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Chapter 1

Introduction

Numerical seismic imaging is a topic that has evolved a lot thanks to the tremendous
progresses of scientific computing together with the access to supercomputers. Seismic
imaging begins with data acquisition which consists in recording reflected seismic waves
generated by artificial sources and propagating in the underground. Then, receivers, which
are usually placed at the surface, measure the direct waves and the reflected ones (see Fig-
ure 1.1 for an illustration of an offshore survey campaign). To transform those data into

Figure 1.1: Typical data acquisition for seismic marine imaging

images of the underground, numerical techniques have been developed and distinguish
themselves by the information they are able to retrieve and also by the degree of precision
with which they provide with a reconstruction of the subsurface. From a numerical point
of view, they are all engaged in a computationally intensive process that must be able to
solve wave equations in large heterogeneous domains. Nowadays, two numerical methods
have emerged for such a purpose. They are the Reverse Time Migration (RTM) and the
Full Waveform Inversion (FWI). Both approaches are based upon the numerical solution
of the full wave equation, which has to be performed many times (for each source and pos-
sibly the receivers), and the resolution is part of an iterative procedure that is supposed
to converge towards the image of the domain under study. RTM is a method of migration
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CHAPTER 1. INTRODUCTION

by extrapolation of the full wave equation in the time domain while FWI is an inversion
technique involving optimization methods adapted for solving ill-posed nonlinear inverse
problems. RTM is a qualitative method of inversion that provides information on the lo-
cation of reflectors. It is very popular because of its robustness and also because it is quite
easy to implement but it only delivers information on the kinematic of the propagation
medium. Hence it can be left for FWI which provides quantitative information by retriev-
ing the dynamics of the domain through the reconstruction of its physical parameters.

This work aims at developing a propagator for acoustic and elastic waves that combines
two different finite element methods. This new development is motivated by the objec-
tive of having a FWI in the time domain. FWI is implemented by following an iterative
process which aims at updating the physical parameters of interest at each iteration (for
instance the wave velocities) until convergence towards the image of the domain under
exploration. A minimization method is carried out thanks to a gradient method applied
to a misfit function that measures at each iteration the difference between measured and
numerical data. The FWI has been introduced by Lailly (Lailly & Bednar, 1983) and
Tarantola (Tarantola, 1984a, 1984b) in the time domain and it has been extended to the
frequency domain by Pratt et al. (Pratt, Shin, & Hick, 1998). FWI is a numerical in-
version method that is computationally intensive with still excessive assignments of the
computational resources in realistic geophysical cases. Given that the method is sensitive
to the accuracy of the numerical solution, it is problematic to give up accuracy in order
to carry out the computations with available computing resources. Hence, it is of great
interest of implementing a numerical method that involves less computational power than
existing DGms.
Magique-3D, in collaboration with Total, has developed a FWI software package in the
2D frequency domain (Faucher, 2017) that turns out to be less expensive than in the time
domain because the images are carried out thanks to the inversion of a discrete number of
frequencies. In 3D, one cannot conclude in that way because in the frequency domain, the
numerical method is based on the use of linear solvers which are not yet able to address
large problems like those considered for geophysical applications. There is thus an inter-
est of developing FWI based upon time-dependent wave equations and this work aims at
preparing the development of FWI in time domain by providing an accurate numerical
method for simulating wave problems with affordable computational costs. In particular,
because FWI implies solving several wave equations, the occupation of the memory must
be controlled and for this reason, explicit time integration is preferred.
There exist several numerical methods that have demonstrated their efficiency for solving
wave problems. In the geophysical community and in particular for industrial develop-
ments, the most common numerical approach is the Finite Difference method (FDm). It
works with cartesian grids and it is well-known for providing numerical results with rea-
sonable computational costs besides being quite easy to implement. However, regular grids
are not able to easily reproduce the possible variations of the topography. For instance,
local refinements can be carried out to fit with the topography variations but numerical
dispersion can appear and pollute significantly the numerical solution. In such situation,
the flexibility of Finite Element methods (FEm) with tetrahedral meshes, is a great advan-
tage even if FEms require higher computational resources. This is true for finite element
approximations based upon Lagrange polynomials. They have a mass matrix which is not
diagonal with a stencil increasing with the order of approximation. In the case of an ex-
plicit time integration, FEm involves then the inversion of a matrix at each time step which
increases significantly the computational costs and thus accentuates the interest for finite
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differences. Mass lumping could have been used but it turns out that mass lumping process
is not able to keep the order of the Lagrange finite element method, as soon as its order
exceeds two. To overcome this difficulty, Spectral Element methods have been investigated
and Dimitri Komatitsch and his co-authors (see (Komatitsch & Vilotte, 1998; Komatitsch,
Tromp, & Vilotte, 1998; Komatitsch, Barnes, & Tromp, 2000a) among others) have clearly
demonstrated that this method is very efficient for solving wave problems applied to seis-
mology. This method distinguishes itself from other finite element methods by employing
quadrature formulas which use Gauss-Lobatto-Legendre points. If the degrees of freedom
of the method coincide with these quadrature points, the mass matrix is diagonal. This is
an important feature which allows using explicit schemes for time integration. Then, it is
worth noting that high order SEms must be developed on hexahedral grids, which tends to
limit the use of this approach in an industrial context, at least until now, because the gen-
eration of meshes with hexahedra is difficult and the commercial facilities are rare. We can
cite Hexamesh (https://www.dps-fr.com/maillage-hexa-automatique-catia), which
has been developed recently, but it is devoted to applications that dispose of computer
aided design and this is not the case of geophysical exploration that aims at retrieving the
propagation domain itself. This has been a motivation for developing wave propagators
which are based upon Discontinuous Galerkin (DG) approximations.
DG methods (DGm) are now widely used for solving wave problems (see (Hu, Hussaini, &
Rasetarinera, 1999; Cockburn, Karniadakis, & Shu, 2000; Dumbser & Käser, 2006; Grote,
Schneebeli, & Schötzau, 2006; Ainsworth, Monk, & Muniz, 2006; Bernacki, Lanteri, &
Piperno, 2006; Käser, Dumbser, De La Puente, & Igel, 2007; de la Puente, Käser, Dumb-
ser, & Igel, 2007; de la Puente, Dumbser, Käser, & Igel, 2008; Käser, Hermann, & Puente,
2008; Chung & Engquist, 2009; Petersen, Farhat, & Tezaur, 2009; Delcourte, Fezoui, &
Glinsky-Olivier, 2009; Wilcox, Stadler, Burstedde, & Ghattas, 2010; Dupuy, De Barros,
Garambois, & Virieux, 2011; Hermann, Käser, & Castro, 2011; Boillot, 2014; Faucher,
2017) for instance). They are built on arbitrarily shaped meshes including tetrahedra and
hexahedra. They consist in expanding the approximate solution in a basis of discontinu-
ous functions that are defined locally in each element. By this way, whatever the order
of the method is, one element communicates with its neighbors only and the mass matrix
is block diagonal. This is an important feature of DGm since the mass matrix is easy to
invert and the use of an explicit time scheme is possible with affordable computational
costs. Moreover, the whole formulation takes advantage of the local definition of the basis
functions by being implemented in parallel very naturally. As well, DG basis functions
are locally defined and this favours the use of local orders of approximation. DGms are
thus well suited for p and h adaptivity. In the framework of the partnership DIP between
Inria and TOTAL, Magique-3d has developed propagators which use DGms, essentially for
solving first-order wave equations. These methods have been tested in various situations
and it turns out that they deliver very accurate solutions but their computational burden
is clearly higher than the one of SEm (Komatitsch & Vilotte, 1998), even if most of the
comparisons do not consider the same mesh for both methods. The results could thus be
biased in the sense that even the grids do not contain the same number of nodes. Anyway,
DGms provide very flexible approximation methods capable of handling propagation do-
mains that include strong variations of the topography and are characterized by physical
parameters that may vary inside the cells of the mesh. This is basically a situation in
which DGm could perform better than SEm.
If we go back to Figure 1.1, we see that a typical example of geophysical exploration in-
volves a propagation medium which is a layer of water over the subsurface composed of
geological layers. It is clear that there is no interest in meshing the layer of water with
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CHAPTER 1. INTRODUCTION

tetrahedra. We can surely use a structured grid to compute the wavefield in this region.
The situation is different in the subsurface, where the geological layers may be arbitrarily
shaped. Their discretization is obviously easier with tetrahedra and the idea of using an
hybrid mesh becomes very interesting. However, employing a hybrid mesh does not ad-
dress the question of developing a numerical method with reduced computational costs.
It is also necessary to elaborate a numerical method suitable for hybrid meshes. Given
our knowledge of DGm and SEm, we propose here to couple these two numerical schemes.
It is worth noting that we have focused on the construction of a coupled method, which
explains that we have not addressed the question of using general hybrid meshes and we
acknowledge that this should be done in the future. Here we concentrate our efforts on
the development and validation of a DG-SEm scheme for acoustic and elastic wave prob-
lems in time domain. It is worth noting that the interest for hybrid numerical methods
is still increasing significantly because they offer a promising approach for tackling indus-
trial problems. In that spirit, we can cite the work of N. Deymier (Deymier, 2016) who
developed and implemented a hybrid method involving a DGm with a FDm (Yee scheme)
for solving Maxwell equations in the time domain.

This manuscript is organized as follows. The next chapter provides a general setting
of the wave equations solved for seismic applications. Given that the resulting propagator
will be used for FWI, we will consider first-order wave equations because such formula-
tions give access to the physical quantities of interest when dealing with inversion. In
this chapter, we also describe the different types of media that can be encountered in
geophysical exploration. Chapter 3 deals with the numerical schemes that are the basis
of the numerical approach proposed in this work. First, we introduce two different time
schemes that are the Leap-Frog and Runge-Kutta schemes. Then, we present the DGm
in the case of elastodynamics and the SEm for acoustics. For each method, we introduce
the variational formulation and the discretization space that gives rise to a semi-discrete
system. We validate the implementation of each method in quadrangle meshes and this
gives us the opportunity to compare DGm with SEm when both are applied in quadrangle
meshes. We show that, in this case, SEm requires less computational resources but in the
same time, DGm is more accurate. In Chapter 4, we develop a DG-SEm coupling scheme
that is based on DG mixed-primal formulation allowing to handle the area restricted to
the application of SEm as a DG macro-element. Chapter 4 is thus the heart of this work.
For the sake of conciseness, we deal with the elastic wave equation in details and provide
a short description of the acoustic case. In particular, by performing an analysis of the
energy of the discrete system, we guarantee the stability of the numerical method when it
is implemented with the Leap-Frog scheme. The method has also been implemented with
the Runge-Kutta scheme of order 4 but, even if we did not observe any problem of stability,
the corresponding energy study is still an ongoing work. We finish this chapter by ad-
dressing the case of the first-order elasto-acoustic equation that is employed for simulating
the interaction between a fluid and a solid. For that purpose, the SEm is applied in the
fluid area while the DGm is used in the solid area. It is worth noting that the interaction
between the two different physics is modelled with a transmission condition that requires
changing the formulation for achieving the coupling of SEm with DGm. In Chapter 5,
we perform numerical experiments to validate the DG-SEm coupling scheme. For that
purpose, we carry out comparisons with full DGm implemented with unstructured trian-
gles in areas where it is more difficult to mesh the geometric and physical characteristics
of the domain. All the experiments we have carried out clearly show that the DG-SEm
computations are faster that the full DG ones with the same degree of accuracy. In the last

16



chapter, we investigate the behavior of the numerical method when absorbing conditions
are used. We address the case of absorbing boundary conditions (ABC) and the case of
Perfectly Matched Layers (PML). Such boundary conditions have an essential role in the
simulation of seismic waves since they allow performing regional computations which are
less expensive than global simulations. Regarding ABCs, we introduce a first-order con-
dition which has already been implemented in (Boillot, 2014). We extend this condition
to the coupled formulation and illustrate its accuracy with some numerical experiments.
More importantly, we address the question of stability regarding the use of PML. Actually,
even in isotropic media where PMLs are known to be stable, we have observed that their
integration in the full DG scheme can lead to instabilities. On the contrary, there are no
surprises when using SEm. This gives us the idea of coupling DGm with SEm employed
in the layer in which the PML acts. We then observe that such a coupling is successful
in stabilizing the PML when using a DG scheme in the rest of the computational domain
and for that purpose, we have implemented the ADE-PML (Martin, Komatitsch, Gedney,
Bruthiaux, et al., 2010).
This PhD thesis is based upon an important contribution to software development. In-
deed, before its beginning, some fundamental bricks were missing in the pieces of software
currently maintained in the team Magique-3D. For instance, the SEm has been developed
from scratch and DGm was only implemented in triangular/tetrahedral meshes. The work
has been done with twofold objectives: (1) implementation of a DG-SE method for solving
wave equations in heterogeneous media; (2) validation of the method in view of disposing
of a proof of concept in the context of seismic imaging. The development of a DG-SE
method has been launched as an exploratory topic and we have decided to work first in
the framework of Elasticus which is a software package devoted to the implementation
of new methods requiring new data structures and this is particularly the case of DG-SE
method. Hence as a preamble of the manuscript, we describe the main achievements that
have been carried out regarding software development.

Software development

The numerical simulations displayed in this work have been performed with the software
Elasticus, which is developed in the team Magique3D. At the beginning of this work, Elas-
ticus was able to solve numerically wave equations using DGm in unstructured triangle
meshes in 2D and unstructured tetrahedral meshes in 3D. Elasticus proposed three differ-
ent propagation media: fluid domains in which acoustic waves propagate, solid domains in
which elastic waves travel and the elasto-acoustic coupling. Regarding time discretization,
Elasticus offers three different schemes: second-order Leap-Frog schemes (only for fluid
and solid domains), Runge-Kutta of order 2 and 4 (for the three types of media). As far
as boundary conditions are concerned, Elasticus is endowed with first order Absorbing
Boundary Conditions (ABC) and Perfectly Matched Layers (PML) as well, using Aux-
iliary Differential Equation (ADE)-PML with Convolutional-PML or PML formulation
(Gedney & Zhao, 2009; Martin et al., 2010). These boundary conditions can be applied to
the elastic wave equation and to the acoustic wave equation as well. In the framework of
this thesis, several important features have been added to Elasticus. Since the beginning,
we knew that we had to include SEm in Elasticus and that a comparison with DGm was
necessary. Given that SEm works with quadrangles and hexahedra, we decided first to im-
plement a DGm working with meshes composed of quadrangular cells in 2D and
cuboids in 3D and with hybrid meshes composed of both triangles/tetrahedra
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and quadrangles/cuboids. Once these new functions have been added to Elasticus, we
have implemented the SEm in 2D and 3D both for acoustic and elastic domains.
It is worth noting that, at first, the development of SEm in elastic domains was not a pri-
ority for us since our objective was to apply SEm in fluid domains. Nevertheless, having
a SEm for elastic domains was very interesting to go further in comparisons with DGm.
Moreover, we have realized that it could be used to stabilize the PML in Elasticus, as we
explain in Chapter 6.

Having full SEm and DGm, the main objective of this thesis has been addressed: we
have constructed a numerical scheme including the coupling of SE and DG elements
working with meshes composed of different areas having structured and un-
structured cells. It is worth noting that structured cells are quadrangles in 2D and
cuboids in 3D while unstructured cells are triangles in 2D, tetrahedra in 3D. This feature
is justified by the fact that the coupling has been carried out in order to use DGm in the
unstructured triangular/tetrahedral part and SEm in the quadrangular/cuboidal one. The
coupling has been achieved to work with all the different time schemes that are available
in Elasticus. Even if our main objective was the solution of elasto-acoustic problems with
SE-DGm, the coupled scheme works in full acoustic and full elastic domains and for these
two configurations, we can apply a Leap-Frog scheme and Runge-Kutta schemes while
for solving the elasto-acoustic problem, we only use Runge-Kutta integrations required
because the space discretization involves upwind fluxes. In terms of boundary conditions,
we have implemented an Absorbing Boundary Condition both for DGm and SEm.
It is worth noting that the ABC is plugged into the Sem and the DG-SEm formulations
weakly, handling in the formulation as a penalization. In acoustics, we have used the first
order ABC designed by Engquist and Majda in (Engquist & Majda, 1977, 1979). For
elastic wave equation, we have used the first order ABC designed by (Cohen & Jennings,
1983) for isotropic media, and the one derived in (Boillot, 2014; Barucq, Boillot, Calan-
dra, & Diaz, 2014) for transversely isotropic media. For the DGm/SEm coupling, we have
taken advantage of the fact that we could consider the area in which the SEm is applied
as a DG macro-cell (as we explain in Chapter 4). This approach eases significantly the
coupling of the two ABCs. Finally, we have extended the Perfectly Matched Layer
formulation implemented first for DGm and SEm apart to DG-SEm (see chapter 6 for
details). All the above developments have been achieved both in 2D and in 3D.
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Chapter 2

General setting of wave equations

In this chapter, we introduce the equations governing the wave propagation in a fluid
(acoustic waves) and a solid (elastic waves) and how they are coupled in the case of
propagation domains allowing the coupling between acoustic and elastic waves as depicted
for instance in the introduction. We also describe the implementation of the source term.
It is worth noting that we do not address in details the boundary conditions that we use for
simulation. This is due to the content of Chapter 6 which focuses on boundary conditions.

2.1 Acoustic system: equation of propagation

The acoustic wave equation results from three fundamental laws represented by the Euler
equation, the principle of mass conservation and the thermodynamics of the fluid. These
equations link the pressure P , the velocity v and the density ρ which are the parameters
characterizing the fluid. The Euler equation is derived as an application of the fundamental
principle of the dynamics. In absence of external sources, it reads:

ρ(x, t) (∂tv(x, t) + (v(x, t) · ∇)v(x, t)) = −∇P (x, t), (2.1)

where ∇ is the gradient operator. The equation governing the mass conservation is given
by:

∂tρ+ ∇ · (ρv(x, t)) = 0, (2.2)

where ∇· is the divergence operator. We now assume that the fluid is initially immobile,
that is ρ(x, 0) = ρ0, P (x, 0) = p0 and v(x, 0) = 0. Then, the fields can be parametrized
as follows:

ρ(x, t) = ρ0(x) + δρ(x, t), P (x, t) = p0(x) + p(x, t). (2.3)

It is worth noting that p0 is the static pressure which corresponds more generally to the
pressure in absence of acoustic wave. Assuming that the acoustic perturbations are small,
we can linearize the velocity and the perturbation of the density up to the first order and
we get:

ρ0∂tv(x, t) = −∇p(x, t) (2.4)

and

∂t(δρ) + ∇ · (ρ0v(x, t)) = 0. (2.5)
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These two equations are not sufficient to fully characterize the fluid. We miss an equation of
state linking the pressure and the density of the fluid. In the case of acoustic perturbations,
the fluid is adiabatic and we have:

δρ = ρ0χp, (2.6)

where χ is the adiabatic compressibility coefficient which is a constant under hypothesis
of small perturbations. Hence we can remove δρ from (2.4) to end up with the equation:

∂tp+
1

χ
∇ · (v(x, t)) = 0. (2.7)

Finally we obtain the linear acoustic system:

{
ρ0∂tv(x, t) = −∇p(v, t),

χ∂tp(x, t) + ∇ · v(x, t) = 0.

Most of the time, seismic imaging aims at reconstructing velocity models. That is why we

prefer to rewrite the previous system by introducing the propagation velocity c0 =
1√
χρ0

of acoustic waves. Hence, we will consider the first order velocity-pressure formulation of
the acoustic wave equation:





ρ0∂tv(x, t) = −∇p(x, t),

1

c2
0ρ0

∂tp(x, t) + ∇ · v(x, t) = 0.

(2.8)

To be solved, this system should be completed with initial conditions and boundary con-
ditions depending on the case we are considering. This question will be clarify in the
following chapters.

