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Introduction

F
rom prehistoric times in which early humans crushed grains and nuts using stones
to high-tech (modern) industrial powder manufacturers, grinding has been an in-
eluctable process in human daily life. The size reduction might be one of the old-

est engineering processes, its application in numerous different fields such as agronomy,
pharmaceutical, powders metallurgy, mining, chemical manufacture, non-renewable energy
sources, alimentary and foodstuffs processing, make grinding a subject of wide interest of
study. The discovery of new materials, the demand for the processing of larger volumes
to supply the population growth, are some of the reasons that have motivated the tech-
nological development of grinding technologies in time. In the stone age, the process was
performed using the human and animal physical strength until the 16th century, where the
water and windmills revolutionized the grinding process and costs. With the industrial
revolution in the 19th century, steam machines started to be more efficient and capable of
grinding materials on a larger scale bringing us to the 20th century, in which the electricity,
globalization, and automation of the equipment allowed us to have access to manufactured
powders at any moment.

Nowadays, one main concern is the energy consumption. Indeed, the scarceness of
natural resources motivates the research of new energy sources and the optimization of
industrial processes that consume high amounts of energy, such as grinding. The large
number of technologies conceived for particle size reduction are specialized for a given
type of material and/or grinding mechanism. This current specialization has been mainly
acquired empirically by trial and error tests. With the current technologies the grinding
can be induced by the fast movement of a tool as in cutting and knife mills as well as
in jaw crushers. The particles can be subjected to high speed impact using compressed
air as in jet mills. High compression forces are applied to a material layer such as in roll
mills, mortar grinders, and crushers. Finally, the interactions with grinding media inside
a container that is subjected to agitation as in vibrating ball mills, to a combination of
translation and rotational movements as in planetary ball mills, or to a rotation as in ball
mills, are also widely used mechanisms for particle grinding.

By definition, grinding is a process in which a material is reduced to small particles or
powder. The particle breakage can be a desired or undesired process. It is desired when
it belongs to a human activity or a chain of processes that have as a main goal to refine a
natural source into a product that matches specific conditions, e.g. wheat, cosmetics and
cement processing. It is undesired, unexpected or uncontrolled when it takes place during
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a natural process e.g. rock fall down a slope, landslides, explosions during the eruption of a
volcano, earthquakes, etc . . . The forces that cause the rupture of the constitutive particles
of the material often have a dynamic character. These forces are highly variable in time,
can reach magnitudes much higher than the particle weights, and are therefore comparable
to those involved during the impacts inside ball mills.

Despite numerous specialized grinding devices, its technological importance, and long
past research, there is still a substantial gap between the present fundamental knowledge of
the physical mechanisms ruling the grinding process and the present need for its predictive
and quantitative modeling in view of its improved engineering applications. Undoubtedly,
one of the main reasons is the complexity of the process itself due to the continuous changes
of material properties. As a consequence, in current industrial applications, the choice
of the grinding device and its optimal values of operational parameters remain basically
empirical tasks.

For this reason, there has been an increasing interest in a systematic investigation of
particle fracture using single-particle impact experiments or quasi-static compression tests
for more than twenty years. The focus of most of such studies has been on a better un-
derstanding of fracture modes, energy consumption, and fragments size distribution and
evolution. In the same way, numerical models have been developed in the framework of the
discrete element method (DEM) for the simulation of granular materials with crushable
particles. Such models have recently proven to be a promising approach, providing access
to local mechanisms and some interesting insights on processes involving particle break-
age. Nevertheless, a challenging issue regarding these methods, which account for both
particle dynamics and particle fracture, is their extension to more realistic conditions. In
particular, it is essential to account for dynamic fracture and particle shapes, as well as
efficient algorithms allowing for representative numbers of particles in view of application
to grinding processes.

This PhD work is devoted to the development and application of a numerical strategy
for the simulation of ball mills as a technique used in powder metallurgy for the manufacture
of nuclear fuel. The numerical approach is based on the DEM and allows us to take into
account efficiently polyhedral particle shapes and fracture criteria involving both a fracture
energy and a mechanical strength. This approach is used for the analysis of single-particle
fragmentation followed by extensive simulations of rotating drums in 2D and 3D for a
broad range of parameters. These simulations are analyzed to characterize the granular
flows and particle fragmentation inside the drum, and to get a quantitative description
of flow variables (flow thickness, free surface profile, wall slip, force variability) and their
correlations with grinding (particle size and specific surface area evolution). A related
objective is to understand the role of the grinding media (balls) and the effect of its
properties (size, number) on the grinding process.

A central issue that we would like to clarify is the scaling of the grinding behavior from
laboratory to industrial levels, which is one of the principal concerns of ball milling and for
which there is presently no generally accepted method. An important advantage of using
numerical simulations is to allow us to isolate the effect of each operational parameter (e.g.
drum and particle size, rotation speed, filling degree, drum width) on the grinding and
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Figure 1 – Image of a ball mill [88].

flow parameters in order to propose a physics-based scaling.

Thesis outline

To achieve the goals of this PhD thesis, we followed two converging routes. First, it
is of major importance to understand the breakage of a single particle. This kind of
study will help us also to test and evaluate the performance of the breakage model. In
parallel, the granular flow inside a rotating drum is studied to determine the scale-up
of flow parameters. These two routes lead to the investigation of the flow behavior of
breakable particles inside a rotating drum. Finally, the grinding media (balls) is added to
the rotating drum with breakable particles as in real ball mills. This scheme is used to
organize this PhD dissertation in five chapters.

The first chapter is a bibliographic review of the different elements that compose the
physical and mechanical behavior of materials inside ball mills. These elements will be
useful to understand the adopted methodology, to explore the gaps and challenges, and to
contextualize the industrial process that motivated this study. Due to the high complexity
of the overall process (grinding inside ball mills), few studies exist taking simultaneously
into account the particle flow and breakage. For this reason, we present separately the
scientific context of granular flows inside drums and the particle breakage, which are two
subjects that have been vastly studied in multiple fields.

In the second chapter, the methodology adopted for modeling particle breakage in DEM
simulations is presented and tested for the dynamic fracture of a single particle in 3D. Ex-
tensive simulations of polyhedral particles impacting onto a rigid plane at different speeds
were carried out. The energy dissipation, influence of model parameters on the breakage
process, particle size distribution and shape of the generated fragments, are some of the
results of this study. In this section, special attention is paid to the numerical approach
(Contact Dynamics) and the three-dimensional breakage model (Bonded-cells method).
The reader should refer to this chapter for the details of the numerical procedures.
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The third chapter is devoted to the rheology of cascading granular flows inside rotating
drums of different sizes to analyze the influence of different system parameters on the
flow properties and their scale-up. Numerical simulations of hollow cylinders rotating
around their principal axis filled with spheres were carried out. We investigate in detail
the particle velocity fields, interparticle forces and their variability, temperature maps, free
surface profiles, wall slip and flow thickness. We analyze the correlations among these
variables and propose approximate fitting forms. We introduce a dimensionless variable
that combines the system parameters and is shown to be a relevant scaling parameter,
revealing the respective roles of dynamics, kinematics and finite-size effects. We also
compare this scaling with previously proposed scaling relationships and its performance.

In the fourth chapter, we present a detailed investigation of the grinding process inside
2D rotating cylinders. The numerical simulations performed allow us to take into account
simultaneously the granular flow and particle breakage, as well as polygonal particle shapes.
The influence on the grinding performance of multiple system parameters such as the
rotation speed, filling degree, drum size and initial particle shape, is studied by considering
the mean particle size and specific surface area as a function of time. We derive a scaling
law for the grinding rate accounting for all system parameters and a characteristic time
scale intrinsic to the breaking process.

In the fifth chapter, we numerically investigate the evolution of crushable granular
materials inside a 2D rotating drum partially filled with a mixture of heavy balls and
crushable particles. The size reduction process in this ball mill system is governed by
continuous collisions of the balls with particles, leading to either their attrition or their
body fragmentation. Systems with balls of different sizes and/or numbers are compared
in terms of the evolution of their particle size distribution and specific surface area. We
analyze the effects of balls sizes and numbers on the system evolution. A model is also
proposed for the evolution of three size classes qualified as “small”, “medium” and “large”
by accounting for physical effects such as cushioning by small particles and transition rates
between these classes.

The last chapter outlines the most important conclusions, salient results, and perspec-
tives of this PhD work. We also include an extended abstract of the PhD work in French.
Two appendices provide supplementary results that were not included in the submitted
or published papers. Appendice A presents a detailed analysis of the shapes and sizes of
fragments generated by the breakage of a single particle. Appendix B reports on granular
flows in rotating drums with end walls.
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1. Industrial and scientific context

1.1 Introduction

The objective of this chapter is to place this work in its industrial and scientific contexts.
The industrial context is a crucial stage of nuclear fuel manufacture and recycling: the
nuclear powders grinding inside ball mills. The scientific context refers to the current sta-
tus of research on the physical processes that take place inside rotating drums. We try
to identify the specific aspects of the problem at hand and the challenges and knowledge
gaps that this work should deal with. The literature review permits highlighting previous
significant approaches and findings, and single out the complexity of the numerical chal-
lenges that will be faced during this thesis. Finally, the whole chapter will also seek to
elucidate the approach adopted in this thesis by introducing the concepts and tools that
will be used in the following chapters.

The chapter begins with a brief description of the nuclear fuel manufacturing back-
ground and a synthesis of the industrial process that motivates the present study. The
second and third sections will be devoted to the presentation of scientific concepts and a
brief review of granular flows and particle breakage.

1.2 Nuclear fuel

In France during 2018, 72% of the total electricity was produced in nuclear plants, and in
Europe, 24% of the energy consumption was covered by nuclear sources [204]. In France,
nuclear energy is produced in 58 pressurized water reactors (PWR) of second generation,
which is the most common type of nuclear reactor in the world. Both the population
growth and the development of emerging countries will increase the energy demand over
the coming years. Furthermore, other issues such as the scarceness of natural resources,
the depletion of fossil fuels traditionally used as the main energy source, and the urgency
for reducing greenhouse gas emissions, makes it crucial to ensure competitive low-carbon
energy sources.

In order to consider nuclear energy as a solution for these challenges, strategies for pre-
serving the natural resources should be taken into account together with enhanced safety
and operability policies [9]. The fourth generation of nuclear systems meet these require-
ments by relying on fast neutron reactors, able to transmute large amounts of uranium
238 into plutonium 239 for electricity generation. This transmutation makes it possible to
use more than 90% of depleted or natural uranium for electric power supply, instead of
the 0.5 to 1% of the fissile isotope U235 used in current PWR. For instance, in the case of
France, the fourth generation nuclear reactors could allow using large stockpiles of depleted
uranium and reprocessed uranium that in previous generations were considered as nuclear
waste, and provide the current electric output during a few thousands of years [9].

Through this section, some generalities about the materials involved in the nuclear
fuel will be presented. Then, a general introduction to the manufacturing process will
contextualize the ball mills problem investigated in this thesis. Finally, we will introduce
some grinding techniques including ball mills, which is a key technology in the industrial
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Figure 1.1 – SEM images of the UO2. Left: Powder microstructure, the crystallites, and
aggregates can be identified. Right: Agglomerates.

process.

1.2.1 Nuclear powders

Nuclear fuel is the material bearing fissile atoms whose consumption by fission generates
energy. Almost all the pressurized-water reactors use uranium dioxide (UO2) as fuel: a
mixture of uranium powders that contains around 3 to 5% of enriched uranium (U235). A
less common alternative fuel is MOX: a mixture of oxides (UO2 and PuO2). Historically,
the mixed oxide has been the most used fuel in sodium fast reactors (SFR), and still today,
it is the basis of reactors under planning or construction. Different from the MOX fuel for
PWR, where the plutonium quantity represents 8 to 9%, in SFR fuel the Pu content can
be increased up to 15-30% [71].

Industrially, the uranium dioxide powder is prepared either by the dry process or
through the wet chemical route. Among numerous wet processes available, the ammonium
diuranate (ADU) route has been the most intensively followed and investigated. ADU
is generated by the reaction between uranyl nitrate and aqueous ammonium hydroxide.
ADU is filtered, dried and calcined in the air to form UO3 and/or U3O8. The oxides are
then reduced to UO2. The dry conversion process only uses gas-gas or gas-solid reactions
whose main advantage is a strong reduction of contaminated liquid wastes as well as better
control of criticality risk. Vaporized UF6 reacts first with water vapor; then defluorination
by reducing pyrohydrolysis takes place in a rotating kiln. The powder thus obtained has a
specific surface area of around 2 m2/g, small enough to endow it with outstanding stability
(no risk of pyrophoricity, and small changes over time in the O/U ratio), and at the same
time large enough to result in good sinterability (a density of 98% may be obtained when
such a powder is sintered without additives).

PuO2 powder, which is recycled from reprocessing plants, is obtained by calcination at
about 450◦C of oxalate resulting from the precipitation of plutonium nitrate by oxalic acid.
It is a stable compound as it cannot oxidize. The specific surface of PuO2 powder is about
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Figure 1.2 – SEM image of the PuO2.

6 m2g−1. In terms of particle shape, the UO2 and PuO2 form basically agglomerates (Fig.
1.1) or sub-micron platelets (Fig. 1.2), respectively. However, when the two materials are
co-milled agglomerates similar to the UO2 are prone to form.

1.2.2 Pellet manufacture

The nuclear fuel comes in cylindrical pellets of ' 1 cm of height and diameter (see fig.
1.3), arranged in rods that will be placed inside the reactor core. The use of annular pellets

in SFR reactors (e.g. SUPERPHÉNIX) instead of solid pellets (e.g. PHÉNIX), has been
found to significantly reduce the centerline temperature. In the powder metallurgy process
followed for the manufacture of such pellets, a good homogeneity of the mixture as well
as a maximum particle size must be guaranteed. In other words, it is crucial to avoid big
agglomerates of Pu that could lead to undesirable issues (accidents) in the reactor due
to high heat concentrations. Because of the moderate diffusion coefficients of U and Pu
at 1700◦C, a simple mixture of UO2 and PuO2 powders is not sufficient to achieve after
sintering a good homogeneity of Pu distribution. For this reason, few extra processes are
necessary in order to achieve correct manufactured pellets that meet the desired properties.
The pellets production process can be synthesized in three main steps:

1. Powders blending: During this stage (See fig. 1.4b), the UO2 and PuO2 are co-
ground during 2 to 4 hours in a ball mill by batches similar to the one presented in
figure 1.5. The wall of this drum is smooth (without lifters) and an agglomeration
process can be observed in the wall and with the pebbles. The grinding media consist
of ortho-cylinders made of metallic uranium which avoid contamination due to the
pebbles wearing. The main objectives of this process are to micronize or to reduce
the agglomerates size and to reach a good mixing of the two powders. Specifically,
the particle size must be inferior to 5µm on the average.

2. Pellet shaping: At this stage, the mixture is discharged into a die where it is
compacted at ambient-room temperature. Because the powders blend exhibits inad-
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Figure 1.3 – Pellets of mixed oxides (UO2 and PuO2) obtained after the manufacturing
process. The pellets have a diameter and a height equal to 1 cm.

(a) (b) (c) (d)

Figure 1.4 – Illustration of the main steps of the pellet manufacture process. a) Raw
material (UO2 and PuO2 powders), b) powders blending: co-milling inside a ball mill, c)
pellet shaping, and d) pellet sintering.

equate flowability for the purpose of filling the pressing dies, an intermediate powder
granulation is required. Initially, the powder is compacted at low pressure creating
briquettes that are going to be fractured in a granulator using forced sieving. Then,
the fragments go into a blender where a spheroidization process allows to obtain
granules. A lubricant may be added to the mixture, up to a content of 0.2 to 0.3%,
to facilitate the pressing of the "green" (uncured) pellets. Finally, the powder is
compacted under stresses ranging from 300 to 500 MPa and a density near to 60%
of the theoretical density of the (U,Pu)O2. During this process, the agglomerates are
fragmented and the aggregates are rearranged.

3. Pellet sintering: In the last stage, the sintering of the green pellets is performed
in a furnace at a temperature around 1700◦C during 24 hours. In this process, the
particles of UO2 and PuO2 weld to one another and reach densities over 95% of
the metallic oxide theoretical density [71]. Since a pellet shrinks around 15 and 20%
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Figure 1.5 – Laboratory ball mill used for the study of nuclear powders grinding.

during the sintering, a control of the diameter is performed. Any pellet dismissing the
specifications (geometry, Pu homogeneity, cracks) is returned to the powder blending
in order to be recycled as chamotte (pellet scrap).

We focus on the first stage of powders blending that takes place inside a ball mill.
This stage takes place in the manufacture process of SFR fuel and MOX fuel for PWR.
Some experimental studies have been performed in laboratory (Dcylinder = 15 cm) in order
to find the best system configuration [216]. However, the extrapolation of the results to the
industrial scale (Dcylinder ' 80 cm) remains entirely empirical, and therefore incompatible
results are sometimes obtained. More precisely, the powder obtained at the industrial mill
presents different characteristics (e.g. particle size, specific surface, density) from those
of the powder obtained at the laboratory. The understanding of this discrepancy of the
grinding mechanisms in the upscaling of ball mills would provide precious leads on the
powders blending optimization.

Undoubtedly, the complexity of the materials and the process itself restrict the possi-
bility of studying the system matching all the specificities. Moreover, experimental work
with this kind of materials (i.e. toxic products) entails numerous challenges that affect the
results interpretation (complex microstructure), enhances the error propagation and un-
certainty, and make these tasks laborious and costly. First, only small amounts of material
can be held under controlled conditions. Second, the tests require sealed environments in
order to avoid any kind of contamination. Third, the equipment must be specialized and
of exclusive use. Finally, due to the radioactive nature of the nuclear powders, radiation
shielding is needed and heat is constantly produced. From this perspective, the numerical
simulations can provide helpful insights on the phenomena specific to this system, allowing
to test a wider range of parameters and to have a close look at the inter-particle interac-
tions at every instant. The methodology developed in this work may serve as a reference
guide for understanding the physical phenomena that take place inside ball mills. However,
the results gathered should not be restrained to the case of this specific technology but it
should provide further insights on the grinding phenomenon.
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Figure 1.6 – Images of a ball mill with lifters filled with the product and steel balls of two
different sizes [88].

1.2.3 Ball mills

There is a wide variety of devices conceived for material grinding that meets the specific
requirements of multiple industries. One of the first considerations that must be taken
into account when choosing the adequate grinding device is the type of material and its
mechanical properties. For example, grinding mineral ore requires a high flow rate that
leads to shocks between the particles to reduce the particle size. On the other hand, for
pharmaceutical powders other properties such as the homogeneity of the product are a
primary necessity. Keeping a high flow rate is not as important as the ability to retrieve
and to clean the device after the process. A common classification of the grinding devices
is done based on the grinding type: coarse, fine and ultra-fine. The coarse grinding devices
such as crushers and trenchers are used to obtain coarse grained materials (d > 1 mm).
The fine grinding is often done using rollers press and mills with grinding bodies, while the
ultra-fine grinding can be performed using jet-mills and vibratory mills [24]. In this thesis,
we are going to focus on the ball mills that can be used for fine and ultra-fine grinding
depending on the grinding bodies size. The latter can have a spherical shape (balls, see
fig. 1.6), or it can be pebbles that usually present cylindrical shapes.

Other configurations or technologies of rotating drums that have been proposed in
order to improve the grinding mechanisms are the autogenous (AG) and semi-autogenous
(SAG) mills. In these kinds of devices, the drum wall is not smooth but it has rectangular
bars that serve to lift the material (see fig. 1.6), injecting extra potential energy to the
particles. In AG mills the feed consists only of the product to grind while in SAG mills
grinding media (e.g. steel balls) are added to the mill feed. Also, these two configurations
have been improved by including slots next to the lifters that allow discharging the fines
or particles smaller than the slot opening [58]. This feature maintains a small proportion
of fines in the feed and reduces agglomeration processes that may take place during the
process. However, the present study is limited to the case of drums with smooth walls with
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and without the grinding media.
Even though ball mills are used in a wide range of applications, there is a lack of

knowledge about the mechanics behind the grinding process. The complexity resides in
the numerous parameters that must be set such as rotation speed, filling degree, feed and
grinding media proportions, and drum size. Moreover, the properties of the materials
can trigger different mechanisms and constantly evolve during the process. For instance,
agglomeration might take place when the particle size is small. Finally, the discrete nature
of the material flowing and colliding inside ball mills as well as the cylindrical boundary
conditions are sources of multiple challenges when studying the material behavior. The
objective of the next section is to elucidate different theoretical and modeling approaches
that have been developed in order to enhance the understanding of ball mills.

1.3 Granular flows inside rotating drums

Avalanches, dune movements, silo discharge, and rotating drums are just few examples of
the presence of granular flows in nature and industrial processes. While liquid flow is well
described by constitutive relationships such as the Navier-Stokes equations, in the case
of granular flows these laws do not apply. The rheological behavior differs significantly
from classical fluids and it remains as a subject of current research in several fields. In
free surface flows as on an inclined plane or in the rotating drum configurations, different
flow zone can be identified: a solid-like zone where the particle movements is slow and the
behavior is almost static, a liquid-like layer in which the grains flow with some inertia,
and a gas-like zone wherein the particles move at higher speeds in a chaotic fashion [87].
As observed in figure 1.7, the granular matter can present these three different states at
the same time in the same system. This feature, together with the intrinsic heterogeneity
of a discrete medium, makes the rheological characterization of this kind of materials
particularly challenging.

In this section, recent advances on the granular flows rheology and specifically the
inertial constitutive law for granular materials will be introduced. It will be followed by
a description of multiple observations on the flowing regimes that can take place inside
rotating drums. Afterwards, previous findings regarding the finite size and wall effects in
rotating cylinders, as well as the effect of particle size and shape on the flow properties
will be presented. The section will be closed by a review of the proposed scaling laws for
rotating drums.

1.3.1 Granular flows rheology under homogeneous conditions

Recent works of several researchers converged to a visco-plastic constitutive law for granular
materials flow known sometimes as the µ(I) model [160, 122]. The analysis and compar-
isons between different flow configurations such as plane shear, annular shear, vertical-chute
flows, inclined plane, heap flow, and rotating drums, have allowed recovering the important
role that friction plays in granular flows. First, experimental results on an inclined plane
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Figure 1.7 – Image of steel beads flowing out from a pile. Three phases of the granular
flow behaving like a gas, liquid or a solid can be identified [87].

led Forterre and Pouliquen [187] to propose the following friction law:

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
(1.1)

where µ1 and µ2 are constants related to the material properties, and I0 is a constant that
depends on the flow configuration. The inertial number I, also known as the Bagnold
number [17], Weissenber number, Savage number [213] or Coulomb number [8], has been
proposed as we know it today by Da Cruz et al. [67] in a study of granular rheology on a
plane shear. The inertial number is the ratio of relaxation time under load τi =

√
m/P to

the shear time τs = 1/γ̇:

I =
γ̇d√
P/ρg

(1.2)

where γ̇ is the shear rate, P is the confining pressure, d is the grain size and ρg the grains
density. The apparent friction coefficient is defined by

∣∣∣ τ
P

∣∣∣ = tan(φ) = µ(I) (1.3)

where τ is the shear stress.
Da Cruz et al. [67] also realized that the packing fraction (ν) behaves linearly when

analyzed as a function of I. Later, Pouliquen et al. [186] proposed the following expression
for the evolution of packing fraction:

ν(I) = νmax − (νmax − νmin)I (1.4)
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(a) (b)

Figure 1.8 – a) Apparent friction coefficient µ and b) packing fraction ν vs the Inertial
number I reported in various numerical and experimental studies on granular flows with
different boundary conditions. The dashed line in (a) corresponds to a fit form that follows
equation 1.1 [14].

They found that typical values of νmax and νmin were 0.6 and 0.5, respectively. The vari-
ations of the packing fraction with I correspond to the observations of granular materials
exhibiting different state (solid-like, liquid-like, gas-like) as seen in figure 1.7.

After the success of the µ(I) rheology model tested under multiple flow conditions [46]
(see fig. 1.8), Jop et al. [122] proposed a three-dimensional generalization of such model.
A viscosity, depending on the shear rate and the confining pressure, is included so that the
behavior is similar to that of a non-Newtonian incompressible fluid [87]. Two assumptions
must be made in order to warrant the compatibility with this formulation of the model:

(i) The deviatoric part of the stress tensor τij is collinear with the deviatoric part of the
strain rate tensor γ̇ij.

(ii) The packing fraction ν remains constant so that the flow is incompressible.

Although it has been found that this model performs correctly for multiple dense flow
configurations and especially for those which involve a free surface flow [54], some flaws
have been identified by some authors [87, 61, 46, 184]. First, for confined flows in the
quasi-static regime or low inertial numbers, the shear bands thickness are not correctly
predicted. In this limit, every grain movement will lead to big changes in the force chains.
The model depends non-trivially on the local instabilities and so, a local rheology law is
no longer valid. Moreover, the model is sufficient to describe the rheology far from the
walls, but it fails to predict the flow in the wall proximity [202]. Also, since the model is
a simple Coulomb criterion, it does not account for the hysteretic behavior nor the finite
size effects, failing for cases in which multiple avalanches take place. Finally, the behavior
in the kinetic regime is not well represented by this model and so the transition between
two models for the two states is still an open issue.

The generalization of this model was rigorously developed and tested in the case of
dense granular flows in a 2D rotating drum by Cortet et al. [61]. The relation between
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the friction coefficient and inertial number τ
P

= µ(I) was verified in the whole drum, but
the deviatoric part of the stress tensor τij is not aligned with the deviatoric part of the
strain rate tensor γ̇ij, and therefore the second assumption of this model is not fulfilled in
rotating drums. Moreover, in Pignatel’s work evidenced that in rotating drums the µ(I)
model failed due to the wall slip and the spatial variation of the shear rate γ̇, which is
constant in other flow configurations such as an inclined plane, a vertical chute, or a direct
shear test [184].

1.3.2 Flowing regimes inside rotating drums

In systems like rotating drums, the granular material presents some or all of these regimes
simultaneously. Furthermore, six different flow regimes have been identified and studied:
slipping, surging, slumping, rolling, cascading, cataracting, and centrifuging; See fig. 1.9
[201, 157]. These regimes present differences in terms of the mixing behavior, heat transfer,
among other flow parameters. Slipping and surging regimes have no real application be-
cause the bed material slips on the drum walls and the material is not mixed; slumping and
rolling are used for applications that require mixing at low energies (e.g. rotary kilns). The
cascading regime is also used for mixing and in applications that require a wide exposure of
the material to the air (e.g. dryers and coolers). It is distinguished by the kidney-shape or
S of the bed surface. Cascading, is the flowing regime that is required for comminution in
ball mills. A continuous inertial flow at the free surface, of curved profile, and high-energy
collisions characterizes this regime. Finally, in the centrifuging regime the particles stick to
the drum walls due to the centripetal force. This does not have an industrial application
and it is achieved at high rotation speeds.

The first criterion for describing the motion of solids inside a drum has been the Froude
number, defined as the ratio of centrifugal force and gravity:

Fr =
ω2R

g
(1.5)

where ω is the rotation speed, R is the drum radius and g is the gravity acceleration. Since
the flow configuration changes considerably between rolling, cascading and cataracting
regimes, it is of particular interest to understand and to identify the transition conditions.
In Mellmann’s work, the author studied the unbaffled rotating cylinders and free-flowing
monodisperse spheres and found that the types of the transverse bed motion could be
delimited using a particular range of values of the Froude number, filling degree, and a
critical friction coefficient [157]. Henein et al. [105] proposed the Bed Behavior Diagram,
a representation for the regime transitions. In his work, Mellmann also adopted this
representation, formulating the bed behavior diagram for three materials: gravel, limestone,
and sand. He found that in principle, the motion behavior of the bed materials is similar
except for the transitions slumping-rolling and rolling-cascading that could differ in shifting
to lower Froude numbers [157].

In Félix’s work, the presence of a S-shaped free surface has been identified by the
parameter ∆θ = θmean − θmin, showing a linear relation with the rotation speed ω. A
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(a) (b) (c) (d) (e)

Figure 1.9 – Flowing regimes in a rotating drum: (a) surging, (b) rolling, (c) cascading,
(d) cataracting, (e) centrifuging.

‘critical’ rotation speed wc can be therefore calculated as the point where ∆θ starts showing
non-zero values [84]. It was found that wc increases with particle size d and decreases with
drum size R. Contrary to Taberlet’s results [223], they found that the end-wall friction
has no effect on the free surface shape. In addition, they rejected the widespread idea
that the S-shaped surface appears when the centrifugal effects have a stronger influence on
the flow (Fr> 1) [84]. Other criteria also were tested in this work: Blumberg’s, Henein’s
model and Elperin’s model were found unsuccessful for the prediction of transition. Finally,
Félix found that the transition takes place when the particle accelerations reach a value
equal to 6% of the maximal acceleration down an inclined plane gsin(θ), where θ can be
geometrically calculated as shown in figure 1.10. However, a generalized expression for
determining the critical Froude number was not found on this work.

1.3.3 Wall effects: 2D vs 3D

Multiple experimental, numerical, and analytic approaches have been used in order to
understand material flowing inside rotating drums. In both experimental and numerical
studies, working in three-dimensions involves additional challenges. For example, particle
tracking is easier to perform in a two-dimensional drum because all the particles are in
contact with the transparent wall. Numerically, working in 2D requires a lower number
of particles which makes big system simulations feasible. There major differences between
the 3D and 2D: i) disks have a bigger contact surface than spheres, inducing bigger friction
forces and energy losses. ii) the wall-effects are not avoidable in 2D drums and many
studies confirm that granular flows behave differently close to the walls and in the bulk
[84, 152, 223, 50, 143].

Maneval et al. [152] have studied the effect of end-wall friction in rotating drums by
measuring the velocity profiles of 2D and 3D systems. In the latter, they have taken
two measurements: in the center and at the end of the cylinder. They conclude that the
profile measured in the center of a 3D drum differs significantly from the one measured
at the end of the cylinder and from that in a 2D drum. Furthermore, the free surface
profile exhibited by a granular material rotating inside drums of different widths L were
compared by Taberlet et al. [223]. They found that the drum width and the friction with
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(a) (b)

Figure 1.10 – Different dynamic angles of repose θ that can be defined in a rotating drum
geometry: a) maximum and minimum, b) average.

(a) (b)

Figure 1.11 – a) Apparent friction coefficient and b) shear stress as a function of the flow
thickness (H/d) [214].

the end-walls are responsible for the S-shape of the granular pile. Specifically, the granular
flow inside longer cylinders and frictionless end-walls exhibited flatter free surfaces. Finally,
differences in the dynamic angle of repose θ (See θmean in fig. 1.10) measured in the vicinity
of the walls show an increment of 10 to 20% regarding those measured at the center of the
drum [79].

Studies on the finite size effect in granular materials submitted to plane shear in 2D show
that some macroscopic properties such as the packing fraction and the macroscopic friction
coefficient µM increase with the sample height H whereas the shear stress τ decreases with
this length scale; See fig. 1.11. For these three macroscopic descriptors, a saturation or a
plateau was reached when H/d ' 10, indicating that the finite size effects vanish when the
thickness of the flow (H) is around ten times the particle size [214].

Another study on the same kind of systems shows that the lower values of packing
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Figure 1.12 – Vorticity fields of shear tests with different heights (H/d) and inertial numbers
(I) [202].

fraction for small systems (H/d = 20) can be explained by the slight decrease of the local
value of this property in the wall vicinity. The velocity profile that has been found linear
for higher H/d ratios [66, 215, 15] is non-linear S-shaped for this case as in previously
reported studies [215]. Therefore, the shear rate γ̇ was not constant but variable with
depth, showing significant changes near to the walls while it remains nearly constant in
the central region of the flow.

