
HAL Id: tel-02929326
https://theses.hal.science/tel-02929326

Submitted on 3 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed charge network design problem with user-optimal
flows

Ikram Bouras

To cite this version:
Ikram Bouras. Fixed charge network design problem with user-optimal flows. Other [cs.OH]. Univer-
sité Montpellier, 2019. English. �NNT : 2019MONTS136�. �tel-02929326�

https://theses.hal.science/tel-02929326
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Informatique

École doctorale I2S Information, Structures, Systèmes

Unité de recherche LIRMM, UMR 5506

Fixed Charge Network Design Problem with
User-Optimal flows

Fixed Charge Network Design Problem with
User-Optimal flows

Présentée par Ikram Bouras
Le 20/12/2019

Sous la direction de Michael Poss et Rosa Figueiredo

Devant le jury composé de

Dritan Nace, Prof, Heudiasyc, UTC Compiègne Rapporteur

Luce Brotcorne, Dr, INRIA, équipe-projet INOCS, Lille Rapporteure

Safia Kedad-Sidhoum, Prof, CNAM-CEDRIC, Bordeaux Examinatrice (Présidente du jury)

Boris Detienne, MCF, IMB, Bordeaux Examinateur

Michael Poss, CR CNRS, LIRMM, Montpellier Directeur de thèse

Rosa Figueiredo, MCF, LIA, Avignon Co-encadrante

Abstract

This thesis addresses a class of bi-level network design problems. We

are interested in investigating applications from different domains and

in developing exact algorithms to solve the corresponding bi-level net-

work problem. In particular, we study a bi-level network design prob-

lem where the leader selects a part of the network to be activated,

then, in the second level, the solution must be optimal for a network

flow problem in the selected sub-network. In this thesis, three appli-

cations of this problem are studied: hazmats transportation, telecom-

munication, and social networks analysis. The second level problem

in the first and the last applications is a shortest path problem while

a minimum cost flow is required in the second application.

The first studied problem is the fixed charge network design problem

with shortest path constraints, which is modeled as a bi-level program

and can be applied in hazardous transportation. For this problem, we

propose two new binary integer programming (BILP) formulations

inspired by path and cycle inequalities. We incorporate these formu-

lations in a branch-and-cut algorithm and another cutting-plane based

method. Numerical experiments are performed on real instances, and

random data sets generated with different criteria to examine the dif-

ficulty of the instances. The results show that the proposed cutting

plane algorithms can solve up to 19% more instances than the com-

pact formulations.

The second studied problem is the energy-aware traffic engineering

while using multi-path routing to minimize link capacity utilization

in ISP backbone networks. We propose a bi-level optimization model

where the upper level represents the energy management function,

and the lower one refers to the deployed multi-path routing protocol.

Then, we reformulate it as a one-level MILP replacing the second level

problem by different sets of flow optimality conditions. We further use

these formulations to solve the problem with classical cutting plane

and branch-and-cut algorithms. The computational experiments are

performed on real instances to compare the proposed algorithms and

to evaluate the efficiency of our model against existing single-path and

multi-objective models.

Finally, we study the problem of maximization influence in signed so-

cial networks. To the best of our knowledge, it is the first time that

this problem is modeled as a bi-level programming problem. We re-

formulate the problem as one-level MILP models using three different

optimality conditions of the shortest path problem appearing in the

second level. These formulations are strengthened by adding a set

of valid inequalities. Computational experiments are performed using

random instances to compare the different proposed formulations. Fi-

nally, explicit solutions and bounds are proposed for particular cases

of instances.

Keywords— Network design, Bi-level programming, Integer program-

ming, Transportation networks, Telecommunication networks, Social net-

works

Résumé

Cette thèse s’adresse à la classe des problèmes de conception de réseaux

bi-niveaux. Nous nous sommes intéressés à l’étude des applications

dans différents domaines et au développement d’algorithmes exacts

pour la résolution des problème de réseaux bi-niveau correspondants.

En particulier, nous avons étudié le problème de conception de réseau

bi-niveau dans lequel le “leader” sélectionne une partie du réseau

à activer, puis, dans le deuxième niveau, la solution doit être opti-

male pour un problème de flot dans le sous-réseau sélectionné. Dans

cette thèse, trois applications de ce problème sont étudiées : le trans-

port de matières dangereuses, les réseaux de télécommunication et les

réseaux sociaux. Les problèmes de deuxième niveau de la première et

la dernière application sont des problèmes de plus court chemin alors

qu’un flot de coûts minimum est requis dans la deuxième application.

Le premier problème étudié est le problème de conception de réseau

avec coût fixe avec contraintes de plus court chemin. Le problème

est modélisé comme un programme bi-niveaux qui peut être appliqué

dans le transport des matières dangereuses. Pour ce problème, nous

proposons deux nouvelles formulations de programmation en nombres

entiers (PLNE) inspirées par des inégalités de chemin et de cycle.

Nous incorporons ces formulations dans des algorithmes de branch-

and-cut et de plans coupants. Des tests numériques sont effectués

sur des instances réelles et sur un ensembles d’instances aléatoires

qui sont générées avec différents critères pour examiner la difficulté

de ces instances. Les résultats montrent que les algorithmes de plan

coupants proposés peuvent résoudre jusqu’à 19 % d’instances de plus

que les formulations compactes.

La deuxième application concerne la gestion de la consommation d’énergie

dans les réseaux de télécommunication en utilisant un protocole de

routage multi-chemins pour minimiser la capacité des liens utilisée.

Nous proposons un modèle d’optimisation bi-niveaux dans lequel le

premier niveau représente la fonction de gestion de l’énergie et le

deuxième niveau est un protocole de routage multi-chemins. Ensuite,

le problème est reformulé par des formulations PLNE en remplaçant

le problème du deuxième niveau par ses conditions d’optimalité. Ces

formulations sont utilisées pour résoudre le problème avec les al-

gorithmes classiques de plans coupants et de branch-and-cut. Les

expérimentations sont effectuées sur des instances réelles afin de com-

parer les algorithmes proposés et d’évaluer l’efficacité de notre modèle

par rapport à des modèles alternatifs proposés dans la littérature.

Enfin, nous étudions le problème de la maximisation d’influence dans

les réseaux sociaux signés. A notre connaissance, c’est la première

fois que ce problème est considéré comme un problème de program-

mation à deux niveaux. Nous reformulons le problème en modèles

PLNE à un niveau en utilisant trois différentes conditions d’optimalité

du problème de plus court chemin apparaissant dans le deuxième

niveau. Ces formulations sont renforcées en ajoutant un ensemble

d’inégalités valides. Des tests numériques sont effectués sur des in-

stances aléatoires pour comparer les différentes formulations proposées.

Enfin, des solutions optimales en temps polynomial sont proposées

pour des cas particuliers des graphes.

Mots clés— Conception de réseaux, Programmation bi-niveau, PLNE,

Réseaux de transport, Réseaux de télécommunication, Réseaux sociaux.

Acknowledgements

This thesis becomes a reality with the kind support and help of many

individuals. I would like to extend my thanks to all of them.

First and foremost, I would like to express my sincere gratitude to my

advisors Michael Poss and Rosa figueiredo for the continuous sup-

port of my Ph.D. study and research, for their patience, motivation,

immense knowledge, and their advice throughout these three years of

research. They brought me a deeper understanding of the different

aspects of the subject and the research. I could not have imagined

having better advisors and mentors for my Ph.D study.

I would like to thank Fen Zhou for the information he gave me

about telecommunication networks and for all the help during my

two first years. I am also very grateful to Cristina Requejo for her

collaboration on social network problems and for the support during

my stay in Aveiro, Portugal.

Besides my supervisors, I would like to thank Prof. Safia Kedad-

Sidhoum for her kind acceptance to be the president of my Ph.D.

committee, as well as Prof. Dritan Nace and Dr. Luce Brot-

corne, who have kindly accepted the invitation to be reviewers of my

Ph.D. thesis, for the time they spent reading my manuscript, and for

their insightful comments that improved this thesis. My gratitude to

Dr. Boris Detienne and Prof. Safia Kedad-Sidhoum for being

the examiner of my thesis and for their kind acceptance to take part

in the jury of my Ph.D. defense.

I also want to thank warmly all the professors and colleagues from the

MAORE team of Lirmm, University of Montpellier, the univer-

sity of Avignon and also from the university of Aveiro. I also

want to thank the administrative staff of Lirmm, in particular, Nico-

las Serrurier for the kindness, availability, and efficiency have been

an important help for me, allowing me to focus on my research.

This thesis has been financially supported by the Algerian ministry of

higher education and scientific research and the consulate of Algeria

in Montpellier. I would like to thank them for the funding received

during my thesis.

I take this opportunity to thank my friends who helped to make these

years such a nice experience. I am grateful that you have always been

there whenever I needed you.

Last but not the least, I would like to thank my family: my parents,

my brothers, and my sister for the support, encouragement and for

believing in me.

Résumé étendu

Au cours de ces dernières années, Les réseaux sont de plus en plus

utilisés dans notre vie quotidienne. Des marchandises, des informa-

tions, des données et aussi des personnes doivent être transportées

ou envoyées entre des différents endroits rapidement et à moindre

coût. Par conséquent, ces réseaux doivent être conçus pour trouver

la solution optimale (chemins, flux, sous-réseaux), en optimisant une

fonction objective définie et en satisfaisant des exigences données.

La programmation mathématique est un outil pour trouver la meilleure

solution de ces problèmes de conception de réseaux. Essentiellement,

la programation mathématique modélise ces problèmes (i) en décidant

les variables de décision, (ii) en définissant la fonction objective à opti-

miser (le but du problème) et (iii) en fixant les contraintes (exigences

relatives aux solutions optimales). L’objectif et les contraintes sont

caractérisés par des fonctions qui peuvent être linéaires, non linéaires,

convexes ou non convexes. On peut également envisager d’optimiser

une ou plusieurs fonctions objectives. Le problème peut considérer

un ou plusieurs niveaux d’optimisation. Sur la base de toutes ces pro-

priétés, on peut déterminer la complexité du problème et proposer le

meilleur algorithme pour résoudre le problème efficacement.

Une classe importante de problèmes d’optimisation mathématique

concerne les modèles de programmation linéaire à nombres entiers

mixtes (MILP), qui sont utilisés pour résoudre la plupart des problèmes

de conception de réseaux. Dans cette classe, la fonction objective et

les contraintes doivent être linéaires, et les variables du problème peu-

vent prendre des valeurs entières, binaires ou continues. En général,

les méthodes d’énumération telles que les algorithmes de branch-and-

bound et de branch-and-cut sont utilisées pour résoudre les problèmes

(MILP).

Dans cette thèse, nous nous intéressons à un cas particulier de la

programmation en nombres entiers où le problème est décomposé en

deux niveaux de décision. Dans le premier niveau, le “leader” prend

une décision en minimisant sa fonction objective. Ensuite, le problème

du second niveau consiste à trouver la solution optimale du “follower”

en fonction de la décision du “leader”.

Problématiques étudiées

La programmation linéaire en nombres entiers bi-niveaux a de nom-

breuses applications pour les problèmes de conception de réseaux.

Dans cette thèse, trois applications principales sont étudiées. Pour

chacune de ces applications, une modélisation mathématique et des al-

gorithmes précis sont proposés pour résoudre le problème d’optimisation

correspondant.

Commençons par présenter les applications étudiées pour les problèmes

de conception de réseaux bi-niveaux dans cette thèse.

Réseaux de transport de matières dangereuses

Dans ces dernières années, en raison de la croissance de l’industrie,

d’énormes quantités de marchandises ont dû être transportées dans

les centres urbains. Une grande partie de ces marchandises sont des

matières dangereuses (Hazmats), qui représentent, par exemple, un

envoi sur cinq sur les routes nord-américaines, et il y a au moins

800,000 envois routiers par jour [55]. En dépit de tous les records de

sécurité pris par l’industrie, des accidents peuvent se produire. Pour

réduire la possibilité et le coût des accidents, de nombreuses recherches

ont été menées pour concevoir les réseaux routiers de matières dan-

gereuses.

En considérant un réseau routier, et un ensemble de matières dan-

gereuses à transporter entre les points d’origine et de destination. Le

problème de la conception du réseau de matières dangereuses con-

siste à trouver une route pour chaque demande afin de minimiser le

coût du transport. Dans cette thèse, nous considérons un modèle bi-

niveaux où il y a deux agents pour prendre la décision. Au premier

niveau, le gouvernement sélectionne un ensemble de routes à activer en

minimisant le risque d’accidents. Ensuite, au second niveau, chaque

transporteur choisit une route entre son origine et sa destination pour

l’expédition de matières dangereuses associée avec un coût optimal.

Le problème est formulé sous la forme d’un modèle de programmation

linéaire en nombres entiers à deux niveaux.

Réseaux de télécommunications

En raison de l’augmentation considérable du nombre d’appareils con-

nectés aux réseaux IP, la consommation d’énergie de ces réseaux crôıt

rapidement, avec un rythme de 10 % par an, ce qui représente 1,8 %

de la consommation mondiale de l’électricité en 2012 [92]. En outre,

on estime que les réseaux de communication consommeront jusqu’à

51 % de l’électricité mondiale dans le pire des cas d’ici 2030 si leur effi-

cacité énergétique n’est pas suffisamment améliorée. Par conséquent,

le problème de l’efficacité énergétique devient critique pour les réseaux

de télécommunication d’aujourd’hui.

Afin de réduire la consommation d’énergie sur les réseaux IP, les

réseaux durables ont attiré l’attention des fabricants d’appareils et

des fournisseurs de services d’internet (ISP). Dans la littérature, un

problème d’“energy-aware traffic engineering” est proposé pour min-

imiser la consommation totale d’énergie en éteignant les appareils de

réseau inutilisés (routeurs et liaisons) tout en garantissant la connec-

tivité du réseau.

Dans cette thèse, nous avons proposé un modèle d’optimisation à

deux niveaux pour le problème de minimisation de la consomma-

tion d’énergie dans les réseaux ISP avec un protocole de routage

multi-chemins pour minimiser l’utilisation de la capacité des liens.

Dans ce problème, nous considérons un réseau ISP modélisé par un

graphe bidirectionnel G(V,A), où V est l’ensemble des routeurs, et

A représente l’ensemble des liens de communication. Dans le premier

niveau, nous sélectionnons un sous-ensemble d’appareils réseau à ac-

tiver afin de minimiser la fonction de gestion de l’énergie. Ensuite,

au deuxième niveau, chaque demande est envoyée sur le réseau ac-

tivé en satisfaisant un protocole de routage multi-chemins entre la

paire origine-destination associée et en minimisant l’utilisation de la

capacité des liens pour éviter la congestion dans le réseau.

Réseaux sociaux

La dernière application du problème de conception de réseaux bi-

niveaux étudiée dans cette thèse est le problème de maximisation

d’influence dans les réseaux sociaux signés. Les réseaux sociaux peu-

vent être modélisés par des graphes représentant des individus et leurs

relations, telles que amitié, collaboration ou les relations de recherche

de conseils. Ces individus sont fréquemment influencés, explicitement

ou implicitement, par leurs contacts sociaux.

Le nombre d’utilisateurs de réseaux sociaux a augmenté rapidement

ces dernières années (environ 2,4 milliards d’utilisateurs pour Face-

book, par exemple). En conséquence, la propagation de l’influence à

travers les réseaux sociaux a une grande importance dans la décision

d’adopter les informations (telle qu’une idée politique, un nouveau

produit ou des innovations technologiques). L’étude de l’influence et

les effets du ”word of mouth” dans les réseaux sociaux est motivée par

des applications telles que la diffusion d’idées ou d’innovations dans

un réseau et le marketing viral de produits.

Les études actuelles se concentrent presque sur les réseaux sociaux

non signés qui ne contiennent que des relations positives (par ex-

emple, l’amitié ou la confiance) entre les utilisateurs. Dans cette

thèse, nous étudions le problème de l’influence dans les réseaux so-

ciaux signés où le graphe contient à la fois des relations positives et

négatives (par exemple, l’ennemi ou la méfiance) entre les utilisateurs.

Le premier niveau du problème sélectionne les influenceurs, auxquels

l’information est fournie directement. L’information est ensuite dif-

fusée aux autres nœuds du réseau en utilisant le plus court chemin

(qui est modélisé par le deuxième niveau), ce qui est conforme à la

théorie halo effect.

Plan de la thèse

Cette thèse est divisée en trois grands chapitres de contributions

précédés d’un chapitre présentant les notions préliminaires. Ce chapitre

commence par une présentation des problèmes de programmation

linéaire en nombres entiers à un et à deux niveaux et une discus-

sion des algorithmes utilisés pour résoudre ces problèmes. Ensuite,

deux problèmes de flot utilisés dans les autres chapitres (problème du

plus court chemin et du flot à coût minimum) sont introduits dans les

deux dernières sections.

Le chapitre 3 est consacré à étudier et résoudre le problème de con-

ception des réseaux à charges fixes avec des contraintes du plus court

chemin par des algorithmes exacts. Nous proposons deux nouvelles

formulations BILP basées respectivement sur des inégalités valides de

chemin et de cycle utilisées pour éliminer les solutions non réalisables

pour le problème bi-niveaux. La formulation du cycle est inspirée de la

contribution dans [79]. Les relaxations linéaires des deux formulations

sont comparées théoriquement.

Pour résoudre le problème étudié, nous proposons deux façons d’intégrer

les formulations de chemin et de cycle dans des algorithmes de Branch-

and-cut et des algorithmes itératifs des plans sécants. Dans ces derniers,

à chaque itération, la formulation avec une partie des contraintes du

problème est résolue exactement, puis, un ensemble d’inégalités du

plus court chemin est ajouté tant que la solution retournée est non

réalisable. Ensuite, nous renforçons les formulations proposées par un

ensemble d’inégalités valides qui s’appliquent dans le cas où différents

produits ont la même origine et la même destination. Enfin, des tests

numériques sont réalisés sur des ensembles de données réelles ainsi que

sur des instances aléatoires. Ces travaux ont été publiés dans la revue

de “Computers and Operation Research” [28], et ils sont présentés

dans [24; 26].

Dans le chapitre 4, nous étudions le problème de la minimisation

de la consommation d’énergie du réseau en utilisant un protocole de

routage multi-chemins pour réduire l’utilisation de la capacité des li-

aisons.Nous formulons pour la première fois le problème étudié comme

un problème d’optimisation bi-niveaux. Pour le résoudre, la formu-

lation bi-niveaux est transformée en un modèle à un seul niveau en

utilisant les conditions d’optimalité de KKT, des inégalités de flot à

coût minimum et des conditions d’optimalité du graphe résiduel. Des

méthodes itératives de “cutting plane” et de “branch-and-cut” sont

ensuite proposées pour résoudre le problème. Ce chapitre est basé sur

les travaux [25; 27].

Le chapitre 5 étudie le problème de maximisation d’influence dans les

réseaux sociaux signés. Pour la première fois, un modèle de program-

mation bi-niveaux est proposé pour modéliser ce problème. Nous

reformulons le problème en modèles MILP en utilisant trois condi-

tions d’optimalité différentes pour le problème du deuxième niveau.

Ensuite, deux formulations sont proposées en utilisant des plus court

chemins précalculés pour réduire le nombre de variables et de con-

traintes dans le modèle. Ces formulations à un niveau sont ren-

forcées par un ensemble d’inégalités valides. Enfin, des cas partic-

uliers de réseaux sociaux sont étudiés dans lesquels la solution opti-

male ou bornes inférieurs de la solution sont faciles à calculer. Des

expérimentations sont réalisées en utilisant des instances aléatoires

pour comparer les différentes formulations proposées.

La thèse se termine par un chapitre de conclusion (chapitre 6), présentant

les résultats de la thèse et les perspectives dans ce domaine de recherche.

Contents

1 Introduction 1

1.1 Bi-level network design problem applications 2

1.1.1 Hazmat transportation networks 2

1.1.2 Telecommunication networks 3

1.1.3 Social networks . 4

1.2 Outline of the Thesis . 5

2 Preliminary Notions 7

2.1 Integer programming . 7

2.1.1 Definition of MILP problem 8

2.1.2 Complexity . 9

2.1.3 Exact algorithms to solve MILP 9

2.2 Bi-level programming . 12

2.2.1 Linear bi-level programming 13

2.2.2 Classes of bi-level programming problems 14

2.2.3 Non-unique follower optimal solution 15

2.2.4 Algorithms to solve LBP 16

2.3 Shortest path problem . 18

2.3.1 MILP formulation . 18

2.3.2 Algorithms . 19

xvii

CONTENTS

2.4 Minimum cost flow problem . 23

2.4.1 Definition . 24

2.4.2 Optimality conditions . 25

2.4.3 Solution methods . 26

3 Fixed Charge Network Design Problem with Shortest-path con-

straints 29

3.1 Introduction . 30

3.2 Mathematical models . 31

3.2.1 Bi-level formulation . 32

3.2.2 One-level formulation . 34

3.2.3 Bellman’s Model . 35

3.2.4 BILP formulation based on cycle constraints 36

3.2.5 BILP formulation based on path constraints 39

3.3 Theoretical comparison and improvements 39

3.4 Proposed algorithms for FCNDP-SPC 43

3.4.1 Compact formulations . 44

3.4.2 Iterative cutting plane algorithms 44

3.4.3 Branch-and-cut algorithm 45

3.4.4 Valid inequalities . 46

3.5 Numerical results . 47

3.5.1 Random instances . 48

3.5.2 Real instances . 57

3.5.2.1 Ravenna data . 58

3.5.2.2 Albany data . 60

4 Fixed Charge Network Design Problem with User Optimal Flows 61

4.1 Introduction . 62

xviii

CONTENTS

4.2 Problem definition and notation 65

4.3 Mathematical formulations . 67

4.3.1 Bi-level formulation . 67

4.3.2 One level formulation . 69

4.3.3 BILP formulation based on flow constraints 70

4.3.4 Residual network optimality conditions 72

4.3.5 Single path routing . 76

4.4 Alternative application: Minimising energy in Data Center Networks 78

4.5 Agorithms . 80

4.5.1 Compact formulations . 80

4.5.2 Cutting plane algorithm 81

4.5.3 Branch-and-cut algorithm 81

4.5.4 Single path routing . 82

4.6 Numerical results . 83

4.6.1 Instances set . 83

4.6.2 Solution times . 84

4.6.3 Single path routing vs multi-path routing 86

4.6.4 Bi-level vs bi-objective model 88

5 Maximum influence in Signed social networks 89

5.1 Introduction . 89

5.2 Problem description . 92

5.3 Mathematical formulations . 94

5.3.1 Bi-level programming formulation 94

5.3.2 One-level formulation . 100

5.3.3 Bellman based BILP formulation 102

5.3.4 Shortest path formulations 102

5.3.5 Path-based formulation . 104

xix

CONTENTS

5.4 Formulation improvements . 106

5.4.1 Valid inequalities . 106

5.4.2 Instance pre-processing . 108

5.5 Special case instances: balanced graphs 109

5.6 Numerical experiments . 113

6 Conclusion and perspectives 117

References 138

xx

List of Figures

3.1 A restricted graph containing two alternative paths for a commod-

ity to be sent from 1 to 5. 38

3.2 Additional statistics for the algorithms and formulations 56

3.3 Performance profile comparing the different algorithms for random

instances. 57

3.4 Hazmat transportation network of Ravenna, Italy. 58

3.5 Hazmat transportation network of Albany, USA. 60

4.1 ISP model architecture. 65

4.2 The graph representation of the ISP network (Figure). 66

4.3 Example of an unfeasible (feasible) flow violating (satisfying) neg-

ative cycle conditions. All link capacities are equal to 2 with Φ = 3

to be sent from s to d. 73

4.4 Examined network topologies: (a) Abilene (b) Polska (c) Geant

[118]. 84

5.1 Effect of multiple shortest paths when constraints (5.2a)-(5.2c) are

used to define variables πk. 98

5.2 Example of a balanced (a) and an unbalanced (b) signed graphs.

Negative edges are red while positive edges are blue. 111

xxi

List of Tables

3.1 Number of constraints and binary variables of each formulation . 44

3.2 CPU time in seconds for instances with 0◦ ≤ α ≤ 10◦ 49

3.3 CPU time in seconds for instances with 40◦ ≤ α ≤ 50◦ 50

3.4 CPU time in seconds for instances with 80◦ ≤ α ≤ 90◦ 51

3.5 Gap between the optimal solution and the linear relaxation 52

3.6 % of CPU-SP/CPU-total . 53

3.7 Number of cuts generated by the cutting plane and the Branch-

and-Cut algorithms . 54

3.8 Number of separation problems solved by the iterative cutting

plane and the Branch-and-Cut algorithms 55

3.9 Number of random instances solved to optimality 57

3.10 Comparison of CPU time in seconds on the Ravenna data 59

3.11 CPU time in seconds on the Ravenna data with additional valid

inequality . 59

3.12 Comparison of CPU time on the Albany data 60

4.1 Router chassis and cards . 83

4.2 Network topologies used. 84

4.3 Comparison of CPU time on Abilene network. 85

4.4 Comparison of CPU time on Geant network. 85

xxii

LIST OF TABLES

4.5 Comparison of CPU time on Polska network. 86

4.6 Comparison of the first level solution of the multi-path and the

single path approaches. 86

4.7 Comparison of the second level solution of the multi-path and the

single path approaches. 87

4.8 Percentage of the reduction on the first and the second level ob-

jectives using the multi-path model. 87

4.9 Table of the differnce between the first and the second level solution 88

4.10 CPU time in seconds of the bi-level and multi-objective models. . 88

5.1 Comparison of CPU time in second on the first set of random

instances. 115

5.2 Comparison of CPU time in second on second set of random in-

stances. 116

xxiii

Chapter 1

Introduction

In the past years, we have been using more and more networks in our daily

lives. Commodities, information, data, and people have to be transported or sent

between different places quickly and cheaply. Consequently, these networks must

be designed to find the best solution (paths, flows, sub-networks), optimizing a

defined objective function and satisfying given requirements.

Mathematical optimization is a framework capable of finding the best solution

to these network design problems. Essentially, mathematical optimization models

the such problems by (i) deciding on which variables to optimize, (ii) defining the

objective function to be optimized (the goal of the problem) and (iii) setting

the constraints (requirements on the optimal solutions). The objective and the

constraints are characterized by functions that can be linear, nonlinear, convex,

or non-convex. Also, we can consider to optimize single or multiple objective

functions. The problem can consider single or multiple levels of optimization.

Based on all the above properties, we can determine the computational complexity

of the problem and devise the best algorithm to solve the problem efficiently.

An important class of mathematical optimization problems concerns mixed-

integer linear programming models (MILP), which are used to solve most of

1

1.1 Bi-level network design problem applications

network design problems. In this class, both of the objective function and the

constraints are required to be linear, and the variables of the problem can take in-

teger, binary, or continuous values. In general, enumeration methods like branch-

and-bound and branch-and-cut algorithms are used to solve (MILP) problems.

In this thesis, we are interested in a particular case of integer programming

where the problem is decomposed into two levels of decision. In the first level, the

“leader” make a decision minimizing her objective function. Then, the second

level problem consists in finding the optimal solution of the “follower” based on

the decision of the leader.

1.1 Bi-level network design problem applications

Bi-level integer programming has many applications for network design prob-

lems. In this thesis, three main applications are studied. For each of these

applications, mathematical modeling and exact algorithms are proposed to solve

the corresponding optimization problem. Let us start by presenting the studied

applications for bi-level network design problem along this thesis.

1.1.1 Hazmat transportation networks

In the last years, because of the growth of industry, huge amounts of commodities

have to be transported in urban centers. A big part of these commodities are haz-

ardous materials (Hazmats), which represent, for example, one in five shipments

on North American highways, and there are at least 800,000 road shipments per

day [55]. In spite of all safety records taken on industry, accidents may happen.

To reduce the possibility and the costs of accidents, a lot of research has been

carried out to design the road networks of hazardous materials.

Considering a road network, and a set of hazmats to be transported between

2

1.1 Bi-level network design problem applications

origin and destination points. The hazmat network design problem consists in

designing a road for each commodity in order to minimize the transportation

cost. In this thesis, we consider a bi-level model where there are two agents to

make the decision. In the first level, the government selects a set of roads to be

activated, minimizing the risk of accidents. Then, in the second level, each carrier

selects a route between the origin and the destination for the associated hazmat

shipment with an optimum cost. The problem is formulated as a bi-level integer

programming model.

1.1.2 Telecommunication networks

Due to the huge growth of the number of devices connected to IP networks, the

network energy consumption is inherently growing fast with a rate of 10% per

year, which represented a 1.8% of the worldwide electricity consumption in 2012

[92]. Furthermore, communication networks are estimated to consume as much as

51% of the global electricity in the worst case by 2030 if their energy efficiency is

not enhanced enough [8]. Therefore, the problem of energy efficiency is becoming

critical for nowadays communication networks.

To reduce energy consumption on IP networks, green networking has attracted

much attention from device manufacturers and Internet Service Providers (ISP).

In the literature, an energy-aware traffic engineering problem is proposed to

minimize the total energy consumption by switching off unused network devices

(routers and links) while guaranteeing full network connectivity.

In this thesis, we proposed a bi-level optimization model for the problem of

energy-aware Traffic Engineering (TE) while using multi-path routing to minimize

link capacity utilization in ISP backbone networks. In this problem, we consider

an ISP backbone network modeled by the bi-directed graph G(V,A), where V is

the set of routers, and A represents the set of communication links. In the first

3

1.1 Bi-level network design problem applications

level, we select a subset of network devices to be powered on in order to minimize

the energy management function. Then, in the second level, each demand is

sent on the activated network satisfying a multi-path routing protocol between

the associated pair of origin-destination and minimizing the total link capacity

utilization to avoid congestion in the network.

1.1.3 Social networks

The last application of the bi-level network design problem studied in this thesis

is the maximum influence problem in signed social networks. Social networks can

be modeled by graphs representing individuals and their relationships, such as

friendships, collaborations, or advice-seeking relationships. These individuals are

frequently influenced, explicitly, or implicitly by their social contacts.

