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Abstract / Résumé

Abstract

High-Performance Computing (HPC) platforms are growing in size and complexity.

In an adversarial manner, the power demand of such platforms has rapidly grown as

well, and current top supercomputers require power at the scale of an entire power

plant. In an effort to make a more responsible usage of such power, researchers are

devoting a great amount of effort to devise algorithms and techniques to improve

different aspects of performance such as scheduling and resource management. But

HPC platform maintainers are still reluctant to deploy state of the art scheduling

methods and most of them revert to simple heuristics such as EASY Backfilling, which

is based in a naive First-Come-First-Served (FCFS) ordering. Newer methods are

often complex and obscure, and the simplicity and transparency of EASY Backfilling

are too important to sacrifice.

At a first moment we explored Machine Learning (ML) techniques to learn on-line

parallel job scheduling heuristics. Using simulations and a workload generation

model, we could determine the characteristics of HPC applications (jobs) that lead

to a reduction in the mean slowdown of jobs in an execution queue. Modeling these

characteristics using a nonlinear function and applying this function to select the next

job to execute in a queue improved the mean task slowdown in synthetic workloads.

When applied to real workload traces from highly different machines, these functions

still resulted in performance improvements, attesting the generalization capability

of the obtained heuristics.
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At a second moment, using simulations and workload traces from several real HPC

platforms, we performed a thorough analysis of the cumulative results of four simple

scheduling heuristics (including EASY Backfilling). We also evaluated effects such

as the relationship between job size and slowdown, the distribution of slowdown

values, and the number of backfilled jobs, for each HPC platform and scheduling

policy. We show experimental evidence that one can only gain by replacing EASY

Backfilling with the Smallest estimated Area First (SAF) policy with backfilling, as it

offers improvements in performance by up to 80% in the slowdown metric while

maintaining the simplicity and the transparency of EASY. SAF reduces the number

of jobs with large slowdowns and the inclusion of a simple thresholding mechanism

guarantees that no starvation occurs.

Overall we achieved the following remarks: (i) simple and efficient scheduling

heuristics in the form of a nonlinear function of the jobs characteristics can be learned

automatically, though whether the reasoning behind their scheduling decisions is

clear or not can be up to argument. (ii) The area (processing time estimate multiplied

by the number of processors) of the jobs seems to be a quite important property for

good parallel job scheduling heuristics, since many of the heuristics (notably SAF)

that achieved good performances have the job’s area as input. (iii) The backfilling

mechanism seems to always help in increasing performance, though it does not

outperform a better sorting of the jobs waiting queue, such as the sorting performed

by SAF.

Résumé

Les plate-formes de Calcul Haute Performance (de l’Anglais High Performance Com-

puting, HPC) augmentent en taille et en complexité. De manière contradictoire, la

demande en énergie de telles plates-formes a également rapidement augmenté. Les

supercalculateurs actuels ont besoin d’une puissance équivalente à celle de toute une

centrale d’énergie. Dans le but de faire un usage plus responsable de ce puissance de

calcul, les chercheurs consacrent beaucoup d’efforts à la conception d’algorithmes et

de techniques permettant d’améliorer différents aspects de performance, tels que
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l’ordonnancement et la gestion des ressources. Cependant, les responsables des

plate-formes HPC hésitent encore à déployer des méthodes d’ordonnancement à

la fine pointe de la technologie et la plupart d’entre eux recourent à des méthodes

heuristiques simples, telles que l’EASY Backfilling, qui repose sur un tri naïf premier

arrivé, premier servi (de l’Anglais First-Come-First-Served, FCFS). Les nouvelles mé-

thodes sont souvent complexes et obscures, et la simplicité et la transparence de

l’EASY Backfilling sont trop importantes pour être sacrifiées.

Dans un premier temps, nous explorons les techniques d’Apprentissage Automatique

(de l’Anglais Machine Learning, ML) pour apprendre des méthodes heuristiques

d’ordonnancement online de tâches parallèles. À l’aide de simulations et d’un modèle

de génération de charge de travail, nous avons pu déterminer les caractéristiques

des applications HPC (tâches) qui contribuent pour une réduction du ralentissement

moyen des tâches dans une file d’attente d’exécution. La modélisation de ces ca-

ractéristiques par une fonction non linéaire et l’application de cette fonction pour

sélectionner la prochaine tâche à exécuter dans une file d’attente ont amélioré le

ralentissement moyen des tâches dans les charges de travail synthétiques. Appli-

quées à des traces de charges de travail réelles de plate-formes HPC très différents,

ces fonctions ont néanmoins permis d’améliorer les performances, attestant de la

capacité de généralisation des heuristiques obtenues.

Dans un deuxième temps, à l’aide de simulations et de traces de charge de travail de

plusieurs plates-formes HPC réelles, nous avons effectué une analyse approfondie

des résultats cumulés de quatre heuristiques simples d’ordonnancement (y compris

l’EASY Backfilling). Nous avons également évalué des autres effets tels que la relation

entre la taille des tâches et leur ralentissement, la distribution des valeurs de ralentis-

sement et le nombre de tâches mises en calcul par backfilling, par chaque plate-forme

HPC et politique d’ordonnancement. Nous démontrons de manière expérimentale

que l’on ne peut que gagner en remplaçant l’EASY Backfilling par la stratégie SAF

(de l’Anglais Smallest estimated Area First) aidée par backfilling, car elle offre une

amélioration des performances allant jusqu’à 80% dans la métrique de ralentisse-

ment, tout en maintenant la simplicité et la transparence d’EASY Backfilling. La SAF
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réduit le nombre de tâches à hautes valeurs de ralentissement et, par l’inclusion d’un

mécanisme de seuillage simple, nous garantissons l’absence d’inanition de tâches.

Dans l’ensemble, nous avons obtenu les remarques suivantes : (i) des heuristiques

simples et efficaces sous la forme d’une fonction non linéaire des caractéristiques des

tâches peuvent être apprises automatiquement, bien qu’il soit subjectif de conclure

si le raisonnement qui sous-tend les décisions d’ordonnancement de ces heuristiques

est clair ou non. (ii) La zone (l’estimation du temps d’exécution multipliée par le

nombre de processeurs) des tâches semble être une propriété assez importante pour

une bonne heuristique d’ordonnancement des tâches parallèles, car un bon nombre

d’heuristiques (notamment la SAF) qui ont obtenu de bonnes performances ont la

zone de la tâche comme entrée (iii) Le mécanisme de backfilling semble toujours

contribuer à améliorer les performances, bien que cela ne remédie pas à un meilleur

tri de la file d’attente de tâches, tel que celui effectué par SAF.
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1Introduction

High Performance Computing (HPC) is becoming more important and crucial for

many research and industrial applications. The ever increasing computational power

is enabling advancements that would not be feasible without the advent of such

computing power. A few examples are earthquake simulation with low frequency

rate and meters of resolution [36], simulation of quantum phenomena that cannot

be fully resolved experimentally such as neutron lifetime [4], and advanced Artificial

Intelligence (AI) models with superhuman performance in complex games such as

Chess and Go [69].

With all of these advances allowed by HPC, the pursuit of more computing power

grows steadily. The Top500 [76] site maintains a ranking of the most powerful

supercomputers and this ranking is updated twice a year. At the time of writing

this thesis, the most recent list available (November 2018) has at its first position a

supercomputer capable of performing slightly less than 150 petaFLOPS (i.e. 150 ·1015

floating point operations (Flop) per second). Ten years before (November 2008),

the Top500 list featured at its first position a supercomputer with only 1 petaFLOPS

of performance, meaning an astounding growth of computing performance by more

than 100 times over ten years. This growth is not only due to the improvements in

the processor manufacturing process and transistor density, but it is as well due to

the utilization of Graphics Processing Units (GPUs) [62] as processing accelerator

devices – thus bringing heterogeneity as a standard in HPC supercomputers – and

advancements in storage and interconnection technologies. Indeed, currently there

is an active effort to achieve the exaFLOPS (1018 Flop/s) scale – the so called exascale

– in the near future.

The increase in power consumption of supercomputers, however, has steadily in-

creased as well, going from 2.4MW (2008) to 9.7MW (2018) [76] for the aforemen-
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tioned top 1 supercomputers. To clarify the meaning of these numbers, 10 MW is

arguably enough to power a small city.

From this perspective, we can argue that using supercomputers with the current

technology is a matter of great responsibility: any inefficient usage of an HPC

platform that consumes tens of megawatts of power can be considered a concerning

matter. Increasing usage efficiency of current HPC platforms can be achieved in

many ways, in which one of them is in the resource management aspect, that concerns

in finding “good” answers for the question of when and where the applications will

be processed in the platform.

This thesis goes towards advancing in this resource management aspect. Informally, a

supercomputer infrastructure is usually a shared system: many users (research teams,

companies, etc.) attempt to use the platform by running their applications, which

are also mentioned in the literature as jobs. Jobs can be any computer program,

though they are often programs that require a high computational power, such

as the simulations and AI algorithms mentioned at the beginning of this chapter.

Additionally, often many users try to use the platform in a concurrent manner – they

submit their jobs for execution at the same time – and they can submit jobs at any

unknown time. Such jobs also have processing times unknown in advance, further

increasing the uncertainties.

As aforementioned, we can use the HPC platform more efficiently by performing

optimal decisions as to when and where these jobs will be executed in the platform.

This decision process is often referred as the scheduling of the jobs. Although it is easy

to present informally, scheduling is a vast research topic (see Chapter 2), with many

problems falling into the NP-Hard [64, 10] class of optimization problems, that hinds

the conception of efficient algorithms, as well as the understanding of the problems’

characteristics. In this regard, this thesis tackles a typical scheduling problem present

in HPC platforms – the parallel job scheduling problem (see Section 2.1.2) – which

is typically solved by many scheduler systems [61, 80] with algorithms inspired

by a simple though naive First-Come-First-Served (FCFS) scheduling policy and a

backfilling [60] mechanism, also referred to as EASY Backfilling (see Section 2.1.2.3).
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Given the complexities and uncertainties involved in parallel job scheduling, there is

a growing effort [40, 39, 52] to propose Machine Learning (ML) methods to improve

scheduling performance.

1.1 Contributions

In this thesis we explore both using ML to perform a better resource management of

HPC platforms, as well as better understanding the characteristics of some parallel

job scheduling algorithms. More specifically, this thesis proposes the following broad

sets of contributions:

1. We exploit the rich information present in HPC workload logs to drive simula-

tions, whose objective is to generate data in regards to the scheduling behavior

under many different scenarios. We then feed this generated data into Machine

Learning models in order to learn potential scheduling heuristics – represented

by nonlinear functions of the jobs’ characteristics – present in the generated

data;

2. We show that the learned heuristics can bring good scheduling performances

in all evaluated scenarios, using real workload traces from highly different

HPC platform configurations, when compared to classical and state-of-the-art

hand-engineered scheduling policies;

3. We performed a careful experimental campaign to provide insight on possible

expectations and performance gains if one replaces EASY Backfilling as the

default on-line parallel job scheduling algorithm. Through simulations, we

compared EASY Backfilling with a set of scheduling algorithms that have the

same simplicity and job no-starvation guarantees as EASY Backfilling;

4. We conducted a holistic experimental analysis of the scheduling performances

and show that, in many highly different HPC platform configurations, signifi-

cant performance gains when compared to EASY Backfilling can be achieved,

under many aspects and performance objectives, while maintaining the same

simplicity and performance guarantees of EASY Backfilling.
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1.2 Content

The remainder of this thesis is organized as follows: In Chapter 2 we provide

background knowledge, notably about scheduling and machine learning, to introduce

the reader to the contributions of the thesis, as well as we present the closely

related works. Chapter 3 we present the aforementioned procedure of learning

scheduling heuristics, with its respective experimental results and discussions. In

Chapter 4 we present the aforementioned experimental campaign to provide insight

on possible expectations and performance gains if one replaces EASY Backfilling,

with its respective experimental results and discussions. At last but not least, in

Chapter 5 we present a general discussion about the achieved contributions of this

thesis, with the closing remarks and future research directions.
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2Background and Related Work

In this chapter we provide background knowledge to the reader to understand

the work performed at the remaining chapters of this thesis, notably Chapters 3

and 4. This chapter contains background knowledge about scheduling problems and

algorithms, as well as a brief introduction to machine learning, with emphasis on

regression problems. Furthermore, to increase the presentation flow and quality

of this chapter, many recent and related works are also presented in a intertwined

manner along the text of this chapter.

2.1 Scheduling

Scheduling is a decision-making process that deals with the assignment of pieces of

work (that need to be processed, generically referred to as jobs) to resources that

will process the work at a given time period, and the goal of such decision-making

process is to optimize an objective, in which can be constituted by one or multiple

criteria.

Scheduling naturally relates to the organization of jobs and resources and such

organization is clearly present in the majority of manufacturing systems, information

processing, and even daily life environments, with jobs and resources taking different

forms. For instance, the resources may be manufacturing machines, runways at

an airport, processing units in a computer environment, crews at a construction

site, and so on. In its turn, the jobs may be operations in a manufacturing process,

take-offs and landings at an airport, computer programs to be executed, stages in a

construction project, and so on.

The jobs may have several properties, different priorities, starting times and possible

due dates. The objectives may also be different according to each scenario. One

may want to minimize the completion time of the last job, and other may want to
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minimize the number of delayed jobs, that is, the jobs finished after their respective

due dates. We illustrate the importance of scheduling in the following, simple daily

life example: supermarket checkout.

Supermarket Checkout: Consider a supermarket that sells a variety of items to

customers. Customers select one or more items that they want to buy and, after

they are done selecting their items, they arrive at the supermarket’s checkout section

with their shopping items to be paid. The checkout section can be constituted by

one or more cashiers. The cashiers may service customers at different speeds (an

experienced cashier may work faster than a beginner one), and can service only one

customer at a given time. Once a cashier started servicing a customer, the checkout

process can not be suspended, it must go until its completion. The customers can

arrive in the checkout section uninterruptedly and at an unknown rate (when the

supermarket is open) or all the customers to be serviced at the checkout section are

known in advance (when the supermarket closes for new customers at the end of a

working day, the customers will be only the ones already in the supermarket). The

scheduling problem arises as the customer-cashier assignment in order to minimize

some objective. The objective may be for instance the minimization of the average

customers’ waiting time at the checkout section (customers will overall wait as little

time as possible), the maximum waiting time (no one will wait for too long) or

even, when the supermarket closes, the objective may be to guarantee that the last

customer will be checked out as quickly as possible.

One may observe that many distinct scheduling problems may be constructed con-

sidering a single scenario. Indeed, there is formal notation of scheduling problems

that was initially conceived by Graham et al. [43], whose parts that are relevant

to this thesis are presented in the next section. Besides Graham’s original work,

the reader can consult the works of Pinedo [64] or Brucker [10] for a full notation

description.
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2.1.1 Summary of Scheduling Framework and Notation

In most of scheduling problems the number of jobs and resources are assumed to

be finite. The number of jobs is usually denoted by n and the number of resources

(often referred to as machines) by m. The subscript j usually refers to a job, while

the subscript i refers to a machine.

A scheduling problem can be described by a triplet α | β | γ. The α field describes

the machine environment, the β field details the processing characteristics and

constraints, and the γ field describes the objective to be minimized.

The α field usually has only a single entry. Possible machine environments entries

for α can be the following:

• Single machine (1). This case the simplest among all possible machine environ-

ments and it is a special case of all other more complex machine environments;

• Identical machines in parallel (Pm). This is the case where there is m machines

in parallel that can be assigned to jobs. In this case, the processing speeds vij

are the same for all machines i, 1 ≤ i ≤ m and jobs j, 1 ≤ j ≤ n;

• Parallel machines with different speeds (Qm). In this case there is also m

machines in parallel that can be assigned to jobs. However, the processing

speed depends on the machine i. Therefore, vij can be different for different

machines i, 1 ≤ i ≤ m, though for given a machine i, vij is equal for all jobs j,

j, 1 ≤ j ≤ n;

• Unrelated machines in parallel (Rm) In this case there is also m machines in

parallel that can be assigned to jobs. However the processing speed depends

on both the machines and jobs. Therefore, vij can be different for all machines

i, 1 ≤ i ≤ m and jobs j, 1 ≤ j ≤ n.

The β field refers to specific characteristics and restrictions of a scheduling problem.

It may contain many entries and some possible entries are the following:
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• Release dates (rj). This symbol marks that a job j cannot start its processing

time before its release date rj . If this symbol is not present, then the job j can

start its processing at any time;

• Parallel jobs (sizej). This symbol indicates that the jobs may require more than

one machine at the same time (in parallel) in order to be processed. In this

case, more than one machine may be simultaneously allocated for j;

• Preemptions (prmp). This symbol implies that a job j, once started its pro-

cessing, does not need to be processed until its completion. In this setting,

the processing of j can be interrupted (preempted) at any point in time, and

another job can be assigned to the machine that was processing j. The amount

of processing done is not lost when j is preempted. When j is put back on

processing, it will only require the remaining processing time;

• Precedence constraints (prec). This symbol refers to the scenario that, in order

to start the processing of a job j, one or more jobs must be previously executed

as a requirement to start the execution of j.

The γ field refers to the objective function to be minimized in a scheduling problem

and it can have one or more entries. The objective is often a function of the

completion time of the jobs, denoted by Cj for a job j. For the sake of simplicity, the

objective functions presented below are defined for scheduling problems where no

preemptions are allowed.

Some of the classic objective functions are the makespan (Cmax), which is defined

as max(C1, ..., Cn), and it relates to the completion time of the last job that leaves

the system, and the sum of the completion time, defined as
∑n
j=1Cj , which relates

to the completion time of all jobs. A minimum makespan indicates that the last job

leaves the system as quickly as possible, whereas a minimum sum of the completion

time indicates that all jobs leave the system as quickly as possible. In the literature,

the makespan is well known by its analytical tractability. Many scheduling problems

that aim to minimize the makespan have optimal algorithms [10] that is not just a

brute force of all possible solutions.
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The makespan is specially useful when the whole set of jobs and the number of jobs

n to be scheduled are known in advance, this setting is referred in the literature

as static or offline. While many practical problems fall in this offline category, the

scheduling problem studied by this thesis (see Section 2.1.2) falls in the dynamic or

online category, where the whole set of jobs and the number of jobs n are unknown

in advance by the scheduler. In an online scenario, data about a job j is only known

when the job is released. Data associated with a job j are often the following:

• The processing time pij is the time that job j takes to be processed at machine

i. The subscript i is omitted if the processing time of j does not depend on

the machine i. In theoretical cases pij is considered to be known in advance,

whereas in most practical cases pij is either uncertain or unknown in advance;

• The release date rj , also referred to as the ready date, is the time that job j

arrives in the system. In other words, rj is the earliest time at which job j can

start its processing;

• The number of machines qj required to process j is often associated in cases

where a job j can use multiple machines at the same time in its processing. qj

is specially useful to characterize parallel jobs;

• The processing time estimate p̃ij is an estimation on the time that job j takes

to process at machine i. The subscript i is omitted if the estimation does not

depend on machine i. p̃ij if used to characterize jobs in cases where pij is not

known in advance, and in some practical studies (see Section 2.1.2) p̃ij is also

considered as an upper bound for pij .

It is not straightforward to set makespan as an objective function in an online

scenario, as it is hard to define a last job in a system where the whole set of jobs

to be schedule is unknown. In this case, the efficiency of an online scheduling

algorithm is evaluated in theoretical studies by its competitive ratio in regards to an

underlying objective function. An online scheduling algorithm is ρ-competitive if for

any problem instance, the objective value of the resulting schedule created by the

online algorithm is at most ρ times larger than the optimal objective value in the

9



case where the schedule had been created in an offline manner, with all data known

beforehand [64].

