, see Section 8.4.2), and we randomly choose the iτ and l indices. The Metropolis
ratio is

Tc′cwc′

Tcc′wc
=

1/(n+ 1)

ρ(t)/4

Un+1/2n+2|Re
(
in+2

∏
σ detDLO

σ (c′)
)
|

|Re (in+1
∏
σ detDLO

σ (c)) |

=
2U

(n+ 1)ρ(t)

∣∣∣∣∣
Re
(
in+2

∏
σ detDLO

σ (c′)
)

Re (in+1
∏
σ detDLO

σ (c))

∣∣∣∣∣ .
(9.48)

2. Remove a randomly chosen interaction LO vertex from c. The Metropolis ratio is

Tc′cwc′

Tcc′wc
=
nρ(t)

2U

∣∣∣∣∣
Re
(
in
∏
σ detDLO

σ (c′)
)

Re (in+1
∏
σ detDLO

σ (c))

∣∣∣∣∣ . (9.49)

3. Here the ± superscript only denotes the {±} basis and not two different contributions.
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9.4.2 Redefinition of noninteracting propagators and renormalization
As shown in Section 5.3.1, there is some freedom in the choice of the noninteracting propagator used to

construct the perturbation expansion through the α-shift. 4 The redefinition of the interaction term is taken
into account by subtracting ασ on the diagonal of the determinants DLO

σ . The shift in the chemical potential
acts as a diagonal term in the self-energy and hence in

(
ĝLO
σ

)−1
=

(
r−1
σ −kσ/|rσ|2
0 a−1

σ

)
. (9.50)

α therefore modifies rσ and aσ into

r̄σ(ω) =
[
r(ω)−1 − Uϕασ̄

]−1
, (9.51)

āσ(ω) =
[
a(ω)−1 − Uϕασ̄

]−1
. (9.52)

As kσ/|rσ|2 is not impacted by the shift, the modified Keldysh Green’s function is then

k̄σ(ω) =

∣∣∣∣
r̄σ(ω)

rσ(ω)

∣∣∣∣
2

kσ(ω). (9.53)

Monte Carlo results also need to be normalized. We therefore restrict our calculation to two consecutive
orders and follow the procedure described for the ± algorithm in Section 8.4.2.

9.5 Results
In this Section, we present actual computations of the density according to the ± algorithm of Chapter

8, the algorithms described in this Chapter, and we compare their efficiency. We consider an energy level
εd coupled to a bath described by a semi-circular density of states of bandwidth 4D. The Green’s function
describing this bath is defined on the complex plane as [53]

gbath(ζ) =
ζ − sgn(Imζ)

√
ζ2 − 4D2

2D2
. (9.54)

The noninteracting retarded Green’s function of the impurity level is

rσ(ω) =
1

ω − εd − γ2gbath(ω)
, (9.55)

where γ is a coupling term between the energy level and the bath. The Keldysh Green’s function is then
deduced from Eq. (9.6) using the fluctuation-dissipation theorem.

In the following,D = 1 is our energy unit. We consider β = 100, γ2 = 0.04, εd = −0.36. Electrons on
the impurity experience a local Coulomb interaction U = 1.2. We choose a uniform α-shift: α = 0.3, such
that Uα = −εd. The bath being particle-hole symmetric, this creates a shifted retarded Green’s function
r̄σ(ω) that is itself particle-hole symmetric (see Eq. (9.51)). However, we have checked that this particular
choice of α does not influence our conclusions. The computational effort is 240 CPU*hours for every order.

We provide in Appendix C a table benchmarking the LO and mixed algorithms against the original
± algorithm as well as the CDet algorithm from Chapter 6. This shows in particular that the LO and
mixed methods yield correct results and that we can indeed reach long times without an exponential sum of
determinants.

9.5.1 Comparison with the original diagrammatic quantum Monte Carlo algo-
rithm

Our main result is shown in Fig. 9.1 where we compare the relative error bar in the density computation
as a function of the perturbation order. Blue dots denote the ± algorithm, orange stars the LO algorithm,
and green dots the mixed algorithm. In all three cases, dotted lines are guides to the eye.

4. Note that in this context α does not denote a Keldysh index but a scalar, in order to be consistent with the existing literature.
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Figure 9.1 – Comparison of the error bar divided by the mean value in a density computation.
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Figure 9.2 – Comparison of the error bar divided by the mean value of the normalization coefficient.

We see that all three relative error bars increase with perturbation order. This can either come from
the increasing difficulty of computing the series coefficients, or an error propagation coming from the
normalization factor η. We plot in Fig. 9.2 the relative error bar on η, which is much smaller than the
final relative error on the density, showing that the latter mainly comes from the increasing difficulty to
compute higher order coefficients. Moreover, the LO relative error bars very quickly become much larger
than the ± ones, their difference nearly reaching two orders of magnitude at order 8. The mixed algorithm
is found to perform better than the LO algorithm but its error bars slowly grow larger than the ± ones.
This is surprising, as one could have expected to at least gain the decorrelation time over the algorithm of
Ref. [128]. We discuss the origin of the error bars in both algorithms in the next Section.

9.5.2 The return of the sign problem
In this Section, we discuss the origin of the large variance in the computation of the density in the LO

algorithm in terms of a sign problem in the Monte Carlo sampling and we show how this impacts the error
bars of the mixed algorithm.

On the upper panel of Fig. 9.3, we plot as blue dots the non-zero LO contributions to the density sorted
according to their absolute value. The left and right panel correspond to two different time configurations
(cf caption). In both cases, the red line indicates the full sum over all LO indices, normalized to 1 (which
coincides with the ± contribution). The lower panel shows the partial sum, from left to right, of the LO
contributions plotted above. The last point, equal to 1 by construction, is emphasized as a red dot. As
roughly half of them are positive and half negative, we see that the sum of the LO contributions over the
indices for a fixed set of interacting times is characterized by massive cancellations. This is the origin of the
large error bar in the Monte-Carlo, i.e. another manifestation of the sign problem. Furthermore, the partial
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Figure 9.3 – Upper panel: Sorted array of the LO contributions according to their absolute value (blue
dots) and their sum (red line), normalized to 1. Lower panel: Partial sum of the above LO contribu-
tions, from left to right, the red dot being the last point, by definition 1. Left panels correspond to
the time configuration T1 = {273.2, 277.8, 280.9, 331.7, 366.4, 390.5}, and the right panels to T2 =
{338.3, 343.2, 366.9, 369.7, 393.9, 394.5}. Order 7, tmax = 400.
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Figure 9.4 – Histograms of the times visited by the Monte Carlo algorithms, projected in one dimension.
Order 9, tmax = 400.

sum shows that there is no clear feature or cutoff from which one could extract the value of the full sum.

Let us now turn to the mixed algorithm. On both the left and right panels of Fig. 9.3, the sum over
all LO indices, which coincides with the ± contribution, is normalized to 1. However, on the left panel,
the contributions of the different LO configurations are small compared to the final result, reaching at most
20% of it. On the right panel, those same contributions are much bigger, reaching up to 1700% of the full
sum. Hence the Monte Carlo implemented in the LO basis does not sample the same time configurations as
the algorithm in the {±} basis. This is illustrated in Fig. 9.4 where the histograms of the times visited by
the Monte Carlo, projected in one dimension, are plotted for both the ± algorithm (blue line) and LO one
(orange line). First, we observe the clusterization of times proved at the beginning of this article: interaction
times contributing to the density tend to be in the vicinity of tmax. Then, we see that some times located far
away from the measurement but still contributing significantly to the ± algorithm are almost never visited
in the LO algorithm. On the other hand, times close to tmax are more sampled in the latter. As times visited
by the mixed algorithm coincide with the LO ones, this explains the difference in error bars between the
mixed and ± algorithms observed in Fig. 9.1.

In the next Chapter, we explore in more detail the massive cancellations in the LO algorithm as a
function of the LO indices. We show that it is possible to find patterns to regroup them, and therefore
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reduce the overall error bar, but this is not enough to compete with the ± algorithm.
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Chapter 10
Grouping determinants to reduce the sign
problem

10.1 Motivation

We have seen in the previous Chapter that it is possible to write diagrammatic rules in the Larkin-
Ovchinnikov (LO) basis that yield a direct cancellation of vacuum diagrams. As a consequence we can
directly tackle the infinite-time steady-state limit when sampling contributions to a physical quantity such
as the density.

In the original diagrammatic Quantum Monte Carlo presented in Section 8.4, these properties were also
satisfied, but at the cost of an exponential sum over determinants when computing the MC weight: 2n at
a given perturbation order n. It led nonetheless to a drastic reduction of the sign problem compared to
original real-time QMC algorithms. Our hope therefore was that the LO algorithm would similarly tame
the sign problem and allow the computation of perturbative contributions with a much higher numerical
accuracy. We showed in Section 9.5 that error bars are actually exponentially larger than the ones from the
± algorithm, due to massive cancellations over LO indices that are only performed stochastically.

A natural question arises from these results: Is there a way to sum a number of determinants smaller
than 2n at order n that would yield a smaller error bar than the ± algorithm? The general problem at hand
is sketched in Fig. 10.1. We would like to understand whether there exists an optimal way to partition the
determinants in groups of m members that are summed, with 1 < m < 2n, in order to minimize the sign
problem. Does m have to be exponential in the perturbation order or can it scale polynomially?

In order to address these questions, we are going to explore ways of regrouping determinants in the LO
basis that are independent of the interacting times considered. We first exhibit patterns found heuristically
before presenting results of a machine learning approach based on Haar scattering. Note that Ref. [157]
recently exposed the idea of sorting Feynman diagrams into groups that are likely to contain nearly equal
or nearly cancelling contributions at equilibrium.

Throughout this Chapter, we use the same set of parameters as in Section 9.5. We compute contributions
to the density of ↑ states on a single energy level εd coupled to a bath described by a semi-circular density
of states of bandwidth 4D, gbath. The noninteracting retarded Green’s function of the impurity level is

rσ(ω) =
1

ω − εd − γ2gbath(ω)
, (10.1)

where γ is a coupling term between the energy level and the bath.
In the following,D = 1 is our energy unit. We consider β = 100, γ2 = 0.04, εd = −0.36. Electrons on

the impurity experience a local Coulomb interaction U = 1.2. We choose a uniform α-shift: α = 0.3 (see
Sec. 8.4.2), such that Uα = −εd. The bath being particle-hole symmetric, this creates a shifted retarded
Green’s function r̄σ(ω) that is itself particle-hole symmetric, see Eq. (9.51). In practice, the noninteracting
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Figure 10.1 – Sketch of the algorithmic problem we are addressing in this Chapter.

Green’s functions therefore have the following symmetry relations

k̄σ(−t) = −k̄σ(t), (10.2a)
r̄σ(−t) = −āσ(t). (10.2b)

We stress that patterns presented below weakly depend on the α-shift but are easier to identify in the
particle-hole symmetric case. The computation effort is 240 CPU*hours for each perturbation order. In the
following, we omit the ¯ notation and the spin subscript to keep notations simple.

As a basis for upcoming comparisons, we also recall results obtained for the contributions to the density
at a given perturbation order using the ± and LO algorithms, as presented in Appendix C.

± LO
Order 1 −1.7013355± 2.4× 10−6 −1.7013405± 2.9× 10−6

Order 2 14.472669± 7.4× 10−5 14.47295± 0.00020
Order 3 −33.3544± 0.0022 −33.3462± 0.0077
Order 4 −431.304± 0.039 −431.17± 0.36
Order 5 5094.46± 0.82 5097± 10
Order 6 −16166± 11 −16337± 364
Order 7 −164111± 175 −158102± 10331
Order 8 2.2319× 106 ± 2.0× 103 1.68× 106 ± 5.0× 105

Order 9 −7.850× 106 ± 3.0× 104 EB ' result

10.2 Human learning: Identifying cancellation patterns by hand

10.2.1 The n = 2 example
Let us first focus on second perturbation order. LO configurations take the form {(t1, iτ1 , l1), (t2, iτ2 , l2)},

with 0 ≤ t1 < t2 ≤ tmax, (iτ1 , iτ2) ∈ {−1, 1}2 and (l1, l2) ∈ {0, 1}2. We proved in Section 9.3 that those
bearing iτ2 = 1 are exactly equal to zero, so that we only deal with eight nonzero contributions. In this
Section, we explicit them to show what cancellations can be obtained.

First, we compute the contribution from the first nonzero configuration
∏

σ

detDLO
σ (t1, 1, 0; t2,−1, 0) = k(t1 − t2)r(t2 − t1)r(tmax − t2)

×
[
2g<(0)k(t2 − tmax)− (r(t2 − t1) + k(t2 − t1))(a(t1 − tmax) + k(t1 − tmax))

]
,

(10.3)
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and the second one
∏

σ

detDLO
σ (t1, 1, 0; t2,−1, 1) = k(t1 − t2)r(t2 − t1)r(tmax − t2)

×
[
2g<(0)k(t2 − tmax) + (r(t2 − t1) + k(t2 − t1))(a(t1 − tmax) + k(t1 − tmax))

]
.

(10.4)

When summing these two results together, many terms cancel out, and one simply obtains

4g<(0)k(t2 − tmax)r(tmax − t2)k(t1 − t2)r(t2 − t1). (10.5)

Summing together the two following configurations yields the same result
∏

σ

detDLO
σ (t1, 1, 1; t2,−1, 0) +

∏

σ

detDLO
σ (t1, 1, 1; t2,−1, 1)

= 4g<(0)k(t2 − tmax)r(tmax − t2)k(t1 − t2)r(t2 − t1).

(10.6)

Even more interesting, the following configurations exactly cancel when grouped together:
∏

σ

detDLO
σ (t1,−1, 0; t2,−1, 0) = −

∏

σ

detDLO
σ (t1,−1, 1; t2,−1, 1) , (10.7a)

∏

σ

detDLO
σ (t1,−1, 0; t2,−1, 1) = −

∏

σ

detDLO
σ (t1,−1, 1; t2,−1, 0) . (10.7b)

One sees from this simple example that it is possible to completely cure the sign problem originating
from the LO configurations by grouping two determinants in the Monte Carlo weight. Do some of these
cancellations survive for orders larger than 2?

10.2.2 Exact cancellations at half-filling
For the specific case of α that make the non-interacting Green’s function particle-hole symmetric, we

heuristically find that 2n contributions exactly cancel each other at perturbation order n. Let us consider n
interacting times t1 < · · · < tn.

If n = 2k is even, cancelling contributions correspond to those with all iτ equal to −1. More specifi-
cally, defining

c = {(t1,−1, l1), . . . , (t2k,−1, l2k)} , (10.8a)

c′ =
{

(t1,−1, l̄1), . . . , (t2k,−1, l̄2k)
}
, (10.8b)

we obtain ∏

σ

detDLO
σ (c) = −

∏

σ

detDLO
σ (c′) , (10.9)

and therefore d(c) + d(c′) = 0. Note that this is consistent with Eq. (10.7). If n = 2k + 1, cancelling con-
tributions correspond to those with all iτ equal to 1 except the last one associated to the greatest interaction
time. In this case, the grouping pattern is

c = {(t1, 1, l1), . . . , (t2k, 1, l2k), (t2k+1,−1, l2k+1)} , (10.10a)

c′ =
{

(t1, 1, l̄1), . . . , (t2k, 1, l̄2k), (t2k+1,−1, l2k+1)
}
. (10.10b)

We implement these groupings in the computation of the Monte Carlo weight of the LO algorithm,
resulting in the order-by-order error bars presented in the table below.

LO - 2n exact cancellations at half-filling
Order 1 −1.7013426± 2.8× 10−6

Order 2 14.472816± 8.2× 10−5

Order 3 −33.3522± 0.0060
Order 4 −431.43± 0.24
Order 5 5096.6± 8.0
Order 6 −15995± 289
Order 7 −156490± 8203
Order 8 2.47× 106 ± 3.1× 105

Order 9 EB ' result
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The LO results of Section 10.1 are indeed improved, but we need to find more groupings to fight the
exponential scaling of the sign problem.

10.2.3 Cluster patterns
First, we numerically check that on average half of the contributions from the nonzero LO configurations

are positive, while the other half are negative. This motivates the idea of summing terms in groups scaling
as powers of 2.

Then, we find that families of correlated configurations are mainly defined by the {iτ1 , . . . , iτn} se-
quence (and not the l coefficients). More specifically, let us define a cluster as a set of following iτ s with
the same value. For example, in the following order-7 configuration 1

c = {(1, 0), (−1, 0), (−1, 1), (−1, 1), (1, 1), (1, 0), (−1, 1)}, (10.11)

we have iτ2 = iτ3 = iτ4 = −1, so that they form a cluster of size 3. We observe that the new configuration
c′ obtained by switching the last l of the largest cluster massively cancel the contribution of c. In this
example, it would be defined as

c′ = {(1, 0), (−1, 0), (−1, 1), (−1, 0), (1, 1), (1, 0), (−1, 1)}. (10.12)

When there are several clusters of the same size, the best cancellation is formed when flipping the last l of
the rightmost one. For example, the following two configurations should be grouped together

c = {(−1, 0), (1, 0), (−1, 1), (−1, 1), (1, 1), (1, 0), (−1, 1)}, (10.13a)
c′ = {(−1, 0), (1, 0), (−1, 1), (−1, 1), (1, 1), (1, 1), (−1, 1)}. (10.13b)

We also observe that flipping the very last l, ln, often yields good cancellations.

We therefore design two Monte Carlo algorithms based on theses ideas:
— The cluster LO algorithm. To each configuration c proposed by the Monte Carlo, we associate

another configuration c′ in which we flip the last l of the rightmost largest cluster of iτ s. The
contribution to the density is the sum of the contributions of c and c′. The order-by-order error bars
are presented in the left column of the table below.

— The cluster and last LO algorithm. To each configuration c proposed by the Monte Carlo, we
associate c′ as in the cluster LO algorithm. If the flipped l was not the last one, we form a group of
size 4 associating the other two configurations in which we flip ln. The order-by-order error bars
are presented in the right column of the table below.

LO - Cluster groupings LO - Cluster and last groupings
Order 1 −1.7013394± 3.3× 10−6 −1.7013394± 3.2× 10−6

Order 2 14.472762± 7.7× 10−5 14.472731± 7.3× 10−5

Order 3 −33.3510± 0.0033 −33.3476± 0.0033
Order 4 −431.146± 0.072 −431.322± 0.079
Order 5 5095.0± 2.4 5096.9± 1.9
Order 6 −16256± 78 −16170± 61
Order 7 −164974± 2198 −165426± 1588
Order 8 2.175× 106 ± 6.4× 104 2.277× 106 ± 5.6× 104

Order 9 −9.5× 106 ± 2.1× 106 −8.6× 106 ± 1.3× 106

Both algorithms give very encouraging results, allowing to reduce the error bar by a factor 10 for the
highest perturbation orders compared to the LO results of Section 10.1. But another factor 10 would be
needed to challenge the ± algorithm. Because the number of LO configurations grows exponentially with
the perturbation order n, finding groupings by hand proves very difficult for large n. It would therefore be
desirable to develop a more systematic search using machine learning techniques, which is the subject of
the next Section.

1. In this Section, we drop the interacting times when writing configurations to keep notations short.

88



10.3. MACHINE LEARNING: DEEP HAAR SCATTERING ON GRAPHS

Figure 10.2 – Example of a Haar scattering network. Each layer is obtained by adding or subtracting a pair
of coefficients from the previous layer. Note that x is labeled dT in the text. [34]

10.3 Machine learning: Deep Haar scattering on graphs
Designing an efficient machine learning algorithm to optimize the sign problem by grouping configura-

tions requires to find a proper representation of data and of the optimization function. The work presented
in this Section has been driven by discussions with Stéphane Mallat from École Normale Supérieure.

At a given order n, the 4n LO configurations can be thought of as vertices of a graph, where the edges
between vertices define a group that should be summed together when computing the Monte Carlo weight.
In this representation, finding groups therefore means learning the connectivity of the graph, that is which
vertices should be connected together.

Such a problem has been addressed in Ref. [34] using deep Haar scattering. In the following, we
reproduce the arguments presented in this article, adapting formulas and procedures to our optimization
problem. We then present results for the density computation.

10.3.1 Haar scattering on a graph
Let us consider a given perturbation order n and set of interacting times T = {t1 < · · · < tn}. A set of

LO configurations {iτi , li}1≤i≤n is labelled by a single integer L between 0 and 4n − 1. For instance, one
can make the following choice at order 1

{−1, 0} → 0, {−1, 1} → 1, {1, 0} → 2, {1, 1} → 3. (10.14)

The contribution to the density is labelled dT (L) and writes, see Eq. (9.44),

dT (L) = − Un

2n+1
Re

[
in+1

∏

σ

detDLO
σ (T, L)

]
. (10.15)

T being fixed, the different dT (L) define an unweighted graph G whose vertices correspond to the 4n

different values of L.
A Haar scattering is calculated by iteratively applying the following permutation invariant operator to

two numbers a and b
(a, b) −→ (a+ b, |a− b|) . (10.16)

This transformation can be applied along a deep network, as depicted in Fig. 10.2. At layer j, the network
coefficients are stored in a (2−j4n) × 2j matrix SjdT , where rows denote a node index and columns a
feature type. The input network layer is thus

S0dT =




dT (0)
. . .

dT (4n − 1)


 . (10.17)

The network layer j + 1, Sj+1dT , is then computed regroupings the 2−j4n nodes from SjdT in 2−j−14n

pairs (al, bl) and applying Eq. (10.16) to each pair (SjdT (al, q), SjdT (bl, q)):

Sj+1dT (l, 2q) = SjdT (al, q) + SjdT (bl, q), (10.18a)
Sj+1dT (l, 2q + 1) = |SjdT (al, q)− SjdT (bl, q)| . (10.18b)
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This transform is iterated up to a maximum depth J ≤ log2(4n).

In order to illustrate this construction, we consider the case n = 1. The input layer writes

S0dT =




dT (0)
dT (1)
dT (2)
dT (3)


 . (10.19)

We can then choose to pair dT (0) with dT (1), and dT (2) with dT (3). The following layer in the Haar
scattering network would therefore write

S1dT =

(
dT (0) + dT (1) |dT (0)− dT (1)|
dT (2) + dT (3) |dT (2)− dT (3)|

)
. (10.20)

Had we choosen to pair dT (0) with dT (2), and dT (1) with dT (3), the following layer would have been

S1dT =

(
dT (0) + dT (2) |dT (0)− dT (2)|
dT (1) + dT (3) |dT (1)− dT (3)|

)
. (10.21)

The task of the machine learning algorithm will be to discriminate between the different possible groupings
in order to minimize a cost function we describe next.

10.3.2 Optimization function
We would like to design an algorithm to learn the connectivity of the graph G from a training set of

unlabelled examples {dTi}i. The goal of the method is to identify LO configurations that cancel each other,
see for instance Section 10.2.3. If the connectivity is known up to scale 2j , the next scale is therefore
obtained by finding optimal pairings {al, bl} which minimize the sum of scattering vectors, averaged over
the training set {dTi}i:

2−j−14n∑

l=0

2j−1∑

q=0

∑

i

|SjdTi(al, q) + SjdTi(bl, q)| . (10.22)

Note the difference with Eq. (6). of Ref. [34], where a difference is used instead of a sum because the
authors are interested in scattering vectors that are similar. This is a weighted matching problem which can
be solved by the Blossom Algorithm of Edmonds [34, 47, 52].

10.3.3 Results
We use the MATLAB software of Ref. [34], publicly available at www.di.ens.fr/data/scattering/haar.

As mentioned in the previous Section, a minor modification has to be made in the haar_tree_learn.m file
to minimize the sum of scattering vectors and not their difference.

We train the algorithm using 2000 examples and look for pairings of size 2 and 4, which respectively
correspond to depths J = 1 and J = 2 of the Haar scattering network. The error bars of the two Monte
Carlo implementing the obtained pairings are presented below. As the sign problem is completely cured
using groupings of size 2 at order 2 (see Section 10.2.1), we only look for groupings of size 4 starting at
n = 3. 2

LO - Haar size 2 LO - Haar size 4

Order 1 −1.7013383± 3.3× 10−6

Order 2 14.472734± 7.0× 10−5

Order 3 −33.3560± 0.0028 −33.3589± 0.0026
Order 4 −431.324± 0.061 −431.314± 0.057
Order 5 5091.6± 3.2 5095.1± 1.4
Order 6 −16162± 60 −16183± 40
Order 7 −167344± 1718 −163794± 1003

2. We computed contributions to the density up to order 7 due to some MATLAB limitations.
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The use of this Haar scattering algorithm yields a small improvement over what we found by hand, but
not by a big factor. This means there is no obvious cancellation pattern that we have missed using ‘human
learning’.

10.4 Conclusion
Finding groupings to reduce the fermionic sign problem in real-time diagrammatic Monte Carlo meth-

ods is a very challenging algorithmic problem. It either requires a good physical intuition to find patterns
among 4n contributions, or sophisticated machine learning techniques.

All in all, the error bars managed to be greatly reduced, and one might gain even more by increasing
the groupings size. Results from Sections 10.2.3 and 10.3.3 however seem to indicate that the exponential
scaling of the sign problem is faster.

Another idea would be to look at the problem from a slightly different angle. Up to now, we focused on
the fact that contributions should cancel each other. The algorithms were actually quite successful in this
respect. As contributions from many groups became very small, acceptance rates dropped below 5% and
correlation times drastically increased at high perturbation orders. The efficiency of the Monte Carlo was
therefore greatly reduced.

But the final result, obtained when summing over all LO configurations, is a nonzero contribution to the
density. What we are interested in is thus a way to group configurations that cancel each other with other
ones that actually contribute to the final result. This optimization problem is more subtle than the one we
looked at and it is unclear how one could best address it.
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Part V

Current-driven transition in Ca2RuO4
using steady-state NCA
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Chapter 11
Non-Crossing Approximation

In upcoming Chapter 13, we will model the insulator-to-metal transition driven by an electric-field
in Ca2RuO4 [115, 142, 122], which is one of the numerous examples of recent experimental progress in
driving strongly correlated systems out of equilibrium. In such materials, the multiorbital nature and/or
the need to reach the steady-state limit prevent us from using the numerically exact methods presented in
Chapter 8. It is therefore desirable to use a more economical way to solve the quantum impurity model that
still captures the essential physics of the system. Systematic approximations in the hybridization expansion
are popular as they give reasonably accurate results while keeping the computational cost at minimum
[81, 59, 90, 131, 16, 17, 69].

A simple strong-coupling expansion is called the Non-Crossing Approximation (NCA), as it analyti-
cally sums a subset of diagrams without crossing hybridization lines. In this Chapter, we first present the
imaginary-time formulation of NCA. This allows us to introduce the formalism and notations, as equations
easily generalize to the real-time Baym-Kadanoff contour that we present next. A novel algorithm working
directly in the steady-state limit of the equations is then derived in the next Chapter.

In the literature, the most common derivation of NCA equations uses a pseudo-particle representation
of the Green’s function [38, 16, 46]. We choose here to work with the local states propagator R, following
Refs. [10, 141, 125].

11.1 Equilibrium NCA

11.1.1 Local states propagator
We consider a correlated impurity coupled to an uncorrelated bath. Its Hamiltonian writes

H = Hloc +Hhyb +Hbath, (11.1)

where Hloc describes the local physics of the impurity, Hbath the noninteracting bath, and Hhyb is a hy-
bridization term between the impurity and the bath. The partition function of the bath isZbath = Tr

(
e−βHbath

)
.

The impurity state propagator R is defined as

R(τ) = − 1

Zbath
Trbathe

−βHbathe−τ(Hloc+Hhyb). (11.2)

It can be interpreted as a projected evolution operator of the atomic states after averaging over the bath
states at equilibrium. As in Section 5.1, the quantum impurity can be described using an imaginary-time
path integral

S =
∑

a

∫ β

0

dτd†a(τ)∂τda(τ) +

∫ β

0

dτHloc
(
d†a(τ), da(τ)

)

+

∫ β

0

dτdτ ′
∑

ab

d†a(τ)∆ab(τ − τ ′)db(τ ′),
(11.3)
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where ∆ is the hybridization function, and d†a (resp. da) the creation (resp. annihilation) operator on the
impurity. a is a composite index for the different degrees of freedom (spin, orbital, ...).

In Chapter 5, we introduced the CT-HYB quantum Monte Carlo algorithm, showing that one can expand
and stochastically sample the partition function Z as a series in ∆. In this Section, we are interested in the
expansion of the impurity states propagator R. We derive in Appendix D a path-integral representation of
its matrix elements which motivates an operator representation as a time-ordered exponential

R(τ) = −Tτ exp

(
−τHloc −

∫ τ

0

dτ ′dτ̄
∑

ab

∆ab(τ
′ − τ̄)d†a(τ ′)db(τ̄)

)
. (11.4)

Note that R is an operator that acts in the Hilbert space and therefore has a 2N × 2N matrix representation,
where N is the number of states in the system. When setting the hybridization function to zero, we recover
the usual local states propagator of an isolated system

R0(τ) = −e−τHloc , (11.5)

and the partition function is obtained as
Z = −TrR(β). (11.6)

Eq. (11.4) yields the following expansion in powers of the hybridization function

R(τ) = −
∑

n

(−1)n

n!