The number of social networks users has been increasing rapidly in these

last years (about 2.4 billion users for Facebook, for instance). In consequence,

influence propagation through social network has a great importance in deciding

whether to adopt an innovation (such as a political idea, a new product, or

technological innovations). Studying the influence and the effects of the “word

of mouth” in the promotion of new products in social networks is motivated

by applications like the spread of ideas or innovations in a network and viral

marketing of products.

Current studies focus almost on unsigned social networks containing only

positive relationships (e.g., friendship or trust) between users. In this thesis, we

study the influence problem in signed social networks where the graph contains

both positive and negative relationships (e.g., foe or distrust) between users.

The first level of the problem selects the influencers, to which the information

is provided directly. The information is then spread to the other nodes of the

network using shortest path (which is modeled by the second level), which is line

4

1.2 Outline of the Thesis

with the halo effect theory.

1.2 Outline of the Thesis

This thesis is divided into three main contribution chapters preceded by a chap-

ter introducing preliminaries notions. This chapter starts with a presentation

of the one-level and bi-level integer programming problems and a discussion of

the algorithms used to solve these problems. Then, two network flow problems

used in the other chapters (shortest path and minimum cost flow problems) are

introduced in the two last subsections.

Chapter 3 is devoted to studying and solving the fixed-charge network design

problem with shortest path constraints by exact algorithms. We propose two new

BILP formulations based, respectively, on path and cycle valid inequalities used

to eliminate the infeasible bi-level solutions. The cycle formulation is inspired

by the contribution in [79]. The linear relaxations of the two BILP formulations

are compared theoretically. To solve the studied problem, we propose two ways

of integrating the path and cycle formulations in cutting plane algorithms, us-

ing either a branch-and-cut or an iterative cutting-plane strategy. In the second

strategy, at each iteration, a partial ILP formulation of FCNDP-SPC is solved

exactly, and a set of shortest path inequalities is added while the returned solu-

tion is unfeasible. Then, we strengthen our formulations through a set of valid

inequalities that apply to the case where different commodities have the same

origin and the same destination. Finally, numerical experiments are done on real

data sets from the literature as well as on random instances. This work has been

published in Computers and Operation research journal [28], and it is presented

in [24; 26].

In Chapter 4, we study the problem of minimizing the network energy con-

5

1.2 Outline of the Thesis

sumption while using multi-path routing to reduce link capacity utilization. To

the best of our knowledge, it is the first time that this problem is investigated.

From the perspective of optimization techniques, we formulate the studied prob-

lem as a bi-level optimization for the first time. To solve it, the bi-level formula-

tion is transformed into a one-level optimization using KKT conditions, minimum

flow inequalities or residual network optimality conditions. Iterative cutting plane

and branch-and-cut methods are further proposed to solve the problem. This

chapter is based on works [25; 27].

Chapter 5 studies the maximum influence problem in signed social networks.

For the first time, a bi-level programming model is proposed to model the prob-

lem. We reformulate the two-levels problem into one-level MILP models using

three different optimality conditions for the second-level problem. Then, two for-

mulations are proposed using pre-calculated shortest path distances to reduce the

number of variables and constraints in the model. These one-level formulations

are strengthened by adding a set of valid inequalities. Finally, special cases of the

networks in which the optimal solution or bounds are easy to find are studied.

Computational experiments are performed using random and real instances to

compare the different proposed formulations.

The thesis ends with a concluding chapter (Chapter 6), presenting the results

of the thesis and perspectives in this research field.

6

Chapter 2

Preliminary Notions

This chapter is devoted to the introduction of the basic optimization problems

addressed in this thesis. Precisely, integer and bi-level programming are presented

in the first two subsections. In the last two subsections, we present two network

flow problems: shortest path and minimum cost flow problem. For each problem,

we give the definition, some fundamental theoretical properties, mathematical

formulations, and the well-known algorithms used to solve these problems.

2.1 Integer programming

Mixed-integer linear programming (abbreviated MILP in what follows) denotes

constrained optimization problems in which the objective function and all con-

straints are linear, and some or all decision variables are restricted to be integer.

In the later case the terminology ILP is used instead of MILP. MILP can be used

to formulate and solve most combinatorial optimization problems, and it has a

wide range of applications, such as transportation, scheduling, and telecommuni-

cation networks.

7

2.1 Integer programming

2.1.1 Definition of MILP problem

The integer linear programming problem can be written in the general form as

follows [141]:

(ILP)


min cx

s.t. Ax ≤ b,

x ≥ 0, x ∈ Zn,

where A is an integer m × n matrix and b and c are vectors of dimensions m

and n, respectively. The optimal solution of ILP is given by the integer vector

x = (x1, ..., xn)T . The problem is called a mixed-integer linear program (MILP)

if some variables are not required to be integer. This formulation can include

equality constraints because each of them can be replaced by two inequality con-

straints.

The linear relaxation of ILP is the linear optimization problem obtained by

relaxing the integrity constraints x ∈ Zn, and it is given by:

(LP)


min cx

s.t. Ax ≤ b,

x ≥ 0.

(LP) is an easy optimization problem as it can be solved in polynomial time. As

(LP) and (ILP) have a constrictive relation, and since (LP) is easy to solve, (LP)

can be used as an attempt to solve the (ILP). If it happens that the optimal

solution of linear relaxation (LP) is integral, then (ILP) is easy to solve.

8

2.1 Integer programming

2.1.2 Complexity

In what follows, we provide a few simple notions of the complexity theory of

optimization problems (more detailed in [82; 141]).

Defining the complexity of a combinatorial optimization problem (P) requires

first introducing the associated decision problem (D). Problem (D) ∈ NP if we

can check in polynomial time whether a candidate solution provides an answer

to (D) (more details about polynomial time complexity in [82]).

If every problem in the class NP can be polynomially reduced to (D), then, (D)

is NP-complete, and its associated optimization problem (P) is NP−hard [141].

Moreover, an optimization problem (P) is polynomially solvable and (P) ∈ P if

there exists an algorithm to solve the worst-case of the problem in polynomial

time [122].

The mixed-integer linear programming problems belong to the class of NP-

hard problems. This result can be verified by the reduction from NP-hard prob-

lems (for example, the vertex cover problem).

2.1.3 Exact algorithms to solve MILP

Developing exact algorithms to solve ILPs and MILPs has been a subject of many

studies in the last 50 years. The proposed algorithms belong to three categories

of methods depending on the type of the used method to get the optimal solution

[66]:

Polyhedral approaches: cutting plane algorithm

Enumerative approaches: branch-and-bound, branch-and-cut, branch-and-price

Relaxation and decomposition techniques: lagrangian relaxation, Benders

decomposition.

9

2.1 Integer programming

In this subsection, we will give the basic ideas for some of the mentioned algo-

rithms (the ones used in this thesis).

Branch-and-Bound Branch-and-Bound algorithm is one of the most studied

algorithms to solve NP-hard combinatorial optimization algorithms. Generally,

these problems have exponential complexity, and solution algorithms need to

enumerate a large number of feasible solutions to find the optimal one. The

branch-and-bound method was proposed the first time in 1964 by Bertier and

Roy [19], and it has been studied by many researchers [3; 12; 93; 123].

Branch-and-bound algorithms start by relaxing the integrity constraints, and

solving the linear relaxation of the problem. If the obtained solution is integer,

then this solution is optimal for the integer problem. Otherwise, there must exist

at least one variable xj with a fractional value α. The idea of the algorithm

is to separate the problem into two sub-problems (branching). The first sub-

problem contains the constraint xj ≥ dαe and the second includes the constraint

xj ≤ dαe − 1. It is clear that this creates a partition of the feasible set of the

original integer problem. The process is repeated for each sub-problem.

This procedure is represented as a search tree, where at each level, a partition

of the parent vertex is performed according to the rule described above. It is then

a question of going through this enumeration tree in order to find the optimal

solution. Exploring a tree path can end (bounding) for three reasons:

• The solution of the sub-problem is integer.

• The sub-problem becomes unfeasible.

• The optimal solution of the sub-problem is worst than a feasible solution

encountered so far.

10

2.1 Integer programming

The optimal solution of the initial problem is the best solution reached in the

branch-and-bound tree.

Cutting plane The cutting plane algorithm is an exact iterative method to

solve mixed-integer programming problems [83]. It has also been used to solve

many combinatorial problems including packing problems [77; 116], traveling

salesman problem [9; 10; 119] and the vehicle routing problem [45; 129].

The cutting plane algorithm has been proposed for general ILPs for the first

time by R.E. Gomory [69; 70]. The basic idea of the algorithm is to solve at each

iteration the linear relaxation of the problem. If the obtained solution is integer,

then it is optimal for the ILP problem. Otherwise, we add a constraint that

eliminates this solution. Then, the basic structure of the cutting plane algorithm

is given by Algorithm 1.

Algorithm 1 Cutting plane algorithm

Step 1: Solve the linear relaxation of the initial problem.

Step 2: If the solution of the linear relaxation is integer, then, it is optimal.

Step 3: Otherwise, generate a cutting plane (valid inequality) that separates the
obtained solution (continuous) from the convex hull of integral solutions of
ILP.

Step 4: Return to step 1.

The efficiency of the cutting plane algorithm depends on the strength of the

generated valid inequalities at each iteration. Its limited efficiency at the time

of its introduction and in subsequent years explains that this method has been

neglected for many years until the development of polyhedral theory in the eight-

ies. Nowadays, the cutting plane algorithm is more efficient and used to solve a

variety of combinatorial problems.

11

2.2 Bi-level programming

Branch-and-Cut Since ILPs and MILPs are NP−hard, finding an optimal

solution in a reasonable time with the presented algorithms can be improbable.

As a consequence, combining many algorithms can improve the solution time.

Branch-and-cut algorithm is an exact method to solve linear integer problems

that combines branch-and-bound with the cutting plane algorithm. This method

consists in solving the problem using a branch-and-bound procedure and use the

cutting plane method to eliminate unfeasible solution in each node of the branch-

and-bound tree.

The advantage of this algorithm is to reduce the number of nodes of the

branch-and-bound tree by improving the strength of the formulation dynamically

in the course of the branch-and-bound tree.

2.2 Bi-level programming

Bi-level programming is a hierarchical mathematical optimization problem where

the decision is made by two independent and non-cooperative agents. The first

one is called a “leader”, whereas the second one the “follower”. Each of them has

her own objective. The agents act and react in a sequential and interdependent

way [21; 48; 121]. In our case, the objective of the second level problem is

to minimize her objective linear function according to the first level decision.

On this assumption, the leader also specifies a decision such that the objective

function of the upper-level problem is minimized. The obtained solution applying

the above procedure is called an equilibrium solution, which defines the optimal

solution of the bi-level optimization problem [18; 20; 32; 108; 117].

From a historical point of view, one of the first applications of two-level pro-

gramming was in the economic problem of the Stackelberg game [135]. This ap-

plication represents an economical scenario in which the leader and the follower

12

2.2 Bi-level programming

are two agents (firms or individuals) who operate in the same market. The objec-

tive of both of them is to maximize their profits. Several other applications can

be found for bi-level optimization, for example in network design, transportation

networks or game theory [29; 30; 112; 120].

2.2.1 Linear bi-level programming

The majority of carried out studies on bi-level programming has focused on lin-

ear versions. The mathematical formulation of the linear bi-level programming

problem (LBP) is the following:

min
x∈X

c1x+ d1y (2.1a)

s.t. A1x+B1y ≤ b1, (2.1b)

min
y∈Y

c2x+ d2y (2.1c)

s.t. A2x+B2y ≤ b2 (2.1d)

where c1, d1, c2, d2 are the objective functions vectors, and A1, B1, A2, B2 represent

constraints matrices. The variable x is called the “upper level” variable, and y

is called the “lower level” variable. Both variables are defined on the feasible

regions X and Y respectively.

The linear bi-level problem is NP−hard even if the first and the second level

problems are continuous linear problems [44].

To analyze the problem, let us define the following sets [121]:

• The feasible region of (LBP) is:

S = {(x, y) ∈ X × Y : A1x+B1y ≤ b1, A2x+B2y ≤ b2}

13

2.2 Bi-level programming

• The feasible region of the “follower” for a given value of x is:

S(x) = {y ∈ Y : A2x+B2y ≤ b2}

• The inducible region of the bi-level problem is given by:

IR = {(x, y) ∈ S : y = arg min
ȳ∈Y
{ c2x+ d2ȳ, ȳ ∈ S(x)}}

• A solution (x∗, y∗) ∈ X × Y is bi-level optimal if, and only if:

c1x
∗ + d1y

∗ ≤ c1x+ d1y, ∀(x, y) ∈ IR.

2.2.2 Classes of bi-level programming problems

There exist three different classes of linear bi-level programming problems ac-

cording to the type of decision variables x and y [134]. These classes are defined

as:

Continuous linear bi-level programming CLBP: The decision variables of

both first and second level problems in this class are continuous x, y ∈ Rn. CLBP

is the simplest case of bi-level optimization problem even if it belongs to the class

of NP−hard problems. Many applications can be found for CLBP especially when

the two levels problems do not need discrete variables, for instance continuous

transportation problems, continuous network design problems and many other

applications [40; 58; 136].

Discrete linear bi-level programming DLBP: The decision variables in

this class are both discrete x, y ∈ Zn and if the first level variable is continuous

this class called continuous-discrete BLBP CDLBP. Therefore, the bi-level model

14

2.2 Bi-level programming

cannot be solved reformulating into one-level problem. The DLBP and CDLBP

classes have many applications in transportation, industry as well as telecommu-

nication, and it can be solved only by enumeration approaches [14; 47; 113; 134].

Discrete-Continuous linear bi-level programming DCLBP: In this class,

the decision variable of the leader is discrete x ∈ Zn while the second level

is a continuous problem y ∈ Rn. This is a generalization of CLBP and can

be solved by the same algorithms. DCLBP has appeared in many application

(Hazardous transportation, facility location, and network design problems) and

many methods are proposed to solve the problem in [5; 21; 22; 28; 73; 84; 110].

2.2.3 Non-unique follower optimal solution

In the definition of the inducible region of LBP, we have seen that the feasible

solutions (x, y) depend on the optimal solution of the follower problem reacting

to x. Since we have an optimization problem in the second level problem, the

follower may have multiple optimal solutions for the same value of the leader

variable x.

Note that in bi-level optimization problems, the leader cannot interfere with

the follower’s decision to force her to choose one among the multiple solutions.

Hence, the leader cannot predict the chosen follower’s optimal solution. Thus,

we distinguish two scenarios of LBP depending on the optimal solution of the

follower [47]:

The optimistic position: The first scenario is the optimistic position. In this

case, we suppose that the follower will take the best solution for the leader from

her multiple optimal solutions. Most of the contributions on bi-level programming

address this scenario.

15

2.2 Bi-level programming

The pessimistic position: The optimistic position is not possible for all prob-

lems, especially in real-world applications where the cooperation between the

leader and the follower is not allowed, or it is not possible to know the decision

of the follower. In this case, the problem will be solved with the assumption that

follower will choose the worst solution for the leader objective.

In addition to these two scenarios, researchers have also proposed heuristic

algorithms that select follower solutions without considering their impact into the

leader’s objective, e.g. [132].

2.2.4 Algorithms to solve LBP

In general, three types of algorithms are used to solve linear programming prob-

lems [121]:

Solutions enumeration algorithm: Since the inducible region of LBP is de-

fined by the finite elements set of bi-level feasible solutions (with the assumption

that IR is bounded):

IR = {(x, y) ∈ S : y = arg min
ȳ∈Y
{c2x+ d2ȳ, ȳ ∈ S(x)}}

the optimal solution can obtained by enumerating all feasible solutions and taking

the best one for the leader objective function.

KKT approach: In the case of a continuous lower level problem (CLBP and

DCLBP), the bi-level problem can be reformulated as a single level MILP problem

replacing the second level problem by the associated KKT optimality conditions.

Thus, the problem can be solved by any integer programming algorithm.

Let us consider the discrete-continuous version of the bi-level linear model

16

2.2 Bi-level programming

(2.1) presented in Subsection 2.2.1:

min
x∈Zn

c1x+ d1y (2.2a)

s.t. A1x+B1y ≤ b1, (2.2b)

min
y∈Rn

c2x+ d2y (2.2c)

s.t. A2x+B2y ≤ b2. (2.2d)

The second level problem can be replaced by the associated KKT optimality

condition, then, the problem can be reformulated as:

min
x∈Zn

c1x+ d1y (2.3a)

s.t. A1x+B1y ≤ b1, (2.3b)

A2x+B2y ≤ b2, (2.3c)

〈y, (d2 + λTB2)〉 = 0, (2.3d)

〈λ,A2x+B2y − b2〉 = 0, (2.3e)

λ ∈ Rm+. (2.3f)

This last formulation contains non-linear constraints (2.3d) and (2.3e) (the

symbol 〈., .〉 represents the scalar product between two vectors), which can be

linearized by adding binary variables and Big-M method to get a MILP problem

solvable with integer programming algorithms, presented in Section 2.1.

In this thesis, the studied problems belong to the class of discrete-continuous

linear bi-level programming problems, and we consider the optimistic position in

the case of multiple optimal solutions of the second level problem.

Penalty approach: The basic idea of this algorithm is to convert the fol-

lower problem to an unconstrained minimization problem using a barrier method.

17

2.3 Shortest path problem

Then, a penalty on the dual gap of the second level problem will be introduced

alternatively on the objective function of the leader.

2.3 Shortest path problem

In operations research, the shortest path problem is one of the most fundamen-

tal and simplest problems which has many applications in practice and theory.

Among these applications, we find telecommunication routing protocols, traffic

management, transportation planning, and social networks, and so on. For a

given weighted directed or undirected graph G(V,E) with a set of n nodes V , a

set of m edges E and a positive cost ce associated to each edge e ∈ E, let A be

the set of directed arcs associated to E. The classical shortest path problem looks

for a path P with minimum cost between a source node s ∈ V and a destination

node d ∈ V [4; 105].

This is the basic version of the shortest path problem. In the literature, many

generalizations are studied, for instance:

• The shortest path from one single source node to all the nodes of the graph.

• The shortest path from all the nodes of the graph to one destination node.

• The shortest path between all pairs of vertices in the graph.

2.3.1 MILP formulation

The single-source single-destination shortest path problem can be formulated as

a linear programming model. We are given an undirected graph G(V,E) with a

cost cij for each arc (i, j) ∈ {(u, v), (v, u) : {u, v} ∈ E}. The problem to find the

18

2.3 Shortest path problem

shortest path between the two nodes s and d can be formulated as:

min
∑

(i,j)∈A

cijxij (2.4a)

s.t.
∑

(i,j)∈δ+(i)

xij −
∑

(i,j)∈δ−(i)

xji =


1, if i = s,

−1, if i = d,

0, otherwise.

∀i ∈ V, (2.4b)

xij ≥ 0, ∀(i, j) ∈ A. (2.4c)

The objective function (2.4a) minimizes the total length of the path defined

by the positive decision variable x which indicates that the arc (i, j) is in the

optimal solution if xij = 1. Finally, constraint (2.4b) ensures to find only one

path between s and d. This LP formulation has a particular property that its

optimal solution is integral.

Theorem 1 (Existence, [89]). The shortest path problem between the two nodes s

and d in the graph G(V,E) has a solution if and only if G has no negative cycle.

2.3.2 Algorithms

The shortest path problem is one of the easiest combinatorial optimization prob-

lems to solve due to its linear formulation. In this part, we describe some funda-

mental algorithms to solve the problem.

Dijkstra algorithm: Dijkstra algorithm is a graph search method that finds

the shortest path between nodes in non-negative weighted graphs. This method

is proposed by Edsger Dijkstra in 1956 and published three years after [52].

There exist many variations of the algorithm, the original one finds in either

19

2.3 Shortest path problem

oriented or not-oriented graph the shortest path between a fixed source node s

and all graph vertices producing a shortest path tree.

To find a single-source single-destination shortest path, it is sufficient to stop

once the length of the shortest path to the destination node is determined by the

algorithm.

This algorithm is part of the label setting algorithms family. The main idea

of Dijkstra’s original algorithm (more detailed in Algorithm 2) is to select, at

each iteration, a vertex u calculate the label’s final value π(u), the length of the

shortest path from s to u (see also: [71; 90; 125]).

Algorithm 2 Dijkstra algorithm

Input: Graph G(V,E), source node s and weights ce ≥ 0, ∀e ∈ E.

Initialization: π(u) =∞, for all u ∈ V \{s} and π(s) = 0. Q = ∅.

Iterations:

Step 1: Find a vertex u ∈ V \Q such that: π(u) = min
v∈V \Q

π(v).

Step 2: Set: Q← Q ∪ {u}.
Step 3: For all node v ∈ V \Q neighbor of u do:

If π(v) ≥ π(u) + cuv then:

set: π(v)← π(u) + cuv.

Step 4: If Q 6= V , then go to step 1.

Output: π(u) is the length of the shortest path between s and u.

Theorem 2 (Dijkstra [52]). DIJKSTRA’S ALGORITHM works correctly.

Proof. See [90].

Theorem 3 (Fredman and Tarjan [64]). The running time of DIJKSTRA’S

ALGORITHM implemented with a Fibonacci heap is O(m+ n log n).

Proof. See [90].

20

2.3 Shortest path problem

Bellman-Ford algorithm: Dijkstra algorithm cannot be used in the case of

a graph with negative arc weights. For the general case, Richard Bellman and

Lester Ford proposed in 1958 a new algorithm, called Bellman-Ford algorithm

to solve the shortest path from a source node s to all other nodes in a weighted

graph. Moreover, the algorithm indicates if the graph contains a negative-weight

cycle, in which case the problem has no solution. This algorithm is based on the

optimality conditions recalled below.

Theorem 4 (Bellman’s optimality conditions). z is the length of the shortest

path between s and d if, and only if, there exists a value πi for all i ∈ V such

that:

• πs = 0.

• πd = z.

• πj ≤ πi + cij, ∀(i, j) ∈ A.

Proof. See [141].

The Bellman-Ford algorithm is presented in Algorithm 3.

21

2.3 Shortest path problem

Algorithm 3 Bellman-Ford algorithm [17; 62]

Input: Graph G(V,E), source node s and weights ce ∈ R, ∀e ∈ E.

Initialization: π(u) =∞, p(u) =Null for all u ∈ V \{s}. π(s) = 0.

Iterations:

For i← 1 to n− 1 do:

For each (u, v) ∈ E do:

If: π(v) > π(u) + cuv do:

Set: π(v)← π(u) + cuv.

p(v)← u.

For each edge:(u, v) ∈ E do:

If π(u) + cuv > π(v) :

Error: G contains a negative-weight cycle.

Output: π(u) is the length of the shortest path between s and u and p(u) is the
predecessor of u in the shortest path.

Theorem 5 (Bellman [17], Ford [62]). Bellman-Ford ALGORITHM works cor-

rectly with the running time O(mn).

Proof. See [90].

All-pairs shortest path problem: Suppose now that we want to solve the

shortest path problem between all pair of nodes (s, d) ∈ V in the weighted graph

G(V,E) with ce ∈ R, ∀e ∈ E. It is clear that we can use the Bellman-Ford

algorithm for each source node s ∈ V . The algorithm will be repeated n times,

which give us a running time O(n2m).

In 1962, Robert Floyd and Stephen Warshall proposed an O(n3)-algorithm

(Algorithm 4) to find the shortest path between all pairs of nodes in the graph.

22

2.4 Minimum cost flow problem

Algorithm 4 Floyd-Warshall algorithm [61; 140]

Input: Weighted graph G(V,E) with ce ∈ R, ∀e ∈ E.

Initialization: π(u, v) = cuv, for all (u, v) ∈ E

π(u, v) =∞, for all (u, v) ∈ (V × V)\E, u 6= v.

π(u, u) = 0, for all u ∈ V.

p(u, v) = u, for all u, v ∈ V.

Iterations:

For v ← 1 to n do:

For u← 1 to n, if: u 6= v do:

For w ← 1 to n, if: w 6= v do:

If: π(u,w) > π(u, v) + π(v, w), then:

π(u,w)← π(u, v) + π(v, w).

p(u,w)← π(v, w).

Output: π(u, v) is the length of the shortest path between the two nodes u and
v and (p(u, v), v) are the edges of the shortest paths to j if they exist.

Theorem 6 (Floyd [61], Warshall [140]). The Floyd-Warshall ALGORITHM

finds the shortest path between all pairs of nodes in a running time O(n3).

Proof. See [90].

Remark 1. Since the shortest path problem is formulated as a linear program,

linear programming methodologies can also be used to solve the problem.

2.4 Minimum cost flow problem

Minimum cost flow is a generalization of the shortest path problem in which

the arcs in the network are associated with costs and capacities. The problem

23

2.4 Minimum cost flow problem

consists in finding the best way to send an amount of flow between a source

and a destination nodes in the network while minimizing the total cost. In this

subsection, we will give the definition of the one-source one-destination variant,

optimality conditions and some algorithms to solve the problem.

2.4.1 Definition

Given a directed network G(V,A) supposed to be connected. We associate to

each arc in the graph a cost cij and a capacity Cij. Assuming that we have a flow

φ to be sent from a source node s to a destination node d. The optimal solution of

the minimum cost problem is a flow between the source and destination vertices,

which satisfies the capacity constraint and minimizes the total cost.

The problem can be formulated as a linear program:

min
∑

(i,j)∈A

cijxij (2.5a)

s.t.
∑

(i,j)∈δ+(i)

xij −
∑

(i,j)∈δ−(i)

xji =


φ, if i = s,

−φ, if i = d,

0, otherwise.

, ∀i ∈ V, (2.5b)

xij ≤ Cij , ∀(i, j) ∈ A, (2.5c)

xij ≥ 0, ∀(i, j) ∈ A. (2.5d)

The objective function (2.5a) minimizes the cost of the flow defined by the pos-

itive decision variable x (2.4c), which indicates the amount of flow passed through

the arc (i, j). Finally, Constraints (2.5b), (2.5c) represent flow conservation and

capacity constraints, respectively.

24

2.4 Minimum cost flow problem

2.4.2 Optimality conditions

In this part, we discuss some theoretical properties of the minimum cost flow

problem, in particular the optimality conditions, which will be used in Chapter

4.

We will start by defining the concept of residual networks.

Definition 1 (Residual network). The residual network associated to the flow

defined by the variable x ∈ R|A|+ is the graph denoted by G(x) = (V,A(x)) and

defined by the set of activated and unsaturated arcs A(x). This set of arcs is

defined as the union of the two following sets:

A+(x) = {(i, j) ∈ A : 0 < xij < Cij, xji = 0}

A−(x) = {(i, j) ∈ A : xji > 0} .

Each arc of G(x) is associated with a residual cost c′ defined as:

c′ij =

cij, if (i, j) ∈ A+,

−cij, if (i, j) ∈ A−.

Theorem 7 (Negative cycle optimality condition, [4]). A feasible flow x is opti-

mal if and only if the network G(x) has no negative cycles.

Proof. See, [4]

We provide now another form of negative cycle optimality conditions based

on reduced costs.

Theorem 8 (Reduced cost optimality condition [4]). A feasible solution x to

(2.5) is optimal for the minimum cost flow problem if and only if there exist node

25

2.4 Minimum cost flow problem

potentials Π that satisfy the reduced cost optimality conditions:

c′ij + Πi − Πj ≥ 0, ∀(i, j) ∈ G(x). (2.6a)

Theorems 7 and 8 are applied on the residual network. In contrast, we present

next these conditions for the initial graph G.

Theorem 9 (Complementary slackness optimality conditions [4]). A feasible so-

lution x is optimal for the minimum cost flow problem if and only if there ex-

ist node potentials Π and reduced costs that satisfy the following complementary

slackness optimality conditions:

If c′ij + Πi − Πj > 0, then, xij = 0, (2.7a)

If 0 < xij < Cij, then, c′ij + Πi − Πj = 0, (2.7b)

If c′ij + Πi − Πj < 0, then, xij = Cij. (2.7c)

We can remark that these conditions are the complementary slackness opti-

mality conditions of the linear formulation presented in Subsection 2.4.1.

2.4.3 Solution methods

The minimum cost flow problem can be solved with linear programming algo-

rithms using the linear formulation. Besides this, in literature, many combinato-

rial algorithms have been proposed to solve the problem based on the optimality

conditions presented before, or using a generalized algorithms of other optimiza-

tion problems (shortest path, maximum flow,...). In this subsection, we present

some of these algorithms.

26

2.4 Minimum cost flow problem

Cycle-canceling algorithm: The negative cycle optimality conditions (The-

orem 7) can be used to solve the minimum cost flow problem with an iterative

approach. This algorithm preserves a flow x, tries to test the existence of negative

cycles in the residual network at each iteration, and eliminates these cycles. The

algorithm ends when the residual network G(x) does not contain any negative

cycles [4].

Algorithm 5 Cycle-canceling algorithm

Step 0: Make a feasible flow x′.

Step 1: While: G(x′) contains a negative cycle do:

• Find a negative cycle Cx′ in G(x′).

• Let r be the minimum residual capacity of an edge on C

r = min
(i,j)∈Cx′

Cij − x′ij.

• Augment r units of flow on the cycle Cx′ to find new value of the
solution x′.

• Update the residual network G(x′).

Successive shortest path algorithm: The minimum cost flow problem is a

generalization of the shortest path problem, the only difference is the existence

of capacity constraint. Thus, the two problems are equivalent in the case of all

edge capacities are sufficient to pass the flow φ.

Based on this, the problem can be solved iteratively using shortest path algo-

rithm as follows:

27

2.4 Minimum cost flow problem

Algorithm 6 Successive shortest path algorithm

Initialization: Let Φ = 0.

While: Φ < φ do:

• Find the shortest path p between s and d.

• Let r be the minimum arc capacity in p.

• If r ≥ φ, then, p is the optimal solution

• Else: set Φ← Φ + r.

28

Chapter 3

Fixed Charge Network Design

Problem with Shortest-path

constraints

In this chapter, we study the fixed charge network design problem with shortest

path constraints which is modeled as a bi-level program. We first review three one-

level formulations obtained by applying the complementarity slackness theorem,

Bellman’s optimality conditions and cycle elimination constraints. We propose

two new binary integer programming (BILP) formulations inspired by path and

cycle inequalities. The two formulations have exponential numbers of constraints.