Moving on more elaborated objective functions, many online scheduling problems

aim to minimize objective functions related to the time that the jobs spent in

the system. The basic component of these objective functions is the waiting time

(Equation 2.1), where sj is the time that a job j started its processing.

wj = sj − rj (2.1)

With only taking the waiting time into consideration, we can devise two objective

functions, the average waiting time and maximum waiting time (Equations 2.2

and 2.3, respectively). The set of jobs J is often set as the set of jobs that finished

processing at a certain time period. Typical time periods are in order of days, weeks

or months. It is important to note that the set of jobs J is only a subset of the whole

set of jobs to be scheduled, which remains unknown in an online scenario. This

approach is an alternative to the competitive ratio to evaluate online scheduling

algorithms.

AVGwait = 1
|J |

∑
j∈J

wj (2.2)

MAXwait = max (w1, ..., w|J |) (2.3)

Naturally, the waiting time itself is oblivious to the amount of processing time that

the jobs require. Going back to the supermarket checkout example, while it is

interesting to minimize the average time that the customers wait to be serviced by a

cashier, one may argue that – assuming that the cashier service time is proportional

to the number of items in a customer’s shopping basket – customers with a shopping

basket with few items should wait less than customers with a shopping basket with
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plenty of items. Therefore, an equally important objective function would be one

that accounts an important factor: the processing time.

In this regard, two objective criteria are often considered in online scheduling

problems: the flow time (Equation 2.4, also referred as turnaround time), which

derives the average flow time (Equation 2.5) and maximum flow time (Equation 2.6)

objective functions, and the slowdown (Equation 2.7, also referred as stretch),

which derives the average slowdown (Equation 2.8) and maximum slowdown

(Equation 2.9) objective functions.

Fj = wj + pj (2.4)

AVGF = 1
|J |

∑
j∈J

Fj (2.5)

MAXF = max (F1, ..., F|J |) (2.6)

sldj = wj + pj
pj

(2.7)

AVGsld = 1
|J |

∑
j∈J

sldj (2.8)

MAXsld = max (sld1, ..., sld|J |) (2.9)

The flow time measures the total amount of time that a job spends on the system. In

our supermarket checkout example, the flow time of a customer is the time that such

customer waited at the checkout section to be serviced, plus the checkout service

time. Minimizing the flow time means that the jobs will stay in the system as short

as possible.
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The slowdown, being the ratio between the flow time and the processing time, gives

the idea that the waiting time of a job should be proportional to its processing time.

A large job could “afford” to wait more and vice versa. For instance, a slowdown of

3 means that a job waited three times its processing time. However, it is noteworthy

that the slowdown can be sensible for smaller jobs. Increasing the slowdown of a

small job can be significantly easier than a larger job. Indeed, the slowdown can

reach very high values for very small jobs. In this regard, many people opt to use

the slowdown in its bounded version (Equation 3.1, see Section 3.2) by giving a

lower bound on the processing time of the jobs (for instance, 10 seconds). Jobs with

processing time lower than the bound will have their slowdown calculated taking

into account the lower bound rather than their actual processing time.

As it can be observed, most of the objective functions have their average and

maximum variants. Naturally, the average variants aim for a minimization of the

objective function under an overall view in regards to the jobs (the average over

many jobs), whereas the maximum variants aim at minimizing the objective function

under a specific view in regards to the jobs (only a single job, the one that achieved

the highest objective value). It is debatable which variant puts stricter constraints

into the scheduling, although some argue that the maximum variants are stricter.

A further discussion about the average and maximum variants of some of the

aforementioned objective functions is presented at Section 4.3.3.

Many other objective functions can be envisioned, which can be centered or not at

the jobs. One may conceive objective functions that are centered at the platform,

such as overall utilization of the resources, or centered at the users, such as overall

user “satisfaction”. However, drawbacks will always exist for both approaches. For

the former, a low overall resource utilization may not be due to the scheduler’s

performance and rather due to the amount of workload available [34]. For the latter,

there may be user-user and user-platform feedback effects [26] that may have a

bigger impact than the scheduler performance, and such feedback effects are hard

to understand and/or reproduce. A further discussion on these feedback effects is

done in Section 4.1.1.
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One interesting aspect of the scheduling problems is that changing and/or adding

entries into any of the α, β or γ fields may drastically change the problem’s com-

plexity, going from a problem with known polynomial-time algorithms to solve it, to

a NP-Hard [38] problem, which polynomial-time algorithms to solve it are not yet

known.

Indeed, there is a considerable amount of effort to establish a complexity hierarchy

of scheduling problems, which attempts to determine an order of the α, β and γ

entries that make the resulting scheduling problem easier or harder to be solved.

Further dissertating about this hierarchy and other scheduling problems is beyond

the scope of this thesis. The reader can consult Pinedo [64] or Brucker [10] for a

more comprehensive explanation in this regard.

In the next section we are going to present with more detail a specific class scheduling

problems, the online parallel job scheduling problems.

2.1.2 Online Parallel Job Scheduling Problems

With the increasing development of parallel algorithms and architectures, it is quite

common that HPC applications may require multiple processing units in order to

be processed. As a result of this and many other factors, today most of the HPC

platforms are constituted by large-scale parallel machines, often with heterogeneous

processing units. Additionally, often these parallel machines are a shared system, in

the sense that multiple applications (the jobs) compete for an exclusive usage of a

partition of the machine, and these applications are submitted at any point in time –

and often unknown in advance – by many HPC platform users.

At this light we can devise some of the characteristics of online parallel job scheduling

problems:

• As its name already suggests, online parallel job scheduling problems involve

parallel jobs and machines. In regards to the former, there exist many modern

HPC applications that use parallelism, specially after the advent of paralleliza-

tion standards such as MPI [33] and OpenMP [17]. Therefore, parallel jobs
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(sizej entry in the β field) are always taken into account. In regards to the

latter, many machine configurations can be considered (notably the α entry of

the problem). For a homogeneous machine, which is the case for machines con-

stituted by a set of interconnected identical CPUs, it is considered the Pm entry.

For heterogeneous machines, which are machines constituted by non-identical

CPUs, the Qm entry is considered. At last, with the advent of accelerator

devices such as GPUs [62], MICs [20] and FPGAs [23] – jobs may choose

to be processed on either a CPU or an accelerator device (if the respective

binary executable is available, which may also be different for each accelerator

device). This therefore raises the possible consideration of unrelated machines

(Rm), since the speed of processing the job depends on both processing unit

and job;

• In the context of modern HPC platforms, parallel job scheduling problems are

inherently online, since it is often not known when the jobs will be submitted

and, since the jobs can arrive at any point in time, the rj entry of the β field is

also considered;

• Job preemptions (the prmp entry in the β field) are often not allowed, since yet

many HPC applications does not support preemption. However, preemption

may be allowed in a Cloud Computing or Big Data scenario, where preemption

support is frequently seen as a requirement for their applications;

• Typically jobs are seen as independent from each other, and hence with no

precedence constraints (prec entry in the β field). However, in the case where

applications are constituted by job workflows [81, 16], precedence constraints

may be accounted;

• The objective function of the γ field can be either metrics centered on the jobs,

such as waiting time, flow time and slowdown (see Section 2.1.1) or metrics

centered on the users, such as fair share of resources or user “satisfaction” (see

Section 4.1.1).
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There is an additional characteristic in regards to the jobs, in which can be rigid

or moldable [30, 14]: a job j is considered to be rigid if no less than qj resources

must be reserved for j in other to be processed. In the converse case, where j can

be processed with less than qj resources, j is considered moldable. Jobs are often

considered to be rigid in a standard HPC scenario, though they can be considered

moldable in cases such as in a cloud computing scenario, where job moldability is

an important requirement.

A final schedule generated by a scheduling algorithm can be visualized by a graph

called Gantt chart. Figure 2.1 illustrates an example, with a workload consisting

of 250 jobs scheduled in a HPC platform with 128 processors. The processors are

represented by their ids in the y axis (from 0 to 127) and the time is represented at

the x axis. A job j being processed in the platform is represented by qj rectangles of

unit height (y axis), with each having pj of width (x axis), and all starting in the x

axis at sj . The rectangles that represent a job j may or may not be adjacent to each

other and, in the former case, the adjacent rectangles are visualized as “boxes” in

the xy plane.

Gantt charts are a powerful tool to visualize schedules. For instance we can easily

observe and have an idea about the overall resource utilization of the HPC platform

by just looking on how many “empty spaces” exist in a Gantt chart. However, it only

represents a static view of the final schedule, other factors such as number of jobs in

the waiting queue and workload submission rate (i.e. number of job arrivals at a

certain time period) are not well represented by a Gantt chart.

Gantt charts also highlight some assumptions that are made in parallel job scheduling

problems. For instance factors such as the jobs’ level of parallelism, interconnection

network topology and possible interconnection network contentions caused by the

jobs, which can impact the jobs’ processing time [6] are sometimes not taken into

account in the scheduling decisions. The jobs are rather seen as “black boxes”

that exclusively use qj processors during pj units of time. Although this context

obliviousness in regards to the jobs is the default assumption in many scheduling
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Figure 2.1 Gantt chart of a typical HPC workload. Jobs executed by processors (y-axis) are depicted by rectangles
along the time line (x-axis). This chart represents the execution of 250 jobs on a platform with
128 processors. Figure obtained from [8] with permission from the original author.
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studies (including the one in this thesis) there are some initiatives that try to bring

context awareness to scheduling [8, 37].

Parallel job scheduling problems are largely studied under the view of a more

general and closely related problem called multiple-strip packing problem [2] in

which, informally, aims to find a packing configuration of rectangles (jobs) into a

set of strips (set of processors) in order to minimize the maximum height of the

rectangles’ packing, and rectangles rotations are not allowed. It is known that the

single strip case is NP-hard [2] and, thus, many approximation algorithms – where

the performance is worse than the optimal, though guaranteed to be within a certain

distance from the optimal – and performance bounds were proposed [9, 79, 44, 82,

77].

A noticeable amount of research is employed into offline parallel job scheduling

problems with objectives such as makespan and total completion time, all of them

as well focused on approximation algorithms [1, 46, 45], since even simple offline

parallel job scheduling problems such as Pm | sizej | Cmax and P2 | rj , sizej |

Cmax are NP-Hard [50, 19].

Into the online, non-preemptive scenario, and with complex objective functions

such as the ones involving slowdown, conceiving theoretically efficient scheduling

algorithms is being a challenging endeavor, mainly due to the strong theoretical

performance bounds [48, 3] found even for simple, single machine problems. Nev-

ertheless, fortunately there are still theoretical initiatives [51, 22, 57] that work in

these parallel job scheduling problems.

In the practical scenario, the majority of Resources and Jobs Management Systems

(RJMS, see Section 2.1.2.2) employ list scheduling based algorithms, which are

discussed in the next section.

2.1.2.1 List Scheduling Algorithms

List scheduling algorithms rely on a very simple idea, which consists on evaluating

all jobs in a waiting queue according to a criterion, and the job that is selected
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to be processed is the job that achieved the best value according to the criterion

used. More specifically, a list scheduling algorithm sorts – in increasing or decreasing

order according to a scheduling policy f(j) – the jobs in its waiting queue, and this

sorting is performed when scheduling decisions are needed, which are typically in

two distinct events: (i) when a job arrives in the queue or (ii) when a resource

(set of processors) is released and becomes available. A job j receives the highest

priority to be processed if j is the first in the sorted waiting queue. When a job j is

selected to be processed and if the requested number of processors qj is lower than

the total number of processors available, then qj processors are reserved for this job

and they become unavailable. These processors will become available again only

when pj units of time have passed since the start of the processing of j. In some list

scheduling configurations (specially in Backfilling scheduling, see Section 2.1.2.3),

if the actual processing time pj is larger than its estimate p̃j , j is killed, that is, its

execution is terminated and all the processing performed for j is lost.

If qj is higher than the number of processors available, then the scheduler waits

either events (i) or (ii) to perform another scheduling decision, since it cannot

immediately dispatch j for processing. Instead of waiting, however, many list based

schedulers perform a backfilling mechanism, in an attempt to use the idle available

processors without delaying the processing of the jobs in the queue. We further

elaborate this point at the end of this section.

A key component of a list scheduling algorithm is the scheduling policy f(j), which

is the component that encapsulates the envisioned scheduling criterion. Usually a

scheduling policy f(j) is a function with the characteristics of a job j as input, and a

numeric value as output, which represents the priority of j. Following this definition,

there is naturally a very large number of possible scheduling policies.

Arguably the most intuitive policies are the ones that take only one characteristic of

the jobs into account, notably f(j) = rj , f(j) = p̃j , and f(j) = qj . A waiting queue

sorted in increasing order by these functions yields the First-Come-First-Served

(FCFS), Shortest Estimated Processing Time First (SPF) and Shortest Processing

Requirement First (SQF) scheduling policies, respectively. Conversely, a waiting
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queue sorted in decreasing order by these functions yields the Last-Come-First-

Served (LCFS), Largest Estimated Processing Time First (LPF) and Largest Processing

Requirement First (LQF) scheduling policies, respectively. Although their scheduling

performances vary (see Chapters 3 and 4), FCFS is by far the most chosen policy by

practitioners and, specifically for parallel job scheduling problems, the “last/largest”

variants consistently perform worse than the “first/shortest” variants [39].

Other quite intuitive policies are the ones that take the two main dimensions of

parallel jobs (p̃j , and qj) into account in a straightforward manner, notably f(j) =

p̃j ·qj , which yields the Shortest Estimated Area First (SAF) and the Largest Estimated

Area First (LAF) scheduling policies, for a waiting queue sorted in increasing or

decreasing order, respectively. These policies naturally relate to how parallel jobs are

represented in a Gantt chart. Jobs are sorted according to the “geometry” or “area”

of their rectangles in a Gantt chart. In Chapter 4 we investigate one of these policies

(SAF) and we show experimental evidence that this policy is an efficient scheduling

policy.

Going on more complex scheduling policies, there also exist hand-engineered policies

such as the ones proposed by Tang et al. [75] that encapsulate some complex

scheduling intuitions and, expectedly, the more complex these policies are, the

less simple and transparent these policies become. In Chapter 3 we seek ways

to automatically learn scheduling policies using data regarding to the platform

and workload characteristics, while maintaining a certain level of simplicity and

transparency.

In the above description, list scheduling algorithms are described in a simplistic

view. As mentioned above, modern scheduler systems (see Section 2.1.2.2) employ

a variant of the previously mentioned list scheduling algorithm, whose difference

stands in the case where a job j is selected to be processed, though there are not

enough available processors to process j. In this case, an aggressive or conservative

backfilling subroutine [60] is often applied. Informally, a backfilling subroutine

estimates at which time there will be enough resources to process j. Next, the

scheduler looks for jobs jb in the waiting queue – following the order of jobs already

19



established by the scheduling policy f(j) – for which there are enough processing

resources and that do not delay the execution of either only j (the aggressive case)

or all jobs with higher priority than jb (the conservative case). If jb meets these

aforementioned conditions, then jb “jumps ahead” and is scheduled for processing.

The general idea of backfilling techniques is to “fill the empty spaces” in a schedule

visualized by a Gantt chart, thus increasing the overall resource utilization of the HPC

platform, while also maintaining the reasoning behind the underlying scheduling

policy. Indeed, backfilling algorithms have shown to be effective at this task, to the

point that many recent works in list scheduling algorithms (including the ones in

this thesis) employ backfilling in some way. More details of backfilling algorithms

and some of the aforementioned recent works are presented in Section 2.1.2.3.

Once a job j receives the highest priority and it is scheduled for processing, the

resource allocation for j can be performed in many ways. Arguably the simplest

approach is to allocate any partition of qj available processors, thus not assuming

any contiguity constraints. However, choosing any partition may not be appropri-

ate for all scenarios, specially in scenarios where communication and contiguity

affects the jobs’ performance. In this thesis we are focused on the job prioritization

part of list scheduling algorithms, assuming a resource allocation policy with no

resource contiguity constraints. The reader can consult Lucarelli et al. [56] for a

comprehensive study on resource allocation contiguity.

2.1.2.2 Resources and Jobs Management Systems

It is a common practice that HPC platform administrators deploy into their platforms

a system software called Resources and Jobs Management System (RJMS). As its

name suggests, the RJMS is responsible of managing and brokering all interaction

between the HPC platform users and the HPC platform itself. It not only manages

which and when the jobs will be processed (job prioritization), but as well which

resources the jobs will use (resource allocation).

Figure 2.2 illustrates a typical RJMS configuration. Users submit their jobs through

the RJMS jobs manager module, which is responsible to manage the submitted jobs.
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Figure 2.2 Typical Resources and Jobs Management System Configuration. Figure adapted from [65] with
permission from the original author. The modules highlighted in red are the ones studied in this thesis.

At the job submission, the RJMS has limited information about the jobs. Common

information available are the number of processors required by the job, the estimated

processing time p̃j and the command script to the executed by the job. The jobs

manager module also provides jobs’ information to the scheduler module, whose

responsibility is to decide when the available jobs will be executed.

The scheduler’s task mainly involves performing a prioritization of the submitted jobs,

and it is the module that actually solves the parallel job scheduling problem. In this

regard, a noticeable phenomenon is the divergence between theory and practice [30].

With the introduction of backfilling algorithms [60] – whose reasoning is to allow a

job with low priority to be executed before a higher priority job if this low priority

task does not delay the higher priority one – in practice most scheduler modules

use algorithms inspired by either FCFS with aggressive backfilling (called EASY

Backfilling [60] algorithm) or the same aggressive backfilling with some scheduling

policy to sort the waiting jobs. A detailed description of backfilling algorithms is

presented in Section 2.1.2.3.

For instance, the SLURM job management system, a well known RJMS for HPC

platforms [80], uses a multi-factor sorting of the waiting queue, using a linear

combination of priority factors (jobs waiting time, tasks size, share factors, etc.),

with coefficients – whose values establish the relative importance of these priority

factors – defined by the HPC platform maintainer, and then performs backfilling over
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the sorted queue. Other RJMSs such as TORQUE [72], PBSpro [61], MOAB [15]

or OAR [11] implement similar approaches with their own specificities. Some

HPC platforms [66] simply choose to set a multiple job queue paradigm, where

each queue has different priorities in which are arbitrarily set by the HPC platform

maintainer, and the jobs whithin a queue follow FCFS order.

Many reasons can be devised to justify the choice of simple heuristics, notably EASY

Backfilling, as the scheduling algorithm: it is established that EASY Backfilling

increases the overall utilization of the platform, while keeping a relative simplicity

and job starvation guarantees [60]. Furthermore, although it is also established

that there is room for improvement in the scheduling, replacing EASY Backfilling

with another algorithm might be seen as a risky change: one can see this change

as a “jump into the dark”, with the changes in performance only noticeable after a

long period of time, and potentially after many strong-worded emails from many

(important) users.

This unwillingness to apply different policies other than EASY Backfilling is arguably

due to the lack of clarity and interpretability of these policies, making the whole

scheduling algorithm less transparent to the users. In Chapter 4 we aim to bring light

to this subject, by arguing and showing experimental evidence that some class of

equally simple scheduling algorithms can provide significantly better performances

in many aspects of the scheduling, when compared to EASY Backfilling.

At last, the resources management module receives information from the scheduler

about the selected jobs and manages the resource allocation for such job. The

resources management module also keeps track on the available resources, notably

the availability of the computing nodes. In this thesis we are more focused on the

scheduler part of a RJMS. The reader can consult Georgiou [41] for a detailed

description of RJMSs and their characteristics.
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2.1.2.3 Backfilling Algorithms

In a parallel job scheduling scheme, jobs receive a partition of the available resources

for exclusive usage. A list scheduling algorithm (notably with a FCFS scheduling

policy) may lead to resource under-utilization, specially in the case where the number

of available resources is not enough to process the job with the highest priority. By

default, these resources will remain idle until more resources are freed, eventually

meeting the resource requirements of the highest priority job.

Prior research to solve this fragmentation problem were based on dynamic parti-

tioning [59] and gang scheduling [28] strategies, though these strategies presented

some practical limitations that hindered their deployment in practical scenarios.