∫ τ

0

dτ ′1dτ̄1 . . . dτ
′
ndτ̄n

∑

a1...an
b1...bn

(
n∏

i=1

∆aibi(τ
′
i − τ̄i)

)

× Tτ
(
e−τHlocd†a1

(τ ′1)db1(τ̄1) . . . d†an(τ ′n)dbn(τ̄n)
)
.

(11.7)

Every term in this expression can be pictorially represented using diagrams in ∆. A straight line denotes a
bare propagator

0 τ = R0(τ), (11.8)

and a double straight line a full propagator

0 τ = R(τ). (11.9)

The hybridization being a retarded function, it is drawn as an oriented dashed line between an annihilation
operator db and a creation operator d†a.

τ̄ , b τ ′, a = ∆ab(τ
′ − τ̄)d†aR0(τ ′ − τ̄)db. (11.10)

Each diagram has to be multiplied by (−1)s+f , where s is the number of crossings of hybridization lines,
and f the number of hybridization lines that go opposite to the overall direction.

For example, the following diagram is an order-2 contribution to R

0 τ =

∫ τ

0

dτ ′1dτ ′2dτ̄1dτ̄2
∑

a1a2
b1b2

∆a1b1(τ ′1 − τ̄1)∆a2b2(τ ′2 − τ̄2)R0(τ − τ ′2)

× db2R0(τ ′2 − τ̄1)d†a1
R0(τ̄1 − τ̄2)d†a2

R0(τ̄2 − τ ′1)db1R0(τ ′1).

(11.11)

From these diagrammatic rules, one sees that the impurity states propagator satisfies a Dyson equation

R(τ) = R0(τ) +

∫ τ

0

dτ ′dτ̄R0(τ − τ ′)S(τ − τ̄)R(τ̄),

= +

(11.12)
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where the self-energy S associated to R is the sum of all one-particle irreducible diagrams, that is diagrams
that cannot be separated into two parts by cutting a single R0 line. This equation can be rewritten as a first
kind integro-differential Volterra equation

− ∂τR(τ) = HlocR(τ) +

∫ τ

0

dτ ′S(τ − τ ′)R(τ ′), (11.13)

with initial condition R(0) = −1 where 1 is the identity matrix.

11.1.2 Non-Crossing Approximation
The Non-Crossing Approximation (NCA) consists of summing the subset of diagrams without crossing

hybridization lines in the strong-coupling expansion of R. For example, the contribution from Eq. (11.11)
is not considered. The self-energy S takes the analytical form

S(τ) = −
∑

ab

[
d†aR(τ)db∆ab(τ)− daR(τ)d†b∆ba(−τ)

]

= +

(11.14)

This approach has the advantage to resum diagrams up to infinite order while keeping a very simple equa-
tion for the self-energy. It was shown to perform well in the strong-coupling regime, especially the Mott
insulating phase, although it fails to correctly reproduce the Fermi liquid behavior [16, 113].

NCA is also a conserving approximation that can be shown to derive from the Luttinger-Ward functional
[16, 69, 141]

Φ[R,∆] = −
∑

ab

∫ β

0

dτTr
[
R(β − τ)daR(τ)d†b

]
∆ba(β − τ)

=

(11.15)

The matrix elements of the self-energy from Eq. (11.14) are indeed obtained through

Snm(τ) =
δΦ[R,∆]

δRmn(β − τ)
. (11.16)

The NCA impurity Green’s function then simply writes

Gab(τ) =
1

Z

δΦ[R,∆]

δ∆ba(β − τ)
= − 1

Z
Tr
[
R(β − τ)daR(τ)d†b

]
. (11.17)

11.1.3 Implementation
In order to reduce the size of the matrices we manipulate, we use the symmetries of Hloc and ∆ to

block-diagonalize R and S. The Volterra equation (11.13) is diagonal in the block indices, while the NCA
equation (11.14) for the self-energy couples blocks together due to the creation and annihilation operators.
Denoting Γ a block index, the coupled set of equations to solve now writes

−∂τRΓ(τ) = HΓ
locR

Γ(τ) +

∫ τ

0

dτ ′ SΓ(τ − τ ′)RΓ(τ ′), R(0) = −1, (11.18a)

SΓ(τ) = −
∑

ab

∑

Γ′

[
(d†a)ΓΓ′RΓ′(τ)(db)

Γ′Γ∆ab(τ)− (da)ΓΓ′RΓ′(τ)(d†b)
Γ′Γ∆ba(−τ)

]
. (11.18b)

Starting from a guess for R(τ), these two equations are solved iteratively until convergence. We use the
atom diag class of the TRIQS library for the block diagonalization as well as the operations on operators of
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Figure 11.1 – Baym-Kadanoff contour used for out-of-equilibrium NCA. [10]

Eq. (11.18b) [123]. Eq. (11.18a) is solved using a time discretization we now describe.

Let us consider a given block index Γ, and a uniform discretization of the time interval [0, τ ]: τ0 <
· · · < τN , where τ0 = 0 and τN = τ = τ0 + N∆τ . The initial conditions write RΓ(τ0) = −1 and
∂τR

Γ(τ0) = HΓ
loc. Let us now suppose that we know RΓ(τi) and ∂τRΓ(τi) for all 0 ≤ i ≤ n − 1 and

we want to compute RΓ(τn) and ∂τRΓ(τn), where 1 ≤ n ≤ N . For convenience, we use the notation
Ri = RΓ(τi), Ṙi = ∂τR

Γ(τi) andH = HΓ
loc.

We write
Rn = Rn−1 +

∆τ

2

(
Ṙn + Ṙn−1

)
, (11.19)

and use a trapezoidal approximation of the integro-differential equation (11.18a)

− Ṙn = HlocRn +

n−1∑

i=1

∆τSn−iRi +
∆τ

2
SnR0 +

∆τ

2
S0Rn. (11.20)

We use this equation to replace Ṙn in Eq. (11.19)

Rn =

[
1 +

∆τ

2
H+

(
∆τ

2

)2

S0

]−1

×
[
Rn−1 +

∆τ

2

(
Ṙn−1 −

∆τ

2
SnR0 −∆τ

n−1∑

i=1

Sn−iRi

)]
,

(11.21)

and Ṙn is obtained through Eq. (11.20). We reproduce this step until n = N .

11.2 Out-of-equilibrium NCA

11.2.1 Formalism
The out-of-equilibrium version of the Non-Crossing Approximation is formulated on an extension of

the Keldysh contour presented in Chapter 8, called the Baym-Kadanoff contour and denoted C̄. As depicted
in Fig. 11.1, a vertical branch corresponding to imaginary times is added. This allows us to incorporate
information on how the state is initially prepared, and more specifically we can choose to start from an
equilibrium correlated state at t = 0. [10]

A point on C̄ is denoted by z, which can evaluate to z = (t,+) (resp. (t,−)) if it is located on the
forward (resp. backward) real-time branch, or z = −iτ if it is on the imaginary-time branch. We introduce
the contour operator TC̄ that coincides with TC introduced in Chapter 8 on the real-time axis, with Tτ on the
imaginary-time one, and considers all points on the vertical branch to be later than points on the horizontal
branches. This is pictured by the arrows in Fig. 11.1.

The impurity Green’s function takes the form of a 3× 3 matrix

Gab(z, z
′) = −i

〈
TC̄da(z)d†b(z

′)
〉

=



G++
ab (t, t′) G<ab(t, t

′) G
e
ab(t, τ

′)

G>ab(t, t
′) G−−ab (t, t′) G

e
ab(t, τ

′)

G
d
ab(τ, t

′) G
d
ab(τ, t

′) iGMab(τ − τ ′)


 . (11.22)
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It coincides with the 2 × 2 real-time Green’s function defined in Eq. (8.10), and is proportional to the
Matsubara Green’s function on the imaginary axis, that we label GM to avoid confusions. We indeed have

Gab(−iτ,−iτ ′) = −i
〈
Tτda(τ)d†b(τ

′)
〉

= iGMab(τ, τ
′). (11.23)

We also introduce two mixed functions, Ge and Gd, that couple the imaginary and real axis. They are not
independent as

G
d
ab(τ, t) = [G

e
ba(t, β − τ)]†. (11.24)

Let us now define a clockwise integral on the contour

∫ z

z′
dz1f(z1) =





∫ z

z′
dz1f(z1) if z > z′, (11.25)

∫ z

0

dz1f(z1) +

∫ −iβ

z′
dz1f(z1) if z′ > z.

This allows us to expand the definition of the local states propagator from Eq. (11.4) on the full Baym-
Kadanoff contour

R(z, z′) = −iTC̄ exp

(
−i
∫ z

z′
Hloc(z1)dz1 − i

∫ z

z′
dz1dz2

∑

ab

∆ab(z1, z2)d†a(z1)db(z2)

)
. (11.26)

Note thatHloc can now be time-dependent, and d(z) is written in the interaction representation with respect
toHloc(z). R is expressed in terms of a 3× 3 matrix involving the different branches of the contour

R(z, z′) =



R++(t, t′) R<(t, t′) Re(t, τ ′)
R>(t, t′) R−−(t, t′) Re(t, τ ′)
Rd(τ, t′) Rd(τ, t′) iRM (τ − τ ′)


 . (11.27)

One can easily check that R(−iτ,−iτ ′) = iRM (τ − τ ′), where RM is the equilibrium propagator defined
in Eq. (11.4). The following symmetry relations hold

(
R≶(t, t′)

)†
= −R≶(t′, t), (11.28a)

(
Re(t, τ)

)†
= −Rd(β − τ, t). (11.28b)

The bare propagator is defined as

R0(z, z′) = −iTC̄e−i
∫ z
z′ Hloc(z1)dz1 , (11.29)

and the partition function is
Z = −TrRM (β) = iTr

[
R<(t, t)

]
. (11.30)

The impurity state propagator obeys diagrammatic rules similar to the ones defined in Section 11.1,
except that endpoints of propagators are now real or imaginary times z on the contour C̄. R satisfies a
Dyson equation involving a self-energy S, which can be written as a Volterra integro-differential equation

i∂zR(z, z′) = Hloc(z)R(z, z′) +

∫ z

z′
dz1S(z, z1)R(z1, z

′). (11.31)

Very similar to Eq. (11.14), the Non-Crossing Approximation now consists in removing all diagrams with
crossing hybridization lines in the diagrammatrics of R. This corresponds to the following approximation
on the self-energy S

S(z, z′) = iT (z, z′)
∑

ab

[
d†aR(z, z′)db∆ab(z, z

′)− daR(z, z′)d†b∆ba(z′, z)
]
, (11.32)

where we introduce

T (z, z′) =

{
1 if z > z′, (11.33)
−1 otherwise. (11.34)
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This additional factor in the self-energy takes into account the time-ordering product in the definition of R.
Out-of-equilibrium NCA is a conserving approximation as it derives from the Luttinger-Ward functional

Φ[R,∆] = i
∑

ab

∫ −iβ

0

dzdz′ T (z, z′)Tr
[
R(z′, z)daR(z, z′)d†b

]
∆ba(z′, z). (11.35)

The Green’s function is then obtained as

Gab(z, z
′) =

i

Z
T (z, z′)Tr

[
R(z′, z)daR(z, z′)d†b

]
. (11.36)

11.2.2 Implementation
Eqs. (11.31) and (11.32) have to be solved iteratively on the different branches of C̄, which, because of

the convolution in Dyson’s equation, are not independent from each other. There is however a specific order
that allows to completely solve one component after the other, that we describe next.

For each component, we again use a block-diagonalisation of Hloc, R and S as described in Sec-
tion 11.1.3, but we do not specify the block indices in upcoming equations to keep notations short. The
imaginary-times interval [0, β] is discretized using M + 1 points, with τ0 = 0 and τM = β = M∆τ . The
real-time interval [0, tmax] is discretized using N + 1 points, with t0 = 0 and tN = tmax = N∆t.

Equilibrium component

Eqs. (11.31) and (11.32) projected on the vertical imaginary-time axis yield

−∂τRM (τ) = HlocR
M (τ) +

∫ τ

0

dτ̄SM (τ − τ̄)RM (τ̄), (11.37a)

SM (τ) = −
∑

ab

(
d†aR

M (τ)db∆
M
ab(τ)− daR(τ)d†b∆

M
ba(−τ)

)
, (11.37b)

with initial condition RM (0) = −1. These equations exactly correspond to the equilibrium Non-Crossing
Approximation described in Section 11.1.3, and can therefore be solved in the same fashion, independently
of the other components of the Baym-Kadanoff contour. This is unsurprising, as this formalism aims at
starting the real-time calculations from a correlated state at equilibrium, which therefore has to be solved
first.

Greater component

Evaluating Eqs. (11.31) and (11.32) for z = (t,−) and z′ = (t′,+), we obtain

i∂tR
>(t, t′) = Hloc(t)R

>(t, t′) +

∫ t

t′
dt̄S>(t, t̄)R>(t̄, t′), (11.38a)

S>(t, t′) = i
∑

ab

(
d†aR

>(t, t′)db∆
>
ab(t, t

′)− daR>(t, t′)d†b∆
<
ba(t′, t)

)
, (11.38b)

with R>(t, t) = −i1. These equations look very similar to Eqs. (11.37), but are intrinsically more compli-
cated to solve as they require a time evolution both in t and t′. We choose to self-consistently solve them as
we propagate in time, which means that, for a given 1 ≤ n ≤ N , we iterate through these two equations on
[0, tn]× [0, tn] until convergence.

The hard computational part relies in the time evolution, Eq. (11.38a). The scheme we use is depicted
in Fig. 11.2a. Let us assume we know R>(tj , tl) and ∂tR>(tj , tl) for all 1 ≤ j, l < n (black crosses
in orange square), where 1 ≤ n ≤ N . For simplicity, we introduce the notation R>j,l = R>(tj , tl),
Ṙ>j,l = ∂tR

>(tj , tl) andHj = Hloc(tj).
First, we are going to compute Rnj and Ṙnj for 0 ≤ j < n (red crosses). For a given j, this is done by

evolving points in a scheme similar to the one from Section 11.1.3. We write

R>n,j = R>n−1,j +
∆t

2

(
Ṙ>n,j + Ṙ>n−1,j

)
, (11.39)
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Figure 11.2 – Propagation scheme used for the computation of R>, R< (left) and Re (right).

and use a trapezoidal approximation to evaluate the Volterra equation

iṘ>n,j = HnR>n−1,j +

n−1∑

l=1

∆tS>n−l,jR
>
l,j +

∆t

2
S>n,jR

>
0,j +

∆t

2
S>0,jR

>
n,j . (11.40)

Combining these equations, we obtain

R>n,j =

[
1 + i

∆t

2
Hn + i

(
∆t

2

)2

S>0,j

]−1

×
[
R>n−1,j +

∆

2

(
Ṙ>n−1,j − i

∆t

2
S>n,jR

>
0,j − i∆t

n−1∑

l=1

S>n−l,jR
>
l,j

)]
.

(11.41)

Ṙ>n,j is then obtained using Eq. (11.40). Second, we compute Rjn and Ṙjn for 0 ≤ j < n (blue crosses),
which can be easily achieved using the symmetry relations of R> (Eq. (11.28a)). Finally, the initial condi-
tion of the Volterra equation yields R>nn = −i1 and Ṙ>nn = −Hn.

Mixed component

The coupled equations for the mixed components write

i∂tR
e(t, τ) = Hloc(t)R

e(t, τ) +

∫ t

0

dt̄S>(t, t̄)Re(t̄, τ) +

∫ β

τ

dτ̄Se(t, τ̄)RM (τ̄ − τ), (11.42a)

Se(t, τ) = −i
∑

ab

(
d†aR

e(t, τ)db∆
e
ab(t, τ)− daRe(t, τ)d†b∆

d
ba(τ, t)

)
, (11.42b)

with initial conditionRe(0, τ) = iRM (β−τ). As for the greater components, we choose to self-consistently
solve these equations as we propagate in time, which means that, for a given 1 ≤ n ≤ N , we loop on them
on [0, tn]× [0, β] until convergence.

Knowing the initial condition for all points on the imaginary-time axis indeed allows a propagation
scheme of Eq. (11.42a) slightly different from the one for the greater component, depicted in Fig. 11.2b.
Let us assume we know Re(tj , τl) and ∂tRe(tj , τl) for all 1 ≤ j < n, 1 ≤ l ≤M (black crosses in orange
rectangle), where 1 ≤ n ≤ N . For a given l, Re(tn, τl) and ∂tRe(tn, τl) are then simply obtained by
propagating points horizontally by descritizing Eq. (11.42a).
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Lesser component

Evaluating Eqs. (11.31) and (11.32) for z = (t,+) and z′ = (t′,−), we obtain

i∂tR
<(t, t′) = Hloc(t)R

<(t, t′) +

∫ t

0

dt̄S>(t, t̄)R<(t̄, t′) (11.43a)

−
∫ t′

0

dt̄S<(t, t̄)R>(t̄, t′)− i
∫ β

0

dτ̄Se(t, τ̄)Rd(τ̄ , t′),

S<(t, t′) = −i
∑

ab

(
d†aR

<(t, t′)db∆
<
ab(t, t

′)− daR<(t, t′)d†b∆
>
ba(t′, t)

)
, (11.43b)

with initial condition R<(0, 0) = iRM (β). These equations are structurally very close to the ones for the
greater components. There are additional terms in the Volterra equation, but they do not involve the lesser
local propagator.

We therefore solve Eqs. (11.43) self-consistently exactly in the same way as Eqs. (11.38), by discretizing
points in time. The only difference is that we do not know the diagonal points anymore, so that at the end of
the propagation we have to time evolve the points obtained by symmetrization (blue crosses in Fig. 11.2a,
yielding the orange one).

Green’s functions

At the end of the computation, the Green’s functions are simply obtained by projecting Eq. (11.36) on
the different branches of the contour

GMab(τ) = − 1

Z
Tr
(
R(β − τ)daR(τ)d†b

)
, (11.44a)

G>ab(t, t
′) =

i

Z
Tr
(
R<(t′, t)daR

>(t, t′)d†b

)
, (11.44b)

G
e
ab(t, τ) = − i

Z
Tr
(
Rd(τ, t)daR

e(t, τ)d†b

)
, (11.44c)

G<ab(t, t
′) = − i

Z
Tr
(
R>(t′, t)daR

<(t, t′)d†b

)
. (11.44d)
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Steady-state Non-Crossing Approximation

The out-of-equilibrium NCA algorithm presented in the previous Chapter proves extremely useful to
compute the transient behaviour of the system studied before it reaches its long-time limit, as for instance
in pump-probe experiments. However, when we are only interested in the steady-state regime, as it will
be the case for Ca2RuO4 in the next Chapter, solving the full time dependence over the triple contour is
computationally heavy.

In this Chapter, we first present an out-of-equilibrium version of the NCA approximation working on
the Keldysh contour, therefore without the imaginary-time axis, before deriving steady-state equations for
the local states propagatorR and its self-energy S. In both cases, the proposed algorithms are benchmarked
against the technique presented in the previous Chapter. The algorithmic developments presented here have
not yet been published.

12.1 Out-of-equilibrium NCA on the Keldysh contour

12.1.1 Formalism
As a first step towards a steady-state solver, let us first derive the out-of-equilibrium NCA equations on

the real-time Keldysh contour C introduced in Chapter 8. In this formalism, there is no imaginary-time axis,
so that it is not possible to engineer a correlated state at t = 0. This is not an issue as our goal is to study
the steady state, which does not depend on the original preparation of the system. The main advantage of
this representation is that only the forward and backward branches on the real axis are present, so that we
only deal with the greater and lesser components of the local states propagator.

The Volterra equation from Eq. (11.31) simply reduces to

i∂tR
>(t, t′) = HlocR

>(t, t′) +

∫ t

t′
dt̄S>(t, t̄)R>(t̄, t′), (12.1a)

i∂tR
<(t, t′) = HlocR

<(t, t′) +

∫ t

0

dt̄S>(t, t̄)R<(t̄, t′)−
∫ t′

0

dt̄S<(t, t̄)R>(t̄, t′), (12.1b)

and the NCA approximation on the self-energy becomes

S≶(t, t′) = iT (z, z′)
∑

ab

(
d†aR

≶(t, t′)db∆
≶
ab(t, t

′)− daR≶(t, t′)d†b∆
≷
ba(t′, t)

)
. (12.2)

The greater component continues to verifyR>(t, t) = −i1 for all t, but there is no obvious initial condition
on R<(0, 0) as in the case of the Baym-Kadanoff contour. The starting point therefore has to be provided
by hand, which makes this algorithm not well suited for the study of transient behaviours. Moreover, as it
requires less computation as its full triple-contour counterpart, it is to be favoured when computing steady-
state properties that do not depend on the initial preparation of the system.

The Green’s function is then obtained as

G
≶
ab(t, t

′) =
i

Z
T (z, z′)Tr

(
R≷(t′, t)daR

≶(t, t′)d†b

)
, (12.3)
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Figure 12.1 – Evolution of the density per spin after a quench from U = 0 to U = 3 at initial time, using
the Baym-Kadanoff version of the NCA equations and the Keldysh one from two different starting points.

where the partition function is
Z = iTr

[
R<(t, t)

]
. (12.4)

Apart from the computation of the Matsubara and mixed components that are not present anymore, the
implementation of these equations is done exactly in the same way as presented in Section 11.2.2.

12.1.2 Benchmark
We consider a two-site Anderson impurity model described by the local Hamiltonian

Hloc = −µ
∑

σ

(nσ0 + nσ1)− γ
∑

σ

(
d†σ0dσ1 + h.c.

)
+ U

∑

i

ni↑ni↓, (12.5)

where d†σi (resp. dσi) creates (resp. annihilates) an electron with spin σ on site i, µ is the chemical potential
of the system, γ is a hopping amplitude and U is the Coulomb repulsion. nσi = d†σidσi is the density
operator. Each site is connected to a bath described by a semi-circular density of states of bandwidth 4D.

In the following, D = 1 is our energy unit, and we have β = 10, tmax = 20, µ = 1.5 and γ = 1.
We consider a quench of the Coulomb interaction U from 0 to 3 at initial time, which means the system is
half-filled in the long-time limit.

In Fig. 12.1 is plotted the evolution of the density as a function of time on the [0, 10] interval. Blue
circles result from the full Baym-Kadanoff calculation, and orange crosses are obtained in the Keldysh
formalism presented above, starting from the same value of R<(0, 0) as the triple-contour calculation. One
sees that both algorithms converge towards the same solution, n = 0.5, but following a different evolution
even if they share the same starting point. The green line is also a two-branch calculation, this time using as
starting point the value obtained at the end of the contour, R<(tmax, tmax). This solution is found to already
be in the steady-state limit.

In order to verify that the triple-contour and double-contour of the NCA equations indeed yield the
same physical quantities at long times, we also plot in Fig. 12.2 the lesser and greater components of the
Green’s function G(tmax, t) for t ∈ [12, tmax]. As both sites are equivalent, G00(t, t′) = G11(t, t′) and
G01(t, t′) = G10(t, t′). Full blue and orange lines are obtained using the Keldysh contour formulation of
the equations, and lie on top of the green and red dashed lines that result from the full out-of-equilibrium
method on the Baym-Kadanoff contour.

12.2 Steady-state NCA

12.2.1 Formalism
If the local Hamiltonian is time-independent, it is possible for the system to reach a well-defined steady-

state. All quantities in Eqs. (12.1) and (12.2) then only depend on the time difference t− t′. In the Keldysh
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Figure 12.2 – Diagonal and off-diagonal components of the lesser and greater components of the Green’s
function G(tmax, t) for t ∈ [12, tmax] after a quench in U from 0 to 3 at initial time.

formalism, this means pushing the starting point of the contour from 0 to−∞, so that the greater and lesser
components of the local states propagator write

i∂tR
>(t) = HlocR

>(t) +

∫ t

0

dt̄S>(t− t̄)R>(t̄), (12.6a)

i∂tR
<(t) = HlocR

<(t) +

∫ t

−∞
dt̄S>(t− t̄)R<(t̄)−

∫ 0

−∞
dt̄S<(t− t̄)R>(t̄). (12.6b)

The NCA equation becomes

S>(t) = i
∑

ab

(
d†aR

>(t)db∆
>
ab(t)− daR>(t)d†b∆

<
ba(−t)

)
, (12.7a)

S<(t) = −i
∑

ab

(
d†aR

<(t)db∆
<
ab(t)− daR<(t)d†b∆

>
ba(−t)

)
. (12.7b)

We are now interested in computing these different functions between −tmax and tmax. The initial con-
dition of the greater component is R>(0) = −i1. For the lesser component, the initial condition would
correspond to the value at −∞ in which the state is initially prepared, but this information is anyway lost
once the system has reached the steady state.

In many physical applications, a time evolution is not suited to solve Eq. (12.6) as functions expand
to large times while oscillating. We therefore move to frequency space. For the greater component, we
introduce R̃>(t) = R>(t)θ(t), whose spectral function is iR>(ω)/2π, so that

R̃>(z) =
1

2π

∫ +∞

−∞

iR>(ω)

z − ω dω. (12.8)

On the real frequency axis, this yields

R̃>(ω) =
1

2π

∫ +∞

−∞

iR>(ω′)
ω′ − ω + iη

dω′. (12.9)

The Volterra equation for R̃>(t) is almost identical to that of R>(t) with an additional delta function and,
importantly, infinite bounds for the time integration

i∂tR̃
>(t) = δ(t) +HlocR̃

>(t) +

∫ +∞

−∞
dt̄ S̃>(t− t̄)R̃>(t̄), (12.10)
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where S̃>(t) = S>(t)θ(t). In frequency space, this equation writes

R̃>(ω) =
[
ω −Hloc − S̃>(ω)

]−1

, (12.11)

and the greater component of the local states propagator is then simply obtained as

R>(ω) = 2iImR̃>(ω). (12.12)

Eq. (12.6b) can also be rewritten in terms of convolutions in time

i∂tR
<(t) = HlocR

<(t) +

∫ +∞

−∞
dt̄S̃>(t− t̄)R<(t̄)−

∫ +∞

−∞
dt̄S<(t− t̄)R̄>(t̄), (12.13)

where R̄>(t) = R>(t)θ(−t). Moving to Fourier space, one obtains

ωR<(ω) = HlocR
<(ω) + S̃>(ω)R<(ω)− S<(ω)R̄>(ω), (12.14)

which rewrites
R<(ω) = −

[
ω1−Hloc − S̃>(ω)

]−1

S<(ω)R̄>(ω). (12.15)

Note that the function being inverted, ω1 −Hloc − S̃>(ω), is the same as in Eq. (12.11). We detail in the
next Section how these steady-state NCA equations are solved in practice.

Green’s functions are then obtained as

G>ab(t) =
i

Z
Tr
(
R<(−t)daR>(t)d†b

)
, (12.16a)

G<ab(t) = − i

Z
Tr
(
R>(−t)daR<(t)d†b

)
, (12.16b)

where the partition function is
Z = iTr

[
R<(0)

]
. (12.17)

12.2.2 Implementation
Greater component

The equations for the greater components are

R̃>(ω) =
[
ω −Hloc − S̃>(ω)

]−1

, (12.18a)

S>(t) = i
∑

ab

(
d†aR

>(t)db∆
>
ab(t)− daR>(t)d†b∆

<
ba(−t)

)
. (12.18b)

As these do not depend on R< and S<, they can be solved first, and we choose an iterating scheme going
back and forth in Fourier space. Starting from a guess for R>(t), we use Eq. (12.18b) to obtain S>(t)
from which we construct S̃>(t) = S>(t)θ(t). Because this function is stored on a discrete time mesh and
has finite support, its discontinuity in time brings a non-negligible computational error when computing the
Fourier transform S̃>(ω). This problem can be handled by substracting a function which Fourier transform
is analytically known, for instance

fs(t) = −if0θ(t)
[
e−γt−iε1t − 2e−

γt
2 −iε2t

]
, (12.19a)

fs(ω) =
f0

ω − ε1 + iγ
− 2f0

ω − ε2 + iγ
2

. (12.19b)

f0, ε1,ε2 and γ are determined in order to compensate for the discontinuities of S̃> and ∂tS̃>. R̃>(ω) is
obtained using Eq. (12.18a) and we recoverR> throughR>(ω) = 2iImR̃>(ω). A newR>(t) is determined
using a simple Fourier transform.
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Figure 12.3 – Diagonal and off-diagonal components of the lesser and greater components of the Green’s
function G(t) in the steady-state regime for a half-filled two-orbital model.

Once R>(t) has been fully converged, we construct R̄>(t). To obtain its Fourier transform, we use

fr(t) = −if0θ(−t)
[
eγt−iε1t − 2e

γt
2 −iε2t

]
, (12.20a)

fr(ω) = − f0

ω − ε1 − iγ
+

2f0

ω − ε2 − iγ
2

, (12.20b)

where f0, ε1,ε2 and γ are determined in order to compensate for the discontinuities of R̄>and ∂tR̄>.

