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GRENOBLE ALPES
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eux passé trois superbes années, autant sur le plan scientifique que sur le
plan personnel. Je les remercie d’avoir toujours été présents quand j’en avais
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Introduction

To a large extent, this thesis is the result of a collaboration between the
Operations Research team at G-SCOP laboratory and the IPAG research unit
(Institute for Planetary sciences and Astrophysics, Grenoble) of Grenoble’s
Universe Sciences Observatory (OSUG).
Astrophysicists want to schedule observations on a telescope and, for each
possible target (star), there exist time-windows when it is visible, a required
duration for its observation, and an interest for observing it; the objective
is to maximize the total interest of the schedule. The primary goal of this
thesis was to improve the algorithms implemented in the software used by the
astrophysicists, while integrating additional specific constraints and assessing
the potential gains of introducing some flexibility in the model.

This flexibility is related to observation duration. Indeed, shortening an
observation leads to a picture of lesser quality. However, it would be worth
doing if that makes room for another one. More generally an observation
remains relevant even if its observation time is slightly less than the required
value.
In Chapter I, we study this aspect from a theoretical point of view. We
consider scheduling problems where jobs have a variable processing time: one
can decide the processing time of each job. The profit for a job then depends
on its allocated processing time and the objective is to maximize the total
profit of the schedule. Our purpose is to draw the line between P-easiness and
NP-hardness for various profit functions and machine environments, with an
emphasis on models leading to the practical star scheduling problem.

Then, in Chapter II, we take care of the practical problem resolution. We
define the complete model and propose several ways of integrating the flex-
ible observation durations in it. We develop a Large Neighbourhood Search
algorithm for each variant. It reaches the required practical criteria from
simplicity and adaptability to speed and efficiency. Its performances are
compared to previous approaches and the gain from flexibility is estimated.

Chapter III is not related to the star observation scheduling problem. Every
other year, the French Operational Research and Decision Support Society
(ROADEF) jointly with the European Operational Research Society (EURO)
organizes an optimization challenge open to everyone. Each edition is a
collaboration with an industrial partner, and the problems and instances
submitted correspond to real life industrial optimization problems. Previous
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challenges have been organized in collaboration with Air Liquide (2016),
SNCF (2014), Google (2012), EDF (2010)... The 2018 edition of the challenge
was dedicated to a cutting optimization problem in collaboration with Saint-
Gobain.
In Chapter III, we present the heuristic Branch and Bound algorithm we
submitted for the final phase of the challenge. We describe the Branching
scheme including dominance criteria and symmetry breaking strategy; and
the anytime Tree search algorithm called MBA* which is inspired from the
classical A* and Beam search algorithms.

The three chapters can be read independently. Therefore, Because of the un-
relatedness of cited papers between them, we choose to split the bibliography
into each chapter.
While Chapters I and II have been written with my supervisors Nadia Brauner
and Pierre Lemaire, Chapter III has been written together with Luc Libra-
lesso.
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I

Ch
ap
te
r

Complexity of processing time dependent profit
maximization scheduling problems

In this chapter, we study the complexity of scheduling problems where jobs
have a variable processing time: one can decide the processing time of each
job. The profit for a job then depends on its allocated processing time.
In our experience, the problem originates from astrophysics and the search
for exoplanets (Lagrange et al. 2016). Astrophysicists want to schedule ob-
servations on a telescope and, for each possible target (star), there exist
time-windows when it is visible, a required duration for its observation, and
an interest for observing it; the objective is to maximize the total interest of
the schedule. This primary version of the problem has been described and
solved by Catusse et al. 2016, but it appears that shortening an observation
would be worth doing if that makes room for another one. More generally an
observation remains relevant even if its processing time is slightly less than
the required value, with an accordingly downgraded interest. Such a situa-
tion can be modelled by processing time dependent profits: hence there is a
need to study such models and, first of all, their complexity (this chapter);
the practical resolution of the complete problem is the subject of Chapter II.
Therefore, in this chapter, we first state formally the problem and propose
several profit functions (Section I.1) together with a literature review (Sec-
tion I.2); then, we prove some generic properties (Section I.3) moving on
to NP-completeness results (Section I.4) before considering polynomial cases
(Section I.5).

I.1 Processing time dependent profit

We consider a scheduling problem with n jobs; each job Tj has a deadline dj
and a profit function wj(pj) that depends on the decided processing time pj.
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CHAPTER I. PDPS PROBLEMS

The objective is to maximize the total profit:

max
n∑
j=1

wj(pj)

with the convention that pj = 0 if Tj is not scheduled. Figure I.1 shows three
examples of profit functions. The first one depicts how in a classical job
selection problem, the profit w̄j of a job Tj can be modeled by a processing
time dependent profit function where wj(p) = 0 if the processing time does
not reach the required one and wj(p) = w̄j otherwise. The second example
is a linear profit and the third one represents the profit of a star observation.

p

wj(p)

pj

wj

p

wj(p)

p

wj(p)

Figure I.1 – Examples of profit functions of: (a) a classical scheduling problem
(wj(p) = wj if p ≥ pj, 0 otherwise); (b) basic (linear profit) problem; (c) the
star observation problem

Note that, if there are no release dates (all jobs are available at t = 0), a
job can always be scheduled with a null processing time at the beginning
of the schedule. However, when jobs have different release dates, it may
be impossible to schedule all jobs in an optimal solution, even with null
processing time. This is illustrated on Figure I.2. In this example, we assume
that the profit yielded by J1 is much greater than the profit that would yield
J2 if it were scheduled and that preemption is not allowed. If one schedules
J2, then J1 has to be interrupted, and therefore no optimal solution exists
where J2 is scheduled. However, the feasibility can always be ensured since
not scheduling any job is a feasible solution.
Also note that the objective function is not a regular criterion and the in-
stance size (as input of a Turing machine) depends on how wj are defined. In
the remainder of this chapter, we call this problem and its variants Processing
time Dependent Profit Scheduling Problems (PDPSP).
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CHAPTER I. PDPS PROBLEMS

r1 d1r2 d2

J1

Figure I.2 – Example of an instance where all jobs cannot be scheduled in
an optimal solution

We propose now several profit functions that are studied thereafter; to this
extent, we adapt the 3-field notation (see e.g. Pinedo 2015) as follows:

α | f, β | −
∑

wj(pj)

where, in addition to the classical α and β, parameter f describes the
profit function. We note the objective −∑wj(pj) as the minimization of
the negative profit, since, in scheduling, objectives are usually to be mini-
mized (Pinedo 2015). Also note that deadlines are not explicitely indicated,
since they are implied by the objective.
In this chapter, we consider the profit functions presented in Figure I.3.
The one corresponding to the original astrophysics problem is the last. The
other ones are simplifications that allow to understand the role of each of its
components. The mnemonic for the abbreviations is: ST stands for Setup
Time, B for Bounded, L for Linear, and IP for Initial Profit. In all cases, the
parameter bj is called the growth rate of job Tj, wmin

j its minimum profit, wmax
j

its maximum profit, pmin
j its minimum processing time and pmax

j its maximum
processing time. Note that these denominations are slightly abusive: indeed,
the minimum processing time of any job Tj is 0 and the maximum processing
time is dj, but there is no use scheduling Tj during pj ∈

]
0, pmin

j

[
∪
]
pmax
j , dj

]
.

We also define bmax = maxj bj and d = maxj dj.
In Section I.5, we present polynomial algorithms that generalize to a Piece-
wise Linear Profit (PLP) model. In this model, each job Tj has Kj pieces.
A piece is given by an initial processing time pkj , an inital profit wkj and a
growth rate bkj :

wj(p) = wkj + bkj (p− pkj ) for pk−1
j ≤ p < pkj

and we assume that:

(1) p0
j = 0 and w0

j = 0 (no profit for a null processing time);

(2) pKj ≥ dj (profit must be defined at least up to the deadline);

(3) wk+1
j ≥ wkj + bkj (pk+1

j − pkj ) (profit is non-decreasing);

13/127



Linear Profit (LP)

wj(p) = bjp

p

wj(p)

Linear Profit with Setup Time (LPST)

wj(p) =
{

0 for p < pmin
j

bj(p− pmin
j ) for p ≥ pmin

j

p

wj(p)

pmin
j

Linear Bounded Profit (LBP)

wj(p) =
{
bjp for p < pmax

j

bjp
max
j for p ≥ pmax

j

p

wj(p)

pmax
j

wmax
j

Linear Profit with Setup Time and Initial Profit (LPSTIP)

wj(p) =
{

0 for p < pmin
j

wmin
j + bj(p− pmin

j ) for p ≥ pmin
j

p

wj(p)

pmin
j

wmin
j

Linear Bounded Profit with Setup Time (LBPST)

wj(p) =


0 for p < pmin

j

bj(p− pmin
j ) for pmin

j ≤ p < pmax
j

bj(pmax
j − pmin

j ) for p ≥ pmax
j

p

wj(p)

pmin
j

pmax
j

wmax
j

Linear Bounded Profit with Setup Time and Initial Profit
(LBPSTIP)

wj(p) =


0 for p < pmin

j

wmin
j + bj(p− pmin

j ) for pmin
j ≤ p < pmax

j

wmin
j + bj(pmax

j − pmin
j ) for p ≥ pmax

j

p

wj(p)

pmin
j

pmax
j

wmax
j

wmin
j

Figure I.3 – Profit functions
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(4) pkj and wkj are integers, bkj are rationnals.

p

wj(p)

p0
j p1

j p2
j p

3
j p4

j p5
j p6

j

w0
j

w1
j = w2

j

w3
j

w4
j

w5
j

w6
j

Figure I.4 – A PLP function showing the different types of pieces

A PLP can be any non-decreasing piecewise-linear function starting at 0
and may be neither continuous nor concave; Figure I.4 shows the different
possible configurations of pieces. Note that, for a given p, computing wj(p)
requires O(logKj) time to search for the piece k such that pj ∈ [pkj , pk+1

j [.
The assumption that input data are integers holds for every model (and is
further discussed later, see Section I.3). For LBP, LBPST and LBPSTIP, we
allow growth rates to be rationnal, but such that wmax

j remain integers.
For a PDPSP with a PLP, we note K = maxj=1,...,nKj.

A general PDPSP is obviously an NP-complete problem. In this chapter, we
study the complexity of the various PDPSP with a focus on the PLP model
in order to find easier cases.

I.2 Literature review and applications
From a theoretical point of view, PDPSP can been seen as a combination
of job selection (also called scheduling with rejection) and scheduling with
controllable processing times.
Job selection is a classical class of scheduling problems. A review of these
problems can be found in Slotnick 2011 and Shabtay et al. 2013. The most
basic variants of job selection problems are the Knapsack Problem and the
scheduling problem 1 | | ∑Uj. Research focuses on richer variants of the
problem. For example, Bartal et al. 2000; Zhang et al. 2009 consider a job
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selection problem of which objective is to minimize the sum of the makespan
and the penalties of all rejected jobs while Engels et al. 2003 minimize the
sum of the weighted completion times of the jobs scheduled plus the sum of
the penalties of the jobs rejected. Zhang et al. 2010 minimize any regular
objective function while bounding the sum of the penalties of the rejected
jobs. Shabtay et al. 2012 propose a bicriteria approach, the first objective
being a regular criterion and the second one being the total rejection cost.
Lin and Ying 2015 study of permutation flowshop with job rejection. Eun et
al. 2017 study a completion time dependent profit maximization scheduling
problem, while in PDPSP, the profit depends on the processing time.
Scheduling problems with controllable processing times have also received
great attention (see Shabtay and Steiner 2007; Shioura et al. 2018 for sur-
veys). In those problems, processing times are controllable by allocating a
resource to job operations. The objective is then either related to job comple-
tion times, resource consumption cost or a combination of both. When there
is no discontinuity in the profit function, algorithms developed for schedul-
ing problems with controllable processing times may also solve PDPSP. For
example, the problem 1 | LBP | −∑wj(pj) is equivalent to the schedul-
ing problem with controllable processing times subject to deadlines adressed
in Janiak and Kovalyov 1996.
A variant of PDPSP has been introduced by Cao et al. 2006. They studied
it as a bi-criteria problem, minimizing the weighted number of rejected jobs
and minimizing the total cost of compression. They prove the NP-hardness
of the problem, and propose a FPTAS, a pseudo-polynomial algorithm and a
greedy heuristic. In this chapter, we aggregate both criteria, which allows us
to study more accurately and exclusively the complexity of those problems.
PDPSP are also related to scheduling problems with late work criteria, noted
Yw (see Sterna 2011 for a survey), in which only the units executed after the
due dates are penalized. For example, as used in Section I.9.3, P | LBP,
pmtn, rj | −

∑
wj(pj) can be seen as the late job problem P | pmtn, rj |∑

wjYj, that can be solved with a minimum cost flow model in polynomial
time (Leung et al. 2004).

PDPSP appear as subproblems of several applications. As stated in the in-
troduction, the issue arises in astrophysics and the search for exoplanets (La-
grange et al. 2016) in which the picture quality depends on the observation
time; even though the current practice does not take advantage of such a
possibility, due to the lack of tools to handle it.
A similar phenomenon appears in Earth observation scheduling problems. In
the problem described by Verfaillie and Lemaître 2001, polygon acquisitions
may be only partially satisfied. The gain associated with a partially sat-
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isfied request is either linearly or convexly dependent of the useful aquired
surface. Cordeau and Laporte 2005; Habet et al. 2010; Wang et al. 2011;
Tangpattanakul et al. 2015 used the same model for variants of the problem.
Yang and Geunes 2007 also introduced a scheduling problem including PDPSP
as subproblem. As in PDPSP, the objective is profit maximization, but their
model also includes tardiness costs. They propose two heursitics with com-
putational experiments on randomly generated instances.

I.3 Notations and general results
Some notations are used consistently throughout the rest of this chapter. I
denotes an instance and |I| is its size (as input of a Turing machine). S
denotes a solution, |S| is the number of tasks included in S (possibly with a
null processing time). For a task Tj ∈ S: pj(S) denotes its processing time,
sj(S) its start date and Cj(S) its completion time (end date). When there is
no ambiguity on the solution, we will just write pj, sj and Cj. w(S) denotes
the total profit of S (i.e., w(S) = ∑

Tj∈S wj(pj)). U denotes a dominant set
of solutions, i.e. for any instance, there exists an optimal schedule in U .
Furthermore, when considering complexity issues and thus decision problems,
we shall add a boundW ∈ N and ask whether there exists a feasible schedule
such that ∑j wj(pj) ≥ W . For all the cases considered in this chapter,
providing start dates, processing times and, if needed, processing machines
for all tasks completely defines a solution; for each case, such a solution
is indeed a polynomial certificate and will be enough to straightforwardly
conclude that it belongs to NP.

The first remarkable fact about processing time dependent profit scheduling
problems, is that the profit functions proposed in Section I.1 strongly relate
one to another, and there is indeed a whole complexity hierarchy that exists
among them and is represented by Figure I.5. This hierarchy is useful to
exhibit maximally-polynomial or minimally-NP-complete cases.
Then, a generic dominance property exists:

Lemma I.3.1
For P | | −∑wj(pj), the set of solutions for which all tasks are scheduled
(possibly with pj = 0) and such that, on each machine, tasks are sched-
uled in non-decreasing order of their deadlines and without idle time, is
dominant.

Proof. In any solution, idle times can always be removed and tasks that are
not scheduled can always be added at time 0 with a null processing time,
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LP

LBP

LPST

LBPST

LPSTIP

LBPSTIP

classical scheduling

classical scheduling

PLP(K)

pmax
j =dj

pmin
j =0

pmin
j =0

wmin
j =0

pmax
j =dj

wmin
j =0

pmax
j =dj (or wmax

j =dbmax)

bj = 0

bj=∞

Figure I.5 – Complexity hierarchy of PDPSP problems. An arc from A to
B means that A is a special case of B, and a label indicates the particular
settings of B that corresponds to A. PLP (K) is the particular case when
the number of pieces is bounded by K.

without altering the feasibility nor the value of the solution. Hence, we can
consider, without loss of generality, that all tasks are scheduled and without
idle time.
Then, the proof relies on a classical exchange argument. Let S be an optimal
solution. If there exist unordered pairs of tasks (that is (Tj, Tk) such that
Tj is scheduled after Tk on the same machine whereas dj < dk), then there
exists an unordered pair (T ∗j , T ∗k ) such that T ∗j is scheduled immediately after
T ∗k . The solution obtained by exchanging T ∗j and T ∗k remains feasible and
optimal, while strictly decreasing the number of unordered pairs. Repeating
this operation leads to a feasible optimal solution without any unordered
pairs, i.e. with tasks scheduled in non-decreasing order of their deadlines. �

This lemma is very useful but is not enough to directly provide optimal
solutions, as one does not know how long each task must be executed. Still,
note that for the single machine case, a solution can be characterized by the
list of the processing times allocated to each task.

In scheduling, it is quite common that start dates and end dates are integers
as soon as input data are integers and there is no preemption. So one could
think that similar results could be designed for all but exotic profit functions.
This is not that simple and one should be aware that tasks may end at non-
integer (even irrational) instants as soon as the profit function is not linear
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0 1

0
1

p

w
(p

)

w1(p)

w2(p)

w3(p) Three tasks T1, T2, T3 such that :

• w1(p) = p

• w2(p) = √p/2

• w3(p) = 2− 2/(1 + p)

and d1 = d2 = d3 = 1

Example 1: I = {T1, T2}. In an optimal solution: p1 = 15/16, p2 = 1/16.
Example 2: I = {T1, T3}. In an optimal solution: p1 =

√
2− 1, p3 = 2−

√
2.

Figure I.6 – Two simple examples of non-linear PDPSP for which an optimal
solution must have some tasks with non-integer start or end dates.

(simple such cases are depicted in Figure I.6). However, for the PLP model,
as we assume integer data and (piecewise) linear profit, solutions with integer
processing times are indeed dominant:

Lemma I.3.2
For P | PLP | −∑wj(pj), the set of solutions such that:

(1) all tasks are scheduled (possibly with pj = 0) and on each machine,
tasks are scheduled in non-decreasing order of their deadlines with-
out idle time;

(2) all start dates and processing times are integers, i.e. for all j =
1, . . . , n: sj, pj ∈ {0, . . . , dj}

is dominant.

Proof. (1) has already been proven by Lemma I.3.1.
For (2), let us first remind that dj ∈ N and pkj ∈ {0, . . . , dj} for all j =
1, . . . , n and k = 1, . . . , Kj. In any solution, idle times can be removed and
the last task on a machine can always be extended up to its deadline (possibly
with no profit). As a consequence, one can assume without loss of generality
that on each machine: the first task starts at time 0, every other task starts
as soon as the preceding one ends, and the last task ends at an integer time
(its deadline). Clearly, if all processing times are integers, then all start dates
and end dates are integers. So, let’s prove that there always exists an optimal
solution with only integer processing times.
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If that is not true, then there exists a solution S which has the above prop-
erties, which is optimal, and which is “minimal”, in the sense that it has the
minimum number of tasks with non-integer processing times. Let Tj1 be the
first task such that pj1 /∈ N; as the total processing times on a machine sums
up to an integer, there exists another task Tj2 , on the same machine, such
that pj2 /∈ N; we assume Tj2 to be the first such task after Tj1 . There exists
k1 such that pk1

j1 ≤ bpj1c < pj1 < dpj1e ≤ pk1+1
j1 and there exists k2 such that

pk2
j2 ≤ bpj2c < pj2 < dpj2e ≤ pk2+1

j2 .
If bj1 = bj2 , then pj1 can be decreased, and pj2 increased by the same amount,
until either pj1 or pj2 is an integer (which then contradicts that S is “min-
imal”). If bk1

j1 < bk2
j2 then there exists ε > 0 such that decreasing pj1 by ε

and increasing pj2 by the same amount yields a feasible and strictly better
solution, which contradicts the optimality of S; the reverse holds if bk1

j1 > bk2
j2 .

In this case, note that Tj1 and Tj2 being the first two tasks with non-integer
durations, none of the tasks in between can end on an integer date, and in
particular, none ends at its deadline; hence it is indeed always possible to
increase pj1 by some ε > 0 and decrease pj2 by the same amount, without
altering the feasibility of the solution. �

Lemma I.3.2 still does not provide a direct optimal solution, but we can
develop a dynamic programming algorithm on it:

Theorem I.3.1
Algorithm 1 returns an optimal solution to P | PLP | −∑ wj(pj) in time
O(n(mdm+1 + log n)).

Proof. Algorithm 1 is a standard dynamic-programming algorithm. The
value f ∗(j, C) is the best value that can be obtained by scheduling the first
j tasks so that the machines end at the completion times defined by C.
By Lemma I.3.2, there exists an optimal solution with tasks ordered as in
step 1. Thus, it is enough to consider the tasks in this order and to enumerate,
for a task Tj, all possible end dates on all machines. This is done by step 3:
the base case is straightforward, whereas the two next cases forbid idle time
(since there always exists an optimal solution without idle time) and the
general case performs the actual enumeration.
The complexity of step 1 is O(n log n). Then, the complexity of step 2 is
O(nd logK) which is O(nd2) since K ≤ d; this pre-computing enables to
get wj(Ci − s) in O(1) during step 3. The size of f ∗ is ndm and it takes
O(md) to compute a given value in step 3. The overall complexity is thus
O(nmdm+1 + n log n). �
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Algorithm 1 P | PLP | −∑wj(pj)
INPUTS: an instance I

1: Sort tasks in non-decreasing order of their deadlines
2: Precompute wj(p) for all task Tj, j = 1, . . . , n and for all p = 0, . . . , dj
3: Let C = {C ∈ {0, . . . , d}m , C1 ≤ · · · ≤ Cm}. Return maxC∈C f ∗(n,C)

such that:

f ∗(j, C) =



0 ∀j = 0, . . . , n and C = {0, . . . , 0}

−∞ if j = 0 and C 6= {0, . . . , 0}
(idle time at the beginning is never necessary)

−∞ if dj < maxCi
(no task can end at Ci)

max
1≤i≤m

s∈{0,...,Ci}

f ∗(j − 1, C − (Ci − s)ei) + wj(Ci − s)
otherwise

where C is a m-dimensional vector containing the required completion
time of the last task scheduled on each machine and ei is the vector such
that eii = 1 and eik = 0 for all k 6= i.

Note that Algorithm 1 runs in pseudo-polynomial time if the number of ma-
chines is fixed and even in polynomial time if d is also fixed (or more generally
if either due-dates or processing times are bounded). That is: Algorithm 1
runs in a reasonable time if the numbers involved are reasonable. This is a
standard property for a number-problem (well-known for, e.g., Partition or
Subset Sum) which may actually apply in practice. For instance, in the star
scheduling problem, the duration of a night is naturally bounded and the
duration of an observation is technically limited, providing practical upper
bounds on respectively due-dates and processing times.

Lemma I.3.2 provides a first overview of the structure of solutions with a
PLP function. Still, we can have better results: most tasks can be scheduled
during a pkj , and only a few will not. If two consecutive tasks are not scheduled
during a pkj , one of them can have its processing time decreased for the benefit
of the other one (the increase of the first task may be limited by its deadline).