Further tests on the same systems permitted to discard the possibility that such be-
havior was due to internal material properties (friction and restitution coefficients between
particles) [202]. Finally, the wall perturbations to the flow were also studied in terms of
the vorticity and the velocity fluctuations. They found a high vorticity layer near to the
walls while the central region exhibited smaller values, as shown in fig. 1.12. Accordingly,
the velocity fluctuations were found nearly constant with γ̇ at the central region and had
smaller values in the proximity of the walls, despite a more intuitive previous result where
the velocity fluctuations changed near the walls [153]. They suggest that there is a grain
rearrangement mode that allows for both a higher rearrangement rate and a lower velocity
fluctuation simultaneously at the walls [202].
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(a) (b) (c) (d)

Figure 1.13 – Examples of aspherical particles generated by means of different approaches:
a) superellipsoids [69], b) superquadrics [144], c) clumps or glued spheres [195], and d)
non-convex polyhedra [195].

1.3.4 Particle shape and size effects on the flow inside rotating
drums

The effect of particle size and shape has been one of the latest subjects studied using both
experiments and numerical approaches. Some studies performed using DEM simulations
look for accomplishing an adequate representation of realistic materials [47, 181]. Multiple
strategies such as ellipsoids [150], sphero-cylinders [262], superquadrics [143], polyhedra in
3D or polygons in 2D [99], and clumps [59], have been used in order to model aspherical
particles.

A study that compares different particle shapes inside a rotating drum, using experi-
ments and DEM simulation, have been carried out by Hohner et al. [112]. In this work, two
main characteristics were studied: the dynamic angle of repose and the mixing and segre-
gation properties. They found that the dynamic angle of repose θ (see fig. 1.10) decreases
as the particle approaches a spherical shape. Larger values of θ were found for samples
composed of polyhedra compared to the smoothed version of the particles. Regarding the
mixing processes, the spheres mix better than the polyhedra and no significant differences
could be found between various polyhedral shapes studied. Another study about the flow
of polygonal particles at different rotation speeds show that for a constant ω the samples of
squares and triangles exhibited a better mixing than rounded shapes. However, the mixing
index and mixing entropy is more influenced by ω than by particle shape because of the
changes on the flow regime induced by the variation of the rotation speed [99].

The study of Alizadeh et al. [6] consisted of experimental tests of glass beads inside a
rotating drum in which the positions of the particles were measured using the Radioactive
Particle Tracking (RPT) technique. The active layer of the flow is correlated with transport
of the particles inside a rotating drum (e.g. mixing and segregation) [4, 261, 97]. Among
the results of this work, the active layer thickness showed higher values for polydisperse
samples. Regarding the kinematic behavior, they did not find differences between the
streamwise nor axial velocity profiles measured for polydisperse and monodisperse samples.
The measures of an axial dispersion coefficient took smaller values for both: monodisperse
and polydisperse particles flow as a block in the axial direction. Moreover, they found

16



1. Industrial and scientific context

that the small particles tend to remain in the bed core while the bigger ones flow around
(See fig. 1.14(a)). This behavior was present for the two tested rotation speeds and also
in other work [80, 196, 48].

Another experimental study was dedicated to the mixing of non-spherical tablets mix-
ing inside a rotating drum [76]. Differences in the velocity profile and the active layer
measurements were found between the tablets and spheres cases only when the aspect ra-
tio was above 2. Also, they found that polydisperse samples presented a higher dispersion
coefficient when the size was increased as in previous studies [6], and the non-spherical
particles showed a lower axial dispersion than the glass beads. Regarding the segregation
process, the smaller and denser tablets were found on the outside of the bed and larger
and lighter tablets in the bed core [76].

This result, as well as the results found by Félix et al. [86], show that the particle
size is not the only factor responsible for the segregation but the particle mass plays
also an important role. In general, it has been found that the parameters that mostly
influence the segregation inside rotating drums are the particle size and density. When
the density of the particles is the same, the smaller particles will be segregated to the
core; See fig. 1.14(a). In monodisperse samples, the denser particles are prone to remain
at the core [126]. Ristow [201] pointed out that the friction coefficient can also induce
segregation. The rougher particles are more susceptible to remain at the core because
these particles lose more kinetic energy by frictional interactions during the flow at the
free surface compared to smooth particles. Therefore their velocity vanishes earlier on the
slope with the consequence that they concentrate at the core [201].

Finally, Jain et al. [119] found different segregation modes that are present for different
combinations of size and density ratios, maintaining equal volume proportions of glass to
steel beads (50/50); See fig. 1.14(b). They identified two mechanisms triggering the
segregation process: buoyancy (density) and percolation (size). In their study it was the
second which prevailed in most cases. When the steel particles were smaller than the glass
beads, the buoyancy and percolation act in the same direction. In contrast, when the steel
particles were larger than the glass beads, the buoyancy effect counteracted the percolation
and the modes varied significantly. They found that in order to achieve a correct mixing
in systems with particles of different sizes and density, the best strategy is to have larger
particles with higher density compared to smaller ones.

1.3.5 Scaling laws in rotating drums

One of the main concerns in the industry is the extrapolation from optimal parameters
found at the laboratory scale to the plant size drum. This process is often called scale-up.
The main goal is to obtain the same product in both laboratory and plant depending on
the nature of the process (e.g. grinding, mixing, drying, cooling). For example, while in the
mixing process the homogeneity of the product measured using a mixing and/or segregation
index is the indicator, in a grinding process the particle size distribution and/or the specific
surface are taken into account for the evaluation of the product quality.

In order to perform this scale-up, a dimensional analysis was carried out by some authors
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(a) (b)

Figure 1.14 – Segregation patterns when considering particles of different sizes. a) DEM
simulations in a mixed state and after 25 rotations [48]; b) experiments on a mixture of 1
mm steel balls (darker color) and 3 mm glass beads (lighter grey color) at four different
rotation speeds (1, 4, 8, and 16 rpm) [119].

[75, 35]. The process consists in expressing the problem using a set of dimensionless
numbers in order to match them at different scales. Another possibility is known as
performance scaling, a process performance parameter such as the breakage rate or the
mixing index, is evaluated for systems of different sizes, and the scaling is then proposed
matching the selected parameter. Some of the parameters selected for this kind of scaling
are the dynamic angle of repose, the active layer, and the total kinetic energy, in case of
the rotating drums. In Orpe and Khakhar’s work the effect of several system parameters
on the dynamic repose angle θ was studied [179]: free surface profile [223], surface velocity
profiles [5], dimensionless flow rate [160, 184], and impact energy [117]. As in other studies,
they found that θ increases with ω [79, 5, 260, 54] and that for the same Froude number,
θ increases with drum size R. Finally, since with their results θ could not be scaled with
Fr and the particle-drum size ratio, they suggested that these two quantities should be
kept constant for upscaling as previous work had also suggested [252]. Alexander and
Muzzio studied the scale-up of the batch-size during mixing inside a V-blender [5]. They
analyzed the particle surface velocities, which control the segregation but not the mixing
rate, taking into account some system variables such as the rotation speed, drum radius,
gravity acceleration, and particle size. The results obtained were not conclusive and suggest
that the upscaling requires the variable(s) that govern the process to be determined in
advance.

In the work of Ding et al. [75] the scale-up was attempted based on an Eulerian
approach. The differential equations that govern the behavior of solid motions in a drum
were defined. A set of dimensionless numbers were proposed and then combined in order to
derive the scaling relationships in rotating drums. One main inconvenience of this work is
its limitation to the rolling regime and that it does not apply for small particles (< 100µm).

In another work, the energy distribution function calculated from the impact energy
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was analyzed as a function of the drum size R [117]. The authors suggest that the scaling
of the power with R follows a power law with an exponent equal to 3.5, and the scaling
factor C1 depends on other system characteristics such as ω, filling degree and particle size.
As a result, they propose the following expression in which, N is the ratio between ω and a
critical rotation speed, β = L/R, f is the filling degree measured as the ratio between the
material volume and the total drum volume, t is the grinding time, x is the scale-up index
calculated as the ratio between the two drum volumes (V drum/V drum

0 ), and the subscript
0 accounts for the properties measured at the small-scale drum:

t =

(
N0

N

)1.3(
x
β0

β

)−0.2(
f0

f

)−1.2

t0 (1.6)

Govender [97], in his review of the state of art of granular flows inside rotating drums,
shows various and different results on the scaling relationships between the velocity profile
and the flowing bed thickness h. Generally, a relationship 〈v〉 ∝ hm with different values
of m is found in various studies [27, 160, 122, 85, 97]. In the work by Taberlet et al. [223],
a scaling is developed based on the free surface shape. The Froude number and the drum
width (L) are included in the proposed scaling of equation:

Λ4 = Fr
d

R

(
R

L

)4

(1.7)

In another work, through experiments in 2D rotating drums with dry and immersed
particles, the following scaling relation of the dimensionless flow rate Q∗ is proposed [184]:

Q∗ = Fr1/2

2

(
R
d

)3/2
(
ρp
∆p

)1/2 (
1 + 1

St

)
and Q∗dry = Fr1/2

2

(
R
d

)3/2 (1.8)

The last two terms are integrated to the equation in order to make it valid also for immersed
flows. ∆ρ is the difference of density between liquid and solid particles, St is the Stokes
number, defined as the ratio of viscous time to flow time.

Despite multiple attempts to obtain a general scaling law, a full agreement on the scale-
up of rotating drums has not yet been achieved. The difficulty of finding a unique general
expression valid for all cases resides in the large number of system parameters involved and
the system’s intrinsic heterogeneity.

1.4 Particle breakage

Solids in nature are heterogeneous, contain flaws or cracks at micro and meso-scale level,
and can break when subjected to loading. The fracture mechanics is the study of the me-
chanical behavior of cracked materials, dealing with irreversible rupture processes due to
nucleation and crack growth [183]. In this section, some generalities of the fracture mechan-
ics (fracture modes, local and global approach) and particle breakage tests are presented.
It will be followed by a review of the state of art of numerical approaches for modeling
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(a) (b) (c)

Figure 1.15 – Fracture modes in 3D: a) Mode I: opening, b) Mode II: In-plane shear, and
c) Mode III: Out-of-plane shear [95].

particle breakage and some results regarding the particle size distribution generated during
impact tests. Finally, the breakage processes that the particles can undergo inside a ball
mill will be introduced together with the population balance method (PBM), which is one
of the most used techniques for modeling the grinding behavior.

1.4.1 Fracture Mechanics

A crack is defined as a surface in 3D or a line in 2D of discontinuity s. At the tip, the
stress field can be decomposed in three loading modes: mode I orthogonal to the plane of
the crack surface, mode II parallel to the plane of the crack surface and orthogonal to the
crack front, mode III parallel to the plane of the crack surface and to the crack front; See
Fig. 1.15. These three modes also define the failure kinematics. Mode I is also known as
the opening mode while mode II and mode III are described as shear and sliding modes.
The mode I is the most common failure type, and, although all the modes are present
during the crack growth due to the normal irregularities of the crack surface and internal
structure of the material, each one of these modes has been linked to a loading mode: mode
I is related to tensile loading, mode II to shearing and mode III to tearing. For example,
fracture in mode I can happen when a crack is sheared with a kink angle between the
initial crack direction and the direction followed under shearing.

Stresses become singular at the crack tip, with a value of the order of σ ∝ r−1/2, where
r is the distance to the tip, because of the displacement discontinuity that defines the
crack [134]. The stress intensity factors of mode I and mode II, KI and KII , depend on
the geometry and loading. If we consider the case of a crack belonging to the z-plane, the
stress intensity factor can be defined asymptotically from the stresses by

{
KI = lim

r→0

√
2πrσzz(r, θ = 0)

KII = lim
r→0

√
2πrσxz(r, θ = 0)

(1.9)

where (r, θ) a polar coordinate system with origin at the crack tip. During the fracture of
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brittle materials, a fast crack growth leads to a catastrophic solid separation. Low energy is
dissipated during the process because the elastic or plastic deformation before the failure
is small. The ductile fracture involves a higher energy dissipation because of the large
deformation that the solid undergoes before rupture. The crack growth is slower and it
is usually accompanied by strain hardening at the crack tip [183]. Two criteria are often
used to predict the propagation of a given crack in brittle materials. Irwin’s is a local
criterion that focuses on the behavior at the crack tip, using the stress intensity factors
previously defined. Griffith’s theory is based on the energy dissipation during the process
and therefore is known as the global approach.

Irwin’s criterion: Local Approach

In Irwin’s criterion, a critical stress intensity threshold, named fracture toughness (KIC),
has to be reached in order to allow the crack to propagate [115]. KIC is usually considered
as a material property, independent of the problem. The approach also establishes that
the crack opening is irreversible. This criterion is limited to the case of linear elastic brittle
solids fractured under mode I (opening loading). This means that a crack loaded in a pure
mode II would never propagate.

Griffith’s criterion: Global Approach

The first theory developed on the fracture of materials was Griffith’s [98]. In his work, the
fracture of glass beads was studied. Therefore, the theory is especially suitable for elastic
brittle materials. The criterion is based on the energy balance at the crack surrounding
material in such a way that whenever a crack propagates, the available energy sG must
be equal or greater than the released energy in the surface generation process (sGc). In
other words, the crack growth, due to an increment of the elastic strain, is proportional to
the new surface s created. The specific fracture energy Gc is a material property and the
energy release rate is defined as:

G(s) ≡ −∂Epot
∂s

, (1.10)

where Epot is the potential energy or the stored energy in the structure due to external
loading, and s is the surface generated. When any other dissipative phenomena (such as
plasticity) is ignored, the fracture energy Gc is equal to 2γs, where γs is the specific surface
energy. As in Irwin’s criterion, the crack growth is considered as an irreversible process.
The stress necessary for creating a crack of length a in a material with Young modulus E
is given by

σcrit =

√
GcE

πa
. (1.11)

When Irwin’s and Griffith’s criteria are put together in the case of a crack opening
under pure mode I, the fracture energy Gc can be related to the fracture toughness KIC
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as follows:

Gc =
K2
IC

E ′
, (1.12)

where E ′ is the reduced Young’s modulus (E ′ = E
1−v2 for the 3D case and E ′ = E in 2D

plane-stress). This relation can be extended to the case where mixed loading modes take
place using the generalized toughness Kc:

Kc =
√
E ′Gc. (1.13)

Since Gc is independent of the mode angle (Θ = tan−1(KII/KI)), the toughness must be
also mode angle independent.

1.4.2 Particle breakage tests

The first and simplest step for understanding materials breakage is the case of a single
particle. It can break in different ways depending on the direction of the applied force and
its magnitude. The terminology used for defining the types of breakage has not formal
uniformity in the literature. We are going to explain some of the processes that a particle
can undergo due to different loading conditions and propose a terminology that is going
to be conserved on this thesis.

The first point is that particle breakage can follow two main mechanisms: fragmentation
and surface wear [93]. A particle is fractured under high force and, as a consequence, large
fragments compared to the initial particle size are obtained. When the force is applied
slowly (quasi-static compression), a cleavage phenomenon takes place. On the other hand,
when the force is applied faster to the particle, the fragments may include fine fragments.
This type of breakage is known as fragmentation [197]. A particle wears when low and
repeated forces are applied, and the sub-products have a relatively small size.

Hence, four main types of breakage can be distinguished: attrition, abrasion, fragmen-
tation and chipping; See fig. 1.16. Fragmentation and chipping are fracture modes where
a normal force usually is transmitted through the particle bulk and so longitudinal or
meridional cracks define the fragmentation. Chipping, also known as erosion, occurs when
tangential forces lead to a breakage of the asperities of the particle surface. As a conse-
quence, the resulting fragments are coarse and generally show high non-convexity. Attrition
and abrasion are wearing modes. During attrition, the sharp edges of the particle will be
removed as in chipping, but in this case the final particle will present a smoother surface
and a more spherical shape. On the other hand, the abrasion breakage is a consequence of
rolling and sliding of the particle, which is induced mainly by tangential forces.

From a macroscopic point of view, one can differentiate between quasi-static and dy-
namic fracture. Generally, the dynamic fracture occurs when the inertia of the particles
composing the solid are sufficiently large that a correction of the fracture energy is required
to account for the kinetic source [62]. This means that the dynamic or inertial effects be-
come non-negligible when the crack tip propagation velocity is large compared to the stress
wave velocities. Numerous challenges arise in modeling dynamic fragmentation.
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Figure 1.16 – Types of breakage that a single particle can undergo under different loading
conditions.

The natural dynamic character of the fracture under this regime impedes obtaining
highly resolved observations of the crack propagation. The grinding process in ball mills
involves the dynamic impact and fracture of particles. Most of the tests in which the
particle breakage can be accomplished and measured are performed on multi-grain sys-
tems. However, single impact tests are of special interest with the new faster and more
accurate measurement techniques. A first classification of the single particle tests is made
as a function of the loading rate. There are quasi-static and dynamic tests. In the tradi-
tional quasi-static compression test, usually known as the Brazilian test, the specimen is
compressed between two rigid platens, failing under tension. Direct tension tests are not
performed on single grains because of the particle shape.

There exists two main types of impact tests: single and double. In the single impact
test, there is only one point of contact. The particles are generally accelerated to a target
using air guns [209, 263, 211, 133, 10, 221] or are released under gravity [94, 60, 104]. In
the double impact tests, also known as drop weight tests, the particle is placed on a rigid
surface and a weight is released onto the grain [256]. A variant of this test uses a device
known as ultra fast load cell (UFLC). The particle is placed on the rod that is instrumented
with multiple strain gauges. The particle is then impacted by a steel ball [227, 231]. This
has been one of the first experiments that allow for the measurement of the force-time
histories [227] and the impact energy [240].

One of the first experimental works in which the breakage of plaster spheres of differ-
ent sizes and at different impact speeds was studied, provided important insights about
the fragmentation modes [256]; See fig. 1.17. Finally, in a study of the breakage of 3D
printed agglomerates, it was found that the fracture patterns differ with the agglomerate
orientation. Further tests with a larger sub-particle quantity must be performed in order
to refine this technique and to avoid finite size effects [92].

Multi-grain systems also can be tested under static and dynamic conditions in order
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Figure 1.17 – Fracture modes of plaster particles submitted to double impact tests at
different impact energies [255].

to study particle breakage. Recently, some tests have been developed to study the grains
wearing where the attrition and abrasion phenomena are the principal breakage mecha-
nisms. Among the quasi-static tests, one can find widely used tests in soil mechanics such
as oedometric, direct and annular shear, and triaxial. Under dynamic conditions, the gran-
ular materials can be tested using the Hopkinson pressure test and multi-particle impact
bed tests [228, 206, 203]. Finally, abrasion [242] and attrition [243] tests were proposed
by Van Laarhoven. In the abrasion test, the grains are constantly sliding on the container
such that only tangential forces are applied to the particles.

1.4.3 Numerical models for particle breakage

The crack propagation inside a material and the fracture mechanics have been widely
studied by means of the Finite-Element-Method (FEM). In order to study particle breakage
by method, it is necessary to use a re-meshing or a nodal relaxation technique that allows
the crack propagation in the direction of the maximum normal stress [29]. The simulations
performed using this method show a good capability of reproducing crack patterns [190]
and stress distribution inside the particle before breakage [254]. Recently, the cohesive
zones model (CZM) has allowed for performing FEM simulations of cracking without re-
meshing and pre-definition of the crack direction (See Fig. 1.18). This model considers
cohesive elements at the interfaces of the mesh elements that link the microstructural failure
mechanism to the continuum fields governing bulk deformation [239]. CZM is usually
computationally expensive because, in order to relate the tension with the displacement at
the crack tip based on the damage degree, a large set of parameters must be set, and the
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(a) (b) (c)

Figure 1.18 – Breakage of a single particle in 2D by a) FEM [29] and b) Peridynamics [23].
c) Fracture of a conglomerate using LEM [72].

constitutive law can be as complex as desired.

There is also an approach known as Lattice Element Method (LEM) in which the
domain is discretized on a regular or irregular lattice [235, 2]. The forces between nodes
are transmitted through spring-like or beam-like elements. In the first case only normal and
tangential forces can be transmitted whereas in the second case the model accounts also for
torque transmission and shearing. The crack growth is modeled by deleting the lattices that
meet a given failure criteria [72, 135]. Another similar 2D method, known as peridynamics
reproduces crack paths in materials simulated as a continuum that can included defects or
heterogeneities [103, 89, 23, 21]. Some studies of a single particle breakage as well as for
the compression of multi-particle systems have coupled a 3D perydinamics method with
the DEM Contact Dynamics. The particle interactions are solved in the DEM and, by
means of a coupling, the fragmentation of each element in the system is resolved using the
peridynamics approach [265, 266].

The Discrete-element-method (DEM) is another methodology that is also very much
used on the modeling of particle breakage. Further information about this method can
be found in section 2.2.3. Some DEM models use strategies such as the Bonded Particle
Method (BPM), in which particles are modeled as agglomerates of glued disks [232] or
spheres [220, 161, 156, 164]. Another method consists in replacing parent particles by
smaller ones once a local failure criterion is achieved, using disks [238, 141], spheres [56,
32, 264] and polyhedral particles [81]. The Bonded Cell Method (BCM) is a variant of BPM
in which instead of spherical primary particles, it uses cells that are defined as polygons
in 2D [185, 132, 171] and polyhedra in 3D [91, 37]. Recently, some work using combined
FEM and DEM, known as FDEM has also developed to model the fragmentation of grains
[176, 149]. In this approach, the particle is discretized using tetrahedral elements and
cohesive elements at the joints that behave as bi-linear CZM, vanishing once the fracture
criterion is reached [148]; See fig. 1.19.

One flaw of BPM is that the total volume of the parent particle is not conserved during
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(a) (b)

(c) (d) (e)

Figure 1.19 – Modeling particle breakage using a) BPM [233], b) Replacing method with
spheres [32], c) Replacing method with polyhedra [81], d) BCM [38], e) FDEM [149].

breakage. Since the generated fragments are always composed of spheres, the shapes differ
from the natural complex shapes; See fig. 1.20. Some of the problems of the replacing
methods are associated with the arbitrary algorithm that determines the fragments con-
figuration. First, in very confined cases if the parent particle volume is conserved, the
new configuration could have overlapping particles, which leads to artificial pressures in
the system. Secondly, the shapes of the fragments are pre-defined rather than resulting
from the breakage. In [121], the authors compared an experimental case with three DEM
breakage methodologies: BPM and the particle-replacing method for spheres (PRM) and
polyhedra. The test was the impact of a dropping ball onto a breakable-particles bed. All
model parameters were calibrated in order to reproduce the same single particle breakage
probabilities. They found that the two replacement methods have troubles in describing
the force vs deformation curve whereas BPM performed correctly together with a good
representation of the particles-ball interactions. But the BPM was not able to reproduce
the fragments size distribution.

1.4.4 Fragment size distribution

The characterization of the sizes of the generated product is of particular interest in com-
minution and other applications that involve particle size reduction. For example, the
PBM requires a breakage probability function in order to model the volume of each size
class during grinding. To understand the fragment size distribution after a particle im-
pact, some experimental and numerical work have been carried out. Some of the tested
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Figure 1.20 – Discrete nature and complex particle shape of a granular material.

mathematical models for fitting the cumulative mass distribution after a dynamic breakage
are log-normal, Weibull, Gates-Gaudin-Schuhmann, Broadbent-Callcott, Rosin-Rammler,
Gaudin-Meloy, and Harris distributions [256, 114]. One of the most frequently used, the
Weibull distribution of the fragment volume distribution y, was proposed as a result of ex-
perimental data collected from glass bead impacts at different impact velocities and angles
[52, 51, 10], and DEM simulations [182]:

y = 1− e−( x
xc

)
m

(1.14)

In the same way, a power law was fitted to the fragments size distributions obtained
by DEM numerical simulations [140, 44, 234, 43] and experimental data [141, 258]:

p(m) = (1− β)(m)−τe
−m
m̄0 + βe

−m
m̄1 (1.15)

Wittel et al. [254] found that this distribution correctly reproduces the distribution of
the intermediate fragments with τ = −1.9, while Linna et al. [140] found τ = −1.17. One
conclusion of Carmona et al. [44] is that the first term of the equation is associated with
the microcracks developed at the impact zone while the second one controls the nucleation
or meridional crack development.

In conclusion, it has been evidenced that the Weibull distribution describes adequately
the large fragment size distribution while a power law is more suitable for the intermediate
and small fragments generated during dynamic breakage [234]. To complement these lit-
erature results, in the next section some insights on the morphology of the fragments that
may be generated in impact tests are presented.

1.4.5 Particle shape descriptors

The particle shape plays an important role in granular rheology [208, 112, 172, 7]. Since
highly dynamic loads are often involved in the genesis of natural materials, it is of a
broad interest to understand the morphology of the fragments. The particle shape can
be described in terms of the elongation, flatness, and sphericity. At a finer scale, where
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Figure 1.21 – Three different protocols for measuring the principal dimensions L, I, S of a
particle [16]: a) Krumbein standard protocol (STD) [130], b) minimum bounding box [25],
and c) maximum and minimum area projections on a plane.

the surface asperities are concerned for the description, the roughness, roundness, and
angularity are the relevant indices. Likewise, the characterization methodologies can be
grouped in two categories: geometrical and analytic. In the first category, the indices based
on the comparison of characteristic lengths provide a general idea of the particle shape. In
the second, the particle profile is described by a Fourier analysis or fractals for the height
variations at the particle surface.

In the first and most commonly used geometrical methodology, three form lengths are
considered L, I, and S: largest, intermediate, and smallest dimensions of the particle,
respectively. Different protocols have been developed for determining the three dimensions
that are defined perpendicular to each other in a three-dimensional space; See fig. 1.21. In
the standard protocol, the smallest oriented bounding box (OBB) containing the particle
is determined; See fig. 1.21a. The three dimensions of such parallelepiped correspond to
the three shape dimensions. The minimum bounding box protocol considers the smallest
parallelepiped that encloses the particle and its principal axes are aligned with the spatial
framework (x, y, z); See fig. 1.21b. Finally, the projection areas (PA) protocol starts
finding the maximum and minimum area projections of the particle on a plane and the
lengths are determined based on the dimensions of such projections; See fig. 1.21c. In
Bagheri’s work, it was found that the last protocol (PA) was associated with the lowest
human error on the measurement of the three dimensions due to its easy application [16].

Numerous shape descriptors are derived from a combination of these three but the most
commonly used are the ratio L/S, that characterizes the elongation, and I/S corresponding
to the flatness. Other shape factors [25] were tested by Baghiri et al. [16], showing that all
were affected or correlated by either the elongation or flatness. None of the shape factors
showed a correlation with particle sphericity. This descriptor is assumed to be a measure
of the degree of similarity between the particle shape and that of a sphere. The common
definition of this descriptor has been proposed by Wadell as the ratio between the particle
perimeter (2D) or surface (3D) and that of the circle or sphere having the same volume
[250]. In conclusion, it seems that for characterizing the particle morphology, one should
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characterize the elongation, flatness, and sphericity, and considering other parameters is
redundant

The Fourier descriptors analysis consists of the harmonic description of the variations on
the particle perimeter. Harmonics of different order are related to descriptors at different
scales. For instances, Bowman et al. [30] have found that low order series account for the
particle morphology (at the grain scale), while higher order series were suitable for the
texture description at the asperities level. The method uses a polar (θ, R) description of
the particle surface, which requires a discretization for its application to 3D grains. When
non-convex particles are considered (e.g. concavities are present on the surface), for a given
value of R, multiple values of θ can be defined [207]. In the literature, such methods are
mostly used for the generation of particles with a given morphology rather than for the
characterization of real particle shapes [225].

Finally, through some FDEM simulations of single particle impacts, the fragment shapes
were explored. The morphology of the fragments was characterized through three shape
descriptors: Domokos shape factor (Sf = (1/S+1/I+1/L)

√
S2 + I2 + L2/

√
3), sphericity,

and convexity index. The last one is defined as the ratio between the fragment volume and
the volume of the convex hull enclosing it. It was found that tension cracking mechanism
favors the formation of elongated, angular, and concave fragments [147].

1.4.6 Grinding mechanisms in ball mills

Some laws for comminution based on Griffith’s theory have been proposed in order to pre-
dict the energy consumed by grinding. The consumed energy by fragmentation is directly
proportional to the surface created. Kick [127] proposed another relation with particle vol-
ume, implying that big particles consume less energy. In Bond’s model [28], some elements
of the two other theories are gathered. It incorporates the notion of Bond’s work index
that is a constant depending on the material properties and crushing. It is determined
by means of tests inside drums and is widely used in comminution, specifically for mills
dimensioning. These approaches have been traditionally used in industry because of their
application simplicity, which provides the amount of energy necessary for reducing particle
size. However, these models have been developed for particular materials and grinding
tests and they remain as empirical approximations.

Inside drum mills, particles can break as a result of impact with the drum walls, with the
grinding media and with other particles. Breakage events of different types such as impact,
shearing, crushing or compression, take place simultaneously at different locations of the
flow. For example, in figure 1.22 we see that the particles can be broken under different
conditions: a) ejected onto the drum wall, b) crushed between the wall and an approaching
ball, c) between two grinding bodies that can compress, shear or wear the particle, and
d) the impact and/or weight load of a ball with a bed of particles. Indeed, the particles
can break not only under ball-particle or wall-particle contacts but also particle-particle
interactions that carry the forces transmitted from these different events.

In the literature, some particle breakage modes have been identified and were presented
in section 1.4.2. Moreover, inside stirred ball mills the advent of different breakage modes
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Figure 1.22 – Types of mechanical loading that particles can undergo in a rotating drum.

have been studied experimentally together with population balance models (PBM) [106].
The PBM functions are fitted such that the particle size distribution predicted and mea-
sured during the experiments match. The breakage events are deducted from the change
of the particle-size distribution together with the energy inside the mill and SEM images
of the fragments. Hennart et al. [106] found that in the initial stages of milling in which
energy is still low, the particle-size distribution slowly shifts to the smaller size, and there-
fore the preferred breakage mode is cleavage. In intermediate stages, they found coarser
particles surrounded by finer ones which suggest that the particles in the system under-
went abrasion mechanisms. Later, the broad range of particle sizes suggests that abrasion,
cleavage and/or fracture are taking place simultaneously. The final stage consists of events
where intermediate particles become smaller.

In the case of ball mills operated in the cascading or cataracting regimes, where a
kinetic flow occurs, the particles travel at high velocities colliding with one another, and
therefore highly dynamic events that could lead to particle breakage are expected. For
this reason, the study of dynamic particle breakage is an essential step for understanding
multi-particle grinding inside a rotating drum. Determining the breakage modes in such a
dynamic environment is an impossible task to perform experimentally. The discrete element
method seems to be the ideal tool because of its advantage of tracking each particle in the
system at every instant.

Population balance Models

The population balance model (PBM) is a strategy that has been widely used for modeling
the rate of change of particle size distribution in materials subjected to comminution
processes [90, 247, 230, 101, 83]. In the PBM, the volume of the product in a given
size range, and thus the particle size distribution, can be calculated at every instant.
The equation involves other functions that have to be measured independently such as
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the breakage probability function, also called selection function, and the forces or loads
acting on the particles during the process. Some authors have measured the breakage
probability function using single particle breakage tests [227, 108], oedometric tests [83],
and empirical laws proposed by Austin [12, 251]. As a result, the breakage probability is a
power law function of the applied load and the fragment size [227, 133, 247]. Furthermore,
the particle load state is estimated using DEM simulations of spheres inside a cylinder
[137, 188, 241, 251, 40, 253]. Then, the change in the volume of a size band (Vi) can be
calculated as the difference between the volume leaving and the volume arriving from the
breakage of other categories (Vj), through a conservation equation:

∆Vi =
∑

VjbijPB(j)− ViPB(i), (1.16)

where PB is the breakage probability, selection function [125], or specific breakage rate
function [39], often estimated form single particle impact tests. Vogel and Peukert proposed
the following analytical function that follows a Weibull distribution [245]:

PB = 1− exp(−fmatxk(Wm,kin −Wm,min)) (1.17)

The probability of breakage (PB) is described in terms of the particle size x, the number of
successive impacts k, a parameter fmat that accounts for the material and particle shape
characteristics [245], the mass specific impact (kinetic) energy (Wm,kin) and the specific
energy threshold (Wm,min) which has to be exceeded in order to break the particle. The
subindex m on the two energy terms denotes that the energy is normalized by the particle
mass.