Lesser component

The equations to solve for the greater components are

R<(ω) = −
[
ω1−Hloc − S̃>(ω)

]−1

S<(ω)R̄>(ω), (12.21a)

S<(t) = −i
∑

ab

(
d†aR

<(t)db∆
<
ab(t)− daR<(t)d†b∆

>
ba(−t)

)
. (12.21b)

These are solved iteratively, using Fourier transforms to go back and forth between real and frequency
space. Note also that if R< is a solution to these equations, so is any function proportional to it. However,
because the partition function is proportional to this component of the propagator, both will yield the same
Green’s function. This is a manifestation of the initial condition problem addressed above, and the fact
that the physical solution is independent of it. We choose the solution that satisfies Z = 1 to guarantee its
unicity, as it is the value we expect in the Keldysh formalism.

12.2.3 Benchmark
Let us revisit the previous benchmark of Section 12.1.2 where we performed a quench in U in a multi-

orbital system. First, the density per spin obtained in the steady-state calculation is indeed found to be 0.5,
as expected in the half-filled case. We plot in Fig. 12.3 the greater and lesser components of the steady-state
Green’s function G(t) for t ∈ [−5, 5]. Full blue and orange lines are extracted from the out-of-equilibrium
solver on the Keldysh contour, while the green and red dashed lines are the results of the steady-state
method. Both results lie on top of each other. In this example, the steady-state solver is more than 100
times faster than its out-of-equilibrium counterpart, as it only has to solve a single time evolution.
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12.3 Current through a quantum dot
The model used to benchmark the algorithms in Sections 12.1.2 and 12.2.3 reaches an equilibrium

state in the long-time limit, that could be studied simply by using the equilibrium NCA solver presented in
Section 11.1. In order to check the validity of our algorithms in an out-of-equilibrium steady-state, let us
now consider the current flowing through a quantum dot.

A single energy level is located between a left (L) and a right (R) lead, that are both considered infinite
and uncorrelated. The Hamiltonian of the system is

H = −µ
∑

σ

d†σdσ + Und↑nd↓ +
∑

σk
a∈{L,R}

γk

(
c†σkadσ + h.c.

)
, (12.22)

where d†σ (resp. dσ) creates (resp. annhilates) an electron with spin σ on the dot, ndσ = d†σdσ is the
density operator, and c†σka ( resp. cσka) creates (resp. annihilates) an electron with spin σ and momentum
k in the a = L,R lead. µ is the chemical potential of the system, U the Coulomb repulsion and γk a
momentum-dependent hopping term between the impurity level and the leads.

At t = −∞, γk is considered to be null and the leads are both at equilibrium with respective chemical
potentials µL and µR. The hoppings are then turned on and we let the system evolve until it reaches a
steady-state. If µL > µR, a current will flow from the left lead to the right lead. We assume that

µL = µ+
V

2
, µR = µ− V

2
, (12.23)

so that the chemical potential difference is symmetric around the impurity level. The noninteracting Green’s
function of the a lead for particles with spin σ, momentum k is denoted gσka.

The current per spin is [106]

Iσ =
i

2

∑

k

γk

[
〈c†σkLdσ〉 − 〈d†σcσkL〉+ d†σcσkR〉 − 〈c†σkRdσ〉

]
. (12.24)

We introduce the Green’s functions

G<d→a,σk(t− t′) = i〈c†σka(t)dσ(t′)〉, (12.25a)

G<a→d,σk(t− t′) = i〈d†σ(t)cσka(t′)〉. (12.25b)

These are related to the noninteracting Green’s functions of the leads through [106, 95]

G<d→a,σk(ω) = γk
[
g<σka(ω)G++

σ (ω)− g−−σka(ω)G<σ (ω)
]
, (12.26a)

G<a→d,σk(ω) = γk
[
g++
σka(ω)G<σ (ω)− g<σka(ω)G−−σ (ω)

]
. (12.26b)

Introducing the left and right hybridization functions ∆σa =
∑

k γ
2
kgσka, we finally obtain

Iσ =
1

2

∫
dω

2π

[(
∆<
σL(ω)−∆<

σR(ω)
)
G>σ (ω)−

(
∆>
σL(ω)−∆>

σR(ω)
)
G<σ (ω)

]
. (12.27)

Let us now compute the current that flows through the quantum dot as a function of V with all three
NCA algorithms presented in this Thesis. The retarded hybridization functions, ∆R

σa, are initialized to a
semicircular density of states of width 12D, where D = 1 is our energy unit. The Keldysh component is
obtained through the fluctuation-dissipation theorem, see Eq. (9.6),

∆K
σL(ω) = tanh

(
β(ω − V/2)

2

)[
∆R
σL(ω)−

(
∆R
σL(ω)

)∗]
, (12.28a)

∆K
σR(ω) = tanh

(
β(ω + V/2)

2

)[
∆R
σR(ω)−

(
∆R
σR(ω)

)∗]
. (12.28b)

The greater and lesser components are then

∆>
σa(ω) =

1

2

[
∆K
σa(ω) + ∆R

σa(ω)−
(
∆R
σa(ω)

)∗]
, (12.29a)

∆<
σa(ω) =

1

2

[
∆K
σa(ω)−∆R

σa(ω) +
(
∆R
σa(ω)

)∗]
. (12.29b)
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Figure 12.4 – Current flowing through a quantum to as a function of the chemical potential difference V
between the leads. β = 2, U = 3, µ = 1.5.

In the Baym-Kadanoff code, the left and right Matsubara hybridization function are also initialized to a
semicircular density of states of width 12D, and the mixed component is

∆eσa(t, τ) = ∆R
σa(t)∆M

σa(β − τ). (12.30)

In all cases, the full hybridization function is the sum of the left and right ones

∆σ = ∆σL + ∆σR. (12.31)

We choose β = 2, U = 3, µ = 1.5. The IV-characteristics of the quantum dot is plotted in Fig. 12.4
using the steady-state solver (blue dots), the Keldysh contour formulation (dashed orange lines) and finally
the full triple contour calculation presented in the previous Chapter (black crosses). When the chemical
potential difference V is 0, no current is flowing trough the system. As the bandwidth of the semicircular
density of states of the leads is 12, the current saturates for voltages V ≥ 12. All three methods perfectly
agree in their long-time limit.
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Chapter 13
Electric-field-driven insulator-to-metal
transition in Ca2RuO4

In a world relying more than ever on electronic devices, developing new materials to store and process
data has become of paramount importance. Among currently investigated materials, strongly correlated
systems are promising candidates as they display novel quantum phenomena, such as Mott transitions [74].
Applying pressure is a suitable tuning method to drive such transitions, however achieving high pressure
conditions outside a laboratory proves to be difficult. A natural alternative is to apply an electric field E to
the Mott insulator, resulting in a so-called “switching” to a metallic state.

Some transition metal oxides have already been proposed as candidates to build resistance RAM [105,
169], but they still require low temperature and/or high voltage (typically 1-100 kV/cm) [79, 75, 185, 156,
68]. To develop practical switching devices, recent experimental papers have focused on Ca2RuO4 as a
promising candidate. Its transition indeed appears to be driven at room temperature using a dry-battery
level voltage, resulting in a threshold field Eth ∼ 40 V/cm [115, 142, 122].

This Chapter first aims at summarizing Ca2RuO4’s properties and presenting experimental results con-
cerning its electric-field induced insulator-to-metal transition. In a second part, we motivate a minimal
model and present preliminary results using the NCA approximation presented in the previous Chapters.

13.1 Ca2RuO4: basic properties and model Hamiltonian
Ca2RuO4 is a layered perovskite with RuO2 planes forming a square lattice. The space group of this

material is Pbca [50, 23], which combines a rotation of the RuO6 octahedra around the c-axis with a tilt
around the b-axis (see Fig. 13.1a). Ruthenium atoms are in a 4d4 configuration. A structural transition
occurs at TS ∼ 356K: above TS , RuO6 octahedra have a long c-axis (L-Pbca structure), while below TS
they have a short c-axis (S-Pbca structure).

Ca2RuO4 is part of a family of Ruthenium-based compounds with chemical formulae Srn+1RunO3n+1

and Can+1RunO3n+1 [66], that exhibit remarkable properties: unconventional superconductivity [98], va-
riety of magnetic phases [118, 29], nematicity and metal-insulator transitions [2, 114, 154, 50, 116, 117].
We are specifically interested in the metal-insulator transition occurring at TM ∼ 357K (see Fig. 13.1b),
that has been shown to be caused by the structural transition between long and short RuO6 octahedra [2, 58].

This material can be described by the following three-band Hubbard-Kanamori Hamiltonian for the t2g
orbitals 1 [78, 58, 155]

H =
∑

iaσ

εaniaσ −
∑

aσ
〈ij〉

γac
†
iaσcjaσ + J

∑

i,a6=b

(
c†ia↑cib↑c

†
ib↓cia↓ + c†ia↑cib↑c

†
ia↓cib↓

)

+ U
∑

ia

nia↑nia↓ + (U − 2J)
∑

i,a6=b
nia↑nib↑ + (U − 3J)

∑

iσ,a<b

niaσnibσ.

(13.1)

1. For a broad introduction to Hund’s metals, see Section 1.1.2.
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(a) Ca2RuO4 Pbca crystal structure. Pink dots denote
ruthenium atoms, blue ones oxygen atoms, and white
ones calcium atoms. [58]

(b) Ca2RuO4 ab plane electrical resistivity as a func-
tion of temperature. Inset: Detail of the abrupt jump
at TM ∼ 357K, that coincides with the structural tran-
sition between long and short octahedra. [2]

Figure 13.1

Figure 13.2 – Sketch of the effect of the structural transition on the t2g orbitals in Ca2RuO4.

Here a = xy, xz, yz denotes one of the t2g orbitals, c†iaσ (resp. ciaσ) creates (resp. destroys) an electron on
site i, orbital a, spin σ, and niaσ = c†iaσciaσ is the number operator. εa is the energy level of orbital a and
γa the hopping amplitude to neighbouring sites. 2 For both S-Pbca and L-Pbca structure, the xy-bandwidth
is twice as large as the xz/yz one: 4γxy ∼ 2.6 eV and 4γxz/yz ∼ 1.3 eV. U ∼ 2.3 eV is the Coulomb
repulsion and J ∼ 0.4 eV the Hund’s coupling.

Above TM , the three t2g orbitals roughly have the same energy: εxy/xz/yz = ε. Because Ru atoms
have a 4d4 configuration, Ca2RuO4 is in a metallic state. As TM ∼ TS , the octahedra shorten and the xy
orbital is pushed to lower energy, which results is an effective crystal-field splitting ∆ ∼ 0.3 eV with the
xz/yz orbitals: εxz/yz = ε and εxy = ε −∆. The xy orbital is completely filled, and the xz/yz ones are
half-filled. The Coulomb repulsion and the Hund’s coupling have been shown to open a gap and therefore
create a Mott insulator in the material [58, 155]. This mechanism is illustrated in Fig. 13.2.

Apart from temperature, Ca2RuO4’s insulator-to-metal transition can also be driven by a 0.5 GPa pres-
sure at room temperature [114, 66]. Sr substitution also shows that the ground state of Ca2−xSrxRuO4

varies from a Mott insulator (x < 0.2) to an unconventional superconductor (x = 2) [98]. However, none
of these techniques can be easily engineered in an electronic device.

13.2 Electric-field driven material
It has recently been discovered that the switching from an insulator to a metal can be driven by surpris-

ingly small electric fields, and can be stably repeated at least three thousand times, opening a new realm of
possible industrial applications for Ca2RuO4. The easiest way to create a metal from a Mott insulator using
an electric field is through Zener breakdown, i.e. by applying a voltage at least as big as the energy gap.
As the latter is 0.2 eV and the lattice spacing is 5.45 Å, this would lead a threshold energy Eth ∼ 4MV/cm
[115].

Nakamura et al. [115] first explored the effet of an applied electric-field on Ca2RuO4 at T = 295K <
TS . The current-voltage (IV) characteristics they obtained is presented in Fig. 13.3a. Red (resp. blue)

2. Only hoppings between orbitals of the same type are allowed.
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(a) IV characteristics, T = 295K. [115] (b) Electric field E as function of current J . [122]

Figure 13.3 – Out-of-equilibrium properties of electric-field- and current-driven Ca2RuO4.

dots correspond to an increasing (resp. decreasing) voltage, showing a large hysteresis during the voltage
sweeps. At V ∼ 0.8V, the current jumps abruptly, signalling the switching. This corresponds to a sur-
prisingly low value of the threshold field Eth ∼ 40V/cm. X-ray diffraction measurements confirm that this
switching is accompanied by a bulk first-order structural transition.

Okazaki et al. [122] were able to follow the unstable region of the hysteresis by inducing current in-
stead of voltage in the material. Their results at T = 310K are presented in Fig. 13.3b, different symbols
corresponding to different samples. The E − J curve exhibits a peak at Eth ∼ 30V/cm, which is very close
to the reported value in Ref. [115]. The non-monotonous behaviour confirms an intrinsic non-linearity in
Ca2RuO4 and shows that the current is a more appropriate control parameter.

As the metal-insulator transition is also driven by temperature, one should be careful not to induce Joule
heating in the material. In Ref. [115], the authors compared the switching obtained using pulses of different
lengths (10 to 100 ms), showing that the latter, and therefore the heat induced, is not a decisive factor.
However, a recent study pointed out that localized heating can occur, caused by flowing currents, and lead
to a misinterpretation of the electric-field induced results [103].

In order to settle this discussion, it is therefore desirable to construct a theoretical model for Ca2RuO4

and compute the value of the voltage one needs to apply in order to drive the insulator-to-metal transition.

13.3 Theoretical model

13.3.1 From a static electric field to a linear voltage drop

To keep notations simple, let us first consider the example of a simple 1D chain, that will naturally
extend to the 3D case. An electric field is applied along the axis of the chain, E = Eux with E > 0. In the
temporal gauge, the vector potential A and the scalar potential φ respectively write

A(t) = −Etux , φ(x, t) = 0. (13.2)

The vector potential is then incorporated in the Hamiltonian as a Peierls term, a phase that modifies the
hopping amplitudes [49]. Labelling Hint the interaction part of Eq. (13.1), the system subject to an electric
field is thus described by the following time-dependent Hamiltonian 3

Htemp(t) =
∑

jaσ

εanjaσ +Hint −
∑

jaσ

γa

(
eiV tc†j+1aσcjaσ + h.c.

)
, (13.3)

where V = Es > 0 with s the lattice spacing.

3. We add the subscript ‘temp’ to the Hamiltonian to specify that we work in the temporal gauge.
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Figure 13.4 – Voltage drop in a 3D material subject to an electric-field applied along the body-diagonal
direction. The central atom (red) is at voltage V0. Its three neighbors depicted in darker blue are at V0 + V ,
and its three neighbors in lighter blue at V0 − V . [102]

The corresponding action for the system writes

Stemp =

∫ ∑

jaσ

c†jaσ(t) (εa − i∂t) cjaσ(t) +

∫
Hint(c

†
jaσ(t), cjaσ(t))

−
∫ ∑

jaσ

γa
(
eiV tcj+1aσ(t)cjaσ(t) + h.c.

)
.

(13.4)

We now introduce the following gauge transformation

cjaσ → eijV tcjaσ, (13.5)

in order to rewrite the action of the system in the Coulomb gauge

SCoul =

∫ ∑

jaσ

c†jaσ(t) (εa − i∂t + jV ) cjaσ(t) +

∫
Hint(c

†
jaσ(t), cjaσ(t))

−
∫ ∑

jaσ

γa (cj+1aσ(t)cjaσ(t) + h.c.) .
(13.6)

When subject to a static electric field, the system is therefore equivalently described by the time-dependent
Hamiltonian of Eq. (13.3) or the following time-independent Hamiltonian

HCoul =
∑

jaσ

(εa + jV )njaσ +Hint −
∑

〈jl〉
aσ

γac
†
jaσclaσ. (13.7)

This equation simply describes the material being subject to a linear voltage drop along the x direction,
where V is the voltage difference between two adjacent sites.

This construction naturally extends to the 3D case: if the electric field is applied along the body-diagonal
direction (111), it will create layers of atoms with a given voltage, as depicted in Fig. 13.4. Considering an
atom with voltage V0, its (1,0,0), (0,1,0) and (0,0,1) neighbours will have voltage V0 +V , while the (-1,0,0),
(0,-1,0) and (0,0,-1) ones will bear voltage V0 − V .

13.3.2 DMFT setup
The Hamiltonian from Eq. (13.6) describes the t2g orbitals of the Ru atoms on the full lattice, in the

presence of a static electric field. However, as we have already seen thoroughly through this Thesis, solving
exactly the fully interacting problem is beyond what is possible with modern algorithms. We therefore
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Figure 13.5 – DMFT embedding of a single Ru atom.

consider the Dynamical Mean-Field Theory (DMFT) approximation: 4 an isolated Ru atom, considered as
an impurity, is self-consistently embedded into the lattice. We can formally consider that we single out an
atom with voltage 0, so that the local Hamiltonian describing the energy levels and interactions of the t2g
orbitals is

Hloc =−
∑

σa

εanσa + U
∑

a

n↑an↓a + (U − 2J)
∑

a 6=b
n↑an↑b

+ (U − 3J)
∑

σ,a<b

nσanσa + J
∑

a 6=b

(
d†↑ad↑bd

†
↓bd↓a + d†↑bd↑bd

†
↓ad↓b

)
.

(13.8)

Note that we write creation and annihilation operators for the orbital a, spin σ, d†σa and dσa as it is the usual
convention in the literature for impurities. The density operator is then nσa = d†σadσa.

The embedding of the impurity is sketched in Fig. 13.5. As there is a voltage drop in the system, we
introduce two functions F̂+

σa(ω) and F̂−σa(ω) that describe the hybridization of the Ru atom with layers
bearing voltages respectively positive and negative. As we only allow hoppings between orbitals of the
same type, see Eq. (13.1), these hybridization functions are diagonal in σ and a. We also introduce a flat
heat bath Γ̂(ω) for the system to thermalize, as the electric field brings energy to the material [11, 95, 102]

ΓRσa(ω) = −iΓ, (13.9a)

ΓKσa(ω) = −2iΓtanh

(
βω

2

)
. (13.9b)

In the following, we consider Γ = 0.1. The full hybridization of the system then takes the form

∆̂σa(ω) = F̂+
σa(ω) + F̂−σa(ω) + Γ̂σa(ω). (13.10)

In order to close the self-consistency equations, we choose to work on a Bethe lattice. Due to its tree-like
structure, we can easily assign a zero voltage to the central site, and set half of its neighbours at potential
+V and the other half at potential −V , so that the above construction stays unchanged. The hybridization
functions to the positive and negative voltage layers write

F̂±σa(ω) = γ2
aĜ
±
σa(ω), (13.11)

where Ĝ± is the Green’s function of sites on the ±V layers (neighbours of the impurity). Such an approx-
imation has been shown to yield physical results in Refs. [102, 126]. We also assume that the system is
uniform and has reached a well-defined steady-state in the presence of current [95, 102]

Ĝ±σa(ω) = Ĝσa(ω ± V ). (13.12)

We therefore have derived a closed set of equations in order to obtain the local Green’s function of the
material in the long-time limit where a steady state has settled. Provided the steady-state impurity solver we
presented in Chapter 12, these equations can be solved self-consistently according to the following iterating
scheme:

4. For a complete introduction to DMFT, see Chapter 2.
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∆̂σa(ω) = Γ̂σa(ω) + F̂+
σa(ω) + F̂−σa(ω) Impurity solver

F̂±σa(ω) = γ2
aĜσa(ω ± V ) Ĝσa(ω)

The electronic current per spin is derived in Appendix E.1 and writes

Jσ =
∑

a

γ2
a

∫
dω

2π
G<σa(ω)

[
G>σa(ω + V )−G>σa(ω − V )

]
. (13.13)

Equilibrium limit

At equilibrium, there is no voltage drop in the system, and no heat bath is required for thermalization.
Eq. (13.10) therefore reduces to

∆σa(iωn) = 2γ2
aGσa(iωn) (13.14)

The DMFT approximation is solved self-consistently according to the same iterating scheme as presented
above.

13.3.3 Determining the crystal field splitting across the transition
The local HamiltonianHloc describing the t2g orbitals on a single Ru atom, Eq. (13.8), depends explic-

itly on the crystal-field ∆, as εxz = εyz = εxy + ∆. The induction of voltage in Ca2RuO4 is expected to
drive the insulator-to-metal transition and therefore reduce this splitting of the bands. In order to model this
effect, we introduce the Hamiltonian of the lattice as an elastic term

Hlatt =
k

2
Q2, (13.15)

where Q is the structural mode amplitude and k its stiffness. Labelling P̂σ = n̂σxy − 1
2 (n̂σxz + n̂σyz) the

polarization operator, the coupling to the electrons takes the form

He-l =
∆

2

∑

σ

P̂σ[Q]. (13.16)

We can assume the crystal field to be linearly dependent on the structure mode Q

∆ = gQ, (13.17)

where g is the electron-lattice coupling parameter. Such a linear relation has been checked using DFT
calculations in various complex oxide metals [124, 55]. At equilibrium, and in the long-time limit where a
steady state is established, Q is obtained by minimizing the total energy

kQ =
g

2

∑

σ

(
P̂σ[Q]− P̂σ[Q = 0]

)
. (13.18)

As P̂↑ = P̂↓, this equation can be equivalently rewritten for the crystal-field splitting as

P̂↑[∆] = P̂↑[∆ = 0] +
k

g2
∆. (13.19)

The constants k and g only depend on the structure of the material, and thus can be obtained from
varying q in DFT calculations. We however choose in this work a heuristic determination of the k/g2 ratio
at equilibrium (see below for more details). For an induced voltage V 6= 0, the value of the effective crystal
field is then obtained by intersecting the polarization vs ∆ curve with Eq. (13.19).
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Figure 13.6 – Equilibrium zero-frequency extrapolation of the spectral function A(ω) as a function of ∆
for U = 7 (left), and as a function of U for ∆ = 3.4 (right). β = 10.

0 1 2 3
∆

0.0

0.2

0.4

P
↑

=
n
↑x
y
−

1 2
(n
↑x
z

+
n
↑y
z
)

β =5

β =10

β =20

P↑(0) + k
g2 ∆ fit

Figure 13.7 – Equilibrium evolution of the polarization for ↑ spins as a function of ∆ for different temper-
atures. The red dashed line is the linear fit condition from Eq. (13.19). U = 7.

13.4 Preliminary results

13.4.1 Equilibrium
First, we choose a set of parameters in order to address the physical regime of the electric-field driven

material. As emphasized in Section 13.1, the xy bandwidth is twice as large as the xz/yz ones, so that
we choose γxz/yz = 1 to be our energy unit, and γxy = 2. The ratio of the Hund’s coupling to the
Coulomb repulsion is considered to be J/U = 0.1, and we place the metal-insulator transition induced by
the structural change between long and short octahedra at β = 10.

At this temperature and U = 7, we plot in Fig. 13.6 (left) the evolution of spectral intensity at zero
frequency as a function of crystal-field splitting for the xz and yz orbitals (blue curve) and for the xy orbital
(orange curve). All three bands are metallic at ∆ = 0 and become insulating as ∆ reaches values higher
than 3. As explained in Section 13.1, the xy orbital becomes completely filled, while a Mott gap opens in
the other two orbitals. To justify the latter, we plot in Fig. 13.6 (right) the evolution of Axy/yz(ω = 0) as
a function of the Coulomb repulsion for ∆ = 3.4. These bands have a metallic character at U = 0 and
undergo a Mott transition with Uc ∼ 6. Full Matsubara Green’s functions are presented in Appendix E.2
for completeness.

We fix U = 7 as it seems to be a reasonable choice to describe the insulating system at equilibrium.

We plot in Fig. 13.7 the polarization for ↑ spins, P↑ = n↑xy− 1
2 (n↑xy + n↑yz), as a function of crystal-
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Figure 13.8 – Evolution of the polarization for ↑ spins as a function of ∆ for the equilibrium and the
voltage-driven system. The red dashed line is the linear fit condition from Eq. (13.19).

field splitting for β = 5 (blue), β = 10 (orange) and β = 20 (green). As mentioned above, the structural
transition is considered to happen at β = 10. We therefore fit P↑(0) + (k/g2)∆ from Eq. (13.19) between
the β = 5 and 10 curves (red dashed line). It intersects the blue curve only at ∆ = 0, so that the system is
in the long octahedra phase and is therefore a metal at β = 5. On the other hand, it intersects the orange
and green curves for ∆ 6= 0, meaning the system has ordered in the short octahedra phase and is a metal for
β higher than 10. This fit yields k/g2 ∼ 0.29.

Note that the equilibrium solution of Eq. (13.19) for β = 10 is ∆ ∼ 1.6. For this value of the crystal
field, the system is actually a polarized metal and not an insulator according to Fig. 13.6 (left). A higher
value of the Coulomb repulsion should therefore be used to correctly describe the metal-insulator transition,
but we keep this value for now as it has been used in the out-of-equilibrium calculations we present next.

13.4.2 Out-of-equilibrium
We now move to the study of Ca2RuO4 subject to a voltage difference V . The inverse temperature is

set to β = 10 and the Coulomb repulsion to U = 7.
In Fig. 13.8 is plotted the evolution of P↑ as function of the crystal field for different values of the voltage

V (dotted lines), together with the equilibrium solution (green) and the P↑(0) + (k/g2)∆ fit (red line).
The latter intersects all the voltage-driven curves at ∆ = 0, which means the out-of-equilibrium system
is a metal. Applying an electric field to the insulating system drives the insulator-to-metal transition, as
expected from experiments. The values of V studied are high and should be lowered. However, the steady-
state NCA equations used here are hard to converge as one lowers the voltage. The support of the local
states propagators R>(t) and R<(t) indeed becomes larger and, as these functions oscillate in time, this
requires good precision on both their time and frequency representations.

More efficients way of solving the steady-state NCA equations therefore have to be developed in order
to reach low voltages. Among the ideas under current development are a multiprocessor parallelization and
the use logarithmic grids for Fourier transforms.
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Chapter 14
Conclusion

In this Thesis, we have considered two complementary approaches in the development of new algo-
rithms to study strongly correlated systems in and out of equilibrium. On the one hand, we started from ex-
periments in realistic materials and developed methods to reproduce their emerging properties. On the other
hand, we studied minimal models that we turned into pure algorithmic problems for which we searched the
most efficient and accurate algorithms.

Following the first approach, photoemission data on Sr2IrO4 led us to identify the orbital characters of
the bands located near the Fermi surface and construct an effective tight-binding model to describe them.
We then used existing techniques to incorporate correlations, through a cellular extension of DMFT and a
hybridization-expansion impurity solver. This allowed us to justify a strong momentum-space differentia-
tion of the electronic structure at low doping level. The Fermi surface consists of pockets centered around
(π/2, π/2) while a pseudogap opens near (π, 0). We found an excellent qualitative agreement between our
results and the photoemission experiments that motivated this work. Further studies should be conducted
to gain more insight on the influence of electronic correlations, as well as the elusive superconductivity of
this material.

In a very different context, we got interested in the surprisingly low fields required to drive the insulator-
to-metal transition in the Hund’s metal Ca2RuO4. Reexpressing the effects of the static electric field as a
linear voltage drop in the material, we presented a DMFT approximation for the nonequilibrium steady-
state that settles at long times. In order to solve the quantum impurity problem, we decided to use NCA, a
systematic approximation in the hybridization expansion that analytically sums a subset of diagrams. We
derived the infinite-time limit of these equations and designed a solver that directly works in the steady-
state regime. The preliminary results we presented for the electric-field driven metal-to-insulator transition
in Ca2RuO4 are very promising. This project is still under current investigation.

The second approach led us to study new developments in determinant Monte Carlo algorithms for
fermionic systems. At equilibrium, we presented an algorithm that allows the computation of dynamical
quantities such as the self-energy of full lattice systems. We regrouped a factorial number of diagrams into
an exponential sum of determinants, hence drastically reducing the fermionic sign problem. By comparing
results for the two-dimensional Hubbard model with those obtained from diagrammatic Monte Carlo, we
showed that we can reach higher perturbation orders and greater accuracy for the same computational effort.

Similar ideas were explored in the out-of-equilibrium version of this algorithm. We revisited the real-
time diagrammatic quantum Monte Carlo algorithm in the LO basis, and showed that vacuum diagrams
automatically vanish in this formalism without the need of an exponential sum. In an importance sampling
procedure, we pointed out that this allows the algorithm to directly reach the steady-state limit as only
interaction times in the vicinity of the measurement time contribute. Massive cancellations between LO
configurations however bring a huge sign problem. We tried to reduce the overall error bar by regrouping
contributions in order to optimize the sign problem, both using heuristic patterns and machine learning
techniques. We were able to greatly reduce the variance, but not enough to compete with the original
algorithm formulated on the Keldysh contour.

In all these diagrammatic methods, we only computed contributions to the perturbation series. The
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latter tend to become divergent for large interactions as poles appear in the complex plane. An equally
difficult algorithmic challenge thus consists in using resummation techniques to evaluate the series beyond
its convergence radius and should be addressed next.