2.2 Elastic waves: equation of propagation

The elastodynamic system is obtained from equations elaborated from the theory of
strengths of materials combined with the equation of motion. There are two different
formulations depending on whether the displacement or the velocity is considered as un-
known. Regarding geophysical applications we deal with, we focus on the formulation
using the velocity v.
Consider the propagation domain is being deformed from a given force. Then, it is elastic
if it returns to its original shape when the effect of the force stops. In the case of linear
elasticity, the deformation is supposed to be small. Then the strain tensor ǫ reads:

ǫ(v) =
1

2

(
∇v + (∇v)T

)
. (2.9)

There are constraints which work to return the solid in its original shape. If the deforma-
tions are small, the strain tensor is connected to the stress tensor σ by the constitutive
law:

∂tσ(x, t) = C(x)ǫ(v(x, t)), (2.10)
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where C denotes the elasticity tensor. As far as the equations are written component by
component, we have ∂tσij =

∑
k,l
Cijklǫkl. The motion equation is deduced from the Newton

law in absence of source term:

ρ(x)∂tv(x, t) = ∇ · σ(x, t). (2.11)

where ρ denotes the density. Then, by injecting (2.9) and (2.10) in the time derivative of
(2.11), we end up with the elastodynamic system:

ρ(x)∂2
t v(x, t) = ∇ ·

(
C(x)ǫ(v(x, t)

)
. (2.12)

Therefore, we get a second order partial differential system with v as unknown. By
considering the stress tensor σ as unknown as well, the second order equation transforms
into a first order system of the form:

{
ρ(x)∂tv(x, t) = ∇ · σ(x, t),

∂tσ(x, t) = C(x)ǫ(v(x, t)).
(2.13)

This is actually the formulation we solve and for which we aim at developing a hybrid
numerical software package suitable for seismic imaging.

2.3 Principal seismic waves

Into the Earth, elastic waves can be P and S waves with possible conversions of P into S
and vice versa. It is possible to characterize them from wave equation solutions in isotropic
medium and in absence of source term. Let us introduce the scalar φ and the vector field
Ψ as solutions of the wave equations

ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ = 0 (2.14)

and

ρ
∂2Ψ

∂t2
− µ∆Ψ = 0, (2.15)

where ρ is the density and λ, µ are the Lamé parameters (see Section 2.4 of this chapter.)

The solution to (2.14) is a scalar wave propagating with the velocity VP =

√
λ+ 2µ

ρ
while

the solution to (2.15) is a wave vector field propagating with the velocity VS =
√
µ

ρ
.

Let us now consider the second-order equation:

ρ
∂2u

∂t2
− µ∆u − (λ+ µ)∇(∇ · u) = 0,

where u denotes the displacement field and ∇ is the gradient operator. It is easy to check
that a solution u can be written through the Helmholtz decomposition

u = ∇φ+ curlΨ,

where φ is solution to (2.14) and Ψ is solution to (2.15). Such a property mainly results
from the well-known properties:
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• the vectorial Laplace operator can be decomposed into ∆ = ∇∇ · −curlcurl;

• curl∇ = 0;

• ∇ · curl = 0.

Then, the component uP = ∇φ corresponds to a longitudinal wave or Primary (P) wave
as the one that propagates faster and is curl free. We can observe that the component
uS = curlΨ is a transverse wave or Secondary (S) wave which is divergence free. S waves
propagate more slowly than P waves.

Figure 2.1 to 2.3 present the different types of waves which can appear in acoustic or
elastic media and how they affect the medium of propagation.

Figure 2.1: Illustration of P-wave

Figure 2.2: Illustration of horizontal shear (SH) wave

2.4 Characterization of elastic media

In this work, we address both isotropic and anisotropic media. Geophysical media are
generally anisotropic with possible isotropic areas. More precisely, we will consider three
types of elastic media: isotropic, Vertical Transverse Isotropic (VTI) and Titled Trans-
verse Isotropy (TTI).
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Figure 2.3: Illustration of vertical shear (SV) wave

It is the elasticity tensor C that contains information about the properties of the medium
under study. It is a tensor of order four whose components are denoted by C = (Cijkl)1≤i,j,k,l≤d

where d is the dimension of the domain. According to Hooke’s law, it is defined from the
deformation tensor ǫ and the stress tensor σ. In the most general case, it has 81 coeffi-
cients. It is symmetric because ǫ and σ are symmetric. Moreover, assuming that σ derives
from a potential, the elastic tensor becomes invariant under permutations of indices. This
last property allows us to reduce its number of coefficients to 21. Hence, using the Voigt
notation where the indices are gathered by pairs and replaced following a correspondence
table, we can rewrite C as a matrix simply denoted by C which is symmetric and has
at the most 21 independent entries. Positiveness is also an important property for the
elasticity tensor, that is:

∀ symmetrical tensor ξ, (Cξ) : ξ ≥ 0

where ":" is the tensorial scalar product.

tensorial indices 11 22 33 23/32 13/31 12/21

matricial indices 1 2 3 4 5 6

Table 2.1: Correspondance table using Voigt notation

Isotropic medium

In the case of an isotropic medium, the elasticity tensor C contains only two independent
coefficients known as the Lamé constants (λ, µ), which can be written in terms of Poisson
coefficient ν and Young modulus E as follows:

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (2.16)

The Young modulus E measures the stiffness of a solid material and the coefficient of
Poisson ν gives a measurement of the expansion of the material in the directions perpen-
dicular to the direction of compression. The Lamé coefficients allow to express the stress
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tensor σ as a function of the deformation tensor ǫ:

σ = 2µǫ+ λtr(ǫ)I,

where tr stands for the trace of matrices (that is the sum of the diagonal entries) and I is
the identity tensor.
In an isotropic medium, the matrix C has then the following form:

Ciso =




λ+ 2µ λ λ 0 0 0
λ+ 2µ λ 0 0 0

λ+ 2µ 0 0 0
µ 0 0

µ 0
µ



. (2.17)

An isotropic medium can also be parametrized by considering the propagation veloci-
ties of P and S waves denoted respectively by Vp and Vs and the density of the medium
ρ. In that case, the matrix C reads:

Ciso =




C11 C11 − 2C66 C11 − 2C66 0 0 0
C11 C11 − 2C66 0 0 0

C11 0 0 0
C66 0 0

C66 0
C66



, (2.18)

with C11 = ρV 2
p and C66 = ρV 2

s .

Vertical Transverse Isotropic medium

In realistic geological media, the waves do not generally propagate uniformly in every
direction. For instance, the propagation domains include orthotropic materials whose
properties differ along three mutually-orthogonal twofold axes of rotational symmetry.
Such cases provide examples of anisotropic media whose properties change when measured
in different directions. In the particular case where the axis of the frame of study and the
plan of orthotropy are colinear, the matrix C is represented by 9 independent coefficients:

Cortho =




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66



. (2.19)

In seismic imaging, we consider the polar anisotropy also called Transverse Isotropy
(TI). It means that orthotropy only occurs in one direction with only one symmetrical
axis usually very close to the vertical. In this case, the wave front is isotropic in a plan
orthogonal to this axis. Figure 2.4 depicts the difference between an isotropic, a TI and
an orthotropic medium.
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ey

ex

ez

Figure 2.4: Scheme for isotropic medium (left), Transverse Isotropy medium with one
plan and one symmetry axis (middle), and orthotropic medium with two symmetric plans
(right).

In an orthogonal frame where ez coincides with the axis of symmetry (denoted by ẽz),
the polar anisotropy is called Vertical Transverse Isotropy (VTI) and the elasticity matrix
is written with 5 independent constants:

CV T I =




C11 C11 − 2C66 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

C44 0
C66



, (2.20)

where:





C11 = ρV 2
p (1 + 2ǫ),

C33 = ρV 2
p ,

C13 = ρ
√

(V 2
p − V 2

s )2 + 2V 2
p δ(V

2
p − V 2

s ) − ρV 2
s ,

C44 = ρV 2
s ,

C66 = ρV 2
s (1 + 2γ).

(2.21)

The three constants ǫ, δ and γ have been introduced by Thomsen in (Thomsen, 1986).
They characterize a transverse isotropic medium and are equal to:





ǫ =
C11 − C33

2C33
,

δ =
(C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
,

γ =
C66 − C44

2C44
.

(2.22)

If the three Thomsen constants are equal to zero, we retrieve Ciso.
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Tilted Transverse Isotropy (TTI)

In general, the orthogonal frame does not coincide with the frame of orthotropy. In that
case, the transverse isotropy is tilted and the corresponding property of the medium is
called Tilted Transverse Isotropy. The tilt is defined by two angles, θ and φ given by:

θ = (êz, ẽz),

φ = (ex
̂, Pxy ẽz),

where Pxy denotes the projection on the plane (ex, ey) (see Figure 2.5).

ey

ex

ez

φ

θ

Figure 2.5: TTI tilt angle

One interesting property of TTI is that it can be considered like a rotation of VTI.
However, because the matrices of elasticity are derived from tensors, the rotation is rep-
resented in the tensorial algebra and it leads to two possible representations of the TTI
tensor: either the tilt is written using the angles as a crossing matrix M(θ,φ) linking the
VTI tensor and the TTI tensor, or the tilt is represented by using a rotation matrix R(θ,φ).

In this work, we have adopted the second option with R(θ,φ) given by :

R(θ,φ) =




cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ


 . (2.23)

The TTI elasticity tensor is denoted by C̃ and its coefficients are obtained from the

ones of the VTI elasticity tensor C̄ as follows:

C̃
ijkl

=
d∑

p=1

d∑

q=1

d∑

r=1

d∑

s=1

RpiRqjRrkRslC̄pqrs 1 ≤ i, j, k, l ≤ d.

The resulting TTI matrix is composed of 21 independent coefficients written from
7 constants: Vp, Vs, ρ and the three Thomsen constants ǫ, δ and γ. However, even if
they depend only on seven constants, the coefficients of the tensor do not have a simple
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analytical formula, so by sake of simplicity, the TTI elasticity matrix is written as:

CT T I =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66



.

2.5 Elasto-acoustic system

In the case of seismic marine (see Figure 2.6), the propagation domain is basically com-
posed of a layer of water representing the ocean and a layer of solid materials standing for
a piece of the sea bed. The typical propagation area is thus a square domain in two di-
mensions (or a cuboid in three dimensions) denoted by Ω. We note x ∈ Rd (with d = 2, 3)
the space variable and t ≥ 0 the time variable with t ∈ [0, T ]. Inside the sea, as formerly
discussed in the introduction of the manuscript, we know that only P waves propagate
while there are P and S waves which can travel inside the ocean floor. The P waves are
solutions to the acoustic wave equation that we first introduce.

Figure 2.6: Typical data acquisition for seismic marine imaging

2.6 Implementation of source terms

In the framework of seismic exploration, we consider the propagation of waves which are
generated by artificial sources. In the presence of a source, the source term S is taken into
account in one of the two equations and in general, we consider source terms which vary
in time and space independently. If the source term is included through the equation of
motion, we have

S(x, t) = s(x)s̃(t)
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where s is a vector with the same dimension than v and s̃ is a scalar. Then we solve the
system




ρ(x)∂tv(x, t) = ∇ · σ(x, t) + s(x)s̃(t),

∂tσ(x, t) =
(
C(x)ǫ(v(x, t))

)
.

(2.24)

If the source term is included through the second equation of elastodynamics, we have

S(x, t) = s(x)s̃(t)

where s is a tensor and s̃ is a vector with the same dimension than v. In that case, the
system to be solved is:




ρ(x)∂tv(x, t) = ∇ · σ(x, t),

∂tσ(x, t) =
(
C(x)ǫ(v(x, t))

)
+ s(x)s̃(t).

(2.25)

It is worth noting that in the case of an isotropic medium, the diagonal terms of tensor s
generate P waves while the extra-terms create S waves.
For the numerical experiments, we use to have a time-dependent term which is a Ricker
function. It is the second derivative of a Gaussian and depends on a peak frequency fpeak.
Its variation follows the formula:

s̃(t) = (1 − 2π2f2
peak(t− tpeak)2)e−π2f2

peak(t−tpeak)2

.

where tpeak is the delay in time, usually set as 1.2/fpeak. An example of Ricker source is
depicted in Figure 2.7.
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t(s)

s R
(t

)

Figure 2.7: Ricker wave for fpeak = 10Hz and tpeak = 0.2

2.7 Boundary conditions

There are two classical boundary conditions which represent either a free surface or a
rigid surface. The condition of free surface says that the traction vanishes, that is σn = 0,
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n denoting the normal vector associated with the surface. It is the condition that is
commonly employed for modeling the physical interface between air and a solid. The
condition of rigid interface describes the interface between a solid and a rigid material. It
is given by u = 0 on the surface where u denotes the displacement field. In the framework
of this work, we restrict our use to the free surface condition. In acoustics, the free surface
condition amounts imposing the pressure p is equal to zero on the boundary of interest.
In this work, we will consider media composed of fluid and solid areas. At the fluid-solid
interface, it is then necessary to define adequate conditions of transmission. If Γ denotes
the physical interface between the fluid and solid domain, the velocity vs in the solid
domain is linked to the velocity vf and the traction is related to the pressure in the fluid
domain as follows:

{
vf · n = vs · n (Γ),

σn = −pn (Γ).
(2.26)

where n denotes the unitary normal vector defined on Γ and supposed to be oriented
from the fluid area to the solid one. The natural conditions of transmission are thus the
continuity of the normal speed and the continuity of the normal constraint.
To perform numerical simulations, it is necessary to truncate the computational domain.
The truncation boundary must be as transparent as possible to avoid the pollution of
the numerical solution by reflected waves that it could have generated. Here, we use
two different boundary conditions which are Absorbing Boundary Condition (ABC) and
Perfectly Matched Layers (PML). The implementation of these boundary conditions along
with their properties are detailed in chapter 6 of this manuscript.
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Chapter 3

Key numerical methods

In this chapter, we introduce the numerical approximations that will be the key pieces of
the numerical method developed in this work. We consider numerical integration both in
space and time. The spatial discretization is based on finite elements and for the time
integration, we favour explicit schemes of order 2 and 4.

3.1 Time discretization

The software package Elasticus offers the possibility of using three different time schemes
which are Leap-Frog, Runge-Kutta of order 2 and Runge-Kutta of order 4. In this section,
we provide a brief description of these schemes applied to a semi-discrete system obtained
with a finite element approximation in space. Both the semi-discrete acoustic and the
elastic wave equations can be written as:

d

dt
Y (t) = F (t, Y (t)) (3.1)

where Y is a pair of vectors (W,Q) corresponding to the finite element approximations of
each unknown (velocity and pressure in acoustics, velocity and strain tensor in elastody-
namics).

3.1.1 Leap-Frog scheme

The equation (3.1) can be written in the form





d

dt
W = A1Q+A2W

d

dt
Q = B1W +B2Q,

(3.2)

where A1, A2, B1 and B2 are four matrices. The integration is carried out in the interval
[0, T ] which is divided into time steps ∆t. Let Wn be the approximation of W evaluated at

discrete time t=n∆t, n ∈ N. We denote by Qn+ 1
2 the approximation of Q at the discrete

31



CHAPTER 3. NUMERICAL METHODS

time t = (n+ 1
2)∆t. Then, the Leap-Frog scheme consists in computing the next iterates

in time by applying the following scheme:





Wn+1 −Wn

∆t
= A1Q

n+ 1
2 +A2

Wn+1 +Wn

2

Qn+ 3
2 −Qn+ 1

2

∆t
= B1W

n+1 +B2
Qn+ 3

2 +Qn+ 1
2

2

(3.3)

When A2 and B2 are zero, we obviously get an explicit representation of the discrete
unknown since we can write Wn+1 directly from the previous iterates Wn and Qn+ 1

2 .
The same accounts for Qn+ 3

2 which is given in terms of Qn+ 1
2 and Wn+1. This is the

case when solving the acoustic wave equation with a spectral element method in space
and Dirichlet or Neumann boundary condition on the external boundary. It is also the
case with first order absorbing boundary conditions whose implementation leads to A2

and B2 diagonal. In the general case, the fact that the scheme is explicit depends on the
algebraic structure of the matrices A2 and B2 which is determined by the underlying finite
element discretization. For instance, when using a DG approximation involving centered
fluxes, both A2 and B2 vanish and the scheme admits an explicit representation. But
when upwind fluxes are required as for instance in the fluid-solid coupling, the scheme is
implicit. As previously mentioned, the applications we are addressing require using explicit
time integrations. This is due to memory limitations and justify that when applying a
Leap-Frog scheme, we routinely employ a DG formulation with centered fluxes.

3.1.2 Runge-Kutta schemes

The Runge-Kutta (RK) scheme is based on the general form (3.1) of the semi-discrete
system. It is based on the integration formula:

Y ((n+ 1)∆t) − Y (n∆t) =

∫ (n+1)∆t

n∆t
F (t, Y (t))dt (3.4)

The order of RK scheme depends on the approximation order of the right-hand side of
(3.4) which involves a quadrature formula. For that purpose, we apply first the following
change of variable: t = (n+ τ)∆t, where τ ∈ [0, 1]. Then we have:

∫ (n+1)∆t

n∆t
F (t, Y (t))dt = ∆t

∫ 1

0
F ((n+ τ)∆t, Y (n+ τ)∆t))dτ (3.5)

Then, the integral along [0, 1] is approximated thanks to a quadrature formula. We use a
quadrature formula with s points and we denote by τi the quadrature points and ωi the
quadrature weights. Then we have :

Y ((n+ 1)∆t) ≈ Y (n∆t) + ∆t
s∑

i=1

ωiF ((n+ τi)∆t, Y ((n+ τi)∆t)), (3.6)

and:

Y ((n+ τi)∆t) = Y (n∆t) + ∆t

∫ τi

0
F ((n+ τ)∆t, Y ((n+ τ)∆t))dτ. (3.7)
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In Equation (3.7), we interpolate F using still the points τi as interpolation points. We
then have:

∫ τi

0
F ((n+ τ)∆t, Y ((n+ τ)∆t))dτ =

∫ τi

0
ψj(τ)

s∑

j=1

F ((n+ τj)∆t, Y ((n+ τj)∆t))dτ

(3.8)

where ψj , j = 1, ..., s are the Lagrange polynomials based on the points τj , j = 1, ..., s. We
finally get:

Y ((n+ τi)∆t) = Y (n∆t) + ∆t
s∑

j=1

aijF ((n+ τj)∆t, Y ((n+ τj)∆t)) (3.9)

with

aij =

∫ τi

0
ψj(τ)dτ. (3.10)

Equations (3.6) and (3.9) picture the s-stage of RK method. The coefficients aij of
RK schemes are usually related to a Butcher table which is used as a memory aid. The
Butcher table reads:

τ1 a11 a12 . . . a1s

τ2 a21 a22 . . . a2s
...

...
. . .

...
τs as1 as2 . . . ass

ω1 ω2 . . . ωs

Table 3.1: General Butcher table

The RK scheme is explicit when aij = 0 ∀j ≥ i (see Table 3.1.2) while it is implicit
when there is one aij 6= 0 with j ≥ i.

τ1

τ2 a21
...

...
. . .

τs as1 . . . as,s−1

ω1 ω2 . . . ωs

Table 3.2: Butcher table in the case of explicit RK scheme

In this work, we only consider explicit RK scheme and in particular Runge-Kutta of
order two (RK2) and four (RK4) which have been implemented in Elasticus.