We incorporate the path and the cycle based formulations in a branch-and-cut

algorithm and in another cutting-plane based method. Numerical experiments

are performed on real instances, and random data sets generated with different

criteria to examine the difficulty of the instances. The results show that the

proposed cutting plane algorithms can solve up to 19% more instances than the

classic branch-and-bound algorithms.

29

3.1 Introduction

3.1 Introduction

The fixed charge network design problem (FCNDP) consists of selecting a subset

of edges from a given network, in such a way that a set of commodities can be

transported from its origins to its destinations. The objective is to minimize the

sum of fixed costs (depending on selected edges) and variable costs (depending

on the flow of commodities on the edges). In general, fixed and variable costs can

be represented by linear functions, and the arcs are uncapacitated.

There are several variations of FCNDP in the literature, each of which involves

a particular objective function and, possibly, additional constraints. Among these

variations, we can find the shortest path problem, minimum spanning tree prob-

lem, vehicle routing problem, traveling salesman problem, and Steiner problem

in graph [4; 16; 106]. Numerous applications can be found for network design

problems, for instance in transportation systems and telecommunication networks

(see [15; 106]).

We are interested in a specific variant of the FCNDP, called fixed charge

network design problem with shortest path constraints (FCNDP-SPC)[72; 94],

which consists of adding multiple shortest path problems to the original problem.

The FCNDP-SPC involves two distinct agents acting simultaneously rather

than sequentially when making decisions. On the upper level, the leader (first

agent) is in charge of designing a transportation subnetwork (i.e., choosing a

subset of edges to be opened) in order to minimize the sum of fixed and variable

costs. In response, on the lower level, the follower (second agent) must choose

a set of shortest paths in the subnetwork designed in the upper level, through

which the commodities will be sent.

The inclusion of the shortest path requirement makes the problem more dif-

ficult to solve exactly. There are few works done for solving exactly the general

case of FCNDP-SPC [5; 72; 94; 107; 110], and most of the research is dedicated to

30

3.2 Mathematical models

a particular application. In the literature, the FCNDP-SPC was investigated for

the transportation of hazardous materials: the Hazmat transport network design

problem (HTNDP) [21; 55; 56; 79; 84; 133]. In this application, a given set of

hazardous materials is required to be transported from an origin to a destina-

tion over a road network. The problem consists of selecting road segments to be

opened by the government (the leader) that aim, on the one hand, to minimize

the total risk for the population. On the other, the leader assumes that the car-

riers (the follower) choose the shortest path in the resultant network. This is a

particular case of FCNDP-SPC, where the fixed cost of each edge is equal to zero.

Kara and Verter [84] were the first to pose the problem as a bi-level pro-

gram. Then, in [55; 56; 84; 110] the problem is transformed into a single-level

mixed-integer programming and the researchers focus on exact methods. More

recently, Gzara [79] studied a combinatorial bi-level formulation for the problem

and proposed a cutting plane algorithm.

3.2 Mathematical models

We consider a transportation network, which can be modeled by an undirected

graph G = (V,E), where V represents the set of facilities and E represents the

connections between them. The connection edges are uncapacitated and undi-

rected. Furthermore, we consider a set K of commodities to be transported over

the network (these commodities may represent physical goods as raw material

for industry or hazardous material). Each commodity k ∈ K, has a flow φk to

be delivered through a shortest path between its origin o(k) and its destination

d(k). Let us define the set of arcs A = {(i, j), (j, i) : {i, j} ∈ E}. A length cij

and variable costs gkij, k ∈ K, are associated to each arc a = (i, j) ∈ A. Also,

for each edge e = {i, j} ∈ E, a fixed cost fe is associated, and we assume that

31

3.2 Mathematical models

cij = cji. The sets of all arcs leaving and arriving at node i are denoted by δ+(i)

and δ−(i), respectively.

The FCNDP-SPC amounts to design a subnetwork (i.e., select a set of edges

in E to be opened), and to find for each commodity k ∈ K a shortest path in the

resultant network such that the sum of the fixed and variable costs is minimized.

To formulate the FCNDP-SPC, two types of variables are defined. We use

binary variables y ∈ {0, 1}|E| for the network construction such that:

ye =

1, if the edge e is chosen as a part of the subnetwork,

0, otherwise.

Besides, we use variables x ∈ {0, 1}|A|×K where xkij denotes if commodity k is sent

(xkij = 1) through the directed arc a = (i, j) ∈ A or not (xkij = 0). In the rest

of this section, we will present five different formulations for the FCNDP-SPC

problem. The first one (Subsection 3.2.1) is a bi-level integer programming model

[84]. This formulation is then transformed into two one-level models using opti-

mality conditions of the second level problem (Subsections 3.2.2 and 3.2.3). Two

binary integer programming formulations (BILP) are also presented: the cycle

(Subsection 3.2.4) and the proposed path (Subsection 3.2.5) based formulations.

3.2.1 Bi-level formulation

In the FCNDP-SPC, each commodity k ∈ K has to be transported through the

shortest path between its origin o(k) and its destination d(k), forcing the addition

of shortest path constraints to the general problem. Besides selecting a subset

of E with the minimum sum of fixed and variable costs (leader problem), we

also need to guarantee that the shortest path is used for each commodity k ∈ K

(follower problem).

32

3.2 Mathematical models

The FCNDP-SPC can be modeled as a bi-level mixed-integer programming

problem [84], as follows:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3.1a)

s.t. ye ∈ {0, 1} , ∀e ∈ E, (3.1b)

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (3.1c)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K, (3.1d)

xkij + xkji ≤ ye, ∀e = {i, j} ∈ E,∀k ∈ K, (3.1e)

xkij ∈ {0, 1}, ∀(i, j) ∈ A,∀k ∈ K. (3.1f)

where, for i ∈ V and k ∈ K

bki =


1, if i = o(k),

−1, if i = d(k),

0, otherwise.

The objective functions of the first and the second levels are presented on (3.1a)

and (3.1c). In (3.1d), we have the flow conservation constraints while constraints

(3.1e) do not allow a flow to use arcs whose corresponding edges are closed.

Finally, the constraints (3.1f) and (3.1b) require the variables xkij and ye to be

binary. As constraints (3.1d) and (3.1e) are defined by a totally unimodular

matrix, the integrality of x can be replaced by a non-negativity constraint.

Notice that, solving the follower problem is equivalent to solving |K| shortest

path problems independently.

33

3.2 Mathematical models

3.2.2 One-level formulation

The FCNDP-SPC can be formulated as a one-level integer programming problem

through replacing the follower problem by optimality conditions [48; 84]. This can

be done by applying the fundamental theorem of duality and complementarity

slackness theorem [16], as follows:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3.2a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki ∀i ∈ V,∀k ∈ K, (3.2b)

xkij + xkji ≤ ye, ∀e = {i, j} ∈ E,∀k ∈ K, (3.2c)

πki − πkj − λke(a) ≤ ca, ∀a = (i, j) ∈ A,∀k ∈ K, (3.2d)

(ye − xkij − xkji)λke = 0, ∀e = {i, j} ∈ E,∀k ∈ K, (3.2e)

(ca − πki + πkj + λke(a))x
k
ij = 0, ∀a = (i, j) ∈ A,∀k ∈ K, (3.2f)

λke ≥ 0, ∀e = {i, j} ∈ E,∀k ∈ K, (3.2g)

πki ∈ R, ∀i ∈ V,∀k ∈ K, (3.2h)

xkij ∈ {0, 1}, ∀(i, j) ∈ A,∀k ∈ K, (3.2i)

ye ∈ {0, 1} , ∀e ∈ E. (3.2j)

Constraints (3.2b), (3.2c) and (3.2i) are the follower’s constraints, and (3.2j) are

the leader constraints. Considering an arc a = (i, j) ∈ A, we define the edge as-

sociated to a by: e(a) = {i, j}. Constraints (3.2d)-(3.2f) represent the optimality

conditions associated to the follower problem, which ensures the shortest path

requirement.

This new formulation is no more linear since constraints (3.2e) and (3.2f)

contain a product of variables. To bypass this problem, a big-M linearization is

applied. After this modification, we can write the model as a one-level mixed-

integer programming problem, as follows:

34

3.2 Mathematical models

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3.3a)

s.t. (3.2b), (3.2c), (3.2d), (3.2j)

Mye −Mxkij −Mxkji + λke ≤M, ∀e = {i, j} ∈ E,∀k ∈ K, (3.3b)

Mxkij − πki + πkj + λke ≤M − ca, ∀a = (i, j) ∈ A,∀k ∈ K, (3.3c)

λke ≥ 0, ∀e = {i, j} ∈ E,∀k ∈ K, (3.3d)

πki ∈ R, ∀i ∈ V,∀k ∈ K, (3.3e)

xkij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ K. (3.3f)

Since the integrality of variables x is assumed in the linearization, the constraints

(3.3f) are added to the formulation. The parameter M is a precomputed large

number.

3.2.3 Bellman’s Model

As we have mentioned before, optimality conditions for the lower level problem

are, in fact, the optimality conditions of a set of shortest path problems. Hence,

the FCNDP-SPC can be expressed in a more compact way [110], if we consider

the Bellman’s optimality conditions for the shortest path problem [4].

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3.4a)

s.t. (3.1d), (3.1e), (3.1b), (3.1f)

πki − πkj ≤M − ye(a)(M − ca)− 2cax
k
ji, ∀a = (i, j) ∈ A,∀k ∈ K, (3.4b)

πki ≥ 0, ∀i ∈ V,∀k ∈ K, (3.4c)

πkd(k) = 0, ∀k ∈ K. (3.4d)

35

3.2 Mathematical models

Non-negative variables πki represent the shortest path distance between the

node i and d(k) for each commodity k (See, Section 2.3). Then, πkd(k), k ∈ K,

are set to be equal to zero in Constraints (5.6e). Constraints (3.4b) are the

lifted version of Belman’s optimality conditions that guarantee the shortest path

requirement. As in the previous formulation, the parameter M is a precomputed

large value. To improve the quality of the formulation, we want to define the

smallest possible value of M (in order to strengthen the associated constraint).

Let us take the constraint (3.4b), M can take each value with:

πki − πkj ≤M, ∀a = (i, j) ∈ A, ∀k ∈ K.

A bound that can be used as a value for M is:

M =
∑
i∈V

(
max

j:(i,j)∈A
cij

)
− min

(i,j)∈A
cij.

This value of M is used in the implementation of all formulations in this paper

including big-M constraints.

3.2.4 BILP formulation based on cycle constraints

A one-level cycle based BILP formulation is proposed in [79] for the FCNDP-

SPC. Before presenting this formulation, we first introduce some notations. Let

Φ be the set of pairs (x, y) satisfying the constraints of the first and the second

level problems of the bi-level formulation:

Φ = {(x, y) : (3.1b), (3.1d), (3.1e), (3.1f)}.

Let ȳ be a decision of the leader and define the restricted graph G(ȳ) =

(V,E(ȳ)) with E(ȳ) = {e ∈ E : ȳe = 1}. The feasible region of the follower,

36

3.2 Mathematical models

denoted by Φ(ȳ), is given by the set of all paths on G(ȳ), i.e.,

Φ(ȳ) = {x : (3.1d), (3.1f), xkij + xkji ≤ ȳe, ∀e = {i, j} ∈ E,∀k ∈ K}.

The followers’ reaction set Ω(ȳ) is defined as the set of shortest paths, for all

commodities in K, when the leader decision is ȳ:

Ω(ȳ) = arg min
x∈Φ(ȳ)

{
∑
k∈K

∑
(i,j)∈A

cijx
k
ij}.

We consider the fixed charge network design problem (FCNDP) defined as:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij

s.t. (x, y) ∈ Φ.

Given a feasible solution (x̄, ȳ) ∈ Φ of FCNDP, if x̄ /∈ Ω(ȳ) then, clearly,

it is not feasible for the FCNDP-SPC. As a consequence, there exists at least

one commodity k ∈ K with alternative paths p and p′ from o(k) to d(k) in the

restricted graph G(ȳ) and these alternative paths have unequal costs (wrt the

lengths cij). The alternative paths p and p′ form at least one cycle defined by

sub-paths p̃ ⊆ p and p̃′ ⊆ p′ such that c(p) > c(p′).

In this case, the commodity k will use the cheapest sub-path p′. The example

in Figure 3.1 presents the case when a commodity with o = 1 and d = 5 has two

paths in the restricted graph with different costs. The two paths form the cycle

(2− 3− 5− 4− 2). In this example, the commodity takes the shortest sub-path

p′.

Let P (k) denote the set of all paths in the original graph G = (V,E) for the

37

3.2 Mathematical models

1o 2

4

p′

3

p

5 d

1

1

2

2

4

1

Figure 3.1: A restricted graph containing two alternative paths for a commodity
to be sent from 1 to 5.

commodity k, i.e. all paths from o(k) to d(k). Let |p| represent the number of

arcs in a given path p. Using additional binary variables zkp , for each k ∈ K and

for each p ∈ P (k), the FCNDP-SPC is formulated in [79] as follows.

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3.5a)

s.t. (3.1b), (3.1d), (3.1e), (3.1f) (3.5b)∑
(i,j)∈p

xkij ≤ |p| − 1 + zkp , ∀k ∈ K,∀p ∈ P (k), (3.5c)

zkp ≤ xkij , ∀k ∈ K,∀p ∈ P (k),∀(i, j) ∈ p, (3.5d)∑
e∈p′

ye ≤
∣∣p′∣∣− zkp , ∀k ∈ K,∀p, p′ ∈ P (k), s.t. c(p′) < c(p), (3.5e)

zkp ∈ {0, 1} , ∀k ∈ K,∀p ∈ P (k). (3.5f)

The binary variable zkp is equal to 1 if p is the path used by commodity k, and 0

otherwise. Hence, a constraint in (3.5c) forces zkp to take value 1 if
∑

(i,j)∈p
xkij = |p|.

Likewise, a constraint in (3.5d) imposes zkp = 0 whenever there exists an arc

38

3.3 Theoretical comparison and improvements

(i, j) ∈ p such that xkij = 0. Then, constraints (3.5e) eliminate any solution (x̄, ȳ)

that has alternative sub-paths with unequal costs. Notice that this formulation

has a number of constraints and variables which depend on the number of paths

for each commodity k ∈ K.

3.2.5 BILP formulation based on path constraints

In this subsection, we propose an alternative path based formulation to avoid

the additional variables zkp , for each k ∈ K and each p ∈ P (k). We replace the

set of constraints (3.5c)-(3.5e) by one set of constraints in charge of avoiding the

commodities to use any path p whenever a path p′ with c(p′) < c(p) is opened by

the leader. The FCNDP-SPC is modeled as follows.

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3.6a)

s.t. (3.1d), (3.1e)∑
(i,j)∈A

cijx
k
ij ≤ c(p) + (|p| −

∑
e∈p

ye)M, ∀k ∈ K,∀p ∈ P (k), (3.6b)

xkij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ K, (3.6c)

ye ∈ {0, 1} , ∀e ∈ E. (3.6d)

Parameter M is a precomputed large value (see Subsection 3.2.3). The above

formulation contains a polynomial number of variables but a number of con-

straints that depends on the number of paths for each commodity k ∈ K.

3.3 Theoretical comparison and improvements

This section is devoted to compare the formulations (3.5a)-(3.5f) and (3.6a)-(3.6d)

of FCNDP-SPC. As shown in the previous section, we have presented a cycle-

based and a path-based formulations for the FCNDP-SPC. To compare the two

39

3.3 Theoretical comparison and improvements

BILP formulations, we will study the relation between their sets of feasible points.

First, let us rewrite the set of inequalities (3.5c)-(3.5e) as a single inequality that

does not involve the variable zkp .

Theorem 10. For each p, p′ ∈ P (k), such that o(p) = o(p′), d(p) = d(p′) and

c(p′) < c(p), we can rewrite (3.5c)-(3.5e) as one set of inequalities:

∑
(i,j)∈p

xkij − |p|+ 1 ≤ |p′| −
∑
e∈p′

ye, ∀p, p′ ∈ P (k),∀k ∈ K. (3.7)

Proof. Let (P1) and (P2) be the sets of points defined respectively by (3.5c)-

(3.5e) and (3.7) associated with p, p′ ∈ P (k), i.e.,

(P1)



∑
(i,j)∈p

xkij ≤ |p| − 1 + zkp ,

zkp ≤ xkij, ∀(i, j) ∈ A, ∀k ∈ K,∑
e∈p′

ye ≤ |p′| − zkp ,

0 ≤ xkij ≤ 1, ∀(i, j) ∈ A, ∀k ∈ K,

0 ≤ ye ≤ 1, ∀e ∈ E,∀k ∈ K,

0 ≤ zkp ≤ 1.

and

(P2)


∑

(i,j)∈p
xkij − |p|+ 1 ≤ |p′| −

∑
e∈p′

ye,

0 ≤ xkij ≤ 1, ∀(i, j) ∈ A,∀k ∈ K,

0 ≤ ye ≤ 1, ∀e ∈ E.

The inequalities are equivalent if and only if (P1) = (P2). By using the Fourier-

Motzkin elimination method, we can eliminate variables zkp from (P1), and show

40

3.3 Theoretical comparison and improvements

that (P1) is equivalent to the following system of inequalities:

∑
(i,j)∈p

xkij − |p|+ 1 ≤ |p′| −
∑

(i,j)∈p′
yij, (3.8a)

∑
(i,j)∈p

xkij − |p|+ 1 ≤ xkij, ∀(i, j) ∈ p, (3.8b)

0 ≤ xkij ≤ 1, ∀(i, j) ∈ A,∀k ∈ K, (3.8c)

0 ≤ ye ≤ 1, ∀e ∈ E. (3.8d)

We can easily check that the inequality (3.8b) is trivial. Therefore, the set of

constraints of (P1) is equivalent to the set of points defining (P2) and (P2) =

(P1).

Based on the result of Theorem 10, we investigate if a relation between the

polytopes of the linear relaxation of formulations (3.5) and (3.6) can be estab-

lished.

Theorem 11. Let us define:

P1 =


(xkijye) ∈ [0, 1],

x ∈ Φ(y),∑
(i,j)∈p

xkij − |p|+ 1 ≤ |p′| −
∑
e∈p′

ye, ∀p, p′ ∈ P (k).

and

P2 =


(xkij, ye) ∈ [0, 1],

x ∈ Φ(y),∑
(i,j)∈E

cijx
k
ij ≤ C(p′) + (|p′| −

∑
(i,j)∈p′

yij)M, ∀p′ ∈ P (k).

then we have P1 6⊆ P2 and P2 6⊆ P1.

Proof. We define an instance of the FCNDP-SPC problem with one commodity

that is sent from an origin s ∈ V to a destination node t ∈ V via two alternative

paths p and p′ which form a cycle.

41

3.3 Theoretical comparison and improvements

To show P1 6⊆ P2 (resp. P2 6⊆ P1), it is sufficient to find a fractional vector

which is included in P1\P2 (resp. P2\P1).

• We define the fractional vector:

y∗e = 1− ε ∀e ∈ E

x∗ij = 1− ε ∀(i, j) ∈ p

x∗ij = ε ∀(i, j) ∈ p′

|p| = 2 |p′| = 2

c(p′) = c′ ≤ c = c(p)

The path constraint (3.6b) for this vector is:

(1− ε)c+ εc′ ≤ c′ + εM

Hence, the constraint is satisfied for many values of ε,M (we can take for

instance: ε = 1
4

and M = 4c). However, the cycle constraint in P1 for this

vector becomes:
10

4
≤ 2

then, (y∗, x∗) 6∈ P1.

Hence, (x∗, y∗) ∈ P2\P1.

• We define the fractional vector:

y∗e = 1− ε ∀e ∈ E

x∗ij = 1− ε ∀(i, j) ∈ p

x∗ij = ε ∀(i, j) ∈ p′

|p′| = 1

c(p′) = c′ = 1

M = c(p) = c = 4

42

3.4 Proposed algorithms for FCNDP-SPC

We can easily check that (x∗, y∗) ∈ P1, for all ε > 1
1+|p| . Furthermore,

choosing ε = 2
5

and |p| = 4, the path constraint cannot be satisfied.

Hence, we obtain: (x∗, y∗) ∈ P1\P2.

Theorem 11 proves that the two BILP formulations (3.5) and (3.6) are not

comparable.

In Theorem 10, we proved that the inequalities (3.7) can eliminate any path

violating the shortest path requirement. Thus, the FCNDP-SPC can be formu-

lated as a new cycle-based formulation:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij , (3.9a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K, (3.9b)

xkij + xkji ≤ ye, ∀e ∈ E,∀k ∈ K, (3.9c)∑
(i,j)∈p

xkij +
∑
e∈p′

ye ≤ |p|+
∣∣p′∣∣− 1, ∀k ∈ K,∀p, p′ ∈ P (k) : c(p′) < c(p), (3.9d)

xkij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ K, (3.9e)

ye ∈ {0, 1} , ∀e ∈ E. (3.9f)

3.4 Proposed algorithms for FCNDP-SPC

In Sections 3.2 and 3.3, we presented five different formulations to this problem.

Table 3.1 compares them according to the number of variables and constraints.

Formulations (4.3) and (3.4) are compact ones. On the other hand, formula-

tions (3.5),(3.6), and (3.9) may have exponential numbers of constraints. Formu-

lation (3.5) may also have an exponential number of variables.

43

3.4 Proposed algorithms for FCNDP-SPC

Formulations Number of binary variables Number of constraints

One-level formulation K |A|+ |E| K(|V |+ 2 |A|+ 2 |E|)
Bellman formulation K |A|+ |E| K(|V |+ |A|+ |E|)
Cycle-based formulation K(|A|+ |P (k)|) + |E| K(|V |+ |E|+ 3 |P (k)|)
Path-based formulation K |A|+ |E| K(|V |+ |E|+ |P (k)|)
New cycle-based formulation K |A|+ |E| K(|V |+ |E|+ |P (k)|)

Table 3.1: Number of constraints and binary variables of each formulation

In this section, we focus on presenting different exact methods to solve the

FCNDP-SPC.

3.4.1 Compact formulations

The first way to solve the FCNDP-SPC is to feed the models (4.3) and (3.4)

to Gurobi solver with default parameters, resulting into the approaches denoted

B&B1 and B&B2 denote the branch-and-bound algorithms for the formulations

(4.3) and (3.4), respectively.

3.4.2 Iterative cutting plane algorithms

Our iterative cutting plane algorithms are based on formulations (3.5),(3.6) and

(3.9). Algorithm 7 gives the pseudo-code of these algorithms.

44

3.4 Proposed algorithms for FCNDP-SPC

Algorithm 7 Cutting plane algorithms

Step 0: (BILP)0 is the fixed charge network design problem defined by the set
of constraints (3.1b),(3.1d),(3.1e), and (3.1f).

l = 0.

Step 1: Solve (BILP)l to obtain the solution (xl, yl). Let N l be the network
induced by yl, and (P k)l be the obtained path for the commodity k ∈ K.
We denote by cl(P k) the total cost of (P k)l.

Step 2: On N l, find (P ′k)l the shortest path for each commodity k with cost
cl(P ′k).

Step 3: If cl(P k) = cl(P ′k) for each commodity k, then N l defines an optimal
solution for FCNDP-SPC, Stop.

Step 4: For the commodities with cl(P k) 6= cl(P ′k), generate a set of shortest
path constraints to eliminate the path (P k)l. Let S be the set of constraints
generated. Append the constraints generated S to (BILP)l+1.

Do l = l + 1, and go to step 1.

The set S of inequalities in Step 4 can be generated in three different ways

giving us three different iterative cutting plane methods CP1, CP2, and CP3:

CP1: Generate the inequality (3.6b).

CP2: Find the cycles formed by (P ′k)l and (P k)l. Generate the set of valid in-

equalities (3.5c)-(3.5e).

CP3: Find the cycles formed by (P ′k)l and (P k)l. Generate the inequality (3.7).

3.4.3 Branch-and-cut algorithm

The FCNDP-SPC can also be solved to optimality by using branch-and-cut al-

gorithms based on formulations (3.6) and (3.9).

45

3.4 Proposed algorithms for FCNDP-SPC

The principle of the algorithm used here is to solve a fixed charge network

design problem (without the shortest path constraints) by a branch-and-bound

procedure and to add valid inequalities to each integral node violating the shortest

path constraints. The algorithm stops when there is no more node to evaluate,

i.e., all the need path constraints were generated. The difference of this algorithm

over the iterative cutting plane algorithms lies in solving a unique mixed-integer

problem by considering all the shortest path constraints. Next, we detail each

component of the Branch-and-cut procedure.

The initial model: The initial model consists in minimizing the sum of

the fixed and variable costs under the flow conservation constraints (3.1d), the

constraints (3.1e) forcing the flow to use only the opened edges and the binary

requirement constraints of x (3.1f) and of y (3.1b).

Separation problem: Since the initial problem does not contain all the

constraints of the FCNDP-SPC, an integer solution obtained can be infeasible.

For this reason, for each integer node on the branch-and-bound tree, we introduce

a cut generation procedure to eliminate the infeasible paths.

We first check if an integer solution (x̄, ȳ) is feasible for FCNDP-SPC by

solving a set of shortest path problems. For each commodity k, in the subnetwork

defined by ȳ we verify if the path P ′ defined by x̄ is the shortest path from o(k)

to d(k) in ȳ. If (x̄, ȳ) is infeasible, i.e., there exists at least one path P with

c(P) < c(P ′), then a set of shortest path constraints is added. Two variants of

the algorithm were developed. In B&C1 shortest path constraints correspond to

(3.6b) while for B&C2 they correspond to (3.7).

3.4.4 Valid inequalities

The different formulations of the FCNDP-SPC can be weak. One way to strengthen

the models is to introduce a set of valid inequalities. From the definition of the

46

3.5 Numerical results

problem, we can remark that, if there exist several different commodities with

the same origin and destination, then their paths in the optimal solution have

the same cost.

The following proposition shows that a valid inequality can be generated in

this particular case.

Proposition 1. Consider two commodities k1, k2 such that o(k1) = o(k2) and

d(k1) = d(k2), then the constraint:

∑
(i,j)∈A

cijx
k1

ij =
∑

(i,j)∈A

cijx
k2

ij (3.10)

is valid for FCNDP − SPC.

Proof. Straightforward.

3.5 Numerical results

In this section, we present computational experiments carried out with all the

methods described in the previous sections. All algorithms are implemented in

Julia 0.5.0, and the problems are solved using Gurobi 6.5.2 (with four threads).

Simulations were performed on an Intel(R)core TM i7-3520M CPU@2.90 GHz×4

computer with 8 GB of RAM. Numerical experiments were performed on two sets

of data. The first one concerns 405 random instances generated for this work,

while the second one consists of real instances from different city transportation

networks (Ravenna, Italy [23], and Albany, NY, USA [131]). Next, we describe

each data set and discuss the computational results obtained on each one.

We summarize all the exact algorithms used to solve the FCNDP-SPC:

B&B1: Compact formulation (4.3).

47

3.5 Numerical results

B&B2: Compact formulation (3.4).

CP1: Cutting plane algorithm using the inequalities (3.6b).

CP2: Cutting plane algorithm using the inequalities (3.5c)-(3.5e).

CP3: Cutting plane algorithm using the inequalities (3.7).

B&C1: Branch-and-cut algorithm using inequalities (3.6b) in the cut generation.

B&C2: Branch-and-cut algorithm using inequalities (3.7) in the cut generation.

3.5.1 Random instances

The different methods are tested on 405 instances generated randomly with dif-

ferent values for the angles α between the variable cost vector “g” and the length

vector associated to the edges “c” in the network G(V,E). We consider three

different categories for the value of α:

• 0◦ ≤ α ≤ 10◦

• 40◦ ≤ α ≤ 50◦

• 80◦ ≤ α ≤ 90◦

The purpose of distinguishing these three scenarios is to examine whether the

difficulty of the instance is related to the angle between g and c, i.e., the direction

of the objective function of the upper and the lower levels. For instance, we can

expect that if both levels go in the same direction, i.e., the two vectors are very

close to each other, the instance is easy.

The instances are generated varying also the number of nodes in the graph

n ∈ {10, 20, 30}, the graph density d ∈ {0.3, 0.5, 0.7}, and the number of different

48

3.5 Numerical results

Table 3.2: CPU time in seconds for instances with 0◦ ≤ α ≤ 10◦

n - d - K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
10-0.3-5 0.04 0.01 0.01 0.01 0.01 0.08 0.13
10-0.3-10 0.09 0.04 0.02 0.02 0.02 0.06 0.13
10-0.3-15 0.26 0.06 0.05 0.07 0.05 0.20 0.28
10-0.5-5 0.07 0.03 0.03 0.05 0.04 0.04 0.09
10-0.5-10 0.43 0.12 0.14 0.25 0.19 0.22 0.35
10-0.5-15 0.82 0.45 0.19 0.30 0.21 0.45 0.94
10-0.7-5 0.04 0.02 0.01 0.01 0.01 0.05 0.05
10-0.7-10 0.47 0.25 0.08 0.20 0.14 0.31 0.40
10-0.7-15 0.63 0.20 0.13 0.16 0.15 0.30 0.49

10-Average 0.32(45) 0.13(45) 0.07(45) 0.12(45) 0.09(45) 0.19(45) 0.32(45)
20-0.3-10 0.86 0.21 0.10 0.09 0.07 0.41 0.47
20-0.3-20 284.73 8.80 4.13 12.15 28.61 3.07 10.27
20-0.3-30 655.37 61.48 9.07 54.10 45.68 8.99 34.63
20-0.5-10 1.49 0.19 0.17 0.19 0.14 0.40 0.48
20-0.5-20 257.22 10.82 4.93 14.70 11.75 5.20 7.13
20-0.5-30 379.72 (2) 1095.67(4) 349.24 455.11 453.08 440.30 633.17(4)
20-0.7-10 0.93 0.20 0.12 0.14 0.11 0.33 0.40
20-0.7-20 308.80 56.19 23.96 80.47 65.89 13.70 23.79
20-0.7-30 622.18(1) 912.28 241.56 547.02 542.20 139.11 694.23

20-Average 279.03(38) 238.43(44) 70.36(45) 129.33(45) 127.50(45) 67.95(45) 156.06(44)
30-0.3-15 38.26 1.07 0.49 0.66 0.65 1.31 1.32
30-0.3-30 1595.92(2) 273.98 65.70 179.70 152.62 54.21 67.33
30-0.5-15 22.78 1.18 0.55 0.65 0.64 2.32 1.55
30-0.5-30 - - 862.61 761.85 729.97 - -
30-0.7-15 132.37 5.65 4.26 4.77 4.39 8.22 3.64
30-0.7-30 - - 1095.17 1074.14 986.96 - -

30-Average 447.33(17) 70.47(20) 338.13(30) 336.96(30) 312.54(30) 16.51(20) 18.46(20)

commodities to be transported K ∈ {n
2
, n, 3n

2
}. For each combination of (n, d,K),

5 instances are generated.