Despite these current limitations, new algorithms have changed the way theoreticians study strongly
correlated systems. The years to come will undoubtedly bring new exciting developments that will allow
us to gain a deeper understanding of the exciting phenomena taking place in these compounds. This paves
the way to design new materials, such as solar cells or batteries, that will efficiently store data or energy.
In a world relying more than ever on electronic devices but that should reinvent itself in the face of climate
change, these developments will thus bring inventive solutions that have to be engineered hand-in-hand
with the experimental teams.
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Appendix A
Appendix to Chapter 4

A.1 Green’s functions and self-energy in the four doping regimes
In Fig. A.1, we show the Matsubara frequency Green’s functions and self-energies in the four doping

regimes discussed in the main text. These regimes are here associated with four different values of the
chemical potential corresponding to the four rows of the figure.

For µ = 1 eV the system is a Mott insulator, as can be seen from the insulating character of the two
components of the Green’s functionG±. Let us note that the real parts of the self-energies are very different,
which is responsible for the opening of the Mott gap (see main text). Increasing the doping, we enter a
pseudogap phase. At µ = 1.2 eV, the even component of the Green’s function has an insulating behavior
while the odd one is metallic. At µ = 1.34 eV, the system is in a differentiate regime. Both components
of the Green’s function are now metallic but the self-energies are still quite differentiated. Going to even
larger dopings we finally reach the uniform Fermi liquid state. Hence at µ = 1.5 eV, we see that G+ and
G− are both metallic and that the self-energies tend to be identical.

A.2 Absence of a Mott insulator with the standard periodization scheme
The usual periodization of the self-energy writes

Σ̃latt(iωn,k) =

(
ΣAA ΣAB × f(k)

ΣAB × f∗(k) ΣAA

)
, (A.1)

where

f(k) =
1

4

(
1 + e−ikx + e−iky + e−i(kx+ky)

)
(A.2a)

= cos
kx
2

cos
ky
2
e−i

kx+ky
2 . (A.2b)

k = (kx, ky) is expressed in the reduced Brillouin zone. We see from Fig. 3.4 that the degeneracy of the
(π/2, π/2) − (π, 0) path in the full Brillouin zone has to be lifted in order to create a Mott insulating gap.
However f(k) = 0 along this path and the self-energy has the following expression

Σ̃latt(iωn,k) = ΣAA × 12×2. (A.3)

Hence the self-energy only renormalizes the chemical potential in the quasiparticle equation (Eq. (4.7)) at
ω = 0, forbidding any lifting of the degeneracy between the quasiparticle bands and therefore any gap in
the band structure.
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Figure A.1 – Evolution in the even - odd basis of a) the imaginary part of the Green’s function G±(iωn), b)
the imaginary part of the self-energy Σ±(iωn), c) the real part of Σ±(iωn) as a function of the Matsubara
frequency ωn. On all plots, the even (odd) contribution is plotted in blue (orange).
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B.1 Derivation of the equations of motion
Here we show that Eq. (7.3) can be obtained from the equations of motion of the Green’s function. For

concreteness, we consider the two-dimensional Hubbard model

H = −t
∑

〈i,j〉σ
c†iσcjσ + U

∑

i

ni↑ni↓ = Hhop +Hint, (B.1)

where c†iσ creates a spin-σ electron on the site i of a square lattice, t > 0 is the nearest-neighbor hopping and
U the onsite interaction. Note that the derivation below yields the same result for an interacting impurity
coupled to a bath or for the Hubbard atom.

The equation of motion for the imaginary-time Green’s function of two operators A and B, GA,B(τ) =
−〈TτA(τ)B(0)〉, is given by

∂τGA,B(τ) = −δ(τ)〈{A(τ), B(0)}〉 − 〈Tτ [H, A](τ)B(0)〉, (B.2)

which, in Matsubara frequencies, writes

iωnGA,B(iωn) = −G[H,A],B(iωn) + 〈{A,B}〉. (B.3)

Let us note for later use that, by writing GA,B(τ) = −〈TτA(0)B(−τ)〉, one obtains a similar expression
that involves a commutator between the Hamiltonian and B rather than A

iωnGA,B(iωn) = GA,[H,B](iωn) + 〈{A,B}〉. (B.4)

The equation of motion (Eq. (B.3)) for the one-particle Green’s function Gσij ≡ −〈Tτ ciσ(τ)c†jσ(0)〉 is

iωnG
σ
ij = −G[H,ciσ ],c†jσ

+ 〈{ciσ, c†jσ}〉. (B.5)

Using the expression for the commutators

[Hhop, ciσ] = t
∑

〈a,b〉
cbσδia, (B.6a)

[Hint, ciσ] = −Uniσ̄ciσ, (B.6b)

we find that

iωnG
σ
ij = −t

∑

〈a,b〉
δiaG

σ
bj + UGniσ̄ciσ,c†jσ

+ δij , (B.7a)

∑

〈a,b〉
(iωnδib + tδia)Gσbj = UGniσ̄ciσ,c†jσ

+ δij . (B.7b)
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Introducing the correlator Fσij = UGniσ̄ciσ,c†jσ
the above equation can be rewritten in matrix form as

Fσ = (g−1
σ −G−1

σ )Gσ = ΣσGσ. (B.8)

Note that this definition of Fσ is consistent with Eq. (7.10). We can now apply Eq. (B.4) to Fσij

iωnF
σ
ij = UGniσ̄ciσ,[H,c†jσ] + U

〈
{niσ̄ciσ, c†jσ}

〉
. (B.9)

Using the commutators

[Hhop, c
†
jσ] = −t

∑

〈a,b〉
c†aσδbj , (B.10a)

[Hint, c
†
jσ] = Unjσ̄c

†
jσ, (B.10b)

we find that ∑

〈a,b〉
(iωnδaj + tδbj)F

σ
ia = U2Gniσ̄ciσ,njσ̄c†jσ

+ 〈niσ̄〉δij . (B.11)

Introducing the correlator F̄σij ≡ U2Gniσ̄ciσ,njσ̄c†jσ
and the Hartree term ΣH,σij = 〈niσ̄〉δij the equation

above becomes
Fσg

−1
σ = F̄σ + ΣHσ . (B.12)

Using Eq. (B.8) for Fσ and Dyson’s equation we obtain

Fσg
−1
σ = ΣσGσ(G−1

σ + Σσ) = Σσ + ΣσGσΣσ, (B.13)

which yields the final result
Σσ = ΣHσ + F̄σ − ΣσGσΣσ. (B.14)

This is the relation between the self-energy and the correlator F̄σ used in Eq. (7.3). The definitions of F̄σ
and ΣHσ are respectively consistent with Eqs. (7.4) and (7.2).

B.2 Explicit cancellation of connected diagrams at order 3

Let us explicitly show the cancellation of non-self-energy diagrams in Eq. (7.9) for the specific case
V = {x1} at order 3 in U . We start by considering

Σ̃σ∅xin xout =
xin xout

(B.15)

The first term F̄σV (xout, xin) in Eq. (7.9) corresponds to all connected diagrams with two external points xin
and xout and one internal interaction vertex x1:

F̄σV (xout, xin) =
xin xoutx1

+
xin xoutx1

+
xin xoutx1

+
xin xoutx1

+

xin xoutx1

+
xin xoutx1

+
x1

xin xout

+
x1

xin xout

+ +
x1

xin xout

+
x1

xin xout

(B.16)

From this sum, we subtract the second and third terms of Eq. (7.9). The former gives

(ΣσGσ)∅(xout, x1)Σ̃σ∅(x1, xin) =
xin xoutx1

(B.17)

while the latter’s contribution is the sum of

Fσ∅(xout, xin)
(
UGσ̄{x1}(0

−)
)

=
x1

xin xout

(B.18)
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and of

Fσ{t1}(xout, xin)
(
UGσ̄∅(0−)

)
=

x1

xin xout

+
xin xoutx1

+
xin xoutx1

(B.19)

We see that the remaining contributions to the self-energy are only those that are one-particle irreducible.
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C.1 Benchmark against the ± and CDet algorithms
The table below benchmarks the contributions to the density between the CDet algorithm of Chapter 6,

the ± algorithm of Chapter 8, and the LO and mixed algorithms introduced in Chapter 9. We consider an
energy level εd coupled to a bath described by a semi-circular density of states of bandwidth 4D. We take
D as our energy unit, and parameters are β = 100, γ2 = 0.04, εd = −0.36, U = 1.2, as well as a uniform
α-shift α = 0.3. Computation effort is 240 CPU*hours for each perturbation order.

CDet ±
Order 1 −1.7013633± 5.2× 10−6 −1.7013355± 2.4× 10−6

Order 2 14.473091± 4.5× 10−5 14.472669± 7.4× 10−5

Order 3 −33.35593± 0.00025 −33.3544± 0.0022
Order 4 −431.3204± 0.0097 −431.304± 0.039
Order 5 5095.483± 0.094 5094.46± 0.82
Order 6 −16185.97± 0.30 −16166± 11
Order 7 −164346± 16 −164111± 175
Order 8 2.22929× 106 ± 162 2.2319× 106 ± 2.0× 103

Order 9 −7.87625× 106 ± 782 −7.850× 106 ± 3.0× 104

LO mixed
Order 1 −1.7013405± 2.9× 10−6 −1.7013402± 3.8× 10−6

Order 2 14.47295± 0.00020 14.47278± 0.00012
Order 3 −33.3462± 0.0077 −33.3534± 0.0047
Order 4 −431.17± 0.36 −431.271± 0.054
Order 5 5097± 10 5094.4± 1.1
Order 6 −16337± 364 −16170± 22
Order 7 −158102± 10331 −164949± 253
Order 8 1.68× 106 ± 5.0× 105 2.2207× 106 ± 6.9× 104

Order 9 EB ' result −8.12× 106 ± 1.6× 105
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D.1 Path-integral representation of R
Let H be the full Hamiltonian of the embedded system. We consider an initial coherent state of the

full system |φi〉 with eigenvalues φαi, and a final coherent state 〈φf | with eigenvalues φ∗αf . Here α is a
composite index that denotes all the possible operators on the impurity and in the bath. The propagator
between these two states is defined at imaginary time τ as

Ufi(τ) = −〈φf |e−τH|φi〉. (D.1)

We want to represent Ufi as a path integral and follow here the steps of Ref. [119]. We start by breaking
the integral between 0 and τ into M time steps of size ε = τ/M

Ufi(τ) = − lim
M→∞

〈φf |
(
e−εH

)M |φi〉. (D.2)

By inserting M − 1 times the closure relation

1 =
∏

α

dφ∗αdφαe
−∑

α φ
∗
αφα |φ〉〈φ|, (D.3)

and labeling φ0 = φi, φM = φf , we obtain

Ufi(τ) = − lim
M→∞



M−1∏

j=1

∏

α

dφ∗αjdφαj


 e−

∑M−1
j=1

∑
α φ
∗
αjφαj

M∏

j=1

〈φj |e−εH|φj−1〉. (D.4)

The product of average values between two consecutive states is

M∏

j=1

〈φj |e−εH|φj−1〉 = exp




M∑

j=1

[∑

α

φ∗αjφαj−1 − εH(φ∗αj , φαj−1)

]
 . (D.5)

The set {φα0, . . . , φαM} is now represented by a trajectory φα(τ) and we introduce

φ∗αj
(φαj − φαj−1)

ε
= φ∗α(τ)∂τφα(τ), (D.6a)

H(φ∗αj , φαj−1) = H(φ∗α(τ), φα(τ)). (D.6b)

The propagator U now takes the well-known form of a path-integral

Ufi(τ) = −
∫ φ∗α(τ)=φ∗αf

φα(0)=φαi

D [φ∗α(τ ′), φα(τ ′)] e
∑
α φ
∗
α(τ)φα(τ)

× exp

(∫ τ

0

dτ ′
[∑

α

φ∗α(τ ′)∂τ ′φα(τ ′)−H (φ∗α(τ ′), φα(τ ′))

])
,

(D.7)
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where ∫ φα(τ)

φα(0)

D [φ∗α(τ ′), φα(τ ′)] = lim
M→∞

∫ M−1∏

j=1

∏

α

dφ∗αjdφαj . (D.8)

In order to specify the local propagator for impurity states, we write explicitlyH as

H = Hloc +
∑

ka

(
Γkac

†
kada + h.c.

)
+
∑

ka

εkac
†
kacka, (D.9)

where Hloc is the local Hamiltonian of the impurity, d†a (resp. da) the creation (resp. annihilation) operator
on the impurity, a being a composite index encoding the different degrees of freedom. c†ka (resp. cka)
creates (resp. annihilates) an electron in the bath with momentum k, and Γka is a hopping amplitude
between the impurity and the bath. In this formalism, the hybridization function takes the form

∆a(iωn) =
∑

k

|Γka|2
iωn − εka

. (D.10)

We can now rewrite Eq. (D.7) by separating the Grassmann variables for the c and the d operators. We
are interested in the propagator Rfi between two coherent states of the impurity, that we label |Φi〉, with
eigenvalues Φai, and 〈Φf |, with eigenvalues Φ∗af . Identifying Grassmann variables with the corresponding
operators, the propagator has the following path-integral representation

Rfi(τ) =−
∫ d†a(τ)=Φ∗af

da(0)=Φai

D
[
d†a(τ ′), da(τ ′)

]
e
∑
a d
†
a(τ)da(τ)

× exp

(∫ τ

0

dτ ′
[∑

a

d†a(τ ′)∂′τda(τ ′)−Hloc(d
†
a(τ ′), da(τ ′))

])

×
∫

cka(0)=−cka(τ)

D
[
c†ka(τ ′), cka

]
exp

(∫ τ

0

dτ ′
∑

ka

[
c†ka(τ ′)∂τ ′cka(τ ′)

−(Γkac
†
ka(τ ′)da(τ ′) + h.c.)− εkac†ka(τ ′)cka(τ ′)

])

(D.11)

Integrating out the c variables yields

Rfi(τ) =−
∫ d†a(τ)=Φ∗af

da(0)=Φai

D
[
d†a(τ ′), da(τ ′)

]
e
∑
a d
†
a(τ)da(τ)

× exp

(∫ τ

0

dτ ′
[∑

a

d†a(τ ′)∂′τda(τ ′)−Hloc(d
†
a(τ ′), ca(τ ′))

]

. −
∫ τ

0

dτ ′dτ̄
∑

a

d†a(τ ′)∆a(τ ′ − τ̄)da(τ̄)

)
(D.12)

This path-integral expression for matrix elements motivates the expression of R as a time ordered-
exponential of operators, Eq. (11.4).
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E.1 Current computation
The electronic current per spin is defined as [106]

Jσ =
i

2

∑

a

γa

[
〈d†σac+σa〉 − 〈c†+σadσa〉+ 〈c†−σadσa〉 − 〈d†σac−σa〉

]
, (E.1)

where c†±σa (resp. c±σa) is the creation (resp. annihilation) operator on the layer with voltage ±V . We
introduce the Green’s functions

G<d→±,σa(t− t′) = i〈c†±σa(t)dσa(t′)〉, (E.2a)

G<±→d,σa(t− t′) = i〈d†σa(t)c±σa(t′)〉. (E.2b)

These are related to the impurity and the nonzero voltage layers through [106, 95]

G<d→±,σa(ω) = γa

[(
Ĝ±σa

)<
(ω)G++

σa (ω)−
(
Ĝ±σa

)−−
(ω)G<σa(ω)

]

= γa
[
G<σa(ω ± V )G++

σa (ω)−G−−σa (ω ± V )G<σa(ω)
]
,

(E.3)

G<±→d,σa(ω) = γa

[(
Ĝ±σa

)++

(ω)G<σa(ω)−
(
Ĝ±σa

)<
(ω)G−−σa (ω)

]

= γa
[
G++
σa (ω ± V )G<σa(ω)−G<σa(ω ± V )G−−σa (ω)

]
,

(E.4)

where we used Eq. (13.12). Replacing these expressions in Eq. (E.1), one finally obtains

Jσ =
∑

a

γ2
a

∫
dω

2π
G<σa(ω)

[
G>σa(ω + V )−G>σa(ω − V )

]
. (E.5)

E.2 Equilibrium Green’s functions
We plot in Fig. E.1 equilibrium Green’s function at β = 10 and U = 7 for different values of the

crystal-field ∆. We see a clear metal-to-insulator transition as the latter is increased.
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Figure E.1 – Ca2RuO4 equilibrium Green’s functions using DMFT approximation coupled to a NCA solver
for the xy orbital (left) and the xz/yz orbitals (right). β = 10, U = 7.
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We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott
insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic
structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of
pockets centered around (π/2,π/2), while a pseudogap opens near (π,0). Its physical origin is shown to be
related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime
characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels.
These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison
to recent photoemission experiments and an overall good agreement is found.

DOI: 10.1103/PhysRevB.97.155109

I. INTRODUCTION

Understanding the physical mechanism responsible for the
pseudogap in cuprate superconductors, and its interplay with
superconductivity, is still a central and very debated question
in the field of strongly correlated materials. In this respect, the
Sr2IrO4 iridate is a very interesting playground as it closely
resembles these materials. It is indeed isostructural to La2CuO4

[1] and its low-energy electronic structure is well described
by a single half-filled band because of strong spin-orbit (SO)
coupling, as shown by electronic structure calculations in the
local density approximation (LDA) [2,3]. Angular resolved
photoemission spectroscopy (ARPES), optical spectroscopy,
and resonant inelastic x-ray scattering experiments [2,4–7] as
well as scanning tunneling microscopy [8] demonstrate that
the ground state of this material is a Mott insulator. This con-
clusion is also supported by electronic structure calculations
taking into account electronic correlations [3,9]. The similarity
between the low-energy electronic structure of Sr2IrO4 and
that of cuprates has led to the quest for superconductivity upon
doping in this material [10–13].

The electronic configuration of the Ir4+ ions is {Xe}f 145d5

and Sr2IrO4 crystallizes in the K2NiF4 tetragonal structure, as
La2CuO4 or Sr2RhO4 [1]. The IrO6 octahedra are rotated about
the c axis by ∼11 deg, generating a doubled unit cell [14]. The
5d5 electronic configuration would naively lead to a metallic
state in a band theory approach. Sr2RhO4, having an identical
atomic arrangement with nearly the same lattice constants and
bond angles, is indeed found to be a Fermi-liquid metal [15].
Sr2IrO4, however, has a very strong SO coupling, a property
which was shown to modify the electronic structure near the
Fermi level in 5d systems [3,9,16–18]. This compound then
effectively reduces to a half-filled jeff = 1/2 single band near
the Fermi surface, a configuration which makes it prone to the
opening of a Mott gap as a result of repulsive interactions.

As the noninteracting Fermi surface of this material is
electronlike, the hole-doped regime of high-Tc cuprates is

to be compared with the electron-doped one of Sr2IrO4.
Several experimental groups performed ARPES measure-
ments on Sr2IrO4 to investigate the doped compound further
[5–7,19]. Spectral intensity at the Fermi surface exhibits a
strong momentum differentiation leading to the appearance
of pockets in the “nodal” region located around (π/2,π/2)
[5,19], while the ARPES spectra in the “antinodal” region
around (π,0) are suggestive of a pseudogap [5]. Note that
the nodal/antinodal terminology is inherited from the cuprate
context and does not refer to the nodes of a superconducting
gap—currently, no unambiguous evidence of superconductiv-
ity has been established.

In this paper, we construct a theoretical model of the
low-energy electronic structure of doped Sr2IrO4, treating
electronic correlation effects in the framework of cellular
dynamical mean-field theory (CDMFT) [20,21]. The Fermi-
surface spectral intensity maps displayed in Fig. 1 sum-
marize key aspects of our results. Four successive doping
regimes are found: The Mott-insulating state (not displayed
in Fig. 1) evolves into a metal with strong nodal-antinodal
differentiation at low doping. In this regime, the Fermi surface
consists of pockets around (π/2,π/2) [Figs. 1(a) and 1(b)],
while the antinodal region displays a pseudogap, as shown
below. Increasing doping further, spectral intensity appears
near the antinodes, still with a pronounced differentiation
[Fig. 1(c)]. A full Fermi surface, close to the uniform non-
interacting one, is recovered at higher doping [Fig. 1(d)].

Previous theoretical studies addressed the issue of nodal-
antinodal differentiation in this material. Reference [22] dis-
cussed the formation of nodal pockets but could not study the
pseudogap due to the limitation of the slave-boson method.
Reference [23] described the formation of the pseudogap as
a phenomenon associated with long-range antiferromagnetic
fluctuations using the fluctuation exchange approximation. The
present work is able to capture both phenomena in a strongly-
correlated regime dominated by short-range correlations.

2469-9950/2018/97(15)/155109(11) 155109-1 ©2018 American Physical Society
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FIG. 1. Spectral intensity at the Fermi surface illustrating the
evolution of the electronic structure upon increasing doping level, as
described in the text. At low doping, the Fermi surface only consists of
pockets near (π/2,π/2) and a pseudogap is found near the antinodes.
Results are obtained within CDMFT and a periodized self-energy for
U = 2 eV at T = 58 K.

This paper is organized as follows. In Sec. II, we briefly
summarize the tight-binding (TB) model of the electronic
structure established in previous works and derive an effective
model for the jeff = 1/2 states. In Sec. III, we introduce
correlations in this model and explain how to deal with
these within the CDMFT scheme. We discuss results of
such CDMFT calculations in Sec. IV and particularly the
emergence of the four doping regimes sketched above. In order
to restore translational symmetry which is broken in CDMFT,
we introduce a periodization scheme for the self-energy in
Sec. V. This allows for a calculation of the spectral intensities,
which are found to be in good agreement with the existing
ARPES measurements. We also discuss the spectral signatures
of the antinodal pseudogap. In Sec. VI, we compute and discuss
the quasiparticle band structure. Section VII is devoted to a
discussion and concluding remarks.

II. TIGHT-BINDING MODEL

In this section, we describe the electronic band structure
of Sr2IrO4, derive an effective model for the jeff = 1/2 states,
and emphasize that the low-energy states can be described by
a single-band tight-binding model defined on a periodic lattice
with a single atom per unit cell.

Our starting point is the tight-binding (TB) model intro-
duced in Refs. [24,25] describing t2g bands in the presence of
spin-orbit coupling. Because of the rotation of the IrO6 octahe-
dra around the c axis, the Sr2IrO4 unit cell is composed of two
inequivalent sites A and B. The tight-binding Hamiltonian is
then written as

H0 =
∑

k∈RBZ

ψ
†
kH0(k)ψk, (1)

where the momentum sum is over the
√

2 × √
2 reduced

Brillouin zone and the components of ψk are the electron anni-

hilation operators for all 12 orbitals in the unit cell, {ckτασ |τ =
A,B; α = dxy,dyz,dzx ; σ = ↑,↓}. It is convenient to order the
basis according to (cAdxy↑,cAdyz↓,cAdzx↓,[A ↔ B]) followed by
their time-reversed partners ([↑↔↓]). There is no coupling
between these two blocks as the system is time-reversal
invariant and we can thus only consider the first half of the
basis, taking into account that all bands are twofold degenerate.
The remaining 6 × 6 tight-binding matrix H0 is written as

H0(k) =
(

O(k) P (k)

P †(k) O(k)

)
, (2)

where P describes the hopping part of the Hamiltonian,

P (k) = e−i
kx+ky

2

⎛
⎜⎝

−4t1(k) 0 0

0 −2t2(k) 0

0 0 −2t3(k)

⎞
⎟⎠, (3)

with t1(k) = t0 cos kx

2 cos ky

2 , t2(k) = t0 cos kx+ky

2 , and

t3(k) = t0 cos kx−ky

2 . Here, k = (kx,ky) is expressed in terms
of the reciprocal vectors forming the reduced Brillouin zone.
O describes the on-site part of the Hamiltonian. It includes
the spin-orbit coupling λ Li · Si and reads

O(k) =

⎛
⎜⎝

�t + e1(t1(k)/t0)2 λ/2 −iλ/2

λ/2 0 −iλ/2

iλ/2 iλ/2 0

⎞
⎟⎠, (4)

where �t is an on-site energy difference of the dxy orbital
relative to dyz and dzx , and λ is the spin-orbit coupling
parameter. The additional term e1(t1/t0)2 accounts for the
hybridization between dxy and dx2−y2 [24]. In the following,
we consider �t = 0.15 eV, t0 = 0.35 eV, e1 = −1.5 eV, and
λ = 0.57 eV. It has been shown that these values yield a band
structure in good agreement with LDA+SO calculations [5,24].

We plot in Fig. 2 (upper panel) the six bands resulting from
the diagonalization of H0(k) along the (0,0) − (π/2,π/2) −
(π,0) − (0,0) path of the full Brillouin zone. When the eigen-
values are projected on the jeff = 1/2 states,∣∣∣∣jeff = 1

2
, ± 1

2

〉
= ∓ 1√

3
[|dxy,±〉 ± (|dyz〉,∓) ± i|dzx,∓〉)],

(5)

it can be seen that the low-energy bands essentially have
jeff = 1/2 character, as highlighted in Refs. [2,5,24,25]. It
is therefore natural to look for an effective reduced 2 × 2
Hamiltonian describing these states.

To do so, we rewrite H0 in the following basis (| 1
2 , 1

2 〉A,
| 1

2 , 1
2 〉B , | 3

2 , 1
2 〉A, | 3

2 , 1
2 〉B , | 3

2 , −3
2 〉A, | 3

2 ,−3
2 〉B):

H0(k) =
(

H1/2(k) M(k)

M†(k) H3/2(k)

)
, (6)

where the exact expressions of H1/2, M , and H3/2 are given
in Appendix A. An effective Hamiltonian is then obtained by
projecting H0 onto the jeff = 1/2 subspace,

H eff
1/2(k) = H1/2(k) + M(k)[E × 14×4 − H3/2(k)]−1M†(k),

(7)
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FIG. 2. Upper panel: Projection of the tight-binding model for the
t2g bands [Eq. (2)] on the jeff = 1/2 states. The value of the projection
ranges from 0 (black) to 1 (yellow). Lower panel: Comparison
between the full t2g model (black lines) and the effective jeff = 1/2
model from Eq. (7) (red lines) with E = 0. On both panels, bands
are plotted in reciprocal space, along the (0,0)-(π/2,π/2)-(π,0)-(0,0)
path of the full Brillouin zone. �t = 0.15 eV, t0 = 0.35 eV, e1 =
−1.5 eV, and λ = 0.57 eV.

where 14×4 is the 4 × 4 unit matrix and E is an energy scale that
is adjusted in order to best match the original band structure.

While it is difficult to have a compact expression for
this reduced Hamiltonian, one can easily diagonalize H eff

1/2
numerically for every k point of interest. This is shown (red
lines) in Fig. 2 (lower panel) together with the complete t2g

band structure (black lines). The effective model appears to
be in excellent agreement with the two low-energy bands
exhibiting a jeff = 1/2 character.

As mentioned earlier, the Sr2IrO4 crystal has a two-atom
unit cell and we expressed the tight-binding models above
in the reduced Brillouin zone in order to make contact with
experiments. Let us, however, emphasize that all sites are
actually equivalent from a purely electronic point of view in
these models. An inspection of the band structure in the reduced
Brillouin zone indeed reveals that it results from the folding
of half as many bands defined over the full Brillouin zone.
This can be seen, e.g., from the degeneracy of the bands along
the (π/2,π/2) − (π,0) path of the full Brillouin zone. As a
result, the effective model in Eq. (7) can be written as a simple
tight-binding model on a square lattice,

HTB
1/2 =

∑
ij

tij c
†
i cj , (8)

where the hopping amplitudes tij are shown as a function of
the distance |i − j | in Fig. 3 (upper panel). We see that one
obtains a good approximation of the band structure by only
keeping the nearest- and next-nearest-neighbor hopping terms
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t − t′ model

FIG. 3. Upper panel: Real-space hopping amplitudes of the effec-
tive jeff = 1/2 Hamiltonian with respect to the distance (the intersite
distance is normalized to 1). Lower panel: Comparison between
the effective jeff = 1/2 bands (red) with E = 0 and the folded
dispersion obtained by keeping only the nearest- and next-nearest-
neighbor hopping terms (t = −0.219 eV and t ′ = −0.082 eV, re-
spectively). Bands are plotted in reciprocal space, along the (0,0)-
(π/2,π/2)-(π,0)-(0,0) path of the full Brillouin zone. �t = 0.15 eV,
t0 = 0.35 eV, e1 = −1.5 eV, and λ = 0.57 eV.

(for an almost perfect agreement, it is necessary to keep eight
hopping parameters). This yields the simple energy dispersion:

ε(k) = ε0 + 2t(cos kx + cos ky) + 4t ′ cos kx cos ky, (9)

where ε0 = −0.174 eV, t = −0.219 eV, t ′ = −0.082 eV, and
k = (kx,ky) is now expressed in the basis of the full Brillouin
zone. The folding of this band in the reduced Brillouin zone
is shown together with the effective jeff = 1/2 band structure
previously derived in Fig. 3 (lower panel). Let us mention that
a similar tight-binding model was derived in Ref. [26] with the
difference that the dx2−y2 admixture was not included in their
work.

In the following, we use the effective Hamiltonian derived
in Eq. (7) Heff

1/2 = ∑
k H eff

1/2(k) to describe the low-energy
excitations of the system.