RK2 scheme is constructed by using the midpoint quadrature formula which is given

by

∫ 1

0
G(c)dc ≈ G(

1

2
) for any continuous function G ∈ [0, 1]. Then, we have:

Y ((n+ 1)∆t) − Y (n∆t) = ∆t

∫ 1

0
F (t(n+ τ)∆, Y ((n+ τ)∆t))dτ ≈ ∆tK2, (3.11)

with K2 = F ((n+ 1
2)∆t, y((n+ 1

2)∆t)).
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The RK2 is then given by:

K1 = F (n∆t, Y (n∆t)) and (3.12)

Yn+1 = Yn + ∆tK2 with (3.13)

K2 = F ((n+
1

2
)∆t, y((n+

1

2
)∆tK1)). (3.14)

The Butcher table of RK2 is given by:

0
0.5 0.5

0 1

Table 3.3: Butcher table for RK2 scheme

In the same way, one can define the RK4 scheme which is represented by the following
Butcher table:

0
0.5 0.5
0.5 0 0.5
1 0 0 1

1
6

1
3

1
3

1
6

Table 3.4: Butcher table for RK4 scheme

As for the Leap-Frog time-scheme, Runge-Kutta scheme stability is conditioned by a
CFL number.

3.2 Discontinuous Galerkin formulation

In the team Magique-3D, we mainly use Discontinuous Galerkin (DG) approximations that
have proved to be very efficient for reproducing the propagation of waves in heterogeneous
media. We begin this section with an overview of DGm properties that led us to expend
our efforts on this technology for solving seismic problems.

3.2.1 Overall setting of DGm

DG methods or DGms appeared in the 70’s. They distinguish themselves from continuous
Galerkin methods by the use of discontinuous basis functions, the discontinuity being at
the interface between two elements. In DG approaches, each element has its own basis
function set, which gives the possibility of working element by element. Actually, one
element communicates with its neighbours only which makes the method well-suited for
parallel computations. DGms are adapted to parallel computing in particular when an
explicit time integration scheme is applied. Their efficiency is clearly significant when the
interpolation order is high which makes DGms good for accurately approximating high-
order partial derivative operators. Regarding the structure of the semi-discrete system, it
is characterized by a block-diagonal mass matrix, hence with fast inversion, which eases the
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use of explicit schemes. It is particularly interesting for seismic applications that demand
to perform a lot of simulations with a limited use of the memory normally reserved for
inversion algorithm. Indeed, we have to keep in mind that we aim at elaborating a piece
of software adapted to an implementation inside an inverse problem algorithm. Hence our
main motivation is more reducing the computational cost than improving the accuracy of
existing schemes. DGms can work with structured and unstructured meshes with various
support mesh elements (hexahedra, tetrahedra, quadrangle, triangle) with conforming or
nonconforming grids. This is an interesting feature regarding possible topography details
that have to be considered when dealing with geophysical domains.

| | | | | mesh

continuous solution

discontinuous solution

Figure 3.1: Numerical solutions on a 1D mesh (continuous and discontinuous)

The fact that the basis functions are discontinuous simplifies the implementation of hp-
adaptivity which opens up the possibility of using non-conforming meshes (h-adaptivity)
and having different orders of approximation in each element (p-adaptivity). The p-
adaptivity is quite simple to implement because it only requires to have a structure to store
each order we use. It preserves the structure of the stiffness matrix and only modifies the
size of the blocks inside the matrix. On the other hand, h-adaptivity implementation is
more tricky. Indeed h-adaptivity requires changing the structure of the mesh by possibly
introducing the so-called hanging nodes. A hanging node is a vertex of one element that
also belongs to the interior of the edge of another element. Figure 3.2 shows an example
of non conforming mesh with a hanging node in the middle of the edge of one element.
This implies that it is impossible to use reference elements to simplify the calculation of
the integrals defining the coefficients of the discrete system and by this way, the construc-
tion of the discrete system becomes more complex. The 3D case brings more difficulty
because the intersection between two elements can take different forms, like a triangle or
a quadrilateral.

•
•

•

•

•

• •

•

•

Figure 3.2: h-adaptivity on a 2D mesh in P1
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•
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Figure 3.3: p-adaptivity on a 2D mesh with P1 and P2

At first, DGm has been used for solving elliptic and parabolic equations by Reed and
Hill (see (Reed & Hill, 1973)). DGm has been introduced for hyperbolic equations in the
work of Lasaint and Raviart (Lasaint & Raviart, 1974) and more developed ten years later
in the ones of Nävert and Pitkäranta, (Johnson, Nävert, & Pitkäranta, 1984; Johnson &
Pitkäranta, 1986) where they established an optimal order of convergence for the method.
A nice state of the art of DGm until the year 2000 can be found in (Cockburn et al.,
2000). During the last twenty years, DGm became very popular for linear and non-linear
hyperbolic equations. In particular we can refer to the work of Cockburn, Shu and they
co-workers in (Cockburn, 2001; Karniadakis, Shu, & Cockburn, 2000)

DGms distinguish themselves by the definition of fluxes. Among them, there is the
method introduced by Dumbser and Käser in (Dumbser & Käser, 2006) which employs
an Arbitrary high-order DERivation (ADER) scheme which is based on upwind fluxes.
The problem with this approach called DG-ADER is that it is dissipative. But as shown
in (Delcourte et al., 2009), it is possible to have a conservative scheme by using centered
fluxes and employing a Leap-Frog scheme for time integration.

Other schemes have been proposed for second-order wave problems like Interior Penalty
DGms ( (Grote et al., 2006) for example) which involve a penalty term which makes
the scheme stable but it is not always obvious to find the best value of the parameter.
More recently, Hybridizable DGms have been introduced, following the pioneering work in
(Cockburn, Gopalakrishnan, & Lazarov, 2009). Regarding the simulation of seismic wave,
time-dependent HDGms are fully implicit in time like in (Nguyen, Peraire, & Cockburn,
2011) which can surely explain that HDGms have been developed first for time-harmonic
seismic waves. However, we can remark that very recently, some achievements have been
carried out for explicit HDG schemes like in (Schoeder, Kronbichler, & Wall, 2018) for
acoustic waves or in (Nehmetallah, Lanteri, & Descombes, 2019) for elastic waves. It is
worth noting that HDGms have been introduced to reduce the number of globally coupled
unknowns that are larger with DGms than with Continuous Galerkin approximations.
They are DG methods which can be interpreted in terms of Weak Galerkin methods
(see the very recent paper (Cockburn, 2018)) with the particular feature of involving a
stabilization function that ensures the stability and the well-posedness of the formulation.
As a conclusion, HDGms are interesting contributions to make the computations faster by
reducing the size of the linear systems as compared to DGms but here, since we address the
solution of time dependent problems as a preliminary development for inverse problems
solutions, we focus on DGms which authorize easily the use of explicit time scheme.

36



3.2. DISCONTINUOUS GALERKIN FORMULATION

3.2.2 Implementation of DG method for elastodynamics

Here, we address the DG approximation of the elastodynamic problem (2.13) that is meant
to be applied in the domain Ωs. We begin with reminding the first-order formulation that
we consider for modeling elastic waves into the Earth. Its unknowns are the wavespeed
vs and the strain tensor σ which are governed by the following equations:





ρ∂tvs = ∇ · σ,

∂tσ = C(ǫ(vs)) + S.

(3.15)

where S denotes the source field. We complete the system with initial conditions vs(x, 0) =
0, σ(x, 0) = 0 along with the boundary condition σns = 0 on the free-surface boundary
of the computational domain ∂Ωs. The vector ns denotes the unitary normal vector out-
wardly directed to Ωs.
For constructing the DG formulation of the above problem, we introduce Ts,h that defines
a collection of Ωs denoted by Ωs,h. Ts,h is a set of nonconforming cells K which are tri-
angles or tetrahedra depending on the dimension (2D or 3D). We define Γs,h the set of
all the boundaries of Ωs,h that consists of the external boundary ∂Ωs,h and in addition of
all the boundaries of internal cells. In the following, we denote by Γs,h,out the set of the
external boundaries and by Γs,h,int the set of internal boundaries.
Let Vs(K) and Σ(K) be two finite subspaces of H1(K), typically they are spaces of polyno-
mials. We define a discontinuous approximation (vs,h, σh

) in Vs(K)×Σ(K) as the solution
to





∫

K

ρ∂tvs,h · ws,h =

∫

K

(∇ · σ
h
) · ws,h,

∫

K

∂tσh
: ξ

h
=

∫

K

C(ǫ(vs,h)) : ξ.

(3.16)

for any (ws,h, ξ
h
) in Vs(K) × Σ(K). Then, using the fact that C(ǫ(vs,h)) : ξ

h
=
(
Cξ

h

)
:

∇vs,h and applying Green formula, we get:





∫

K

ρ∂tvs,h · ws,h = −
∫

K

σ
h

: ∇ws,h +

∫

∂K

(σ
h
nK) · ws,h,

∫

K

∂tσh
: ξ

h
= −

∫

K

(∇ · (Cξ
h
)) · vs,h +

∫

∂K

((Cξ
h
)nK) · vs,h.

where nK denotes the unitary normal vector outwardly directed to K. We move on intro-
ducing the discontinuous finite element spaces:

Vs,h = {vs ∈ L2(Ωs,h)d | (vs)|K ∈ Vs(K)d ∀K ∈ Ts,h},

Σh = {σ ∈ L2(Ωs,h)d2 | (σ)|K ∈ Σ(K)d2
and σij = σji, ∀K ∈ Ts,h}.

The global variational formulation is obtained by summing up each of the contributions
of each element K. Then, we have to take new terms into account which correspond to the
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communications between elements that occur at the internal boundaries Γs,h,int. It is then
necessary to introduce the following quantities in the purpose of defining the numerical
fluxes used for gluing the local terms of the variational formulation.
Let K1 and K2 be two adjacent internal elements. Let u be defined by uK1 in K1 and uK2

in K2. We first define [[u]] the jump of u, whose formula depends on the nature of u:

• If u is a scalar we have: [[u]] = uK1nK1 + uK2nK2 , which transforms a scalar into a
vector

• If u is a vector, we have two possible definitions: [u] = uK1 · nK1 + uK2 · nK2 , which
converts a vector into a scalar (such a definition is generally used in the case of
acoustic equations) and [[u]] = uK1 ⊗ nK1 + uK2 ⊗ nK2 , which transforms a vector
into a tensor. We have adopted the notation ⊗ for:

u ⊗ v =

[
uxvx uxvz

uzvx uzvz

]
(3.17)

in 2D and

u ⊗ v =



uxvx uxvy uxvz

uyvx uyvy uyvz

uzvx uzvy uzvz


 (3.18)

in 3D. It is generally used in the case of elastic wave equations.

• If u is a tensor : [[u]] = u
K1

nK1 + u
K2

nK2 , which changes a tensor into a vector.

In addition, we define the internal mean value {{u}} which is defined by: {{u}} =
1

2
(uK1 + uK2) for any internal elements K1 and K2. On the external boundary, we simply

have : {{u}} = u while for the jump, we have:

• If u is scalar: [[u]] = unK,

• If u is a vector: [u] = u · nK or [[u]] = u ⊗ nK,

• If u is a tensor: [[u]] = unK,

where nK is the unitary normal vector outwardly directed to K and K is an element
sharing an edge with the external boundary.
Then by summing up each of the contributions on each element K, we obtain the inter-
mediate DG variational formulation:





∫

Ωs,h

ρ∂tvs · ws = −
∫

Ωs,h

σ : ∇ws +

∫

Γs,h

[[σws]],

∫

Ωs,h

∂tσ : ξ = −
∫

Ωs,h

(∇ · (Cξ)) · vs +

∫

Γs,h

[[(Cξ)vs]].

(3.19)

Now we separate the terms on the boundary between external and internal boundaries:





∫

Γs,h

[[σws]] =

∫

Γs,h,out

[[σws]] +

∫

Γs,h,int

[[σws]],

∫

Γs,h

[[(Cξ)vs]] =

∫

Γs,h,out

[[(Cξ)vs]] +

∫

Γs,h,int

[[(Cξ)vs]].
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The remaining terms on the external boundaries can be rewritten as follow:





∫

Γs,h,out

[[σws]] =

∫

Γs,h,out

[[σ]] · {{ws}},

∫

Γs,h,out

[[(Cξ)vs]] =

∫

Γs,h,out

[[(Cξ)]] · vs,

and according to the convention regarding both jump and average associated with
edges of the external boundary, we get:





∫

Γs,h,out

[[σws]] =

∫

Γs,h,out

(σns) · ws = 0

∫

Γs,h,out

[[(Cξ)vs]] =

∫

Γs,h,out

((Cξ)ns) · vs.

Then, in order to separate the approximate solution from the test functions, it is
convenient to rewrite the fluxes by using the following relations:





[[σws]] = [[σ]] · {{ws}} + {{σ}} : [[ws]],

[[(Cξ)vs]] = [[Cξ]] · {{vs}} + {{Cξ}} : [[vs]].

It is worth noting that the solution (vs, σ) to (2.13) is actually continuous inside the
computational domain which means that we have:

[[vs]] = 0, [[σ]] = 0.

Then, we get simplified expressions:





[[σws]] = {{σ}} : [[ws]],

[[(Cξ)vs]] = [[Cξ]] · {{vs}}.

By plugging these last relations into (3.19), we end up with the full DG formulation:





∫

Ωs,h

ρ∂tvs · ws = −
∫

Ωs,h

σ : ∇ws +

∫

Γs,h,int

{{σ}} : [[ws]],

∫

Ωs,h

∂tσ : ξ = −
∫

Ωs,h

(∇ · (Cξ)) · vs +

∫

Γs,h,out

((Cξ)ns) · vs +

∫

Γs,h,int

[[Cξ]] · {{vs}}.
(3.20)

This formulation has been implemented in (Boillot, 2014). It turns out that it requires
some stabilization terms which act on the formulation as penalties. Basically, the penalized
variational formulation we use reads as:
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∫

Ωs,h

ρ∂tvs · ws = −
∫

Ωs,h

σ : ∇ws +

∫

Γs,h,int

{{σ}} : [[ws]]

+

∫

Γs,h,int

A1[[σ]] : [[ws]] +

∫

Γs,h,int

A2[[vs]] : [[ws]],

∫

Ωs,h

∂tσ : ξ = −
∫

Ωs,h

(∇ · (Cξ)) · vs +

∫

Γs,h,out

((Cξ)ns) · vs +

∫

Γs,h,int

[[Cξ]] · {{vs}}

+

∫

Γs,h,int

A3[[vs]][[Cξ]] +

∫

Γs,h,int

A4[[σ]] · [[Cξ]],

(3.21)

Each term A1, A2, A3, A4, corresponds to a penalty term and there exist different
approaches to define them. The most popular formulations are due to Ainsworth et al
(Ainsworth et al., 2006) and Wilcox et al. (Wilcox et al., 2010). In this work, we use
the operators associated with the Ainsworth formulation which has been developed for
the acoustic wave equations. It is worth noting that we have extended this formulation
to the case of the elastic wave equation. The operators corresponding to the Ainsworth
formulation are given in 2D by:





A1([[σ]]) = [[σ]] ⊗ (α)

A2([[vs]]) =

(
α1([[vs]]xx + [[vs]]zz) α2([[vs]]zx − [[vs]]xz)

α2([[vs]]xz − [[vs]]zx) α1([[vs]]xx + [[vs]]zz)

)

A3([[vs]]) = −[[vs]] : [[α]],

A4([[σ]]) = α3[[σ]],

(3.22)

where [[vs]]ij i = x, z, j = x, z are the components of the tensor [[vs]]. We set
α = α · nK where nK is chosen arbitrarily outwardly or inwardly directed to K. The
parameters α, α1, α2 and α3 are real positive. To the best of our knowledge, there is not
any rule for choosing these parameters. Their calibration depends on an empirical process
which in turn depends on the simulation parameters.

In the case where α1 = α2 = α3 = 0, the fluxes are said to be centered. The scheme
with centered fluxes has the property to preserve the energy and is really adapted for Leap-
Frog time-discretization. However, if one of these parameters is non-zero, we obtained
upwind fluxes, which implies that the scheme is dissipative and prevents from the use of
Leap-Frog discretization. This is why, when it comes to upwind fluxes, we tend to use
Runge-Kutta time discretization.

Semi-discrete system

The semi-discrete system associated to the full DG formulation is obtained by choosing
the finite dimensional spaces Vs(K) and Σ(K). We use to choose Vs(K) = Pm(K)d and
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Σ(K) = Pm(K)d2
where Pm(K) denotes the space of Lagrange polynomials of degree m

defined on the triangle (or tetrahedron) K. However, we can have Vs(K) = Qm(K)d and
Σ(K) = Qm(K)d2

when K is a quadrangle (or hexahedron). An important feature of
DG formulation is that we can even have different orders m of approximations and also a
combination between Pm and Qm.

The basis functions are defined locally, their construction being carried out element per
element. Let (ψK

i )i=1,..,Nm be a basis of the subspace Pm(K), where Nm is the dimension
of Pm(K). Here, the dimension Nm is m+1 in 1D, (m+1)(m+2)/2 in 2D and (m+1)(m+
2)(m+ 3)/6 in 3D. The set of functions (ψK

i )i=1..Nm,K∈Ts,h
allows to construct a basis of

Vs,h and Σh by means of cartesian products involving the canonical basis (ej)j=x,y,z. We
then seek the approximate solution in the form:

vs,h|K =
∑

j=x,y,z

Nm∑

i=1

vK

ij
(t)ψi(x)ej .

and

σ
h|K

=
∑

j=x,y,z
k=x,y,z

Nm∑

i=1

σK

jki
(t)ψi(x)ej ⊗ ek.

Then, if we choose ws = ψjej and ξ = ψjej ⊗ ek we can construct the matrices

representing the discrete formulation and we get the following matrix system:





∑

K∈Ts,h


ρKM

K

vs,h
∂tv

K

s,h +RK

vs,h
σ

K

h +
∑

L∈Ts,h,K∩L6=∅

RK,L
σh

σ
L

h


 = 0,

∑

K∈Ts,h


MK

σh
∂tσ

K

h +RK

σh
vK

s,h +
∑

L∈Ts,h,K∩L6=∅

RK,L
vs,h

vL

s,h


 = 0.

(3.23)

where MK
⋆ denotes the mass matrices and RK

⋆ stands for the stiffness matrices, with
⋆ = vs,h or σh. The important property of these matrices is that they are block diagonal.
The matrix MK

vs,h
is of size dNm × dNm, with d blocks of size Nm ×Nm. The matrix MK

σh

is a d(d+ 1)Nm/2 ×d(d+ 1)Nm/2 matrix composed of d(d+ 1)/2 blocks of size Nm ×Nm.
It is very interesting to observe that the two mass matrices are represented by the entries:

M i,j =

∫

K

ψK

i ψ
K

j ∀i, j = 1..Nm. (3.24)

which means that there is only one matrix to invert and that the inversion is not necessary
for each element because we can go back to the reference element K̂ which is the triangle
(0, 0); (0, 1); (1, 0) (Figure 3.4 presents the passage from K̂ to a general element K using
the linear transformation Fm

K̂
).
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(0, 0) (1, 0)

(0, 1)

Fm
K̂

(x3, z3)

(x2, z2)

(x1, z1)

Figure 3.4: Passage to the reference element K̂ in 2D

On the reference element K̂, the entries of the mass matrix become:

M i,j = |detJF m

K̂

|
∫

K
ψK

i ψ
K
j =

∫

K̂
ψ̂K̂

i ψ̂
K̂

j ∀i, j = 1..Nm.

where JF m

K̂

is the Jacobian of Fm
K̂

.

On the other hand, the stiffness matrices RK
vs,h

and RK
σh

are not block diagonal. The

matrix RK
σh

is a matrix of order d(d+ 1)Nm/2 × d/Nm . It is dense as the product of the

elasticity tensor with the blocks RK
i , i = x, y, z that are defined by:

Ripq
=

∫

K

ψK

q

∂ψK
p

∂i
.

Each block is of size Nm ×Nm.
The matrix RK

vs,h
is of size dNm × d(d + 1)Nm/2 and comprised of the Ri blocks defined

as follows: 


RK
x 0 0 0 RK

z RK
y

0 RK
y 0 RK

z 0 RK
x

0 0 RK
z RK

y RK
x 0




Those matrices are also defined using the reference element K̂ and their general term
reads:

Ripq
=

∫

K

ψK

q

∂ψK
p

∂i
= |detJF

K̂
|
∫

K̂

ψ̂pJ
−T
F

K̂

∇ψ̂q · ei.