Solving this problem in practical scenarios was a challenging endeavor, and many

practitioners ended up deploying only FCFS in their platforms, thus still having re-

source fragmentation issues. This was the default case until the advent of backfilling

algorithms. Backfilling algorithms are based on the assumption that, in the case that

there are not enough processors to process the highest priority job in the waiting

queue, there may be lower priority jobs in the waiting queue that could “jump ahead”

for processing, while also not delaying the processing of higher priority jobs and, by

“filling the empty spaces” in the schedule, the resource fragmentation is lowered.

Backfilling algorithms were initially conceived following a simple FCFS list schedul-

ing algorithm (see Section 2.1.2.1). In a non-backfilling list scheduling algorithm, if

there are not enough resources to process the highest priority job in a waiting queue,

the scheduler and the unused resources would remain idle until more resources are

released, eventually satisfying the resource requirements of the highest priority job.

Backfilling algorithms try to search for jobs to backfill at this idle period, and this

search can be performed in two different ways which we informally present below.

The reader can consult Mu’alem and Feitelson [60] for backfilling implementation

details:

• Conservative backfilling: In this setting, a lower priority job jb is backfilled from

the waiting queue if its processing does not delay any job j with higher priority
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than jb. This setting is called conservative because it searches for jobs that does

not harm at all the initial FCFS schedule for the higher priority jobs. In this case,

the backfilled jobs will increase the resource utilization while maintaining all

properties of the FCFS policy: all waiting jobs will eventually be executed (no

starvation) and their waiting times are bounded [60]. However, conservative

backfilling typically involves “reconstructing” the Gantt chart of the schedule

considering each backfilling job jb candidate and seeing if any higher priority

job gets delayed or not. This whole process can be computationally expensive

depending on the waiting queue and HPC platform sizes;

• Aggressive backfilling: In this setting, a lower priority job jb is backfilled from

the waiting queue if its processing does not delay only the highest priority

job in the waiting queue, thus disregarding any higher priority job than jb

that is not the highest. The advantage of aggressive backfilling is that it is

computationally cheaper than its conservative counterpart, though it does not

provide the same properties of FCFS policy: it continues to prevent starvation,

meaning that all jobs in the waiting queue will eventually be executed, however

their waiting times are unbounded. For a job j, there may be an unbounded

number of backfilled jobs, that can potentially delay the processing of j until

j gets the highest priority [60]. One of the first deployments of aggressive

backfilling with FCFS was in Argonne National Laboratory (ANL) to schedule

their IBM SP1 parallel machine. They baptized their scheduling system as the

Extensible Argonne Scheduling sYstem (EASY) [54] and, since then, FCFS with

aggressive backfilling is often referred to as EASY-backfilling or just simply

EASY.

Knowing whether jobs may or may not be backfilled – which involves reconstructing

the schedule ahead of time as aforementioned – strongly relies on the jobs processing

time estimates. For instance, an estimate lower than the actual processing time may

mistakenly lead to backfilled jobs that will actually delay other jobs, including the

one with the highest priority. Having accurate estimations of the processing time of

the jobs has become such an important factor for backfilling schedulers to an extent
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that these schedulers started to kill jobs if their actual execution time exceeds its

estimate. This has led to a phenomenon that users started to always provide over

estimations of the processing time of their jobs, thus making the processing time

estimate a good upper bound for the actual processing time, though nevertheless

the accuracy of the estimations remained to be poor [27].

More recently, a considerable amount of research was devoted to improve the

performance of backfilling algorithms by adopting a two-queue paradigm (one

primary queue and a secondary queue to search for backfilling jobs) and performing

a tuning of these queues [53, 63, 73]. More recently, Gaussier et al. [40] explored

the usage of machine learning in backfilling and proposed a variant of the EASY

algorithm that relies in a job processing time prediction model to perform the

backfilling decisions rather than using the estimates provided by the users. In this

thesis we consider the aggressive backfilling as the baseline backfilling mechanism.

2.2 Machine Learning

It is perhaps intrinsic of the human nature to try finding patterns in a set of obser-

vations of a certain phenomenon. Possible motivations are just to understand how

the phenomenon works or to perform predictions about future events around the

phenomenon. Whichever the motivations are, the interest in finding such patterns

was arguably a key component to develop the science we know today.

Throughout human history, there are many records on successful attempts in ob-

taining knowledge from patterns found in observations, such as the ones obtained

by Kepler [49], which has resulted in the development of modern astronomy, and

Darwin [18], which has resulted in the modern biology we know today. In a less

sounding manner, there are as many records of unsuccessful attempts to find patterns

in observations, such as the prior work performed by Tycho Brahe on how celestial

bodies move in the space, whose observational data helped Kepler to devise simple

laws on how celestial bodies move.
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All of these records indicate how difficult is to find these patterns and, therefore,

how difficult is to obtain knowledge from observations. In Kepler’s case, it was not

only necessary to advocate on pioneer insights at his time (the Earth moves around

the Sun and not the opposite), but it was necessary as well to solve rather complex

and cumbersome calculations in order to devise three laws, the three Kepler’s Laws.

With the advent of modern computers, a lot of progress has been done to conceive

automatic ways to find patterns in data, thus giving birth of the machine learning

(ML) research field that we know today.

With automatic ways of finding patterns into data, it has risen the impression that

every problem or phenomenon can be solved or understood if we have more data

about it. This has resulted in a development loop on ways to obtain more data, and

more efficient ways to automatically find patterns into this data. It boils down that

pioneer insights, such as the ones Kepler had based, are not completely (perhaps

not at all) replaced by automatic procedures, though such automatic ways to find

patterns in data has helped on progresses that would not be feasible by hand.

Problems tackled by machine learning are typically classified into two broad class of

problems: supervised and unsupervised. In supervised problems, data consisting of a

set of observed examples, each one having its inputs (often referred to as features)

and its respective desired output are available beforehand, so that prediction models

can be trained based on these data. In regards to the desired output, it can be a

category among a finite set of categories. In this case the machine learning problem

is referred to as a classification problem. However, the desired output can also be one

or more continuous values. In this case, such machine learning problem is referred

to as a regression problem.

In unsupervised problems the desired output is not known in advance, only the

features of the examples are available. The goal in such problems may be to find

groupings of similar examples into the data. Such problem is known as a clustering

problem. Another unsupervised problem is to determine the distribution of data

within the feature space, known as a density estimation problem.
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For both supervised and unsupervised problems, many machine learning algorithms

and models have been proposed and its number grows steadily. More complex

models and also more algorithms to fit these models into the observed data are

proposed in the literature almost daily. However, having a machine learning model

that is transparent – in the sense that the semantics behind its predictions are clear –

and also powerful in prediction performance is still a challenging endeavor for some

problems.

As a result, deciding which model to use does not only depends on the technical

constraints of the models and algorithms but as well depends on the purpose of the

learned model. If the purpose is to get a better understanding of the phenomenon

under study, and thus prediction performance is not as important, using a less

powerful and more transparent model may be more appropriate. However, if

the purpose is prediction performance, where understanding the reasons behind

the model’s decisions may not be as important, using a more powerful and less

transparent model may be more appropriate.

In the next section we introduce simple models and algorithms for linear and non-

linear regression problems, which was the problem modeling used in Chapter 3.

The reader can consult Bishop [7], Friedman et al. [35] or Berthold et al. [5] for

a detailed presentation of classic machine learning models and algorithms, and

Goodfellow et al. [42] for more advanced, state-of-the-art machine learning models

and algorithms.

2.2.1 Regression Problems

As mentioned in the previous section, the goal in regression problems is to perform

predictions of one or more continuous variables given the observed input features.

More specifically, given an observation consisting of an input vector x of features,

the objective is to predict one or more continuous target variables t given the values

present in x. This problem setting can be used to model many practical problems,

for instance predicting crop yield given a set of data such as sunlight intensity and

pluvial frequency, and – more specifically related to Chapter 3 – predicting how
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much beneficial would be for the scheduling performance if a certain job from the

waiting queue would be selected for processing.

Regression problems are situated in the supervised learning class of problems.

This means that a training data set constituted by N observations {xn}, where

n = 1, . . . , N , and their corresponding target values {tn} are known in advance, and

the objective is to perform predictions of t for new, unseen inputs x, taking into

account the previous patterns present in the training data.

An initial approach to solve this prediction problem is to construct a prediction model

consisted by a function y(x), whose output for a new observation x constitute the

target predictions t for x. This typically involves designing two main components: (i)

the type of function y(x) to be used, and (ii) an appropriate optimization algorithm,

to adequately fit y(x) to the patterns present in the training data. A key hypothesis

in this approach is that the patterns present in the training data are relevant to

perform predictions to new, unseen observations.

In order to bring flexibility for y(x) to fit into the training data and, more importantly,

to reduce the search space to avoid overfitting (see more at the end of this section) in

cases that there is not enough training data to perform a good fit, the function y(x)

is actually defined in a parametric form y(x, θ), where θ is a vector of parameters.

Given an input vector x with D input features xi, 1 ≤ i ≤ D, arguably one of the

simplest forms of functions y(x, θ) are functions of the following form,

y(x, θ) = θ0 + θ1x1 + . . .+ θDxD (2.10)

where θ0 is an additional parameter to add a fixed offset flexibility for y(x, θ), and

it is often called as bias or intercept parameter. It is important to observe that

Equation 2.10 is linear on both the coefficients in θ and the features in x. One

alternative to bring more nonlinear flexibility is to maintain y(x, θ) linear on the
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coefficients in θ, though nonlinear in respect to the features in x. This gives the

following function,

y(x, θ) = θ0 +
M−1∑
j=1

θjφj(x) (2.11)

where φj(x) is a nonlinear function of x. M is a natural positive number that can be

set arbitrarily, and controls the number of parameters – as opposed to Equation 2.10,

in which the number of parameters is controlled by the number of input features D –

and the number of nonlinear transformations present in the model. Equations 2.10

and 2.11 are considered cases of linear regression, even though Equation 2.11 can

represent non linear relationships in function of x. The concept of “linear” comes

rather from the linearity in function of θ than in function of x.

One interesting result in regards to Equations 2.10 and 2.11 is that considering

a training data set constituted by N observations {xn}, where n = 1, . . . , N , and

their corresponding target values {tn}, optimal parameters θ̂ can be found when

optimizing for the sum of squared loss (Equations 2.12 and 2.13) in a process often

called as least squares fitting [7, 5].

ΣL =
N∑
n=1

L(y(xn, θ), tn) (2.12)

L(y(x, θ), t) = (y(x, θ)− t)2 (2.13)

Although Equation 2.11 allows some non-linearity in function to x, the linear

constraint in function of θ can be a limiting factor to model some problems. In

some scenarios, there may be prior insights saying that the relationship between

the predictions and the input follows a particular functional form, rather than a

linear combination of the coefficients. In this case, a function y(x, θ) that depends

nonlinearly on one or more coefficients in θ may be better suited. For instance,

one may devise that a good list scheduling policy (see Section 2.1.2.1) can be a
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function of the form f(j) = p̃j
θ1qθ2

j for a job j. Performing regression in functions

such as f(j) results in a regression problem called as nonlinear regression [68]. With

nonlinear regression, the same least squares fitting algorithms can be used, though

the optimality of the coefficients θ in regards to the sum of the squared loss is no

longer guaranteed.

There are more complex models for regression such as kernel methods [7] and neural

networks [42]. Specifically for neural networks, with the current advancements

specially in GPU computing [62], it is being possible to fit models with thousands of

parameters, constituting noticeably powerful models. Although this model power

may be required for some real-world problems, having a powerful model may

lead to undesired phenomena such as overfitting. Informally, an overfitted model

“memorizes” every single input and the desired target output present in the training

data, and not actually being capable to provide accurate predictions to new, unseen

data. Overfitting rises specially when one tries to fit a complex model (i.e. with

many parameters) using a training data with low dimensionality (i.e. inputs with

few features), or a training data with few examples.

Furthermore, as mentioned in the previous section, having a quite complex model

may be detrimental to its transparency, as it is arguably hard to reason about

how predictions are being made taking into account thousands of parameters. In

this regard, linear and nonlinear regression models with few parameters are more

advantageous with regards to transparency, as it is easier to grasp the contributions

of each of the fitted parameters in the regression.

Yet, more complex models (notably neural networks) are being largely used and they

are being successful in performing predictions in many complex real-world problems,

specially in computer vision and natural language processing. In these cases, the

models are rather seen as “black boxes”, where only the prediction performance is

taken into account. However, there is a growing interest in finding frameworks, such

as the SHAP [58] framework, for interpreting and understanding how predictions

are made with these complex models.
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Once a model f is fit to the training data and their learned coefficients θ̂ are found,

there are many metrics in regression that can evaluate the prediction performance of

the f parametrized by θ̂. Considering a testing data set constituted by M observations

{xm}, where m = 1, . . . ,M , and their corresponding target values {tm}, which are

unseen data for f during training, one of the simplest forms of evaluation is the

Mean Absolute Error (MAE), which can be defined as follows:

MAE(f) = 1
M

M∑
m=1
‖f(xm, θ̂)− tm‖ (2.14)

MAE closely relates to the sum of the squared loss (Equation 2.13) function, however,

since there is not a squared penalization for the residual f(xm, θ̂)− tm (as opposed

to the sum of squared loss), there is an equal emphasis on small or large errors,

characterized by small or large residuals, respectively.

In regards to this squared penalization, another metric used in evaluating models is

the Mean Squared Error (MSE), which can be defined as follows:

MSE(f) = 1
M

M∑
m=1

(f(xm, θ̂)− tm)2 (2.15)

MSE is quite similar to the sum of squared loss, with the difference that MSE divides

the sum of squared loss (residual) by the number of the testing examples M . As

opposed to MAE, the Mean Squared Error emphasizes large residual values, given

the squared factor applied to the residual.

For both MAE and MSE, the meaning of their values is straightforward: a value of

0.0 means perfect prediction performance and, the larger the value, the worse is

the prediction performance of f . There is another prediction performance metric,

however, that relativizes the prediction performance in function of the variance of
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the target values present in {tm}. Such metric is called Coefficient of Determination

(or R2), which can be defined as follows:

R2(f) = 1−
∑M
m=1(f(xm, θ̂)− tm)2∑M

m=1(tm − t̄)2
, (2.16)

where t̄ is the mean of the target values present in {tm}. A R2 value of 1.0 means

perfect prediction, any value in the interval ]0, 1[ means not perfect prediction

performance, with better prediction performance with values closer to 1.0. A R2 of

0.0 means that f always predicts the target values, regardless of the features’ values

and, finally, any value lower than 0.0 means poor prediction performance.

2.3 Summary

In this chapter we presented a brief overview of the scheduling theory in the context

of High Performance Computing, with emphasis on parallel job scheduling problems,

list scheduling and backfilling algorithms. We also made a short introduction to

machine learning, with emphasis on regression problems. Finding optimal solutions

for parallel job scheduling problems is notoriously hard and, although there are many

approximation algorithms with proven performance guarantees, many practitioners

end up adopting simple heuristics, such as EASY Backfilling, to schedule parallel

jobs. The content present in this chapter must be sufficient for the reader to follow

the remaining chapters of this thesis. In the remaining chapters we present the main

contributions of the thesis, starting by presenting the ways we explored simulation

and machine learning to learn simple parallel job scheduling heuristics.
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3Machine Learning Discovery of

Scheduling Policies1

3.1 Introduction

The on-line scheduling of jobs in large-scale HPC platforms is a complicate subject

to be tackled by scheduling systems. The need to address numerous scheduling

factors leads to the development of sophisticated scheduling algorithms that are

often difficult to reason about or hard to deploy in real systems. As further elaborated

in Section 2.1.2.1, an appealing alternative is to adopt scheduling policies – which

are functions that take as input the characteristics of the jobs (e.g. processing

time, requested number of processors, waiting time, etc.) and output a value that

denotes the priority of the job – to perform the scheduling. These scheduling policies

are often hand-engineered, generally based on intuitions (that may keep a clear

understanding of what happens in the scheduling for the users) regarding which

rules the scheduling policies must impose to achieve good scheduling performance.

One common practice of the scheduler systems is to add a backfilling mechanism (see

Section 2.1.2.3) in conjunction to the scheduling policy. The backfilling increases the

utilization of the HPC platform and consistently improves scheduling performance.

Another common practice of HPC platform maintainers is to register information

about the jobs that have been executed in the platform. These workload logs contain

information regarding the characteristics of jobs, such as the ones mentioned above

and processing time estimates provided by users. In light of the ever increasing

amount of information generated by HPC platforms and the need for simple and

efficient scheduling solutions, the main question raised in this chapter is: Is it possible

1The text of this chapter is adapted from the following published paper: Danilo Carastan-Santos,
and Raphael Y. de Camargo. "Obtaining dynamic scheduling policies with simulation and machine
learning". In the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2017.
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to design an arguably simple procedure to learn general and simple scheduling policies

from existing workload logs, which perform better than the existing hand-engineered

scheduling policies?

In this chapter, we present a technique based on simulation and machine learning

algorithms to generate simple scheduling policies represented by nonlinear functions.

These nonlinear functions capture the characteristics of jobs that should be prioritized

under several distinct situations and, when used as scheduling policies, improve

the global scheduling of jobs. More specifically, this chapter presents the following

contributions:

1. We show that it is possible to generate efficient scheduling policies in the

form of simple though not obvious nonlinear functions, obtained from general

workload characteristics, that improve global scheduling, when compared to

classical and state-of-the-art hand-engineered scheduling policies;

2. We propose a simple simulation procedure and a machine learning strategy,

based on nonlinear regression, to observe the effects of scheduling decisions

over jobs obtained from a workload model over distinct conditions, and to

model these effects into nonlinear functions that can be used as on-line schedul-

ing policies;

3. We show that these obtained scheduling policies perform well when scheduling

jobs from the same workload model used to observe the scheduling effects, with

significantly better performances than the best performing hand-engineered

scheduling performance in the most realistic setting evaluated (i.e. in con-

junction with a backfilling algorithm and considering the user estimates of job

processing times to perform scheduling decisions);

4. We show that the scheduling policies obtained by the procedure of the item 2

can generalize well, bringing good scheduling performances in all evaluated

real world scenarios, using real workload traces from highly different HPC

platform configurations.
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The remainder of this chapter is organized as follows: in Section 3.2 we present

the proposed strategy to obtain on-line scheduling policies. We present the main

results (i.e. the obtained scheduling policies and its scheduling performances) in

Section 3.3, and the summary in Section 3.4.

3.2 Finding Scheduling Policies with Simulation

and Machine Learning

We tackled the on-line scheduling problem of executing a set of concurrent parallel

jobs – whose resource requirements are fixed and known in advance (also known

as rigid jobs) – on a HPC platform. The general idea proposed by this chapter

is to design a simulation scheme to observe the scheduling behavior over sets of

jobs under several distinct conditions and to use machine learning techniques to

model the effects of job characteristics on scheduling performance into nonlinear

functions. These functions can then be used by production on-line schedulers

to determine – based on jobs characteristics, such as estimated processing time,

resource requirements and submit time – the next job to choose from the queue for

execution.

3.2.1 Scheduling Background

In this Section we briefly summarize the background and assumptions of the parallel

job scheduling problem under study in this chapter. The reader can consult Chapter 2

for a more detailed and broader description of scheduling problems.

We consider an HPC platform as constituted by a set of m homogeneous resources

connected by any interconnection topology and the jobs arrive over time (i.e. in an

on-line manner) in a centralized waiting queue. A job j is some workload which has

the following data:

• The estimated processing time p̃j of the job informed by the user;
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• The actual processing time pj of the job (only known after the job has been

executed);

• The resource requirement of the job, measured as the number of processors qj;

• The submit time rj of the job (also called release date).

Although some data sets have additional information, the selected variables are

available in most real workload traces, shared using the Standard Workload Format

(SWF) [32]. Typically several simplifications about j are made under the perspective

of the scheduler: parallel efficiency, interdependence, and computation and commu-

nication intensities are often ignored. Instead, j is seen as an independent “black

box” that will require qj resources for p̃j units of time.