The volume transfer function bij or breakage function gives the volumetric fraction of
fragments generated from category j into i [247]. In some approaches, it is calculated from
the breakage function B, which is usually estimated from the empirical equation [12]:

Bij = φ

(
xi− 1

xj

)ξ
+ (1− φ)

(
xi− 1

xj

)β
, bij = Bij −Bi+ij (1.18)

or by fitting the fragment size distribution obtained from single particle breakage tests
[68]. There are no direct measurements of the volume transfer function inside ball mills
reported in the literature.

The PBM makes it possible to track the evolution of the volume of each of the size
bands in time. One of the main drawbacks of this methodology lies in the PB function
measurement. It does not take into account the effect of the size of surrounding particles,
the dynamic effects of the breakage, multi-particle interactions, or external processes such
as agglomeration. Finally, the particle size distribution obtained using the PBM is often
compared with experimental results showing that the functions that are involved can be
fitted in order to obtain a good agreement. However, these functions are material depen-
dent and specific for a given set of operational conditions, meaning that they have to be
calibrated for every particular case [101].
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1.5 Conclusions

In this chapter, we introduced several engineering and scientific difficulties related to the
scale-up of ball mills for grinding and mixing nuclear powders, which aims at reaching the
desired particle size distribution and allowing for good mixing for innovative manufacture
of nuclear fuel and enhanced performances in the reactor core. The scientific context was
divided in two major parts: 1) granular flows and 2) particle breakage. Inside ball mills,
these two phenomena are highly dynamic and they take place simultaneously, and this is
precisely a crucial part of the complexity of the problem. But our literature review reveals
significant gaps in our understanding of each aspect of the problem: nature of cascading
flow in rotating drums, dynamic particle breakage and spatio-temporal correlations between
granular flow and particle size reduction.

We also underlined that the experimental techniques are limited to particle tracking
and some macroscopic measurements that do not allow for detailed analysis of the break-
age events and flow variables from the particle scale. The particle dynamic approach or
discrete element method appears thus as a suitable alternative provided particle shapes
and breakage mechanisms are correctly taken into account. This is in fact one of the chal-
lenges of this work to demonstrate the feasibility of this research project by working out
a breakage model, performing simulations, and analyzing the data in order to characterize
granular flows and particle breakage in rotating drums. We do not separate the numerical
and physical aspects in this document. Each chapter is self-consistent and contains both
numerical developments and detailed analysis of the results.
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“ In comminution the particles will react individually in a greater measure than
in any other process. The reason for this is that the defect and dislocation struc-
ture is decisive for the fracture formation. As a result the breaking behaviour
will, for example, vary to a great extent with the kind of material and with par-
ticle size but can also vary greatly with the same material and particle size...
How much energy can, in fact, be saved can only be determined by systematic
tests with single particles.”

Rumpf 1977, Lecture to the Fine Particle Society in England [146]

Chapter 2

Dynamic fragmentation of a single
grain

We investigate the dynamic fracture of a single particle impacting a flat surface using 3D
DEM simulations based on a fragmentation model involving both a stress threshold and a
fracture energy. The particle is assumed to be perfectly rigid and discretized into polyhedral
Voronöı cells with cohesive interfaces. A cell-cell interface loses its cohesion when it is at a
normal or tangential stress threshold and an amount of work equal to the fracture energy is
absorbed as a result of the relative cell-cell displacements. Upon impact, the kinetic energy
of the particle is partially consumed to fracture cell-cell contacts but also restituted to the
fragments or dissipated by inelastic collisions. We analyze the damage and fragmentation
efficiency as a function of the impact energy and stress thresholds and their scaling with
fracture energy and impact force. In particular, we find that the fragmentation efficiency,
defined as the ratio of the consumed fracture energy to the impact energy, is unmonotonic
as a function of the impact energy, the highest efficiency occurring for a specific value of
the impact energy.
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2. Dynamic fragmentation of a single grain

2.1 Introduction

Particle breakage takes place in numerous natural and industrial processes, and it has
been addressed in multiple research fields and applications such as powder technology,
construction engineering, mining, food industry and metallurgy [226, 245, 65, 259]. The
processes that involve particle breakage range from rock fracture in landslide events to the
grinding of minerals in various applications [244, 236, 18]. The initiation and evolution
of particle fragmentation are governed by fracture mechanics at the material level and by
granular dynamics at the particle packing scale. For this reason, it is necessary to enhance
our understanding of the effects of various parameters that control fracture-induced phe-
nomena independently of the specific crushing or grinding machines employed in different
applications. For example, it is well known that the comminution is an energy-intensive
transformation and the size distribution of reduced particles is crucially dependent on vari-
ous factors related to the material and loading conditions [227, 90, 218, 96, 155]. But most
of the present knowledge on the energy consumption and its dependence on the material
properties is empirical in nature. Different loading modes such as compression, distortion,
shear, and impact can cause particle fracture, and their combination leads to a multitude
of local mechanisms such as damage and abrasion that take place simultaneously during a
comminution process [226, 96, 129].

Studying the fracture of a single particle is the first step towards a quantitative descrip-
tion of the complex multi-particle fracture dynamics. Experimentally, the previous work on
the fragmentation of one particle has been largely focused on compression tests under quasi-
static conditions [49, 34]. Dynamic fracture tests have been performed by means of drop
weight impact [227, 256, 92] or air gun [209]. Large-scale experiments were also performed
on the fragmentation of rocks falling on a hard surface [94]. The common goal of single-
particle tests has been to investigate the fragment size distribution, crack patterns, particle
breakage probability, and failure modes [185, 131, 238, 220, 49, 209, 254, 45, 113]. Several
authors have also considered the fracture energy consumed per unit mass [218, 227, 90, 45].
This is the energy consumed in producing new fractured surfaces inside the particle. Other
sources of energy dissipation in the fragmentation process are the plastic deformations and
frictional or inelastic collisions. Part of the total impact energy is also taken away by
the kinetic energy of the fragments, for which we found no reported measurements in the
available literature. Most measurements were carried out at the end of the tests because of
the difficulty of measuring in real time the stress distributions and particle motions [254].

On the numerical modeling side, the simulation of particle fragmentation began with
Finite Element Method (FEM) approaches wherein the dynamic meshes make it possible
to incorporate cracks and their evolution in time [111, 267]. Later, the discrete element
method (DEM) was used as the privileged tool for the simulation of granular materials with
the advantage of incorporating various particle interactions such as friction, cohesion and
damage, and providing access to the forces and velocities at the particle scale [64, 163, 192,
73, 224, 145, 110]. Within the framework of the DEM, particle fragmentation has often been
modeled using the Bonded Particle Method (BPM), in which the particles are modelled as
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2. Dynamic fragmentation of a single grain

agglomerates of glued disks [232] or spheres [220, 161, 156, 164]. An issue with this method
is that the total volume of the material is not conserved during the fragmentation process.
Another method consists in replacing parent particles by smaller ones once a local failure
criterion is achieved. It has been applied to packings of disks [238, 141], spheres [56, 32]
and polyhedral particles [81]. A variant of the first method consists in replacing spherical
primary particles by multiple polygonal cells in 2D [185, 132, 171] or polyhedral cells in
3D [91, 37], a method that was coined Bonded Cell Method (BCM).

In most discrete models of particle fracture using the BPM, the cohesive behavior at
the inter-cell contacts is of brittle type and governed by a force or stress threshold. A pre-
failure plastic force model was proposed by Luding [145] by introducing two independent
stiffness parameters for loading and unloading force-displacement relations, respectively.
This plastic contact model, however, concerns only the normal compressive part of the
displacement, the failure in tension being simply governed by a force threshold. Another
plastic contact model was proposed by Timar et al. [233] who introduced a healing time
so that whenever two particles remain in contact for a time longer than this time, a new
cohesive link is inserted between them. This process gradually modifies the reference elastic
configuration of the particles and leads to plastic dissipation and permanent deformation.
The power-law distribution of fragment masses found by using this approach was found to
be in good agreement with fracture experiments performed with polymeric particles.

In this chapter, we introduce a fracture law within a discrete element approach that
involves both a stress threshold and a fracture energy in normal and tangential direc-
tions. This model is implemented at the inter-cell interfaces inside the particle in a three-
dimensional BCM approach. The introduction of an energy criterion allows for the sim-
ulation of dynamic fracture in impact tests. A cell-cell interface breaks only if the stress
threshold is reached and the work absorbed by the interface due to relative displacements
along the normal and tangential directions is above the fracture energy. Using this method,
we investigate the breakage of a single particle impacting a rigid plane by means of ex-
tensive simulations. We analyze the total fracture energy, i.e. the energy consumed due
to debonding of cell-cell contacts, as a function of the impact velocity. In particular, we
show that the fragmentation efficiency, defined as the ratio of the total fracture energy
to the impact energy has a maximum value for a specific value of the impact energy. We
introduce a fitting form that captures the observed behavior over the whole range of inves-
tigated energies. We also consider the effects of the normal strength as well as the ratio of
normal to tangential thresholds.

In the following, we first introduce in section 2.2 the numerical approach, with focus
on the fracture model, and general conditions of the impact test. Then, in section 2.3, we
analyze particle damage and fragmentation efficiency as a function of the impact velocity
and fracture energy. In section 2.4, we consider the effective restitution coefficient and
energy dissipation by impact. In section 2.5, we focus on the effect of the stress thresholds
and friction coefficient. Finally, in section 2.6, we briefly present the salient results of this
work and its possible extensions.
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2. Dynamic fragmentation of a single grain

Figure 2.1 – Particles generated with different numbers of cells which are represented by
different colors.

2.2 Numerical method and procedures

In this section, we present different ingredients of our numerical approach for the simulation
of particle fragmentation under impact. We use the Bonded Cell Method (BCM) based on
the division of the particle into polyhedral cells interacting with their neighboring cells via
an interface characterized by a debonding stress threshold and a fracture energy [171, 37].
We describe the interface behavior, followed by the tessellation method and our DEM
algorithm for dynamic simulation of the particle.

2.2.1 Bonded-Cell Method

In BCM, the polyhedral cells of a particle interact only through their interface areas and
they are assumed to behave as independent rigid particles so that their dynamic behavior
can be simulated by the DEM. During the fragmentation process, a subset of cell-cell
interfaces break and the parent particle gives rise to fragments, each composed of several
bonded cells. We used the Voronöı tessellation method for the division of the particle into
random cells by means of the software NEPER [189]. The cells are always convex and
present adjacent faces.

For the sake of geometrical consistency between a particle and its constitutive polyhe-
dral cells, we use particles of icosahedral shape in the simulations. The number of Voronöı
mesh elements determines the maximum number of potential fragments that can be gen-
erated as a result of the fragmentation of a particle. Cantor et al. [37] and Nguyen et al.
[171] used the BCM for quasi-static diametrical compression of particles. They found that
the particle strength depends on the ordering of the cellular structure of particles. For this
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reason, we generate fully random cells both in their sizes and shapes. Fig. 2.1 displays
several examples of particles with increasing numbers of cells.

The cell-meshed particles in BCM are similar to aggregates of primary particles or
particulate compounds in the Bonded Particle Method (BPM). There are, however, fun-
damental differences between a particulate compound and a particle in BCM. In the first
place, a particle in BCM has zero porosity, so that the total volume of the particle is con-
served during its fracture whereas the total volume of a particulate compound of spherical
particles of nearly the same size is reduced by 40% when fully broken into its primary
particles. Furthermore, the interfaces between cells in BCM are well-defined surface areas
whereas in BPM they are pointwise contacts between primary spherical particles. Hence,
the debonding stress threshold of the cell-cell interfaces can be directly set equal to the ten-
sile strength of the particle and the debonding force is given by tensile strength multiplied
by the cell-cell interface area.

2.2.2 Internal cohesion and fracture

In BCM, the cells should interact through an interface mechanical behavior pertaining to
the nature of the material. In its most general form, this interface behavior is characterized
by a relationship between the normal and tangential components of the cell-cell stress, on
one hand, and the relative cell displacement or velocity, on the other hand. We also need a
criterion for debonding, i.e. the loss of internal cohesion and thus creation of a cohesionless
frictional interface between two cells.

In most discrete-element models applied to particulate compounds, the material param-
eters are the elastic moduli, and debonding is governed by a normal and/or tangential force
threshold. Hence, in these models the creation of cohesionless surface and its propagation
do not explicitly obey the thermodynamic Griffith criterion in which the propagation of
a crack requires that an amount of work per unit area equal to or larger than the frac-
ture energy Gf to be supplied by the action of external forces or from the variation of
the elastic energy [111, 199]. The original Griffith formulation is based on a differential
criterion, assuming that the crack growth is continuous. Hence, it can not be applied as
such to a cell-cell interface in BCM, which in the spirit of DEM must fail as a whole by
releasing a finite area s. In other words, it is not desirable and computationally efficient
to consider sub-cell scales and the time process of crack propagation inside the interface.
For this reason, an incremental form of the energy criterion should be applied [138]:

− ∆Wp

s
≥ Gf , (2.1)

where ∆Wp is the variation of the potential energy.
In order to use equation (2.1) in DEM, we also need to express the variation ∆Wp of

the potential energy in terms of cell displacements as the cells are considered to be rigid
so that all interface variables reflect those of cells. We also need to separate tensile and
shear velocity components un and ut, respectively, of the relative displacement of the cells
at the interface. For an interface at tensile or shear stress threshold, the work Gn or Gt
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performed by the stress from the time when the stress threshold is reached t0 to the time
t is given by

Gn(t) =

∫ t

t0

Cnun dt = Cn∆n(t), (2.2)

Gt(t) =

∫ t

t0

Ctut dt = Ct∆t(t), (2.3)

where Cn and Ct are the tensile and shear stress thresholds, respectively. Either Gn or
Gt (depending on whether the normal stress or the shear stress is at its threshold), is the
work absorbed by the interface, and assuming that ∆Wp is fully consumed in this work,
according to (2.1) the interface fails at time t1 when either

Gn(t1) = Gfn = Cn`n, (2.4)

or

Gt(t1) = Gft = Ct`t, (2.5)

where Gfn and Gft are fracture energies for normal and tangential rupture, respectively,
`n = ∆n(t1) and `t = ∆t(t1). In this way, a cell-cell interface fails when the stress thresh-
old is reached and the cumulative work absorbed by the interface due to the relative dis-
placements along the normal or tangential direction is equal to the corresponding fracture
energy.

Note that the formulation of the energy criterion in terms of finite increments is consis-
tent with the Finite Fracture Mechanics based on the assumption that crack propagation
always occurs over a minimal length `n ≈ Gfn/Cn or `t ≈ Gft/Ct [138]. A similar length
scale is also introduced in Cohesive Zone models in which it is assumed that the material
is micro-cracked and can still transmit stresses in a region of finite length behind the crack
tip [111]. In our formulation of the work calculated from cell displacements in equations
(2.2) and (2.3), the length scales `n and `t represent the orders of magnitude of the rela-
tive normal and tangential displacements before failure. Hence, the ratios `n/dc and `t/dc,
where dc is the mean cell diameter, are the inelastic deformations of a particle before frag-
mentation. As large inelastic deformations must be avoided in DEM simulations (as we
want the cells to keep their close neighbors as long as the fracture has not occurred), it is
important to make sure that the cell size dc is large compared to the ratios Gfn/Cn and
Gft/Ct.

In practice, when a stress threshold is reached at an interface, the two connected cells are
allowed to separate or slide along their interface. But, even if the corresponding relative
cell velocities un and ut are different from 0, the interface is allowed to carry a normal
force sCn or a tangential force sCt. In other words, the interface remains active and stress-
transmitting although the two cells can move with respect to each other. Let fn and ft be
the normal and tangential interface forces, respectively, and µ the coefficient of friction.
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Figure 2.2 – Interface behavior along (a) normal direction and (b) tangential direction.
The solution for each pair (∆n, fn) and (∆t, ft) lies on the thick line. See the text for the
definition of the variables.

For the implementation, our interface model can be expressed by the following relations:




Gn ≤ Gfn ∧
{

∆n = 0 ⇒ fn ≥ −Cns
∆n > 0 ⇒ fn = −Cns

Gn > Gfn ∧
{

∆n = 0 ⇒ fn ≥ 0

∆n > 0 ⇒ fn = 0

(2.6)





Gt ≤ Gft ∧





∆t > 0 ⇒ ft = −Cts
∆t = 0 ⇒ −Cts ≤ ft ≤ Cts
∆t < 0 ⇒ ft = Cts

Gt > Gft ∧





∆t > 0 ⇒ ft = −µfn
∆t = 0 ⇒ −µfn ≤ ft ≤ µfn
∆t < 0 ⇒ ft = µfn

(2.7)

Fig. 2.2 shows a graphical representation of these relations. Note that, the interface
becomes noncohesive only in the cases where fn = 0 or |ft| = µfn.

Once an interface loses its cohesion, it turns into a purely frictional contact. If the
gap created as a result of interface deformation is nonzero (∆n > 0), the normal and
tangential forces are both zero and the created contact is open. Otherwise (∆n = 0),
the contact remains active and the relation between the normal force fn and the relative
normal velocity un is governed by the Signorini inequalities:





∆n = 0 ∧
{
un = 0 ⇒ fn ≥ 0

un > 0 ⇒ fn = 0

∆n > 0 ⇒ fn = 0

(2.8)

These inequalities are shown in Fig. 2.3 as a graph [120]. In the same way, the frictional
component is governed by the Coulomb dry friction inequalities between the friction force
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Figure 2.3 – Frictional contact law defined at the contact framework in the (a) normal
direction (b) tangential direction

ft and the relative tangential velocity ut:




∆n = 0 ∧





ut > 0 ⇒ ft = −µfn
ut = 0 ⇒ −µfn ≤ ft ≤ µfn
ut < 0 ⇒ ft = µfn

∆n > 0 ⇒ ft = 0

(2.9)

shown in Fig. 2.3(b).
The rigid-plastic contact model introduced in this work is similar in spirit to that

introduced by Timar et al. [233] in which the elastic beams connecting the particles are
re-established after a healing time, allowing thus for plastic (irreversible) deformation. In
our model, the particle does not break as long as the work is below the fracture energy.
This means that the particle can deform as a whole without failure.

2.2.3 Contact Dynamics

For the simulation of the dynamics of undeformable particles (including rigid cells in this
work), we employed the Contact Dynamics (CD) method [162, 120, 192]. As in molecular
dynamics (MD) or similar DEM algorithms, the equations of motion are integrated in
time by means of a time-stepping scheme. However, in contrast to MD, the Signorini and
Coulomb inequalities are implemented in CD as constraints that are taken into account for
the calculation of contact forces and velocities in an implicit scheme. An iterative algorithm
is used to calculate simultaneously at all contacts and interfaces the relative velocities and
forces at the end of each time step. It should be noted that, as in the CD method the
interface and contact behaviors are not based on an elastic force law involving the overlap
between particles (or cells), the time step can be large, and the calculated force represents
a time-averaged force during a time step.

The implicit nature of the CD method can be described as follows:

1. A network of potential contacts (or interfaces) is defined from the particle positions.

41



2. Dynamic fragmentation of a single grain

2. The contact forces and velocities are calculated by an iterative process accounting
for equations of motion together with the Coulomb and Signorini relations.

3. The particle positions and rotations are updated.

The second step ensures that, when the particles are moved according to their computed
velocities, they will not overlap at the end of the time step. Because of this implicit nature
of the method, the time-stepping scheme is unconditionally stable, so that large time steps
can be used.

It is also important to mention here the meaning of the restitution coefficient in the
framework of the CD method. For a collision between two particles, the normal and
tangential restitution coefficients, en and et respectively, are classically defined from the
relative normal and tangential velocities after and before the collision. This concept can not
be used in a dense granular material in which the particle momentum involves a network
of particles so that the momenta propagate through the whole contact network and may
leave the system through the boundary conditions. In the CD method, a conceptually
different approach is used. In fact, the Signorini and Coulomb relations (2.8) and (2.9)
involve the velocities un and ut, which represent the relative velocities at the end of a time
step because of the implicit formulation of the time-stepping scheme. But a more general
approach consists in replacing these velocities by weighted means [162, 192]:

un =
un

+ + enun
−

1 + en
, (2.10)

ut =
ut

+ + etut
−

1 + |et|
, (2.11)

where u−n and u−t are the velocities at the beginning of the time step and u+
n and u+

t are
the velocities at the end of the time step. According to (2.10), a contact occurs between
two particles when un = 0, implying u+

n = −enu−n , which corresponds to the common
interpretation of en. But, in contrast to this classical definition of en, the condition u

−
n = 0

(i.e. a persistent contact) does not necessarily lead to u+
n = 0. The latter can only arise

as a solution of global determination of forces and velocities through an iterative process
together with relation (2.10) in which u−n = 0. For the tangential restitution coefficient, the
condition u−t = 0 means that a contact is in the rolling state (no sliding but one particle
rolling on the other or simply no relative motion). The above discussion regarding the
normal velocities applies also to the tangential velocities.

For the interface between cells, as long as the cohesion is effective, the relative velocity
of the cells should be interpreted as inelastic deformations localized inside the interface.
This means that the coefficient of restitution should be consistently set to zero. This is
also true for cohesionless contacts between cells since their configuration inside the particle
is too dense (with zero porosity) for a normal restitution coefficient to be effective. For
these reasons, in all simulation results reported in this chapter we set en = et = 0.

In application to cells of polyhedral shape, the CD method should resolve also the types
of contacts between the cells at each time step before the iterative determination of dynamic
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Figure 2.4 – Generic contact types between polyhedra.

variables. There can be several types of contacts between two polyhedra: face-face, face-
edge, edge-edge, vertex-face, . . . . Geometrically, a face-face contact is a plane and it can
be represented by three points (termed ‘triple contact’). A face-edge contact is a line and
can be characterized by two points (termed ‘double contact’); see Fig. 2.4. A vertex-face
contact is a point termed ‘single contact’. The edge-edge contacts are generally of single
type whereas vertex-vertex and parallel edge-edge contacts are statistically rare and their
occurrence sensitively depends on the geometrical precision of the detection procedure.
To determine the contact types, we use the Cundall Common Plan method [63] and we
attribute three points to a triple contact, two points to a double contact and one point to a
single contact. All points are treated as independent point contacts to which the iterative
procedure described previously is applied. The contact force of a triple or double contact
is the resultant force of the three or two forces acting at the corresponding points with its
application point determined as their centroid.

The initial Voronöı tessellation of a particle leads to a configuration of polyhedral cells
that, by construction, have face-face, vertex-vertex and parallel edge-edge contacts. We
only consider the face-face contacts that define the cohesive interfaces. The edge-edge
and vertex-vertex contacts in the cell configuration are omitted as the internal cohesion
of the particle is carried by the interfaces. However, as the cells move or fracture at their
interfaces, contacts of other types may occur, and the consequent evolution needs to detect
periodically the contacts. Because of its treatment of contacts as geometrical constraints,
the CD method provides in this way a general framework for the simulation of particles
of arbitrary shape. For the simulations, we used the CD method as implemented in the
software LMGC90 [77].
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Figure 2.5 – Snapshots of a particle impacting a rigid plane, and the evolution of particle
breakage. This test was performed with an impact velocity of 6 m/s.

2.2.4 Impact test

To investigate the fragmentation of particles, we perform impact tests, which consist in
releasing a particle from a height equal to 2 times its radius, measured from the lowest point
of the particle, onto a rigid plane. In order to study the effect of the impact energy W−

k

(kinetic energy of the particle before collision), the impact velocity was varied by applying
an initial velocity to the particle with the gravity set to g = 9.81 m/s2. The impact energy
is given by W−

k = mv2/2, where v is the particle velocity at impact time with the plane
and m is the particle mass. We used a particle diameter equal to 1 mm in all tests. The
friction coefficient between the particle and the plane was set to 0.4. Each impact test
was repeated 10 times, each with a different tessellation of the particle into cells . The
data points presented in the following are average values over the 10 tests with an error
bar representing their standard deviation. It should also be noted that the point of impact
with the plane is random, so that the particle, which has a polyhedral external shape, can
fall on a face, edge or vertex. To avoid systematic errors due to this effect, we rotate the
particle in an arbitrary direction before each impact test. A sequence of snapshots of a
particle during an impact test is shown in Fig. 2.5.

In all the simulations described in this chapter, we set Gfn = Gft ≡ Gf with several
values in the range [0.2, 2] J/m2, corresponding to typical measured values of the fracture
energy for glass beads. We performed a parametric study by changing the impact velocity
up to 10 m/s, the interface stress thresholds Cn and Ct up to 15 MPa, and the friction
coefficient µ between fragments from 0.2 to 0.6.

The objectivity of a fracture model requires the fracture process to be independent of
numerical parameters. In our BCM model, the numerical parameters are related to the
Voronöı tessellation and the number of cells Ncells. For the tessellation, we use the most
random distribution of cells but their number may influence the fracture process. Fig.
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Figure 2.6 – Effect of the number of cells on the number of generated fragments for three
different values of the impact velocity.

2.6 shows the number of fragments Nf as a function of Ncells for three different values of
the impact velocity. We see that the number of fragments declines as Ncells increases, but
asymptotically tends to a constant value independent of Ncells. Typically, we need at least
100 cells in each particle in order to reduce the finite size effects that influence the number
of fragments for lower numbers of cells. For this reason, in all simulations of impact test we
used 100 cells to tessellate the particles. We analyze in detail below the effects of various
parameters on the particle fracture.

2.3 Damage and fragmentation efficiency

During an impact, part of the initial kinetic energyW−
k of the particle is transmitted to the

fragments. LetW+
k be the total energy of the fragments. The differenceWd = W−

k −W+
k is

consumed in fracture and possibly dissipative interactions, including friction and inelastic
collisions, between fragments. If s is the total cohesionless surface area created during
fracture, the total fracture energy is given by

Wf = sGf . (2.12)

In the framework of the BCM, this energy may be compared with the total fracture energy
W T
f = sTGf required to break all cell-cell interfaces of total area sT . Hence, the particle

damage can be defined as

Dw =
Wf

W T
f

=
s

sT
. (2.13)

Obviously, the value of sT depends on the size or number of cells. The physical meaning
of this limit in materials can be related to the scale of heterogeneities. For example, in a
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Figure 2.7 – Particle damage Dw as a function of impact velocity v for different values of
fracture energy Gf and Cn = Ct = 1 MPa. For each test, the error bar represents standard
deviation over 10 independent tests.

porous material of porosity φ with a distribution of pores of typical volume Vp, the mean-
free path ` = (Vp/φ)1/3 may be considered as the typical size of elementary cells [136]. In
such materials, as a result of stress concentration, the value of fracture energy is far below
the theoretical threshold of the same material without pores. For this reason, the fracture
energy of fragments of size ` is much higher than the initial porous samples. In the same
way, in materials with a granular texture, the grains are usually much harder than their
assembly, and thus the grains play the role of building blocks as the cells in our model
material.

A crucial aspect of comminution is its energetic efficiency, i.e. the amount of energy
consumed for fracture as a function of impact energy. We define the fragmentation effi-
ciency η as the ratio of the total fracture energy to the impact energy:

η =
Wf

W−
k

. (2.14)

The comminution is generally not an efficient process in the sense that most of the supplied
energy is not consumed in fracture. It is thus interesting to see how the value of η for a
single particle depends on the impact parameters. This information can then be used
to understand and predict the fragmentation efficiency for an assembly of particles in a
rotating drum or any other crushing device.

Fig. 2.7 shows particle damage Dw as a function of the impact velocity v for several
values of the fracture energy Gf . The data follow an S-shaped curve in which the damage
first increases rapidly with v and then slowly tends to 1. As expected, particle damage for
a given value of v declines as Gf increases. The asymptotic value Dw = 1 corresponds to
the limit case where the particle fully breaks into its building cells. We also see that the
error bars are small, indicating that the variability of fracture as a result of the variations
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Figure 2.8 – Fragmentation efficiency η as a function of impact velocity v for several values
of fracture energy, Cn and Ct were kept constant at 1 MPa.

of impact position is not an influential factor.
Fig. 2.8 shows the fragmentation efficiency η as a function of v for different values

of Gf . We see that η is unmonotonic: it increases rapidly with v up to a value of the
order of 0.3 and then slowly declines towards zero. The velocity at which η takes its peak
value increases with Gf . Such an optimum value for energy utilization as a function of the
supplied energy per unit mass was also observed in impact experiments of quartz beads
of different sizes [205]. This unmonotonic behavior means that there is a characteristic
velocity at which the conversion of kinetic energy to fracture energy is optimal. Below and
above the characteristic velocity the supplied energy is mostly either dissipated by inelastic
collisions or taken away by the fragments. The energy consumed by fragment motions and
inelastic collisions at the characteristic velocity is almost two times larger than the fracture
energy.

Since the different plots of Dw and η differ according to the value of the fracture energy
Gf , we expect that they can be collapsed on the same plot when considered as a function of
the supplied energy W−

k (rather than the impact velocity) normalized by W T
f = sTGf . Up

to statistical fluctuations, this is indeed what we observe in Figs. 2.9 and 2.10, displaying
Dw and η as a function of the normalized impact energy defined by

ω =
W−
k

W T
f

. (2.15)

The fitting form shown in Fig. 2.10 is given by

η(ω) =
aω/ω∗

1 + (ω/ω∗)2
, (2.16)

with a = 0.55 and ω∗ = 1.81. In this approximation of the collapsed data, the peak
value of η is ' 0.27 and it occurs for ω = ω∗. This value means that the amount of impact
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Figure 2.9 – Particle damage Dw as a function of the normalized impact energy ω. The
dotted line is the fitting form (2.21). The error bars represent standard deviation for 10
independent events. The inset shows the same plot in the range ω < 1.5 together with a
quadratic fit.
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Figure 2.10 – Fragmentation efficiency η as a function of the normalized impact energy ω.
The dotted line is the fitting form (2.20). The error bars represent standard deviation for
10 independent events.
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energy required to fracture the particle into its building blocks (cells) is almost two times
the total fracture energy of the particle, and the fragmentation efficiency is only 27% for
this amount of the supplied energy.

The fitting form (2.16) can be understood by first noting that equations (2.13), (2.14)
and (2.15) yield the relation

η =
Dw

ω
. (2.17)

At low values of ω i.e. (ω < 1.8), the data points in Fig. 2.9 suggest that Dw in this
regime increases quadratically with ω; see the inset to Fig. 2.9. Hence, according to (2.17),
η increases linearly with ω. On the other hand, at large values of ω, Dw tends to 1 so that
η asymptotically declines as 1/ω. The fitting form (2.16) is the simplest interpolation
between these two asymptotic behaviors. Equations (2.16) and (2.17), yield the following
fitting form for Dw as a function of ω:

Dw(ω) = ωη = aω∗
(ω/ω∗)2

1 + (ω/ω∗)2
, (2.18)

Since Dw tends by definition to 1 as ω →∞, we have

a =
1

ω∗
. (2.19)

This relation is consistent with our numerical data and it reduces the number of pa-
rameters in equation (2.16) to a single parameter, so that we have

η(ω) =
1

ω∗
ω/ω∗

1 + (ω/ω∗)2
, (2.20)

Dw(ω) =
(ω/ω∗)2

1 + (ω/ω∗)2
. (2.21)

Both functions are in good agreement with the data shown in Figs. 2.9 and 2.10.