We get even stronger results if we only consider “interesting” processing times
instead of all pkj . We define Pj the set of “interesting” processing times of
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p

wj(p)

pkj pk+1
j

p

wj(p)

pkj pk+1
j

p

wj(p)

pkj pk+1
j

pkj ∈ Pj
pk+1
j ∈ Pj

pkj /∈ Pj
pk+1
j ∈ Pj

pkj ∈ Pj
pk+1
j ∈ Pj

Figure I.7 – Examples of “interesting” and not “interesting” processing times.

task Tj as follows:

Pj =
{
ρ1
j , . . . , ρ

Kρ
j

j

}
=
{
ρ, ∃k, ρ = pkj and wkj (ρ− 1) < wkj (ρ)

}
with ρ1

j ≤ · · · ≤ ρ
Kρ
j

j and we call Tj a regular task if pj ∈ Pj and a singular
task if pj /∈ Pj (note that Kρ

j ≤ Kj).
An “interesting” processing time corresponds to a pkj except when the previ-
ous piece has a null growth rate and there is no discontinuity between them.
The need to define Pj is illustrated in Figure I.7; for instance, pmin

j is “inter-
esting” for LPSTIP or LBPSTIP, but it is not for LPST and LBPST. The
following lemma indicates what makes those processing times “interesting”:
Lemma I.3.3
For P | PLP | −∑wj(pj), the set of solutions such that:
(1) all tasks are scheduled (possibly with pj = 0) and, on each ma-

chine, tasks are scheduled in non-decreasing order of their deadlines
without idle time;

(2) for all pairs of singular tasks Tj1 , Tj2 scheduled on the same machine,
there exists at least one task Tk scheduled on the same machine
between Tj1 and Tj2 and ending at its deadline

is dominant.
Furthermore, there exists a polynomial time algorithm that, given any
optimal solution, returns an optimal solution satisfying those properties.
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Proof. (1) has already been proven in Lemma I.3.1.
Let S be an optimal solution such that all tasks are scheduled without idle
time and in non-decreasing order of their deadlines, and which is “minimal”,
in the sense that it has the minimum number x of pairs of singular tasks
scheduled on the same machine without any task ending at its deadline in
between. If x = 0 then the Lemma is proven.
Otherwise, let Tj1 , Tj2 be such a consecutive pair. Let k1, k2 be such that
pk1
j1 ≤ pj1 < pk1+1

j1 and pk2
j2 ≤ pj2 < pk2+1

j2 , and let kρ1 , kρ2 be such that
ρ
kρ1
j1 < pj1 < ρ

kρ1+1
j1 and ρk

ρ
2
j2 < pj2 < ρ

kρ2+1
j2 . Remark that:

(1) There may be many processing times (pk1−1
j1 , pk1−2

j1 . . . ) between ρ
kρ1
j1

and pk1
j1 , but they are all not interesting processing times, meaning null

growth rate and no discontinuity. As a consequence, decreasing pj1 to
any value in [ρk

ρ
1
j1 , p

k1
j1 ] yields a loss of profit of only bk1

j1 (pj1 − pk1
j1 ).

(2) If bk2
j2 > 0 then pk2+1

j2 is an interesting processing time. As a conse-
quence, increasing pj2 to the next interesting processing time yields a
gain of profit of bk2

j2 (ρk
ρ
2+1
j2 − pj2).

If bk1
j1 = 0, then we can set pj1 = ρ

kρ1
j1 and shift all the jobs scheduled after

to the left. The solution value is not downgraded (remark (1)) and x stricly
decreases. Therefore, S was not minimal. The case bk2

j2 = 0 is similar.
If 0 < bk1

j1 ≤ bk2
j2 , we can reduce the processing time of Tj1 by min{pj1 −

ρ
kρ1
j1 , ρ

kρ2+1
j2 − pj2}, shift all the regular tasks scheduled between Tj1 and Tj2

toward Tj and increase the processing time of Tj2 by the same quantity. In
the process the profit is not downgraded (remarks (1) and (2), with bk1

j1 ≤ bk2
j2 )

and thus the solution remains optimal, but either Tj1 or Tj2 is now a regular
task, and x strictly decreases. Therefore, S was not minimal.
If bk1

j1 > bk2
j2 > 0, we can increase the processing time of Tj1 by min{ρk

ρ
1+1
j1 −

pj1 , {dl − Cl}sj1≤sl<sj2 , pj2 − ρ
kρ2
j2 } (with l restricted to tasks on the same ma-

chine as Tj1 and Tj2), shift all the tasks scheduled between Tj1 and Tj2 toward
Tj2 and decrease the processing time of Tj2 by that quantity; this is valid and
the solution remains optimal, but either Tj1 is now a regular task, or Tj2 is
now a regular task, or there exists a task Tl such that Cl = dl between Tj1
and Tj2 : in any case, x stricly decreases and therefore S was not minimal.
In all cases, there is a contradiction, so x = 0.
Furthermore, the operations described above can be used to strictly decrease
x in an optimal solution with x > 0. Then, after a polynomial number of
polynomial iterations, we can tranform any optimal solution in an optimal
solution belonging to the dominant set. �
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A direct corollary from Lemma I.3.3 is that when all tasks have the same
deadline, there will be at most one singular task on each machine:

Corollary I.3.1
For P | PLP, dj=d | −

∑
wj(pj), the set of solutions such that:

(1) all tasks are scheduled (possibly with pj = 0) and, on each machine,
tasks are scheduled without idle time;

(2) on each machine, there is at most one singular task

is dominant.
Furthermore, there exists a polynomial time algorithm that, given any
optimal solution, returns an optimal solution satisfying these properties.

I.4 NP-complete cases
Intuitively, some problems are NP-complete since several profit functions can
be shaped to fit with the profit function of classical scheduling problems (for
example LPSTIP , bj=0). Then, reductions from P | | Cmax, Pm | | Cmax
or the Knapsack Problem will be straightforward. In the former case,
the problems will be proven to be strongly NP-complete. In the latter cases,
with fixed m, the problems will be only weakly NP-complete as we already
know a pseudo-polynomial algorithm to solve them (Theorem I.3.1).
For one machine problems, we have:

Theorem I.4.1
1 | dj=d | −

∑
wj(pj) is weakly NP-complete with the following profit

functions:

(1) LPSTIP, bj=b

(2) LBPST, bj=b

(3) LBPSTIP, bj=b, wmax
j =wmax

(4) LBPSTIP, pmax
j =pmax, wmax

j =wmax

Proof. As remarked before, those problems clearly belong to NP. Further-
more, they have already been proven to be solvable in pseudo-polynomial
time (Theorem I.3.1). We prove their NP-completeness using reductions

24/127



CHAPTER I. PDPS PROBLEMS

from Knapsack, known to be NP-complete (Garey and Johnson 1979) and
defined as follows.
Let I be an instance of Knapsack: given a finite set A of items and for each
item j ∈ A a size aj ∈ N and a value vj ∈ N, and given bounds B ∈ N and
V ∈ N; the question is: is there a subset S ⊂ A such that ∑j∈S aj ≤ B and∑
j∈S vj ≥ V ?

(1): Knapsack happens to be the particular case with bj = 0: there are as
many tasks as there are items, and for task Tj we set wmin

j = vj, pmin
j = aj

and we use B as the common due-date d.

(2) the idea is to set the growth rate to 1 and to stretch the minimum
processing times and common deadline. The maximum processing time of a
task is then relatively close to its minimum processing time, and every task
scheduled, will necessarily be executed during its maximum processing time.
Technically, let v = n(maxk vk + 1) and let I ′ be an instance of 1 | LBPST,
bj=b, dj=d | −

∑
wj(pj) with n tasks Tj, j = 1, . . . , n, such that wmax

j = vj,
b = 1, pmax

j = vaj, pmin
j = vaj − vj (note that pmin

j ≥ 0) and d = vB; the
question is: is there a schedule S such that w(S) ≥ V ?
If I has a “yes” answer, then clearly, I ′ has a “yes” answer too. If I ′ has a
“yes” answer, then let S be an optimal solution of I ′. Corollary I.3.1 provides
a polynomial time algorithm to transform S such that it contains at most one
task that is not scheduled during its maximum processing time (all tasks have
the same deadline). Suppose that there is one such task Tj. The schedule is
full (otherwise pj could be increased and the solution value improved). Thus,
p(S) = ∑

Tk∈S pk = d = vB. Furthermore, p(S) = ∑
Tk∈S pk = v

∑
Tk∈S ak −

(pmax
j − pj). However pmax

j − pmin
j < v, therefore, p(S) is not a multiple of v,

which contradicts p(S) = vB. As a consequence, all tasks in S are scheduled
during their maximum processing time and it is clearly possible to build the
corresponding solution for Knapsack. Therefore, I has a “yes” answer.

For LBPSTIP, one could use the fact that LBPSTIP generalizes LPSTIP:
hence a consequence of the first case (LPSTIP, bj = b) is that LBPSTIP
is NP-complete even if bj = b. However, the proof relies on bj = 0 and
thus one must add the additional requirement that wmin

j = wmax
j ; with such

restrictions, LBPSTIP and LPSTIP are indeed the same problem and so
there is nothing new. The two particular cases of LBPSTIP considered are
different; we nevertheless use the same general idea.

(3): we set growth rates to 1 and the minimum profits large enough so
that processing a task beyond its minimum processing time always yields a
negligible profit, mimicking a classical scheduling problem.
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Let I be an instance of Knapsack. Let I ′ be an instance of 1 | LBPSTIP,
bj=b, wmax

j =wmax, dj=d | −
∑
wj(pj) with n tasks Tj, j = 1, . . . , n, such

that b = 1, pmin
j = aj, wmin

j = (B + 1)vj, wmax = (B + 1)(maxk vk + 1),
pmax
j = aj + (B + 1)(maxk vk + 1− vj) and d = B; the question is: is there a

schedule S such that w(S) ≥ (B + 1)V ?
If I has a “yes” answer, then clearly, I ′ has a “yes” answer too. If I ′ has
a “yes” answer, then let S be an optimal solution for I ′. Corollary I.3.1
provides a polynomial algorithm to transform S such that it contains at
most one task that is not scheduled during its minimum processing time in
polynomial time (no task can be scheduled during its maximum processing
time since they are all greater than the deadline). If there is no such task,
then S directly provides an optimal solution to I. Otherwise, let Tj be this
task. Let S ′ be a solution identical to S except that Tj is only scheduled
during pmin

j . Then w(S ′) = ∑
Tk∈S′(B + 1)vk and it is therefore a multiple of

B+1. However, w(S) ≥ (B+1)V and w(S ′)−w(S) ≤ d < B+1. Therefore,
w(S ′) ≥ (B + 1)V , and it is possible to build the corresponding solution for
Knapsack. Therefore, I has a “yes” answer.

(4): we set the maximum processing time large enough so that processing
a task beyond its minimum processing time always yield a negligible profit,
mimicking a classical scheduling problem.
Let I ′ be an instance of 1 | LBPSTIP, pmax

j =pmax, wmax
j =wmax, dj=d |

−∑wj(pj) with n tasks Tj, j = 1, . . . , n, such that pmin
j = aj, pmax =

B(maxk vk + 2), x = ∏n
j=1(B(maxk vk + 2) − aj), bj = x max vk+1−vj

B(maxk vk+2)−aj ,
wmin
j = xvj, wmax = x(maxk vk + 1) and d = B; the question is: is there

a schedule S such that w(S) ≥ xV ?
Note that all parameters are integers and all maximum profits are equal. If I
has a “yes” answer, then clearly, I ′ has a “yes” answer too. If I ′ has a “yes”
answer, then let S be an optimal solution of I ′. Corollary I.3.1 provides a
polynomial algorithm to transform S such that it contains at most one task
that is not scheduled during its minimum processing time in polynomial time
(no task can be scheduled during its maximum processing time since they
are all greater than the deadline). If there is no such task, then S directly
provides an optimal solution to I. Otherwise Let Tj be this task. Let S ′ be
a solution identical to S except that Tj is only scheduled during pmin

j . Then
w(S ′) = ∑

Tk∈S′ xvk and it is therefore a multiple of x. However, w(S) ≥ xV
and w(S ′) − w(S) ≤ bjd < x. Therefore, w(S ′) ≥ xV , and it is possible to
build the corresponding solution for Knapsack. Therefore, I has a “yes”
answer. �

Note that the proofs for the LBPSTIP cases do not hold if, for all Tj, we
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impose pmax
j ≤ dj.

Now using a reduction from P | | Cmax and Pm | | Cmax, we have:

Theorem I.4.2
P | dj=d | −

∑
wj(pj) is strongly NP-complete and Pm | dj=d |

−∑wj(pj) is weakly NP-complete with the following profit functions:

(1) LPSTIP, wmin
j =wmin, bj=b

(2) LBP, wmax
j =wmax

(3) LBP, bj=b

(4) LBPST, bj=b, wmax
j =wmax

(5) LBPSTIP, pmin
j =pmin, bj=b, wmax

j =wmax

Proof. As remarked before, these problems clearly belong to NP. Further-
more, the cases with a fixed number of machines have already been proven
solvable in pseudo-polynomial time (Theorem I.3.1 as special cases of PLP).
We prove their NP-completeness using reductions from Pm | | Cmax and P
| | Cmax, respectively known to be NP-complete (Garey and Johnson 1979)
and strongly NP-complete (Garey and Johnson 1978).
Let I be an instance of Pm | | Cmax: n tasks Tj, j = 1, . . . , n, processing
times xj ∈ N, j = 1, . . . , n and a deadline δ ∈ N; the question is: is
there a m-processor schedule, m ∈ N, for {Tj}j=1,...,n that meets the overall
deadline δ?

(1): Pm | | Cmax happens to be a particular case of Pm | LPSTIP, wmin
j =wmin,

bj=b, dj = d | −∑wj(pj) with bj = 0: there are as many tasks, and for task
Tj we set wmin = 1, pmin

j = xj and d = δ.

(2): let I ′ be an instance of Pm | LBP, wmax
j =wmax, dj=d | −

∑
wj(pj), with

n tasks Tj, j = 1, . . . , n, such that pmax
j = xj, wmax = ∏n

k=1 xk and d = δ; the
question is: is there a schedule S such that w(S) ≥ n

∏n
k=1 xk? Note that for

all j = 1, . . . , n, bj = wmax

pmax
j

= ∏n
k=1,k 6=j xk is an integer.

I responds “yes” if and only if each task Tj is scheduled during xj before δ,
yielding a solution to I ′. Conversely, I ′ responds “yes” if and only if each
task is scheduled during its maximum processing time, yielding a solution
to I.

27/127



CHAPTER I. PDPS PROBLEMS

(3): we choose d = δ and b = 1 and wmax
j = xj and thus pmax

j = xj; the
question is: is there a schedule S such that w(S) ≥ ∑n

j=1 xj? The reasonning
is the same.

(4): let I ′ be an instance of 1 | LBPST, bj=b, wmax
j =wmax, dj=d | −

∑
wj(pj)

with n tasks Tj, j = 1, . . . , n, such that wmax = 1, b = 1, pmax
j = xj,

pmin
j = xj − 1 and d = δ; the question is: is there a schedule S such that
w(S) ≥ n?
I responds “yes” if and only if each task Tj is scheduled during xj before δ,
yielding a solution to I ′. Conversely, I ′ responds “yes” if and only if each
task is scheduled during its maximum processing time, yielding a solution
to I.

(5): let I ′ be an instance of 1 | LBPSTIP, pmin
j =pmin, bj=b, wmax

j =wmax, dj=d
| −∑wj(pj) with n tasks Tj, j = 1, . . . , n, such that pmin=1, pmax

j = xj, b = 1,
wmax = maxj xj + 1, wmin

j = wmax + 1 − pmax
j and d = δ; the question is: is

there a schedule S such that w(S) ≥ nwmax? Note that wmin
j ≥ 0.

I responds “yes” if and only if each task Tj is scheduled during xj before δ,
yielding a solution to I ′. Conversely, I ′ responds “yes” if and only if each
task is scheduled during its maximum processing time, yielding a solution
to I.

In all cases, the transformations are not only polynomial but even strongly
polynomial; hence the strong NP-completeness of the concerned cases. �

Corollary I.4.1
P | PLP | −∑wj(pj) is strongly NP-complete. Pm | PLP | −∑wj(pj) is
weakly NP-complete.

I.5 Polynomial cases solved with dynamic pro-
gramming

In this section, we propose three new algorithms for PDPSP with a PLP
function, that return optimal solutions in polynomial time for several profit
functions.

I.5.1 Pm | PLP, |{pk
j}| ≤ κ | −∑

wj(pj)
The first algorithm is an adaptation of Algorithm 1 where instead of consid-
ering all instants {0, . . . , d}, we only consider a polynomial subset of relevant
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instants, thus reducing the number of states to a polynomial number.
From Lemma I.3.3, we can deduce the dominant set of possible start dates
and end dates (we assume the tasks are sorted in non-decreasing order of
their deadlines):

Θ0 =

dj +
n∑

l=j+1
ρl

j=0,...,n−1
ρj+1∈Pj+1

...
ρn∈Pn


∪

dj −
j∑
l=1

ρl

j=1,...,n
ρ1∈P1
...

ρj∈Pj


The size of this set is a priori exponential. However, it can be rewritten as
follows. Let P = ∪j=1,...,nPj and let

Θ =

dj +
∑
ρ∈P

lρρ

( j=0,...,n−1
lρ=0,...,n−j∑

lρ≤n−j

) ∪
dj −∑

ρ∈P
lρρ

(j=1,...,n
lρ=0,...,j∑

lρ≤j

)

Clearly: Θ0 ⊂ Θ, and
|Θ| = O

(
n|P|+1

)
In the general case, |P| = O (nK), but if |P| is independent of the instance
size, |Θ| is polynomial in the instance size. For example, for LBPSTIP,
pmin
j =pmin, pmax

j =pmax: |P| = 2. More generally, we note |{pkj}| ≤ κ to
specify problems for which the number of different values for pkj is bounded
by a integer κ independent of the input. Let us also remind that Pm in the
first field of the three fields notation implies that m is also independent of
the input.
Then we can adapt Algorithm 1 to run on instants of Θ instead of {0, . . . , d}:

Theorem I.5.1.1
Algorithm 2 returns an optimal solution to Pm | PLP, |{pkj}| ≤ κ |
−∑wj(pj) in polynomial time.

Proof. The proof is similar to the one of Theorem I.3.1 in combination with
Lemma I.3.3 which ensures that the problem is solved optimally.
The complexity of step 1 is O(n log n). The size of f ∗ is n|Θ|m, that is
O(nm(|P|+1)+1), and since O(m log |Θ|) is required to retrieve a value of f ∗,
it takes O(mn|P|+1(m|P| log n + logK) to compute a given value in step 2.
The overall complexity is thus polynomial in the size of the input. �

The complexity hierarchy among models allows to derive the following par-
ticular cases:
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Algorithm 2 Pm | PLP | −∑wj(pj)
INPUTS: an instance I

1: Sort tasks in non-decreasing order of their deadlines
2: Let C = {C ∈ Θm, C1 ≤ · · · ≤ Cm}. Return maxC∈C f ∗(n,C) such that:

f ∗(j, C) =



0 ∀j = 0, . . . , n and C = {0, . . . , 0}

−∞ if j = 0 and C 6= {0, . . . , 0}
(idle time at the beginning is never necessary)

−∞ if dj < maxCi
(no task can end at Ci)

max
1≤i≤m
s∈Θ,s≤Ci

f ∗(j − 1, C − (Ci − s)ei) + wj(Ci − s)
otherwise

where C is a m-dimensional vector containing the required completion
time of the last task scheduled on each machine and ei is the vector such
that eii = 1 and eik = 0 for all k 6= i.

Corollary I.5.1.1
Pm | | −∑wj(pj) can be solved in polynomial time with the following
profit functions:

• LPST (and thus LP)

• LBPST, |{pmax
j }|≤κ (and thus LBP, |{pmax

j }|≤κ)

• LBPSTIP, |{pmin
j , pmax

j }|≤κ (and thus LPSTIP, |{pmin
j }|≤κ)

Besides, for PLP, if the pieces are all of the same duration (or more precisely,
if there exists ρ0 such that for all ρ ∈ P , there exists k ≤ K: ρ = kρ0), then:

Θ′ = {dj + lρ0}( j=0,...,n
l=−jK,...,(n−j)K

)
is a dominant set of instants of size

|Θ′| = O
(
n2K

)
Furthermore, a value f ∗(j, C) can be retrieved in O(1) and wj(p) can be
computed in O(1). Therefore the complexity of the algorithm is dramatically
reduced to O(mn2m+3Km+1 + n log n).
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I.5.2 1 | PLP, |{wk
j }| ≤ κ, bk

j∈{0, b} | −
∑
wj(pj)

Algorithm 2 is handy when there is some regularity among the pkj , as that
allows to enumerate all possible end dates. When there is no such regularity,
the problem remains polynomial in some cases, provided some regularity on
the profit. Again, the trick is to use dynamic programming schemes, but
now the recursive functions do not represent a maximum profit for given
completion times, but required time to achieve a given profit.
We will exhibit a polynomial algorithm for 1 | PLP, |{wkj }|≤κ, bkj∈{0, b} |
−∑wj(pj). First, consider the following dominant set:

Lemma I.5.2.1
For 1 | PLP, bkj∈{0, b} | −

∑
wj(pj), the set of solutions U1 such that:

(1) all tasks are scheduled (possibly with pj = 0) and on each machine,
tasks are scheduled in non-decreasing order of their deadlines with-
out idle time;

(2) there exists at most one singular task

is dominant.

Proof. (1) has already been proven in Lemma I.3.1.
Let S be an optimal solution such that all tasks are scheduled without idle
time and in non-decreasing order of their deadlines, and which is “minimal”,
in the sense that it has the minimum number x of singular tasks. If x ≤ 1
then the Lemma is proven.
Otherwise, let Tj1 , Tj2 be two singular tasks. Let k1, k2 be such that pk1

j1 ≤
pj1 < pk1+1

j1 and pk2
j2 ≤ pj2 < pk2+1

j2 , and let kρ1 , kρ2 such that ρk
ρ
1
j1 < pj1 < ρ

kρ1+1
j1

and ρk
ρ
2
j2 < pj2 < ρ

kρ2+1
j2 .