There are many objective functions that can be considered in the on-line scheduling

problem. As mentioned in Section 2.1.1, one reasonable expectation is that the

waiting time of a job should be proportional to its processing time [25]. Hence, one

can use the bounded slowdown objective function which is defined as follows for a

job j:

bsld = max
(

wj + pj
max(pj , τ) , 1

)
(3.1)

where wj is the time that job j waited for execution (i.e. the time that j starts its

execution minus the submit time rj) and τ is a constant, with a typical value of 10

seconds, that prevents small jobs from having excessively large slowdown values,

and thus giving more stability for the slowdown (see Section 2.1.1) metric. Similarly,

we can define the average bounded slowdown which is the slowdown average over a

sequence of jobs J :

AVEbsld(J) = 1
|J |

∑
j∈J

max
(

wj + pj
max(pj , τ) , 1

)
(3.2)

In this work, all scheduling evaluations are performed using this objective function.

However, scheduling methodology proposed in this chapter can be applied with
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other objective functions, such as the ones presented in Section 2.1.1, thus giving

freedom for the HPC platform maintainer to adopt the objective function that best

suits the performance requirements of his/her users. Following the scheduling

notation presented in Section 2.1.1, in this chapter we are concerned about the

on-line parallel job scheduling problem Pm | sizej , rj | AVEbsld with rigid jobs.

3.2.2 Simulation Scheme

We considered for simulation an HPC platform represented by an homogeneous

cluster compounded by m resources (processors). We defined two sets of jobs to

be executed, S and Q. Set S contains |S| jobs that are executed in order of arrival

at the beginning of the simulation and it acts as a warm-up workload. Jobs from

Q, which are used to extract information about scheduling performance, start to

arrive after all jobs from S arrived. This scheme provides a way to represent an

initial resource state of the cluster before the arrival of jobs from Q. From both sets,

the jobs characteristics are obtained from a trace generated with the Lublin and

Feitelson [55] workload model. To conceive this model, several real HPC workload

logs were considered to fit a generalized workload model, capable of representing

not only the jobs’ geometry (pj and qj), but as well the release date of jobs rj ,

including peak periods. Another advantage of the workload model is that we can

generate arbitrarily large traces. The job sets S and Q are generated in the following

way: from a large enough trace N generated by the workload model, we randomly

select a subtrace M ⊂ N with size |S|+ |Q|. The first |S| jobs from M will belong to

set S and the remaining |Q| jobs from M will belong to set Q.

The first step is to determine, using simulations, how the scheduling performance

is affected when a job j is selected for processing, under different sets of jobs and

resource states. To obtain this information, several tuples of job sets (S,Q) were

generated, where each tuple (S,Q) is a randomly generated trace as aforementioned.

The key idea is to list as many scheduling situations – represented by tuples (S,Q) –

as possible. For each tuple (S,Q), we define P as a collection of random permutations

of Q, and P(j0 = j) as the subset from all permutations where j is the first job in
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the permutation. We then simulate the scheduling execution for each pair (S, per)

for all per ∈ P. We call these pairs (S, per) as trials of the tuple (S,Q). On each

trial, each job j ∈ Q is submitted for execution in the order as they appear in per.

We then assign a score for each job j ∈ Q:

score(j) =
∑
perj∈P(j0=j)AV Ebsld(perj)∑

perk∈P AV Ebsld(perk)
(3.3)

The score denotes the impact of assigning a job j ∈ Q to execute first, in the average

bounded slowdown of all jobs in Q. Assuming that for each permutation per ∈ P , the

job j0 is selected according to a uniform probability distribution, if a job j had a good

impact in performance, then the sum present in the dividend of Equation 3.3 will be

lower, when compared to another job that had a worse impact in the performance,

and the value of score(j) will be lower as well. The set of scores for all jobs j ∈ Q

constitute a trial score distribution of the jobs of Q under initial resource state S.

Typical distributions, shown in Figure 3.1, contains most scores slightly above or

below the mean 1
|Q| = 1

32 = 0.031. Jobs with lower scores have a more positive

impact in the average bounded slowdown when they are chosen to be executed

first. It is important to note that, as the total number of possible trials grows quickly

in function of |Q|, the size of the set Q must be chosen in a way that it is possible

to perform an accurate estimation of the jobs’ scores, while maintaining a feasible

computational cost. More information about this accuracy and computational cost

can be found in Section 3.3.1.

By joining the generated samples from multiple distinct tuples (S,Q), we generate a

distribution score(p, q, r), containing the sample means for jobs with processing time

p, number of used processors q and arrival time r. This is the central result obtained

from the simulations. The idea is that a scheduler from a HPC system will select the

job from the queue with (p, q, r) values that has the smallest score(p, q, r) value.

Using simulations to observe the scheduling behavior is rather adopted in the

literature, with some works [53, 67] using the simulation results directly in order to

forecast a better scheduling strategy. In the next section we present a novel approach
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Figure 3.1 Examples of trial score distributions generated by the simulation procedure for a tuple of job sets (S, Q),
with |S| = 16 and |Q| = 32, in a cluster with 256 nodes, and their estimation accuracy in function of
the number of trials. The black horizontal in (a) and (b) line represents the mean 1

|Q| = 1
32 = 0.031.

that, rather than using the simulation results directly to perform scheduling decisions,

it uses the simulation results to learn and create a nonlinear function, that can be

afterwards used as an on-line scheduling policy.

3.2.3 Machine Learning Scheme

Using simulations we generate many irregular score(p, q, r) distributions, with val-

ues that can change each time a simulation is performed and that provide good

estimates only for certain jobs characteristics. To obtain smoother and more general

representations of the score distributions, we can use a machine learning technique,

called nonlinear regression, to determine a nonlinear function f(p, q, r) that pro-

vides a good fitting to the distribution. This function can then be later assigned as a

scheduling policy. In other words, the jobs arriving into a centralized queue of an

HPC system can be prioritized according to these functions.

Let J be the set of all jobs from all sets Q generated in the simulation phase (see

Section 3.2.2). For a job j ∈ J , we have a 4-tuple (pj , qj , rj , score(pj , qj , rj)) obtained
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from the previously computed trial score distributions. This 4-tuple denotes the

observation of the scheduling performance behavior of the job j. Given a collection

F of nonlinear functions, the problem consists in finding a function f(pj , qj , rj) ∈ F

that better fits the distribution score(p, q, r) generated from all jobs j ∈ J .

We defined F as all functions of form y(pj , qj , rj , θ) = (θ1φ1(pj)) op1 (θ2φ2(qj))

op2 (θ3φ3(rj)). We call φ1, φ2 and φ3 as base functions and they can be any of the

functions: identity, square root, logarithm and inverse. Operators op1 and op2 are

any of the operators sum (+), multiplication (·) or division (÷). Coefficients θ1, θ2

and θ3 denotes the relative importance of the base functions and are obtained by a

nonlinear regression fitting.

The idea behind this scheme is to explore a wide variety of relationships – represented

by the many functions that can be obtained with the functional form y(pj , qj , rj , θ)

– between the jobs characteristics, with the hypothesis that there may be one or

more functions f(pj , qj , rj , θ) ∈ F that, after a regression fitting, will stand out as

an efficient scheduling policy. It is important to note that the relationship between

the parameters θ1, θ2 and θ3 can be nonlinear, thus requiring a nonlinear regression

to perform the fit (see Section 2.2.1). We set models with only three parameters in

order to maintain a reasonable number of functions f(pj , qj , rj , θ) ∈ F to perform

the fitting. Also, by using few parameters we reduce the possibility of overfitting

(see Section 2.2.1). We employ a weighted nonlinear regression [12] procedure,

which minimizes the weighted sum of squared loss function:

ΣwL =
∑
j∈J

((pjqj) · (f(pj , qj , rj , θ)− score(pj , qj , rj)))2 (3.4)

The above equation is similar to the sum of squared loss (Equation 2.12), with the

exception that we used the weight (pjqj) to emphasize that the fit must perform a

good estimation of the score of large area jobs (i.e. jobs with large p and q values).

This is based on the argument that jobs that consume a large amount of resources

for a long period of time have a potential of blocking the execution of many smaller

jobs, degrading the overall scheduling performance.
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Once we perform the nonlinear regression fitting for all functions f(pj , qj , rj , θ̂f ) ∈

F , where θ̂f are the coefficients found during the nonlinear regression fit for

f(pj , qj , rj , θ), we use a Mean Absolute Error function (MAE, Equation 3.5, see Sec-

tion 3.2.3) to evaluate the average error of each nonlinear function f(pj , qj , rj , θ̂f ),

when used to estimate the score(pj , qj , rj) for all jobs j ∈ J . The hypothesis is that

nonlinear functions with the lower MAE values would perform well as scheduling

policies.

MAE(f) = 1
|J |

∑
j∈J
‖f(pj , qj , rj , θ̂f )− score(pj , qj , rj)‖ (3.5)

3.3 Results

In this section we present the main results obtained of the experiments. We first

describe the simulation procedure and the nonlinear functions obtained with ma-

chine learning. Next, we evaluate the performance of the obtained functions when

scheduling synthetic workloads under different conditions: (i) using actual job

processing times, (ii) using user estimated job processing times, and (iii) using user

estimated job times with backfilling. Finally, we evaluated the obtained functions

using real workload traces, for the same three conditions used with the synthetic

workloads.

In the simulations, to generate the distribution score(p, q, r), we considered an HPC

platform compounded by m = 256 homogeneous processors. We used sets of jobs

S and Q with |S| = 16 and |Q| = 32 jobs. All simulations were performed using

SimGrid [13].

We compared the performance of our scheduling policies with a selection of classical

scheduling and smart hand-engineered policies, used in real HPC platforms (Ta-

ble 3.1). Two classical and well known policies are First Come First Served (FCFS),

where jobs are scheduled by the arrival order, and Shortest Processing Time First

(SPF), where jobs with smaller processing times are scheduled first. We also used
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Table 3.1 Scheduling policies used for comparison.

Name Function
FCFS [70] score(j) = rj
SPF [71] score(j) = pj
WFP3 score(j) = −(wj/pj)3 · qj
UNICEF score(j) = −wj/(log2(qj) · pj)

the WFP3 (WFP, for short) and UNICEF (UNI, for short) policies [75], which are

based on the processing time (pj), requested number of processors (qj), and waiting

time (wj) of the job. The intuition behind WFP is that shorter and/or older jobs

should be largely favored, while preventing the starvation of large jobs. UNI in its

turn attempts to provide a fast turnaround for small jobs by favoring them.

3.3.1 Machine Learning: Obtained Nonlinear Functions

The first step towards obtaining the nonlinear functions for usage as scheduling

policies is to produce the distribution score(p, q, r). We start by generating permuta-

tions of the set of jobs Q, which are used to construct the trial score distributions.

Enumerating and simulating the execution of all permutations of a set of jobs of size

|Q| = 32 is computationally prohibitive and, therefore, we need to define a suitable

number of permutations that generate accurate trial score distributions. For that,

we selected one tuple (S,Q) and generated the trial distributions with increasing

amount of trials, repeating the simulation procedure ten times per number of trials,

and measuring the standard deviation of the estimated scores. Figure 3.1c shows

that the standard deviation drops quickly with increasing amount of trials. With 256

thousand trials, the resulting normalized standard deviation was 0.02. We decided

to use 256 thousand trials, since its simulation takes less than 11 minutes using

SimGrid [13] on an Intel Xeon E5-2620v2 six-core CPU.

After obtaining the trial score distributions, we generated the distribution score(p, q, r)

and performed the nonlinear regression using the function leastsq() from the

SciPy [47] Python library for all functions f(pj , qj , rj , θ) ∈ F . Table 3.2 shows the

four best functions obtained with regard to the Equation 3.5. We mathematically

42



simplified the obtained functions, merging the coefficients θ1, θ2 and θ3 into a single

coefficient θ3/(θ1θ2), in front of the log(rj) term.

A noticeable phenomenon is their similarity, with all functions constituted by a

sum of two factors, one containing parameters pj and qj and the other with the

dependence on log(rj). Considering the large values of the constant before the

log(rj) term, the functions emphasize that jobs that arrived earlier (i.e. with lower

rj values) must be prioritized in order to maintain lower slowdowns (recall that

jobs with lower score value have a high priority). Moreover, these large constants

effectively prevent starvation without any manual customization of the policies.

Figures 3.2b and 3.2c illustrate the strong dependency on the submission time for

all policies F1 to F4, with jobs that arrive earlier receiving a large priority (darker

colors) over more recent jobs.

The second important factor is the size of the job, a product of two functions α(pj)

and β(qj) of the processing time and number of processors used by the jobs. The

policies F1 to F4 differ in the relative importance given to each of these values (pj

and qj), with F1 and F2 imposing a heavier penalization for increasing numbers of

requested processors qj , F4 penalizing larger processing times pj , and F3 penalizing

higher values of pj and qj equally. Figure 3.2a shows that, for a fixed value of rj ,

higher priorities are given for jobs that have either required smaller processing times

or number of processors.

These results comply with the general intuition – in which jobs with small processing

time, small requested amount of processors and that were submitted earlier should

be prioritized – that is adopted by most of the hand-engineered scheduling policies.

The main differences are the adoption of two separate terms, one considering

only job size and the other submission time, and the large coefficient before the

submission time term.

3.3.2 Scheduling Performance: Workload Model

In this subsection we aim to answer the following question: Can the nonlinear

functions, obtained using the procedure from Section 3.3.1, perform well as scheduling
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Table 3.2 The four best nonlinear functions obtained using nonlinear regression.

ID Nonlinear Function MAE(f)
F1 log10(pj) · qj + 8.70 · 102 · log10(rj) 5.278 · 10−3

F2 √
pj · qj + 2.56 · 104 · log10(rj) 5.317 · 10−3

F3 pj · qj + 6.86 · 106 · log10(rj) 5.408 · 10−3

F4 pj ·
√
qj + 5.30 · 105 · log10(rj) 5.482 · 10−3

policies for jobs generated by the Lublin and Feitelson [55] workload model in the

following scenarios?

• Using the actual processing time pj in the scheduling decisions and the same

number of processors m = 256 from the simulation scheme;

• Using the actual processing time pj in the scheduling decisions, but increasing

the number of processors to m = 1024;

• Using the processing time estimate p̃j provided by the user, instead of the

actual processing time pj , to perform the scheduling decisions;

• Using the processing time estimate p̃j provided by the user, but performing the

scheduling using the aggressive backfilling algorithm.

We should emphasize that in all scenarios we used the same set of nonlinear functions,

obtained using the actual processing time pj of jobs and m = 256 processors. Since

the functions are parametrized by the number of processors (qj), submission time

(rj) and processing time pj (which can be substituted by its estimate p̃j), they can

be used in different scenarios. The objective was to evaluate the generalization

capabilities of the obtained nonlinear functions.

For all experiments, we define a dynamic scheduling experiment as being multiple

simulations of the execution of a sequence of jobs obtained from a certain workload

trace or model. For each simulation we choose one scheduling policy from Tables 3.1

and 3.2 to schedule all jobs in the sequence. The output of the dynamic scheduling

experiment is the average bounded slowdown from each simulation performed,

using all policies present in Tables 3.1 and 3.2. The sequence of jobs contains all jobs

submissions over a period of fifteen days. When using workload traces, we assured
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Figure 3.2 Dependency on the parameters pj , qj and rj for the four best nonlinear functions obtained.

that there was no overlap between sequences used on distinct dynamic scheduling

experiments.

The simulated on-line scheduling algorithm works as follows: jobs arrive in a cen-

tralized waiting queue and the scheduler performs a reschedule – using a scheduling

policy – of the jobs present in this queue in two distinct events: (i) when a job arrives

in the queue or (ii) when a resource (set of processors) is released and becomes

available. When a job j is selected for execution and if the requested number of

processors qj is lower than the total number of processors available, then qj proces-

sors are reserved for this job and they become unavailable. These processors will

become available again only when pj units of time have passed since the start of the
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Table 3.3 Median of the average bounded slowdowns from Subsections 3.3.2 and 3.3.3.

Experiment FCFS WFP UNI SPF F4 F3 F2 F1
Workload model, m = 256, actual runtimes pj 7830.58 4018.25 2717.84 1222.67 368.37 151.53 37.47 42.88
Workload model, m = 256, runtime estimates p̃j 7830.58 7505.74 4265.58 5841.89 590.40 306.68 60.76 50.67
Workload model, m = 256, aggressive backfilling 1306.38 1220.52 508.95 863.76 122.72 54.49 42.91 50.77
Workload model, m = 1024, actual runtimes pj 6910.82 5229.28 3176.86 2404.65 514.43 73.43 21.41 24.78
Workload model, m = 1024, runtime estimates p̃j 6910.82 6564.50 3790.40 5220.45 1146.34 559.86 123.10 32.33
Workload model, m = 1024, aggressive backfilling 1262.63 1651.83 1079.08 1296.65 377.99 180.75 44.70 30.24
Curie workload trace, actual runtimes pj 290.27 206.57 110.14 139.58 18.77 8.21 4.27 6.57
Anl Interpid workload trace, actual runtimes pj 40.93 11.06 5.83 3.91 2.12 1.76 2.07 2.15
HPC2N workload trace, actual runtimes pj 90.61 22.20 11.37 12.16 11.65 15.40 10.47 12.12
SDSC Blue workload trace, actual runtimes pj 370.22 67.83 29.53 24.65 20.03 12.63 4.41 8.22
SDSC SP2 workload trace, actual runtimes pj 629.60 59.60 25.84 21.78 29.14 45.33 15.58 19.53
CTC SP2 workload trace, actual runtimes pj 438.37 309.72 33.86 90.24 18.77 15.21 5.32 9.13
Curie workload trace, runtime estimates p̃j 290.27 258.17 145.19 218.77 44.63 12.15 8.77 9.86
Anl Interpid workload trace, runtime estimates p̃j 40.93 18.33 11.94 9.17 4.18 3.29 2.63 2.74
HPC2N workload trace, runtime estimates p̃j 90.61 62.24 28.34 46.67 27.81 20.08 16.90 19.83
SDSC Blue workload trace, runtime estimates p̃j 370.22 136.11 57.00 46.82 18.69 9.66 8.20 11.52
SDSC SP2 workload trace, runtime estimates p̃j 629.60 243.86 91.57 48.43 40.21 41.38 30.04 34.13
CTC SP2 workload trace, runtime estimates p̃j 438.37 369.93 104.98 306.78 21.76 18.23 13.46 12.33
Curie workload trace, aggressive backfilling 54.94 49.23 32.27 35.72 14.90 9.57 7.80 9.81
Anl Interpid workload trace, aggressive backfilling 9.66 7.19 4.39 3.79 3.59 2.87 2.65 2.74
HPC2N workload trace, aggressive backfilling 36.43 28.08 16.22 16.26 15.31 15.26 16.83 20.46
SDSC Blue workload trace, aggressive backfilling 36.40 14.07 11.08 9.87 8.11 8.02 8.52 11.59
SDSC SP2 workload trace, aggressive backfilling 66.38 41.61 32.66 28.38 26.68 25.31 23.26 32.06
CTC SP2 workload trace, aggressive backfilling 83.38 54.32 24.96 14.40 9.90 11.07 10.23 12.88

execution of j. If there is not enough processors to process j, then the scheduler

waits for one of the two rescheduling events mentioned above.

3.3.2.1 Scheduling using actual job runtimes pj

In this experiment we generated a job queue with characteristics from the workload

model of Lublin and Feitelson [55] and considering a HPC platform constituted by

m = 256 processors, which are the same settings used in the simulations to generate

the nonlinear functions. Figure 3.3a shows the average bounded slowdowns for fifty

dynamic scheduling experiments, with the orange line representing the median of

the average bounded slowdown (whose values are shown in Table 3.3) over these

experiments, the box limits representing the upper and lower quartiles, and the

whiskers representing the lowest and highest values outside the the box limits but still

inside the range of 1.5 times the difference between the upper and lower quartiles.

The figure shows that all obtained nonlinear functions performed substantially better

than the evaluated existing scheduling policies, from Table 3.1. The nonlinear

function F2 provided the best results, followed by functions F1, F3 and F4. Although

we would expect F1 to perform better, the MAE values of the generated functions are
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similar (Table 3.2) and, consequently, we cannot assume that F1 will always provide

the best results.

