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RÉSUMÉ 
La recherche sur les réseaux écologiques a identifié des motifs universels dans la façon dont les 

espèces interagissent entre elles, et les conséquences que cela peut avoir sur la dynamique et stabilité 
des écosystèmes. Les processus responsables de ces structures ont été étudiés à l’échelle locale. En 
revanche, L'influence de processus opérant à plus grande échelle, tels que le climat ou l'hétérogénéité 
des habitats, est encore très mal comprise. Il subsiste une lacune fondamentale dans notre 
compréhension de la manière dont les processus spatiaux et biogéographiques affectent la structure des 
réseaux d’interactions. L'objectif principal de cette thèse est de combler cette lacune en élaborant une 
vision globale des réseaux macroécologiques, intégrant réseaux écologiques et biogéographie. 

Dans un premier temps, j’étudie la variation géographique de la structure des réseaux 
écologiques. Plus précisément, je considère la façon dont la spécialisation biotique change le long de 
grands gradients biogéographiques.  Il est généralement admis que la spécialisation biotique augmente 
vers l'équateur. Cependant, des études récentes ont contesté cette vision, mais en se limitant à l'échelle 
locale. Dans le premier chapitre de la thèse, j'utilise un ensemble de données globales de réseaux 
écologiques pour montrer que le gradient géographique de spécialisation biotique n'est pas universel. Il 
dépend à la fois de la mesure de spécialisation biotique analysée et de l’échelle spatiale d'observation. 

Dans un deuxième temps, j'étudie la manière dont la structure des réseaux change à travers les 
échelles spatiales. Bien que les relations aire-espèces soient essentielles pour comprendre la répartition 
spatiale de la biodiversité, les communautés écologiques ne sont pas de simples collections d’espèces 
mais forment des réseaux complexes d'interactions. Dans un monde en pleine mutation anthropogène, 
comprendre comment la structure de ces réseaux change avec l'aire des régions considérées est essentiel 
pour appréhender les conséquences écologiques de la perte d'habitat et de la fragmentation. Je 
développe pour cela un cadre théorique expliquant certains mécanismes sous-jacents aux changements 
de structure des réseaux avec le changement d'échelle spatiale. Je teste ensuite ces prédictions avec un 
large ensemble de réseaux écologiques empiriques issus de différents écosystèmes et biomes du globe. 
Je trouve en particulier, une augmentation universelle de la complexité des réseaux écologiques avec les 
échelles spatiales, ainsi qu’une augmentation du nombre d’espèces spécialisées, suggérant ainsi que ces 
dernières requièrent, pour subsister, de larges aires. 

Enfin, j'implémente la biogéographie dans l'analyse du changement de structure des réseaux à 
travers les échelles spatiales. Pour cela, en me basant sur une vaste base de données sur les vertébrés 
d'Europe et leurs interactions, J'analyse la manière dont la structure des réseaux d'interactions change 
avec l’aire considérée dans 10 régions biogéographiques d'Europe, afin de déterminer quels sont les 
principaux facteurs environnementaux affectant les relations aire-réseaux. Je trouve que la variation 
spatiale de la température annuelle moyenne et l'hétérogénéité des habitats sont les principaux 
déterminants du changement structurel des communautés écologiques à travers les échelles spatiales. 
L'intégration des processus spatiaux et biogéographiques dans l'analyse des réseaux écologiques est un 
défi fondamental pour progresser vers une approche plus globale, et mieux prédire l'impact du 
changement climatique sur les écosystèmes, ouvrant, de surcroît, de nouvelles perspectives pour évaluer 
la stabilité et le fonctionnement des écosystèmes à différentes échelles spatiales.
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ABSTRACT 
Research on ecological networks has identified universal patterns in the way species interact 

across different habitat types and their consequences for community dynamics and stability. However, 
most processes responsible for the observed structural patterns are suggested to operate at the local 
scale. The influence of processes operating at larger scales, such as climate or habitat heterogeneity, on 
the structure of species interaction networks and its dynamics, is still largely unknown. A fundamental 
gap thus exists concerning the way spatial and biogeographical processes affect the structure of species 
interaction networks. The main objective of this thesis is to fill this gap by building a comprehensive view 
on macroecological networks that integrates ecological networks and biogeography.  

First, I focus on the geographical variation of the structure of ecological networks. Specifically, on 
how biotic specialization changes across large biogeographical gradients of environmental constancy. 
Prevailing wisdom states that biotic specialization increases towards the Equator. However, recent studies 
have challenged this view showing non-conclusive results. A major limitation of these studies is their focus 
on the local scale. In the first chapter of the thesis, I use a global dataset of ecological networks to show 
that the geographical gradient of biotic specialization is not universal. It depends on both the facet of 
biotic specialization analysed and the spatial scale of observation. 

Second, I study how network structure changes across spatial scales. Species–area relationships 
are pivotal to understand the distribution of biodiversity across spatial scales. Yet, ecological communities 
are not just mere collections of species but also sets of interactions between them. Understanding how 
the structure of the complex network of biotic interactions changes with area size is thus central to extend 
our knowledge on the possible effects of habitat loss and fragmentation on ecological communities in a 
changing world. To tackle this challenge, I first develop a theoretical framework to understand the possible 
mechanisms underlying the changes in network structure across spatial scales and I then empirically test 
the theoretical predictions with a large set of ecological networks from different ecosystems and biomes 
across the globe. I find a universal increase of the complexity of ecological networks across spatial scales 
together with an increase in the number of specialist species, suggesting that they require larger areas to 
be found. 

Finally, I integrate ecological networks, spatial processes and biogeography by analysing the 
geographical variation in the spatial scaling of network structure. I analyse the changes in network 
structure with area size across 10 biogeographical regions in Europe to determine which are the main 
environmental factors affecting the shape of Network-Area Relationships (NARs). I find that the spatial 
variation in the mean annual temperature and habitat heterogeneity are the main determinants of the 
spatial scaling of ecological communities. The integration of spatial and biogeographical processes into 
species interaction networks is a fundamental challenge to progress towards a more comprehensive 
approach that helps us to better predict the effect of future scenarios of global change on our ecological 
systems. It opens new perspectives to assess community stability and ecosystem functioning at different 
spatial scales. 
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GENERAL INTRODUCTION1 
Ecological communities are composed by species interacting with one another and with the 

environment. Much is known about how the environment influences species richness and their 

distribution. Little is known, however, about the influence of environmental gradients on species 

interactions and on the structure of the network they establish. Network structure is a key factor to 

understand biodiversity organization and species coexistence, and it is strongly linked to multiple 

ecosystem functions, such as primary productivity, biological control, pollination or ecosystem stability 

[1]–[4]. Understanding how network structure changes in space and across large-scale environmental 

gradients is, thus, fundamental to fully predict how ecological communities will behave in an increasingly 

changing world.  

 The main objective of this thesis is to incorporate spatial and biogeographical processes into 

ecological network research to develop of a more holistic understanding of ecological systems across 

spatial scales. I aim to understand how network structure changes across large geographical gradients and 

across spatial scales of observation, and what are the main mechanisms underlying these changes. To do 

so, I try to build a comprehensive view on macroecological networks that integrates ecological networks 

and biogeography. 

 In this introduction, I discuss the existent gap between two research provinces: ecological 

networks and biogeography. I expose the importance of both bringing a community network perspective 

into biogeographical studies, and adopting a gradient-based, biogeographical perspective into the study 

of the structure and dynamics of species interaction networks. I present some works bridging the gap 

between the two fields and how they help to progress toward a more comprehensive understanding of 

ecological communities. Finally, I argue about the importance of moving beyond the spatial scaling of 

species richness and understanding how the entire community (i.e., species and their biotic interactions) 

changes across spatial scales and the new emerging tools to do so. I conclude this introduction by outlying 

the different chapters that constitute the thesis. I briefly explain the focus of each of them and the main 

findings that contribute to the integration of networks, space and biogeography.   

                                                
1 Sections of this introduction were published as a book chapter:  Montoya J.M. & Galiana N. (2017) Integrating species interaction 

networks and biogeography. In: Moore J.M., et al. (eds.), Food Webs: Science for Impact. Cambridge Univ. Press, pp. 289-304. 
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HISTORICALLY ISOLATED FIELDS: THE GAP BETWEEN ECOLOGICAL NETWORKS 
RESEARCH AND BIOGEOGRAPHY 

The search for universalities in species interaction networks 

 The last fifteen years has witnessed a revolution in the study of large species interaction networks, 

including food webs and mutualistic networks of free-living species – as those describing plants and their 

pollinators (Figure 1). Numerous theoretical and empirical studies have identified universal patterns and 

mechanisms by which species interact across different habitat types, which in turn affect community 

dynamics (reviewed in [5]–[8]). These interaction patterns are not only key to understand biodiversity 

organization within communities, but also to predict ecosystem stability and resistance to different 

components of environmental change [6], [9]–[11], and important ecosystem functions, like primary 

production, biogeochemical cycles, pest control or pollination [1]–[4].  

 

 

 

 

 

 

 

 

Figure 1. Annual proportion of all papers published in key journals between 1970 and 2007 that were related 

to ecological networks (primary axis, FW: Food webs; secondary axis, MW: mutualistic webs and HPW: host-

parasitoid webs). Data were derived from searches carried out on the Web of Science data base (searched in 

March 2008). Figure taken from [8], where further information on the search can be found. 

 

Although some authors warned that the idiosyncrasies of individual species and their dynamics 

might prevent the existence of such regularities [12]–[14], most studies suggest the existence of a few 

universal structural patterns in food webs and mutualistic networks [6]–[8], [15], [16]. These universalities 

include that most species have a few number of links to other species while only a few of them are 

generalists [17]–[19] (Figure 2); the existence of compartments or modules in food webs, where species 
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within the same compartment interact more frequently among them than with species outside of it [20]–

[22], the presence of nested subsets of species in mutualistic networks, where generalists tend to interact 

with specialists [23], or the predominance of weak interaction strengths between consumers and their 

resources [24], [25]. 

 

 

 

 

 

 

 

 

 

Figure 2.  Characteristic degree distributions observed in different types of ecological networks. Pc(k) is 

the cumulative probability for ³ k, where P(k) is the probability a species has k links to other species in the 

network. Black lines represent the best fits and filled circles represent the empirical data. Redrawn from 

[6]. 

 

Most of the suggested processes responsible for these observed structural patterns and dynamics in 

ecological networks typically operate at the local-scale, as those related with consumer-resource 

dynamics, habitat occupancy or foraging behaviour. The influence of processes that operate at larger 

spatial extents (e.g., regional and geographical scales), such as climate or productivity, is hardly considered 

as a determinant of local network structure and dynamics. Notable exceptions exist. The relationships of 

some food web properties, like connectance and food chain length, with variables that change 

geographically, such as species richness, primary productivity or environmental variability, have received 

some attention (e.g., [15], [26]–[28]). Yet, these examples are the exception to the general rule that 

neglects the effects of processes operating at large spatial scales on the structure and dynamics of local 

communities. 

 

Frugivore-plant web Pollinator-plant web Food web 
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Biogeography: looking for sources of geographical variability 

 In marked contrast to the search for universalities in networks, biogeographers (and 

macroecologists) look for patterns and potential processes of variation of community and species 

characteristics across large geographical extents. Examples include the latitudinal diversity gradient –i.e., 

species richness decreases with latitude [29], [30]- or the latitudinal gradient in niche breadth – i.e., niches 

or number of resources per consumer are narrower in the tropics ([31]–[33] but see [34]). While some 

biogeographers recognize the role of biotic interactions, as presented below with several examples, the 

majority of biogeographical studies tend to neglect the role and importance of biotic interactions [35], 

[36]. First, these are not considered important drivers of species distributions, with environmental 

variables (mostly climate) assumed to play the leading role. Second, contrary to the simultaneous 

consideration of multiple trophic levels and their interactions in network studies, biogeographers usually 

focus on “one guild at a time”, and accumulate evidence to support the observed pattern across different 

taxa (Table 1).  

 

Table 1. Major conceptual and methodological differences between research on ecological networks and 
biogeography. 
 

 

However, it is clear that the importance of biotic interactions varies across geographical areas. It 

is well known that a wide range of interactions are more important at low latitude systems, including 

higher herbivory and insect predation in the tropics, and the predominance of tropical mutualisms such 

as cleaning symbioses in marine systems and ant-plant interactions in terrestrial ones [37]. Moreover, 

numerous studies regarding probably the oldest and most intensively studied biogeographical pattern 

[38], the latitudinal diversity gradient, hypothesize that more intense and stable biotic interactions in the 

tropics may explain the pattern [37]. Despite some historical and recent integrative efforts (see below), 

the burgeoning areas of ecological networks and biogeography rarely have been merged. 

 Ecological networks Biogeography 
Spatial scale  Local-Landscape Regional-Global 
Mechanisms Biotic interactions Environment (Climate) 
Models Interactive population dynamics Species occupancy and 

distribution 
Taxonomic spread Multiple guilds (i.e., trophic 

groups) 
Isolated guilds 

Emerging issues Universal patterns Variability across environmental 
gradients 



 

 

17 

Different processes operating at different spatial scales?  

 A number of conceptual and methodological differences explain the absence of links between 

biogeography and species interaction network research (Table 1, Figure 3). The most evident is the spatial 

scale under consideration. Networks are commonly defined at the local or landscape scale, with processes 

affecting local species interactions as the main determinants of their structure, dynamics and functioning. 

In contrast, biogeography focuses on large-scale (regional to global) patterns, and the processes at play 

usually relate to environmental conditions, past and/or present. This is manifested via the main 

visualization tools used: graphs connecting species in networks versus maps depicting variability in 

biogeography (Figure 4).  

 

 

 

 

 

 

 

 

 

Figure 3. Variation of the relative importance of the mechanisms, level of complexity and temporal scale 

across the spatial scale under consideration. Local network studies typically focus on biotic interactions 

across multiple trophic levels over short-term temporal scales. In contrast, global/regional 

biogeographical studies focus on climate as the main driver within guilds and over evolutionary time 

scales. 

 

The tenet is that large spatial scales are the province of climate -contemporary or past- while 

biotic interactions rule at local scales [39], [40]. Accordingly, Johnson [41] suggested an integrative 

framework for the ordering of selection processes operating across spatial scales. He identified first-order 

selection as the selection of physical or geographical range of species, followed by the selection of the 

home range of an individual or group, and finally a third- and fourth-order selection determining the 

feeding interactions with that individual. 
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Figure 4. Mapping networks. Visualization techniques greatly differ between network studies, using 

graphs connecting species through biotic interactions (left hand-side graphs, contrived networks), and 

biogeography, using maps to illustrate the analysed pattern. To determine the existence of 

biogeographical patterns in network structure and dynamics, we need to analyse several networks across 

large-scale gradients. 

 

 However, this tenet has never been tested with datasets containing detailed information on 

spatially explicit climatic variables and biotic interactions. In the few cases where the relative role of 

climate, dispersal, and biotic interactions were considered together, species interactions were actually 

estimated from species co-occurrence data, not from direct observations. Boulangeat and collaborators 

[42], for instance, used a spatially nested modelling framework to understand the distribution and 

abundance of plant species in the French Alps, showing that species presence-absence was determined 

by climatic factors and dispersal, while species abundances were mostly determined by biotic interactions, 

including competition and facilitation. In other words, abiotic relationships filter the species able to 

occupy a given environment, determining plant species composition, whereas biotic interactions 

manifested their importance at local scales affecting species densities. This promising approach would 

benefit from including observed species interactions not inferred simply from species co-occurrence data. 

However, such datasets for multispecies systems, and for multiple predator-prey interactions in 

particular, are scarce, if available at all. 
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 Accumulating evidence suggests that the boundaries between climate and biotic interactions as 

determinants of regional and local dynamics respectively are largely artificial. Within local communities, 

climate has a strong influence on species interactions, resulting in complex community responses. 

Theoretical and experimental work has shown that increasing environmental temperature modifies 

population growth rate, carrying capacities, metabolic and ingestion rates [43], [44]. Also, warming alters 

universal properties of food webs, shifting body mass-abundance scaling relationships [45], and altering 

degree distributions by increasing diet specialization [46]. Similarly, climatic changes can alter the 

prevalence of top-down versus bottom-up control in aquatic ecosystems [47] and can affect profoundly 

several ecosystem processes, including productivity, ecosystem respiration and decomposition rates [45], 

[48], [49]. All taken together suggest that modifications of large-scale processes, such as climate, have 

profound consequences in local communities, mostly mediated by species interactions. 

 Less clear is the relevance of biotic interactions at large spatial extents. In a recent review, Wisz 

and colleagues [36] showed compelling evidence on the effects of biotic interactions determining the 

current (and past) distribution of species across multiple taxa and habitats, including competition, 

facilitation, herbivory and predation. Similarly, species new ranges that result from climate change are 

highly dependent on their interactions with other species [50].  

 Let’s reconsider the latitudinal diversity gradient. Most hypotheses suggest that abiotic factors 

are responsible for finding species richness peaking in equatorial regions and declining towards the poles. 

Among these factors, the water-energy tandem, and historical climatic stability have received strong 

support across taxa and continents [29], [30]. The role of biotic interactions hangs in any discussion about 

the gradient. Yet its relative importance against abiotic factors is difficult to test because the quality and 

resolution of biotic interaction data across large spatial scales is very low in comparison to the quality and 

resolution of most abiotic drivers. However, its conceptual and theoretical basis are firmly established. 

Dobzhanski [51] proposed that the benign, constant climate in the tropics led to a greater importance of 

biotic interactions, resulting in tropical species more specialized and tropical communities harbouring 

greater species diversity. In contrast, the severe and variable climate in temperate regions resulted in the 

evolution of a few generalized species. Schemske and collaborators [37], [52] formalized this, and they 

suggested that more intense biotic interactions in the tropics promoted coevolution resulting in faster 

adaptation and speciation (Figure 5). New species introduce new resources and interactions, hence 

expanding the number of niches and creating a positive feedback of diversity. Similarly, resource 

specialization has been suggested as one explanation for the observed latitudinal gradient in species 
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richness: specialization reduces interspecific competition and facilitates species coexistence by 

partitioning niche space ([31]–[33]but see [34]). 

 

 

 

 

 

 

 

 

Figure 5. Interaction strengths in temperate and tropical communities. Arrows indicate the proportion of 

variation in fitness for a given focal species caused by biotic interactions with mutualists or antagonists, 

or by different abiotic factors. Positive interactions are represented by solid lines and negative 

interactions by dashed lines. Redrawn from [37]. 

 

The temporal scale under consideration also differs between network and biogeographical 

approaches, somehow echoing processes operating at different spatial scales. Although in both cases 

present day species composition, abundances and distributions are the focus, the hypothesized 

determinants typically operate over short-term, i.e., ecological time-scales, in network studies, while they 

operate over long-term, i.e., evolutionary and geological time-scales, in biogeographical research. There 

are only a few network studies that consider an evolutionary dimension, allowing for speciation dynamics 

(e.g., [53], [54]) or coevolution (e.g., [55]), although there is a recent interest in assessing the interplay 

between ecological and evolutionary dynamics, i.e., eco-evolutionary dynamics, in species interaction 

networks [56], [57]. In addition, a recent study showed the influence of historical climate change on the 

modularity and nestedness of pollination networks [58], suggesting that climatic stability over 

evolutionary time-scales was at least as important as current climate to understand present day networks. 

In contrast, geological and past evolutionary changes are widely used for explaining biogeographical 

patterns. Time-for-speciation, for example, is one of the central determinants of the latitudinal diversity 

gradient for a broad variety of plants and animals, by which past climatic stability in the tropics as opposed 

to glaciation cycles in northern hemisphere temperate areas could explain the pattern [59], [60].  
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Exceptions found at the interplay: Biogeographical changes in network structure 

Kitching pioneered the study of biogeographical gradients of food web structure. Using the 

communities associated to Phytotelmata (i.e., water bodies in terrestrial plants) he showed that several 

food web properties varied across a latitudinal gradient. In particular, increasing latitude decreased mean 

food chain length and predator generalism [61] - a measure of diet specialization. However, Kitching’s 

studies had small sample sizes and relatively simple food webs. Interestingly though, both food chain 

length and diet specialization have received attention in more detailed and comprehensive studies along 

environmental gradients.  

 Several hypotheses try to explain the observed variation in food chain length across habitats (see 

[62] for a review). Some hypothesized processes vary along geographical gradients. That is the case of 

resource availability: the more productive the system, the longer the food chains and/or the trophic 

position of the top predator. However, resource availability has limited predictive power, limiting food 

chain length only in systems with very low resource availability. Ecosystem size (area or volume) appears 

as the best predictor of food chain length [28], although the components of ecosystem size (e.g., habitat 

availability and heterogeneity, species diversity) that explain the pattern are not clear yet. Thus, variation 

in food chain length seems to be determined by a combination of local factors and large-scale processes.  

 Diet specialization is at the core of research in both ecological networks and biogeography. The 

general perception among ecologists is that biotic specialization increases towards the tropics. More 

generally, environmental constancy (or stability) leads to higher specialism. Community ecology and 

biogeography seem to agree historically in this respect. MacArthur [63] stated that the greater stability 

and lower seasonality in the tropics lead populations at low latitudes to be more stable than populations 

at higher latitudes, and, in turn, greater population stability should allow for narrower (and more 

specialized) diet niches. It has been shown that both past and contemporary climate stability influence 

biotic specialization [64]. The former reflecting the available time for species coevolution due to temporal 

stability of local communities [65] and contemporary climate determining the relative abundances and 

densities of resource species (by means of species diversity) which, in turn, regulates consumer species 

searching times [66], [67]. Longer search times constrain the specialization of consumer species [68] and 

therefore, warm climates (i.e., tropical regions with higher diversity of resource species) are supposed to 

lead to higher specialization of biotic interactions. 
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Recent studies have characterized latitudinal patterns in biotic specialization, showing non-

conclusive and highly idiosyncratic results [69]. While some authors showed an increase in network 

specialization towards the tropics [70]–[72], others found the opposite [64]. Yet some others found 

distinct trends for each hemisphere [73] and for each measure of biotic specialization considered [74], or 

no latitudinal trend at all [75], [76].  

 

Figure 6.  Latitudinal patterns of specialization for 

frugivorous birds and their fruit plants. Dalsgaard and 

colleagues [74], found an opposed latitudinal pattern of 

network-derived and assemblage-level dietary 

specialization. That is, tropical communities mainly consist 

of obligate frugivourous birds, which form generalized 

interaction networks, while high latitude communities 

consist of bird species with an omnivorous diet containing 

both fruits and a wide range of other food types, but form 

specialized networks of interactions with their fruit plants. 

In the network, birds are at the left and plants at the right; 

link thickness reflects the pairwise frequency of 

interaction, and bar size illustrates the total number of 

interactions for each species. Redrawn from [74]. 

 

 

 

 

This high disparity of results arises partially because most large-scale studies on ecological 

networks are based on a significant variety of methods and protocols [77], including the use of different 

spatial scales to define a local community which, as will be explained in the following sections, can have 

important effects on the structure of ecological networks and therefore, can influence the comparisons 

between studies. In a recent study, Roslin and colleagues [78] assessed the latitudinal gradient in biotic 

interaction strength using a global experiment and they found that predation risk increased towards the 

equator (i.e., higher biotic interaction strengths), with a parallel pattern of increasing predation towards 
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lower elevations (Figure 7). Interestingly, they found similar gradients across spatial scales (i.e., at global 

and regional scales), suggesting that the mechanisms underlying biotic interaction strength might be 

consistent across spatial scales.  

 

Figure 7. Map of sampling sites with scatter plots showing fates of model caterpillars at different latitudes. In 

the map, individual sites are shown with symbol size graduated by the individual exposure. The panels show 

the overall fraction of caterpillar models attacked per day (i.e., daily predation rates per model caterpillar) 

coloured by habitat type (left panel) and by predator type (right panel).  

 

The emergence of such studies bridging the gap between ecological network research and 

biogeography shows that the cross-disciplinary boundaries are largely artificial, and that much progress 

can be made through the adoption of both a biogeographical perspective in networks and a network 

perspective in biogeography. Further analyses are needed to progress towards the complete 

understanding of biogeographical patterns in network structure, contemplating both present-day and 

historical determinants. In the first chapter of the thesis, I explore the geographical gradient of different 

facets of network specialization, putting special attention on the influence of the spatial scale of 

observation which, as explained in the following section, is at the bases of other efforts integrating large-

scale processes into species interaction networks. 
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THE SPATIAL SCALING OF ECOLOGICAL COMMUNITIES 

The spatial scaling of biodiversity: beyond Species-Area Relationships 

Research on the spatial scaling of biodiversity has traditionally focused on the increase in species 

richness with area size [79]–[81]; so much so that the species-area relationship (SAR) has been identified 

as a universal law in ecology [81]–[83]. MacArthur and Wilson (1967) proposed in their Theory of Island 

Biogeography (TIB) the diversity-dependent dynamic balance between immigration and extinction as a 

determinant of island species richness. In their model, species immigration rate for an island decreases as 

the number of species on the island increases and species extinction rate increases with the number of 

species, implying that diversity will reach the equilibrium. The TIB assumes that the closer the island is to 

the mainland the larger the colonisation rate [80], and that the larger the island size the lower the 

extinction rate due to the increase in population sizes [84], [85], resulting in a positive relationship 

between species richness and area size (Figure 8).  

  

 

 

 

 

 

 

Figure 8. Theory of island biogeography adapted from [80] and its trophic extension from [86]. In (a) the 

number of land and fresh-water bird species on various islands of different area sizes of the Sunda 

archipelago, together with the Philippines and New Guinea. In (b) the classic TIB depicted in black. 

Equilibrium species richness (S_TIB) is reached when immigration rate is equal to extinction rate 

(intersection between I and E; i.e., black dotted line). TTIB is depicted in colors (orange and blue for 

immigration and extinction rates, respectively). Equilibrium species richness (S_TTIB) is represented by 

the red dotted line. 
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Even though MacArthur and Wilson already stated that the “interference” between species might 

shape the extinction curve, they did not address explicitly the effect of considering interspecific 

interactions. Following early efforts by Holt [87], [88], Gravel and colleagues [86] extended the classic 

island biogeography theory to account for trophic interactions assuming bottom-up trophic 

dependencies: a species needs the presence of at least one of its prey items to establish and persist in an 

island. Given that colonization by higher trophic levels cannot occur until the lower ones have established, 

the trophic theory of island biogeography (TTIB) predicts a slower accumulation of species affecting the 

classic equilibrium point (Figure 8). Thus, TTIB shows that considering a trophic constraint on species 

immigration and extinction would affect the richness of the local assemblage and their biotic interactions, 

where species that are diet generalists and/or belong to lower trophic levels are preferentially selected 

given that they are less affected by the trophic constraint.  

The interplay between local and regional processes was already established in the study of local 

diversity [89]–[91]. Regional processes operating at large spatial scales, such as species dispersal from a 

regional propagule supply, are important determinants of local diversity in both terrestrial and marine 

systems [92]. However, this new community perspective on the classical theory of island biogeography  

[86]–[88], [93], shows how large-scale processes can influence not only the species richness of the local 

community but also its composition and structure, opening new avenues for the interaction between 

biogeography, networks and spatial dynamics. 

 

Multi-trophic SARs and Network-Area Relationship 

For several logistic reasons, most studies of species-area relationships have been traditionally limited 

to particular taxa and functional groups [94]. SARs for multi-trophic communities are just starting to be 

documented [95]–[97], along with the role played by biotic interactions in shaping these relationships 

[96], [98]. Yet, ecological communities are not only collections of species, but also sets of interactions 

between them. Therefore, if we aim to understand how ecological communities change across spatial 

scales, and how they will respond to perturbations such as habitat loss or fragmentation, we also need to 

determine how biotic interactions and the emerging network structure of multispecies communities 

change according to the location and size of the area sampled (Figure 9). 
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Figure 9. Network-Area Relationships (NARs). The spatial scaling of biodiversity should be measured in 

terms of both species and their biotic interactions. The species-area relationship is one of the most well-

known patterns in ecology, which has been extensively used to estimate species richness in a given region 

and to predict species extinctions due to habitat loss. To fully understand the response of ecological 

communities to perturbations we need to extend the knowledge we have on SARs to the entire 

community and start exploring NARs. 

 

It is well established that species richness affects several food web properties. In many cases, 

differences in network properties might be strongly related to the differences in species richness between 

the communities studied [99]–[103]. For instance, there is a well-studied relationship between species 

richness and the number of interactions present in ecological networks. Two major hypotheses have been 

proposed to explain the variation in the number of links with species richness. While the ‘link-species 

scaling law’ [104] states that species interact with a constant number of species independently of species 

richness [105], [106], the ‘constant connectance hypothesis’ [107] states that what is constant is the 

connectance of the network (i.e., the fraction of potential interactions that are realized), irrespective of 

species richness. Empirically, it has been shown that link-species relationships lay in between the two [8], 

[108]. Both hypotheses do not explicitly account for the effect of area size on species richness. Brose and 

colleagues [109], proposed a scaling of trophic links with area by combining the species-area relationship 

with the link–species relationship. Given that species richness increases with area, and the number of links 

scales with species richness, changes in food web structure with area are expected to emerge simply from 

SAR, which are in turn shaped by the specific link-species relationship in place.  
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However, other processes can underlie changes in network structure across spatial scales 

independently of species richness. For instance, Roslin and colleagues [96], recently showed that the slope 

of SARs steepens from plants to herbivores and from primary to secondary parasitoids, triggering a 

decrease in food chain length from large to small islands. If the spatial scaling of species richness differs 

among trophic levels, different facets of network structure are expected to change with area [88], [95], 

[96]. Similarly, Pillai and colleagues [110] used a meta-community model to explain how network 

complexity can increase as the spatial extent increases when omnivorous and generalist species connect 

local patches (Figure 10). 

 

 

 

 

 

 

 

Figure 10. Example of how food web complexity might emerge at large spatial scales through the spatial 

aggregation of local food chain networks with increasing spatial extent within a meta-community. As 

spatial scale increases, and as more species and potential feeding interactions are sampled, the observed 

trophic complexity of the regionally aggregated food web. Figure taken from [110]. 

 

Gaining a deeper understanding of network-area relationships (NARs) is arguably as important as 

the knowledge we have on SARs. Indeed, understanding the mechanistic basis of the spatial scaling of 

network properties is not only crucial to better predict the effects of habitat disturbances on the 

organisation of multispecies communities, ultimately affecting their persistence and functioning, but also 

to be able to interpret empirical data on ecological networks. If the spatial scale affects network structure, 

then comparative studies should explicitly consider the area sampled to generate meaningful conclusions, 

as it is systematically done on studies on diversity distribution patterns [111]. In the three last chapters of 

the thesis, I explore the mechanisms behind the changes in network structure across spatial scales, and 

which are the environmental factors affecting the shape of the spatial scaling observed. 
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New methods and tools for macroecological networks 

Moving into macroecological networks requires new methods and tools to approach them. 

Empirically documenting network structure at large spatial scales, can be extremely costly and time-

consuming [112]. Eespecially if one attempts to analyse vast ranges of spatial extents, like it has been 

done for SARs. The use of potential networks of biotic interactions, or ’metawebs’ (sensu [5]), provides an 

alternative approach to analyse ecological networks at these large spatial scales (Figure 11). The structure 

of such potential networks can be based on pure random interactions between the overall regional pool 

of species, or can further account for the species distribution[113], trait matching [112], [114], [115], or 

phylogenetic relatedness [116]. Thus, instead of assembling each local ecological network solely relying 

on observed interactions, one can infer the local occurrence of biotic interactions between all the species 

in the regional pool based on expert knowledge on who eats whom, species traits or phylogenies, coupled 

with measurable information on species distributions and environmental conditions.  

 

 

 

 

 

 

 

 

 

Figure 11. Conceptual representation of a metaweb. Circles coloured in green and purple represent two 

local assemblages with consumers represented by the numbered nodes and resources by the nodes with 

letters. Lines connecting nodes represent biotic interactions (i.e., links). Nodes in red represent those 

species that are not present in both local communities. The metaweb, represented at the bottom of the 

figure, combines both local communities including all species present in both local webs and their biotic 

interactions. The links depicted in the local webs can be observed or inferred based on different 

constraints described in the text, such as species co-occurrence in space. 
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The comparison between the local assemblages with the metaweb can inform not only on 

whether the latter provides a good approximation of the realised networks but also it can provide valuable 

information on the processes that structure communities at different spatial scales and along large-scale 

environmental gradients. For example, if some local structure deviates more than others in particular 

parts of the environmental gradient, it might reflect higher levels of beta-diversity that generate more 

variation in species composition and in their biotic interactions across space and, in turn, larger changes 

as we scale up in space.   

Similarly, Kissling and coauthors [117] suggested novel approaches to incorporate biotic 

interactions into species distribution models (SDMs), which had traditionally ignored the role of species 

interactions. They proposed the use of multispecies co-occurrence datasets across large-scale 

environmental gradients to infer potential interaction matrices, coupled with comprehensive spatio-

temporal data on biotic interactions to incorporate the non-stationarity in interaction coefficients across 

space and time. Although challenged by the limited empirical knowledge on the spatio-temporal variation 

of species interactions, they highlighted the great potential for developing novel approaches that 

incorporate multispecies interactions into the projection of species distributions and community structure 

at large spatial extents. Therefore, the use of all the new emerging tools to assemble ecological 

communities, together with increasingly powerful predictive models for species distributions, is not only 

necessary to analyse and quantify network structure at large biogeographical scales, but it also opens new 

avenues to further understand ecological communities and the processes structuring them.  

 SUMMARY OF THE CHAPTERS 

The general objective of this thesis is to incorporate spatial and biogeographical processes into 

ecological network research to develop a more holistic understanding of ecological systems across spatial 

scales.  To do so, the thesis is organized in 4 chapters, each addressing different aspects of the interaction 

between ecological networks, biogeography and spatial processes (Figure 12).  I use an integrative 

approach that combines theory and data analyses to investigate different facets of this interaction in order 

to build a comprehensive view on macroecological networks. In this section I briefly summarize each 

chapter describing their motivation, objective and questions posed, methodology used and the main 

findings and conclusions. 
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Figure 12. Conceptual representation of the thesis.  Each 

chapter represents a different level of the integration 

between ecological networks, biogeography and spatial 

dynamics. Chapter 1 integrates ecological networks and 

biogeography, focusing on the effect of the spatial scale 

of observation. Chapter 2 and 3 analyse the spatial 

scaling of network structure incorporating some 

biogeographical concepts and mechanisms. Chapter 4 

integrates all fields by analysing the geographical 

variation of the spatial scaling of network structure. 

 

Chapter 1: Geographical variation of network structure 

Motivation. The latitudinal variation in biotic specialization has long interested ecologists. Biotic 

specialization has historically been thought to be higher in more constant environments like the tropics. 

Yet, recent studies have challenged this view by showing non-conclusive and highly idiosyncratic results. 

However, all studies have analysed biotic specialization at the local scale, ignoring how specialization at 

larger spatial extents varies along the same biogeographical gradient. 

Objectives and questions. The first chapter of the thesis aims to analyse how network structure 

changes across large biogeographical gradients of environmental constancy. Specifically, I use a global 

dataset of 173 host (resource)-parasitoid (consumer) networks to investigate (1) whether different facets 

of network specialization exhibit a pattern along the biogeographical gradients of both current and 

historical climatic constancy and (2) whether these patterns are scale-dependent, i.e., whether the 

patterns observed in local networks are different from those observed in networks described at larger 

spatial scales.  

Main results and conclusions. I show that the geographical gradient of biotic specialization is 

not universal. It depends on both the facet of biotic specialization analysed and the spatial scale of 

observation. While networks at the regional scale did not show a geographical variation, at the local scale, 

network connectance, consumer diet overlap and resource vulnerability increased along the gradient of 

environmental constancy whereas consumer generalism decreased (i.e., broader diet breadths in tropical 

areas). 
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Chapters 2 and 3: Effects of area size on network structure- Theory and Data 

Motivation. The spatial scaling of biodiversity has been traditionally understood as the spatial 

scaling of species richness. Yet, species are embedded in complex networks of biotic interactions and 

whether different components of network structure vary with area size is, so far, unknown. Exploring the 

importance of area size for community structure can help to extend the knowledge we have on the effects 

of habitat loss and fragmentation on ecological communities in a changing world.  

Objectives and questions. The second and third chapters of the thesis are thus devoted to 

understanding the spatial scaling of network structure. That is, how different aspects of network 

structure change across spatial scales. Specifically, in Chapter 2 I use several theoretical models to explore 

the underlying mechanisms giving raise to changes in network structure as areas become larger. In 

Chapter 3, I explore the empirical evidence of these spatial scalings. I investigate the universalities in the 

spatial scaling of network structure and tests the theoretical predictions developed in Chapter 2 using 35 

data sets of ecological networks from different ecosystems and biomes across the globe, that comprise 

different types of interactions (i.e., mutualistic, antagonistic) and different sampling methodologies.  