Similar random instances have also been generated for FCNDP-SPC by Maut-

tone et al [110] and used in [72]. Their instances were not used here for two

reasons. First, these instances belong to a particular case of the problem where

all the variable costs are equal for all the commodities. Second, all instances are

included in the first scenario of α, where α is close to zero. Hence, the random

instances of [110] are considered very easy to solve.

The obtained results are shown in Tables 3.2, 3.3, and 3.4, where, we report in

each row the average CPU time in seconds spent by each algorithm on each group

49

3.5 Numerical results

Table 3.3: CPU time in seconds for instances with 40◦ ≤ α ≤ 50◦

n - d - K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
10-0.3-5 0.04 0.02 0.01 0.01 0.01 0.04 0.07
10-0.3-10 0.16 0.05 0.05 0.05 0.04 0.17 0.19
10-0.3-15 0.28 0.09 0.10 0.14 0.10 0.30 0.44
10-0.5-5 0.02 0.08 0.04 0.02 0.01 0.05 0.08
10-0.5-10 0.24 0.44 0.35 0.39 0.19 0.31 0.47
10-0.5-15 0.77 6.60 1.34 1.91 1.01 0.90 1.11
10-0.7-5 0.02 0.04 0.01 0.02 0.01 0.06 0.06
10-0.7-10 0.47 7.86 1.17 3.51 1.43 0.86 0.92
10-0.7-15 4.30 256.09 9.03 29.70 11.85 3.87 12.62

10-Average 0.70(45) 30.14(45) 1.35(45) 3.97(45) 1.63(45) 0.73(45) 1.77(45)
20-0.3-10 1.65 0.25 0.16 0.20 0.15 0.53 0.52
20-0.3-20 1226.54 27.66 43.71 117.58 94.21 16.77 35.32
20-0.3-30 - 1427.53(4) 827.44 696.42 648.77 927.19 1147.03(3)
20-0.5-10 0.26 4.09 0.82 0.28 0.20 1.00 0.51
20-0.5-20 271.99(4) 308.38(2) 659.96(4) 329.23(4) 132.99 1182.37 841.59
20-0.5-30 - 3410.90 614.23 500.25 776.10 - -
20-0.7-10 0.42 2.74 0.91 0.28 0.19 0.73 0.58
20-0.7-20 185.35(4) 648.43(2) 334.97 224.35 210.19 881.23(4) 386.98(4)
20-0.7-30 - - 1196.37 1030.52 910.30 - -

20-Average 281.04(28) 728.75(33) 408.73(44) 322.12(44) 308.12(45) 429.97(34) 344.65(32)
30-0.3-15 19.79 856.09 4.08 6.55 6.26 15.32 8.17
30-0.3-30 - - - - 744.85 - -
30-0.5-15 4.07 192.25 1.54 1.45 1.47 5.95 2.55
30-0.5-30 - - - - 785.04 - -
30-0.7-15 27.63 1171.09 5.82 12.69 11.34 24.51 12.80
30-0.7-30 - - - - 674.06 - -

30-Average 17.16(15) 739.81(15) 3.81(15) 6.90(15) 370.50(30) 15.26(15) 7.84(15)

of 5 instances with the same (n, d, k). The symbol “-” means that the algorithm

was not able to find the optimal solution in the time limit of 3600s for all the con-

sidered instances, also, an additional number (.) is added to represent the number

of instances solved in each group of 5 instances. In addition, the average CPU

time and the total number of solved instances are given for each number of nodes

n. Overall, the iterative cutting plane algorithms CP1 and CP3 outperform the

other algorithms and they solve more instances. Furthermore, algorithms B&C1

and B&C2 are more efficient than B&B1 and B&B2, although the difference

is less marked. We can also see from Tables 3.2, 3.3, and 3.4 that the instances

with 0◦ ≤ α ≤ 10◦ are easy to solve than the other instances.

50

3.5 Numerical results

Table 3.4: CPU time in seconds for instances with 80◦ ≤ α ≤ 90◦

n - d - K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
10-0.3-5 0.03 0.01 0.01 0.01 0.01 0.02 0.06
10-0.3-10 0.17 0.05 0.06 0.05 0.03 0.14 0.22
10-0.3-15 0.40 0.12 0.11 0.10 0.07 0.26 0.36
10-0.5-5 0.02 0.01 0.01 0.01 0.01 0.02 0.05
10-0.5-10 0.46 0.12 0.14 0.27 0.18 0.27 0.29
10-0.5-15 3.18 0.37 0.85 1.46 1.08 0.52 1.29
10-0.7-5 0.07 0.02 0.02 0.03 0.02 0.05 0.73
10-0.7-10 0.87 0.16 0.22 0.35 0.22 0.30 3.61
10-0.7-15 108.61 1.96 2.11 9.41 5.38 0.80 89.82

10-Average 12.65(45) 0.31(45) 0.39(45) 1.30(45) 0.78(45) 0.27(45) 10.71(45)
20-0.3-10 1.35 0.15 0.17 0.15 0.12 0.33 0.51
20-0.3-20 837.97(4) 27.22 31.18 85.09 77.47 70.48 20.97
20-0.3-30 - 923.06 279.67 292.00 269.23 72.24(4) 91.21
20-0.5-10 3.21 0.55 0.51 0.84 0.71 0.72 0.76
20-0.5-20 1161.59 41.18 22.61 50.50 39.08 18.35 33.82
20-0.5-30 33.02(4) 264.56(2) 943.67 655.29 644.81 1043.20(4) 583.20(4)
20-0.7-10 1.15 0.30 0.12 0.11 0.09 0.37 7.32
20-0.7-20 329.74(3) 548.91 209.45 130.58 131.29 120.45 2.59(4)
20-0.7-30 - - 1444.21 885.10 893.73 1206.02(4) 2508.14(4)

20-Average 338.29(31) 225.74(37) 325.73(45) 233.30(45) 228.50(45) 281.89(42) 360.94(42)
30-0.3-15 87.28 4.07 1.79 2.46 2.19 4.43 4.99
30-0.3-30 - - - - 771.18 - -
30-0.5-15 159.66 1.59 1.16 1.07 1.05 2.41 1.51
30-0.5-30 - - - - 737.51 - -
30-0.7-15 9.62 1.00 0.50 0.51 0.46 1.39 1.10
30-0.7-30 - - - - 688.11 - -

30-Average 85.52(15) 2.22(15) 1.15(15) 1.35(15) 366.75(30) 2.74(15) 2.53(15)

We provide next more detailed statistics to compare the different formula-

tions and algorithms. These are reported in Figure 3.2, while the full details are

reported to Tables 3.5-3.8.

In order to compare the different one-level formulations presented in this work,

in Figure 3.2a, we compare the average of the gap between the solution of the

linear relaxation and the optimal solution. We can remark that the linear re-

laxations of the BILP formulations (3.5) and (3.9) are stronger than those of

formulations (4.3) and (3.4). For instance, in the first case of α the gap of (3.5)

(resp. (3.9)) is twice (resp. four times) smaller than the gap of the formulations

(4.3) and (3.4). Although the formulation (3.9) has a smaller gap for our random

51

3.5 Numerical results

Table 3.5: Gap between the optimal solution and the linear relaxation

Angle 0◦ ≤ α ≤ 10◦ 40◦ ≤ α ≤ 50◦ 80◦ ≤ α ≤ 90◦

Formulation (4.3) (3.4) (3.5) (3.9) (4.3) (3.4) (3.5) (3.9) (4.3) (3.4) (3.5) (3.9)
10-3-5 0.00 0.00 0.00 0.00 1.66 1.60 0.43 0.00 0.00 0.00 0.00 0.00
10-3-10 0.86 0.87 0.54 0.00 1.88 1.83 0.00 0.00 3.42 3.41 2.13 0.00
10-3-15 1.91 1.96 0.17 0.00 5.78 5.68 1.02 0.00 4.22 4.20 1.16 0.00
10-5-5 2.68 2.68 2.52 0.00 0.75 0.75 0.76 0.76 0.00 0.00 0.00 0.00

10-0.5-10 2.39 2.40 1.28 0.90 6.26 6.27 6.30 6.30 5.52 5.41 1.65 0.96
10-0.5-15 4.68 4.70 1.14 0.42 7.99 8.00 8.01 8.01 10.43 10.37 6.07 3.66

10.7.5 0.42 0.42 0.00 0.00 0.46 0.46 0.00 0.00 1.57 1.57 0.68 0.00
10.7.10 8.15 8.16 2.54 2.42 9.46 9.46 4.77 3.50 4.50 4.38 1.81 1.34
10.7.15 2.68 2.68 0.56 0.00 16.88 16.89 11.78 9.29 12.33 12.44 5.98 5.10

20-0.3-10 0.83 0.83 0.24 0.00 1.16 1.15 0.37 0.00 2.38 2.38 0.73 0.00
20-0.3-20 7.54 7.54 5.17 3.19 10.06 10.04 7.60 6.46 9.17 9.15 7.71 6.57
20-0.3-30 6.96 6.97 4.17 2.64 13.67 13.65 11.46 10.60 8.97 8.97 7.19 6.31
20-0.5-10 0.50 0.50 0.28 0.00 2.31 2.31 2.33 2.33 3.66 3.65 1.69 1.22
20-0.5-20 6.44 6.44 3.44 2.02 11.94 11.99 12.04 12.04 5.56 5.57 4.23 3.02
20-0.5-30 0.08 0.08 0.06 0.06 11.86 11.83 11.89 11.89 10.28 10.29 8.36 6.79
20.7.10 0.73 0.73 0.00 0.00 2.73 2.74 1.35 0.00 1.02 1.02 0.00 0.00
20.7.20 6.49 6.51 4.29 3.72 8.98 8.99 7.21 6.13 6.31 6.32 4.41 3.40
20.7.30 0.10 0.10 0.07 0.06 9.97 9.98 8.00 7.22 8.82 8.82 7.45 6.22

30-0.3- 15 2.24 2.24 1.60 0.00 3.18 3.18 2.61 1.53 2.41 2.41 1.36 0.74
30-0.5-15 1.83 1.84 0.53 0.00 2.11 2.11 2.12 2.12 2.65 2.65 0.96 0.00
30.7.15 4.32 4.32 2.63 1.27 4.11 4.12 2.81 1.11 1.20 1.20 0.32 0.00
Average 2.94 2.95 1.49 0.79 6.34 6.33 4.90 4.25 4.97 4.96 3.04 2.16

instances, there are instances where the linear relaxation of the formulation (3.5)

is stronger (see Theorem 11).

The computational experiments show that, overall, the iterative cutting plane

algorithm CP3 is faster than the branch-and-cut algorithms. One of the reasons

that explain those results is the time consumed on the separation problem in

each algorithm. To study the effect of the separation problem on the results, we

compute the percentage of the run time consumed by the separation problem on

the CPU-total in Figure 3.2b. This percentage is similar and negligible for the

iterative cutting plane algorithms, unlike the branch-and-cut algorithms where

the solution of separation problem takes for many instances more than 20% (see

Figure 3.2d) of the total time consumed by the B&C2 algorithm. To comple-

ment these results we compare the number of iterations and the number of cuts

52

3.5 Numerical results

T
ab

le
3.

6:
%

of
C

P
U

-S
P

/C
P

U
-t

ot
al

A
n

gl
e

0◦
≤
α
≤

10
◦

4
0◦
≤
α
≤

5
0
◦

8
0◦
≤
α
≤

9
0
◦

n
-
d

-
K

C
P

1
C

P
2

C
P

3
B

&
C

1
B

&
C

2
C

P
1

C
P

2
C

P
3

B
&

C
1

B
&

C
2

C
P

1
C

P
2

C
P

3
B

&
C

1
B

&
C

2
10

-0
.3

-5
0.

28
0.

27
0.

27
0.

00
0.

0
1

0
.2

4
0
.2

5
0
.2

2
0
.0

1
0
.0

1
0
.2

8
0
.2

6
0
.2

6
0
.0

0
0
.0

1
10

-0
.3

-1
0

0.
30

0.
31

0.
31

0.
01

0.
0
2

0
.2

5
0
.2

8
0
.2

9
0
.0

3
0
.0

3
0
.2

7
0
.2

8
0
.3

0
0
.0

2
0
.0

3
10

-0
.3

-1
5

0.
32

0.
32

0.
30

0.
03

0.
0
4

0
.2

5
0
.2

5
0
.2

7
0
.0

5
0
.0

7
0
.2

3
0
.2

8
0
.2

9
0
.0

4
0
.0

5
10

-0
.5

-5
0.

22
0.

22
0.

23
0.

01
0.

0
1

0
.4

5
0
.3

1
0
.2

6
0
.0

1
0
.0

1
0
.2

9
0
.2

8
0
.2

7
0
.0

0
0
.0

1
10

-0
.5

-1
0

0.
23

0.
24

0.
25

0.
04

0.
0
5

0
.2

9
0
.3

8
0
.2

1
0
.0

4
0
.0

6
0
.1

8
0
.2

2
0
.2

3
0
.0

4
0
.0

4
10

-0
.5

-1
5

0.
19

0.
22

0.
24

0.
06

0.
1
6

0
.2

6
0
.1

9
0
.1

3
0
.1

2
0
.1

3
0
.0

9
0
.0

8
0
.0

8
0
.0

9
0
.1

9
10

-0
.7

-5
0.

26
0.

27
0.

27
0.

01
0.

0
1

0
.4

1
0
.2

6
0
.2

8
0
.0

1
0
.0

1
0
.2

3
0
.2

2
0
.1

9
0
.0

1
0
.0

1
10

-0
.7

-1
0

0.
20

0.
20

0.
19

0.
04

0.
0
6

0
.2

0
0
.2

6
0
.1

4
0
.0

9
0
.1

0
0
.1

6
0
.1

7
0
.1

9
0
.0

4
0
.0

8
10

-0
.7

-1
5

0.
25

0.
24

0.
23

0.
04

0.
0
7

0
.0

4
0
.0

2
0
.0

2
0
.2

8
0
.5

3
0
.0

6
0
.0

5
0
.0

6
0
.1

2
0
.4

5
20

-0
.3

-1
0

0.
19

0.
21

0.
22

0.
04

0.
0
4

0
.1

8
0
.1

9
0
.2

1
0
.0

7
0
.0

5
0
.1

7
0
.1

8
0
.2

0
0
.0

4
0
.0

5
20

-0
.3

-2
0

0.
07

0.
09

0.
07

0.
40

1.
2
7

0
.0

2
0
.0

3
0
.0

3
0
.8

2
3
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.8

5
1
.8

0
20

-0
.3

-3
0

0.
03

0.
03

0.
03

0.
73

4.
0
6

0
.0

0
0
.0

0
0
.0

0
2
.8

6
3
2
.6

7
0
.0

0
0
.0

0
0
.0

0
1
.3

6
3
.8

2
20

-0
.5

-1
0

0.
16

0.
16

0.
18

0.
04

0.
0
5

0
.2

0
0
.2

6
0
.1

7
0
.0

9
0
.0

6
0
.1

0
0
.1

1
0
.1

2
0
.0

7
0
.0

8
20

-0
.5

-2
0

0.
06

0.
07

0.
08

0.
36

0.
4
1

0
.0

1
0
.0

1
0
.0

1
1
.7

8
8
.9

7
0
.0

3
0
.0

3
0
.0

4
0
.4

6
2
.4

2
20

-0
.5

-3
0

0.
01

0.
01

0.
01

1.
21

7.
9
1

0
.0

0
0
.0

0
0
.0

0
2
.0

1
1
2
.4

7
0
.0

0
0
.0

0
0
.0

0
1
.7

1
2
1
.0

5
20

-0
.7

-1
0

0.
14

0.
15

0.
16

0.
03

0.
0
4

0
.1

1
0
.2

5
0
.1

4
0
.0

5
0
.0

7
0
.1

1
0
.1

2
0
.1

3
0
.0

4
0
.0

4
20

-0
.7

-2
0

0.
04

0.
05

0.
05

0.
51

1.
5
9

0
.0

2
0
.0

4
0
.0

2
2
.9

4
1
5
.1

4
0
.0

2
0
.0

3
0
.0

3
0
.4

9
2
.2

8
20

-0
.7

-3
0

0.
00

0.
00

0.
00

1.
58

5.
5
3

0
.0

0
0
.0

0
0
.0

0
4
.1

6
2
8
.0

9
0
.0

0
0
.0

0
0
.0

0
1
.7

0
1
5
.9

9
30

-0
.3

-1
5

0.
12

0.
12

0.
12

0.
14

0.
1
5

0
.0

5
0
.0

5
0
.0

5
0
.8

1
0
.6

4
0
.0

9
0
.1

0
0
.1

1
0
.3

4
0
.5

8
30

-0
.3

-3
0

0.
02

0.
02

0.
02

1.
91

3.
9
3

-
-

-
-

-
-

-
-

-
-

30
-0

.5
-1

5
0.

09
0.

11
0.

11
0.

26
0.

2
3

0
.0

7
0
.0

8
0
.0

8
0
.2

8
0
.1

3
0
.0

8
0
.0

9
0
.0

9
0
.2

3
0
.2

1
30

-0
.5

-3
0

0.
00

0.
00

0.
00

2.
88

24
.0

1
-

-
-

-
-

-
-

-
-

-
30

-0
.7

-1
5

0.
04

0.
04

0.
05

0.
44

0.
3
3

0
.0

3
0
.0

3
0
.0

4
0
.6

9
0
.7

5
0
.0

9
0
.1

1
0
.1

0
0
.0

8
0
.0

8
30

-0
.7

-3
0

0.
00

0.
00

0.
00

2.
41

23
.2

4
-

-
-

-
-

-
-

-
-

-
A

ve
ra

ge
0.

13
0.

14
0.

14
0.

55
3.

0
5

0
.1

5
0
.1

5
0
.1

2
0
.8

2
4
.9

0
0
.1

2
0
.1

2
0
.1

3
0
.3

7
2
.3

5

53

3.5 Numerical results

T
ab

le
3.

7:
N

u
m

b
er

of
cu

ts
ge

n
er

at
ed

b
y

th
e

cu
tt

in
g

p
la

n
e

an
d

th
e

B
ra

n
ch

-a
n
d
-C

u
t

al
go

ri
th

m
s

A
n

g
le

0
◦
≤
α
≤

1
0
◦

4
0
◦
≤
α
≤

5
0
◦

8
0
◦
≤
α
≤

9
0
◦

n
-
d

-
K

C
P

1
C

P
2

C
P

3
B

&
C

1
B

&
C

2
C

P
1

C
P

2
C

P
3

B
&

C
1

B
&

C
2

C
P

1
C

P
2

C
P

3
B

&
C

1
B

&
C

2
1
0
-0

.3
-5

0
.0

0
0
.0

0
0
.0

0
1
.8

0
3
.8

0
0
.8

0
0
.8

0
0
.8

0
4
.6

0
7
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.6

0
5
.8

0
1
0
-0

.3
-1

0
0
.6

0
0
.6

0
0
.6

0
7
.0

0
1
3
.6

0
5
.4

0
6
.4

0
6
.4

0
1
8
.2

0
2
1
.0

0
2
.6

0
3
.4

0
3
.4

0
1
2
.2

0
1
5
.0

0
1
0
-0

.3
-1

5
2
.0

0
3
.4

0
3
.4

0
1
5
.8

0
2
9
.8

0
6
.8

0
8
.6

0
8
.6

0
2
8
.2

0
3
0
.2

0
8
.2

0
1
0
.2

0
1
0
.0

0
3
3
.0

0
3
4
.4

0
1
0
-0

.5
-5

0
.8

0
1
.8

0
1
.8

0
3
.2

0
6
.8

0
0
.8

0
0
.8

0
0
.8

0
5
.2

0
8
.4

0
0
.0

0
0
.0

0
0
.0

0
2
.0

0
3
.4

0
1
0
-0

.5
-1

0
4
.8

0
7
.8

0
7
.4

0
2
0
.4

0
2
4
.8

0
1
0
.0

0
1
1
.2

0
1
1
.2

0
3
4
.4

0
4
8
.0

0
5
.8

0
8
.6

0
8
.2

0
3
1
.4

0
2
7
.2

0
1
0
-0

.5
-1

5
8
.6

0
1
1
.2

0
1
1
.2

0
3
9
.6

0
6
7
.8

0
2
8
.0

0
2
9
.0

0
2
9
.0

0
8
7
.8

0
1
0
2
.6

0
1
7
.6

0
3
0
.6

0
3
0
.8

0
5
5
.8

0
1
0
3
.4

0
1
0
-0

.7
-5

0
.2

0
0
.2

0
0
.2

0
3
.0

0
3
.4

0
0
.4

0
0
.6

0
0
.6

0
5
.0

0
1
0
.2

0
1
.6

0
2
.2

0
2
.2

0
6
.4

0
9
.6

0
1
0
-0

.7
-1

0
2
.4

0
6
.2

0
6
.4

0
2
3
.4

0
3
2
.8

0
1
7
.4

0
2
4
.8

0
2
5
.2

0
6
9
.2

0
7
0
.4

0
8
.0

0
1
0
.4

0
1
0
.4

0
3
3
.8

0
6
1
.4

0
1
0
-0

.7
-1

5
4
.6

0
7
.4

0
8
.4

0
2
2
.6

0
3
8
.0

0
4
9
.2

0
9
5
.4

0
9
4
.8

0
2
0
9
.8

0
3
4
2
.4

0
2
9
.0

0
5
4
.2

0
5
3
.6

0
9
0
.8

0
2
6
6
.0

0
2
0
-0

.3
-1

0
1
.8

0
2
.2

0
2
.2

0
1
6
.4

0
1
7
.2

0
3
.0

0
4
.8

0
4
.8

0
2
2
.0

0
2
2
.8

0
3
.6

0
3
.4

0
3
.6

0
1
3
.8

0
2
4
.4

0
2
0
-0

.3
-2

0
1
7
.0

0
2
8
.2

0
5
4
.6

0
1
1
8
.6

0
2
5
9
.4

0
6
5
.0

0
1
2
7
.4

0
1
2
4
.0

0
2
9
3
.2

0
8
1
2
.6

0
5
9
.4

0
1
1
9
.6

0
1
2
3
.6

0
2
7
3
.4

0
4
2
1
.2

0
2
0
-0

.3
-3

0
2
8
.6

0
6
3
.2

0
6
2
.6

0
1
4
5
.4

0
5
8
6
.8

0
1
7
8
.2

0
2
7
1
.2

0
2
8
5
.4

0
1
1
3
1
.4

0
6
7
2
6
.8

0
1
0
7
.8

0
1
8
3
.0

0
1
8
6
.4

0
4
6
0
.2

0
9
1
1
.2

0
2
0
-0

.5
-1

0
1
.6

0
2
.4

0
2
.4

0
1
1
.8

0
2
2
.0

0
5
.2

0
6
.0

0
6
.0

0
3
2
.8

0
2
5
.0

0
4
.6

0
7
.6

0
7
.8

0
1
7
.8

0
2
8
.4

0
2
0
-0

.5
-2

0
1
5
.0

0
3
1
.6

0
3
0
.4

0
1
0
4
.2

0
1
3
5
.2

0
1
7
2
.2

0
2
3
3
.0

0
1
8
4
.4

0
3
1
7
.6

7
6
6
5
.3

3
3
9
.4

0
7
4
.4

0
7
6
.0

0
1
6
7
.0

0
7
2
7
.6

0
2
0
-0

.5
-3

0
5
0
.8

0
1
2
6
.2

0
1
2
9
.0

0
2
9
6
.4

0
2
5
8
6
.8

0
1
0
9
.4

0
1
6
0
.6

0
2
6
6
.4

0
1
2
4
8
.4

0
7
3
6
2
.2

0
1
2
8
.6

0
2
2
1
.6

0
2
3
9
.6

0
6
7
1
.0

0
6
8
5
3
.6

0
2
0
-0

.7
-1

0
1
.4

0
2
.4

0
2
.4

0
9
.8

0
1
6
.8

0
4
.2

0
4
.8

0
4
.8

0
1
9
.4

0
2
5
.8

0
0
.6

0
0
.6

0
0
.6

0
1
3
.8

0
1
6
.6

0
2
0
-0

.7
-2

0
3
0
.6

0
6
5
.6

0
7
4
.8

0
1
1
2
.6

0
2
9
9
.0

0
1
6
7
.8

0
2
4
5
.2

0
1
8
4
.0

0
8
7
9
.7

5
6
1
8
2
.7

5
6
5
.2

0
1
0
8
.0

0
1
0
8
.8

0
1
7
9
.0

0
7
9
4
.2

0
2
0
-0

.7
-3

0
5
2
.2

0
1
3
4
.6

0
1
3
7
.8

0
3
8
8
.4

0
1
7
6
5
.0

0
2
1
7
.0

0
2
5
5
.4

0
2
7
1
.4

0
2
1
7
0
.2

0
1
4
1
5
4
.6

0
1
3
0
.6

0
2
0
7
.6

0
2
1
8
.0

0
6
7
5
.4

0
5
9
7
7
.6

0
3
0
-0

.3
-1

5
4
.0

0
6
.0

0
6
.0

0
2
6
.4

0
3
3
.6

0
1
9
.2

0
3
3
.2

0
3
2
.8

0
1
2
7
.6

0
1
2
0
.4

0
1
0
.6

0
1
3
.8

0
1
3
.2

0
5
2
.2

0
7
9
.2

0
3
0
-0

.3
-3

0
3
2
.6

0
7
5
.8

0
7
8
.2

0
2
1
2
.8

0
4
5
1
.8

0
-

-
-

-
-

-
-

-
-

-
3
0
-0

.5
-1

5
3
.4

0
6
.2

0
6
.2

0
3
2
.8

0
3
6
.4

0
1
1
.6

0
1
2
.4

0
1
2
.8

0
5
9
.0

0
4
3
.8

0
7
.8

0
9
.0

0
9
.0

0
3
5
.8

0
3
9
.8

0
3
0
-0

.7
-1

5
1
4
.6

0
1
9
.8

0
1
9
.8

0
6
3
.0

0
5
5
.0

0
2
6
.2

0
4
5
.2

0
4
6
.0

0
1
3
6
.4

0
1
3
8
.8

0
2
.8

0
3
.2

0
2
.8

0
1
4
.8

0
2
4
.8

0
A

v
er

a
g
e

1
2
.6

2
2
7
.4

0
2
9
.3

5
7
6
.1

5
2
9
4
.8

1
5
2
.2

8
7
5
.0

9
7
6
.2

0
3
2
8
.5

8
1
7
5
8
.1

5
3
0
.1

8
5
1
.0

2
5
2
.7

6
1
3
5
.3

0
7
8
2
.1

3

54

3.5 Numerical results

T
ab

le
3.

8:
N

u
m

b
er

of
se

p
ar

at
io

n
p
ro

b
le

m
s

so
lv

ed
b
y

th
e

it
er

at
iv

e
cu

tt
in

g
p
la

n
e

an
d

th
e

B
ra

n
ch

-a
n
d
-C

u
t

al
go

ri
th

m
s

A
n

gl
e

0◦
≤
α
≤

10
◦

4
0
◦
≤
α
≤

5
0
◦

8
0
◦
≤
α
≤

9
0◦

n
-
d

-
K

C
P

1
C

P
2

C
P

3
B

&
C

1
B

&
C

2
C

P
1

C
P

2
C

P
3

B
&

C
1

B
&

C
2

C
P

1
C

P
2

C
P

3
B

&
C

1
B

&
C

2
10

-0
.3

-5
1.

00
1.

00
1.

00
3.

00
3.

6
0

1
.4

0
1
.4

0
1
.4

0
4
.2

0
4
.8

0
1
.0

0
1
.0

0
1
.0

0
3
.0

0
4
.0

0
10

-0
.3

-1
0

1.
40

1.
40

1.
40

3.
60

4.
6
0

2
.6

0
3
.0

0
3
.0

0
7
.4

0
6
.4

0
2
.4

0
2
.6

0
2
.6

0
6
.2

0
7
.2

0
10

-0
.3

-1
5

1.
80

2.
40

2.
40

6.
20

6.
6
0

3
.4

0
4
.4

0
4
.4

0
8
.8

0
1
0
.2

0
3
.0

0
3
.6

0
3
.6

0
7
.8

0
7
.8

0
10

-0
.5

-5
1.

80
2.

80
2.

80
4.

20
6.

0
0

1
.4

0
1
.4

0
1
.4

0
5
.0

0
5
.8

0
1
.0

0
1
.0

0
1
.0

0
3
.0

0
3
.2

0
10

-0
.5

-1
0

2.
80

4.
40

4.
20

9.
60

11
.8

0
4
.4

0
4
.8

0
4
.8

0
1
1
.2

0
1
4
.2

0
3
.4

0
4
.8

0
4
.6

0
1
0
.6

0
9
.8

0
10

-0
.5

-1
5

3.
40

4.
40

4.
20

10
.8

0
22

.8
0

7
.0

0
9
.0

0
9
.0

0
1
7
.8

0
2
0
.4

0
6
.0

0
1
0
.0

0
1
0
.0

0
1
4
.4

0
2
8
.4

0
10

-0
.7

-5
1.

20
1.

20
1.

20
4.

40
3.