Figure 3.3d shows the results of fifty dynamic scheduling experiments considering

an HPC platform with m = 1024 processors. The jobs were generated using the

Lublin and Feitelson workload model configured for a cluster with 1024 processors,

so that jobs sent to the waiting queue would use between 1 and 1024 processors.

We can see that, compared to the other scheduling policies, the obtained nonlinear

functions continued to perform well, indicating that the obtained scheduling policies

have some generalization capability regarding the number of processors in the HPC

platform.

3.3.2.2 Scheduling using user estimated job runtimes

In this experiment, instead of using the processing time pj in the scheduling decisions,

we utilize the estimated processing time p̃j of the job that is provided by the user.

The actual processing time pj in this case is used only to simulate the execution

of the job. For the workload model used in this work, we used the user runtime

estimate model of Tsafrir et al. [78] to generate p̃j .

Traditionally the processing time estimates provided by the user are highly inaccurate.

In this light, it is expected a reduction in the scheduling performance of all the

scheduling policies, since none of these scheduling policies are designed to handle

inaccuracies in the execution time of the jobs, and therefore the only aspect that we

can evaluate is how tolerant the scheduling policies are when inaccurate processing

time estimates are introduced.

Figures 3.3b and 3.3e show the results of fifty dynamic scheduling experiments,

using estimated processing times p̃j , for HPC platforms constituted by m = 256

and m = 1024 processors. As expected, all scheduling policies had a considerable

performance degradation, except the FCFS, which does not use job processing times.

Nevertheless, the median of the average bounded slowdown generated by policies

F1, F2, F3 and F4 was between 7.22 and 84.18 times better for the scenario with
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Figure 3.3 Scheduling performance results with jobs characteristics generated from a workload model.

m = 256 and between 3.30 and 117.24 times better for the scenario with m = 1024,

when compared to the best performing hand-engineered scheduling policy.
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3.3.2.3 Scheduling using estimated runtimes and agressive backfilling

In this experiment, we used the aggressive backfilling algorithm in conjunction with

the scheduling policies. In such setting, when a rescheduling event occurs, the

jobs are reordered in the queue using a scheduling policy and then we apply the

aggressive backfilling algorithm to check if there is one or more jobs further back

in the queue that, if selected for execution, will not delay the first job in the queue.

In this case, all the scheduling decisions (the scheduling policy and the backfilling)

are made over the estimated processing time p̃j , with the actual processing time pj

used only to simulate job execution. This setting is the most realistic setting we can

elaborate using jobs generated from a workload model.

Figures 3.3c and 3.3f show that the introduction of the aggressive backfilling al-

gorithm resulted in a overall increase in performance, with the FCFS policy with

backfilling (previously mentioned as the EASY algorithm) taking the most advantage

of the backfilling strategy. Our obtained nonlinear functions had the least benefits

from the backfilling, since the better initial schedules lowered the possibilities for

job backfilling. Nevertheless, the performance of the obtained nonlinear functions

is still superior to the other hand-engineered scheduling policies. For instance, the

median average slowdown for the F2 strategy was more than 11 times smaller than

the best hand-engineered policy for both 256 and 1024 core machines.

3.3.3 Scheduling Performance: Real Workload Traces

We also evaluated whether the obtained scheduling policies generalize well to highly

different workloads types, obtained from real workload traces, and HPC platform

configurations. In this light, in this subsection we attempt to answer the following

questions:

• Can the obtained scheduling policies perform well when scheduling a set of

jobs extracted from real workload traces and executed in a simulated HPC

platform similar to the one where the traces were obtained?
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Table 3.4 Real workload traces used for evaluation of the scheduling policies.

Name Year # CPUs # Jobs Util % Duration
Curie 2011 93,312 312,826 62.0 20 Months
ANL Interpid 2009 163,840 68,936 59.6 8 Months
HPC2N 2002 240 202,871 60.1 42 Months
SDSC Blue 2000 1,152 243,306 76.7 32 Months
SDSC SP2 1998 128 59,715 83.4 24 Months
CTC SP2 1997 338 77,222 85.2 11 Months

• With the same setting from the previous question, but using the user estimated

processing times p̃j to perform the scheduling decisions, can the obtained

nonlinear functions perform well as scheduling policies?

• Can the obtained nonlinear functions benefit from the aggressive backfilling

algorithm and perform well in the scenario from the previous question?

We used the traces described in Table 3.4, which are publicly available at the Parallel

Workloads Archive [32]. To better evaluate the generality of the obtained nonlinear

functions, we chose a set of traces from computer HPC configurations ranging from

128 to 163,840 processors, mean utilization values from 59.6% to to 85.2% and

measurements dates from year 1997 to 2011.

On each trace we collected as many non overlapping half-month sequences of jobs

to perform the dynamic scheduling experiments as possible. Each sequence contains

all jobs submissions equivalent to a period of fifteen days. We made sure that

there was no overlap between the sequences and the on-line scheduling algorithm

works similarly to the scheduling algorithm used in the experiments of the previous

subsection.

3.3.3.1 Scheduling using the actual job runtimes pj

Figure 3.4 shows the dynamic scheduling experiments results using the actual

processing times to perform the scheduling decisions. All the obtained nonlinear

functions resulted in lower average slowdowns for all traces, with varying levels of

improvements depending on the HPC workload characteristics. More importantly,

the difference between the upper and lower quartiles (box limits) was lower when
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using the obtained nonlinear functions, meaning that the average slowdown was

more predictable and stable, a desirable property for HPC systems. For all policies

there were some cases where the average bounded slowdown was notoriously high,

which occurred due to uncommon jobs characteristics in the traces. For example,

in the HPC2N trace, some workloads contains bursts of jobs with large processing

times, which overloaded the platform for all policies.

The nonlinear function F2 achieved overall best results for most of the traces, with

the exception of the the ANL Interpid trace, in which F3 performed better. This

result shows that, with real workload traces, the best scheduling policy can change

from trace to trace. This behavior is not unexpected, since the workload traces

evaluated are different from each other and from the workload generation model

used in the simulation scheme. But choosing any of the obtained policies F1 to F4

resulted in improvements in the median average slowdowns in all scenarios and

smaller differences between the upper and lower quartiles in most scenarios.

3.3.3.2 Scheduling using user estimated job runtimes p̃j

We evaluated the scheduling policies using the processing time estimate p̃j obtained

from the respective workload log when performing the scheduling decisions. Since

the user estimates of the processing times are often rough and inaccurate, we expect

a degradation in the performance of all scheduling policies. Figure 3.5 shows

that the obtained functions F1 to F4 continued to generate lower median average

slowdowns and differences between the upper and lower quartiles for all evaluated

HPC platforms. Although the best function from F1 to F4 varied depending on the

platform, any of them would result in performance improvements over existing

hand-engineered policies.

The results from this section are noteworthy, considering the nonlinear functions F1

to F4 were trained using data from a single workload model in a simulated machine

with 256 processors. These functions worked well as scheduling policies for HPC

machines with highly different architectures, with up to 163,840 processors, very
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Figure 3.4 Scheduling performance results with jobs characteristics obtained from real HPC platform workload
logs and using actual processing time in the scheduling decisions.

different workload types, and using inaccurate estimated job runtimes from real

machine users.
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3.3.3.3 Scheduling using estimated processing times and aggressive

backfilling

In this experiment we considered the most realist scenario, where scheduling deci-

sions are based on the user estimates of processing times p̃j and with the addition of

aggressive backfilling to reduce resource idleness. Figure 3.6 shows the correspond-

ing dynamic scheduling experiments. Once again, the FCFS policy with backfilling

(the EASY scheduling algorithm) was the scheduling policy which benefited the most

with the introduction of backfilling. The performance results obtained for the WFP

and UNI policies also reinforces the favorable results obtained by Tang et al. [75],

since we obtained similar comparative results for these policies, with the exception

that we evaluated them with different workload logs.

The obtained nonlinear functions had smaller benefits from using backfilling. Sim-

ilarly to the experiments with synthetic workloads, the better schedules provided

by the proposed nonlinear functions resulted in less opportunities for backfilling

jobs. Nevertheless, functions F1 to F4 still resulted in lower median average slow-

downs and/or lower differences between the extreme quartiles for most scenarios,

and continued to be a better general choice than the hand-engineered scheduling

policies.

3.4 Summary

Due to its simplicity, scheduling policies in the form of functions that take job

characteristics into consideration, combined with the computationally inexpensive

aggressive backfilling algorithm, are an appealing alternative for the problem of on-

line scheduling of jobs in HPC platforms. In an equally simple manner, in this chapter

we show that – by introducing a simulation procedure that captures the observations

of job scheduling behavior under several distinct conditions and a simple machine

learning strategy to model these observations into nonlinear functions – we can

obtain scheduling policies that effectively capture the effects of job characteristics

on scheduling behavior. We showed that these functions outperform other classical
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Figure 3.5 Scheduling performance results with jobs characteristics obtained from real HPC platform workload
logs and using user estimated processing times obtained from the same logs in the scheduling decisions.

and smart hand-engineered scheduling policies in a variety of scenarios. Moreover,

the large weights assigned to the submission time of the jobs (Table 3.2) result in a

fast increase in priority as the jobs wait in the queue (Figures 3.2b and 3.2c), thus

preventing starvation without any manual customization of the policies.
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Figure 3.6 Scheduling performance results with jobs characteristics obtained from real HPC platforms, with the
addition of the aggressive backfilling, and using user estimated processing times obtained from the
same logs in the scheduling decisions.

Using jobs characteristics obtained from the workload model of Lublin and Fei-

telson [55] and considering similar scenarios from the one used to capture the

scheduling observations, the obtained scheduling policies achieved very good results.

In the most realistic of these scenarios (i.e. using the aggressive backfilling in addi-
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tion to the scheduling policies and using the processing time estimates to perform

the scheduling decisions), the obtained scheduling policies achieved medians of the

average bounded slowdowns up to 11.8 times better when compared to the best

performing hand-engineered scheduling policy.

Although we used a workload model to generate the nonlinear functions, we could

envision the same procedure being applied to obtain custom scheduling policies for

a specific HPC platform, using its specific workload traces and architecture configu-

rations. Our results using the workload model indicate that these custom policies

could, in principle, bring important improvements in the achieved average bounded

slowdowns in these platforms. We also have confidence that the procedures pre-

sented in this chapter can be applied with other objective functions such as average

waiting time or flow time. Therefore, our approach gives freedom for the HPC

platform maintainer to choose the objective function that best suits the requirements

of his/her users. Also, one can apply the proposed procedure periodically, using data

from newly executed jobs. This dynamic update will adapt the scheduling policies to

changes in the pattern of jobs submitted in the platform.

Scheduling performance could also be improved by combining our machine learning

scheme for obtaining efficient scheduling policies with a machine learning scheme

for predicting job execution times, such as the one proposed by Gaussier et al. [40].

We showed that inaccurate execution time estimates from users greatly reduces

the efficiency of our scheduling policies. We believe that by using execution time

predictions we could improve the average bounded slowdown in the more realistic

scenario where we do not know the actual job execution times.

Finally, we would like to note that using a workload model to capture the observa-

tions brought some important advantages. The generalized job properties present in

the Lublin and Feitelson [55] workload model, when used to observe the scheduling

behavior of the jobs in several distinct configurations, resulted in scheduling policies

that are able to express efficient general patterns regarding to which job should be

selected for execution first. In this light, the obtained scheduling policies showed

consistent lower median values for the average bounded slowdown in simulation
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experiments considering very different job types and HPC platform configurations.

Therefore, although it would be possible to define scheduling policies specifically

for each HPC platform, as aforementioned stated, it seems that general policies, as

the ones we found in this work, could be sufficient to efficiently schedule jobs for a

range of specific workload types and HPC platform configurations.

As future work, we can improve the work presented in this chapter in many directions.

A first direction would be to perform a deep analysis of the schedules performed by

the simulation scheme presented in Section 3.2.2. The simulation output itself can

provide useful insights about good scheduling strategies that could result in novel

scheduling heuristics.

It is equally interesting to perform the proposed approach to learn scheduling policies

taking into account not only synthetic jobs, but as well jobs obtained in real HPC

platform workload traces, such as the ones presented in Table 3.4. We envision that

we could extract novel characteristics – as well as novel scheduling heuristics – of

each HPC platform by performing our proposed approach in each workload trace.

Another direction would be to evaluate the effectiveness of the proposed approach

with different functional forms y(pj , qj , rj , θ) (see Section 3.2.3), more specifically

polynomials of the jobs characteristics, and nonlinear variants of the area property

of the jobs, notably f(pj , qj , θ) = pθ1
j q

θ2
j .

It would be interesting as well to evaluate the scheduling policies by deploying them

on real HPC platforms and check how they perform under real conditions. We used

simplified simulations to evaluate the obtained scheduling policies using real traces

which ignores, for instance, network and memory bottlenecks that could appear

from interactions among job execution. Nevertheless, we believe the simulations are

a reasonable approximation for these platforms.

At last, another direction would be to cover a wider range of HPC platforms. We plan

to improve the strategy proposed by this chapter to obtain scheduling policies that

also address the on-line scheduling of jobs in HPC platforms containing processing
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units with distinct architectures such as GPUs [62] and MICs [20] – thus characteriz-

ing a scheduling problem with unrelated machines in parallel Rm, see Section 2.1.1

– where multiple implementations, aiming a specific architecture, are available for

the same job and the scheduler needs to select one of these implementations to be

executed.
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4Beyond EASY-Backfilling: a

Simple Scheduling Policies Case

Study2

In the previous chapter we show that, using the rich information present in HPC

workload logs to drive fast simulations that extract and log scheduling characteristics,

and feeding these characteristics to simple non-linear regression machine learning

models, we can devise scheduling heuristics that can perform well in several distinct

scheduling scenarios. Although our results show sound advancements towards

learning scheduling policies, one observation that we found is that there are some

aspects of the learned scheduling policies that are hard to reason about. For instance,

it is nontrivial to reason over the “magic” values present in the coefficients, as well

as it is nontrivial to reason over the emergence of square roots and logarithms in

the functions F1 to F4 (see Table 3.2). This lack of full explanation behind the

scheduling decisions performed by functions F1 to F4 hinders the deployment of

these learned scheduling policies in real scenarios, as many practitioners prefer to

stay at their “comfort zone”, and opt to use algorithms inspired by the Aggressive

Backfilling with First-Come-First-Served order (also called EASY Backfilling [60],

see Section 2.1.2.3).

At their defence, many reasons can be devised to justify the choice of EASY Back-

filling: it is established that EASY Backfilling increases the overall utilization of

the platform, while keeping a relative simplicity and job starvation guarantees.

Furthermore, although it is also established that there is room for improvement in

the scheduling, as shown in the previous chapter, replacing EASY Backfilling with

2The text of this chapter is adapted from the following published paper: Danilo Carastan-Santos,
Raphael Y. de Camargo, Denis Trystram, Salah Zrigui. "One can only gain by replacing EASY
Backfilling: A simple scheduling policies case study.". 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2019.
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another algorithm might be seen as a risky change: one can see this change as

a “jump into the dark”, with the changes in performance only noticeable after a

long period of time, and potentially after many strong-worded emails from many

(important) users.

In this chapter we go towards bringing light to this jump. We selected a class of

scheduling algorithms that keep the same simplicity and starvation guarantees of

EASY Backfilling and we used a fast and reliable HPC simulation software to provide

sound evidence on what could be gained – considering many relevant performance

metrics – if one replaces EASY Backfilling. More specifically, in this chapter we

present the following contributions:

• We present an experimental study that addresses the expectations and potential

gains that come from replacing the EASY Backfilling scheduling policy in typical

high-performance computing platforms;

• We highlight the Shortest Area First (SAF) scheduling policy, which, we argue,

has the best-observed overall performance among the tested policies. In fact,

we propose SAF as a new benchmark for future batch scheduling studies;

• We highlight an aspect that is often overlooked when evaluating the per-

formance of a scheduling policy, which is the link between the number of

resources used by jobs and the fairness of a given scheduling policy;

• We address the influence of the aggressive backfilling mechanism on the

transparency and predictability of scheduling algorithms.

The remainder of this chapter is organized as follows. In Sections 4.1 and 4.2

we explain the scheduling problem under study and the performed experimental

protocol. In Section 4.3 we present and discuss the obtained experimental results.

Finally, we present a summary of the chapter in Section 4.4.
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4.1 Preliminary Definitions

In this chapter we consider the same scheduling background presented in Sec-

tion 3.2.1. We also use the logs (also called traces) present in the Parallel Workloads

Archive, shared in the Standard Workload Format (SWF) [31]. We exploit the rich

information present in these logs to drive the simulation workflow explained in

Section 4.2. The main difference of this chapter in regards to Chapter 3 is that

we consider three performance objectives, the waiting time (wj , Equation 2.2), the

bounded slowdown (bsld, Equation 3.2) and a third objective, called per-processor

bounded slowdown [83] (pp-bsld or pp-slowdown, Equation 4.1), which is defined

for a job j as:

pp-bsldj = max
(

wj + pj
qj ·max(pj , τ) , 1

)
(4.1)

where wj is the waiting time of j and τ is a constant to prevent smaller jobs from

reaching very high values, similarly with the bounded slowdown. The reasoning

behind the per-processor bounded slowdown is to normalize the slowdown results

for jobs who perform the same amount of work, though with different degrees

of parallelism (number of processors). The pp-slowdown can be seen as a more

appropriate objective for the parallel job scheduling problem, as it tries to balance

the waiting time of the jobs in function of the number of processors qj , which is not

taken into account by either the waiting time or the slowdown.

Like other cost metrics, the waiting time, slowdown and pp-slowdown are usually

considered in their cumulative versions, which means that one seeks to minimize the

average waiting time, bsld or pp-bsld. It is worth noting that other metrics such as

the maximum waiting time bsld or pp-bsld of all the jobs are also worthy of interest,

though they must be taken more carefully, as we explain in Section 4.3.3.

For a queue of jobs Q, we consider the average waiting time, slowdown or pp-

slowdown of Q as being the average of the respective metric, over all jobs j ∈ Q.
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4.1.1 Fairness and User Satisfaction

Specifically for slowdown and pp-slowdown, the expectation of a good scheduling

performance is that the waiting time of the jobs should be proportional of its running

time, that is, a job that must perform a larger amount of work (and thus requires

many resources and/or for a longer period) could “afford” a longer waiting time.

Indeed, it is arguable that the slowdown metric can be a good performance metric for

a job-centric fairness, in comparison to other metrics such as waiting time. One could

envision, however, that a better performance metric could be a user-centric metric,

that captures the overall satisfaction among users. Although this could be indeed

the case, one can not simply simulate user behavior by reproducing a workload trace

due to the fact that the workload would change (in an on-line manner) in function

of the scheduler’s performance (e.g. a more efficient scheduler would stimulate

users to submit more jobs and vice versa). At the time of writing of this thesis,

there is no consensus in the community about accurate and/or meaningful ways to

simulate user behavior, which leads us to choose a job-centric approach rather than

a user-centric one.

4.1.2 On-line Batch Scheduling Algorithm

In this chapter we consider a queue-ordering based, on-line parallel job scheduling

algorithm that works as follows: the scheduler sorts – in increasing order according

to a scheduling policy f(j) – its waiting queue in two distinct events: (i) when

a job arrives in the queue or (ii) when a resource (set of processors) is released

and becomes available. When a job j is selected for execution and if the requested

number of processors qj is lower than the total number of processors available, then

qj processors are reserved for this job and they become unavailable. These processors

will become available again only when pj units of time have passed since the start of

the execution of t. If the actual processing time pj is larger than its estimate p̃j , j is

killed, that is, its execution is terminated.
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Table 4.1 Scheduling policies used for comparison.