Main results and conclusions. In Chapter 2, I develop a new theoretical framework that allowed 

me to present a number of Network-Area Relationships (NARs) for multi-trophic communities emerging 

from different spatial processes. Mainly, network structure changes as area increases because of the 

existence of different Species-Area relationships (SARs) across trophic levels, the preferential selection 

of generalist species at small spatial extents, and the effect of dispersal limitation promoting beta-

diversity.  This theoretical approach constitutes the foundations to understand the mechanisms behind 

the structure of ecological communities across spatial scales.  

In Chapter 3, I found a number of universal NARs. Namely, the number of links, links per species 

and mean indegree (i.e., mean number of resources per consumer) increase with area size following a 

power law regardless of the data category or interaction type. This suggests that ecological communities 

become more complex with area. In contrast, mean potential indegree (i.e., mean number of resources 

a consumer has at the regional scale) decrease across spatial scales, suggesting that specialist species 

require larger areas to be found. 
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Chapter 4: Geographical variation of the spatial scaling of network structure  

Motivation. Understanding the factors that determine the shape of SARs is at the heart of ecology 

and biogeography. Several factors have been proposed to explain the variation found in the strength and 

slope of SARs. To progress towards a more comprehensive understanding of the determinants of the 

spatial scaling of ecological communities, we need to explore which factors affect the shape of NARs. 

Objectives and questions. The fourth chapter of the thesis aims at integrating the three 

components of the thesis (i.e., ecological networks, spatial processes and biogeography) by analysing the 

spatial scaling of network structure across different biogeographical regions in Europe. The main objective 

is to determine whether there is geographical variation in the specific shape of NARs, what are the main 

environmental determinants of the variation observed between biogeographical regions and what is the 

contribution of species richness for the patterns observed. To do so, I use a subset of the data used in 

chapter 3 to constrain the sources of variability to only environmental factors. Specifically, I analyse how 

network structure changes with area size in Europe using the biogeographical regions that it comprises as 

independent samples to understand the effects of different environmental factors on the shape of NARs.  

Main results and conclusions. I find that the spatial scaling of network complexity strongly varies 

across biogeographical regions. However, once the variation in the spatial scaling of species richness 

across Europe is accounted for, differences in the shape of the NARs disappear. Instead, network vertical 

diversity properties, such as the proportion of species per trophic level, remain remarkably stable across 

biogeographical regions and across spatial scales. The spatial variation in the mean annual temperature 

and the spatial clustering of habitats show to be the main determinants of the spatial scaling of ecological 

communities across Europe. 

 



 

 

 

 

 

 

 

 

 

Chapter 1 

GEOGRAPHICAL VARIATION OF NETWORK 
STRUCTURE  

 





1.1 TITLE OF THE SCIENTIFIC ARTICLE: 

The geographical variability of network structure is scale dependent2 

 

Keywords: consumer-resource, host-parasitoid foodwebs, environmental constancy, geographical scale, 

spatial scale, network structure, biotic specialization, biogeographical gradients, beta-diversity. 

 

ABSTRACT 

Research on the structure of ecological networks suggests that a number of universal patterns exist. 

Prevailing wisdom states that biotic specialization increases towards the Equator. However, recent studies 

have challenged this view showing non-conclusive results. A major limitation of the studies analysing the 

geographical variation in biotic specialization, is their focus on the local scale. Little is known about how 

the spatial scale of observation (i.e., from local to regional spatial scales) affects the geographical variation 

of network structure. This should be remedied, as network structure changes as the spatial scale of 

observation changes, and the magnitude and shape of these changes can elucidate the mechanisms 

behind the geographical variation in biotic specialization. Here we analyse four facets of biotic 

specialization in host-parasitoid networks along gradients of climatic constancy, classifying the networks 

according to their spatial extension (local or regional). While at the regional scale climatic constancy is not 

a good predictor of biotic specialization, at the local scale network connectance, consumer diet overlap 

and resource vulnerability increased along the gradient of environmental constancy whereas consumer 

generalism decreased (i.e., broader diet breadths in tropical areas). We provide an explanation based on 

different beta-diversity for consumers and resources across the geographical gradient. Our results show 

that the geographical gradient of biotic specialization is not universal. It depends on both the facet of 

biotic specialization and the spatial scale of observation.   

 

  

                                                
2 This article represents a collaboration with Bradford H. Hawkins and José M. Montoya. It is in 2nd review in Ecography. 
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1.2 INTRODUCTION 

Large networks of species interactions display a number of universal patterns across habitats and 

interaction types, which likely determine the response of ecosystems to environmental changes [4], [6]–

[10]. However, research on ecological networks has challenged some patterns emerging from the study 

of simple pairwise and isolated interactions. Reciprocal specialization, for example, that occurs when a 

consumer specializes on a resource and vice versa, is rare when the whole network of interactions is 

considered [118].  

Prevailing wisdom states that biotic specialization is higher in more constant environments. 

Hypotheses for this pattern include the supposition that greater stability and lower seasonality in e.g. the 

tropics, lead to more stable population dynamics than those at higher latitudes, allowing for narrower 

(and more specialized) feeding niches [63], [119]. Similarly, more historically constant environments 

reflect the available time for potential species coevolution due to temporal stability of local communities, 

which increases local adaptation and favours biotic specialization [58], [64], [65], [71]. Recent studies have 

addressed the geographical variation in biotic specialization, showing non-conclusive and highly 

idiosyncratic results [69]. While some authors showed an increase in network specialization and higher 

predation risk towards the tropics [70]–[72], [78], others found the opposite [64]. Yet some others found 

distinct trends for each hemisphere [73] and for each measure of biotic specialization considered [74], or 

no latitudinal trend at all [75], [76]. 

All studies to date focused on specialization across local communities, ignoring how specialization 

at larger spatial extents (e.g., regional scale) varies along the same biogeographical gradient. This is crucial, 

as several spatial processes largely affect food web structure and dynamics [86], [87], [120]–[122], 

fostering changes in network structure as the spatial scale of observation changes [96], [103], [110], [123], 

[124]. For instance, given that not all species react similarly to landscape configuration [125], we can 

observe differences in the slopes of the species-area relationships (SAR) across trophic levels that, in turn, 

can generate further changes in network structure across spatial scales [88], [95], [96], [124]. These 

differences in the slope of SARs across trophic levels can reflect differences in b-diversity (i.e., site-to-site 

variation in community composition) across trophic levels, when the total extent of area and the size of 

the regional pool of species are accounted for [126], [127]. If β-diversity is different across trophic levels 

[128], and therefore there is an unbalanced increase in the number of species per trophic level as area 

size increases, the structure of the network will change across spatial scales. For example, if consumers’ 

β-diversity is higher than resources’ β-diversity, the number of species consuming a resource might 
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increase from local to regional spatial scales due to the larger increase of consumer species than resource 

species. In addition, if the differences in beta-diversity across trophic levels are not universal, changes in 

network structure across spatial scales might vary geographically. Indeed, β-diversity provides a direct link 

between biodiversity at local scale (a-diversity) and the broader regional pool of species (g-diversity) 

[129], [130]. This connection allows for a better understanding of the processes that structure 

communities at different spatial scales and that can, in turn, be the basis of the geographical gradients of 

biodiversity [131]–[133]. 

Moreover, interactions among species can differ among environments, experiencing spatial 

turnover independent from species occurrences [134], [135]. The realization of an interaction between 

two species that co-occur in space is directly influenced by the surrounding environment and how this 

affects each species [134], [136], [137]. Therefore, scaling up in space allows to capture the potential 

network of interactions and the potential mechanisms behind the variation of network structure in space 

or along large environmental gradients. Indeed, a regional network (or metaweb) characterizes all 

potential interactions among all species that are susceptible to both co-occur and interact at the scale 

considered [5], [112], [115]. The motivation for comparing local and regional networks is thus similar to 

the implicit motivation for comparing local and regional diversity: what and how spatial processes affect 

the changes of network properties or richness.  

Here we focus on how the spatial scale of observation (i.e., local vs. regional) affects the 

geographical gradient of biotic specialization. The idea that the degree of specialization increases towards 

the Tropics has been rarely explored beyond niches becoming narrower, that is, beyond specialization 

from the consumers’ perspective [34], [63], [119]. However, specialization is a multifaceted concept; there 

are other dimensions of biotic specialization beyond diet breadth, such as network-based metrics that 

reflect the general level of specialization of the community [74], [138], [139]. This is important since 

different facets of specialization can reveal different patterns across environmental gradients [74]. Here 

we analyse four facets of biotic specialization: network connectance, consumer diet overlap, consumer 

diet breadth (or generality), and resource vulnerability at both local and regional spatial scales along two 

environmental gradients. Namely, current climatic constancy (i.e., annual temperature range) and 

historical climatic constancy (i.e., the change in mean annual temperature at a given location since the 

Last Glacial Maximum, 21.000 years ago to present). We also analyse the number of species at each 

trophic level at both spatial scales to determine the possible contribution of β-diversity to the spatial 

scaling of network structure along the environmental gradient. We expect changes in network structure 
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across spatial scales to emerge due to unbalanced increases of species richness per trophic level as the 

spatial scale of observation changes. Following the biotic specialization hypothesis, we would expect 

networks to be more specialized in more constant climates, both historically and contemporaneously. 

That is, less connected networks, with consumer diets being more specialized and less overlapped and 

resources being attacked by fewer consumers.  

We use a global dataset of 173 host (resource)-parasitoid (consumer) networks (Figure 13) to 

investigate (1) whether different facets of network specialization exhibit a pattern along the 

biogeographical gradients of both current and historical climatic constancy and (2) whether these patterns 

are scale-dependent, i.e., whether the patterns observed in local food webs are different from those 

observed in regional food webs.  

 

 

 

Figure 13. Localization of the 173 host (resources)-parasitoid (consumers) bipartite networks analysed. 
Each point corresponds to a network, with orange and blue for local and regional respectively. 
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1.3 METHODS  

1.3.1 Data set 

We compiled and analysed 173 host (resource)-parasitoid (consumer) bipartite networks 

occurring in a globally extensive range of habitat types extracted from a parasitoid assemblage diversity 

database initiated by Hawkins (1990, 2005) and extended into the present (Figure 13). In these networks, 

species correspond to taxonomic species (i.e., we avoid aggregation into trophic species), and links always 

correspond to direct observations of a larval parasitoid insect feeding and developing within or on its 

herbivorous insect host. Only webs composed of more than 10 species (hosts and parasitoids altogether) 

were considered, with a minimum of 2 species within each trophic level. We only considered binary data 

(i.e., the presence or absence of an interaction) given that data on interaction strengths for regional food 

webs were not available.  

Most data on the structure and strength of ecological interactions are snapshots in time and space 

[140]. However, both feeding links and interaction strengths vary over time and space as a function of 

abiotic conditions, population densities, predator switching or due to non-linear functional responses 

[24], [141]–[144]. All these factors make the averaging of interaction strengths across local communities 

to obtain the interaction strength at the regional scale both problematic and unrealistic. More 

sophisticated studies that directly measure interaction strength accounting for these variations in 

population densities and functional responses across spatial scales are needed to obtain this information.  

1.3.2 Environmental variables 

We focused our analyses on the effect of temperature variability, both contemporary and 

historical, on network structure. For that, we used annual range in temperature and historical-climate 

change as predictor variables respectively. The annual temperature range of the location of each network 

was extracted from the worldclim database [145], corresponding to bio7 (Max Temperature of Warmest 

Month - Min Temperature of Coldest Month). Although traditionally the geographical gradient of biotic 

specialization has been tested using latitude as the predictor variable, here we used temperature range 

because it provides more direct measures of local climatic conditions and allows us to directly test the 

effect of climatic constancy on biotic specialization [146].  Historical climate-change was calculated using 

the mean annual temperature 21.000 ybp, provided by the tool PaleoView [147], and the mean annual 

temperature from worldclim (i.e. difference between current mean annual temperature and mean annual 

temperature 21.000ybp). 
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1.3.3 Spatial scale: local versus regional networks 

To test the influence of the spatial scale on food web structure, we distinguished between local 

and regional food webs. The spatial scale of each network was determined based on the area covered 

during the data collection of each study described in each publication analysed. In all cases, we considered 

the original network described in each publication and the spatial scale addressed originally, i.e., we did 

not build any network, neither local nor regional, from the aggregation of other published local webs or 

inferred interactions between species. Local webs are those collected from a single sampling site or from 

multiple sampling sites covering an area smaller than 1000 km2. Regional webs are those collected from 

multiple sampling locations distant from each other covering areas larger than 1000 km2. Therefore, while 

local networks represent the realised interactions between species of the local assemblage, regional 

networks represent the combination of all the interactions between species that have been observed in 

at least one of the locations sampled within the scale considered, which does not entail that they are 

necessarily realized in every single location within the area covered by the regional network.  Thus, 

regional networks represent all potential interactions among species from the regional pool that are 

susceptible to both co-occur and interact at the scale considered [5], [112], [115]. We considered the 

threshold commonly used in the literature for local versus regional species diversity [39], [148] to also 

determine local and regional spatial scales for biotic interactions. We considered spatial scale as a 

categorical variable because accurate estimations of the area sampled were not available in all 

publications, which makes them not reliable enough across a continuum. We tested the robustness of our 

results by varying the threshold used from 500km2 to 1000km2 and it did not affect the results. 

1.3.4 Network properties 

In our bipartite host-parasitoid networks, species richness (S) is the sum of the number of species 

of resources (SR) and consumers (SC). We measured structural properties of food webs that correspond to 

four facets of network specialization: 

- Connectance (C) is the number of actual links (L) divided by the number of possible links in the bipartite 

network (SR*SC).  

- Consumer diet overlap (O), is the connectance of the consumer overlap graph, where a link between two 

consumers exists if they share, at least, one resource species (Cohen 1978, Sugihara 1984). Consumer 

overlap is thus the actual number of links among consumers (LC) divided by the possible links between 

them (SC*(SC-1)/2). This property describes the extent and pattern of resource-use overlap amongst 

consumers and indicates the potential for indirect (that is, exploitative) competition [106].  
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- Diet breadth or generality is the mean number of resources per consumer species, that is, L/SC. It is a 

measure of the degree of specialization in the web from the consumer perspective. 

- Vulnerability is the mean number of consumers per resource species, L/SR, and represents the degree of 

specialization found in the network from the resource perspective.  

Additionally, we measured the number of species at each trophic level (i.e. number of parasitoids and 

hosts) and consumer:resource ratios. We analysed all these network properties at each spatial scale along 

the gradient of environmental constancy. 

1.3.5 Control by species richness  

Some of these structural properties can be sensitive to differences in species richness (S) among 

food webs [99], [103], [149], [150]. Therefore, comparative analyses of food webs need to control for 

variation in species richness across webs given that conclusions on the variability of food web structure 

might simply result from variation in species richness across webs [99], [103], [149], [150]. Controlling for 

S is particularly relevant in biogeographical studies, because a latitudinal gradient in species richness 

generally exists: S increases towards the tropics in most taxa [151], [152]. We thus controlled all the 

analyses for species richness S (S= SR + SC) including it as a covariate in our statistical analyses, and this 

should partially correct for different sampling efforts in the field among studies since observational effort 

and species richness correlate strongly [153], [154]. Due to the lack of quantitative data, further analyses 

to control for sampling effort were not possible. In addition, we also perform all the analyses controlling 

by the number of species in each trophic level independently (i.e., including them individually as 

covariates in the models). 

1.3.6 Beta-diversity analyses 

Species β-diversity influences the changes in species richness from local to regional spatial scales. 

If β-diversity differs across trophic levels, changes in species richness from local to regional spatial scales 

will be unbalanced, and the trophic level with higher β-diversity will experience a larger increase in species 

richness across spatial scales. This will lead to changes in network structure across spatial scales. We thus 

hypothesize that differences in β-diversity across trophic levels can generate changes in network structure 

across spatial scales. Given that our dataset is composed by independent local and regional networks (i.e., 

our local networks are not subsets of our regional networks) and the information of the different local 

sites used to construct the regional networks is not available in most of the original papers, we cannot 

directly test this hypothesis with the data. However, to theoretically understand how β-diversity 
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influences the increase in species richness from local to regional spatial scales and how it can generate 

changes in network structure across spatial scales, we built three identical random local networks. These 

networks have the same number of species and links, with species equally distributed across trophic 

levels, which results on a consumer:resource ratio equal to 1. Interactions between species were 

randomly assigned from a uniform distribution between 0 and 1, where network connectance determined 

the probability for a consumer-resource link. We then defined β-diversity as the percentage of species co-

occurring within each trophic level across local webs, reflecting their spatial turnover [155]. This gives two 

values of β-diversity, one for each trophic level: βconsumer- and βresource-diversity (Figure 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Beta-diversity as a mechanism for the variation on network structure across spatial scales. Black 
nodes represent consumer species and grey nodes resource species. Species identities are represented 
with numbers for consumers and letters for resources. Arrows correspond to species interactions. All local 
networks have the same number of species and identical structure. Properties of the local networks: 
connectance=0.48; consumer overlap=0.8; consumer diet breadth=2.4; resources vulnerability=2.4; 
consumer:resource ratio= 1. In (a) βconsumers-diversity =0.6 and βresources-diversity =0. That is, 3 out 
of the 5 species of consumers are replaced in each local network while resource species have the same 
identity in the three local networks. The regional network (or metaweb) is built from the aggregation of 
the three local networks, where species maintain their identity and their interactions. Properties of the 
regional network (metaweb) in (a): connectance=0.43; consumer overlap=0.78; consumer diet 
breadth=2.18; resources vulnerability=4.8; consumer-resource ratio= 2.2. In (b) β-diversity =0.6 for both 
trophic levels. Properties of the regional network in (b): connectance=0.247; consumers’ overlap=0.47; 
consumers’ diet breadth=2.72; resources vulnerability=2.72; consumer-resource ratio= 1. 
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To determine the effect of having unbalanced values of spatial turnover (β-diversity) between 

trophic levels on the changes in network structure across spatial scales, we assigned values of βconsumer-

diversity, ranging from 0.1 to 0.8 with an increase of 0.1, while we kept βresource-diversity equal 0 (Figure 

14a). On a different scenario, we varied simultaneously β-diversity across trophic levels. That is, we 

assigned values of β-diversity ranging from 0.1 to 0.8 with an increase of 0.1 to both trophic levels at the 

same time (Figure 14b). We then analysed network properties at both local and regional (i.e., the 

metaweb resulting from the aggregation of the three local networks) spatial scales.  

1.3.7 Statistical analyses 

We used GLMs (Family = Gaussian, Link = identity) to analyse differences in network properties 

depending on both environmental variables (dependent variables: network connectance, consumer 

overlap, consumer diet breadth, prey vulnerability, number of hosts and number of parasitoids; 

independent variables: annual temperature range and historical climate-change). Because our 

independent variables suffered from multicollinearity (adjusted-R2=0.38), we could not perform a 

meaningful multiple regression analyses to partition the predictive power of the two environmental 

variables. Number of species was included into de GLMs as a covariate. Additionally, the number of hosts 

and parasitoids were also included individually as covariates except for the analyses where they were 

considered dependent variables. We performed the analyses with every network variable (dependent and 

covariate) and the environmental predictors log-transformed. Given that we expected the relationship of 

the dependent variables (i.e., network properties) and the environmental variables to be affected by the 

spatial scale of observation, we included spatial scale as an interaction term with the dependent variables 

in the statistical models. We used Type III sum of squares in our analyses due to our unbalanced data 

(local networks=74; regional networks=99). Following the statistical analysis, we confirmed that none of 

the network metrics contained significant spatial autocorrelation in the model residuals, (all P>0.05), 

which indicates that significance tests are unbiased. 

1.4 RESULTS 

1.4.1 Effects of environmental constancy on network structure  

At the regional scale, network connectance, consumer diet overlap, consumer diet breadth, and 

resource vulnerability showed no significant changes along the gradients of annual temperature range 

and historical climate-change, except for a slight decrease of consumer diet breath along the gradient of 

historical climate-change (Figure 15, Table 2). That is, the variation in network structure described at the 
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regional scale was not well predicted by the constancy of either current or historical temperature 

constancy. 

On the contrary, for local webs, both environmental variables were good predictors of network 

structure. All network properties were significantly correlated with species richness at both spatial scales 

(Table S1.1, Figure S1.1). Even though there was no significant difference in the relationship of the number 

of species with the network properties across spatial scales (Table S1.1, Figure S1.1), the mean number of 

species was significantly smaller at local than at regional scales, as expected. We found no significant 

relation of species richness with neither of the gradients of environmental constancy (Table S1.2, Figure 

S1.2). Yet all results described in this section refer to the patterns observed after accounting statistically 

for the effect of the number of species. Additionally, we performed the analyses controlling by the number 

of species in each trophic level as two separate covariates and we obtained the same results for the 

gradient of annual temperature range while losing the trend for resource vulnerability at the local scale 

with the past climatic constancy gradient (Table S1.3).  

Specifically, network connectance, consumer diet overlap and resource vulnerability increased 

along the gradient of annual temperature range, while consumer diet breadth decreased (Figure 15, Table 

2). Therefore, local webs in more currently constant environments were less connected, their consumers 

overlapped less their diets and, in turn, prey vulnerability decreased, as expected from the biotic 

specialization hypothesis. However, consumer diet breadth (i.e., generality) showed the opposite pattern; 

it decreased in more climatic fluctuating environments. Historical climate-change predicted similar 

patterns for prey vulnerability and consumer diet breadth than annual temperature range. That is, the 

larger the change in climate over the last 21.000 years, the larger the number of predators attacking a 

given prey and the fewer the mean number of prey a predator has (Table 2, Figure 15). However, current 

climatic constancy was a better predictor of biotic specialization at the local scale than historical climatic 

constancy (cf. R2 values and significances in Table 2 and Table S1.3). Therefore, local networks in more 

climatically constant environments, both historically and contemporaneously, show opposite results for 

resource and consumer species. From the resource perspective, local networks are more specialized (i.e., 

resources have lower vulnerability) in climatically constant environments but, from the consumer 

perspective, they are less specialized (i.e., consumers are more generalist) (Table 2, Figure 15). 
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Table 2. GLM results for the relationship of each network property with annual temperature range and 
past climate-change. Estimates, T values and statistical significances (*** for p-values<0.0001; ** for p-
values<0.01; * for p-values<0.05; ° for p-values<0.1) are indicated for the relationship at each spatial scale 
- local (N = 74) and regional (N = 99) - and for the interaction term of spatial scale with both environmental 
variables taking local spatial scale as the reference. Multiple R-squared are provided as an indicator of the 
explained variation of each model.  
 
 
 
 
   

  
Connectance Overlap Generality 

Estimate 
T-

value 
R2 Estimate T-value R2 Estimate T-value R2 

Range 
in T 

Local 0.42 
3.115 

** 

0.53 

0.28 
2.653 

** 

0.38 

-0.48 
-3.170 

** 

0.23 Regional -0.12 -1.237 -0.05 -0.684 0.02 0.223 

Interaction 
term 

-0.54 
-3.237 

** 
-0.34 

-2.536  
* 

0.51 
2.675  

** 
     

      

Past 
Climate 
Change 

Local 0.09 1.476 

0.51 

0.03 0.633 

0.35 

-0.17 
-2.516 

 * 

0.23 Regional -0.03 -0.805 -0.01 -0.543 -0.07 
-2.077 

* 
Interaction 

term 
-0.12 

-1.681  
° 

-0.05 -0.818 0.09 1.167 

  Vulnerability Parasitoids Hosts 
Estimate T-value R2 Estimate T-value R2 Estimate T-value R2 

Range 
in T 

Local 0.68 
4.383  
*** 

0.26 

0.32 
4.644 
*** 

0.88 

-0.65 
-3.675  

*** 

0.52 Regional -0.09 -0.810 -0.03 -0.489 0.12 0.936 

Interaction 
term 

-0.77 
-3.998  

*** 
-0.35 

-4.016 
*** 

0.77 
3.506  
*** 

           

Past 
Climate 
Change 

Local 0.17 
2.421  

* 

0.20 

0.11 
3.469 

** 

0.87 

-0.17 
-2.198  

* 

0.49 Regional 0.009 0.221 0.01 0.838 0.03 -0.722 

Interaction 
term 

-0.16 
-1.997  

* 
-0.09 

-2.606 
** 

0.14 1.557 
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 Figure 15. Geographical variation in network 
structure along the gradient of (a-d) annual 
temperature range and (e-h) historic climate-
change (i.e., change in mean annual temperature 
for the last 21.000 years). Relationship between 
network connectance, consumer overlap, 
resource vulnerability and consumer diet 
breadth with both environmental variables at 
local (orange) and regional (blue) spatial scales. 
Notice that the tendency line in blue for regional 
spatial scales does not indicate a significant 
relationship. 
 
 

 

 

 

 

 

 

 

 

 

 

These contrasting results can be explained by changes observed in the number of parasitoids and 

the number of hosts in the local webs along both environmental gradients. While the number of 

parasitoids increased with temperature range and historical climate-change, the number of hosts 

decreased (Table 2, Figure 16). For regional networks, neither parasitoid nor host richness changed across 

the gradients (Table 2, Figure 16).  These opposite tendencies for the number of parasitoids and the 

number of hosts at the local scale indicate that the distribution of the number of species across trophic 

levels (i.e. consumer:resource ratio) is changing along both gradients of environmental constancy.  Thus, 

in more constant environments, fewer consumers attacked resources, but this pattern was reversed in 

more fluctuating areas where the number of parasitoids per host was higher and, therefore, prey 

vulnerability was larger. 
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Figure 16. Relationship of the number of parasitoids and hosts with (a and b, respectively) the gradient of 
annual temperature range and (c, d) the gradient of historic climate-change (i.e. change in mean annual 
temperature for the last 21.000 years) at both local (orange) and regional (blue) spatial scales. Notice that 
the tendency line in blue for regional spatial scales does not indicate a significant relationship. 

 

Given that biotic specialization was not well predicted by our environmental variables at the 

regional scale, the question that remains is: How can the distribution of species richness across trophic 

levels (i.e., consumer:resource ratio), from which the patterns in vulnerability and diet breadth derive, 

change from local to regional webs along the gradients of environmental constancy?  

 

1.4.2 Beta-diversity as a potential mechanism 

 
We hypothesize that the difference in β-diversity across trophic levels modulates the changes in 

network structure from local to regional spatial scales, and that these differences in β-diversity across 

trophic levels varied along the gradients of environmental constancy.  In figure 14 we illustrate this 

mechanism with two specific examples corresponding to the two extremes of the constancy gradient, one 

for more climatically constant regions like the Tropics (Figure 14a) and one for more fluctuating regions 

(Figure 14b). If βconsumer-diversity > βresource-diversity, we observe changes in network structure from local 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

1.0

1.5

10 20 30 40 50
Range in T

Lo
g1

0(
Pa

ra
si

to
id

s)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

● ●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

0.4

0.8

1.2

1.6

10 20 30 40 50
Range in T

Lo
g1

0(
Ho

st
s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

1.0

1.5

0 10 20 30
Past Climate−Change

Lo
g1

0(
Pa

ra
si

to
id

s)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

● ●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

0.4

0.8

1.2

1.6

0 10 20 30
Past Climate−Change

Lo
g1

0(
Ho

st
s)

A B

C D



 

 

48 

to regional spatial scales (Figure 14a). In contrast, similar β-diversity in both trophic levels does not 

generate differences in network structure across spatial scales beyond those produced by the increase in 

the number of species (Figure 14b). In figure 17 we extend this example to the whole range of β-diversity 

values to explore systematically the effects of β-diversity in both trophic levels on the structure of the 

networks across spatial scales. The larger the difference between βconsumer-diversity and βresource-diversity, 

the larger the change expected in network structure across spatial scales (Figure 17a). Conversely, 

assigning similar values of β-diversity between resources and consumers only generates differences in 

network structure from local to regional webs due to the general increase in species richness (Figure 17b). 

In this case, the larger the value of β-diversity, the larger the increase in the number of species as local 

communities are successively aggregated into the regional network. Our tropical networks appear to 

display the structural patterns across spatial scales corresponding to the scenario where βconsumer-diversity 

> βresource-diversity. Patterns displayed by networks in more fluctuating environments (i.e., temperate and 

continental), however, suggest that more balanced values, or even inversed, i.e., βconsumer-diversity≤ 

βresource-diversity, are predominant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Response of different specialization metrics to increases in (a) consumer beta-diversity (where 
resource beta-diversity=0) and (b) beta-diversity at both trophic levels increasing simultaneously (i.e., 
beta diversity of consumers equals that of resources). Dotted lines represent network properties values 
at the local scale. Continuous lines represent network property values of the aggregated network (i.e., 
regional scale) as beta-diversity increases. Blue for connectance, green for overlap, orange for diet 
breadth, purple for vulnerability and black for consumer:resource ratios. 
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1.5 DISCUSSION 

We have shown that the geographical variation of food web structure is scale dependent. In 

particular, the gradient of biotic specialization is not universal. It depends on both the facet of biotic 

specialization analysed and the spatial scale of observation.  Indeed, local and regional networks displayed 

very different patterns along the gradients of contemporary and historical climatic constancy. At the 

regional scale, we found little evidence for the biotic specialization hypothesis for any of the facets 

analysed. In contrast, the biotic specialization hypothesis generally holds at the local scale: networks in 

more constant environments were less connected, consumers overlapped less their niches, and preys 

were attacked by fewer predators. The only facet of specialization that showed the opposite pattern was 

diet breadth: consumers were more generalists in more constant environments, contrary to the 

hypothesized latitudinal gradient on niche breadth [34], [63], [119]. 

Current climatic constancy was a better predictor of biotic specialization at the local scale than 

historical climatic constancy. Even though past climate stability has been shown to be a good predictor of 

the structure of plant-hummingbird networks [58], [71], a meta-analysis on pollination networks showed 

stronger effects of contemporary climate on network specialization [64], in agreement with our findings. 

Our measure of historical climatic constancy (i.e., difference between current mean annual temperature 

and mean annual temperature 21.000ybp) allows for a direct comparison with current climatic constancy, 

as both measures account for the temperature range experienced over long and short temporal scales, 

respectively. However, it is a coarse-grained measure that does not account for fine-scale climatic 

fluctuations within the historical period considered. Because species may respond differently to climate 

changes, climatic fluctuations can disrupt biotic specialization through phenological mismatches or 

changes in the geographical distributions of species [156]–[158]. Thus, the explanatory power of historical 

climatic constancy can be smaller than that corresponding to current climatic constancy.  

Our results partially agree with previous findings. Dalsgaard and colleagues [74] analysed the 

latitudinal gradient in biotic specialization of avian plant-frugivore networks from two different 

perspectives, namely niche partitioning in the network and consumers’ dietary specialization, and found 

opposite results. They showed that network-derived specialization increases with latitude while bird 

species were more specialized on specific fruit diet in the Tropics. Their results highlight the need of 

comparing different scales of biotic specialization for a better understanding of a biogeographical pattern. 

In our case, the analysis of different facets of biotic specialization at different spatial scales was crucial to 

gain a better understanding of the biogeographical pattern. Interestingly, we found opposite geographical 
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patterns in biotic specialization between consumer (i.e., generality) and resource (i.e., vulnerability) 

species (Figure 15). While diet breadth was higher in more climatically constant regions, resource 

vulnerability was lower. Importantly, the number of consumers and the number of resources also showed 

opposite trends along both gradients of environmental constancy, which explained the opposite results 

found between consumer diet breadth and prey vulnerability at the local scale (Figure 16). Therefore, 

analysing different facets of biotic specialization allowed us to have a broader understanding of the 

geographical variation of biotic specialization. 

In a recent study of the macroecology of pollination networks, Trøjelsgaard and Olesen [72] found 

that pollinators:plant ratios increased with latitude, indicating that mid-latitudes harboured more 

pollinators per plants species than communities in the tropics. Our results for antagonistic networks are 

in agreement with this finding at the local scale where we found that the number of parasitoids decreased 

with environmental constancy while the number of hosts increased (Figure 16), indicating a decrease of 

the consumer:resource ratio with environmental constancy. However, at the regional scale, we did not 

observe a significant change in the number of consumers and resources along neither of the 

environmental constancy gradients. This results in opposite patterns between both extremes of the 

gradients when local and regional networks are compared (Figure 15 and Figure 16). In more constant 

environments, local networks have a smaller proportion of consumers per resources than regional 

networks. The opposite is true for more fluctuating environments, where local networks have a larger 

proportion of consumers per resources than regional networks (Figure 16).  

1.5.1 The importance of spatial turnover across environmental gradients 

One key question remains: How can the same “potential” regional network lead to opposite 

“realized” local networks along the climatic constancy gradient? More specifically, how can the 

distribution of diversity across trophic levels have an opposite trend between spatial scales at both 

extremes of the gradient? 

We propose an explanation based on the differences in spatial turnover (i.e., β-diversity, sensu 

Whittaker [130]) of local consumer and resource assemblages along the gradients of climatic constancy. 

In the tropics (i.e., less fluctuating regions), the spatial turnover of consumers should be larger than that 

of resources, so that when we aggregate local into regional webs, the number of consumers increases 

faster than the number of resources (Figure 14, Figure 17). In contrast, in more fluctuating areas the 

process should be the opposite: larger spatial turnover of resources results in a faster increase in the 

number of resources at the regional scale. Empirical evidence partially supports our hypothesis. Consumer 
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assemblages (parasites and parasitoids in particular) tend to be less similar across local communities than 

resource assemblages (herbivores in particular) [128]. In addition, β-diversity in the tropics tends to be 

higher than at higher latitudes, at least at relatively small spatial scales [128], [132], [159], [160]. 

A number of ecological processes can explain why consumers’ β-diversity is larger than resources 

β-diversity in the tropics, but not in more climatically fluctuating environments. This could simply result 

from stochastic assembly processes from two species regional pools with different richness. If regional 

consumer diversity is larger in the tropics than in temperate areas, which it is, random assembly processes 

of local communities would lead to larger compositional dissimilarities of consumers in the tropics [132], 

[161]. However, other non-stochastic ecological processes can also explain this pattern. 

Firstly, consumer assemblage similarity tends to decrease with productivity (e.g, for aquatic 

consumer insects see [162], [163]), as environmental heterogeneity and reduced dispersal rates among 

local communities increase.  As productivity tends to be positively correlated with thermal stability [30], 

[164], this might explain the increase of consumer β-diversity towards the tropics.  

Secondly, diet generalists tend to have wider geographical ranges than specialized species [31], 

[165]–[167], and consumers tend to have patchier distributions in the tropics [31], [33], [159], [168]. This 

reduces the dissimilarity in the composition of local generalist consumer assemblages. Since generalist 

species prey upon a wide range of resource species, compositional differences among sites on resource 

assemblages need to be high. This might explain why diet breadth was not well predicted by the gradients 

of environmental constancy at the regional scale while at the local scale we observed opposite patterns 

for each extreme of the gradients (Figure 15). Thus, this suggests that the dissimilarity on the composition 

of local consumer assemblages is higher in the Tropics due to their tendency of having narrower 

geographical ranges than generalist species [31], [33], [159], [168]. This could lead to the isolation of 

interactions across space if there were reciprocal specializations between consumers and resources, but 

reciprocal specializations are extremely rare in nature [118] and in our networks isolated links were not 

taken into account. Thus, this suggests that the dissimilarity on the composition of resource assemblages 

among local sites is low, and therefore, resource species are attacked by many consumers with narrower 

and patchier distributions (see Figure 15). 

  Thirdly, consumer competitive exclusion can be stronger in the tropics than in temperate areas, 

ultimately determining the patchier distribution of consumers in the tropics [31]. Although supporting 

evidence is not unequivocal [169]–[172], local dynamics in the tropics could exclude different consumers 



 

 

52 

in different habitat patches, resulting in more specialized and less similar consumer communities across 

patches. Our results show that consumers segregated their dietary niches more in more constant 

environments (less consumer overlap) (Figure 15). This could be the consequence of more intense 

competitive exclusion, so that, locally, for consumers to coexist, they should overlap their dietary niches 

only weakly [173]. 

1.5.2 Conclusions and perspectives 

Our study is not the first attempt to examine network structure across biogeographical scales. 

However, it is the first to explore the spatial scale-dependency of network patterns across large 

biogeographical gradients. We found that the difference in the consumer:resource ratio across spatial 

scales changes along the biogeographical gradient of environmental constancy which generates further 

changes in network structure. Our results thus identify a geographical gradient of biotic specialization that 

depends both on the spatial scale of observation and on the facet of specialization of interest. They 

highlight that the spatial patterning of diversity across trophic levels, summarized in β-diversity, is key to 

understand the geographical gradient of biotic specialization. Similarly, our results show the importance 

of considering different spatial scales to get a broader understanding of the specialization pattern and 

their determinants. Additionally, if network structure varies across spatial scales [96], [103], [110], [124], 

then network studies estimating the causes of variation in network structure along any environmental 

gradient [77], [174], [175] might benefit from understanding the spatial scaling of network structure along 

the gradient. However, caution must be exerted when interpreting the comparison between different 

spatial scales. Regional networks account for all the interactions between consumers and resources that 

occur in at least one locality of the area sampled, and thus it does not require that the observed interaction 

is realized in every location of the area considered. Therefore, network structure at the regional scale 

must be understood as the structure of the potential network of interactions at a given area, which 

together with the information on the structure of the realised network at the local scale can help to 

elucidate the role of different spatial processes in a given region.  