III. INTRODUCING CORRELATIONS

We model the effect of electronic correlations in Sr2IrO4

with a Hubbard Hamiltonian that introduces an energy cost for
having two electrons on the same Ir atom,

H = Heff
1/2 + U

∑
i,τ

niτ↑niτ↓, (10)

where niτσ is the occupation number on the jz = σ orbital of
the Ir atom τ = A,B in the unit cell i. In the following, we
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use U = 2 eV [5,24] and a temperature T = 1/β = 1/200 eV
� 58 K. This model is studied using cellular dynamical mean-
field theory [20,21]: The original lattice Hamiltonian (10)
is mapped on a two-site auxiliary cluster model embedded
in a self-consistent medium. The self-energy of the cluster
model �τ,τ ′ is used to construct an approximation of the
lattice self-energy where only intra-unit-cell components are
nonvanishing, i.e., �latt

iτ,iτ ′ = �τ,τ ′ . Note that the orbitals at
sites A and B are electronically equivalent and therefore
�AA = �BB and �AB = �BA. We then have the following
expression for the lattice Green’s function:

Ĝlatt(iωn,k) = {
(iωn + μ)1 − H eff

1/2(k) − �̂(iωn)
}−1

, (11)

where k is defined in the reduced Brillouin zone and both Ĝlatt

and �̂ are 2 × 2 matrices associated with the two Ir atoms in
the unit cell. The CDMFT self-consistency imposes that the
cluster Green’s function Ĝ be the same as the unit-cell Green’s
function of the lattice,

Ĝ(iωn) =
∑

k∈RBZ

{
(iωn + μ)1 − H eff

1/2(k) − �̂(iωn)
}−1

. (12)

We use a continuous-time hybridization-expansion-based
quantum Monte Carlo impurity solver (CT-HYB) [27–30] to
find the solution of the two-site cluster model, and the self-
consistent equation (12) is solved iteratively [21]. More details
are given in Appendix C. Codes necessary for the numerical
calculations were developed using the TRIQS [31] library.

IV. THE FOUR DOPING REGIMES

We first investigate the cluster quantities Ĝ and �̂ obtained
by solving the CDMFT equations. These quantities can be ex-
pressed in the basis {| 1

2 , 1
2 〉A,| 1

2 , 1
2 〉B} of the jeff = 1/2 orbitals

on sites A and B. However, because A and B are electronically
equivalent, it is convenient to work in the basis {|+〉,|−〉} of
even and odd combinations of the jeff = 1/2 orbitals, defined
by

|±〉 = 1√
2

(∣∣∣∣1

2
,
1

2

〉
A

±
∣∣∣∣1

2
,
1

2

〉
B

)
. (13)

In this basis, both Ĝ and �̂ are diagonal (see Appendix C),

Ĝ =
(

G+ 0

0 G−

)
, �̂ =

(
�+ 0

0 �−

)
. (14)

As we will discuss later, G± and �± have a direct physical
interpretation. The physics close to the node (π/2,π/2) is
indeed essentially controlled by G− and �−, while the physics
at the antinode (π,0) is controlled by G+ and �+. The reason
for this, anticipating Sec. VI and Fig. 10, is that the nodal
Fermi-surface pocket at (π/2,π/2) is associated with the
upper band (which has an antibonding/odd character), while
the nodal states are associated with the lower bonding band
with even character. The analysis of these quantities will
reveal the existence of four distinct regimes upon doping: a
Mott-insulator phase, a pseudogap regime, a differentiation
region, and, finally, a uniform Fermi-liquid state.

The electronic density n is shown as a function of the
chemical potential μ in Fig. 4 (blue curve). It displays a clear
plateau at n = 1 for μ between 0.56 and 1.16 eV, confirming
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FIG. 4. Density of states as a function of the chemical potential
μ. The cluster density is plotted in blue, while the periodized one
is plotted in orange. Dotted lines separate the four doping regimes:
below μ = 1.16 eV is the Mott-insulating phase (MI), between
μ = 1.16 and μ = 1.32 eV is the pseudogap regime (PG), between
μ = 1.32 and μ = 1.45 eV is the differentiation region (Diff), and
above μ = 1.45 eV is the uniform metal (UM). Results are obtained
with a two-site CDMFT calculation for U = 2 eV, T = 58 K.

that the system is a Mott insulator at half filling [2,3,9]. The
width of the plateau, �0.6 eV, is consistent with the recent
experiment of Ref. [6].

Figures 5 and 6 display the spectral intensities A±(ω = 0)
at the Fermi level as well as the zero-frequency self-energies
�±(ω = 0) as a function of the chemical potential μ. These
quantities are obtained by extrapolating to zero Matsubara
frequency results obtained by Monte Carlo:

A±(0) = − 1

π
lim

iωn→0
ImG±(iωn), (15)

�±(0) = lim
iωn→0

�±(iωn). (16)
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FIG. 5. Spectral intensity at the Fermi level A(0) as a function
of the chemical potential μ. The even (odd) contribution is plotted
in blue (orange). Dotted lines separate the four doping regimes (see
Fig. 4). Results are obtained with a two-site CDMFT calculation for
U = 2 eV, T = 58 K.
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FIG. 6. Extrapolation at zero frequency of the real part (upper
panel) and imaginary part (lower panel) of the self-energy �(iωn) as
a function of the chemical potential μ. The even (odd) contribution is
plotted in blue (orange). Dotted lines separate the four doping regimes
(see Fig. 4). Results are obtained with a two-site CDMFT calculation
for U = 2 eV, T = 58 K.

For completeness, we have included plots of the Matsubara
frequency Green’s functions and self-energies for several
chemical potentials in Appendix B.

These results allow one to identify four distinct doping
regimes. For chemical potentials smaller than μ = 1.16 eV,
the system is in a Mott-insulating regime and both the even
(+) and odd (−) components of the spectral intensity at
the Fermi level are zero, A±(0) = 0 (also both Matsubara
Green’s functions G±(iωn) have clear insulating character; see
Appendix B). This is compatible with the location of the Mott
plateau in Fig. 4. Correlation effects are especially visible in
the very different values of the real parts of the self-energies,
while both imaginary parts vanish. As a result, the effective
low-energy band structure is split by the real parts of the
self-energy in Eq. (12) and no excitations exist at ω = 0. More
precisely, the quasiparticle equation

det
{
(ω + μ)1 − H eff

1/2(k) − �̂(ω)
} = 0 (17)

has no solutions at ω = 0 for all values of k.
When μ lies between 1.16 and 1.32 eV, we enter a pseu-

dogap regime. The even component of the Green’s function,
which provides a coarse-grained picture of the physics close
to the antinode k = (π,0), maintains its insulating character
(A+(0) = 0), while the odd component, describing the nodal
region close to k = (π/2,π/2), becomes metallic (A−(0) = 0).
This describes a metal that only has coherent quasiparticles
close to the node. Antinodal particles are suppressed by life-
time effects, as can be seen from the more negative imaginary
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FIG. 7. Statistical weights of states dominating the Monte Carlo
sampling on the dimer cluster of the CDMFT approach, as a function
of the chemical potential μ. The dominant state is found to be the
two-electron intersite singlet (blue). As doping level is increased,
the three-electron odd-parity state catches up, denoted here as
3− (orange), as well as the fully occupied state (green), while the two-
electron triplet state (red) has a smaller weight. Other contributions
are negligible.

part of the even self-energy Im�+(0) reaching −0.1 eV in
Fig. 6, while Im�−(0) remains very small. We show below
that the spectral function exhibits a pseudogap at k = (π,0) in
this region. This regime is very reminiscent of the pseudogap
region of cuprate superconductors.

As the electron doping is further increased, for 1.32 �
μ � 1.45 eV, spectral weight starts appearing in A+(0), an
indication that quasiparticles start forming at the antinode
as well. However, there are still visible differences between
the even and odd components of the self-energies (see also
Appendix B). The regime is therefore characterized by a visible
k-space differentiation where lifetime effects are stronger at the
antinode than at the node [Im�+(0) < Im�−(0)], but do not
completely destroy quasiparticles.

Eventually, for μ above 1.45 eV, a uniform metallic regime
settles where both self-energies are identical and k-space
differentiation has disappeared. This regime would be well de-
scribed by a single-site dynamical mean-field theory (DMFT)
calculation.

It should be emphasized that boundaries delimiting these
different regimes correspond to crossovers and hence are
defined here in a qualitative manner.

The physical mechanism responsible for the formation
of the pseudogap and the strong nodal-antinodal dichotomy
observed at low doping can be revealed by studying the many-
body states associated with the two-site cluster. Calculating
these states’ histogram, we identify those that contribute
most to the stochastic sampling within the CT-HYB quantum
impurity solver. This is shown in Fig. 7, from which it is
clear that the system is dominated by the intradimer singlet
state at low-doping levels. This is a strong indication that
physics in this regime is governed by the formation of short-
range antiferromagnetic correlations between neighboring
sites.
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V. FERMI SURFACE AND PSEUDOGAP

We now turn to the study of the fermiology of the system.
Within CDMFT, the lattice Green’s function given by Eq. (11)
breaks translational symmetry [20], hence making a direct
comparison to momentum-resolved ARPES experiments dif-
ficult. The reason for the symmetry breaking is that the lattice
self-energy in CDMFT only has components inside a unit cell,
but not between different unit cells. A natural way to restore
the translational symmetry is to periodize the self-energy by
propagating the intersite contribution �AB over all links on the
lattice. However, an artifact of this periodization scheme is that
it prevents the formation of a Mott insulator and gives a wrong
description of the low-doping physics (see Appendix D for
more details). We therefore design a different periodization that
yields much more physical results and preserves the existence
of the Mott insulator. In this scheme, the lattice self-energy is
given by

�̃latt(iωn,k) =
(

�AA �AB × e−i
k1+k2

2

�AB × ei
k1+k2

2 �AA

)
, (18)

where k = (k1,k2) is expressed in the reduced Brillouin zone.
With this self-energy, we then define a periodized lattice
Green’s function G̃latt according to

G̃latt(iωn,k) = {
iωn + μ − H eff

1/2(k) − �̃latt(iωn,k)
}−1

.

(19)

This Green’s function preserves all the symmetries of the lattice
and will be the basis of our analysis below.

As a consistency check, we first compute in Fig. 4 the
electronic density n as a function of μ obtained from G̃

(orange curve). Comparing it to the cluster density (blue curve)
discussed in Sec. IV, we see that plateaus at n = 1 match
well, confirming the existence of a Mott insulator within
our periodization scheme. However, the periodized density
generally has slightly lower values compared to the cluster
density for a given chemical potential. In the following, we
discuss our results for specific values of μ and thus indicate
two corresponding values of the electron doping: the cluster
and the periodized one (δcluster and δper, respectively).

We plot in Fig. 1 the spectral intensity at the Fermi
surface for four values of the chemical potential. At small
doping levels, for μ � 1.30 eV, nodal pockets with coher-
ent quasiparticles develop, while the antinodal intensity is
completely suppressed. For these values of μ, we are in the
pseudogap regime discussed above. A closer inspection of
the spectral function at k = (π,0) for μ = 1.30 eV indeed
confirms the presence of a clear pseudogap: Fig. 8 shows
the leading edge of the spectrum being shifted away from
zero energy. As discussed above, we attribute its formation
to short-range antiferromagnetic correlations (manifested here
as the dominance of intersite singlet dimer formation in our
cluster, as revealed by the histogram of states).

As the electron doping is increased, the (π/2,π/2) pockets
grow and spectral intensity starts to appear around (π,0)
[see Fig. 1(c)], leading to an extension of the Fermi surface
over the Brillouin zone. Quasiparticles are, however, far more
incoherent and broader at the antinode, as can be seen from

FIG. 8. Left panel: Spectral intensity TrA(ω,kAN) [energy distri-
bution curve (EDC)] at the antinode kAN = (π,0) for μ = 1.3 eV.
Right panel: Spectral intensity at the Fermi surface with a periodized
self-energy for the same μ. U = 2 eV, T = 58 K.

momentum cuts across the node or the antinode (Fig. 9). While
sharp coherent quasiparticles are found at the node, those at the
antinode display a lower spectral intensity that is broadened
over a greater region of k space. This corresponds to the
momentum-differentiation regime introduced above.

At larger doping, the self-energy finally becomes uniform
and the resulting Fermi surface displays coherent quasiparti-
cles both at the node and the antinode, as shown in Fig. 1(d).

VI. ELECTRONIC BAND STRUCTURE

We now turn to an analysis of the dispersion of quasiparticle
bands in Sr2IrO4. This requires one to analytically continue
the imaginary-frequency data to the real axis. We use Padé
approximants [32] to find �̃latt(ω,k) from the knowledge of
the periodized lattice self-energy �̃latt(iωn,k). The resulting
band structure is shown in Fig. 10 where we compare the
insulating state at μ = 0.8 eV [Figs. 10(a) and 10(c)] and the
electron doped state at μ = 1.36 eV, δper = 7%, δcluster = 10%
[Figs. 10(b) and 10(d)]. In Figs. 10(a) and 10(b), we show the
noninteracting bands obtained by diagonalizing the TB+SO
Hamiltonian H eff

1/2 (dashed lines) and the quasiparticle bands

FIG. 9. Left panel: Spectral intensity at the Fermi surface
TrA(ω = 0,k) [momentum distribution curve (MDC)] for μ =
1.36 eV taken along the nodal (blue) and the antinodal (green)
directions. Corresponding cuts are shown with the same color code
on the right panel. Right panel: Spectral intensity at the Fermi surface
with a periodized self-energy for the same μ. U = 2 eV, T = 58 K.
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FIG. 10. Band dispersion of the (a),(c) insulating (μ = 0.8 eV) and (b),(d) doped (μ = 1.36 eV) Sr2IrO4. Periodized self-energies are
analytically continued from Padé approximants. Upper panels: Comparison between the noninteracting bands obtained from the TB+SO
Hamiltonian H eff

1/2 (dashed lines) and the quasiparticle bands. Lower panels: Spectral intensities, generalizing Fig. 1 away from the Fermi
surface. All panels follow the (π,π )-(π/2,π/2)-(0,0)-(π,0)-(2π,0) path in the full Brillouin zone. U = 2 eV, T = 58 K.

obtained from the solutions of

det
{
(ω + μ)1 − H eff

1/2(k) − �̃latt(ω,k)
} = 0. (20)

Bands are plotted along the (π,π )-(π/2,π/2)-(0,0)-(π,0)-(2π,0)
path of the full Brillouin zone. Figures 10(c) and 10(d) display
the corresponding total spectral intensity, TrÂ(ω,k).

In the insulating region, the Mott gap is clearly visible.
The band structure indicates that correlation effects have split
the original noninteracting bands. This is compatible with the
observation that at μ = 0.8 eV, the cluster self-energies take
very different values, Re�+(0) = Re�−(0). Lifetime effects
are also not very strong and the bands are fairly coherent,
consistent with the fact that Im�±(0) � 0. The top of the lower
band is located at � −0.4 eV at the node and at � −0.2 eV
at the antinode. There is a direct gap to the unoccupied states
of the order of 0.8 eV at k = (π/2,π/2), while the smallest
overall gap is indirect and of the order of 0.6 eV. Note that the
latter value is consistent with the width of the Mott plateau in
Fig. 4.

As we move to the doped region, the Mott gap first closes
at the nodal point k = (π/2,π/2) and the quasiparticle bands
merge. The crossing of the upper band at two points close to
(π/2,π/2) is a signature of the pocket seen in the previous spec-
tral intensities. Around these points, a clear renormalization of
the Fermi velocities by a factor 1/4 is visible as compared to
the noninteracting bands. For μ = 1.36 eV, there is still a gap
between the bands at k = (π,0), but the lower band just reaches
the Fermi level yielding some antinodal spectral weight. It is
interesting to note that the correlation effects are much stronger

on the lower band than on the upper band. Quasiparticles are
then better defined at (π/2,π/2) (where they correspond to
a crossing of the upper band) than at (π,0) (where they are
associated with the lower band). This is explained by the fact
that the physics of the lower band is mainly controlled by
the cluster self-energy �+, while the upper band is controlled
by �−. As a result, the larger negative imaginary part of �+
(see Fig. 6) induces stronger lifetime effects at the antinode,

FIG. 11. Spectral intensity of the doped compound (μ =
1.36 eV) along the degenerate path (0,0)-(π/2,π/2)-(π,0)-(0,0) in the
full Brillouin zone. Periodized self-energies are analytically continued
from Padé approximants. U = 2 eV, T = 58 K.
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while the smaller imaginary part of �− maintains coherent
quasiparticles at the node.

We finally display in Fig. 11 a spectral intensity map along
the (π/2,π/2) − (π,0) Brillouin zone path, which corresponds
to the path along which the noninteracting bands are degener-
ate. ARPES data along this path have not appeared in print to
our knowledge, and our results could be useful in the context
of future analysis of ARPES experiments.

VII. DISCUSSION AND CONCLUSIONS

Finally, we discuss the comparison of our results with
ARPES and other experiments on doped Sr2IrO4.

Overall, there is excellent qualitative agreement. Compar-
ing Figs. 10(a) and 10(b), a clear “collapse” of the Mott gap is
found upon doping the insulator (i.e., the two bands become
much closer to each other). This effect was reported in ARPES
experiments [5,6]: It is clearly apparent, for example, in
Figs. 2(g) and 2(h) of Ref. [5] in which the top of the band
at (π/2,π/2) moves from about −0.4 eV to about −0.1 eV
(band crossing) upon doping. In fact, the location of the top of
the band at the “node” (−0.4 eV) and “antinode” (−0.2 eV)
is in good quantitative agreement with the values reported in
Ref. [5]. The rather round and spread behavior of the band at
the node quite agrees with the experiments even if the nodal
part does not appear to be as narrow as it is observed.

The nodal-antinodal differentiation and formation of a pseu-
dogap near the antinode is also consistent with the experimental
observations [5,19]. Here, we have shown that the physical
origin of the pseudogap is indeed the same as in cuprate
superconductors, namely, short-range spin correlations (see,
e.g., Refs. [33,34] for recent theoretical studies).

The value of the interaction parameter U = 2 eV for which
we chose to perform our calculations should also be discussed
in the context of experimental measurements, especially of
experimental determinations of the Mott gap. With this value,
we find a Mott gap which is indirect and of the order of
∼0.6 eV—corresponding to the transition between the top
of the lower Hubbard band at (π,0) and the bottom of the

upper Hubbard band at (π/2,π/2) in Fig. 10(a), and also
to the width of the Mott plateau in Fig. 4. The value of
the optical gap would be slightly larger. In Ref. [6], Sr2IrO4

was studied under both hole (Rh) and electron (La) doping,
allowing for a determination of a Mott gap of the order of
0.7 eV, in rather good agreement with the present work. Optical
spectroscopy measurements (see, e.g., Fig. 4 in Ref. [2]) do
reveal a sharp increase of absorption in that frequency range,
but a rather slow onset of the optical conductivity is observed
with spectral weight below this scale, possibly suggesting a
significantly smaller value of the actual gap (although a precise
determination is difficult). This suggests that the value of U

used in the present work may be a bit too large. Accordingly, we
note that the Fermi-surface renormalizations obtained above
appear to be somewhat larger than the values reported in
Ref. [5].

An ab initio determination of the screened U appropriate for
the low-energy model used here, as well as a more systematic
study of this model as a function of U , would be desirable
in future work. In connection with the latter, a study of the
possible superconducting instability as a function of U can
be performed within cluster extensions of DMFT [CDMFT or
dynamical cluster approximation (DCA)] for the present model
and would shed light on the elusive superconductivity of doped
Sr2IrO4.
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APPENDIX A: EXPRESSION OF H0 IN THE j BASIS

Labeling l(k) = e−i
kx+ky

2 , we have

H1/2(k) =
⎛
⎝ 1

3

[
�t + e1

(
t1(k)
t0

)2] + λ − 8
3 l(k)t1(k)

− 8
3 l†(k)t1(k) 1

3

[
�t + e1

(
t1(k)
t0

)2] + λ

⎞
⎠, (A1)

M†(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
√

2
3

[
�t + e1

(
t1(k)
t0

)2] 2
√

2
3 l(k)t1(k)

2
√

2
3 l†(k)t1(k) −

√
2

3

[
�t + e1

(
t1(k)
t0

)2]
0 2√

6
l(k)[t2(k) − t3(k)]

2√
6
l†(k)[t2(k) − t3(k)] 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A2)
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and

H3/2(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3

[
�t + e1

(
t1(k)
t0

)2] − λ
2 − 10

3 l(k)t1(k) 0 l(k)√
3

[t2(k) − t3(k)]

− 10
3 l†(k)t1(k) 2

3

[
�t + e1

(
t1(k)
t0

)2] − λ
2

l†(k)√
3

[t2(k) − t3(k)] 0

0 l(k)√
3

[t2(k) − t3(k)] − λ
2 −2l(k)t1(k)

l†(k)√
3

[t2(k) − t3(k)] 0 −2l†(k)t1(k) − λ
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

APPENDIX B: GREEN’S FUNCTIONS AND SELF-ENERGY
IN THE FOUR DOPING REGIMES

In Fig. 12, we show the Matsubara frequency Green’s func-
tions and self-energies in the four doping regimes discussed
in the main text. Here these regimes are associated with four
different values of the chemical potential corresponding to the
four rows of the figure.

For μ = 1 eV, the system is a Mott insulator, as can be
seen from the insulating character of the two components of
the Green’s function G±. Let us note that the real parts of
the self-energies are very different, which is responsible for
the opening of the Mott gap (see main text). Increasing the
doping, we enter a pseudogap phase. At μ = 1.2 eV, the even
component of the Green’s function has an insulating behavior,
while the odd one is metallic. At μ = 1.34 eV, the system is
in a differentiated regime. Both components of the Green’s
function are now metallic, but the self-energies are still quite
differentiated. Going to even larger dopings, we finally reach
the uniform Fermi-liquid state. Hence, at μ = 1.5 eV, we see
that G+ and G− are both metallic and that the self-energies
tend to be identical.

APPENDIX C: SOLVING CDMFT EQUATIONS

In order to solve the CDMFT equations, it is convenient to
work in the ± basis introduced in Eq. (13). In this basis, the

−0.5

0.0
μ = 1eV, δ = 0%

(a)

)

b) (c)Im G+(iωn) Im G−(iωn)

−1.0

−0.5
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ωn
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ωn
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1.5
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FIG. 12. Evolution in the even-odd basis of (a) the imaginary part of the Green’s function G±(iωn), (b) the imaginary part of the self-energy
�±(iωn), and (c) the real part of �±(iωn) as a function of the Matsubara frequency ωn. On all plots, the even (odd) contribution is plotted in
blue (orange). All quantities are depicted for different values of the chemical potential, from top to bottom panels, respectively: μ = 1 eV and
an electron doping δ = 0%; μ = 1.2 eV, δ = 1%; μ = 1.34 eV, δ = 9%; and μ = 1.5 eV, δ = 1.6%. Results were obtained for U = 2 eV,
T = 54 K.

lattice Green’s function is

Ĝlatt
± (iωn,k) = {(iωn + μ)1 − H eff

± (k) − �̂±(iωn)}−1,

(C1)

where H eff
± (k) is the effective jeff = 1/2 Hamiltonian ex-

pressed in the ± basis and the cluster self-energy is diagonal
because the A and B sites are electronically equivalent,

�̂±(iωn) =
(

�+(iωn) 0

0 �−(iωn)

)
. (C2)

Note that for a given k point, Ĝlatt
± (iωn,k) is not diagonal.

One can, however, show that for a generic 2 × 2 diagonal
matrix M, ∑

k∈RBZ

[H eff
± (k) + M]−1 (C3)

is a diagonal matrix too. As a result, the CDMFT self-
consistency given by Eq. (12) becomes diagonal and reads

Ĝ±(iωn) =
∑

k∈RBZ

{(iωn + μ)1 − H eff
± (k) − �̂±(iωn)}−1,

(C4)

155109-9



ALICE MOUTENET, ANTOINE GEORGES, AND MICHEL FERRERO PHYSICAL REVIEW B 97, 155109 (2018)

where both cluster quantities Ĝ± and �̂± are diagonal. This
equation is solved iteratively in the following way: At the
iteration step n, the quantum impurity model is described by
a noninteracting Green’s function G

(n)
0,± and a local interaction

Hamiltonian that has the following expression in the ± basis:

Hint =U

2

∑
s=±

(ns↑ns↓ + ns↑ns̄↓

+ c
†
s↑c

†
s↓cs̄↓cs̄↑ + c

†
s↑c

†
s̄↓cs↓cs̄↑). (C5)

This cluster model is solved using the CT-HYB quantum
impurity solver. This solver directly works in the ± basis. It
yields both the cluster Green’s functions G

(n)
± and self-energies

�
(n)
± . The self-consistency condition is used to construct a local

diagonal lattice Green’s function,

Ĝ
(n)
loc,±(iωn) =

∑
k∈RBZ

{(iωn + μ)1 − H eff
± (k) − �̂

(n)
± (iωn)}−1.

(C6)

This allows one to get a new expression for the noninteracting
cluster Green’s function, via a modified Dyson equation:[

G
(n+1)
0,±

]−1 = [
G

(n)
loc,±

]−1 + �
(n)
± . (C7)

This procedure is iterated until convergence.

APPENDIX D: ABSENCE OF A MOTT INSULATOR
WITH THE STANDARD PERIODIZATION SCHEME

The usual periodization of the self-energy is written as

�̃latt(iωn,k) =
(

�AA �AB × f (k)

�AB × f ∗(k) �AA

)
, (D1)

where

f (k) = 1

4

(
1 + e−ikx + e−iky + e−i(kx+ky )) (D2a)

= cos
kx

2
cos

ky

2
e−i

kx+ky

2 . (D2b)

k = (k1,k2) is expressed in the reduced Brillouin zone. We see
from Fig. 2 that the degeneracy of the (π/2,π/2) − (π,0) path
in the full Brillouin zone has to be lifted in order to create a
Mott-insulating gap. However, f (k) = 0 along this path and
the self-energy has the following expression:

�̃latt(iωn,k) = �AA × 12×2. (D3)

Hence, the self-energy only renormalizes the chemical poten-
tial in the quasiparticle equation [Eq. (20)] at ω = 0, forbidding
any lifting of the degeneracy between the quasiparticle bands
and therefore any gap in the band structure.
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We introduce and compare three different Monte Carlo determinantal algorithms that allow one to compute
dynamical quantities, such as the self-energy, of fermionic systems in their thermodynamic limit. We show
that the most efficient approach expresses the sum of a factorial number of one-particle-irreducible diagrams
as a recursive sum of determinants with exponential complexity. By comparing results for the two-dimensional
Hubbard model with those obtained from state-of-the-art diagrammatic Monte Carlo, we show that we can reach
higher perturbation orders and greater accuracy for the same computational effort.

DOI: 10.1103/PhysRevB.97.085117

I. INTRODUCTION

Perturbation expansions are at the heart of many important
developments in many-body physics. They appear both in the
construction of new theoretical frameworks and in the design
of numerical algorithms that have greatly contributed to push
further our understanding of interacting quantum systems.

Continuous-time quantum Monte Carlo algorithms [1] such
as CT-INT [2,3], CT-AUX [4], or CT-HYB [5,6] are examples
of such algorithms. They have been a breakthrough in finding
solutions of quantum impurity problems and have opened a
new realm for the development of extensions of dynamical
mean-field theory [7–12].

One of the reasons for the success of these algorithms
is that they are based on a perturbation expansion of the
partition function Z. The contributions to Z can be reorganized
into determinants that effectively sum a factorial number of
perturbation diagrams. As a result, large perturbation orders
can be computed and, for smaller clusters, the strong-coupling,
low-temperature regime can be addressed. These methods
are, however, limited by the number of sites that can be
treated in the auxiliary quantum impurity cluster. For large
clusters the fermionic sign problem [13] becomes very severe
as temperature is decreased or interaction increased [14], and
it is very difficult to extrapolate the solution of the infinite size
system from a limited number of small clusters.

An alternative and complementary approach is to investi-
gate quantum systems directly in their thermodynamic limit, as
in the DiagMC [15–19] algorithm that has also benefited from
great advances. With this approach, controlled results were
obtained, e.g., for the normal phase of the unitary Fermi gas
[20,21], the ground-state phase diagram of the Hubbard model
in the weak-coupling regime away from half-filling [22–25],
and even in parts of its phase diagram where a pseudogap has
already formed [26].

In this method, the perturbation series is written directly for
the physical quantity of interest, for example, the self-energy.
Contributions to the series are given by individual perturbation
Feynman diagrams (one-particle-irreducible ones for the self-
energy) that are sampled stochastically. While the sign alter-

nation between individual diagrams is a necessary condition
for the convergence of the series, it introduces a fermionic sign
problem that makes it difficult to precisely compute high-order
coefficients of the series. Another difficulty of the DiagMC
approach is that it can be challenging to resum the perturbation
series and obtain converged results even if many coefficients
are known with great accuracy.