4
0

1
.4

0
1
.6

0
1
.6

0
5
.2

0
5
.4

0
1
.8

0
2
.2

0
2
.2

0
5
.0

0
6
.0

0
10

-0
.7

-1
0

2.
60

4.
60

4.
60

10
.4

0
12

.4
0

7
.4

0
1
1
.0

0
1
0
.8

0
2
2
.8

0
2
2
.6

0
4
.2

0
4
.8

0
4
.8

0
1
1
.2

0
1
7
.8

0
10

-0
.7

-1
5

3.
00

4.
00

4.
60

7.
60

11
.0

0
1
1
.0

0
1
9
.4

0
1
9
.2

0
4
0
.0

0
6
9
.6

0
8
.4

0
1
3
.0

0
1
2
.4

0
1
9
.2

0
5
5
.8

0
20

-0
.3

-1
0

2.
00

2.
00

2.
00

6.
40

5.
6
0

2
.6

0
3
.6

0
3
.6

0
9
.6

0
7
.6

0
2
.8

0
3
.0

0
3
.0

0
6
.2

0
7
.6

0
20

-0
.3

-2
0

6.
20

9.
60

18
.0

0
23

.0
0

64
.0

0
1
3
.8

0
2
6
.4

0
2
6
.0

0
4
7
.6

0
1
3
8
.0

0
1
3
.6

0
3
0
.4

0
3
1
.6

0
4
9
.6

0
9
7
.4

0
20

-0
.3

-3
0

6.
40

15
.4

0
14

.8
0

23
.8

0
10

6.
8
0

1
7
.4

0
2
1
.6

0
2
3
.6

0
1
0
5
.2

0
7
2
2
.4

0
1
4
.4

0
2
3
.4

0
2
3
.6

0
4
9
.6

0
1
0
6
.4

0
20

-0
.5

-1
0

2.
40

2.
80

2.
80

6.
80

7.
2
0

3
.2

0
3
.8

0
3
.8

0
1
3
.0

0
8
.0

0
3
.6

0
5
.2

0
5
.4

0
1
0
.6

0
1
0
.8

0
20

-0
.5

-2
0

5.
80

9.
20

8.
40

22
.8

0
27

.2
0

2
4
.6

0
4
7
.2

0
3
3
.2

0
7
7
.6

0
3
6
1
.0

0
1
0
.0

0
1
9
.6

0
1
9
.6

0
2
8
.2

0
1
1
0
.6

0
20

-0
.5

-3
0

9.
20

18
.8

0
18

.8
0

43
.2

0
30

1.
6
0

1
5
.6

7
1
9
.0

0
2
0
.8

0
7
6
.0

0
4
7
1
.0

0
1
6
.6

0
2
4
.2

0
2
6
.0

0
6
6
.6

0
8
2
9
.0

0
20

-0
.7

-1
0

1.
80

2.
20

2.
20

6.
00

5.
8
0

3
.2

0
3
.4

0
3
.4

0
8
.2

0
9
.4

0
1
.6

0
1
.6

0
1
.6

0
6
.6

0
5
.2

0
20

-0
.7

-2
0

10
.4

0
25

.0
0

28
.8

0
31

.8
0

10
6.

0
0

2
6
.4

0
4
4
.8

0
2
6
.6

0
1
1
0
.2

5
6
5
5
.2

5
1
5
.4

0
2
3
.0

0
2
3
.4

0
2
9
.6

0
1
3
8
.8

0
20

-0
.7

-3
0

9.
20

17
.4

0
18

.0
0

60
.0

0
22

2.
6
0

1
5
.0

0
1
5
.8

0
1
6
.8

0
1
5
6
.4

0
1
0
9
6
.2

0
1
3
.2

0
1
7
.8

0
1
8
.6

0
6
7
.0

0
6
2
2
.8

0
30

-0
.3

-1
5

2.
80

3.
80

3.
80

8.
80

8.
0
0

8
.8

0
1
3
.8

0
1
3
.6

0
3
9
.8

0
3
3
.0

0
5
.2

0
7
.6

0
7
.4

0
1
6
.8

0
3
1
.6

0
30

-0
.3

-3
0

8.
80

17
.4

0
18

.2
0

35
.0

0
81

.8
0

-
-

-
-

-
-

-
-

-
-

30
-0

.5
-1

5
2.

40
3.

80
3.

80
13

.4
0

10
.2

0
6
.4

0
7
.0

0
7
.0

0
1
5
.4

0
9
.6

0
5
.0

0
5
.4

0
5
.4

0
1
2
.6

0
9
.4

0
30

-0
.5

-3
0

11
.4

0
18

.2
0

18
.4

0
54

.8
0

45
8.

6
0

-
-

-
-

-
-

-
-

-
-

30
-0

.7
-1

5
6.

60
8.

60
8.

60
24

.0
0

17
.6

0
9
.0

0
1
5
.8

0
1
6
.0

0
3
4
.8

0
3
8
.0

0
2
.6

0
3
.0

0
2
.8

0
8
.0

0
7
.6

0
30

-0
.7

-3
0

11
.2

0
19

.0
0

19
.6

0
47

.2
0

48
0.

6
0

-
-

-
-

-
-

-
-

-
-

A
ve

ra
ge

4.
82

8.
31

8.
86

19
.4

5
82

.7
4

8
.8

6
1
3
.2

5
1
1
.9

0
3
8
.8

7
1
7
6
.6

1
6
.4

4
9
.8

7
1
0
.0

3
2
0
.5

6
1
0
0
.8

2

55

3.5 Numerical results

(a) Gap between the optimal solu-
tion and the linear relaxation

(b) percentage of CPU-SP/CPU-
total

(c) Number of cuts generated by
CP and B&C algorithms

(d) Number of separation problems
solved

Figure 3.2: Additional statistics for the algorithms and formulations

generated by each algorithm. As we can see in Figure 3.2c, the CP1 algorithm

generates a smaller number of cuts to obtain the optimal solution than the other

iterative cutting plane and branch-and-cut algorithms. Specifically, B&C1 (resp.

B&C2) generates more than six (resp. twenty) times the number of cuts of CP1.

In addition, we can remark that the similar performances of CP1 and CP2 can

be partly explained by the equivalence between the two valid inequalities used in

these algorithms. The same remark can be shown for the number of iterations in

Figure 3.2d.

To evaluate the performance of the different formulations, a performance pro-

file [53] of solution time on the random instances is given in Figure 3.3. The chart

represents the proportion of instances for which each algorithm is not more than

x-times worst than the best algorithm. For example, if we take x = 1, we can

see that CP3 is the best algorithm for 40% of instances, while CP1 has the best

CPU-time for more than 20% of instances.

56

3.5 Numerical results

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lve
d

not more than x-times worst than the best algorithm

CP3
CP1
CP2

B&C1
B&C2
B&B2
B&B1

Figure 3.3: Performance profile comparing the different algorithms for random
instances.

Table 3.9 sums up the number of instances solved to optimality in 3600s. The

iterative cutting plane approaches CP1 and CP2 are similar to each other. They

can solve up to 19% (resp. 8%) more instances than the compact formulations

(resp. the branch-and-cut algorithms). Also, CP3 solves more instances than

the other methods.

Table 3.9: Number of random instances solved to optimality

B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
0◦ ≤ α ≤ 10◦ 100 109 120 120 120 110 109
40◦ ≤ α ≤ 50◦ 88 89 104 104 120 94 92
80◦ ≤ α ≤ 90◦ 88 97 105 105 120 102 102

Sum 276 295 329 329 360 306 303

3.5.2 Real instances

We apply the proposed algorithms to solve FCNDP-SPC on real instances from

the literature representing the road networks of Ravenna (Italy) and Albany, NY

(USA). In these instances, the fixed costs are equal to zero.

57

3.5 Numerical results

3.5.2.1 Ravenna data

Figure 3.4: Hazmat transportation network of Ravenna, Italy.

The area of Ravenna, Italy (Figure 3.4, [23]), measures 28.8km× 26km [23].

To describe its road network, 111 nodes and 143 edges are considered. There

are 8 nodes with a transportation requirement for 4 hazmats: LPG, Methanol,

Gasoline, and Chlorine. The 8 nodes form 35 origin-destination (O-D) pairs, and

the number of commodities to be transported between each O-D varies between 16

and 29684. The variable cost associated to each edge is measured using population

density. Seven instances are taken from the original Ravenna data with different

number of commodities K ∈ {5, 10, 15, 20, 25, 30, 35}, where, in each case, we

take the first K pairs of origin-destination. The results obtained after applying

the six models on these instances are displayed in Table 3.10.

The presented results show that the iterative cutting plane algorithms are

faster, in average, than the other algorithms and are able to solve more instances

to optimality. Also, our approach CP1 is more efficient for this set of instances.

Unlike the other instances, in Ravenna data, many commodities have the

same origin and the same destination. For this reason, the inclusion of the valid

inequality (3.10) as a constraint in the initial model can improve the results.

58

3.5 Numerical results

Table 3.10: Comparison of CPU time in seconds on the Ravenna data

K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
5 41.91 0.45 1.59 1.52 1.52 2.32 2.45
10 145.90 0.98 3.15 3.09 2.98 3.29 4.68
15 1,169.96 3.80 33.01 23.13 27.88 50.75 96.00
20 - 8.98 51.61 47.93 46.21 78.13 2,896.65
25 - 259.91 82.74 86.72 63.15 - -
30 - 1,494.56 151.28 283.88 265.86 - -
35 - - 222.11 451.68 351.18 - -
Average - - 77.93 128.28 108.40 - -

Table 3.11 presents the CPU time obtained after adding the valid inequality.

According to the results in Table 3.11, the addition of valid inequality (3.10)

Table 3.11: CPU time in seconds on the Ravenna data with additional valid
inequality

K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
5 41.91 0.45 1.75 1.66 1.53 1.59 1.57
10 160.03 1.10 3.49 3.61 3.09 2.32 2.38
15 585.17 2.43 5.94 6.40 5.34 3.66 3.92
20 - 8.98 70.90 42.98 35.28 205.94 35.47
25 - 151.27 63.50 55.25 43.95 105.33 355.98
30 - 371.25 57.83 105.59 66.78 156.80 290.37
35 - - 84.20 174.00 119.83 229.43 414.51
Average - - 36.63 55.64 39.40 100.72 157.74

reduces the running time for all algorithms. Comparing Tables 3.10 and 3.11, we

see that the branch-and-cut algorithms solved more instances to optimality when

we include inequalities (3.10). Also, the results show that the CPU times for all

the algorithms with the constraint (3.10) is about 2.25 times faster than the CPU

of algorithms without it.

59

3.5 Numerical results

3.5.2.2 Albany data

The Albany data set is composed of information on the highway system of Albany,

NY, USA (Figure 3.5), used for the routing of Hazmat shipments problem [131].

The highway system is represented by a network of 90 nodes and 149 edges.

Figure 3.5: Hazmat transportation network of Albany, USA.

Table 3.12: Comparison of CPU time on the Albany data

K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
5 83.97 0.65 23.43 37.06 20.13 5.65 2.71
10 - 919.53 87.01 - 996.03 332.79 -
15 - - 193.51 - - - -
20 - - 255.40 - - - -
25 - - 652.84 - - - -

We generated a set of origin-destination pairs for each shipment. The number

of commodities takes a value in the set K = {5, 10, 15, 20, 25}, and the demand

for each O-D is generated uniformly in [1, 100]. Table 3.12 displays the results

obtained by each method.

According to the results in Table 3.12, only CP1 is able to find the optimal

solution for up to 25 different commodities.

60

Chapter 4

Fixed Charge Network Design

Problem with User Optimal

Flows

In recent years, green networking has attracted a lot of attention from device

manufacturers and Internet Service Providers (ISP) to reduce the energy con-

sumption. In the literature, the energy-aware traffic engineering problem is pro-

posed to minimize the total energy consumption by switching off unused network

devices (routers and links) while guaranteeing full network connectivity.

In this chapter, we are interested in the problem of energy-aware Traffic En-

gineering while using multi-path routing (ETE-MPR) to minimize link capacity

utilization in ISP backbone networks. To this end, we propose a bi-level optimiza-

tion model where the upper level represents the energy management function and

the lower level refers to the deployed multi-path routing protocol. Then, we refor-

mulate it as a one-level MILP replacing the second level problem by different sets

of optimality conditions. We further use these formulations to solve the problem

with compact formulations, cutting plane and branch-and-cut algorithms. The

61

4.1 Introduction

computational experiments are performed on real instances to compare the pro-

posed algorithms and to evaluate the efficiency of our model against the existing

single-path and multi-objective approaches.

4.1 Introduction

As we are entering the area of Internet of Everything, the number of devices con-

nected to the IP networks will increase by one and a half times the global pop-

ulation (8 billion) by 2022, says the latest Cisco Visual Networking Index (VNI)

[42]. Consequently, the monthly global IP traffic will be 77 exabytes by 2022,

and the annual traffic will reach almost one zettabyte [42]. With the tremendous

growth of Internet traffic, the network energy consumption is inherently growing

fast with a rate of 10% per year, which exceeded 350 TWh and represented 1.8%

of the worldwide electricity consumption in 2012 [92]. It is even reported that

communication networks will consume as much as 51% of the global electricity in

the worst-case by 2030, if its energy efficiency is not improved enough [8]. Thus,

the problem of energy efficiency is becoming critical for communication networks

nowadays.

To reduce energy consumption, green networking has attracted a lot of atten-

tion from device manufacturers and Internet Service Providers (ISP). To this end,

many technologies and approaches have been proposed by the networking commu-

nity to cut the carbon footprint of the ISP backbone networks [2; 6; 22; 38; 46; 78].

Among them, one promising solution is the energy management of network ele-

ments including routers and communication links [2; 6; 38; 41]. In fact, network

resources like processing power and memory are oversized in communication net-

works nowadays, which results in a low utilization of 30-40% in low traffic periods

[46]. As a result, important energy savings can be obtained by switching into the

62

4.1 Introduction

sleeping mode the network elements which are not used for the data delivery

during a certain period. Following this idea, authors in [38] tried to minimize the

total energy consumption by switching off unused network devices while guar-

anteeing full network connectivity. In [6], the authors studied the energy-aware

traffic engineering problem subject to elastic traffic and max-min fair bandwidth

allocation. The work in [2] is focused on the energy minimization strategy that

selectively switches off devices according to the traffic level. The authors of [41]

proposed an OSPF-integrated routing strategy for QoS-aware energy saving in

backbone networks.

However, all the work mentioned above only considered the single path routing

(using protocols like Routing Information Protocol (RIP) or Open Shortest Path

First (OSPF) protocol) for the energy-aware traffic engineering [2; 6; 38; 41],

where only one path is used per communication request to deliver data from

its source node to its destination. The single path routing strategy may lead

to a high blocking probability when some network links are congested during

the period of high traffic load. In light of this, multi-path routing has been

investigated [13; 36; 39; 99; 104; 127; 142].

Recent works show that Internet-wide multi-path routing is feasible and very

attractive: First, utilizing diverse paths through multi-path routing enables to

reduce blocking probability by load balancing, which permits to improve both the

utilization efficiency of network bandwidth and the transmission reliability. Sec-

ond, a higher Quality of Service (QoS) and Quality of Experience (QoE) can be

obtained [95; 99; 127]. Thus, many multi-path routing protocols and algorithms

have been proposed, for instance, generalized destination-based multi-path rout-

ing [142], equal-cost multi-path routing [39] and minimum routing cost multi-path

routing [104]. In general, there are two main variants of multi-path routing, whose

optimization goal is either to minimize the network congestion ratio through load

63

4.1 Introduction

balancing [13; 80; 111; 142], or to minimize the total routing cost of traffic flows

on all paths [36; 39; 104].

In this work, we deal with the problem of energy-aware traffic engineering

while using multi-path routing to minimize link capacity utilization in ISP back-

bone networks. We suppose the network control plane disposes of several key

functions like energy management, routing, and signaling. To achieve energy-

efficient, we suppose that the energy management function and the deployed

routing protocol work independently. On the one hand, to improve the energy

efficiency, the energy management function of the ISP network tends to minimize

the network energy consumption by putting on sleep unused network devices ac-

cording to the actual traffic demands. On the other hand, the network operator

should also assure that the deployed routing protocol is able to provide all the

traffic demands in the link capacity constraint. We assume that the multi-path

routing protocol minimizing total link capacity utilization (a simple version of

total routing cost of all traffic flows on paths) [36; 39; 104] is used by the ISP

network operator. However, the energy consumption and link capacity utiliza-

tion cannot be optimized simultaneously, and an equilibrium should be achieved

for the two control plane functions. Different from the literature, we propose a

bi-level formulation for this green network optimization problem instead of the

traditional single-level one [2].

Our bi-level formulation is motivated by the following two reasons. First,

from the point of view of the ISP network operator, it is difficult to tune the

weights of two network resources (i.e., energy consumption and link capacity

utilization) so as to find a good trade-off. In contrast, our formulation enables

to find an equilibrium between the two network resources utilization, which is

transparent for the ISP network operator. Second, instead of developing new

energy-aware routing protocols, we can take advantage of the existing work by

64

4.2 Problem definition and notation

deploying directly the proposed multi-path routing protocols in [36; 39; 104],

which minimize the total link capacity utilization. In our bi-level model, the

upper level represents the energy management function aiming at cutting the total

network energy consumption. The lower level refers to the deployed multi-path

routing protocol, whose objective is to reduce the total link capacity utilization.

4.2 Problem definition and notation

We consider an ISP backbone network (Figure 4.1) with slow dynamics, where the

traffic demand is supposed to be relatively stable during a period of time. With

the help of intelligent network management like Software Defined Networking

(SDN), the control plane of the ISP network disposes of key functions like energy

management and routing. This kind of network management permits us to change

the state of network devices and engineer the traffic in a centralized way.

Figure 4.1: ISP model architecture.

To correctly model the energy consumption of a router, we should get famil-

iar with its architecture. We consider the widely used router architecture, which

consists of a chassis and a set of line cards [2; 6]. The chassis is used to provide

computation and switching functionalities. One example can be chassis Junifer

65

4.2 Problem definition and notation

M10i. Line cards are usually used to provide communication interfaces and net-

work processing. To achieve power savings, the router elements (chassis and line

cards) can be powered on and off by the control plane energy management func-

tion. Once activated, the chassis has a constant energy consumption independent

from the amount of traffic passing through the router. It should be noted that

the chassis can only be put into sleep when all of its line cards are OFF. To

satisfy heterogeneous traffic, a router can be plugged with different kinds of line

cards, which result in distinct energy efficiencies. For instance, we have line cards

like Gigabit-Eth (2Gbps), Fast-Eth 12 ports (2.4Gbps), SONET /SDH OC-48c

(5Gbps), among others, whose capacity and hourly power consumption are listed

in [2; 6]. However, a communication link must be connected to a same type of

line cards available on the two ending routers. Thus, each communication link

is accordingly associated with a capacity and an energy-efficiency factor, which

depends on the types of line cards used. For energy savings, only a subset of

line cards are powered on to assure just enough bandwidth for the carried traffic

while the rest will be put to sleep. For simplicity reasons, we thus assume the

energy consumption on communication links is proportional to its carried traffic

rate.

Figure 4.2: The graph representation of the ISP network (Figure).

We consider the ISP backbone network modeled by the bi-directed graph

66

4.3 Mathematical formulations

G(V,A) (Figure 4.2), where V is the set of routers and A represents the set

of communication links. Since the backbone networks are bi-directed and for

modelling the activation link constraints (Section 4.3), we define the set of (undi-

rected) edges associate to A as E = {{i, j} : (i, j) ∈ A or (j, i) ∈ A}.

Let Cij ≥ 0 denotes the capacity of the link (i, j) ∈ A defined by the line cards

on routers i and j, and K be the set of traffic demands. Demand k ∈ K must

send a volume of φk from node o(k) to node d(k).We denote by Pi the energy

consumption of the chassis in router i, and we use gij = gji to denote the energy

efficiency of the line cards connecting the link (i, j) ∈ A.

The energy-aware traffic engineering with multi-path routing problem (ETE-

MPR) problem consists to select a set of routers (nodes) and links (edges) to be

activated with minimum energy consumption. Assuming that each traffic demand

uses a multi-path flow minimizing the total link capacity utilization.

4.3 Mathematical formulations

In this section, we will introduce four different formulations for the ETE-MPR

problem. We start by a bi-level integer programming model in Subsection 5.3.1,

then, the model will be transformed into three one-level MILP formulations (Sub-

sections 4.3.2, 4.3.3 and 4.3.4). For comparison purpose, the Subsection 4.3.5 will

be devoted to present the unsplittable flow version of the energy-aware traffic

problem.

4.3.1 Bi-level formulation

The problem is naturally cast as a bi-level optimization problem where the upper

level represents the energy management function and the lower level refers to

the deployed multi-path routing protocol. For each i ∈ V and e(i, j) = {i, j} ∈

67

4.3 Mathematical formulations

E, we introduce the binary variables zi and ye that represent the power status

(ON/OFF) of router i and link e = {i, j}, respectively. Furthermore, for each

k ∈ K and (i, j) ∈ A let the continuous positive variable xkij be the flow on (i, j)

of demand k.

The problem belongs to the class of NP-hard problems and can be modeled

as a bi-level mixed integer programming problem, as follows:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij (4.1a)

s.t. zi ∈ {0, 1} , ∀i ∈ V, (4.1b)

ye ≥ zi + zj − 1, ∀e = {i, j} ∈ E, (4.1c)

ye ≤ zi, ∀e = {i, j} ∈ E, (4.1d)

ye ≤ zj, ∀e = {i, j} ∈ E, (4.1e)

min
∑
k∈K

∑
(i,j)∈A

1

Cij
xkij (4.1f)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V, ∀k ∈ K, (4.1g)

∑
k∈K

xkij ≤ Cijye(i,j), ∀(i, j) ∈ A, (4.1h)

xkij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (4.1i)

where:

bki =


φk, if i = o(k),

−φk, if i = d(k),

0, otherwise.

The upper-level objective function (4.1a) aims to minimize the energy consump-

tion of routers and links, while the objective of the second level problem is to

68

4.3 Mathematical formulations

minimize the total link capacity utilization (5.4e). Constraints (4.1c)-(4.1e) en-

sure that a link (i, j) is activated only if the two routers i and j are switched ON.

Constraints (4.1g) and (4.1h) define the classical flow and capacity constraints,

respectively. While (4.1i) requires the variables xkij to be non-negative.

4.3.2 One level formulation

The problem can be reformulated as a one-level integer programming problem

by replacing the second level problem by the associated optimality conditions.

Following the classical reformulation used in [56; 109?], among others, we can

apply the fundamental theorem of duality and complementarity slackness condi-

tions [16] to replace the follower problem:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij

s.t. (4.1b)− (4.1e),∑
(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V, ∀k ∈ K, (4.2a)

(Cijye(i,j) −
∑
k∈K

xkij)Wij = 0, ∀(i, j) ∈ A, ∀k ∈ K, (4.2b)

(
1

Cij
+ πki − πkj +Wij)x

k
ij = 0, ∀(i, j) ∈ A, ∀k ∈ K, (4.2c)

1

Cij
+ πki − πkj +Wij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, (4.2d)∑

k∈K

xkij ≤ Cijye(i,j), ∀(i, j) ∈ A, (4.2e)

Wij ≥ 0, ∀(i, j) ∈ A, (4.2f)

πki ∈ R, ∀i ∈ V, ∀k ∈ K, (4.2g)

xkij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (4.2h)

69

4.3 Mathematical formulations

This formulation contains non-linear constraints (4.2b) and (4.2c). We can

linearize them using the big-M method by adding a new binary variable for each

constraint. After this modification, we obtain a one-level mixed integer program-

ming reformulation for (4.1), as follows:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij

s.t. (4.1b)− (4.1e), (4.2d)− (4.10i)∑
(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V, ∀k ∈ K, (4.3a)

Cijyee(i,j) −
∑
k∈K

xkij ≤Mηij, ∀(i, j) ∈ A, (4.3b)

Mηij +Wij ≤M, ∀(i, j) ∈ A, (4.3c)

1

Cij
+ πki − πkj +Wij ≤Mµkij, ∀(i, j) ∈ A, ∀k ∈ K, (4.3d)

Mµkij + xkij ≤M, ∀(i, j) ∈ A, ∀k ∈ K, (4.3e)

ηij ∈ {0, 1} , ∀(i, j) ∈ A, (4.3f)

µkij ∈ {0, 1} , ∀(i, j) ∈ A, ∀k ∈ K. (4.3g)

where M is a precomputed large number. Unlike the other constraints, where

the value of M cannot be bounded, in constraint (4.3b) M can be replaced by a

lower bound M = Cij for each (i, j) ∈ A.

4.3.3 BILP formulation based on flow constraints

We propose an alternative one level formulation to the problem where the second

level problem is replaced by a set of constraints eliminating unfeasible flows. Let

70

4.3 Mathematical formulations

us denote by F the set of all feasible flows defined as:

F = {F = (x, y, z) : (4.1b)− (4.1e), (4.1g)− (4.1i)}

For each F ∈ F, we also define C(F) =
∑
k∈K

∑
(i,j)∈A

1
Cij
xkij as the total capacity link

utilization of a flow F and G(F) = {e ∈ E : ye = 1} as the associated set of

activated edges.

The flow F = (x, y, z) is bi-level unfeasible if there exists a solution F ′ =

(x′, y, z) ∈ F such that:

C(F ′) < C(F).

Hence, the bi-level problem can be reformulated as:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij

s.t. (4.1b)− (4.1e)∑
(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K,

(4.4a)∑
k∈K

∑
(i,j)∈A

1

Cij
xkij ≤ C(F) + (|G(F)| −

∑
e∈G(F)

ye)M, ∀F ∈ F,

(4.4b)∑
k∈K

xkij ≤ Cijye(i,j), ∀(i, j) ∈ A,

(4.4c)

xkij ≥ 0, ∀(i, j) ∈ A,∀k ∈ K.

(4.4d)

Constraint (4.4b) is in charge of eliminating all bi-level unfeasible flows F on

71

4.3 Mathematical formulations

the set of activated links {e = {i, j} ∈ E : ye = 1}. Again, M is a precomputed

large number. The above formulation contains a polynomial number of variables

and an exponential number of constraints.

4.3.4 Residual network optimality conditions

We can remark that the follower problem is a particular case of the minimum cost

flow problem where the cost of each arc (i, j) is equal to 1
Cij

. In this subsection,

we propose to reformulate this problem by using a set of optimality conditions

for the min-cost flow problems defined on the residual network (generalization of

the one-commodity minimum cost flow optimality conditions presented in Section

2.3).

We start by giving the definition of the residual network and the associated

optimality conditions. Let xk = (xkij)(i,j)∈A ∈ R|A| be the flow between the origin-

destination pair of demand k ∈ K. Notice that x = (xk)kı,K ∈ R|A|×|K|.

Definition 2 (Residual network). The residual network associated to xk is the

graph denoted by Gk(x) = (V,Ak(x)) and defined by the set of activated and un-

saturated arcs Ak(x). This set of arcs is defined as the union of the two following

sets:

Ak+(x) =

{
(i, j) ∈ A : 0 <

∑
k′∈K

xk
′

ij < Cij, xkji = 0

}
Ak−(x) =

{
(i, j) ∈ A : xkji > 0

}
.

Each arc of Gk(x) is associated with a residual cost c′k defined as:

c′kij =


1
Cij
, if (i, j) ∈ Ak+,

− 1
Cij
, if (i, j) ∈ Ak−.

72

4.3 Mathematical formulations

s

1 2

d

3

2

1

2
2

1

(a) Unfeasible flow.

s

1 2

d

3

1

2

1
1

2

(b) Feasible flow.

s

1 2

d

3

1

-1

-1

-1

-1
1

-1
(c) The residual network of (4.3a).

s

1 2

d

3

1

-1

-1

-1

1

-1

1

-1
(d) The residual network of (4.3b).

Figure 4.3: Example of an unfeasible (feasible) flow violating (satisfying) negative
cycle conditions. All link capacities are equal to 2 with Φ = 3 to be sent from s
to d.

Theorem 12 (Residual network optimality ([4], chapter 9)). A feasible flow xk

of a demand k is optimal if and only if the network G(xk) has no negative cycles.

This condition is equivalent to:

c′kij + Πk
i − Πk

j ≥ 0, ∀(i, j) ∈ G(xk),∀k ∈ K. (4.5a)

To illustrate, let us consider the example in Figure 4.3. We suppose that

the capacity of each link is equal to 2 and we have a demand with φ = 3 to be

sent from the node s to d. Figure 4.3 represents two solutions (4.3a) and (4.3b)

and the associated residual networks (4.3c) and (4.3d), respectively. The solution

in Figure (4.3a) is unfeasible because the associated residual network contains

73

4.3 Mathematical formulations

a negative cycle: s-3-d-2-1-s (resp,(4.3b) is feasible because (4.3d) contains no

negative cycle).

We can model the residual network associated with a demand k by using

binary variables µk+
ij , µk−ij , and the additional variables νij for each (i, j) ∈ A.

Proposition 2. Let µ ∈ {0, 1}2×|A|×|K|, ν ∈ {0, 1}|A| be a solution of:

Cij −
∑
k′∈K

xk
′

ij ≤ Cijνij, ∀(i, j) ∈ A, (4.6a)

µk+
ij + µk−ij ≤ ye(i,j), ∀(i, j) ∈ A, (4.6b)

µk−ij ≤ xkji ∀(i, j) ∈ A, (4.6c)

Cjiµ
k−
ij ≥ xkji ∀(i, j) ∈ A, (4.6d)

Cijµ
k+
ij ≤ Cij −

∑
k′∈K

xk
′

ij ∀(i, j) ∈ A, (4.6e)

µk+
ij ≥ ye − µk−ij + νij − 1 ∀(i, j) ∈ A, (4.6f)

µk+
ij , µ

k−
ij ∈ {0, 1} ∀(i, j) ∈ A, (4.6g)

νij ∈ {0, 1} ∀(i, j) ∈ A. (4.6h)

1. For each (i, j) ∈ A, νij = 1 if:
∑
k∈K

xkij < Cij.