Further theoretical and empirical research is needed to determine how general our findings are 

in regards to the scale-dependency of network structure across large environmental gradients and across 

different study systems. We focused on host-parasitoid networks which have been described as a 

particular group of antagonistic interactions that are considered to have higher levels of consumer 

specialization than other antagonistic networks [8], [176]. However, the results presented here and the 

mechanisms proposed to explain the changes in network structure across spatial scales should hold for 
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any system whose consumers are not super generalists and that it presents a minimum degree of spatial 

turnover. Regardless of the type of interaction, unbalanced values of β-diversity across trophic levels 

should generate changes in network structure across spatial scales. Future studies should aim to quantify 

the spatial scaling of network structure in a continuous way along environmental gradients to better 

understand what is the role of β-diversity in determining the possible differences in network structure 

across spatial scales in different parts of the world.  
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Table S1.1. GLM results for the relationship of each network property with number of species. Estimates, 
T values and statistical significances (*** for p-values<0.0001; ** for p-values<0.01; * for p-values<0.05; 
° for p-values<0.1) are indicated for the relationship at each spatial scale - local (N = 74) and regional (N = 
99) -  and and for the interaction term of spatial scale with both environmental variables taking local 
spatial scale as the reference. Notice that to analyse the relationship of the number of parasitoids and the 
number of hosts with species richness, we additionally analyse the consumer:resource ratio. 
 
 

 
 
 
 
 
 
 
 
  

  Connectance Overlap Generality Vulnerability 

Estimate T-value Estimate T-value Estimate T-value Estimate T-value 

Number 
of 

Species 

Local -0.78 
-9.660 

*** 
-0.41 

-6.306 
*** 

0.44 
4.812 
*** 

0.37 
3.905 
*** 

Regional -0.73 
-9.307 

*** 
-0.46 

-7.272 
*** 

0.38 
4.314 
*** 

0.41 
4.443 
*** 

Interaction 
term 

0.05 0.498 -0.05 -0.505 -0.06 -0.472 0.04 0.271 

  
Parasitoids Hosts C:R ratio 

Estimate T-value Estimate T-value Estimate T-value 

Number  
of  

Species 

Local 0.97 
21.906 

*** 
0.99 

8.996 
*** 

-0.01 -0.081 

Regional 1.01 
23.484 

*** 
0.90 

8.553 
*** 

0.08 0.557 

Interaction term 0.04 0.595 -0.08 -0.514 0.09 0.446 
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Table S1.2. GLM results for the relationship of species richness with the predictor variables of 
environmental constancy. Estimates, T values and statistical significances (*** for p-values<0.0001; ** for 
p-values<0.01; * for p-values<0.05; ° for p-values<0.1) are indicated for the relationship at each spatial 
scale - local (N = 74) and regional (N = 99) -  and and for the interaction term of spatial scale with both 
environmental variables taking local spatial scale as the reference.  
  

  
Number of species 

Estimate T-value 

Annual 
Range in T 

Local 0.24 1.344 

Regional 0.14 1.051 

Interaction 
term 

-0.10 -0.448 

   

Past 
Cliamte-
Change 

Local 0.05 0.065 

Regional 0.03 0.738 

Interaction 
term 

0.03 0.306 
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Table S1.3. GLM results for the relationship of each network property with annual temperature range and 
past climate-change considering the number of hosts and parasitoids as independent covariates. 
Estimates, T values and statistical significances (*** for p-values<0.0001; ** for p-values<0.01; * for p-
values<0.05; ° for p-values<0.1) are indicated for the relationship at each spatial scale - local (N = 74) and 
regional (N = 99) - and for the interaction term of spatial scale with both environmental variables taking 
local spatial scale as the reference. Multiple R-squared are provided as an indicator of the explained 
variation of each model. 
 

  

  
Connectance Overlap Generality Vulnerability 

Estimate 
T-

value 
R2 Estimate 

T-
value 

R2 Estimate 
T-

value 
R2 Estimate 

T-
value 

R2 

Range in T 

Local 0.33 
3.053 

** 

0.71 

0.30 
2.951 

** 

0.49 

-0.3 
-2.533 

* 

0.55 

0.46 
4.078 
*** 

0.64 Regional -0.07 -0.874 -0.02 -0.341 -0.04 -0.551 0.03 0.330 

Interaction 
term 

-0.40 
-2.982 

** 
-0.32 

-2.586 
* 

0.25 
1.722 

° 
-0.43 

-3.101 
** 

     
         

Past Climate 
Change 

Local 0.06 1.279 

0.70 

0.03 0.695 

0.47 

-0.11 
-2.124 

* 

0.55 

0.08 1.566 

0.61 Regional -0.07 
-2.470  

* 
-0.04 -1.602 -0.04 -1.319 -0.03 -0.915 

Interaction 
term 

-0.13 
-2.327  

* 
-0.07 -1.390 0.07 1.203 -0.11 

-1.813  
° 
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Figure S1.1. Relationship of the number of species richness with all network properties analysed, at both 
local (orange) and regional (blue) spatial scales. Importantly, the slope of the relationship between 
connectance and the number of species is -0.645 at local scale and -0.788 at regional scale, suggesting 
that S-C relationships are between the link species scaling law and the constant connectance hypothesis. 
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Figure S1.2. Relationship of the number of species with (a) Annual temperature range and (b) Past climate-
change, at both local (orange) and regional (blue) spatial scales. Notice that tendency lines do not indicate 
a significant relationship. 
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Chapter 2 

EFFECTS OF AREA SIZE ON NETWORK STRUCTURE: 
THEORETICAL APPROACH 

  





2.1 TITLE OF THE SCIENTIFIC ARTICLE: 

 The spatial scaling of species interaction networks3 

 

Keywords: community structure, ecological networks, spatial food webs, species-area relationship, 
network-area relationship, metacommunities. 

 

 

ABSTRACT 

Species-Area Relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial 

scales. We know little, however, about how the network of biotic interactions in which biodiversity is 

embedded changes with spatial extent. Here we develop a new theoretical framework which enables us 

to explore how different assembly mechanisms and theoretical models affect multiple properties of 

ecological networks across space. We present a number of testable predictions on network-area 

relationships (NARs) for multi-trophic communities. Network structure changes as area increases because 

of (1) the existence of different SARs across trophic levels, (2) the preferential selection of generalist 

species at small spatial extents, and (3) the effect of dispersal limitation promoting beta-diversity. 

Developing an understanding of NARs will complement the growing body of knowledge on SARs with 

potential applications in conservation ecology. Specifically, combined with further empirical evidence, 

NARs can generate predictions of potential effects on ecological communities of habitat loss and 

fragmentation in a changing world. 

 

 

  

                                                
3 This article represents a collaboration with Miguel Lurgi, Bernat Claramunt, Marie-Josée Fortin, Shawn Leroux, 
Kevin Cazelles, Dominique Gravel and José M. Montoya. It is published in Nature Ecology and Evolution: Galiana, 
N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018). DOI: 
10.1038/s41559-018-0517-3 
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2.2 INTRODUCTION 

The species-area relationship (SAR) is amongst the most widely recognised ecological patterns 

[79], [81], [83]. The larger the geographical area sampled, the richer is the ecological community [80], 

[81], [83]. SARs have been used extensively to estimate species richness in a given region [80], [81], [177], 

and to predict species extinctions due to habitat loss [178]–[180]. Yet, for several logistic reasons, most 

studies of species-area relationships have been traditionally limited to particular taxa and functional 

groups. SARs for multi-trophic communities are just starting to be documented [95]–[97] along with the 

role played by biotic interactions in shaping these relationships [96], [98].   

Biotic interactions modulate the outcomes of community assembly and disassembly. Different 

spatial processes in turn determine which interactions will be realized, ultimately regulating community 

dynamics [86], [120], [122], [181]. For example, higher dispersal rates of species at the top of the food 

web can increase the proportion of top predators in local communities and in turn enhance top-down 

regulation [122], [182]. The relationship between area and biodiversity is thus inherently affected by the 

way ecological interactions and the emerging network structure of multispecies communities change 

according to the location and size of the area sampled. Unveiling the mechanisms underlying the 

relationship between area and biotic interactions will provide insights on ecosystem organization across 

spatial scales [96], [103], [109], [110], [181], [183]. 

Gaining a deeper understanding of network-area relationships (NARs) is arguably as important as 

the knowledge we have on SARs. Indeed, understanding the mechanistic basis of the spatial scaling of 

network properties is essential to predict the effects of disturbances such as habitat loss and 

fragmentation on the organisation of multispecies communities, ultimately affecting their persistence and 

functioning. Disentangling how network structure changes with spatial scale is crucial to interpret 

empirical data on ecological networks. If the spatial scale affects network structure, then comparative 

studies should explicitly consider the area sampled as well as the environmental conditions to generate 

meaningful conclusions, as it is systematically done on studies on diversity distribution patterns [111].  

Here we propose NARs as a theoretical and predictive framework to study the variation of the 

properties of ecological networks (e.g., connectivity, trophic level composition, trophic chain length) 

across spatial scales; from small to large areas. We first showcase a number of spatial processes (e.g., 

dispersal) that could generate different types of NARs. Then we present three simple theoretical models 

to understand and test how NARs could emerge given specific processes of spatial assembly of multi-

trophic communities. As such, we provide new insights on the role of spatial processes on community 
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assembly and structure and explain how this can be used to predict not only the effects of habitat loss 

and fragmentation on species richness across trophic levels, but also on the structure of biotic 

interactions. Last, we propose further theoretical and empirical research avenues, stemming from our 

NARs framework, which could contribute to a unified theory of the spatial scaling of ecological 

communities.  
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METAWEB
Community,assembly:,

Colonization@
extinction'dynamics

Increasing'
area'

A''''''c/e�

Dispersal

�

Colonization@
extinction

A''' '''Number'of'local'communities' aggregated

METAWEB
Community,assembly:,
Colonization@extinction'

+
Dispersal

Model'
description

The,Trophic)Sampling)model)
subsamples,species,randomly,
from,the,regional,pool,of,200,
species,(metaweb).,It,uses,the,
species,– area,relationship,(! =
#$% S,with,k =,10,and,z =,0.27),
to,obtain,the,number,of,species,
expected,for,a,given,area,and,,
therefore,,to,construct,food,
webs,of,different,sizes,that,
correspond,to,different,areas.,
Local,community,assembly,is,
only,constrained,by,trophic,
interactions,,i.e.,,consumers,
need,a,prey,to,be,selected.

The,Trophic)Theory)of)Island)
Biogeography)assumes,that,
species,from,the,mainland,
(metaweb),can,colonise,the,
island,with,a,fixed,colonisation,
probability,(c),and,can,go,extinct,
with,a,range,of,extinction,
probabilities, (e).,Stochastic,
colonisationGextinction,dynamics,
are,trophically constrained.,That,
is,,consumers,need,to,have,a,
prey,on,the,island,to,be,able,to,
colonize,,and,they,go,extinct,if,
their,last,prey,goes,extinct.,Area,
is,determined,by,the,ratio,
between,colonization,and,
extinction,(c/e).
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Mechanisms behind Network-Area Relationships 

There are several possible mechanisms responsible for changes of network structure across 

spatial scales. Box 1 provides a synthesis of the ones analysed here, our expectations for the emergence 

of NARs based on three mechanisms, and the theoretical models used to evaluate our expectations.  

1. The first mechanism is derived from the SAR. There is an associated increase in the number of 

interactions (links) with the increase of species richness with area. Two major hypotheses have been 

proposed to account for the variation of the number of links with species richness in food webs. Both 

hypotheses do not explicitly account for species-area relationships. The ‘link-species scaling law’ [104] 

states that species interact with a constant number of species independently of species richness [105], 

[106]. In contrast, the ‘constant connectance hypothesis’ [107] states that the fraction of potential 

interactions realized (i.e., the number of trophic links L, standardized by the number of potential 

interactions S2) is constant across food webs, irrespective of species richness. Empirical evidence suggests 

that link-species richness relationships lay in between the two hypotheses [108], [184]. If we introduce 

area within these link-species scaling hypotheses, given that S increases with area, and L scales with S, we 

expect changes in food web structure with area simply emerging from SAR which are in turn shaped by 

the specific link-species relationship in place. Brose and colleagues [109] proposed a scaling of trophic 

links with area by combining species–area and the link–species scaling theories mentioned above. 

Following their approximation, we generated trophic communities of different sizes (i.e., different 

number of species) with the Trophic Sampling model. This model randomly subsamples species from the 

metaweb (i.e., food web of 200 species generated with the niche model [185], see Supplementary 

Methods and Supplementary Table 2.1 for a full description), which conforms the regional pool of species, 

with the only constraint that each consumer needs at least one prey to be selected (Box 1). We expect 

different shapes of the species richness-area relationships at each trophic level emerging from this trophic 

constraint. If the spatial scaling of species richness differs among trophic levels, different facets of network 

structure are expected to change with area. As a consequence, the proportion of species belonging to 

each trophic level (e.g., basal, intermediate, and top species) will be different at each spatial scale, 

triggering further consequences on community structure [88], [95], [96]. We explore the combination of 

both mechanisms (i.e. the scaling of the number of links with species richness and the variation of SARs 

across trophic levels) with the Trophic Sampling model (Box1; Supplementary Methods).  

2. The second mechanism arises from the scaling of colonization-extinction dynamics in multi-trophic 

communities with area. This was first considered in the Theory of Island Biogeography [80] (hereafter TIB) 
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and its extension to trophic interactions [86]–[88], [93] (Trophic Theory of Island Biogeography, TTIB). The 

TIB predicts the richness of local assemblages from the equilibrium between colonisation and extinction 

processes. It assumes that the closer the island is to the mainland the larger the colonisation rate [80], 

and that the larger the island size the lower the extinction rate due to the increase in population sizes 

[84], [85]. The TTIB incorporates a trophic constraint not considered in the TIB: consumers must have a 

prey on the islands they colonize to be able to establish and persist. Therefore, the richness of the local 

assemblage and their biotic interactions are defined by the equilibrium between colonisation and 

extinction processes where species that are diet generalists and/or belong to lower trophic level species 

are preferentially selected given that they are less affected by the trophic constraint. Generalist species 

have been shown to be faster colonizers than specialists, ultimately shifting community structure through 

time [86], [186]. We expect stronger impact of this trophic constraint at smaller areas, where the number 

of species is smaller. As area increases, the number of species also increases, which in turn increases the 

opportunity for consumers to find a prey, and therefore not only generalist species will be able to colonize, 

but also specialists, ultimately promoting changes in network structure as area changes. We use the TTIB 

model [86] to generate islands of different sizes based on different colonisation/extinction ratios where 

colonization rate is fixed to analyse the network structure resulting from the assembly process for each 

island size (Box 1; Supplementary Methods).  

3. The last mechanism arises from the spatial variability in community composition, i.e., spatial turnover 

of species. Clumping of species underlies beta-diversity and SARs [187], [188]. Its effect on the variation 

of network structure with area is driven by the increase in the number of species and their interactions as 

area increases. The spatial turnover of species composition can be explained by several processes [128]. 

Here we focus on the spatial configuration and connectivity of the landscape, which ultimately determines 

the rates of dispersal of organisms between sites. In fragmented landscapes with major dispersal barriers, 

species turnover is higher than in homogeneous and continuous environments [189]. Changes in network 

structure with area are likely to be mediated by dispersal limitation through its effects on spatial turnover. 

Larger beta-diversity values will generate larger changes in network structure with area because the 

number of different species encountered as the area sampled increases will be larger. To test the effects 

of this process we employ a multi-trophic meta-community model, extending the above-mentioned TTIB 

to entire landscapes, where we control species dispersal between local patches (Box 1; Supplementary 

Methods).  
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2.3 RESULTS  

2.3.1 Multi-trophic community assembly models 

We explore the effects of each process on the spatial scaling of food web structure with the three 

models of multi-trophic community assembly mentioned above. We then analyse several network 

properties at different spatial scales, which allows us to characterize a suite of NARs (see Supplementary 

Methods for a full description of the assembly models and the network properties used). In this section, 

we first present the emergence of the mechanisms tested for each assembly model and its effects on the 

spatial scaling of food web structure. We then provide a comparison between the predictions emerging 

from each model.  

Trophic Sampling model  

Mechanisms. The number of links scales exponentially with species richness (Slope=1.91±0.003 -

95% confidence interval- in log-log space; Figure 18a). Although the relationship falls between the two 

link scaling hypotheses (link-species scaling law -Slope » 1 in log-log space- and constant connectance 

hypothesis -Slope » 2 in log-log space-), our results better support the latter. Additionally, we observe 

different SARs across trophic levels (Figure 18b). The number of intermediate species increases 

significantly faster with area than the number of top and basal species (See Supplementary Table 2.2 for 

statistical analyses). Taken together, these results show that both mechanisms suggested as possible 

drivers of NARs: (i) link scaling and (ii) different shape of the SARs across trophic levels, are at play in the 

Trophic Sampling model. As expected, these mechanisms trigger changes in network structure from local 

to regional scales. 

NARs. Network complexity properties smoothly increase with area (Figure 19a-b, Supplementary 

Figure 2.1 and Supplementary Table 2.3). Whereas number of species, links per species, mean indegree 

and mean outdegree (i.e., mean generality and mean vulnerability, respectively) show a pronounced sub-

linear increase quickly approaching the asymptotic value set by the regional network, total number of 

links increases linearly with area. As a consequence, due to its quadratic relationship with the number of 

species (C=L/S2), connectance decays sharply with area. That is, network complexity increases with area 

because larger areas have more species, more links and more links per species. However, given the faster 

rate of increase in the number of species than in the number of links, we observe a decrease in 

connectance. 
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Network vertical diversity properties increase with area (Figure 19c, Supplementary Figure 2.1 

and Supplementary Table 2.3). Mean food chain length (MFCL), fraction of omnivory, and fraction of 

intermediate species increase sharply with area, reaching the asymptote corresponding to the regional 

values at relatively small areas. This, in turn, decreases asymptotically the fraction of basal and top species 

with area. Notice however that the fraction of herbivores (included within the category of intermediate 

species) decreases asymptotically with area, in parallel to the decrease on the fraction of basal species 

(Supplementary Figure 2.2). 

Unexpectedly, network modularity and the distribution of food web motifs do not show strong 

variations across spatial scales (Figure 19d and Supplementary Figure 2.1). Modularity, the proportion of 

simple chains, and apparent competition slightly decrease with area while the proportion of exploitative 

competition shows a small increase with area. 

 

 

 

 

 

 

 

 

Figure 18. Mechanisms underlying NARs. a) Scaling of the number of links with species richness. Orange 
line: Constant Connectance Hypothesis (CCH; that is, the number of links in a web increases approximately 
as the square of the number of trophic species: " ≈ $%); Green line: Links Species Scaling Law (LSSL; the 
number of links per species in a web is constant and scale invariant at roughly two: " ≈ 2$); Grey line: 
links-species relationship for the Trophic Sampling model. b) Species-Area relationships (SARs) per trophic 
level for the Trophic Sampling model. Area values close to –4 correspond to local communities and values 
close to 0 correspond to regional communities. Notice that area was rescaled to fall in the range between 
0 and 1, where 0 is the smallest local scale and 1 is the largest regional scale and these are the log-
transformed values of area. Black line: basal species; Dashed line: intermediate species; Dotted line: top 
species. Shaded areas correspond to 95% confidence intervals. 
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Figure 19. Network-Area relationships (NAR) for the Trophic Sampling model. Area values close to 0 
correspond to local communities and values close to 1 correspond to regional communities. Relationship 
of (a) the Number of Species, (b) the Number of links per species, (c) Mean food Chain Length and (d) 
Modularity with Area. Notice that the Species-Area relationship shown in (a) is given by $ = ()* , with k 
= 10 and z = 0.27.  Lines represent a GAM fit to data points. 

 

Trophic Theory of Island Biogeography (TTIB) model 

Mechanisms. The proportion of specialist species increases with area (Figure 20a-b). This indicates 

that species feeding on a larger number of prey do persist better in small patches than specialist species. 

Potential indegree distributions (quantified as the species indegree in the metaweb) are consequently 

shifted towards smaller values with increasing area (Figure 20b). Interestingly, this preferential selection 

of generalist species at smaller scales does not affect the shape of the realized cumulative indegree 

distributions of the local networks (Figure 20c). Independently of island size, indegree distributions are 

skewed, i.e., there are more specialist than generalist species in all networks regardless of area. However, 

it is important to notice that the most specialized species (pointed with arrows in Figure 20c) on small 

islands have more prey (i.e., they are more generalist) than the most specialized species on large islands. 

In other words, at smaller areas, we observe a preferential selection of species that are generalists in the 
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regional pool. As area increases, more specialized species are able to persist, which manifests both in a 

reduction on mean potential indegree and higher specialization of the most specialised species.  

 

 

Figure 20. Specialism across spatial scales. a) Variation of food web mean potential indegree -quantified 
as the species indegree (i.e. generality) in the metaweb- with area for the TTIB model. Area values close 
to 0 correspond to local communities and values close to 1 correspond to regional communities. Shaded 
areas show 95% confidence intervals. b) Species potential indegree distributions for islands of different 
sizes simulated as the ratio between colonisation and extinction rates, with higher ratios representing 
larger island areas. Colonisation rate is fixed at 0.2 and each colour represents a different value of 
extinction (i.e., red and purple correspond to the largest and the smallest area respectively). c) Realised 
indegree distributions across spatial scales for the TTIB model. The cumulative probabilities Pc(k), for ≥ k, 
where P(k) is the probability a species has k prey in the network, is represented normalized by the mean 
number of links per species in the network. Coloured arrows show the starting point of the distribution 
for each island size. Colours correspond to the same area sizes as in b.  

 

NARs. TTIB predictions do not differ qualitatively from the Trophic Sampling model. All facets of 

network complexity increase with area sub-linearly (Supplementary Figure 2.3 and Supplementary Table 

2.3), except from connectance, which decreases with area. As for the Trophic Sampling model, the faster 

rate of increase in the number of species than in the number of links, causes the decrease in network 

connectance even though the number of links per species also increases. In terms of vertical diversity, we 

observe a sharp increase in omnivory, mean food chain length, and fraction of intermediate species (but 

see Supplementary Figure 2.2), whereas the fraction of basal and top species show a drastic drop with 

increasing area (Supplementary Figure 2.3 and Supplementary Table 2.3). Network properties of 

communities assembled with the TTIB model show more abrupt changes with area than the Trophic 

Sampling model, with asymptotes of all food web properties reached at smaller areas. The difference 
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between the TTIB and the Trophic Sampling models lays on the complexity of the assembly process. The 

stochastic nature of the community assembly enforced by the TTIB model, which is the result of 

colonisation-extinction dynamics, favours the persistence over time of generalist consumers. Specialist 

consumers that depend on a single resource are more prone to become secondarily extinct given the 

trophic constraint: if their only resource goes stochastically extinct, they go extinct too. In contrast, the 

Trophic Sampling model only searches for possible configurations of a given number of species where 

every consumer needs to have a resource, without subjecting the selected community to additional 

stochastic extinctions. Therefore, the effects of the trophic constraint become more evident in the TTIB. 

The modular structure and the distribution of motifs of the communities are again not strongly 

affected by the spatial scale (Supplementary Figure 2.3 and Supplementary Table 2.3). Modularity is 

constant across spatial scales. However, the proportion of simple chains and apparent competition slightly 

decrease with area while the proportion of exploitative competition increases. 

Trophic Meta-community model 

Mechanisms. Dispersal limitation among local patches affects the turnover of species composition 

in our meta-communities. Beta-diversity decreases with dispersal rate (Supplementary Figure 2.4), having 

further consequences for the spatial scaling of network structure. High dispersal rates increase local 

diversity (i.e., scaled area 0) and reduces beta-diversity (Supplementary Figure 2.4), making food webs 

more similar across the landscape. This implies that the amount of change in network structure is smaller, 

and that the asymptote that corresponds to regional network properties is reached at even smaller areas 

than for low values of dispersal. As a consequence, for high values of dispersal, we need to aggregate a 

smaller number of local communities to recover the structure of the large metaweb than with low 

dispersal rates and with the TTIB. 

NARs. At low dispersal rates, network-area relationships are similar to those observed for the 

TTIB. Both network complexity and vertical diversity change with area at a smaller rate than compared 

with the high dispersal scenario (Supplementary Figure 2.5 and Supplementary Table 2.3). High levels of 

dispersal among local communities weaken the scale-dependency of network structure: increasing the 

area sampled has less effect on network properties at high levels of dispersal because the values of the 

properties of the regional network (i.e., the asymptote) are reached earlier. Dispersal increases food web 

complexity (i.e. more species, links and links per species) and its vertical diversity at both local and regional 

scales (Supplementary Figure 2.5 and Supplementary Table 2.3).  
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As for the previous two models, network modularity and the distribution of motifs show small 

variations across spatial scales for both dispersal levels, being slightly less pronounced for high dispersal 

levels (Supplementary Figure 2.5). Network modularity, the proportion of simple chains and apparent 

competition show a marginally decrease with area while the proportion of exploitative competition shows 

a small increase. 

2.3.2 Comparison between models 

We found both quantitative and qualitative differences among NARs resulting from the three 

models (Figure 21, Supplementary Table 2.3 and Supplementary Figure 2.6). Qualitatively, the Trophic 

Sampling model shows smooth changes in network structure with area. The changes in network structure 

observed with the TTIB will be more abrupt as area increases reaching the asymptote faster. Similarly, the 

Trophic Meta-community model with low dispersal leads to abrupt changes in network structure with 

area. However, important qualitative differences exist between the two that allow for determining the 

most likely mechanism behind empirical patterns of network scaling (Box 2, Supplementary Figure 2.6). 

Finally, the Trophic Meta-community model with high dispersal shows the smallest change in network 

structure with area reaching the asymptote for the regional network very small spatial scales.  

 

Figure 21. Comparison between models. In (a) variation of the number of links with area for the three 
different models of community assembly. Area values close to 0 correspond to local communities and 
values close to 1 correspond to regional communities. In (b) and (c) comparison between models 
controlling by the number of species. For a given number of species, differences in network properties 
between models. Blue line: Trophic Sampling model; Green line: Trophic theory of Island Biogeography; 
Red line: Trophic Meta-community model d=0.01; Orange line: Trophic Meta-community model d=0.1. 
Notice that high dispersal rates in the Trophic Meta-community model increase local diversity resulting in 
local communities with more than 70 species. Lines represent a GAM fit to data points. Shaded areas show 
95% confidence intervals. 
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Quantitatively, the Trophic Sampling model shows the lowest rate of growth (g, measured as the 

steepness of a bounded exponential fitted to the data; Supplementary Table 2.3) for all complexity 

properties, followed by the Trophic Meta-community model with low dispersal, the TTIB and lastly the 

Trophic Meta-community model with high dispersal. This implies that increasing the area sampled has a 

less abrupt effect for NARs in the Trophic Sampling model, but this effect is manifested over a larger range 

of areas sampled. At the other extreme of the spectrum, the Trophic Meta-community model with high 

dispersal shows a rapid change in network structure at relatively small spatial scales. Hence, the scale-

dependency of network structure depends on whether we focus on the rate of change of a given network 

property for a given increase in area, or on the range of areas across which the property changes. 

The Trophic Meta-community model with low dispersal has the lowest growth rate for most 

vertical diversity properties, followed by the Trophic Sampling model. Whereas the TTIB shows the highest 

growth rate for the proportion of basal and intermediate species, the Trophic Meta-community model 

with high dispersal shows the highest values for the proportion of top species and MFCL (Supplementary 

Table 2.3). We compared each model with its non-trophic constrained version in Supplementary Figure 

2.7. The comparison shows a faster initial increase in complexity for communities assembled using the 

unconstrained versions of the TTIB and the Trophic Meta-community model with a levelling off for larger 

areas, while the unconstrained version of the Trophic Sampling model only shows differences for vertical 

diversity metrics (Supplementary Figure 2.7). 

2.4 DISCUSSION 

2.4.1 Testable predictions 

We presented a theoretical framework predicting the existence of a number of network-area 

relationships (NARs) in spatial multi-trophic communities, arising from different assembly processes. 

Although we obtained some universal predictions independent of the particularities of the assembly 

process used, we found differences in regards to the exact shapes of the specific NAR under scrutiny. This 

allows for specific predictions emerging from each model to be tested with empirical data (Boxes 2 and 

3). In particular, we showed that the existence of different SARs across trophic levels has consequences 

for the variation of network structure with increasing area, that the preferential selection of generalist 

species at small areas causes drastic changes on network structure in space, and that dispersal limitation 

is a key process influencing trophic interactions across spatial scales. Here we summarize and discuss a 

number of empirically testable predictions emerging from our framework (Boxes 2 and 3), and provide 
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suggestions on where to focus future research efforts to better understand the causes and consequences 

of the variation of network structure across spatial scales. 

  

Box	2		Empirical	data	and	testable	predictions

Each	model	used	could	be	represented	by	a	different	empirical	dataset.	The	Trophic	Sampling	model	(a)	
corresponds	to	random	subsamples	of	different	area	sizes	 all	included	within	a	larger	homogeneous	area.	
The	Trophic	Theory	of	Island	Biogeographymodel	(b)	corresponds	to	independent	and	isolated	islands	(or	
patches)	of	different	sizes	(e.g.,	an	archipelago).	The	Trophic	Metacommunitymodel	(c)	corresponds	to	
independent	local	communities	(e.g.,	patches,	islands)	of	the	same	size	connected	through	dispersal,	
where	the	spatial	scaling	of	network	structure	is	given	by	the	progressive	aggregation	of	different	localities.	

We	can	predict	a	different	scaling	of	network	structure	in	space	emerging	from	each	type	of	data	(figure	
21).	When	area	 is	subsampled	randomly,	network	structure	will	smoothly	change	as	we	increase	the	size	of	
the	area	 sampled.	In	isolated	islands,	where	each	island	constitutes	one	fully	assembled	community,	
changes	in	network	structure	will	be	more	abrupt	as	area	increases	reaching	the	asymptote	faster.	In	
metacommunities,	the	spatial	scaling	of	network	structure	will	be	determined	by	the	spatial	heterogeneity	
in	species	composition.	In	fully	connected	metacommunities (i.e.,	high	dispersal),	changes	in	network	
structure	with	area	will	be	minimal.	In	poorly	connected	metacommunities (i.e.,	low	dispersal),	the	spatial	
scaling	of	network	structure	will	resemble	the	one	observed	in	isolated	islands.

We	provide	two	illustrative	predictions	for	two	different	datasets.	One	belonging	to	islands	within	an	
archipelago,	another	one	to	local	habitats	connected	to	each	other	within	a	landscape.	We	expect	the	
number	of	links	per	species	to	increase	much	faster	for	the	archipelago	and	for	the	landscape	with	poor	
connectivity	among	patches.	However,	for	a	landscape	with	high	connectivity	and	low	dispersal	limitations,	
the	increase	in	the	number	of	links	with	species	will	be	minimal.	Similarly,	the	mean	number	of	links	
needed	to	get	from	the	basal	species	to	the	top	species	(Mean	Food	Chain	Length)	will	increase	with	area	
much	faster	in	archipelagos	and	in	poorly	connected	landscapes	than	in	landscapes	where	there	is	no	
dispersal	limitation.

a. b. c.
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2.4.2 Beyond single trophic levels: multi-trophic SARs and NARs 

The spatial scaling of network structure cannot be fully explained by the increase in species 

richness with area. It is well established that species richness affects several food web properties. In many 

cases, differences in network properties simply result from differences in species richness between the 

communities studied [99]–[102]. However, the spatial scaling of species richness is likely to vary across 

trophic levels [88], [95], [96]. This differential scaling has further consequences for the variation of trophic 

network structure with area [88], [96], [98]. Recently, Roslin and colleagues [96] showed that the slope of 

the species-area relationship steepens from plants to herbivores and from primary to secondary 

parasitoids. This in turn triggers a decrease in food chain length from large to small islands. In contrast, 

our Trophic Sampling model showed the steepest species-area slope for intermediate species (Figure 

18b). This contrasting result can be attributed to the fact that parasitoids tend to have exceptionally 

narrow diet breadths when compared with other top predators, being classified as a separate category 

within food webs in comparative analyses [184]. We considered wider diet breadths for top predators, 

Box	3 Universal	predictions

Network	Complexity
Network	Degree	distribution	preserves	its	skewness across	spatial	scales,	but	specialism	increases	with	
area.	
Indegree distributions	are	skewed	regardless	 of	area,	i.e.,	there	are	more	specialist	than	generalist	species	
in	all	networks	irrespective	of	the	spatial	scale	(Figure	20c).	The	preferential	selection	of	generalist	species	
at	smaller	scales	affects	 the	starting	point	of	the	distribution	-determined	by	the	most	specialized	species-
but	not	its	shape.	The	most	specialized	species	have	more	prey	at	smaller	than	at	larger	spatial	scales.

Network	Vertical	diversity
Species-Area	Relationships	(SARs)	vary	across	trophic	levels.	
In	food	webs,	the	number	of	intermediate	species	increases	faster	with	area	than	the	number	of	top	and	
basal	species	(Figure	18b).	This	results	in	steeper	 slopes	of	SARs	for	intermediate	species.	Networks	where	
top	predators	are	heavily	specialized,	i.e.,	host-parasitoid networks,	should	be	an	exception,	with	steeper	
slopes	as	trophic	level	increases.	

The	proportion	of	omnivorous	links	increases	with	area	promoting	an	increase	of	food	chain	length.	
The	faster	 increase	in	the	number	of	intermediate	species	with	area	facilitates	the	growth	of	the	number	of	
links	among	intermediate	species	(e.g.,	intraguild predation)	generating	an	increase	of	food	chain	length.

Network	Modules
Network	modularity	is	constant	across	spatial	scales	in	homogeneous	landscapes.	
Heterogeneous	landscapes,	however,	are	likely	to	promote	the	emergence	of	network	compartments	due	
to,	for	example,	the	effect	of	species	sorting.	This	will	likely	generate	an	increase	of	modularity	with	area,	
as	more	compartments	will	be	captured	as	the	area	sampled	increases.	
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which allowed them to overcome the trophic constraint [88], [95], and therefore, reduce the slope of their 

SARs by being selected locally even when the number of species was small. The Trophic Sampling model 

thus shows that, in the absence of spatial structure, and in totally homogeneous communities, different 

SARs across trophic levels will emerge and will bias NARs towards higher fractions of intermediate species 

and longer food chains. 

  In the theoretical work developed by Brose and colleagues [109], where they derived the spatial 

scaling of trophic links with area by combining the species–area relationship and the link–species 

relationship, they predicted the effect of having different SARs across trophic levels for the scaling of the 

number of links with area. Here we extended the analyses of this effect to many other aspects of network 

structure beyond the number of links (e.g. degree distributions, mean food chain length or modularity). 

By using a mechanistic approach to understand the spatial scaling of network structure we can determine 

the specific effects of each process tested and generate specific and testable predictions on how network 

structure will change with area depending on the spatial scenario and the processes in operation. 

In agreement with our expectations, the TTIB model exhibited a strong variation of network 

structure with area, mediated by the preferential selection of generalist species that emerges from the 

trophic constraint (Figure 20). The effect of this constraint on species occupancy decreases with area 

because the total number of species increases, whereby the chances of finding a suitable prey also 

increase. Thus, colonisation-extinction dynamics favoured greater occupancy of generalist consumers in 

small areas, where fewer prey are available. The occupancy for a given colonisation and extinction rate is 

predicted to reach an asymptote with increasing prey species richness, because for larger diet breadths, 

consumers are no longer constrained to find their prey [86], [186]. The comparison between the TTIB and 

its non-constrained TIB version, shows a faster initial increase in complexity (i.e., species and links/species) 

for communities assembled using the TIB with a levelling off for larger areas, illustrating the loss of 

importance of the trophic constraint as area increases (Supplementary Figure 2.7). Therefore, as the area 

sampled increases, the proportion of specialist species also increases (Figure 20a-b).  

Food web degree distributions are usually skewed (many specialists, few generalists) [6], [18], 

[190]. In spite of the fact that smaller islands host species with larger potential diet breadth (i.e., species 

indegree in the metaweb; Figure 20a-b), the indegree distributions of the realized food webs kept this 

characteristic skewness (Figure 20c). Given the importance of the degree distribution to community 

robustness to species loss, this suggests that food web robustness is preserved across spatial scales. The 

TTIB thus suggests that important features of network structure might reflect those present in the regional 
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pool and are maintained across spatial scales, as it is shown for the degree distribution.  

2.4.3 Dispersal in multi-trophic metacommunities and NARs relationships 

Dispersal is a key process driving species-area relationships [80], [191], [192]. Competitive meta-

community models, for instance, have shown that moderate to intermediate levels of dispersal reduce 

local competitive exclusion, increasing local diversity via colonization-competition trade-offs [192]–[195] 

or by enhancing source-sink dynamics when resources are heterogeneously distributed in space [191], 

[196]. However, high levels of dispersal would homogenize local communities, leading to regional 

competitive exclusion and to reductions of the overall diversity [191], [197].  