2.4 Restitution coefficient

We now consider two more dimensionless variables that characterize the transfer of kinetic
energy from the impacting particle to the fragments. We define an effective restitution
coefficient ek from the ratio of the pre-impact and post-impact kinetic energies:

e2
k =

W+
k

W−
k

. (2.22)

This coefficient can take a nonzero value even when the restitution coefficient e between
the particle and the impacted plane or between the fragments is zero. Another variable of
interest is the ratio of the post-impact kinetic energy to the fracture energy:
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Figure 2.11 – Squared restitution coefficient e2
k as a function of ω. The dotted lines represent

the fitting form (2.27) with the corresponding values of c (see inset to Fig. 2.12). The
error bars represent standard deviation for 10 independent events.
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Figure 2.12 – Variable χ as a function of ω. The dashed line represents a power-law
function ∝ ωα with α ' 1.12. The inset shows the same data on the linear scale. The
dotted lines are different fits with the same value of α but different values of the prefactor
c; see equation (2.24). The error bars represent standard deviation for 10 independent
events.
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χ =
W+
k

Wf

. (2.23)

This variable simply reflects the relative importance of the energy transported by the
fragments with respect to that consumed in particle fragmentation.

Fig. 2.12 shows χ as a function of ω on the log-log and linear scales. We see that χ
is nearly constant and quite small (' 0.3) in the range ω < ω∗ ' 1.8 and then increases
approximately as a power-law function:

χ(ω) = c
( ω
ω∗

)α
for ω > ω∗, (2.24)

with α ' 1.12 and c slightly increasing with Gf . For Gf varying from 0.2 J/m2 to 2
J/m2, c varies from 0.3 to 0.5, as observed in inset to Fig. 2.12. The kinetic energy of the
fragments being negligibly small as compared to the energy consumed for fracture in the
low-energy regime, all the supplied kinetic energy is either used for fracture or dissipated
by inelastic collisions and friction. The amount of dissipation by collisions and friction is
given by

Wc = W−
k −W+

k −Wf ≡
(

1

η
− χ− 1

)
Wf . (2.25)

It has its lowest value Wc/Wf ' 2.2 at ω∗ where η ' 0.27.
Figure 2.11 shows e2

k as a function of ω. It is nearly constant and small in the low-energy
regime (ω < ω∗) and then grows with ω. It is easy to see that

e2
k = χη (2.26)

In the low-energy regime, we have ek ' 0 as χ is negligible. At higher energies, we have

e2
k = χη =

c

ω∗
(ω/ω∗)α+1

1 + (ω/ω∗)2
. for ω > ω∗ (2.27)

This form fits well the data as shown in Fig. 2.11. We see that as ω → ∞, e2
k varies

asymptotically as ω1/2.

2.5 Influence of stress thresholds on the fracture pro-

cess

In the last section, we extensively analyzed the effect of impact energy and fracture energy
on the particle fragmentation for a constant value of the stress thresholds Cn and Ct as
well as the friction coefficient between fragments. In this section, we consider the effect of
stress thresholds.

Figure 2.13 shows particle damage Dw as a function of Cn for three values of the impact
velocity v. As expected for small values of Cn, the particle is fully damaged (Dw=1) but
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Figure 2.13 – Particle damage Dw as a function of the normal stress threshold Cn for
three values of impact velocity v for Gf = 1 J/m2. The inset shows the same data for the
values of Cn normalized by the impulsionmv/(sT δt), wheremv is the change of momentum
during collision and δt is collision time. The error bars represent standard deviation for 10
independent events.

as Cn increases, Dw declines and tends to a constant value close to 0. For a given value
of Cn, particle damage is higher for larger velocity. Actually, the values of Cn can be
compared to the mean stress generated during the collision of the particle with the plane.
The mean stress is given by the momentum exchangemv, wherem is particle mass, divided
by collision duration, which is equal to the time step δt in our CD simulations, and by the
total cell-cell interface sT . The same data are shown in the inset of Fig. 2.13 as a function
of the normalized stress Cns

T δt/(mv). We see that within statistical fluctuations the data
for the three values of v collapse on the same curve. It is important to remark here that
the collision duration is an important parameter for this scaling. For a compliant particle,
the collision duration depends on the elastic moduli of the particle and mv/δt should be
replaced by the largest force achieved during collision.

Another parameter that may influence particle fracture is the ratio ψ = Ct/Cn. Figure
2.14 shows Dw as a function of ω for different values of ψ. Within statistical fluctuations,
all the data coincide. Interestingly, even for Ct = 0, we observe the same behavior, mean-
ing that the fracture basically occurs in tensile mode. Relative tangential displacements
between cells are obviously incompatible with the kinematic constraints. But this does not
exclude the activation of the shear mode in the case of an oblique collision between the
particle and the impacted surface. We also observe that the friction coefficient µ, activated
only at cell-cell interfaces having lost their cohesion, has no influence on the fracture as
shown in Fig. 2.15.

52



2. Dynamic fragmentation of a single grain

0 1 2 3 4 5 6 7

ω

0.0

0.2

0.4

0.6

0.8

1.0

D
W

ψ =0

ψ =0.5

ψ =1

ψ =1.5

ψ =2

Figure 2.14 – Particle damage Dw as a function of ω for different values of ψ = Ct/Cn.
The dotted line is the fitting form (2.21). The error bars represent standard deviation for
10 independent events.
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Figure 2.15 – Particle damageDw as a function of friction coefficient µ between cohesionless
cells. The dotted line is the fitting form (2.21). The error bars represent standard deviation
for 10 independent events.

2.6 Conclusions

In the work presented in this chapter, we used 3D DEM numerical simulations to analyze
the fragmentation of a single particle impacting a rigid plane. The particle is discretized
by means of Voronöi tessellation into polyhedral cells that represent potential fragments.
Their contacts are governed by a fracture law combining a plastic strength and a fracture
energy as criteria for the creation of cohesionless surface.

We showed that particle damage, i.e. the proportion of fractured interfaces, and the
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amount of energy used for fragmentation scale with the supplied kinetic energy normalized
by fracture energy. The fragmentation efficiency, defined as fragmentation energy normal-
ized by the impact energy, is unmonotonic with a peak at a specific value of the impact
energy. We introduced a functional form that fits the collapsed data with a single free
parameter. Similar fitting forms were proposed for the damage and effective restitution
coefficient. We also showed that particle damage scales with the normal stress threshold
normalized by the mean impact stress.

All the above results show consistently the ability of our numerical approach to handle
dynamic fragmentation of particles. It can be applied to simulate the compaction and shear
of crushable particles in which the behavior of a single particle, as described in this chapter,
can provide insight into the collective evolution of particles and their fragments. The most
basic limitation of this approach, as in all DEM simulations, is the number of potential
fragments that can be produced in the course of particle fragmentations. Nevertheless, it
is a powerful tool for a detailed analysis of the local events and re-distribution of energy.
For example, we have seen that the fragmentation efficiency is at most 30% in the impact
tests. The query here is whether such a level of efficiency can be reached in a collective
fragmentation process of particles.
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“ All models are wrong, but some are useful.”

Aphorism in statistics. G. Box, 1979 [31]

Chapter 3

Rheology and scaling behavior of
cascading granular flows in rotating

drums

Cascading flow in rotating drums is the operational regime often used for mixing, agglomer-
ating and milling particles in industrial applications but its scaling behavior remain poorly
understood. It involves both centrifugal forces and an inertial surface flow with a curved
surface profile. We use discrete element numerical simulations to investigate the rheology
of cascading flows in rotating drums as a function of drum size, rotation speed and filling
degree. We find that the surface profile, described by the ratio between steepest descent
slope and a secant slope, is strongly correlated with flow variables such as active layer
thickness, contact force variability and wall slip. Our simulations show that the Froude
number alone fails to scale the flow variables. We introduce a dimensionless scaling pa-
rameter that combines all system parameters, and scales through power-law relationships
all the flow variables, including the slope ratio, down to small drums or low filling degrees
where finite size effects prevail, and enhanced wall slip prevents from fully developed cas-
cading flow at the free surface. The well-defined correlation between this parameter and
contact force fluctuations suggests that it may also be a relevant upscaling parameter for
milling, mixing and agglomeration processes in rotating drums.
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3.1 Introduction

Rotating drums are extensively used in applications such as granulation, grinding and
mixing of granular materials [35, 229, 33]. They have also been used for the investigation
of steady-state flow of granular materials [193, 142, 180, 26, 97]. However, the dynamics
and rheology of granular materials in rotating drums are complex mainly because of the
inhomogeneous flow of particles combining upward rigid-body rotation of the particles,
downward bulk flow, and free surface dynamics. The drum flow depends on the rotation
speed ω, drum internal radius R, drum width W , and filling height h. The effects of these
parameters can be described in terms of the free surface profile, bulk flow behavior and
micromechanical variables such as contact forces and displacement fields at the particle
scale. The Froude number Fr = Rω2/g, where g is the gravity acceleration, was suggested
for the scale-up of measurable variables from the laboratory to the pilot or industrial scales
[179, 74]. However, the Froude number alone has proved to be insufficient for scaling
purposes in several studies as it does not account for finite-size effects and filling degree
that affect features such as free surface profile, thickness of the active flowing layer and
surface velocity [5, 223, 117, 123, 174].

Taberlet et al. [223] found that the differences of surface profiles could be linked to
the friction with the end-walls, and by considering mass conservation they proposed a
scaling that includes the drum width W and radius R. Pignatel et al. [184] found that
the inertial number proposed by GDR-Midi [160] should be modified in order to achieve
a better scaling of the flowing layer thickness in rotating drums filled with dry and wet
granular materials. Iwasaki et al. [117] performed experiments and numerical simulations
on drums of four different diameters and proposed a scaling based on the dissipated power.
They found that the energy distribution function and the final particle size distribution in
a grinding process were the same for the four drums when using their scaling. However, all
the aforementioned scaling laws are limited to low values of the Froude number or small
particle size ratios, and there is presently no general agreement on the upscaling of rotating
drums.

A major issue for a better understanding of the rotating drums is the granular rheology
at intermediate rotation speeds. Different flow regimes occur in rotating drums depend-
ing strongly on the rotation speed but also on drum size and filling ratio. A common
classification includes sliding (or slumping), surging, rolling, cascading, cataracting, and
centrifuging regimes as the rotation speed increases [157]. The first two regimes are char-
acterized by the movement of the particles as a block that slides or oscillates on the drum
wall. In the rolling regime, a shear flow is formed at the free surface, which is flat with a
dynamic slope, and inertial effects govern the flow behavior. This regime is conveniently
described by the inertial rheology applied to the free surface flow [122] with changes to ac-
count for the cylindrical geometry [61]. In the cascading regime, the free surface is curved
and the particle dynamics along the steepest descent is highly collisional. Finally, in the
cataracting regime, the particles ejected from the upstream end of the free surface undergo
ballistic motions and collide with the downstream part of the free surface. The cascading
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regime is the operational condition of industrial mills and granulators [157]. In particular,
the active flowing layer thickness is an important quantity for mixing, grinding, thermal
and convection properties [75, 4, 6, 261, 160, 85, 184, 96]. Nevertheless, this regime remains
poorly understood.

In this chapter, we present a parametric study of granular flow in the cascading regime
in rotating drums by means of Discrete-Element simulations for a broad range of the values
of rotation speed ω, drum radius R, drum widthW , flow thickness h and particle diameter
d. We consider the shape of the free surface in terms of its average slope and steepest
slope, flow thickness, particle slip at the drum walls, strain-rate field, contact forces, and
the mean velocity and force fluctuations. We also introduce a dimensionless parameter
that, by combining different system parameters, provides a single upscaling parameter for
rotating drums in the cascading regime.

3.2 Numerical method and procedures

3.2.1 Contact Dynamics Method

The numerical simulations were carried out by means of the Contact Dynamics Method
(CDM) [163, 192]. This is a variant of the discrete element method (DEM) in which
an iterative Gauss-Seidel algorithm is used for the implicit time-stepping integration of
the equations of motion for all particles subjected to frictional contact interactions. In
contrast to the explicit approach, in which overlaps between particles are allowed and
penalized by repulsive or viscous forces, the CDM is based on two contact laws: 1) the
Signorini condition, defined as a complementarity relation between normal contact velocity
un and normal force fn, and 2) the Coulomb dry friction law, defined as a complementarity
relation between the sliding velocity ut and the friction force ft. These contact laws are
represented as graphs in Fig. 3.1. A “complementarity relation” expresses the property
that the relation between a pair of variables cannot be reduced to a mono-valued function
and the two variables cannot be nonzero at the same time [120]. The particle velocities
and contact forces are calculated simultaneously at each time step by an iterative process
for the contact network defined from particle positions at the beginning of the time step
and used to update the particle positions. Due to the implicit integration scheme used,
the method is unconditionally stable, allowing thus for large time steps as compared to the
explicit methods. We used the LMGC90 software for all the simulations analyzed in this
chapter [77].

3.2.2 Sample setup and boundary conditions

We consider drums of different diameters 2R and widths W filled with monodisperse
spheres of diameter d = 2r and subjected to a constant rotation speed ω; see Fig. 3.2. The
filling degree is defined by the ratio f = h0/R, where h0 is the thickness of the granular
flow at the mid-chord point of the free surface at rest. Periodic boundary conditions were

58



3. Rheology and scaling behavior of cascading granular flows in rotating drums

Figure 3.1 – Contact laws used in the contact dynamics method (CDM): a) Signorini
relation between normal force fn and normal contact velocity un, b) Coulomb friction law
as the relation between sliding velocity ut and friction force ft, at a contact between two
particles.

imposed along the cylinder axis so that the flow is invariant along the y axis. The coeffi-
cient of friction between the particles and drum walls was set to µ = 0.4, representing a
typical value for most materials. The normal and tangential coefficients of restitution were
set to zero, corresponding to fully inelastic collisions. As dense frictional granular flows
are insensitive to the value of restitution coefficient (except for values very close to 1), this
choice is not critical for rotating drum simulations [219].

Table 3.1 – Simulation parameters

Parameter Symbol Value Unit
Number of particles Np [839; 37509]
Particle density ρ 2200 kg/m3

Friction coefficient µ 0.4
Normal restitution coefficient en 0
Tangential restitution coefficient et 0
Time step δt 1.10−4 s
Gravity acceleration g 9.81 m/s2

Particle diameter d 8 mm
Rotation speed ω [3.43; 10.23] rad/s
Froude number Fr [0.19; 0.96]
Drum diameter/particle diameter 2R/d [18.75; 125]
Drum width/particle diameter W/d [6.25; 25]
Filling degree f = h0/R [0.27; 0.45]

The simulations were performed for a range of values of ω, f , R/r, h0/R and W , as
shown in Table 3.1. For most simulations, we used a drum width W0 = 0.05 m. A few
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Figure 3.2 – Geometrical parameters of granular flow in a rotating drum at the initial state
(left) and in the steady flow state (right).

more simulations were performed forW = 2W0 andW = 4W0. Hence, in the following, the
default width is W0 unless explicitly mentioned. Similarly, the filling degree was different
from f = 0.45 only for some cases performed at f = 0.27 and f = 0.38. Most simulations
were run for 10 seconds and more to allow the system to reach a steady flow state. The data
analyzed in this chapter, such as the free surface profiles, flow thickness and mean particle
velocities are average values in this steady flow state. The focus of the investigations
analyzed in this chapter was the effect of drum size although we considered the influence
of other system parameters. Hence, we performed more specifically two sets of simulations.
In the first set, the Froude number was kept constant at 0.8 whereas in the second set the
rotation speed was kept at ω = 5 rad/s. For these values, a cascading or cataracting regime
is observed. Only the biggest drums tested (with R/r = 125 and 100) with ω = 5 rad/s
showed cataracting flow.

3.3 Particle velocity fields

Figure 3.3 displays snapshots of the particle velocity vectors in four drums of different
diameters but with the same value of the Froude number Fr and filling degree f = h0/R.
The velocities are normalized by ωR in each case. The largest velocities are located at the
free surface and in the vicinity of the drum wall. They increase in magnitude with drum
size despite the constant value of Fr, meaning that, as we shall see in more detail below, the
Froude number is not the only control parameter of granular flow in the drum geometry.
We also observe that the shape of the free surface is increasingly curved as drum diameter
increases.

Figure 3.4(a) shows velocity profiles along the secant slope of the free surface θm at the
center of the drum for different values of drum size R/r at constant rotation speed ω = 5
rad/s. The secant slope is defined by joining the uppermost point of the free surface to its
lowermost point. The profiles are basically nonlinear but get increasingly closer to a linear
profile for larger drums in exception to the layers close to the drum wall (with a nearly
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(a) (b) (c) (d)

Figure 3.3 – Velocity vector fields in drums of different normalized sizes R/r: a) 18.75, b)
37.5, c) 62.5, d) 100. The Froude number is Fr=0.8 in all cases.

exponential increase) and at the free surface where the velocities are those of cascading
particles with values larger than ωR. The locus of particles of vanishing velocity is the
borderline line between upward flow of the particles by drum rotation in the vicinity of
the drum wall and downward flow (active layer) close to the free surface. We see that the
thickness ha of the active layer increases with drum diameter.
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Figure 3.4 – Velocity profile at the center of the drum for different values of drum size R/r
at constant rotation speed ω (a) and at constant Froude number (b). The depth, measured
in the z direction, is normalized by the bed depth hb. The velocity component V along
the mean free surface direction is normalized by Rω.

Another feature observed in Fig. 3.4(a) is that the particles in contact with the drum
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wall do not generally follow drum rotation, implying their partial slip against the drum
wall. The amount of wall slip declines with increasing drum size. The particle velocities
at the drum wall cannot flow faster than ωR, but we observe larger values in Fig. 3.4
since the velocities are projected on the secant slope, which increases with increasing drum
diameter. Previous studies of rotating drums reported various velocity profiles at the mid-
section, including linear profile as a function depth [194, 27, 198, 85], bi-linear [54], linear-
exponential [118, 152, 180], and linear-parabolic [76]. But in all these studies the system
was mainly in the rolling regime while the profiles in our work belong to the cascading
regime.

(a) (b) (c) (d)

Figure 3.5 – Maps of local volume-change rates ε̇p in drums of four different size ratios
R/r : a) 18.75, b) 37.5, c) 62.5 and d) 100, for Fr = 0.8.

(a) (b) (c) (d)

Figure 3.6 – Maps of local shear rates ε̇q in drums of four different size ratios R/r: a)
18.75, b) 37.5, c) 62.5 and d) 100, for Fr= 0.8.

Figure 3.4(b) displays the velocity profiles at constant Froude number (Fr= 0.8) and
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Figure 3.7 – Wall slip Sw as a function of rotation speed ω for two values of Fr and three
values of drum width W . The error bars reflect the standard deviations of slip velocities
Vw.

different values of drum size (implying different values of rotation speed ω [3.96, 10.23]
rad/s). We see that, despite the same value of Froude number, the profiles depend on
drum size although they are less scattered than in Fig. 3.4(a). More generally, as we shall
see below, the Froude number fails to scale the flow behavior in rotating drums in the
cascading regime.

From the particle velocities and positions, it is possible to calculate the strain-rate
tensor ε̇ in the neighborhood of each particle i using the following expression:

ε̇i =
∑

j

(~vi − ~vj)⊗ ~nij
1

`ij
(3.1)

where j denotes a neighboring particle of particle i within a distance 2d = 4r, ~nij is the unit
vector normal to the line joining particles i and j, `ij is the distance between their centers,
and ⊗ is the dyadic product. Due to periodicity along y direction, we consider only the
plane strain rates defined on the xz plane. The volumetric strain rate ε̇p, representing local
volume change rate (positive for expansion and negative for contraction), and deviatoric
strain rate ε̇q can be computed from the eigenvalues ε̇1 and ε̇2 as follows:

ε̇p = ε̇1 + ε̇2, ε̇q = ε̇1 − ε̇2 (3.2)

Figures 3.5 and 3.6 display time-averaged maps of the volumetric and deviatoric strain
rates, respectively, for four different drum diameters and a constant Froude number. We
see that, while the average volume change is zero, the particles in the bulk of the bed show
nearly no volume change whereas the dilating (positive values) and contracting (negative
values) zones are located at the free surface and close to the drum wall over a few layers,
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Figure 3.8 – The thickness ha of the active flowing layer normalized by flow thickness hb
as a function of drum size R/r for the tested values of system parameters.

respectively. The zones of intense shear rate ε̇q are mainly located inside the cascade and
at its toe where the particles collide with the granular bed after a cascading flow. This
point moves progressively from the downstream of the free surface (at the wall) toward the
center of the profile as drum size grows. The cascading flow has a contracting behavior
and contains thus more collisional than frictional interactions. We also see a transition of
the flow characteristics with increasing drum size. For the smallest drum, we observe a
constant gradient of ε̇q with the depth, as in a granular material flowing down an inclined
plane. As the drum size is increased, the free surface develops two distinct parts: in the
right part of the drum, the particles experience a cascading flow, and in the left part the
particles undergo very low shearing and tend to follow drum rotation in transition from the
active layer to the passive layer (upward flow). It is also remarkable that the shear strain
is lower at the drum walls for larger drum size. This is consistent with the observation
that the wall slip declines with increasing drum size, the particles near the wall following
more closely (and rigidly) the drum rotation.

The active flowing layer on top of the granular bed is fed by the upward flow of particles
driven by drum rotation. The feeding rate, i.e. the number of particles per unit time
released from the upstream tip, depends both on the rotation speed and slip of the particles
along the drum wall. We measured the time-averaged tangential speed Vw of the particles in
contact with the drum wall in the steady state. We consider a dimensionless slip parameter
Sw defined by

Sw = 1− Vw
Rω

(3.3)

Figure 3.7 shows Sw as a function of ω for Fr= 0.8 and Fr= 0.6, and three different values of
the drum widthW . We see that, up to statistical fluctuations, the wall slip is an increasing
function of ω. Note that, for a constant value of Fr, R should decrease with increasing ω.
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Figure 3.9 – Average speed Vw of the particles at contact with the drum wall normalized by
the characteristic velocity

√
gd versus the thickness ha of the active flowing layer normalized

by particle diameter d for all simulations with different parameter values. Error bars on
the data points are smaller than symbol size.

It is remarkable that, despite different values of Fr and W , all the data points define a
single linear trend. Hence, the wall slip seems to be a finite size effect with increasing wall
slip for smaller drum sizes.

We also measured the average thickness ha of the active layer at the center of the
drum. Fig. 3.8 shows the normalized active layer thickness ha/hb as a function of R/r for
several values of Froude number or ω and drum width. The observed increase of ha/hb
with increasing drum size is consistent with the decrease of wall slip. Hence, the decrease
of wall slip implies higher particle feed proportionally to Vw at the upstream end of the
free surface, leading to a thicker flowing layer as well as a more curved free surface shape.
This relation is directly evidenced in Fig. 3.9 where Vw/

√
dg is plotted against ha/d for all

simulations. The data points show a good collapse, and they are well fit by a power law

Vw√
dg
' 0.7

(
ha
d

)n
(3.4)

with n ' 3/5. We used the intrinsic scales (
√
dg and d) of the flow instead of hb and ωR

since the relation between Vw and ha reflects the conservation of the number of particles,
and thus it applies to the absolute values of flow variables rather than their relative val-
ues. This relation with its exponent can thus be considered as an intrinsic feature of the
cascading flow regime.

The particle scale processes such as particle fracture and mixing are generally governed
by velocity fluctuations rather than mean velocities. The kinetic and inertial stresses arise
from velocity fluctuations and they modeled by introducing the granular temperature field
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(a) (b) (c) (d)

Figure 3.10 – Maps of granular temperature normalized by gd in drums of four different
size ratios R/r: a) 18.75, b) 37.5, c) 93.75 and d) 125, for Fr= 0.8.

T defined as the mean square fluctuating velocity of particles at each point of the system:

T = 〈v2〉 − 〈v〉2 (3.5)

Fig. 3.10 displays the temperature fields normalized by (Rω)2 for four different drum
sizes. As the volumetric and shear strain-rate fields reflect the local relative velocities of
the particles, the granular temperature field as a scalar variable combines the volumetric
and shear strain rates. The maps show increasing contrast for larger drum sizes with high
temperatures downstream the active layer. Its location moves from the endpoint of the
free surface in smaller drums to the center of the flow in larger drums as also observed in
shear-rate maps of Fig. 3.6.
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Figure 3.11 – Free surface profile for drums of different sizes at (a) ω constant and (b) Fr
constant. The position x and z are normalized by the drum radius R.
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3.4 Free surface profiles

The average free surface profiles are shown in Fig. 3.11(a) for different drum sizes and
a constant rotation speed ω = 5 rad/s. We observe a gradual increase of the surface
curvature with drum size. The upstream surface takes a parabolic shape, reminiscent
of ballistic flight, extending to the center of the drum for the largest drum sizes. The
downstream surface is nearly flat but develops a small crater as a result of the impact of
ballistic particles for the largest drums. These features indicate that for R/r ≥ 100, the
flow is no more in the cascading regime. Fig. 3.11(b) shows the profiles for a constant
Froude number Fr= 0.8 and different drum sizes. Here again, despite a constant Froude
number, the profiles are different except for the largest drums where the profiles coincide.
Since the flow in the largest drums is in the cataracting regime, we may conclude that
the Froude number scales the profiles in the cataracting regime but not in the cascading
regime at large R/r.

To characterize the free surface shape, we consider two slope angles: 1) the secant
slope θm, and 2) the tangent slope θmax of the steepest descent along the free surface
(see fig. 3.2). The angle θm represents the mean flow direction. Clearly, θmax reflects
the kinematics of the free surface flow and the flow rate through the amount of feeding
particles ∼ ω whereas θm is a consequence of centrifugal forces ∼ ω2 that determine the
point from which the particles detach from the drum wall. The ratio θmax/θm is 1 in the
rolling regime. It increases in the cascading regime and reaches values as high as 2 in
transition to the cataracting regime.

Figure 3.12 shows θm, θmax and their ratio as a function of R/r for different values of
parameters. The maximum angle θmax increases with R/r. The trends are similar but the
initial values are different. They all end up at the same value θmax ' 1.25 rad at large R/r.
Again here, it should be noted that when Fr is kept constant, the increase of R/r implies
the decrease of ω. The secant angle has a more dispersed aspect as a function of R/r.
But if the last two data points for ω = 5 rad/s, belonging to the cataracting regime, are
ignored, we see that θm in all cases tends to 0.62 rad (' 35◦) for large R/r. We see a more
clear trend for θmax/θm, which is globally an increasing function of R/r except for the two
data points belonging to the cataracting regime. These observations clearly indicate that
neither Fr nor ω or R can scale all the data. The scaling of the flow data will be discussed
in section 3.6.

It is interesting to see how the surface profile as a kinematic property is correlated with
the active layer thickness, which reflects the dynamics of the flow. Fig. 3.13 shows ha/hb
as a function of both θmax and θmax/θm. ha/hb grows with both θmax and θmax/θm but the
data points for different values of ω and R gather much more tightly on a single curve for
θmax/θm. This correlation is nearly linear:

ha
hb

= 0.31
θmax
θm

. (3.6)

The lower limit of the cascading regime corresponds to θmax/θm = 1, and by extrapolation
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Figure 3.12 – Steepest descent angle θmax (a), secant angle θm (b) and the ratio θmax/θm
(c) as a function of R/r for different parameter values. The error bars represent standard
deviation of the values of angles.

of the linear fit we see that this point corresponds to ha/hb ' 0.31. Values of ha/hb between
0.15 and 0.3 have been reported for rotating drums in the rolling regime [54].

3.5 Force distributions

The particles flowing inside a rotating drum are subjected to the gravity forces in the
vertical direction and centrifugal forces in radial directions. It is also well known that the
contact forces are unevenly distributed inside granular materials and develop weak and
strong force chains. Another important aspect in cascading flows is frequent collisions
and inertial forces in the active surface layer. The combination of these features leads
to complex force networks inside the drum as we observe on the snapshots of forces in
drums of increasing size shown in Fig. 3.14. In smaller drums, we observe force chains
encompassing the whole layer. These forces are often transient and they may occur in all
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Figure 3.13 – a) Thickness ha of the active layer normalized by the bed thickness hb at the
center of the drum as a function of θmax/θm (a) and as a function of θmax (b), for simulations
with different sizes at either constant Fr or ω. The error bars represent standard deviation
of the values of θmax.

parts of the flow. The presence of such long chains with correlation lengths close to system
size is at the origin of finite-size effects that we observe in small drums. For larger drums,
the strong forces are much more diffuse and located at the center of the drum where the
particles roll along the steepest descent of the free surface.

The probability density functions (pdf) of normal forces are shown on a log-linear scale
in Fig. 3.15 for different values of drum size at constant Froude number Fr and constant
rotation speed ω. The distributions extend to very large forces fn compared to the mean
force 〈fn〉 and they fall off more slowly than an exponential function. With constant Froude
number, they get broader with decreasing drum size (and hence increasing rotation speed)
whereas with constant rotation speed ω (and hence increasing Froude number) the forces
change only slightly with drum size.

The nature of normal contact forces fn in a granular flow depends on the contact
lifetimes. Short lifetimes are collisional and the force reflects the momentum exchange
between two particles during a collision whereas long lifetimes belong to persistent contacts,
which transmit external forces such as the particle weights. Although the collisions in
dense granular flows are not binary and involves the whole contact network, it is possible
to distinguish the impact forces by considering the forces only at new contacts formed
between particles at each time step. Fig. 3.16 shows the pdf’s of such impact forces
normalized by the weight mgR/r of a column of particles for increasing drum size with
constant Froude number or constant rotation speed ω. This normalization allows us to
compare the orders of magnitude of impact forces with the static forces. We see that the
impact forces can be far larger than the largest static forces (see orders of magnitude on
the force axis in log scale). Remarkably, the data points nearly collapse in the case where
ω is kept constant. This shows that the impact forces are proportional to R/r.
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(a) (b) (c) (d)

Figure 3.14 – Contact force network inside drums of different sizes R/r: a) 25, b) 62.5, c)
93.75, d) 125. All drums have constant Froude number Fr=0.8. The thickness of the lines
joining the particle centers is proportional to the corresponding normal force.

As the slope ratio θmax/θm correlates well with the active layer thickness ha (Fig. 3.13),
it is interesting to see whether the force distributions are also scaled by θmax/θm. The most
relevant aspect of contact forces is their variability, which can be measured by the standard
deviation ∆f = (〈f 2〉 − 〈f〉2)1/2 of normalized forces and corresponds to the width of the
force pdf’s. Figure 3.17 shows ∆f as a function of θmax/θm for all parameter values. We
observe here a clear scaling that is well fit by a power-law

∆f

mg
= k(a− θmax/θm)n, (3.7)

with k = 16.08, a = 2.5 and n = −1.18. This scaling implies the divergence of ∆f as
θmax/θm → 2.5, corresponding to transition from the cascading regime to the cataracting
regime. This relation between the force variability and surface profile is quite remarkable.
It shows the dynamic nature of the surface profile under the action of both centrifugal and
inertial forces, and it suggests that the surface profile in the cascading regime may be used
as upscaling factor when system parameters such as drum size and rotation speed change.