If bk1
j1 = 0, then we can set pj1 = ρ

kρ1
j1 and shift all the tasks scheduled after

to the left. The solution value is not downgraded and x stricly decreases.
Therefore, S was not minimal. The case bk2

j2 = 0 is similar.
If 0 < bk1

j1 = bk2
j2 , we can reduce the processing time of Tj1 by min{pj1 −

ρ
kρ1
j1 , ρ

kρ2+1
j2 − pj2}, shift all the regular tasks scheduled between Tj1 and Tj2

toward Tj1 and increase the processing time of Tj2 by the same quantity.
In the process the profit is not downgraded and thus the solution remains
optimal, but either Tj1 or Tj2 is now a regular task, and x strictly decreases.
Therefore, S was not minimal. �
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Even though dominant, U1 remains too large for an exhaustive search. We
restrict it to another dominant set of smaller size.
Among the solutions with exactly one singular task Tl such that the tasks
scheduled before Tl yield a profit wC and the tasks scheduled after a profit
wS, we will only consider solutions such that Tl starts as early as possible
and ends as late as possible. Therefore, we define the function C∗(j, w) (resp.
s∗(j, w)) that computes the earliest makespan (resp. the latest possible start
date) to schedule tasks T1, . . . , Tj (resp. Tj, . . . , Tn) in this order with a profit
w and such that all tasks are regular:

C∗(j, w) =



0 if w = 0
+∞ if j = 0 and w 6= 0

min
k=1,...,K
wkj≤w

C∗(j−1,w−wkj )+pkj
≤dj

C∗(j − 1, w − wkj ) + pkj otherwise

s∗(j, w) =



dn if w = 0
−∞ if j = n+ 1 and w 6= 0

max
k=1,...,K
wkj≤w

s∗(j+1,w−wkj )≤dj

s∗(j + 1, w − wkj )− pkj otherwise

Lemma I.5.2.2
For 1 | PLP, bkj∈{0, b} | −

∑
wj(pj), the set of solutions U2 such that, for

all S ∈ U2:

(1) S ∈ U1;

(2) if S contains a singular task Tl, then for all S ′ ∈ U1 such that

• ∑l−1
j=1wj(pj(S ′)) = ∑l−1

j=1wj(pj(S))
• ∑n

j=l+1wj(pj(S ′)) = ∑n
j=l+1wj(pj(S))

then Cl−1(S) ≤ Cl−1(S ′) and sl+1(S) ≥ sl+1(S ′)

is dominant.

Proof. (1) has already been proven by Lemma I.5.2.1.
Let S ∈ U1 be an optimal solution. If S contains no singular task, then
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S ∈ U2. If S contains a singular task Tl, then let

Sc = arg min
S′∈U1∑l−1

j=1 wj(pj(S
′))=

∑l−1
j=1 wj(pj(S))∑n

j=l+1 wj(pj(S
′))=

∑n

j=l+1 wj(pj(S))

Cl−1(S ′)

Ss = arg max
S′∈U1∑l−1

j=1 wj(pj(S
′))=

∑l−1
j=1 wj(pj(S))∑n

j=l+1 wj(pj(S
′))=

∑n

j=l+1 wj(pj(S))

sl−1(S ′)

and let S ′′ be the solution of U1 such that:

pj(S ′′) =


pj(Sc) if j < l
pl(S) if j = l
pj(Ss) if j > l

Since S, Sc, and Ss are feasible, S ′′ is also feasible. Furthermore, w(S ′′) =
w(S) and thus S ′′ is optimal. Eventually, by construction, S ′′ ∈ U2. �

Let

Ω0 =


n∑
j=1

wj

w1∈{wk1}k=1,...,K1...
wn∈{wkn}k=1,...,Kn


For all j = 1, . . . , n, for all w /∈ Ω0: C∗(j, w) = +∞ and s∗(j, w) = −∞.
Thus, we only need to compute C∗(j, w) and s∗(j, w) when w ∈ Ω0.
As for Θ0, the size of this set is a priori exponential. However, it can be
rewritten as follows. Let W = ∪ j=1,...,n

k=1,...,Kj

{
wkj
}
and let

Ω =
{∑
w∈W

lww

}
lw∈{0,...,n}

Clearly, Ω0 ⊂ Ω, and
|Ω| = O

(
n|W|

)
In the general case, |W| = O (nK), but if |W| is independent of the instance
size, |Ω| is polynomial in the instance size. For example, for LBPSTIP,
wmin
j =wmin, wmax

j =wmax: |W| = 2. We can therefore deduce a polynomial
algorithm for the problem when the number of wkj is bounded:
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Theorem I.5.2.1
Algorithm 3 returns an optimal solution to 1 | PLP, |{wkj }| ≤ κ, bkj∈{0, b}
| −∑wj(pj) in polynomial time.

Algorithm 3 1 | PLP, |{wkj }| ≤ κ, bkj∈{0, b} | −
∑
wj(pj)

INPUTS: an instance I
1: Sort tasks in non-decreasing order of their deadlines
2: Compute C∗(j, w) and s∗(j, w) for all (j, w) ∈ ({0, . . . , n} × Ω)
3: return

max



max
w∈Ω

C∗(n,w)<+∞

w (no singular task)

max
(l,wC ,ws)

∈({1,...,n}×Ω×Ω),
C∗(l−1,wC)
≤s∗(l+1,ws)

wC + ws + wl(s∗(l + 1, ws)− C∗(l − 1, wC))

(one singular task Tl)

Proof. Algorithm 3 searches exhaustively the dominant set U2 and therefore
returns an optimal solution.
The complexity of step 1 is O(n log n). The sizes of C∗ (resp. s∗) is n|Ω| =
n|W|+1 and since O(log |Ω|) time is required to retrieve an already computed
value of C∗ (resp. s∗), it takes O(K|W| log n) to compute a given value.
Therefore, the complexity of step 2 is O(K|W|n|W|+1 log n). The complexity
of computing the first max in step 3 is O(|W|n|W| log n) and the complexity
of computing the second one is O(n2|W|+1(|W| log n + logK)). The overall
complexity is thus polynomial in the size of the input. �

Corollary I.5.2.1
1 | | −∑wj(pj) can be solved by Algorithm 3 in polynomial time with the
following profit functions:

• LPSTIP, |{wmin
j }| ≤ κ, bj=b

• LBPST, bj=b, |{wmax
j }| ≤ κ

• LBPSTIP, |{wmin
j , wmax

j }| ≤ κ, bj=b

34/127



CHAPTER I. PDPS PROBLEMS

One may remark that the dominance property from Lemma I.5.2.2 can be
generalized to the case of parallel machines. However, this will not lead to a
polynomial algorithm (unless P = NP) as was proved by Theorem I.4.2.

I.5.3 1 | PLP, |{wk
j }| ≤ κ, bk

j∈{0, bj}, dj=d | −
∑
wj(pj)

We will now propose our last algorithm, based on similar ideas. Tasks are
now allowed to have different growth rates (still bkj=bj), but they should have
a common deadline. Since all deadlines are equal, Corollary I.3.1 directly
provides a dominant set U3 such that:

(1) all tasks are scheduled (possibly with pj = 0) in non-decreasing order
of their deadlines and without idle time;

(2) for all S ∈ U3, S contains at most one singular task.

Once again, this set is too large for an exhaustive search and we restrict this
set to another dominant set of smaller size.
We now define C̄∗(j, w, l) that computes the earliest makespan to schedule
tasks T1, . . . , Tj but not Tl with a profit of w such that all tasks are regular:

C̄∗(j, w, l) =



C̄∗(j − 1, w, l) if j = l
0 if w = 0
+∞ if j = 0 and w 6= 0

min
k=1,...,K
wkj≤w

C̄∗(j − 1, w − wkj , l) + pkj otherwise

Lemma I.5.3.1
For 1 | PLP, bkj∈{0, bj}, dj=d | −

∑
wj(pj) , the set of solutions U4 such

that, for all S ∈ U4:

(1) S ∈ U3

(2) if S contains a singular task Tl, then for all S ′ ∈ U3 such that∑n
j=1,j 6=l wj(pj(S ′)) = ∑n

j=1,j 6=l wj(pj(S)),
then ∑n

j=1,j 6=l pj(S) ≤ ∑n
j=1,j 6=l pj(S ′)

is dominant.

Proof. (1) has already been proven by Corollary I.3.1.
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Let S ∈ U3 be an optimal solution. If S contains no singular task, then
S ∈ U4. If S contains a singular task Tl, then let

SC = arg min
S′∈U3∑n

j=1,j 6=l wj(pj(S
′))=

∑n

j=1,j 6=l wj(pj(S))

n∑
j=1,j 6=l

pj(S ′)

and let S ′′ be the solution of U3 such that:

pj(S ′′) =
{
pj(SC) if j 6= l
pl(S) if j = l

Since S is feasible, S ′′ is also feasible. Furthermore, w(S ′′) = w(S) and thus
S ′′ is optimal. Eventually, by construction, S ′′ ∈ U4. �

We can therefore deduce a polynomial algorithm for the problem when the
number of wkj is bounded:

Theorem I.5.3.1
Algorithm 4 returns the optimal value of 1 | PLP, |{wkj }| ≤ κ, bkj∈{0, bj},
dj=d | −

∑
wj(pj) in polynomial time.

Algorithm 4 1 | PLP, |{wkj }|≤κ, bkj∈{0, bj}, dj=d | −
∑
wj(pj)

INPUTS: an instance I
1: Compute C∗(j, w) for all (j, w) ∈ ({0, . . . , n} × {1, . . . , n}) and

C̄∗(j, w, l) for all (j, w, l) ∈ ({0, . . . , n} × Ω× {1, . . . , n})
2: return

max



max
w∈Ω

C∗(n,w)≤d

w (no singular task)

max
l=1,...,n
w∈Ω

C̄∗(n,w,l)≤d

w + wl(d− C̄∗(n,w, l)) (one singular task Tl)

Proof. Algorithm 4 searches exhaustively the dominant set U4 and therefore
returns an optimal solution.
The complexity of step 1 is dominated by the computation of C̄∗. The size
of C̄∗ is n2|Ω| = n|W|+2 and since O(log |Ω|) time is required to retrieve an
already computed value of C̄∗, it takes O(K|W| log n) to compute a given
value. Therefore, the complexity of step 1 is O(K|W|n|W|+2 log n). The
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complexity of computing the first max in step 2 is O(|W |n|W| log n) and the
complexity of computing the second one is O(n|W|+1(|W | log n+logK)). The
overall complexity is thus polynomial in the size of the input. �

Corollary I.5.3.1
1 | dj=d | −

∑
wj(pj) can be solved by Algorithm 4 in polynomial time

with the following profit functions:

• LPSTIP, |{wmin
j }|≤κ

• LBPST, |{wmax
j }|≤κ

• LBPSTIP, |{wmin
j , wmax

j }|≤κ

One may remark that the dominance property from Lemma I.5.3.1 can be
generalized to the case of parallel machines. However, this will not lead to a
polynomial algorithm (unless P = NP ) as was proved by Theorem I.4.2.

In this section, we proposed several algorithms to solve different flavors of
PLP functions. Even though polynomial, the proposed complexities may ap-
pear discouraging. However they are tremendously reduced when the algo-
rithms are applied to particular cases, e.g., those presented in the corollaries.
For example, Algorithm 5 is directly derived from Algorithm 4 to solve 1 |
LPSTIP, wmin

j =wmin, dj=d | −
∑
wj(pj) in O(n2).

Algorithm 5 1 | LPSTIP, wmin
j =wmin, dj=d | −

∑
wj(pj)

INPUTS: an instance I
1: Sort tasks in non-decreasing order of their minimum processing time
2: OPT← 0
3: for l from 1 to n do
4: w ← wmin, C ← pmin

l

5: OPT← max {OPT, w + bl(d− C)}
6: for j from 1 to n, j 6= l do
7: w ← w + wmin, C ← C + pmin

j

8: if C > d then
9: break

10: OPT← max {OPT, w + bl(d− C)}
11: return OPT
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I.6 Polynomial cases solved with list algorithms
In this section, we present polynomial list algorithms for several particular
cases.

I.6.1 P | LP | −∑
wj(pj)

On a single machine and without additional constraint, scheduling jobs in
non-increasing order of their growth rates, from the previous scheduled job
end date until their deadline (when possible, i.e. when the previous scheduled
job end date is before the current job deadline), leads to an optimal solution
that generalizes to parallel machines:

Theorem I.6.1.1
Algorithm 6 returns an optimal solution of P | LP | −∑wj(pj) in poly-
nomial time O(n log n).

Algorithm 6 P | LP | −∑wj(pj)
1: if m ≥ n then
2: for j from 1 to n do
3: Schedule Tj on machine j on [0, dj[.
4: else
5: Sort jobs in non-increasing order of their growth rates bj.
6: Let q be a priority queue initialized such that element i has cost 0 for
i = 1, . . . ,m.

7: . q contains the current completion time on each machine.
8: for j from 1 to n do
9: Get element i with minimum cost C from q.

10: if dj > C then
11: Schedule Tj on machine i on [C, dj[.
12: Update the cost of i in q to dj.

I.6.2 1 | LBP | −∑
wj(pj)

We already showed that the case with parallel machines is NP-complete even
with a common deadline and either identical growth rates bj=b or identical
maximum processing-times pmax

j =pmax (see Theorem I.4.2).
On the other hand, with a single machine and common deadlines (dj = d),
this problem corresponds to the well-known fractionnal knapsack problem.
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This problem has been first solved by Dantzig 1957: it suffices to fill the
knapsack with the items with the largest ratio value over weight until the
knapsack is full. A O(n) implementation is even possible (Kellerer et al.
2004).
In this section, we prove that, with arbitrary deadlines, the problem can still
be solved in polynomial time.
A first approach uses linear programming and is once again based on Lemma I.3.1.
The whole procedure is summed-up in Algorithm 7. However, more efficient
algorithms can be designed.

Algorithm 7 1 | LBP | −∑wj(pj)
1: Sort jobs in non-decreasing order of their deadlines.
2: Solve the following linear program:

max ∑n
j=1 bjpj

s.t.
∑j
k=1 pk ≤ dj ∀j = 1, . . . , n

pj ≤ pmax
j ∀j = 1, . . . , n

Indeed, the problem can be seen as the linear relaxation of the well-known
1||∑wjUj where it is allowed to schedule only fractions of jobs. 1||∑wjUj
is NP-complete and solvable in pseudo-polynomial time (Lawler 1976). For
the linear relaxation, Potts and Van Wassenhove 1988 proposed an explicit
algorithm that schedules jobs by non-increasing order of deadlines for an
overall complexity of O(n log n).
The problem is also equivalent to the scheduling problem with controllable
processing-times presented by Janiak and Kovalyov 1996; the problem is
to schedule on one machine n jobs, the processing-times of which can be
decreased by allocating a continuously divisible resource. Janiak and Ko-
valyov 1996 proposed a polynomial time algorithm that schedules jobs by
non-decreasing order of their deadlines and that also runs in O(n log n) time.
This algorithm can be adapted to 1 | LBP | −∑wj(pj) as follows: schedule
jobs in non-decreasing order of their deadlines; whenever a job Tj cannot
be scheduled during pmax

j , make room for it by reducing the processing time
of less profitable jobs already scheduled. As it generalizes to broader cases,
the precise algorithm is presented later in this chapter; the impatient reader
will find it as Algorithm 10 by setting pmin

j = 0 for all j = 1, . . . , n (this
assumption insures that the returned solution is feasible). Note that such
a procedure builds, at iteration k, the optimal solution of the instance that
only contains the first k jobs.
Whatever algorithm one prefers, the conclusion is:
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Theorem I.6.2.1
Problem 1 | LBP | −∑wj(pj) can be solved in polynomial timeO(n log n).

I.6.3 1 | LBPST, pmin
j =pmin, bj=b | −

∑
wj(pj)

The problem 1 | LBPST, bj=b | −
∑
wj(pj) is already NP-complete (see

Theorem I.4.2). In this section, we propose a polynomial algorithm for the
case with identical minimum processing-times and identical growth rates.
Another polynomial case with parallel machines, based on a completely dif-
ferent approach, is presented in Section I.7.3.
As in the previous section, the set of solutions such that every job is sched-
uled and in non-decreasing order of their deadlines, is dominant. Thus, the
problem can be reformulated as:

max ∑n
j=1 max{0, b(pj − pmin)}

s.t. pj ≤ pmax
j , ∀j = 1, . . . , n∑j

k=1 pk ≤ dj, ∀j = 1, . . . , n
(I.1)

but, as the objective is not linear, that does not prove that the problem is
polynomial.
We nevertheless use this dominance property and implement it as a similar
scheme as that proposed in Janiak and Kovalyov 1996, to get Algorithm 8.
The remaining of this section is dedicated to prove the correctness of this
algorithm. Roughly speaking: schedule jobs in non-decreasing order of their
deadlines; whenever a job Tj cannot be scheduled during pmax

j , make room
for it by reducing the processing time of jobs with the smallest non null
processing time.
The proof of correctness of such a scheme is inspired by the proof proposed
by Janiak and Kovalyov 1996 but requires major technical adjustments. It
relies on reducing the instance by updating deadlines. After the update,
jobs may not be sorted in non-decreasing order of their deadlines anymore,
but jobs are not reordered. Therefore, we consider Problem (P̄ ) defined as
follows:

max ∑n
j=1 max{0, b(pj − pmin)}

s.t. pj ≤ pmax
j , ∀j = 1, . . . , n∑j

k=1 pk ≤ dj or pj = 0 ∀j = 1, . . . , n
(P̄ )

Problem (P̄ ) is similar to Formulation (I.1). The input and output are the
same. However, in Formulation (I.1), the order was deduced from a domi-
nance property; whereas in Problem (P̄ ), the order is part of the instance,
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Algorithm 8 1 | LBPST, pmin
j =pmin, bj=b | −

∑
wj(pj)

1: Sort jobs in non-decreasing order of their deadlines dj.
2: C ← 0 . Current completion time.
3: Let q be a priority queue
4: . q will contain jobs currently scheduled and with non-null

processing time; the cost of a job in q will be its processing time in the
current solution.

5: pj ← pmax
j for all j = 1, . . . , n

6: for k from 1 to n do
7: C ← C + pmax

k

8: Add element k with cost pmax
k in q.

9: while C > dk do
10: Let j be the minimal cost element of q.
11: if pj ≤ C − dk then
12: C ← C − pj
13: pj ← 0
14: Remove element j from q.
15: else
16: pj ← pj − (C − dk)
17: C ← dk
18: return {pj}j=1,...,n

i.e. jobs cannot be reordered. Furthermore, jobs may not be sorted in non-
decreasing order of deadlines in (P̄ ). This has two consequences. First, a job
may not be scheduled at all; this corresponds to pj = 0 in Problem (P̄ ). Sec-
ond, if pj = pmax

j , the solution may not be feasible because of the deadlines
of the following jobs. Hence the need to define ρkj and ρj:

ρkj = min
{
pmax
j , min

u,j≤u≤k
du

}
ρj = ρnj

ρj can be interpreted as the effective maximum processing time of job Tj in
any feasible solution. ρkj can be defined equivalently recursively:

ρ0
j = pmax

j

ρkj = min
{
ρk−1
j , dk

}
From these definitions, one can derive several properties. If, for some k < n,
there exists lk such that ρklk ≥ ρkj for all j = 1, . . . , k, then ρk+1

lk
≥ ρk+1

j . If
k2 ≥ k1, then ρk2

j ≤ ρk1
j . If j2 ≥ j1 and ρkj1 < pmax

j2 , then ρkj2 ≤ ρkj1 .
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Besides, remark that if I is an instance of 1 | LBPST, pmin
j =pmin, bj=b |

−∑wj(pj) and Ī an instance of Problem (P̄ ) with the same input provided
such that dj are sorted in non-decreasing order, then an optimal solution of
Ī is clearly an optimal solution of I.
Now let us start with the following dominance property:

Lemma I.6.3.1
Let ρmax = maxj=1..n ρj. For a given job Tl such that ρl = ρmax, there
exists an optimal solution to (P̄ ) in which pl = ρl.

Algorithm 9
1: procedure INCREASEBEST({pj}j=1,...,n, l)
2: p′j ← pj for all j = 1, . . . , n
3: if p′l = ρmax then
4: return

{
p′j
}
j=1,...,n

5: for k from 0 to n do
6: if pk = 0 or k = l then
7: continue
8: if p′k < ρmax − p′l then
9: p′l ← p′l + p′k . p′l < ρmax

10: p′k ← 0
11: else
12: p′k ← p′k + p′l − ρmax
13: p′l ← ρmax

14: return
{
p′j
}
j=1,...,n

Proof. Let S be an optimal solution. We prove that Algorithm 9 applied to
S returns a solution S ′ which remains optimal and such that p′l = ρmax.
First, note that the solution value is never degraded: ∑n

k=0 p
′
k is constant

throughout the algorithm and the number of scheduled jobs is non-increasing.
Second, the algorithm stops either at line 4 or line 14. Otherwise, after the
for loop, p′k = 0 for all k 6= l and p′l < ρmax, corresponding to a sub-optimal
solution. As the solution value is never degraded that would contradict that
S was optimal.
If the algorithm stops at line 4, then the initial solution S was as expected.
Otherwise, it stops at the end of iteration k and p′j = 0 for all j ≤ k, j 6= l;
therefore constraint j of P̄ is satisfied for all j ≤ k, j 6= l. Furthermore, for
all j > k, j 6= l, C ′j = Cj; therefore, constraint j is also satisfied for j > k,
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j 6= l. Finally, if k ≤ l, C ′l = Cl, and if k > l, p′j = 0 for all j < l; therefore
constraint l is also satisfied. �

Lemma I.6.3.2
Let I be an instance of Problem (P̄ ). There exists a job Tl such that
ρl = ρmax and such that Algorithm 8 executed on I sets pl at ρl.
(NOTE: Since jobs are not allowed to be reordered in Problem P̄ , the
first step of Algorithm 8 is skipped, whenever applied to an instance of
Problem P̄ .)

Proof. Let ρkmax = maxj=1,...,k ρ
k
j be the maximum effective processing time

at iteration k. We show that at each iteration k, there exists Tlk such that
pklk = ρkmax. Tlk is therefore necessarily at the end of the queue. In the case
where there are several jobs at ρkmax, we consider Tlk to be the last one in the
queue.
It is clearly true at the end of iteration 1.
Let us suppose the property true for some k < n. Then, at iteration k + 1,
job Tk+1 is added to the queue with processing time pmax

k+1 (in what follows,
pkj is the processing time of job Tj at the end of iteration k):

• Case pmax
k+1 < pklk . Then ρk+1

k+1 < ρkmax. Therefore ρk+1
max = ρk+1

lk
. Tlk stays

at the end of the queue and pk+1
lk

= ρk+1
lk

.

• Case pmax
k+1 ≥ pklk . Then ρk+1

k+1 ≥ ρk+1
lk
≥ ρk+1

j for all j = 1, . . . , k. Tk+1

takes the last position in the queue and pk+1
k+1 = ρk+1

k+1 and ρmax
k+1 = ρk+1

k+1.

�

Let I be an instance of Problem (P̄ ). From Lemma I.6.3.2, we know that
there exists a job that Algorithm 8 sets at ρmax. Let Tl be such a job. We
now define the following reduced instance I ′ (of Problem (P̄ )):
• d′k = dk for all k = 1, . . . , l − 2
• d′l−1 = min{dl−1, dl − ρll} (if l > 1)
• d′k = dk − ρkl for all k = l + 1, . . . , n (ensuring d′k ≥ 0)
• Tl is removed from I ′

Note that the jobs may not be sorted in non-decreasing order of deadlines
anymore.