The matrices RK,L
σh

and RK,L
vs,h

are the matrices which represent the flux terms between

two elements. RK,L
σh

is a matrix of order dNm × d(d + 1)Nm/2 and RK,L
vs,h

is of order
d(d+ 1)Nm/2 × dNm. They have the same structure than the previous ones, composed of
blocks of size Nm ×Nm that read:





RK,L
σh,ijkpq

= −1

2

∫

∂K∩∂L\Γs,h,out

ψK

q ei ⊗ ejnKψ
L

p ek, ∀p, q = 1..Nm, i = x, y, z
j = x, y, z
k = x, y, z

RK,L
vs,h

= C(RK,L
σh

)T

As for the mass and stiffness matrices, these matrices can also be written on the reference
element.
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We then end up with a global discrete system that is written as follows:

{
Mvs,h

∂tvs,h +Rvs,h
σh = 0,

Mσh
∂tσh +Rσh

vs,h = 0.
(3.25)

with the following details:

(Mvs,h
)K,L =

{
ρKMK

vs,h
if L = K,

0 if L 6= K,
(3.26)

(Rσh
)K,L =





RK
σh

+RK,K
σh

if L = K,

RK,L
σh

if L 6= K and ∂L ∪ ∂K 6= ∅,
0 else,

(3.27)

(Mσh
)K,L =

{
ρKMK

σh
if L = K,

0 if L 6= K,
(3.28)

(Rvs,h
)K,L =





RK
vs,h

+RK,K
vs,h

if L = K,

RK,L
vs,h

if L 6= K and ∂L ∪ ∂K 6= ∅,
0 else.

(3.29)

Validation of DGm on structured quadrangle meshes

In the purpose of motivating the coupling of DG finite elements with spectral elements,
we have implemented the previous DG formulation on quadrangle meshes, considering
that spectral elements are particularly adapted to quadrangle meshes. In what follows,
we provide a validation of our implementation which is a new feature for Elasticus. It is
worth noting that we have addressed both the acoustic and the elastic systems. For more
information on the acoustic system we consider, we refer the reader to the section related
to the spectral element method.
The simulation domain Ωs is a 3000 m×3000 m square (see Figure 3.5 for the general set-
tings in particular the position of the source) and we consider two different configurations:

• A homogeneous acoustic domain with P -wavespeed equal to 1000m.s−1 and ρ equal
to 1kg.m−3.

• A homogeneous elastic domain with VP = 1000m.s−1 and VS = 500m.s−1 and
ρ = 1kg.m−3.
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3000m
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00
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•src

Figure 3.5: Domain of computation

The validation consists in comparing the numerical solution obtained with Elasticus
with an analytical one computed with the software Gar6more developed in the team
Magique3D (gar6more2d.gforge.inria.fr). To assess possible differences between both
computations, we picture seismograms which represent the time variation of the velocity
in the x direction in a given point of the computational domain. For the seismograms, the
solution for both Gar6more and Elasticus is recorded thanks to a receiver placed inside
the computational domain. Here, the receiver is placed at point (1000,2000). The square
is covered with a collection of quadrangles and we consider two grids of 10000 cells and
22500 cells. The simulations are performed with a space approximation of order 3 and the
time integration uses a second order Leap-Frog scheme whose CFL number is accurately
computed with the power iteration. All computations are performed in parallel using
OpenMP with eight threads. In each case, the wave propagation is generated by a P -Ricker
point source located at the center of the domain with fpeak = 10Hz and tpeak = 0.12s
and we apply a free-surface boundary condition on each side of the propagation domain.
The DG scheme includes Ainsworth penalization term with coefficient α equal to 0.5 and
the other parameters set to zero. We illustrate the simulations with two kinds of results:
some snapshots which give an overall behavior of the waves in each case and seismograms
obtained with penalized DGm and superimposed with the analytical solution computed
with Gar6more.
Figures 3.8 and 3.9 picture the seismograms in the acoustic case for the two different
meshes. We observe that the two curves are very close and this qualitative evaluation is
confirmed by computing the relative L2-error displayed at formula (3.30) which is 1.3e−3

(0.13%) with a mesh of 10000 cells and 5.8e−4 with a mesh of 22500 cells. To compute
this L2-error, we take the numerical solution noted uElasticus and the analytical one noted
uGar6more and we compute the following quantity:

ErrL2 =

√
n∑

i=1
(uElasticus(x0, i) − uGar6more(x0, i))2

√
n∑

i=1
uGar6more(x0, i)2

, (3.30)

where n is the number of time steps and x0 the position of the receiver we consider.
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3.3. MIXED-PRIMAL FORMULATION OF DG

To get more insight on the accuracy of the DG simulations, we have pictured Figures
3.6 and 3.7 first and Figures 3.10 and 3.11 next. All the figures show that the propagation
of waves is correctly reported, both in the acoustic and the elastic case. In the elastic
domain we can observe the absence of S-waves. This is due to the P -wave source we
generate and the homogeneous nature of the middle. However, the S-waves appear when
the wave is reflected on the boundary as seen in Figures 3.10 and 3.11.
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Figure 3.6: Speed modulus of the P -wave propagation in time using DGm

As a conclusion,we have introduced the DGm that is used in this work to solve wave
problems formulated as first-order systems and we have presented some numerical results
of DGm implemented with quadrangle meshes. This is a feature of Elasticus that did not
exist at the beginning of this study. It has been developed to provide a way to compare
DGm with spectral finite elements that are more adapted to quadrangles than triangles.
The idea of comparing these two approaches comes from our commitment to couple DGm
with SEm. The latter is the purpose of the next section.

3.3 Mixed-primal formulation of DG

We have introduced the DG formulation that we use to apply for solving wave problems
and it is done by many other authors (Delcourte et al., 2009; Ainsworth, 2004) because
it has the advantage of being symmetrical. However, we aim at coupling DGm with SEm
and it turns out that the coupling is not that obvious when considering this formulation.
This is why we introduce here another formulation, which is strictly equivalent to the
former formulation (3.20).

45



CHAPTER 3. NUMERICAL METHODS

(a) t=0.1s (b) t=0.5s

0

0.2

0.4

0.6

0.8

1
·10−6

(c) t=0.9s

(d) t=1.3s (e) t=1.7s

0

0.2

0.4

0.6

0.8

1
·10−6

(f) t=2s

Figure 3.7: P-wave propagation in a mesh with 22500 quadrilaterals using DGm
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Figure 3.8: Seismograms of Gar6more solution (in blue) and numerical solution using
DGm (in red) applied in an acoustic domain discretized with 10000 quadrangles.
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Figure 3.9: Seismograms of Gar6more solution (in blue) and numerical solution using
DGm (in red) applied in an acoustic domain discretized with 22500 quadrangle cells

The formerly introduced DG variational formulation (3.20) reads:





∫

Ωs,h

ρ∂tvs,h · ws,h = −
∫

Ωs,h

σ
h

: ∇ws,h +

∫

Γs,h,int

{{σ
h
}} : [[ws,h]],

∫

Ωs,h

∂tσh
: ξ

h
= −

∫

Ωs,h

(∇ · (Cξ
h
)) · vs,h +

∫

Γs,h,out

((Cξ
h
)ns) · vs,h +

∫

Γs,h,int

[[Cξ
h
]] · {{vs,h}}.

(3.31)

We consider now the second equation to which we apply an integration by parts:

∫

Ωs,h

∂tσh
: ξ

h
= −

(
−
∫

Ωs,h

(Cξ
h
) : ∇vs,h +

∫

Γs,h,out

((Cξ
h
)ns) · vs,h +

∫

Γs,h,int

[[Cξ
h
vs,h]]

)

+

∫

Γs,h,out

((Cξ
h
)ns) : vs,h +

∫

Γs,h,int

[[Cξ
h
]] · {{vs,h}}.

Then, the terms related to the external boundary cancel. Moreover, we have the
following relation:

[[Cξ
h
vs,h]] = [[Cξ

h
]] · {{vs,h}} + {{Cξ

h
}} : [[vs,h]].

which leads to the mixed-primal DG formulation:




∫

Ωs,h

ρ∂tvs,h · ws,h = −
∫

Ωs,h

σ
h

: ∇ws,h +

∫

Γs,h,int

{{σ
h
}} : [[ws,h]],

∫

Ωs,h

∂tσh
: ξ

h
=

∫

Ωs,h

(Cξ
h
) : ∇vs,h −

∫

Γs,h,int

{{Cξ
h
}} : [[vs,h]].
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Figure 3.10: Speed modulus of a wave propagating in an elastic domain. Simulation is
done with DGm used on a mesh composed of 10000 cells.
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Figure 3.11: Speed modulus of a wave propagating in an elastic domain. Simulation is
done with DGm used on a mesh composed of 22500 quadrangles.
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Figure 3.12: Seismograms of Gar6more solution (in blue) and numerical solution using
DGm (in red) applied in an elastic domain discretized with 10000 quadrangle cells
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Figure 3.13: Seismograms of Gar6more solution (in blue) and numerical solution using
DGm (in red) applied in an elastic domain discretized with 22500 quadrangle cells
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which is equivalent to the initial one for which we dispose of stability and convergence
results (Delcourte et al., 2009). We will see later on that this formulation shares all what
is needed with the SE formulation to obtain a natural coupling of these two methods.

3.4 Spectral element formulation

In this section, we introduce the spectral element method that has been widely used by geo-
physicists for solving problems of seismology. Prior to any numerical development leading
to performance assessent, it distinguishes itself from DGm at the mesh level. Indeed, its
development is more suitable for quadrangles/hexahedra than triangles/tetrahedra while
DGm can be applied to any type of meshes including those with non conformal elements.

3.4.1 Overall setting of SEm

The Spectral Element (SE) method has been introduced by Patera and Maday for fluid
dynamics in (Patera, 1984; Maday & Patera, 1989). Regarding seismic applications, it
has been used first by Priolo, Carcione and Seriani in 1994 (Priolo, Carcione, & Se-
riani, 1994). At the beginning, it employed Chebyshev polynomials (Faccioli, Maggio,
Quarteroni, & Tagliani, 1996) and soon after, Komatitsch and Vilotte proposed to use
Lagrange polynomials (Komatitsch & Vilotte, 1998). It is now widely used by Geo-
physicists since the tremendous work of Komatitsch and his co-authors (Komatitsch,
1997; Komatitsch et al., 1998; Komatitsch, Barnes, & Tromp, 2000b; Komatitsch et al.,
2000a; Komatitsch, Martin, Tromp, Taylor, & Wingate, 2001) who have largely con-
tributed to both the development and maintenance of the software package Specfem
(https://geodynamics.org/cig/software/specfem3d/). Specfem has demonstrated a
great ability in accurately and fastly reproducing wave propagation in the framework of 3D
global and local seismology. Today, besides Specfem, Salvus (https://www.pasc-ch.org/

projects/2017-2020/salvus/) is a very efficient open-source platform under develop-
ment that perform simulation of large-scale waveform modelling and inversion which
employs SEm as well and proposes frequency-domain solvers while Specfem focuses on
time-domain problems.

SEm couples the flexibility of standard Finite Elements and the accuracy of pseudo-
spectral methods. By using Gauss-Lobatto-Legendre points as degrees of freedom and ap-
plying Gauss-Lobatto-Legendre quadrature method for the computation of the Lagrange
polynomials integrals involved by the variational formulation of the boundary value prob-
lem, SEm distinguishes itself from other continuous finite element approximations by hav-
ing a diagonal mass matrix. This is a clear advance as compared with standard continuous
approximations by allowing explicit time integration without involving any mass lumping
process which is well-known for causing a decrease of the order of convergence.
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Figure 3.14: Position of the Gauss-Lobatto points in Q4

SEms use tensor-product Lagrange interpolants within each element and the nodes of
these shape functions correspond to Gauss-Lobatto-Legendre points which are the zeros
of Legendre polynomials. For any smooth function, it has been proven that its interpolant
converges exponentially fast as the order of the interpolant is increased, which justifies
the method is qualified as spectral. Moreover, this simplifies the resolution of the matrix
system because the inversion of the mass matrix is direct and thus at no cost. The
quadrature also makes the stiffness matrix sparse and thus contributes to speed up the
computations.

In terms of wave propagation, SEm had been introduced for the elastic and acoustic
2D case by Seriani et al. in (Seriani & Priolo, 1991; Seriani, Priolo, Carcione, & Padovani,
1992) using a Chebyshev polynomial basis. In their studies, they conclude that a low
number of grid points per wavelength is enough to ensure stability even at high order. Next,
they extended their study to the simulation of acoustic wave simulation in heterogeneous
media (Seriani & Priolo, 1994; Seriani, Priolo, & Pregarz, 1995), where they used a Fourier
analysis to confirm the robustness of SEm regarding numerical dispersion.

The elastodynamics system in 2D and 3D heterogeneous media was addressed in the
thesis of Komatitsch, (Komatitsch, 1997). This work has been followed by a large num-
ber of publications. In particular, the efficiency of SEm for applications dealing with
seismic problems in complex domains was investigated in (Komatitsch & Vilotte, 1998;
Komatitsch et al., 1998) for the elastic case. The extension to the elasto-acoustic case
was done in (Komatitsch et al., 2000b) where the SEm is introduced to deal with the
interface between an acoustic medium and an elastic medium. For anisotropic media,
we can quote the investigation work of Komatitsch et al. in (Komatitsch et al., 2000a)
where difficulties of some numerical methods, like the Finite Differences, are displayed
to convince that Lagrange interpolants are really necessary in anisotropic cases like VTI.
Indeed, with the use of other bases like Chebyshev polynomials, the mass matrix is no
longer diagonal. One of the main disadvantage of the classical SEm is that the mesh is
composed of quadrangles in 2D, hexehadra in 3D, which have difficulties to respect the fea-
tures of a geological medium such as velocity contrasts or more generally heterogeneities.
Triangular or tetrahedral meshes are much more flexible and one approach consists in first
coupling SEm with standard finite elements to gain more flexibility in some areas of the
domain. Such an idea was formerly explored in (Moczo, Bystrickỳ, Kristek, Carcione,
& Bouchon, 1997) to increase the flexibility of finite differences by a coupling with stan-
dard finite elements. For instance, the mortar method (Lahaye, Maggio, & Quarteroni,
1997; Casadei & Gabellini, 1997) provides an interesting methodology for nonconforming
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matching between spectral element and finite element meshes but it turns out that it in-
creases significantly the computational costs. Some works have been done to develop SEm
on triangle and tetrahedral grids. The first idea that comes to mind is the construction
of Gauss Lobatto-Legendre points for triangles. Unfortunately, except in very particular
situations like segment [−1, 1], it is unclear that such points exist, and if they do, their
construction for numerical use should be difficult. Few results on that approach for the
triangle are summarized in (Lyness & Cools, 1994). The work of Karniadakis and Sher-
win in (Sherwin & Karniadakis, 1995) is particularly interesting. In this work, they use
the orthogonal basis and the polynomials defined by Dubiner in (Dubiner, 1991) where
the inner product is replaced by a warped product, designed for accurately approximating
the integrals. Unfortunately, in this kind of grids the warped product is oversampled: it
requires twice as many points as there are degrees of freedom and as a consequence, the
mass matrix is no longer diagonal. To avoid this issue, Taylor and Wingate have pro-
posed to use a new set of points in (Taylor & Wingate, 1999), i.e. the so-called Fekete
points. The Fekete points are a natural generalization of the points used by the SEm
on quadrangles. They enable a conforming matching between triangles and quadrangles
and the important properties of SEms are kept including the diagonal mass matrix. Such
an interesting property is satisfied because Fekete points located at the edges of triangles
(faces of tetrahedra) coincide with Gauss-Lobatto-Legendre points placed at the edges of
quadrangles (faces of hexahedra). By this way, mortar elements are useless for the cou-
pling, triangles and quadrangles are conform and the resulting mass matrix is diagonal.
In (Komatitsch et al., 2001), the use of Fekete points is applied with success to the model-
ing of wave propagation in 2D elastic media. They employ Dubiner polynomials that are
coupled with Fekete points in order to keep the global mass matrix diagonal in the part of
the mesh composed of triangles. Numerical experiments show that triangles are slightly
less accurate than quadrangles. In particular, the number of points per wavelengths must
be increased to keep the same level of accuracy with triangles and it has consequence on
the time step by respecting the stability condition of Courant-Friedrich-Levy. Moreover,
the use of tensor-product is no longer possible on triangles which results in increasing the
number of operations for computing a derivative. In particular, the authors show that the
computation in the triangular area of the mesh is more expensive than in quadrangle one
with a ratio of ≃ N/2 where N is the degree of the polynomial basis and the extra cost
should be higher in 3D cases. However, they observe that the computational extra cost is
compensated by a gain of flexibility provided by the use of two types of elements.

The conclusions of (Komatitsch et al., 2001) indicate that there is a clear interest
in bringing some more flexibility to SEm and that can be done by working with hybrid
meshes composed of quadrangles and triangles. The efficiency of SEm on quadrangles
and hexahedra is undeniable but on triangles, the results on (Komatitsch et al., 2001)
indicate some issues as computational extra costs and decreasing of the time-step value.
This is then a clear motivation to develop another coupling by adopting another point of
view. Rather that seeking to bring more flexibility to SEm, we propose to couple SEm
on quadrangles (or hexahedra) with a method which has demonstrated its efficiency on
triangles (or tetrahedra).

3.5 Implementation of the Spectral Element method

At the beginning of this work, the team Magique-3D developed and maintained advanced
software package mainly based on DGms. Besides all the advantages provided by DG
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approximations, the team was particularly interested in using triangular or tetrahedral
meshes to ensure a high level of flexibility for the approximation of the geological layers.
Nevertheless, we have many examples where the use of conforming grids is not necessary,
for instance in homogeneous media and the excellent performances of Spectral Element
method (SEm) for solving wave problems offer a great opportunity to improve the per-
formance of our software in the purpose of a coupling. That is why we have decided to
work on the coupling between the DG-based software and a SE-based code that has been
developed first in the framework of this thesis. We could have used Specfem, which has
demonstrated great capacities for solving wave problems but the team has an agreement
with the industrial group Total which develops and maintains its own computational plat-
form. Given this, it turned out more relevant to develop our own SE code respecting
the industrial environment of development, in particular when deciding data structures
compatible with further coupling. This section deals with this part of development which
has been done from scratch. To introduce the SEm, we will focus on the acoustic system
which offers the simplest configuration, one of the two unknowns being scalar. But it is
worth noting that the method has also been implemented for elastic wave problems with
a very similar approach, which does not justify to be presented in details as well. To
illustrate this part of achievement, we will simply provide some numerical results in the
elastic case.

3.5.1 SEm variational formulation

Let Ωf be the fluid domain in which we solve the acoustic wave equation. We consider
the first order formulation of the acoustic wave equation having the velocity vector vf and
the pressure p as unknowns:





ρ∂tvf = −∇p in Ωf × (0, T ),

1

c2
0ρ
∂tp = −∇ · vf + S in Ωf × (0, T ),

p(x, 0) = 0,vf (x, 0) = 0 in Ωf ,

vf · nf = 0 on ∂Ωf × (0, T ).

(3.32)

Here T denotes the final time of computation, ρ denotes the density of the fluid and c0

stands for the velocity of the waves in the fluid. ∂Ωf is the boundary of the fluid domain.
It is supposed regular enough to define a unitary normal vector nf which is outwardly
directed to Ωf . For simplicity, we assume that the boundary is polygonal or polyhedral,
which implies that we can define a normal vector locally on each edge of the boundary. S
is the source term which depends both on time and space.
We seek a solution (vf , p) in H(div,Ωf ) ×H1(Ωf ). For that purpose, we consider that for
any pair of sufficiently smooth test-functions (wf , q), we have:





∫

Ωf

ρ∂tvf · wf = −
∫

Ωf

∇p · wf ,

1

c2
0ρ

∫

Ωf

∂tpq = −
∫

Ωf

∇ · vfq +

∫

Ωf

Sq.