3.6 Scaling of cascading flows

In the previous sections, we investigated the influence of ω and R on the velocity fields,
free surface shape and contact forces in terms of various flow variables, including slope
ratio θmax/θm, maximum slope θmax, wall slip Sw, active layer thickness ha and force
variability ∆f for a constant filling degree f . We showed that θmax/θm, ha/hb and ∆f
are related through power laws. This means that θmax/θm, for example, can be used as a
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Figure 3.15 – Probability density function (pdf) of normal forces inside drums of different
sizes (R/r) at constant Froude number Fr = 0.8 (a) and at constant rotation speed ω = 5
rad/s (b).

scaling parameter for flow properties. However, this analysis should be extended to define
a scaling variable in terms of the operating parameters ω and R.

Our numerical results in the previous sections suggest that the Froude number Fr alone
is not a sufficient scaling parameter. The behavior depends on both the Froude number,
which accounts for the dynamic and inertial effects, and at least a second dimensionless
parameter such as R/d accounting for the geometric and finite size effects.

We search a dimensionless parameter Υ assumed to be of the following general form:

Υ =

(
Rω2

g

)α(
R

d

)β
fγ, (3.8)

where the exponents α, β and γ will be fixed from the simulation data. This scaling
parameter is proportional to ω2αRα+β−γ since f = h0/R. As the variables θmax/θm, ha/hb
and ∆f are correlated, we may use any of them to get the best collapse of the data as a
function of Υ. We used θmax/θm, and in order to obtain a first estimate of the values of
α and β, we plotted θmax/θm separately as a function of Fr and ω for all our simulations
with f = 0.45, as shown in Fig. 3.18. The observed trends can be modeled as power laws
with exponents ∼ 1/4 and ∼ −0.45, respectively. From these exponents, we get α ' 1/4
and β ' 1/2.

Since we consider here the behavior for a constant value f = 0.45 of the filling degree,
we plot in Fig. 3.19 values of θmax/θm as a function of Υ by setting fγ ' 1.22. This value,
as a simple numerical factor does not affect the scaling behavior and we could also set its
value to 1. We shall see below the reason of this choice. Figure 3.19 shows that Υ with
α = 1/4 and β = 1/2 provides a good collapse of the data on a master curve. It is well fit
by

θmax
θm

= a− b(Υ− 0.41)m, (3.9)
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Figure 3.16 – Probability density function of the logarithm of normalized forces between
colliding particles inside drums of different sizes (R/r) at constant Froude number (a) and
at constant rotation speed ω (b).

Figure 3.17 – Standard deviation ∆f of normal force pdf’s as a function of θmax/θm in
drums of different sizes and values of system parameters. The dashed line is a power-law
fit following equation 3.7.
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Figure 3.18 – Slope ratio θmax/θm as a function of the Froude number Fr (a) and drum
rotation speed ω (b) for all simulations. The dashed lines are power-law trends with
exponents 1/4 and -0.45, respectively. The error bars represent standard deviation of the
values of θmax.

Figure 3.19 – Slope ratio θmax/θm as a function of the scaling parameter Υ defined by
equation (3.8) with α = 1/4 and β = 1/2. The dashed line is the fitting form given by
equation (3.9). The error bars represent standard deviation of the values of θmax.
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(a) (b)

Figure 3.20 – Normalized active layer thickness (a) and standard deviation of the normal
force distribution (b) as a function of the scaling parameter Υ defined by (3.8) with α = 1/4
and β = 1/2.

with b = 1.58 and m = −0.85. Only the data points at small values of Υ (corresponding
to small values of R/d) are slightly off the fit. These points represent also small values of
θmax/θm (' 1.2) and belong thus to the transition state from the cascading regime to the
rolling regime. In this state, the centrifugal forces are small and the flow is mainly governed
by inertial forces. As in equation (3.7), θmax/θm tends to a = 2.5 when Υ increases. It
seems to us also interesting to remark that Υ varies in a limited range [1; 4.5], which can
be considered as the values of Υ that characterize the cascading regime independently of
the specific values of ω, R, d and g.

In a similar vein, we expect other flow variables to scale with Υ. This is what we see
in Fig. 3.20, showing the normalized active layer thickness ha/hb and force variability ∆f
as a function of Υ. The fitting forms are

ha
hb

= c− e(Υ− 0.41)m, (3.10)

∆f

mg
= h(Υ− 0.41), (3.11)

with c = 0.77, e = 0.49 and h = 9.37. Note that, from equations (3.7), (3.10), (3.11)
and (3.9), we have mn = 1 and h = kbn. The linear relation between ∆f and Υ is quite
remarkable and unexpected. As force fluctuations play a major role in the breakage and
agglomeration processes, this linear scaling predicts that Υ can also be the relevant scaling
parameter for such processes.

The scaling parameter Υ in all the data previously analyzed does not take into account
the filling degree f = h0/R, which was fixed to 0.45. We performed a series of simulations
with two lower values f = 0.38 and f = 0.27 of the filling degree, two different values of
ω and several values of R/d. In order to determine the value of the exponent γ in (3.8),
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Figure 3.21 – Slope ratio as a function of the scaling parameter Υ defined by equation (3.8)
with a range of values of drum size R, rotation speed ω and filling degree f with α = 1/4,
β = 1/2, γ = 1. The dashed line is a power-law fitting form. The error bars represent
standard deviation of the values of θmax.
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Figure 3.22 – Slope ratio as a function of the scaling parameter Υ for systems with h0 < 10d
and with h0 > 10d. The dashed line follows equation 3.9. The error bars represent standard
deviation of the values of θmax.

75



3. Rheology and scaling behavior of cascading granular flows in rotating drums

we plotted all simulated values of slope ratio for all values of f as a function of Υ with
different values of the exponent γ. We find a reasonable collapse of all the data for γ = 1,
as shown in Fig. 3.21. Equation (3.9) fits well the data up to the observed fluctuations for
lower values of f . They correspond to small values of Υ and slope ratio in the transition
zone to the rolling regime.

The relative dispersion of the data points can be attributed to the lower number of
particles. In Fig. 3.22 we have plotted the same data by distinguishing the points for
h0 < 10d from those for h0 > 10d. We see that, independently of the values of other
parameters, all the systems of a low number of particles (including those of small filling
degree) have a low value of Υ. Reaching larger values of Υ would require larger values of
ω or R.

The scaling parameter Υ with α = 1/4, β = 1/2 and γ = 1 may be recast in different
forms. For example, it can be rewritten as

Υ =

{
ω

(
R

g

)1/2
h0

R

h0

d

}1/2

. (3.12)

This form highlights two size factors h0/d and f = h0/R, representing the finite size effect
and the filling degree, respectively. The dimensionless factor ω

√
R/g = Fr1/2 is simply

the ratio of free-fall time (over a distance of the order of drum size)
√
R/g to the imposed

time ω−1 by drum rotation. With increasing free-fall time, the upstream particles, whose
flux is proportional to ωR, accumulate and form an increasingly curved surface, which,
by increasing the free surface length, ‘adapts’ the effective cascading time to the imposed
feeding time by drum rotation. The transition to the cataracting regime takes place when
this ratio is close to 1.

The finite size effects are expected to disappear for large values of h0/d. This contrasts
the presence of the scale factor h0/d in the expression of Υ. For this reason, we may replace
h0/d by an exponential function 1− exp(−κh0/d) whose behavior is nearly linear ∼ κh0/d
for h0 < κd and tends to 1 at larger values. The parameter κ can be determined from
simulations with large values of h0/d. It is also obvious that if Υ is the scale parameter,
any power of Υ can be used as scale parameter. In particular, we may use Υ2 to remove the
exponent 1/2 in equation (3.12). However, the range of values of higher-order parameters
like Υt increases considerably with the power t (up to 100 with t = 2), tending to mask
the fluctuations of flow variables (reflecting finite size effects) at small values of Υ.

Similar scaling parameters were proposed by other authors. For example, Taberlet et
al. [223] proposed the parameter

Λ =

(
Fr
d

R

)1/4
R

W
, (3.13)

which involves Fr, R/d and R/W . Pignatel et al. [184] introduced the parameter

Q∗ =
1

2
Fr1/2

(
R

d

)3/2

. (3.14)
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Figure 3.23 – Slope ratio as a function of Υ, Q∗ and Λ; see text. For the sake of comparison
between the curves in the same range of values as Υ, Q∗ and Λ are multiplied by prefactors.
The dashed line follows equation 3.9. The error bars represent standard deviation of the
values of θmax.

In Fig. 3.23 we have plotted θmax/θm as a function of Υ, Λ and Q∗ by multiplying Λ and
Q∗ by a scale factor in order to bring all the points to the range of values of Υ. We see
that our data points as a function of Λ are rather scattered despite the same exponent 1/4
of the Froude number in both Λ and Υ. But the same data points as a function of Q∗ are
well-collapsed on a master curve. However, the two scalings cannot be strictly compared as
the expression of Q∗ misses the filling degree parameter. On the other hand, the presence
of lateral walls and wall friction in the simulations of Taberlet et al. [223] may be the
reason why their scaling parameter does not fully capture our simulation data.

3.7 Discussion and conclusions

In this chapter, we investigated the rheology of granular materials in rotating drums in the
cascading regime by means of numerical simulations. We also introduced a scaling parame-
ter that comprises various system parameters and consistently describes flow variables such
as surface flow thickness, wall slip, free surface curvature and contact force variability. The
cascading flow regime is characterized by combined effects of centrifugal and inertial forces
that induce a curved free surface and rapid flow along its steepest descent. A transition to
the cataracting regime occurs when the centrifugal force prevails and the particles at the
free surface are no more bound together by frictional contact in a dense flow but tend to
follow ballistic motions.
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The simulations revealed well-defined relations between slope ratio, flow thickness, wall
slip and force variability. In particular, the wall slip is larger in smaller drums, implying
a lower particle feed to the free surface and thus, a less curved free surface for the same
values of the Froude number and rotation speed. The force variability increases with slope
ratio and flow thickness. With periodic boundary conditions, the drum width is not a
relevant parameter and there is no flow in the lateral directions. The effects of wall slip
can be the main effect of drum size as compared to particle size. But it has dramatic
consequences for the free surface profile and active layer thickness. The wall slip needs a
more detailed analysis for a better understanding of its nature. In our simulations, the
wall-particle coupling is purely frictional. Wall roughness may alter the coupling, but its
effect may be just equivalent to a higher friction coefficient. It is also well known that
high friction coefficient or wall roughness leads to slip between granular layers close to the
wall so that the effective friction coefficient with the wall will be that of particles [167].
Hence, the wall slip should not be confused with simple sliding of the particles against the
drum wall as in frictional slip between two solid bodies. It has rather a collective nature
in the sense of higher shearing at the walls as compared to the bulk. Then, it should be
treated with the same status as other flow variables. This is the picture that we get from
our simulations with well-defined relationships between wall slip, active flow thickness and
force fluctuations although it does not elude a more close look into its nature possibly by
direct comparison with simulations with rough walls. It can also be relevant to consider
particles of aspherical shapes such as polyhedral particles. The effect of particle shape on
wall slip can be similar to wall roughness.

The observed relation between force variability and free surface profile is quite remark-
able. We have seen that, as a result of collisions and inertial dynamics, the contact forces
are frequently well above the mean particle weight. Our simulations indicate that high
shear stresses are located below the steepest descent, providing thus a plausible reason for
such a strong correlation between forces and slope ratio. The strong force chains and im-
pacts are responsible for particle breakage in the milling process. They are also important
in the granulation process of wet particles that involves the capture and erosion of wet
agglomerates during granule growth as a result of interactions with the surrounding parti-
cles. It can thus be conjectured that surface profiles, in correlation with force fluctuations
inside a rotating drum, can be measured and used as a scale-up parameter in the milling
and granulation processes.

The scaling parameter Υ = Fr1/4(R/d)1/2f introduced in this work from drum size R,
rotation speed ω, filling degree f , and particle size d, is consistent with all our simulation
data and a scaling previously introduced by another author. Up to a scaling factor h0/d,
this dimensionless parameter can be seen as the ratio between the free-fall time and the
feeding time imposed by drum rotation. In the steady state, the effective cascading time
is longer than the free-fall time due to the free surface curvature. Hence, the potential
energy of the particles fed into the flow is not only dissipated by frictional contacts but
also partially transforms into kinetic energy that is dissipated later by pushing the particles
to a higher position in the upstream heap.

This mechanism is different from that in the rolling and cataracting regimes. In the
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rolling regime, the kinetic energy induced by drum rotation is not significant, and the
role of drum rotation is simply to increase the overall potential energy of the particles
by bringing them up to the upstream surface end. Hence, the rolling regime is mainly
governed by inertial flow at the flat free surface with a thickness and inclination depending
on the rotation speed. This is the reason why this configuration is well suited to the
investigation of uniform inertial flows. On the other hand, in the cataracting regime, the
dense inertial free surface flow is replaced by a fluidized bed and ballistic particle motions
with an increasing altitude of ejected particles for larger values of the Froude number. The
parameter Υ scales well the slope ratio and force variability and may be used to upscale
drum size from laboratory to industrial scale. This scaling works down to small ratios R/d
or h0/d where finite size effects seem to prevail and the surface is close to the rolling regime
even for high values of rotation speed.

This work can be extended to drums of larger width and even larger sizes than those
considered in this chapter. The width of the drum in our simulations had no significant
effect on the flow due to periodic lateral boundaries. For this reason, we do not expect
it to play a role for larger drums. It is therefore more interesting to remove periodic
boundaries in the future work and perform a similar analysis in order to get a better
understanding of the finite size effects arising from the ratio W/d or from the aspect ratio
R/W . Another direction of research is the application of the scaling proposed in this
chapter to the grinding process in a rotating drum with crushable particles, where the
evolution of particle breakage may be correlated with Υ and slope ratio. Finally, the finite
size effects need to be investigated by considering larger ratios of drum size and filling
height to the particle size.
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Chapter 4

Scaling of the grinding process in
granular flows inside rotating drums

We perform systematic particle dynamics simulations of granular flows composed of break-
able particles in a 2D rotating drum to investigate the evolution of the mean particle size
and specific surface as a function of system parameters such as drum size, rotation speed,
filling degree, and particle shape and size. The specific surface increases at a nearly con-
stant rate up to a point where particle breakage begins to slow down. The rates of particle
breakage for all values of system parameters are found to collapse on a master curve when
the times are scaled by the characteristic time defined in the linear regime. We determine
the characteristic time as a function of all system parameters, and we show that the rate
of particle breakage can be expressed as a linear function of a general scaling parameter
that incorporates all our system parameters. This scaling behavior provides a general
framework for the upscaling of drum grinding process from laboratory to industrial scale.
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4.1 Introduction

Rotating drums or tumbling mills are used in numerous industrial applications for grinding,
mixing and particle agglomeration [116, 201, 53, 20, 175, 155]. The system consists of a
hollow drum subjected to a rotation velocity around its principal axis. In the grinding
process, particle breakage occurs as a result of frictional and collisional interactions between
particles and with the drum walls. Since most of these devices operate in the rapid-flow
regime, i.e. the so-called cascading or cataracting regimes, the granular flow has an inertial
nature and develops a complex geometry with inhomogeneous flow patterns and curved
free surface. For this reason, the grinding mechanisms in rotating drums are complex and
poorly understood from physical and mechanical points of view, and their scaling with
operating parameters is an open issue.

Previous studies of the grinding process in rotating drums have been performed by
means of experimental measurements, numerical simulations, and mechanistic or stochas-
tic models. Experimentally, the test conditions impede a continuous track of particle
breakage. Some properties such as particle size distribution are therefore measured from
samples taken at different instants of the test [82, 117, 100]. The numerical simulations
have the advantage of allowing for different particle shapes and continuous track of the
particles and their mechanical interactions [170, 47], but the existing particle dynamics
methods that take into account particle breakage require high numerical performance, and
the computational limitation in the number of particles impedes statistical representativity
of the samples [109, 159, 154]. Finally, the population balance models (PBM) combine par-
ticle breakage probability, usually obtained from single impact tests, with a mass transfer
function in order to sequentially predict the evolution of particle size distribution during
grinding [107, 101]. One disadvantage of this method is the large number of parameters
that must be tuned for each specific case. In most cases, the calibration is based on exper-
imental results, and some functions such as the mass transfer are fully empirical as their
measurement in experiments is not possible. Furthermore, these models do not directly
account for the mechanics of particle fracture in multicontact configurations, in which the
breakage mechanisms are substantially different from those in a single particle impact test.

As an example of recent work in this field, it is worth mentioning models that combine
the Discrete Element Method (DEM) for particle interactions and PBM for predicting
the size distribution of the fragments [68, 42]. Cleary et al. [58] performed numerical
simulations of a semi-autogenous mill in which the particles that reach a given small size can
escape through slots of the drum wall located next to the lifters. In this work, the condition
for particle breakage and the generated fragments were determined from the incremental
breakage theory proposed by Vogel and Peukert [246]. The breakage probability was thus
determined by a Weibull probability function whose parameters were fitted to the data of
single particle impact tests. This survival probability function has been used by several
authors to determine the evolution of particle distribution [217, 39, 36]. Despite their
genuine character, it is generally difficult to evaluate the success of such models and their
calibration by direct comparison with the real mechanisms that lead to particle breakage
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in dense granular flows.

In practice, we believe that a realistic model of the grinding process based on multi-
contact interactions should lead to an upscaling model for rotating drums, as a challenging
problem for industrial purposes. Nearly all attempts to find relationships for the upscaling
of drum size are either based on a dimensional analysis of the relevant physical quantities
[75] or on the performance of the processes that take place inside rotating drums [35]. How-
ever, a fully predictive model should be able to discern the generic and specific features of
the grinding process and to link the system parameters with the overall performance.

In this paper, we use numerical simulations to investigate the effect of system param-
eters on the grinding process in a 2D rotating drum. We rely on the contact dynamics
method as a DEM algorithm and the discretization of the particles into bonded polygonal
cells that an break apart, known as Bonded Cell Method (BCM) [170, 171, 37, 222, 177,
178]. The particles can thus break into fragments of different sizes down to the smallest
cell size. We vary system parameters such as drum size, rotation speed and filling degree,
in order to quantify the effect of each parameter on the granular flow and evolution of
grinding in terms of the mean particle size and specific surface of the material. We also
consider the spatial map of the breakage events in correlation with drum flow parameters.
Then, we examine the possibility of expressing the rate of particle breakage in terms of a
single scaling parameter accounting for all system parameters. As we shall see, the results
can be interpreted in terms of a characteristic time with a nontrivial dependence on system
parameters.

In the following, we first introduce the methodology and simulation parameters in
sections 4.2.1 and 4.2.2. In section 4.3, we present the evolution of particle size distribution
and specific surface as a function of rotation speed, filling degree, and drum size, and their
scaling with a characteristic time. Then, in section 4.4, we derive an expression for this
time and breakage rate in terms of system parameters. We will conclude with a discussion
of the results and outlooks of this work.

4.2 Numerical procedures

4.2.1 Contact Dynamics method and BCM

The numerical simulations were performed by means of the contact dynamics method
together with the Bonded-cell method (BCM) for particle breakage. Contact dynamics
is a discrete-element method in which perfectly rigid particles interact through frictional
contacts, and the particle motions are calculated by a step-wise implicit scheme [120, 192,
191]. In contrast to soft-particle DEM, the non-local strains are defined from particle
overlaps, and the velocities and contact forces are calculated at the same time by an
iterative process accounting for the contacts as unilateral constraints. As the particle
overlaps do not need to be resolved, the time step can be much larger than in soft-particle
DEM but a large number of iterations are required at each time step to converge to a
solution for velocities and forces. The particle positions and contact network are then
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(a) (b)

(c) (d)

Figure 4.1 – Voronöı tessellation applied to a) pentagonal particles (nsides = 5), b) hexag-
onal particles (nsides = 6), c) nonagonal particles (nsides = 9), d) dodecagonal particles
(nsides = 12). The cells are represented by different arbitrary colors.

updated from the calculated velocities.
In the BCM, each particle is subdivided into smaller independent primary elements

or cells by means of a Voronöı tessellation, and thus the particle volume is exactly equal
to the sum of cell volumes [171, 37, 173, 177, 178]. During the generation process, the
average cell size dcell is fixed, but the cell shapes are random. For the sake of geometric
consistency, we choose also polygonal particle shapes as shown in Fig. 4.1. We used regular
polygon-shaped particles such as pentagons (nsides = 5), hexagons (nsides = 6), heptagons
(nsides = 7), nonagons (nsides = 9) and dodecagons (nsides = 12).

As the drum rotates, different types of contact can arise between particles: side-side,
vertex-side, and vertex-vertex, as displayed in Fig. 4.2. The geometrical detection and
representation of these contacts involves the definition of a common line for each pair of
particles. Its orientation determines the contact reference frame (normal and tangential
directions). To each side-side contact we attribute two bond points located on the common
line that can be projected onto each of the sides in contact. The total contact force at a
side-side interface is therefore the sum of the forces acting at the two bonds attributed to
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(a) (b)

Figure 4.2 – a) Side-side double-bond contact, b) vertex-side single-bond contact.

the contact. At the vertex-side contacts a common line is also defined, but the contact
involves a single bond [192].

By construction, in the initial configuration all the cell-cell interfaces belonging to each
particle are side-side contacts, and each interface is represented by two cohesive bonds. The
fracture of a bond is governed by two criteria. The first criterion is a tensile stress threshold
Cn in the normal direction and a shear stress threshold Ct in the tangential direction. In
either direction, below the corresponding stress threshold, which represents the internal
cohesion of the particle, the relative movement of the two cells is forbidden. The second
criterion is a fracture energy W that must be consumed by the relative displacements at
the stress threshold as in the classical fracture mechanics. This energy criterion implies
that the normal separation εn at a bond should reach a threshold given by

εn =
W
`Cn

, (4.1)

where ` is the area (length in 2D) of the interface. At this distance the bond breaks, and
a surface (length in 2D) equal to ` is created. In a similar vein, a bond can break when
the tangential displacement reaches the critical distance

εt =
W
`Ct

. (4.2)

We assume that an inter-cell double-bond interface breaks as a whole if only one of its two
bonds breaks following the two above criteria.

A graphical representation of this breakable interface law is shown in Fig. 4.3 as
a relation between normal force and local displacement or gap δ between cells. Once
a cohesive interface breaks, it turns into a frictional contact governed by the relation
represented in Fig. 4.4. The same contact law governs also the vertex-side and vertex-
vertex contacts, as well as the interactions with the walls. All the collisions are assumed to
be perfectly inelastic. Further details about the implementation of the bonded-cell method
in the framework of Contact Dynamics can be found in [177].
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Figure 4.3 – Behavior of a cohesive contact between cells a) in the normal direction, b) in
the tangential direction. ` is the side length, and δn and δt denote the local displacements
between the two cells in the normal and tangential directions, respectively.

4.2.2 Sample generation and test preparation

We consider a smooth drum such that the particles inside the drum interact only through
frictional contacts with the drum walls. No grinding media are added (as in ball mills),
and the particle breakage is a consequence of granular flow (self-grinding as in autogenous
mills). The initial particle diameters are distributed in a range between dmin0 and dmax0

with a uniform distribution of their volumes. This distribution leads to a high packing
fraction [249, 165] Different particle shapes were also considered, as shown in Fig. 4.1.
The cells belonging to each particle were generated such that the average size of cells
dcell is proportional to particle size with around 20 cells per particle. The values of all
parameters considered in this work are presented in Table 4.1.

The generated sample is deposited inside a hollow drum (ring in 2D) of internal radius
R under the action of gravity g; See Fig. 4.5. Once all particles reach a state of force
balance, a constant angular velocity ω is applied to the drum. Since the system is constantly
evolving as a result of particle breakage, a steady state cannot be fully reached; See Fig.
4.6. However, a nearly steady flow state is reached after ' 3 rotations. The simulation
is stopped when most particles are broken down to the smallest possible fragment size
dcell. This condition can also be identified by following the mean particle size and specific
surface, which evolves with time and level off after a number of drum rotations. For the
value of strength threshold Cn used in the simulations, the total simulated physical time
for reaching significant particle breakage is of the order of 60 seconds, requiring most of
time long-run simulations. It should be noted that self-grinding occurs when the particle
strength is low-enough to allow for particle breakage in the cascading regime as a result of
particle weights or collisional energies. The scaling that will be derived in this paper from
the simulations quantifies the effect of particle strength on the breakage rate.
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Figure 4.4 – Behavior of a purely frictional contact a) Signorini relation in the normal
direction, b) Coulomb friction law in the tangential direction. un and ut denote the contact
relative velocities in the normal and tangential directions, respectively.

Table 4.1 – Simulation parameters

Parameter Symbol Value Unit
Geometrical parameters
Number of particles Np [147;2350]
Number of cells per particle ncells [16;36]
Number of cells (total) Ncells [2008;33574]
Particle density ρ 2030 kg m−3

Drum internal radius R [0.05;0.2] m
Initial mean particle diameter 〈d0〉 2.5 or 6 mm
Cell size dcell 0.5 or 1.2 ·10−3 mm
Filling degree f = h0/R [0.2;0.5]
Mechanical parameters
Friction coefficient µ 0.4
Normal restitution coefficient en 0
Tangential restitution coefficient et 0
Normal stress threshold Cn 1 MPa
Tangential stress threshold Ct 1 MPa
Critical normal distance ∆n 5 · 10−5 m
Critical tangential distance ∆t 5 · 10−5 m
Kinematic parameters
Rotation speed ω [1.57;10.47] rad/s
Froude number Fr [0.019;0.838]
Time step δt 1 · 10−5 s
Gravity acceleration g 9.81 m/s2
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Figure 4.5 – Geometrical, mechanical and kinematic parameters of the simulated drums.

Figure 4.6 – Snapshots of a rotating drum simulation for different numbers of rotations n
for ω = 5.24 rad/s. The color is proportional to the damage, defined by the number of cells
detached from a particle, represented on color scale from bright green for intact particles
to black for highly-damaged particles.
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Since this work is focused on the effect of system parameters on the grinding process,
we performed several sets of simulations, each time changing one parameter while keeping
constant values for other parameters. In a set of runs, the drum radius was fixed to
R = 0.075 m, for different rotation speeds ω ∈ [3.14, 5.24, 7.33, 10.47] rad/s and filling
degrees f ∈ [0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]. The filling degree is the ratio of the filling
height measured in the initial state (h0) to the drum radius, as shown in Fig. 4.5. We also
simulated systems with polygonal particle shapes with different numbers of their sides,
which is a measure of their roundness. In this set of simulations, the mean particle size
was 2.5 mm.

In another set of runs, drums of different sizes R/r ∈ [16, 25, 33, 50, 66] were simulated.
For these simulations, particles of a larger mean size d0 = 6 mm, but with the same size
distribution as in the first set were used. Consistently, the cell size was also modified to
〈dcell〉 = 1.2 mm so that the number of cells per particle remains equal to 20. The largest
drum was filled with 2350 particles, corresponding to a total number of 33574 cells. Finally,
we also performed a set of simulations with constant values of the Froude number

Fr =
Rω2

g
, (4.3)

by changing both the rotation speed ω and drum size R.

4.3 Effects of system parameters on particle breakage

4.3.1 Rotation speed

We analyze here the simulations with varying rotation speeds ω, which is the most influen-
tial parameter on the flow regime [157]. Figure 4.7 shows the flow patterns in a drum with
increasing rotation speed but the same size of R = 0.075 m and filling degree f = 0.51.
We see that by increasing ω from 1.57 to 12 rad/s, the granular material flows successively
in the rolling (ω = 1.57 and 3.14 rad/s), cascading (ω = 5.24 and 7.85 rad/s), cataracting
(ω = 10.47 rad/s), and centrifuging regimes (ω = 12 rad/s). The average free surface
profiles in this set of simulations are shown in Fig. 4.8. The evolution of the free surface
from a nearly flat surface flow to a curved S-shape indicates a transition from the rolling
regime to the cascading regime. For higher speeds, the particles begin to follow a ballistic
trajectory, which is a signature of the cataracting regime. We also see that the amount
of damaged particles for the same number of drum rotations is not the same in different
regimes. In the following, we consider only the rolling and cascading regimes, as well as
the beginning of the cataracting regime for the analysis of particle breakage.

Figure 4.9(a) shows the evolution of the mean particle diameter 〈d〉 as a function of
time for different values of ω. The diameters are normalized by their initial mean value
〈d0〉. The mean size begins to decrease slowly, but at an increasing rate. At some point
in time when the rate reaches its maximum value, which depends on ω, the size reduction
continues at decreasing rate until the minimum fragment size, i.e. the mean cell size 〈dcell〉,
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Figure 4.7 – Flow regimes displayed after 13.75 rotations, for R = 0.075 m, f = 0.51, and
increasing rotation velocity ω. By increasing ω, the Froude number varies from 0.02 to 1.
The color is proportional to particle damage, from bright green for intact particles to black
for highly-damaged fragments.

is reached. This slowdown reflects the decreasing number of breakable fragments in the
system. The evolution of the normalized specific surface S/S0 is shown in Fig. 4.9(b). Its
maximum value is 4, corresponding to the limit where all particles are fully broken into
fragments of cell size. The initial evolution is nearly linear with a slight waviness in all
cases but more pronounced for small values of ω where the evolution is slower. This feature
reflects the initial adjustment of the granular flow to drum rotation since the rotation speed
is applied instantaneously to an initially static bed. The evolution of the specific surface
slows down after the transition point.

In the linear regime, the effect of ω and other system parameters can be quantified by
using the average grinding rate Ṡ/S0. Figure 4.10(a) shows Ṡ/S0 as a function of ω. The
rate increases as ω3/2. This means that the effect of rotation rate is not simply a change
of time scale, in which case the grinding rate would simply increase proportionally to ω.
On the other hand, the shapes of the evolution curves suggest that the transition to the
nonlinear regime occurs always for S/S0 ' 2.75. This value is nearly half of the maximum
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Figure 4.8 – Free surface profiles for different values of ω considering only unbreakable
particles.
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Figure 4.9 – a) Evolution of the mean particle size 〈d〉 normalized by the initial mean
particle size 〈d0〉 for different values of the rotation speed ω. The dashed lines correspond
to a tangent hyperbolic form 〈d〉/〈d0〉 ∼ tanh(t). b) Evolution of the specific surface
S normalized by the initial specific surface S0. The dashed lines are linear fits up to a
transition point to nonlinear regime.
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Figure 4.10 – a) Rate of increase of specific surface (dashed lines in Fig. 4.9(b)); b)
Characteristic time t∗ as a function of rotation speed ω.

specific surface that can be generated in our system. A characteristic time t∗ can thus be
defined by

S(t∗) = 2.75S0. (4.4)

Figure 4.10(b) shows that this characteristic time varies as ∼ ω−3/2. Hence, we expect that
all the data will collapse on a single curve when normalizing time by t∗. The mean particle
size and specific surface are displayed in Fig. 4.11 as a function of normalized time. We
see that, up to the aforementioned small waviness, we obtain a nice collapse of the data
for both 〈d〉 and S.
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Figure 4.11 – The normalized specific surface S/S0 (a), and normalized mean particle size
(b) as a function of time normalized by the characteristic time t∗ for drums rotating at
different speeds ω.
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Figure 4.12 – Maps of local densities of breakage events during the whole simulation for
ω =5.24, 7.85 and 10.47 rad/s.

Figure 4.13 – Maps of particle connectivity after 13.75 rotations for ω =5.24, 7.85 and 10.47
rad/s. This snapshot corresponds to the instants 0.73t∗, 0.9t∗ and 1.16t∗, respectively. The
particle gray level is proportional to the number of contacts of the particle.

Figure 4.12 shows the maps of the local densities of breakage events for three values
of ω. These maps were built by tracking the position of each bond prior to its breakage.
The density at each point represents the probability of breakage at that point. In general,
it is assumed that breakage events take place mostly at the toe of the flow, near to free
surface, where the particles ejected from the shoulder impact the bed surface or roll down
the steepest descent. We see that, although the probability is higher at the toe of the free
surface, many breakage events occur also in the bulk of the flow as ω is increased. In all
cases, the volume involved in particle breakage is small compared to the overall volume
of the granular material. Part of the breakage events may be due to impacts in fluidized
zones, but particles can also break inside the flow by shearing.