Name Description Function
FCFS First-Come-First-Served [70] f(j) = rj
SPF Smallest Estimated Processing Time First [71] f(j) = p̃j
SQF Smallest Resource Requirement First f(j) = qj
SAF Smallest Estimated “Area” First f(j) = p̃j · qj

In the case that there are not enough processors to process j, an aggressive backfilling

subroutine [60] (see Section 2.1.2.3) is applied. In this case, it is estimated at which

time there will be enough resources to process j. Next, the scheduler looks for jobs in

the waiting queue – following the order of jobs already established by the scheduling

policy f(j) – for which there are enough processing resources and that do not delay

the execution of j. If a job meets these aforementioned conditions, then it “jumps

ahead” and is scheduled for execution.

A key component of this scheduling algorithm is the scheduling policy f(j). Although

many scheduling policies can be devised, in this work we are concerned in comparing

simple scheduling policies. Table 4.1 shows the simple scheduling policies considered

in this chapter. We define a scheduling policy f(j) as simple if f(j) is equal to one of

the jobs’ characteristics (notably FCFS, SPF and SQF, in which FCFS and SPF are well

known policies in the off-line job scheduling literature) or its meaning is intuitive

and transparent to the platform user (notably SAF, which sorts the jobs according

to their “area” or “geometry”). One can observe that we could also envision the

“last/largest” variant of the presented scheduling policies, namely the Last-Come-

First-Served (LCFS), Largest Estimated Processing Time First (LPF), Largest Resource

Requirement First (LQF) and Largest Area First (LAF) policies. However, we decided

to not consider them because in our preliminary experiments, and as well as reported

in the works of Gaussier et al. [39], the “last/largest” variants present consistent

worse scheduling performances than their “first/shortest” variants.
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4.1.2.1 Starvation Prevention

It is possible to observe that among all scheduling policies presented in Table 4.1,

only FCFS can straightforwardly prevent starvation, that is, it guarantees that every

job will eventually be processed. Therefore, some starvation prevention mechanism

is mandatory for the remaining policies in order to be applicable in real scenarios.

In this regard, we adopted a simple thresholding mechanism [39], in which a job j

would receive a maximum priority (bypassing the priority given by the scheduling

policy f(j)) if its waiting time exceeds a maximum threshold value Θ. If many jobs

receive a maximum priority at the same time, they will follow a FCFS order.

The threshold value Θ is an important parameter and indeed must be set with some

caution: a too small threshold value would constrain the scheduling policy f(j), by

assigning the maximum priority at too many jobs and thus too many jobs will follow

FCFS order instead of f(j). Conversely, a too large threshold value could be too

prohibitive in the Quality of Service point of view of the platform. In this chapter we

set the threshold value Θ as being three times the maximum processing time estimate

allowed by the platform. In general, it is a common practice in HPC platforms to set

a maximum processing time allowed, setting the threshold as being three times this

value means that the slowdown of larger jobs (i.e. jobs with processing time close

to the maximum) would have a value of around three. Since the policies used this

chapter prioritize shorter/smaller jobs. This thresholding mechanism is dedicated

to the longer/larger jobs and is proven to be effective in preventing starvation, as

we show in Section 4.3 that the majority of jobs that reach the threshold are larger

ones.

4.2 Experimental Workflow

In this section we present the experimental protocol adopted in this chapter. We

make use of BatSim [21], which is a scientific instrument based on SimGrid [13] –

a well known HPC systems simulator – specially tailored to simulate and study the

behavior of batch scheduling algorithms. BatSim and SimGrid allows us to rapidly
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Table 4.2 Real workload traces used for evaluation of the scheduling policies.

Name Year # CPUs # Jobs Util % Duration
HPC2N 2002 240 202,871 60.1 42 Months
SDSC Blue 2000 1,152 243,306 76.7 32 Months
SDSC SP2 1998 128 59,715 83.4 24 Months
CTC SP2 1997 338 77,222 85.2 11 Months
KTH SP2 1996 100 28,476 70.1 11 Months

and accurately simulate the scheduling of many workload traces with using only a

single workstation and in only a matter of days, which would not be feasible without

simulation.

Table 4.2 shows the real workload traces used in this chapter. In order to provide

statistically meaningful results with the scheduling of the traces, we adopted a

sampling technique based on [26]. Algorithm 1 presents the pseudo-code. The

idea is to generate new data using existing user profiles. A profile can be defined

as the activity of a single user throughout the trace, split into many weekly time

periods. To generate a new trace we combine several random permutations of

each user’s profiles. One can observe that this sampling technique is not capable

of reflecting the workload changes in function of the scheduler’s performance (as

discussed in Section 4.1.1). However, it allows to generate as many logs as needed

while preserving the jobs’ properties of each user.

Algorithm 1 Workload trace resampling algorithm.
Require: list of user profiles P extracted from the original workload trace. Number

of weeks in the resampled trace nw
Ensure: resampled trace Wres

1: Wres ← ∅
2: for i = 1 to nw do
3: wres ← ∅
4: for each user profile p in P do
5: pires ← random weekly split from p
6: add pires to wres
7: end for
8: append wres in Wres

9: end for
10: return Wres

For each trace of Table 4.2, we generate 10 samples using the aforementioned

procedure. The size of each sample is proportional to the size of the original trace.
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Each sample is then simulated following the scheduling algorithm presented in

Section 4.1.2, taking into consideration each of the scheduling policies presented in

Table 4.1. The results for each scheduling policy and workload trace presented in

the next Section are statistical summaries of the ten samples of each trace.

4.3 Experimental Results

In this section we present the main results obtained by the experimental procedure

described in Section 4.2. We perform several analysis in order to provide a better

understanding of the behavior of the scheduling policies and what gains could be

expected if a certain scheduling policy is chosen.

4.3.1 Overall Scheduling Performance

In this Section we aim to answer the following question: What is the relative perfor-

mance of the scheduling policies in Table 4.1?

Figure 4.1 shows the overall performance results for the average slowdown, waiting

time, and pp-slowdown. Each subplot refers to a workload trace from Table 4.2.

To avoid outlier interference in the results, for each trace and scheduling policy

we discarded the best performing and the worst performing workload sample (see

Section 4.2) from the 10 initial workload samples. In other words, we present only

the scheduling results of the samples whose performance belongs to the 10-90%

percentile range. Each subplot contains statistics of the scheduling simulation of

these remaining samples. The solid lines in the subplots represent the cumulative

mean of the objective metric (average slowdown, waiting time, or pp-slowdown) of

the finished jobs at each week of simulation, from the beginning to the end of the

workload, and the dashed lines represent the cumulative maximum and minimum

average values of the respective metric at each week.

Looking at the scheduling performance in Figure 4.1, we can cluster the tested

policies in two classes: the ones that are oblivious of the processing time estimate

p̃ (FCFS and SQF), and the ones that are not oblivious (SPF and SAF). From the
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aforementioned Figure, we can observe a strong correlation between the scheduling

performance of these clusters, with the former cluster consistently presenting worst

performances than the latter. This result is expected: for the slowdown and pp-

slowdown, jobs with a lower p̃ – and thus lower p, since p̃ is an upper bound of p –

have a higher risk of inflating the metrics if they wait too much (see Equations 3.1

and 4.1). By favoring jobs with a lower p̃ (SPF and SAF), we assure that these

high risk jobs are executed quickly, and thus the average for both slowdown and

pp-slowdown are kept under control. The waiting time is also favored by prioritizing

jobs with lower p̃, since for all traces these jobs are more frequent [24].

One point that is worth noticing is how much can be gained in quantitative values if a

policy other than FCFS (notably SPF or SAF) is chosen and kept during a long period.

In our experiments we achieve performance gains up to 83.4% (SPF), 61.4% (SAF),

and 85.1% (SAF) for the slowdown, waiting time, and pp-slowdown respectively, in

comparison with FCFS. It is important to note here that the scheduling simulation is

performed with a starvation prevention mechanism (see Section 4.1.2). Therefore,

these gains can be obtained while guaranteeing that no job will starve.

Another important observation is how SAF – which in contrast with SPF, is less

known in the literature – performs consistently well in all objectives considered. We

further address this phenomenon in the next section.

4.3.2 Is SAF the ultimate simple policy?

As highlighted in the previous section, the scheduling policies that are not oblivious

to the processing time estimate p̃ (notably SPF and SAF) are the ones who achieved

the most consistent good performances in the experiments that we performed. In

this section we make a further analysis on which are the characteristics of the jobs

that make them prioritized/delayed by these two policies, with an emphasis on the

delayed jobs.

For the processing time estimate p̃ this analysis can be easily devised: SPF delays jobs

with a larger p̃ and SAF is similar, with the distinction that it considers the number
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Figure 4.1 Cumulative weekly average slowdown, pp-slowdown and waiting time: For each trace, the middle solid
line represents the mean and the two dashed lines represent the lower and upper 10-90 percentiles.
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of processors q as well. This raises the importance of our thresholding mechanism,

which specifically concerns jobs with a large p̃.

In its turn, for the number of processors q, Figure 4.2 shows the number of processors

q of the top 100 jobs – of each sample of each trace – who got delayed the most

(here defined as the jobs with the highest slowdown) for each scheduling policy. An

interesting observation here is that SPF is oblivious to the number of processors q

and thus no correlation should be expected for the delayed jobs in function of q.

Therefore, SPF had a high risks of delaying jobs with smaller q which, in principle,

should be easier to be scheduled in an HPC platform.

Indeed, we recall a known observation [29] that the slowdown and the waiting

time metrics (arguably the most popular ones) do not take into consideration one

important dimension of the scheduling problem: the number of requested processors

q. Jobs that perform the same amount of work though with different shapes are

treated indifferently by these metrics. The pp-slowdown generalizes the standard

slowdown by including the number of processors q in the metric.

At this light SAF shows up as a solid policy among the simple ones we evaluated.

It achieved close to best observed performances for the slowdown and waiting

time objectives, and systematically outperformed all other simple policies for the

pp-slowdown objective (Figure 4.1). This complies with the results obtained in the

previous chapter (see Chapter 3), where the machine learned policies converged

to functions that contain a SAF-like component. Although one can claim that SAF

could be biased towards pp-slowdown, since with pp-slowdown we would seek to

minimize an objective function that is related to the area of the jobs, we argue that

the pp-slowdown is a more appropriate objective for the parallel job scheduling

problem, in comparison with waiting time or slowdown.
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Figure 4.2 Number of processors of the top 100 jobs with highest slowdown values.
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4.3.3 Accounting the Maximum: one should care with

caution

One can notice that in this chapter we only seek to find good scheduling algorithms

aiming at the average of the objective functions and not the maximum. Although

one can argue that the maximum of the objective functions are important as well, in

this section we present some observations found by our study that show that aiming

only for the maximum can be potentially problematic.

The first point is that the maximum metric is centred at the performance of only

one job, meaning that the value of the maximum can be unstable and subject to

unpredictable factors, such as unavoidable bursts of jobs submissions and/or jobs

that have some characteristic that can potentially mistakenly inflate the metric.

To illustrate this potential, we clustered the jobs into two classes: the premature

jobs, in which the difference between the processing time estimate p̃ and the actual

processing time p is at least 100 times higher, and the standard jobs, which are the

remaining jobs. Table 4.3 shows the percentage of premature jobs found for each

workload trace. What is interesting to observe is that the number of premature jobs

is not negligible, up to one third of all of the jobs of the trace. Furthermore, the

difference between p̃ and p can be sometimes quite extreme: jobs that are marked

as successful jobs (i.e. job that did not crash) and require the maximum processing

time allowed p̃, though actually execute for around one minute happen in every

trace. Since these jobs are marked as successful, we can not discard them from the

analysis.

As a consequence, any scheduling policy that prioritizes jobs in function of the

processing time estimate p̃ has a risk of delaying these premature jobs and, when

evaluating the objective function of these jobs, they will obtain poor results which

will harm the maximum of the objective function. To illustrate this effect, Table 4.4

shows the ratio between the average slowdown of the premature jobs and the

average slowdown of the standard ones, for all traces and scheduling policies. We

can notice that the difference in scheduling performance of these two classes of jobs
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is large, up to 17 times larger for all policies in the HPC2N trace, and this difference

in the maximum slowdown between these two classes (result not shown in Table 4.4)

is even larger. We can also notice that this difference is often amplified by policies

that takes p̃ into account (SPF and SAF).

Agreeing whether or not these performance gaps are due to the scheduler is always

up to argument. However, Figure 4.3 shows a more holistic view of the scheduling

performance: we grouped the jobs in many categories that are in function of the jobs’

scheduling performance, from the jobs that were executed immediately (slowdown

of 1), to the jobs that were poorly scheduled (slowdown of at least 100). We can

observe that choosing another policy than FCFS shows performance improvements

in all categories: the number of jobs who got executed immediately increases and

the number of jobs in all other categories (the jobs who had to wait) decreases,

with an exception of the SPF policy at the 1-10 slowdown range. These results are

even more impressive for the category of jobs with poorer scheduling performances

(100+ slowdown). For instance, by choosing SAF, the number of jobs who got badly

scheduled can be lowered by more than half, up to 2.8x less poorly scheduled jobs

in comparison with FCFS.

All of these points elucidate the importance of analyzing the scheduling performance

in a holistic view, and the caution that must be taken into account when evaluating

the scheduling performance with maximum values. We would certainly overlook

these good properties of the studied scheduling policies if we had considered only

the maximum of the objective functions.

Table 4.3 Percentage of premature jobs for each workload trace

Trace % of premature jobs
HPC2N 17.4
SDSC Blue 30.2
SDSC-SP2 16.1
CTC-SP2 9.5
KTH-SP2 12.4

72



83.27%
78.06%

82.32%

73.16%

10.98%
16.08%

12.58%
17.49%

4.31%4.69%4.14%6.59%
1.45%1.17%0.96%2.76%

79.83%78.77%79.96%
74.99%

14.09%15.96%15.24%16.62%

2.45%2.39%2.2%3.52% 3.63%2.88%2.59%4.87%

72.09%

65.86%
70.14%

60.74%

15.51%

22.12%
18.35%

21.88%

6.52%6.7%6.52%8.36%
5.88%5.33%4.99%

9.02%

86.89%85.12%86.91%
80.89%

8.75%10.72%9.47%10.98%

3.24%3.26%2.82%
5.75%

1.12%0.91%0.8%2.37%

70.73%
67.48%

69.91%

61.38%

16.23%
19.74%17.66%18.99%

7.59%8.54%8.1%10.16%
5.44%4.23%4.33%

9.47%

SDSC−SP2

SDSC−BLUE

KTH−SP2

HPC2N

CTC−SP2

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+
0

25

50

75

0

20

40

60

80

0

20

40

60

0

25

50

75

0

20

40

60

Bounded slowdown

N
um

be
r 

of
 jo

bs
 (

%
)

policy
FCFS
SAF
SPF
SQF

Figure 4.3 Distribution of the bounded slowdown values for all jobs

73



Table 4.4 Ratio of the average slowdown between the premature the standard jobs

Policy HPC2N SDSC Blue SDSC SP2 CTC SP2 KTH SP2
FCFS 17.84 3.59 3.94 5.58 8.69
SPF 17.29 7.17 4.36 5.04 12.09
SQF 14.02 2.96 2.04 1.67 9.31
SAF 17.88 7.41 3.79 2.61 11.41

4.3.4 Backfilling Influence

One important question that raises when the queue ordering policy is changed

(see Section 4.1.2) is how the backfilling mechanism behaves in function of the

queue ordering policy. Although it is well known [60] that backfilling increases

the platform’s utilization and is unlikely to harm the original (without backfilling)

schedule, its relevance in performance is not clear. This question is also worth

of importance to bring a clearer notion about the predictability of the scheduling

policies, that is, given one policy, how much it is likely that the jobs will actually

follow such an order.

In order to clarify this point, for all samples of each trace and each scheduling

policy we kept track on how many jobs got scheduled to execution by the backfilling

mechanism. Figure 4.4 shows the distribution of the number of backfilled jobs

over all samples, for each workload trace and scheduling policy. One interesting

observation is the absence of backfilled jobs for the SQF policy for every trace and

sample. This result is expected and we formalize it with the following proposition:

Proposition 1. If the aggressive backfilling algorithm uses a queue of jobs sorted by

SQF and there is no threshold mechanism added to the scheduling, no job is backfilled.

Proof. As explained in Section 4.1.2, scheduling decisions are performed in two

cases:

1. When a job arrives in the queue: in this case, let jh be the job with the highest

priority in the queue. Job jh is in the queue, therefore there is not enough

resources to process jh. Since the queue is sorted by SQF order, there is no

job in the queue that requires less resources than jh, so none of them can
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be backfilled. If a new job j arrives in the queue and its number of required

processors is lower than the number of processors required by jh, SQF will

assign j with the highest priority and thus backfilling will no longer be applied

for j. Conversely, where j requires more processors than jh, j cannot be

backfilled as aforementioned.

2. When a job is finished and its allocated resources are released: in this case, the

jobs will be scheduled for execution following SQF order until it is no longer

possible to schedule jobs with the current available resources. At this point,

there are not enough resources to schedule the job with the highest priority

in the queue and, since the queue is sorted in SQF order, no other job in the

queue can be backfilled as aforementioned.

Since in both of the above cases it is impossible to backfill jobs, no jobs are backfilled.

Yet, some backfilling may happen when using SQF with jobs that exceeded the

threshold in the waiting queue (since they break the SQF order). However, such jobs

are expected to be very few. This explains some results found by Lelong et al. [53],

in which they state that the SQF policy did not lead to many backfilling decisions in

their experiments.

Interestingly, using SAF and SPF resulted in 78% and 56% less backfilled jobs on

average, respectively, when compared to FCFS. Although it is unlikely that backfilling

would harm the scheduling, as mentioned above, SPF and SAF are more consistent

and predictable policies, since jobs are more likely to be scheduled for execution

following the policy order, as oppose to being scheduled by “jumping ahead” in the

waiting queue in unpredictable moments.

4.4 Summary

As the scale and power of high-performance computing (HPC) platforms increase,

it becomes more crucial to deploy efficient resource management approaches (no-
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tably scheduling algorithms) in order to prevent the dampening of such increase in

computing power. In an adversarial manner, it is also important that such schedul-

ing algorithms stay simple and easily understandable by the users. Furthermore,

changing the scheduling algorithm is often seen as a risky move, mainly due to the

possibility of having unseen and unpredictable changes in the performance of the

platform, which could be detected only after a long period of time.

In this chapter, we move towards providing more knowledge and experience on

what are the expectations if one decides to change the First-Come-First-Served

(FCFS) scheduling policy with aggressive backfilling – the popular EASY Backfilling

– scheduling algorithm. We selected a class of simple scheduling algorithms that

differs from EASY Backfilling by changing the scheduling policy (other than FCFS)

and adding a thresholding mechanism (to provide the same no starvation guarantees

as FCFS). We used a flexible and reliable simulation software and exploited the

rich information presented in HPC platform workload traces to find what could be

observed and gained by using these other simple scheduling algorithms rather than

EASY Backfilling.

Our results indicate that one can only gain by replacing EASY Backfilling with simple

policies that consider the estimated processing time and the required resources,

notably the Shortest Processing time First (SPF) and Shortest Area First (SAF).

By adding a simple thresholding mechanism, it is possible to obtain significant

performance improvements for the long run, using three relevant performance

objectives, while also guaranteeing that every job in the waiting queue will eventually

be executed. We show that these simple policies not only present better performance

in average values, but they also significantly increase the number of jobs executed

instantly (without waiting) and lower the number of jobs that wait for a long time.

The performance gains over EASY Backfilling is distributed among all waiting jobs.

These simple policies also show that they can perform well with less interference

from backfilling: the scheduler is more likely to follow the original order as set by

the chosen scheduling policy, and not by the rules of backfilling, thus providing more
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predictability and transparency, two properties that are sought by HPC platform

administrators.