(3.33)
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Then, we apply a Green formula on the second equation of (3.33):

1

c2
0ρ

∫

Ωf

∂tpq =

∫

Ωf

∇q · vf + < vf · nf , q >−1/2,1/2 +

∫

Ωf

Sq (3.34)

where <,>−1/2,1/2 denotes the duality brackets of trace spaces H−1/2(∂Ω) for H(div,Ω)

and H1/2(∂Ω) for H1(Ω). The boundary term vanishes according to the boundary condi-
tion on the velocity and we end up with the following variational formulation:

Find (vf , p) ∈ (L2(Ωf ), H1(Ωf )) such that, for any couple (wf , q) ∈ (L2(Ωf ), H1(Ωf )),
we have:





∫

Ωf

ρ∂tvf · wf = −
∫

Ωf

∇p · wf ,

1

c2
0ρ

∫

Ωf

∂tpq =

∫

Ωf

∇q · vf +

∫

Ωf

Sq
(3.35)

Semi-discretization

To construct the semi-discrete system, we first introduce Tf,h, which defines a paving of
Ωf denoted by Ωf,h. Tf,h is a set of quadrangle/hexahedral cells and K stands for an
element of Tf,h. The set of element edges common with ∂Ωf is denoted by Γf,h. Then we
define the finite element spaces:

Vf,h = {vf ∈ (L2(Ωf,h))d | (vf )|K ∈ (Ql(K))d, ∀K ∈ Tf,h},

Pf,h = {p ∈ H1(Ωf,h) | (p)|K ∈ Ql(K), ∀K ∈ Tf,h}.

In the above definition, Ql(K) is the space of polynomials with degree inferior or equal to l.
Then, following (Diaz, 2005), we seek for an approximate solution (vf,h, ph) ∈ Vf,h × Pf,h

satisfying:





∫

Ωf,h

ρ∂tvf,h · wh = −
∫

Ωf,h

∇ph · wh,

∫

Ωf,h

∂tphqh =

∫

Ωf,h

∇qh · vf,h +

∫

Ωf,h

Sqh,

(3.36)

for any (wh, qh) in Vf,h × Pf,h.

Let K̂ be the reference element (unit square in 2D, unit cuboid in 3D). We introduce a
linear transformation Fm

K̂
which defines a basis function on a given element Km from the

basis functions defined in the reference element K̂ (Figure 3.15 depicts the passage from
K̂ to Km).
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(0, 0) (1, 0)

(0, 1) (1, 1)

Fm
K̂

(x4, z4)

(x3, z3)

(x2, z2)

(x1, z1)

Figure 3.15: Passage to the reference element K̂ in 2D

Here, we work with the polynomial space Ql, whose construction requires using (l+1)d

points. In the case of SEm, we choose the Gauss-Lobatto points associated with the
reference element and denoted by η̂i, i = 1, .., (l + 1)d. Then, the basis functions defined
in K̂ are Lagrange polynomials constructed by solving the equations

ϕ̂j(η̂i) = δi,j , (3.37)

where δi,j stands for the Kronecker symbol, i, j = 1, .., (l + 1)d. From this, we have the
basis functions of the element Km thanks to the expression

ϕm
j = ϕ̂j ◦ Fm

K̂
, j = 1, .., (l + 1)d. (3.38)

Then, the approximate vf,h is sought in the form

vf,h =
∑

j=x,y,z

ndof∑

i=1

vij
(t)ϕi(x)ej ,

where ejj=x,y,z stands for the canonical basis.

If the mesh is composed of L nodes Nj , we define Φj , j = 1...L as the Lagrange
polynomials constructed from the nodes. Functions Φj satisfy the following properties:

• the support of Φj is composed of the set of all quadrangles/hexahedra K̂ which
contain the j-th degrees of freedom;

• Φm
j = Φ̂j ◦ Fm

K̂
, j = 1, .., L and Φ̂j(N̂i) = δi,j .

Then, the interpolate of the pressure ph is given by:

ph(x, t) =

(l+1)d∑

i=1

pi(t)Φi(x),

where Φj , with j = 1, .., L, are the polynomial basis functions previously introduced.
It is worth noting that, by construction of the finite element spaces, the approximate
velocity is sought in a space of discontinous functions while the approximate pressure is
continuous. Figure 3.16 pictures both the local degrees of freedom of an element K̂ (in
red) and the global degrees of freedom (in black). The wave velocity vf,h, as a discon-
tinuous function, admits a local representation involving the red points in each element.
They correspond to the coefficients used in the decomposition with the basis functions ϕi

that are Lagrange polynomials computed with the Gauss-Lobatto points. Regarding the
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Figure 3.16: Elements with local Gauss-Lobatto points(in red) and degrees of freedom on
the mesh (in black) in Q3. Note that the local points inside the elements coincide with
the global one.

approximate ph, it is defined globally in the mesh from discrete values computed at the
degrees of freedom in black.

By choosing basis functions as test functions, we end up with the matrix system

{
ρMvf,h

∂tVf,h +Rvf,h
Pf,h = 0,

Mph
∂tPf,h +Rph

Vf,h = Sh,
(3.39)

where

• Vf,h is the discrete wavespeed vector whose components are obtained from the de-
composition of the vf,h in the basis φi,

• Pf,h is the discrete pressure vector whose components are obtained from the decom-
position of the ph in the basis Φi;

• Mvf,h
and Mph

are the mass matrices;

• Rvf,h
and Rph

are the stiffness matrices. By construction, we have Rvf,h
= RT

ph
;

• Sh is the discrete source term decomposed in the basis Φi.

As previously mentioned, we compute the integral coefficients of each matrix by using
Gauss-Lobatto quadrature formulas. For instance, let (ηi) be the Gauss-Lobatto-Legendre
points and (ωi) the corresponding quadrature weights. Then, we have:

(Mvf,h
)i,j ≃

∑

e∈supp(ϕi)∩supp(ϕj)

(l+1)d∑

k=1

ωkϕi(ηk)ϕj(ηk).
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By construction, we have that ϕi(ηk) = δi,k, where δi,k stands for the Kronecker symbol.
The mass matrix is thus represented by the coefficients:

(Mvf,h
)i,j ≃

∑

e∈supp(ϕi)∩supp(ϕj)

ωiδi,j .

The same conclusion holds for the other mass matrix. On the reference element K̂, the
general terms of the mass matrices become:

Mij ≃
∑

e∈supp(ϕi)∩supp(ϕj)

ωiδi,j ≃
(l+1)d∑

k=1

|detJF
K̂

|ωiδi,j .

where JF
K̂

is the Jacobian of F
K̂

.

Regarding the stiffness matrices, the use of Gauss Lobatto formulas for computing
their entries simplifies the calculations but does not change the structure of the matrices.

3.5.2 Validation of SEm

As for DGm, we validate here the implementation of SEm on structured quadrangle
meshes. The validation is achieved by considering the same test cases than for DGm
validation, which means that we have exactly the same data (point source, physical pa-
rameters) and use the same time scheme : the Leap-Frog scheme. Figures 3.17 and 3.18
picture snapshots in the acoustic case and they are completed with a seismogram on Fig-
ures 3.19 and 3.20 representing the numerical and analytical solutions. The snapshots
agree with the physics, the last one illustrating the use of a free surface condition on the
external boundary. The seismogram recorded at point (1000, 2000) shows that the numer-
ical solution follows perfectly the profile of the analytical solution. We have computed the
relative L2-error between the two solutions: it is equal to 8e−3 for the grid with 10000
cells and 3.6e−3 for the one with 22500 cells.

We reproduce the same experiment in the case of an elastic domain. Figures 3.21 and
3.22, completed with Figures 3.23 and 3.24, show that the same conclusions hold.

Remark 1: Again in the elastic case, the S-wave only appears when the wave hits
the boundary due to P -wave source and the homogeneous nature of the domain.

Conclusion

We have implemented and validated the SEm for solving the acoustic wave equation
formulated as a first order system having the velocity and the pressure as unknowns.
The approximate pressure is continuous while the velocity is discontinuous. Despite our
will to apply DGm on triangle/tetrahedral meshes, we have also implemented DG for
quadrangle meshes. By this way, we dispose of a wide variety of numerical schemes which
will be used in what follows as proof of concept of our coupling strategy.

3.6 Comparison of DGm with SEm

In this section, we compare DGm and SEm when applied in structured quadrangle meshes.
The DG scheme involves centered fluxes which ensures the scheme to be conservative. The
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Figure 3.17: Speed modulus propagation in acoustic domain using SEm in a mesh with
10000 quadrilaterals
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Figure 3.18: Speed modulus propagation in acoustic domain using SEm in a mesh with
22500 quadrilaterals
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Figure 3.19: Seismograms of Gar6more solution (in blue) and numerical solution using
SEm (in red) applied in an acoustic domain discretized with 10000 quadrangle cells
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Figure 3.20: Seismograms of Gar6more solution (in blue) and numerical solution using
SEm (in red) applied in an acoustic domain discretized with 22500 quadrangle cells
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Figure 3.21: Speed modulus propagation in elastic domain using SEm in a mesh with
10000 quadrilaterals
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Figure 3.22: Speed modulus propagation in elastic domain using SEm in a mesh with
22500 quadrilaterals
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Figure 3.23: Seismograms of Gar6more solution (in blue) and numerical solution using
SEm (in red) applied in an elastic domain discretized with 10000 quadrangle cells
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Figure 3.24: Seismograms of Gar6more solution (in blue) and numerical solution using
SEm (in red) applied in an elastic domain discretized with 22500 quadrangle cells
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comparison is performed in terms of accuracy and CPU time. We use the Leap frog scheme
for time integration and the computations are carried out in parallel using OpenMP on
8 threads. We begin with computations in homogeneous 2D domains which have already
been introduced in the previous sections and we consolidate our study by providing an
example of 2D heterogeneous domain.

3.6.1 Comparison in terms of CFL number

Explicit time integrations require following a CFL condition which ensures the stability
of the numerical process. Its value depends on the space discretization and on the scheme
used for the time integration. In practice, the optimal CFL number is computed using
the power iteration method algorithm which computes the highest eigenvalue ρ(A) of the
matrix A governing the final linear system. Once this eigenvalue is computed, the CFL
number is obtained as the square root of ρ(A)−1 multiplied by a constant related to the
time scheme. Here, the constant associated to Leap-Frog scheme is equal to 2 and we use
to employ 1.99 to strengthen the validity of the CFL condition.
The comparison is based upon the L2 relative error which is computed by using an exact
solution obtained with Gar6more software and the CPU time.

Table 3.5 pictures the CFL number and the computational time for the two numerical
methods in the case of an acoustic domain paved with 10000 cells previously described in
chapter 3. To begin with, the DG scheme does not involve any penalization term, which
is the simplest DG formulation of the problem.

CFL L2-error CPU-time Nb of time steps

DG 1.56e-3 0.941 4.98 629

SEM 2.45e-3 7.903e-3 0.80 409

Table 3.5: Acoustic case, DG scheme without penalization, DGm and SEM of order 3,
10000 quadrangle cells.

As expected, the two CFL numbers are not the same but they are not so far from
each other. The SEm clearly provides more accuracy than DGm as pictured in the third
column which indicates that the DG error is about 94%. The SEm CPU time is really
smaller than the one of DGm as it is 6 times lower. This first experiment is thus clearly
favouring the SEm. Regarding DG accuracy, it is worth noting that DGm is not penalized
and this should explain why the numerical error is so high. The lack of penalization is
illustrated in Figure 3.25, which depicts a P -wave clearly polluted by numerical noises.
This observation is confirmed globally when computing the relative L2-error thanks to the
analytical solution computed with Gar6more which is almost 100%. In addition to the lack
of penalization, such a high numerical error can also be explained by the use of structured
cells. Indeed, computations in structured meshes can be polluted by resonance phenomena
that bring out the numerical noise. Hence, in the following, we will systematically consider
a DGm involving Ainsworth penalization terms and in all of our experiments, we consider
a penalization coefficient α equal to 0.5 while the other penalization coefficients are set to
0.
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Figure 3.25: P-wave propagation on a mesh with 10000 quadrilaterals using DGm without
penalization terms

In Table 3.6, we can see that adding a penalization term in the DG formulation restores
the accuracy of the DG solution and we can even see that the DG error is almost six times
lower than SE one when applied in the coarser mesh while it is more than ten times lower
in the finer mesh. However, the computational costs for DG method are increased. This
is mainly due to the modification of the CFL number which is smaller as a consequence of
introducing a penalization term. Just as was formerly seen in other works (Ventimiglia,
2014), the addition of penalization terms actually modifies the spectrum of the matrix A
such that the value of ρ(A) increases. This contributes then to decrease the CFL number
as indicated in Table 3.6 and thus increase the number of time iterations. It represents a
clear difference of CPU time that is clearly in favour of SEm.

CFL L2-error CPU-time Nb of time steps Number of cells

DG 1e-3 1.259e-3 7.93 1000 10000
6.66e-4 5.845e-4 32.98 1502 22500

SEM 2.45e-3 7.903e-3 0.80 409 10000
1.63e-3 3.608e-3 3.54 613 22500

Table 3.6: CFL and CPU time comparison: acoustic domain, penalized DGm scheme.

We also display the results we have obtained in the elastic case in Table 3.7 and we
can see that the same conclusions hold.

As a conclusion, in terms of CFL number and thus CPU time, the SEm is more
advantageous than DGm when implemented in structured quadrangle cells. However, we
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CFL L2-error CPU-time (s) Nb of time steps Number of cells

DG 2.06e-3 1.071e-2 11.10 971 10000
1.37e-3 4.731e-3 38.62 1456 22500

SEM 6.09e-3 9.151e-2 1.19 356 10000
4.06e-3 4.130e-2 4.18 534 22500

Table 3.7: CFL and CPU time comparison: elastic domain, penalized DGm scheme.

see that when using the optimal CFL number for each scheme, the L2-relative error of
DGm is always lower than the one of SEm.

3.6.2 Comparison in terms of relative error

We have seen in Table 3.6 that, for a given mesh and with the use of the optimal CFL
number, the error of penalized DGm is smaller than the one of SEm. However, the
computational cost of DGm is always higher than the one of SEm. We must then keep
in mind that the objective of this work is the coupling of both methods and we aim
at providing a numerical approach that monopolizes less computational resources while
ensuring a good accuracy of the simulations. It would thus be interesting to adjust the
numerical parameters in order to get a balance between numerical error and computational
time. This idea led us to draw Figure 3.26 which displays the evolution of the relative
error as a function of the approximation order. The underlying simulations have been
performed by using the optimal CFL number of each method. For instance, we get the
information that for the considered example, DGm and SEm deliver a solution with a
relative error of about 1.3e−3 when the approximation degree is 3 for the first and 5 for
the latter. In Table 3.8, we have then displayed the values corresponding to the DGm of
order 3 and the SEm of order 5. We see that the CPU time is still higher for DGm than
SEm even if the order of SEm is higher. We must realize here that this experiment is
quite lucky in the sense that both methods have the same optimal CFL, as pictured in the
second column of Table 3.8. This could indicate that we can do just as well by employing
SEm of lower order with the optimal CFL of DGm. We just have to compute the optimal
CFL number of lower order SEm to be sure that the one of DGm is correct. For instance
we have computed the optimal CFL of the SEm at order 3 that is about 1.06 e-3 and thus
higher than the one of DGm. In Table 3.9, we then see that we reach the same accuracy
for the SEm at order 3 as for the DGm at order 3 providing the SEm is used with the
optimal CFL number of SEm at order 5.

To complete this study, we have compared the L2-error of DGm at order 3, SEm at
order 3 and SEm at order 5 when using 20, 40, 60, 80 and 100% of the optimal CFL of
each method. The results are depicted on Figure 3.27 and confirmed that when the CFL
of DG at order 3 is close to that of the SEm at order 3, the error are also close to each
other.
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Figure 3.26: Behavior of L2-error in terms of approximation degree: penalized DGm and
SEm with optimal CFL number, acoustic domain, 10000 quadrangles.

CFL L2-error CPU-time Nb of time steps

DG 1e-3 1.259e-3 7.93 1000

SEM(order five) 1e-3 1.420e-3 5.7 1000

Table 3.8: Comparison between SEm of order 5 and DGm of order 3

CFL L2-error CPU-time(s) Nb of time steps

DG 1e-3 1.259e-3 7.93 1000

SEM 1e-3 1.605e-3 2.12 1000

Table 3.9: Penalized DGm of order 3 and SEm of order 3, acoustic domain, 10000 quad-
rangles

3.6.3 Comparison in terms of meshes

According to the results of the previous subsection, we use here the optimal CFL number
computed for the DGm of order 3 and we employ it both for DGm and SEm of order 3.

Table 3.10 depicts the results for the acoustic case in each mesh and the elastic case is
displayed in Table 3.11.

L2-error CPU-time Nb of cells

DG 1.259e-3 7.93 10000
4.731e-3 32.98 22500

SEM 1.605e-3 2.12 10000
4.756e-3 8.67 22500

Table 3.10: Same CFL in acoustic domain

We can observe that in each case, SEm is much more efficient than DG in terms of
computational time. Moreover, we can observe that SEm outperforms less DGm in the
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Figure 3.27: Behavior of L2-error in terms of CFL number: penalized DGm at order 3,
SEm at order 3 and SEm at order 5, acoustic domain, 10000 quadrangles.

L2-error CPU-time (s) Nb of cells

DG 1.071e-2 11.10 10000
4.731e-3 38.62 22500

SEM 1.112e-2 5.41 10000
4.796e-3 18.75 22500

Table 3.11: Same CFL in elastic domain
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elastic case than in the acoustic case. Actually, if SEm is four times faster than DGm in
a fluid domain, it is only twice faster in the solid domain. This is clearly in favour of the
use of SEm in the fluid domain coupled with DGm in the solid area which may contain
topography effects easier to handle with triangle cells. Hence, in the following of this work,
the SEm will be used for solving the acoustic wave equation.

3.7 Bi-layered acoustic case

In this section, we address the case of a heterogeneous domain composed of two layers
separated by an irregular (staircase) flat interface. We aim at confirming that, here again,
the SEm is still more advantageous than DGm in an heterogeneous acoustic medium paved
with structured quadrangle cells. The domain of study we consider is depicted in Figure
3.28. In terms of physical parameters, the acoustic wavespeed in the top layer is 1000m.s−1

and 2000m.s−1 in the bottom layer. For both layers, the density ρ is 1kg.m−3.

•src

1980m

1500m

Figure 3.28: Bi-layered acoustic domain with a stair-like interface.

This boundary domain is a square and the computational area is paved with 10000
squares of side 3m. The origin of the system of coordinates is located in the bottom
left corner. Then, the source term is a second order Ricker point source placed at point
(765,2450) computed using the formula given in Chapter 2 on page 28 with a peak fre-
quency equals to 5Hz and a time delay equals to 0.24s. The boundary condition is a free
surface condition which is set on the whole boundary. We employ DGm and SEm of order
three coupled with the Leap Frog scheme in time and, as in the previous comparisons, we
base our analysis on the computational time of the simulation and the value of the relative
L2-error computed from a reference solution constructed with Elasticus using DGm of or-
der six in space. Indeed, the geometry of the interface prevents the domain of propagation
from testing the hypotheses required for using Gar6more software. As in the previous
section, the optimal CFL number is computed with the power iteration method.