In order to get a better idea of the texture of granular flow, it is also interesting to
map the local particle connectivity. Figure 4.13 shows in grayscale the number of contacts
per particle. We see that the flow is globally less connected when ω increases. Moreover,
the particles are much less connected inside the flowing layer as a result of inertial effects.
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Figure 4.14 – a) Mean particle size measured as a function of time for different values of
the filling degree f for the same drum size R = 0.075 m and rotation speed ω = 5.24 rad/s.
b) Normalized specific surface S/S0 as a function of time. The dashed lines are linear fits
up to the transition point.

This map makes clearly appear the borderline between the active and passive layers. We
also observe that the volume of the active layer increases with ω.

4.3.2 Filling degree

We now consider drums for the same rotation speed ω = 5.24 rad/s and size R = 0.075 m,
but filled at different levels f = h0/R. The evolution of the mean particle size and specific
surface are shown in Figs. 4.14(a) and 4.14(b). We observe here the same features as in
the last subsection for all values of f . Figure 4.16(a) shows the grinding rate Ṡ/S0 as a
function of f . Except for f = 20% and f = 25%, the grinding rate declines as f increases.
The flow at low filling rates is in the ‘sliding’ regime: As the drum begins to rotate, the
granular bed is sheared, but at the same time its center of mass swings back and forth
along the drum wall around a mean position. This regime was also identified by Chou
et al. [54] for filling degrees below f=25%. We observe this initial swinging of the bed,
albeit to a lesser extent, also at higher filling degrees. At low filling degrees, the swinging
behavior continues during several drum rotations at the expense of reduced shearing of
the bed and thus reduced breakage of particles. Lower shearing leads also to a reduced
curved free surface. Figure 4.15 displays the free surface profiles for all the simulated filling
degrees. The profiles are similar for all values of f except for f = 20% and f = 25%. In
the following, we consider only the filling degrees above 25%.

The characteristic time t∗, defined by equation (4.4), is a linear function of f as shown
in Fig. 4.16(b). In Fig. 4.17, the evolution of the mean particle size and specific surface are
plotted against time normalized by t∗, revealing that, up to a change in the characteristic
time, the grinding behavior is the same for all filling degrees above f = 25%.
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Figure 4.15 – Free surface profiles for different filling degrees.
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Figure 4.16 – a) Rate of increase of specific surface as a function of the filling degree f . b)
Characteristic time t∗ as a function of f .

4.3.3 Drum size

In order to examine the effect of drum size R on the grinding process, we simulated drums
of five different sizes. We performed two different sets of simulations. In the first set, ω was
kept equal to 3.7 rad/s whereas in the second set the Froude number (eq. 4.3) was kept at
0.21. Figures 4.18 and 4.19 show the mean particle size and specific surface, respectively,
as a function time for the two sets of simulations. The same features are observed as
before, and we see that the grinding is increasingly faster when the drum size is increased
for both sets of simulations. At constant Froude number, the time series of 〈d〉 and S are

96



4. Scaling of the grinding process in granular flows inside rotating drums

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t/t∗

0.4

0.6

0.8

1.0

〈d
〉/
〈d

0
〉

f =30%

f =35%

f =40%

f =45%

f =50%

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t/t∗

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
/
S

0

f =30%

f =35%

f =40%

f =45%

f =50%

(b)

Figure 4.17 – a) The normalized mean particle size 〈d〉/d0 and b) the normalized specific
surface S/S0, as a function of normalized time for different filling degrees.

quite close for different values of R. With a constant value of ω the evolution is much more
dependent on R.
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Figure 4.18 – Normalized mean particle size 〈d〉/d0 as a function of time for drums of
different sizes R/r for a constant value of ω (a) and for a constant value of the Froude
number (b).

Figure 4.20(a) shows the grinding rate Ṡ/S0 as a function of drum size for the two sets
of simulations. The behavior is well fit by linear functions. The slope is higher for constant
ω as compared to the case of constant Froude number. This shows that the Froude number
is a good scaling parameter as far as the drum size and rotation speed are involved. But for
different filling degrees and particle sizes this scaling fails as clearly shown by the results
of the previous subsection. The evolution of the characteristic time t∗ is shown in Fig.
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Figure 4.19 –Normalized specific surface S/S0 for drums of different sizesR/r for a constant
value of ω (a) and for a constant value of the Froude number (b). The dashed lines are
linear fits below the transition point.

4.20(b). It declines with increasing drum size in both cases. If we plot all the data as a
function of time normalized by t∗, they will naturally collapse (not shown here), as seen in
the previous subsections.
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Figure 4.20 – a) The rate of increase of the normalized specific surface shown in Fig. 4.19.
b) Characteristic time as a function of drum size ratio R/r for the two sets of simulations.
The dashed lines are power-law fits to the data.

4.3.4 Particle shape

Since in all the simulations for the scaling of particle breakage with system parameters
we used pentagons, it is important to evaluate the influence of particle shape on the time
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Figure 4.21 – The normalized mean particle size 〈d〉/d0 (a) and normalized specific surface
S/S0 (b) as a function of time in drum flows composed of regular polygons of different
numbers of sides for fixed drum size, rotation speed and filling degree.

evolution of specific surface and mean particle size for a few values of system parameters.
Figure 4.1 displays examples of samples composed of regular polygons with increasing
number of sides nsides. In addition to nsides = 5, which is the reference shape used in all
our simulations, we carried out simulations for nsides= 6, 7, 9, and 12, in a drum of size
R = 0.075 m, with rotation speed ω = 5.24 rad/s and filling degree f = 0.51. Figure
4.21 shows both the mean particle size and specific surface as a function of time for these
different shapes. We see that the time series are similar, and the grinding rate before
transition to the nonlinear regime quite weakly depends on the number of sides. The
slightly higher grinding rate of rounder particles means that they are subject to higher
force fluctuations or shear stresses. Higher forces can be a consequence of the fact that
rounder particles can more easily roll down the free surface and therefore they acquire
larger impact energies.

4.4 General scaling law

The partial parametric studies reported in the previous section suggest a power-law depen-
dence of the grinding rate with respect to nearly all system parameters. We may thus look
for a general scaling parameter Γ combining all system parameters such that the grinding
rate Ṡ/S0 would be an unique function of Γ. Alternatively, this scaling may be expressed
in terms of the characteristic time t∗ as a function of Γ. The parameter Γ may be defined
as a general function of ω, R, d0, h0, ρ, and g. However, to define a physically meaningful
parameter, it is more convenient to work with dimensionless parameters that reflect the
competing effects of various system parameters. The relevant dimensionless parameters
are Fr= Rω2/g (centrifugal force vs. gravity), R/d0 (finite size effect), and f = h0/R
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(filling degree). Although we did not change the internal cohesion Cn of the particles, it
is obvious that its value compared to the static stress induced by particle weights is an
important factor for particle breakage rate. The mass m is proportional to ρd2

0 and the
static stress due to the weight of a single particle is m/d0 ∼ ρgd0 (in two dimensions).
Hence, the dimensionless number contributing to breakage is ρgd/Cn.

We thus consider a scaling parameter of the following form:

Γ = Frαfβ
(
R

d0

)γ (
ρgd0

Cn

)ζ
. (4.5)

We must determine the four exponents α, β, γ, and ζ so that the values of the grinding
rate Ṡ/S0 for all simulations collapse on a master curve as a function of Γ. Obviously, if
for these values of the exponents Γ is the scaling parameter for the grinding rate, then any
function of Γ, including Γp for arbitrary p is also a scaling parameter. This means that
only the ratios of the exponents α, β, γ, and ζ are relevant. Hence, in practice we have
three exponents to fix.

If we use the values of the exponents evidenced by the partial parametric studies of the
last section for the grinding rate, we may obtain a linear dependence between the latter
and Γ. For rotation speed ω, a dependence Ṡ/S0 ∼ ω3/2 (see Fig. 4.10(a)) was observed.
We therefore set α = 3/4. For the filling degree f , we have Ṡ/S0 ∼ 1/f (by judging from
the behavior of t∗ in Fig. 4.16(a)) so that we may set β ' −1. For the drum size R/r,
according to Fig. 4.20(a), we have Ṡ/S0 ∼ R/d0 at a constant value of ω. By accounting
for the values of α and β, given that f = h0/R and Froude number is linear in R, we
should set γ ' 1/4. Finally, to determine ζ, we use two sets of simulations with the two
values of d0, and choose the value of ζ in such a way to make the grinding rates collapse
as a function of Γ. This procedure yields ζ ' 3/2.

As Γ is a dimensionless parameter, we need a time scale to transform also the grinding
rate, which has the inverse time dimension, to a dimensionless parameter. This time can not
be t∗, which is defined from the grinding rate. We have three different times in the system:
ω−1 (driving time), (d0/g)1/2 (rearrangement time due to gravity), and (Cn/ρ)1/2/g. We
may refer to the latter as ‘breaking time’. A particle should gain enough kinetic energy
between two impact events in order to be able to exert a stress larger than Cn for particle
breakage. If τ is the typical time between two events, the order of magnitude of the velocity
gained by a particle is gτ . The corresponding energy per unit volume is ∼ ρ(gτ)2. Equaling
this energy with Cn, we get

τ =
1

g

(
Cn
ρ

)1/2

(4.6)

The only time scale that does not interfere with the selected values of the aforementioned
exponents is τ . For this reason, we consider below the dimensionless grinding rate τ Ṡ/S0

and its scaling with Γ.

Figure 4.22 displays the dimensionless grinding rate as a function of Γ for all our
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Figure 4.22 – Dimensionless grinding rate as a function of the scaling parameter Γ in
equation (4.5) with α = 3/4, β = −1, γ = 1/4, and ζ = 3/2 for all our simulations with
different values of system parameters. The symbols refer to different sets of simulations in
which every time a single parameter (filling degree f , rotation speed ω, R/r at constant
Froude number or constant rotation speed) is varied.

simulations. Remarkably, all the data points collapse on a linear function

τ Ṡ

S0

' 37.73Γ = 37.73
1

f

(
Rω2

g

)3/4(
R

d0

)1/4(
ρgd0

Cn

)3/2

(4.7)

This scaling involves all control parameters and material parameters of the system. It
predicts the dependence of the grinding rate with respect to parameters such as Cn, g and
ρ, which were not varied in this work. The validity of this scaling can thus be easily tested
by performing further simulations with different values of these parameters. Note that
the dependence on particle size d0 in the above expression is not a finite size effect. The
grinding rate increases as τ Ṡ/S0 ∝ d

5/4
0 g3/4. In combination with ρ, this can be written

as m(d0/g)−3/4 where m = ρd2
0. This means that d0 is involved through both the mass of

the particles and microscopic time (d0/g)1/2 although in the initial search of the scaling
parameter we used the ratio R/d0, which is a finite size factor. It should also be noted that
the decrease of grinding rate Ṡ/S0 with increasing filling degree does not mean that the

absolute rate of grinding Ṡ decreases since S0 increases in 2D as h
3/2
0 , implying Ṡ ∼ f 1/2.

Equivalently, from equation (4.7) we get the characteristic time t∗ as a function of
system parameters:

t∗

τ
' 0.073

(
Rω2

g

)− 3
4
(
R

d0

)− 1
4
(
ρgd0

Cn

)− 3
2
(
h0

R

)
(4.8)

The characteristic time decreases with increasing R, ω, g, ρ, and d0, and it increases with
increasing Cn and h0.
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Figure 4.23 – Comparison between the proposed scaling law in equation (4.5) and the same
data plotted as function of Λ [223] and Q∗ [184]. A prefactor was applied in order to bring
the data to the same range.

Several authors have proposed scaling parameters for rotating drums. For example,
Taberlet et al. [223] proposed the parameter

Λ =

(
Fr
d

R

)1/4
R

W
, (4.9)

which involves Fr, R/d and R/W , where W is the width of the drum in 3D. Pignatel et
al. [184] introduced the parameter

Q∗ =
1

2
Fr1/2

(
R

d

)3/2

. (4.10)

Although Λ and Q∗ were introduced for granular flow rather than particle breakage, it is
interesting to see how these parameters scale our data. In Fig. 4.23 we have plotted the
dimensionless grinding rate as a function of Γ, Λ (by settingW = 1) and Q∗ by multiplying
Λ and Q∗ by a scale factor in order to bring all the points to the range of values of Γ. We
see that our data points as a function of both Λ and Q∗ are widely scattered while they
collapse for Γ.

4.5 Conclusions

In this paper, we analyzed the evolution of particle breakage in a 2D rotating drum in a
range of values of rotation speed, drum size, filling degree, and particle size and shape.
Each particle can break down to an unbreakable primary volume, which is a constant
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fraction of the volume of the mother particle. We were interested in the influence of each
system parameter on the evolution of specific surface and mean particle size. The specific
surface increases almost linearly with time up to a transition point to a nonlinear regime
where many unbreakable fragments are generated, and thus the probability of breakage
declines. For all values of system parameters, this point corresponds to the same amount
of specific surface, equal to slightly more than half the maximum specific surface that can
be generated in the simulations. This point was used to define a characteristic time.

When time is normalized by the characteristic time, all the data points collapse on the
same master curve. By analyzing the dependence of this time or the grinding rate on the
system parameters, we arrived at a scaling parameter incorporating all system parameters.
This parameter has nontrivial exponents, and it implies an increase of the breakage rate
with increasing rotation speed, drum size, particle size and density, and a decrease of
breakage rate with increasing filling degree and internal cohesion of the particles. This
scaling is a result of the combined effects of multicontact mechanical interactions inside
the flow, granular flow regimes in a rotating drum with their geometrical features, and
operating parameters.

The scaling parameter is dimensionless and fully constrained by all the available di-
mensional parameters of the system. For this reason, it would be interesting to further
check its predictions of the grinding rate by means of simulations with modified particle
density, particle strength, and gravity. Another line of research is the correlation between
the scaling parameter and granular flow variables such as the shape of the free surface and
slip at the walls. Indeed, we previously characterized the flow of unbreakable particles in
a rotating drum in 3D where a single scaling parameter was found to describe the flow
variables. However, the scaling of particle breakage, as evidenced in this work, is very
different from that parameter. This difference indicates that, besides flow variables such
as free surface shape, particle breakage depends on the flow patterns inside the drum. For
example, intense breakage of particles may occur in a small volume of the drum located
at the toe of the cascading flow. But due to lower volume involved, it does not lead to
a globally higher breakage rate. This aspect regarding local breakage probabilities merits
further work in the future.
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Chapter 5

Discrete-element simulations of
comminution in rotating drums:

effects of grinding media

We numerically investigate the evolution of crushable granular materials inside a 2D rotating
drum partially filled with a mixture of heavy balls and crushable particles. The size reduction
process in this ball mill system is governed by continuous collisions of the balls with particles,
leading to either their attrition or their body fragmentation. We used the Contact Dynamics
method with each particle tessellated into polygonal cells glued to one another and governed
by a fracture criterion based on stress and energy thresholds. Systems with balls of different
sizes and/or numbers are compared in terms of the evolutions of their particle size distribution
and specific surface. We find that the grinding process is increasingly faster as the ball size is
increased. But, as a result of energy dissipation due to a larger number of collisions between the
balls, the process is slower and becomes energetically less efficient for larger numbers of balls.
On the other hand, when the total volume of balls is kept constant, the ball size is generally
irrelevant for the evolution of particle breakage except in the limit cases of very small and very
large ball sizes. Finally, the particle volumes are found to undergo an exponential decay in the
course of grinding. A model is proposed for the evolution of three broad size classes qualified as
‘small’, ‘medium’ and ‘large’ particles by accounting for physical effects such as cushioning by
small particles and transition rates between these classes.
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5.1 Introduction

Ball mills are widely used in agronomy, mining and pharmaceutical industries. In these
applications, ball mills are mainly used for grinding, breakage, and mixing. The mixture
of crushable particles with heavy balls introduced in a rotating hollow cylinder evolves by
continuous size reduction as a result of the collisions of the balls (grinding media) with
the particles (feed) [13, 3]. Several length scales are involved, ranging from ball-particle
contacts to particle size, ball size, granular correlation lengths, and mill size. Hence, the
amount of energy transmitted from the kinetic energy of the balls to the fracture of particles
depends in a complex manner on the material and operational parameters of the process,
which is notoriously inefficient [90, 237]. It has been estimated that in Australia, just
in the mining sector, the grinding processes consume 36% of the total energy consumed
by this sector, corresponding to 1.3% of Australia’s energy consumption [19]. For this
reason, understanding the behavior of granular materials in ball mills is crucial for the
improvement of the operational conditions in view of the reduction of energy consumption.

Extensive studies have been reported on the performance of ball mills with respect to the
choice of operational parameters, material properties, and milling conditions. Commonly,
properties such as the particle size distribution, powder specific surface, powder density,
breakage rate, collision energy and collision frequency are compared among different sys-
tems in order to evaluate the grinding energy efficiency and the particle size reduction
properties [82, 158, 88, 100]. However, in many experimental studies of ball milling, the
range of tested parameters is limited, and therefore inconclusive results are found. This gap
may be filled by numerical simulations, which currently has its own challenge of reconciling
numerical performance with the realism of the underlying physical model.

The population balance model (PBM) is a natural strategy that has been widely used
for modeling the rate of change in the particle size distribution of materials subjected
to comminution processes [90, 247, 230, 101]. The particle breakage probability, a mass
transfer function, and the breakage function or breakage rate are the three key components
of this method. The breakage function is often determined by means of single particle
breakage tests in which the load magnitude and the generated fragment size are linked
[227, 133, 247]. The linear PBM considers a first-order or constant breakage rate during
the process so that the breakage function depends only on the energy applied, particle
size and some material properties [22]. Recent work on non-linear PBM intended to add a
mechanistic effectiveness factor that takes into account the decrease of the breakage rate as
the fines proportion increases [41]. Additionally, simulations of unbreakable spheres using
the Discrete Element Method (DEM) have been performed in order to characterize the load
transfer events that determine the breakage environments of the particles [137, 188, 251,
253]. Finally, the particle size distribution obtained using the PBM is often compared with
experimental results in order to adjust the involved functions. However, these functions
are material dependent and specific to a given set of operational conditions, requiring thus
a calibration for every specific case [101].

For simulations based on the Discrete Element Method (DEM), several models of parti-
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cle breakage have been developed. Some use the Bonded Particle Method (BPM) in which
the parent particle is composed of smaller spheres agglomerated [159]. Inside the drum,
these agglomerates can break under load or due to collisions with unbreakable balls, walls,
and other agglomerates. In a similar approach sometimes used, each particle is replaced
by a collection of smaller spheres [57] or superquadrics [58] once a breakage criterion is
achieved. Even though this process uses a progeny distribution model in which the par-
ticle volume is filled with smaller entities, a major drawback of such methods is that the
particle volume is not conserved. As a matter of fact, the volume occupied by a dense
agglomerate of mono-disperse spheres is at least 40% larger than the sum of the volumes
of its primary spheres [70].

The Bonded Cell Method (BCM) is an alternative approach in which the particles have
a polygonal shape (or polyhedral in 3D) and they are tessellated into smaller polygonal
cells [171, 37, 177]. Hence, there is no volume loss by body fragmentation of the particles.
Moreover, as the cells touch along their sides (faces in 3D), the internal cohesion of the
material can be accounted for in a more straightforward manner. In both BPM and BCM,
the large number of fragments, treated within the DEM as regular particles, requires a
compromise between the number of crushable particles and the number of primary particles
or cells in each particle. But, as the internal stresses of the particles are correctly (up to
discretization effect) calculated, they yield physically correct estimates of the evolution of
size distributions if the debonding criterion is consistent with the classical framework of
fracture mechanics, as discussed in [177]. For example, the effects of particle fracture on
dilatancy and evolution of the distributions of particle sizes and shapes under shearing,
the shattering effect, the slow reduction of the sizes of the largest particles as a result
of cushioning effect (redistribution of stresses by smaller fragments) and the power-law
distribution of intermediate fragments sizes are observed in the DEM-BCM simulations
[169].

In this chapter, we apply the BCM in 2D to investigate the ball milling process. The
two-dimensional geometry of the system has the advantage of allowing us to work with a
relatively large number of particles and cells for a meaningful statistics of fracture events
and time evolution of the mixture in a rotating drum. The focus of this work is on the
effects of the ball size and number on the fracture events in the granular material and the
evolution of specific surface and particle size distribution. In contrast to most simulations
previously reported on ball milling, we propose a systematic change of the parameters,
allowing for a better understanding of the processes involved. We first introduce the
BCM in the framework of the Contact Dynamics (CD) method. Then, we present the
results of two groups of numerical simulations which are analyzed to evidence the effects of
operational parameters on the evolution of particle size and specific surface as a function
of the number of drum rotations. Finally, the tracking of particle breakage events and
mass transfer between three size classes will be presented in order to get a more detailed
understanding of the particle size reduction process. We conclude with salient results of
this work.
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(a)

common line

(b)

Figure 5.1 – (a) Voronöı tessellation applied to polygonal particles. Each cell is presented
in a different color; (b) Geometry of a side-side contact between two cells i and j. Two
contact points (1 and 2) and their respective projections on the two cells, are defined for
this type of contact.

5.2 Numerical method and procedures

5.2.1 Bonded-Cell Method

In the BCM, each particle is modeled as an assembly of primary particles to which we
will refer below as ‘cells’. Thus, when a particle breaks, the fragments generated are
smaller particles each composed of cells. The smallest fragment is a single cell (representing
the lower bound on fragment size). In order to define the cells configuration, a Voronöı
tessellation is performed on each particle. The mean cell size dcell is fixed so that a parent
particle of surface s consists of approximately s/d2

cell cells. A parameter κ accounts for
the cell shape heterogeneity, taking the value of 1 for very similar cell shapes, and 0 for
very dissimilar cells. In previous work applying the BCM for particle breakage, it was
found that setting κ close to 1 leads to nearly crystallized cell configurations with higher
mechanical strength [37]. To avoid such effects, in this work κ is set at 0.5. The generated
cells are convex polygons that are in side-side contact with their neighbors. Each parent
particle is perfectly tessellated without defects nor voids. Fig. 5.1(a) displays an example
of a collection of pentagonal particles partitioned into irregular cells. For geometrical
consistency, the crushable particles have a polygonal shape, too.

Since the cells have polygonal shapes, various contact types can be expected: side-side,
vertex-side, vertex-vertex. Initially, cohesive bonds are assigned to all side-side interfaces.
Each side-side contact is represented by two distinct points belonging to their common
contact line (point 1 and 2 with their respective projections on the body i (i1, i2) and on
the body j (j1, j2), as shown in Fig. 5.1(b)). Initially, the common lines coincide with the
common sides between cells as well as points 1 (i1, j1) and 2 (i2, j2). The common line also
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defines the contact normal ~n.

Mechanically, an interface loses its cohesive status and becomes a fracture line if a
local criterion is fulfilled. According to the classical fracture mechanics, this criterion
should involve two ingredients: a stress threshold condition and an energetic propagation
condition. We introduce three parameters: a normal stress threshold Cn, a tangential
stress threshold Ct and an energy threshold W . Since the cohesion acts at the side-side
interfaces, the normal and tangential force thresholds for debonding are the products `Cn
and `Ct, respectively, where ` is the interface length. The critical energy for debonding
can also be expressed in terms of a critical normal distance ∆n = W/(`Cn) and a critical
tangential distance ∆t = W/(`Ct). The two criteria along the normal and tangential
directions to the interface are assumed to be independent. When a stress threshold is
reached at a bond attributed to one of the two representative points of the interface,
the interface remains cohesive but the two points are allowed to move during the next
steps until the critical distance along the normal or tangential direction is reached. Then,
the bond disappears irreversibly, corresponding to the propagation of a crack along the
interface. When this occurs, the contact will be treated as a non-cohesive frictional contact
with friction coefficient µ. The above debonding model can be described by the following
inequalities:





εn = 0 ∧ un = 0 ⇒ fn ≥ −Cn`
0 < εn < ∆n ∧ un ≥ 0 ⇒ fn = −Cn`
εn > ∆n ⇒ fn = 0

(5.1)





εt = 0 ∧ ut = 0 ⇒ −Ct` ≤ ft ≤ Ct`

0 < εt < ∆t ∧ ut ≥ 0 ⇒ ft = Ct`
−∆t < εt < 0 ∧ ut < 0 ⇒ ft = −Ct`
|εt| > ∆t ⇒ frictional contact

(5.2)

where εn and εt are the normal and tangential distances between the representative points,
and un and ut denote the relative velocities in the normal and tangential directions, re-
spectively.

Once a contact loses its cohesive state, the above cohesive behavior is replaced by a
purely frictional behavior described by the following inequalities:

{
un = 0 ⇒ fn > 0
un > 0 ⇒ fn = 0

(5.3)





ut = 0 ⇒ −µfn ≤ ft ≤ µfn
ut > 0 ⇒ ft = µfn
ut < 0 ⇒ ft = −µfn

(5.4)

These inequalities are displayed as graphs in Fig. 5.2.
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Figure 5.2 – Purely frictional contact interactions: a) Relationship between normal force fn
and relative normal velocity un at a contact point; b) Coulomb friction law as a relationship
between the friction force ft and sliding velocity ut.

5.2.2 Contact Dynamics

The cohesive-frictional (eq. 5.1 and eq. 5.2) and purely frictional contact laws (eq. 5.3,
eq. 5.4, and Fig. 5.2) are devoid of elastic strains. They describe a contact independently
of particle deformations. In this sense, they differ from the usual force laws used in DEM
simulations where the contact strain is calculated from particle motions but is assumed to
represent the elastic deflection at the contact point as in Hertzian contacts. The cohesive-
frictional contact laws can be used with equations of motion in a time-stepping scheme,
called Contact Dynamics Method (CDM), to determine the forces and velocities as in the
more usual DEM [163, 1, 192]. In contrast to the DEM, an implicit scheme based on an
iterative Gauss-Seidel algorithm is used in CDM. This leads to unconditional stability of
the time-stepping scheme, allowing therefore for larger time steps.

For the simulations we used a CDM-BCM algorithm implemented in the code GDM-tk
[200]. At each time step, the algorithm first performs a geometrical search for potential
contacts. First, a rough selection of the neighbors is done with a search distance followed by
a narrower detection in which the positions of the geometrical features of the two particles
candidate for contact are compared. Then, through an iterative process, the contact forces
and particle velocities are simultaneously calculated for all the potential contacts. Finally,
the positions are updated by using the calculated velocities. The initialization of the
contact forces at the beginning of each time step with those found in the previous step
reduces the degree of indeterminacy arising from the contact laws and the perfectly rigid
nature of the particles, so that the variations between possible solutions are generally below
the numerical precision [163].
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Table 5.1 – Parameters of the breakage model and material properties of powder particles
and balls for all simulations.

Variable Value
Cn (MPa) 1
Ct (MPa) 0.4
µ (-) 0.4

∆n (m) 5× 10−5

∆t (m) 5× 10−5

dcell (m) 5× 10−4

ρp (kg/m
3) 2000

ρb (kg/m
3) 11000

5.2.3 Samples and setup

A hollow cylinder of an internal diameter equal to 15 cm is filled with powder (crushable
particles) and balls. The ball density (ρb), powder particles density (ρp) and mean Voronöı
cell size dcell were fixed for all the tests. The density of the powder corresponds to that
of uranium powder. The value of ρb typically used in the mining sector is ' 8000 Kg/m3

whereas for the manufacture of nuclear fuel powders the values are higher. Table 5.1
contains all parameter values including the breakage model parameters (Cn, Ct,∆n,∆t, µ).
The values of Cn and ∆n were chosen such that the energy threshold W = `Cn∆n takes a
value equal to 1 J/m2, often found for uranium dioxide [166, 151]. In all the simulations
reported in this chapter, we also take a smaller value of Ct (Ct/Cn = 0.4), that favors
fracture of particles in mode II.

An important characteristic of our model is that all the elements have polygonal shapes,
the powder particles are pentagons while the balls are hexadecagons. The use of polydis-
perse pentagons prevents the creation of local crystallized structures often found in mono-
disperse packings of hexagons and squares [170, 99, 257]. In general, the size of a polygonal
particle is defined by the diameter of its circumscribed circle. The powder particles size
are defined using a uniform particle volume fraction from dmin = 0.002 m to dmax = 0.003
m. Thus, given the cell size (dcell) adopted, the parent particles are conformed by 16 to 36
cells. Finally, the simulation is run by applying a constant speed of 50 rpm to the cylinder
for a total duration of 60 seconds. Fig. 5.3 shows several snapshots of a typical simulation.

The flow regime inside rotating drums is generally described in terms of the Froude
number:

Fr =
ω2R

g
(5.5)

where ω is rotation speed, R is drum’s radius and g is the gravity [157]. For mixing
applications, the rotating drums are operated under rolling or cascading regimes, while
for grinding applications the cataracting regime has been found more appropriate. In the
cascading regime, the free surface of the flow exhibits a kidney S-shape while on cataracting
regime the particles flow following ballistic trajectories. In these two regimes the flow is
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n=0 n=10 n=20

n=30 n=40 n=50

Figure 5.3 – Snapshots of a ball mill system with ball size Db = 15 mm at different numbers
of revolutions (n). The powder particle colors range from bright green (intact) to black
(highly damaged).

very rapid and the material behaves like a gas in which collisional particles interactions
are highly present [96]. Because of the highly dynamic behavior, the transition between
these two regimes has been difficult to identify. In our simulations we set Fr=0.21 where
the flow is in the cascading-cataracting regime.

Two case studies are considered in this work. In the first case, the effect of the ball
size (Db) is investigated whereas in the second case the number of balls (Nb) is varied. In
the first case, five samples were built with a filling degree of 0.6, defined as the ratio of
the apparent volume of the powder-balls mixture and drum’s total volume. The size Db is
the same for all the balls in a given sample and it takes values of 5, 10, 15, 20 and 25 mm.
Three samples of this case are displayed in Fig. 5.4(a). Since Vb is constant, the number
of balls decreases when the ball size is increased. Identical powder samples composed of
720 parent crushable particles are considered in all cases.
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Table 5.2 – Geometrical characteristics of the two case studies.

First case Second case
Db (mm) Ddrum/Db (-) Db/〈d0〉 (-) Nb (-) Filling degree (-) Vb/Vp (-)

5 30 2 10 21.43% 1.914
10 15 4 20 32.14% 2.829
15 10 6 25 39.29% 3.286
20 7.5 8 30 42.86% 3.743
25 6 10 50 67.86% 5.571

In the second case study, the ball size Db was set to 15 mm for the five simulations.
As in the first case, the powder volume was kept constant and thus, the drums filled with
different numbers Nb of balls have different filling degrees and values of the ratio Vb/Vp.
In this case, the sample consists of 507 parent crushable particles. In Fig. 5.4(b) three
snapshots of these samples are displayed. Table 5.2 presents the geometrical properties of
the two case studies.

5.3 Effect of ball size

Figure 5.5(a) shows the mean powder particle size 〈d〉 normalized by the initial mean size
〈d0〉 as a function of the number n of revolutions for different values of ball size Db. The
filling degree, total ball volume Vb, and total powder volume Vp keep the same values in
all these simulations (see Fig. 5.4(a)). The particle size d is calculated as the diameter of
the disk with the same area. We observe slow size reduction during the first revolutions.
Then, the size reduction accelerates almost exponentially for the next 10 revolutions before
slowing down again exponentially with mean powder particle size approaching a value close
to cell size. The transient occurs more or less early depending on the ball size, but we do
not observe a monotonic dependence.