Lemma I.6.3.3
Let I be an instance of P̄ and I ′ (one of) its reduced instance. If S ′
is an optimal solution of I ′, then S = {p′1, . . . , p′l−1, ρl, p

′
l+1, . . . , p

′
n} is an

optimal solution of I.
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Proof. First, we prove that S is feasible.
If ρl = pmax

l : For k < l − 1, ∑k
j=1 pj = ∑k

j=1 p
′
j ≤ d′k = dk. For k = l − 1,∑l−1

j=1 pj = ∑l−1
j=1 p

′
j ≤ d′l−1 = dl − pmax

l ≤ dl−1 + pmax
l − pmax

l = dl−1. For
k ≥ l + 1, ∑k

j=1 pj = ∑k
j=1,j 6=l p

′
j + ρl ≤ d′k + pmax

l = dk − pmax
l + pmax

l = dk.
Therefore, all constraints are satisfied.
If ρl < pmax

l , then there exists a last k∗ ≥ l such that dk∗ = ρl = ρk
∗
l and

therefore d′k∗ = 0 and for all j ≤ k∗, j 6= l: p′j = 0. Therefore, constraints 1
to k∗ are satisfied. Furthermore, for k ≥ k∗+ 1: ∑k

j=1 pj = ∑k
j=k∗+1 p

′
j + ρl ≤

d′k + ρk
∗
l = dk − ρkl + ρk

∗
l ≤ dk. Therefore, all constraints are satisfied.

Now, let suppose that S is not optimal, i.e. there exists an optimal solution
S∗ of I such that w(S∗) > w(S). From Lemma I.6.3.1, we can consider a
S∗ such that p∗l = ρl. Let S ′∗ = {p∗1, . . . , p∗l−1, p

∗
l+1, . . . , p

∗
n} be a solution of

I ′. w(S ′∗) = w(S∗) − wl(ρl) > w(S) − wl(ρl) = w(S ′). Therefore, if S ′∗ is
feasible, it contradicts S ′ optimal.
Let us show that S ′∗ is feasible. For k < l: ∑k

j=1 p
′
j
∗ = ∑k

j=1 p
∗
j ≤ dk = d′k.

For k > l: ∑k
j=1,j 6=l p

′
j
∗ = ∑k

j=1 p
∗
j−ρl ≤ dk−ρl = d′k+ρkl −ρl ≤ d′k. Therefore,

all constraints are satisfied. �

Lemma I.6.3.4
Let I be an instance of Problem (P̄ ) and I ′ (one of) its reduced instance.
Let S and S ′ be the solutions returned by Algorithm 8 respectively on
instance I and I ′. Then for all k = 1, . . . , n, k 6= l: pk = p′k

Proof. In what follows, Ck denotes the completion time of the current solu-
tion at the end of iteration k.

• Case ρl = pmax
l : let k̂ = l. Clearly, for all k < l− 1, for all j = 1, . . . , k:

pkj = p′j
k. At iteration l−1 for I, C l−2 +pmax

l−1 −C l−1 units of processing
time are removed from q.

– if C l−2 + pl−1 ≤ dl−1 and C l−1 + pmax
l ≤ dl, then no unit of pro-

cessing time is removed from q, neither for I at iterations l − 1
and l, nor for I ′ at iteration l − 1.

– if C l−2 + pl−1 > dl−1 and C l−1 + pmax
l ≤ dl: no other unit of

processing time are removed from q at iteration l. Furthermore,
d′l−1 = dl−1 and therefore the same number of units of processing
time is removed at iteration l − 1 for I ′.

– if C l−1 +pmax
l > dl (which implies Cl = dl): C l−1 +pmax

l −C l units
of processing time are removed from q at iteration l on I. The total
number of units of processing time removed from q at iteration l
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and l − 1 for I is therefore C l−2 + pmax
l−1 + pmax

l − dl. Furthermore
C ′l−1 = d′l−1 = dl − pmax

l and therefore C ′l−2 + pmax
l−1 − C ′l−1 =

C l−2 + pmax
l−1 + pmax

l − dl units of processing time are removed at
iteration l − 1 for I ′.

The same amount of processing time is removed for both instances and
since by definition of Tl, pl is not modified, both queue are identical
after iteration l except for pl.

• Case ρl < pmax
l : let k̂ be the first iteration such that pk̂l = ρl. Then for

all j = 1, . . . , k̂, j 6= l, pk̂j = 0. Furthermore d′
k̂

= 0, and thus p′j
k̂ = 0.

In both cases, for the remaining iterations, Algorithm 8 clearly behaves the
same on I and I ′ since: q and q′ are the same (except for pl); on I, by
definition of Tl, pl will not be modified; and on I ′, d′k = dk − ρl for all
k = k̂ + 1, . . . , n. �

We now can prove the correctness of Algorithm 8:

Theorem I.6.3.1
Algorithm 8 returns an optimal solution of problem 1 | LBPST, pmin

j =pmin,
bj=b | −

∑
wj(pj) in polynomial time O(n log n).

Proof. Algorithm 8 returns an optimal solution on any instance of Prob-
lem (P̄ ) with 0 job. Let suppose that it returns an optimal solution on any
instance of Problem (P̄ ) with n−1 jobs, and let us show that it then returns
an optimal solution on any instance of Problem (P̄ ) with n jobs. Let I be an
instance with n jobs and I ′ (one of) its reduced instance. Using the induction
hypothesis, the solution S ′ returned by the algorithm on I ′ is optimal. From
Lemma I.6.3.3 and Lemma I.6.3.4, the solution returned by the algorithm
on I is also optimal. Therefore, the algorithm returns the optimal solution
for any instance of Problem (P̄ ), and consequently of Problem 1 | LBPST,
pmin
j =pmin, bj=b | −

∑
wj(pj). Furthermore, it runs in O(n log n). �

I.6.4 1 | LBPSTIP | −∑
wj(pj)

This problem is very close to the scheduling problem with controllable pro-
cessing times where the processing time is a linear decreasing function of the
amount of a common resource allocated to the job. The difference is that,
in our problem, we may not schedule a job. Therefore we adapt from Janiak
and Kovalyov 1996 the following property:
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Lemma I.6.4.1
Let V be a set of tasks such that there exists an optimal solution S which
set of scheduled jobs is V , i.e. V =

{
Tj ∈ S, pj(S) ≥ pmin

j

}
.

If we know such a set V , then Algorithm 10 returns an optimal solution
to 1 | LBPSTIP | −∑wj(pj) in polynomial time O(n log n).

Algorithm 10
1: procedure Schedule(V )
2: Sort jobs in non-decreasing order of their deadlines dj.
3: C ← 0 . Current completion time.
4: for k from 1 to |V | do
5: C ← pmin

k

6: if C > dk then
7: return . No feasible solution.
8: C ← 0
9: Let q be a priority queue

10: . q will contain scheduled jobs sorted in non-decreasing order of
their growth rates.

11: pj ← pmax
j for all j = 1, . . . , |V |

12: for k from 1 to |V | do
13: C ← C + pmax

k

14: Add element k with cost bk in q.
15: while C > dk do
16: Let j be the minimal cost element of q.
17: if pj − pmin

j ≤ C − dk then
18: C ← C − (pj − pmin

j )
19: pj ← pmin

j

20: Remove element j from q.
21: else
22: pj ← pj − (C − dk)
23: C ← dk
24: return ∑|V |j=1 bjpj

Unfortunately, in the general case, finding such a set V has been shown to
be NP-complete. Therefore, we will look for special cases for which one can
be found in polynomial time.
For a given instance, let T be the set of jobs and let Tj1 , Tj2 ∈ T . We say
that Tj1 dominates Tj2 if for any optimal solution S such that Tj2 ∈ S and
Tj1 /∈ S, there exists an optimal solution S ′ containing all the tasks of S
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except Tj2 and containing Tj1 . For example, if pmin
j1 ≤ pmin

j2 and pmax
j1 ≤ pmax

j2

and wmin
j1 ≥ wmin

j2 and wmax
j1 ≥ wmax

j2 and dj1 ≤ dj2 then Tj1 dominates Tj2 .
This dominance defines a partial order of T . Thus, in an optimal solution,
there is no reason to schedule a task if another task that dominates it has
not been scheduled either:
Lemma I.6.4.2
Let U2 be the set of solutions such that for all S ∈ U2, for all Tj1 ∈ S and
Tj2 /∈ S, Tj1 does not dominate Tj2 . U2 is dominant.

In order to evaluate the size of this set, we show that any of its solutions can
be characterized only by its “worst tasks”:

Lemma I.6.4.3
For all V ∈ U2, let

f : U2 → the set of antichains of T
V 7→ {Tj, ∀Tq ∈ V, q 6= j, Tj does not dominate Tq}

f is bijective.

Proof. Clearly, for all V ∈ U2, f(V ) is indeed an antichain of T . Therefore,
f is well defined.
First, we show that f is surjective: if A is an antichain of T , f−1(A) is then
obtained recursively by adding all tasks dominating tasks of A. Note that
this computation can be achieved in polynomial time.
Now, we show that f is injective: let V1, V2 ∈ U2 such that f(V1) = f(V2).
Then

• every task of f(V1) = f(V2) belongs to V1 and V2;

• therefore, by definition of U2, every task that dominates a job of f(V1) =
f(V2) belongs to V1 and V2;

• furthermore, every task outside f(V1) = f(V2) that does not dominate
a task of f(V1) = f(V2) does not belong to V1 nor V2.

Therefore V1 = V2. �

Theorem I.6.4.1
Algorithm 11 returns an optimal solution to 1 | LBPSTIP | −∑wj(pj).
If four parameters among {pmin

j , pmax
j , bj, w

min
j , wmax

j , dj} can only take a
fixed number of possible values, then Algorithm 11 returns an optimal
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solution to 1 | LBPSTIP | −∑wj(pj) in polynomial time.

Algorithm 11 1 | LBPSTIP | −∑wj(pj)
1: for every antichain A of T do
2: S ← SCHEDULE(f−1(A)) . SCHEDULE is Algorithm 10
3: OPT← max {OPT, w(S)}
4: return OPT

Proof. Lemma I.6.4.1, I.6.4.2 and I.6.4.3 imply the correcteness of Algo-
rithm 11.
If two jobs have four identical parameters among{

pmin
j , pmax

j , bj, w
min
j , wmax

j , dj
}

then they are comparable, i.e. one dominates the other. Therefore, the
number of antichains is bounded by n to the power of the product of the
possible values for these fixed valued parameters. If the value of this product
is bounded by a constant independent of the instance, then Algorithm 11
runs in polynomial time. �

I.7 Polynomial cases solved with maximum
weight b-matching

In this section, we exhibit polynomial algorithms for three processing time
dependent profit maximization scheduling problems with parallel machines.
Those algorithms use as subproblem the maximum weight b-matching which
can be solved in polynomial time (Schrijver 2002).
Given a graph G(V,E), a demand/supply bv for each vertex v ∈ V , and a
weight we for each edge e ∈ E, a b-matching of G is a vector x ∈ NE such
that x(δv) ≤ bv for all v ∈ V (where δv is the set of edges incident to v).
The weight of a b-matching x ∈ NE is defined as ∑e∈E wexe. The maximum
weight b-matching problem is then the problem of finding a b-matching of
maximum weight in G.

I.7.1 P | LPSTIP, pmin
j =pmin, dj=d | −

∑
wj(pj)

The algorithm consists in solving a polynomial number of maximum weight
b-matching problems which rely on the dominant set described below.
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We consider the case d = qpmin + r, with q, r ∈ N, q ≥ 2, 0 < r < pmin.
However, with a similar reasoning, the results can be adapted for the case
d = qpmin, q ∈ N, q ≥ 2. The case d < 2pmin is trivial.

Lemma I.7.1.1
Let U be the set of solutions such that for all S ∈ U :

• for all Tj ∈ S, pj ≥ pmin;

• there exists at most one job Tj ∈ S such that pj /∈ {d, pmin, pmin + r}.

U is dominant.

...

...

Figure I.8 – Illustration of the structure of the solutions in U

Proof. Let Tj be a break job iff pj > pmin and let Tj be a special job iff:

pj > pmin and pj 6= pmin + r and pj 6= d

Figure I.8 illustrates the structure of the solutions of U . All jobs except the
ones with horizontal stripes are break jobs and the job with vertical stripes
is a special job.
Thus, U is the set of solutions for which each scheduled job is at least executed
during the minimum processing time and with at most one special job.
Note that a special job is also a break job, and if a job Tj is the only special
job scheduled on a machine, then pj = tpmin + r, t ∈ N, t > 1 and the other
jobs scheduled on this machine have processing time pmin.
Let S /∈ U be an optimal solution. Let us build another solution S ′ ∈ U from
S without degrading its value.
First, we can remove all jobs with an allocated execution time strictly shorter
than pmin without degrading the solution value.
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Then we ensure that for each machine, there is only one break job. If it is
not the case, let Tj and Tk (bj ≥ bk) be two break jobs scheduled on the same
machine. Let’s transfer pk−pmin processing time from Tk to Tj. The value of
the solution is not degraded and the number of break jobs on this machine
strictly decreases. Thus, by repeating this operation, we get a solution as
good as S with at most one break job per machine.
Finally, we ensure that there is only one special job in the solution. If it is not
the case, let Tj and Tk (bj ≥ bk) be two special jobs of S. From the previous
step, we know that Tj and Tk are not scheduled on the same machine (let’s
callMij andMik the machine on which Tj and Tk are respectively scheduled),
but they are the only special jobs on their machine. This implies that the
other jobs scheduled on those machines all have processing time pmin and
that pj = tjp

min + r and pk = tkp
min + r, with tj, tk ∈ N, tj, tk > 1. Now,

while Tj and Tk remain special jobs, we move a job (different from Tj) from
Mij to Mik , increase processing time of Tj by pmin and decrease processing
time of Tk by pmin. Thus, in a finite number of steps, we have either pj = d
or pk = pmin + r and the number of special jobs have strictly decreased.
Therefore, we can repeat the operation till there remains only one special
job in the solution. �

Now we can prove the theorem:

Theorem I.7.1.1
There exists an algorithm that solves P | LPSTIP, pmin

j =pmin, dj=d |
−∑wj(pj) in polynomial time.

Proof. Following Lemma I.7.1.1, we only focus on solutions of U . Thus, we
can partition the jobs of a solution S ∈ U into 4 subsets depending on their
processing time (and one more for the non scheduled jobs):

U1(S) = {Tj ∈ S, pj = d}
U2(S) = {Tj ∈ S, Tj is a special job}
U3(S) =

{
Tj ∈ S, pj = pmin + r

}
U4(S) =

{
Tj ∈ S, pj = pmin

}
U0(S) = {Tj /∈ S}

∀k ∈ {0, . . . , 4}, nk(S) = |Uk(S)|

t(S) =
{

0, if U2(S) = ∅
d−pj
pmin , if U2(S) = {Tj}

50/127



CHAPTER I. PDPS PROBLEMS

t(S) represents the number of jobs scheduled on the same machine as the job
of U2. Note that, if U2(S) = {Tj}, then pj = d− t(S)pmin.
Furthermore, for all S ∈ U

0 ≤ n1(S) ≤ m 0 ≤ t(S) ≤ n− 1

n2(S) =
{

0, if t(S) = 0
1, otherwise

n3(S) = m− n1(S)− n2(S)
n4(S) = (q − 1)n3(S) + t(S) (remember that q = bd/pminc)
n0(S) = n− n1(S)− n2(S)− n3(S)− n4(S)

Therefore, if n1(S) and t(S) are fixed, we can determine n2(S), n3(S), n4(S)
and n0(S). Thus, the optimal value is the best optimal value of the O(n2)
problems with those parameters fixed:

OPT = max
(n1,t)∈({0,...,m}×{0,...,n−1})

OPT(n1, t)

Now, we show that for all (n1, t) ∈ {1, . . . ,m} × {0, . . . , n− 1}, a maximum
weight b-matching problem model can compute OPT(n1, t). We create n
nodes Tj, j = 1, . . . , n with supply 1, and a 5 nodes Ui, i = 0, . . . , 4 with
demand ni such that n2 = 0 if t ≤ 1, 1 otherwise; n3 = m − n1 − n2,
n4 = (q− 1)n3 + t, n0 = n− n1− n2− n3− n4. Then for all j = 1, . . . , n, for
all i = 0, . . . , 4, we add the arc (Tj, Ui) with capacity uji = 1 and cost:

cji =



wj(d) i = 1
wj(d− tpmin) i = 2
wj(pmin + r) i = 3
wmin
j i = 4

0 i = 0

A part of the graph including only one job is represented in Figure I.9. The
size of the graph is polynomial compared to the size of the instance. Fur-
thermore, the number of problems that we have to solve is O(n2). Therefore,
the problem can be solved in polynomial time. �

I.7.2 P | LPSTIP, pmin
j =pmin, bj=b | −

∑
wj(pj)

Compared to the previous case, we relax the property that all deadlines are
equal, which is replaced by equal growth rates.
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Tj

1

U3

n3

U2

n2

U1

n1

U4

n4

U0

n0

wj
(d)

wj((t+ 1)pm
in + r)

wj(pmin + r)

w
j (pmin)

0

Figure I.9 – A part of the graph including only one job given as input of the
maximum weight b-matching problem which resolution returns an optimal
solution of P | LPSTIP, pmin

j =pmin, dj=d | −
∑
wj(pj) when n1 and t are

fixed

Lemma I.7.2.1
Let U be the set of solutions such that
(1) jobs are scheduled in non-decreasing order of their deadlines on each

machine and without idle time;
(2) only the last job scheduled on each machine has a processing time

different from pmin (strictly greater);
(3) the number of jobs scheduled on each machine differs by at most 1.
U is dominant.

Proof. Figure I.10 illustrates the structure of the solutions of U . Jobs with
diagonal stripes are scheduled during pmin.
Let S be an optimal solution. By Lemma I.3.1, we already proved that S
can be modified to satisfy and (1).
(2) is also clear: if a job is scheduled during strictly less than pmin, it can be
removed without degrading the solution value, and if it is scheduled during
strictly more than pmin, its processing time can be reduced to pmin, all the
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...

...

Figure I.10 – Illustration of the structure of the solutions of U

following jobs on the machine are shifted toward the beginning and the last
job processing time can be increased by the same quantity. Since bj = b, the
solution value is not degraded. The solution is still without idle time and the
order does not change.
To prove (3), let silast denote the start date of the last job scheduled on
machineMi. Now letMi1 andMi2 be two machines such that si1last = mini silast
and si2last = maxi silast. If si2last − s

i1
last ≤ pmin, then (3) is satisfied. Otherwise,

let Tj be the last job scheduled on Mi1 and Tk be the job scheduled on Mi2

on time interval
[
si1last + pmin, si1last + 2pmin

[
. Let S ′ be the solution identical

to S except that Tk is moved from Mi1 to Mi2 and these two machines
are rescheduled as illustrated in Figure I.11. Thus, w(M ′

i1) = w(Mi1) −
b(dj − (si1last + pmin)) + wmin

k + b(max (dj, dk)− (si1last + 2pmin)) and w(M ′
i2) =

w(Mi2) − wmin
k + bpmin . Therefore, the value of the new solution is not

degraded, the previous conditions are still satisfied, and the operation can
be repeated till the condition is satisfied. �

Case dj ≥ dk

j

k

jk

Case dk ≥ dj

j

k

j k

Figure I.11 – Operation which is repeated to make a solution satisfy (3)
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Theorem I.7.2.1
There exists an algorithm that solves P | LPSTIP, pmin

j =pmin, bj=b |
−∑wj(pj) in polynomial time.

Proof. Using Lemma I.7.2.1, we only consider solutions with x machines with
k jobs and m− x machines with k+ 1 jobs. All jobs scheduled on a machine
have a processing time of pmin, except the last job of each machine which
is scheduled till its deadline. If the number η of scheduled jobs is known,
then k and x can be determined as the quotient and remainder from the
euclidean division of η by m. When k and x are fixed, the problem can be
model as a maximum weight b-matching problem: each job is associated to a
node, as well as each possible position for a job and there is an arc between
a job and a position if the job can be scheduled at this position (according
to its deadline). The flow unit denotes wether or not a job is scheduled at a
position.
A part of the graph including only one job is represented in Figure I.12.
The size of the graph is polynomial compared to the size of the instance.
Furthermore, n maximum weight b-matching problems have to be solved.
Therefore, the problem can be solved in polynomial time. �

I.7.3 P | LBPST, pmax
j =pmax, dj=d | −

∑
wj(pj)

With the same idea, we have:

Theorem I.7.3.1
There exists an algorithm that solves P | LBPST, pmax

j =pmax, dj=d |
−∑wj(pj) in polynomial time.

Proof. We consider d = qpmax + r, with q, r ∈ N, 0 ≤ r < pmax.
Let U be the set of solutions such that:

• if n ≤ qm, all n jobs are scheduled during pmax;

• if qm < n ≤ (q + 1)m, all n jobs are scheduled; qm during pmax and
n− qm during r;

• if n > (q + 1)m, (q + 1)m jobs are scheduled; qm during pmax and m
during r.
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Tj

1

[0, pmin]
m

...

[(k − 2)pmin, (k − 1)pmin]
m

[(k − 1)pmin, d]
x

[(k − 1)pmin, kpmin]
m− x

[kpmin, d]
m− x

∅
n− (km+ x)

w
min
j

w
min
j

wmin
j

+ b(dj − (k − 1)pmin)

wmin
j

wmin
j + b(dj − kpmin)

0

Figure I.12 – A part of the graph including only one job given as input of the
maximum weight b-matching problem which resolution returns an optimal
solution of P | LPSTIP, pmin

j =pmin, bj=b | −
∑
wj(pj) when the number of

scheduled jobs is fixed

Using similar arguments as before, one can prove that U is dominant.
Figure I.13 illustrates the structure of the solutions of U when n > (q+ 1)m.
Jobs with diagonal stripes are scheduled during pmax.
Now, if n < qm, all n jobs can be scheduled during pmax and this is an
optimal solution. Otherwise we use a maximum weight b-matching model to
solve the problem. We only present the case n > (q + 1)m, but the model is
similar for the case qm < n ≤ (q + 1)m. The model includes two groups of
nodes: the nodes Tj, j = 1, . . . , n, associated with jobs and the nodes U1, U2
and U0 representing the state of a job in the solution (scheduled during pmax,
scheduled during r, or not scheduled). A part of the graph including only
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...