Table 3.12 pictures the results. We observe that the CPU-time of SEm is still very
short in comparison with the DG-one with a factor of nearly sixteen between the two
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values. However, the SEm error is 20 times greater than the DGm error. Hence, in order
to balance both errors, we have relaunched the simulation with the SEm for the same CFL
number than the one of DGm, which means that the computations are performed with a
smaller time step. The corresponding comparison is displayed in Table 3.13. As expected,
the use of a smaller CFL number for applying SEm contributes to reduce the error that
becomes nearly equal to the one of DGm and obviously to increase the computational
time. But the CPU-time of SEm remains four time smaller than the one of DGm. Hence,
this example shows that the same conclusions hold in the case of a heterogeneous domain.

CFL L2-error CPU-time

DG 1e-3 2.204e-3 16.04

SEM 2.45e-3 1.280e-2 1.70

Table 3.12: DGm and SEm of order 3, Leap Frog scheme, 10000 squared cells, bi-layered
acoustic domain, staircase interface

CFL L2-error CPU-time

DG 1e-3 2.204e-3 16.04

SEM 1e-3 1.458e-3 4.30

Table 3.13: DGm and SEm of order 3 applied at equal CFL, Leap Frog scheme, 10000
squared cells, bi-layered acoustic domain, staircase interface
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Figure 3.29: Speed modulus propagation, DGm of order 3, Leap Frog scheme, 10000
squared cells, bi-layered acoustic domain, staircase interface

Figures 3.29 and 3.30 picture the numerical results obtained respectively with DGm
and SEm. They provide a qualitative comparison of SEm with DGm.
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Figure 3.30: Speed modulus propagation, SEm of order 3, Leap Frog scheme, 10000
squared cells, bi-layered acoustic domain, staircase interface

Conclusion

We have compared DGm and SEm applied in structured quadrangle meshes. The analysis
is focused on the case of waves propagating in acoustic domains, even if the methods have
also been developed for elastic domains. The numerical experiments we have performed
show that the SEm is clearly faster than DGm on structured quadrangle cells. At first
sight, we have applied the numerical methods with their respective optimal CFL number.
In that case, we have observed that the SEm is less accurate than the DGm. For the
purpose of balancing the two errors, we propose to use the SEm with the optimal CFL
number of DGm. Then, the computational cost of SEm is increased while remaining
smaller than the one of DGm and the level of accuracy is maximized. This result opens
the possibility of coupling efficiently the two methods.

All these comparisons have been performed with Leap-Frog time scheme. It is worth
noting that some numerical noise can pollute the simulations with DGm. This numerical
pollution can be controlled by adding a penalization term as illustrated in this chapter.
However, in (Ventimiglia, 2014), it has been shown that if the mesh is composed of struc-
tured triangle cells, the addition of a penalization term may be ineffective in the sense that
the amplitude of the numerical noise is decreased but not enough to guarantee a good level
of accuracy. To illustrate the phenomenon, we have performed a simulation in an acoustic
squared domain of side 3000 meters. The P -wavespeed is equal to 1000m.s−1 and the
density ρ is equal to 1kg.m−3. This domain is paved with 15000 structured triangles and
we apply DGm of order 3 with Ainsworth penalization (α = 0.5 and the other parameters
equal to zero). The propagation is initiated with a Ricker point source placed at the center
of the domain with a central frequency fpeak equals to 20Hz and a time delay equals to
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0.04s.

Numerical results are depicted in Figure 3.31 where we can see that even with penal-
ization term, the numerical noise actually pollutes significantly the numerical solution.

For this reason, we have decided to move on with Runge-Kutta time-schemes which
have proven to be stable when using upwind fluxes. It is worth noting that in this case,
the scheme is now dissipative.
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Figure 3.31: Speed modulus propagation, DGm of order 3, Leap Frog scheme, 10000
structured triangle cells, acoustic domain

3.8 Conclusion

We have presented and studied the two numerical methods that form the base of our
work by focusing on their application in quadrangle meshes. For the sake of conciseness
of this manuscript, we have limited the introduction to the elastodynamics for DGm and
acoustics for SEm. However, each numerical method has been implemented in Elasticus
both for elastic and acoustic waves in 2D and 3D. This chapter contains some numerical
results in 2D which aim at validating the development of DGm and SEm in structured
quadrangle cells. We have then developed a numerical comparison of both methods. We
have observed that:

• For a given order of approximation in space and the use of a Leap-frog scheme, the
CFL number of SEm is always lower than the one of DGm. Hence it could have
been interesting to introduce local time stepping in order to apply a time step that
is adapted to each numerical method.
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• When employing the optimal CFL number for each method, the DGm delivers a
solution that is clearly more accurate that the solution obtained with SEm. This
difference can be attenuated by employing the SEm with the optimal CFL number
of DGm. Then the CPU time of SEm increases but is still slearly lower than the
one of DGm.

Given these two previous items, we can conclude that it is more relevant to use DGm and
SEm with the same time step providing it is defined by the DGm rules.
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Chapter 4

DG and SEm coupling strategy

This chapter deals with the coupling of the SEm and the DGm that have been introduced
and analysed in the previous chapter. The idea of coupling different finite element methods
has been addressed in many works and each approach distinguishes itself from others by
the matching condition involved for the coupling. For instance, the mortar elements intro-
duced in (Bernardi, 1989) have demonstrated a high efficiency for coupling finite element
methods. The mortar method involves a matching condition on the interface between two
different subdomains of the mesh. Then a numerical method is applied, possibly specific
to each subdomain. This approach usually leads to a nonconforming method providing
optimal approximation.
The coupling of SEm with another numerical method has already been addressed in the
past. For instance, Bernardi and her collaborators (Bernardi, Debit, & Maday, 1990)
coupled SEm with a finite element method to consider a domain which includes an area
with a complicated geometry that is difficult to approximate with quadrangles. In this
work, two types of matching condition are considered which are the point-wise and the
integral matching condition. The study of their convergence properties shows that the
integral matching condition is the most accurate while both approaches have comparable
computational costs. The matching condition can also involve a Lagrange multiplier like in
(Le Tallec & Sassi, 1995). For instance, Wieners and Wohlmuth (Wieners & Wohlmuth,
1998) proposed the coupling of Raviart-Thomas finite elements with conforming finite
elements using mortar elements at the interface between subdomains with a piece-wise
constant Lagrange multiplier.
Regarding the solution of wave problems with mortar elements at the interface of the sub-
domains, the second-order acoustic wave equation is addressed in (Lahaye et al., 1997).
Then a variant of the classic mortar element method with Lagrange multiplier has been
developed in (Belgacem, 1999) for the Maxwell system. It is worth noting that this variant
is always nonconforming because of the relaxation of matching constraints at the vertices
(or the edges in 3D) of subdomains. Mortar finite elements have been also developed for
solving complex elastodynamic problems in (Casadei, Gabellini, Fotia, Maggio, & Quar-
teroni, 2002). Here SEm is coupled with a standard finite element method. The robustness
and efficiency of the mortar element method is demonstrated in different cases including
complex geometries approximated with finite elements. However, the coupling with mor-
tar finite elements is accurate if the degrees of freedom of the two numerical methods
are coupled at the interface. This constraint prevents from applying a full explicit time-
marching scheme which is usually preferred when dealing with large scale domain. It is
worth noting that in this work the size of the interface is significantly smaller than the
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dimension of the global problem. Nevertheless in the case of geophysical problems, it
might hamper the efficiency of this approach. The use of numerical fluxes does avoid this
technical step of the implementation and this point is clearly in favor of DG approxima-
tions, which naturally involve numerical fluxes. Basically, the coupling of a discontinuous
method with a continuous method should prevent from this issue. For instance, it has been
shown in (Parmantier & Ruddle, 2004) that numerical fluxes can be used at the interface
between subdomains to get a hybrid scheme mixing Finite Difference method (FDm) with
SEm for solving electromagnetic problems accurately. This work has been extended to
the three-dimensional case in (He, Huang, & Liang, 2012). Very recently, finite differences
based upon Yee scheme have been coupled (Deymier, 2016) with finite volumes for solving
Maxwell equations in complex media including for instance antennas.
As far as DGm is concerned, Perugia and Schötzau (Perugia & Schötzau, 2001) have built
and analyzed a coupling of DGm with FEm for solving elliptic problems. For the same
type of equations, the coupling of local DGm with Raviart-Thomas finite elements has
been achieved in (Cockburn & Dawson, 2002). The coupling of discontinuous Galerkin
methods with mixed finite elements has also been applied to the computation of flows in
porous media (Girault, Sun, Wheeler, & Yotov, 2008). Then, a unified framework has
been proposed in (Cockburn et al., 2009) for hybridization of finite element methods in
the case of second-order elliptic equations.
In this chapter, we develop a method that couples DGm and SEm. The method is de-
scribed in details in the case of the elastic wave equation and it is just presented for the
acoustic case. It is worth noting that the coupling involves the mixed-primal formulation
of DGm. Indeed, the use of this formulation facilitates the matching with the SE formu-
lation that only involves numerical fluxes at the interface between the two subdomains.
This chapter is ending with the case of the elasto-acoustic system for which we have to
consider both the numerical and the physical coupling.

4.1 DG-SEm variational formulation in the elastic case

We begin with developing the DG-SEm formulation for solving the elastic wave equation
which is set in the bounded domain Ωs with boundary Γs. We impose the boundary
condition σn = 0 where n is the unitary normal vector outwardly directed to Ωs,h and
defined on Γs. We assume that Ωs is divided into two subdomains Ω1 and Ω2 with no
overlapping and the interface separating Ω1 from Ω2 is denoted by Γ1,2. The domain is
paved with a set of elements K which are composed of Ω1 and a set of triangles (tetrahedra
in 3D) covering Ω2,h (see Figure 4.2). Ω1 is then considered as a macro-element of the
triangulation in which DGm is applied. It is matched with the elements in the triangulation
of Ω2 through numerical fluxes which are defined at the interface Γ1,2 only. We are
thus taking advantage of DG formulation, which consists in reconstructing the numerical
solution from local solutions that communicate with each other through fluxes defined at
the internal boundaries of the DG mesh. The coupling is then implemented by paving the
macro-element with quadrangles and applying a SEm inside. Regarding the mesh denoted
by Th, it is composed of cells K that are unstructured triangle/tetraedral cells and for
the time being, Ω1,h considered as one structured quadrangle cell. Figure 4.2 depicts an
example of such a configuration. It is important to define the internal boundaries denoted
by Γs,int, with Γs,int = Γ2,int ∪ Γ1,2.

Remark 1: By exploiting the DGm construction, we avoid the use of mortar elements
and thus the use of Lagrangian pre-conditioner with a dedicated solver which could have
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Ω1,h

Ω2,h

Figure 4.1: Decomposition of Ωs,h into two domains: Ω1,h paved with quadrangles and
Ω2,h paved with unstructured triangles

increased significantly the computational times besides complicating the implementation.

We keep going by writing the global DG variational formulation. Let vh ∈ Vh and
σ

h
∈ Σh be the global unknowns in Ωs,h. The discontinuous finite element spaces Vh and

Σh are defined as:

Vh = {vh ∈ L2(Ωs,h)d | (vh)|K ∈ VK(K), ∀K ∈ Th},

Σh = {σ
h

∈ L2(Ωs,h)d2 | (σ
h
)|K ∈ ΣK(K), ∀K ∈ Th and (σh)ij = (σh)ji},

where VK and ΣK are two finite subspaces of (H1(K))d and (H1(K))d2
.

We consider a test-function wh ∈ Vh and a test-tensor ξ
h

∈ Σh. The mixed-primal DG

variational formulation reads:





∫

Ωs,h

ρ∂tvh · wh = −
∫

Ωs,h

σ
h

: ∇wh +

∫

Γs,int

{{σ
h
}} : [[wh]],

∫

Ωs,h

∂tσh
: ξ

h
=

∫

Ωs,h

(Cξ
h
) : ∇vh −

∫

Γs,int

{{Cξ
h
}} : [[vh]].

(4.1)
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Γ1,2

Ω2,h

Ω1,h

Figure 4.2: Ω1,h: quadrangle macro-element; Ω2,h paved with triangles; in blue, Γ1,2

supports the boundary

Then, we separate the integrals on Γs,int into one on Γ2,int and another one on Γ1,2:





∫

Γs,int

{{σ
h
}} : [[wh]] =

∫

Γ2,int

{{σ
h
}} : [[wh]] +

∫

Γ1,2

{{σ
h
}} : [[wh]],

∫

Γs,int

{{Cξ
h
}} : [[vh]] =

∫

Γ2,int

{{Cξ
h
}} : [[vh]] +

∫

Γ1,2

{{Cξ
h
}} : [[vh]].

(4.2)

Then, we plug the relations (4.2) in the formulation (4.1):





∫

Ωs,h

ρ∂tvh · wh = −
∫

Ωs,h

σ
h

: ∇wh +

∫

Γ2,int

{{σ
h
}} : [[wh]] +

∫

Γ1,2

{{σ
h
}} : [[wh]],

∫

Ωs,h

∂tσh
: ξ

h
=

∫

Ωs,h

(Cξ
h
) : ∇vh −

∫

Γ2,int

{{Cξ
h
}} : [[vh]] −

∫

Γ1,2

{{Cξ
h
}} : [[vh]].

(4.3)

The coupling is then implemented by considering that Ωs,h = Ω1,h ∪ Ω2,h. The terms on
Γ1,2, written in blue, are the ones that couple the DG solution computed in Ω2,h and the
solution computed in Ω1,h. The latter is obtained by applying SEm in Ω1,h which is paved
with structured quadrangles. It is worth noting that the choice of the mixed-primal DG
formulation is particularly well adapted to the coupling with SEm.
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4.2 DG-SEm variational formulation in the acoustic case

We introduce the spaces Vh and Ph:

Vh = {vh ∈ L2(Ωf,h)d | (vh)|K ∈ VK(K), ∀K ∈ Th}

Ph = {ph ∈ H1(Ωf,h) | (ph)|K ∈ PK(K), ∀K ∈ Th}.

where PK is a subspace of H1(K).

Let vh and ph be the global solution in Vh and Ph, wh and qh in Vh and Ph be test
functions. In addition, we apply the boundary condition vh·n = 0 on the exterior boundary
of the computational domain Ωf,h. The first-order system of acoustic wave equation reads:





ρ

∫

Ωf,h

∂tvh · wh = −
∫

Ωf,h

∇ph · wh +

∫

Γf,int

[[ph]] · {{wh}},

1

c2
0ρ

∫

Ωf,h

∂tphqh =

∫

Ωf,h

∇qh · vh −
∫

Γf,int

[[qh]] · {{vh}}.
(4.4)

By following the same approach as for the elastic wave equation, we get the following
DG-SEm formulation for the first-order acoustic wave equation:





ρ

∫

Ωf,h

∂tvh · wh = −
∫

Ωf,h

∇ph · wh +

∫

Γ2,int

[[ph]] · {{wh}} +

∫

Γ1,2

[[ph]] · {{wh}},

1

c2
0ρ

∫

Ωf,h

phqh =

∫

Ωf,h

∇qh · vh −
∫

Γ2,int

[[qh]] · {{vh}} −
∫

Γ1,2

[[qh]] · {{vh}}.
(4.5)

It is worth noting that, in the case of a general elasto-acoustic domain, there is no
reason to have a flat interface between the fluid and the solid domain. To avoid this
additional difficulty, we will systematically couple DGm and SEm in the fluid area (in a
subdomain of Ωf ) or in the solid area (in a subdomain of Ωs).

4.3 Energy Study

In the following, we are going to show that the DG-SEm formulation preserves a continuous
and a semi-discrete energy. Then we will construct the discrete functional based upon the
Leap-Frog time scheme and we will establish that it is a conservative energy if a CFL
condition is satisfied. The energy study is performed in details for the elastic formulation
given in the previous section, but this study has also been carried out in the acoustic case
and lead to the same conclusions.

4.3.1 Energy of the approximate solution

In this section we study the time stability of the approximate solution by the mean of an
energy analysis. The functional is defined independently of the local approximation space
and the time scheme.
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Let v1,h and σ
1,h

be the discrete SEm solution in Ω1,h and v2,h and σ
2,h

the discrete
DG solution in Ω2,h.

We introduce now vh =

(
v1,h

v2,h

)
and σ

h
=

(
σ

1,h

σ
2,h

)
the global approximate wavespeed

and strain tensor. In the same way, we introduce wh and ξ
h

as respectively the global test-

function and test-tensor. We remind that C is a symmetrical positive tensor, which means
that it can be inverted in the space of symmetrical tensor. On the exterior boundary of
Ωs,h we impose the boundary condition σ

h
n = 0 where n is the unitary normal vector

outwardly directed to the domain. Let E be the functional defined in Vh and Σh by:

E =
1

2

(∫

Ωh

ρvh · vh +

∫

Ωh

σ
h

: (C−1)σ
h

)
.

It defines an energy since C is positive definite. We choose wh = vh, ξ
h

= (C−1)σ
h

in the

variational formulation (4.3) and we get:




∫

Ωh

ρ∂tvh · vh = −
∫

Ωh

σ
h

: ∇vh +

∫

Γ2,int

{{σ
h
}} : [[vh]] +

∫

Γ1,2

{{σ
h
}} : [[vh]],

∫

Ωh

∂tσh
: (C−1)σ

h
=

∫

Ωh

σ
h

: ∇vh −
∫

Γ2,int

{{σ
h
}} : [[vh]] −

∫

Γ1,2

{{σ
h
}} : [[vh]].

(4.6)

We easily see that we have
d

dt
E = 0. (4.7)

The derivative in time of the energy being zero, we get that the energy of the DG-SEm
scheme is constant and thus we prove that the approximate solution is stable in time.

4.3.2 Semi-discrete energy

We introduce the following finite dimensional spaces:

V1,h = {v1,h ∈ H1(Ω1,h)d | (v1,h)|K ∈ Qm(K)d, ∀K ∈ T1,h}

V2,h = {v2,h ∈ L2(Ω2,h)d | (v2,h)|K ∈ Pm(K)d, ∀K ∈ T2,h},

Σ1,h = {σ
1,h

∈ L2(Ω1,h)d2 | (σ)|K ∈ Qm(K)d2 ∀K ∈ T1,h, and σij = σji}

Σ2,h = {σ
2,h

∈ L2(Ω2,h)d2 | (σ)|K ∈ Pm(K)d2 ∀K ∈ T2,h, and σij = σji},

where Qm(K) and Pm(K) are the spaces of Lagrangian polynomials of degree m defined
respectively on a quadrangle (or cuboid) and on a triangle (tetrahedron).

Using the same notations as in chapter 3, the matrix system reads:





Mvh
∂tvh +Rvh

σh +R1,2
σh

σh = 0,

M
σh,C−1∂tσh −R

σh,C−1vh −R1,2
vh,C−1vh = 0,

(4.8a)

(4.8b)
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where

Mvh
=

(
Mv1,h

0

0 Mv2,h

)
, R

σh,C−1 =

(
R

σ1,h,C−1 0

0 R
σ2,h,C−1

)
,

M
σh,C−1 =

(
M

σ1,h,C−1 0

0 M
σ2,h,C−1

)
, Rvh

=

(
Rv1,h

0

0 Rv2,h

)
,

R1,2
vh,C−1 =


 0 R2,1

v2,h,C−1

R1,2
v1,h,C−1 0


, R1,2

σh
=

(
0 R2,1

σ1,h

R1,2
σ2,h

0

)
.