Figure 5.5(b) displays the evolution of the total specific surface S normalized by the
initial specific surface S0 as a function of n. It increases nonlinearly with n, and, interest-
ingly, apart from Db = 5 and Db = 25, the evolution curves coincide for all other values Db.
This behavior is consistent with the data points of Fig. 5.5(a) in which the evolution of
〈d〉 for Db = 5 and Db = 25 is slower than for other values of ball diameter. Note that the
initial rise of specific surface in Fig. 5.5(b) is essentially due to damage by the creation of
cracks that do not propagate. For this reason, the specific surface grows initially at much
higher rate than the reduction of the average particle size.

In the case of small Db (Db/Dp = 2), the milling process is similar to the case of powder
ground without balls. Since the breakage events are concentrated at the downstream of
the free surface, as observed in Fig. 5.6, the dominant breakage mechanism is the impact
of particles, including both powder particles and balls. Late grinding occurs in this case
due to the low inertia of the balls: smaller amounts of kinetic energy are carried by small
balls in comparison to big balls, and therefore the impact energy is transmitted to the
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(a)

(b)

Figure 5.4 – Snapshots of several simulations: a) Systems with ball sizes Db of 5 mm, 15
mm and 25 mm from left to right; b) Systems with numbers of balls Nb = 10, 25 and 50,
with Db = 15mm constant. Red line thickness is proportional to normal force.

powder in small amounts. As noted by Erdem and Ergün [82], the small balls are suitable
for reducing the small powder particles rather than the big ones, which are mainly broken
by impacts of high collisional forces.

In the case of large Db (Db/Dp = 10), fewer impacts but of higher magnitude occur [68].
In Fig. 5.6, the multiple breakage events that are located at the downstream boundary with
the drum wall can be linked to cases in which one or several grains are crushed between
the wall and a ball that approaches with a large amount of kinetic energy. This map shows
also that multiple breakage events occur in the space between the balls (with its signature
as dense rings), which is a feature not observed for Db = 5 mm. However, in this case,
the grinding process is slower than for other diameters because the powder particles are
trapped in the pores between the balls, becoming inaccessible and therefore protected. A
similar observation was made in [82].

The probability density function (pdf) of the forces between powder particles and balls
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Figure 5.5 – Evolution with the number n of revolutions of a) the mean particle size 〈d〉
normalized by the initial mean diameter, b) the specific surface S normalized by its initial
value for different values of ball size Db. The filling degree, total balls volume Vb, and
powder volume Vp are constant. Each plot consists of 1000 data points.

is shown in Fig. 5.7(a). Fig. 5.7(b) shows the pdf of the total force per ball. The first
distribution exhibits two peaks at very low force values (≈ 10−5 and 0.16). It shows that
in this kind of systems the weak forces are more numerous. However, it is well known that
grinding inside a ball mill is governed by strong force chains which are responsible for the
breakage events. The zoom on the strong forces indicates that the force chains are mainly
captured by larger balls. In fact, for low Db these strong forces are linked to the impact
at the free surface of the downstream, while for high values of Db they are associated with
crushing between the cylinder wall and a ball at high speed, as previously seen in Fig. 5.6.

Since the powder particle size has been kept constant, the smallest ball forces are
redistributed on less number of powder particles. When the force per ball distributions are
considered (see Fig. 5.7(b)), the peak of weak forces disappears and the main peak moves
to higher force values as the ball size increases. This means that for low Db numerous
impacts of weaker forces are responsible for the breakage while for high Db, stronger and
fewer attrition and shearing forces produce an equivalent grinding.

Between the two extreme cases discussed above, the intermediate cases show a gradual
grinding transition that does not seem to depend on the ball size. This must be understood
as a consequence of the fact that the total volume of balls is kept constant. As the kinetic
energy is proportional to the volume, the observed behavior suggests that the surface
created by milling is proportional to the kinetic energy and hence should be independent
of ball size. Moreover, the breakage mechanisms that take place in different cases change
with ball size. While for small Db there are numerous collisions at relatively low forces,
for large Db the collision events are replaced by shearing and attrition between balls that
exhibit high force values. Consequently, these gradual changes of the breakage regime are
compensated such that the global grinding evolution is independent of ball size.
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Figure 5.6 – Spatial localization of breakage events in drums filled with balls of variable
size Db: 5, 10, 15, 20, 25 mm from left to right. The dashed red line represents the ball
size of each case.
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Figure 5.7 – Probability density function of the normal force fn between the balls and the
powder a) for each powder-ball contact, b) the sum of the forces per ball, for different ball
sizes Db normalized by the cohesion force CNdcell.
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Figure 5.8 – Evolution of the normalized mean particle size with the number of revolutions
for different numbers of balls Nb. The ball size Db and powder volume Vp are constant.
Each plot consists of 1000 data points.

5.4 Effect of the number of balls

Figures 5.8 and 5.9(a) show the evolution of the mean powder particle size and specific
surface with the number of revolutions n for different values of the number of balls Nb, at
constant values of ball sizeDb and total powder volume Vp. The grinding evolution in terms
of specific surface and average powder particle size present an nonmonotonic behavior: it
increases as the number of balls is larger until Nb=30 above which the evolution becomes
slower. The slope Ṡ of the first part of the specific surface is shown in Fig. 5.9(b) where
we see the nonmonotonic behavior of Ṡ. Therefore, for Nb = 30 the grinding process is
faster than for the other values of Nb.

As the total volume of balls increases, the collisions between balls become increasingly
dominant, and more energy is dissipated as a result of ball collisions. In the limit Nb = 50,
this dissipation is high. Indeed, as observed in a snapshot of the ball mill in Fig. 5.10, in
the case Nb = 50 the balls often form long impulsive force chains. In the other extreme
case of Nb = 10, the filling degree is low, implying that the flow regime of this system is
slumping-rolling, in which some of the particles can remain intact at the core, rather than
the cascading-cataracting regime, characterized by frequent impacts between the powder
particles and balls. For this reason, the evolution curve in Fig. 5.9(a) for Nb = 10 is
slightly different and the specific surface tends to a lower asymptotic value than for the
other values of Nb.
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Ṡ
/
S

0

(b)

Figure 5.9 – a) Evolution of the normalized specific surface, b) slope of the linear trend
adjusted to the S0 evolution, for different number of balls (Nb).

Figure 5.10 – Force chains in a simulation with Nb = 50. Red line thickness is proportional
to normal force.

5.5 A ternary population balance model

A full description of the grinding process in a ball mill requires the rates of volume transfer
from each particle size class or population to all the classes of smaller size. This rate
matrix is, however, statistically too rich to be determined from simulations with only a
few thousand particles. For this reason, we consider three size classes between the initially
largest particle diameter dmax0 and the smallest cell diameter dmincell . We divide this interval
into three equal subintervals to which we refer below as "big", "medium", and "small"
particles or size classes. These subintervals will be denoted by b, m, and s, respectively.
We are interested in the evolution of the volumes Vb, Vm, and Vs of these classes. The total
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Figure 5.11 – Time evolution of the volume of each size population normalized by the total
volume V for a) Db = 15 and b) Nb = 32. The dashed lines are analytical fits obtained
from the system of equations 5.8.

volume of the particles
V = Vb + Vm + Vs (5.6)

is conserved but the volume of each class evolves as a result of particle breakage. Since
the breakage is irreversible, the transfer of volume can only occur from each size to smaller
sizes: b → m, b → s and m → s. Figs. 5.11(a) and 5.11(b) show the time evolution of
Vb, Vm and Vs for two different numbers of balls together with fitting forms obtained from
a simple model proposed below. At each time step of the simulation, we calculated the
volume transferred between classes: τmb for volume transfer b→ m, τ sb for volume transfer
b → s and τ sm for volume transfer m → s. The cumulative values of volume transfer are
plotted in Figs. 5.12(a) and 5.12(b).

At the beginning, nearly all particles belong to the class b. But in the course of grinding
Vb declines monotonously whereas Vs increases. The volume Vm of the medium class has
an nonmonotonic evolution. It begins to increase due to the breakage of big particles
into medium ones (τmb ). In parallel, Fig. 5.12(b)) shows that both τmb and τ sm start
increasing at a similar rate with a lag between them, that is small for Db = 15 but slightly
larger for Nb = 32. This implies that the two volume transfers occur simultaneously and
therefore Vm gradually tends to its maximum value ' 0.2V before decreasing. Also at
this point Vb ' Vs = 0.4V . Another event occurs when τmb and τ sm curves cross each
other and Vb ' 0.2V . From this point on, τmb levels off due to a lack of big particles.
The breakage rate τ̇ sm of medium particles also decreases, but as τ̇mb < τ̇ sm, Vm starts to
decrease. In Figs. 5.12(a) and 5.12(b) it is also remarkable that the generation of small
particles directly from big ones, by shattering or erosion, is less frequent than the two other
volume transfers. When the mill starts rotating, some breakage events take place at the
core section in which particles are mostly sheared. Once the granular flow is stabilized,
the particles tumble and their ballistic trajectories lead to high-energy impacts with the
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Figure 5.12 – Cumulative volume transfers: from big to small (τ sb ), from big to medium
(τmb ), and from medium to small (τ sm), for a) Db = 15 and b) Nb = 32.

walls and with other particles. Under such conditions the particles undergo mainly body
fragmentation by generating either small particles from medium ones or medium particles
from big ones.

The evolution of the three populations of big, medium and small particles can be
described by means of detailed balance equations. Hence, we introduce the following rates:
rate of change per unit volume λmb from b to m, rate of change per unit volume λsb from b
to s, and rate of change per unit volume λm from m to s. We also set λb = λmb + λsb, the
total rate of change per unit volume of big particles. We have





λsb =
τsb

∆tVb

λmb =
τmb

∆tVb

λm = τsm
∆tVm

(5.7)

The rate of change dVb/dt of the volume of big particles at time t is proportional to
their volume Vb(t). If we assume that λb is constant, we have dVb/dt = −λbVb, which leads
to an exponential decay of Vb. This trend is very close to what we observe in Figs. 5.11(a)
and 5.11(b) except for the beginning of the curve. But even by ignoring the beginning
of the curve, where the drum flow is not yet fully stabilized, the evolution is not exactly
exponential. Hence, the rate is not constant and evolves during milling. Physically, we
expect a gradual decrease in the fragmentation rate of big particles as a result of the
generation of finer particles that tend to redistribute and hence reduce the forces acting
on the big particles. This phenomenon is known as the cushioning effect [212, 22, 248, 41]
or hydrostatic effect [238]. To account for this effect, we assume that the rate declines as
an exponential function eα1(1−Vb/V ) of the volume of finer particles V − Vb. As Vb increases
this cushioning factor decreases. We apply the same effect to the medium particles whose
volume Vm changes by a gain of volume as a result of the fragmentation of big particles
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Table 5.3 – Values of the model (eq. 5.8) parameters found for the two studied cases in
this section.

Db = 15 Nb = 32
λmb 0.095 0.133
λsb 0.018 0.025

λb = λmb + λsb 0.113 0.158
λm 0.150 0.187
α1 0.038 0.038
α2 1.2 1.47
α3 1.2 0.87

and loss of volume by their own fragmentation. Hence, the system of partial differential
equations for the three populations takes the following form:





dVb
dt

= −Vbλbeα1(1−Vb/V )

dVm
dt

= Vbλ
m
b e
−α2(1−Vb/V ) − Vmλme−α3Vs/V

Vs = V − Vb − Vm
(5.8)

where α1, α2 and α3 are model parameters.
These equations provide an excellent fit of the three curves in Figs. 5.11(a) and 5.11(b)

when their initial parts are excluded. The coefficients λmb , λ
s
b, and λm were obtained from

the measurements of the volume transfers between populations and equation 5.7. The
values of the model parameters found for the two cases are given in Table 5.3. Note
that the low value of α1 indicates that the decay of Vb is actually very close to a purely
exponential decay.

5.6 Conclusions

In the work presented in this chapter, we applied the Contact Dynamics Method together
with a Bonded Cell Method for particle breakage with polygonal particles in 2D to inves-
tigate the grinding process of granular materials in a simulated ball mill geometry. The
effects on the particle size reduction and evolution of the specific surface were investigated
for two groups of parameters. In the first group, the ball size was varied with a constant
total volume of balls. In the second one, the number of balls was varied. In both cases,
the initial number of powder particles was kept constant.

We showed that the grinding process (evolution from the initial breakage of particles
with a tight size distribution to the ultimate state of nearly no breakage events) is mainly
influenced by the number of balls. The grinding is faster as the number of balls and hence
the total kinetic energy increases. However, for a large number of balls, this trend is
counterbalanced by enhanced energy dissipation due to increased collisions between balls.
In the case where the total volume of balls is kept constant, changing the ball size does
not affect the evolution of grinding as the total kinetic energy is nearly the same. Here

122



5. Discrete-element simulations of comminution in rotating drums: effects of grinding media

too, the extreme values of ball size correspond to special flow configurations that govern
the grinding behavior.

We also introduced a population balance model by dividing the particles into three
populations (big, medium and small) and evaluated its parameters from the simulations.
We found that the first breakage events that take place in our systems are big particles
turning into medium ones. Furthermore, the breakage rate of big particles into medium
ones was found to be nearly the same as the breakage rate from medium into small sizes.
At first order, the particle volumes follow almost an exponential decay during grinding but
the volume change rates of big and medium particles are not exactly constant as a result
of the cushioning effect. By including the cushioning effect, a good agreement was found
with the simulation results in both case studies.

In this work, we kept constant values of material parameters in order to focus more
specifically on the effects of the grinding media and the grinding process itself. Further
investigation is necessary to evaluate the scaling of the grinding process with parameters
such as fracture energy and stress as well as the filling rate. For example, the low number of
small fragments generated from big particles reflects low erosion and shattering effects. It is
thus interesting to see how robust is this behavior with respect to the material parameters
of grinding. In the same way, the effect of the ratio Ct/Cn needs to be investigated.
Previous simulations seem to indicate that the dynamic fracture of individual particles by
impact is only marginally affected by this parameter [177]. Finally, the ternary model of
population balance is obviously a rough description of the evolution of particle volumes.
But it can be extended to larger numbers of populations although it will involve larger
numbers of rates and parameters to be determined.
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General conclusions

I
n this doctoral thesis work, we developed a new approach for dynamic particle breakage
in the framework of a DEM algorithm in 2D and 3D, and performed extensive simu-
lations to investigate granular flows and the grinding process in rotating drums. The

ultimate goal is to obtain upscaling parameters from the generic physical mechanisms at
the particle scale in view of application to ball mills, which, despite their ubiquity, remain
to day poorly characterized.

Two main sources of the complexity of the grinding process in rotating drums were
identified in this work. First, the dynamic nature of the granular flow with its specific
features in a rotating drum in the cascading regime; Second, the particle interactions that
can lead to dynamic breakage and/or agglomeration processes (in the presence of cohesive
forces). Nearly half of the work was thus devoted to the model of dynamic particle breakage
with a detailed analysis of single-particle fragmentation in chapter 2, on one hand, and to
the characterization of cascading flow in rotating drums in chapter 3, on the other hand.
The other half of the work deals with rotating drums filled with breakable particles with
and without grinding balls.

In chapter 1, we introduced the engineering and scientific challenges related to the
scale-up of ball mills for grinding and mixing nuclear powders. The literature review
revealed significant gaps in our understanding of cascading flow in rotating drums, dynamic
particle breakage and spatio-temporal correlations between granular flow and particle size
reduction. We also underlined that the experimental techniques presently do not allow for
detailed analysis of the breakage events and flow variables from the particle scale, and the
discrete element method (DEM) can partially play this role provided particle shapes and
breakage mechanisms are correctly taken into account. One of the challenges of this work
was precisely to work out a breakage model and use it to characterize granular flows and
particle breakage in rotating drums.

In chapter 2, we described a breaking model for particles based on the tessellation of
each particle into Voronöı cells together with a fracture law for inter-cell debonding com-
bining a plastic strength and a fracture energy. We used this model in the framework of 3D
DEM numerical simulations to analyze the fragmentation of a single particle impacting a
rigid plane. We showed that particle damage (proportion of fractured interfaces), and the
amount of energy used for fragmentation scale with the supplied kinetic energy normalized
by fracture energy. The fragmentation efficiency, defined as fragmentation energy normal-
ized by the impact energy, was shown to be unmonotonic with a peak at a specific value
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of the impact energy. We introduced a functional form that fits the collapsed data with
a single free parameter. Similar fitting forms were proposed for the damage and effective
restitution coefficient. We also showed that particle damage scales with the normal stress
threshold normalized by the mean impact stress. These results demonstrated the ability
of our numerical approach to handle dynamic fragmentation of particles.

In chapter 3, we investigated granular flows in rotating drums in the cascading regime
by means of numerical simulations without particle breakage. The cascading flow regime
results from combined effects of centrifugal and inertial forces that induce a curved free
surface. We argued that this regime is not fully understood at the particle scale and
in terms of flow variables such as surface profile, wall slip, flowing thickness and force
fluctuations, and its scaling behavior should provide meaningful hints for understanding
the comminution process. Our simulations evidenced several relationships between slope
ratio, flow thickness, wall slip and force variability. In particular, the wall slip was found
to be larger in smaller drums, leading to less particle feed to the free surface and thus a less
curved free surface. We also found that the force variability increases with slope ratio and
flow thickness. The observed relation between force variability and free surface profile was
another important aspect revealed by the simulations and understood as a consequence of
high shear stresses below the steepest descent of the surface profile. In this chapter, we also
introduced a scaling parameter that combines various system parameters and consistently
describes all the flow variables. This scaling form Υ = Fr1/4(R/d)1/2f involves system
parameters such as drum size R, rotation speed ω, filling degree f , and particle size d, and
is consistent with all our simulation data. This scaling works down to small ratios R/d or
h0/d where finite size effects seem to prevail and the surface is close to the rolling regime
even for high values of rotation speed.

Chapter 4 was devoted to the study of the effect of the system parameters on the
grinding process. We considered 2D rotating drums filled with breakable particles. The
breakage was taken into account in the contact dynamics framework through the bonded-
cell method detailed in chapter 2. We characterized the evolution of the average particle
size and specific surface for different values of the rotation speed, filling degree, drum size
and initial particle shape. We found that the specific surface increases almost linearly up to
a transition point where the particle size approaches the smallest size that can be generated
(i.e. the cells size). The transition point is associated with a characteristic time, that is
used to scale the test time in order to match the evolution of particle breakage for all system
parameters. Finally, the analysis of the dependence of the grinding evolution rate on the
tested parameters allowed us to define a general parameter that scales the specific surface
growth rate. This scaling not only takes into account the effect of operational parameters
as the scaling proposed in chapter 3, but also the multi-contact mechanical interactions
leading to breakage and different flow regimes with respect to geometrical features.

In chapter 5, we investigated the grinding process of polygonal particles in two dimen-
sions with focus on the effects of the size and number of grinding balls. We kept the same
amount of the initial number of powder particles but considered two groups of parameters:
In the first group, the ball size was varied with a constant total volume of balls whereas
in the second the number of balls was varied. In both cases, we showed that the evolution
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of the powder from the initial breakage of particles with a tight size distribution to the
ultimate state of nearly no breakage events was mainly influenced by the number of balls.
The grinding is faster as the number of balls and hence the total kinetic energy increases.
However, for larger number of balls this trend slows down as a result of increased collisions
between balls. In the case where the total volume of balls is kept constant, changing the ball
size does not affect the evolution of grinding as the total kinetic energy is nearly the same.
In this chapter, we also introduced a population balance model for three populations (big,
medium and small). The first breakage events that take place in our system was found to
be the fragmentation of big particles into medium ones. The breakage rate of big particles
into medium ones was found to be nearly the same as the breakage rate from medium into
small sizes. At first order, the particle volumes follow almost an exponential decay during
grinding but the volume change rates of big and medium particles are not constant as a
result of the cushioning effect. We introduced a term in our ternary Population balance
model (PBM) to account for this effect, leading to a good agreement with the simulation
results.

The scaling of granular flow in rotating drums presented in chapter 3 appears to be
very different from that of particle breakage in chapter 4. This difference is partially due
to the presence of the particle strength parameter in the breakage process as compared
to particle weights. Another important aspect is that particle breakage depends not only
on the flow variables such as free surface profile, but also on the flow patterns inside the
drum. Intense breakage of particles may occur in a small volume of the drum located at
the toe of the cascading flow. But due to lower volume involved, it does not lead to a
globally higher breakage rate. Hence, a detailed analysis of the local breakage probabilities
and the effect of system parameters is necessary to link the two scaling parameters.

Most of the work presented in this dissertation has been published or submitted as
regular papers in international journals or presented in several conferences and workshops.
The appendices present few supplementary results that have not yet been fully synthesized
for publication but they provide useful information for the reader interested in this work.

Perspectives of future work

This work should be considered as a first step in realistic modeling and analysis of ball mills
with a breaking model accounting for the possibility of generating fragments of arbitrary
sizes and shapes as well as an energy-based fracture criterion. As the internal degrees of
freedom of the particles come into play, we have used a compromise between the number
of internal degrees of freedom (cells composing the particles) for particle breakage and
the number of particles. This is best achieved in two dimensions, allowing us to perform
simulations of crushable particles with and without balls. The single-particle impacts
and granular flows without particle breakage were performed in 3D. But in the future we
will need to improve the method, optimize the code or perform parallel computations in
order to be able to simulate efficiently ball mills in 3D with crushable particles and balls.
Figure 5.13 shows a snapshot of a 3D simulation of the flow of crushable particles inside a
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Figure 5.13 – Snapshot of a simulation of crushable particles inside a rotating drum in 3D.

rotating drum. This simulation was quite long and will be used to compare with alternative
approaches in the future.

Besides computational efficiency, it is desirable to compare more closely our results with
experimental measurements and, if possible, to perform experiments with model materials
in view of direct comparison with simulations of crushable particles. In the cascading
regime, an easy way to compare the numerical and experimental behaviors consists in
considering surface profile and flow thickness. The evolution of particle breakage can
be evaluated experimentally by regular sampling of the crushed material. It may also
be possible to access particle velocity fluctuations (granular temperature) by including
an instrumented particle measuring accelerations into the granular flow. Another way of
testing the upscaling parameter evidenced by our work consists in applying it to laboratory
and industrial drums.

One of the remarkable results of this work regarding cascading flows was the relationship
between wall slip and surface profile. This point was discussed in detail in chapter 3. But
this result suggests that it is useful to repeat the simulations with rough walls by gluing
particles of different sizes to the drum walls or considering more angular particle shapes.
The studied parameters can then be compared with simulations without wall asperities
but with different values of the wall-particle coefficient friction. The roughness may simply
influence the behavior in a quantitative way leaving the qualitative behavior unchanged.
But this point needs to be checked in order to assess with confidence the effect of wall
roughness on finite size effects, wall slip and flow behavior.

For collective breakage events, simpler simulations may be simulated and analyzed. For
example, we may simulate the impact of a rigid plate onto a confined sample composed
of breakable particles inside a box. This investigation may lead to an original and general
interpretation of the dynamic fragmentation of granular materials as well as further insights
about a very common method used in civil engineering: dynamic compaction.

In chapter 2 a parametric study of the breakage model was performed in the framework
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of a single particle impact test. It was found that the normal cohesion threshold modifies
significantly particle damage while almost no differences were found in the particle breakage
when the tangential cohesion threshold was varied. It would be interesting to study the
effect of the breakage model parameters (i.e. cohesion and energy thresholds) and other
mechanical parameters such as the friction coefficient on the collective particle breakage
inside rotating drums. This can provide a better understanding of the different breakage
modes that a particle undergoes during grinding inside ball mills.

The work presented in this thesis was devoted to particle breakage. However, besides
the breakage that particles undergo inside ball mills, they can also agglomerate due to van
der Waals forces for particles of sizes close to µm. The agglomeration is a different process
that has been studied in several works and can be taken into account in discrete-element
simulations. Hence, these two effects can be combined in order to study particle breakage
with cohesive interactions inside ball mills.

As a complement to the last chapter, it would be interesting to perform numerical
simulations of ball mills with grinding bodies of different sizes. More specifically, a mixture
of three sizes with a uniform size distribution in particle volumes can be considered. This
is a configuration that is often used in industry, and therefore it would be interesting to
provide a physical explanation to its practical performance. The scaling parameter derived
for breakable particles without milling media can also be applied to ball mills with an
important difference that the scaling will involve different values of density and size for
breakable particles and balls.

The ternary model of population balance introduced in chapter 5 is a rough descrip-
tion of the evolution of particle volumes. But it can be extended to larger numbers of
populations and the corresponding parameters evaluated. Moreover, the dependence of
the models parameters in the ternary model with respect to systems parameters is an
interesting route to explore using the available simulations.

In order to arrive at a robust upscaling approach for particle crushing in rotating drums,
further characterization of the breakage events in different parts of the drum as a function
of system parameters is necessary. An efficient milling process requires both large impact
forces and large volumes where the impact forces are above the crushing resistance of the
particles. The combination of these two parameters controls not only the breakage rate
but also the fragment size distribution and its evolution with time. The scaling of the
spatial distribution of force fluctuations seems therefore to be a key element that can be
investigated more thoroughly in the future.
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Résumé étendu en français

Avant propos

Dans ce résumé étendu, on présente une brève synthèse en français du contenu du manuscrit
en respectant la chronologie de la thèse. Les principaux résultats de chaque chapitre sont
rappelés et on s’attarde sur quelques éléments choisis illustrant la démarche numérique
mise en oeuvre, les types de tests effectués, les mesures réalisées et les analyses les plus
saillantes. Enfin, nous espérons que ce résumé servira de guide de lecture ou d’introduction
rapide pour le lecteur pressé.

Introduction

Le broyeur à boulets est l’une des technologies les plus utilisées pour réduire en poudre
la matière solide. Son usage est généralisé dans de nombreux procédés de fabrication
industriels. Par exemple, il joue un rôle central dans la fabrication d’aliments, de bio-fuels,
de cosmétiques, de ciments, dans l’extraction minière mais aussi dans des domaines à plus
haute valeur ajoutée telle que la pharmacie ou dans les applications de la métallurgie des
poudres frittées à la fabrication des combustibles nucléaires.

Ces procédés ont pour dénominateur commun d’intégrer une étape de dissociation de la
matière dans des broyeurs où les grains sont soumis à une forte agitation et à de nombreux
impacts. Le coût énergétique de ce traitement de la matière en grains, appelé comminution,
représente plus de 10% de la consommation électrique de la planète [78, 102]. Il est en
outre difficile de mâıtriser et même de prédire l’évolution des tailles de particules au cours
de la comminution, rendant l’optimisation des procédés difficile. Ceci peut même conduire
dans certain cas à des pertes de matière première sous formes de particules trop fines
qu’il faut alors recycler. Malgré des investissements majeurs, les connaissances acquises
dans le domaine restent essentiellement empiriques. Il est en effet particulièrement difficile
de conduire des expérimentations en milieu confiné, à des échelles de temps et d’espaces
pertinents.

Dans ces conditions, la simulation numérique constitue un outil réellement précieux
pour une étude détaillée des mécanismes en jeu. Cette recherche n’a pour autant été rendue
possible que très récemment. En effet, elle demande des moyens de calcul performants ainsi
que des méthodes avancées pour simuler le mouvement de dizaines de milliers de particules
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de formes géométriques complexes, pouvant à tout moment entrer en contact, frotter ou
se fragmenter.

C’est en faisant appel à des développements d’algorithmes originaux que l’on met en
œuvre cette approche dans cette thèse. L’objectif est de modéliser la dissociation de la
matière solide sous conditions dynamiques, tout en assurant la traçabilité dans le temps de
chaque particule fragmentée. Pour ce faire, on a réalisé des simulations numériques qui per-
mettent d’explorer la fragmentation dynamique d’un seul grain, d’étudier les écoulements
granulaires dans des tambours tournants de différentes tailles et de modéliser leur frag-
mentation. Enfin, on a également simulé la fragmentation en présence de corps broyants
dans un broyeur à boulets pour différents paramètres procédés.

Contexte industriel et scientifique

Le chapitre 1 décrit le contexte industriel et scientifique de la thèse. Le cas particulier de
l’importance du broyage dans la fabrication du combustible nucléaire est décrit ainsi que
les principales étapes de son obtention : de la formulation de la poudre nucléaire à sa mise
à en réacteur. Cette fabrication passe par une étape de mélange de poudres qui peut se
faire dans des mélangeur spécifiques mais également par co-broyage direct de différentes
poudres. Garantir une taille maximale de particule et un mélange intime est essentiel pour
obtenir des pastilles de qualité et des performances adéquates.

La motivation de la thèse et les questions fondamentales qu’elle soulève résident dans
le problème de dimensionnement des cylindres tournants utilisés avec des boulets comme
corps broyant. En effet, des différences importantes entre les propriétés des poudres pro-
duites (tailles de particules, densité, qualité des mélanges. . . ) sont observées en fonction
de la dimension des broyeurs utilisés. L’objectif de cette thèse est donc de développer une
approche numérique discrète (Discrete Element Method) incluant une méthode de fracture
dynamique des particules et de réaliser des simulations dans un cylindre tournant en faisant
varier divers paramètres associés (dimensions, vitesse de rotation, taux de remplissage) afin
d’étudier les régimes d’écoulement granulaires et les mécanismes de fragmentation des par-
ticules. Les résultats obtenus dans ce cadre permettent ensuite de proposer une méthode
de changement d’échelle pour le procédé.

Deux sections, essentiellement bibliographiques, rappellent des éléments importants
pour comprendre et appréhender les mécanismes en jeu au cours du broyage. On donne
en premier lieu quelques résultats illustrant la difficulté à appréhender la cinématique des
écoulements granulaires dans des cylindres tournants. En outre, l’hétérogénéité spatiale, la
complexité des conditions aux limites, la présence de différents régimes d’écoulement, ren-
dent difficile une description unifiée de l’ensemble des phénomènes en jeu au moyen d’une
seule loi rhéologique. En second lieu, les modèles théoriques, expérimentaux et numériques,
classiquement mis en œuvre pour l’étude de la fracture des solides sont présentés. A l’échelle
d’un grain, la variété des modes de rupture est illustrée en insistant sur l’effet de la dy-
namique. Le chapitre se termine par la description de la forme des particules et donne
quelques éléments sur la description des évolution de la granulométrie en utilisant une
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(a) (b) (c) (d)

Figure R.1 – Images séquentielles de la fragmentation d’un grain lors de l’impact avec un
plan rigide.

approche de type “Population Balance Model”.

Fragmentation dynamique d’un grain

Dans le chapitre 2, on étudie la fragmentation dynamique d’un grain soumis à un im-
pact avec une surface plane. Une nouvelle méthode de fragmentation des particules est
développée en associant la discrétisation des particules en cellules polyédriques collées avec
un critère de clivage entre cellules en énergie et contrainte. Cette partition est obtenue
à partir d’une tessellation de Voronöı. Dans ce modèle de cohésion, la rupture peut être
obtenue dans les directions normale ou tangentielle. La fracture, qui peut être occluse
(non-percolante) ou connectée est matérialisée par l’ensemble des interfaces rompues. Au
moment de l’impact, l’énergie cinétique de la particule est consommée en partie par cette
fracture mais peut être également restituée aux fragments sous forme d’énergie cinétique,
ou dissipée par des collisions inélastiques.