Figure I.13 – Illustration of the structure of the solutions of U when n >
(q + 1)m

one job is represented in Figure I.14. The size of the graph is polynomial
compared to the size of the instance. Therefore, the problem can be solved
in polynomial time. �

Tj

1

U2 m

U1 qm

U0 n− (q + 1)m

w
max
j

max
{

0, bj(r − pmin
j )

}

0

Figure I.14 – A part of the graph including only one job given as input of the
maximum weight b-matching problem which resolution returns an optimal
solution of P | LBPST, pmax

j =pmax, dj=d | −
∑
wj(pj) when n > (q + 1)m

I.8 Synthesis
In the previous sections, we studied different variants of PDPSP by resolution
methods. In order to give the reader a model-based point of view, in this
section, we summarize the results by profit functions.
Results are presented in Figures I.16 (LPST), I.18 (LBP) and I.20 (LPSTIP)
and in Tables I.15 (LPST), I.17 (LBP), I.19 (LPSTIP), I.1 (LBPST) and I.2
(LBPSTIP).
In the Figures, each node corresponds to a problem. Rectangles indicate
strongly NP-hard problems, chamfered rectangles indicate weakly NP-hard
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problems, rounded rectangles indicate polynomial problems and tapes in-
dicate problems which complexity is still open (see Figure I.21). Arrows
indicate how the complexity changes when parameters are modified. If there
is an arrow from variant P1 to variant P2, then P2 is “harder” than P1. For
example, in Figure I.18 (LBP), the problem P | wj(p)=w(p) is still open. If
the number of machines is bounded Pm, it becomes polynomial since Pm |
pmax
j =pmax is polynomial. If pmax

j take arbitrary values, then it is still open
(P | pmax

j =pmax). Finally, if bj (resp. wmax
j ) take arbitrary values, then it

becomes strongly NP-complete since P | bj=b, dj=d (resp. P | wmax
j =wmax,

dj=d) is NP-complete.
In the Tables, “sNPc” indicate strongly NP-hard problems, “wNPc” indicate
weakly NP-hard problems, “P” indicate polynomial problems and empty cells
indicate problems which complexity is still open. Results in bold indicate
maximally polynomial or minimally NP-complete cases for the corresponding
profit function.
We do not consider very particular variants for which the instance size is
O(log n) such as P | LBPSTIP, wj(p)=w(p), dj=d | −

∑
wj(pj). These prob-

lems do not appear in the Figures and are noted × in the Tables. However,
note that the instance size of P | LBPSTIP, wj(p)=w(p) | −∑wj(pj) is still
O(n) since deadlines are distinct.

For LPST, problems P | LPST | −∑wj(pj) and P | LPST, pmin
j =pmin |

−∑wj(pj) are still open. All other cases are polynomial.
For LBP, all one machine cases are polynomial as well as some cases with
parallel machines. The case with parallel machines and identical maximum
processing-times is still open and interesting since it lies between P | pj=p |∑
wjUj and P | pj=p, pmtn |∑wjUj that were proved to be respectively solv-

able in polynomial time and NP-complete (Brucker and Kravchenko 1999).
For LPSTIP, most cases with identical minimum processing times are poly-
nomial, whereas having identical growth rates or minimum profits generally
keeps the problem NP-complete. Three cases remain open.
For LBPST, many cases with identical maximum processing times are poly-
nomial. Nine cases are still open.
Finally, for LBPSTIP, most cases are NP-complete and several problems
remain open.

I.9 With release dates and preemption
In the previous sections, we looked at PDPS problems under various ma-
chine environments and with various profit functions, but without additional
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P P | P | dj=d Pm | Pm | dj=d 1 | 1 | dj=d
P P P P P

bj=b P P P P P P
pmin
j =pmin P P P P P

wj(p)=w(p) P × P × P ×

Table I.15 – LPST

P |P | pmin
j =pmin

P | dj=d P | bj=b Pm |

Figure I.16 – LPST

P P | P | dj=d Pm | Pm | dj=d 1 | 1 | dj=d
sNPc sNPc wNPc wNPc P P

bj=b sNPc sNPc wNPc wNPc P P
pmax
j =pmax P P P P P

wmax
j =wmax sNPc sNPc wNPc wNPc P P

wj(p)=w(p) × P × P ×

Table I.17 – LBP

P | bj=b, dj=dP | wmax
j =wmax, dj=d

P | pmax
j =pmax

Pm | Pm | bj=b, dj=dPm | wmax
j =wmax, dj=d

1 |

Pm | pmax
j =pmax

P | pmax
j =pmax, dj=d P | wj(p)=w(p)

Figure I.18 – LBP



I.9. WITH RELEASE DATES AND PREEMPTION 59

P P | P | dj=d Pm | Pm | dj=d 1 | 1 | dj=d
sNPc sNPc wNPc wNPc wNPc wNPc

pmin
j =pmin P P P P P

wmin
j =wmin sNPc sNPc wNPc wNPc P
bj=b sNPc sNPc wNPc wNPc wNPc wNPc

pmin
j =pmin, wmin

j =wmin P P P P P
pmin
j =pmin, bj=b P P P P P P

wmin
j =wmin, bj=b sNPc sNPc wNPc wNPc P P
wj(p)=w(p) P × P × P ×

Table I.19 – LPSTIP

P | pmin
j =pmin

Pm |

1 | bj=b, dj=d

1 | wmin=wmin, dj=d

1 | wmin
j =wmin

1 | wmin
j =wmin, bj=b

P | pmin
j =pmin, bj=b

Pm | pmin
j =pmin

P | pmin
j =pmin, dj=d

P | pmin
j =pmin, wmin

j =wmin

P | wmin
j =wmin, bj=b, dj=d

Pm | wmin
j =wmin, bj=b, dj=d

Figure I.20 – LPSTIP

Strongly NP-complete Weakly NP-complete

Polynomial Open

Figure I.21 – Figure caption
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constraints. In this section, we briefly glance at some cases where jobs have
release dates or where preemption is allowed.

I.9.1 Preliminary results and notations
First, the following proposition rules out the interest of preemption for some
1-machine problems:

Proposition I.9.1.1
For 1 | pmtn | −∑wj(pj), non preemptive solutions are dominant.

Note that this does not hold with parallel machines or with release dates.
If release dates are present but deadlines are identical, the problem is equiv-
alent to the one without release dates and with deadlines d′j = d− rj.
When there are distinct release dates and distinct deadlines, as illustrated
in Figure I.2 of Section I.1, we remind that solutions containing all jobs
are not dominant (without preemption). In this case, we define the ordered
set A = {α1, α2, . . . , α2n} as the union of all release dates {rj}j=1...n and
all deadlines {dj}j=1...n, sorted in non-decreasing order; we then derive the
ordered set J of intervals as:

J = {[αt, αt+1]}t=1...2n−1

I.9.2 Linear profits (LP)
For the linear model, all cases were polynomial. If release dates are present
and preemption is allowed, then scheduling the best job at each instant leads
to an optimal solution (this even allows for multiple time-windows). This
can be achieved by scheduling jobs in non-increasing order of their growth
rates on their whole remaining time-windows as described in Algorithm 12,
and it is a special case of Theorem I.9.3.2.

Algorithm 12 1 | LP, rj, pmtn | −∑wj(pj)
1: Sort jobs in non-increasing order of bj.
2: for j from 1 to n do
3: for J ∈ J do
4: if J ⊆ [rj, dj[ and no job is yet scheduled on J then
5: Schedule Tj on J

However, without preemption, the problem is still open, even if some special
cases are easy.
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First, note that the set of solutions for which the start date and the end date
of each task belong to A is dominant. More precisely, the set of solutions
such that for each j = 1, . . . , n, Tj starts either at rj or at the deadline dk of
the previous job Tk without idle time (if it exists), and ends either at dj or
at the release date rk of the following job Tk without idle time (if it exists),
is dominant.
With identical growth rates, the problem becomes an uptime maximization
and it is enough to schedule jobs as soon as they are available as long as
possible:

Theorem I.9.2.1
Scheduling jobs in non-decreasing order of their release dates, and until
their deadlines (when possible), leads to an optimal solution of 1 | LP, rj,
bj=b | −

∑
wj(pj) in polynomial time.

If no job time-window is strictly included in the time-windows of another job
with a strictly greater growth rate, then Algorithm 12 used when preemption
is allowed will schedule each job on consecutive intervals, and thus lead to a
feasible and therefore optimal solution.

Theorem I.9.2.2
Let us call Tj a splitting job iff there exists Tk such that rj > rk, dj < dk
and bj > bk. If there is no splitting jobs, then Algorithm 12 returns a
feasible optimal solution for 1 | LP, rj | −

∑
wj(pj).

For the general case, we know that a job which is the best on its time-window
will either be scheduled on its whole time-window or not be scheduled at all,
i.e. if for all k 6= j, [rj, dj[ ∩ [rk, dk[ 6= ∅ =⇒ bj ≥ bk, then there exists an
optimal solution for which Tj is either scheduled on its whole time-window
or not scheduled at all. This dominance property gives a possibility for a
branch-and-bound algorithm scheduling jobs in non-decreasing order of their
growth rates. Note that a job may then have multiple time-windows. The
algorithm runs in exponential time, but if the number of splitting jobs k is
bounded, then it runs in polynomial time O((nk)k).

I.9.3 Linear bounded profits (LBP)
Adding release dates makes the problem NP-complete:

Theorem I.9.3.1
1 | rj | −

∑
wj(pj) is strongly NP-complete with the following profit

functions:
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(1) LBP, bj=b

(2) LBP, wmax
j =wmax

Proof. First, note that the problem clearly belongs to NP. Then, we shall
prove that 3-partition, which is known to be strongly NP-complete (Garey
and Johnson 1979), reduces to the decision version.
Let I be an instance of 3-partition: a finite set A of 3m elements, a bound
B ∈ Z+, and a size s(a) ∈ Z+ for each a ∈ A, such that each s(a) satisfies
B/4 < s(a) < B/2 and such that ∑a∈A s(a) = mB; the question is: can
A be partitioned into m disjoint sets S1, . . . , Sm, such that for 1 ≤ i ≤ m,∑
a∈Si s(a) = B?

(1): Let I ′ be an instance of 1 | LBP, bj=b, rj | −
∑
wj(pj) with 3m “real”

jobs T 1
a , a ∈ A, such that r1

a = 0, d1
a = d (with d = mB + (m − 1)), b1

a = b,
pmax1

a = s(a), and m − 1 “dummy” jobs T 0
j , 1 ≤ j ≤ m − 1, such that

r0
j = j(B + 1)− 1, d0

j = j(B + 1), pmax0
j = 1, b0

j = b; the question is: is there
a schedule S such that w(S) = bd?
I responds “yes” clearly implies a “yes” answer to I ′. Conversely, I ′ responds
“yes” means that there is a schedule with no idle time in which each job is
scheduled and executed till its maximum processing-time. In particular, each
job T 0

j , 1 ≤ j ≤ m− 1 is scheduled on [j(B + 1)− 1, j(B + 1)[, which means
that they partition the other jobs into sets with processing-time B.

(2): for the case with identical maximum profit wmax
j =wmax, we consider the

same reduction, but the maximum profit of the jobs of I ′ is wmax and bj
are set accordingly; the question is: Is there a schedule S such that w(S) =
(3m+ (m− 1))w?

In all cases, the transformations are not only polynomial but even strongly
polynomial; hence the strong NP-completeness of the concerned cases. �

However, if preemption is allowed, the problem becomes polynomially solv-
able, even with parallel machines. Indeed, the problem can be seen as the
scheduling problem with late jobs P | pmtn, rj |

∑
wjYj. This problem can

be solved with a minimum cost flow model in polynomial time (Leung et al.
2004):

Theorem I.9.3.2
Algorithm 13 returns an optimal solution for P | LBP, rj, pmtn |
−∑wj(pj) in polynomial time.
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Proof. Algorithm 13 illustrates the flow model with the notations of our
problem. Let us recall that J is the set of ordered time-intervals defined by
release dates and deadlines.
There is a node tj, j = 1, . . . , n, for each job Tj and a node J it , t = 1, . . . , 2n−
1, i = 1, . . . ,m, for each element of J ×{1, . . . ,m}. There is an arc from the
source s to each tj, j = 1, . . . , n with capacity pmax

j and cost −bj, an arc from
each tj, j = 1, . . . , n, to each J it if [αt, αt+1[ ⊆ [rj, dj[ with an infinite capacity
and no cost, and an arc between each J it , t = 1, . . . , 2n−1, i = 1, . . . ,m, and
the sink t with capacity αt+1 − αt and no cost. �

Algorithm 13 1 | LBP, rj, pmtn | −∑wj(pj)
1: Solve the following minimum-cost flow problem (the pairs on the edges

correspond to capacities and costs):

s

t1

t2

...

tN

J1
1

...

Jm1

J1
2

...

Jm2

...

...

J1
2n−1

...

Jm2n−1

t

(p
max
1
,−
b 1)

(pmax
2 ,−b2)

(p maxN
,−b

N )

(∞
, 0)

(∞, 0)
(∞, 0)(∞
, 0)

(∞, 0
)
(∞, 0)

(∞, 0)

(∞
, 0)

(α
2 −
α

1 , 0)(α
2 −

α
1 , 0)(α3 − α2 , 0)

(α3 − α2, 0)

(α 2N
− α

2N
−1,

0)

(α
2N
−
α 2N
−

1,
0)

2: Use a wrap around to convert the flow solution into a feasible schedule.
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Note that with only few changes, this flow model can be adapted to jobs
with disjoint time-windows and to any concave piecewise profit function.

I.9.4 Linear profits with setup times (LPST)
The general cases with release dates and with or without preemption are
still open. However, a dynamic programming algorithm solves the problem
if growth rates are identical. This algorithm is similar to Algorithm 1 except
that only the release dates are considered for start dates:

Theorem I.9.4.1
Dynamic programming Algorithm 14 returns the optimal value of Pm |
LPST, bj=b, rj | −

∑
wj(pj) in polynomial time O(n log n+m2nm).

Algorithm 14 P | LPST, bj=b, rj | −
∑
wj(pj)

1: Sort tasks in non-decreasing order of their deadlines
2: Return f ∗(n, (dn, dn−1, . . . , dn−m+1)) with

f ∗(j, C) =



0 if j = 0

max


f ∗(j − 1, C)

max
1≤i≤m
Ci≥rj}

f ∗(j − 1, C − (Ci − rj)ei)
+wj(min{Ci, dj} − rj)

otherwise

where C is a m-dimensional vector containing the required completion
time of the last task scheduled on each machine and ei is the vector such
that eii = 1 and eik = 0 for all k 6= i.

Proof. This proof being very similar to the previous proofs of this chapter, we
will be more concise. Even though Lemma I.3.1 does not apply with release
dates, scheduling jobs in non-decreasing order of their deadlines remains
dominant: indeed with LPST with identical growth rates, it is dominant to
end jobs by order of their deadlines and therefore to schedule them in this
order. As a consequence, Algorithm 1 would return the optimal value of the
problem. To have an efficient algorithm, we consider the set U of solutions
such that all scheduled jobs are executed in non-increasing order of their
deadlines and start at their release date; this set is dominant. Thus, for each
job, only one start date is considered in Algorithm 14 and the size of C is
nm. The overall complexity is thus O(n log n+m2nm). �
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Note that even if preemption is allowed, non preemptive schedules are dom-
inant. Therefore, the optimal value is the same as in the non preemptive
case.

I.10 Conclusions
In this chapter, we studied a category of scheduling problems which are of
theoretical and practical interest: processing time dependent profit maxi-
mization scheduling problems. We discussed some unusual properties and
we proposed several piecewise-linear models as references. Then we under-
lined the complexity hierarchy that exists among those models. We proved
NP-completeness of most general cases. Using various technics, we proposed
dedicated polynomial algorithms for many particular cases; drawing a first
map of these territories.
In the process, the complexity of many cases, including that of an original
astrophysics application, have been derived. However, we merely laid some
foundations, and many cases remain open or incomplete, and new models of
profit functions or other constraints are still to be studied.
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A fast, efficient, simple and versatile Large
Neighborhood Search algorithm to schedule
star observations on the Very Large Tele-
scope

Large telescopes are few and observing time is a precious resource subject to
a strong pressure from a competitive community. Besides, a growing number
of astronomical projects require surveying a large number of targets during
discontinuous runs spread over few months or years. An important example
in today astronomy is the imaging surveys to discover and study extra-solar
planets, which require to observe hundreds of targets to get a chance of
imaging a few planets. There are many targets to be selected as actual
observations and the total demand of observing time far exceeds the supply.
Furthermore, the optimization must occur on different scales: prior to each
year or semester, the requested targets list must fit the projected calendar,
leading to adjust both; then the schedule is optimized again prior to each
run (roughly, every week) and re-optimized prior to each night, to take into
account priority changes and to reschedule failed observations. Even during
one night, unexpected conditions such as bad weather might indeed require
quasi real time adjustments. Therefore, efficient and both short-term and
long-term (i.e. anytime) algorithms need to be designed.1

II.1 Problem description
The first part of this work has been conducted by Catusse et al. 2016. They
studied a simplified model, its complexity, and developed algorithms to solve
it. We first introduce their model: let M be a set of m nights and T be a
set of n targets. Each target Tj ∈ T has a profit wj and is visible during a

1Introductory paragraph from Catusse et al. 2016 written by my supervisors.
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set of nights Mj, and for each night i ∈ Mj, Tj has a time-window [rij, dij[
and a duration pij such that 2pj ≥ dij − rij (for almost all targets, there is a
compulsory observation instant, the meridian). The objective is to maximize
the total profit of the observed targets, such that each scheduled target Tj
must be observed within one of its time-windows during the corresponding
observation time, and only one target can be observed at a time.
Usually, a target is not visible in all nights, but rather in few sets of con-
secutive nights, and the time-window is slightly shifted at each night. Real
instances include up to 1000 targets to schedule in about 100 nights. Even-
tually, between four and eight observations are scheduled in a night. The
profit of an observation lies between 10 and 40.
In the remaining of the chapter, we call this problem the Pure Star Obser-
vation Scheduling Problem (Pure SOSP).
To solve this problem, Catusse et al. 2016 propose a branch-and-price algo-
rithm combined with constraint programming, and a local search algorithm.
They evaluated the performances of these algorithms on a dataset includ-
ing one real instance and other generated instances of different sizes built
to reproduce the properties of the real one. The branch-and-price algorithm
is able to solve to optimality almost all tested instances within two hours
whereas the local search algorithm provides solutions of good quality within
a few minutes. The limited time-window size (2pij ≥ dij − rij) is a key feature
of the problem resolution and is compulsory for the kind of images taken. It
is equivalent for observations to having a “mandatory” instant, and therefore,
it imposes the order for the observations scheduled within a night.
Even if the model described above is only a simplified version of the actual
practical problem, the work carried by Catusse et al. 2016 shows that the
problem can be handled and therefore it is worth refining the model to get
more realistic solutions. It also gives bounds that can be used to evaluate
the performances of algorithms developed for richer models. From the users
point of view, it also helped the astrophysicists to understand how operations
research can be of great help and how to model more efficiently the problem.

In this chapter, we therefore consider a more accurate version of the model.
The refinements are the following:

• The duration of an observation actually depends on its start date. Usu-
ally, the duration is the smallest around the middle of the time window
and slightly increases if it is done before or after.

• Furthermore, observation durations are flexible. If an observation is
slightly shorter, then the picture will be of lesser quality, but shortening
an observation may be worth if it makes room for other ones. Note
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that due to telescope calibration, the observation always needs at least
some time before a first valuable picture can be obtained; and beyond
a certain duration, the picture quality stops increasing. This model
(without the start date dependence) has been studied in Chapter I (see
Figure I.3).

• Some observations called calibration observations are mandatory. They
typically represent between 3% and 10% of the total number of obser-
vations scheduled.

• The mandatory instant property remains true for most observations,
but some of them do not satisfy it. This may be for example due to the
flexibility of observation durations, but also, calibration observations
usually have very large time windows.

• In a few cases, a target might have several time windows during the
same night. In the case of calibration observations, these time windows
can even overlap.

• Besides scientific interests, targets also have emergencies. Some targets
might be important to observe earlier in the schedule.

Currently, the astrophysicists schedule their observations using a software
named SPOT (Lagrange et al. 2016). This software takes as input a list of
stars with their astronomical properties, computes the astrophysical parame-
ters (observation times, visiblity windows...), and does the optimization. The
optimization part is achieved by an algorithm based on Simulated Annealing.
It returns rather good solutions, but its convergence is rather slow. The goal
of the present work is to propose to the astrophysicists a fast and efficient
algorithm than can handle real problems, and to implement it in the software
SPOT. As a consequence, the following practical constraints are also to be
taken into account:

• As explained in the first paragraph, the algorithm should be anytime,
providing good solutions in a few seconds or minutes, but still improv-
ing them if run several hours. Typically, astrophysicists want to have
a good idea of the solution quality in order to, for example, adjust
the profits. But then they will let the algorithm run during the whole
day to improve the solutions. Quick solutions of good quality are also
important to handle unexpected events during the night (clouds, rain,
earthquakes...) that require modifiying the schedule. Furthermore,
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some artefacts from the software (observation time computing, visu-
alization, etc.), significatively slows the algorithm. Therefore, quickly
finding good solutions is even more crucial.

• Despite this, the optimal solution is not the absolute goal, and good
industrial solutions may be sufficient. Profits are actually not perfectly
accurate and astrophysicists will update them if they want to. However,
the problem changes quickly, either because the constraints change, or
because the astrophysicists may propose better models (for example
the inclusion of emergencies). Therefore, it should be easy to update
the algorithm to handle those changes.

• Eventually, the proposed algorithm should be simple: a developer with
only little knowledge in operations research should be able to under-
stand it, implement it and maintain it. This also implies avoiding the
use of external solvers.

The branch-and-price proposed by Catusse et al. 2016, although highly ef-
fective, does not meet the above requirements. First, it is not anytime:
the column generation procedure takes time and on some instances, several
dozens of minutes are necessary to output the first solution. Second, it is not
easy to adapt if the new model breaks the separable structure. Finally, it
requires too many knowledge in discrete optimization and the use of a linear
solver and a constraint programming solver.