The Trophic Meta-community model also predicts that local diversity increases with dispersal, 

reducing differences between patches (i.e., lower beta-diversity) and leading to a more homogeneous 

meta-community (Supplementary Figure 2.4). The higher the dispersal rate, and thus the lower spatial 

beta-diversity, the smaller the effect of increasing area on network properties because sampling a small 

number of local communities is enough to capture the structure and composition of the regional 

community (Supplementary Figure 2.5). However, given the absence of direct competitive interactions in 

our models, both regional and local diversity will increase until they reach the maximum number of 

species in the regional pool. This observation may differ in presence of top-down regulation. Our models 

used a bottom-up sequential food web assembly, with the food chain consistently increasing with the 

addition of new species. Future explorations of the effect of dispersal on the structure and composition 

of multi-trophic communities should integrate the trophic constraints used here together with indirect 

competitive interactions.  

Pillai and colleagues [110] used a meta-community model to explain the emergence of complex 

food webs through the linkages between patches provided by omnivorous and generalist species. In our 

models, consumer’s diet specialization constrains the probability of finding a required resource, and 

hence, disfavour the presence of specialist consumers in local communities. Given that generalist and 

omnivorous consumers have more potential resources, they are more likely to persist, which allows for 

the emergence of network complexity (i.e. higher species richness with more links and links per species) 

in space when local patches are aggregated. Yet, the role of generalists for the spatial scaling of network 

complexity depends on dispersal. Under dispersal limitation, where a lower number of species coexist 

locally, generalists are key for the spatial scaling of food web complexity because they are the ones 

spatially connecting patches. However, in the absence of dispersal limitation, a higher number of species 

coexist in local communities, increasing the probability of specialists encountering their required prey, 
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and thus, generalists are no longer key contributors to the increase of food web complexity in space. This 

increase in complexity enhanced by dispersal, at both local and regional scales, might have important 

implications for the study of the stabilising effect of space on ecological communities [122], [182], [198].  

2.4.4 On the need to incorporate the spatial scale in comparative network studies 

Empirical characterizations of species interaction networks often fail to acknowledge the spatial 

scale at which these networks are observed. The restricted number of empirical studies that have done 

so support our theoretical predictions for several network-area relationships. The variation in food-chain 

length with ecosystem size (e.g., lake volume) is an example. Although ecosystem productivity can 

modulate this variation [62], ecosystem size on its own is a good predictor of food-chain length [199]. Our 

models agree with this empirical observation, showing that mean food chain length increases with area. 

 Our predictions of NARs suggest caution must be exercised in comparative studies of network 

properties. If network properties vary systematically across spatial scales, then comparative network 

studies that fail to acknowledge the spatial scale at which the study was performed will wrongly estimate 

the causes of variation of the structure of ecological networks.  

 The variability observed in food web properties often disappears when species richness is 

controlled for [99]–[102]. Then, as area also affects species richness, a key question is to what extent 

comparative studies addressing variation in network properties need to control additionally for the area 

sampled, or if the effects of area on network properties are solely driven by richness. In our models, area 

not only determines the number of species but also their identity based on their feeding traits (i.e., more 

or less generalists) and where they are placed within the food web (i.e., across trophic levels). Regardless 

of area, for a given number of species, we observe differences across models in terms of other network 

properties (Figure 21b-c), suggesting that each spatial process has different effects on structuring 

communities. While network complexity metrics are highly correlated with species (i.e., for a given S, 

there is no variation across models), vertical diversity properties are not fully explained by the number of 

species. For instance, network mean indegree (i.e. mean generality) (Figure 21b) shows little variation 

between models once controlled by the number of species; and this variation disappears when we 

additionally control by connectance [103]. However, the proportion of species at each trophic level (Figure 

21c) is difficult to predict solely from the number of species, given that each spatial process affects these 

proportions differently. This suggests that controlling for both species richness and connectance will 

account for most of the variation in complexity properties across spatial scales, and hence it would suffice 

in comparative studies, but it would not explain all the variation observed in vertical diversity properties. 
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Therefore, incorporating the spatial scale of sampling in comparative studies would provide additional key 

information on the scaling of certain network properties.  

Moreover, we cannot disregard the effects of habitat size in more complex environments. Our 

models and the few empirical NARs available mostly concern communities from relatively homogeneous 

environments. In more heterogeneous landscapes, other processes are at work, such as species sorting 

(i.e., species have different preferences for different habitats within a given area) and priority effects. 

Intense species sorting would likely create compartments and result in modular or compartmented webs 

[200], [201]. Food webs are compartmented when interactions between species are either more 

numerous or stronger within the compartment and few or weak between compartments [200], [201]. Our 

results show very little variation on the modular structure of the communities across spatial scales, but 

this prediction is likely to be affected when environmental heterogeneity is considered, revealing a 

potential effect of area on network properties independent of species richness and connectance. 

2.4.5 Implications for conservation 

Habitat destruction is the primary cause of the erosion of biodiversity [202]–[204]. SARs have been 

extensively used to estimate species loss due to habitat loss [178]–[180]. Understanding its effects on the 

structure of ecological networks is crucial to better preserve ecosystem structure and functioning [205]–

[209]. Our results provide insights into how habitat loss and fragmentation would lead to network 

simplification, reducing not only species richness, but also, and perhaps more importantly, their 

interactions. Nonetheless it is important to distinguish the effect of losing habitat (i.e., moving across the 

x-axis in Figures 19 and 21a) from the effect of limiting species dispersal (i.e., different dispersal scenarios 

in Figure 21a and Supplementary Figure 2.5) by, for example, habitat fragmentation. Our results suggest 

that habitat loss should reduce the number of links per species (L/S), the proportion of omnivorous 

species, and shorten food chains (MFCL). Additionally, we observe that fragmented communities with 

higher dispersal limitation should be less complex across spatial scales, with e.g. less species and less links 

per species. In general, our framework shows that fragmented communities should be expected to be less 

resistant to habitat loss showing dramatic changes in food web structure even for small habitat reductions 

(Figure 21a and Supplementary Figure 2.5).  

2.4.6 Limitations and future research 

Species interactions can experience spatial turnover by themselves, correlated or uncorrelated 

with species composition turnover [135]. Even if two species co-occur in space, they may not interact if 

the environment is not favourable enough [210], if one of them is rare [211], or if they experienced 
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phenological mismatches [137]. Also, we have assumed dispersal constancy across trophic levels. 

Different scales of movement across trophic levels [120], [182], may also promote variation in network 

structure across space. Incorporating such processes into theoretical frameworks like the one presented 

here could increase the accuracy of our predictions.  

Despite the realization that the effect of area on network properties is intimately related to that 

of richness or connectance, NARs open new possibilities to explore network stability and functioning 

across spatial scales. Several aspects of food web structure and complexity have been studied locally and 

related to community stability and functioning, such as the importance of diversity [212], the presence of 

stabilising modules like the omnivorous loop structures [213], [214] or the predominance of weak 

interactions [215], [216]. Scaling up in space alters network properties suggesting that community stability 

and functioning might also vary across spatial scales. Assessing network structure at different spatial 

scales can, therefore, provide new insights to analyse and understand community stability and functioning 

in relation to the different processes that are at play at each spatial scale.   
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Supplementary Methods 

We explore the effect of each process on the spatial scaling of food web structure with three 

models of multi-trophic community assembly. They all consider the same regional food webs (or 

metawebs) from which species are selected to conform local communities, and the local assembly 

processes of the three models follows the same trophic constraint, i.e. consumers need to have at least 

one resource in the local community. In addition, we have a non-trophic constrained version of each of 

the models presented below. Supplementary Figure 2.7 provides the comparison between the two 

versions, which shows that most of the differences occur at small areas where the effect of the trophic 

constraint is stronger. We then analysed several network properties at different spatial scales, which 

allowed us to characterize a suite of NARs. In this section, we first explain how we generated the regional 

food webs, we then present each community assembly model, and we finally explain the network 

properties analysed, the beta-diversity metrics used, and the statistical analyses conducted. 

Regional food webs (Metawebs) 

We used the niche model (Williams & Martinez 2000) to generate food webs that were used as 

the regional pool of species for the three models. The niche model requires two input parameters: the 

number of species (S), and network connectance (C) defined as the fraction of realised links among the 

possible links (i.e. C=L/S2). This model describes trophic niche occupancy between consumers and 

resources along a resource axis. It generates model food webs that approximate well the central 

tendencies and the variability of a number of empirical food web properties (Williams & Martinez 2000; 

Dunne et al. 2002; Stouffer et al. 2005).  

We performed one hundred replicates of each of the three models using that same number of 

distinct regional food webs generated using the niche model with S = 200 and C = 0.056 as input 

parameters. The stochastic nature of the niche model ensures variability across the replicate networks. 

The value for C was assigned following the power decay of C as S increases found in empirical networks 

(, = -$./, where - = 0.8 and 3 = 0.5;	Cohen & Briand 1984; Montoya & Solé 2003; Ings et al. 2009). 

The specific values of S and C, however, did not affect qualitatively our results (See Supplementary Figure 

2.8). For a full description of the regional network (or metaweb) properties see Supplementary Table 2.1. 
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Local food web assembly models 

a) Trophic Sampling model  

This model randomly samples networks of different sizes from the 200-species regional food web (i.e., 

the metaweb) described above. This is not a spatial model, and as such there are no occupancy dynamics 

(i.e., there are no spatial processes involved in the local community assembly process) (Box 1). The 

assembly process was exclusively constrained by the requirement that each consumer species needed to 

have at least one prey in the local community. Thus, for each area we randomly selected samples from 

the regional food web with the number of species required and we checked that all selected consumers 

have at least one prey. If the trophic requirement was not satisfied, the subsample selected was excluded 

from the analyses. To obtain the number of species for a given area, we used $ = ()* , with k = 10 and z 

= 0.27.  Therefore, to sample different number of species we generated a range of area sizes that covers 

the entire spectrum of species available in the pool. The value of z used (z = 0.27) was derived from a 

meta-analysis performed by Drakare et al. (2006), which is widely regarded as the best empirical estimate 

for terrestrial systems. The value of k corresponds to the smallest local community. We used the power 

function since it is one of the best known and most common reported relationships in the literature 

(Arrhenius 1921; Tjørve 2003; Scheiner 2003). The power law has been shown to be the central phase of 

a triphasic curve: SAR is concave at local scales, approximately linear at regional scales, and finally convex 

at continental scales (Rosindell & Cornell 2007). Therefore, the mechanisms, expectations, and results 

presented in our theory would reflect local-to-regional scale dynamics. 

The Trophic Sampling model can be considered as a baseline reference for NARs, where the increase 

of species richness with area is constrained by the simplest food web assembly process: the occurrence 

of a predator is mediated by the presence of one of its prey. Even though the processes tested with this 

model (i.e., link-area scaling and SARs dependency on trophic level) are not exclusive of this assembly 

process, we are interested in the patterns emerging from the model with the simplest assumptions.  

b) Trophic Theory of Island Biogeography model 

The trophic theory of island biogeography (TTIB; Gravel et al. 2011) predicts the structure of food 

webs on islands connected through immigration to a mainland, which in turn contains a large regional 

species pool. The structure of the local assembly of species and their interactions is defined by the 

equilibrium between colonisation and extinction dynamics. It considers the additional constraint of 

consumers requiring at least one prey on the island to colonize and persist. The ratio between colonisation 

and extinction (for a fixed colonisation rate) is considered a proxy of geographical area; the smaller the 
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ratio the smaller the area (MacArthur & Wilson 1967; Gravel et al. 2011). 

In this model, we assumed species from the regional metaweb could colonise the island with a fixed 

colonisation probability (c=0.2) and could go extinct with an increasing extinction probability (e ={0.01, 

0.05, 0.1, 0.2, 0.3, 0.4, 0.5}). These parameter values allowed the exploration of a range of local 

communities that correspond to islands of different area (i.e., area size in this model is given by the c/e 

ratio). For each combination of parameters (extinction, colonisation) and for each of our regional 

networks, we ran simulations for a total of 1000 time steps, which is enough to reach the equilibrium 

between colonisation and extinction dynamics and, therefore, to determine the number of species for a 

given island (see Gravel et al. 2011 for details).  This is a discrete time one-patch species occupancy model, 

in which the occupancies of all species are determined by the trade-off between c and e plus prey 

availability. To calculate the final species configuration for a given combination of c and e, in each time 

step of the simulation we sequentially went over each species in the network and stochastically determine 

its extinction or colonisation based on the corresponding rates and whether there are resources present 

for that species. Secondary extinctions were calculated after primary extinctions occurred. We checked 

for all species that lost their resources and repeated this check until no further extinctions were found. 

Network properties were computed for resulting networks at the end of the simulation (i.e., time step 

1000). 

The difference between this TTIB model and the Trophic Sampling model lays on the complexity of 

the assembly process. The stochastic nature of the community assembly enforced by the TTIB model, 

which is the result of colonisation-extinction dynamics, favours the persistence over time of generalist 

consumers. Specialist consumers that depend on a single resource are more prone to become secondarily 

extinct given the trophic constraint: if their only resource goes stochastically extinct, they go extinct too. 

In contrast, the Trophic Sampling model only searches for possible configurations of a given number of 

species where every consumer needs to have a resource, without subjecting the selected community to 

additional stochastic extinctions. 

c) Trophic Meta-community model 

We used a multi-trophic meta-community model (Box 1) to determine the effects of spatial variability 

in species distribution (i.e., beta-diversity) on NARs. We used different levels of dispersal among local 

communities to generate beta-diversity in space. Seventy-five local communities (patches) were randomly 

placed on a 2-dimensional Euclidean space of 1 unit of length on each dimension and the distances 

between patches were calculated. Patch pairs were considered to be connected if the distance between 
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them was less than or equal to 0.3, because it provided a good balance between local species richness 

and spatial heterogeneity in species composition. Connections between patches were the same for all 

species and were bidirectional and homogeneous, i.e., dispersal probabilities were equal across every pair 

of connected patches, and there was no dispersal between non-spatially connected patches. A different 

(randomly generated) network of patches was used for each replicate. 

We used the same regional networks as in the previous models. At each time step, species could arrive 

to each patch from the regional pool independently of each other given a fixed colonisation probability (c 

= 0.1) and could go locally extinct with a fixed probability (e = 0.4). We chose these values for c and e 

because they allowed for a local community size that yielded a good trade-off between species richness 

at the local and regional scales.  

Additionally, at each time step all species present in a given patch could disperse to a connected patch 

according to a given dispersal rate. We ran two versions of this model using two different values for the 

dispersal rate d={0.01, 0.1}. This allowed us to test the effect of different levels of dispersal on the spatial 

scaling of network structure. Within each version of the model, dispersal rates were constant across all 

species. As for the TTIB model, stochastic colonisation-extinction dynamics were dependent on the 

trophic constraint (i.e., on the availability of resources for each consumer present). Similarly, dispersal 

followed the same trophic constraint. That is, consumers could only disperse to those connected patches 

where there was at least one of their resources. Simulations were run for 1000 time steps to achieve an 

equilibrium state in terms of species composition. Similarly to the TTIB, this is a discrete time patch 

occupancy model, only this time it is multi-patch. At each time step, extinction, colonisation, and dispersal 

dynamics are calculated sequentially for every patch and species. Occupancy time series were thus 

created by calculating extinction and colonisation independently at each local patch and then calculating 

the dispersal probabilities across neighbouring patches. Network properties were again analysed (as for 

the TTIB) over the food web resulting at the end of the simulation. 

The spatial scale was determined by the spatial aggregation of several local communities in an ever-

increasing way from 1 (a single local community) to 75 (maximum number of communities; the regional 

scale). That is, the largest spatial scale was the complete aggregation of all local communities, which 

yielded the total set of species of the regional species pool if every species persisted at the regional scale 

after the simulation. The aggregation procedure was based on neighbouring aggregation, whereby local 

communities were aggregated based on the distance to their neighbours. One local community was 

selected randomly as the starting point. This process was repeated 75 times selecting every local 



 

 

88 

community as a different starting point. It is important to notice that in this model communities were 

assembled at the local scale (i.e., in each local patch) while the spatial scale of sampling increased with 

the aggregation of different local patches. Therefore, the spatial scale of sampling differs from the scale 

at which the assembly takes place. In contrast, in the two previous models the scale of sampling is the 

scale at which the assembly process occurs. This difference is key to understand the components of the 

spatial scale that each model captures. While the Trophic Sampling and the TTIB consider ‘complete’ areas 

(i.e., area = island area), the meta-community model considers a sub-area of a larger region. Therefore, 

while the first two models capture the effect of alpha diversity, the latter also captures the effect of beta-

diversity.   After the generation of different food webs for each of the three models, the corresponding 

area was rescaled to fall in the range between 0 and 1, where 0 is the smallest local scale and 1 is the 

largest regional scale, to allow model comparison. 

Network properties 

We classified NARs into three categories: vertical diversity, complexity, and modules.  

Vertical diversity properties included the fraction of omnivory (fraction of species feeding from more than 

one trophic level; O), mean food chain length (mean number of links needed to get from the basal species 

to the top species, restricted to a bottom-top direction, with paths from more than 1 basal species being 

averaged; MFCL), fraction of basal species (species without prey; B), fraction of intermediate species 

(species with predators and prey; I) and fraction of top species (species with predators; T). Notice that the 

fraction of intermediate species includes both primary and secondary consumers. For consistency with 

the literature on food web research, we keep the analysis on the fraction of intermediate species as a 

whole. However, we also analyse individually primary consumers, secondary consumers and omnivorous 

species that form the intermediate trophic level.  

Network complexity properties included the number of species (S), number of links (L), connectance 

(C=L/S2), links per species (L/S), mean indegree (average number of prey items per predator; also known 

as mean generality) and mean outdegree (average number of predators per prey species; also known as 

mean vulnerability).  

Module properties included network modularity (M), which indicates the presence of densely linked 

groups within a network (Newman & Girvan 2003), and three-species trophic motifs as building blocks of 

complex networks (Milo et al. 2002; Bascompte & Melian 2005; Camacho et al. 2007). The trophic motifs 

have been used as an indication of the modules that are structurally over- or under-represented in food 

webs. We calculated the proportion of (i) tri-trophic food chains, (ii) apparent competition, and (iii) 
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exploitative competition motifs across spatial scales. 

Additionally, to assess the extent to which more generalist consumers are better colonisers in 

smaller areas, we calculated the distribution of the diet breadth of those consumers present in a given 

patch. To do so, we considered their potential diet breadth (i.e., indegree or generality), defined as the 

number of resource species they consume within the regional metaweb. We call this the potential 

indegree distribution. Additionally, we calculated the realized indegree distribution within each island. This 

property reflects the consequences of the preferential selection of generalist consumers on the structure 

of the realized local network. For the realized indegree distributions, we calculated the cumulative 

probability at each spatial scale Pc(k), for ≥ k, where Pc(k) is the probability a species has k or less prey in 

the network. 

Beta-diversity metrics 

In order to assess the level of dissimilarity on species composition among local communities (i.e., 

species beta-diversity) depending on the level of dispersal, we used the metrics developed by Baselga et 

al., (2017), available in ‘betapart’ package in R. 

For accounting for the total beta-diversity we used the multiple-site Sorensen index: 

 

β89: =
;∑ min	(bBCBDC , bCB)G + ;∑ max	(bBCBDC , bCB)G

2[∑ 	SB − SN	B ] + ;∑ min	(bBCBDC , bCB)G + ;∑ max	(bBCBDC , bCB)G
 

 

where Si is the total number of species in site i, ST is the total number of species in all sites considered 

together and bij, bji are the number of species exclusive to sites i and j, respectively, when compared by 

pairs. 

Additionally, we calculated the turnover of interactions computing the number of interactions in 

common between two local communities instead of the number of species. In our models, interactions 

turnover is determined by the absence of one or the two interacting species (i.e. species beta-diversity) 

because interactions are determined by the metaweb. That is, if two species co-occur locally and they 

have a link in the metaweb they will always interact locally. No differences were observed when 

comparing the patterns for species turnover and interactions turnover. 
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Statistical analyses 

Mean and standard error of the mean among the 100 replicates of each of the simulation 

experiments were calculated for each food web property and plotted using generalised additive models 

(GAM) with the R package ‘ggplot2’ (Wickham 2009). GLMs were used to analyse differences in SARs 

depending on species trophic level and to analyse the variation of the number of links with species 

richness for the Trophic Sampling model. 

We fitted bounded exponential curves (P(Q) = "(1 − ℎT.UV);	where L represents the curve’s maximum 

value, g the steepness of the curve and h determines the fraction of L where the curve starts) using 

nonlinear least squares (NLS) with the 'nls' function in R. Growth exponents were used to quantify the 

rate of growth of network properties with area.   

References 

• Arrhenius, O. (1921). Species and area. J. Ecol., 9(1), 95-99. 
• Bascompte, J., & Melián, C. J. (2005). Simple trophic modules for complex food webs. Ecology, 86(11), 2868-2873. 
• Baselga, A., Orme, D., Villeger, S., De Bortoli, J., & Leprieur, F. (2017). Betapart: Partitioning Beta Diversity into 

Turnover and Nestedness Components. R package version 1.4-1. 
• Camacho, J., Stouffer, D. B., & Amaral, L. A. N. (2007). Quantitative analysis of the local structure of food webs. J. 

Theoret. Biol., 246(2), 260-268. 
• Cohen, J. E., & Briand, F. (1984). Trophic links of community food webs. Proc. Natl. Acad. Sci., 81(13), 4105-4109. 
• Drakare, S., Lennon, J. J., & Hillebrand, H. (2006). The imprint of the geographical, evolutionary and ecological context 

on species–area relationships. Ecol. Lett., 9(2), 215-227. 
• Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Network structure and biodiversity loss in food webs: 

robustness increases with connectance. Ecol. Lett., 5(4), 558-567. 

• Gravel, D., Massol, F., Canard, E., Mouillot, D., & Mouquet, N. (2011). Trophic theory of island biogeography. Ecol. 
Lett., 14(10), 1010–6.  

• Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F. et al. (2009). Review: Ecological 
networks–beyond food webs. J. Anim. Ecol., 78(1), 253-269. 

• MacArthur, R.H. & Wilson, E.O. (1967). The Theory of Island Biogeography. Princeton University Press, Princeton, NJ. 
• Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building 

blocks of complex networks. Science, 298(5594), 824-827. 
• Montoya, J. M., & Solé, R. V. (2003). Topological properties of food webs: from real data to community assembly 

models. Oikos, 102(3), 614-622. 
• Newman, M. E., & Girvan, M. (2003). Mixing patterns and community structure in networks. In Stat. Mech. Com. Net. 

(pp. 66-87). Springer Berlin Heidelberg. 
• R Development Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation 

for Statistical Computing. 
• Rosindell, J., & Cornell, S. J. (2007). Species–area relationships from a spatially explicit neutral model in an infinite 

landscape. Ecol. Lett., 10(7), 586-595. 
• Scheiner, S. M. (2003). Six types of species-area curves. Glob. Ecol. Biogeogr., 12(6), 441-447. 
• Stouffer, D. B., Camacho, J., Guimera, R., Ng, C. A., & Nunes Amaral, L. A. (2005). Quantitative patterns in the 

structure of model and empirical food webs. Ecology, 86(5), 1301-1311. 
• Tjørve, E. (2003). Shapes and functions of species–area curves: a review of possible models. J. Biogeogr., 30(6), 827-

835. 
• Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. 
• Williams, R.J. & Martinez, N.D. (2000). Simple rules yield complex food webs. Nature, 404, 180–183. 

 



 

 

91 

Supplementary Table 2.1. Description of the metawebs used in the theoretical models. A 100 different 
metawebs were used. 

 

 

  

Property Mean(Standard deviation) 

Number of Species 200(0) 
Connectance 0.056(0.004) 
Number of links 2209.3(160.9) 
Links per species 11.04(0.80) 
Indegree 12.48(0.88) 
Outdegree 11.63(0.99) 
Mean food chain length 12.26(1.08) 
Proportion of basal 0.12(0.02) 
Proportion of intermediate 0.83(0.03) 
Proportion of top 0.05(0.03) 
Omnivory 0.86(0.05) 
Modularity 0.37(0.02) 
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Supplementary Table 2.2. GLM results for the differences in SAR depending on trophic level. Estimates, T 
values and statistical significances are indicated (*** for p-values<0.001; ** for p-values<0.01; * for p-
values<0.05) for the slope and intercepts of the relationships. Basal was set as reference level, that is, 
values for Intermediate and Top show the deviation from Basal values. 
 

 Estimate T value 

Basal 
Intercept 1.38 605.98 *** 
Slope 0.10 72.55 *** 

Intermediate 
Intercept 0.84 262.19 *** 
Slope 0.23 112.16 *** 

Top 
Intercept -0.48 -149.55 *** 
Slope -0.03 -17.07 *** 

 

 

 

 

  

 

  



 

 

93 

Supplementary Table 2.3. Fit of each network property of each model to a bounded exponential function  
(P(Q) = "(1 − ℎT.UV), where L represents the curve’s maximum value, g the steepness of the curve and 
h determines the fraction of L where the curve starts. We used nonlinear least squares (NLS) with the 'nls' 
function in R. 
 

Network 
property 

Model t value Estimate 
L g h L g h 

Species Trophic Sampling 918.9 219.2 1043.2 183.2 5.13 0.75 
TTIB 358.50 79.42 397.80 181.2 10.7 0.95 
Dispersal 0.01 1020.2 136.6 260.1 173.8 6.5 0.78 
Dispersal 0.1 2897.9 89.95 162.82 193.7 34.2 0.41 

Links Trophic Sampling 359.9 169.6 1821.3 2350 2.1 0.93 
TTIB 250.04 67.18 412.37 1925 5.8 1 
Dispersal 0.01 461.76 88.45 182.21 1842 5.2 0.95 
Dispersal 0.1 996.27 44.37 80.33 2108 34.1 0.6 

Links/species Trophic Sampling 602.3 143.6 702.4 10.19 4.82 0.72 
TTIB 240.44 49.63 240.17 10.06 12.3 0.86 
Dispersal 0.01 788.49 79.78 139.45 10.30 9.5 0.74 
Dispersal 0.1 1129.01 23.06 50.38 10.86 69.9 0.37 

Connectance Trophic Sampling 1002.65 27.72 -62.63 0.055 558.8 -0.30 
TTIB 63.577 8.524 -18.49 0.057 58.3 -0.62 
Dispersal 0.01 629.03 38.06 -68.66 0.060 7.9 -0.39 
Dispersal 0.1 987.55 15.08 -25.44 0.056 15.7 -0.15 

Indegree Trophic Sampling 616.1 130.8 609.8 11.57 5.05 0.66 
TTIB 245.31 47.92 232.22 11.43 11.85 0.81 
Dispersal 0.01 851.01 74.91 128.24 11.87 11.6 0.72 
Dispersal 0.1 1174.37 20.55 49.15 12.33 85.7 0.35 

Outdegree Trophic Sampling 554.1 126.7 609.6 10.75 4.89 0.70 
TTIB 215.38 40.95 97.23 10.70 12.03 0.79 
Dispersal 0.01 683.20 66.31 116.24 10.91 9.39 0.70 
Dispersal 0.1 968.08 18.74 40.71 11.45 68.9 0.34 

MFCL Trophic Sampling 570.71 89.41 346.62 11.37 10.15 0.57 
TTIB 170.33 31.17 136.32 11.57 18.91 0.72 
Dispersal 0.01 592.62 49.65 88.41 11.53 9.93 0.53 
Dispersal 0.1 657.603 9.904 25.29 12.01 82.16 0.23 

% Basal Trophic Sampling 272.61 68.35 -134.8 0.14 25.7 -1.35 
TTIB 41.75 10.93 -20.12 0.12 42.69 -1.19 
Dispersal 0.01 246.28 39.01 -73.75 0.13 5.87 -0.85 
Dispersal 0.1 407.72 11.20 -18.91 0.11 13.36 -0.24 

% Intermediate Trophic Sampling 1061.69 70.92 218.02 0.78 30.5 0.37 
TTIB 160.61 22.07 62.11 0.80 67.46 0.64 
Dispersal 0.01 1143.57 39.52 67.72 0.80 12.16 0.28 
Dispersal 0.1 1711.599 9.424 16.655 0.82 29.61 0.07 

% Top Trophic Sampling 121.40 30.38 -60.53 0.066 44.22 -1.56 
TTIB 16.90 12.62 -12.85 0.065 46.96 -3.4 
Dispersal 0.01 110.17 21.74 37.67 0.05 42.84 -2.94 
Dispersal 0.1 126.538 3.149 -9.380 0.05 122.9 -0.64 

% Omnivory Trophic Sampling 908.34 62.52 179.81 0.81 67.64 0.47 
TTIB 152.92 24.95 74.05 0.82 56.45 0.75 
Dispersal 0.01 1042.21 36.27 64.94 0.84 31.67 0.45 
Dispersal 0.1 1403.842 7.065 16.186 0.85 78.74 0.09 
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Supplementary Figure 2.1. Network-Area relationships (NAR) for the Trophic Sampling model. Area values 
close to 0 correspond to local communities and values close to 1 correspond to regional communities. 
Properties giving information about food web a) complexity, b) vertical diversity and c) motifs and 
modularity. Notice that the Species-Area relationship shown in (a) is given by $ = ()* , with k = 10 and z 
= 0.27. Simple representations of network motifs are shown in the corresponding panels; Nodes represent 
species and arrows trophic interactions from prey to predators. 
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Supplementary Figure 2.2. Decomposition of the intermediate trophic level. Relationship of the fraction 
of species of each group with area for (a) the Trophic Sampling model, (b) the Trophic Theory of Island 
Biogeography model, (c) the Trophic meta-community model with low dispersal (d=0.01) and (d) high 
dispersal (d=0.1). Green: herbivores species (i.e. species only consuming basal species); Blue: carnivores 
(i.e. species only preying on other consumer species); Red: omnivorous species (i.e. species consuming 
both basal and consumer species). It is important to notice that all these groups only refer to those species 
included in the intermediate trophic level, it does not consider top species.   
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Supplementary Figure 2.3. Network-Area relationships (NAR) for the TTIB model. Area values close to 0 
correspond to local communities and values close to 1 correspond to regional communities. Properties 
giving information about food web a) complexity, b) vertical diversity and c) motifs and modularity. Simple 
representations of network motifs are shown in the corresponding panels; Nodes represent species and 
arrows trophic interactions from prey to predators. Shaded areas show 95% confidence intervals.  
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Supplementary Figure 2.4. Dispersal - beta diversity relationship for the Trophic meta-community model. 
Increasing species dispersal rates increases the similarity between patches. Note that we analysed these 
patterns for eight different dispersal rates d ={0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. 
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Supplementary Figure 2.5. Network-Area relationships (NAR) for the trophic meta-community model. 
Area values close to 0 correspond to local communities and values close to 1 correspond to regional 
communities. Properties giving information about food web a) complexity, b) vertical diversity and c) 
motifs and modularity. Red line: 0.01 dispersal rate; Orange line: 0.1 dispersal rate. Simple 
representations of network motifs are shown in the corresponding panels; Nodes represent species and 
arrows trophic interactions from prey to predators. Shaded areas show 95% confidence intervals.  
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Supplementary Figure 2.6. Comparison of Network-Area relationships (NAR) across models. Area values 
close to 0 correspond to local communities and values close to 1 correspond to regional communities. 
Properties giving information about food web a) complexity, b) vertical diversity and c) motifs and 
modularity. Blue: Trophic Sampling model; Green: Trophic Theory of Island Biogeography model; Red: 
Trophic meta-community model with 0.01 dispersal rate; Orange: Trophic meta-community model with 
0.1 dispersal rate. Simple representations of network motifs are shown in the corresponding panels; 
Nodes represent species and arrows trophic interactions from prey to predators. Shaded areas show 95% 
confidence intervals.  
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Supplementary Figure 2.7.  Comparison of Network-Area relationships (NAR) for the models with trophic 
constraint (solid line) and without the trophic constraint (dashed line). Area values close to 0 correspond 
to local communities and values close to 1 correspond to regional communities. a) NARs for the Trophic 
Sampling model, b) NARs for the Trophic Theory of Island Biogeography model and c) NARs for the Trophic 
Meta-community model (Red line: 0.01 dispersal rate; Orange line: 0.1 dispersal rate). Notice that the 
non-constraint TTIB in (b) corresponds to the classic Theory of Island Biogeography model. Notice that the 
Species-Area relationship for the Trophic Sampling model shown in (a) is given by $ = ()* , with k = 10 
and z = 0.27. Shaded areas show 95% confidence intervals.  
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Supplementary Figure 2.8. Comparison of Network-Area relationships (NAR) for the models considering 
metawebs with different connectances; C= 0.056 (solid line) and C=0.03(dashed line). Area values close 
to 0 correspond to local communities and values close to 1 correspond to regional communities. a) NARs 
for the Trophic Sampling model, b) NARs for the Trophic Theory of Island Biogeography model and c) NARs 
for the Trophic meta-community model (Red line: 0.01 dispersal rate; Orange line: 0.1 dispersal rate). 
Notice that the Species-Area relationship for the Trophic Sampling model shown in (a) is given by $ =
()* , with k = 10 and z = 0.27. Shaded areas show 95% confidence intervals.  
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Chapter 3 

EFFECTS OF AREA SIZE ON NETWORK STRUCTURE: 
EMPIRICAL APPROACH 

 
 





 

3.1 TITLE OF THE SCIENTIFIC ARTICLE: 

The spatial scaling of biotic interactions across the globe4 
 

Keywords: community structure, ecological networks, spatial food webs, species-area relationship, 
network-area relationship, area size, islands. 

 

 

ABSTRACT 

The larger the geographical area sampled, the richer the ecological community. This is a pattern so 

universal that it has been dubbed a fundamental law of ecology. Yet, species are embedded in complex 

networks of biotic interactions and whether different components of network structure vary with area 

size, and whether they do so in a similar manner is, so far, unknown. We compiled a large set of ecological 

networks from different ecosystems and biomes across the globe, comprising different types of 

interactions (i.e., mutualistic, antagonistic) and different sampling methodologies, to analyse the 

universalities in the spatial scaling of network structure. We found a number of universal network-area 

relationships (NARs). The number of links, links per species and mean indegree (i.e., mean number of 

resources per consumer) increased with area size following a power law regardless of the data category 

or interaction type, indicating that ecological communities become more complex with area. In contrast, 

mean potential indegree (i.e., mean number of resources a consumer has at the regional scale) decreased 

across spatial scales for all data categories and interaction types, suggesting that diet specialists require 

larger areas to be found. 

 

  

                                                

4 This article represents a collaboration with José M. Montoya, Miguel Lurgi, Bernat Claramunt, Marie-Josée 
Fortin, Shawn Leroux, Kevin McCann, Kevin Cazelles, Dominique Gravel, Tomas Roslin, Diego Vázquez, Luciano 
Cagnolo, Carine Emer, Wilfried Thuiller, Ingo Grass, Ingolf Steffan-Dewenter, Frank Jauker, Spencer Wood, 
Daniel Montoya, Jordi Bosch and Christian Mulder. In preparation. 
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3.2 INTRODUCTION 

Research on the spatial scaling of biodiversity has traditionally focused only on the increase of 

species richness with area size [79]–[81]; so much so that the species-area relationship (SAR) has been 

identified as a universal law in ecology [81]–[83]. Yet, ecological communities are not only collections of 

species, but also sets of interactions between them. Ecological network research has shown the 

importance of biotic interactions to not only understand biodiversity organization within communities, 

but also to predict ecosystem responses to different components of environmental change [2], [6], [9], 

[46], [217], and important ecosystem functions [1], [3], [4]. Understanding how network structure change 

across spatial scales is, thus, fundamental to better predict ecosystem responses to perturbations and to 

properly interpret empirical data on ecological networks. However, research on the spatial scaling of 

network structure is on its infancy [103], [109], [124].  

Our recent theoretical research on the spatial scaling of network structure has shown that a 

number of network-area relationships (NARs) can emerge from different spatial mechanisms and 

assembly processes (See chapter 2; [124]). Different SARs across trophic levels can generate changes in 

network structure as area size increases; dispersal limitation, through its effects on b-diversity, can 

promote changes in network structure across spatial scales, and the preferential selection of generalist 

species at small spatial extents generates an increase in biotic specialization with area size that can have 

further consequences on the structure of the network [86], [124]. As shown theoretically, there are 

multiple ways to build NARs and to analyse the spatial scaling of network structure, and each method of 

construction will reflect the role of a different ecological process [124]. The challenge is to find universal 

patterns across different types of systems as it has been done for the spatial scaling of species richness 

[94], [218]. 

In the SARs literature, the power function pervades the increase in species richness with area 

across all types of system [79], [94], [177], [219]. Yet, extensive debates still exist on the effects of the 

sampling schemes and methods of construction to determine the specific shape and meaning of SARs 

[218], [220]–[223]. Two distinct classes of data have been described based on the sampling approach used 

to address the patterns of species richness across spatial scales [218], [223], [224]. The first class consists 

of collections of sampling units which are usually aggregated to obtain larger areas. These can be of either 

the same size (i.e., replicates), or of increasing sizes, where smaller areas are nested into larger ones. For 

this type of data, species richness necessarily increases monotonically (or at least does not decrease) as 

the number of area units aggregated increases. The second type of data consists of independent and 
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isolated units of area of different sizes (e.g., islands in an archipelago, lakes or mountain tops) that can 

potentially result in negative species-area relationships [218], [219], [223], [224]. This differentiation has 

been crucial to understand the mechanisms behind the observed SARs.   