The matrices Mv2,h
, Rv2,h

are the matrices that have been previously defined when intro-
ducing the DG discretization in Chapter 3 on page 42. Matrix Mv1,h

is defined in the same
way as the matrix Mph

defined for SEm in Chapter 3 on page 57 and matrix Rv1,h
is de-

fined like the stiffness matrix defined for SEm on page 57. Matrices M
σ1,h,C−1 , M

σ2,h,C−1 ,
R

σ1,h,C−1 and R
σ2,h,C−1 , are constructed in the same way as matrices Mσ1,h

(which is built
as matrix Mvf,h

displayed on page 57 dealing with SEm) Mσ2,h
, Rσ1,h

and Rσ2,h
but the

physical parameters are included into the mass matrices instead of the stiffness matrices.
In particular we have:

Rv1,h,C−1 = (Rσ1,h
)T , Rv2,h,C−1 = (Rσ2,h

)T . (4.9)

The mass matrices M
σ1,h,C−1 and M

σ2,h,C−1 are such that each sub-matrix MK

σ1,h,C−1 and

MK

σ2,h,C−1 has its blocks multiplied by the corresponding coefficient of matrix C−1:

MK

σ∗,h,C−1 = C−1
ij MK, ∀i, j = 1..d(d+ 1)/2, (4.10)

whereMK is defined in equation (3.24) in the section devoted to DG discretization (chapter
3 on page 42). The matrices R1,2

vh,C−1 and R1,2
σh

have been introduced for the coupling and
we have

(R1,2
σ1,h

)ijkpq =

∫

Γ1,2

Φqei ⊗ nψK

p ej ⊗ ek ∀p = 1..Nm, q = 1..L and R1,2
σ1,h

= (R2,1
v2,h,C−1)T

(R1,2
σ2,h

)ijkpq =

∫

Γ1,2

ψK

q ei ⊗ nϕK

p ej ⊗ ek ∀p = 1..(m+ 1)d, q = 1..Nm and R1,2
σ2,h

= (R2,1
v1,h,C−1)T

where ϕp is a local basis function for SEm, Φq is a global basis function for SEm and
ψ⋆ is a DG basis function. Here we have i = x, y, z, j = x, y, z, k = x, y, z, and Nm is the
number of basis functions in an element defined in Chapter 3 in the DG discretization.
Here, n is the unitary normal vector outwardly directed to Ω1 and defined on boundary
Γ1,2. In addition, we have:

R2,1
σh

= (R2,1
vh,C−1)T . (4.12)

Let us introduce the scalar product < ., . > which is defined for a pair of vectors x and

y of RL, L ∈ N by < x, y >=
L∑

i=1
xiyi. In particular, if x = Az, A is a L × L matrix:

< x, y >=< Az, y >=
∑
i

(
∑
j
Aijzj)yi. According to (4.8a) and (4.8b), we have:

< ∂tMvh
vh,vh > + < Rvh

σh,vh > +< R1,2
σh

σh,vh > = 0,

< ∂tMσh,C−1σh,σh > − < R
σh,C−1vh,σh > −< R1,2

vh,C−1vh,σh > = 0.

(4.13a)

(4.13b)
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Let us introduce the functional Esd defined by

Esd =
1

2

(
< Mvh

vh,vh > + < M
σh,C−1σh,σh >

)
, (4.14)

Since the mass matrices are positive definite, Esd is a quadratic form and defines thus a
semi-discrete energy. Then, by adding equation (4.13a) and (4.13b), and using relation
(4.12) and (4.9), it comes

d

dt
Esd = 0, (4.15)

which shows that the semi-discrete energy is a constant in time. Hence the semi-discrete
system is stable in time.

4.3.3 Discrete energy and CFL number

We continue our analysis by investigating the existence of a full discrete energy, which
depends on the time scheme that is applied for time integration. Here, we restrict our
study to the case of Leap-Frog scheme. The discrete system is given by:

Mvh

vn+1
h − vn

h

∆t
+Rvh

σ

n+ 1
2

h +R1,2
σh

σ

n+ 1
2

h = 0,

M
σh,C−1

σ

n+ 3
2

h − σ

n+ 1
2

h

∆t
−R

σh,C−1vn+1
h −R1,2

vh,C−1vn+1
h = 0.

(4.16a)

(4.16b)

Equation (4.16b) can be rewritten at a previous time-step:

M
σh,C−1

σ

n+ 1
2

h − σ

n− 1
2

h

∆t
−R

σh,C−1vn
h −R1,2

vh,C−1vn
h = 0. (4.17)

We introduce the functional En
d that is defined by:

En
d =

1

2
< Mvh

vn
h,v

n
h > +

1

2
< M

σh,C−1σ

n− 1
2

h ,σ
n+ 1

2
h > . (4.18)

For the time being, we can not claim that En
d is an energy because there is not absolute

certainty that En
d is positive. This is due to the second term in (4.18) which involves σh

at two different time-steps. We then follow a two-stage approach: (1) evaluate En+1
d −En

d ;
(2) prove that En

d is an energy.

Step (1) : evaluation of En+1
d − En

d .

We have:

En+1
d − En

d =
1

2
< Mvh

vn+1
h ,vn+1

h > +
1

2
< M

σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h >−

1

2
< Mvh

vn
h,v

n
h > −1

2
< M

σh,C−1σ

n− 1
2

h ,σ
n+ 1

2
h >

Then,

< Mvh
vn+1

h ,vn+1
h > − < Mvh

vn
h,v

n
h >=< Mvh

vn+1
h ,vn+1

h − vn
h > + < Mvh

vn+1
h ,vn

h >

− < Mvh
vn

h,v
n
h − vn+1

h > − < Mvh
vn

h,v
n+1
h >
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which simplifies to:

< Mvh
vn+1

h ,vn+1
h > − < Mvh

vn
h,v

n
h >=< Mvh

(vn+1
h + vn

h),vn+1
h − vn

h >

or equivalently to

< Mvh
vn+1

h ,vn+1
h > − < Mvh

vn
h,v

n
h >=< Mvh

(vn+1
h − vn

h),vn+1
h + vn

h >, (4.19)

since Mvh
is symmetrical. We also have:

< M
σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h > − < M

σh,C−1σ

n− 1
2

h ,σ
n+ 1

2
h >=< M

σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h − σ

n− 1
2

h >,

since M
σh,C−1 is symmetrical.

Then, according to the relation :

σ

n+ 3
2

h − σ

n− 1
2

h = (σ
n+ 3

2
h − σ

n+ 1
2

h ) + (σ
n+ 1

2
h − σ

n− 1
2

h )

we get

< M
σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h > − < M

σh,C−1σ

n− 1
2

h ,σ
n+ 1

2
h >=

< M
σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h − σ

n+ 1
2

h > + < M
σh,C−1σ

n+ 1
2

h ,σ
n+ 1

2
h − σ

n− 1
2

h >

By using again the fact that M
σh,C−1 is symmetrical, we obtain :

< M
σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h > − < M

σh,C−1σ

n− 1
2

h ,σ
n+ 1

2
h >=

< M
σh,C−1(σ

n+ 3
2

h − σ

n+ 1
2

h ),σ
n+ 1

2
h > + < M

σh,C−1(σ
n+ 1

2
h − σ

n− 1
2

h ),σ
n+ 1

2
h > (4.20)

We now plug the equation (4.16a) in (4.19) and (4.16b) in (4.20). First, we get

< Mvh
vn+1

h ,vn+1
h > − < Mvh

vn
h,v

n
h >=< −∆t(Rvh

+R1,2
σh

)σ
n+ 1

2
h ,vn+1

h + vn
h >, (4.21)

and we also have

< M
σh,C−1σ

n+ 1
2

h ,σ
n+ 3

2
h > − < M

σh,C−1σ

n− 1
2

h ,σ
n+ 1

2
h >=

< ∆t(R
σh,C−1 +R1,2

vh,C−1)vn+1
h ,σ

n+ 1
2

h > + < ∆t(R
σh,C−1 +R1,2

vh,C−1)vn
h,σ

n+ 1
2

h > .(4.22)

To conclude, we use (4.9) and (4.12) and we sum (4.21) and (4.22) which implies that:

En+1
d − En

d = 0 (4.23)

Hence, the functional En
d does not vary at each iteration.

Step (2): Study the sign of En
d .

For that purpose, we develop the second term in the definition of En
d , following the principle

of quadrature expansions:

< M
σh,C−1σ

n+ 1
2

h ,σ
n− 1

2
h >=< M

σh,C−1

σ

n+ 1
2

h + σ

n− 1
2

h

2
,
σ

n+ 1
2

h + σ

n− 1
2

h

2
> −

< M
σh,C−1

σ

n+ 1
2

h − σ

n− 1
2

h

2
,
σ

n+ 1
2

h − σ

n− 1
2

h

2
>
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Then the term under study decomposes itself into a term which is positive since
M

σh,C−1 is positive definite and a term that we can modify thanks to (4.17). We then
have

< M
σh,C−1

σ

n+ 1
2

h − σ

n− 1
2

h

2
,
σ

n+ 1
2

h − σ

n− 1
2

h

2
>=

<
∆t

2
(R

σh,C−1 +R1,2
vh,C−1)vh,

∆t

2
M−1

σh,C−1(R
σh,C−1 +R2,1

vh,C−1)vh > .

We then obtain for En
d :

En
d =

1

2
< Mvh

vn
h,v

n
h > +

∆t2

4
< (R

σh,C−1+

R1,2
vh,C−1)vn

h,M
−1
σh,C−1(R

σh,C−1 +R2,1
vh,C−1)vh > + < M

σh,C−1

σ

n+ 1
2

h + σ

n− 1
2

h

2
,
σ

n+ 1
2

h + σ

n− 1
2

h

2
>.

From this last expression, we see that En
d is positive if

< Mvh
vn

h,v
n
h > −∆t2

2
< (Rσh,C−1 +R1,2

vh,C−1)vn
h,M

−1

σh,C−1(Rσh,C−1 +R2,1

vh,C−1)vh > (4.24)

is positive. Given that Mvh
is positive definite, (4.24) can be rewritten as:

< vn
h,

(
I − ∆t2

2
M

− 1
2

vh
(R

σh,C−1 +R1,2
vh

)TM−1
σh,C−1(R

σh,C−1 +R2,1
vh,C−1)M

− 1
2

vh
vn

h

)
>(4.25)

where I is the identity matrix. Let B be the matrix defined by

B =
∆t2

2
M

− 1
2

vh
(R

σh,C−1 +R1,2
vh,C−1)TM−1

σh,C−1(R
σh,C−1 +R2,1

vh,C−1)M
− 1

2
vh

Then (4.24) is positive if the matrix A = I − B is positive. We can say that B is a
symmetrical matrix; indeed, Mvh

is symmetrical, M
σ,C−1 is symmetrical as well and since

(R1,2
vh,C−1)T = R2,1

vh,C−1 , we have that (R
σh,C−1 +R2,1

vh,C−1)T = RT
σh,C−1 +R1,2

vh,C−1 . We can
thus define the eigenvalues of B and if we denote by λmax its larger eigenvalue, we obtain
that A is positive if 1 − ∆t2

2 λmax ≥ 0. We then have:

Theorem 1. Let M be the matrix defined by

M =
∆t2

2
M

− 1
2

vh
(R

σ,C−1 +R1,2
vh,C−1)TM−1

σh,C−1(R
σ,C−1 +R2,1

vh,C−1)M
− 1

2
vh

.

Let λmax be the largest eigenvalue. Then, if we choose ∆t such that

∆t ≤
√

2

λmax
,

En
d is an energy associated to the DG-SEm scheme. Moreover, it is conservative.

As a conclusion, we have been able to prove that the DG-SEm scheme is stable in time
by considering functionals of energy. Regarding the discrete scheme obtained when using
the Leap-frog scheme, we have obtained a result of stability as well providing the time
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step satisfies a CFL condition. We have not been able to develop the same study when
applying the RK scheme. This is for a technical reason, the construction of a discrete
energy being not that obvious in this case. In the last section of this chapter, we present
the particular case of the elasto-acoustic equation to which the DG-SEm scheme is applied.
It is worth noting that we will assume that the physical interface between the fluid and
the solid coincides with the numerical interface limiting the region where SEm is applied
from the region where DGm is applied.

4.4 Elasto-acoustic coupling

Regarding geophysical exploration, it is quite usual to consider domains that are composed
of a layer of fluid and a layer of the subsurface. For addressing this kind of situation, we
could solve the elastodynamic system and set the velocity vs to 0. This approach may
be unstable (Bossy, 2003) and more importantly, its solution requires computing vectorial
unknowns even in the fluid while the acoustic wave equation governs a scalar (pressure) and
a vector (velocity). Hence, for stability issues and computational cost limitation, it turns
out to be interesting to consider the elasto-acoustic equation. As previously explained, we
use DGm in the area of the domain which requires flexibility of the mesh (basically in the
subsurface) while we use SEm in the area that can be easily represented with quadrangles
(basically the fluid). Here, we address the particular case where the interface between DG
and SEm coincides with the interface between the fluid and the solid. We are thus in the
spirit of (Phillips & Wheeler, 2008) which addresses the numerical solution of the coupled
fluid and mechanics in Biot’s consolidation model of poroelasticity by using a mixed-finite
element method for the flow variables and a DGm for the displacement. However, this is
not a limitation to consider general cases. Indeed, if the fluid-solid interface is arbitrarily
shaped, we can apply the DG-SEm in the fluid and a full DG in the remainder of the
domain.
Let Ω be the propagation domain composed of a fluid Ωf and a solid Ωs. The two
domains Ωf and Ωs are respectively paved with structured quadrangle (cuboid) cells and
unstructured triangles (tetrahedra). The two discretized domains are denoted by Ωf,h and
Ωs,h. We denote by Tf,h the set of structured quadrilaterals in Ωf,h and we denote by Ts,h

the set of unstructured cells in Ωs,h We denote by Γf,h,out the external boundary of the
fluid domain and Γs,h,out the external boundary of the solid domain and we define Γf,s

as the interface between the fluid and the solid. In addition we define Γs,h,int the set of
internal boundaries of Ωs,h. The elasto-acoustic system is given by:





ρ∂tvf = −∇p,

1

ρc2
0

∂tp = −∇ · vf ,

(4.26a)

(4.26b)

{
ρ∂tvs = −∇ · σ,
∂tσ = −C(ǫ(vs)).

(4.27a)

(4.27b)

This system of equations is completed with initial conditions: σ(x, 0) = 0 in Ωs, vs(x, 0) =
0 in Ωs, vf (x, 0) = 0 in Ωf and p(x, 0) = 0 in Ωf . On the external boundary, we have
the boundary conditions: vf · nf = 0 on Γf,h,out and vs · ns = 0 on Γs,h,out where nf and
ns are the unitary normal vectors defined on the external boundaries Γs,h,out, Γf,h,out and
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outwardly directed to Ωf,h and Ωs,h. On the physical interface Γf,s, we have the following
transmission condition:

{
vf · n = vs · n,

pn = −σn,
(4.28)

where n is the unitary normal vector oriented from the fluid to the solid domain.

4.4.1 Variational formulation

The elasto-acoustic equation has been solved with SEm in (Diaz, 2005) and it has been
shown that a primal-dual formulation helps avoiding the use of Lagrange multipliers that
are a priori required for handling the transmission condition. Here we consider the classic
SE variational formulation for the acoustic system and a mixed-dual DG formulation in
the solid. Hence, only equation (4.26b) is integrated by part in the elastic system to
keep the two formulations consistent. Let q,wf ,ws and ξ be test-functions respectively

in Vf,h, Vf,h, Vs,h and Σh with:

Vf,h = {q ∈ H1(Ωf,h)d | q|K ∈ Vf (K) ∀K ∈ Tf,h}
Vf,h = {vf ∈ L2(Ωf,h)d | (vf )|K ∈ Vf (K)d ∀K ∈ Tf,h},
Vs,h = {vs ∈ L2(Ωs,h)d | (vs)|K ∈ Vs(K)d ∀K ∈ Ts,h},

Σh = {σ ∈ L2(Ωs,h)d2 | (σ)|K ∈ Σ(K)d2
and σij = σji, ∀K ∈ Ts,h},

where Vf (K), Vf (K)d, Vs(K)d and Σ(K)d2
are finite subspaces of H1(K), H1(K)d and

H1(K)d2

The variational equations related to the elasto-acoustic system read:




ρ

∫

Ωf,h

∂tvf · wf = −
∫

Ωf,h

∇p · wf ,

1

ρc2
0

∫

Ωf,h

∂tpq =

∫

Ωf,h

∇q · vf −
∫

Γf,h,out

(qnf ) · vf −
∫

Γf,s

(qn) · vf ,

ρ

∫

Ωs,h

∂tvs · ws = −
∫

Ωs,h

(∇ · σ) · ws +

∫

Γs,h,int

{{ws}} · [[σ]],

∫

Ωs,h

∂tσ : ξ =

∫

Ωs,h

(∇ · (Cξ)) · vs −
∫

Γs,h,int

[[Cξ]] · {{vs}},

−
∫

Γs,h,out

(Cξns) · vs −
∫

Γf,s

(Cξn) · vs.

(4.29)

Here, the terms on the boundaries Γs,h,out and Γf,h,out vanish due to the boundary condi-
tion we impose.
Then, we regroup the two equations involving the boundary integrals on Γf,s:

1

ρc2
0

∫

Ωf,h

∂tpq +

∫

Ωs,h

∂tσ : ξ =

∫

Ωf,h

∇q · vf −
∫

Γf,s

(qn) · vf +

∫

Ωs,h

(∇ · (Cξ)) · vs

−
∫

Γs,int

[[Cξ]] · {{vs}} −
∫

Γf,s

(Cξn) · vs
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Let us consider the terms on Γf,s. First, we have :

(qn) · vf = q(vf · n) = q(vs · n) (4.30)

according to the first condition of (4.28). The other term on boundary Γf,s can be rewritten
as:

(Cξn) · vs = ((Cξn) · n)(vs · n) + ((Cξn) · τ )(vs · τ ), (4.31)

where τ is the tangential vector associated with the unitary normal vector n. Then we
sum up the expressions obtained in (4.30) and (4.31), and we get

q(vs · n) + ((Cξn) · n)(vs · n) + ((Cξn) · τ )(vs · τ ) =

1

2
((Cξn) · n + q)(vs · n + vf · n) +

1

2
((Cξn) · n + q)(vs · n − vf · n)+

((Cξn) · τ )(vs · τ ). (4.32)

This expression is simplified thanks to the first condition of (4.28) and we finally get :

q(vs · n) + ((Cξn) · n)(vs · n) + ((Cξn) · τ )(vs · τ ) =

1

2
((Cξn) · n + q)(vs · n + vf · n) + ((Cξn) · τ )(vs · τ ) (4.33)

We plug this expression into the variational formulation (4.29) to get





ρ

∫

Ωf,h

∂tvf · wf = −
∫

Ωf,h

∇p · wf ,

1

ρc2
0

∫

Ωf,h

∂tpq =

∫

Ωf,h

∇q · vf − 1

2

∫

Γf,s

q(vf · n + vs · n),

ρ

∫

Ωs,h

∂tvs · ws = −
∫

Ωs,h

(∇ · σ) · ws +

∫

Ωs,h,int

{{ws}} · [[σ]],

∫

Ωs,h

∂tσ : ξ =

∫

Ωs,h

(∇ · (Cξ)) · vs −
∫

Γs,h,int

[[Cξ]] · {{vs}},

−1

2

∫

Γf,s

((Cξn) · n)(vs · n + vf · n) −
∫

Γf,s

((Cξn) · τ )(vs · τ ).

At this stage of the development, there are still two variational equations that do not
involve terms on the interface Γf,s. Hence, we propose to modify them by adding terms
which vanish as long as we have the exact solution. These additional terms will play a role
when moving on the approximate solution, in particular regarding the behavior of the en-
ergy associated with the problem. They are based upon the transmission conditions (4.28)
which are imposed on Γf,s. These terms are written in red in the following variational
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formulation that we use for implementing the DG-SEm for elasto-acoustic equations:





ρ

∫

Ωf,h

∂tvf · wf = −
∫

Ωf,h

∇p · wf +
1

2

∫

Γf,s

((σn) · n + p)(wf · n),

1

ρc2
0

∫

Ωf,h

∂tpq =

∫

Ωf,h

∇q · vf − 1

2

∫

Γf,s

q(vf · n + vs · n),

ρ

∫

Ωs,h

∂tvs · ws = −
∫

Ωs,h

(∇ · σ) · ws +

∫

Ωs,h,int

{{ws}} · [[σ]]

+

∫

Γf,s

((σn) · τ )(ws · τ ) +
1

2

∫

Γf,s

((σn) · n + p)(ws · n),

∫

Ωs,h

∂tσ : ξ =

∫

Ωs,h

(∇ · (Cξ)) · vs −
∫

Γs,h,int

[[Cξ]] · {{vs}}

−1

2

∫

Γf,s

((Cξn) · n)(vs · n + vf · n) −
∫

Γf,s

((Cξn) · τ )(vs · τ ).