2. Arc (i, j) ∈ Ak−(x) iff: µk−ij = 1.

3. Arc (i, j) ∈ Ak+(x) iff: µk+
ij = 1.

Proof. We see that the set of constraints (4.6a)-(4.6h) is decomposable by arc.

Hence, consider an arc (i, j) ∈ A.

1. is guaranteed by constraints (4.6a).

2. is guaranteed by constraints (4.6c) and (4.6d):

• (i, j) /∈ Ak− ⇒ xkji = 0 (4.6c) µk−ij = 0.

74

4.3 Mathematical formulations

• (i, j) ∈ Ak− ⇒ xkji > 0 (4.6d) µk−ij = 1.

3. is guaranteed by constraints (4.6a)-(4.6f):

• (i, j) ∈ Ak+ (4.6a), (4.6c) µk−ij = 0 and νii = 1 (4.6f) µk+
ij = 1.

• (i, j) /∈ Ak+Definition 2


Cij −

∑
k∈K

xkij = 0 (4.6e) µk+
ij = 0,

or

xkji > 0 (4.6c), (4.6f) µk+
ij = 0.

Hence, for any solution to (4.6), arc (i, j) ∈ Ak+(x) (resp. (i, j) ∈ Ak−(x)) if

µk+
ij = 1 (resp. µk−ij = 1).

Using Theorem 12 and Proposition 2, the ETE-MPR problem can be refor-

mulated with the residual network optimality conditions.

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij

s.t. (4.1b)− (4.1e), (4.6a)− (4.6h),∑
(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V, ∀k ∈ K, (4.7a)

∑
k∈K

xkij ≤ Cijye(i,j), ∀(i, j) ∈ A, (4.7b)

1

Cij
+ πki − πkj ≥M(µk+

ij − 1) ∀(i, j) ∈ A, ∀k ∈ K (4.7c)

− 1

Cij
+ πki − πkj ≥M(µk−ij − 1) ∀(i, j) ∈ A, ∀k ∈ K (4.7d)

xkij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (4.7e)

Constraints (4.7c) and (4.7d) eliminate negative cycles in the residual network

associated to each flow xk, for all k ∈ K. Since these constraints represent

75

4.3 Mathematical formulations

optimality condition (4.5a) associated to our problem.

4.3.5 Single path routing

Section 4.6 presents a comparison of the multi-path routing model with the ex-

isting single-path model. Thus, in this subsection, we describe the bi-level prob-

lem of minimizing energy and link utilization while using a single path protocol

OSPF. The single path routing problem consists of finding a single shortest path

for each demand k ∈ K from its source node o(k) to the destination node d(k).

This problem can be formulated as:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijφ
kxkij

s.t. (4.1b)− (4.1e),

min
∑
k∈K

∑
(i,j)∈A

1

Cij
xkij (4.8a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V, ∀k ∈ K, (4.8b)

∑
k∈K

φkxkij ≤ Cijye(i,j), ∀(i, j) ∈ A, (4.8c)

xkij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ K, (4.8d)

where:

bki =


1, if i = o(k),

−1, if i = d(k),

0, otherwise.

xk ∈ {0, 1}|A| represents here the path for demand k. Then, the flow in each arc

(i, j) ∈ A will be given by φkxkij in this single-path routing model.

The follower problem is now an integer linear program. Thus, the KKT opti-

76

4.3 Mathematical formulations

mality conditions cannot be applied here. We propose to formulate the single path

routing problem as a one level BILP program with flow elimination constraints

as:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijφ
kxkij

s.t. (4.1b)− (4.1e),∑
(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K,

(4.9a)∑
k∈K

φkxkij ≤ Cijye(i,j), ∀(i, j) ∈ A,

(4.9b)∑
k∈K

∑
(i,j)∈A

1

Cij
xkij ≤ C(P) + (|E(P)| −

∑
e∈E(P)

ye)M, ∀P ∈ P,

(4.9c)

xkij ∈ {0, 1}, ∀(i, j) ∈ A,∀k ∈ K.

(4.9d)

where, P is the set of all feasible solutions P = (x∗, y∗, z∗), and E(P) is the

set of activated arcs on P defined by E(P) = {e ∈ E : y∗ = 1}. In (4.9c),

C(P) represents the total cost of P , and M is a precomputed large number that

can be replaced by
∑
k∈K

Φk. The single path routing problem is studied in [28]

without capacity constraints, in this paper the bi-level problem is reformulated

using the constraint (4.9c) which gave good results comparing the other proposed

reformulations.

77

4.4 Alternative application: Minimising energy in Data Center
Networks

4.4 Alternative application: Minimising energy

in Data Center Networks

Energy consumption has become a critical problem not only in telecommunication

but also in data center networks. In the last years, one of the most fundamen-

tal service models is the Cloud Computing. Consequently, many companies as

Microsoft, Google, and Amazon have deployed large data-centers to provide ad-

equate computing resources in clouds. To provide robust computing capabilities,

these data centers generate a large amount of energy waste due to inefficient use of

physical resources, leading to higher expenses and environmental concerns [137].

In this application, we study the problem of energy management in data

center networks (DCNs) using multi-path routing with minimum link capacity

utilization.

We consider a data-center network modeled as a distributed computing sys-

tem represented by the network G = (V,E) where the set of nodes V represents

connected servers the network (switches and hosts) and E is the set of communi-

cation network links. Similarly to the precedent application, we suppose that the

energy management function and the deployed routing protocol operate indepen-

dently by two different agents. On the one hand, to improve the energy efficiency,

the energy management function of the ISP network tends to minimize the net-

work energy consumption by putting on sleep unused network devices according

to the actual traffic demands. On the other hand, the network operator should

also ensure that the deployed routing protocol is able to handle all traffic demands

within the available capacities while minimizing the capacity link utilization.

In the literature, the problem of minimizing energy consumption in data center

networks was never considered as bi-level model. Our bi-level model is motivated

by the existence of two uncooperative network operators with different objectives.

78

4.4 Alternative application: Minimising energy in Data Center
Networks

The two levels of the problem can be defined as:

Upper level: The data center provider minimizes the total energy consumption

of the network by putting on sleep the unused devices according to the

traffic demands.

Lower level: The network operator minimizes the total capacity utilization us-

ing a multi-path routing protocol.

The problem can be reformulated as a bi-level MILP problem, as follows:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij (4.10a)

s.t. zi ∈ {0, 1} , ∀i ∈ V, (4.10b)

ye ≥ zi + zj − 1, ∀e = {i, j} ∈ E, (4.10c)

ye ≤ zi, ∀e = {i, j} ∈ E, (4.10d)

ye ≤ zj, ∀e = {i, j} ∈ E, (4.10e)

min
∑
k∈K

∑
(i,j)∈A

1

Cij
xkij (4.10f)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V, ∀k ∈ K, (4.10g)

∑
k∈K

xkij ≤ Cijye(i,j), ∀(i, j) ∈ A, (4.10h)

xkij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (4.10i)

where:

bki =


φk, if i = o(k),

−φk, if i = d(k),

0, otherwise.

79

4.5 Agorithms

The upper-level objective function (4.10a) aims to minimize the energy con-

sumption of DCN devices, while the objective of the second level problem is to

minimize the total link capacity utilization (4.10f). Constraints (4.10c)-(4.10e),

(4.10g) and (4.10h) represent, respectively, the activation devices, flow conserva-

tion and capacity constraints.

Since the two presented applications have the same bi-level model in different

networks, in the rest of this chapter we will consider only the first application (En-

ergy management in the ISP backbone networks), and the proposed algorithms

can solve both of them.

4.5 Agorithms

In Subsections 4.3.2, 4.3.3, and 4.3.4, we presented three different formulations

for ETE-MPR the problem. Formulations (4.3) and (4.7) are compact ones,

while formulation (4.4) may have an exponential number of constraints. In this

section, first, we focus on presenting different exact methods to deal with the

problem formulations (Subsections 4.5.1, 4.5.2, and 4.5.3). Then, we present how

formulation (4.8) will be solved (Subsection 4.5.4).

4.5.1 Compact formulations

The first way to solve the problem is to feed the one level models based on

KKT (4.3) and residual network optimality conditions (4.7) to an ILP solver with

default parameters. Let KKT and RN denote the solution methods obtained,

respectively.

80

4.5 Agorithms

4.5.2 Cutting plane algorithm

In this subsection, we discuss how to solve our problem with a cutting plane

(CP-FC) algorithm based on the MILP formulation (4.4). This algorithm is

described in the following:

1. Let Q be the first level problem minimizing the sum of the energy consump-

tion and the arc utilization:

min
∑
i∈V

Pizi +
∑

(i,j)∈A

∑
k∈K

gijx
k
ij

s.t. (4.1b)− (4.1e), (4.1g)− (4.1i).

2. Solve Q and let F ∗ = (z∗, y∗, x∗) be the solution obtained.

3. Let N∗ be the subnetwork defined by the set of activated routers (z∗, y∗),

and solve the second level problem (minimization of the link capacity uti-

lization) in N∗. Let x′ be the flow obtained and F ′ = (z∗, y∗, x′).

4. If C(F) = C(F ′), then the solution (z∗, y∗, x∗) is optimal, stop. Otherwise,

add the inequality (4.4b) associated with the solution F ∗ as a new constraint

to Q in order to cut the unfeasible solution (z∗, y∗, x∗).

5. Go to step 2. The procedure described above is repeated until the optimal

solution is found.

4.5.3 Branch-and-cut algorithm

The one-level formulation (4.4) can also be used to solve the ETE-MPR problem

by a branch-and-cut (B&C-FC) algorithm.

81

4.5 Agorithms

The main idea of the algorithm used here is to solve the first level problem

(without taking in consideration the minimization of the total traffic) by a branch-

and-bound procedure and to add valid inequalities (4.4b) at each integral node of

branch-and-bound tree violating the min-cost flow constraints. Once an integral

node of the branch-and-bound tree is reached, i.e. a node where an integer

solution has been found, if an inequality (4.4b) is violated it is added to the

problem through callbacks. In the sequence, the algorithm continues the search

for an integer optimal solution satisfying all flow constraints. The algorithm

stops when there are no more nodes to evaluate, i.e., all the required missing flow

constraints (4.4b) were generated.

The difference between this algorithm and the iterative cutting plane algo-

rithm presented in Subsection 4.5.2 lies in solving a unique MILP while one MILP

is solved from scratch at each iteration of the algorithm previous presented.

4.5.4 Single path routing

The single path routing is a generalization of the fixed charge network design

problem with shortest path constraints (FCNDP-SCP) studied in [28]. Because

of the capacity constraints added to the problem, the algorithms proposed in [28]

are no longer applicable.

One of the ways to solve it is to use the iterative cutting plane algorithm

presented in Subsection 4.5.2. The only difference is that we now solve the first

level problem of (4.8), and we cut a path violating shortest path requirement in

each iteration by adding valid inequalities (4.9c).

82

4.6 Numerical results

4.6 Numerical results

In this section, we present two different experiments. First, we compare in Sub-

section 4.6.2 the CPU time of the algorithms presented in subsections 4.5.1-4.5.3

to obtain optimal solutions. Then, in order to compare our multi-path bi-level

model with the existing single-path model, numerical evaluations are performed

to compare the improvement on values of optimal solutions in Subsection 4.6.3.

All algorithms are implemented in Julia 0.6.0, and the problems are solved

using Gurobi 7.5.1 with default parameters and a time limit of 3600s. Simulations

were performed on an Intel(R)core TM i7-6500M CPU@2.50 2.60GHz computer

with 8 GB of RAM.

4.6.1 Instances set

Our computational experiments have been carried out on different network topolo-

gies provided by [118] and depicted in Figure 4.4: Abilene (4.4a), Polska (4.4b),

and Geant (4.4c) networks. The capacity of line cards and the energy consump-

tion of each chassis are randomly chosen from the three cases in Table 4.1 (Table

1 [6]).

Chassis Features
Case device capacity hourly power consumption
1 Gigabit-Eth 1 port 2 Gbps 7.3 W
2 Fast-Eth 12 ports 2.4 Gbps 18.6 W
3 Gigabit-Eth 4 ports 8 Gbps 31 W
4 SONET /SDH OC-48c 5 Gbps 41.4 W

Table 4.1: Router chassis and cards

Five different instances are generated for each network topology. Let |Ve| be

the number of nodes selected to be origin or destination point, and |K| is the

number of demands. Network instances are summarized in Table 4.2.

83

4.6 Numerical results

(a) Abilene network (b) Polska network

(c) Geant network

Figure 4.4: Examined network topologies: (a) Abilene (b) Polska (c) Geant [118].

Instances 1 2 3 4 5

Network |V | |E| |Ve| |K| |Ve| |K| |Ve| |K| |Ve| |K| |Ve| |K|
Abilene 12 15 4 5 5 10 6 20 7 30 8 40
Polska 12 18 4 5 5 10 6 20 7 30 8 40
Geant 22 36 4 5 5 10 6 20 7 30 8 40

Table 4.2: Network topologies used.

The demand between each origin-destination pair is randomly generated in

[100, 700] Mgbs.

4.6.2 Solution times

First, we compare the different algorithms presented in subsections 4.5.1-4.5.3

with respect to solution times. The obtained results are reported in Tables 4.3,

4.4 and 4.5. These tables present for each instance, the CPU time in seconds

spent by the different algorithms to get the optimal solutions. The symbol in the

84

4.6 Numerical results

Instances KKT RN CP-FC B&C-FC
1 0.08 0.08 0.03 0.34
2 0.35 0.94 0.09 0.06
3 2.31 3.47 0.10 0.07
4 6.84 6.11 0.10 0.11
5 19.19 10.12 0.12 0.11

Average 5.76 4.14 0.09 0.14

Table 4.3: Comparison of CPU time on Abilene network.

tables of results “-” means that the algorithm was not able to find the optimal

solution in the time limit of 3600s for the considered instance.

Instances KKT RN CP-FC B&C-FC
1 0.56 0.35 0.31 1.37
2 4.63 0.53 0.28 0.40
3 3600.02 4.03 0.82 0.67
4 - 185.96 4.67 2.08
5 - 3180.68 86.03 1.01

Average 1 201.74 674.31 18.42 1.11

Table 4.4: Comparison of CPU time on Geant network.

The results show that the iterative cutting plane and branch-and-cut algo-

rithms are close in terms of CPU time and outperform significantly the compact

formulations. Also, We can remark, comparing the different tables, that the

Geant instance (Figure (4.4c)) is more difficult than the other instances in terms

of CPU time. If we consider, for instance, the cutting plane algorithm, the CPU

time average to find the optimal solutions for Geant instance is more than 200

times the CPU time of Abilene network and 100 times the CPU time of Polska

network. Furthermore, for all instances, we observe that the first scenarios 1,

2 and 3 are easier than the last ones 4 and 5 according to the running time of

all algorithms. These results can be explained by difference of the size and the

number of demands in each scenario and instance.

85

4.6 Numerical results

Instances KKT RN CP-FC B&C-FC
1 0.17 0.16 0.04 0.23
2 1.18 1.80 0.21 0.16
3 0.67 2.33 0.22 0.12
4 11.83 24.26 0.22 0.18
5 1453.72 7.38 0.21 0.11

Average 293.51 7.18 0.18 0.16

Table 4.5: Comparison of CPU time on Polska network.

Furthermore, the residual network formulation is faster than the formulation

based on KKT conditions.

4.6.3 Single path routing vs multi-path routing

We compared our multi-path model with the single-path approach (where each

demand uses one path).

Abilene network Geant network Polska network

Instances multi-path single path multi-path single path multi-path single path
1 21531.7 21531.7 20856.8 20856.8 33900.4 33900.4
2 97076.9 97076.9 35949.8 35949.8 67535.8 67535.8
3 199014.3 199512.3 118786.9 132426.9 104429.8 107261.8
4 200820.3 204881.3 220255.3 223851.4 176674.7 181298.7
5 220454.3 224991.3 200819.3 203373.3 290679.3 291752.3

Average 147779.5 149598.7 119333.62 123291.64 134644 136349.8

Table 4.6: Comparison of the first level solution of the multi-path and the single
path approaches.

Tables 4.6 and 4.7 summarize the obtained results. For each instance, we

compare the first and the second level optimal solution obtained under the two

settings: single and multi-path routing. We can easily remark that using the

multi-path leads to lower network energy consumption (the first level objective

function) for 9/15 instances. This is because in the single path approach we

need to activate more routers and links in the case of insufficient link capacity,

86

4.6 Numerical results

Abilene network Geant network Polska network

Instances multi-path single path multi-path single path multi-path single path
1 4908 4908 6423 6423 7848 7848
2 21791 21791 13018 13018 14410 14410
3 39572 39771 31941 32396 26346 26346
4 40642 42176 49948 51548 36688 36688
5 44003 45892 50105 50450 56448 56459

Average 30183.2 30907.6 30287 30767 28348 28350.2

Table 4.7: Comparison of the second level solution of the multi-path and the
single path approaches.

Abilene network Geant network Polska network

Instances First obj second obj First obj second obj First obj second obj
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0.24 0.50 10.30 1.40 2.64 0
4 1.98 3.64 1.60 3.10 2.55 0
5 2.02 4.12 1.26 0.68 0.37 0.02

Average 0.85 1.65 2.63 1.04 1.11 0.004

Table 4.8: Percentage of the reduction on the first and the second level objectives
using the multi-path model.

unlike the multi-path where the flow can be distributed. In addition, and for

the same reason, in 7/15 instances, the total traffic (the second level problem)

is reduced. To conclude, Table 4.8 reports the percentage of the reduction of

energy consumption (First level objective) and capacity link utilization (Second

level objective) when we use the multi-path approach. It is clear that, in the worst

case, the two models give the same solution. Lastly, the quantity of the energy

and the capacity of links saved even if the average the obtained gaps are small.

Considering for example, the third instance of Geant network, the percentage of

the energy reduced is small (10.30%), but, it represents more than 13000 (unity

of energy).

87

4.6 Numerical results

4.6.4 Bi-level vs bi-objective model

Abilene network Geant network Polska network

Instances First obj second obj First obj second obj First obj second obj
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 498 199 13640 455 2832 0
4 4061 1534 3596.1 1600 4624 0
5 4537 1889 2554 345 1073 11

Average 1819.2 724.4 3958.02 480 1705.8 2.2

Table 4.9: Table of the differnce between the first and the second level solution

Finally, we compare the difference between our bi-level model and the classical

multi-objective approach. This latter is solved with epsilon constraint method to

get the Pareto optimal front [65]. Both approaches here are solved with CPLEX

solver. In Table 4.10, we compare the solution time of the two approaches, we

can remark that the bi-level model is more efficient in terms of CPU time.

Comparison of the first level objective function value

Abilene network Geant network Polska network

Instances multi-objective bi-level multi-objective bi-level multi-objective bi-level
1 0.91 0.16 0.14 0.09 120.79 0.05
2 0.06 0.07 0.11 0.11 222.23 0.50
3 83.04 0.19 23.32 1.84 323.16 0.35
4 16.09 0.17 378.90 4.84 347.45 0.49
5 24.02 0.21 18.11 1.62 99.32 0.40

Average 24.82 0.16 84.12 1.70 222.59 0.36

Table 4.10: CPU time in seconds of the bi-level and multi-objective models.

88

Chapter 5

Maximum influence in Signed

social networks

In this chapter, we study the problem of maximum influence in signed social

networks. For the best of our knowledge, this work is the first one to study this

problem on signed networks and to model it as a bi-level programming formula-

tion. As done in the previous chapters, we reformulate the problem as one-level

MILP models using different optimality conditions of the second level problem.

These new formulations are strengthened by adding a set of valid inequalities.

Computational experiments are performed using random instances to compare

the different proposed formulations.

5.1 Introduction

In the last years, the number of users of social networks such as Facebook,

YouTube, and Twitter rapidly increased (about 2.4 Billion users for Facebook, 1.9

billion for YouTube, and 330 million users of Twitter). In these social networks,

people share and receive information, advertisements, and ideas from friends or

89

5.1 Introduction

subscribers in “word-of-mouth” form of communication. From the users per-

spective, this provides to the users new and comfortable channels for exchanging

information and expressing views and opinions [85; 138]. From the marketing

perspective, this allows to the social media to penetrate in all aspects of everyday

lives. In this context, the study of influence propagation through a social network

gained importance when deciding whether or not to adopt an innovation, such

as a political idea, a new product, or medical and technological innovations. In

the literature, works studying the influence and effects of “word-of-mouth” in the

promotion of new products in social networks are motivated by applications like

the spreading of ideas or innovations in a network and viral marketing of prod-

ucts [31; 54; 67; 68]. Definitely, influence maximization has become a relevant

problem on social networks [143].

The Maximum influence problem in social networks consists of selecting a

subset of seeds (users of the network) to spreed information or ideas in order to

maximize the spread of influence in the network. This problem has been treated

in the literature under different assumptions. From a historical point of view,

Domingos and Richardson [54; 124] were the first ones to propose a probabilistic

model for this problem. In 2003, Kempe, Kleinberg, and Tardos [85] formulated

for the first time the problem as a discrete optimization (MIP) problem, which

they proved to be NP-complete. After that, several papers were devoted to

studying different versions of this problem [34; 35; 57; 74; 88; 128]. In particular,

independent cascade [86; 87], linear threshold [74; 75], time-aware diffusion [33;

103], and many other diffusion models were presented. To solve the problem,

in the works cited above and in other papers published later [67; 75; 87; 103],

heuristic algorithms were proposed based on the different propagation models of

the problem.

In this chapter, we are interested in signed social networks which contain both

90

5.1 Introduction

positive and negative relationships (e.g., foe or distrust) between users. Influence

maximization in signed social networks is still a challenging problem that has not

been explicitly modeled as a signed graph optimization problem. In the literature,

the problem studied consists in selecting k users to be activated in order to spread

the information in the network [100]. The objective of the problem is to maximize

the expected spread of influence under certain predefined propagation models.

The two classical propagation models used in the literature are probabilistic ones:

Linear Threshold and Independent Cascade models. Based on the algorithms

proposed for the same problem in unsigned networks, generalized models and

approaches are proposed to solve threshold-based maximum influence in social

network problem [7; 101; 102; 126; 139]. In these works, the different relationships

on the social network are defined by modeling the problem in signed graphs or

by using positive and negative weights for the links of the network.

In the present work, influence maximization in signed social networks is ex-

plicitly formulated as a signed graph optimization problem. The version of the

problem studied here assumes two states of the information to be diffused (for

example, a good or a bad opinion about a product). We study how to strategi-

cally select a subset of individuals (called here seeds) in these networks in order to

diffuse the information in its original state to other users of the network. All as-

sumptions made in this version of the problem take into consideration the signed

relations between individuals. For example, information diffused through a neg-

ative link is inverted while information diffused through a positive link keeps its

state.

In the first place, we formulate the problem as a linear bi-level problem. The

first level problem involves binary variables to define the set of selected seeds and

also the state of the information arriving to each user. The second level problem

is a linear problem with continuous variables used to define the paths between the

91

5.2 Problem description

seeds and the rest of the network. Then, as in previous chapters, reformulations

and optimality conditions will be used to rewrite the problem as MILP models.

For the problem treated in this chapter, we also describe the optimal solution for

a special class of signed graphs, namely, for balanced signed graphs.

5.2 Problem description

We consider a social network, which can be modeled as an undirected signed graph

G = (V,E, s). The set of nodes V represents the individuals of the considered

network. The set of edges E represents polarized relationships among individuals,

such as foe × ally, trust × distrust. Thus, each edge {i, j} ∈ E in this graph

is associated with a sign sij ∈ {+,−} where sij = + stands for ally or trust

while sij = − for foe or distrust, according to the type of relationship between

individuals i and j. An edge {i, j} is called positive (respectively, negative) if

sij = + (respectively, sij = −). Let us define E+ (E−) the set of positive

(negative) edges in the graph, which implies E = E+ ∪ E−.

We suppose the existence of an information to be spread in the network which

can take two opposite states in {I0, I1}. Ideally, the owner of the information

wants it to be spread at state I0 to each node (individual) in the graph (social

network). The information can be sent at state I0, from the owner to a node

i ∈ V at a sending cost fi; in this case i is called a seed. The set of seed nodes in

charge of diffusing the initial information to the non-seed nodes in the networks.

A value dij is associated with each edge {i, j} ∈ E. Assuming i (respectively,

j) receives the information at a time t0, then j (respectively, i) receives the

information at time t0 + dij through edge {i, j}. A negative edge {i, j} ∈ E−

means the information inverts as it flows on the edge, while it keeps its state

whenever {i, j} ∈ E+. Furthermore, a penalization Ci is defined for each node i

92

5.2 Problem description

receiving the information at state I1, i.e. the reverse of the one initially sent by

the owner.

Maximum influence problems amount to select a subset of nodes S ⊆ V in

the network (seeds) to diffuse a given information to each node i ∈ V \S [34; 85].

The version of the problem studied here assumes that, once the set of seeds S

is defined, the information retained by each non-seed node i ∈ V \ S is the first

information arriving to this node, i.e., the information retained arrives through

a shortest path linking a seed j ∈ S to i. This assumption is motivated by

many psychology and marketing researches which prove the effect of the first

impression on decision making [63; 91]; what is known as “Halo effect” for positive

impressions and “Horn effect” for negative ones.

The Maximum Influence (Max-Inf) problem treated in this work looks for a

set of seeds S ⊆ V that minimizes the associated sending and penalization costs

for all nodes in V .

As we have mentioned in the introduction of this chapter, the Max-Inf problem

can be naturally considered as a bi-level optimization problem. In the upper

level problem, the leader plays the role of the information owner who wants to

minimize the sum of sending information costs and negative influence penalties.

The second level problem represents an influence protocol where each user of the

network (follower) is supposed to adopt the information that first reaches her

from the chosen seeds. Hence the influence protocol relies on a shortest path

problem. The bi-level problem treated in this chapter relates with the two other

problems treated in previous chapters. From one hand, the second level problem

is a shortest path problem like Chapter 3. From the other hand, the second level

problem defines a predefined protocol as in Chapter 4. One important difference

from the previous bi-level problems, concerns the set of decision variables of the

leader which activates nodes instead of links. Our bi-level formulation will be

93

5.3 Mathematical formulations

presented in the next section.

5.3 Mathematical formulations

In this section, we will introduce the mathematical formulations for the Max-Inf

problem. We start by a bi-level integer programming model in Subsection 5.3.1.

Then, the model will be transformed into three one level MILP formulations in

Subsections 5.3.2, 5.3.3, and 5.3.4. Finally, a path based formulation is presented

in Subsection 5.3.5. In the following, let A = {(i, j), (j, i) : {i, j} ∈ E} be the set

of arcs obtained by bi-directing each edge in E. We extended the distance vector

d and we define dij = dji for each {i, j} ∈ E. Also, the set of negative (resp,

positive) arcs on the graph is denoted by A− = {(i, j) ∈ A : sij = −} (resp,

A+ = {(i, j) ∈ A : sij = +}).

5.3.1 Bi-level programming formulation

To formulate the problem, let us consider binary variables zki , for each i, k ∈ V ,

indicating whether node i is chosen as a seed node and whether node i influences

node k. Precisely:

zki =


1, if i 6= k and i is the seed of the information arriving to k,

1, if i = k and i is a seed,

0, otherwise.

94

5.3 Mathematical formulations

We use variables ykij, (i, j) ∈ A and k ∈ V , to track the path used to send the

information from a seed to a non-seed destination node k,

ykij =

1, if the arc (i, j) ∈ A is in the path arriving to node k,

0, otherwise.

Also, a binary variable πk, k ∈ V , denotes whether the information arrives to

node k at state I0 (as sent by the owner) or at state I1 (inverted). Clearly,

according to the problem definition, the value of πk depends on the number of

negative arcs in the shortest path from a seed node to k. These decision variables

can be defined as:

πk =

1, if the information arrives to node k through a negative path,

0, if the information arrives to node k through a positive path,

where a path is said negative (resp. positive) if it contains an odd (resp. even)

number of negative links. Then, πk = 1 (resp. πk = 0) if the information arrives

to node k at state I1 (resp. I0).

Next, we discuss the set of constraints used to define variables πk. As we

mentioned above, the variable πk, with k ∈ V , indicates if the information is

retained by node k either at the original state (I0) or inverted (I1). Then, πk

can be defined based on both, the sign of the last arc (i, k) in the shortest path

arriving to k (i.e., with ykik = 1) and on the state of the information retained by

95

5.3 Mathematical formulations

node i:

πk ≥ ykik − πi, ∀(i, k) ∈ A−, (5.1a)

πk ≤ 2− ykik − πi, ∀(i, k) ∈ A−, (5.1b)

πk ≥ ykik + πi − 1, ∀(i, k) ∈ A+, (5.1c)

πk ≤ 1− ykik + πi, ∀(i, k) ∈ A+, (5.1d)

πk ≤ 1− zkk , ∀k ∈ V. (5.1e)

Constraints (5.1a) and (5.1b) force the values of πk and πi to be inverted

whenever the arc used is a negative one, i.e., (i, j) ∈ A−. Likewise, constraints

(5.1c) and (5.1d) impose the values of these variables to be the same whenever a

positive arc (i, j) ∈ A+ is used. That means, node j receives the same information

as node i if the arc (i, j) is positive and the reversed information otherwise.

Finally, constraint (5.1e) imposes that πk to be equal to 0 for all seed nodes.