Different ecological processes influencing the shape of SARs are linked to each type of data. 

Environmental heterogeneity, dispersal limitation or biotic interactions are well-known mechanisms 

underlying the shape of SARs regardless of the type of data used [94], [218]. However, there are more 

specific ecological processes, such as the interplay between colonization and extinction rates, that only 

influence the shape of SARs in data on independent units of area (e.g., islands) [80], [94], [218]. Similarly, 

we expect different ecological processes to also have different roles on the spatial scaling of network 

structure depending on the type of data considered. For example, we expect the preferential selection of 

generalist species in smaller areas to have a more important role in islands than in random subsamples of 

areas [86], [124]. Thus, understanding the variety of SARs and NARs emerging from different types of data 

can provide valuable information on the processes determining the spatial patterns of ecological 

communities, altogether revealing possible universalities. As briefly reviewed above, the influence of 

different types of data, and the underlying ecological processes, has been acknowledged and studied on 

SARs [218], [220]–[223], however, its influence for the spatial scaling of network structure remains 

empirically untested.  

Here we compiled 35 datasets on ecological networks from different ecosystems and biomes 

across the globe. These comprise different types of interactions (i.e., bipartite mutualistic and 

antagonistic, and multi- trophic interactions) to analyse the universalities on the spatial scaling of network 

structure. We classified our datasets depending on the spatial structure of the data and on the spatial 

extent covered during the sampling of the communities and the procedure used to generate the spatial 

scaling. Specifically, we divided them into three categories. Replicates, which are datasets consisting on a 

collection of small replicated sampling units of the same size; Islands-fragments, that include datasets in 

which the sampling units are independent isolates of different sizes; and biogeographical data, that 

consists on a collection of replicated sampling units of the same size spanning large geographical 

gradients. For each dataset, we characterized how network structure changes across spatial scales to 

determine: 1) whether universal NARs exist and 2) whether there is an influence of both the type of data 

used (i.e., replicates, islands or biogeographical) and the type of interaction.  In particular, we analysed 

the spatial scaling of species richness (total number and across trophic levels), number of links and links 

per species, consumer:resource ratio, network modularity and biotic specialization. 
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3.3 METHODS 

We built network-area relationships (NARs) for 35 datasets comprising ecological communities of 

different types of interactions from different biomes across the world. This allowed us to identify 

universalities in the way network properties change across spatial scales for different data and interaction 

types. Universalities were quantified using the exponents of the relationships between all network 

properties analysed with area size when fitted to a power function. Here we first provide a description of 

the data classification, we then explain the procedure used to build NARs for each data category and we 

finally describe all network properties analysed and the statistical methods used to quantify the spatial 

scaling of the network properties and their comparison between datasets. 

3.3.1 Data classification 

 We divided the datasets analysed into three categories (replicates, island/fragments and 

biogeographical) according to the spatial structure and the spatial extent covered during the community 

sampling (Figure 22). All datasets presented here contain information on the set of species present in a 

collection of localities and the ecological interactions observed between these species. Specific details 

about each dataset can be found in Appendix S4.1. Here we briefly describe the main characteristics of 

each dataset including sampling methodology and location, and interaction types considered. 

 

 

 

 

 

 

 

 

 

Figure 22. Data classification. We divided the datasets into three depending on the spatial structure and 
the spatial extent covered in each study. (a) Replicates correspond to datasets for which sampling was 
conducted in a small spatial extent using a collection of small replicated sampling units of the same size; 
(b) Islands-fragments correspond to isolated sampling units of different area sizes and (c) biogeographical 
data correspond to datasets with sampling units of similar sizes spanning large (i.e., biogeographical) 
spatial scales. Black dots represent the sampling units. 

a b c
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Replicates. This type of datasets comprises data for which sampling was conducted in a small 

spatial extent in a replicated fashion, usually using a collection of small replicated sampling units of the 

same size. Datasets within this category include: Host-parasitoid and plant-pollinator interactions 

networks from Mediterranean forests in Garraf, Montseny and Olot Natural Parks in Catalonia, Spain; 

host-parasite interactions involving insect herbivores of the Pedunculate Oak (Quercus robur) and their 

parasites in a temperate forest in Sweden; plant-pollinator interactions from a grassland environment in 

the Argentinian Patagonia; soil food webs from farmlands across Germany; terrestrial food webs within 

small islands of similar sizes of a temperate saltmarsh mudflat in southern UK; and intertidal food webs 

comprising marine invertebrates from Northwestern North America. 

Islands-Fragments. This category included datasets in which the sampling unit can be considered 

an isolated and well delimited community as a single coherent functional unit. For example, ecological 

communities living in islands or fragments of habitats isolated from the rest by any type of matrix habitat 

that impedes connectivity or dispersal. Local/isolated communities within these datasets are of varying 

sizes, allowing for the study of the scaling of community structure with spatial extent. Datasets in this 

category include: fish-based food webs from temperate lakes in Canada; plant-ant mutualistic networks 

from islands in a river basin of the Amazonian rainforest of Brazil; plant-frugivore interaction networks 

involving tropical birds and plants in isolated fragments of the Brazilian Amazonian forest; plant-pollinator 

and host-parasitoid insect networks in fragmented (due to agricultural activities) calcareous grasslands in 

central Germany; and plant-leafminer-parasitoid interaction networks from forest fragments embedded 

in an agricultural matrix landscape in central Argentina. 

Biogeographical. Datasets from this category consist in sampling units of similar sizes that span 

large (i.e., biogeographical) spatial scales. Depending on the specifics of each dataset, local communities 

can be comprised of either collection of species found in each location for which interactions have been 

inferred from literature review or expert knowledge; or, on the other hand, direct observations of 

ecological interactions at each locality. This type of datasets comprises: the European terrestrial 

vertebrate food web split among 10 biogeographical regions according to climatic characteristics and in 

which local communities are defined at the 10x10km grid level; the terrestrial vertebrate food web, also 

defined at the 10x10km grid level for the catalan Pyrenees; and plant-herbivore-parasitoid interaction 

networks observed on plants of the genus Salix spanning a large latitudinal gradient from Italy to northern 

Norway. 
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3.3.2 Building network-area relationships 

To analyse how network structure changes across spatial scales we built NARs for each dataset 

described above. Depending on the data type the procedure used to generate the spatial scaling of 

network structure was different.  

Replicates. For this category, the smallest spatial scale was considered to be a single sampling 

unit. Communities at larger spatial scales were defined by aggregating sequentially each of the sampling 

units available until the whole set of replicated samples had been considered. We analysed network 

structure at each step of the aggregation procedure. This aggregation procedure might be subject to bias 

due to the order in which sampling units (i.e., local communities) are aggregated to create larger spatial 

extents. To avoid this bias, we replicated the aggregation procedure 100 times for each of the datasets in 

this category. For each replicate the aggregation order was randomly generated. 

Islands-Fragments. Sampling units within datasets in this category were considered to be 

independent ecological communities, and as such they were analysed independently. To build NARs using 

this data category thus, network properties were calculated for each of the islands (or fragments) available 

within each dataset and these were related to the size of the islands-fragments in their respective dataset. 

This allowed us to build NARs in which the spatial scaling is given by the natural variation in area sizes 

across the islands-fragments within each dataset. 

Biogeographical. To build NARs for datasets within this category, an aggregation procedure similar 

to that described for the replicates was used. The smallest spatial scale was also considered to be a single 

sampling unit and larger spatial scales were generated by the aggregation of these sampling units. The 

fundamental difference between these data and the replicates is that biogeographical data span large 

spatial extents and, thus, they are subject to larger environmental gradients than those experienced by 

replicates. Therefore, given that all datasets were georeferenced, the aggregation was conducted 

following the latitudinal gradient from north to south to be able to discriminate the effect of the latitudinal 

gradient. Since we are interested in the spatial scaling across the biogeographical latitudinal gradient, we 

did not perform replicated aggregations of the local communities as we did for the replicates, but instead 

we perform the aggregation procedure only once. NARs thus emerge from the aggregation of local 

communities in southward latitudinal gradients. Two types of data comprise this category: those collected 

in the field from single locations across the latitudinal gradient; and those were species interactions were 

inferred from species occurrences and literature-based knowledge on the interactions. For the first type 

of data, we start the aggregation procedure from the northern sampling unit and we increase the spatial 
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scale by progressively aggregating all the sampling units following the latitudinal gradient. For the other 

type of data, a single sampling unit is defined as the 10x10 km cells on a gridded map. Larger spatial scales 

in this case are, thus, simulated by merging adjacent cells of the map in an increasing manner from north 

to south. For both types of data, we analysed network structure at each spatial scale to build NARs. 

3.3.3 Network properties 

To characterise the structure of the ecological communities at each spatial scale we analysed a 

suite of network properties that allowed us to explore the complexity of the network, its vertical diversity 

and its modularity. In addition, we analysed the spatial scaling of biotic specialization from both, the 

community and the species perspective. 

At each spatial scale, we measured network complexity by analysing the number of species (S), 

the total number of links (i.e., biotic interactions; L) present in the community and the number of links 

per species (L/S). Additionally, we analysed for each dataset the relationship between species richness 

and the total number of links (i.e., links-species scaling relationship). We assessed network vertical 

diversity by analysing species richness across trophic levels and consumer:resource ratios (Sc/Sr). For this, 

we calculated the fraction of basal (B), intermediate (I) and top (T) species in food webs. Equivalently, for 

the case of bipartite networks, we quantified the fraction of resources and consumer species respectively. 

Notice that to compute consumer:resource ratios in food webs we considered as consumers all species 

that have at least one prey, and as resources all species having at least one predator. Thus, one species 

can be considered as both consumer and resource.  

Biotic specialization was measured at the network level by computing the mean indegree (mean 

number of resources a consumer utilises; L/Sc) of the community (also known as generality). To quantify 

biotic specialization from the species perspective across spatial scales, we analysed not only the realised 

number of links they have in a given spatial scale but also the total number of links they have at the 

regional scale. That is, the total number of interactions a species has across all the sampling units of its 

corresponding dataset. As in chapter 2, we call this potential indegree (or potential diet breadth) and we 

calculated it by considering the aggregation of all sampling units within each dataset (i.e., regional scale 

or ‘metaweb’) and analysing the number of interactions each species has in the aggregation. Therefore, 

each species from a given dataset has a fixed potential indegree and analysing the spatial scaling of the 

mean potential indegree allows us to have a better perspective on the traits of the species (i.e., more or 

less biotic specialists) across spatial scales.  
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Finally, network modularity (M), allowed us to quantify the extent to which groups of species form 

highly connected groups within which more interactions are observed than to the rest of the network. 

Modularity was quantified using the modularity function (Q) proposed by Newman and Girman [225]: 

 

W = 	
1
2X

	YZ)[\ − 	][\^	_( [̀ , `\)
[,\

 

 

where m is the number of edges in the network, Aij are the adjacency matrix elements (1 if a link between 

vertices i and j exists and 0 otherwise), Pij is the expected number of links between i and j (i.e., kikj/2m, 

with k the degree of a vertex), gi is the compartment to which vertex i belongs (as described in [226]. 

_(a, b) = 1 if r = s and 0 otherwise. Since this measure is most appropriate for unipartite networks, when 

looking at bipartite networks, we used a modified version of Q in which Pij are the probabilities from a null 

model, which take into account the bipartite nature of the network, that an edge exists between vertices 

i and j, as proposed by Barber [226]. To calculate modularity in food webs (unipartite networks) we used 

the random-walk based algorithm walktrap [227] implemented in the R package igraph [228]. To calculate 

modularity in bipartite networks we employed the LPAwb+ community detection algorithm [229], 

implemented in the bipartite [230] package in R. 

3.3.4 Statistical Analyses 

After constructing NARs for each dataset, we analysed the resulting scaling patterns statistically 

by fitting to each network-area relationship power functions of the form: c = d)e , where c corresponds 

to any of the network properties analysed, )	is area size and c and z are the fitting parameters. The scaling 

exponents (z) obtained were then compared across different data and interaction types to determine 

whether generalities exist in NARs scaling. Power functions were fitted to data using the nls function in R. 

To assess the accuracy of the models we used the R2 and p-values of the fitted statistical models. 

Once a collection of all the scaling exponents across data types and network properties were 

obtained, we used box plots to look at the patterns in the distributions of scaling exponents. Differences 

among the distributions of scaling exponents across data and interaction types were quantified using 

Wilcox tests. Wilcox tests were conducted using the wilcox.test function in R. To explore relationships 

between the spatial scaling of different network properties we plotted scaling exponents against each 

other and performed linear regression to assess the significance of the relationships. 
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3.4 RESULTS 

3.4.1 Are there universal Network-Area Relationships? 

The spatial scaling of network complexity metrics (i.e. number of species, links and links per 

species) showed universal patterns across data types and interaction types (Figure 23; Appendix S3.2). 

The number of species, links and links per species increased with area size following a power law 

regardless of the system characteristics (i.e., data category and interaction type). However, the z-

exponents of the power law varied significantly across data types for the three complexity metrics 

analysed. Species richness increased with area significantly slower in islands (mean z-exponent = 0.14 ± 

0.06) than in the replicates category (mean z-exponent = 0.32 ± 0.13), which did not show a significant 

difference with the biogeographical data (mean z-exponent = 0.28 ± 0.19) (Figure 23; Table 3; Appendix 

S3.3). Similarly, the number of links and the number of links per species increased with area slower in the 

islands than in the rest of the data categories, which showed no significant differences between them 

(Figure 23; Table 3; Appendix S3.3). We observed no significant differences in the spatial scaling of any of 

the complexity metrics between interaction types (Appendix S3.3). 

 

Table 3. Pairwise comparison results of the z-exponents between data types. Comparisons using Wilcoxon 
rank sum tests of the z-exponents of the power relationships (in order): species-area, links-area, 
links/species-area, links-species, indegree-area, potential indegree-area. ‘Bio.’ corresponds to the 
biogeographical data category; ‘Rep.’ to the replicates data category; Island correspond to islands-
fragments data category. 

 

 
 

The difference between the exponents of the power relationships between the number of species 

and the number of links with area indicates that in islands the increase in the number of links in relation 

to the increase in species richness is slower than in the other data types. For all datasets, the scaling of 

the number of links with species richness followed a power law, with z-exponents ranging from 1.2 and 

1.9 (Figure 24a; Appendix S3.4). Yet, the z-exponents for the links-species relationship varied significantly 

across data types and interaction types (Appendix S3.4). Biogeographical data showed the faster increase 

 z SAR z LAR z L.SAR z L-S z Indegree z Potential 

 Island Rep. Island Rep. Island Rep. Island Rep. Island Rep. Island Rep. 

Bio. 0.103 0.079 0.063 0.371 0.001 0.347 0.001 0.008 0.296 0.296 0.81 0.64 

Rep. 0.008  0.047  0.001  0.005  0.099  0.65  
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of the number of links with species richness (mean z-exponent = 1.79 ± 0.20), followed by replicates (mean 

z-exponent = 1.60 ± 0.20) and islands (mean z-exponent = 1.31 ± 0.06), that showed the slowest increase. 

Interestingly, food webs showed a faster increase in the number of links with species richness than the 

other types of interaction (i.e. mutualistic and antagonistic) (Figure 24a; Appendix S3.4). We observed a 

linear relationship between the scaling of both network properties with area (i.e., SAR and LAR z-

exponents), indicating that the way species richness scales with area highly determines the spatial scaling 

of the number of links (Figure 24b; Appendix S3.4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Spatial scaling of coarse-grained properties. Comparison of the z-exponents of the power law 
fit for the relationship between the number of species, the number of links and number of links per species 
with area classified by data type. Colours represent the type of interaction. Blue: antagonistic interactions; 
orange: food webs; pink: mutualistic interactions. 
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The spatial scaling of species richness per trophic level did not show universal patterns (Appendix 

S3.2). Although we observed variation in the species-area relationship across trophic levels, we did not 

observe a consistent increase nor decrease of the power exponent with trophic level for any data type or 

interaction type. Similarly, consumer:resource ratio did not change universally with area. We observed 

changes in both directions (i.e., increase or decrease of the consumer:resource ratio) with area, regardless 

of the type of data or interaction (Appendix S3.2). 

Network modularity did not show strong variations across spatial scales for all the datasets 

analysed (Appendix S3.2). Yet, the spatial scaling of modularity was negative for all datasets that showed 

a significant variation with area, which included datasets from all data types and all interaction types 

(Appendix S3.2).  

 

 

 

 

 

 

 

 

 

Figure 24. Links-species relationship. (a) Comparison of the z-exponents of the power law fit for the 
relationship between the number of links and species richness classified by data type. Colours represent 
the type of interaction. Blue: antagonistic interactions; orange: food webs; pink: mutualistic interactions. 
(b) Relationship between the z-exponents of the power law fit for the relationship between the number 
of links with area (LAR z-exponent) and the z-exponents of the power law fit for the relationship between 
the number of species with area (SAR z-exponent). Each point corresponds to a different dataset. Colours 
represent the type of interaction as described above. Shapes represent the data category. Dots: 
biogeography data; triangles: islands; squares: replicates. The blue line represents a linear model fit to 
data points and the two black lines represent the boundaries for the links-species relationship (i.e., z-
exponent=1 for the lower line and z-exponent=2 for the upper line). Shaded areas show 95\% confidence 
intervals. 
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3.4.2 Is biotic specialization changing across spatial scales? 

Network mean indegree (i.e., mean number of links per consumer) increased with area size 

following a power law for all data types and interaction types, with some exceptions in the islands 

category, which did not show a significant change of network mean indegree with area (Figure 25a; 

Appendix S3.2). Therefore, consumer species had more resources as area size increased. Mean indegree 

increased with area slower in islands (mean z-exponent = 0.09 ± 0.06) than in the biogeographical data 

(mean z-exponent = 0.19 ± 0.13) and the replicates category (mean z-exponent = 0.22 ± 0.11). However, 

we did not observe significant differences between them (Figure 25a; Table 3). Similarly, we observed no 

significant differences in the spatial scaling of mean indegree between interaction types (Appendix S3.3). 

The spatial scaling of mean indegree was associated to changes in the consumer:resource ratio 

with area (Figure 25b). Stronger changes in the mean indegree with area (i.e., high mean indegree z-

exponent) were associated to a decrease in the consumer:resource ratio with area (i.e., negative values 

for ratio z-exponent). Therefore, we observed a negative relationship between the spatial scaling of mean 

indegree and the spatial scaling of consumer:resource ratio (Figure 25b). That is, larger increases in the 

number of resources than in the number of consumers with area promoted a larger increase in the 

number of links per consumer (Figure 25b).  

Conversely, mean potential indegree (i.e., mean number of links each consumer has in the 

corresponding metaweb) decreased with area size for all data categories (Figure 25c; Appendix S3.2). 

Thus, consumer species with more resources at the regional scale (i.e., metaweb) were found in smaller 

areas regardless of the data type, suggesting that species that have less potential resources (i.e., more 

specialists) were increasingly sampled as area size increased (Figure 25c). The decrease of the mean 

potential indegree with area size was stronger in antagonistic and mututalistic bipartite networks than in 

foodwebs (Appendix S3.3). 
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Figure 25. The spatial scaling of biotic specialization. (a) Comparison of the z-exponents of the power law 
fit for the relationship between mean indegree with area size classified by data type. Colours represent 
the type of interaction. Blue: antagonistic interactions; orange: food webs; pink: mutualistic interactions. 
(b) Relationship between the z-exponents of the power law fit for the relationship between mean 
indegree with area and the z-exponents of the power law fit for the relationship between the 
consumer:resource ratio with area. Each point corresponds to a different dataset. Colours represent the 
type of interaction as described above. Shapes represent the data category. Dots: biogeography data; 
triangles: islands; squares: replicates. The blue line represents a linear model fit to data points. (c) 
Comparison of the z-exponents of the power law fit for the relationship between mean potential indegree 
with area size classified by data type. Colours represent the type of interaction as described above. Notice 
that all z-exponents are negative indicating the decrease of the mean potential indegree with area size. 
 
 

3.5 DISCUSSION 

We have used a large collection of empirical datasets to show that not only species richness 

increases with area size but also the complexity of the network of biotic interactions in which species are 

embedded. The number of links and links per species increased with area size following a power law 

regardless of the data category (i.e., replicates, islands or biogeographical data) or interaction type (i.e., 

bipartite mutualistic and antagonistic or multi-trophic webs). Similarly, network mean indegree increased 

universally with area size, indicating that on average consumers are using more resources as area 

increases. However, mean potential indegree (i.e., mean number of resources a consumer has at the 

regional scale) decreased across spatial scales for all data categories and interaction types, suggesting that 

specialist species require larger areas to be present. 
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The use of multiple types of data allowed us to determine whether the observed network-area 

relationships (NARs) were universal and how their specific shape was affected by the underlying ecological 

processes captured by each data type (Figure 22). Data structured as replicates provide direct information 

on the effects of b-diversity of both species composition and its biotic interactions for the spatial scaling 

of community structure [94], [218], [231].  Biotic interactions can experience spatial turnover 

independently from species occurrences given that the prevalence of an interaction between two species 

is not only determined by their co-occurrence in space, but also by the surrounding environment [134], 

[135], [137] and their relative abundances. Thus, the larger the b-diversity of species composition and 

biotic interactions, the larger the changes observed in network structure across spatial scales. Similarly, 

data structured as replicates but across large environmental gradients (i.e., biogeographical data), provide 

insights on the presence of multiple species pools along the geographical gradient (i.e., when crossing 

biogeographical boundaries of migration) that might be the result of separate evolutionary histories [81], 

[218], and that can promote changes in the biotic interactions between species and in the structure of 

ecological networks. Finally, data on islands or fragments are more strongly dominated by colonisation-

extinction dynamics that determine species composition for a given area size [80], and its trophic 

interactions [86]–[88], [93]. 

Although all our data categories followed a power law to describe the increase of network 

complexity with area size, they did show differences in most of the scaling exponents. Replicates generally 

showed the fastest increase of network complexity with area while islands showed the slowest, 

eespecially for the spatial scaling of the number of links per species (Figure 23). This indicates that in 

islands species gain less interactions as area size increases, suggesting that the turnover of links (i.e., Link 

b-diversity) independently of the turnover of species composition, might be an important determinant of 

the slope of the spatial scaling of the number of links per species. Regardless of area, the scaling of the 

number of links with species richness has been widely studied in food web ecology [8], [104], [106]–[108]. 

The scaling exponent of the number of links with species is, by definition, constrained between 1 and 2. 

That is, the minimum number of links in a network is equal to species richness - 1 (z-exponent = 1); and 

the maximum number of links corresponds to a fully connected network (z-exponent = 2) (see [104], 

[107]). As previously shown in other empirical studies [8], [108], we found the scaling of the number of 

links with species richness to fall between these two extremes.  Yet, islands showed the slowest increase 

of the number of links when increasing species number (Figure 24a), suggesting that ecological 

communities in islands are less complex when they become larger. Following the constraints mentioned 

above, we expected a universal relationship between the spatial scaling of species richness and the spatial 
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scaling of the number of links to emerge (Figure 24b), which suggest that the increase of the number of 

links with area size could be predicted by the spatial scaling of the number of species.  

 Another facet of network complexity is the mean number of resources used by each consumer 

(i.e., mean indegree), which informs us about the degree of specialization of the community. Biotic 

specialization is influenced by multiple ecological and evolutionary processes [118], [232]–[234], and it is 

at the bases of species population dynamics, distribution and diversity [235]–[238]. For instance, specialist 

species have been shown to be more vulnerable to extinction and to environmental perturbations [234], 

[239]–[241]. Thus, understanding the spatial scaling of biotic specialization is fundamental to improve our 

knowledge on the spatial distribution of species depending on their degree of specialization and, 

therefore, to better assess their vulnerability to perturbations such as habitat loss or fragmentation. We 

found that mean network indegree increased with area size universally for all our data categories (Figure 

25a). Given the relationship between mean indegree (L/Sc) and the number of links per species (L/S), is 

expected that the difference between the two is determined by the consumer:resource ratios (Sc/SR). We 

did not observe a clear pattern for the consumer:resource ratio with area size across datasets, which 

resulted in differing patterns of the spatial scaling of mean network indegree when normalised by the 

number of links per species. Similarly, we did not observe consistent differences in the species-area 

relationship across trophic levels.  Although previous studies showed a consistent increase of the slope of 

SARs with trophic level, and its further consequences for the structure of the network [88], [95], [96], [98], 

our results suggest that the spatial scaling of the consumer:resource ratio might be system specific.  

 Aside from the information on biotic specialization from the network perspective, we can assess 

the degree of biotic specialization of each species at the regional spatial scale (i.e., potential indegree) 

and evaluate how species are distributed across spatial scales based on this trait. As previously shown 

theoretically in chapter 2 [242],  we observed that potential indegree decreased universally with area size 

(Figure 25c). This gives us different insights depending on the data category analysed. For islands, the 

decline of the mean potential indegree with area size reflects the stronger effect of the trophic constraint 

on specialist species at small area size [86], [93], [242]. That is, consumer species having a larger set of 

resources at the regional scale have a higher probability of finding one of the required resources at smaller 

spatial scales, where the total number of species is smaller. As area size increases the total number of 

species increases, and therefore, the probability for specialist species of finding a required resource to 

colonize and persist, also increases [86], [93], [242].  For replicates and biogeographical data, the decrease 

of the potential indegree across spatial scales indicates that generalist species have a higher prevalence 
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across space. Given the procedure we used to generate NARs for these data categories, the decline in 

potential indegree indicates that the number of specialist species increased as the number of sampling 

units aggregated increased. For this to happen, generalist species need to be systematically found at the 

first steps of the aggregation procedure (i.e., small area size), indicating their higher prevalence across all 

the sampling units. Therefore, specialist species have narrower spatial distributions and, in consequence, 

might be more vulnerable to environmental perturbations [239]–[241], [234]. 

 Although we have shown some universalities in the spatial scaling of network structure, further 

research is needed to fully understand how ecological communities change across spatial scales. 

Particularly challenging is to assess the changes in species interactions strength within a community across 

spatial scales. The spatial scaling of quantified networks could provide new perspectives on ecosystem 

functioning and stability at different spatial scales. Similarly, incorporating habitat heterogeneity explicitly 

into the analyses of the spatial scaling of network modularity, would elucidate the effect of area size on 

this facet of network structure given that heterogeneous landscapes are likely to promote the emergence 

of compartments in the network [200], [201]. Finally, more studies should aim to disentangle all the 

possible mechanisms affecting the slopes of NARs as its been widely done for SARs [94].  
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Appendix S3.1. Datasets specification. Description of different aspects of the datasets used to build 
networks across spatial scales (i.e., Network-Area Relationships), including locations, area sizes, and 
sampling methodologies. To follow the same order of the manuscript they are presented grouped into 
the data type categories used in the main text: replicates, islands-fragments, and biogeographical. In 
brackets is shown the name that has been assigned to each dataset and that will be used in the 
following appendixes.  

Replicates. 

1-3. Plant-pollinator and host-parasite interaction networks in mildly degraded natural Mediterranean 
forest in the Garraf Natural Park, Catalunya, Spain. (Garraf_pp, Garraf_pp2, Garraf_hp) 

Three independent datasets were collected within this same area. These are identified by numbers in 
each section. 1 & 2 = Plant-pollinator networks, 3 = Host-parasite networks. 

• Study area: Garraf Natural Park, Catalunya, Spain 

• Interaction types: Plant-pollinator and host-parasite (Cavity-nesting bee/wasps and their 
cleptoparasites, parasitoids and nest predators) interactions. 

• Type of system: Semi-natural habitat of Mediterranean forest. 

• Number and extent of replicated patches:  

1.- 40 local patches of the same size (40 x 30 m) within a homogeneous landscape connected 
through dispersal. Total area: 40 Km2. Distance between patches: 520 to 1440 m. 

2.- 21 local patches of the same size (40 x 40 m) within a homogeneous landscape connected 
through dispersal. Total area: 32 Km2.  Distance between patches: 585 to 1345 m. 

3.- 25 local patches. Total area: 33 Km2. Distance between patches: 585 to 1354 m. 

• Number of networks: 1 plant-pollinator or 1 host-parasitoid network per patch. This yields a total of 
86 networks 

• Type of networks: Bipartite. 
• Taxonomic resolution of the nodes: Species level. 
• Total number of species and links at the regional scale:  

1.- 170 pollinator and 24 plant species. 3577 individual contacts spread across a total of 325 
inter-specific interactions. 

2.- 303 pollinator and 23 plant species. However, information on interactions available only for 
200 species. 900 interactions. 
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3.- 41 host and 26 parasite species. 654 individuals parasitized spread across a total 72 inter-
specific interactions. 

• Sampling procedure (of species and interactions): 

Plant-pollinator interactions:  

1.- Counted number of visits per open flower by each pollinator species. 

2.- Interactions inferred from interactions observed during four years in other plots within the 
same landscape. 

Host-parasite interactions: 

3.- Nests of hosts were collected from trap-nests to obtain the parasite species using the nest. 
An interaction was considered when a parasite species was observed in a host’s nest. 

• Publication reference: Unpublished. 

4. Host-parasite interaction networks within a mosaic of forest/agricultural landscape in Olot, 
Catalunya, Spain. (Olot) 

• Study area: Olot, Catalunya, Spain 

• Interaction types: Host-parasite (Cavity-nesting bee/wasps and their associated parasites) 
interactions 

• Type of system: Mosaic landscape of mixed forest and extensive agricultural land 

• Number and extent of replicated patches: 14 local patches. Total area: 100 Km2. Distance 
between patches 1.4 to 13 Km. 

• Number of networks: 1 host-parasite network per patch. This yields a total of 14 networks 

• Type of networks: Bipartite 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 29 host and 20 parasitoid species. 1695 
contacts (cells parasitized) spread across a total of 80 inter-specific interactions. 

• Sampling procedure (of species and interactions): Nests of hosts were collected from trap-nests 
to obtain the parasite species using the nest. An interaction was considered when a parasite 
species was observed in a host’s nest. 

• Publication reference: Unpublished. 
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5. Plant-pollinator interaction networks within dense forest in Montseny Natural Park, Catalunya, 
Spain. (Montseny) 

• Study area: Montseny Natural Park, Catalunya, Spain 

• Interaction types: Plant-pollinator interactions 

• Type of system: Local patches (clearings) within a dense forest matrix 

• Number and extent of replicated patches: 18 local patches of the same size (25 x 25 m). Total 
area: 18.7 Km2. Distance between patches 550 to 2050 m. 

• Number of networks: 1 plant-pollinator network per patch. This yields a total of 18 networks 

• Type of networks: Bipartite. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 194 pollinator and 61 plant species. 
8605 individual flower visits distributed among a total 873 unique inter-specific interactions. 

• Sampling procedure (of species and interactions): Counted number of visits per open flower by 
each pollinator species. 

• Publication reference: Unpublished. 

6. Plant-pollinator networks in Nahuel Haupi National Park, Argentina. (Nahuel) 

• Study area:  Nahuel Huapi National Park and surrounding areas in Río Negro, Argentina  

• Interaction types: Plant-pollinator interactions (flower visits). 

• Type of system:  Eight sites with native temperate forest, four grazed with domestic cattle and 
four ungrazed, located in an area of ca. 20 km x 50 km. 

• Number and extent of replicated patches: Eight sites of 6-12 ha. 

• Number of networks: 8, one per site. 

• Type of networks: Bipartite 

• Taxonomic resolution of the nodes: Species level 

• Total number of species and links at the regional scale: 14 plants, 90 pollinators, 164 links, 
5285 flower visits. 

• Sampling procedure (of species and interactions): Data were collected throughout one 
flowering season, with weekly sampling of each site (a pair of sites per day), with multiple 5 min 
observation periods per site and date. Interactions were determined by observed visits to 
flowers. Links are quantified as the total number of visits recorded in the study. 
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• Publication reference: Vázquez, D. P. & Simberloff, D. 2003. Changes in interaction biodiversity 
induced by an introduced ungulate Ecology Letters, 6, 1077-1083 

7. Trophic marine intertidal networks in the Sanak Archipelago, Alaska. (Sanak) 

• Study area: The Sanak Archipelago lies in the Eastern Aleutian Islands, south of the Alaska 
Peninsula, in the North Pacific Ocean. 

• Interaction types: Trophic interactions. 

• Type of system: The coastline contains a mix of semi-exposed rocky intertidal habitats 
interspersed with protected sedimented and boulderstrewn shores.  

• Number and extent of replicated patches: The data used consists of 339 quadrants of 0.25m2 
along 39 transects that were laid across the intertidal zones around the Sanak Islands. Transects 
spanned the entire intertidal zone, and were placed perpendicular to the shoreline at 300m 
intervals. 

• Number of networks: 1 food web per quadrant (i.e., 339 local food webs). 

• Type of networks: Food webs. 

• Taxonomic resolution of the nodes: Nodes span the entire range from species to phyla.  Taxa 
were identified to the lowest possible resolution in the field.  Some taxa were lumped into 
groups. 

• Total number of species and links at the regional scale: 100 species and 502 links. 

• Sampling procedure (of species and interactions): direct observation of the species presences. 
To determine interactions between species, mixture of direct observation, gut content 
analysis, stable isotope analysis, literature searches and discussion with experts. 

• Publication reference: Wood, S. A., Russell, R., Hanson, D., Williams, R. J., & Dunne, J. A. (2015). 
Effects of spatial scale of sampling on food web structure. Ecology and evolution, 5(17), 3769-
3782. 

8. Trophic marine intertidal networks in the Bristol Channel, UK. (Bristol) 

• Study area: Four study sites composed by archipelagos of salt marsh islands located in 
the intertidal mudflats along the Bristol Channel in the southwest of England. 

• Interaction types: Plant-pollinator, plant-herbivore, predator-prey interactions. 

• Type of system: salt marsh islands located in four archipelagos on intertidal mudflats. 

• Number and extent of replicated patches: 39 small salt marsh islands of 0.2–2 m2 in size. 
Larger islands were excluded to be able to treat the data as replicates of the same size. 

• Number of networks: 1 food web per island (i.e., 39 food webs) 
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• Type of networks: Food webs. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 57 species and 175 links. 

• Sampling procedure (of species and interactions): direct observation of the species presences. 
To determine interactions between species, mixture of direct observation, gut content 
analysis, stable isotope analysis, literature searches and discussion with experts. 

• Publication reference: Montoya, D., Yallop, M. L., & Memmott, J. (2015). Functional group 
diversity increases with modularity in complex food webs. Nature communications, 6, 7379. 

9. Host-specific gallers and leaf-miners in pedunculate oaks in Finland. (Quercus) 

• Study area: natural communities of specialist insect-herbivores and their natural enemies on the 
pedunculate oak, Quercus robur in the southwest coast of Finland. 

• Interaction types: Host-parasitoid interactions (host-specific gallers and leaf-miners in 
pedunculate oaks) 

• Type of system: Naturally fragmented landscape of oak trees in the archipelago of SW Finland. 

• Number and extent of replicated patches: 22 oak trees. 

• Number of networks: 1 per tree (i.e., 22 networks). 

• Type of networks: Bipartite. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 85 species and 135 links. 

• Sampling procedure (of species and interactions): sampling was conducted three times in 2006: 
in May-June, in late July, and in September in 2006. During each sampling event, a standardized 
volume of foliage (30 half-meter branches per tree) was collected with the aid of a pole pruner, 
and all galls and leaf-mines present were recorded. Interactions were quantified by rearing of 
predators. 

• Publication reference: Kaartinen, R., & Roslin, T. (2011). Shrinking by numbers: landscape 
context affects the species composition but not the quantitative structure of local food 
webs. Journal of Animal Ecology, 80(3), 622-631. 

10. Soil food webs Christian mulder (Soil 1-7) 

• Study area: Netherlands. 

• Interaction types: Trophic interactions. 

• Type of system: 
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- 19 Scots pine forests, used for traditional agroforestry. 
- 10 certified organic grasslands (including mixed and bio-dynamic regimes), using 

compost/farmyard manure and no biocides, averaging 60 ha.  
- 19 conventional farms, using mineral fertilisers, with a much smaller amount of farmyard 

manure, averaging 45 ha. 
- 20 semi-intensive farms, using both organic and mineral fertilisers, averaging 25 ha. 
- 19 intensive farms, using biocides and fertilisers, averaging 20 ha. 
- 28 multicropping fields. 
- 9 abandoned meadows. 

• Number and extent of replicated patches: see above. 

• Number of networks: 1 network per site: 125 networks. 

• Type of networks: Food webs. 

• Taxonomic resolution of the nodes: genus level. 

• Total number of species and links at the regional scale:   

- 130 species; 2647 links 
- 181 species; 5174 links 
- 136 species; 3609 links 
- 144 species; 3888 links 
- 103 species; 2177 links 
- 101 species; 2002 links 
- 102 species; 2044 links 

 
• Sampling procedure (of species and interactions):   

 
Microarthropods were collected in a randomized block design and their four-fold cores (diameter 
5.8 cm×5 cm) were kept separate until behavioural extraction using the Tullgren high-gradient 
canister method with a low wattage bulb.  
 