Most papers published on related problems (see Section II.2) focus on a
very specific variant of a problem and try to develop the best possible algo-
rithms. This approach does not fit with our need of versatility and simplicity.
Furthermore, it makes it difficult to really evaluate the performance of the
algorithms. Therefore, we choose a different approach: our goal here is to
design an efficient algorithm that can be applied to any variant of SOSP,
such that little adaptation is required for each variant. We implemented and
evaluated our algorithm on five variants of the problem:

• The Pure Star Observation Scheduling Problem (Pure SOSP)

• The Pure SOSP with discrete flexible observation times (Pure df-SOSP)

• The Pure SOSP with continuous flexible observation times (Pure cf-
SOSP)

• IPAG SOSP

• IPAG SOSP with discrete flexible observation times (IPAG df-SOSP)
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Pure SOSP has already been presented at the begninning of the section.
Thanks to the bounds computed by Catusse et al. 2016, we may evaluate the
performances of our algorithms and compare them with their Local Search.
Among all additional constraints cited above, only the flexible duration con-
straint is not currently implement in SPOT and is a new request from the
astrophysicists. We wanted to evaluate the effect of this property on the
solutions. Therefore, we considered two variants of Pure SOSP where the
processing time can be reduced by a factor x. If pj(S) is the duration of
observation Tj during night i in solution S, then, in the discrete variant
(Pure df-SOSP), pj(S) ∈

{
xpij, p

i
j

}
, and in the continuous version (Pure

cf-SOSP), pj(S) ∈
[
xpij, p

i
j

]
. Then the profit returned by the observation

is wj(S) = wjpj(S)/pij. Note that all solutions of Pure SOSP are feasible
solutions of Pure df-SOSP, and all solutions of Pure df-SOSP are feasible
solutions of Pure cf-SOSP. Therefore, we expect to get solutions with greater
values in those cases.
IPAG SOSP is the current problem solved by the software SPOT (IPAG,
“Institut de Planétologie et d’Astrophysique de Grenoble”, is the name of the
astrophysicists’ research unit). It includes all constraints except the flexible
durations. By evaluating the performances of our algorithms on this problem,
we can compare the results with the algorithm currently implemented and
show the astrophysicists if we manage to get better solutions. Since a target
may have several time-windows in the same nights, we note Kj the number
of time-windows of target Tj, and for each time-window TWk

j , k = 1, . . . , Kj,
we note rkj its release date, dkj its deadline, mjk its night, wjk its profit and
pkj (s) the require observation time when starting it at time s.
Finally, IPAG df-SOSP is the problem including all constraints, i.e. all con-
straints implemented in SPOT and the discrete flexible observation times.
Similarly as above, if pj(S) is the duration of observation Tj in time-window
k starting at time s in solution S, then pj(S) ∈

{
xpkj (s), pkj (s)

}
. Then the

profit returned by the observation is wj(S) = pj(S)/pkj (s) ∗ wkj .
We do not look at the continuous version of IPAG df-SOSP. Indeed, it is
a bit more complicated to handle and in Section II.4, we observe that our
algorithm returns equivalent solution values for both cf-SOSP and df-SOSP.

II.2 Literature review
Besides the work published by Catusse et al. 2016, star observation scheduling
problems have not receive a lot of attention. Johnston 1990 presents Spike,
a software for scheduling observations on Hubble Space Telescope based on
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Constraint Programming. The constraints for a space telescope are not the
same as the ones for an Earth telescope. Still, Johnston 1993 introduced
the problem of scheduling star observations on the Very Large Telescope
and states that Spike may be used to solve the problem. Unfortunately, no
computational experiments are presented.
On the other hand, many papers have been published on Agile Earth Obser-
vation Satellites (AEOS) scheduling problems, looking in the opposite direc-
tion from the sky towards the Earth (whereas we look from the Earth to the
sky). Still, the problems share many similarities. The idea behind AEOS
scheduling problem is to schedule projects on a satellite orbiting around the
Earth. Each possible project has a time-window and returns a profit. The
objective is to maximize the total profit of the schedule. The problem was
introduced by Hall and Magazine 1994 in a single machine version. Wolfe
and Sorensen 2000 improved the model, considering that an observation is
better when it is centered in the time window. This property is similar to
the start date dependent observation duration of our problem. Then Verfail-
lie and Lemaître 2001 considered a model with observation time dependent
profit. This property is also one that we added in our model.
The first model considering several machines was introduced by Dilkina and
Havens 2005, by considering a fleet of satellites. Interestingly, having multiple
satellites following each other implies that the time-windows will be shifted
on each machine. A similar phenomenon happens with star observations:
the time-windows of observations of a night are shifted in the next night.
Bianchessi et al. 2007, Wang et al. 2011, Xu et al. 2016, He et al. 2018
and Peng et al. 2019 also considered multi-machine versions of the problem,
either by considering multiple satellites, multiple orbits, or both.
Some papers also consider additional constraints that are not related to our
problem such as download, energy consumption, transition times, uncertain-
ties (Verfaillie and Lemaître 2001; Lemaître et al. 2002; Dilkina and Havens
2005; Li et al. 2007 etc.). Note that, as stated in the previous section, there
are uncertainties in our problem, such as weather or earthquakes. Those un-
certainties are managed by relaunching the algorithm, since the robustness
of the schedule does not matter for the astrophysicists. This is one of the
reason why it is crucial to be able to get good solution very rapidly.
Unfortunately, algorithms developed for AEOS scheduling problems cannot
be used for SOSP. Indeed, in multi-machines AEOS scheduling problems,
the number of machines is small, i.e. lesser than five. In our problem, the
number of machines, i.e. the number of nights is at least several dozens and
can overcome a hundred. Furthermore, the telescope only observes at night,
whereas satellites observe continuously and star observations are longer than
earth observations. Therefore, even if the two families of problems are similar,
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AEOS scheduling problems include few machines but many jobs per machine,
whereas star observation scheduling problems include many machines but few
jobs per machine. It follows that algorithms developed for AEOS scheduling
problems are not adequate for star observation scheduling problems.

II.3 Large neighborhood search

We propose a Large Neighorhood Search (LNS) to solve the problem. LNS
is a well-known meta-heuristic that has been widely used in Operations Re-
search (see Pisinger and Ropke 2010). In LNS, an initial solution is iteratively
improved by destroying and repairing it. Here, we implemented it by emp-
tying and rescheduling several nights together. The repair is performed with
a heuristic greedy algorithm.
In the algorithm, a solution S consists of m single night schedules Si, i =
1, . . . ,m. For a night i ∈ M, Si is defined by a list of tuples (j, k, τ, s, p),
where Tj is the corresponding target, TWk

j the corresponding time-window,
s is the observation start date and p the observation duration. Tuples are
sorted and the corresponding observations are scheduled in non-decreasing
order of τ .

II.3.1 Single Night Timing Problem
A major interest of the proposed architecture is that in order to handle the
different variants of SOSP considered, one just needs to implement an algo-
rithm (exact or heuristic) for a sub-problem called the Single Night Timing
Problem (SNTP). SNTP takes as input a list of observations belonging to
the same night and computes whether it is possible to schedule all of them
in the given order, and if yes, returns the corresponding profit and schedule.
Algorithm 15 solves SNTP for Pure SOSP. It is rather straightforward. Since
the order is imposed, one just needs to schedule the observations as early
as possible. Solving the feasibility problem is actually equivalent for all
variants: one just needs to schedule the observations as early as possible at
their smallest possible duration. Therefore, in the remaining of the section,
we only describe the algorithms that compute the schedule and its profit.

SNTP for Pure cf-SOSP is similar to the problem presented by Janiak and
Kovalyov 1996. They studied the case without release dates and proposed a
O(n log n) exact algorithm. Algorithm 16 is an adaptation of this algorithm
in order to take into account the release dates. It is similar to Algorithm 10
presented in Chapter I page 46. Its complexity increases to O(n2). Note
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Algorithm 15 feasible and schedule for Pure SOSP
1: procedure feasible(Si)
2: C ← 0 . Current time
3: for (j, k, τ, ., .) in Si do
4: C ← max{C, rkj }+ pkj
5: if C > dkj then
6: return false
7: return true
8: procedure schedule(Si)
9: C ← 0 . Current time

10: w ← 0 . Total profit
11: for (j, k, τ, s, p) in Si do
12: C ← max{C, rkj }
13: s← C
14: p← pkj
15: w ← w + wj
16: C ← C + p

17: return w

that it requires a priority queue. However, this priority queue is actually
implemented with an array instead of a binary heap; since the number of
observations in a night is less than 10, the array implementation happens to
be faster.

For Pure df-SOSP, SNTP can be solved using Dynamic Programming based
on the following recursive function:

w(j, t) = max
w(j − 1,min{t, dij} − pij) + wj if min{t, dij} − pij) ≥ rij
w(j − 1,min{t, dij} − xpij) + xwj if min{t, dij} − xpij) ≥ rij
−∞

The optimal value is then w(|Si|, d) where s is the deadline of the last ob-
servation of Si. It is implemented by states and the solution is retrieved by
storing the observations scheduled in an additional integer in each state: if
bit j = 0, then the jth observation is scheduled during its minimum duration,
otherwise, it is scheduled during its maximum duration (see Kellerer et al.
2004 for more details on efficient Dynamic Programming implementations)

Interestingly, SNTP for Pure SOSP is equivalent to SNTP for IPAG SOSP.
Indeed, all the additional constraints do not change the sub-problem. There-
fore, Algorithm 15 can be straightforwardly adapted. Likewise, SNTP for
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Algorithm 16 schedule for Pure cf-SOSP
1: procedure schedule(Si)
2: C ← 0 . Current time
3: pos← 0 . Position of the current observation
4: for (j, k, τ, s, p) in Si do
5: C ← max{C, rij}
6: s← C
7: p← pij
8: C ← C + p
9: while C > dij do

10: Let posmin be the position of the first observation starting at
its release date.

11: Let (j′, k′, τ ′, s′, p′) be the observation at position pos′ of Si
such that posmin ≤ pos′ ≤ pos that maximizes wj′/pij′ .

12: Let pmax be the maximum duration at which observation at
position pos′′ can be reduced and all observations at position pos′′, pos′ <
pos′′ ≤ pos can be shifted to the left without violating their release dates.

13: p′ ← p′ − pmax
14: C ← s′ + p′

15: for pos′′ from pos′ + 1 to pos do
16: s′′ ← C
17: C ← C + p′′

18: pos← pos + 1
19: w ← 0
20: for (j, k, τ, s, p) in Si do
21: w ← w + p/pij ∗ wj
22: return w



CHAPTER II. STAR OBSERVATION SCHEDULING

IPAG df-SOSP can be solved by Dynamic Programming as explained for
Pure df-SOSP.

II.3.2 Greedy algorithm
Algorithm 17 is a greedy algorithm that solves the full star observation
scheduling problem. It uses SNTP and relies on the feasible function de-
scribed in the previous section.

Algorithm 17 Greedy algorithm
1: procedure greedy(NightSet,TWList)
2: . time-windows from TWList all belong to nights of NightSet
3: scheduled[j]← false, for all j = 1, . . . , n
4: Si = ∅ for all i ∈ NightSet
5: for TWk

j in TWList do
6: if scheduled[j] then
7: continue
8: τ ← U

(
min

{
emin
jk , s

max
jk

}
,max

{
emin
jk , s

max
jk

})
9: Insert (j, k, τ, ., .) to Smjk

10: if feasible(Smjk) then
11: scheduled[j]← true
12: else
13: Remove (j, k, τ, ., .) from Smjk

14: return {Si}i∈NightSet

Algorithm 17 simply inserts time-windows in the order they are given. If the
current solution becomes infeasible, the last added observation is removed.
τ is drawn randomly with a uniform distribution between min

{
emin
jk , s

max
jk

}
and max

{
emin
jk , s

max
jk

}
where emin

jk and smax
jk are respectively the earliest possible

end date and the lastest possible start date of target Tj in time-window TWk
j .

This choice of τ ensures that if the order of two observations can be deduced
a priori, then the two values of τ will be sorted accordingly. For example, if a
time-window has mandatory instants, then τ will be one of them. Therefore
if two time-windows have distinct mandatory instants, which imposes the
order, the corresponding observations will be scheduled in the correct one (if
they have one common mandatory instant, then they are not compatible). If
two time-windows TWk1

j1 and TWk2
j2 satisfy smax

j1k1 ≤ emin
j2k2 , then Tj1 cannot be

scheduled after Tj2 and values of τ will again be sorted accordingly.
Algorithm 17 may actually run on a limited number of nights defined by the
input parameter NightSet, as well as it does not necessarily process all time-
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windows, but only those contained in TWList. Note that it does not call
the schedule function, as it may be significatively slower than feasible.
This way, we ensure that Algorithm 17 runs very fast whatever the variant
of problem.

II.3.3 Local search
Based of the Greedy algorithm described in the previous section, we devel-
oped a simple Large Neighorhood Search algorithm. Algorithm 18 generates
a first solution by running the Greedy algorithm on the whole instance. Then
the solution is improved by continuously rescheduling a set of nights Ī with
the Greedy algorithm. The number of nights |Ī| is drawn randomly such that
P (|Ī| = z) = 1/2z−1 with z ≥ 2. Then |Ī| nights are drawn uniformly among
all nights.
In the initial stage of the algorithm, time-windows are considered by effi-
ciency.
The efficiency is a heuristic measure of the interest of a time-window. We use
the ratio between the profit of the time-window and the typical processing-
time. More formally, for Pure SOSP, Pure cf-SOSP and Pure df-SOSP, we
choose:

efficiency(TWk
j ) = wj

pkj

and for IPAG SOSP and IPAG df-SOSP, we choose:

efficiency(TWk
j ) =

wkj

pkj

(
smin
jk
−emax

jk

2

)
For the improvment phase, we need to increase the diversity of the solution
and to this extend we use a disturbed efficency: we add a random term,
uniformly drawn in [−0.001Emax; 0.0001Emax], where Emax is the maximum
efficiency among all time-windows.
Finally, a simple mechanism is implemented to get out of local optima: a
solution is accepted if its absolute gap with the best known solution is not
greater than y = 1.1 (the profit of a full observation lies between 10 and 40).

II.4 Computational experiments
Catusse et al. 2016 performed their experiments on an Intel R© Xeon E5-2440
v2 @ 1.9GHz. Due to the huge total computation time (several weeks), the
new experiments were run on two different computers, but with no incidence
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Algorithm 18 Large Neighorhood Search
1: procedure lns(I)
2: TWList← TWk

j for all j = 1, . . . , n, k = 1, . . . , Kj

3: Sort TWList by efficiency
4: S ← greedy(M,TWList)
5: Sbest ← S
6: while true do
7: Draw a set of random nights Ī
8: Let TWList be the set of time-windows belonging to nights of Ī

from unscheduled targets and targets scheduled in nights of Ī
9: Sort TWList by disturbed efficiency

10: S ′
Ī
← greedy

(
Ī ,TWList

)
11: w = w(S)− w(SĪ) + w(S ′

Ī
)

12: if w ≥ w(Sbest)− y then
13: SĪ ← S ′

Ī

14: if wmax < w then
15: Sbest ← S

on the comparisons. Experiments on Pure SOSP, Pure df-SOSP and Pure
cf-SOSP have been performed on an Intel R© CoreTM i5-8500 CPU @ 3.00GHz
× 6. Experiments on IPAG SOSP and IPAG df-SOSP have been performed
on an Intel R© CoreTM i5-6300U CPU @ 2.40GHz × 4.

II.4.1 Pure Star Observation scheduling problem
We used the 21 instances from Catusse et al. 2016 (a real instance and 20 gen-
erated ones), with time limits of 2 minutes (120 seconds) and 2 hours (7200
seconds). The best known upper bounds (UB) are the solutions provided by
the Branch-and-Price from the same article.
Table II.1 compares the result of the Local Search from Catusse et al. 2016
(LS) with the proposed Large Neighorhood Search (LNS). Note that the
comparison is not completely fair since the processor used for LNS is much
faster. However, LNS clearly outperforms LS as it returns better solutions
in 2 minutes than LS in 2 hours.
LNS usually fails to find an optimal solution (last column), but nevertheless
provides very quickly good solutions and quickly very good ones. Indeed,
Figure II.1 depicts the maximum relative gap between LNS and the best
known upper bound on Pure SOSP for each size of instances. It gives an
experimental guarantee of the solution quality for the user. At each instant,
the largest gap always comes from an instance of size 1000. In 2 seconds,
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Figure II.1 – Maximum gap of LNS on Pure SOSP for each size of instances

the worst gap is below 2% and in 2 minutes, it is below 1%. Instances of
size 1000 have been generated to be larger than real instances. If we only
consider instances of size 400, 600 and 800, then the gap goes below 1% in a
dozen of seconds. Therefore, LNS provides very good industrial solutions in
a very short time.
From a theoretical point of view, we note that even if LNS keeps improving
solutions all along the search, it is not able to provide optimal solutions
within the time the Branch-and-price from Catusse et al. 2016 took to find
them. Therefore, further research could focus on improving LNS on long
runs.

II.4.2 Pure Flexible Star Observation scheduling prob-
lems

In this section, we try to assess the effect of including flexible observation
duration in the model. We used the same instances as in the previous sec-
tion. Our interests are: do we get better solutions with LNS when allow-
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ing continous or discrete flexible observation durations? In this case, is the
value of these solutions greater than the best known solutions for the origi-
nal problem? do we get better results when possible observation durations
are continuous? and how does the value of x influence the quality of the
solutions?
Table II.2 compares the results obtained with LNS on Pure SOSP, Pure
df-SOSP and Pure cf-SOSP with x = 0.95.
First we note that LNS always returns better solutions on Pure df-SOSP
compared to Pure SOSP within 2 minutes (column 6, “- LNS 120”) and 2
hours (column 8, “- LNS 7200”). Allowing observation duration flexibility
indeed improves the solution value. However, the additional profit is rather
moderate, on average 50 (0.3%) and a max of 100 (0.5%) on the instances of
the dataset (let us remind that the profit of an observation lies between 10
and 40).
Then, from a more theoretical point of view, we note that on 9 instances, the
value found by LNS on Pure df-SOSP is greater than the best-known upper
bound for Pure SOSP (column 9, “- UB”).
We also compare the solutions obtained on the discrete and the continuous
models. Even though solutions of Pure df-SOSP are all feasible solutions of
cf-SOSP, the values returned by the algorithm are equivalent for both models.
Indeed, the mean difference between the discrete and the continous solution
values is 1.83 with a standard deviation of 5.57 (for comparison, the mean
difference between the discrete version and the non-flexible version is 49.48
with a standard deviation of 18.97). Since the discrete version is simpler, it
should be prefered.
Finally, Figure II.2 shows the value returned by LNS for several values of x
on two typical instances. The more the duration can be reduced, the greater
the additional profit is, until x = 0.85. Then, the profit does not increase
anymore.

II.4.3 IPAG Star Observation Scheduling Problems
On the more realistic version of the problem, we tested our LNS algorithm
on four new real instances provided by the astrophysicists.
To this extend, LNS was integrated within SPOT, the software developed
for the astrophysicists, and compared to the Simulated Annealing algorithm
(SA) they currently use. Figure II.3 shows the schedule returned by LNS for
one of them.
Since there are only four instances, we directly show the graphs for each one.
Figure II.4 and II.5 depict the profit at each instant for SA (on IPAG SOSP),
LNS on IPAG SOSP and LNS on IPAG df-SOSP. LNS is able to find better
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Figure II.2 – Comparison between the values of the solutions returned by
LNS for several values of x on two typical instances.
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solutions than SA. Furthermore, it finds them much quicker. When flexible
observation duration is allowed, we observe the same behaviour as for Pure
df-SOSP: the total profit is slightly greater.

Figure II.3 – Visualisation of a schedule found by LNS in SPOT. Each column
corresponds to a night, each rectangle to an observation. The height of
a rectangle corresponds to the duration and its color to the profit of the
corresponding observation.

II.5 Conclusion
We proposed a simple and general Large Neighborhood Search scheme for
star observation scheduling problems. The algorithm reduced the resolution
of a specific variant to the resolution of a Single Night Timing Problem for
which algorithms are much easier to develop and adapt. We illustrated this
by implementing several algorithms solving SNTP for different variants of
star observation scheduling problems.
Our Large Neighborhood Search algorithm is relevant because it clearly out-
performs both the previous Local Search algorithm on literature instances for
the pure problem, and the currently used SA algorithms on real instances.
Besides, it is simpler and more easily adaptable than both.
Compared to the Branch-and-Price algorithm, it provides solutions within
2% of optimality in less than 2 seconds, while the Branch-and-Price will need
about 10 minutes to find its first solution on real sized instances. However,
even if the Large Neighborhood Search continues improving the solution over
time, the solution found by the Branch-and-Price is almost always the opti-
mal one and the Large Neighborhood Search cannot find it within the same
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Figure II.4 – Comparison between the values of the solutions returned by the
algorithms implemented in SPOT on instances p100mar27 and p101apr12.
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Figure II.5 – Comparison between the values of the solutions returned by the
algorithms implemented in SPOT on instances p100apr13 and p101may05.
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amount of time. Further research could for example focus on diversification
techniques to improve this aspect.
Theoretically, allowing flexible observation durations necessarily improves
the value of the optimal solution. In practice, on the given instances, LNS
indeed finds better solutions in theses cases. However, the additional gain is
rather moderate.
The algorithm is now implemented in the software used by the astrophysi-
cists, and we hope it will be used in production very soon.
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ROADEF/EURO challenge 2018

done and written with Luc Libralesso

Every other year, the French Operational Research and Decision Support
Society (ROADEF) jointly with the European Operational Research Society
(EURO) organizes an optimization challenge open to everyone. Each edition
is a collaboration with an industrial partner, and the problems and instances
submitted correspond to real life industrial optimization problems. Previous
challenges have been organized in collaboration with Air Liquide (2016),
SNCF (2014), Google (2012), EDF (2010)...
The 2018 edition of the challenge was dedicated to a cutting optimization
problem in collaboration with Saint-Gobain1. The challenge was announced
in February 2018. The sprint phase ended in June 2018, the qualification
phase in September 2018 and the final phase in January 2019. We took part
in the challenge shortly before the end of the qualification phase.
In this chapter, we present the heuristic Branch and Bound algorithm we
submitted for the final phase of the challenge. The resulting program was
ranked first over 20 qualified submissions. The code is free (GPL-3.0) and
available online2.

In the AI community, solving problems often involves exploring a search
tree, either exhaustively, using methods similar to Branch and Bound, or
using heuristic procedures that only explore the most promising parts of the
search tree. In the latter case, they are called Anytime Tree Searches be-
cause they can be stopped at any time and provide good solutions in the
allowed computation time. Such methods have the same objective as meta-
heuristics. Anytime Tree Searches usually start by the most promising re-
gions of the search tree, providing good solutions first. Then they explore the
least promising regions if time permits it. Possibly, the tree search will ex-
plore the whole tree and thus it will provide the optimal solution. To the best

1http://www.roadef.org/challenge/2018/en/
2https://github.com/fontanf/roadef2018
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of our knowledge, Anytime Tree Searches are hardly present in Operations
Research.
For the ROADEF/EURO challenge 2018, we took the bet that one can com-
bine Branch and Bounds from Operations Research and Tree Search Algo-
rithms from AI to get a simple method that is competitive with classical
meta-heuristics. We designed a Branch and Bound, with pseudo-dominance
properties, symmetry breaking rules, bounds and heuristic guides as people
usually do in Operations Research. We changed the search strategy by a
custom iterative tree search algorithm inspired from AI. It starts its first it-
eration by performing very aggressive heuristic cuts and behaves like a greedy
algorithm finding a good solution fast. At the second iteration, it performs
less aggressive heuristic cuts, taking more time, finding even better solutions.
If the algorithm runs for long enough, no heuristic cut will be performed and
it behaves like an exact Branch and Bound. The resulting method obtained
the best results compared to the other submitted approaches during the final
phase.
We also extracted a general framework that can be applied to many other
industrial problems. Indeed, the method can be divided into two parts.
First, one designs the Branching Scheme which is a definition of the im-
plicit search tree (i.e. root node, how to generate children of a given node,
lower bounds etc.). This implicit search tree is usually too big to be entirely
explored. Thus, we also need to design a strategy to explore the tree start-
ing from promising regions. This decomposition allows rapid prototyping of
both search trees definitions and tree searches. We believe that many tree
search techniques from AI can be applied with success on many Operations
Research problems.
The chapter is organized as follows: Section III.1 contains the problem de-
scription; Section III.2 describes the branching scheme (i.e. implicit search
tree definition) that we implemented; Section III.3 presents an overview of
the most significant tree search algorithms in AI and the algorithm Mem-
ory Bounded A* (MBA*) that we designed for the challenge. Eventually,
Section III.5 is dedicated to computational experiments on the challenge in-
stances.