The correct value for a variable πk can also be found by calculating the num-

ber of negative links in the path defined by variables ykij. Then, a variable πk

takes either the value 0 if the shortest path to k contains an even number of

negative links (positive path) or the value 1 otherwise (negative path). Thus,

these constraints can be given as:


∑

(i,j)∈A−
ykij

2

−
∑

(i,j)∈A−
ykij

2
≤ πk ≤


∑

(i,j)∈A−
ykij

2

−
∑

(i,j)∈A−
ykij

2
+

1

2
, ∀k ∈ V,

96

5.3 Mathematical formulations

which is equivalent to:

∑
(i,j)∈A−

ykij

2
≤ xk ≤

∑
(i,j)∈A−

ykij + 1

2
, ∀k ∈ V, (5.2a)

xk −

∑
(i,j)∈A−

ykij

2
≤ πk ≤ xk −

∑
(i,j)∈A−

ykij

2
+

1

2
, ∀k ∈ V, (5.2b)

xi ∈ N, ∀i ∈ V. (5.2c)

Here, the value of each variable πk is defined according (only) to the number

of negative links in the shortest path from a seed node to k. Notice that it is

not related with the values of other variables πl, l 6= k. As a consequence, in

case of multiple shortest paths, the paths chosen can be incompatible, i.e, a node

k may receive the information with two opposite signs from different shortest

paths represented by variables ykik and ykjk, i 6= j. This case is illustrated by

Figure 5.1. Consider the signed graph depicted in Figure 5.1a: an arc with blue

color represents a positive arc while a red arc represents a negative one. All link

distances, costs, penalties are equal to 1. If we consider only constraints (5.2a)-

(5.2c), the obtained solution is given by Figure 5.1b, where a blue node means

the node receives information at state I0 (πk = 0) while a red node receives

the information at state I1 (πk = 1). Node 1 is the only seed selected. Node

6 is influenced by node 1 receiving information at state I0 through the path

(1−2−4−5−6). According to this shortest path, node 5 must receive information

at state I1. However, the solution says that node 5 receives information at state

I0 through the path (1−2−3−5). Then, this solution is in fact infeasible for the

Max-Inf problem. Since node 6 has to receive the information from 5, the path

of 5 must be a part of the path of 6. After adding this condition, the obtained

solution is presented in Figure 5.1c which is indeed compatible with the definition

97

5.3 Mathematical formulations

of the Max-Inf problem.

1

2

3 4

5

6

(a) Signed graph.

1

2

3 4

5

6

(b) Infeasible solution.

1

2

3 4

5

6

(c) Feasible solution.

Figure 5.1: Effect of multiple shortest paths when constraints (5.2a)-(5.2c) are
used to define variables πk.

To avoid the problem in the presence of multiple shortest paths, we introduce

the set of constraints:

∑
i′∈V \{i}

∑
k∈V

yki′j ≤M(1− yjij), ∀(i, j) ∈ A, (5.3)

which forces the shortest path arriving to node j to be a sub-path of each shortest

path arriving to a node k ∈ V passing through j.

To sum up, variables πk, for each k ∈ V , can be defined based either on the

state of the information received by the node sending the information to k, or

by the number of negative arcs in the shortest path arriving to k. To distinguish

the two different ways of defining these variables, let us introduce the two sets

98

5.3 Mathematical formulations

Λ1 and Λ2 defined as:

Λ1 = {π ∈ {0, 1}n : (5.1a)− (5.1e)},

Λ2 = {π ∈ {0, 1}n , x ∈ Zn : (5.2a)− (5.2c), (5.3)}.

The bi-level model, presented in the following, selects at the first level the set

of seed nodes which will receive the information directly from the owner. The

second level computes the shortest paths connecting each node to a selected seed.

min
∑
k∈V

fkz
k
k +

∑
k∈V

Ckπk (5.4a)

s.t. zki ∈ {0, 1} , ∀i, k ∈ V, (5.4b)

zik ≤ zkk , ∀i 6= k ∈ V, (5.4c)

πk ∈ Λ1 or πk ∈ Λ2, ∀k ∈ V, (5.4d)

min
∑
k∈K

∑
(i,j)∈A

dijy
k
ij (5.4e)

s.t.
∑

j:(k,j)∈A

ykkj −
∑

j:(j,k)∈A

ykjk = zkk − 1, ∀k ∈ V, (5.4f)

∑
j:(i,j)∈A

ykij −
∑

j:(j,i)∈A

ykji = zki , ∀i 6= k ∈ V, (5.4g)

ykij ≤ 1− zkk , ∀(i, j) ∈ A,∀k ∈ V, (5.4h)

ykij ∈ {0, 1}, ∀(i, j) ∈ A,∀k ∈ V. (5.4i)

The objective function of the leader (5.4a) minimizes the sum of sending

costs associated with the selected seeds and penalty costs associated with non-

seed nodes. Constraints (5.4c) allow node i to receive information through a

path beginning at node k only if k is selected as a seed node. The second level

objective function (5.4e) minimizes the length of the path arriving to each node

99

5.3 Mathematical formulations

k ∈ V from all seed nodes in the graph. The set of constraints in the second level

defines the set of paths used to transmit the information to all non-seed nodes.

Constraints (5.4f)-(5.4h) are the flow conservation constraints. Constraints (5.4f)

and (5.4g) force each non-seed node to receive an information from exactly one

seed. Constraints (5.4h) force variables yk ∈ {0, 1}|A| to be equal to 0 whenever

node k is a seed (i.e., zkk = 1) avoiding shortest paths ending in seed nodes.

The second level problem is a shortest path problem between all pairs of

nodes. We can also remark that the set of constraints of this problem (5.4f)-

(5.4i) are represented by a totally unimodular matrix. Thus constraints (5.4i)

can be replaced by:

0 ≤ ykij ≤ 1, ∀(i, j) ∈ A, ∀k ∈ V,

which can be reduced to a set of non-negativity constraints on y, from the presence

of constraints (5.4h) in the second level. Hence, the second level problem becomes

a continuous linear program.

5.3.2 One-level formulation

Similar to the problems studied in Chapters 3 and 4, the bi-level problem pre-

sented in the previous section can be reformulated as a one-level integer program-

ming problem by replacing the second level problem by the associated optimality

conditions: KKT, Bellman optimality conditions, and shortest path constraints.

Let us start by the fundamental complementary slackness conditions. The

100

5.3 Mathematical formulations

KKT optimality conditions of the second level problem are given by:

dij + λki − λkj + γkij − µkij = 0, ∀(i, j) ∈ A, ∀k ∈ V,

ykij − 1 + zki = 0, ∀(i, j) ∈ A, ∀k ∈ V,

µkijy
k
ij = 0, ∀(i, j) ∈ A, ∀k ∈ V,

γkij, µ
k
ij ≥ 0, ∀k ∈ V, ∀(i, j) ∈ A,

λki ∈ R, ∀i, k ∈ V.

This set of constraints contains nonlinear inequalities. Using the Big-M lin-

earization technique, we get the following one-level MILP formulation:

min
∑
k∈V

fkz
k
k +

∑
k∈V

Ckπk

s.t. (5.4b)− (5.4d),∑
j:(k,j)∈A

ykkj −
∑

j:(j,k)∈A

ykjk = zkk − 1, ∀k ∈ V, (5.5a)

∑
j:(i,j)∈A

ykij −
∑

j:(j,i)∈A

ykji = zki , ∀i 6= k ∈ V, (5.5b)

ykij ≤ 1− zkk , ∀(i, j) ∈ A,∀k ∈ V, (5.5c)

dij + λki − λkj + γkij ≤M(1− ykij), ∀(i, j) ∈ A,∀k ∈ V, (5.5d)

dij + λki − λkj + γkij ≥ 0, ∀(i, j) ∈ A,∀k ∈ V, (5.5e)

γkij ≤M(ykij + zkk), ∀(i, j) ∈ A,∀k ∈ V, (5.5f)

λki ∈ R, ∀i, k ∈ V, (5.5g)

γkij , y
k
ij ≥ 0, ∀(i, j) ∈ A,∀k ∈ V, (5.5h)

where M is a large number.

101

5.3 Mathematical formulations

5.3.3 Bellman based BILP formulation

As we mentioned before, the lower level problem is a shortest path problem.

Hence, the problem can be reformulated by using Bellmans’s optimality condi-

tions presented in Chapter 2 and used in [28].

min
∑
k∈V

fkz
k
k +

∑
k∈V

Ckπk

s.t. (5.4b)− (5.4d),∑
j:(k,j)∈A

ykkj −
∑

j:(j,k)∈A

ykjk = zkk − 1, ∀k ∈ V, (5.6a)

∑
j:(i,j)∈A

ykij −
∑

j:(j,i)∈A

ykji = zki , ∀i 6= k ∈ V, (5.6b)

ykij ≤ 1− zkk , ∀(i, j) ∈ A,∀k ∈ V, (5.6c)

Πk
i −Πk

j ≤ dij − 2dijy
k
ji, ∀(i, j) ∈ A,∀k ∈ V, (5.6d)

Πk
k = 0, ∀k ∈ V, (5.6e)

Πk
i ≥ 0, ∀i, k ∈ V, (5.6f)

ykij ≥ 0, ∀(i, j) ∈ A,∀k ∈ V. (5.6g)

Non-negative variables Πk
i represent the shortest path distance between nodes

i and k. Then, for k ∈ V , Πk
k is set to be equal to zero in constraints (5.6e).

Constraints (5.6d) are a lifted version of Bellman’s optimality conditions, which

guarantee the shortest path requirements. These constraints force ykij to be equal

to 1 whenever (i, j) is in the shortest path to k.

5.3.4 Shortest path formulations

Based on the definition of the problem, we can replace the second level problem by

constraints eliminating infeasible paths violating the shortest path requirements.

102

5.3 Mathematical formulations

Then, the problem can be reformulated as:

min
∑
k∈V

fkz
k
k +

∑
k∈V

Ckπk

s.t. (5.4b)− (5.4d),∑
j:(k,j)∈A

ykkj −
∑

j:(j,k)∈A

ykjk = zkk − 1, ∀k ∈ V, (5.7a)

∑
j:(i,j)∈A

ykij −
∑

j:(j,i)∈A

ykji = zki , ∀i 6= k ∈ V, (5.7b)

ykij ≤ 1− zkk , ∀(i, j) ∈ A,∀k ∈ V, (5.7c)∑
(i,j)∈A

dijy
k
ij ≤ Dk

h +M(1− zhh), ∀k 6= h ∈ V, (5.7d)

ykij ≥ 0, ∀(i, j) ∈ A,∀k ∈ V, (5.7e)

where, Dk
h is the length of the shortest path from h to k, which can be computed

on O(|V |2.|E|).

We can write the set of shortest path constraints (5.7d) in a more compact

form without using a Big-M constant. The Max-Inf problem can be reformulated

by an alternative shortest path formulation as following:

103

5.3 Mathematical formulations

min
∑
k∈V

fkz
k
k +

∑
k∈V

Ckπk

s.t. (5.4b)− (5.4d),∑
j:(k,j)∈A

ykkj −
∑

j:(j,k)∈A

ykjk = zkk − 1, ∀k ∈ V, (5.8a)

∑
j:(i,j)∈A

ykij −
∑

j:(j,i)∈A

ykji = zki , ∀i 6= k ∈ V, (5.8b)

ykij ≤ 1− zkk , ∀(i, j) ∈ A,∀k ∈ V, (5.8c)∑
(h,j)∈A

ykhj ≤ 1− zii , ∀i 6= h 6= k ∈ V, if: Dk
i < Dk

h (5.8d)

ykij ≥ 0, ∀(i, j) ∈ A,∀k ∈ V, (5.8e)

where, Dk
i is the length of the shortest path from i to k.

5.3.5 Path-based formulation

The problem can be also formulated by using variables defined on a set of paths.

Let P represents the set of all shortest paths p between all pairs of nodes in the

graph:

P = {p : h −→ k, such that: length(p) = Dk
h, ∀h 6= k ∈ V }.

The source and the destination of each path p are denoted by s(p) and t(p),

respectively. For a given node k, the set P (k) ⊂ P contains all shortest paths

arriving to the node k, i.e., P (k) = {p ∈ P : t(p) = k}. We also denote by Sp

the sign of path p: Sp = 1 if p is a negative path; Sp = 0 if p is a positive path.

For the path-based formulation we introduce the following binary variables.

A variable zi indicates if node i is selected as a seed, then, for all nodes i ∈ V

104

5.3 Mathematical formulations

of the graph, we define:

zi =

1, if i is a seed node,

0, otherwise.

We define also a set of variables Yp, for all p ∈ P , as:

Yp =

1, if the path p ∈ P is in the solution,

0, otherwise.

According to this definition, Yp = 1 means that the destination node t(p) of p is

influenced by the node s(p) through the path p. Otherwise, the path p does not

belong to the solution.

The path based one-level model for the Min-Inf problem is as follows:

min
∑
i∈V

fizi +
∑
p∈P

Ct(p)SpYp

∑
p∈P (k)

Yp = 1− zk, ∀k ∈ V, (5.9a)

Yp ≤ zs(p), ∀p ∈ P, (5.9b)

Yp ≤ 1− zi, ∀p : h −→ k, ∀i ∈ V : Dk
i < Dk

h, (5.9c)

Yp′ ≥ Yp, ∀p ∈ P, ∀p′ ⊂ p : s(p′) = s(p), (5.9d)

zi ∈ {0, 1}, ∀i ∈ V, (5.9e)

Yp ∈ {0, 1}, ∀p ∈ P. (5.9f)

The objective function minimizes, as in the previous models, the sum of send-

ing costs and penalty costs. However for this formulation the penalty costs are

activated whenever a negative path is selected. Constraints (5.9a) ensure only

105

5.4 Formulation improvements

one path is selected for each node, while constraints (5.9b) are on charge to elimi-

nating any path p if the starting node s(p) is not a seed. Furthermore, constraints

(5.9c) ensure that each node takes the shortest path among all activated nodes.

Finally, constraints (5.9d) force each sub-path p′ of a path p with s(p′) = s(p)

to be in the solution whenever the path p is in the solution. This last family of

constraints is equivalent to constraints (5.3). Notice that this formulation has an

exponential number of variables and constraints.

5.4 Formulation improvements

5.4.1 Valid inequalities

The formulations in the last subsections can be weak. One way to strengthen

them is to introduce a set of valid inequalities to improve the associated linear

relaxations. From the definition of the problem, the following constraints can be

added to the formulations introduced in Section 5.3.

Lemma 1. For each pair of nodes k, h ∈ V , such that k 6= h, the constraints:

zih ≥ ykij + zkh − 1, ∀(i, j) ∈ A, (5.10)

zih ≤ zkh − ykij + 1, ∀(i, j) ∈ A, (5.11)

are valid for the Max-Inf problem.

Proof. From the definition of the problem, each non-seed node k (i.e., zkk = 0),

will receive the information through a shortest path from one seed node. To this

end, if h ∈ V is the seed of k (i.e., zkh = 1), then, h must be the seed of all nodes

in the shortest path from h to k. Therefore, on the one hand constraints (5.10)

imposes to zih to be equal to 1 if i is in the shortest path between the node k and

106

5.4 Formulation improvements

her seed h (ykij = 1). On the other hand, constraints (5.11) avoid a node i in the

path to k to be influenced by any seed node h if zkh = 0.

Lemma 2. The inequality:

Πk
h ≤ Πk

i +M(2− zii − zkh), ∀i, k ∈ V, (5.12)

is valid for all feasible solutions of Bellman’s formulation.

Proof. If i is a seed, and h is the seed of k, then, Πk
h ≤ Πk

i . This means that

the length of the shortest path from h to k is not greater than the shortest paths

from the other selected seeds.

Lemma 3. Let P+ be the set of all positive paths in the graph. For each k ∈ V ,

the set of inequalities:

∑
k∈V

∑
(i,j)∈p

ykij ≤ |p| − (πd(p) − πs(p)), ∀p ∈ P+, (5.13)

∑
k∈V

∑
(i,j)∈p

ykij ≤ |p| − (πs(p) − πd(p)), ∀p ∈ P+. (5.14)

are valid for the Max-Inf problem.

Proof. Inequalities (5.13) and (5.14) are equivalent to:

∑
k∈V

∑
(i,j)∈p

ykij ≤ |p| − |πd(p) − πs(p)|, ∀p ∈ P+.

Two cases can happen:

πs(p) = πp(p): In that case, s(p) and d(p) receive the same information and the

inequality is redundant.

πs(p) 6= πp(p): In that case, s(p) and d(p) receive opposite information, which im-

plies the positive path p cannot be in the solution.

107

5.4 Formulation improvements

Lemma 4. Let P− be the set of all negative paths in the graph. For each k ∈ V ,

the set of inequalities:

∑
k∈V

∑
(i,j)∈p

ykij ≤ |p|+ 1− (πd(p) + πs(p)), ∀p ∈ P−, (5.15)

∑
k∈V

∑
(i,j)∈p

ykij ≤ |p| − 1 + (πd(p) + πd(p)), ∀p ∈ P−. (5.16)

are valid for the max-inf problem.

Proof. Inequalities (5.15) and (5.16) are equivalent to:

∑
k∈V

∑
(i,j)∈p

ykij ≤ |p| − |1− πd(p) − πs(p)|, ∀p ∈ P−.

Two cases can happen:

1− πd(p) − πs(p) = 0: In that case, s(p) and d(p) receive opposite information,

then, the inequality is redundant.

1− πd(p) − πs(p) = 1: In that case, s(p) and d(p) receive the same information,

which implies the negative path p cannot be in the solution.

5.4.2 Instance pre-processing

As we deal with social networks, real instances can be huge in terms of size

[34; 85]. In the following, we propose some rules to reduce the size of an instance.

Rule 1 (Arc-reduce). An arc (i, j) ∈ A can be removed from the instance if at

least one of the following conditions is satisfied:

108

5.5 Special case instances: balanced graphs

• If there exists a path from i to j with length less than dij.

• If the arc (i, j) does not belong to any shortest path between all pairs of

nodes.

We can also reduce the number of nodes in instance in some cases.

Rule 2 (Node-reduce). A node i ∈ V can be removed from the instance if one of

the following conditions is satisfied:

• i is an isolated node.

• The node i does not have outgoing links (i.e., N(i) = {j ∈ V : (i, j) ∈

A} = ∅).

If the shortest path between all pairs of nodes is known, we can fix some

variables.

Rule 3. The value of a variable ykij for (i, j) ∈ A and k ∈ V can be set as:

• ykij = 0 if the arc (i, j) does not belong to the tree defined by all shortest

paths from the node k to all nodes k.

• ykij = 1 if the arc (i, j) is included in the intersection of all shortest paths

arriving to k.

Also, zkk = 1 if node k ∈ V has only outgoing links (i.e., there is no node i such

that (i, k) ∈ A).

5.5 Special case instances: balanced graphs

The proposed bi-level model for maximum influence problem is easy to solve in the

case of unsigned networks (all the links are positive), where the optimal solution

109

5.5 Special case instances: balanced graphs

amounts to select one seed with the least cost for each connected component.

Then, each non-seed node will receive the information through the shortest path

from the selected seed. Hence, the problem is a minimum spanning tree problem.

However, in the general case the problem is NP-hard and it is difficult to find

an exact solution. In the literature many works studied balance in signed social

networks [11; 59; 60; 96; 97; 98]. From these works, we can conclude that there

exists many real instances that are balanced or almost. For this reason, in this

section, we investigate the problem in special cases of networks for which we could

solve the problem. Let us start by the definition of a balanced signed graph:

Definition 3 (Balanced signed graphs:). Given an undirected signed graph G(V,E)

with the sets E+ and E− of positive and negative edges, respectively. G is

called balanced if V can be partitioned into two or more independent clusters

{C1,C2, ..,CL} which contain only positive edges inside the clusters (i.e., {(i, j) :

i, j ∈ Cl} ⊂ E+, ∀l ∈ {1, .., L}) and negative links connect the clusters (i.e.,

{(i, j) : i ∈ Cl1 , j ∈ Cl2} ⊂ E−,∀l1 6= l2 ∈ {1, .., L}). Let us refer to {C1,C2, ..,CL}

as a balanced partition of G.

Figure 5.2 illustrates the definition for a balanced signed graph. We show next

some results concerning the optimal solution of the Max-Inf problem in particular

cases of the instances. In the rest of the section, we assume that the distance dij

of all positive links are supposed to be short than the distance of any negative

edge. Notice that finding the balanced partition of a signed networks is easy

in the case of balanced graphs. Let us start by the case of complete balanced

instances:

Theorem 13 (Complete balanced signed graph). Let us suppose that the studied

network is defined by a complete undirected signed graph G. If G is a balanced

graph,then the optimal solution of the maximum influence problem can be defined

110

5.5 Special case instances: balanced graphs

1 2

3

4

5

6

7

(a) Balanced signed graph

1 2

3

4

5

6

7

(b) Unbalanced signed graph

Figure 5.2: Example of a balanced (a) and an unbalanced (b) signed graphs.
Negative edges are red while positive edges are blue.

by:

Z∗ =
∑

l∈{1,..,L}

min

{
min
i∈Cl

fi ,
∑
i∈Cl

Ci

}

where, {C1,C2, ..,CL} is a balanced partition of G.

Proof. Given a complete balanced graph G(V,E), let {C1, ..,CL} be a balanced

partition of V on L clusters.

We can easily check that if min
i∈Cl

fi ≤
∑
i∈Cl

Ci, the solution:

For all l ∈ {1, .., L} :


zhh = 1 with: h = arg min

j∈Cl

fj,

πi = 0 ∀i ∈ Cl,

zih = 1 ∀i ∈ Cl with: h = arg min
j∈Cl

fj,

111

5.5 Special case instances: balanced graphs

is a feasible solution for the problem, and the solution:

For all l ∈ {1, .., L} :


zhh = 0 ∀h ∈ Cl

πi = 1 ∀i ∈ Cl

zih = 1 ∀i ∈ Cl, h ∈ V \{Cl}

is also feasible if min
i∈Cl

fi ≥
∑
i∈Cl

Ci. Let Z∗ is the optimal value of the Max-Inf

problem. Thus:

Z∗ ≤
∑
l∈L

min

{
min
i∈Cl

fi ,
∑
i∈Cl

Ci

}
.

Let us suppose now that:

Z∗ <
∑
l∈L

min

{
min
i∈Cl

fi ,
∑
i∈Cl

Ci

}
,

then, there exists at least one cluster Cl
′
with a cost less than: min{min

i∈Cl′
fi,
∑
i∈Cl′

Ci}.

Hence, zii = 0, ∀i ∈ Cl
′

(i.e., the cluster does not contain any seeds), and there

exists at least one node positively influenced, which is impossible because of the

balance of the graph, then:

Z∗ ≥
∑
l∈L

min

{
min
i∈Cl

fi ,
∑
i∈Cl

Ci

}
.

As a result, we find:

Z∗ =
∑
l∈L

min

{
min
i∈Cl

fi ,
∑
i∈Cl

Ci

}
.

This result can be generalized for a case of non complete balanced graphs.

112

5.6 Numerical experiments

Theorem 14 (Balanced graphs with complete clusters). Let G be a balanced

signed graph. Let {C1, ..,CL} be a balanced partition such that (Cl, E[Cl]) is a

complete graph, for each l ∈ {1, .., L}. The optimal value of the maximum influ-

ence problem defined on G is:

Z∗ =
∑
l∈L

min

{
min
i∈Cl

fi ,
∑
i∈Cl

Ci

}

Proof. The proof is the same done in Theorem 13.

The newt result describe the optimal solution for another case of non-complete

balanced graphs.

Lemma 5. In the case of balanced graph with L clusters and each node of a

cluster is connected to all nodes of the other clusters, it is sufficient to find the

optimal solution in each cluster without taking in consideration the other clusters.

Proof. Since the graph is complete between the clusters, then each node of a

cluster l is a neighbour of a seed on another cluster.

Thus, solving the problem in this case of instances can be reduced to find the

solution on each cluster separately.

5.6 Numerical experiments

In subsections 5.3.2, 5.3.3, and 5.3.4 we presented five different formulations for

Max-Inf problem defined on signed social networks. Four formulations are com-

pact and can be solved by using MILP solvers.

In this section, we present two different experiments. First, we compare the

proposed formulations. Then, numerical evaluations are performed to compare

the improvement on linear relaxation and CPU time after introducing the valid

113

5.6 Numerical experiments

inequalities. All formulations are implemented in Julia 1.1.0, and the problems

are solved using Gurobi 7.5.1 with default parameters and a time limit of 3600s.

Simulations were performed on an Intel(R)core TM i7-6500M CPU@2.50 2.60GHz

computer with 8 GB of RAM.

The different methods are tested on two sets of random instances. The

first one concerns instances generated with no community structure. This set

is generated by varying the number of nodes n ∈ {10, 30, 50, 100}, the density of

graph dens ∈ {0.2, 0.5, 0.8} and the percentage of negative edges in the graph

per ∈ {20%, 50%, 80%}. For each combination of (n, dens, per), four instances

were generated with different scenarios of costs and penalties. First, we fix the

values fi = 5 and Ci = 25 (resp, fi = 25 and Ci = 5), and the distances are

generated randomly in [5, 25] . Then, we consider fi = Ci = 5 and dij are ran-

domly generated in [5, 25]. Finally, all of fi, Ci, and dij are randomly generated

in [5, 25].

The second set concerns instances generated with some community structure.

This set is generated with the same characteristics of the precedent instances,

the only difference is that the instances here are balanced and contains n/10

clusters. Then, for each instance we shift the sign of the arc with a percentage in

{0.2, 0.5, 0.8}.

We summarize next all methods used to solve the Max-Inf problem:

KKT1: One level formulation based on KKT optimality conditions and π ∈ Λ1.

KKT2: One level formulation based on KKT optimality conditions and π ∈ Λ2.

Bellman1: One level formulation based on Bellman’s optimality conditions and

π ∈ Λ1.

Bellman2: One level formulation based on Bellman’s optimality conditions and

π ∈ Λ2.

114

5.6 Numerical experiments

n-dens-per KKT1 KKT2 Bellman1 Bellman2 SP1 SP2
10-0.2-0.2 0.08 0.09 0.08 0.15 0.21 0.22
10-0.5-0.2 0.09 0.11 0.03 0.05 0.08 0.09
10-0.8-0.2 0.08 0.08 0.03 0.03 0.55 0.41
10-0.2-0.5 0.08 0.14 0.03 0.05 0.06 0.05
10-0.5-0.5 0.14 0.23 0.05 0.06 0.58 0.58
10-0.8-0.5 0.05 0.06 0.05 0.05 0.69 0.58
10-0.2-0.8 0.06 0.09 0.03 0.06 0.06 0.11
10-0.5-0.8 0.05 0.06 0.03 0.05 0.44 0.75
30-0.2-0.2 3,600.04 3,600.04 1.95 5.34 45.27 186.15
30-0.5-0.2 3,600.12 3,600.11 5.59 10.67 26.23 186.15
30-0.8-0.2 3,600.12 3,600.12 1.33 3.86 122.19 173.08
30-0.2-0.5 3,600.07 3,600.05 9.31 19.39 40.44 66.58
30-0.5-0.5 3,600.08 3,600.05 6.50 9.72 362.41 166.23
30-0.8-0.5 150.82 154.65 8.31 6.00 114.23 185.37
30-0.2-0.8 3,600.07 3,600.08 21.49 122.88 79.24 71.91
30-0.5-0.8 232.23 427.75 18.47 13.33 108.81 121.68
30-0.8-0.8 149.97 159.33 12.38 6.15 96.95 153.07
50-0.2-0.2 3,600.56 3,600.15 60.59 217.08 3,600.10 3,600.12
50-0.5-0.2 2,668.48 3,600.12 47.73 42.18 7.45 7.50
50-0.8-0.2 3,600.44 3,600.18 50.26 20.82 12.61 12.66
Average 1600.18 1657.17 12.21 23.89 230.93 246.66

Table 5.1: Comparison of CPU time in second on the first set of random instances.

SP1: One level formulation based on shortest path constraints (5.7d) and π ∈ Λ1.

SP2: One level formulation based on shortest path constraints (5.7d) and π ∈ Λ2.

First, we compare the different methods with respect to solution times. The

obtained results are shown in Tables 5.1 and 5.2 for the first and the second sets

of random instances. In each row, we report the average CPU time in seconds

spent by the different methods to get the optimal solutions of each one of the

four instances with the same (n, dens, per) values.

The results of tables 5.1 and 5.2 show that the CPU of the formulations

KKT, Bellman , and SP are similar in both of methods to define the variable

π. Also, we can see in the last column of the table, the time used to solve the

115

5.6 Numerical experiments

n-d-% KKT1 KKT2 Bellman1 Bellman2 SP1 SP2
30-0.2-0.2 5.71 5.16 0.75 1.91 13.76 7.41
30-0.2-0.5 8.82 7.90 1.78 1.84 29.56 5.55
30-0.2-0.8 9.48 9.24 0.73 4.36 35.02 6.77
30-0.5-0.2 10.47 9.18 17.30 7.15 29.20 10.54
30-0.5-0.5 47.14 394.71 1.77 2.56 8.56 34.42
30-0.5-0.8 175.30 2,462.99 1.06 1.59 14.53 15.85
30-0.8-0.2 2.52 1,847.38 0.56 1.56 6.18 13.05
30-0.8-0.5 868.64 3,600.04 5.61 1.34 17.40 32.39
30-0.8-0.8 1,203.20 3,600.04 9.75 24.96 87.11 116.58
50-0.2-0.2 192.22 3,311.93 45.58 51.96 357.17 90.70
50-0.2-0.5 3,600.70 3,600.16 55.64 65.72 561.81 168.30
50-0.2-0.8 3,603.40 3,600.12 80.38 93.19 3,600.19 118.24
Average 823.02 1,870.74 18.41 21.51 396.71 51.65

Table 5.2: Comparison of CPU time in second on second set of random instances.

shortest path problem between all pairs of nodes in the graph. We can remark

that this time is negligible compared with the instance solving time. Comparing

now the cpu time of all methods, the algorithms based on Bellman’s optimality

conditions are faster than the other algorithms for the majority of instances. If we

consider the total average we can see that, Bellman1 and Bellman2 are almost

2 times faster that the shortest path based methods SP1 and SP2 (10 times

faster than KKT1 and KKT2), respectively. This results can be justified by

the number of integer variables in each formulation and also the linear relaxation

gap. In addition, the valid inequalities presented in Section 5.4 are introduced

to strengthen the precedent formulations. In the obtained results, the necessary

time to find the optimal solution did not changed despite of the improvement

of the linear relaxation after adding the valid inequalities. This is because the

number of additional generated constraints.

116

Chapter 6

Conclusion and perspectives

In this chapter, we present a summary of the contributions proposed in this thesis.

We also discuss some perspectives and future work.