Enchytraeids were sampled using six-fold cores (diameter 5.8 cm×15 cm, 6 rings of 2.5 cm height 
each), extracted using wet funnel extraction, identified, measured and counted. Lumbricids were 
recovered manually, identified, weighted and counted. 
 
Nematodes were extracted from 100 g soil using elutriation, sieving and cottonwool extraction. 
All individuals within two clean 10 ml water suspensions were screened, counted with a 
stereomicroscope and fixed in 4% formaldehyde. Per sample, at least 150 individuals were 
identified at genus level by light microscopy (400–600×) and assigned to feeding habits. 
 
Soil community structure was described using food-web data with M (dry body mass in µg), N 
(animals/m2) and B (dry biomass in µg/ m2, i.e. log(B) = log(N)+log(M)). A guild-lumped web was 
established for each site by taking the sub-predation-matrix determined by the trophic guilds that 



 

 

128 

were present. The presence or absence, but not the quantitative extent, of consumer–resource 
links was established using additional information from the literature.  

 

• Publication reference: Mulder C, Den Hollander HA, Hendriks AJ (2008) Aboveground Herbivory 
Shapes the Biomass Distribution and Flux of Soil Invertebrates. PLoS ONE 3(10): e3573. 
https://doi.org/10.1371/journal.pone.0003573 

 

Fragments. 

1-2. Plant-pollinator and host-parasitoid interaction networks on fragmented calcareous grasslands of 
Germany. (Gottin_pp, Gottin_hp) 

Three independent datasets were collected within this same area. 

• Study area: Göttingen, central Germany 

• Interaction types: Plant-pollinator and host-parasitoid interactions 

• Type of system: Calcareous grassland.  Semi-natural habitat of high conservation value due to 
their high biodiversity (plants and insects in particular). These grasslands are heavily fragmented 
due to agricultural landscape simplification and intensification. 

• Number and extent of fragments: 32 fragments. Area size of fragments ranged from 314 m² to 
51,395 m². 

• Number of networks: 1 plant-pollinator and 1 host-parasitoid network per fragment. This yields 
a total of 64 networks 

• Type of networks: Bipartite 

• Taxonomic resolution of the nodes: Species level in most cases (some hosts or parasitoids 
identified to genus level and then assigned to morphospecies). 

• Total number of species and links at the regional scale: 5552 plant-pollinator interactions 
among 101 plant species and 138 pollinator species. 1812 host-parasitoid interactions among 17 
host species and 21 parasitoid species. 

• Sampling procedure (of species and interactions):  

Plant-pollinator networks: Flower visitors (wild bees and hoverflies; assumed to be pollinators of 
visited plants) were sampled via five-minute-transect walks six times from April to September 
2004 within a 4 m corridor. To achieve adequate sample sizes for the differently sized grassland 
fragments, we conducted four of the 5-min-transects (total = 20 min) in eleven small fragments 
(314–1,133 m²), eight 5-min-transects (total = 40 min) in 13 medium fragments (1326–7887 m²), 
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and twelve 5-min-transects (total = 60 min) in eight large fragments (11,528–51,395 m²). Data 
from the 5-min-transects of all six sampling events were pooled per grassland fragment. 
Specimens were either identified on the wing or caught with a net and identified in the lab. The 
plant species visited was recorded for each specimen. 

Host-parasitoid networks: Parasitoids/parasites and hosts were sampled using trap nests at the 
same sites. Trap nests consisted of bundles of reed internodes of common reed Phragmites 
australis (about 150–180 reed internodes of 2–10 mm diameter in plastic tubes of 10 cm 
diameter per trap nest) exposed at a height of 100–120 cm. Depending on the fragment size, 4–
6 wooden posts with 2 trap nests each were used: 4 posts (8 trap nests) in 11 small fragments, 5 
posts (10 trap nests) in 13 medium fragments, 6 posts (12 trap nests) in eight large fragments. 
The trap nests were spread regularly over study sites and exposed at the beginning of the 
flowering period (mid-April) until autumn (beginning October). Afterwards, trap nests were 
stored in a climate chamber at 4°C and occupied reed internodes were opened. For each nest, 
the number of brood cells and number of parasitized cells were recorded. We identified host 
and parasitoid identities to genus or species level as far as possible using larvae and nest 
characteristics. Because Osmia rufa overwinter as adults, these cocoons were opened to check 
for parasitoids. All other nests were stored separately in test tubes closed with a wad of cotton 
wool. Tubes were exposed to room temperature (ca. 20°C) to end diapause. Reared adults were 
identified to species level. 

• Publication reference: Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T., & Jauker, F. 
(2018). Past and potential future effects of habitat fragmentation on structure and stability of 
plant–pollinator and host–parasitoid networks. Nature ecology & evolution, 1. 

3. Plant-leafminer-parasitoid networks from central Argentina. (Chaco) 

• Study area: Chaco Serrano District in Argentina, belonging to the most extensive dry forest in 
South America. The characteristic vegetation is low, open woodland, with a tree layer, shrubs, 
herbs and grasses, and many vines and epiphytic bromeliads. 

• Interaction types: Plant-herbivore-parasitoid interactions 

• Type of system: Woodland sites in a fragmented semi-natural landscape. The woodlands are 
mainly used for cattle grazing, and are embedded in an agricultural matrix largely dominated by 
wheat in winter and soy or maize in summer. 

• Number and extent of sites: 15 woodland sites ranging in area size from 0.13ha to 29.53ha. 

• Number of networks: 15 networks, one per site. 

• Type of networks: Unipartite. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 470 species and 1235 links. 
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• Sampling procedure (of species and interactions):  At each site, all mined leaves detected were 
collected along five 50 long, 2 m wide and 2 m high transects (100 m2) in two occasions 
(November-December 2002 and February-March 2003) within peak period of leafminer activity. 
Mined leaves were taken to the laboratory and reared adult leafminers and parasitoids, which 
were identified and counted. 

• Publication reference: Cagnolo, L., Salvo, A., & Valladares, G. (2011). Network topology: 
Patterns and mechanisms in plant-herbivore and host-parasitoid food webs. Journal of Animal 
Ecology, 80(2), 342-351. Retrieved from http://www.jstor.org/stable/41059064 

4. Ant-plant mutualistic interactions in central Amazonia. (Balbina) 

• Study area: Sub-montane dense rainforest surrounding the Balbina Dam in Central Amazon. 

• Interaction types: Amazonian ant-myrmecophyte plants. 

• Type of system: Continuous tropical forest plots and fragments surrounded by water matrix. 

• Number and extent of sites: 19 island-fragments from 2.55 to 1466 ha. 

• Number of networks: 19, one per site. 

• Type of networks: Bipartite. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 13 plant spp, 27 bird spp, 424 
interactions at the metaweb. (Mean number of species in local communities: 7.26; Mean 
number of links in local communities: 13.58). 

• Sampling procedure (of species and interactions): Interactions sampled along transects 
(600x5m), determined by the presence of ant colonies within domatia, and quantified if the 
same interaction was repeated within sites. 

• Publication reference: Emer, C., Venticinque, E. M., & Fonseca, C. R. (2013). Effects of dam-
induced landscape fragmentation on Amazonian ant–plant mutualistic networks. Conservation 
Biology, 27(4), 763-773. 

5. Bird-plant interactions in the Brazilian Atlantic forest. (Bird.displ) 

• Study area: South-East Brazilian Atlantic Forest. 

• Interaction types: Bird seed-dispersal interactions. 

• Type of system: Fragments of tropical forest surrounded by terrestrial matrix that includes crop 
plantations, pastures and urban areas. 

• Number and extent of sites: 8 fragments ranging in area sizes from 0.6 ha to 30 ha.  

• Number of networks: 8, one per fragment. 
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• Type of networks: Bipartite. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 324 plant spp, 169 bird spp, 2528 
interactions at the metaweb (Mean number of species in local communities: 62.56; Mean 
number of links in local communities: 465.38). 

• Sampling procedure (of species and interactions): Interactions determined and quantified 
based on local observations and diet sampling (faeces). This dataset compiles independent 
studies, from different authors in different years, and slightly variable methodologies. 

• Publication reference: Emer, C., Galetti, M., Pizo, M. A., Guimarães Jr, P. R., Moraes, S., Piratelli, 
A., & Jordano, P. (2018). Seed-dispersal interactions in fragmented landscapes–a metanetwork 
approach. Ecology letters, 21(4), 484-493. 

6. Trophic networks of the system of lakes in Canada. (lakes) 

• Study area: Sampled lakes occur across an area of 450,000 km2 in Ontario, Canada. 

• Interaction types: Trophic interactions. 

• Type of system: System of lakes. 

• Number and extent of sites: 128 lakes ranging in area sizes from 40 ha to 83047.9 ha. 

• Number of networks: 128, one per lake. 

• Type of networks: Unipartite. 

• Taxonomic resolution of the nodes: Species level. 

• Total number of species and links at the regional scale: 68 species and 1775 links. 

• Sampling procedure (of species and interactions): The lake data derived from the Province of 
Ontario’s Broad-scale Monitoring (BsM) fish database, with all lakes surveyed for species 
richness (number of fish species per lake), species identity, numbers of fish per species per 
lake based on standardized netting protocols among all lakes, and a range of abiotic and lake 
morphological data. Species interactions were determined via gut content analyses. 

• Publication reference: MacDougall, A. S., Harvey, E., McCune, J. L., Nilsson, K. A., Bennett, J., 
Firn, J., ... & McMeans, B. (2018). Context-dependent interactions and the regulation of species 
richness in freshwater fish. Nature communications, 9(1), 973. 
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Biogeographical. 

1. Plant-herbivore and host-parasitoid interactions observed on willow tree species (Salix spp.) 
across Europe (Kopelke et al. Ecology 2017) (Salix1, Salix2) 

• Study area: Europe - from Italy in the south to Northern Norway 

• Interaction types: Plant-herbivore and host-parasitoid interactions 

• Type of system: Different habitats where species belonging to the Salix genus are found 

• Number and extent of sites: 641 sites. Area size of sites varied between 0.01 and 1 ha 
depending on the size of individual trees 

• Number of networks: 1 plant-herbivore and 1 host-parasitoid network per tree. This yields a 
total of 641 networks of each type. 

• Type of networks: Bipartite 

• Taxonomic resolution of the nodes: Trees and herbivores are resolved to the species level. All 
trees belong to the Salix genus. All herbivores are galling sawflies. Parasitoids are sometimes 
resolved to the genus level. 

• Total number of species and links at the regional scale: 52 species of trees from the Salix genus, 
96 species of sawflies (herbivores), and 126 parasitoid taxa. 

• Sampling procedure (of species and interactions): Collection and counting of galls produced by 
the galling sawflies on the trees to identify the herbivore species, and rearing of parasitoids in 
the laboratory to identify them. 

• Publication reference: Kopelke, J. P., Nyman, T., Cazelles, K., Gravel, D., Vissault, S., & Roslin, T. 
(2017). Food-web structure of willow-galling sawflies and their natural enemies across 
Europe. Ecology, 98(6), 1730-1730. 

2. Trophic interactions between terrestrial vertebrates across Europe (unpublished). (Alpine, 
Anatolian, Arctic, Atlantic, Black Sea, Boreal, Continental, Mediterranean, Pannonian, Steppic) 

• Study area: Europe - from Portugal in the west to the Ural Mountains in the east and from 
Iceland in the north to the Mediterranean Sea in the south. Divided into 10 biogeographical 
regions: Alpine, Anatolian, Arctic, Atlantic, Black Sea, Boreal, Continental, Mediterranean, 
Pannonian, Steppic. 

• Interaction types: Trophic interactions. 

• Type of system: All terrestiral habitats and biogeographical regions in Europe 

• Number and extent of sites: Maps of the European bioregions were divided in 10 x 10 Km cells. 
The number of cells varied among bioregions and were always of the same size. 
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• Number of networks: 1 trophic network per aggregation of cells from 1 to the maximum 
number of cells per bioregion 

• Type of networks: Unipartite 

• Taxonomic resolution of the nodes: All terrestrial vertebrates were resolved to the species level 

• Total number of species and links at the regional scale: 1140 species and 69724 links at the 
European level, without dividing by biogeographical regions. 

• Sampling procedure (of species and interactions): Species distribution maps were obtained 
from expert knowledge and models of habitat cover (as explained in Maiorano et al. 2013) and 
interactions were collected from literature records (including atlas, books and research articles) 
and expert knowledge. 

• Publication reference: Unpublished. 

3. Trophic interactions between terrestrial vertebrates in the Pyrenees. (Pyrenees) 

• Study area: southeastern slopes of the Pyrenees (Iberian Peninsula side), from the highest 
creeks in the centre of the mountain range to the Mediterranean Sea in the east, covering a 
región of 900000 ha with elevations between 255 and 3140 m.a.s.l. 

• Interaction types: Trophic interactions. 

• Type of system: All terrestiral habitats. 

• Number and extent of sites: 92 cells of 10 x 10 Km. 

• Number of networks: 1 trophic network per aggregation of cells from 1 to the maximum 
number of cells (i.e., 92 food webs). 

• Type of networks: Unipartite 

• Taxonomic resolution of the nodes: All terrestrial vertebrates were resolved to the species 
level. 

• Total number of species and links at the regional scale: 212 species and 846 interactions. 

• Sampling procedure (of species and interactions): Species presence/absence was extracted 
from public databases and extensive bibliography search. Interactions were inferred based on 
species co-occurrence in space and habitat. 

• Publication reference: Lurgi, M., López, B. C., & Montoya, J. M. (2012). Novel communities from 
climate change. Philosophical Transactions of the Royal Society of London B: Biological 
Sciences, 367(1605), 2913-2922. 
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Appendix S3.2. Power function fit for the relationship of each network property analysed with area size 
for each dataset. P-value significance is shown by: ° < 0.1, *<0.05, ** < 0.01, *** < 0.001. We used 
nonlinear least squares (NLS) with the ’nls’ function in R. 

 

  dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 species 0.308 0.0018 173.98*** Replicates mutualistic 

Garraf_pp species 0.566 0.0019 299.12*** Replicates mutualistic 

Montseny species 0.472 0.0029 161.90*** Replicates mutualistic 

Nahuel species 0.466 0.0032 143.51*** Replicates mutualistic 

Garraf_hp species 0.548 0.0032 173.74*** Replicates antagonistic 

Olot species 0.382 0.0034 111.26*** Replicates antagonistic 

Quecus species 0.294 0.0019 153.14*** Replicates antagonistic 

Soil1 species 0.248 0.0015 168.26*** Replicates foodweb 

Soil2 species 0.288 0.0026 112.64*** Replicates foodweb 

Soil3 species 0.250 0.0014 180.22*** Replicates foodweb 

Soil4 species 0.255 0.0015 170.48*** Replicates foodweb 

Soil5 species 0.331 0.0052 63.94*** Replicates foodweb 

Soil6 species 0.253 0.0015 167.33*** Replicates foodweb 

Soil7 species 0.263 0.0017 157.62*** Replicates foodweb 

Bristol species 0.113 0.0007 152.96*** Replicates foodweb 

Sanak species 0.205 0.0005 399.25*** Replicates foodweb 

Gottin_pp species 0.159 0.0181 8.80*** Islands mutualistic 

Gottin_hp species 0.057 0.0386  1.49 Islands antagonistic 

Bird.disp species 0.220 0.0628 3.50** Islands mutualistic 

Balbina species 0.142  0.0743   1.92° Islands mutualistic 

Chaco species 0.105 0.0209 5.05** Islands antagonistic 

Lakes species 0.076 0.0156 4.91** Islands foodweb 

Pyrenees species 0.241 0.0070 34.42*** Biogeography foodweb 

Alpine species 0.546 0.0019 283.24*** Biogeography foodweb 

Mediterranean species 0.158 0.0002 789.64*** Biogeography foodweb 

Steppic species 0.225 0.0010 219.11*** Biogeography foodweb 

Boreal species 0.160 0.0002 914.39*** Biogeography foodweb 

Continental species 0.212 0.0007 319.18*** Biogeography foodweb 

BlackSea species 0.147 0.0016 90.11*** Biogeography foodweb 

Atlantic species 0.212 0.0007 310.46*** Biogeography foodweb 

Arctic species 0.766 0.0030 257.98*** Biogeography foodweb 

Pannonian species 0.033 0.0002 140.84*** Biogeography foodweb 

Anatolian species 0.118 0.0004 299.74*** Biogeography foodweb 

Salix1 species 0.213 0.0037 58.18*** Biogeography antagonistic 

Salix2 species 0.311 0.0030 102.46*** Biogeography antagonistic 
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dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 links 0.461 0.0039 117.73*** Replicates mutualistic 

Garraf_pp links 0.694 0.0024 286.16*** Replicates mutualistic 

Montseny links 0.693 0.0043 162.02*** Replicates mutualistic 

Nahuel links 0.612 0.0038 161.92*** Replicates mutualistic 

Garraf_hp links 0.763 0.0047 163.87*** Replicates antagonistic 

Olot links 0.569 0.0039 144.60*** Replicates antagonistic 

Quecus links 0.469 0.0027 174.36*** Replicates antagonistic 

Soil1 links 0.431 0.0032 136.83*** Replicates foodweb 

Soil2 links 0.512 0.0050 102.23*** Replicates foodweb 

Soil3 links 0.414 0.0025 162.39*** Replicates foodweb 

Soil4 links 0.424 0.0030 140.13*** Replicates foodweb 

Soil5 links 0.567 0.0099 57.53*** Replicates foodweb 

Soil6 links 0.444 0.0032 140.27*** Replicates foodweb 

Soil7 links 0.454 0.0034 131.93*** Replicates foodweb 

Bristol links 0.186 0.0019 96.19*** Replicates foodweb 

Sanak links 0.268 0.0007 377.86*** Replicates foodweb 

Chaco links 0.160 0.0260 6.17*** Islands antagonistic 

Gottin_pp links 0.208 0.0242 8.59*** Islands mutualistic 

Gottin_hp links 0.064 0.0504 1.27 Islands mutualistic 

Balbina links 0.162 0.0894 1.81° Islands mutualistic 

Bird.disp links 0.449 0.1747 2.57* Islands mutualistic 

Lakes links 0.127 0.0230 5.51*** Islands foodweb 

Pyrenees links 0.369 0.0128 28.75*** Biogeography foodweb 

Alpine links 1.209 0.0032 378.06*** Biogeography foodweb 

Mediterranean links 0.281 0.0005 528.86*** Biogeography foodweb 

Steppic links 0.572 0.0031 184.62*** Biogeography foodweb 

Boreal links 0.262 0.0003 860.01*** Biogeography foodweb 

Continental links 0.490 0.0020 244.90*** Biogeography foodweb 

BlackSea links 0.259 0.0031 82.26*** Biogeography foodweb 

Atlantic links 0.444 0.0022 202.70*** Biogeography foodweb 

Arctic links 1.061 0.0044 242.72*** Biogeography foodweb 

Pannonian links 0.060 0.0007 90.85*** Biogeography foodweb 

Anatolian links 0.230 0.0009 256.95*** Biogeography foodweb 

Salix1 links 0.267 0.0046 58.51*** Biogeography antagonistic 

Salix2 links 0.565 0.0036 154.88*** Biogeography antagonistic 
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dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 links/sp 0.174 0.0029 60.59*** Replicates mutualistic 

Garraf_pp links/sp 0.144 0.0009 153.81*** Replicates mutualistic 

Montseny links/sp 0.231 0.0020 116.15*** Replicates mutualistic 

Nahuel links/sp 0.165 0.0029 57.39*** Replicates mutualistic 

Garraf_hp links/sp 0.219 0.0027 79.89*** Replicates antagonistic 

Olot links/sp 0.204 0.0033 61.74*** Replicates antagonistic 

Quecus links/sp 0.188 0.0016 117.89*** Replicates antagonistic 

Soil1 links/sp 0.202 0.0022 93.45*** Replicates foodweb 

Soil2 links/sp 0.239 0.0029 81.91*** Replicates foodweb 

Soil3 links/sp 0.179 0.0014 125.88*** Replicates foodweb 

Soil4 links/sp 0.186 0.0017 110.66*** Replicates foodweb 

Soil5 links/sp 0.263 0.0050 52.30*** Replicates foodweb 

Soil6 links/sp 0.210 0.0020 105.50*** Replicates foodweb 

Soil7 links/sp 0.217 0.0019 111.21*** Replicates foodweb 

Bristol links/sp 0.094 0.0017 55.13*** Replicates foodweb 

Sanak links/sp 0.080 0.0004 219.42*** Replicates foodweb 

Chaco links/sp 0.051 0.0130 3.93*** Islands antagonistic 

Gottin_pp links/sp 0.073 0.0124 5.90*** Islands mutualistic 

Gottin_hp links/sp 0.017 0.0199 0.89 Islands mutualistic 

Balbina links/sp 0.034 0.0211 1.61 Islands mutualistic 

Bird.disp links/sp 0.071 0.0200 3.56*** Islands mutualistic 

Lakes links/sp 0.047 0.0126 3.76*** Islands foodweb 

Pyrenees links/sp 0.144 0.0059 24.19*** Biogeography foodweb 

Alpine links/sp 0.453 0.0021 213.95*** Biogeography foodweb 

Mediterranean links/sp 0.130 0.0003 400.79*** Biogeography foodweb 

Steppic links/sp 0.197 0.0012 169.22*** Biogeography foodweb 

Boreal links/sp 0.095 0.0001 737.96*** Biogeography foodweb 

Continental links/sp 0.167 0.0007 226.67*** Biogeography foodweb 

BlackSea links/sp 0.136 0.0015 90.04*** Biogeography foodweb 

Atlantic links/sp 0.175 0.0009 194.89*** Biogeography foodweb 

Arctic links/sp 0.515 0.0025 207.90*** Biogeography foodweb 

Pannonian links/sp 0.025 0.0004 58.88*** Biogeography foodweb 

Anatolian links/sp 0.107 0.0004 250.70*** Biogeography foodweb 

Salix1 links/sp 0.078 0.0016 47.21*** Biogeography antagonistic 

Salix2 links/sp 0.276 0.0024 112.68*** Biogeography antagonistic 
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dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 indegree 0.327 0.0032 102.81*** Replicates mutualistic 

Garraf_pp indegree 0.218 0.0015 148.23*** Replicates mutualistic 

Montseny indegree 0.379 0.0039 96.60*** Replicates mutualistic 

Nahuel indegree 0.210 0.0062 33.95*** Replicates mutualistic 

Garraf_hp indegree 0.298 0.0037 79.61*** Replicates antagonistic 

Olot indegree 0.524 0.0056 93.78*** Replicates antagonistic 

Quecus indegree 0.068 0.0024 28.33*** Replicates antagonistic 

Soil1 indegree 0.202 0.0022 93.45*** Replicates foodweb 

Soil2 indegree 0.239 0.0029 81.91*** Replicates foodweb 

Soil3 indegree 0.179 0.0014 125.88*** Replicates foodweb 

Soil4 indegree 0.186 0.0017 110.66*** Replicates foodweb 

Soil5 indegree 0.263 0.0050 52.30*** Replicates foodweb 

Soil6 indegree 0.210 0.0020 105.50*** Replicates foodweb 

Soil7 indegree 0.217 0.0019 111.21*** Replicates foodweb 

Bristol indegree 0.094 0.0017 55.13*** Replicates foodweb 

Sanak indegree 0.043 0.0003 137.03*** Replicates foodweb 

Lakes indegree 0.015 0.0254 0.59 Islands foodweb 

Chaco indegree 0.051 0.0130 3.93** Islands antagonistic 

Gottin_hp indegree -0.001 0.0397 -0.04 Islands antagonistic 

Gottin_pp indegree 0.065 0.0262 2.49* Islands mutualistic 

Bird.disp indegree 0.158 0.0459 3.44** Islands mutualistic 

Balbina indegree 0.048 0.0398 1.21 Islands mutualistic 

Pyrenees indegree 0.075 0.0047 15.96*** Biogeography foodweb 

Alpine indegree 0.507 0.0028 182.64*** Biogeography foodweb 

Mediterranean indegree 0.149 0.0003 472.85*** Biogeography foodweb 

Steppic indegree 0.222 0.0015 148.99*** Biogeography foodweb 

Boreal indegree 0.058 0.0002 313.09*** Biogeography foodweb 

Continental indegree 0.202 0.0010 212.67*** Biogeography foodweb 

BlackSea indegree 0.141 0.0014 97.65*** Biogeography foodweb 

Atlantic indegree 0.148 0.0009 171.20*** Biogeography foodweb 

Arctic indegree 0.358 0.0026 139.23*** Biogeography foodweb 

Pannonian indegree 0.030 0.0005 56.15*** Biogeography foodweb 

Anatolian indegree 0.123 0.0004 315.64*** Biogeography foodweb 

Salix1 indegree 0.129 0.0029 44.23*** Biogeography antagonistic 

Salix2 indegree 0.279 0.0045 61.28*** Biogeography antagonistic 
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dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 potential_indegree -0.179 0.0011 -169.31*** Replicates mutualistic 

Garraf_pp potential_indegree -0.218 0.0013 -173.69*** Replicates mutualistic 

Montseny potential_indegree -0.250 0.0018 -135.97*** Replicates mutualistic 

Nahuel potential_indegree -0.199 0.0018 -113.50*** Replicates mutualistic 

Garraf_hp potential_indegree -0.216 0.0048 -45.07*** Replicates antagonistic 

Olot potential_indegree -0.175 0.0033 -52.55*** Replicates antagonistic 

Quecus potential_indegree -0.159 0.0014 -117.77*** Replicates antagonistic 

Soil1 potential_indegree -0.014 0.0013 -10.64*** Replicates foodweb 

Soil2 potential_indegree -0.007 0.0019 -3.78** Replicates foodweb 

Soil3 potential_indegree -0.034 0.0010 -32.84*** Replicates foodweb 

Soil4 potential_indegree -0.041 0.0010 -43.51*** Replicates foodweb 

Soil5 potential_indegree 0.004 0.0022 1.90° Replicates foodweb 

Soil6 potential_indegree -0.067 0.0011 -63.12*** Replicates foodweb 

Soil7 potential_indegree -0.016 0.0013 -12.49*** Replicates foodweb 

Bristol potential_indegree -0.095 0.0018 -52.83*** Replicates foodweb 

Sanak potential_indegree -0.075 0.0002 -352.23*** Replicates foodweb 

Gottin_hp potential_indegree -0.026 0.0237 -1.11 Islands antagonistic 

Chaco potential_indegree -0.037 0.0112 -3.27** Islands antagonistic 

Gottin_pp potential_indegree -0.099 0.0219 -4.50** Islands mutualistic 

Bird.disp potential_indegree 0.031 0.0623 0.49 Islands mutualistic 

Balbina potential_indegree -0.049 0.0247 -1.99° Islands mutualistic 

Lakes potential_indegree 0.008 0.0132 0.57 Islands foodweb 

Alpine potential_indegree -0.029 0.0003 -90.36*** Biogeography foodweb 

Mediterranean potential_indegree -0.020 0.0001 -214.41*** Biogeography foodweb 

Pyrenees potential_indegree -0.112 0.0056 -20.05*** Biogeography foodweb 

Steppic potential_indegree -0.007 0.0002 -28.27*** Biogeography foodweb 

Boreal potential_indegree -0.071 0.0001 -486.31*** Biogeography foodweb 

Continental potential_indegree -0.015 0.0001 -139.41*** Biogeography foodweb 

BlackSea potential_indegree -0.016 0.0004 -37.44*** Biogeography foodweb 

Atlantic potential_indegree -0.050 0.0002 -282.73*** Biogeography foodweb 

Arctic potential_indegree -0.096 0.0021 -45.81*** Biogeography foodweb 

Pannonian potential_indegree 0.001 0.0003 2.09* Biogeography foodweb 

Anatolian potential_indegree 0.003 0.0002 16.91*** Biogeography foodweb 

Salix1 potential_indegree -0.042 0.0011 -36.61*** Biogeography antagonistic 

Salix2 potential_indegree -0.265 0.0043 -61.80*** Biogeography antagonistic 
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dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 ratio -0.158 0.0040 -39.68*** Replicates mutualistic 

Garraf_pp ratio 0.199 0.0022 90.38*** Replicates mutualistic 

Montseny ratio -0.108 0.0062 -17.44*** Replicates mutualistic 

Nahuel ratio 0.310 0.0053 58.83*** Replicates mutualistic 

Garraf_hp ratio 0.092 0.0035 25.88*** Replicates antagonistic 

Olot ratio -0.251 0.0048 -51.97*** Replicates antagonistic 

Quecus ratio 0.182 0.0029 62.95*** Replicates antagonistic 

Soil1 ratio -0.029 0.0029 -10.22*** Replicates foodweb 

Soil2 ratio 0.020 0.0048 4.28*** Replicates foodweb 

Soil3 ratio -0.021 0.0016 -13.18*** Replicates foodweb 

Soil4 ratio -0.039 0.0019 -20.36*** Replicates foodweb 

Soil5 ratio -0.038 0.0029 -12.92*** Replicates foodweb 

Soil6 ratio 0.040 0.0018 22.20*** Replicates foodweb 

Soil7 ratio -0.004 0.0019 -2.14* Replicates foodweb 

Bristol ratio 0.114 0.0021 53.20*** Replicates foodweb 

Sanak ratio 0.023 0.0004 65.87*** Replicates foodweb 

Lakes ratio 0.018 0.0333 0.54 Islands foodweb 

Chaco ratio -0.007 0.0113 -0.64 Islands antagonistic 

Gottin_hp ratio 0.036 0.0338 1.06 Islands antagonistic 

Gottin_Pp ratio 0.057 0.0380 1.50 Islands mutualistic 

Bird.disp ratio 0.122 0.2178 0.56 Islands mutualistic 

Balbina ratio 0.012 0.0514 0.23 Islands mutualistic 

Pyrenees ratio 0.062 0.0050 12.29*** Biogeography foodweb 

Alpine ratio -0.004 0.0005 -7.21*** Biogeography foodweb 

Mediterranean ratio -0.021 0.0001 -305.02*** Biogeography foodweb 

Steppic ratio -0.009 0.0002 -41.04*** Biogeography foodweb 

Boreal ratio 0.033 0.0002 212.44*** Biogeography foodweb 

Continental ratio -0.016 0.0002 -103.05*** Biogeography foodweb 

BlackSea ratio -0.006 0.0003 -18.61*** Biogeography foodweb 

Atlantic ratio 0.024 0.0002 130.67*** Biogeography foodweb 

Arctic ratio 0.118 0.0017 69.97*** Biogeography foodweb 

Pannonian ratio -0.004 0.0002 -24.31*** Biogeography foodweb 

Anatolian ratio -0.019 0.0002 -81.38*** Biogeography foodweb 

Salix1 ratio 0.022 0.0055 3.98*** Biogeography antagonistic 

Salix2 ratio 0.211 0.0087 24.31*** Biogeography antagonistic 
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dataset property z-exponent Std..Error t.value data_type interaction_type 

Garraf_pp2 modularity -0.024 0.0028 -8.79*** Replicates mutualistic 

Garraf_pp modularity -0.061 0.0010 -60.34*** Replicates mutualistic 

Montseny modularity -0.162 0.0022 -74.59*** Replicates mutualistic 

Nahuel modularity -0.077 0.0027 -28.47*** Replicates mutualistic 

Garraf_hp modularity -0.084 0.0028 -30.17*** Replicates antagonistic 

Olot modularity -0.085 0.0031 -27.04*** Replicates antagonistic 

Quecus modularity -0.104 0.0017 -63.20*** Replicates antagonistic 

Soil1 modularity -0.030 0.0110 -2.77** Replicates foodweb 

Soil2 modularity -0.012 0.0340 -0.36 Replicates foodweb 

Soil3 modularity 0.161 0.0188 8.57 Replicates foodweb 

Soil4 modularity -0.469 0.0617 -7.60*** Replicates foodweb 

Soil5 modularity -0.273 0.0805 -3.39*** Replicates foodweb 

Soil6 modularity -0.750 0.0527 -14.22*** Replicates foodweb 

Soil7 modularity -0.802 0.0595 -13.48*** Replicates foodweb 

Bristol modularity 0.103 0.0063 16.52*** Replicates foodweb 

Sanak modularity -0.013 0.0011 -12.21*** Replicates foodweb 

Lakes modularity 0.077 0.0444 1.74 Islands foodweb 

Chaco modularity -0.041 0.0126 -3.25** Islands antagonistic 

Gottin_hp modularity 0.023 0.0191 1.23 Islands antagonistic 

Gottin_pp modularity 0.022 0.0193 1.13 Islands mutualistic 

Bird.disp modularity -0.049 0.0540 -0.91 Islands mutualistic 

Balbina modularity -0.094 0.0717 -1.32 Islands mutualistic 

Pyrenees modularity -0.001 0.0197 -0.04 Biogeography foodweb 

Alpine modularity -0.256 0.0051 -50.29*** Biogeography foodweb 

Mediterranean modularity -0.043 0.0003 -129.90*** Biogeography foodweb 

Steppic modularity -0.099 0.0006 -156.52*** Biogeography foodweb 

Boreal modularity -0.248 0.0029 -86.24*** Biogeography foodweb 

Continental modularity -0.091 0.0004 -237.79*** Biogeography foodweb 

BlackSea modularity -0.120 0.0020 -59.64*** Biogeography foodweb 

Atlantic modularity -0.111 0.0088 -12.66*** Biogeography foodweb 

Pannonian modularity -0.027 0.0005 -56.49*** Biogeography foodweb 

Anatolian modularity -0.119 0.0033 -35.96*** Biogeography foodweb 

Salix1 modularity -0.017 0.0015 -11.27*** Biogeography antagonistic 

Salix2 modularity -0.075 0.0042 -17.85*** Biogeography antagonistic 
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Appendix S3.3. Pairwise comparison results for interaction types. Comparisons between interaction types 
using Wilcoxon rank sum test of the z-exponents of the power relationships (in order): species-area, links-
area, links/species-area, links-species, indegree-area, potential indegree-area. ‘Mut.’ corresponds to 
mutualistic interactions; ‘Ant.’ to antagonistic interactions; ‘Food.’ correspond to food webs. 

 
 

 

 

 
  

 z SAR z LAR z L.SAR z L-S z Indegree z Potential 

 Mut. Ant. Mut. Ant. Mut. Ant. Mut. Ant. Mut. Ant. Mut. Ant. 

Food. 0.33 0.33 0.53 0.80 0.73 0.93 <0.001 0.03 1 1 0.025 0.025 

Ant. 0.59  0.82  0.73  0.16  1  0.710  
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Appendix S3.4. Power function fit for for the links-species relationship for each dataset. P-value 
significance is shown by: ° < 0.1, *<0.05, ** < 0.01, *** < 0.001. We used nonlinear least squares (NLS) 
with the ’nls’ function in R. 
 

dataset property Estimate Std..Error t.value data_type interaction_type 

Garraf_pp2 links 1.555 0.0084 184.04*** Replicates mutualistic 

Garraf_pp links 1.236 0.0021 600.88*** Replicates mutualistic 

Montseny links 1.510 0.0045 333.51*** Replicates mutualistic 

Nahuel links 1.312 0.0076 173.76*** Replicates mutualistic 

Garraf_hp links 1.423 0.0067 212.29*** Replicates antagonistic 

Olot links 1.455 0.0120 121.51*** Replicates antagonistic 

Quecus links 1.619 0.0070 232.39*** Replicates antagonistic 

Soil1 links 1.770 0.0070 253.39*** Replicates foodweb 

Soil2 links 1.810 0.0088 206.84*** Replicates foodweb 

Soil3 links 1.698 0.0045 377.86*** Replicates foodweb 

Soil4 links 1.726 0.0048 360.43*** Replicates foodweb 

Soil5 links 1.769 0.0086 205.38*** Replicates foodweb 

Soil6 links 1.873 0.0067 278.82*** Replicates foodweb 

Soil7 links 1.790 0.0052 343.29*** Replicates foodweb 

Bristol links 1.697 0.0118 144.09*** Replicates foodweb 

Sanak links 1.342 0.0018 749.63*** Replicates foodweb 

Lakes links 1.369 0.0663 20.63*** Islands foodweb 

Chaco links 1.394 0.1051 13.26*** Islands antagonistic 

Gottin_hp links 1.268 0.0858 14.78*** Islands antagonistic 

Gottin_pp links 1.320 0.0836 15.79*** Islands mutualistic 

Bird.disp links 1.301 0.0399 32.57*** Islands mutualistic 

Balbina links 1.211 0.0674 17.99*** Islands mutualistic 

Pyrenees links 1.586 0.0188 84.46*** Biogeography foodweb 

Alpine links 1.968 0.0021 941.35*** Biogeography foodweb 

Mediterranean links 1.800 0.0014 1269.26*** Biogeography foodweb 

Steppic links 1.981 0.0012 1669.36*** Biogeography foodweb 

Boreal links 1.613 0.0004 4064.64*** Biogeography foodweb 

Continental links 1.947 0.0010 1994.67*** Biogeography foodweb 

BlackSea links 1.908 0.0034 557.06*** Biogeography foodweb 

Atlantic links 1.947 0.0019 1012.57*** Biogeography foodweb 

Arctic links 1.548 0.0014 1101.58*** Biogeography foodweb 

Pannonian links 1.826 0.0097 188.43*** Biogeography foodweb 

Anatolian links 1.878 0.0028 660.36*** Biogeography foodweb 

Salix1 links 1.321 0.0062 213.21*** Biogeography antagonistic 

Salix2 links 1.962 0.0128 152.78*** Biogeography antagonistic 



 
 

 
 
 
 

Chapter 4 

GEOGRAPHICAL VARIATION OF THE SPATIAL 

SCALING OF NETWORK STRUCTURE  





4.1 TITLE OF THE SCIENTIFIC ARTICLE: 

The spatial scaling of network structure across European biogeographical regions5 
 
ABSTRACT 

Aim: The species-area relationship (SAR) has been one of the most fundamental properties in ecology. 
Yet, ecological communities are not only constituted by the species present in a region but also by the 
interactions between them. Whether the structure of the complex network of interactions changes with 
area size and which are the main mechanisms affecting these changes, is still largely unknown. Here, we 
analysed the spatial scaling of network structure across Europe and asked whether there is geographical 
variation in the specific shape of the network-area relationships (NARs), what are the main environmental 
determinants of the variation observed between biogeographical regions and what is the contribution of 
species richness for the patterns observed. 