We also highlight a less known scheduling policy in the literature, the Shortest Area

First (SAF). In our experimental campaign, we found that this policy managed to

consistently provide close to the best (if not the best) observed performance in all

scenarios and performance objectives we evaluated. For instance, considering the

slowdown objective, SAF not only provided an average overall performance increase

up to 83.4%, but as well increased the number of jobs that run immediately by

up to 9% and lowered the number of jobs who waited for a long time (very long

slowdown) by up to 2.8 times, in comparison with FCFS. This result reinforces

the relevance of the jobs’ area property, which was seen in the study performed

in Chapter 3, and raises the question about possible analytical properties of SAF.

Nevertheless, we reinforce that SAF must be considered as a baseline of comparison

in future parallel job scheduling research.

Last but not least, we present some cautions that must be considered if one wants

to provide a scheduling algorithm that minimizes the maximum of an objective

function. Taking the slowdown objective function as an example, we observed a

class of jobs whose presence in the workload is not negligible and can mistakenly

lead to inflated maximum slowdown values. If one only looks at the maximum of an

objective function to evaluate the scheduling performance, some good scheduling

policies (as the aforementioned ones) can be overlooked.

There is still work to be done in this subject: the first point is to address how users

play a role in the global scheduling. As mentioned in Section 4.1.1, our approach on

evaluating the scheduling performance is centred at the platform and the jobs, where

users are not taken into account. An ideal scenario would be to simulate the users

reacting to the scheduler’s performance. In this regard, accurate and reliable user

models are required to properly simulate user behavior. Another point is how we

can exploit SAF to provide SAF-like scheduling policies that are adapted to certain

situations and/or time periods.
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5General Discussion

5.1 General Remarks and Future Research

Directions

In this thesis we aimed to increase the computing efficiency of High Performance

Computing (HPC) platforms by performing a better management of its resources.

Informally, an HPC platform would be more efficient if it is able to process applica-

tions faster. Naively this could be solved by increasing the speed of the processors or

adding more processors to the platform. However, as discussed in Chapter 1, making

a better resource usage of the current HPC platforms is a matter of great importance,

since the power consumption of such HPC platforms is arguably too high already.

A better usage of an HPC platform can be achieved by making better decisions

as to when and where the applications (jobs) will be executed in the platform:

the so called job scheduling. Job scheduling in HPC platforms, however, is a

notoriously complex and delicate problem. Many parallel job scheduling problems

(see Chapter 2) fall into the NP-Hard class of problems. As a consequence, many

scheduling algorithms with strong performance guarantees are too convoluted and

computationally expensive, thus hindering their deployment in practical situations.

The majority of HPC platform maintainers choose instead simple list scheduling

algorithms based into a backfilling mechanism, with arguably the simplest queue

ordering policy: the fist job that arrives is the first to be processed, the so called

First-Come-First-Served (FCFS).

At a first moment (Chapter 3) we explored the jobs’ and the HPC platform character-

istics in an attempt to devise simple scheduling heuristics for parallel job scheduling.

The main hypothesis was that we could obtain novel scheduling patterns by an-

alyzing and making use of HPC workload execution logs. For this task we used
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automatic, machine learning (ML) procedures to find these patterns, which were

encapsulated by simple nonlinear functions of the jobs’ characteristics. We presented

experimental evidence that the patterns encapsulated by these functions can in fact

result in better scheduling performance if these functions are used as a scheduling

policy.

As advocated in Section 2.2, finding relevant patterns in data is rather dependant

on pioneer insights than making usage of machine learning methods themselves.

In this regard, one of the pioneer insights of Chapter 3 was about how we use the

workload data to drive ML algorithms. In Section 3.2.2 we proposed a method to

generate derivative data based on the actual workload logs, which measures how

much is the impact on the scheduling performance if a certain job type is selected

for processing. This derivative data, in conjunction with the jobs’ characteristics,

were afterwards used to train ML models. This derivative data was obtained by

performing fast scheduling simulations – which were only possible thanks to fast

and reliable HPC simulation software such as SimGrid [13] – taking into account

the jobs’ data present in the workload logs.

Beyond pioneer insights, finding relevant patterns in data can also rely on good

design choices. Taking the non-linear function form proposed in Section 3.2.3 as

candidate regression models was a fortunate choice that not only resulted in good

scheduling policies, but as well highlighted the importance of the “area” feature of

the jobs, which was one of the motivations behind the work performed in Chapter 4.

These results, however, do not disqualify at all other functional forms such as poly-

nomials of the jobs’ characteristics. These other functional forms may have the same

potential to provide efficient scheduling policies, though perhaps not in the same

manner that we achieved with the nonlinear functional form we used. For instance,

Legrand et al. [52] has shown afterwards that – by using a black box optimization

algorithm to fit the models – simple linear combinations of jobs characteristics can

perform well as scheduling policies. Addressing whether polynomials are good

functional forms for scheduling policies is an equally interesting future research

direction.
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Another interesting observation is the hindrance in finding models that are both

efficient and transparent. This effect is aggravated in the task of finding models to

be used as scheduling policies, because the models efficiency will be evaluated by

the scheduling performance of the learned policies, and not just by the prediction

accuracy of the target values. In Chapter 3 we opted to choose simple nonlinear

functional forms in an attempt to bring both simplicity and nonlinear flexibility for

the models. Nevertheless, it is still hard to reason over some aspects of the learned

policies. For instance, it is nontrivial to reason over the “magic” values present in the

coefficients, as well as it is nontrivial to reason over the emergence of square roots

and logarithms in the functions F1 to F4 (see Table 3.2). This lack of full semantic

meaning of the learned models is arguably a known problem in machine learning

and it must e taken into account when one seeks to learn scheduling policies. Finding

scheduling models through ML that perform well and have clear reasoning behind

its decisions is a noticeable challenge.

However, from the functions F1 to F4 we can observe the prominence of the “area”

feature of the jobs, which lead to the hypothesis that the Shortest Area First (SAF)

can be an efficient scheduling policy. Before the work performed in Chapter 4,

SAF was a known policy though rarely used in scheduling performance evaluation

studies. In Chapter 4 we show experimental evidence that SAF can provide noticeable

scheduling performance improvements (specially in regards to FCFS), while keeping

an equivalent level of simplicity and transparency in comparison to FCFS: SAF is

just the processing time estimate multiplied by the number of processors, there is no

“magic” values or unexplained square roots or logarithms.

In fact, a later experiment (results not shown in this thesis) show that functions F1

to F4 only outperform SAF by a small margin, and in some cases their scheduling

performances are equivalent. The same phenomenon happened with the linear

combinations proposed in the work of Legrand et al. [52]. At the light of these

observations, an open question is how (or can we) outperform SAF by a large margin,

while keeping a similar level of simplicity of a queue ordering, list scheduling policy
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constituted by simple functions such as linear functions, nonlinear arbitrary functions,

or polynomials.

In regards to the scheduling performance, we can perhaps conceive better per-

formances by utilizing more complex decision making models. One can use, for

instance, a reinforcement learning [74] approach, where the scheduler is modeled

as an agent that learns good scheduling strategies “on the fly” in function of the

consequences (rewards) of its scheduling decisions (actions). There exist many

advanced reinforcement learning algorithms that are being noticeably successful in

other decision making processes such as artificial intelligence (AI) models for games

such as Chess and GO [69]. Although we envision these approaches as likely candi-

dates to provide good scheduling performances, the trade-off between performance

and transparency of the models will sill be present. At last, another interesting

research direction is to perform a careful data analysis on the data generated by the

simulation procedure presented in Section 3.2.2. This data analysis has potential to

provide simple intuitions about good scheduling strategies.

At a second moment (Chapter 4), rather than devising novel scheduling policies for

parallel job scheduling, we explored a small and known set of scheduling policies

(Table 4.1) and we sought to provide insights on what we can expect if we replace

the FCFS scheduling policy of EASY Backfilling with one of the policies from this

small set. This study was mainly motivated by the fact that FCFS is arguably the

simplest scheduling policy available, and brings convenient guarantees such as

no-starvation. Adding the aggressive backfilling into the algorithm increases the

overall resource utilization and it is being largely adopted by practitioners, therefore

the performance of EASY Backfilling is well known, providing a “comfort zone” for

practitioners. Replacing FCFS with any other policy can be seen as high-risk change,

mainly because the performance effects of another policy will only be noticeable in

the long run, and many practitioners simply cannot afford this risk.

For the scheduling policies we selected policies that are simple combinations of

the jobs’ characteristics, notably the estimated processing time (p̃), the requested

number of processors (q), and the release date (r). We also added a simple waiting
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time threshold mechanism to provide the same no-starvation guarantees of FCFS for

these other policies. Using simulations we performed a holistic, careful experimental

campaign to see what are the long term scheduling performances of the policies

under different jobs and HPC platforms characteristics. Based on the experimental

results, a first observation is the prominence of two scheduling policies, the Shortest

estimated Processing time First (SPF) and SAF, with consistent better scheduling

performances in comparison with FCFS. We show further experimental evidence

that goes towards confirming the hypothesis of the good efficiency of SAF, raised

in Chapter 3. A second observation is in regards to the backfilling efficiency: we

observed that in all cases where backfilling is possible, backfilling helps in increasing

performance, though it does not outperform a more efficient sorting of the waiting

queue, such as the sorting performed by SPF and SAF. The work performed has shed

some light at moving towards replacing EASY Backfilling as the default choice of

scheduling policy.

Yet, many assumptions had to be taken in order to perform the study presented

at this thesis, each of which arguably drives the work away from real scenarios.

The first noticeable assumption is the homogeneous HPC platform. A more realistic

scenario would be an heterogeneous HPC platform constituted by either CPUs

with different speeds or a CPU/GPU platform, where the nodes have accelerator

devices (such as GPUs) in addition to CPUs to accelerate the jobs processing (if the

jobs are implemented to support accelerator devices). Such study would require

workload logs with information such as the jobs allocation and computing nodes

characteristics, which are quite rare in HPC workload logs. Furthermore, a more

detailed scheduling simulation would take more time to process, specially when

simulating longer periods such as months. Faster simulation algorithms may be

required in such cases. On the subject of HPC platform configurations, another point

is that we do not take into account the memory hierarchical organization of the

HPC platforms, since taking this aspect into account has the same aforementioned

practical hindrances.
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Another assumption is that the users do not affect the scheduling performance,

which is definitely not true in real scenarios. As discussed many times during

this manuscript, users may for instance submit more or less jobs, in the case of

a good or poor scheduling performance, respectively, which is already a sign of

user interference. A more realistic scenario would be for instance to create job

workloads taking into account the user awareness into the scheduling. Such task

may be achievable for instance by game theory models, where users are players

who compete between themselves and the scheduler to process the highest number

of jobs as possible, or process their jobs as soon as possible. Although conceiving

such models is an achievable task, validating such models is nontrivial and requires

further research.

Other research directions that can drive the work closer to real scenarios is to

consider other scheduling constraints such as moldable jobs rather than rigid jobs.

As discussed in Chapter 2, moldable jobs are often the default scenario for Cloud

Computing or Big Data workloads, which are quite common real-world situations.

Knowing how the level of parallelism affects the jobs processing time, performing

the same study accomplished in this thesis taking into account moldable jobs is an

achievable task. At last, other constraints may be taken into account such as job

preemptions, job processing reservations – where the users can reserve at which point

in time they want their jobs executed – and flexible processing time estimates, where

users can extend their jobs’ processing time estimate during their processing.

5.2 Work Dissemination

Many communications arose from the work performed during this thesis. The

following first set presents the communications that are directly related to the

contributions presented in this thesis:

• Danilo Carastan-Santos, and Raphael Y. de Camargo. "Obtaining dynamic

scheduling policies with simulation and machine learning". In the International

Conference for High Performance Computing, Networking, Storage and Analy-
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sis (SC), ACM Press, 2017. Full paper at the main track of one of the major

international conferences in High Performance Computing. This paper com-

prises the contributions presented in Chapter 3 and was also nominated for

both Best Paper and Best Student Paper awards of the conference.

• Danilo Carastan-Santos, Raphael Y. de Camargo, Denis Trystram, Salah

Zrigui. "One can only gain by replacing EASY Backfilling: A simple schedul-

ing policies case study.". 19th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid), 2019. Full paper at the main track of

a well recognized international conference in High Performance Computing.

This paper comrpises the contributions presented in Chapter 4 and also was

the Best Paper Award winner of the conference at the aforementioned year.

The following second set presents the communications that arose in a satellite

manner – in the form of collaborations and/or supplementary work – during the

thesis. All of these works relate to the thesis subject in some way, either by the HPC

resource management or the HPC applications aspects:

• Luis Sant’Ana, Danilo Carastan-Santos, Daniel Cordeiro and Raphael Y. de

Camargo. "Real-Time Scheduling Policy Selection from Queue and Machine

States.". 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), 2019. Full paper at the main track of a well recognized

international conference in High Performance Computing.

• Danilo Carastan-Santos, David C. Martins-Jr, Siang W. Song, Luiz C. S.

Rozante, and Raphael Y. de Camargo. "A hybrid CPU-GPU-MIC algorithm

for minimal hitting set enumeration.". Concurrency and Computation: Prac-

tice and Experience, 2018. Full paper in well recognized journal in High

Performance Computing.

• Luis Sant’Ana, Danilo Carastan-Santos, Daniel Cordeiro and Raphael Y. de

Camargo. "Analysis of Potential Online Scheduling Improvements by Real-Time

Strategy Selection.". XIX Simpósio de Computação de Alto-Desempenho (WS-

85



CAD), 2018. Full paper in a recognized Brazilian High Performance Computing

workshop.

• Danilo Carastan-Santos, David C. Martins-Jr, Siang W. Song, Luiz C. S.

Rozante, and Raphael Y. de Camargo. "A hybrid CPU-GPU-MIC algorithm

for hitting set problem.". XVIII Simpósio de Computação de Alto-Desempenho

(WSCAD), 2017. Full paper in a recognized Brazilian High Performance Com-

puting workshop.

86



Bibliography

[1]Abdel Krim AMOURA, Evripidis BAMPIS, Claire KENYON, and Yannis MANOUSSAKIS.
„Scheduling independent multiprocessor tasks“. In: Algorithmica 32.2 (2002), pp. 247–
261 (cit. on p. 17).

[2]Brenda S BAKER, Edward G COFFMAN Jr, and Ronald L RIVEST. „Orthogonal packings
in two dimensions“. In: SIAM Journal on computing 9.4 (1980), pp. 846–855 (cit. on
p. 17).

[3]Michael A BENDER, Soumen CHAKRABARTI, and Sambavi MUTHUKRISHNAN. „Flow and
Stretch Metrics for Scheduling Continuous Job Streams.“ In: SODA. Vol. 98. 1998,
pp. 270–279 (cit. on p. 17).

[4]Evan BERKOWITZ, M. A. CLARK, Arjun GAMBHIR, et al. „Simulating the Weak Death of
the Neutron in a Femtoscale Universe with Near-exascale Computing“. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018, 55:1–55:9 (cit. on p. 1).

[5]Michael R BERTHOLD, Christian BORGELT, Frank HÖPPNER, and Frank KLAWONN. Guide
to intelligent data analysis: how to intelligently make sense of real data. Springer Science
& Business Media, 2010 (cit. on pp. 27, 29).

[6]Abhinav BHATELE, Kathryn MOHROR, Steve H. LANGER, and Katherine E. ISAACS. „There
Goes the Neighborhood: Performance Degradation due to Nearby Jobs“. In: SC. ACM,
Nov. 2013, 41:1–41:12 (cit. on p. 15).

[7]Christopher M BISHOP. Pattern recognition and machine learning. springer, 2006 (cit. on
pp. 27, 29, 30).

[8]Raphaël BLEUSE. „Apprehending heterogeneity at (very) large scale. (Appréhender
l’hétérogénéité à (très) grande échelle)“. PhD thesis. Grenoble Alpes University, France,
2017 (cit. on pp. 16, 17).

[9]Marin BOUGERET, Pierre-François DUTOT, Klaus JANSEN, Christina OTTE, and Denis
TRYSTRAM. „Approximation Algorithms for Multiple Strip Packing“. In: Approximation
and Online Algorithms, 7th International Workshop, WAOA 2009, Copenhagen, Denmark,
September 10-11, 2009. Revised Papers. 2009, pp. 37–48 (cit. on p. 17).

[10]Peter BRUCKER. Scheduling Algorithms. Fifth Edition. Springer, 2007 (cit. on pp. 2, 6, 8,
13).

[11]Nicolas CAPIT, Georges DA COSTA, Yiannis GEORGIOU, et al. „A batch scheduler with
high level components“. In: Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE
International Symposium on. Vol. 2. IEEE. 2005, pp. 776–783 (cit. on p. 22).

A1



[12]Raymond J CARROLL and David RUPPERT. Transformation and weighting in regression.
Vol. 30. CRC Press, 1988 (cit. on p. 40).

[13]Henri CASANOVA, Arnaud GIERSCH, Arnaud LEGRAND, Martin QUINSON, and Frédéric
SUTER. „Versatile, Scalable, and Accurate Simulation of Distributed Applications and
Platforms“. In: Journal of Parallel and Distributed Computing 74.10 (June 2014),
pp. 2899–2917 (cit. on pp. 41, 42, 64, 80).

[14]Walfredo CIRNE and Francine BERMAN. „A model for moldable supercomputer jobs“.
In: Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS
2001. IEEE. 2000, 8–pp (cit. on p. 15).

[15]Adaptative COMPUTING. Moab Workload Manager Documentation. http://www.adaptivecomputing.
com/support/documentation-index/. Accessed: 2017-03-26. 2017 (cit. on p. 22).

[16]Víctor CUEVAS-VICENTTÍN, Saumen DEY, Sven KÖHLER, Sean RIDDLE, and Bertram
LUDÄSCHER. „Scientific workflows and provenance: Introduction and research opportu-
nities“. In: Datenbank-Spektrum 12.3 (2012), pp. 193–203 (cit. on p. 14).

[17]Leonardo DAGUM and Ramesh MENON. „OpenMP: An Industry-Standard API for Shared-
Memory Programming“. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–55 (cit. on
p. 13).

[18]Charles DARWIN. On the origin of species, 1859. Routledge, 2004 (cit. on p. 25).

[19]Jianzhong DU and Joseph Y-T LEUNG. „Complexity of scheduling parallel task systems“.
In: SIAM Journal on Discrete Mathematics 2.4 (1989), pp. 473–487 (cit. on p. 17).

[20]Alejandro DURAN and Michael KLEMM. „The Intel® many integrated core architecture“.
In: High Performance Computing and Simulation (HPCS), 2012 International Conference
on. IEEE. 2012, pp. 365–366 (cit. on pp. 14, 58).

[21]Pierre-François DUTOT, Michael MERCIER, Millian POQUET, and Olivier RICHARD. „Bat-
sim: A Realistic Language-Independent Resources and Jobs Management Systems
Simulator“. In: Job Scheduling Strategies for Parallel Processing. Ed. by Narayan DESAI

and Walfredo CIRNE. Cham: Springer International Publishing, 2017, pp. 178–197
(cit. on p. 64).

[22]Pierre-François DUTOT, Erik SAULE, Abhinav SRIVASTAV, and Denis TRYSTRAM. „Online
Non-preemptive Scheduling to Optimize Max Stretch on a Single Machine“. In: Com-
puting and Combinatorics - 22nd International Conference, COCOON 2016, Ho Chi Minh
City, Vietnam, August 2-4, 2016, Proceedings. 2016, pp. 483–495 (cit. on p. 17).

[23]Umer FAROOQ, Zied MARRAKCHI, and Habib MEHREZ. „FPGA Architectures: An Overview“.
In: Tree-based Heterogeneous FPGA Architectures: Application Specific Exploration and
Optimization. New York, NY: Springer New York, 2012, pp. 7–48 (cit. on p. 14).

[24]Dror FEITELSON. Parallel Workloads Archive: Logs. http://www.cs.huji.ac.il/labs/
parallel/workload/logs.html. Online; last access 30 november 2018. 2018 (cit. on
p. 67).

[25]Dror G FEITELSON. „Metrics for parallel job scheduling and their convergence“. In:
Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 2001, pp. 188–
205 (cit. on p. 36).