Fixed charge network design problem with shortest path
constraints

In Chapter 3, we proposed two new BILP formulations for the fixed charge

network design problem with shortest path constraints. The two models are

combined with the iterative cutting plane (CP1, CP3) and a branch-and-cut

(B&C1, B&C2) algorithms. Then, theoretical comparison is done between the

proposed formulations. We further provided a valid inequality for the formula-

tion of FCNDP-SPC whenever there are commodities sharing the origin and the

destination.

All algorithms are tested on two types of data. We generated a set of 405

random instances classified in three groups according to their difficulty. The

results show that the FCNDP-SPC is much easier when 0◦ ≤ α ≤ 10◦ and it

becomes very difficult for 40◦ ≤ α ≤ 50◦. In these instances, the iterative cut-

ting plane algorithms are almost equivalent and more efficient than the compact

formulations and the branch-and-cut algorithms. This somewhat surprising re-

sult can be partly explained by the high number of inequalities generated by the

117

branch-and-cut algorithms and the time consumed by the separation problem.

We also used instances from the literature. Two real instances Ravenna (Italy)

[23] and Albany, NY, (USA) [131] used to test the different algorithms. The

obtained results show the time efficiency of our cutting plane algorithm (CP1)

in comparison with the other algorithms.

From the experimental results, we can make two major observations. First,

branch-and-cut and cutting plane approaches are better than the compact for-

mulations for all types of instances. We saw that the iterative cutting plane

algorithms outperform the branch-and-cut algorithm in terms of CPU time. This

is because the latter consumes more time in the cuts generation and the separation

problems in each integer node of the branching tree. Also, our CP1 cutting plane

method has the best results for all real instances. Second, the valid inequality

generated for the Ravenna data improves the running time for all algorithms.

Fixed charge network design problem with user-optimal
flow

In Chapter 4, we have studied the problem of Energy-aware Traffic Engineering

using a multi-path routing protocol (ETE-MPR) to minimize link capacity uti-

lization in ISP backbone networks. To formulate the problem, we proposed a

new bi-level optimization model where the objective of the upper-level problem

is to activate network devices minimizing the energy consumption and the lower

level represents a multi-path routing protocol. Then, we presented two one-level

MILP formulations, respectively based on complementarity slackness optimality

and on residual network conditions and a BILP formulation using unfeasible flow

elimination constraint.

The obtained results show that the iterative cutting plane and branch-and-

cut algorithms are close in terms of CPU time and outperform the compact

118

formulations. Furthermore, the residual network formulation obtained the opti-

mal solution in CPU time faster than the formulation based on KKT conditions.

Finally, our multi-path model has been compared with the existing single path

approach on the same set of instances, and we found that using the multi-path

leads to lower network energy consumption for more than 45% of instances and

a reduction on the total traffic for 40% of instances.

Maximum influence in signed social networks

Finally, Chapter 5 studied a version of the maximum influence problem defined

on signed social networks named here Max-Inf problem. The objective of this

problem is to select a set of users of a signed social network to diffuse an informa-

tion and influence the rest of users so as to minimize sending cost and the penalty

costs due to negative influence. We proposed a bi-level optimization model for

this problem. Differently from the approaches in the literature, the propaga-

tion model is considered as a protocol where each user adopts the first arriving

information.

Similarly to the previous chapters, we reformulated the bi-level programming

model as a one level MILP models using different optimality conditions of the sec-

ond level problem: KKT optimality conditions, Bellman’s optimality conditions,

and shortest path constraints. These new formulations have been strengthened

by adding a set of valid inequalities. In addition, preprocessing techniques were

discussed. Also, polynomial time solution was presented for particular cases of

networks.

Computational experiments are performed using random instances to compare

the different proposed formulations. The obtained results showed the efficiency

of the formulation based on Bellman’s optimality condition over the other formu-

lations for the majority of instances.

119

We know that for huge size real instances, the MILP models are not able to find

the optimal solution. To this end, for future works, we look to use preprocessing

techniques and to combine the optimization models with the properties of signed

networks to solve large instances. Also, the proposed methods can be improved

using the constraints of path based formulation (5.9d) to cut infeasible solutions

in the branching tree (branch-and-cut algorithm).

Furthermore, a generalization to other variants of the problem will be studied.

For instance, if we suppose that the information retained by each user k is a

combination of information arriving by the first m shortest paths to k.

120

Bibliography

[1] H. Abrahamsson, B. Ahlgren, J. Alonso, A. Andersson, and P. Kreuger. A

multi-path routing algorithm for ip networks based on flow optimisation. In

Proc. of Proceedings of the 3rd International Conference on Quality of Fu-

ture Internet Services and Internet Charging and QoS Technologies, pages

135–144. Springer-Verlag, 2002.

[2] B. Addis, A. Capone, G. Carello, L. G. Gianoli, and B. Sansò. Energy

management through optimized routing and device powering for greener

communication networks. IEEE/ACM Trans. Netw., 22(1):313–325, 2014.

62, 63, 64, 65, 66

[3] N. Agin. Optimum seeking with branch and bound. Management Science,

13(4):B–176, 1966. 10

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1993. 18, 25, 26, 27, 30, 35, 73

[5] E. Amaldi, M. Bruglieri, and B. Fortz. On the hazmat transport network

design problem. In Network Optimization, pages 327–338. Springer, 2011.

15, 30

[6] E. Amaldi, A. Capone, S. Coniglio, and L. G. Gianoli. Energy-aware traffic

121

BIBLIOGRAPHY

engineering with elastic demands and MMF bandwidth allocation. In Proc.

of IEEE CAMAD’13, pages 169–174, 2013. 62, 63, 65, 66, 83

[7] F. Amato, V. Moscato, A. Picariello, and G. Sperĺı. Diffusion algorithms in

multimedia social networks: A novel model. In IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining, pages

85–103. Springer, 2018. 91

[8] A. S. G. Andrae and T. Edler. On global electricity usage of communication

technology: Trends to 2030. Challenges, 6(1):117–157, 2015. 3, 62

[9] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the

TSP (A preliminary report), volume 95. Citeseer, 1995. 11

[10] D. Applegate, R. Bixby, W. Cook, and V. Chvátal. On the solution of

traveling salesman problems. 1998. 11

[11] N. Arinik, R. Figueiredo, and V. Labatut. Multiple partitioning of mul-

tiplex signed networks: Application to european parliament votes. Social

Networks, 2019. 110

[12] E. Balas. Letter to the editor—a note on the branch-and-bound principle.

Operations Research, 16(2):442–445, 1968. 10

[13] R. Banner and A. Orda. Multipath routing algorithms for congestion min-

imization. IEEE/ACM Trans. Netw., 15(2):413–424, April 2007. 63, 64

[14] J. F. Bard and J. T. Moore. An algorithm for the discrete bilevel pro-

gramming problem. Naval Research Logistics (NRL), 39(3):419–435, 1992.

15

[15] R. Batta and C. Kwon. Handbook of OR/MS models in hazardous materials

transportation. Springer, 2013. 30

122

BIBLIOGRAPHY

[16] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear programming and

network flows. John Wiley & Sons, 2011. 30, 34, 69

[17] R. Bellman. On a routing problem. Quarterly of applied mathematics,

16(1):87–90, 1958. 22

[18] O. Ben-Ayed, C. E. Blair, D. E. Boyce, and L. J. LeBlanc. Construction

of a real-world bilevel linear programming model of the highway network

design problem. Annals of Operations Research, 34(1):219–254, 1992. 12

[19] P. Bertier and B. Roy. Procédure de résolution pour une classe de problèmes

pouvant avoir un caractère combinatoire. Cahiers du Centre d’études de

recherche opérationnelle, 6:202–208, 1964. 10

[20] W. F. Bialas and M. H. Karwan. Two-level linear programming. Manage-

ment science, 30(8):1004–1020, 1984. 12

[21] L. Bianco, M. Caramia, and S. Giordani. A bilevel flow model for hazmat

transportation network design. Transportation Research Part C: Emerging

Technologies, 17(2):175–196, 2009. 12, 15, 31

[22] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti. Energy efficiency in the

future internet: A survey of existing approaches and trends in energy-aware

fixed network infrastructures. IEEE Commun. Surveys Tuts., 13(2):223–

244, 2011. 15, 62

[23] S. Bonvicini and G. Spadoni. A hazmat multi-commodity routing model

satisfying risk criteria: A case study. Journal of Loss Prevention in the

Process Industries, 21(4):345–358, 2008. 47, 58, 118

[24] I. Bouras, R. Figueiredo, M. Poss, and F. Zhoo. Exact Algorithms for Fixed

Charge Network Design Problem with User-Optimal Flows. In IWOBIP:

123

BIBLIOGRAPHY

International Workshop on Bilevel Programming, Lille, France, June 2018.

xiv, 5

[25] I. Bouras, R. Figueiredo, M. Poss, and F. Zhou. Minimizing energy and

link utilization in isp backbone networks with multi-path routing: a bi-level

approach. Optimization Letters, pages 1–19. xiv, 6

[26] I. Bouras, R. Figueiredo, M. Poss, and F. Zhou. Exact Algorithms for Fixed

Charge Network Design Problem with User Optimal Flow. In Roadef 2018,

Lorient, France, Feb. 2018. xiv, 5

[27] I. Bouras, R. Figueiredo, M. Poss, and F. Zhou. Bi-level formulation for

Minimizing Energy and Link Utilization in ISP Backbone Networks with

Multipath Routing Protocol. In ROADEF: Recherche Opérationnelle et

d’Aide à la Décision, Le Havre, France, Feb. 2019. LITIS and LMAH. xiv,

6

[28] I. Bouras, R. Figueiredo, M. Poss, and F. Zhou. On two new formulations

for the fixed charge network design problem with shortest path constraints.

Computers & Operations Research, 108:226–237, 2019. xiv, 5, 15, 77, 82,

102

[29] L. Brotcorne, S. Hanafi, and R. Mansi. A dynamic programming algorithm

for the bilevel knapsack problem. Operations Research Letters, 37(3):215–

218, 2009. 13

[30] L. Brotcorne, P. Marcotte, and G. Savard. Bilevel programming: The

montreal school. INFOR: Information Systems and Operational Research,

46(4):231–246, 2008. 13

[31] J. J. Brown and P. H. Reingen. Social ties and word-of-mouth referral

behavior. Journal of Consumer research, 14(3):350–362, 1987. 90

124

BIBLIOGRAPHY

[32] W. Candler and R. Townsley. A linear two-level programming problem.

Computers & Operations Research, 9(1):59–76, 1982. 12

[33] W. Chen, W. Lu, and N. Zhang. Time-critical influence maximization in

social networks with time-delayed diffusion process. In Twenty-Sixth AAAI

Conference on Artificial Intelligence, 2012. 90

[34] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In Proceedings of

the 16th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 1029–1038. ACM, 2010. 90, 93, 108

[35] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social

networks. In Proceedings of the 15th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 199–208. ACM, 2009.

90

[36] X. Chen, A. Jukan, A. C. Drummond, and N. L. S. da Fonseca. A multi-

path routing mechanism in optical networks with extremely high bandwidth

requests. In Proc. of IEEE Globecom’09, pages 1–6, 2009. 63, 64, 65

[37] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon. Exploiting longer

cycles for link prediction in signed networks. In Proceedings of the 20th ACM

international conference on Information and knowledge management, pages

1157–1162. ACM, 2011.

[38] L. Chiaraviglio, M. Mellia, and F. Neri. Minimizing isp network energy

cost: Formulation and solutions. IEEE/ACM Trans. Netw., 20(2):463–476,

Apr. 2012. 62, 63

125

BIBLIOGRAPHY

[39] M. Chiesa, G. Kindler, and M. Schapira. Traffic engineering with equal-

cost-multipath: An algorithmic perspective. IEEE/ACM Trans. Netw.,

25(2):779–792, Apr. 2017. 63, 64, 65

[40] S.-W. Chiou. Bilevel programming for the continuous transport network de-

sign problem. Transportation Research Part B: Methodological, 39(4):361–

383, 2005. 14

[41] A. Cianfrani, V. Eramo, M. Listanti, M. Polverini, and A. V. Vasilakos.

An OSPF-Integrated Routing Strategy for QoS-Aware Energy Saving in

IP Backbone Networks. IEEE Trans. Netw. Service Manag., 9(3):254–267,

Sept. 2012. 62, 63

[42] CISCO. CISCO Visual Networking Index. Technical report, February. 2019.

62

[43] S. Climer and W. Zhang. Cut-and-solve: An iterative search strategy for

combinatorial optimization problems. Artificial Intelligence, 170(8):714 –

738, 2006.

[44] B. Colson, P. Marcotte, and G. Savard. Bilevel programming: A survey.

4or, 3(2):87–107, 2005. 13

[45] W. Cook and J. L. Rich. A parallel cutting-plane algorithm for the vehicle

routing problem with time windows. Technical report, 1999. 11

[46] F. Dabaghi, Z. Movahedi, and R. Langar. A survey on green routing pro-

tocols using sleep-scheduling in wired networks. J. Netw. Comput. Appl.,

77(C):106–122, Jan. 2017. 62

[47] S. Dempe. Bilevel programming: A survey. Dekan der Fak. für Mathematik

und Informatik, 2003. 15

126

BIBLIOGRAPHY

[48] S. Dempe, V. Kalashnikov, G. Perez-Valdes, and N. Kalashnykova. Bilevel

Programming Problems: Theory, Algorithms and Applications to Energy

Networks. Springer, 2015. 12, 34

[49] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization al-

gorithm for the vehicle routing problem with time windows. Operations

research, 40(2):342–354, 1992.

[50] B. Detienne. A mixed integer linear programming approach to minimize

the number of late jobs with and without machine availability constraints.

European Journal of Operational Research, 235(3):540–552, 2014.

[51] B. Detienne, L. Peridy, E. Pinson, and D. Rivreau. Génération de coupes

pour la planification d’agents. Int. Conference Modélisation et Simulation

MOSIM, 2006.

[52] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische mathematik, 1(1):269–271, 1959. 19, 20

[53] E. D. Dolan and J. J. Moré. Benchmarking optimization software with

performance profiles. Mathematical programming, 91(2):201–213, 2002. 56

[54] P. Domingos and M. Richardson. Mining the network value of customers.

In Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 57–66. ACM, 2001. 90

[55] E. Erkut and O. Alp. Designing a road network for hazardous materials

shipments. Computers & Operations Research, 34(5):1389–1405, 2007. x,

2, 31

[56] E. Erkut and F. Gzara. Solving the hazmat transport network design prob-

lem. Computers & Operations Research, 35(7):2234–2247, 2008. 31, 69

127

BIBLIOGRAPHY

[57] E. Even-Dar and A. Shapira. A note on maximizing the spread of influ-

ence in social networks. In International Workshop on Web and Internet

Economics, pages 281–286. Springer, 2007. 90

[58] J.-B. Eytard. A tropical geometry and discrete convexity approach to bilevel

programming: application to smart data pricing in mobile telecommunica-

tion networks. PhD thesis, Paris Saclay, 2018. 14

[59] R. Figueiredo, Y. Frota, and M. Labbé. Solution of the maximum k-

balanced subgraph problem. In International Conference on Learning and

Intelligent Optimization, pages 266–271. Springer, 2013. 110

[60] R. Figueiredo, Y. Frota, and M. Labbé. A branch-and-cut algorithm for

the maximum k-balanced subgraph of a signed graph. Discrete Applied

Mathematics, 261:164–185, 2019. 110

[61] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM,

5(6):345, 1962. 23

[62] L. R. Ford Jr. Network flow theory. Technical report, Rand Corp Santa

Monica Ca, 1956. 22

[63] J. P. Forgas and S. M. Laham. Halo effects. Cognitive illusions: Intriguing

phenomena in judgement, thinking and memory, pages 276–290, 2016. 93

[64] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-

proved network optimization algorithms. Journal of the ACM (JACM),

34(3):596–615, 1987. 20

[65] X. Gandibleux, G. Soleilhac, A. Przybylski, F. Lucas, S. Ruzika, and

P. Halffmann. voptsolver, a ”get and run” solver of multiobjective linear

128

BIBLIOGRAPHY

optimization problems built on julia and jump. MCDM2017: 24th Interna-

tional Conference on Multiple Criteria Decision Making, July 10-14, 2017.

88

[66] K. Genova and V. Guliashki. Linear integer programming methods and

approaches–a survey. Journal of Cybernetics and Information Technologies,

11(1), 2011. 9

[67] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex

systems look at the underlying process of word-of-mouth. Marketing letters,

12(3):211–223, 2001. 90

[68] J. Goldenberg, B. Libai, and E. Muller. Using complex systems analysis

to advance marketing theory development: Modeling heterogeneity effects

on new product growth through stochastic cellular automata. Academy of

Marketing Science Review, 9(3):1–18, 2001. 90

[69] R. E. Gomory. An algorithm for integer solutions to linear programs. Recent

advances in mathematical programming, 64(260-302):14, 1963. 11

[70] R. E. Gomory et al. Outline of an algorithm for integer solutions to linear

programs. Bulletin of the American Mathematical society, 64(5):275–278,

1958. 11

[71] M. Gondran and M. Minoux. Graphs and algorithms. Wiley, 1984. 20

[72] P. H. González, L. Simonetti, P. Michelon, C. Martinhon, and E. Santos.

A variable fixing heuristic with local branching for the fixed charge unca-

pacitated network design problem with user-optimal flow. Computers &

Operations Research, 76:134–146, 2016. 30, 49

129

BIBLIOGRAPHY

[73] P. H. González, L. G. Simonetti, C. A. de Jesus Martinhon, E. Santos, and

P. Y. P. Michelon. An improved relax-and-fix algorithm for the fixed charge

network design problem with user-optimal flow. In Proceedings of the 3rd

International Conference on Operations Research and Enterprise Systems,

pages 100–107, 2014. 15

[74] A. Goyal, W. Lu, and L. V. Lakshmanan. Simpath: An efficient algorithm

for influence maximization under the linear threshold model. In 2011 IEEE

11th international conference on data mining, pages 211–220. IEEE, 2011.

90

[75] M. Granovetter. Threshold models of collective behavior. American journal

of sociology, 83(6):1420–1443, 1978. 90

[76] G. D. Greenwade. The Comprehensive Tex Archive Network (CTAN).

TUGBoat, 14(3):342–351, 1993.

[77] M. Grötschel, A. Martin, and R. Weismantel. Packing steiner trees: A

cutting plane algorithm and computational results. Mathematical Program-

ming, 72(2):125–145, 1996. 11

[78] M. Gupta and S. Singh. Greening of the internet. In Proc. of ACM SIG-

COMM’03, pages 19–26, 2003. 62

[79] F. Gzara. A cutting plane approach for bilevel hazardous material transport

network design. Operations Research Letters, 41(1):40–46, 2013. xiii, 5, 31,

36, 38

[80] J. He and W. Song. Achieving near-optimal traffic engineering in hybrid

software defined networks. In Proc. of IFIP Networking’05, pages 1–9, May

2015. 64

130

BIBLIOGRAPHY

[81] M. M. Islam. Development of Methods for Solving Bilevel Optimization

Problems. PhD thesis, The University of New South Wales Australia 11,

2018.

[82] D. S. Johnson and M. R. Garey. Computers and intractability: A guide to

the theory of NP-completeness. WH Freeman, 1979. 9

[83] M. Jünger, G. Nemhauser, L. Wolsey, A. Schrijver, and R. Gomory. Cutting

plane algorithms for integer programming. 1998. 11

[84] B. Y. Kara and V. Verter. Designing a road network for hazardous materials

transportation. Transportation Science, 38(2):188–196, 2004. 15, 31, 32, 33,

34

[85] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influ-

ence through a social network. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

137–146. ACM, 2003. 90, 93, 108

[86] D. Kempe, J. Kleinberg, and É. Tardos. Influential nodes in a diffusion

model for social networks. In International Colloquium on Automata, Lan-

guages, and Programming, pages 1127–1138. Springer, 2005. 90

[87] J. Kim, W. Lee, and H. Yu. Ct-ic: Continuously activated and time-

restricted independent cascade model for viral marketing. Knowledge-Based

Systems, 62:57–68, 2014. 90

[88] M. Kimura and K. Saito. Tractable models for information diffusion in

social networks. In European conference on principles of data mining and

knowledge discovery, pages 259–271. Springer, 2006. 90

131

BIBLIOGRAPHY

[89] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India,

2006. 19

[90] B. Korte and J. Vygen. Combinatorial optimization, volume 2. Springer.

20, 22, 23

[91] S. J. Lachman and A. R. Bass. A direct study of halo effect. The journal

of psychology, 119(6):535–540, 1985. 93

[92] S. Lambert, W. V. Heddeghem, W. Vereecken, B. Lannoo, D. Colle, and

M. Pickavet. Worldwide electricity consumption of communication net-

works. Opt. Express, 20(26):B513–B524, Dec. 2012. xi, 3, 62

[93] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey.

Operations research, 14(4):699–719, 1966. 10

[94] L. J. LeBlanc and D. E. Boyce. A bilevel programming algorithm for exact

solution of the network design problem with user-optimal flows. Trans-

portation Research Part B: Methodological, 20(3):259 – 265, 1986. 30

[95] G. M. Lee and J. S. Choi. A survey of multipath routing for traffic en-

gineering. Information and Communications University, pages 1–27, Jul.

2018. 63

[96] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and

negative links in online social networks. In Proceedings of the 19th interna-

tional conference on World wide web, pages 641–650. ACM, 2010. 110

[97] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in so-

cial media. In Proceedings of the SIGCHI conference on human factors in

computing systems, pages 1361–1370. ACM, 2010. 110

132

BIBLIOGRAPHY

[98] M. Levorato, R. Figueiredo, Y. Frota, and L. Drummond. Evaluating bal-

ancing on social networks through the efficient solution of correlation clus-

tering problems. EURO Journal on Computational Optimization, 5(4):467–

498, 2017. 110

[99] M. Li, A. Lukyanenko, Z. Ou, A. Ylä-Jääski, S. Tarkoma, M. Coudron,

and S. Secci. Multipath transmission for the internet: A survey. IEEE

Commun. Surveys Tuts., 18(4):2887–2925, 2016. 63

[100] Y. Li, W. Chen, Y. Wang, and Z.-L. Zhang. Influence diffusion dynamics

and influence maximization in social networks with friend and foe relation-

ships. In Proceedings of the sixth ACM international conference on Web

search and data mining, pages 657–666. ACM, 2013. 91

[101] Y. Li, W. Chen, Y. Wang, and Z.-L. Zhang. Voter model on signed social

networks. Internet Mathematics, 11(2):93–133, 2015. 91

[102] X. Lin, Q. Jiao, and L. Wang. Opinion propagation over signed networks:

Models and convergence analysis. IEEE Transactions on Automatic Con-

trol, 2018. 91

[103] B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence max-

imization in social networks. In 2012 IEEE 12th international conference

on data mining, pages 439–448. IEEE, 2012. 90

[104] X. Liu, S. Mohanraj, M. Pioro, and D. Medhi. Multipath routing from

a traffic engineering perspective: How beneficial is it? In Proc. of IEEE

ICNP’14, pages 143–154, Oct 2014. 63, 64, 65

[105] A. Madkour, W. Aref, F. Rehman, A. Rahman, and S. Basalamah. A survey

of shortest-path algorithms. 05 2017. 18

133

BIBLIOGRAPHY

[106] T. L. Magnanti and R. T. Wong. Network design and transportation plan-

ning: Models and algorithms. Transportation science, 18(1):1–55, 1984.

30

[107] P. Marcotte. A note on a bilevel programming algorithm by leblanc and

boyce. Transportation Research Part B: Methodological, 22(3):233 – 236,

1988. 30

[108] R. Mathieu, L. Pittard, and G. Anandalingam. Genetic algorithm based

approach to bi-level linear programming. RAIRO-Operations Research,

28(1):1–21, 1994. 12

[109] A. Mauttone, M. Labbé, and R. Figueiredo. A tabu search approach to

solve a network design problem with user-optimal flows. In ALIO/EURO

Workshop on Applied Combinatorial Optimization, 2007. 69

[110] A. Mauttone, M. Labbé, and R. Figueiredo. A tabu search approach to

solve a network design problem with user-optimal flows. In VI ALIO/EURO

Workshop on Applied Combinatorial Optimization, 2008. 15, 30, 31, 35, 49

[111] P. Merindol, J. J. Pansiot, and S. Cateloin. Improving load balancing with

multipath routing. In Proc. of IEEE ICCCN’08, pages 1–8, Aug. 2008. 64

[112] A. Migdalas, P. M. Pardalos, and P. Värbrand. Multilevel optimization:

algorithms and applications, volume 20. Springer Science & Business Media,

2013. 13

[113] J. T. Moore and J. F. Bard. The mixed integer linear bilevel programming

problem. Operations research, 38(5):911–921, 1990. 15

[114] D. Nace. A linear programming based approach for computing optimal fair

134

BIBLIOGRAPHY

splittable routing. In Proceedings ISCC 2002 Seventh International Sym-

posium on Computers and Communications, pages 468–474. IEEE, 2002.

[115] D. Nace and M. Pióro. Max-min fairness and its applications to routing and

load-balancing in communication networks: A tutorial. IEEE Commun.

Surveys Tuts., 10(1-4):5–17, 2008.

[116] G. L. Nemhauser and G. Sigismondi. A strong cutting plane/branch-and-

bound algorithm for node packing. Journal of the Operational Research

Society, 43(5):443–457, 1992. 11

[117] I. Nishizaki and M. Sakawa. Stackelberg solutions to multiobjective two-

level linear programming problems. Journal of Optimization Theory and

Applications, 103(1):161–182, 1999. 12

[118] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–

Survivable Network Design Library. In Proceedings of the 3rd International

Network Optimization Conference (INOC 2007), Spa, Belgium, April 2007.

http://sndlib.zib.de, extended version accepted in Networks, 2009. xxi, 83,

84

[119] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolu-

tion of large-scale symmetric traveling salesman problems. SIAM review,

33(1):60–100, 1991. 11

[120] S.-L. Phouratsamay, S. Kedad-Sidhoum, and F. Pascual. Two-level lot-

sizing with inventory bounds. Discrete Optimization, 30:1–19, 2018. 13

[121] P. Pisciella. On the reformulation of a particular class of bilevel problems.

2011. 12, 13, 16

135

BIBLIOGRAPHY

[122] M. Poss. Models and algorithms for network design problems. PhD thesis,

Université Libre de Bruxelles, 2011. 9

[123] V. J. Rayward-Smith, S. Rush, and G. P. McKeown. Efficiency consid-

erations in the implementation of parallel branch-and-bound. Annals of

Operations Research, 43(2):123–145, 1993. 10

[124] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral

marketing. In Proceedings of the eighth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 61–70. ACM, 2002.

90

[125] M. Sakarovitch. Optimisation combinatoire: méthodes mathématiques et

algorithmiques: programmation discrète. Hermann, 1984. 20

[126] C. Shen, R. Nishide, I. Piumarta, H. Takada, and W. Liang. Influence

maximization in signed social networks. In International Conference on

Web Information Systems Engineering, pages 399–414. Springer, 2015. 91

[127] S. K. Singh, T. Das, and A. Jukan. A survey on internet multipath routing

and provisioning. IEEE Commun. Surveys Tuts., 17(4):2157–2175, 2015.

63

[128] N. R. Suri and Y. Narahari. Determining the top-k nodes in social net-

works using the shapley value. In Proceedings of the 7th international joint

conference on Autonomous agents and multiagent systems-Volume 3, pages

1509–1512. International Foundation for Autonomous Agents and Multia-

gent Systems, 2008. 90

[129] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002. 11

136

BIBLIOGRAPHY

[130] I. Toumazis and C. Kwon. Routing hazardous materials on time-dependent

networks using conditional value-at-risk. Transportation research part C:

emerging technologies, 37:73–92, 2013.

[131] I. Toumazis, C. Kwon, and R. Batta. Value-at-risk and conditional value-at-

risk minimization for hazardous materials routing. In Handbook of OR/MS

Models in Hazardous Materials Transportation, pages 127–154. Springer,

2013. 47, 60, 118

[132] W. van Ackooij, J. D. Boeck, B. Detienne, S. Pan, and M. Poss. Optimiz-

ing power generation in the presence of micro-grids. European Journal of

Operational Research, 271(2):450–461, 2018. 16

[133] V. Verter and B. Y. Kara. A path-based approach for hazmat transport

network design. Management Science, 54(1):29–40, 2008. 31

[134] L. Vicente, G. Savard, and J. Judice. Discrete linear bilevel programming

problem. Journal of optimization theory and applications, 89(3):597–614,

1996. 14, 15

[135] H. von Stackelberg. The Theory of the Market Economy. Oxford University

Press, 1952. 12

[136] J. Y. Wang, M. Ehrgott, K. N. Dirks, and A. Gupta. A bilevel multi-

objective road pricing model for economic, environmental and health sus-

tainability. Transportation Research Procedia, 3:393–402, 2014. 14

[137] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren, and Z. Liu. Energy-

efficient flow scheduling and routing with hard deadlines in data center

networks. In 2014 IEEE 34th International Conference on Distributed Com-

puting Systems, pages 248–257. IEEE, 2014. 78

137

BIBLIOGRAPHY

[138] W. Wang and W. N. Street. Modeling and maximizing influence diffusion in

social networks for viral marketing. Applied network science, 3(1):6, 2018.

90

[139] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy al-

gorithm for mining top-k influential nodes in mobile social networks. In

Proceedings of the 16th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 1039–1048. ACM, 2010. 91

[140] S. Warshall. A theorem on boolean matrices. In Journal of the ACM.

Citeseer, 1962. 23

[141] L. A. Wolsey. Integer programming. Wiley-Interscience, New York, NY,

USA, 1998. 8, 9, 21

[142] J. Zhang, K. Xi, and H. J. Chao. Load balancing in ip networks using

generalized destination-based multipath routing. IEEE/ACM Trans. Netw.,

23(6):1959–1969, Dec. 2015. 63, 64

[143] X. Zhang, W. Wang, P. O. de Pablos, J. Tang, and X. Yan. Mapping devel-

opment of social media research through different disciplines: Collaborative

learning in management and computer science. Computers in Human Be-

havior, 51:1142–1153, 2015. 90

138