Des simulations numériques sont réalisées en utilisant cette approche dans le cadre de la
méthode de Dynamique des Contacts en 3D. Une étude paramétrique extensive nous permet
d’analyser l’endommagement et l’efficacité de la fragmentation en fonction de l’énergie
d’impact et des valeurs seuils de la contrainte. Une mise à l’échelle de ces paramètres avec
l’énergie de fracture et la force d’impact est proposée. On trouve notamment que l’efficacité
de la fragmentation, définie comme le rapport entre l’énergie consommée par la rupture de
la particule et l’énergie d’impact, présente un comportement non-monotone avec l’énergie
d’impact. L’efficacité la plus élevée est obtenue pour une valeur spécifique de l’énergie
d’impact. L’étude paramétrique réalisée a permis de montrer que, pour les conditions du
test imposées, c’est la contrainte seuil dans la direction normale qui contrôle la résistance
globale de la particule, la contrainte seuil dans la direction tangentielle jouant un rôle
secondaire. Enfin, l’analyse du bilan énergétique fournit des pistes intéressantes pour une
meilleure compréhension de la fragmentation des particules sous conditions dynamiques.

Dans un deuxième temps, la distribution de tailles et la forme des fragments engen-
drés lors d’impacts à différents niveaux d’énergie sont présentées. Pour cette étude, on
a constitué des échantillons formés de 5000 cellules permettant d’obtenir des formes de
fragments très variées. On trouve que pour toutes les valeurs de l’énergie injectée, les frag-
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ments de grandes tailles suivent une distribution de type Weibull et ceux de petites tailles
adoptent une distribution en loi de puissance. De manière générale, on note également
que les fragments sont légèrement plus allongées pour les grosses particules que pour les
petites.

(a) (b) (c)

(d) (e)

Figure R.2 – Représentation, à nombre de Froude constant, de l’écoulement stationnaire
dans des systèmes avec des rapports entre la taille du tambour et la taille du grain R/r=
a) 18.5, b) 37.5, c) 62.5, d) 93.75, et e) 125. La taille de particule est gardée constante.
Les grains sont colorés en fonction de leur vitesse projetée sur la direction d’écoulement et
normalisée par la vitesse de la paroi du cylindre (ωR).

Rhéologie et mise à l’échelle des écoulements de cas-

cade dans les tambours tournants

La mise à l’échelle des tambours tournants est nécessaire dans de nombreuses applications
au broyage ou à la granulation. Ce sujet nécessite d’approfondir notre compréhension des
effets de taille inhérents aux écoulements granulaires. A l’aide de simulations numériques,
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on étudie la sensibilité à différents paramètres définis à l’échelle de la particule ou carac-
térisant l’écoulement dans des tambours de différents rayons en se focalisant sur le régime
de ‘cascade’ caractérisé par profil de surface courbe, une forte injection de l’énergie ciné-
tique par la rotation du tambour, et un écoulement inertiel.

Le profil de la surface libre, décrit par le rapport entre la pente maximale et la pente
sécante, est fortement corrélé avec des propriétés de l’écoulement telles que l’épaisseur de
la couche en écoulement, la variabilité des forces de contact, et le glissement des particules
à la paroi. On trouve que le nombre de Froude seul ne parvient pas à mettre à l’échelle
les propriétés de l’écoulement dans des tambours de différents tailles. On introduit alors
un nombre sans dimension qui combine les paramètres du système et met à l’échelle les
différentes propriétés de l’écoulement. Cette mise-à-l’échelle semble être aussi valable pour
des conditions extrêmes (c’est-à-dire de petits tambours et de faibles remplissages) où les
effets de taille finie dominent et pour lesquelles le glissement en paroi de tambour limite
l’écoulement en cascade au niveau de la surface libre. En outre, la relation linéaire entre le
paramètre de changement d’échelle proposé et la variabilité des forces de contact montre
son intérêt pour la mise-à-l’échelle du processus de broyage dans les tambours.

Figure R.3 – Simulation 2D d’un tambour tournant rempli avec des particules sécables.
Le niveau d’endommagement des particules est représenté du vert au noir; les particules
noires étant celles ayant subit le plus fort endomagement.

Modélisation de la fragmentation des particules dans

un tambour tournant

Des simulations qui prennent en compte à la fois la dynamique des écoulements dans un
tambour tournant et la possibilité de casser les particules sont très rares dans la littérature.
On a réalisé ce type de simulation en 2D avec une méthode similaire à celle mise en oeuvre
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au chapitre 2. Cette méthode DEM associe l’algorithme de la Dynamique des Contacts
à une description de la rupture de liens cohésifs appelé Bonded-cells method (BCM). Les
particules sont divisées en cellules polygonales collées les unes aux autres. Celles-ci peuvent
perdre leur caractère cohésif dès qu’un critère de fracture basé sur: i) une contrainte de
cohésion et ii) une énergie seuil, sont atteints.

La vitesse de rotation, le degré de remplissage, la taille du cylindre, et la forme initiale
des particules ont été variées dans les simulations des tambours remplis par de particules
sécables. Ces simulations numériques permettent d’identifier les zones dans le tambour où
les particules sont plus susceptibles d’être endommagés et/ou de casser ainsi que les modes
de rupture privilégiés. L’évolution du broyage est caractérisé en détail en considérant
la variation de la taille moyenne des particules et l’évolution de la surface spécifique du
matériau granulaire. Nous avons mis en évidence un temps caractéristique. Un résultat
important a été de montrer que lorsque le temps est normalisé par le temps caractéristique,
toutes les courbes d’évolution se superposent. Les analyses de variations de ce temps
caractéristique en fonction de différents paramètres du système nous ont permis de définir
un paramètre sans dimension pour la mise à l’échelle du taux du broyage normalisé.

0 100%

Figure R.4 – Simulation d’un broyeur à boulets en 2D. Les zooms illustrent les modes de
comminution dans différentes zones du broyeur. Le niveau de couleur, du vert au noir
représente le degré d’endommagement des particules.

Effets des corps broyants

Dans le chapitre 5 on présente une étude numérique bidimensionnelle de l’évolution du
broyage de particules dans un broyeur tournant partiellement rempli avec un mélange de
boulets et de particules sécables. La comminution dans les broyeurs à boulets est contrôlée
par des collisions entre les corps broyants et les particules de poudre pouvant entrâıner à
tout moment l’attrition ou fragmentation par clivage de ce dernières. En utilisant la même
méthodologie qu’au chapitre précédent, des simulations sont réalisées avec des tambours
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contenant des proportions variées de boulets et de poudres. On analyse l’évolution au
cours de broyage de différents paramètres décrivant l’état interne du milieu granulaire
: distribution de tailles de particules, surface spécifique. . . . On observe que le broyage
est plus rapide quand la taille des boulets est plus grande. Cependant, en raison de la
dissipation d’énergie liée aux nombreuses collisions entre les boulets, le broyage devient
moins efficace lorsque des quantités élevés de corps broyants sont utilisées. D’un autre
côté, si le volume total de boulets est maintenu constant, l’effet de la taille des boulets
sur l’évolution du broyage devient négligeable; sauf pour les cas limites où les boulets sont
trop petits ou trop grands devant la taille des particules. Finalement, on montre que le
volume des particules suit une décroissance exponentielle pendant le broyage. Un modèle
d’évolution à trois classes de taille est proposé. Ce modèle prend en compte les taux de
transition entre les trois classes ainsi que des effets physiques tels que l’effet d’écrantage
en présence de petites particules.

Conclusions et perspectives

Les études réalisées dans cette thèse de doctorat ont porté sur la modélisation du broyage
dans un tambour tournant en proposant un modèle de fragmentation dynamique en 3D, une
caractérisation détaillée du régime d’écoulement en cascade en 3D, en proposant une mise-
à-l’échelle de ces écoulements, en étudiant l’effet de la quantité et des tailles des boulets sur
l’évolution du broyage en 2D, et en considérant les écoulements de grains en tambour avec
des particules sécables en 2D. Les résultats obtenus constituent une première étape dans
la perspective qui consiste à atteindre une caractérisation de l’écoulement granulaire et
du broyage en présence des boulets en 3D. La caractérisation quantitative des corrélations
entre les variables d’écoulement et le processus de fragmentation des particules est au coeur
de cette quête. Ce type de simulations est néanmoins très demandeur en temps de calcul
pour un nombre représentatif de particules dans un cylindre tournant. Pour continuer
ces travaux, il sera donc nécessaire de procéder à une optimisation de la méthode et des
simulations en s’appuyant sur une approche plus rapide pour la prise en compte de la forme
des particules et des fragments.
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A Characterization of fragments generated by parti-

cles single impact

This section will focus on the size and shape of fragments generated during single impact
tests. In order to avoid finite size effects, 10 particles of diameter d0 equal to 1 mm
composed of 5000 cells were tested for each impact velocity. The impact velocity was fixed
applying an initial velocity to the particle while the gravity remained at g = 9.81 m/s2.
The impact velocity is presented as ω: the ratio between the kinetic energy before the
impact (W−

k ) and the total available fracture energy (W T
f ) (equation (2.15)), and ω/ω∗,

where ω∗, defined in section 2.3, is the value of ω for which the efficiency is maximized. The
differences between the 10 tested specimens are regarding the shape and size of the cells,
as well as the impact point. Since the particle has a polyhedral external shape, a random
rotation applied to the particle permit to have cases in which the particle falls on different
impact points such as on a face, edge or vertex. In all the simulations performed on this
work, we tested samples of 1 mm diameter released from a height of 1.5 mm, measured for
its center, onto a rigid plane. The test conditions guarantee that there is a single impact
point different from other impact tests where there are two contact zones [227, 256, 92].

A.1 General behavior: Fragmentation mechanisms

The crack patterns in brittle spheres broken under impact have been barely studied ex-
perimentally [256, 210] and numerically [254, 149]. One main difficulty arises from the
intrinsic high speed of the process. This difficulty vanishes when working with numeri-
cal simulations, moreover, the time discretization allows one to follow not only the crack
development but also their provenance.

In the case of a particle tested to its failure under quasi-static conditions (e.g. compres-
sion, indentation, low-speed impact), the stress waves propagation time is shorter than the
collision ones [210]. In this study, tests are performed on the dynamic regime but, because
of the temporal resolution schema, the stress waves could travel multiple times through the
particle during the collision time that is the time step length. Therefore, the global crack
growing process can be studied comparing consecutive time steps. In a test performed
under a low injected energy wherein the particle was not broken but damaged, we can evi-
dence that the fissures present a bigger tip near to the collision zone and it is reduced with
the height of the particle. This first remark allows us to point out that the fissure has its
origin at the collision zone and is propagated in the axial particle direction, mainly through
the surface. We have to add that the studied particles are built without any defect, all the
cells are in perfect face-to-face contact, so the crack growth has not preferential paths due
to pre-damaged zones.

A first pattern found in previous works for breakage under static [128, 34] and dynamic
conditions [256, 210, 254], that is also found in this research is the cone crack at the
impact zone. This cone has been identified as a region wherein the material is crushed due
to compressive stress, the shear stresses trajectories are going to limit its extension [182],
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(a) (b)

Figure A.1 – a) Cone crack present at the contact point, view from the impact plane. b)
Fissure propagation from the cone crack.

resulting in bigger cones for high-speed velocities. In figure A.1(a), is possible to identify
the debris in the cone from the intact material surrounding the collision zone.

The fragmentation that follows this initial cone crack has been named primary level of
cracking [256]. It consists of meridian fissures that are developed from the impact point
(cone crack) through the specimen diameter [210]. Wittel et al. have found that the angle
between the meridian cracks was independent of the sample disorder for a given impact
velocity [254]. If the impact energy is low, the process will end here and the fragments will
exhibit an orange sliced shape (see figure A.2). In the cases where the injected energy would
be bigger, a secondary level of cracking is presented in terms of transversal cracks developed
from the longitudinal fissures. This cracks allow the system to create new fragments with
a shape of a half, or a partial, slice. In very dynamic cases is not possible to differentiate
the primary from the secondary level, and as a consequence, the fragments do not present
sliced shapes but amorphous clusters product of asymmetrical fissures (figure A.3). Also
as a function of the impact energy, the number of generated slices can vary. At low impact
speeds we found a single meridional crack that splits the particle in two hemispheres, (figure
A.2(b)); 4 and 5 slices for a higher velocity (figure A.2(c)); and finally multiple slices and
amorphous clusters for the highest impact velocities (figure A.2(d)).

In the following figure, the final state of the same particle impacted at different speeds
is presented. The range of velocities studied goes from cracking to a pulverization of the
particle.

A.2 Fragments size distribution

At the end of each impact test, the fragments were retrieved and their sizes were calcu-
lated as the diameter volume-equivalent sphere. Also, velocities at which the particle was
not broken are presented as a single point at the parent particle size. As expected, the
granulometry curve moves to the left as the impact velocity is increased, showing that the
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(a) (b) (c) (d)

Figure A.2 – a) Front view of meridional cracks developed but no fragments generated,
only debris from the cone crack at the impact point. b) Front view of a single meridional
crack that generates two fragments. c) Top view of a fragmentation in 5 slices generated
from the meridional crack development. d) Secondary level of cracking.

Figure A.3 – Snapshots taken at the end of the impact of particles at 6 m/s, 8 m/s, and
10 m/s from left to right.

fragments present a smaller size. Moreover, if a single size d/d0 is taken as a reference, the
cumulative percentage by volume decreases as the impact velocity is increased, which is
evidence of the particle size diminishing due to the increment on the impact energy. The
end of the granulometry curve in which all the particles have a smaller size (%passing =
100%) shows that the biggest fragment size decreases as the impact velocity is increased.
This highlights the fact that the biggest fragments become smaller as the impact velocity
is increased. The same phenomenon is exhibited in figure A.4(b) where the granulometry
is presented as a function of d/dmax. In this case, the plots are displaced to the right
evidencing that the difference in size between the biggest and the smallest fragment gets
narrower as the impact velocity increases.

In figure A.5 the probability density function of the fragment volume normalized by the
initial particle volume (V0) is presented for multiple impact velocities. The data collapse
over a single trend for the small and intermediate volumes where a power law can be
fitted. Data of very small and big fragments are out of this tendency. Two origins have
been distinguished for the group of points at low V/V0 that represents the debris generated.
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Figure A.4 –Mean particle size distribution of the fragments for tests performed at different
impact speeds with the respective values of ω/ω∗, a) particle size normalized by d0 (initial
particle size), b) particle size normalized by the maximum fragment size dmax, specific for
each velocity. The dashed lines correspond to a cummulative weibull fucntion (equation
(A.2)). The legend in (b) corresponds also to (a).

For the low impact velocities, the debris consisting on few cells is generated at the contact
zone (see figure A.1(a)). On the other hand, for high impact velocities, the particle is
pulverised and a high quantity of very small fragments is generated.

In figure A.4, the weibull distributions (equation (A.2)) fitted to the last part of the
curves show that the big fragments generated follow this type of behavior. Moreover, the
intermediate and small fragments volume probability density function follows a power law
with an exponent τ = −1.1 (see figure A.5). These findings agree with previous results
found on numerical simulations of particle breakage during a single impact test [234]. In
figure A.5 some points have a low volume but are highly present in the sample. Such
fragments are the debris generated, for example, at relatively low velocities (ω = 0.27 and
ω = 0.17) the fragments represented in this measure belong to the cone crack crushing (see
figure A.1(a)). In our model, these fragments are often composed by 1 or 2 cells, finite
size effects are evident and linked to the voronöı tessellation defined, therefore, these data
should not be taken into account in the statistics.

V = 1− e−( x
xc

)
m

(A.1)

The shape of the granulometry measured on tests at different impact velocities change
significantly (see figure A.4(a)). In order to characterize and understand better this
changes, the uniformity Cu = D60/D10 and curvature Cc = D302/D10D60 coefficients
have been calculated. In these formulations, D60 is the size for which 60% of the particles
are smaller, D30 the 30% and D10 the 10%.

In figure A.6(a) Cu takes zero-values in the cases where the particle is not fragmented
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Figure A.5 – Probability density function of the fragments volume (V ) normalized by the
initial particle volume (V0). Multiple values of ω/ω∗ representing various impact velocities
are included, as well as the black dashed line that represents the power law fitted to the
intermediate and small fragments.
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Figure A.6 – Evolution of a) coefficient of uniformity (Cu) and b) coefficient of curvature
(Cc) regarding the impact velocity. The red dashed lines show the values of Cu and Cc for
a uniform in volume particle size distribution.
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and so, the granulometry consist on a single point. Cu becomes 1 at low impact velocities in
which the particle is damaged, debris is generated, and consequently D60 and D10 adopt
the same value of the typical debris size (fragments composed of just one cell). A big
increment in Cu and its maximum is found around ω/ω∗ = 0.4, the values of Cu adopted
in this portion of the curve indicate that the generated material is well graded, in other
words, the same volume can be found for every size bin. A gradual decreasing in the value
of Cu is found for higher velocities revealing that the fragments become similar in size and
consequently, a very steep granulometry is expected.

The curvature coefficient Cc meaning often is linked to the smoothness of the granu-
lometry, but it is also an indicator of the distribution symmetry. This coefficient takes
values between 1 and 3 for well graded materials, and the red dashed line presented in
figure A.6(b) is the value that a uniform in volume granulometry presents. Similar to the
Cu analysis, at low impact velocities tests, where the granulometry is a single point, Cc is
1 because D10, D30 and D60 take identical values. A peak, that is out of the well graded
range, is exhibited for the case where the D30 is closer to D60 than to D10, showing that
the granulometry is not symmetric and presents a big volume of big particles. A point
below Cc = 3 for which the most uniform distribution was found, shows that under impact
it is also possible to generate a well graded material. At higher velocities non-symmetric
distributions with Cc < 1 are found due to the increment on the volume of debris gener-
ated. Cc shows small increments as the impact velocity grows due to the absence of big
fragments which leads to narrow the gap between D60 and D30.

A.3 Fragments shape

Through this section, the fragments shape fluctuations regarding the impact velocity are
studied. In order to avoid induced errors by the cells shape, the fragments taken into
account are conformed of 3 or more cells. This means that the tested sample at its final
state present more particles with a smaller size that constitute the debris. In figure A.7
some examples of fragments with different sizes d/d0 generated at two selected impact
speeds, 6 m/s (ω/ω∗ = 0.4) and 10 m/s (ω/ω∗ = 1.1), are presented.

The first group of descriptors analysed are the form dimensions: L, I and S. Different
protocols have been developed for measuring these [25, 16], here, the standard protocol
(STD) proposed by Krumbein is used [130]. The methodology starts defining L as the par-
ticle longest dimension, I is measured perpendicular to L and, S is found on the orthogonal
direction to the first two (see figure A.8(a)). The ratio L/I accounts for the particle elon-
gation while I/S describes the particle flatness. Besides, the expression I2/LS is the ratio
between the elongation and the flatness. It delivers a measurement on which of the two
form characteristics is predominant for a given particle.

The probability density function of the elongation and flatness are presented in figures
A.9(a) and A.9(b), respectively. The data of low values of ω/ω∗ have been omitted due
to lack of sample representativeness. In first place, the variations on the pdf between
different levels of applied energy is negligible, which means that similar particles, in terms
of elongation and flatness, can be produced at different impact speeds. Also, we see that
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Figure A.7 – Fragments with different sizes (d/d0) generated at two different impact ener-
gies (ω/ω∗).
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Figure A.8 – Schematic illustration of the measurement of: a) form dimensions and b)
η = ∆R/R
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Figure A.9 – Probability density function (pdf) of the fragment a) elongation L/I and b)
flatness I/S, for different impact velocities captured in the ratio ω/ω∗. The legend in (b)
corresponds also to (a).

the fragments present mainly low values of elongation and flatness (near to 1), this means,
that most of the fragments can be classified as equant.

In figure A.10(a) the average ratio L/I discriminated by particle size (symbols d/d0) are
plotted against the impact energy (ω/ω∗). As said before, for each ω/ω∗ 10 independent
simulations were carried out in order to have a representative sample of the generated
fragments. Additionally, we included the global average L/I for each energy level in the
blue line ‘mean’. This mean value of the elongation exhibits an almost constant value at
L/I ≈ 1.4 for ω/ω∗ > 0.2. This value has been previously found for fragments retrieved
after crushing using numerical simulations in 2D and 3D [168, 38], in a study on the particle
shape of lunar samples retrieved during the Apollo 16 mission [124], and in natural samples
of colluvial sediments in Australia [139].

In the previous section has been shown that the progeny size is reduced as the impact
energy is increased. In figure A.10(a) we can see that above ω/ω∗ ≈ 0.85, fragments
with sizes over 0.85d/d0 disappear. Also, the elongation of the biggest fragments seems to
increase with the impact velocity while the small fragments aspect ratio remains constant.
Globally, we see that small fragments present lower values of elongation than big fragments.

In Blott et al. the second order index accounting for the flatness and elongation com-
bined (I2/LS) was defined [25, 11]. In figure A.10(b), we see that for smallest fragments,
as well as for the total fragments average, the ratio I2/LS always adopts values bigger
than 1, which means that the flatness dominates over elongation for these kind of progeny.
However, a general trend cannot be established regarding the fragment size nor the impact
energy.

The second descriptor presented is the sphericity ψ defined by Wadell [250]. It is
calculated as the ratio between the surface of the sphere with the same volume and the
external surface of the object, presenting low values for particles with rough surfaces. In
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Figure A.10 – Evolution of the elongation calculated as the ratio between the longer and
intermediate dimension of the oriented bounding box a) mean value and error bars issue
of 10 simulations b) probability density function for the different values of ω/ω∗

figure A.11(a) the sphericity is plotted as a function of the impact velocity classed by
the fragment size d/d0. We see that the mean sphericity of the sample decreases with
the impact speed presenting high values for the low-speed cases in which the particle is
fissured and reaching a plateau once a marked cleavage is achieved. In general, the big
fragments present lower values of sphericity ψ because these have a coarser external surface.
Moreover, ψ remains constant for each size bin regarding the impact velocity. This means,
that this property is intrinsic to the particle size which is linked to the impact velocity as
previously presented.

The third descriptor evaluated on this study is the fragment specific surface. In figure
A.11(b) we observe that the big fragments present a smaller SSA regarding the small ones,
as expected. The SSA increment with ω/ω∗ also corroborates that the particle size is being
diminished with the velocity.

The last descriptor evaluated for the collection of fragments is η which is defined as
shown in figure A.8(b). In figure A.12 is evidenced that the smallest fragments adopt
smaller values (η ≈ 0.6) than the big fragments (η ≈ 0.7-0.8) and the increment of this
descriptor is proportional to the fragment size. This parameter accounts for mainly three
properties of the particle shape:

1. Elongation: The parameter η adopt values near to 0 for spheres and near to 1 for
highly elongated particles. This means, that big fragments are more elongated than
the small ones, as we have found during the elongation analysis.

2. Convexity: A non-convex particle will exhibit high values of η (as shown in figure
A.12). In figure A.7 we see that due to the tortuosity of the external surface it is
possible to find fragments that present a sort of non-convexity, this descriptor shows
that the big fragments are more susceptible to present this non-convexity than the
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Figure A.11 – Evolution of a) sphericity (ψ) and b) specific surface (SSA) normalized by
the specific surface of the initial particle (SSA0), with impact energy ω/ω∗ for different
sets of fragment size d/d0. The points represent mean values of the fragments generated in
10 independent tests and the blue line correspond to the mean value for each speed. The
legend in (a) corresponds also to (b).

small ones.

3. Irregularity: Highly regular shapes often present η ≈ 0, therefore, the big values
obtained for the retrieved fragments account for the irregularities, more remarkable
for the big fragments.
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Figure A.12 – Evolution of (η) mean value and error bars issue of 10 simulations for the
different values of ω/ω∗.
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After analysing each one of the descriptors it can be concluded that the big fragments
present more elongated shapes, highly coarse surfaces and the probability of finding a
non-convex particle is higher. However, all the fragments generated by an impact present
irregular shapes that differs from spherical ones. Finally, the evaluation of the specific
surface shows that although bigger fragments have a coarser surface, the ratio surface-
mass remains bigger for small fragments.

A.4 Conclusions

The study on the characterization of generated fragments size and shape give some insights
in the materials genesis by one of the multiple known mechanisms: impact. In this article,
the study of particle breakage through DEM simulations has pushed the limits of the finite
size/discrete effects. The fragments are composed of numerous fundamental units, better
known as cells, which allows us to have a better description of its size and shape. In order
to have a significant amount of data for the statistical analysis, we have performed multiple
sets of simulations varying the voronöı tessellation and the impact point (e.g. point, edge,
face).

Multiple interesting results have been found. In first place, although the granulometry
exhibits significant changes regarding the impact velocity, the distribution of the intermedi-
ate and small fragments follow a power law. The big fragments follow weibull distribution
but the fitting parameters must be calibrated for each impact velocity.

In second place, the evaluation of particle shape descriptors showed that the bigger
fragments present a higher elongation than the small ones, yet, all the particles can be
classified as equant. Also, the bigger particles present a coarser surface and are more
susceptible to present non-convexity. In third place, the specific surface study showed
slightly higher values for smaller fragments, as expected. Its probability density function
for the multiples impact velocities does not show any changes. This result indicated that
the generated material has a population of very small fragments dominant over the big
ones at cases in which the fragmentation and not only cracking takes place.

B Granular flows of spheres inside rotating drums

considering end closing walls

In this study, different from the case presented in chapter 3 where a boundary periodic
condition was considered, the rotating drum counts with two rigid end-walls as shown in
figure B.1. Simulations of rigid spheres with radius r = 7.5mm flowing inside a rotating
drum of radius R = 0.1m performed in the framework of contact dynamics allow us to
study the effect of some parameters on multiple flow characteristics. Specifically, we study
the influence of the frictional coefficient between particles and with the walls (µ), rotation
speed (ω) and filling degree f on the dynamic angle of repose (θm), the packing fraction
(ν), the coordination number (Z) and the wall slip.
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Figure B.1 – Illustration of a rotating drum with two plans closing the end walls of the
cylinder.

Since in this case, the wall effects were relevant a drum width W = 0.1m was adopted.
Information regarding the contact law and the parameters adopted can be found in chapter
3. The following tendencies can be observed:

In figure B.2(a) the dynamic angle of repose (θm) presents an increment proportional
to Fr: the angular velocity applied to the cylinder is transmitted to the particles through
the contacts sphere-wall, so, the particles velocity is directly proportional to the imposed
drum speed. Also, in the cases with bigger µ, higher θm values were found, we conclude
that the friction coefficient have a bigger influence over the dynamic angle of repose than
the filling degree. This result agrees with the investigation of Chou et al. [55] in which the
wall and particle roughness effect on the flow was experimentally studied.

In figure B.2(b) is evidenced that the particles flow in a denser state for smaller frictions.
As previously mentioned, increasing ω leads to more agitated states that present a lower
packing fraction. Also, samples conformed of particles presenting a lower friction coefficient
require smaller amounts of energy for achieving a good arrangement. In the same way,
the coordination number presented in figure B.2(c) show and inverse relationship with
µ. This is the expected behavior because, systems presenting a lower friction achieve a
better organization of the particles (i.e. denser samples) and so the number of contacts
per particle increases.

Figure B.2(d) displays the ratio between two velocities: the particles velocity at the
highest depth and the drum (wall) velocity. This parameter measures the velocity trans-
ference as the difference between the applied velocity and the particles response. It takes
a value equal to 1 in the case where a very good transmission of the velocity is achieved,
and it is evidence of slipping of the granular material when it takes lower values. At lower
ω, the ratio takes values near to one indicating a condition near to a rigid rotation and
as ω increases an important reduction on this parameter suggest a transition to a slipping
regime. The curves follow the same trend for different values of µ showing no influence of
the friction coefficient on the particles slipping. Also, at low ω the wall and the particles in
contact with it move together, and, the slipping behavior increases with as the drum turns
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Figure B.2 – Some granular material properties evolution regarding the friction coefficient
µ: a) average free surface angle, b) packing fraction, c) coordination Number, d) ratio
between the particles velocity at the bottom and the drum wall velocity, for test performed
under different rotation speeds. The legend in (d) correspond to the other subfigures.

faster. This change on the stick-slip condition is not smooth but it seem to be triggered
after a certain rotation velocity. Regarding the filling degree, at higher f the similarity on
the drum and particles velocities increases. This can be simply explained by the coulomb
friction law, the tangential force between a contact drum-particle is proportional to the
normal force applied, which is mainly given by the weight of grains that is proportional to
the filling degree. This results suggest that in this case the slipping of the material bed has
a bigger influence of ω and f rather than µ. To sum up, the wall slip depends essentially
on the rotation velocity and thus, the friction coefficient and filling degree play a minor
role in this case.

In order to fully understand the role of the friction coefficient in granular flows inside
rotating drums it would be necessary to study a wider range of µ. Also, since in this
case we considered that the friction coefficient of the particle-particle and particle-walls
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interactions were the same, it would be advisable to study different combinations of the
friction coefficients. Such results would also provide some additional information on the
wall-effect evolution with the wall friction.
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MODELISATION NUMERIQUE ET RHEOLOGIE DES MILIEUX
GRANULAIRES A PARTICULES FRAGMENTABLES : APPLICATION

AUX BROYEURS A BOULETS

Résumé : Une étape cruciale de la fabrication des combustibles nucléaires est le co-broyage
des oxydes d’uranium et de plutonium pour obtenir une taille ciblée et un mélange homogène de
particules. Cependant, le changement de l’échelle du laboratoire à celle de la production reste
essentiellement empirique. Le but de cette thèse de doctorat est de modéliser et caractériser les
écoulements granulaires dans des tambours rotatifs et d’élucider les mécanismes de broyage de
l’échelle des particules à celle du procédé. A l’aide de simulations granulaires, et d’un critère de
décohésion dynamique basé sur la mécanique de la rupture, on étudie la fragmentation de partic-
ules sous impact. La dissociation de ces particules se fait au niveau d’une tessellation en cellules
sous-jacentes fragmentables. Les analyses développées portent notamment sur : les propriétés
d’écoulements granulaires dans le régime de cascade en fonction des paramètres du système; l’effet
de la taille et du nombre de corps broyants sur le processus de broyage; l’évolution de la frag-
mentation dans les écoulements en tambour rotatif. Nos simulations révèlent plusieurs relations
bien définies entre différentes variables caractérisant l’écoulement (profil de surface, épaisseur
d’écoulement, fluctuations de force, glissement aux parois), l’évolution de la taille des particules
et les paramètres du système (vitesse de rotation, taille du tambour, taux de remplissage). Ces
travaux conduisent à la définition de deux paramètres sans dimension qui peut être utilisé pour la
mise à l’échelle des écoulements et de la fragmentation des particules dans les tambours tournants
et les broyeurs à boulets.

Mots-clés : Matériaux granulaires, rhéologie, fragmentation, tambour tournant, DEM, broyeurs
à boulets, changement d’échelle.

NUMERICAL MODELING AND RHEOLOGY OF CRUSHABLE
GRANULAR FLOWS: APPLICATION TO BALL MILLS

Abstract : A crucial step of nuclear fuel manufacture is the co-milling of uranium and
plutonium oxides to obtain a targeted particle size and excellent mixing. However, the scale-up
from the laboratory to plant production is still mainly empirical. The goal of this doctoral thesis
is to model and characterize granular flows in rotating drums and to elucidate the mechanisms of
particle grinding across scales. By means of particle dynamics simulations and a particle break-
ing model involving the tessellation of breakable particles into cells and a dynamic debonding
criterion based on fracture mechanics, we investigate single-particle impacts, the properties of
granular flows in the cascading regime in a rotating drum as a function of system parameters, the
effect of the size and amount of grinding media on the grinding process, and the evolution of par-
ticle breakage in granular flows of breakable particles. Our simulations reveal several well-defined
relationships between flow variables such as surface profile, flowing thickness, force fluctuations
and wall slip, as well as with system parameters such as rotation speed, drum size and filling
degree, and with particle fracture during flow. We identify two dimensionless parameters for the
scale-up of flow characteristics and particle breakage in rotating drums.

Keywords : Granular materials, fragmentation, grinding, rotating drums, DEM, ball mills,
scale-up.
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