A2

http://www.adaptivecomputing.com/support/documentation-index/
http://www.adaptivecomputing.com/support/documentation-index/
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html


[26]Dror G FEITELSON. „Resampling with feedback — a new paradigm of using work-
load data for performance evaluation“. In: European Conference on Parallel Processing.
Springer. 2016, pp. 3–21 (cit. on pp. 12, 65).

[27]Dror G FEITELSON. Workload modeling for computer systems performance evaluation.
Cambridge University Press, 2015 (cit. on p. 25).

[28]Dror G FEITELSON and Morris A JETTEE. „Improved utilization and responsiveness
with gang scheduling“. In: Workshop on Job Scheduling Strategies for Parallel Processing.
Springer. 1997, pp. 238–261 (cit. on p. 23).

[29]Dror G FEITELSON and Larry RUDOLPH. „Metrics and benchmarking for parallel job
scheduling“. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer.
1998, pp. 1–24 (cit. on p. 69).

[30]Dror G FEITELSON, Larry RUDOLPH, Uwe SCHWIEGELSHOHN, Kenneth C SEVCIK, and
Parkson WONG. „Theory and practice in parallel job scheduling“. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer. 1997, pp. 1–34 (cit. on pp. 15,
21).

[31]Dror G. FEITELSON, Dan TSAFRIR, and David KRAKOV. „Experience with using the
Parallel Workloads Archive“. In: Journal of Parallel and Distributed Computing 74.10
(2014), pp. 2967–2982 (cit. on p. 61).

[32]Dror G FEITELSON, Dan TSAFRIR, and David KRAKOV. „Experience with using the parallel
workloads archive“. In: Journal of Parallel and Distributed Computing 74.10 (2014),
pp. 2967–2982 (cit. on pp. 36, 50).

[33]Message P FORUM. MPI: A Message-Passing Interface Standard. Tech. rep. Knoxville, TN,
USA: University of Tennessee Knoxville, 1994 (cit. on p. 13).

[34]Eitan FRACHTENBERG and Dror G FEITELSON. „Pitfalls in parallel job scheduling evalua-
tion“. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 2005,
pp. 257–282 (cit. on p. 12).

[35]Jerome FRIEDMAN, Trevor HASTIE, and Robert TIBSHIRANI. The elements of statistical
learning. Vol. 1. Springer series in statistics New York, 2001 (cit. on p. 27).

[36]Haohuan FU, Conghui HE, Bingwei CHEN, et al. „18.9Pflopss Nonlinear Earthquake Sim-
ulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-meter Scenarios“. In:
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’17. Denver, Colorado: ACM, 2017, 2:1–2:12 (cit. on p. 1).

[37]Ana GAINARU, Guillaume AUPY, Anne BENOIT, et al. „Scheduling the I/O of HPC
Applications Under Congestion“. In: IPDPS. IEEE, May 2015, pp. 1013–1022 (cit. on
p. 17).

[38]Michael R. GAREY and David S. JOHNSON. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, Jan. 1979 (cit. on p. 13).

[39]E. GAUSSIER, J. LELONG, V. REIS, and D. TRYSTRAM. „Online Tuning of EASY-Backfilling
using Queue Reordering Policies“. In: IEEE Transactions on Parallel and Distributed
Systems 29.10 (Oct. 2018), pp. 2304–2316 (cit. on pp. 3, 19, 63, 64).

A3



[40]Eric GAUSSIER, David GLESSER, Valentin REIS, and Denis TRYSTRAM. „Improving Back-
filling by Using Machine Learning to Predict Running Times“. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’15. Austin, Texas: ACM, 2015, 64:1–64:10 (cit. on pp. 3, 25, 56).

[41]Y GEORGIOU. „Resource and Job Management in High Performance Computing“. PhD
thesis. PhD Thesis, Joseph Fourier University, France, 2010 (cit. on p. 22).

[42]Ian GOODFELLOW, Yoshua BENGIO, and Aaron COURVILLE. Deep learning. MIT press,
2016 (cit. on pp. 27, 30).

[43]Ronald Lewis GRAHAM, Eugene Leighton LAWLER, Jan Karel LENSTRA, and Alexander
Hendrik George RINNOOY KAN. „Optimization and Approximation in Deterministic
Sequencing and Scheduling: a Survey“. In: Annals of Discrete Mathematics 5.2 (1979),
pp. 287–326 (cit. on p. 6).

[44]Johann L HURINK and Jacob Jan PAULUS. „Online algorithm for parallel job scheduling
and strip packing“. In: International Workshop on Approximation and Online Algorithms.
Springer. 2007, pp. 67–74 (cit. on p. 17).

[45]Klaus JANSEN. „A (3/2+ ε) approximation algorithm for scheduling moldable and non-
moldable parallel tasks“. In: Proceedings of the twenty-fourth annual ACM symposium on
Parallelism in algorithms and architectures. ACM. 2012, pp. 224–235 (cit. on p. 17).

[46]Klaus JANSEN and Lorant PORKOLAB. „Linear-time approximation schemes for schedul-
ing malleable parallel tasks“. In: Algorithmica 32.3 (2002), pp. 507–520 (cit. on p. 17).

[47]Eric JONES, Travis OLIPHANT, Pearu PETERSON, et al. SciPy: Open source scientific tools
for Python. 2001– (cit. on p. 42).

[48]Hans KELLERER, Thomas TAUTENHAHN, and Gerhard WOEGINGER. „Approximability
and nonapproximability results for minimizing total flow time on a single machine“. In:
SIAM Journal on Computing 28.4 (1999), pp. 1155–1166 (cit. on p. 17).

[49]Johann KEPLER. „Astronomia nova.“ In: (Pragae) 1609 (2015) (cit. on p. 25).

[50]CHUNG-YEE LEE and XIAOQIANG CAI. „Scheduling one and two-processor tasks on
two parallel processors“. In: IIE transactions 31.5 (1999), pp. 445–455 (cit. on p. 17).

[51]Arnaud LEGRAND, Alan SU, and Frédéric VIVIEN. „Minimizing the stretch when schedul-
ing flows of divisible requests“. In: Journal of Scheduling 11.5 (2008), pp. 381–404
(cit. on p. 17).

[52]Arnaud LEGRAND, Denis TRYSTRAM, and Salah ZRIGUI. „Adapting Batch Scheduling to
Workload Characteristics: What can we expect From Online Learning?“ In: 34th IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 2019 (cit. on pp. 3,
80, 81).

[53]Jérôme LELONG, Valentin REIS, and Denis TRYSTRAM. „Tuning EASY-Backfilling Queues“.
In: 21st Workshop on Job Scheduling Strategies for Parallel Processing. 2017 (cit. on
pp. 25, 38, 75).

[54]David A LIFKA. „The anl/ibm sp scheduling system“. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Springer. 1995, pp. 295–303 (cit. on p. 24).

[55]Uri LUBLIN and Dror G FEITELSON. „The workload on parallel supercomputers: modeling
the characteristics of rigid jobs“. In: Journal of Parallel and Distributed Computing 63.11
(2003), pp. 1105–1122 (cit. on pp. 37, 44, 46, 48, 55, 56).

A4



[56]Giorgio LUCARELLI, Fernando MACHADO MENDONÇA, Denis TRYSTRAM, and Frédéric
WAGNER. „Contiguity and Locality in Backfilling Scheduling“. In: CCGRID. IEEE, May
2015, pp. 586–595 (cit. on p. 20).

[57]Giorgio LUCARELLI, Benjamin MOSELEY, Nguyen Kim THANG, Abhinav SRIVASTAV, and
Denis TRYSTRAM. „Online Non-Preemptive Scheduling to Minimize Weighted Flow-time
on Unrelated Machines“. In: CoRR abs/1804.08317 (2018). arXiv: 1804.08317 (cit. on
p. 17).

[58]Scott M LUNDBERG and Su-In LEE. „A Unified Approach to Interpreting Model Pre-
dictions“. In: Advances in Neural Information Processing Systems 30. Ed. by I. GUYON,
U. V. LUXBURG, S. BENGIO, et al. Curran Associates, Inc., 2017, pp. 4765–4774 (cit. on
p. 30).

[59]Cathy MCCANN, Raj VASWANI, and John ZAHORJAN. „A dynamic processor allocation
policy for multiprogrammed shared-memory multiprocessors“. In: ACM Transactions on
Computer Systems (TOCS) 11.2 (1993), pp. 146–178 (cit. on p. 23).

[60]Ahuva W. MU’ALEM and Dror G. FEITELSON. „Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling“. In: IEEE Transactions
on Parallel and Distributed Systems 12.6 (2001), pp. 529–543 (cit. on pp. 2, 19, 21–24,
59, 63, 74).

[61]Bill NITZBERG, Jennifer M SCHOPF, and James Patton JONES. „PBS Pro: Grid computing
and scheduling attributes“. In: Grid resource management. Springer, 2004, pp. 183–190
(cit. on pp. 2, 22).

[62]J. D. OWENS, M. HOUSTON, D. LUEBKE, et al. „GPU computing“. In: Proceedings of the
IEEE 96.5 (2008), pp. 879–899 (cit. on pp. 1, 14, 30, 58).

[63]Dejan PERKOVIC and Peter J KELEHER. „Randomization, speculation, and adaptation in
batch schedulers“. In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing.
IEEE Computer Society. 2000, p. 7 (cit. on p. 25).

[64]Michael L. PINEDO. Scheduling: Theory, Algorithms, and Systems. 3rd. Springer Publishing
Company, Incorporated, 2008 (cit. on pp. 2, 6, 10, 13).

[65]Millian POQUET. „Simulation approach for resource management. (Approche par la
simulation pour la gestion de ressources)“. PhD thesis. Grenoble Alpes University,
France, 2017 (cit. on p. 21).

[66]Gonzalo P RODRIGO, P-O ÖSTBERG, Erik ELMROTH, et al. „Towards understanding
HPC users and systems: a NERSC case study“. In: Journal of Parallel and Distributed
Computing 111 (2018), pp. 206–221 (cit. on p. 22).

[67]L. F. SANT ’ANA, D. CARASTAN-SANTOS, D. CORDEIRO, and R. DE CAMARGO. „Analysis
of Potential Online Scheduling Improvements by Real-Time Strategy Selection“. In:
2018 Symposium on High Performance Computing Systems (WSCAD). Oct. 2018, pp. 1–7
(cit. on p. 38).

[68]George AF SEBER and Christopher John WILD. „Nonlinear Regression. Hoboken“. In:
New Jersey: John Wiley & Sons 62 (2003), p. 63 (cit. on p. 30).

[69]David SILVER, Thomas HUBERT, Julian SCHRITTWIESER, et al. „A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play“. In: Science
362.6419 (2018), pp. 1140–1144 (cit. on pp. 1, 82).

A5

http://arxiv.org/abs/1804.08317


[70]Joseph SKOVIRA, Waiman CHAN, Honbo ZHOU, and David LIFKA. „The EASY—LoadLeveler
API Project“. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer.
1996, pp. 41–47 (cit. on pp. 42, 63).

[71]Srividya SRINIVASAN, Rajkumar KETTIMUTHU, Vijay SUBRAMANI, and P SADAYAPPAN.
„Characterization of backfilling strategies for parallel job scheduling“. In: Parallel Pro-
cessing Workshops, 2002. Proceedings. International Conference on. IEEE. 2002, pp. 514–
519 (cit. on pp. 42, 63).

[72]Garrick STAPLES. „TORQUE resource manager“. In: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing. ACM. 2006, p. 8 (cit. on p. 22).

[73]Achim STREIT. „The self-tuning dynP job-scheduler“. In: Parallel and Distributed Process-
ing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM. IEEE.
2001, 8–pp (cit. on p. 25).

[74]Richard S SUTTON, Andrew G BARTO, et al. Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge, 1998 (cit. on p. 82).

[75]Wei TANG, Zhiling LAN, Narayan DESAI, and Daniel BUETTNER. „Fault-aware, utility-
based job scheduling on BlueGene/P systems“. In: Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on. IEEE. 2009, pp. 1–10 (cit. on
pp. 19, 42, 53).

[76]TOP500.ORG. TOP500 Supercomputer Sites. https://www.top500.org/. Online; last
access 30 november 2018. 2018 (cit. on p. 1).

[77]D. TRYSTRAM. „Scheduling parallel applications using malleable tasks on clusters“. In:
Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS
2001. Apr. 2001, pp. 2128–2135 (cit. on p. 17).

[78]Dan TSAFRIR, Yoav ETSION, and Dror G FEITELSON. „Modeling user runtime estimates“.
In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 2005, pp. 1–
35 (cit. on pp. 47, 48).

[79]Deshi YE, Xin HAN, and Guochuan ZHANG. „Online multiple-strip packing“. In: Theo-
retical Computer Science 412.3 (2011). Combinatorial Optimization and Applications,
pp. 233–239 (cit. on p. 17).

[80]Andy B YOO, Morris A JETTE, and Mark GRONDONA. „Slurm: Simple linux utility for
resource management“. In: Workshop on Job Scheduling Strategies for Parallel Processing.
Springer. 2003, pp. 44–60 (cit. on pp. 2, 21).

[81]Jia YU and Rajkumar BUYYA. „A taxonomy of scientific workflow systems for grid
computing“. In: ACM Sigmod Record 34.3 (2005), pp. 44–49 (cit. on p. 14).

[82]SN ZHUK. „Approximate algorithms to pack rectangles into several strips“. In: Discrete
Mathematics and Applications dma 16.1 (2006), pp. 73–85 (cit. on p. 17).

[83]Dmitry ZOTKIN and Peter J KELEHER. „Job-length estimation and performance in
backfilling schedulers“. In: High Performance Distributed Computing, 1999. Proceedings.
The Eighth International Symposium on. IEEE. 1999, pp. 236–243 (cit. on p. 61).

A6

https://www.top500.org/




Abstract
High-Performance Computing (HPC) platforms are growing in size and complexity. In an adversarial manner, the power demand of
such platforms has rapidly grown as well, and current top supercomputers require power at the scale of an entire power plant. In an
effort to make a more responsible usage of such power, researchers are devoting a great amount of effort to devise algorithms and
techniques to improve different aspects of performance such as scheduling and resource management. But HPC platform maintainers
are still reluctant to deploy state of the art scheduling methods and most of them revert to simple heuristics such as EASY Backfilling,
which is based in a naive First-Come-First-Served (FCFS) ordering. Newer methods are often complex and obscure, and the simplicity
and transparency of EASY Backfilling are too important to sacrifice.
At a first moment we explored Machine Learning (ML) techniques to learn on-line parallel job scheduling heuristics. Using simulations
and a workload generation model, we could determine the characteristics of HPC applications (jobs) that lead to a reduction in
the mean slowdown of jobs in an execution queue. Modeling these characteristics using a nonlinear function and applying this
function to select the next job to execute in a queue improved the mean task slowdown in synthetic workloads. When applied
to real workload traces from highly different machines, these functions still resulted in performance improvements, attesting the
generalization capability of the obtained heuristics.
At a second moment, using simulations and workload traces from several real HPC platforms, we performed a thorough analysis
of the cumulative results of four simple scheduling heuristics (including EASY Backfilling). We also evaluated effects such as the
relationship between job size and slowdown, the distribution of slowdown values, and the number of backfilled jobs, for each HPC
platform and scheduling policy. We show experimental evidence that one can only gain by replacing EASY Backfilling with the
Smallest estimated Area First (SAF) policy with backfilling, as it offers improvements in performance by up to 80% in the slowdown
metric while maintaining the simplicity and the transparency of EASY. SAF reduces the number of jobs with large slowdowns and the
inclusion of a simple thresholding mechanism guarantees that no starvation occurs.
Overall we achieved the following remarks: (i) simple and efficient scheduling heuristics in the form of a nonlinear function of the jobs
characteristics can be learned automatically, though whether the reasoning behind their scheduling decisions is clear or not can be up
to argument. (ii) The area (processing time estimate multiplied by the number of processors) of the jobs seems to be a quite important
property for good parallel job scheduling heuristics, since many of the heuristics (notably SAF) that achieved good performances have
the job’s area as input. (iii) The backfilling mechanism seems to always help in increasing performance, though it does not outperform
a better sorting of the jobs waiting queue, such as the sorting performed by SAF.

Résumé
Les plate-formes de Calcul Haute Performance (de l’Anglais High Performance Computing, HPC) augmentent en taille et en complexité.
De manière contradictoire, la demande en énergie de telles plates-formes a également rapidement augmenté. Les supercalculateurs
actuels ont besoin d’une puissance équivalente à celle de toute une centrale d’énergie. Dans le but de faire un usage plus responsable
de ce puissance de calcul, les chercheurs consacrent beaucoup d’efforts à la conception d’algorithmes et de techniques permettant
d’améliorer différents aspects de performance, tels que l’ordonnancement et la gestion des ressources. Cependant, les responsables des
plate-formes HPC hésitent encore à déployer des méthodes d’ordonnancement à la fine pointe de la technologie et la plupart d’entre
eux recourent à des méthodes heuristiques simples, telles que l’EASY Backfilling, qui repose sur un tri naïf premier arrivé, premier
servi (de l’Anglais First-Come-First-Served, FCFS). Les nouvelles méthodes sont souvent complexes et obscures, et la simplicité et la
transparence de l’EASY Backfilling sont trop importantes pour être sacrifiées.
Dans un premier temps, nous explorons les techniques d’Apprentissage Automatique (de l’Anglais Machine Learning, ML) pour
apprendre des méthodes heuristiques d’ordonnancement online de tâches parallèles. À l’aide de simulations et d’un modèle de
génération de charge de travail, nous avons pu déterminer les caractéristiques des applications HPC (tâches) qui contribuent pour une
réduction du ralentissement moyen des tâches dans une file d’attente d’exécution. La modélisation de ces caractéristiques par une
fonction non linéaire et l’application de cette fonction pour sélectionner la prochaine tâche à exécuter dans une file d’attente ont
amélioré le ralentissement moyen des tâches dans les charges de travail synthétiques. Appliquées à des traces de charges de travail
réelles de plate-formes HPC très différents, ces fonctions ont néanmoins permis d’améliorer les performances, attestant de la capacité
de généralisation des heuristiques obtenues.
Dans un deuxième temps, à l’aide de simulations et de traces de charge de travail de plusieurs plates-formes HPC réelles, nous
avons effectué une analyse approfondie des résultats cumulés de quatre heuristiques simples d’ordonnancement (y compris l’EASY
Backfilling). Nous avons également évalué des autres effets tels que la relation entre la taille des tâches et leur ralentissement, la
distribution des valeurs de ralentissement et le nombre de tâches mises en calcul par backfilling, par chaque plate-forme HPC et
politique d’ordonnancement. Nous démontrons de manière expérimentale que l’on ne peut que gagner en remplaçant l’EASY Backfilling
par la stratégie SAF (de l’Anglais Smallest estimated Area First) aidée par backfilling, car elle offre une amélioration des performances
allant jusqu’à 80% dans la métrique de ralentissement, tout en maintenant la simplicité et la transparence d’EASY Backfilling. La SAF
réduit le nombre de tâches à hautes valeurs de ralentissement et, par l’inclusion d’un mécanisme de seuillage simple, nous garantissons
l’absence d’inanition de tâches.
Dans l’ensemble, nous avons obtenu les remarques suivantes : (i) des heuristiques simples et efficaces sous la forme d’une fonction
non linéaire des caractéristiques des tâches peuvent être apprises automatiquement, bien qu’il soit subjectif de conclure si le
raisonnement qui sous-tend les décisions d’ordonnancement de ces heuristiques est clair ou non. (ii) La zone (l’estimation du
temps d’exécution multipliée par le nombre de processeurs) des tâches semble être une propriété assez importante pour une bonne
heuristique d’ordonnancement des tâches parallèles, car un bon nombre d’heuristiques (notamment la SAF) qui ont obtenu de bonnes
performances ont la zone de la tâche comme entrée (iii) Le mécanisme de backfilling semble toujours contribuer à améliorer les
performances, bien que cela ne remédie pas à un meilleur tri de la file d’attente de tâches, tel que celui effectué par SAF.
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