In order to reduce the sign problem of the DiagMC, a
connected determinant algorithm (CDet) has been recently in-
troduced in Ref. [27]. The key idea of the approach is to express
the sum of a factorial number of connected perturbation dia-
grams as a sum of determinants (a similar strategy is used in an
algorithm for correlated out-of-equilibrium systems) [28]. The
physical quantity of interest is then obtained by stochastically
sampling these contributions. This algorithm has been shown
to scale as 3n with the perturbation order n. It has proven to give
quantitative improvements in the computation of static prop-
erties such as pressure [27]. However, no computation of dy-
namical quantities with the CDet approach has been attempted
so far.

In this article, we introduce and compare three different
Monte Carlo determinantal algorithms that allow one to
compute dynamical quantities of a fermionic system. Two
of them are directly based on the CDet approach, while the
third algorithm, which we will show is the most efficient, is a
generalization of the CDet approach to one-particle-irreducible
(1PI) diagrams. It directly samples the contributions to the
self-energy with a recursive algorithm scaling as n23n. By
comparing results for the two-dimensional Hubbard model
with those obtained from DiagMC, we will show that this new
approach leads to much smaller error bars for the same numer-
ical effort. It therefore represents an important alternative to
compute dynamical quantities.

The article is organized as follows. In Sec. II, we briefly
summarize the CDet approach introduced in Ref. [27], as it
will be one of the building blocks of our proposal. In Sec. III,
we present three algorithms that allow one to derive dynamical
quantities. We discuss their practical implementation as a
Monte Carlo method in Sec. IV. We then compare and discuss
the results of these algorithms and of the DiagMC for the
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two-dimensional Hubbard model in Sec. V. We finally con-
clude in Sec. VI.

II. CONNECTED DETERMINANT APPROACH

First, we briefly summarize the CDet approach introduced
in Ref. [27] as it is one of the building blocks of our proposed al-
gorithms. This approach provides a general scheme to compute
connected correlators. For concreteness, we consider in this
article models described by a noninteracting Green’s function
G0 and a local interaction vertex Un↑n↓. This is the case, for
example, in the Hubbard model, in some quantum impurity
problems, or in the simple case of an isolated Hubbard atom
(that we will later use for benchmark purposes).

In a diagrammatic approach, a perturbation series in the
interaction U is constructed. Correlation functions C of two
operators A and B, defined as

C(xout,xin) ≡ −〈TτB(xout)A(xin)〉, (1)

where Tτ is the time-ordering operator and x denotes a vertex,
are then expressed as a sum of connected diagrams. In real
space and imaginary time, x writes (i,τ ) for the Hubbard
model, where i describes the lattice position and τ ∈ [0,β] the
imaginary time (β = 1/T being the inverse temperature). At a
given order n in the perturbation series, a diagram contributing
to C(xout,xin) is characterized by the set of its internal vertices
V = {x1,...,xn}, where xl is associated with the lth interaction
vertex. The topology of such a diagram is given by two
adjacency matrices describing the way the interaction vertices
and the external vertices xin and xout are connected.

In the standard DiagMC [15–19] technique, individual
connected diagrams are stochastically sampled in a way that
preserves their connectivity, with a probability given by the
absolute value of their contribution to C(xout,xin). Note that
even if some diagrams share the same vertices, they may have
alternating signs from one topology to another, which is one
of the ingredients leading to a significant sign problem in this
approach. The idea of the CDet algorithm is to regroup all
diagrams sharing the same internal vertices V in a contribution
CV (xout,xin) and then stochastically sample the sets V . The
stochastic weight of this group of diagrams in the Monte Carlo
sampling of C(xout,xin) is the absolute value of their sum, which
is only a function of V .

One could naturally expect that summing this factorial
number of diagrams would come with a factorial cost, but it was
shown [27] that it can actually be achieved exponentially. The
sum of connected diagrams entering CV (xout,xin) is expressed
as the sum of all diagrams (connected and disconnected
ones) from which the disconnected components are recursively
subtracted. This can be formalized as follows:

CV (xout,xin) = DV (xout,xin) −
∑
S�V

CS(xout,xin)DV \S(∅),

C

V

xin

xout

=
All vert. in V
(incl. disc.)

xin

xout

−
∑

S�V

C

S

xin

xout

× All vert. in V \S
(incl. disc.) , (2)

where DV (xout,xin) denotes the sum of all diagrams (including
disconnected ones) with internal vertices V , external vertices
xin and xout. DV (∅) is the sum of all diagrams with vertices
V and no external vertices. The cancellation of disconnected
diagrams is illustrated in the second line of Eq. (2). A key
feature of this recursive sum is that DV terms can be expressed
as determinants (and hence with a polynomial computational
cost) [29].

Algorithmically, the evaluation of CV (xout,xin) at order n is
done in two steps. First, determinants DS are computed for all
subsets S of V , with a total effort 2nn3. The leading complexity,
however, comes from the progressive computation, from low
to high orders, of CS . More precisely, if all CS ′ are known for
subsets S ′ with less than p � n vertices, one can compute a
given p-order CS using Eq. (2) with V = S, in 2p operations
[see right-hand side (rhs) of Eq. (2)]. This has to be done for all
the (n

p) subsets S at order p before computing contributions at
the next order p + 1. The final result is obtained when this has
been done for all p � n and the leading complexity of the al-
gorithm to compute CV (xout,xin) is therefore

∑n
p=0(n

p)2p = 3n.
Note that a similar cancellation of disconnected diagrams

had been introduced in a quantum Monte Carlo algorithm for
correlated out-of-equilibrium systems [28] where connected
correlators are expressed as a sum of 2n determinants thanks
to Keldysh diagrammatic techniques.

The CDet approach leads to an important reduction of
statistical error with respect to the DiagMC and has allowed
for great progress in the computation of static properties, such
as pressure in the Hubbard model [27]. This method, however,
has not yet been used to compute dynamical quantities.

In the following, we will investigate how this can be done.
We could examine, e.g., the Green’s function but choose
instead to focus on the self-energy � that is a more irreducible
object where signatures of numerical noise are clearer. Other
single-particle quantities can then be computed from �. A
straightforward way to obtain � is to compute the Green’s
function G with the CDet approach and derive the self-energy
through Dyson’s equation. However, even if one can compute
G with great accuracy, its inversion in Dyson’s equation leads
to an amplification of the statistical noise and, as we will show
below, the resulting � can only be accurately obtained for low
orders. It is therefore desirable to look for other techniques to
compute the self-energy. This is the purpose of the following
section.

III. SELF-ENERGY COMPUTATION

We introduce three different techniques to compute dy-
namical quantities. In order to compare their efficiencies, we
focus on the self-energy �σ (here σ denotes the spin) that
they yield, because numerical noise is particularly visible in
this quantity. First, we use Dyson’s equation to obtain the
self-energy from a computation of the Green’s function using
the CDet technique. We then present a diagrammatic method
that allows us to compute the self-energy recursively from
the knowledge of a different correlator F̄ that can still be
computed using the CDet. We finally introduce an extension
of the CDet algorithm that efficiently computes the sum of
all one-particle-irreducible diagrams of a perturbation series
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and therefore allows us to directly stochastically sample the
contributions to the self-energy. As we discuss in Sec. V, the
latter allows for a much better determination of dynamical
quantities.

A. Dyson’s equation

The most straightforward way to compute the self-energy
�σ is to first compute the Green’s function Gσ using the CDet
algorithm and then use Dyson’s equation,

�σ = (
Gσ

0

)−1 − (Gσ )−1. (3)

We show in Sec. V that it is very difficult to obtain precise
data with this method because of the inversion of G that
dramatically increases the noise.

B. Equations of motion

We present a diagrammatic approach to compute the self-
energy based on the computation of a different correlator with
the CDet algorithm. Let us first write the self-energy as the sum
of a constant Hartree term and a frequency-dependent part

�σ (xout,xin) ≡ �H,σ δxin,xout + �̃σ (xout,xin). (4)

We recall that x is a combined index, e.g., (i,τ ) for the Hubbard
model, where i is the lattice site and τ the imaginary time. The
Hartree term contribution is given by

. (5)

It can be directly computed from the knowledge of the
Green’s function Gσ̄ , which is a connected correlator that can
be obtained from Eq. (2). The self-energy �σ can then be
obtained recursively using the following expression:

�σ = �H,σ + F̄ σ − �σGσ�σ , (6a)

, (6b)

where the correlation function F̄ σ is defined by

F̄ σ (xout,xin) ≡ −U 2〈Tτnσ̄ cσ (xout)nσ̄ c†
σ (xin)〉. (7)

Equation (6) can be derived from the equations of motion
(EOM) of the Green’s function, as detailed in Appendix A, and
we will use this terminology in the following to unambiguously
refer to this method. It has a simple diagrammatic interpretation
[see the second line of Eq. (6)] that illustrates how 1PI diagrams
are isolated. Indeed, according to Eq. (4), the self-energy is the
sum of contributions with a single external vertex (Hartree term
�H,σ ) and contributions with two external vertices (�̃σ ). The
former is easy to compute, and the latter is the sum of all 1PI
diagrams with two external vertices. The term F̄ σ on the rhs
of Eq. (6) represents the sum of all connected diagrams with
the same external vertices as �̃σ . From this, one then has to

subtract all non-1PI diagrams, which can always be expressed
in the form �σGσ�σ .

We now reorganize the equation above in order to be able
to compute the contributions to the self-energy at a given
perturbation order just from the knowledge of the contributions
to F̄ σ and �H,σ . We first multiply Eq. (6) by Gσ

0 on the right
and we obtain

�σGσ
0 = �H,σGσ

0 + F̄ σGσ
0 − �σGσ�σGσ

0 . (8)

Reorganizing the terms,

F̄ σGσ
0 + �H,σGσ

0 = �σ
[
Gσ

0 + Gσ�σGσ
0

] = �σGσ . (9)

Substituting this expression for �σGσ in Eq. (6), we find

�σ = �H,σ + F̄ σ − [
F̄ σGσ

0 + �H,σGσ
0

]
�σ . (10)

This equation allows us to recursively compute the contri-
butions to the self-energy at all perturbation orders. Indeed,
because F̄ σ is at least of order 2 in U and �H,σ is at least
of order 1 in U , the computation of the contribution to the
self-energy at ordernon the left-hand side can be obtained from
the knowledge of the contributions to F̄ and the contributions
to the self-energy at strictly lower orders < n on the rhs.
As a result, the left-hand side contributions can be computed
without any inversion, and there is no noise amplification as
in Dyson’s equation. We can therefore expect this approach to
be more efficient.

The algorithm is implemented by computing the Green’s
function Gσ and the correlator F̄ σ using the CDet algorithm.
Then, Eq. (10) is used to recursively compute the contributions
to �σ at a given order. As we use the CDet algorithm to
obtain two correlators and the self-energy is only computed in a
postprocessing part, the complexity of this algorithm naturally
scales as 3n.

C. Determinantal approach to sum all 1PI diagrams

We now introduce an extension of the CDet algorithm to
efficiently compute the sum of all one-particle irreducible
diagrams of a perturbation series. At a given perturbation order
n in the interaction U , a self-energy diagram is characterized
by xin, xout, its internal interaction vertices V = {x1, . . . ,xn−2},
and the adjacency matrices that connect the vertices. Note that
we choose n − 2 points in the set of internal vertices V because
xin and xout both carry an interaction vertex as well. We wish
to group all diagrams that share the same internal vertices V

into a contribution �σ
V (xout,xin) so that

�σ (xout,xin) =
∑
V

�σ
V (xout,xin)

=
∑
V

(
�

H,σ
V δxin,xout + �̃σ

V (xout,xin)
)
. (11)

The contribution �σ
V (xout,xin) is theoretically a sum of a

factorial number of diagrams, but we will express it with the
help of a recursion, very much in the spirit of Ref. [27], that
only involves connected correlators that can be computed with
exponential effort using Eq. (2). The numerical effort to obtain
�σ

V (xout,xin) will then turn out to also be exponential.
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The frequency-dependent part of the self-energy �̃σ
V (xout,xin) can be expressed via the following recursive formula

�̃σ
V (xout,xin) = F̄ σ

V (xout,xin) −
∑

x ′ ∈ V

S ⊆ V \{x ′}
S ′ = V \(S ∪ {x ′})

Fσ
S ′ (xout,x

′)�̃σ
S (x ′,xin) −

∑
S ⊆ V

S ′ = V \S

F σ
S ′ (xout,xin)

(
UGσ̄

S (0−)
)
, (12a)

(12b)

where the correlation function Fσ is given by [30]

Fσ (xout,xin) = �σGσ (xout,xin) (13)

≡ −U 〈Tτnσ̄ cσ (xout)c
†
σ (xin)〉, (14)

and F̄ σ by Eq. (7). The starting point of the recursion is the
order-2 diagram

. (15)

The second line of Eq. (12) illustrates the cancellation of
non-1PI diagrams. The self-energy contributions �̃σ

V that are
calculated recursively are indicated as red circles, while blue
diagrams correspond to the correlation function Fσ = �σGσ .
An explicit example of this formula at third order is shown
in Appendix C. Let us note that, in this formula, the starting
point of the recursion is already an order-2 diagram, while it
is an order-0 diagram in Eq. (2), justifying a set V with n − 2
vertices.

The first term F̄ σ
V (xout,xin) on the rhs of Eq. (12) is the

contribution to the correlation function F̄ σ (xout,xin) for the set
of internal vertices V . It is the sum of all connected diagrams
that have interaction vertices at xin, xout and all x ∈ V as
interaction vertices. In order to obtain the contributions to
the self-energy �̃σ

V (xout,xin), one has to subtract from this
term all diagrams that are not 1PI. These can be expressed
in the form �σGσ�σ = Fσ�σ = Fσ (�H,σ + �̃σ ), and there
are therefore two families of diagrams to subtract for a given
set of vertices V : first all terms Fσ

S ′ (xout,xin)�H,σ
S such that

S � S ′ = V , then all terms Fσ
S ′ (xout,x

′)�̃σ
S (x ′,xin) such that

S � {x ′} � S ′ = V . In the latter family, note that S � V is a
proper subset of V , so that the calculation of �̃σ

V involves only
some �̃σ

S that have been previously computed in the recursion.
We have therefore derived a recursive formula for the con-

tributions �̃σ
V (xout,xin) that involves the computation of only

connected correlation functions. The recursion is completed
in two steps. First, all correlators F̄ σ , Fσ , and Gσ have to
be enumerated, the main effort coming from the Fσ

S that
have to be computed for all pairs of external vertices [as a
consequence of the explicit use of an intermediate vertex point
x ′ in Eq. (12)]. The computational cost for the precomputation
is therefore dominated by n23n. Second, the recursion has to be

implemented, as in the CDet, by computing the contributions
�̃σ

S starting from low to higher orders. At a given order p, it
takes an effort p2p to get a given �̃σ

S (x ′,xin). This has to be
done for all subsets S at order p and all x ′ before computing
contributions at the next order p + 1 and requires a total effort
(n

p)p22p. All in all the recursion will take
∑n

p=0(n

p)p22p with

a complexity n23n. The leading complexity of the algorithm is
therefore n23n.

We will show in Sec. V that despite this additional n2

factor, this method leads to smaller error bars compared to
the approaches above. It also gives more accurate results
than the state-of-the-art DiagMC calculations for the same
computational effort.

IV. MONTE CARLO IMPLEMENTATION

In this section, we describe how to compute the different
quantities that appear in the algorithms above using a Monte
Carlo (MC) method. We generically denote these quantities
as Mσ . The quantities that need to be computed depend on
the algorithm considered. The Green’s function Gσ has to be
computed for all three approaches. In addition, F̄ σ must be
computed for the equations of motion algorithm and �̃σ for the
direct sampling of the self-energy. We write Mσ as a sum over
all contributions described by a set Vm with m internal vertices:

Mσ (xout,xin) =
∞∑

m=0

∑
Vm

Mσ
Vm

(xout,xin). (16)

Note that a configuration with m internal vertices contributes,
in the perturbation series in U , to the coefficient of order
n = m for the Green’s function, n = m + 1 for Fσ and
n = m + 2 for �̃σ .

In order to compute Mσ (xout,xin), we stochastically gener-
ate Monte Carlo configurations that sample the rhs terms of the
sum. A configuration C is described by the number of internal
vertices m, the spin σ , and the set of all vertices,

C = {m; σ ; xin,xout; x1, . . . ,xm}, (17)

and its weight in the Monte Carlo sampling is

wc = ∣∣Mσ
Vm

(xout,xin)
∣∣. (18)

We use a standard Metropolis [31] algorithm to generate a
Markov chain distributed according to wc. For concreteness,
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we consider the case of the Hubbard model where x = (i,τ ).
Starting from a given C, a new configuration C′ is proposed by
applying one of the following Monte Carlo updates:

(i) Pick one of the interaction vertices in C and change its
position and imaginary time. One can increase the probability
of the move being accepted by choosing a new position either
among the neighbors of the chosen vertex or from a Gaussian
distribution. The imaginary time can be chosen uniformly.

(ii) Flip the spin σ → σ̄ .
(iii) Remove a randomly chosen internal interaction vertex

from C.
(iv) Add a new internal interaction vertex in C. The new

lattice site can be chosen from a Gaussian distribution around
the center of gravity of the vertices in C. The imaginary time
can be chosen with uniform probability.

The new configuration C′ is accepted or rejected with the
usual Metropolis ratio

p
accept
C→C′ = min

(
1,

TC′C wC′

TCC′ wC

)
, (19)

where TCC′ is the probability to propose C′ after C.
This algorithm will sample the configurations according

to the weights wC; however, it is necessary to normalize the
result. To do so, it is convenient to restrict the Monte Carlo
simulation to only two consecutive orders, m and m + 1. A
vertex can be added (resp. removed) only if the current C is
at order m (resp. m + 1). In the lowest order m the following
normalization quantity is measured

Nm =
∑

xin,xout,σ

∑
Vm

∣∣Mσ
Vm

(xout,xin)
∣∣, (20)

while at order m + 1, both Nm+1 and the contribution to
Mσ are measured. The knowledge of the expected value for
Nm allows us to find the normalization factor and obtain
a normalized value for the contribution to Mσ and Nm+1

at order m + 1. The latter can then be used to normalize a
further simulation at orders m + 1 and m + 2, and so on. The
contribution at m = 0, for instance, the pair-bubble diagram
for the self-energy, can be computed analytically, allowing for
a precise determination of N0.

We performed several calculations for the special case of a
single correlated site (especially for benchmarking purposes).
In that situation, it is possible to restrict the simulation to a fixed
order m and propose updates that change only the spin σ and
the imaginary time of a randomly chosen interaction vertex.
The normalization is obtained by computing an integral whose
value is known. The simple choice

Im =
∑

σ

∫ β

0
dτindτoutdτ1 . . . dτm = 2βm+2

turns out to provide a good normalization.
Let us note that statistical errors in the normalization factor

propagate from one order to the other. One must therefore be
careful in the computation of error bars using, e.g., a binning
or jackknife analysis.

V. RESULTS

In this section, we present actual computations of the self-
energy according to the implementations described in Sec. III.

For clarity, we respectively denote by Dyson, EOM, and �Det
the use of Dyson’s equation, the equations of motion, and
the direct calculation of the self-energy from the sum of 1PI
diagrams.

We consider two models in the following. The first is a single
correlated electronic level, that we will refer to as a Hubbard
atom, described by the Hamiltonian

Hatom = Un↑n↓ + ε, (21)

where nσ is the number of the spin-σ fermion, U is the onsite
repulsion, and ε the energy of the electronic level. This model
has an analytical solution and allows us to both benchmark and
compare the different methods introduced above. The second
model is the prototypical two-dimensional Hubbard model
given by

HHubbard = −t
∑
〈i,j〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓, (22)

where c
†
iσ creates a spin-σ electron on site i of a square lattice,

t > 0 is the nearest-neighbor hopping, and U is the onsite
interaction. This is the model that we eventually aim to solve
in its thermodynamic limit (infinite lattice). In our results,
t = 1 will be our energy unit. Note that in the computations
of the Hubbard model, we use an α shift that redefines the
noninteracting propagator [3,26,28,32].

We first benchmark our results against both analytical and
standard DiagMC [15–19] solutions and verify the theoretical
complexity of our models in Appendix B. We then compare
the three different methods between them, showing that �Det
performs better both on the isolated atom and on the lattice.
This method is finally shown to also improve state-of-the-art
results from recent DiagMC calculations.

A. Comparison with Dyson’s equation

Until now, no dynamical quantities have been computed
with the CDet algorithm and it is therefore instructive to see
how the use of Dyson’s equation compares to the calculation
of the self-energy from the EOM and �Det methods.

We first consider the Hubbard atom. Figure 1 shows the
contribution to the imaginary part of the Matsubara frequency
self-energy �̃σ (iωn) from perturbation order 8. The direct
measurement of the self-energy and the EOM method yield
results that have very small error bars (smaller than the symbol
size) and that are in perfect agreement (both curves lie on top of
one another). In contrast, starting from the Green’s function as
obtained by Eq. (2), the results for the self-energy display large
statistical errors that increase with the Matsubara frequency in-
dex. The reason is simple and expected: when Dyson’s equation
is used to compute the self-energy, there is an amplification of
the numerical noise because of the inversion of the Green’s
function. In practice, it becomes quickly impossible to obtain
accurate data. This is problematic, because large error bars
make it very difficult, e.g., to analytically continue the results
to the real axis.

Figure 2 shows results for the two-dimensional Hubbard
model on a 32 × 32 lattice (for βt = 2 the Hubbard model
is in its thermodynamic limit on this lattice). At order 3, the
contribution to the self-energy taken at the first Matsubara
frequency iω0 obtained from �Det on a chosen path in the
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Order 8

Dyson EOM ΣDet

FIG. 1. Imaginary part of the Hubbard atom self-energy at order
8 in U as obtained from Dyson’s equation (green), the equations of
motion approach (orange), and the direct self-energy measurement
(blue). We use β = 10, U = 1, ε = −0.2. All simulations lasted 120
CPU hours.

Brillouin zone is in perfect agreement with the EOM method,
and error bars for both methods are very small (smaller than
symbol size, both curves being on top). The computation of
�σ from the Green’s function is noisier. Error bars actually
increase with the Matsubara frequency index when using
Dyson’s equation, resulting in reasonable results only for the
first few frequencies even for small perturbation orders. Again,
the reason for this large noise is the amplification due to
the inversion of the Green’s function. Also, on the lattice, a
direct measurement of the self-energy has the advantage of
mainly sampling fairly local diagrams. Indeed, at a temperature
T = t/2, the self-energy very quickly vanishes for nonlocal
components. The same is not true for the Green’s function that
has a slower decay; its stochastic sampling is therefore less
efficient.

�k

−0.10

−0.05

0.00

0.05

Σ̃
� k
(i

ω
0
)

Im part

Re part

Order 3

(0, 0) (π, 0) (π, π) (0, 0)

Dyson

Dyson

EOM

EOM

ΣDet

ΣDetx

FIG. 2. Hubbard model self-energy at the first Matsubara fre-
quency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0) path
at order 3 in U , as obtained from Dyson’s equation (green), the
equations of motion approach (orange), and the direct self-energy
measurement (blue). We use a 32 × 32 lattice with βt = 2, U = 4t ,
μ = 0 and a uniform α shift α↑ = α↓ = 1.53t . All simulations lasted
120 CPU hours.
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FIG. 3. Imaginary part of the Hubbard atom self-energy at order
12 in U as obtained from the equations of motion approach (orange)
and the direct self-energy measurement (blue). We use β = 10, U =
1, ε = −0.2. All simulations lasted 120 CPU hours.

B. Comparison between the equations of motion
and the direct sampling of the self-energy

We now compare the use of equations of motion to the direct
sampling of the self-energy expressed as a sum of 1PI diagrams
(�Det). It is not clear which method is more efficient, as the
�Det allows for a precise cancellation of diagrams and directly
samples the quantity of interest but scales as n23n, while the
EOM method cancels diagrams on average but has a better
scaling as 3n.

We first consider the Hubbard atom. In Fig. 3 we show the
contribution to the imaginary part of the Matsubara frequency
�̃σ (iωn) at order 12 for both methods. The equations of
motion method has error bars that are seen to be about 1
order of magnitude greater than the �Det ones. In order to
quantify the efficiency more accurately, we plot in Fig. 4 the
variance at the first Matsubara frequency ω0 as a function of
the perturbation order for both methods. We see from this plot
that �Det performs better at low perturbation order, and that
both methods tend to become equivalent at higher orders.

The comparison of the resulting self-energies on the lattice
Hubbard model (Fig. 5) shows an even more pronounced
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ΣDet

FIG. 4. Variance of the imaginary part of the Hubbard atom self-
energy at the first Matsubara frequency. Orange lines with stars is
the result of the equations of motion. Blue line with dots corresponds
to the direct self-energy measurement. We use β = 10, U = 1, ε =
−0.2.
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FIG. 5. Hubbard model self-energy at order 6 in U on a 32 × 32
lattice with βt = 2, U = 4t , μ = 0 and with a uniform α shift
α↑ = α↓ = 1.53t . Blue symbols are results for the direct self-energy
measurement; orange symbols are results from the equations of
motion approach. Upper panel: Self-energy at the first Matsubara
frequency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0)
path. Lower panel: Self-energy as a function of iωn at �k = (π,π/2).
All simulations lasted 120 CPU hours.

difference between the two approaches. At order 6, the contri-
bution to the self-energy taken at the first Matsubara frequency
(upper panel) obtained from �Det on a chosen path in the
Brillouin zone is very well converged and the error bars
for this method are very small (smaller than symbol size).
The computation of �σ from the equations of motion is less
accurate, even if it agrees with the �Det within its error bars.
We then look at the Matsubara frequency evolution for a given
reciprocal lattice vector �k = (π,π/2). The error bar for the
EOM method is seen to be large for all Matsubara frequencies.
To be quantitative, we plot in Fig. 6 the variance at the first
Matsubara frequency ω0 for this same value of �k = (π,π/2) as
function a of the perturbation order. We see from this plot that
�Det always performs better than the EOM method, by about
1 order of magnitude.

We believe the explanation for this behavior comes from
two ingredients. First, the cancellation of non-one-particle-
irreducible diagrams is done on average in the EOM approach,
while it is exact in the �Det algorithm and therefore more
efficient to measure the self-energy. This is particularly visible
on the lattice that has more degrees of freedom. Second, the
self-energy �σ is more local on the lattice than the correlator F̄ .
Hence the direct MC sampling of the self-energy still performs
better, even though its numerical complexity is greater by a
factor n2. Let us note here that the EOM approach could be
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FIG. 6. Variance of the imaginary part of the Hubbard model self-
energy Im �̃(π,π/2)(iω0). Orange lines with stars is the result equations
of motion. Blue line with dots corresponds to the direct self-energy
measurement. We use a 32 × 32 lattice with βt = 2, U = 4t , μ = 0
and with a uniform α shift α↑ = α↓ = 1.53t .

useful in the context of the real-time algorithm of Ref. [28].
There the complexity of the EOM approach would be 2n while
a direct self-energy approach would scale as n23n. It may well
be that the EOM approach is more efficient in that case.

C. Comparison between �Det and DiagMC algorithms

As the direct calculation of the self-energy �Det proves to
be a very accurate method to get the self-energy, it is natural
to compare it to the state-of-the-art DiagMC results on the
two-dimensional Hubbard model. To this end, we compute
in Fig. 7 the contribution to the first Matsubara frequency
ω0 of the self-energy at perturbation order 7 for both �Det
and DiagMC methods. Error bars at this perturbation order,
the highest currently reachable with DiagMC techniques, are
much smaller with the �Det algorithm than with the standard
DiagMC approach for simulations of the same length. This
algorithm canceling directly non-1PI diagrams in the MC
sampling is therefore an interesting alternative to the current
diagrammatic Monte Carlo approach.

�k

−0.004

−0.002

0.000

0.002

0.004

Σ̃
� k
(i

ω
0
)

Im part

Re part

Order 7

(0, 0) (π, 0) (π, π) (0, 0)

ΣDet

ΣDet

DiagMC

DiagMC

FIG. 7. Hubbard model self-energy at the first Matsubara fre-
quency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0) path
at order 7 in U , as obtained from DiagMC (red) and the direct self-
energy measurement (blue). We use a 32 × 32 lattice with βt = 2,
U = 4t , μ = 0 and a uniform α shift α↑ = α↓ = 1.53t . Simulations
lasted 1440 CPU hours for the �Det and 4000 CPU hours for the
DiagMC.
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FIG. 8. Imaginary part of the local lattice self-energy �σ
loc(iωn)

as a function of Matsubara frequency, as computed using k orders,
with k = 2, . . . ,9. The red squares are results obtained from DQMC
(error bars are smaller than the symbol size). Inset: Zoom on the
first Matsubara frequency. It is seen that the results are converged
with an error bar smaller than 1%. We use a 32 × 32 lattice with
βt = 2,U = 4t,μ = 0 and with a uniform α shift α↑ = α↓ = 1.53t .
The discrete time interval in DQMC is �τ = 1/32.

As a final illustration of the method, we compute contribu-
tions up to order 9. The resummed local self-energy is shown in
Fig. 8. We observe that with a reasonable choice for the α shift,
one can completely converge the results with an uncertainty
below 1%.