III.1 Problem definition

The ROADEF/EURO challenge 2018 was proposed by the company Saint-
Gobain. The challenge consists in packing rectangular glass items into stan-
dardized bins called jumbos. Each jumbo has a fixed size H × W (6m ×
3.21m). The goal is to produce all items while minimizing the total surface
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of waste (surface not used by items). For the last jumbo used, we allow a
special cut creating a remaining part that will not be counted as waste. A
more detailed description of the problem and examples can be found on the
challenge website3.
Formally, the objective can be formulated as:

min
(
nHW −Hw −

∑
i∈I

wihi

)

where n is the number of jumbos used; W and H the standardized width
and height of jumbos; w the position of the most right cut of the last jumbo;
and I the set of produced items of height hi and weight wi, i ∈ I. Note that
the last term is constant but necessary to interpret the objective as the total
waste of the solution.

1

2

3

4

5

(a) Non valid guillotine cut

1

2

3

4

5

(b) valid guillotine cut

Figure III.1 – Illustration of a not valid guillotine cut (a) and a valid one (b).
Fig (b) shows in light gray possible waste areas and in dark gray the possible
remaining area that can serve other uses.

The problem is a variant of the classical two-dimensional orthogonal (rectan-
gular items and cuts parallel to the border of the jumbo) packing problem.
However, it contains several additional constraints that makes it more diffi-
cult to solve:

• Cuts must be guillotine (i.e. traversing all the jumbo). Figure III.1
shows an example of a non-guillotine solution and a guillotine one.
The vertical cuts traversing the whole jumbo are called 1-cuts. Each
horizontal cut separating regions within a 1-cut is called a 2-cut. The
same principle applies for 3-cuts and 4-cuts.

3http://www.roadef.org/challenge/2018/en/index.php
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• Items are subject to chain precedence constraints. Each item belongs
to exactly one chain. Some instances have a few chains, some have no
precedence constraint (i.e. there are |I| chains). When extracted from
left to right and bottom to top, the items in a chain need to be in the
right order.

• Jumbos can contain defects (between 0 to 8 rectangles about 1-2cm
wide). For quality reasons, those defects should not be present in items
and cuts cannot be performed on such defects. One needs to pack those
defects in the waste.

• Only 4 levels of cuts are available. Moreover, it is possible to perform
at most one 4-cut in a sub-plate obtained after a 3-cut. Thus, after
a 3-cut, the sub-plate can contain waste, one item without waste, one
item and some waste or two items without waste. This is illustrated
on Figure III.2.

• Cuts, depending on their level are subject to minimum and maximum
size constraint. The distance between two consecutive 1-cuts must be
between w1

min = 100 and w1
max = 3500. The distance between two con-

secutive 2-cuts must be at least w2
min = 100. Finally, the width and

the height of any waste area must be at least wmin = 20. The conse-
quence of this last constraint is not straightforward and is illustrated
on Figure III.3.

J1

J2
J3

J4

J5

J6

J1

J2

J3

J4

J5

J6

Figure III.2 – Only one 4-cut is allowed. Therefore, the first solution is
feasible but the second is not.

III.2 Branching scheme
In this section, we describe the branching scheme used by our Tree Search
Algorithms. The first part provides several theoretical dominance properties
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Figure III.3 – Illustration of the consequence of the minimum waste constraint
on a plate of the best known solution of instance B1: additional waste must
be added before the first 1-cut. Otherwise either the waste on the right of
item 1 or the waste on the right of item 23 would violate the minimum waste
constraint.

that justify the heuristic choices that we made. Then we describe the gen-
eral scheme. Finally, we describe a pseudo-dominance rule and a symmetry
breaking strategy.
In this section, S denotes a solution (items and cuts with their positions) or
a partial solution (not all items may be placed), J an item (or a defect) and
D a defect.
For all item J ∈ S, x1(J, S), x2(J, S), y1(J, S) and y2(J, S) denote respec-
tively the positions of its left cut, right cut, bottom cut and top cut. S is
omitted when there is no ambiguity. For a defect D, x1(D), x2(D), y1(D)
and y2(D) denote respectively its left border, right border, bottom border
and top border (that do not depend on a solution). For a k-cut C ∈ S, k
odd, x(C) denotes its x coordinate and y1(C) < y2(C) denote its starting and
ending positions. For a k-cut C ∈ S, k even, y(C) denotes its y coordinate
and x1(C) < x2(C) denote its starting and ending positions.
Let S be a partial solution. Let n(S) denote the number of plates used by
S and for k ∈ {1, 2, 3}, let xcurr

k (S) (resp. xprec
k ) be the position of the last

k-cut (resp. the previous k-cut) of the last plate of S. If there is only one
1-cut on the last plate, then xprec

1 = 0. And if, for k ∈ {2, 3}, there is only
one k-cut between the xprec

k−1 and xcurr
k−1, then x

prec
k = 0. Current and previous
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cuts are illustrated on Figure III.4.

J1

J2

J3 J4 J1

J2

Figure III.4 – Examples of current (plain) and previous (dotted) cuts

III.2.1 Dominance results
Ideally, a branching scheme should make any solution reachable while lim-
iting the number of equivalent or dominated ones. For this problem, it is
not straightforward. Therefore, in this section, we derive several dominance
properties to help us decide which branching scheme to implement.
In this section, “as late as possible” for cuts refers to the order in which they
are performed.
First note that the border of an item corresponds to one unique cut, as
illustrated on Figure III.5.

J1 J1

Figure III.5 – The second pattern cannot be obtained with guillotine cuts.

Therefore, if C ∈ S is a k-cut, k odd, and J an item of S or a defect
such that x2(J) = x(C). Then either y1(J) ≥ y2(C), or y2(J) ≤ y1(C), or
y1(C) ≤ y1(J) and y2(J) ≤ y2(C). The equivalent holds if k is even.
In the pure two-dimensional orthogonal packing problem, it is dominant to
pack the items in a corner. When adding some constraints of the current
packing problem, this remains true:

Proposition III.2.1.1
For the guillotine two-dimensional orthogonal packing problem with de-
fects and precedences, the set of solutions U such that for all S ∈ U :
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• for all k-cut C, k odd, there exists either an item or a defect J such
that y1(J) ≥ y1(C) and y2(J) ≤ y2(C) and x2(J) = x(C)

• for all k-cut C, k even, there exists either an item or a defect J such
that x1(J) ≥ x1(C) and x2(J) ≤ x2(C) and y2(J) = y(C)

is dominant.

Proof. Let S be an optimal solution violating one of the conditions as late as
possible. We prove the odd case, however the proof is identical for the even
case. Let C be the first k-cut of S, k odd, such that for all items and defects
J : y1(J) > y2(C) or y2(J) < y1(C) or x2(J) 6= x(C). C can be moved to
the left with all items of S which left cut is C until it encounters an item, a
defect, another cut, or the border of the plate (in the last two cases, the cut
C is removed). The new solution remains optimal and either it violates the
property later than S or not at all; in both cases, that contradicts the choice
of S. �

J1 ← −→ J1

Figure III.6 – Illustration of Proof of Proposition III.2.1.1. The new solution
is feasible since there is no minimum waste constraint.

The property holds with the minimum waste constraint if we remove the
precedences and the defects:
Lemma III.2.1.1
For the guillotine two-dimensional orthogonal packing problem with min-
imum waste, the set of solutions U ′ such that for all S ∈ U ′, for all
consecutive k-cuts C1, C2 (that may be a plate border), there exists at
most one (k + 1)-cut C that does not satisfy the following properties

• if k + 1 is even, there exists either an item J such that x1(C) ≤
x1(J) ≤ x2(J) ≤ x2(C) and y2(J) = y(C), or two items J1 and J2
such that x1(C) ≤ x1(J1) ≤ x2(J1) ≤ x2(C), x1(C) ≤ x1(J2) ≤
x2(J2) ≤ x2(C), y2(J1) = y(C)−wmin and y(C)− 2wmin < y2(J2) <
y(C)− wmin.
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• if k+1 is odd, there exists either an item J such that y1(C) ≤ y1(J) ≤
y2(J) ≤ y2(C) and x2(J) = x(C), or two items J1 and J2 such that
y1(C) ≤ y1(J1) ≤ y2(J1) ≤ y2(C), y1(C) ≤ y1(J2) ≤ y2(J2) ≤ y2(C),
x2(J1) = x(C)− wmin and x(C)− 2wmin < x2(J2) < x(C)− wmin.

is dominant.

Proof. Let S be an optimal solution where the condition is not satisfied as
late as possible. Let C and C ′ be the first pair of cuts violating the conditions,
i.e. the first item or border before the cut is at strictly more than wmin. C
can be shifted backward as well as all the items placed between C and C ′

until C satisfies the condition (Figure III.7). The new solution is feasible
and either it belongs to U ′, or it violates the condition later than S. Hence
a contradiction. �

J1 J2

J3
J4

J5

C

C ′

C1 C2

↓ −→

> wmin

> wmin

J1 J2

J3
J4

J5

C

C ′

C1 C2

= wmin

> wmin

Figure III.7 – Illustration of Proof of Lemma III.2.1.1. The new solution is
feasible since there are no defects.

Proposition III.2.1.2
For the guillotine two-dimensional orthogonal packing problem with min-
imum waste, the set of solutions U2 such that for all S ∈ U2:

• for all k-cut C, k odd, there exists either an item J such that y1(C) ≤
y1(J) ≤ y2(J) ≤ y2(C) and x2(J) = x(C), or two items J1 and J2
such that y1(C) ≤ y1(J1) ≤ y2(J1) ≤ y2(C), y1(C) ≤ y1(J2) ≤
y2(J2) ≤ y2(C), x2(J1) = x(C)−wmin and x(C)− 2wmin < x2(J2) <
x(C)− wmin.

• for all k-cut C, k even, there exists either an item J such that
x1(C) ≤ x1(J) ≤ x2(J) ≤ x2(C) and y2(J) = y(C), or two items
J1 and J2 such that x1(C) ≤ x1(J1) ≤ x2(J1) ≤ x2(C), x1(C) ≤
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x1(J2) ≤ x2(J2) ≤ x2(C), y2(J1) = y(C)−wmin and y(C)− 2wmin <
y2(J2) < y(C)− wmin.

is dominant.

Proof. Let S ∈ U ′ be an optimal solution such that it contains a k-cut C
violating the condition (i.e. the first item or border before the cut is at strictly
more than wmin), k = 1 or there is no (k − 1)-cuts violating the condition,
and C is the first such cut. Let C1 and C2 be the previous and the next
(k − 2)-cuts or border of C. The blocks between C1 and C and between C
and C2 can be exchanged. The new solution is feasible and the extra waste is
now either before a border or before a (k−2)-cut. Hence a contradiction. �

J1 J2

J3 J4

J5

C1

C

C2

−→> wmin
J1 J2

J3 J4

J5

C1

C2> wmin

Figure III.8 – Illustration of Proof of Proposition III.2.1.2. The new solution
is feasible since there are neither defects nor precedences.

However, with the minimum waste constraint and precedences, or with the
minimum waste constraint and defects, the property does not hold. Counter-
examples are illustrated on Figure III.9. Both instances contain three items
J1, J2 and J3. In the first instance, J1 precedes J3. In the second instance,
there is a defect on the plate. Item J1 is higher than item J2 by strictly
less than the minimum waste. This imposes the next 2-cut to be placed
after y2(J1) + wmin. However if this cut is placed exactly at y2(J1) + wmin,
then the distance between the top of item J3 and the top border of the plate
would be strictly smaller than the minimum waste. The optimal solution
can be obtained by placing J3 right on top of the plate. In the proof of
Proposition III.2.1.2, items J1 and J2 are exchanged with items J3. However,
because of the precedence constraint in the first case and the defect in the
second, this is not possible and the presented solutions are the only optimal
solutions for each instance.
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J1 J2

J3

J1 J2

J3

Figure III.9 – Counter-examples for the dominant set

III.2.2 General scheme
In the previous section, we showed that in most situations, packing items
“in a corner” is dominant. Besides, more general dominance properties we
could think of all increase the number of children of a partial solution beyond
what is practically tractable. As we are looking for efficient heuristics, we
assumed that this “in the corner”’-rule is a good compromise on which our
tree generation can be based. Thus, we insert items in the order they are
produced, ensuring that the precedence constraint is always satisfied.
The root node is the empty solution. Then we define the children of a node.
Due to the 4-cut constraint, if we look at a solution rectangle defined by (1)
the bottom of the plate or a 2-cut and (2) the next 2-cut (or the top of the
plate if there is none) and (3) the left of the plate or a 1-cut or a 3-cut and
(4) the next 3-cut (or 1-cut if there is none, or the right of the plate if there
is no 1-cut), then this rectangle may contain either only waste, or an item
without waste, or an item with waste above, or waste with an item above, or
two items without waste. Therefore, our tree generation consists in packing
the next such rectangle of the solution. This implies four types of insertions
illustrated on Figure III.10 (current and previous cuts have been defined at
the beginning of Section III.2; remember Figure III.4, page 98):

• inserting an item such that its bottom is the new previous 2-cut. These
are the most common insertions. If there is one, the 4-cut will be the
top of the item. This is how items 231, 334, 335, 232, etc. have been
inserted.

• inserting an item such that its top is the new current 2-cut. This
happens when the first type of insertion is not possible because the
item would contain a defect. In this case, there will necessarily be a
4-cut for the bottom of the item. This is how items 6 and 56 have been
inserted.

• inserting two items one above the other. Then the bottom of the first
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item is the new previous 2-cut and the top of the second item is the new
current 2-cut. There will be a 4-cut between the two items. Since no
5-cut is allowed, the two items must necessarily have the same length.
This is how items 409 and 410 have been inserted.

• inserting a defect. This corresponds to the insertions before item 232,
items 409 and 410, and item 247. Note that the defect on the right of
item 8 does not need to be inserted.

Figure III.10 – A plate of a solution

An insertion can be done at different depths:
• depth 0: the insertion is done on a new plate. This is how item 231

has been inserted.

• depth 1: the current 1-cut becomes the previous 1-cut and a new cur-
rent 1-cut is created. This item is then at the bottom of the plate. This
is how items 8, 244, 193 and 104 have been inserted.

• depth 2: the current 2-cut becomes the previous 2-cut and a new cur-
rent 2-cut is created. This is how items 334, 159, 5, 191, 9, etc. have
been inserted.

• depth 3: the current 3-cut becomes the previous 3-cut and a new cur-
rent 3-cut is created. This is how items 335, 6, 7, 192, etc. have been
inserted.

Finally, each item may be rotated.
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III.2.3 Computing new current cut positions
When doing an insertion, the positions of the new current 1-cut, 2-cut and
3-cut need to be computed. The other cuts will not change. Here, we give
some insights on how it is implemented. For an exhaustive explanation,
please refer directly to the code4.

J1

J2

(a)

J1

J2

→

(b)

Figure III.11 – Computing the new current 1-cut

Figure III.11 illustrates two examples of the computation of the new current
1-cut after an insertion. In both cases, item J1 is first inserted and then J2.
In the first case, the length of item J2 is small enough so that the current
1-cut remains valid. In the second case, the length of item J2 differs by
less than the minimum waste from the length of item J1: if the current 1-
cut stayed the same, then the minimum waste constraint would be violated.
Therefore, the current 1-cut needs to be moved to the right so that neither
J2 nor J1 violate the minimum waste constraint; that is: its new position is
x2(J1) + wmin.
This example illustrates the need for the following definitions. Let z1(S) be
such that

• z1(S) = 0 iff to move the current 1-cut to the right, it should be moved
by at least the minimum waste in order to respect the minimum waste
constraint. This is the case in Figure III.11 after inserting item J1.
More generally, this happens when the current 1-cut is the right cut of
an item.

• z1(S) = 1 iff the current 1-cut can be moved to the right by any value
without violating the minimum waste constraint. This is the case in
solution (b) of Figure III.11 after inserting J2. This may also happen
because of defect insertions.

4https://github.com/fontanf/roadef2018
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J1

J2

J3

(a) feasible

J1

J2 J3

(b) infeasible

Figure III.12 – Illustration of the case z2(S) = 2

Similarly, we define z2(S) for the current 2-cut; it can however take three dif-
ferent values. Figure III.12 illustrates two solutions where the first insertion
is a 2 items insertion. Because of the 4-cut constraint, the top of item J2
must necessarily be a 2-cut and cannot be a 4-cut. Therefore, in solution (a),
the insertion of J3 at depth 3 leads to a feasible solution, but in the second
solution, the insertion of J3 at depth 3 leads to an infeasible solution. In
other words: once two items have been inserted, the position of the current
2-cut is fixed. Therefore, let z2(S) be such that

• z2(S) = 2 iff the current 2-cut cannot be moved without violating the
4-cut constraint.

• otherwise:

– z2(S) = 0 iff to move the current 2-cut to the top, it should be
moved by at least the minimum waste in order to respect the
minimum waste constraint.

– z2(S) = 1 iff the current 2-cut can be move to the top by any
value without violating the minimum waste constraint.

The value of z1(S) and z2(S) must be taken into account when computing
the position of the new current cuts in order to insure generating feasible
partial solutions.
When updating the position of the new current 2-cut, items inserted above
a defect must also be taken into account. Indeed, if the position of the
cut increases, then those items will also be moved. This is illustrated by
Figure III.13. Initially, in (a), item J1 is inserted above the first defect.
When inserting item J2, if the current 2-cut were moved to y2(J2), then item
J1 would be moved on a defect, generating an infeasible solution. Therefore,
the current 2-cut must be moved higher.
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J1

(a)

J1

J2

↑

(b)

Figure III.13 – Updating the current 2-cut when items have been inserted
above a defect

J1

ymax
2

Figure III.14 – Updating the current 1-cut or 3-cut to avoid cutting through
a defect

In the solution represented on Figure III.14, if the current 1-cut is placed at
x2(J1), then it intersects a defect. Therefore, it must be shifted to the right.
Note that it must be shifted enough so that the minimum waste constraint
is satisfied between the 3-cut at x2(J1) and the current 1-cut. Furthermore,
the 3-cut at x2(J1) may also later intersect the defect if the current 2-cut
is moved too high. Therefore, we also introduce and compute ymax

2 (S) the
maximum height of the current 2-cut in S.

J1 J1

J2

J3

Figure III.15 – Avoiding cutting through defect with 2-cuts

Avoiding intersections between 2-cuts and defects is handled a bit differently.
In the first solution of Figure III.15, the current 2-cut does not intersect the
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defect yet. However, depending on the following insertions, that may happen
later, as illustrated by the second solution. Therefore, we introduce xmax

1
as the maximum position of the current 1-cut. Note that xmax

1 cannot be
computed right after inserting J1 since the position of the current 2-cut is
not fixed yet: an item higher than J1 could be inserted at depth 3 and the
2-cut would be shifted higher and would not intersect the defect. Therefore,
xmax

1 is computed when the current 2-cut gets fixed. In the example, this
corresponds to the insertion of J2.

J1 J2

Figure III.16 – Avoiding cutting through defect with 2-cuts

If the current 2-cut intersects a defect, as illustrated on Figure III.16, then it
is shifted to the top similarly to what happens when an item inserted above
a defect intersects a defect.
Note that xmax

1 is also used to handle the maximum 1-cut size constraint.
The branching scheme described in this section generates a high number a
children for each node. Hence the need to cut dominated nodes or break
symmetries.

III.2.4 Depth based cuts
Some rules illustrated on Figure III.17 are applied to avoid generating un-
promising nodes:

• if an item can be inserted on the current plate, then the insertion in a
new plate, i.e. with depth 0 is not considered;

• if an item can be inserted at depth 2 or 3 without increasing the current
1-cut, then the insertion with depth 1 is not considered;

• if an item can be inserted at depth 3 without increasing neither the
current 1-cut nor the current 2-cut, then the insertions at lower depths
are not considered.

Some other rules make it possible to avoid generating identical solutions:
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J1

J2

J3

(a)

J1

J2

J3

(b)

J1

J2

J3

(c)

J1

J2

J3

(d)

Figure III.17 – In solution (a), item J3 can be inserted at depth 2 without
increasing the current 1-cut. Therefore, solution (b) where it is inserted at
depth 1 is not considered. In solution (c), J3 can be inserted at depth 2,
however, this increases the current 1-cut. Therefore, solution (d) where it is
inserted at depth 1 is considered anyway.

• if the last insertion is a defect at depth d, then the next insertion must
also happen at depth d;

• if the last insertion is a 2-item insertion at depth d 6= 3, then the next
insertion must be at depth 3 (unless some tricky conditions that will
not be described here are met).

III.2.5 Pseudo-dominance rule
When looking at a partial solution, we see a “front” defined by the previous
1-cut, the current 2-cut, the current 3-cut, the previous 2-cut and the current
1-cut (see Figure III.18).
The idea is that if the front of a partial solution S1 is “before” the front of an-
other partial solution S2 that contains the same items, then we assume that
S1 dominates S2 (see Figure III.19). More precisely, we use Algorithm 21
(in appendix at the end of this chapter, page 121) to determine if a solution
dominates another one. This dominance is not exact (see example of Fig-
ure III.20) but it seems to be a good compromise. It is used in the main
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algorithm to compare children of a node, and for all generated nodes in the
algorithm dedicated to instances with only one or two chains.

J1

J2

J3 J4 J1

J2

Figure III.18 – Illustration of the front of two partial solutions

J1

J2 J3

J1

J2 J3

Figure III.19 – The first partial solution dominates the second one.

III.2.6 Breaking symmetries

Most instances of the challenge (i.e. 27 over 30) have more than 5 chains.
Thus, they have too many sub-problems for a dynamic programming strategy.
Therefore, we only use the pseudo-dominance rule between the children of
a node, and not between nodes with different fathers. To compensate, we
use some rules to avoid exploring equivalent nodes several times instead. A
node is cut if a “k-block” (the items between two consecutive k-cuts) can
be exchanged with the previous “k-block”, i.e. without violating neither the
defect constraint nor the precedence constraint, and if the minimum index
of its items is lesser. Since the algorithm is constructive, we only need to
check the penultimate and the antepenultimate “k-blocks”. The current ones
cannot be compared since they may still change later. Symmetry breaking
is illustrated on Figures III.21 and III.22.
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J1

J2

(a)

J1

J2

(b)

J1

J2 J3

J4

(c)

J1

J2
J3

J4

(d)

Figure III.20 – Consider an instance with 4 items and 1 chain. In solution
(b), the defect has been inserted before J2. The pseudo-dominance rule states
that solution (a) dominates the second one. However, the solution (a) cannot
lead to the optimal solution, since solution (c) violates the 4-cut constraint,
whereas solution (b) can lead to solution (d) which is optimal.