Location: Europe. 

Time period: Present. 

Major taxa studied: Terrestrial vertebrates. 

Methods: We combined species distribution maps for all European terrestrial vertebrate species and an 
expert-based metaweb (1141 species and 69,724 links) with all potential interactions, to determine the 
terrestrial vertebrate assemblage at each 10km cell within Europe. We then considered ten 
biogeographical regions in Europe and analysed how network structure scales with increasing area size in 
each of them. At each spatial scale, we analysed eight different network metrics reflecting the complexity 
(i.e., number of species and links, and number of links per species, mean generality and vulnerability) and 
vertical diversity (i.e., proportion of species per trophic level) of the resulting ecological communities. We 
then analysed the contribution of species richness and the main environmental determinants for the 
differences observed in the spatial scaling of the different biogeographical regions. 

Results: The spatial scaling of network complexity strongly varied across biogeographical regions. 
However, once variation in the spatial scaling of species richness across Europe was accounted for, 
differences in the shape of the NARs disappeared. Instead, network vertical diversity remained remarkably 
stable across biogeographical regions and across spatial scales, despite the great variation in species 
richness. The spatial variation in the mean annual temperature and the spatial clustering of habitats 
showed to be the main determinants of the shape of SARs across Europe. 

Main conclusions: Species richness emerges as a faithful predictor of network complexity but not of 
network vertical diversity. The universalities found in the proportion of species across trophic levels 
indicate that ecological communities preserve basic structural properties that are scale invariant which 
might be beneficial for their persistence and stability. 

                                                
5 This chapter represents a collaboration with Miguel Lurgi, Joao Braga, Ceres Barros, Luigi Maiorano, Francesco 

Ficetola, Wilfried Thuiller and José M. Montoya. In preparation to submit to Global Ecology and Biogeography. 
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4.2 INTRODUCTION 

One of the most fundamental patterns in ecology is the increase of the total number of species 

as the area sampled increases [79], [81], [83]. The species-area relationship (SAR) has been established 

as a fundamental property of biological systems [82], [83] and an important tool for the disciplines of 

conservation biology and landscape ecology [178]–[180]. Yet, ecological communities are composed not 

only of the collection of species co-occurring in space, but also of interactions connecting them – the so-

called species interaction network. Biological diversity should be thus measured in terms of both species 

and their biotic interactions. 

Biotic interactions affect species’ spatial distributions through several mechanisms, such as 

inhibition (e.g., in trophic or competitive interactions) or facilitation (e.g., in mutualistic or commensalistic 

interactions), at every spatial scale [36], [243], [244]. Furthermore, recent studies also suggest that they 

can influence species responses to environmental perturbations, like climate change or biological 

invasions [158], [217], [245]. Habitat destruction and fragmentation have been shown to not only affect 

species richness, but also the diversity and structure of their trophic interactions [2], [207], [209]. The 

study of the spatial scaling of biodiversity should thus, not only account for the changes in species richness 

but also interaction network structure [103], [109], [242]. 

Several factors have been proposed to explain the variation found in the strength and slope of 

SARs [94], [219]. These include, but are not limited to: the spatial scale of observation [94], [219], [246], 

[247], the taxonomic group or the species trophic rank considered [248], [249] and environmental factors, 

such as geographical gradients [94], [248] or the habitat heterogeneity of the region [94], [250]–[252]. In 

contrast, research on the possible mechanisms affecting the spatial scaling of network structure has just 

started. Different theoretical approaches have suggested possible mechanisms affecting the variation of 

network structure across spatial scales [86], [109], [242], [253]. In chapter 2 [124], I presented a 

theoretical framework that predicts the existence of a number of network-area relationships (NARs) 

arising from different spatial mechanisms and assembly processes. The main mechanisms proposed are 

the existence of different SARs across trophic levels, the preferential selection of generalist species at 

small spatial extents and the effect of dispersal limitation promoting beta-diversity. Empirical approaches 

are, however, missing. One exception to this lack of empirical knowledge, together with the work 

developed in chapter 3, is the work by Wood and colleagues [103], where the authors analysed the effects 

of spatial scale when sampling marine intertidal food webs in Alaska. They found that most of the changes 

observed in food web structure across spatial scales were controlled by changes in species richness and 

food web connectance. 
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It is empirically well-supported, and properly understood theoretically, that many aspects of 

network structure change systematically with changes in food web species diversity and connectance [99], 

[100], [102], [150], [254]. An increase in species richness will necessarily generate an increase in the 

number of links that will further alter the connectivity of the food web depending on the scaling of the 

number of links with species richness (see [104], [107], [108]. Moreover, at equal number of species, 

networks with different connectances are expected to have different degree distributions [150]. 

Comparative studies addressing the variation in network properties must, therefore, account for the 

effect of changes in species richness and connectance on the rest of the food web properties. This is 

particularly relevant in studies where a gradient in diversity exists, such as biogeographical studies, 

because of the latitudinal gradient in species richness [151], [152], or studies addressing multiple spatial 

scales, because of the spatial scaling in diversity [79], [81], [83]. 

Empirically documenting network structure across spatial scales, can be extremely costly and 

time-consuming [112]. Especially so if one attempts to analyse vast ranges of spatial extents, like it has 

been done for SARs. Instead of solely relying on observed interactions, the occurrence of biotic 

interactions can also be inferred from known and expert knowledge on who eats whom, coupled with 

measurable information on species distributions, species traits and environmental conditions. The use of 

potential networks or ’metawebs’ (sensu Dunne [5] is thus rising due to the increasing amount of high 

quality data available and the development of new analytical tools that allow to better predict the 

presence/absence of interactions [112]–[115]. This diversification of tools to assemble ecological 

communities together with increasingly powerful predictive models for species distributions, opens new 

avenues to analyse and quantify network structure at large biogeographical scales. 

Here we use the potential food web of European terrestrial vertebrate species, and their 

continental distribution, to determine: 1) whether different aspects of network structure are equally 

affected by area size, 2) whether there is geographical variation across Europe in the spatial scaling of 

network structure, 3) what are the main environmental determinants of the variation among 

biogeographical regions and 4) what is the contribution of species richness to the patterns observed in 

NARs. We combined species distribution maps for all terrestrial vertebrate species in Europe and an 

expert-based metaweb with all their potential trophic interactions to determine the structure of local 

food webs at each 10 x 10 Km pixel within Europe. We then considered ten European bio-geographical 

regions and analysed the spatial scaling of network structure in each of them. We analysed eight different 

network metrics reflecting the complexity (i.e., number of species, links and links per species, mean 

generality and vulnerability) and the vertical diversity (i.e., proportion of species per trophic level) of the 
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resulting ecological communities. We additionally analysed the contribution of species richness for the 

patterns observed and the main environmental determinants of the differences in the shape of SARs 

across Europe. 

4.3 METHODS 

We built network-area relationships (NARs) (sensu [124]) by quantifying measures of food web 

structure at different spatial scales, from local to regional. We used two sources of information to infer 

trophic links between species: (i) species presence at the spatial scale analysed (based on species 

distribution maps), and (ii) the existence of a trophic interaction between pairs of species in the metaweb 

(i.e. the network of all potential interactions between species in Europe). We then determined specific 

NARs for different biogeographical regions in Europe and compared their shapes. We analysed the 

relationships between all network metrics with species richness, and we finally analysed the 

environmental and spatial factors determining the shape of SARs across biogeographical regions. 

4.3.1 Study area and species distributions 

The study area comprises the entire European sub-continent, except Macaronesia. Portugal and 

Iceland are the southernmost and northernmost westward limits, respectively, and the Ural Mountains 

are the easternmost limit (Figure 1). The region is limited by Fennoscandia in the north, and the 

Mediterranean coast in the south. Turkey, geographically part of Asia, was also included to provide a 

complete picture of the Mediterranean coast [255]. We refer to this area as Europe. Species distribution 

maps were obtained from a previous study by Maiorano et al. (2013), who estimated them from expert-

based distribution models in which species presence was filtered by habitat preferences across their 

known distribution. Their method relied on georeferenced presence data points of terrestrial vertebrate 

species across Europe, extracted from digital repositories, and expert knowledge on the habitat 

requirements and environmental factors most likely limiting the distribution of all the terrestrial 

vertebrate species for which they had records in Europe. Thus, distribution estimates incorporating 

information on habitat suitability, elevation range and distance to water (the main variables identified by 

the authors as relevant for inferring these species’ distributions) yielded maps at 300m resolution for 510 

species of breeding birds, 288 mammals, 239 reptiles, and 103 amphibian species, which together 

conform our species database. A full account of the methodology used to obtain the distribution maps, 

including all the sources of data can be found in [255]. We up-scaled all species range maps to a 10 Km 

resolution by considering a species to be present on a given 10 x 10 Km cell if it was present in at least 

one of the 300 x 300 m cells within it. This upscaling procedure was performed to: 1) facilitate the 
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expression of the effects of habitat heterogeneity on network structure at different spatial scales, and 2) 

because presence data was coarser for many of the species studied species (e.g., 50Km), with 10Km cell 

sizes representing a good compromise between the largest and smallest species. 

4.3.2 European terrestrial vertebrate metaweb 

Trophic interactions between all species in the database were estimated based on literature 

reviews and expert knowledge. A trophic interaction was considered feasible between any pair of species 

when one of the species potentially preys on any life stage of another species (e.g., egg and larval when 

applicable, juvenile or adult). Trophic interactions between a predator and a prey were identified from 

published accounts of their observation, morphological similarities between potential prey and literature-

referenced prey and, in the few cases where this information was absent, the diet of the predator’s sister 

species. Sister species were defined as the closest genus-level relative found in the dataset. The inferred 

interactions thus comprised all potential interactions between terrestrial vertebrate species in the 

European region. Note that interactions specified in this way may not be realised in all locations or time 

periods. 

4.3.3 Local assemblages and food web properties 

Local assemblages were built by intersecting the metaweb information with the distribution maps 

of the species. Thus, for each 10 x 10 Km cell in the map, we considered all species present and determined 

the interactions between them using the information provided by the metaweb. If a given species was 

present in a cell, but had no available prey or did not share a common habitat type with any of its prey, 

the species was considered absent in that particular location (i.e., we assume a false positive in the 

distribution data; [86]. Once we built food webs using the criteria outlined above, we analysed their 

structure by quantifying several network properties that are commonly used in the literature to study 

food webs [256]. We classified these properties into two broad categories: complexity and vertical 

diversity. 

To quantify food web complexity, we measured: number of species (S), number of links (L), links 

per species (L/S), mean vulnerability (the average number of predators per prey species; 

f∑ ]aTg($[hi	[j	hklmn )o
$pqrs
t ), and mean generality (the average number of prey items per predator; 

f∑ ]a($[hi	[j	hkl )o
$pq
t ). Vertical diversity, on the other hand, was quantified by measuring the fraction of 

basal (B), intermediate (I) and top (T) species (i.e., species without prey, with both prey and predators, 
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and without predators, respectively). It is important to note that basal species in this case are not in fact 

basal resources (i.e., primary producers), as it is the case in most food web studies. In the food webs 

presented here, the fraction of basal resources (B) refers to the vertebrate species in our data set which 

do not have resources. Additionally, network modularity (M) was quantified using the modularity function 

(Q) proposed by Newman and Girman [225]: 

W = 	
1
2X

	YZ)[\ − 	][\^	_( [̀ , `\)
[,\

 

where m is the number of edges in the network, Aij are the adjacency matrix elements (1 if a link 

between vertices i and j exists and 0 otherwise), Pij is the expected number of links between i and j (i.e., 

kikj/2m, with k the degree of a vertex), gi is the compartment to which vertex i belongs (as described in 

[226]. _(a, b) = 1 if r = s and 0 otherwise. We used the random-walk based algorithm walktrap [227] 

implemented in the R package igraph [228]. Table 4 shows all the properties for the metaweb 

 
Table 4. Metaweb properties. Network complexity metrics: number of species, links, links per species, 
connectance, mean indegree and mean outdegree. Vertical diversity metrics: proportion of basal, 
intermediate and top species and percentage of omnivorous links.  Network modularity indicates the 
presence of densely linked groups within the network. 

 
Property Value 

Number of Species 1140 

Connectance 0.054 

Number of Links 69724 

Links/Species 561.107 

Indegree 183.96 

Outdegree 61.21 

Proportion of Basal 0.68 

Proportion of Intermediate 0.31 

Proportion of Top 0.02 

Omnivory 0.99 

Modularity 0.24 

4.3.4 Building network-area relationships 

The three elements described above: species distributions maps, the metaweb, and food web 

properties allowed us to build network-area relationships. We call network-area relationships (NARs) the 

changes in food web properties as area size increases. The spatial resolution of the species distribution 

maps (i.e., 10 x 10 Km) determines the local scales of our study. To simulate a spatial scale continuum we 
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iteratively aggregated map cells, one by one, into larger areas of different sizes (see detailed explanation 

of the aggregation procedure below). This allows sampling the study area at different spatial scales. Once 

sampling areas were defined, we constructed food webs at each spatial scale using the information on 

species presence/absence for each aggregation of map cells and extracting from the metaweb the 

corresponding trophic interactions between the species present. Because food webs constructed thus 

might contain interactions between species that do not necessarily occur across the whole area of a grid 

cell, food web structure at large spatial scales must be understood as the structure of the potential 

network of interactions at a given area. Lastly, we calculated the food web properties identified above for 

each of these food webs. This allowed us to lay out the relationships between area size (i.e., number of 

map cells) and network properties: the NARs. 

4.3.5 Spatial aggregation 

To simulate a continuum of spatial scales we aggregated map cells to increase the area sampled 

starting from cell sizes equal to the resolution of the species distribution maps (i.e., local communitires). 

There are several ways in which map cells can be aggregated to consider larger spatial extents, such as a 

random aggregation of cells, or a linear aggregation based on nearest neighbours. Because ecological 

communities in nature are most likely comprised of assemblages of species that live geographically close 

to each other, we developed an algorithm for cell aggregation that allows ensuring spatially coherent 

communities at different scales. Starting from a randomly chosen cell, our algorithm aggregates cells by 

choosing neighbouring ones in a ‘spiral’, ever-increasing way from the local (i.e., one 10 x 10 Km cell) to 

the desired spatial scale. The largest (i.e., regional) spatial scale comprises the aggregation of all the cells 

in the map. Since the starting point of this aggregation procedure is randomly chosen, species 

composition of communities is dependent on the geographical location of this starting point. Hence, we 

performed 100 replicated aggregations starting from different random locations on the map to account 

for the variability arising from the choice of the starting point of aggregation (i.e., the first cell). This 

produced 100 replicated NARs for each of the biogeographical regions considered (see below). 

4.3.6 Biogeographical regions 

To look at the differences in the scaling of biodiversity across gradients of ecological and 

environmental factors, we built unique SARs and NARs for different biogeographical regions in Europe 

(Figure 26). The European Environmental Agency (EEA) has defined a zonation of Europe into ‘bioregions’, 

based on similarities in environmental and habitat conditions across these geographical areas. We 

obtained geographical boundaries of these bioregions from the EEA (https://www.eea.europa.eu/data-
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and-maps/data/biogeographical-regions-europe-3). We used 10 European biogeographical regions from 

this classification: Alpine, Anatolian, Arctic, Atlantic, Black Sea, Boreal, Continental, Mediterranean, 

Pannonian and Steppic. We removed the Macaronesian region from our analyses because of the large 

discrepancy in size with the rest of the bioregions analysed. A full description of each biogeographical 

region is freely available online in the EEA webpage (www.eea.europa.eu). 

Individual maps for each bioregion were overlaid on the species distribution maps using the rgdal 

package (see Study area and species distributions section) to determine the bioregion membership of 

each cell of the map, and in turn determine the distribution of each species on each bioregion. This 

allowed us to build NARs independently for each bioregion using the methodology outlined above, 

considering the metaweb as unique across Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Study area. Biogeographical regions in Europe as defined by the European Environmental 
Agency (https://www.eea.europa.eu/data-and-maps/data/; accessed on June 2018). 

4.3.7 Spatial and environmental variables 

To assess whether differences in the shape of SARs and NARs across bioregions were related to 

their environmental features, we characterised bioregions according to a set of variables quantifying 

different aspects of their environmental features and spatial complexity. The spatial and environmental 

variables considered were: (i) the average and the (ii) standard deviation of the annual mean temperature 

across cells, (iii) the average and the (iv) standard deviation of temperature seasonality across cells, (v) 

(Appendix S2). For the remaining 131 species either no
information on the ecology was available or the EOO was so
small (for some species below 12 km2) and detailed that no
further refinement was possible on a continental scale. Each
expert considered three environmental variables that we
assumed to be informative to model species distribution: land
cover, elevation and distance to water. Although such variables
do not all represent direct predictors of species occurrences,
they are more appropriate to derive expert-based rules on
species ecological requirements and additionally offer a
reasonable alternative to the lack of spatially explicit
information on more direct and ecologically important variables
(e.g. prey abundance to model the distribution of predators).
Moreover, the same type of data has already been used
successfully in comparable models applied to a range of study
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We obtained data on land cover from GlobCover V2.2,
offering a complete coverage of our study area with a 300m
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the dissimilarity (Bray-Curtis) and (vi) spatial clustering (Moran’s I) of habitat composition, (vii) the total 

area of the bioregion and (viii) the total number of habitats contained in each bioregion.  

To be able to quantify the environmental variables for each biogeographical region, we used three 

measures at the cell level: (a) habitat composition, (b) annual mean temperature, and (c) temperature 

seasonality (a measure of the variability of temperature throughout the year). The map of habitat 

composition was obtained from data on land cover from GlobCover V2.2 

(http://due.esrin.esa.int/page_globcover.php). Data from GlobCover comprises 46 land-use/land-cover 

classes at the European level. We calculated the proportion of each land cover class at a 300 m resolution 

within every single 10 km cell. For each cell, we then calculated habitat heterogeneity based on the land 

cover composition of the 300 m cells comprising them. 

Habitat spatial structure within each bioregion was quantified using measures of habitat diversity 

and spatial clustering. Habitat diversity was quantified using the Bray-Curtis dissimilarity index. Bray-Curtis 

quantifies the dissimilarity between two sites (map cells in our case) based on the abundance of unique 

species (habitats in our case) found in each site: 

u,[\ = 1 −	
2	,[\
$[ + $\

 

where Cij is the sum of the lesser values for only those habitats in common between both cells. Si and Sj 

are the total number of habitat units (see above) counted at both cells. Bray-Curtis indexes were 

calculated for all cell pairs  in each bioregion using the vegdist function in the vegan [257] package, and 

then averaged per bioregion. 

Habitat clustering, a measure of the degree to which cells of the same habitat are clustered 

together within each bioregion, was quantified for each bioregion independently at a 10 x 10 Km cell 

resolution. Ecologically, this measure corresponds to the extent to which a species perceives the habitat 

being homogeneous at local scales. To quantify habitat clustering we used the Moran’s I index of spatial 

autocorrelation. This index ranges from -1 (total spatial decorrelation) to +1 (total autocorrelation). Thus, 

Moran’s I values close to -1 for a given habitat indicate that it is very sparse across its range, while habitats 

for which values of Moran’s I close to +1 are observed exhibit high spatial coherence. Moran’s I is 

calculated using the following formula: 

v = 	
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where N is the number of cells in the bioregion being considered, indexed by subscripts i and j; x = 1 if the 

habitat is present in the corresponding cell and 0 otherwise; Q̅	is the mean of x (i.e., the fraction of cells 

harbouring that habitat); x[\  are elements of a matrix of spatial weights with zeros on the diagonal and 1 

if cell i is a directly adjacent neighbour of cell j; and W is the sum of all 	x[\. We used the raster package 

to calculate Moran’s I for each habitat within each bioregion, and the average value across habitats was 

calculated per bioregion. 

Bioclimatic data (i.e., annual mean temperature and temperature seasonality) were obtained 

from WORLDCLIM [258] using the raster package in R [259] at a 10 x 10 Km resolution to match the species 

distribution maps. Mean and standard deviation of the climatic variables were extracted for each 

bioregion. 

4.3.8 Statistical analyses 

NARs shapes were statistically quantified by fitting power functions to the relationships obtained 

between network properties and area size using nonlinear least squares (NLS) regression with the nls 

function. As previously observed in chapter 2, we observed linear relationships between food web 

properties and the number of species in the web. To quantify the contribution of species richness to the 

variability of the spatial scaling of those properties, we performed linear correlations between them. 

Given that all food web complexity measures were highly correlated with species richness, we used the 

differences between SARs to determine the role of different environmental factors on the spatial scaling 

of ecological communities. Specifically, we used the exponents obtained with the fit of the power 

functions to SAR in each biogeographical region instead of using the scaling exponents of each network 

complexity property because they provided redundant information. Because the proportion of species 

per trophic level did not significantly vary across spatial scales or across biogeographical regions, we did 

not perform the test to determine the role of the environmental factors on them.  

Therefore, habitat spatial structure and environmental variables were tested as predictors for the 

shape of the scaling of SARs. Pearson correlation coefficients were used to quantify the relationship 

between the predictor variables with the aim of detecting potential sources of multicollinearity. To avoid 

the problems inherent to multicollinearity of predictor variables we used commonality analysis [260], 

[261] to evaluate the relative contribution of each variable to the predictive power of a linear regression 

model incorporating the predictor variables described above. Unique vs. common contribution to model 

explanatory power, and variable inflation factors were used to select the set of variables that better 

explained variability in the models. The selected predictors were used in linear regressions to test their 
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effects and significance on explaining the scaling of SARs across biogeographical regions (see Appendix 

S4.1 for further details on the commonality analyses used). All analyses were performed in R (R Core Team 

2017). 

4.4 RESULTS 

4.4.1 Network-Area Relationships 

The spatial scaling of most network properties varied across biogeographical regions in Europe 

(Figure 27; Appendix S4.2). All network complexity metrics (i.e., number of species, links, links/species, 

mean generality and mean vulnerability) increased with area size. However, the scaling exponent (z) of 

each network property with area differed between biogeographical regions (Appendix S4.2). The z-

exponents of the number of species with area ranged from 0.08 (Pannonian) to 0.38 (Alpine). A universal 

pattern emerged in the way the different complexity metrics scaled with area. A universal pattern 

emerged in the way the different complexity metrics scaled with area. For most biogeographical regions, 

while the number of links per species, mean generality and mean vulnerability scaled with area at the 

same rate as the number of species (i.e., very similar z of the fitted power functions), the number of links 

scaled twice as fast. That is, the scaling exponents of the number of links with area ranged between 0.16 

and 0.77 (Appendix S4.2), meaning that communities were gaining more links than species as area 

increased. Exceptions for this pattern were Arctic and Boreal regions, which showed a scaling in the 

number of links (z=0.46 and z=0.25, respectively) closer to that observed for the number of species (z=0.31 

and z=0.15), effectively slowing down the scaling of the other complexity properties with area (Figure 27). 

In contrast, vertical diversity properties, specifically the proportion of species per trophic level, 

were largely scale-invariant. The proportion of basal, intermediate and top species showed similar values 

from local to regional spatial scales, and across biogeographical regions, including at the metaweb level 

(i.e., at the European level without considering biogeographical regions) (Figure 28, Table 5). The Arctic 

biome was an exception, showing a higher proportion of basal and top species (0.71 and 0.07, 

respectively), and lower proportion of intermediate species (0.21) than remaining bioregions. It also 

showed the largest variation in the proportions across spatial scales (Figure 28; Table 5). It is important to 

notice that the proportion of top species is very low due to the potential nature of our metaweb. That is, 

given that the metaweb is composed by all potential links between species, it is difficult to find a species 

having no potential predators, which constitutes the defining feature of a top species. Therefore, the 

proportion of top species might be reduced by the potentiality of the metaweb, while the proportion of 

intermediate species might be enlarged. 
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Figure 27. The spatial scaling of network complexity metrics across biogeographical regions in Europe. 
For a detailed description of the network properties see methods. Notice that total area and maximum 
values of network properties differ among biogeographical regions increasing the visual differences 
between them. Lines represent a generalized additive model fit to data points. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Relationship of the percentage of (a) basal, (b) intermediate and (c) top species with area 
across biogeographical regions in Europe. For a detailed description of each trophic level see methods. 
Lines represent a generalized additive model fit to data points. 
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Figure 1: The spatial scaling of network complexity metrics (i.e., (a) number of species, (b) links, (c) links

per species, (d) mean generality and (e) vulnerability) across biogeographical regions in Europe. For a

detailed description of the network properties see methods. Notice that total area and maximum values of

network properties differ among biogeographical regions increasing the visual differences between them.

Lines represent a generalized additive model fit to data points.
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across biogeographical regions in Europe. For a detailed description of each trophic level see methods.
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Table 5. Proportion of species in each trophic level at local and regional spatial scales across the 
biogeographical regions in Europe. Local scale corresponds to the average proportion of species in each 
trophic level across all 10km2 cells from each region. Regional scale corresponds to the network resulting 
from the aggregation of all the cells from each biogeographical region. The Metaweb corresponds to the 
whole Europe without considering biogeographical regions. 
 

 % Basal % Intermediate % Top 

 Local Regional Local Regional Local Regional 

Metaweb 0.63   0.06 0.71 0.33   0.06 0.28 0.04   0.03 0.05 

Alpine 0.63   0.03 0.68 0.34   0.04 0.31 0.02   0.01 0.008 

Arctic 0.71   0.07 0.67 0.21   0.07 0.31 0.07   0.04 0.014 

Atlantic 0.64   0.02 0.65 0.32   0.03 0.34 0.03   0.02 0.001 

BlackSea 0.61   0.03 0.63 0.34   0.04 0.36 0.03   0.02 0.01 

Boreal 0.64   0.03 0.63 0.35   0.03 0.36 0.02   0.01 0.01 

Continental 0.62   0.02 0.65 0.36   0.03 0.35 0.02   0.01 0.006 

Mediterranean 0.61   0.04 0.68 0.36   0.04 0.32 0.02   0.02 0.005 

Pannonian 0.61   0.02 0.59 0.36   0.02 0.39 0.03   0.01 0.01 

Steppic 0.56   0.03 0.65 0.41   0.04 0.34 0.02   0.02 0.007 

Anatolian 0.56   0.03 0.64 0.35   0.05 0.31 0.02   0.01 0.008 
 
 

4.4.2 Contribution of species richness to NARs 

To determine the contribution of the spatial scaling of species richness to the scaling of the 

remaining network properties, we analysed the correlation of each property with species richness for each 

biogeographical region (Figure 29; Appendix S4.3). All network complexity properties were highly 

correlated with species richness in all biogeographical regions (Figure 29a-d), with a mean adjusted-R2 = 

0:97 0:03, across all measures of complexity and biogeographical regions (Appendix S4.3). Importantly, 

the slopes of the relationships were remarkably similar, removing thus all differences between regions 

and between replicates. In all regions, the mean number of prey per predator (i.e., mean generality) 

increased with species richness much faster than the number of links per species and the mean number 

of predators per prey (i.e., mean vulnerability), indicating that the increase in species richness is faster at 

the lower trophic levels of the network (Appendix S4.3; Appendix S4.4). That is, as species richness 

increases, the accumulation of basal species is larger than the accumulation of intermediate and top 

species. Top predators actually do not increase in numbers with increasing species richness (Appendix 

S4.4). Interestingly, the number of links scaled exponentially with species richness (slope = 1.88 0.14; 

Figure 29a; Appendix S4.3) in all biogeographical regions. 
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In contrast, the proportion of species per trophic level did not show high correlations with the 

number of species for most biogeographical regions (mean adjusted-R2 = 0:39 0:27). The estimated slope 

of the relationships was extremely close to 0, indicating that the proportion of species per trophic level 

does not change significantly as total species richness increases (Figure 29e-g; Appendix S4.3). Therefore, 

food web complexity in the European terrestrial vertebrate assemblage correlated strongly with the 

number of species while its vertical diversity showed to be invariable across spatial scales, network 

richness and biogeographical regions. 

4.4.3 Main drivers of Species-Area relationships 

Given that species richness seemed to be the main determinant of the differences observed in 

the spatial scaling of network complexity across the biogeographical regions in Europe, we analysed 

potential environmental factors affecting the scaling of species richness with area within each region 

(Appendix S4.5).  Analysis of the correlation between predictor variables indicated a potential for high 

degree of collinearity between them (Appendix S4.5), which would bias the results obtained from classical 

statistical models. Commonality analysis revealed that, among the predictor variables considered, only 

the standard deviation of the mean annual temperature across cells in each region and the spatial 

clustering of habitats (i.e. Moran’s Index), were robust predictors of the scaling exponent (z) of the SAR 

(Appendix S4.1), after accounting for variance common contributions and inflation factors of the rest of 

the variables. Together, the spatial variation in the mean annual temperature and the spatial clustering 

of habitats within each biogeographical region, explained 85.53% (p-values = 0.001 and 0.093, 

respectively) of the variability observed in the exponents of SARs across Europe. Therefore, regions with 

larger spatial variability in their mean annual temperature and higher habitat clustering (i.e., more 

continuous habitat patches), tended to accumulate species faster as area sampled increased, which in 

turn affected the spatial scaling of network structure. The Arctic has the highest spatial variability in the 

mean annual temperature and, therefore, the fastest accumulation of species with area, followed by 

Alpine regions which showed the highest clustering of habitats in space. For both environmental variables, 

the Pannonian region showed the smallest values (i.e., less habitat clustering and less spatial variability in 

the mean annual temperature), which resulted in the slowest accumulation of species with area (Appendix 

S4.2 and Appendix S4.5). 
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Figure 29. Relationship of network properties with species richness across biogeographical regions in 
Europe. (a) Number of links, (b) links per species, (c) mean generality, (d) mean vulnerability, (e) 
proportion of basal, (f) proportion of intermediate, (g) proportion of top species. For detailed description 
of network properties see methods. Notice that not all regions have the same species richness and, 
therefore, they are not represented along the whole range of species richness. 
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Figure 2: Relationship of network properties with species richness across biogeographical regions in Eu-

rope.(a) Number of links, (b) links per species, (c) mean generality, (d) mean vulnerability, (e) proportion

of basal, (f) proportion of intermediate, (g) proportion of top species. For detailed description of network

properties see methods. Notice that not all regions have the same species richness and, therefore, they

are not represented along the whole range of species richness.
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4.5 DISCUSSION 

The spatial scaling of biodiversity has been traditionally understood as the scaling of species richness with 

area size [79], [81], [83]. However, species interactions are intrinsic components of ecological 

communities and as such, understanding how the network of interactions changes across spatial scales 

becomes fundamental to fully understand how biodiversity as a whole changes with area size [242]. We 

used the potential network of trophic interactions of the most European terrestrial vertebrates to analyse 

the spatial scaling of network structure at biogeographical scales. Although we found strong differences 

in the spatial scaling of network complexity across biogeographical regions, we also found striking 

universalities. The proportion of species per trophic level showed to be constant across spatial scales and 

biogeographical regions. Moreover, all the differences found in the spatial scaling of network complexity 

vanished once the geographical variation in species richness was accounted for. 

The effect of species richness on many other aspects of network structure has been repeatedly 

studied in local communities [99], [100], [102], [254]. The variation in many food web properties is largely 

driven by changes in species richness [99], [102]. However, whether these correlations between species 

richness and network structure hold across large ranges of species richness and across different spatial 

scales was so far, unknown. Here we showed that species richness alone was enough to explain the 

geographical variability of the spatial scaling of network complexity. The number of links, links per species, 

mean generality and vulnerability showed extremely similar correlations (i.e., similar slopes of the linear 

regressions) with species richness across all biogeographical regions in Europe. This suggests that the 

patterns previously observed at local spatial scales also hold at large spatial scales, covering a much wider 

range of species richness (5-820); and across multiple biogeographical regions, where communities are 

subject to different environmental and historical conditions. 

The scaling of the number of links with species richness is one of the most well-studied 

relationships in food web research [8], [104], [106]–[108], with two major hypotheses addressing it. While 

the ‘link-species scaling law’ [104] states that species interact with a constant number of species (roughly 

two) regardless of the total number of species in the network [104], [106], the ‘constant connectance 

hypothesis’ [107] states that it is the connectance (i.e., the fraction of potential interactions realized) of a 

community what is kept constant across food webs, irrespective of species richness. For this to happen, 

the number of links in a community needs to increase exponentially with species richness (slope 2 in log-

log space). Empirically, the scaling of the number of links with species richness has been shown to fall in 

between the two hypotheses [8], [108]. Interestingly, we found a universal link-species relationship across 

biogeographical regions, indicating that at large spatial scales, although still falling in between both link 
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scaling hypotheses (slopes for all bioregions = 1.88±0.14; Figure 29a; Appendix S4.3), the number of links 

increases exponentially with species richness. 

The universalities found in the relationships between network complexity properties and species 

richness suggest that, in comparative network studies, controlling by the variation in the number of 

species might be enough to predict the changes in network complexity without necessarily accounting 

explicitly for the spatial scale considered in each study. However, species richness did not explain the 

patterns observed for the vertical diversity measures across spatial scales.  

The distribution of species richness across trophic levels has long puzzled food web ecologists 

[106], [262], [263]. The fraction of species at different trophic levels was traditionally thought to be 

constant among networks across a wide range of species richness, and having a pyramidal shape where 

species richness consistently decreased with trophic level [106], [263]. However, further research found 

that although trophic diversity structure is generally pyramidal [264], the distribution of species richness 

per trophic level can also depend on external factors such as latitude, net primary productivity or 

ecosystem type [254], [264], and that it might depend on the total number of species in the community 

[101], [254], [264] and the spatial scale considered [101], [103]. In the case of our terrestrial vertebrate 

trophic webs, the relative proportions of species per trophic level were constant across biogeographical 

regions, spatial scales and species richness throughout Europe (Figure 28; Figure 29; Table 5). The 

proportions decreased from basal (0.62), to intermediate (0.35), to top species (0.03), generating a 

pyramidal shape in the food web. It is important to notice however that, because we are analysing the 

European terrestrial vertebrate community, basal species correspond to vertebrate species predating on 

basal resources (e.g., fish, invertebrates, plants, carrion), instead of corresponding to primary producers. 

Although what is basal markedly differs from the classical basal species concept in food webs, the 

conclusion holds for the universality of the proportions. What is less conclusive is the pyramidal structure 

of the diversity proportions per trophic level. The inclusion of lower trophic levels, e.g., including plants 

and invertebrates, might change the shape, but in any case, the proportion of basal species will always be 

larger than that of intermediate and top. 

Given the influence of SARs in food web properties across spatial scales, focus should be placed 

on the understanding the possible factors and mechanisms promoting variability in SARs across locations 

and scales. Multiple mechanisms have been proposed to explain the shape of the species-area 

relationship (SAR) and, in particular, the scaling exponent (z) [94], [219]. Although at the European scale 

we recovered a multiphasic SAR with clear transitions between biogeographical regions (Appendix S4.6), 

elucidating the possible effect of different processes of speciation at different biogeographical regions 
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[81], [94], [219], we focused our analyses at the scale of the biogeographical regions, where the power 

function provided a good fit for all regions (Appendix S4.2; Appendix S4.5).  

We observed quantitative differences in the shape of SARs across bioregions, indicating that these 

relationships might in fact vary across environmental or other ecological conditions. We identified the 

spatial variability of mean annual temperature and the spatial clustering of habitat types as the main 

determinants of the scaling exponent across Europe. The spatial variability in temperature characterizes 

one aspect of the environmental heterogeneity present in each biogeographical region, reflecting the 

increasing opportunity for a larger variety of species to be present as the heterogeneity increases- more 

niches available- and thus, promoting a faster accumulation of species with area. Niche differentiation 

theory predicts that the larger the range of environmental conditions, the larger the diversity due to niche 

differentiation and adaptability [265]–[268]. Similarly, habitat heterogeneity has been traditionally 

identified as an important underlying component of the scaling exponent of SAR [94], [250]–[252]. The 

larger the area sampled, the larger the number of different habitats encountered sustaining a larger set 

of species [250], [251]. Yet, the role of the spatial clustering of habitats on the scaling of biological diversity 

with area has been seldomly explored. Kolasa and colleagues [269], showed that the effects of habitat 

heterogeneity on the shape of SARs are scale dependent. That is, habitat heterogeneity at broader spatial 

scales produces higher z-exponents than at smaller spatial scale [269], suggesting that at small spatial 

scales a higher degree of habitat clustering produces faster accumulation of species with area. More 

directly, Altermatt anf Holyoak [270], showed that the spatial aggregation of patch quality generally 

increases species beta-diversity, which underlies the slope of SARs. Similarly, it has been shown that 

species packaging at smallest scales leads to an initially steep increase of species with area [81], [94], 

[271]. 