VI. CONCLUSION

We have introduced and compared three methods to com-
pute the self-energy of fermionic systems. Two of them rely
on the computation of correlators using the CDet technique,
while the third one is an extension of the CDet that allows one
to sum all diagrams that share the same interaction vertices and
are one-particle irreducible. This allows us to design a Monte
Carlo scheme that directly samples the contributions to the self-
energy. This �Det algorithm has an exponential complexity
n23n where n is the perturbation order. We have shown that
even if it has higher complexity, an approach that computes
the self-energy directly leads to much smaller error bars with
respect to the use of Dyson’s equation or more sophisticated
equations of motion (nevertheless, the latter could be useful in
the context of real-time quantum Monte Carlo algorithms) [28].

With the parameters that we have discussed above, β =
2/t , U = 4t , and μ = 0 (corresponding to a total density
n = 0.66), the direct self-energy measurement also leads to
much smaller error bars than the usual DiagMC algorithm
on the two-dimensional Hubbard model and sets the cur-
rent state of the art of these approaches. In practice, one
can completely converge the results for 9 orders with an
uncertainty below 1%. Note that for these parameters, other
approaches, such as determinant quantum Monte Carlo

(DQMC) [33], also converge (see Fig. 8). It is therefore
important to more systematically compare the �Det approach,
the DiagMC, and other algorithms in different regimes of
parameters in order to determine in what regions of the
Hubbard model solutions can be converged. Work is in progress
along these lines. (See also the recent article of Šimkovic and
Kozik [34].)

Finally, further progress is still needed to be able to reach
stronger coupling regimes and lower temperatures. While
the summation over all topologies certainly reduces the sign
problem, the stochastic integration over imaginary times still
yields large error bars at high orders. It is therefore necessary
to investigate how this sign problem could be reduced.
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APPENDIX A: EQUATIONS OF MOTION

Here we show that Eq. (6) can be obtained from the
equations of motion of the Green’s function. For concreteness,
we consider the two-dimensional Hubbard model

H = −t
∑
〈i,j〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ (A1a)

≡ Hhop + Hint, (A1b)

where c
†
iσ creates a spin-σ electron on the site i of a square

lattice, t > 0 is the nearest-neighbor hopping, and U the onsite
interaction. Note that the derivation below yields the same
result for an interacting impurity coupled to a bath or for
the Hubbard atom. These models are used in the article to
benchmark and compare results from the different methods
introduced in Sec. III.

We define the imaginary-time Green’s function of two op-
erators A and B as GA,B(τ ) = −〈TτA(τ )B(0)〉. The equation
of motion for G is given by

∂τGA,B(τ ) = −δ(τ )〈{A(τ ),B(0)}〉 − 〈Tτ [H,A](τ )B(0)〉,
(A2)

which, in Matsubara frequencies, is written

iωnGA,B(iωn) = −G[H,A],B (iωn) + 〈{A,B}〉. (A3)

Let us note for later use that by writing GA,B(τ ) =
−〈TτA(0)B(−τ )〉, one obtains a similar expression that in-
volves a commutator between the Hamiltonian and B rather
than A,

iωnGA,B(iωn) = GA,[H,B](iωn) + 〈{A,B}〉. (A4)
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The equation of motion [Eq. (A3)] for the one-particle Green’s
function Gσ

ij ≡ −〈Tτ ciσ (τ )c†
jσ (0)〉 is

iωnG
σ
ij = −G[H,ciσ ],c†

jσ
+ 〈{ciσ ,c

†
jσ }〉. (A5)

Using the expression for the commutators

[Hhop,ciσ ] = t
∑
〈a,b〉

cbσ δia, (A6a)

[Hint,ciσ ] = −Uniσ̄ ciσ , (A6b)

we find that

iωnG
σ
ij = −t

∑
〈a,b〉

δiaG
σ
bj + UG

niσ̄ ciσ ,c
†
jσ

+ δij , (A7a)

∑
〈a,b〉

(iωnδib + tδia)Gσ
bj = UG

niσ̄ ciσ ,c
†
jσ

+ δij . (A7b)

Introducing the correlator Fσ
ij ≡ UG

niσ̄ ciσ ,c
†
jσ

, the equation

above can be rewritten in matrix form as

Fσ = (
Gσ−1

0 − Gσ−1)Gσ = �σGσ . (A8)

Note that this definition of Fσ is consistent with Eq. (13). We
can now apply Eq. (A4) to Fσ

ij ,

iωnF
σ
ij = UG

niσ̄ ciσ ,[H,c
†
jσ ] + U 〈{niσ̄ ciσ ,c

†
jσ }〉. (A9)

Using the commutators

[Hhop,c
†
jσ ] = −t

∑
〈a,b〉

c†
aσ δbj , (A10a)

[Hint,c
†
jσ ] = Unjσ̄ c

†
jσ , (A10b)

we find that∑
〈a,b〉

(iωnδaj + tδbj )Fσ
ia = U 2G

niσ̄ ciσ ,njσ̄ c
†
jσ

+ 〈niσ̄ 〉δij . (A11)

Introducing the correlator F̄ σ
ij ≡ U 2G

niσ̄ ciσ ,njσ̄ c
†
jσ

and the

Hartree term �
H,σ
ij = 〈niσ̄ 〉δij the equation above becomes

FσGσ−1
0 = F̄ σ + �H,σ . (A12)

Using Eq. (A8) for Fσ and Dyson’s equation we have that

FσGσ−1
0 = �σGσ (Gσ−1 + �σ ) = �σ + �σGσ�σ ,

(A13)
which yields the final result

�σ = �H,σ + F̄ σ − �σGσ�σ . (A14)

This is the relation between the self-energy and the correlator
F̄ σ used in Eq. (6). The definitions of F̄ σ and �H,σ are
respectively consistent with Eqs. (7) and (5).

APPENDIX B: BENCHMARKS

Here, we present benchmarks for the three methods in-
troduced in the main text and we check their theoretical

1 2 3 4 5 6
ωn

1

2

3

4

5

Im
Σ̃

(i
ω

n
)

Order 5

Exact Dyson EOM ΣDet

FIG. 9. Benchmark of the contribution to the Matsubara fre-
quency self-energy �̃(iωn) for the Hubbard atom at order 5 in the
perturbation series in U . Red squares are the analytical solution.
Green lines are obtained from a calculation of the Green’s function
with Eq. (2). Orange line is the result of the equations of motion and
lies on top of the blue curve corresponding to the direct self-energy
measurement. We use β = 10, U = 1, ε = −0.2. All simulations
lasted 1200 CPU hours.

complexity. We first consider the simple problem of a Hubbard
atom. The self-energy is given by

�σ (iωn) = 〈nσ̄ 〉U + 〈nσ̄ 〉(1 − 〈nσ̄ 〉)U 2

iωn − ε − (1 − 〈nσ̄ 〉)U , (B1)

and the contributions to �̃(iωn) at different orders in U

can be computed analytically. In Fig. 9, we show results
for the contributions to �̃(iωn) at order 5 as obtained from
the proposed algorithms. The results clearly agree with the
analytical values within the error bars.

Next we consider the Hubbard model on a 32 × 32
square lattice. In Fig. 10 we plot the momentum-dependent

�k

−0.050

−0.025

0.000

0.025

0.050

Σ̃
� k
(i

ω
0
)

Im part

Re part

Order 4

(0, 0) (π, 0) (π, π) (0, 0)

Dyson

Dyson

EOM

EOM

ΣDet

ΣDet

DiagMC

DiagMCx

FIG. 10. Hubbard model self-energy at the first Matsubara fre-
quency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0) path
at order 4 in U , as obtained from DiagMC (red), Dyson’s equation
(green), the equations of motion approach (orange), and the direct self-
energy measurement (blue). We use a 32 × 32 lattice with βt = 2,
U = 4t , μ = 0 and a uniform α shift α↑ = α↓ = 1.53t . The DiagMC
simulation lasted 400 CPU hours, while all other simulations lasted
1440 CPU hours.
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FIG. 11. Comparison of the time for one Monte Carlo cycle (in
microseconds) between the direct accumulation of the self-energy
(blue curve with dots) and the computation of the Green’s function
using CDet (green curve with dots), on a semilog scale, as a function
of the perturbation order n. Each curve is fitted by its expected
high-n behavior: γ�n23n for the �Det (dotted red line) and γG3n

for Dyson (dashed red line), where γG = 0.0464 and γ� = 0.0012
are implementation-dependent constants. Inset: Ratio of the time of
one MC cycle for �Det (t�) and for the CDet (tG), as a function of
the perturbation order n.

self-energy �̃�k(iω0) at its first Matsubara frequency along
the �k = (0,0) → (π,0) → (π,π ) → (0,0) path of the Brillouin
zone. Results from the three approaches are are shown at order
4 and compared to results obtained using the standard DiagMC
[15–19] algorithm. (This implementation of the algorithm
has been benchmarked and used in earlier calculations, see,
e.g., Ref. [26].) Results agree with the benchmark DiagMC
calculation within error bars.

A measurement of the time to perform one MC step allows
us to study the complexity of the algorithms. This is shown
in Fig. 11, where the time for a single step is shown both for
the direct measurement of the self-energy using the �Det and
for the measurement of G using the CDet, that is then used
in Dyson’s equation. We know that the EOM method takes
twice the CDet complexity, so we consider these two methods
together in this study. The expected high-order behavior in
n23n for the self-energy measurement and 3n for the CDet is
found. At smaller perturbation orders, the asymptotic behavior
is not yet settled. At orders smaller than 5, the self-energy
measurement takes less time mainly because the algorithm
starts at order 2. [The recursion starts with the pair-bubble
diagram, see Eq. (15) with V = ∅.] On the contrary, the CDet
algorithm for the Green’s function starts at order 0. As a
consequence, the direct measurement of the self-energy is only
about a factor 3 slower than the CDet approach at order 10 (see
inset of Fig. 11), which is the order that is currently accessible
with reasonable error bars.

APPENDIX C: CANCELLATION
OF NON-SELF-ENERGY DIAGRAMS

Let us explicitly show the cancellation of non-self-energy
diagrams in Eq. (12) for the specific case V = {x1} at order 3
in U . We start by considering

. (C1)

The first term F̄ σ
V (xout,xin) in Eq. (12) corresponds to all

connected diagrams with two external points xin and xout and
one internal interaction vertex x1:

. (C2)

From this sum, we subtract the second and third terms of
Eq. (12). The former gives

, (C3)

while the latter’s contribution is the sum of

(C4)

and of

. (C5)

We see that the remaining contributions to the self-energy
that remain are only those diagrams that are one-particle
irreducible.
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We express the recently introduced real-time diagrammatic quantum Monte Carlo [Phys. Rev. B 91, 245154
(2015)] in the Larkin-Ovchinnikov basis in Keldysh space. Based on a perturbation expansion in the local
interaction U , the special form of the interaction vertex allows us to write diagrammatic rules in which vacuum
Feynman diagrams directly vanish: This reproduces the main property of the previous algorithm, without the
cost of the exponential sum over Keldysh indices. In an importance sampling procedure, this implies that only
interaction times in the vicinity of the measurement time contribute, and such an algorithm can directly address
the long-time limit needed in the study of steady states in out-of-equilibrium systems. We then implement and
discuss different variants of Monte Carlo algorithms in the Larkin-Ovchinnikov basis. A sign problem reappears,
showing that the cancellation of vacuum diagrams has no direct impact on it.

DOI: 10.1103/PhysRevB.100.085125

I. INTRODUCTION

The development of high-precision and controlled com-
putational methods for nonequilibrium models in strongly-
correlated regimes is a subject of growing interest in theoreti-
cal condensed-matter physics. Recent years have seen signif-
icant experimental progress with quantum transport through
mesoscopic systems [1], metal-insulator transitions driven by
an electric field [2], or light-induced superconductivity [3–7].

Powerful tools have been designed for the study of
quantum systems at equilibrium. Notably, the combination
of dynamical mean-field theory [8–10] and state-of-the-art
continuous-time quantum Monte Carlo (QMC) algorithms
such as CT-INT [11,12], CT-AUX [13], or CT-HYB [14,15]
have allowed for great advances. When considering out-of-
equilibrium systems, however, early attempts to construct
similar perturbation-expansion-based real-time QMC algo-
rithms encountered an exponential sign problem that pre-
vented them from reaching long times and large interactions
[16–20]. Other approaches such as the density matrix renor-
malization group (DMRG) [21–23] also struggle in the long-
time limit due to entanglement growth. There is therefore
still a great need for high-precision numerical methods that
would be able to access the nonequilibrium steady states of
strongly-interacting quantum systems.

Current efforts to build real-time quantum Monte Carlo
methods mainly explore two routes: the inchworm algorithm
[24–30] and the so-called “diagrammatic” QMC [31–33]
which is the subject of this paper. Using an expansion of phys-
ical quantities in powers of the interaction U , this algorithm
has been shown to directly address the infinite-time steady
states. The name “diagrammatic” refers to its imaginary-time
counterparts that were historically constructing a Markov
chain in the space of Feynman diagrams [34–37].

First introduced in Ref. [31], the real-time diagrammatic
QMC algorithm stochastically samples physical quantities
using an importance sampling. At a given perturbation order
n, its key idea is to regroup a factorial number of Feynman
diagrams in a sum over Keldysh indices of 2n determinants.
This exponential sum has been shown to cancel vacuum
diagrams, a property also used in recent diagrammatic QMC
methods in imaginary time [38–40]. As a direct consequence,
the Monte Carlo sampling only involves interaction times in
a neighborhood around the measurement time tmax: We talk
about the clusterization of times. The computation of the
Monte Carlo weight is exponential in the perturbation order
but uniform in time, at any temperature. The algorithm can
therefore address long, even infinite, times in the computation
of contributions to the perturbation theory. This method was
recently generalized to compute the Green’s function and
tested in quantum impurity models [32,33]. The current form
of the algorithm is able to compute the Kondo resonance at
low temperature in the strongly-correlated Kondo regime.

Coefficients of the expansion being written in terms of
high-dimensional integrals of the sum of determinants, its ex-
ponential scaling limits our capability to compute high orders
with great precision (we typically are limited to 10 of them).
Even though nonperturbative information and Bayesian tech-
niques can overcome noise amplification occurring in the
resummation of the series [33], this can prevent the algorithm
from reaching very large U .

In this paper, we show that we can obtain the cancellation
of diagrams and the long time clusterization property without
summing an exponential number of terms. Using the Larkin-
Ovchinnikov (LO) basis in Keldysh space, we rewrite the
integrand as a sum of 4n determinants, but we show that
diagrammatic rules in this basis are such that every diagram
has the clusterization property. In other words, the elimination

2469-9950/2019/100(8)/085125(11) 085125-1 ©2019 American Physical Society
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of vacuum diagrams is directly achieved in the diagrammatics
without the need of an exponential sum. We then implement
and compare two Monte Carlo algorithms based on this
mathematical property. Both sample single determinants at
a polynomial cost, but then one measures in the LO basis
(LO algorithm) while the other measures in the original basis
(mixed algorithm). We obtain that a simple implementation of
the real-time diagrammatic QMC in the Larkin-Ovchinnikov
basis leads to a severe sign problem, which is reduced in
the mixed algorithm. This shows that the main effect of the
exponential sum of determinants, beyond the cancellation of
vacuum disconnected diagrams, is to reduce the sign problem
of this class of algorithms.

This paper is organized as follows. First, we present in
Sec. II the usual Keldysh formalism in the {±} basis, briefly
summarize the diagrammatic rules, and then derive the can-
cellation of vacuum diagrams and the clusterization of the
density when summing over Keldysh indices. We follow the
same structure in Sec. III where we introduce the Larkin-
Ovchinnikov basis, showing that all vacuum diagrams are
equal to zero, so that density contributions directly clusterize
around the measurement time. We then detail in Sec. IV
the Monte Carlo implementation of the original algorithm
presented in Ref. [31] (± algorithm) and two algorithms based
on the Larkin-Ovchinnikov formalism (LO and mixed algo-
rithms). In Sec. V we compute the density of an impurity level
coupled to a bath, present the results of all three algorithms,
and explain the origin of the observed error bars. We finally
conclude in Sec. VI.

II. KELDYSH FORMALISM

We work in the Keldysh formalism [41–44]. In this frame-
work, operators act on the Keldysh contour C consisting of a
forward branch, from an initial time t0 (that we take equal to 0
in the following) to a given time tmax, and a backward branch,
from tmax to t0. The system is initially prepared at equilibrium
without interactions. A Keldysh point k on C is defined as a
pair k ≡ (t, α) with a time t ∈ [0, tmax] and a Keldysh index
α ∈ {±} indicating which branch is to be considered. The +
(resp. −) index denotes the forward (resp. backward) branch,
as depicted below.

Note that both branches are along the real axis and are
displaced only for graphical purposes. In the following, Greek
letters refer to ± indices unless otherwise stated. We define
a contour operator TC that follows the arrows on the above
picture: TC coincides with the usual time-ordering operator T
on the + branch, with the anti-time ordered operator Ť on the
− branch, and considers all Keldysh points on the backward
branch to be later than points on the forward branch.

The formalism we develop in this section is valid for any
general model described by a noninteracting Green’s function
g and a density-density interaction. However, for the sake of
simplicity, we consider interacting electrons on a single en-
ergy level. The operator cσ (resp. c†

σ ) destroys (resp. creates)
an electron with spin σ =↑,↓. The interaction term, turned

on at t = 0, is given by the interaction vertex Un↑n↓, where
nσ ≡ c†

σ cσ is the density operator.
We define the time-dependent Green’s function

Ĝσ (t, t ′) ≡ −i〈TCcσ (t )c†
σ (t ′)〉, (1)

where c(†)
σ (t ) is the Heisenberg representation of c(†)

σ and the
average is taken with respect to the initial noninteracting state.
The Green’s function takes the form of a 2 × 2 matrix in the
{±} basis: Ĝσ =

(
G++

σ G<
σ

G>
σ G−−

σ

)
, where

G<
σ (t, t ′) ≡ i〈c†

σ (t ′)cσ (t )〉, (2a)

G>
σ (t, t ′) ≡ −i〈cσ (t )c†

σ (t ′)〉, (2b)

G++
σ (t, t ′) ≡ −i〈Tcσ (t )c†

σ (t ′)〉, (2c)

G−−
σ (t, t ′) ≡ −i〈Ťcσ (t )c†

σ (t ′)〉. (2d)

Throughout the paper, noninteracting Green’s functions
will be denoted by lower case letters, interacting ones by
upper case letters, and a ˆ denotes a matrix.

A. Diagrammatic rules

In this paper, we construct perturbation series in the in-
teraction U for physical observables of interest. Computing
contributions at different perturbation orders relies on the
evaluation of Feynman diagrams obeying rules that we briefly
summarize.

A straight line represents a noninteracting Green’s function

(3)

Because the interaction has the form Un↑n↓, an interaction
vertex is characterized by a single Keldysh point {t, α}, and
the indices of the four legs all have to be equal to the Keldysh
index α

(4)

Hence, for every interaction time t , there are two possible
vertices. The sum of the different {±} configurations can be
written in the H↑ ⊗ H↓ space, in the form

−iU (m+ ⊗ m+ − m− ⊗ m−), (5)

where m+ =
(

1 0
0 0

)
and m− =

(
0 0
0 1

)
are matrices in the

{±} basis, and Hσ is the Hilbert space for spin σ . Further-
more, an interaction of the form hc†

σ cσ in the Hamiltonian
would give rise to two-leg vertices of the form

(6)

These do not appear directly in the diagrammatics but will be
formally useful when deriving the expression of the fermionic
bubble. The sum over Keldysh indices reads −ih(m+ − m−)
in both H↑ and H↓ spaces.
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With the expression of the four-leg interaction vertex, the
following fermionic bubble reads

(7)

Because of the form of the interaction term, we have

gαα
σ (t, t ) = g<

σ (t, t ). (8)

Hence, the above diagram reduces to αUg<
σ̄ (t, t ), which can

be formulated as a two-leg vertex with a iUg<
σ̄ (t, t ) field

(9)

If M is the quantity we want to compute (later on the den-
sity), its perturbation expansion is given by M = ∑

n MnU n.
Because of the form of the interaction vertex, we have

Mn =
∫

C
dk1 . . . dkn M±

n (k1, . . . , kn) (10)

=
∫ tmax

0
dt1 . . . dtn

∑
α1...αn

M±
n ({ti, αi}1�i�n), (11)

where M±
n ({ti, αi}1�i�n) can be expressed as a product of

determinants, their precise form depending on the measured
quantity. Throughout this paper, the ± superscript will denote
quantities expressed in the {±} basis. Moreover times inte-
grated over are always considered ordered.

B. Cancellation of vacuum diagrams when summing over
Keldysh indices

Due to the forward-backward nature of the contour C, the
partition function Z is exactly equal to 1 in the real-time
Keldysh formalism. Expressing Z as a series in U (Z =∑

n ZnU n), this property implies that all Zn are vanishing for
n � 1. Because of the form of Eq. (10), this cancellation
involves both the integral over times and the sum over Keldysh
indices. However, it was proven by Profumo and co-workers

in Ref. [31] that only the latter is needed. For all n � 1,
{t1, . . . , tn} ∈ [0, tmax]n,∑

α1...αn

Z±
n ({ti, αi}1�i�n) = 0, (12)

where

Z±
n ({ti, αi}1�i�n) = (−iα1) . . . (−iαn) × inin

×
∏
σ

det
[
(ĝσ )αiα j (ti, t j )

]
1�i, j�n

. (13)

Each (−iαk ) comes from Eq. (4), and the two in factors from
the fact that a straight line actually represents an iĝ [Eq. (3)].

For every configuration of times {t1, . . . , tn}, vacuum dia-
grams therefore cancel when performing the explicit 2n sum
over Keldysh indices. Recent developments in imaginary-
time diagrammatic QMC also achieved, through an iterative
procedure, the cancellation of vacuum (and, later on, non-one-
particle irreducible) diagrams at every Monte Carlo step at an
exponential cost in the perturbation order [38–40].

C. Density computation and clusterization

In the following, we compute the density d of electrons
with spin ↑ on the impurity level at the end point of the
Keldysh contour, d ≡ 〈n↑(tmax)〉. In the {±} basis, let us
note that d = (Ĝ↑)01(tmax, tmax)/i. Hence we can represent
the measurement vertex as a “special” vertex bearing time
tmax, such that the ingoing and outgoing Keldysh indices are
0 and 1:

(14)

Note that the surrounding lines are dashed because they
should bear a ĝ propagator (instead of an iĝ one as in the rest
of the formalism). The order-n contribution to d reads

dn =
∫ tmax

0
dt1 . . . dtn

∑
α1...αn

(−iα1) . . . (−iαn)

× in+1in

i2

∏
σ

det D±
σ ({ti, αi}1�i�n), (15)

where

D±
↑ ({ti, αi}1�i�n) =

⎛
⎜⎜⎜⎝

[
(ĝ↑)αiα j (ti, t j )

]
1�i, j�n

(ĝ↑)α11(t1, tmax)
...

(ĝ↑)αn1(tn, tmax)
(ĝ↑)0α1 (tmax, t1) . . . (ĝ↑)0αn (tmax, tn) (ĝ↑)01(tmax, tmax)

⎞
⎟⎟⎟⎠, (16)

and

D±
↓ ({ti, αi}1�i�n) = [

(ĝ↓)αiα j (ti, t j )
]

1�i, j�n
. (17)

Using the cancellation of vacuum diagrams when summing
over Keldysh indices, we reproduce in Appendix A the argu-
ment of Ref. [31] showing that the computation of dn only
involves the sampling of interaction times close to tmax. As
a direct consequence, Monte Carlo algorithms implementing
this sum in the calculation of the weight can address any

measurement time tmax, when earlier methods were limited
to short-term measurements [16–20]. We talk about the clus-
terization of interaction times in the computation of the
density.

III. LARKIN-OVCHINNIKOV FORMALISM

Starting from the expression of the Green’s function in the
{±} basis, we define its counterpart in the LO basis, ĜLO,
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through the following transformation [42,45]

ĜLO
σ (t, t ′) ≡ L†τ3Ĝσ (t, t ′)L, (18)

where L = 1√
2

(
1 1

−1 1

)
and τ3 =

(
1 0
0 −1

)
. The Green’s func-

tion now takes the 2 × 2 form ĜLO
σ =

(
Rσ Kσ

0 Aσ

)
, where R, K ,

and A are, respectively, the retarded, Keldysh, and advanced
Green’s functions defined as

Rσ (t, t ′) ≡ −iθ (t − t ′)〈{cσ (t ), c†
σ (t ′)}〉, (19a)

Aσ (t, t ′) ≡ iθ (t ′ − t )〈{cσ (t ), c†
σ (t ′)}〉, (19b)

Kσ (t, t ′) ≡ −i〈[cσ (t ), c†
σ (t ′)]〉. (19c)

In this basis, the Keldysh index α ∈ {±} is replaced by an
LO index 0 or 1. In the following, l will always denote such
an index unless otherwise stated.

A. Diagrammatic rules

To expose the diagrammatic rules in this formalism, let
us first determine from Eq. (5) the form of the four-leg
interaction vertex in the LO basis. The m+ and m− matrices
transform as

L†τ3m+L = 1

2

(
1 1
1 1

)
≡ 1

2
τ↑, (20a)

L†τ3m−L = 1

2

(−1 1
1 −1

)
≡ 1

2
τ↓. (20b)

Hence the sum of different LO contributions can be written

− iU

4
(τ↑ ⊗ τ↑ − τ↓ ⊗ τ↓) = − iU

2
(1 ⊗ τ↓ + τ↑ ⊗ 1), (21)

where 1 is the 2 × 2 identity matrix. Note that this is consis-
tent with the symmetric form − iU

2 (1 ⊗ τ + τ ⊗ 1) noted in

Ref. [46], where τ =
(

0 1
1 0

)
. The rhs form of Eq. (21) is the

one we will retain in the rest of this paper. We show in Secs.
III B and III C that the identity part of the vertex is essential
in the proof of the cancellation of vacuum diagrams and the
clusterization of times in the computation of observables.

The key point of this expression of the vertex is that we can
reduce the number of indices involved in the diagrammatics
using the fact that τ↑ and τ↓ are rank-1 matrices: τ↑ = v↑v�

↑
with v↑ =

(
1
1

)
and τ↓ = v↓(−v�

↓ ) with v↓ =
(

1
−1

)
. We can

therefore absorb the τσ part of the vertex in a redefinition of
the noninteracting propagator (see below).

An LO vertex can then be characterized by a tuple {t, iτ , l},
where t ∈ [0, tmax], iτ ∈ {−1, 1} and l ∈ {0, 1}. iτ = 1 (resp.
−1) indicates that the ↑ (resp. ↓) spin is carrying the τ↑
(resp. τ↓) side, and l is the LO index entering the identity part
of the vertex. We store the information about both the bare
propagator ĝLO

σ =
(

rσ kσ

0 aσ

)
and the nature of the vertices it is

connected to in the form of a 3 × 3 matrix ˆ̃gσ . The two first
indices corresponds to a connection to the identity (with l =
0 or 1), and the third one to the connection to a τσ :(

ˆ̃gσ

)
ll ′ = (

ĝLO
σ

)
ll ′ , (22a)(

ˆ̃gσ

)
l2 = (

ĝLO
σ vσ

)
l , (22b)

(
ˆ̃gσ

)
2l = (

σv�
σ ĝLO

σ

)
l , (22c)(

ˆ̃gσ

)
22 = σv�

σ ĝLO
σ vσ , (22d)

with the convention that σ =↑ should be understood as +1
and σ =↓ as −1.

We obtain

ˆ̃gσ =
⎛
⎝ rσ kσ rσ + σkσ

0 aσ σaσ

σ rσ σkσ + aσ σ [rσ + aσ ] + kσ

⎞
⎠. (23)

To simplify upcoming equations, we express the indices of
ˆ̃g↑ and ˆ̃g↓ at a vertex {t, iτ , l} in the form of two composite
indices L↑ and L↓:

Lσ =
{

2 if iτ = σ

l otherwise (24)

Note that this 3 × 3 form of the Green’s function comes from
the absorption of the τσ part of the vertex and has nothing to
do with the Baym-Kadanoff L-shaped contour used in thermal
real-time computations.

With this notation, a straight line represents a noninteract-
ing (modified) Green’s function

(25)

As discussed previously, the interaction vertex, proportional to
the identity in the {±} basis, is now proportional to 1⊗τ↓+τ↑⊗1

2
in the H↑ ⊗ H↓ space

(26)

As m+ − m− transforms into the 2 × 2 identity matrix in
the LO basis, a two-leg vertex is simply characterized by an
interaction time t and an LO index l . A term hc†

σ cσ in the
Hamiltonian would therefore give rise to the following vertex

(27)

With this expression of the interaction vertex, the following

fermionic bubble evaluates to

U

2
δLσ 2[rσ̄ (t, t ) + aσ̄ (t, t )]

+ U

2
δLσ l [σ̄ rσ̄ (t, t ) + σ̄aσ̄ (t, t ) + kσ̄ (t, t )]. (28)

For the equal-time limit of the retarded, Keldysh, and ad-
vanced Green’s function, we choose a convention which
ensures the consistency between the {±} and LO basis. We
consider

kσ (t, t ) = 2g<
σ (t, t ), (29a)

rσ (t, t ) = aσ (t, t ) = 0, (29b)
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and we show that this is consistent with Eq. (8). Using
Eq. (29), the above fermionic bubble reduces to Ug<

σ̄ (t, t )δLσ l .
It can be rewritten as a two-leg vertex with a iUg<

σ̄ (t, t )
field

(30)

This equation is, up to a change of basis, the same as Eq. (9).
The choice of equal time limit described in Eq. (29) is
therefore consistent with the {±} basis formalism.