III.3 Tree search

It is common in Operations Research to encode the search space as a tree.
For instance Branch and Bound/Cut fully explores a tree where each node is
a partial solution. Branch and Bound algorithms are complete tree searches
designed to provide a guaranteed optimal value. But this is usually done at
the price of storing a lot of information and not focusing on finding good
solutions fast. On the other hand, greedy algorithms can be seen as a special
kind of tree-search. They only look at the best next node until reaching a
leaf, providing reasonable solutions very fast but without any guarantees.
Both methods have their quality and drawbacks. Once again, we opted for a
compromise. Some tree searches, at the beginning, behave like greedy algo-
rithms, then, as time goes, behave more and more like a Branch and Bound.
Methods with this property are called in AI communities anytime algorithms
because they can be stopped at any time and still provide good solutions.
Some anytime algorithms are known in Operations Research. Indeed, Beam
Search, an anytime method from AI, is popular in scheduling and packing
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J2 J1

J3

J2 J1

J3

Figure III.21 – Illustration of symmetry breaking. In the first solution, items
J1 and J2 can be exchanged. Therefore, the corresponding node is pruned.
However, in the second solution, the two items cannot be exchanged because
of the defect. Therefore, the solution is kept.

J3

J2 J1

J3

J2

J1

Figure III.22 – Illustration of symmetry breaking. In the first solution, before
inserting item J1, items J2 and J3 can be exchanged. However, the solution is
not cut since the 2-block is not finished yet as item J1 will be inserted after.
However, item J1 cannot be inserted at depth 2 as in the second solution.

communities. Also, we can note that ant colony optimization is a form of
anytime tree search (Blum 2005). However, many more anytime tree searchs
exist in AI. To the best of our knowledge, many of them are seldom used in
Operations Research. We believed that importing anytime tree searches into
Operations Research can lead to competitive methods. We did so, and the
resulting method was ranked first in the final phase of the challenge.
In the previous section, we have presented how we generate a search tree
encoding the glass cutting challenge. In this section, we present several
classical anytime tree search algorithms from the AI community. Then we
present a new anytime algorithm we used during the challenge, which is
inspired by the AI tree search.

III.3.1 Anytime tree searches
Anytime tree searches are usually based on 3 classical searches: Breadth First
Search (BFS), Depth First Search (DFS) and A*. For more information

111/127



CHAPTER III. ROADEF/EURO CHALLENGE 2018

about BFS and DFS, we refer the reader to Russell and Norvig 2016.
We quickly present A*. A* is guided by a lower bound (for a minimization
problem) of a node f(n) = g(n)+h(n) where g(n) is the prefix cost and h(n)
an optimist estimate cost. A* considers a list of open nodes called fringe.
At the beginning, the fringe contains only the root. At each iteration of the
algorithm, A* extracts the node with the smallest lower bound, removes it
from the fringe, and adds all its children into the fringe. It continues until it
finds a feasible solution n (which is also optimal since the value of n is better
than any other remaining node lower bound) or the fringe is empty (in this
case, there is no feasible solution in the search tree). A* may take a lot of
time and memory, however, the first solution it provides is optimal. It is
summed-up in Algorithm 19 (see Russell and Norvig 2016 for more details).

Algorithm 19 A* algorithm
1: fringe ← {root}
2: while fringe 6= ∅ do
3: n← extractSmallestLowerBound(fringe)
4: if n is feasible then return n
5: fringe ← fringe \ {n}
6: for all v ∈ children(n) do
7: fringe ← fringe ∪ {v}

In this section, we give a brief overview of the most popular anytime tree
search algorithms that, we believe, can obtain good results in Operations
Research problems. We implemented and compared those algorithms on
the challenge instances. Most anytime tree searches (including the methods
presented below) are based on one of the 3 classical searches. They modify
the base search in order to make it anytime.

Beam Search (BS) was originally proposed by Rubin and Reddy 1977, first
as LOCUS Search. Indeed, instead of considering all the nodes at a given
depth, it only keeps the D best nodes within a given level. D is usually
called the beam size. Beam Search is a generalization of both the greedy
algorithm (when D = 1) and BFS (when D = ∞). Several variants of the
Beam Search start with a small beam and run again the algorithm with a
bigger beam size until the time limit. This process allows to provide good
solutions fast and improve them in the later stages of the search. We also
note that Beam Search is probably the most popular anytime tree search
algorithm in Operations Research. It is present in several popular methods
(see for instance Blum 2005, Ow and Morton 1988).
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Simplified Memory-bounded A* (SMA*) was originally proposed by Russell
1992. To the best of our knowledge, SMA* is not popular in Operations
Research. It consists in exploring the search tree as A*, opening the node
n with the smallest lower bound. It adds to the fringe the child of n which
has the smallest lower bound (and which is then removed from the list of
children of n), and updates the lower bound of n and its ancestors if needed.
n is discarded if it does not have any children left, otherwise, it is kept into
the fringe with an updated lower bound. Like Beam Search, it considers a
maximum fringe size D. If the fringe contains more than D nodes, SMA*
discards the nodes which have the biggest lower bound. As Beam Search,
SMA* generalizes the greedy algorithm if D = 1, and, SMA* generalizes A*
if D =∞.

III.3.2 The proposed anytime tree search: Memory
Bounded A* (MBA*)

A* is known to minimize the cost estimate on nodes it opens. However it
suffers from a large memory requirement since it has to store a large amount
of nodes in the fringe. We propose a simple but yet powerful heuristic variant
of A* that cuts less promising nodes if the fringe has more than D nodes.
We call this new tree search algorithm Memory Bounded A* (MBA*). Like
Beam Search, it takes a parameter D. Like SMA*, if D = 1 it corresponds to
a greedy algorithm and corresponds to A* if D = ∞. MBA* outperformed
the other procedures presented before on the challenge instances given the
branching scheme described in Section III.2. The main difference between
MBA* and SMA* is thatMBA* never opens partially a node. Indeed, SMA*
stores partially explored nodes which makes the algorithm more difficult to
implement. MBA* adds all the children of the selected node at once and
then discards it.

Algorithm 20 Memory Bounded A* (MBA*)
1: fringe ← {root}
2: while fringe 6= ∅ ∧ time < time limit do
3: n← extractBest(fringe)
4: fringe ← fringe \ {n}
5: for all v ∈ children(n) do
6: fringe ← fringe ∪ {v}
7: while |fringe| > D do
8: n← extractWorst(fringe)
9: fringe ← fringe \ {n}
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III.3.3 Guide functions
Tree search methods are dependent on well crafted guide functions. In the
literature on tree search, many use lower bounds as guides since the first
found solution is known to be optimal. However, for this problem, the search
space is too big to prove optimality and using a lower bound may not be the
best choice to find good solutions.
Indeed, during the development, we started by using the waste area, which
is a lower bound, as a guide. We noticed that the resulting solutions packed
small items on the first plates and big items on the last plates. These solutions
had small waste area in the beginning but a lot in the last plates which made
the solutions globally bad.
Another issue with using lower bounds is that it may not be relevant to
compare two nodes from different depths of the tree. For example, a solution
with only few items will always be considered more interesting than a solution
containing almost all items.
We designed some “heuristic” guides to overcome these issues and obtained
better solutions. We studied and use the two following guide functions:

• waste percentage: nodes containing big items become more interesting
if they do not generate too much waste with respect of their own size;

• waste percentage/average item area packed: nodes containing big items
are even more appealing.

We also tried several combinations of the above guides. The results were not
promising and we only used those two on separate processors.

III.4 Complete algorithm
In the previous sections, we described the branching scheme and tree search
algorithms. We now explain how we assemble these components together.
Note that we take advantage of the multi-core architecture of the computer
used for evaluating algorithms in the challenge.
First, we distinguish the case where the instance has two chains or less. In
this case, we run the A* algorithm with dynamic programming based on the
pseudo-dominance rule described in Section III.2.5 (we call it DPA*). If an
instance is only composed of one chain, and the instance contains less than
700 items (this information was given on the challenge description), then
the algorithm solves it optimally according to the branching scheme and the
pseudo-dominance rule in less than a second. If the instance is composed of
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two chains, there is at most 3502 = 122, 500 sub-problems and DPA* solves
it optimally in a few seconds.
If there is strictly more than two chains, we do not use dynamic programming
since it would cost too much in memory. Instead, we run 4 threads in parallel,
each one running a restarting MBA* with a given growth factor and guide
function. Restarting means that, initially, the maximum size of the fringe is
small (3 for example), and each time MBA* terminates, it is restarted with a
greater maximal size (multiplied by the growth factor). If the growth factor
is 2, the maximal size doubles at each iteration. We use growth factors 1.33
and 1.5 and the two guide functions described in Section III.3.3.
All the threads share the information of the best solution found. If one finds
a better solution, the others can exploit this information to perform more
cuts and globally perform better together than alone.

III.5 Computational experiments
We now present computational experiments of our algorithm on the challenge
instances. They have been performed on a computer with an Intel Core i7-
4790 CPU @ 3.60 GHz × 8 processor with 32 Go of RAM. This configuration
is similar to the one of the challenge.
The instances are separated into three datasets. Dataset A was published
during the qualification phase. It contains three trivial instances, some in-
stances of moderate size containing between 30 and 130 items and three
larger ones containing about 300 items. Dataset B was published after the
qualification phase and was used for the evaluation during the final phase,
along with dataset X which was unknown until the results were announced.
They both include larger instances containing on average 300 items. Most
instances contain between 10 and 15 chains. Three instances have exactly
two chains and five instances have no precedence constaints.
Since the challenge, a few adjustments have been made (the version presented
in this chapter is the current one). Therefore, the results presented here
slightly differ from the results obtained during the final phase. Compared to
the challenge version, the current version performs better: the total waste
on datasets B and X decreases from 493 600 549 for the challenge version to
469 910 749 for the current one.
Figures III.23, III.24 and III.25 sum up computational experiments. Columns
“Final phase best 180s” and “Final phase best 3600s” contain the values of
the best solutions found by any team during the final phase (note that dataset
A was not used in the final phase). A result annotated with a star indicates
that this solution was found by our algorithm during the final phase of the
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challenge. Column “MBA*/DPA* 3600” contains the solution values found
by the current version of our algorithm in 3600 seconds. Finally, column
“Best known” contains the values of the best solutions up to our knowledge.
They may have been found during the development of the algorithm, when
the execution time is longer than 3600s or by other teams.
In 180 seconds, the algorithm we submitted was ranked first on 17 and second
on 10 out of the 30 instances used for the evaluation. In 3600 seconds, it
was ranked first on 20 and second on 7. The current version finds the best
known solutions on 14 instances of dataset A in less than 3600 seconds. It
also finds the best known solutions on instances with exactly two chains in
less than 180 seconds, showing the effectiveness of DPA*. Finally, even if it
is not indicated in the table, on most of the instances, if the algorithm is run
longer, for example 2 hours, the solutions will still be improved.

III.6 Conclusions and perspectives
We have proposed in this chapter an anytime tree search algorithm called
MBA*. It performs successive iterations and restarts when the search tree is
emptied. During the first iterations, it performs aggressive cuts and behaves
like a greedy algorithm. As iterations go, the algorithm performs less heuris-
tic cuts, enabling it to find better solutions. Possibly, the algorithm will
perform an iteration with no heuristic cut, finding the best solution available
in the branching scheme.
We also provide a framework to design anytime tree search algorithms. The
algorithm design can be split into two parts:

Search tree design: Implicit definition of the search tree. It provides the
root, how to generate children of a given node, cuts, lower bounds and
guides.

Search tree exploration: A generic anytime tree search that explores the
search tree previously defined. Those tree searches are well known in
AI and we used them in the challenge.

This framework allowed us to design separate parts, consequently, helping us
to do quick prototyping. We implemented 5 different branching schemes to
encode the search tree until we found a good compromise in terms of speed
and quality. We also implemented many search algorithms (Beam Search,
Beam Backtrack, A*, MBA*, SMA*) and kept the one giving the best results.
We do not want to draw prematured conclusion, but we tried to understand
the success of the algorithm:
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• For this problem, it seems more difficult to design local moves that
keep the locality property of solutions, compared to more classical Op-
erations Research problems. Therefore, constructive algorithms seem
more suited, or at least more intuitive to develop, than local search al-
gorithms. This assumption should nevertheless be put in perspective,
since the algorithm ranked second in the challenge is based on local
search and achieves very close results.

• When branching, there does not seem to be eliminatory choices. If
a move is good locally, it should not be very bad globally. Even if
the choice is not optimal, the very high number of possible children
makes it possible to find a solution with similar cost anyway. This is
true under the condition that all those children are implemented, i.e.
that the branching scheme allows to reach the maximum number of
configurations (while breaking symmetries). As shown in Section III.2,
we gave a lot of attention to this part.

• The problem has natural guide functions to compare solutions at dif-
ferent depths of the tree. Therefore, MBA* seems more suited than
Beam Search.

• The two parts design makes the code easier to write and to debug. In
the context of an industrial problem with many complex constraints to
satifsy, this may be crucial.

The results of the challenge prove that anytime tree searches can be compet-
itive with local search based methods. We believe that they can be suited for
other Operations Research problems, and particularly industrial ones with
more complex constraints. Indeed, those constraints can weaken the locality
property of solutions whereas they might be easily handled by a tree search
approach. It should be worth experimenting such methods, especially MBA*,
on those problems.
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Algorithm 21 Pseudo-dominance algorithm
procedure dominates(S1, S2)

if n(S1) < n(S2) then . If S1 has strictly less plates,
return true . then it dominates S2.

if i(S1) > i(S2) then . If S1 has strictly more plates,
return false . then it does not dominate S2.

x← xcurr
1 (S1) . xcurr

1 may slightly be corrected.
if z1(S1) = 0 and x 6= W then

if z1(S2) 6= 0 or x 6= xcurr
1 (S2) then

x← x+ wmin

y ← ycurr
2 (S1) . ycurr

2 may slightly be corrected.
if z2(S1) = 0 and y 6= H then

if z2(S2) 6= 0 or y 6= ycurr
2 (S2) then

y ← y + wmin

. Comparison of the fronts.
if ycurr

2 (S2) 6= H and xprev
1 (S1) > xprev

1 (S2) then
return false

if x > xcurr
1 (S2) then

return false
if yprev

2 (S2) < yprev
2 S1 then

if x > xcurr
3 (S2) then

return false
else if yprev

2 (S2) < y then
if xcurr

3 (S1) > xcurr
3 (S2) then

return false
else

if xprev
1 (S1) > xcurr

3 (S2) then
return false

if ycurr
2 (S2) < yprev

2 S1 then
if x > xprev

1 (S2) then
return false

else if ycurr
2 (S2) < y then

if xcurr
3 (S1) > xprev

1 (S2) then
return false
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Conclusion

In Chapter I, we studied a category of scheduling problems which are of
theoretical and practical interest: processing time dependent profit maxi-
mization scheduling problems. We discussed some unusual properties and we
proposed several piecewise-linear models as references. Then we underlined
the complexity hierarchy that exists among those models. We proved NP-
completeness of most general cases based on reductions to the Knapsack
Problem and to Pm | | Cmax. We also proposed Dynamic Programming
algorithms, list algorithms and b-matching formulation based algorithms run-
ning in polynomial time for many special cases.
Still, several other cases remain open; we give here some noticeable examples.
P | LPST | −∑wj(pj) and P | LPST, pmin

j =pmin | −∑wj(pj) seem really
simple and yet, we could not find polynomial algorithms that solve them. 1
| LBPST, pmin=pmin | −∑wj(pj) corresponds to a fractional knapsack with
a fixed setup cost. It seems related to the Cardinality Constrained
Knapsack Problem which Farias Jr and Nemhauser 2003 proved to be NP-
complete. P | LBP, pmax

j =pmax | −∑wj(pj) lies between P | pj=p |
∑
wjUj

and P | pj=p, pmtn | ∑wjUj that were proved to be respectively solvable in
polynomial time and NP-complete (Brucker and Kravchenko 1999). Finally,
1 | LP, rj | −

∑
wj(pj) is also a very simple and yet open problem.

In processing time dependent profit maximization scheduling problems, the
non-linearities in the profit functions avoid linear programming formulations,
and the controllable processing times make it difficult to design reductions
to NP-complete problems. Also, several cases have been proven to be poly-
nomial when the number of parallel machines is fixed (Pm) or when all
deadlines are equal (dj=d), but the algorithms do not generalize to the cases
with an unbounded number of parallel machines (P ) or when deadlines are
distinct.

In Chapter II, we studied a practical star observation scheduling problem.
We continued the work started by Catusse et al. 2016 by integrating all
practical constraints and designing and implementing algorithms more suited
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for industrial contexts (simpler, anytime and more flexible).
We proposed a simple and general Large Neighborhood Search (LNS) scheme
for star observation scheduling problems. The algorithm reduced the resolu-
tion of a specific variant to the resolution of a Single Night Timing Problem
(SNTP) for which algorithms are much easier to develop and adapt. We il-
lustrated this by implementing several algorithms solving SNTP for different
variants of star observation scheduling problems.
Our Large Neighborhood Search algorithm is relevant because it clearly out-
performs both the previous Local Search algorithm on literature instances for
the pure problem, and the currently used Simulated Annealing algorithms
on real instances. Besides, it is simpler and more easily adaptable than both.
Compared to the Branch-and-Price algorithm, it provides solutions within
2% of optimality in less than 2 seconds, while the Branch-and-Price will need
about 10 minutes to find its first solution on real sized instances. However,
even if the Large Neighborhood Search continues improving the solution over
time, the solution found by the Branch-and-Price is almost always the opti-
mal one and the Large Neighborhood Search cannot find it within the same
amount of time. Further research could for example focus on diversification
techniques to improve this aspect.
Theoretically, allowing flexible observation durations necessarily improves
the value of the optimal solution. In practice, on the given instances, LNS
indeed finds better solutions in theses cases. However, the additional gain is
rather moderate.
The algorithm is now implemented in the software used by the astrophysi-
cists, and we hope it will be used in production very soon.

In Chapter III, we described the algorithm we submitted for the final phase
of the ROADEF/EURO challenge 2018. This edition of the challenge was
dedicated to a cutting optimization problem in collaboration with Saint-
Gobain
We proposed an anytime tree search algorithm called MBA*. It performs
successive iterations and restarts when the search tree is emptied. During
the first iterations, it performs aggressive cuts and behaves like a greedy algo-
rithm. As iterations go, the algorithm performs less heuristic cuts, enabling
it to find better solutions. Possibly, the algorithm will perform an iteration
with no heuristic cut, finding the best solution available in the branching
scheme.
The results of the challenge prove that anytime tree searches can be compet-
itive with local search based methods. We believe that they can be suited for
other Operations Research problems, and particularly industrial ones with
more complex constraints. Indeed, those constraints can weaken the locality
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property of solutions whereas they might be easily handled by a tree search
approach. It should be worth experimenting such methods, especially MBA*,
on those problems.
The problem of the challenge is also interesting in itself. It is close to two-
dimensional packing problems from the literature, but it adds several con-
straints that makes it harder to solve. The gap between the solutions re-
turned by our algorithm in 1 hour and the best known solutions (not the
optimal ones!) is more than 7%, which is high for an optimization problem.
The objective is also interesting. Traditionally, in bin packing problems,
the objective is only to minimize the number of bins. Thus, unless the in-
stance is intentionnaly built to avoid it, the lower bound obtained by column
generation usually matches the optimal value and large problems are solved
exactly. The bin packing problem is one of the NP-complete problem with
the smallest input size and therefore can be deeply and almost exhaustively
studied. The bin packing problems with leftovers offers a problem with the
same input, but harder to solve. Some variants of this problem have been
studied (see Cherri et al. 2014 for a review).

As stated in the introduction of the manuscript, the three chapters can be
read independently. However, looking at them together gives some interesting
perspectives.
In Chapter I we studied the complexity of a sub-problem of the real life
application presented in Chapter II. The main conclusion of Chapter I can
be stated as follows: “those problems are hard”. Indeed, even when cases
can be solved in polynomial time, the complexity is often deterrent and not
suited for practical use. That is why, in Chapter II, we did not tackle this
sub-problem directly, as it were before, but rather reduced the problem to
one without the job selection property. And thus, it becomes much easier to
solve.
It is also interesting to compare Chapter II and III as they show two ways of
doing practical Operations Research. In both chapters, the goal was to design
algorithms for a real world problem. However, in Chapter III, the problem
and the instances are well defined and the objective is to develop the best
possible algorithm for them, whereas in Chapter II, the problem is evolving,
changing, and the objective is to design an efficient enough algorithm that can
be easily adapted. But still, the algorithm developed in Chapter III remains
rather simple and easily adaptable, and the one developed in Chapter II has
been proven to be competitive with previous state of the art methods.
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Summary
Large telescopes are few and observing time is a precious resource subject to
a strong pressure from a competitive community. Besides, a growing number
of astronomical projects require surveying a large number of targets during
discontinuous runs spread over few months or years. This thesis is the result
of a collaboration between operations researchers from G-SCOP laboratory
and astrophysicists from IPAG research unit. Its goal was to optimize the
schedule of star observations on telescopes, in particular, on the Very Large
Telescope. The first chapter contains a theoretical study of the complexity of
several variants of processing time dependent profit maximization scheduling
problems. Those problems appear inter alia as sub-problem of the real life
star observation scheduling problem studied in the second chapter, for which
we developed a fast and efficient Large Neighborhood Search algorithm. The
third chapter is not related to the star observation scheduling problem. It
describes the Tree Search based algorithm we developed for the glass cut-
ting problem raised by the company Saint-Gobain for the ROADEF/EURO
challenge 2018.

Résumé
Il existe peu de grands télescopes et le temps d’observation est une ressource
précieuse sujette à une forte pression de la part d’une communauté concur-
rentielle. En outre, un nombre croissant de projets astronomiques nécessitent
l’observation d’un grand nombre d’objets célestes pendant des runs discon-
tinus répartis sur plusieurs mois ou années. Cette thèse est le fruit d’une
collaboration entre des chercheurs en recherche opérationnelle du laboratoire
G-SCOP et des astrophysiciens de l’unité de recherche IPAG. Son but était
d’optimiser l’ordonnancement d’observations d’étoiles sur les télescopes, en
particulier, sur le Très Grand Télescope. Le premier chapitre contient une
étude théorique de la complexité de plusieurs variantes de problèmes d’or-
donnancement de maximisation de profits dépendants du temps d’exécution.
Ces problèmes apparaissent entre autres comme sous-problèmes du problème
réel d’ordonnancement d’observations d’étoiles étudié dans le deuxième cha-
pitre, pour lequel nous avons développé une recherche locale à voisinage large
rapide et efficace. Le troisième chapitre ne concerne pas le problème d’ordon-
nancement d’observations d’étoiles. Il décrit l’algorithme de recherche arbo-
rescente que nous avons développé pour le problème de découpe de verre posé
par l’entreprise Saint-Gobain pour le challenge ROADEF/EURO 2018.
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