While in our study these mechanisms affected the spatial scaling of network complexity only 

indirectly through the effect on the spatial scaling of species richness, environmental factors can directly 

affect network structure across spatial scales. Habitat structure has been shown to have direct effects on 

biotic interactions. For example, it has been shown that habitat loss or modification can alter biotic 

interactions [205], [206], [209] and the functions species perform [207], [272], without large variations in 

species richness, highlighting the need of incorporating information on the spatial scaling of network 

structure to fully assess the impacts of habitat modification on biodiversity and ecosystem functioning 

[207], [208]. Moreover, landscape heterogeneity can promote the emergence of species sorting (i.e., 

different habitat preferences between species), which can generate compartments in the network and 

promote a modular or compartmented structure [200], [201]. Even more concretely, recent research has 
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shown the effect of spatial filters and climate on the modularity of the plant-hummingbird metaweb from 

six different Brazilian biomes, which resulted in six modules conforming with the vegetation domains 

[273]. Our food webs, however, presented extremely low values of modularity. This is most likely due to 

the potential nature of the biotic interactions considered in our study. A network is considered modular 

when interactions between species are more numerous or stronger within a given compartment than 

between compartments [200], [201]. Including all potential interactions between species might prevent 

modularity to emerge. However, the results obtained are consistent with the previous findings for 

modelled food webs in homogeneous environments (chapter 2), and empirical NARs (chapter 3): 

modularity is scale-invariant, whether the exact value is high or low, it is constant across spatial scales. 

Similarly, the potential nature of the metaweb biases the proportion of species per trophic level 

towards intermediate species in detriment of top species, because it is very unlikely for a given species 

not to have any potential predator. However, all biogeographical regions should be equally affected by 

this possible bias, which ensures the prevalence of the universalities found across biogeographical 

regions.  

Conclusions: We showed that a geographical variation in the spatial scaling of network structure 

across Europe exists, but that it is mostly determined by the variation in the shape of SARs across 

biogeographical regions in Europe. Important universalities emerged regarding the relationship of 

network properties with species richness and the proportion of species per trophic level, which were 

constant across spatial scales and biogeographical regions. The use of the potential network of trophic 

interactions of the European terrestrial community at the continental scale, allowed us to analyse the 

geographical variation of the effect of area on network properties, which can open new avenues to 

explore the effect of different environmental factors on the spatial scaling of network structure. NARs can 

provide new insights to analyse and understand ecological communities and how they are affected by 

different processes at each spatial scale. 
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Appendix S4.1. Statistical analyses for the determinants of the Species-Area relationships. 

Variation across NARs scaling in different European bioregions was hypothesised to be explained by a set 

of environmental and habitat complexity variables (see methods). However, the high correlation detected 

among many of the variables (Fig. S5.1) suggested a potentially strong multi-collinearity effect on the 

explanatory power of these variables. Predictor variables considered included: The total area of the 

bioregion (Total Area), the Bray-Curtis dissimilarity between habitat composition across cells of the 

gridded map of the bioregion (Bray-Curtis), Moran’s I spatial autocorrelation index across habitats within 

each bioregion, number of habitats (No. of habitats), average of the mean annual temperate across cells 

in the bioregion (Mean Temp.), variability (measured as the standard deviation) in the average of the 

mean annual temperature across cells in the bioregion (SD Mean Temp.), temperature seasonality during 

the year averaged across map cells (Mean Seas.), and variability (i.e., SD) of temperature seasonality 

across cells (SD Seas.). 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.5. Correlation among predictor variables for the scaling of NARs. Scatterplots of the pairwise 
relationships between variables and their distributions are shown. Numbers on the upper triangle of the 
matrix are Pearson’s correlation coefficients and stars indicate their significance based on the p-value ( < 
0.05, * < 0.01, ** < 0.001). Names of the variables are explained in the text. 
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Because of the potential effects of multi-collinearity, we used Commonality Analysis (CA) [261] to 

find the best predictors for the scaling exponent (z) of NARs. In brief, CA is a statistical technique that 

offers information of the statistical relationship between predictor variables when they are used to 

explain a dependent variable using linear regression. By considering correlations among predictors, CA 

calculates variance inflation factors (VIF). Additionally, CA provides information on the fraction of the 

model fit that is due to suppression among predictor variables, their unique vs. common contributions to 

the model explanatory abilities, and the mismatch between the variables’ coefficient when used alone vs. 

when considered jointly in the linear regression. All this information can be used to select the variables 

that explain best the model fit, by removing those that artificially inflate the model’s fit. Here we provide 

an example of how CA was used to remove variables having a potential artificial effect on the model’s 

capacity to explain variability in the data. Total Area was removed from the analysis beforehand due to 

its low explanatory power detected through previous hierarchical partitioning analysis. Inputting the 

remaining set of variables to the CA results in the values shown in Table S3.5. 

 

Table S3.5. Results of CA performed over the whole set of variables. This table shows the regression 

coefficients both jointly and in isolation, the standard error of the mean, confidence intervals, p-values of 

significance based on 200 bootstrapping iterations, total contribution of the variable to the model (split 

in unique and common) and the variance inflation factor (VIF) for all predictor variables considered in the 

model. 

Variable rs betas StdErr CIinf CIsup p-value Unique Common Total VIF 

Bray-Curtis 0.723 0.112 0.191 -0.152 0.349 0.616 0.003 0.513 0.515 5.097 

Morans I 0.515 -0.539 0.317 -0.551 0.000 0.231 0.021 0.240 0.261 13.972 

No. of 
Habitats 

0.692 0.832 0.360 0.000 0.842 0.147 0.038 0.433 0.472 18.096 

Mean 
Temp. 

-0.340 0.922 0.248 0.000 1.266 0.065 0.099 0.015 0.114 8.580 

SD Mean 
Temp. 

0.888 0.672 0.151 0.000 0.797 0.047 0.143 0.635 0.777 3.169 

Mean 
Seas. 

-0.058 0.113 0.191 -0.089 0.307 0.613 0.003 0.001 0.003 5.072 

SD Seas. 0.655 0.514 0.206 0.000 0.874 0.130 0.045 0.378 0.423 5.916 



 

 

168 

Model fit resulting from the CA considering the whole set of predictor variables is high (98.56% of 

the variance explained). However, the VIFs (Table S5.1) and the percentage of suppression in the model 

fit (176.79%) detected were both high. This suggests that at least some of the variables have an artificial 

(i.e., indirect) effect on model fit, and hence its explanatory capabilities. From the values shown in Table 

S3.5, we can see that the total contribution to model fit of mean temperature seasonality is almost none 

(0.0033), so this is a good candidate to remove from the analysis. Also, the VIF for the number of habitats 

is extremely high (18.096), making this variable also a good candidate to be removed. 

We removed predictor variable from our set following the type of criteria outlined above until the 

suppression of model fit due to multi-collinearity was reduced to 0% and we ended up with two main 

predictors that are able to explain 85.53% of the model variability: the mean annual temperature 

variability across the bioregion (SD Mean Temp.) and the Moran’s I index of habitats spatial 

autocorrelation (Moran’s I). Linear regression of this two predictors on NARs scaling exponent show that 

there is a significant relationship between predictors and dependent variables (R2 = 0.8553, p-values = 

0.00105 and 0.09328 respectively).  

Thus, we can conclude that annual temperature variability and habitat clustering (i.e., spatial 

autocorrelation) within bioregions are faithful predictors of the scaling velocity of species number with 

area. Places with more variability in temperature and higher habitat clustering tend to accumulate species 

faster as area sampled increases. 
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Appendix S4.2. Power function fit for all network properties analysed. Fit of each network property of 
each biogeographical region to a power function (f(x) = cxz), where c is the scaling factor and z is the 
exponent parameter that determines the function’s rates of growth and its overall shape. We used 
nonlinear least squares (NLS) with the ’nls’ function in R. 

 
 

Parameters Region Property Estimate Std. Error t value 

c Alpine species 24.08 0.07 368.28 

z Alpine species 0.38 0.00 1215.59 

c Alpine links 36.28 0.21 169.19 

z Alpine links 0.77 0.00 1137.03 

c Alpine links per sp 2.48 0.01 380.35 

z Alpine links per sp 0.32 0.00 1054.93 

c Alpine generality 4.01 0.01 321.15 

z Alpine generality 0.39 0.00 1088.58 

c Alpine vulnerability 2.56 0.01 381.82 

z Alpine vulnerability 0.32 0.00 1051.85 

c Anatolian species 64.82 0.08 805.00 

z Anatolian species 0.25 0.00 1572.03 

c Anatolian links 355.86 0.89 400.39 

z Anatolian links 0.48 0.00 1526.19 

c Anatolian links per sp 6.25 0.01 953.13 

z Anatolian links per sp 0.21 0.00 1574.16 

c Anatolian generality 11.84 0.02 603.67 

z Anatolian generality 0.26 0.00 1216.00 

c Anatolian vulnerability 6.81 0.01 938.04 

z Anatolian vulnerability 0.20 0.00 1477.01 

c Arctic species 19.79 0.06 353.62 

z Arctic species 0.31 0.00 876.44 

c Arctic links 109.25 0.47 230.24 

z Arctic links 0.46 0.00 854.74 

c Arctic links per sp 3.56 0.01 376.94 

z Arctic links per sp 0.20 0.00 604.50 

c Arctic generality 14.61 0.02 612.75 

z Arctic generality 0.16 0.00 789.82 

c Arctic vulnerability 4.03 0.01 382.12 

z Arctic vulnerability 0.19 0.00 572.92 

c Atlantic species 64.51 0.09 687.11 

z Atlantic species 0.22 0.00 1259.51 
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c Atlantic links 154.14 0.61 253.75 

z Atlantic links 0.50 0.00 1082.36 

c Atlantic links per sp 4.14 0.01 531.01 

z Atlantic links per sp 0.21 0.00 950.50 

c Atlantic generality 11.34 0.02 545.72 

z Atlantic generality 0.21 0.00 975.75 

c Atlantic vulnerability 4.34 0.01 539.62 

z Atlantic vulnerability 0.21 0.00 945.91 

c BlackSea species 95.56 0.35 276.80 

z BlackSea species 0.22 0.00 392.89 

c BlackSea links 602.10 4.20 143.34 

z BlackSea links 0.44 0.00 425.05 

c BlackSea links per sp 8.12 0.02 416.42 

z BlackSea links per sp 0.19 0.00 506.50 

c BlackSea generality 20.45 0.05 402.14 

z BlackSea generality 0.19 0.00 506.77 

c BlackSea vulnerability 8.62 0.02 427.01 

z BlackSea vulnerability 0.18 0.00 502.09 

c Boreal species 89.41 0.03 2636.06 

z Boreal species 0.15 0.00 3765.94 

c Boreal links 845.54 0.48 1759.65 

z Boreal links 0.25 0.00 4166.94 

c Boreal links per sp 9.91 0.00 4607.56 

z Boreal links per sp 0.09 0.00 3975.52 

c Boreal generality 27.15 0.01 4069.75 

z Boreal generality 0.09 0.00 3408.63 

c Boreal vulnerability 10.09 0.00 4600.91 

z Boreal vulnerability 0.09 0.00 3947.83 

c Continental species 54.70 0.05 1088.57 

z Continental species 0.24 0.00 2444.40 

c Continental links 147.24 0.34 434.07 

z Continental links 0.50 0.00 2076.06 

c Continental links per sp 4.79 0.00 961.13 

z Continental links per sp 0.20 0.00 1797.57 

c Continental generality 8.18 0.01 777.01 

z Continental generality 0.25 0.00 1818.62 

c Continental vulnerability 4.92 0.01 969.81 
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z Continental vulnerability 0.20 0.00 1793.80 
c Mediterranean species 50.34 0.10 527.94 
z Mediterranean species 0.29 0.00 1331.51 
c Mediterranean links 92.96 0.47 196.96 
z Mediterranean links 0.64 0.00 1132.57 
c Mediterranean links per sp 3.26 0.01 458.52 
z Mediterranean links per sp 0.29 0.00 1161.26 
c Mediterranean generality 6.15 0.01 430.41 
z Mediterranean generality 0.33 0.00 1267.16 
c Mediterranean vulnerability 3.37 0.01 470.24 
z Mediterranean vulnerability 0.29 0.00 1179.52 
c Pannonian species 202.54 0.11 1900.83 
z Pannonian species 0.08 0.00 946.36 
c Pannonian links 2599.35 3.38 768.50 
z Pannonian links 0.16 0.00 811.17 
c Pannonian links per sp 13.02 0.01 1342.74 
z Pannonian links per sp 0.08 0.00 709.28 
c Pannonian generality 32.94 0.02 1595.18 
z Pannonian generality 0.08 0.00 815.36 
c Pannonian vulnerability 13.40 0.01 1399.61 
z Pannonian vulnerability 0.08 0.00 713.57 
c Steppic species 58.42 0.09 660.96 
z Steppic species 0.24 0.00 1406.98 
c Steppic links 127.96 0.52 246.04 
z Steppic links 0.54 0.00 1196.74 
c Steppic links per sp 4.54 0.01 604.21 
z Steppic links per sp 0.22 0.00 1147.99 
c Steppic generality 6.70 0.01 458.81 
z Steppic generality 0.28 0.00 1158.95 
c Steppic vulnerability 4.63 0.01 591.44 
z Steppic vulnerability 0.21 0.00 1119.19 
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Appendix S4.3. Relationships of network properties with species richness. 

Linear model results for the correlations of all network properties with species richness at each 

biogeographical region. Estimates, T values and adjusted-R2 are provided for each correlation. 
 

 Region Property Estimate Std. Error t value Adjusted-R2 

log10(species) Alpine log10(links) 1.85 0.00 10072.70 0.99 

log10(species) Anatolian log10(links) 1.84 0.00 8154.93 1.00 

log10(species) Arctic log10(links) 1.75 0.00 5231.67 0.99 

log10(species) Atlantic log10(links) 2.05 0.00 6711.62 0.99 

log10(species) BlackSea log10(links) 1.79 0.00 2597.88 0.99 

log10(species) Boreal log10(links) 1.60 0.00 16356.72 0.99 

log10(species) Continental log10(links) 1.88 0.00 14389.49 0.99 

log10(species) Mediterranean log10(links) 2.00 0.00 12027.21 1.00 

log10(species) Pannonian log10(links) 2.08 0.00 2708.74 0.99 

log10(species) Steppic log10(links) 1.91 0.00 11793.12 0.99 

species Alpine links per sp 0.06 0.00 4635.26 0.97 

species Anatolian links per sp 0.06 0.00 4086.80 0.98 

species Arctic links per sp 0.06 0.00 1973.02 0.92 

species Atlantic links per sp 0.06 0.00 3854.87 0.97 

species BlackSea links per sp 0.06 0.00 1101.74 0.94 

species Boreal links per sp 0.04 0.00 6228.28 0.96 

species Continental links per sp 0.06 0.00 6705.26 0.97 

species Mediterranean links per sp 0.07 0.00 7570.58 0.99 

species Pannonian links per sp 0.07 0.00 1454.16 0.96 

species Steppic links per sp 0.06 0.00 6265.62 0.98 

species Alpine generality 0.18 0.00 4522.76 0.97 

species Anatolian generality 0.20 0.00 3204.82 0.98 

species Arctic generality 0.14 0.00 1853.78 0.91 

species Atlantic generality 0.17 0.00 4176.65 0.97 

species BlackSea generality 0.15 0.00 964.44 0.92 

species Boreal generality 0.10 0.00 3137.42 0.85 

species Continental generality 0.18 0.00 7902.40 0.98 

species Mediterranean generality 0.21 0.00 9663.55 0.99 

species Pannonian generality 0.17 0.00 1289.39 0.95 

species Steppic generality 0.20 0.00 6106.53 0.98 

species Alpine vulnerability 0.06 0.00 4690.57 0.97 

species Anatolian vulnerability 0.06 0.00 3738.19 0.98 
species Arctic vulnerability 0.06 0.00 1738.77 0.90 

species Atlantic vulnerability 0.06 0.00 3809.60 0.97 

species BlackSea vulnerability 0.06 0.00 976.57 0.92 
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species Boreal vulnerability 0.04 0.00 6159.13 0.96 

species Continental vulnerability 0.06 0.00 6655.23 0.97 

species Mediterranean vulnerability 0.07 0.00 7830.15 0.99 

species Pannonian vulnerability 0.07 0.00 1450.81 0.96 

species Steppic vulnerability 0.06 0.00 5708.38 0.98 

species Alpine top -9E-06 1E-08 -623.49 0.41 

species Anatolian top -5E-05 1E-07 -377.46 0.35 

species Arctic top -2E-04 3E-07 -590.92 0.51 

species Atlantic top -6E-05 1E-07 -582.11 0.40 

species BlackSea top -6E-05 3E-07 -217.94 0.36 

species Boreal top -7E-06 2E-08 -369.39 0.07 

species Continental top -2E-05 8E-09 -2064.19 0.74 

species Mediterranean top -1E-05 2E-08 -624.26 0.35 

species Pannonian top -1E-04 7E-07 -218.22 0.35 

species Steppic top -2E-06 2E-08 -105.93 0.01 

species Alpine intermediate -7E-05 1E-07 -630.77 0.41 

species Anatolian intermediate -1E-04 3E-07 -371.57 0.34 

species Arctic intermediate 6E-04 6E-07 1057.88 0.77 

species Atlantic intermediate 6E-05 2E-07 332.27 0.18 

species BlackSea intermediate 7E-05 5E-07 138.04 0.19 

species Boreal intermediate 7E-05 2E-07 369.31 0.07 

species Continental intermediate -1E-04 7E-08 -2108.13 0.74 

species Mediterranean intermediate -8E-05 1E-07 -778.00 0.46 

species Pannonian intermediate 2E-04 1E-06 209.80 0.33 

species Steppic intermediate -2E-04 1E-07 -2021.85 0.84 

species Alpine basal 8E-05 1E-07 714.93 0.47 

species Anatolian basal 2E-04 3E-07 620.16 0.59 

species Arctic basal -4E-04 7E-07 -635.08 0.54 

species Atlantic basal 3E-06 2E-07 20.12 0.00 

species BlackSea basal 2E-05 4E-07 39.47 0.02 

species Boreal basal -6E-05 2E-07 -304.86 0.05 

species Continental basal 2E-04 7E-08 2348.63 0.78 

species Mediterranean basal 1E-04 9E-08 1136.23 0.64 

species Pannonian basal -7E-05 9E-07 -73.29 0.06 

species Steppic basal 2E-04 1E-07 1917.09 0.82 
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Appendix S4.4. Different increase in species richness across trophic levels. 

 
Relationship between the number of species in each trophic level with the total number of species in each 

biogeographical region in Europe. Dotted line, basal species; black line, intermediate species; dashed line, 

top species. Shaded areas correspond to 95% confidence intervals. 
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Appendix S4.5. Species-Area relationship across biogeographical regions in Europe. 

Relationship between the number of species with area in each biogeographical region in Europe. Black 

dots correspond to data points and red line correspond to the predicted values from the power function 

fit. 
 



 

 

176 

Appendix S4.6. Contribution of each biogeographical region to the global species-area relationship 

in Europe. Relationship between the number of species with area across all the European range 

considering the contribution of each biogeographical region. Notice that for the realization of this 

figure we used a linear neighbouring aggregation following the north-south gradient instead of the 

method used in the rest of the paper. Each colored line represent the end of all the cells 

corresponding to a given biogeographical region. Therefore, the increase in the number of species 

from one region to the next correspond to the sampling of new species not found in the previous 

region. The pattern observed here changes when following the opposite latitudinal gradient. That 

is, starting with the species rich regions, such as Mediterranean. 
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GENERAL DISCUSSION AND CONCLUSIONS 
Ecological network research and biogeography have been traditionally developed in 

isolation. Although challenging, the integration is both possible and necessary if we aim to better 

understand ecological communities and how they are likely to respond to perturbations in an 

increasingly human-modified world. The main objective of this thesis has been to benefit from the 

integration of the two fields to understand how ecological communities are structured in space and 

how they are influenced by large-scale processes, such as climate or habitat heterogeneity. In this 

general conclusion, I firstly summarize the main and novel contributions of the chapters, I then 

discuss the limitations of the approach and I finally propose a number of future perspectives to 

advance towards a deeper understanding of macroecological networks. 

MAIN CONTRIBUTIONS 

Is there a geographical gradient in the structure of ecological networks? 

The latitudinal variation in biotic specialization has long interested ecologists. Although 

biotic specialization has historically been thought to be higher in more constant environments [63], 

[65], [71], [119], recent studies have challenged this view. While some authors showed an increase 

in network specialization towards the tropics [70]–[72], [78], others found the opposite [64], or no 

latitudinal trend at all [75], [76]. However, all studies have focused on specialization across local 

communities, ignoring how specialization at larger spatial extents varies along the same 

biogeographical gradient. 

 In the first chapter of the thesis, I addressed the geographical variation in network structure 

by analysing biotic specialization from different perspectives (i.e., not only from the consumers’ 

perspective but also from the resources one and at the network level) and at different spatial scales 

(i.e., local and regional). I showed that the geographical variation in biotic specialization is not 

universal. It depends on both the facet of biotic specialization analysed and the spatial scale of 

observation.  Indeed, local and regional networks displayed very different patterns along the 

gradients of climatic constancy. While at the regional scale, biotic specialization did not show a 

latitudinal gradient, at the local scale networks in more constant environments were less connected, 

consumers overlapped their niches less, and preys were attacked by fewer predators. In contrast, 

consumers were more generalists in more constant environments, contrary to the hypothesized 
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latitudinal gradient on niche breadth [34], [63], [119]. The opposite geographical patterns in biotic 

specialization between consumers and resources perspectives, highlighted the importance of 

analysing different aspects of network structure to fully understand the geographical patterns in 

biotic specialization, as recently shown by Dalsgaard and colleagues [74]. Interestingly, I found a 

decrease of the consumer:resource ratio with environmental constancy at local scales while at the 

regional scale, it did not change along the gradient. Therefore, in more constant environments, local 

networks had a smaller proportion of consumers per resources than regional networks, and in more 

fluctuating environments, local networks had a larger proportion of consumers per resources than 

regional networks.  

Then the question was, how could the same “potential” regional network lead to opposite 

“realized” local networks along the climatic constancy gradient? I suggested β-diversity as a possible 

explanation. Specifically, the differences in β-diversity between local consumer and resource 

assemblages along the gradients of climatic constancy. In the tropics (i.e., less fluctuating regions), 

if the spatial turnover of consumers is larger than that of resources, the number of consumers 

increases faster than the number of resources when local networks are aggregated into regional 

webs. In contrast, in more fluctuating areas larger spatial turnover of resources should result in a 

faster increase in the number of resources when scaling up in space. 

 These results therefore unveiled, for the first time, not only the importance of considering 

the spatial scale of observation to better understand the patterns of network structure along 

geographical gradients, but also the potential power of understanding the spatial scaling of network 

structure to elucidate the role of different spatial processes in a given region.   

How does network structure change with area size? 

 The second, third and fourth chapters of the thesis were fully devoted to understand and 

analyse the spatial scaling of network structure. I firstly identified and theoretically explored the 

main mechanisms underlying the changes in network structure with area size. Then, I compiled a 

large set of ecological networks from different ecosystems and biomes across the globe to 

empirically test the theoretical predictions. 

The theoretical framework revealed a number of Network-Area Relationships (NARs) for 

multi-trophic communities emerging from different spatial processes, such as, the differences in the 

Species-Area relationship (SARs) across trophic levels, the preferential selection of generalist species 

in small islands, and the effect of beta-diversity caused by dispersal limitation. Network complexity 
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increased with area size together with the proportion of specialised species, which also increased 

with area, showing that they were only able to colonize and persist when the island was large 

enough. Network vertical diversity also increased with area size via the increase in the proportion 

of species at intermediate positions of the food web, which had omnivorous links and caused the 

increase of the length of the food chains. In contrast, network modularity remained constant across 

spatial scales.  

The large set of ecological networks comprising different types of interactions and sampling 

methodologies, allowed me to test these theoretical predictions. I found that ecological 

communities become more complex as area size increases, showing an increase in the number of 

links, in the number of links per species and in the mean number of resources a consumer has. 

Interestingly, as predicted theoretically, I found an increase in the proportion of specialist species 

with area, confirming that specialist species require larger areas to be found and, therefore, might 

be more vulnerable to reductions of available habitats.  

In contrast, the proportion of consumers and resources present in a community (measured 

as the consumer:resource ratio) did not show a clear trend with area across all data sets. However, 

in chapter 4, where I deepen in the analyses of the spatial scaling of network structure across 

biogeographical regions in Europe, I found the proportions of species per trophic level to be 

remarkably constant across spatial scales and across biogeographical regions, which suggested that 

multi-trophic communities preserved basic structural properties across spatial scales. If we look 

here at the proportion of species per trophic level in the rest of the multi-trophic communities used 

in chapter 3, we see that, although differing largely among data sets, most food webs do show 

constant proportions of species per trophic level across spatial scales, also reflected by the low z-

exponents of the Ratio-Area relationship (Figure 30; Appendix S4.2.). Therefore, while mutualist and 

antagonist bipartite networks did not show consistent patterns in the proportion of species per 

trophic level when increasing area size, food webs seem to preserve the proportions across spatial 

scales. 

Finally, network modularity did not show strong changes with area size across the empirical 

communities. Yet, for those communities that did show a change in network modularity it followed 

a decreasing trend with area. However, neither in the theoretical models nor in the ecological 

communities analysed, habitat heterogeneity was considered and analysed explicitly. A 
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fundamental aspect was, therefore, to understand whether there are universal patterns for the 

scaling of network structure with area size and which are the possible sources of variation.  

  

 

Figure 30.  Relationship of the percentage of basal, intermediate and top species with area 

for all data sets of multi-trophic communities used in chapter 3. For a detailed description of the 

datasets and the methodology used to calculate the proportion of species per trophic level, see 

chapter 3. Notice that the proportion of top species in datasets Soil 1-7 are extremely close to zero 

due to the difficulty of finding in soil food webs species that are not being consumed by any other 

species. 
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Are the changes in network structure with area size universal? 

 I analysed whether there exist generalities in the changes of network structure across spatial 

scales in chapter 3 and 4. The use of multiple types of data in chapter 3 allowed me to determine 

whether the observed network-area relationships (NARs) were universal and how their specific 

shape was affected by the underlying ecological processes captured by each data type. All properties 

related to network complexity increased with area size following a power law for all data categories. 

Yet, they showed differences in most of the scaling exponents. Islands showed the slowest increase 

of network complexity with area, eespecially for the spatial scaling of the number of links per 

species, which indicates that in islands species gain less links as area size increases, suggesting that 

the turnover of links (i.e., Links b-diversity) independent of the turnover of species composition 

might be smaller in islands. 

 Similarly, in chapter 4, I observed differences in the scaling exponents of NARs across 

biogeographical regions.  However, as previously suggested in the theoretical framework, I found 

that most of the differences disappeared when the differences in the spatial scaling of species 

richness were accounted for. Instead, network vertical diversity properties, such as the proportions 

of species per trophic level, remained remarkably constant along the gradient of species richness. 

The effect of species richness on network structure has been repeatedly studied in local 

communities [99], [100], [102], [254]. The variation in many food web properties is largely driven by 

changes in species richness [99], [102]. However, in chapter 4 I showed how these correlations hold 

across large ranges of species richness and across different spatial scales and biogeographical 

regions, where communities are subject to different environmental and historical conditions. I 

showed that species richness alone is enough to explain the geographical variability of the spatial 

scaling of network complexity in Europe. But further research is needed to disentangle the 

universality of the effects of species richness on the spatial scaling of all network properties across 

different ecological systems. 

PERSPECTIVES 

Species geographical ranges and ecological networks 

 Species geographical ranges are at the base of biogeographical research. They constitute 

one of the fundamental ecological and evolutionary characteristics of species and they are 

considered strong predictors of species extinction risks [274]. The influence of biotic interactions on 
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determining species geographical ranges has long been questioned [31], [51], [275].  They have been 

recently shown to not only limit species current geographical ranges but also to influence species 

responses to climate change and therefore, the limits of their future distribution [36], [276], [277]. 

Inversely, although more empirical evidence is needed, species geographical range size has 

correlated positively with species diet breadth [31], [166], [167], [278]. However, much less is known 

about how the combination of species distributions determine the structure of local ecological 

communities or the spatial scaling of network structure in a given region. In chapter 1, I indirectly 

link species geographical ranges to the structure of ecological communities and their spatial scaling 

by considering species beta-diversity as the underlying mechanism promoting the changes in 

network structure across spatial scales. Species turnover in a given region is largely determined by 

their geographical range limits. If geographical range sizes differ across trophic levels, beta-diversity 

patterns will also be different and, therefore, we will observe changes in network structure across 

spatial scales (Figure 31). In particular, our empirical evidence in chapter 1 suggests that consumers 

will tend to have smaller ranges than resources in regions with more environmental constancy, such 

as the Tropics, while in more fluctuating areas, consumers and resources will tend to have similar 

ranges. 

 

Figure 31. Combination of species geographical ranges, beta-diversity and biotic interactions. The 
first and second layers represent resources and consumers geographical ranges, respectively. The 
third layer shows local interactions between consumers and resources depending on their 
geographical ranges overlap. The fourth layer represents the regional network resulting from the 
aggregation of all biotic interactions.  
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In the cartoon representation depicted in figure 31, resources geographical ranges are 

smaller than consumers geographical ranges, which results in a larger proportion of resources per 

consumer that allows them to not specialize in a unique resource. On the contrary, if consumers 

geographical ranges would be smaller than that of resources, the patterns of biotic specialization 

would change showing a higher degree of biotic specialization. Or if both consumers and resources 

ranges would be equally smaller, we could predict patterns of reciprocal specialization emerging 

from the ranges overlap.  

 In chapter 4, I directly used species ranges to filter species interactions by constraining them 

to only those species whose ranges overlapped in space. However, I did not establish direct links 

between the distribution of the geographical ranges of the species present in a community of a given 

region with the patterns observed of local network structure and its spatial scaling. Establishing 

these direct relationships would allow us to predict a number of structural properties of the network 

for a region of interest, such as patterns of biotic specialization. This is not only interesting on itself, 

but it will also inform on the effects of perturbations, like habitat loss, on the structure of ecological 

communities only from the species geographical ranges and basic information on their biotic 

interactions. This new avenue for the integration of biogeography and ecological networks would 

potentially represent a step forward for the understanding and use of macroecological networks in 

conservation. 

Spatial scaling of quantitative networks and ecosystem functioning 

 In all chapters of the thesis I have used binary networks. That is, I focused on the topological 

properties of the networks instead of using quantified information on the interaction strength 

between species. As previously explained in chapter 1, data on the structure and strength of 

ecological interactions at large spatial scales is still not available. Most data on ecological networks 

are snapshots in time and space [140].  However, both species interactions and their strengths vary 

over time and space depending on factors such as, abiotic conditions, population densities, predator 

switching or due to non-linear functional responses [24], [141]–[144]. Therefore, averaging 

interaction strengths across local communities to estimate the spatial scaling of interaction 

strengths seems both problematic and unrealistic. Direct measures of interaction strengths 

accounting for these variations in population densities and functional responses across spatial scales 

are needed to progress towards the spatial scaling of quantitative networks. 
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Interaction strengths in ecological networks have been proven key to understand different 

aspects of community dynamics and stability [212], [213], [216], [279], and have been related to the 

effects of different perturbations on ecosystem functioning [45], [47], [272], [280], [281]. 

Understanding how quantitative networks change across spatial scales would, therefore, open new 

possibilities to explore how community stability and functioning change with area size and how are 

they affected by the different processes that are at play at each spatial scale. However, this first 

requires an important methodological work on how to scale interaction strength with space. 

Determinants of the shape of NARs 

Throughout the thesis, I explored the spatial scaling of network structure by determining 

the mechanisms behind changes in community structure across spatial scales and by analysing a 

number of Network-Area Relationships across different systems. In chapter 4, I used a subset of the 

empirical data to be able to constraint the sources of variation among the datasets and, thus, 

explore the determinants of the shape of NARs. The strong correlations between the spatial scaling 

of species richness with all network complexity properties, indicated that in this case, the main 

determinant of the shape of NARs was the spatial scaling of species richness. Therefore, it did not 

allow me to directly explore environmental determinants of the shape of NARs, but instead I 

analysed the main determinants of the shape of SARs. I identified the spatial variability of mean 

annual temperature and the spatial clustering of habitat types as the main determinants of the 

spatial scaling of diversity across Europe. 

As discussed in chapter 4, while these mechanisms affected the spatial scaling of network 

complexity only indirectly through the effect on the spatial scaling of species richness for the 

European data, environmental factors can directly affect network structure across spatial scales. For 

instance, habitat loss or modification can alter species interactions [205], [206], [209] and the 

functions they perform [11], [207], [272], without large variations in species richness. Similarly, 

landscape heterogeneity can generate species sorting and priority effects, which can generate 

compartments in the community and promote a modular or compartmented network structure 

regardless of species richness [200], [201].  

To progress on our understanding of NARs it is thus fundamental to disentangle the effect 

of species richness on the spatial scaling of all other network properties across different systems 

and biomes. Equally important is to determine the effect of other biotic and abiotic factors on the 
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shape of NARs, as it has been systematically studied for SARs. Particularly relevant is to explicitly 

analyse the effects of habitat heterogeneity on the spatial scaling of network modularity. 

Scale invariance in ecological networks 

Ecological network research has looked for universalities in the way species interact across 

different types of systems [5]–[8]. That is, patterns in ecological communities, such as the 

predominance of weak interactions between consumers and resources [24], [25], that are observed 

universally across all communities analysed. However, much less in known about scale invariant 

patterns in ecological networks. A pattern is considered scale invariant when it is equally observed 

when looking at different subparts of the same system. For instance, Blüthgen and colleagues [282], 

suggested that the degree of specialization of a network is independent of its size (i.e.  total number 

of plant and animal species) when link weight is accounted for, indicating that patterns for biotic 

specialization might be scale invariant. Yet, most network properties in ecological research have 

been described as scale dependent (i.e., they are expected to change with species richness) [100], 

[101].  

In this thesis I focused on understanding the variation of network structure across spatial 

scales.  While most network properties showed to be dependent on the spatial scale considered and 

on the species richness of the network, others showed strikingly constant patterns regardless of the 

spatial scale and species richness. Specifically, the proportion of species across trophic levels in food 

webs and the modular structure of networks regardless the interaction type. This would suggest 

that there are a number of fundamental units in ecosystems that are self-similar across spatial 

scales, and they correspond to the modular structure and the vertical organization of diversity. 

Further analyses are needed to determine whether these patterns are scale invariant and which are 

the mechanisms behind their invariability. 

Spatial scale in ecological network studies 

Along all chapters of the thesis, I showed how network structure changes across spatial 

scales and how these changes might be dependent on the system analysed. In chapter 1, for 

instance, I showed how network structure can change from local to regional spatial scales in 

opposite directions along the gradient of environmental constancy.  Similarly, in chapter 3, I showed 

how the spatial scaling of network structure depends on the type of data analysed, being slower in 

islands.  Yet, ecological network studies often fail to acknowledge the spatial scale at which 

networks of species interactions were empirically characterized. This impedes the correct 



 

 

186 

estimation of the causes of variation of network structure and precludes a meaningful comparison 

between studies. If, as demonstrated in this thesis, network structure varies across spatial scales, 

then network studies estimating the causes of variation in network structure along environmental 

gradients [77], [174], [175] or between different types of systems, should systematically incorporate 

the spatial scale of observation.  

 As mentioned before, and in agreement with previous studies, part of the variability 

observed in the spatial scaling of network properties disappeared when controlling by species 

richness [99]–[102], eespecially for those properties describing the complexity of the community. 

However, I showed that properties related to the vertical diversity of the community, such as the 

proportion of species per trophic level, are difficult to predict solely from species richness. They did 

not show a consistent trend across systems suggesting that they might be differently affected by 

different spatial processes. While better understanding the role of species richness for all network 

properties remains a fundamental challenge to further disentangle the intrinsic role of the spatial 

scale of observation, my results suggest that controlling for species richness would account for most 

of the variation in network complexity, and hence it would suffice in comparative studies, but it 

would not explain all the variation observed in vertical diversity properties. Therefore, incorporating 

the spatial scale of sampling in comparative studies would provide additional key information on 

certain network properties and can also elucidate the processes behind structuring ecological 

communities. 
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