The order-n contribution to the quantity M we want to
measure in an expansion in U is similar to Eq. (10) but has
to take account of the new form of the vertex

Mn =
∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

MLO
n ({ti, iτi , li}1�i�n), (31)

where the MLO
n ({ti, iτi , li}1�i�n) can once again be expressed

as a product of determinants, their precise form depending
on the computed quantity. This formalism leads to 4n LO
configurations for a given set of n interaction times, to be
compared with 2n possible configurations in the ± basis.
However, we show in the next section that vacuum diagrams
now directly cancel in this formalism, without the actual need
to perform an explicit sum over all configurations.

B. Cancellation of vacuum diagrams

In this section, we show the main result of this paper:
Contributions to the partition function are directly equal to
zero in the LO basis. For all n � 1, {t1, . . . , tn} ∈ [0, tmax]n,
{iτ1 , . . . , iτn} ∈ {−1, 1}n, {l1, . . . , ln} ∈ {0, 1}n,

ZLO
n

({
ti, iτi , li

}
1�i�n

) = 0, (32)

where the contributions to the partition function are

ZLO
n

({
ti, iτi , li

}
1�i�n

)
=

(
− i

2

)n

inin
∏
σ

det
[
( ˆ̃gσ )Lσ

i Lσ
j
(ti, t j )

]
1�i, j�n. (33)

Each − i
2 comes from Eq. (26) and the two in factors from the

fact that a straight line actually represents an i ˆ̃g [Eq. (25)].
Let us consider an order n � 1 diagram contributing to Z .

The interaction times are denoted t1, . . . , tn. We introduce t̂ =
maxiti and î such that tî = t̂ . We label σ the spin on the identity
side of the (1 ⊗ τ↓ + τ↑ ⊗ 1)/2 interaction vertex at t̂ and l
the corresponding LO index. We consider the diagrammatic
line following spin σ . If t̂ is surrounded by no other interaction

vertex, the diagram is then proportional to

( ˆ̃gσ )ll (t̂, t̂ ) = δl0rσ (t̂, t̂ ) + δl1aσ (t̂, t̂ ) = 0. (34)

In the case where t̂ is surrounded by at least one other inter-
action vertex, we label its surrounding interaction times (that
can be equal) ti and t j , i, j �= î, with corresponding composite
indices Lσ

i , Lσ
j . We then obtain

( ˆ̃gσ )Lσ
j l (t j, t̂ ) = δLσ

j 2δl1[σkσ (t j, t̂ ) + aσ (t j, t̂ )]
+ δLσ

j 1δl1aσ (t j, t̂ ) + δLσ
j 0δl1kσ (t j, t̂ ), (35)

and

( ˆ̃gσ )lLσ
i
(t̂, ti ) = δLσ

i 2δl0[rσ (t̂, ti ) + σkσ (t̂, ti )]

+ δLσ
i 1δl0kσ (t̂, ti ) + δLσ

i 0δl0rσ (t̂, ti ). (36)

The full diagram is then proportional to δl0δl1 = 0. Hence
every diagram contributing to Z in the LO basis is exactly
equal to 0. This formalism directly cancels vacuum diagrams.

Finally, we note that this proof relies only on having the
identity on one side of the interaction vertex and not on the
explicit contraction with τ↑, τ↓. Had we kept the diagrammat-
ics with ĝ lines instead of ˆ̃g ones, we would also obtain the
cancellation of vacuum diagrams.

C. Density computation and clusterization

In order to understand how to write the density of ↑
electrons on the energy level in the LO basis, we use the
following property of the Keldysh formalism: The average
value of an operator does not depend on the branch of C where
it is computed. Considering d on the + branch of the contour,
the computation of the density can be understood as the action
of the m+ matrix in the {±} basis, which transforms in the 1

2τ↑
matrix in the LO basis according to Eq. (20a). Hence we can
represent the measurement vertex as a “special” interaction
vertex at time tmax with iτ = 1:

(37)

As previously, surrounding lines are dashed because they bear
a ˆ̃g (and not an i ˆ̃g). Hence the order-n contribution to d reads

dn =
∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

(
− i

2

)n in+1in

i2

×
∏
σ

det DLO
σ

({
ti, iτi , li

}
1�i�n

)
. (38)

The DLO
σ matrices are defined as

DLO
↑

({
ti, iτi , li

}
1�i�n

) =

⎛
⎜⎜⎜⎜⎝

[
( ˆ̃g↑)L↑

i L↑
j
(ti, t j )

]
1�i, j�n

( ˆ̃g↑)L↑
1 2(t1, tmax)

...
( ˆ̃g↑)L↑

n 2(tn, tmax)
( ˆ̃g↑)2L↑

1
(tmax, t1) . . . ( ˆ̃g↑)2L↑

n
(tmax, tn) ( ˆ̃g↑)22(tmax, tmax)

⎞
⎟⎟⎟⎟⎠, (39)

and

DLO
↓

({
ti, iτi , li

}
1�i�n

) = [
( ˆ̃g↓)L↓

i L↓
j
(ti, t j )

]
1�i, j�n. (40)
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Before considering the clusterization of interaction times,
we note that half of the contributions to the density vanish. Let
us consider a given set {ti, iτi , li}1�i�n of LO vertices at order
n, and let us label t̂ = maxi ti and î such that tî = t̂ . If iτî

= 1,
then the ↓ spin is carrying the identity side of the vertex. As
we measure the density on the ↑ spin, the argument used in
the cancellation vacuum diagrams (see III B) applies again
and DLO

↓ ({ti, iτi , li}1�i�n) is the n × n null matrix. If iτî
= −1,

the contribution does not vanish. Hence, when computing the
density, at every order n and for every set of n interaction
times, 4n/2 LO configurations (out of 4n) are exactly zero.

The clusterization of interaction times around tmax in the
calculation of the density is then a direct consequence of the
cancellation of vacuum diagrams and is very similar to the
proof in the {±} basis (now without the exponential sum).
Let n be a given perturbation order and t1 < t2 < · · · < tn
n interaction times. Let us assume that the first j times are
located far away from the measurement time tmax and that the
last n − j times are located in the vicinity of tmax. We can
formally consider

∀1 � i � j, |ti − tmax| → ∞. (41)

Because the Green’s function is a local quantity in time, this
means that for all t ∈ {t1, . . . , t j}, t ′ ∈ {t j+1, . . . , tn; tmax}

‖ ˆ̃gσ (t, t ′)‖ → 0, ‖ ˆ̃gσ (t ′, t )‖ → 0. (42)

We therefore have∏
σ

det DLO
σ

({
ti, iτi , li

}
1�i�n

) �
∏
σ

det Aσ

∏
σ

det Bσ , (43)

with

Aσ = [
( ˆ̃g)Lσ

i Lσ
i′
(ti, ti′ )

]
1�i,i′� j, (44a)

B↓ = [
( ˆ̃g)L↓

i L↓
i′
(ti, ti′ )

]
j+1�i,i′�n, (44b)

and B↑ is the [( ˆ̃g)L↑
i L↑

i′
(ti, ti′ )]

j+1�i,i′�n
matrix where a last

line and column corresponding to tmax are added, similar to
Eq. (39). However,

∏
σ det Aσ is a contribution to Z at order j,

and it vanishes according to (32). Therefore
∏

σ det Dσ � 0,
and this proves the clusterization of times around tmax in the
computation of the density. In the next section, we present
different algorithms to stochastically sample Eqs. (15) and
(38).

IV. MONTE CARLO IMPLEMENTATION

In this section, we describe how to compute the density
d introduced above using quantum Monte Carlo (MC) tech-
niques. We present three different algorithms to compute this
quantity, one using the ± algorithm presented in Ref. [31] and
the other two based on the LO formalism presented above.

A. Monte Carlo algorithms

We first describe how to stochastically generate MC con-
figurations to sample the order-n contribution, dn, as expressed
in Eqs. (15) and (38). The ± algorithm works directly on the
Keldysh contour. A configuration c is determined by a given
perturbation order n and a set of n interaction times (and not

Keldysh points): c = {n; t1, . . . , tn}. The contribution to dn of
a given configuration is

w±
c = −in+1

∑
α1...αn

α1 . . . αn

∏
σ

det D±
σ ({ti, αi}1�i�n). (45)

In the Monte Carlo, configurations are sampled stochastically
according to their weight, which we choose to be |w±

c |. We
then have

dn =
∫ tmax

0
dt1 . . . dtn w±

c ∝
MC ±∑

c

sign w±
c . (46)

Note that it was shown in Ref. [31] that w±
c ∈ R.

In the LO algorithm, a configuration c is now determined
by a given perturbation order n and a set of n interaction LO
vertices: c = {n; y1, . . . , yn}, where yi = {ti, iτi , li}. Because
the density is a real quantity, the contributions to dn of a
configuration c can be written as

wLO
c = − 1

2n+1
Re

(
in+1

∏
σ

det DLO
σ (c)

)
. (47)

If |wLO
c | is the statistical weight of c in the Monte Carlo

process, then

dn =
∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

wLO
c ∝

MC LO∑
c

sign wLO
c . (48)

The third algorithm that we study is a mixed algorithm
that samples the configurations according to their LO weight
|wLO

c | but computes dn in the original {±} basis, from the
contributions w±

c at the sampled times. A configuration c is
then determined by a given perturbation order n and a set
of n interaction LO vertices: c = {n; y1, . . . , yn} and the MC
weight is |wmixed

c | = |wLO
c |, so that

dn = 1

N

∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

∣∣wLO
c

∣∣ w±
c∣∣wLO
c

∣∣

∝ 1

N

MC mixed∑
c

w±
c∣∣wLO
c

∣∣ , (49)

where N is the number of nonzero LO configurations. When
computing the density, N = 4n/2 at order n (see Sec. III C).

In all three techniques, we use a standard Metropolis algo-
rithm [47] to generate Markov chains distributed according to
the weights |wc|. Starting from a given configuration c, a new
configuration c′ is proposed according to one of the following
two Monte Carlo updates:

(1) Remove a randomly chosen interaction time (for the
± algorithm) or interaction LO vertex (for the LO and mixed
algorithms) from c.

(2) Add a new interaction time (for the ± algorithm) or
an interaction LO vertex (for the LO and mixed algorithms).
In all three techniques, because of the clusterization of times
around tmax, we choose the new interaction time according to
a Cauchy law (see below). We randomly choose the iτ and l
indices.
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The new configuration c′ is accepted or rejected with the
usual Metropolis ratio

paccept
c→c′ = min

(
1,

Tc′c|wc′ |
Tcc′ |wc|

)
, (50)

where Tcc′ is the probability to propose c′ after c.

B. Proposition of times

We have shown previously that times clusterize around
tmax. It is therefore more efficient to propose times located
around it compared to uniformly distributed between 0 and
tmax. We consider a Cauchy law determined by two parameters
t0 and a

ρ(t ) = 1

C

1

1 + ( t−t0
a

)2 . (51)

C is a normalization factor such that the integral of ρ between
0 and tmax gives 1, defined as C = a[C2 − C1], where C1 =
arctan (− t0

a ) and C2 = arctan ( tmax−t0
a ).

To obtain a new time that follows this probability law, one
can perform these three steps:

(1) Choose a random number u uniformly distributed be-
tween 0 and 1.

(2) Construct

x = 1

2
+ 1

π
[(1 − u)C1 + uC2], (52)

uniformly distributed between 1
2 + 1

π
C1 and 1

2 + 1
π

C2.
(3) Compute

t = t0 + a tan
(
π

(
x − 1

2

))
, (53)

distributed between 0 and tmax according to ρ.
The parameters t0 and a are then fitted to the 1D projection

of times visited by the Monte Carlo, accumulated during the
first part of the computation.

C. Redefinition of noninteracting propagators

As shown in previous works [12,31,48,49], there is some
freedom in the choice of the noninteracting propagator used
to construct the perturbation expansion, since the interaction
can be redefined as

Un↑n↓ = U (n↑ − α)(n↓ − α) + Uα(n↑ + n↓) + const.

(54)

Note that in this subsection α does not denote a Keldysh
index but a scalar, in order to be consistent with the existing
literature. In particular, it was shown that α can strongly
modify the radius of convergence of the perturbation series
[31,48]. This redefinition of the interaction term in Eq. (54)
is taken into account by subtracting α on the diagonal of
the determinants as explained and proved in Ref. [31]. The
second term in Eq. (54) acts as a shift in the chemical potential
and can be absorbed in a redefinition of the noninteracting
propagators.

Let us first consider the LO basis. This shift acts a diagonal
term in the self-energy and hence in

(
ĝLO

σ

)−1 =
(

r−1
σ −kσ /|rσ |2
0 a−1

σ

)
. (55)

α therefore modifies rσ and aσ into

r̄σ (ω) = [r(ω)−1 − Uα]−1, (56)

āσ (ω) = [a(ω)−1 − Uα]−1. (57)

As kσ /|rσ |2 is not impacted by the shift, the modified Keldysh
Green’s function is then

k̄σ (ω) =
∣∣∣∣ r̄σ (ω)

rσ (ω)

∣∣∣∣
2

kσ (ω). (58)

From these expressions, we can then deduce the modified
Green’s functions in the {±} basis through a change of basis
transformation.

D. Normalization procedure

All Monte Carlo algorithms presented above compute the
order-n contribution to the density d , however the MC results
need to be normalized. Hence we restrict our calculation to
two consecutive orders, n and n + 1, and a time or vertex can
be added (resp. removed) only if the current configuration c
is at order n (resp. n + 1). We measure both the density (dn

and dn+1) and a normalization factor (ηn and ηn+1). In all
algorithms, the normalization factor is chosen to be the sum
of the absolute value of the contributions to the density:

ηn ∝
MC∑
c

|wc|, (59)

where the proportionality constant is the same as in the
calculation of dn. If d̃n and η̃n are the unrenormalized sums of
the contributions accumulated in the Monte Carlo procedure,
then the normalized values for dn and ηn are obtained as

dn+1 = ηn

η̃n
d̃n+1; ηn+1 = ηn

η̃n
η̃n+1, (60)

and ηn is then used to normalize the following simulation
between orders n + 1 and n + 2. The lowest order is computed
analytically to close the equations.

V. RESULTS

A. Density

In this section, we present actual computations of the
density according to the algorithms described in the previous
section and compare their efficiency. In the following, we con-
sider an energy level εd coupled to a bath described by a semi-
circular density of states of bandwidth 4t . The Green’s func-
tion describing this bath is defined on the complex plane as [8]

gbath(ζ ) = ζ − sgn(Imζ )
√

ζ 2 − 4t2

2t2
. (61)

The noninteracting retarded Green’s function of the impurity
level is

rσ (ω) = 1

ω − εd − γ 2gbath(ω)
, (62)
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FIG. 1. Comparison of the error bar divided by the mean value in
a density computation, for the three different MC algorithms consid-
ered: the one working in the Keldysh ± basis (blue dots), the one in
the LO basis (orange stars), and the mixed algorithm (green dots,
see text). t = 1, βt = 100, γ 2 = 0.04t2, εd = −0.36t , U = 1.2t ,
α = 0.3. Computational effort is 240 CPU*hours for every order.

where γ is a coupling term between the energy level and the
bath. The Keldysh Green’s function is then deduced using the
fluctuation-dissipation theorem

kσ (ω) = tanh

(
βω

2

)
[rσ (ω) − r∗

σ (ω)]. (63)

In the following, t = 1 is our energy unit. We consider
βt = 100, γ 2 = 0.04t2, εd = −0.36t . Electrons on the im-
purity experience a local Coulomb interaction U = 1.2t . We
choose the α shift to be α = 0.3 (see Sec. IV C), such that
Uα = −εd . The bath being particle-hole symmetric, this cre-
ates a shifted retarded Green’s function r̄(ω) that is itself
particle-hole symmetric [see Eq. (56)]. However, we have
checked that this particular choice of α does not influence our
conclusions. We provide in Appendix B a table benchmarking
the LO and mixed algorithms against the original ± algorithm.
This shows in particular that the LO and mixed algorithms
yield correct results and that we can indeed reach long times in
the LO algorithm without an exponential sum of determinants.

Our main result is shown in Fig. 1 where we compare the
relative error bar in the density computation as a function
of the perturbation order. Blue dots denote the ± algorithm,
orange stars the LO algorithm, and green dots the mixed
algorithm. The order-9 relative error is not shown for the
LO algorithm as it exceeds 1 and is therefore meaningless.
In all three cases, dotted lines are guides to the eye. The
computational time is 240 CPU*hours for each order.

We see that all three relative error bars increase with
perturbation order. This can either come from the increasing
difficulty of computing the series coefficients, or an error
propagation coming from the normalization factor η. We plot
in Appendix C the relative error bar on η, which is much
smaller than the final relative error on the density, showing
that the latter mainly comes from the increasing difficulty to
compute higher order coefficients. Moreover, the LO relative

0.0

0.5

1.0

LO weights

−10

0

10

Sum over all LO indices

−1.0

−0.5

0.0

0.5

1.0 Partial sum

−20

0

20

40
Partial sum

FIG. 2. Upper panel: Sorted array of the LO weights according
to their absolute value (blue dots) and their sum (red line), nor-
malized to 1. Lower panel: Partial sum of the above LO weights,
from left to right, the red dot being the last point, by defini-
tion 1. Left panels correspond to the T1 = {273.2, 277.8, 280.9,

331.7, 366.4, 390.5} time configuration, and the right panels to T2 =
{338.3, 343.2, 366.9, 369.7, 393.9, 394.5}. Order 7, tmax = 400.

error bars very quickly become much larger than the ± ones,
their difference nearly reaching two orders of magnitude at
order 8. The mixed algorithm is found to perform better than
the LO algorithm but its error bars slowly grow larger than
the ± ones. This is surprising, as one could have expected
to at least gain the decorrelation time over the algorithm of
Ref. [31]. We discuss the origin of the error bars in both
algorithms in the next section.

B. The return of the sign problem

In this section, we discuss the origin of the large variance
in the computation of the density in the LO algorithm in terms
of a sign problem in the Monte Carlo sampling and we show
how this impacts the error bars of the mixed algorithm.

In the upper panel of Fig. 2, we plot as blue dots the
nonzero LO weights for two different time configurations,
sorted according to their absolute value. The left and right
panel correspond to two different time configurations (Cf
caption). In both cases, the red line indicates the full sum
over all LO indices, normalized to 1 (which coincides with
the ± weight). The lower panel shows the partial sum, from
left to right, of the LO weights plotted above. The last point,
equal to 1 by construction, is emphasized as a red dot. As
roughly half of the weights are positive and half negative, we
see that the sum of the LO weights over the indices at fixed
time configuration is characterized by a massive cancellation.
This is the origin of the large error bar in the Monte-Carlo,
i.e., another manifestation of the sign problem. Furthermore,
the partial sum shows that there is no clear feature or cutoff
from which one could extract the value of the full sum.

Let us now turn to the mixed algorithm. In both the left
and right panels of Fig. 2, the sum over all LO indices, which
coincides with the ± weight, is normalized to 1. However, in
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FIG. 3. Histograms of the times visited by the Monte Carlo
algorithms, projected in one dimension. Order 9, tmax = 400.

the left panel, the weights of the different LO configurations
are small compared to the final result, reaching at most 20%
of it. In the right panel, those same weights are much bigger,
reaching up to 1700% of the full sum. Hence the Monte Carlo
implemented in the LO basis does not sample the same time
configurations as the algorithm in the {±} basis. This is illus-
trated in Fig. 3 where the histograms of the times visited by the
Monte Carlo, projected in one dimension, are plotted for both
the ± algorithm (blue line) and LO one (orange line). First, we
observe the clusterization of times proved at the beginning of
this paper: Interaction times contributing to the density tend
to be in the vicinity of tmax. Then, we see that some times
located far away from the measurement but still contributing
significantly to the ± algorithm are almost never visited in the
LO algorithm. On the other hand, times close to tmax are more
sampled in the latter. As times visited by the mixed algorithm
coincide with the LO ones, this explains the difference in error
bars between the mixed and ± algorithms observed in Fig. 1.

VI. CONCLUSION

In conclusion, the explicit sum over the Keldysh indices of
the original ± algorithm of Ref. [31] has two functions: (i)
it allows us to reach the very long times due to the clusteri-
zation of the integrand caused by the cancellation of vacuum
diagrams; (ii) it strongly reduces the error bar by performing
a massive cancellation of terms. In this paper, we have shown
that one can obtain the first properties for each determinant
using the Larkin-Ovchinnikov basis, hence without the expo-
nentially large sum of determinants. A direct implementation
of the algorithm in the LO basis indeed reaches the steady
state but also has an error bar growing quickly with the order
n due to a sign problem. An interesting possibility would be
the existence of an optimum between the LO and original ±
algorithms, using partial groupings of terms in the LO basis
with less than 2n terms that would reduce the sign problem
and yields a better scaling than the original algorithm in the
{±} basis. Work is in progress in this direction.
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APPENDIX A: CLUSTERIZATION OF THE DENSITY
IN THE {±} BASIS

We reproduce here the argument of Ref. [31] showing that
the cancellation of vacuum diagrams when summing over
Keldysh indices implies the clusterization of interaction times
near tmax. Let n be a given perturbation order, and t1 < t2 <

· · · < tn n interaction times. Let’s assume that the first j times
are located far away from the measurement time tmax and that
the last n − j times are located in the vicinity of tmax. We can
formally consider

∀1 � i � j, |ti − tmax| → ∞. (A1)

Because the Green’s function is a local quantity, this means
that for all t ∈ {t1, . . . , t j}, t ′ ∈ {t j+1, . . . , tn; tmax}

||ĝσ (t, t ′)|| → 0, ||ĝσ (t ′, t )|| → 0. (A2)

We therefore have∑
α1...αn

α1 . . . αn

∏
σ

det D±
σ

({
ti, iτi , li

}
1�i�n

)

�
∑

α1...α j

α1 . . . α j

∏
σ

det Aσ

∑
α j+1...αn

α j+1 . . . αn

∏
σ

det Bσ ,

(A3)
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FIG. 4. Comparison of the error bar divided by the mean value of
the normalization coefficient, for the three different MC algorithms
considered: the one working in the Keldysh ± basis (blue dots), the
one in the LO basis (orange stars) and the mixed algorithm (green
dots). t = 1, βt = 100, γ 2 = 0.04t2, εd = −0.36t , U = 1.2t , α =
0.3. Computational effort is 240 CPU*hours for every order.
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with

Aσ = [
(ĝσ )αiα

′
i
(ti, ti′ )

]
1�i,i′� j, (A4a)

B↓ = [
(ĝ↓)αiα

′
i
(ti, ti′ )

]
j+1�i,i′�n

, (A4b)

and B↑ is the [(ĝ↑)αiα
′
i
(ti, ti′ )] j+1�i,i′�n

matrix where a last line and column corresponding to tmax are added, similar to

Eq. (16). However,
∑

α1...α j
α1 . . . α j

∏
σ det Aσ is a contribution to Z at order j, and it vanishes according to (12). Therefore∑

α1...αn
α1 . . . αn

∏
σ det D±

σ � 0, and this proves the clusterization of times in around tmax in the computation of the density.

APPENDIX B: BENCHMARK

The table below benchmarks the contributions to the density between the ±, LO, and mixed algorithms. We take t = 1 as our
energy unit, and parameters are βt = 100, γ 2 = 0.04t2, εd = −0.36t , U = 1.2t , α = 0.3. Computation effort is 240 CPU*hours
for each perturbation order.

± LO mixed

Order 1 −1.7013454 ± 0.00014% −1.7013431 ± 0.00026% −1.7013466 ± 0.00073%
Order 2 14.47243 ± 0.0015% 14.47252 ± 0.0015% 14.47214 ± 0.0022%
Order 3 −33.3479 ± 0.014% −33.3610 ± 0.030% −33.3583 ± 0.022%
Order 4 −431.09 ± 0.041% −431.51 ± 0.071% −431.30 ± 0.028%
Order 5 5094.7 ± 0.025% 5100.6 ± 0.18% 5092.6 ± 0.039%
Order 6 −16173 ± 0.12% −15802 ± 1.8% −16171 ± 0.21%
Order 7 −1.6411 × 105 ± 0.13% −1.6595 × 105 ± 3.9% −1.6554 × 105 ± 0.26%
Order 8 2.2332 × 107 ± 0.18% 2.1071 × 107 ± 9.0% 2.2316 × 107 ± 0.42%
Order 9 −7.865 × 107 ± 0.66% 2.852 × 107 ± 240% −8.079 × 107 ± 2.1%

APPENDIX C: ORIGIN OF ERROR BAR

We have seen in Sec. IV D that the contributions to the density have to be normalized by a factor η, see Eq. (60). To verify that
the error bars on the density are not due to this normalization factor, we plot its relative error bars in Fig. 4. Blue dots denote the
± algorithm, orange stars the LO algorithm, and green dots the mixed algorithm. Comparing it to Fig. 1, we see that the relative
error bars on η are much smaller than the ones on the density.
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formant une galaxie, les gouttes d’eau s’écoulant
dans une rivière, et les électrons d’une céramique su-
perconductrice lévitant au-dessus d’un aimant ? Tous
ces systèmes ne peuvent être décrits par le mouve-
ment isolé d’une seule de leurs composantes. C’est
l’ensemble des particules et de leurs interactions qui
fait émerger leurs singulières propriétés : on parle du
problème à N corps. Dans cette Thèse, nous nous
intéressons aux propriétés des systèmes d’électrons
fortement corrélés, dont la physique est gouvernée
par les principes de la mécanique quantique. Les mé-
thodes analytiques étant rapidement limitées, nous
développons de nouvelles approches numériques afin
de quantifier précisément les propriétés de matériaux
dans lesquels les interactions entre particules de-
viennent importantes.
Nous nous intéressons tout d’abord aux proprié-
tés d’équilibre de la pérovskite Sr2IrO4, un matériau
structurellement équivalent au cuprate supraconduc-
teur La2CuO4. Nous mettons en évidence l’existence
d’un pseudogap et décrivons la structure électronique

de ce matériau en fonction du dopage. Nous déve-
loppons ensuite des extensions aux algorithmes de
Monte Carlo déterminantaux pour l’étude de quantités
dynamiques comme l’énergie propre, et nous mon-
trons qu’il est possible de regrouper un nombre facto-
riel de diagrammes en une somme de déterminants,
réduisant ainsi fortement le problème de signe fermio-
nique.
Dans un deuxième temps, nous décrivons les sys-
tèmes fortement corrélés hors d’équilibre. Nous com-
mençons par revisiter le Monte Carlo diagrammatique
en temps réel dans une nouvelle base qui permet
aux diagrammes du vide de s’annuler directement.
Au cours d’un échantillonnage statistique, ceci permet
d’atteindre la limite de long temps nécessaire à l’étude
des états stationnaires des systèmes hors d’équi-
libre. Pour terminer, nous étudions la transition métal-
isolant induite par un champ électrique de Ca2RuO4,
qui coexiste avec une transition structurelle. Un al-
gorithme basé sur l’approximation sans croisement
nous permettent de calculer le courant en fonction du
champ crystallin dans ce matériau.
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Abstract: What do stars in a galaxy, drops in a river,
and electrons in a superconducting cuprate levitating
above a magnet all have in common? All of these sys-
tems cannot be described by the isolated motion of
one of their parts. These singular properties emerge
from particles and their interactions as a whole: we
talk about the many-body problem. In this Thesis,
we focus on properties of strongly-correlated systems,
that obey quantum mechanics. Analytical methods
being rapidly limited in their understanding of these
materials, we develop novel numerical techniques to
precisely quantify their properties when interactions
between particles become strong.
First, we focus on the equilibrium properties of the
layered perovskite Sr2IrO4, a compound isostructural
to the superconducting cuprate La2CuO4, where we
prove the existence of a pseudogap and describe
the electronic structure of this material upon doping.
Then, in order to address the thermodynamic limit of
lattice problems, we develop extensions of determi-

nant Monte Carlo algorithms to compute dynamical
quantities such as the self-energy. We show how a
factorial number of diagrams can be regrouped in a
sum of determinants, hence drastically reducing the
fermionic sign problem.
In the second part, we turn to the description of
nonequilibrium phenomena in correlated systems.
We start by revisiting the real-time diagrammatic
Monte Carlo recent advances in a new basis where
all vacuum diagrams directly vanish. In an impor-
tance sampling procedure, such an algorithm can di-
rectly address the long-time limit needed in the study
of steady states in out-of-equilibrium systems. Finally,
we study the insulator-to-metal transition induced by
an electric field in Ca2RuO4, which coexists with a
structural transition. An algorithm based on the non-
crossing approximation allows us to compute the cur-
rent as a function of crystal-field splitting in this mate-
rial.
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