(4.34)

It is worth noting that this formulation is restricted to the case where the elasto-acoustic
interface is flat and coincides with the boundary dividing the SE area from the DG area.
To address general cases where the shape of the interface can vary, we implement the
DG-SEm either in the fluid or in the solid.

4.4.2 Semi-discrete system

We introduce the discrete spaces:

Vf,h = {vf,h ∈ L2(Ωf,h)d | (vf,h)|K ∈ Qm(K)d, ∀K ∈ Tf,h},

Vs,h = {vs,h ∈ L2(Ωs,h)d | (vs,h)|K ∈ Pm(K)d, ∀K ∈ Ts,h},

Pf,h = {ph ∈ H1(Ωf,h) | (p)|K ∈ Qm(K), ∀K ∈ Tf,h},

Σh = {σ
h

∈ L2(Ωs,h)d2 | (σ)|K ∈ Pm(K)d2
, ∀K ∈ Ts,h, and σij = σji},

where Qm(K) and Pm(K) are the spaces of Lagrange polynomials of degree m defined
respectively on quadrangles(cuboids) and on triangles (tetrahedra). Let vf,h, vs,h, σ

h
and

ph be the approximate solutions of (4.34), sought in Vf,h, Vs,h, Σh and Pf,h. We consider
the test functions wf,h, ws,h, ξ

h
and qh in Vf,h, Vs,h, Σh and Pf,h. The variational

formulation reads as
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ρ

∫

Ωf,h

∂tvf,h · wf,h = −
∫

Ωf,h

∇ph · wf,h +
1

2

∫

Γf,s

((σ
h
n) · n + ph)(wf,h · n),

1

ρc2
0

∫

Ωf,h

∂tphqh =

∫

Ωf,h

∇qh · vf,h − 1

2

∫

Γf,s

qh(vf,h · n + vs,h · n),

ρ

∫

Ωs,h

∂tvs,h · ws,h = −
∫

Ωs,h

(∇ · σ
h
) · ws,h +

∫

Γs,int

{{ws,h}} · [[σ
h
]]

+

∫

Γf,s

((σ
h
n) · τ )(vs,h · τ ) +

1

2

∫

Γf,s

((σ
h
n) · n + ph)(ws,h · n),

∫

Ωs,h

∂tσh
: ξ

h
=

∫

Ωs,h

(∇ · (Cξ
h
)) · vs,h −

∫

Γs,int

[[Cξ
h
]] · {{vs,h}}

−1

2

∫

Γf,s

((Cξ
h
n) · n)(vs,h · n + vf,h · n) −

∫

Γf,s

((Cξ
h
n) · τ )(vs,h · τ ).

(4.35)

Then, by taking over the same basis functions (Φq, ϕp, ψl) as in chapter 3, we end up with
the elasto-acoustic semi-discrete system:





ρMvf,h
∂tVf,h +Rvf,h

Pf,h +Rf,s,1
vf,h

σh +Rf,s,2
vf,h

Pf,h = 0,

Mph
∂tPf,h −Rph

Vf,h −Rf,s,1
ph

Vf,h −Rf,s,2
ph

vs,h = 0,

Mvs,h
∂tvs,h +Rvs,h

σh +Rf,s,1
vs,h

σh +Rf,s,2
vs,h

Pf,h = 0,

Mσh
∂tσh −Rσh

vs,h −Rf,s,1
σh

vs,h −Rf,s,2
σh

Vf,h = 0.

(4.36)

The matrices Mvf,h
, Rvf,h

, Mph
, Rph

, Mvs,h
, Rvs,h

, Mσh
, Rσh

have been introduced in

Chapter 3. The matrices Rf,s,1
⋆ and Rf,s,2

⋆ are the matrices handling both the elasto-
acoustic and the DG-SEm coupling. Rf,s,2

vf,h
and Rf,s,1

ph
are transposed from each other and

we have:

Rf,s,2
vf,h,ipq =

1

2

∫

Γf,s

Φqϕpei · n, ∀p = 1, .., (m+ 1)d, ∀q = 1, .., L, i = x, y, z,

where L is the number of basis functions Φi. R
f,s,2
vs,h

is the transposed matrix of Rf,s,2
ph

, and

the entries of Rf,s,2
ph

read as

Rf,s,2
ph,ipq =

1

2

∫

Γf,s

Φqψpei · n, ∀p = 1, .., Nm,∀q = 1, .., L i = x, y, z,

whereNm is the number of basis function ψi. The matrices Rf,s,1
vf,h

and Rf,s,1
vs,h

are represented
by the following entries:

Rf,s,1
vf,h,ijkpq =

1

2

∫

Γf,s

(ψq(ei ⊗ ej)n) · n(ϕpek · n) ∀p = 1, .., (m+ 1)d, ∀q = 1, .., Nm

Rf,s,1
vs,h,ijkpq =

1

2

∫

Γf,s

(ψq(ei ⊗ ej)n) · n(ψpek · n) + (ψq(ei ⊗ ej)n) · τ (ψpek · τ ), ∀p, q = 1, .., Nm,
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with i = x, y, z, j = x, y, z, k = x, y, z. The last matrices Rf,s,1
σh

, Rf,s,2
σh

are dense matrices
and such that:

Rf,s,1
σh

= C(Rf,s,1
vf,h

)T and Rf,s,2
σh

= C(Rf,s,1
vs,h

)T ,

where C is the matrix representation of the elasticity tensor C defined in Chapter 2.

4.4.3 Energy study

In order to define the energy functional associated with the system, we deal with the
DG-SEm formulation in which we use the approximate solution as test function. We thus
choose wf,h = vf,h, ws,h = vs,h, ξ

h
= (C−1)σ

h
and qh = ph in variational formulation

(4.35) and we get





ρ

∫

Ωf,h

∂tvf,h · vf,h = −
∫

Ωf,h

∇ph · vf,h +
1

2

∫

Γf,s

((σ
h
n) · n + ph)(vf,h · n),

1

ρc2
0

∫

Ωf,h

∂tphph =

∫

Ωf,h

∇ph · vf,h − 1

2

∫

Γf,s

ph(vf,h · n + vs,h · n),

ρ

∫

Ωs,h

∂tvs,h · vs,h = −
∫

Ωs,h

(∇ · σ
h
) · vs,h +

∫

Ωs,int

{{vs,h}} · [[σ
h
]]

+

∫

Γf,s

((σ
h
n) · τ )(vs,h · τ ) +

1

2

∫

Γf,s

((σ
h
n) · n + ph)(vs,h · n),

∫

Ωs,h

∂tσh
: σ

h
=

∫

Ωs,h

(∇ · σ
h
)) · vs,h −

∫

Γs,int

[[σ
h
]] · {{vs,h}}

−1

2

∫

Γf,s

((σ
h
n) · n)(vs,h · n + vf,h · n) −

∫

Γf,s

((σ
h
n) · τ )(vs,h · τ ).

(4.37)

Then, we introduce

E =
1

2

(
ρ

∫

Ωf,h

vf,h · vf,h +
1

ρc2
0

∫

Ωf,h

phph + ρ

∫

Ωs,h

vs,h · vs,h +

∫

Ωs,h

σ
h

: σ
h

)
. (4.38)

By adding the four equations in (4.37), we obtain:

d

dt
E = 0,

which shows that E is constant in time.
It is worth noting that:

• If we take a closer look to E, we can see that it can be decomposed as

E = Ea + Ee,

where Ea denotes the energy associated with the acoustic system defined by

Ea = ρ

∫

Ωf,h

vf,h · vf,h +
1

ρc2
0

∫

Ωf,h

phph
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and Ee denotes the energy of the elastic system defined by:

Ee = ρ

∫

Ωs,h

vs,h · vs,h +

∫

Ωs,h

σ
h

: σ
h

We thus obtain that the energy associated with the elasto-acoustic system is defined
as the addition of the acoustic energy with the elastic energy.

• If we had not added the red terms in the variational formulation, the terms on
the boundary Γf,s would not have vanished and the variation of energy would have
become

d

dt
E = −1

2

∫

Γf,s

ph(vf,h · n + vs,h · n)

− 1

2

∫

Γf,s

((σ
h
n) · n)(vs,h · n + vf,h · n) −

∫

Γf,s

((σ
h
n) · τ )(vs,h · τ ), (4.39)

which means that we can neither guarantee energy conservation nor the stability of
the scheme. Indeed, we cannot guarantee the negativity of the right hand side, and
the absence of explosions or instabilities. This is why the addition of the terms in
red is necessary in order to make the remaining terms vanish and obtain a system
which preserves the energy.

Semi-discrete energy

Now, we look at the semi-discrete energy. By taking back the notations of the matrix
system (4.36), the matrix system associated to formulation (4.37) reads as:

ρMvf,h
∂tVf,h +Rvf,h

Pf,h −Rf,s,1
vf,h

σh −Rf,s,2
vf,h

Pf,h = 0, (4.40a)

Mph
∂tPf,h −Rph

Vf,h +Rf,s,1
ph

Vf,h +Rf,s,2
ph

vs,h = 0, (4.40b)

Mvs,h
∂tvs,h +Rvs,h

σh −Rf,s,1
vs,h

σh −Rf,s,2
vs,h

Pf,h = 0, (4.40c)

M
σh,C−1∂tσh −Rvs,h,C−1vs,h +Rf,s,1

σh,C−1vs,h +Rf,s,2
σh,C−1Vf,h = 0. (4.40d)

In equation (4.40d), the physical parameters are factorized in the mass matrix, which
results in the following properties:

Rvs,h,C−1 = (Rvs,h
σh)T , Rf,s,1

σh
= (Rf,s,1

vf,h
)T , and Rf,s,2

σh
= (Rf,s,1

vs,h
)T .

We introduce the semi-discrete energy defined by

Esd,e−a =< ρMvf,h
Vf,h,Vf,h > + < Mph

Pf,h,Pf,h > + < Mvs,h
vs,h,vs,f > + < M

σh,C−1σh,σh >

Then as in the previous subsection with the approximate energy, we see that:

Esd,e−a = Esd,a + Esd,e (4.41)

Hence, according to the results obtained for the elastic and the acoustic systems apart,
we have that
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d

dt
Esd,e−a = 0.

Hence we also get stability results when considering the DG-SEm solution to the elasto-
acoustic system. Nevertheless, it is worth noting that this properties have been established
when suing the Leap-Frog scheme. In practice, we apply a Runge-Kutta scheme in time
and more precisely, we employ RK4 formula of integration. Indeed, it has been observed
in (Deriaz, 2012) that RK2 integration can be unstable. The energy analysis should thus
be completed with the study of the energy functional related to RK4 scheme. Here the
construction of the semi-discrete energy is still an ongoing work.
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Chapter 5

DG vs DG/SEm comparison on
hybrid meshes

In this chapter, we provide some comparisons between numerical solutions using DG-SEm
coupling and DGm in hybrid meshes composed of triangles and structured quadrilaterals
in 2D and tetrahedra and cuboids in 3D. We mainly base our comparisons on the value of
the computational time. The accuracy of the numerical method is also evaluated in terms
of relative error that can be computed thanks to the software Gar6more which computes
analytical solutions in homogeneous and bi-layered domains. This software provides exact
solutions in homogeneous and bi-layered media.
We benchmark the DG-SEm coupling with a full DG discretization in domains paved with
hybrid cells composed of unstructured triangles and structured quadrilaterals. First, we
will address the case of homogeneous acoustic and elastic domains. Then, we will consider
a domain including an underwater salt dome in order to show the efficiency of the coupling
for solving wave equations in domains having highly contrasted physical parameters. Most
of the simulations are performed in 2D but we also provide a result for the elasto-acoustic
wave equation in 3D. All the simulations presented here have been achieved in parallel
using OpenMP with eight threads.
All along this chapter and as in the previous ones, we denote by vf and p the fields
computed in the acoustic domain, and by vs and σ the ones in the elastic domain. In
addition, nf and ns denote the unitary normal vector outwardly directed to the fluid and
solid respectively .

5.1 2D homogeneous cases

The computational domain is a square with length of 3000 meters. We consider first the
case of an acoustic domain and then we address the case of a domain where elastic waves
propagate. The corresponding physical parameters are displayed in Table 5.1. The waves
are generated by a source term which is a second order Ricker point source located at the
middle of the domain (see Figure 5.1 ) and defined by:

S = (1 − 2π2f2
peak(t− tpeak)2)e−π2f2

peak(t−tpeak)2

with fpeak equals to 10Hz and tpeak equals to 0.12s. The computations are based upon a
hybrid mesh composed of 5250 structured quadrangles on the top and 17930 unstructured
triangles in the bottom area (see Figure 5.2).
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SEm and DG both employ elements of order 3. We compare the results of DG-SEm
with those of a full DGm of order 3 which has been implemented in the same mesh. By
this way, we compare two schemes that are based upon a hybridized discretization of the
domain distributed in the same way. The simulations are done using Runge-Kutta 4 time
discretization with a time step ∆t equals to 1e−4s and the simulation duration is T = 2s.
The seismograms of these numerical solutions are recorded thanks to a receiver placed
at point (1000,2000) and compared with an analytical solution computed with Gar6more
and recorded at the same receiver. The initial condition are : vf (x, 0) = 0 and p(x, 0) = 0
for the acoustic variables and vs(x, 0) = 0, σ(x, 0) = 0 for the elastic ones. In terms of
boundary conditions, we apply vf · nf = 0 in the acoustic case and σns = 0 in the elastic
case.

3000m

30
00

m

•src
•rcv

Figure 5.1: Domain of computation

Figure 5.2: Hybrid mesh used for acoustic and elastic homogeneous cases

Figure 5.3 and 5.4 present the numerical results respectively obtained with DG-SEm
and full DGm in a full acoustic propagation domain. We observe that both simulations
provide the same results. In particular, it is interesting to observe that the matching
between quadrangles and triangles is transparent for the numerical waves and the change
of numerical method does not affect their propagation in the sense that there are no
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5.1. 2D HOMOGENEOUS CASES

Vp(m.s−1) Vs(m.s−1) ρ(kg.m−3)

Acoustic case 2000 0 1

Elastic case 2000 1155 2

Table 5.1: Physical parameters used of 2D homogeneous domains

artificial reflections at the numerical interface separating SE solution from DG solution.
The seismograms in Figure 5.5 and 5.6 show that the two numerical solutions are very
close to the analytical solution. Table 5.2 shows that the relative L2-error is good for both
cases and the computational time is in favor of DG-SEm.

Relative error (%) CPU-time(s)

DGm 2.488e-3 854

DG-SEm 2.517e-3 524

Table 5.2: DGm vs DG-SEm in an acoustic domain.
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Figure 5.3: DG-SEm based simulation: acoustic domain, order 3 in space, RK4 scheme in
time.

The full elastic case is displayed in Figure 5.7 for DG-SEm and Figure 5.8 for DGm.
As for the acoustic case, we do not observe any artefact at the numerical interface be-
tween triangles and quadrangles. This is particularly important in the case of DG-SEm
scheme where the communication between fluxes is handled in the variational formula-
tion thanks to additional terms involving numerical fluxes. We have an illustration of the
perfect matching between both methods. The relative L2 errors, presented in Table 5.3,
shows clearly the good accuracy of the numerical solution and as in the acoustic case, the
computational time is still in favor of DG-SEm.
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Figure 5.4: Full DGm based simulation: acoustic domain, order 3 in space, RK4 scheme
in time.
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Figure 5.5: Seismograms of Gar6more solution (in blue) and numerical solution using
DG-SEm coupling (in red), acoustic domain.
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Figure 5.6: Analytical solution (in blue), full-DGm numerical solution (in red), acoustic
domain.
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Figure 5.7: Elastic case with DG-SEm in space and RK4 scheme in time.
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(a) t=0.1s (b) t=0.5s

0

0.2

0.4

0.6

0.8

1
·10−6

(c) t=0.9s

(d) t=1.3s (e) t=1.7s

0

0.2

0.4

0.6

0.8

1
·10−6

(f) t=2s

Figure 5.8: Elastic case with full DGm in space and RK4 scheme in time.

Relative error (%) CPU-time(s)

DGm 5.469e-3 1192

DG-SEm 5.691e-3 710

Table 5.3: DGm vs DG-SEm in the elastic case.
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The previous simulations allow us to validate the implementation of DG-SEm in hybrid
meshes, both in the 2D acoustic and 2D elastic case. As expected, the DG-SEm is still
faster than the full DGm. In the examples we have provided, the computational times are
reduced by a factor greater than 1.5. To complete our study, we consider the case of a
heterogeneous domain in the next section.

5.2 Stratified heterogeneous elasto-acoustic domain

Now that we have considered homogeneous test cases to investigate simulations in full
acoustic and elastic propagation domains, we address the case of an heterogeneous domain
composed of possibly sloped layers of solid and a water layer at the top. We are solving the
elasto-acoustic wave equations and besides the interface fluid-solid, the problem involves
a numerical interface which defines the transition between the application of SEm and
DGm. There, the numerical interface coincides with the physical interface. The domain
of interest is a 4000x5000 rectangle and is depicted on Figure 5.9, the physical parameters
associated to each area being displayed in Table 5.4.

1

2

3

4

5

6

Figure 5.9: Stratified domain with a water layer at the top

This domain is meshed using a hybrid mesh composed of 47514 unstructured triangles
cells all located on the solid part and 1600 squares with 800 squares in the water layer
and 800 squares in a layer located in the bottom of the solid domain (see Figure 5.10).
We use a low number of quadrangles because we aim at testing the coupling with SEm
of high-order. In this example, we will also test the use of DG-SEm in an elastic medium
which corresponds to the lower part of the computational domain.

In DG-SEm coupling, DGm is employed at order 2 and SEm is applied at order 8. The
reference solution is obtained with a full DGm at order 8. It is worth noting that in this
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Vp (m/s) Vs (m/s) ρ (kg/m3)

Area 1 1500 0 1

Area 2 1800 1040 1.6

Area 3 2100 1212 2

Area 4 2600 1501 2.6

Area 5 3100 1789 3.2

Area 6 4000 2310 4

Table 5.4: Physical parameters of the stratified domain

Figure 5.10: Stratified domain meshed with unstructured triangles and big squares
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5.2. STRATIFIED HETEROGENEOUS ELASTO-ACOUSTIC DOMAIN

case, we do not dispose of a solution computed with Gar6more. We have also computed
the wave fields by applying a full DGm in the hybrid mesh, that is DGm at order 2 in the
triangle area and DGm at order 8 in the square area. We use a RK4 time-scheme with
a time-step equals to 1e−4s, for a simulation done during 2s. We consider the following
initial conditions: vs(x, 0) = 0 and σ(x, 0) = 0 in the solid domain and vf (x, 0) = 0
and p(x, 0) = 0 in the fluid. In terms of boundary conditions we have vf · n = 0 on the
external boundary of the fluid and vs · n = 0 on the external boundary of the solid. The
solution is recorded at a receiver placed at point (840, 4100) and we will compare it to the
reference solution obtained with the full DG discretization at order 8. The propagation
phenomenon starts with a second order Ricker source defined the same way as the one
used in homogeneous cases, with a central frequency fpeak equals to 10Hz and a delay
tpeak equals 0.12s. It is placed at point (2000,4250). The numerical results are depicted
in Figure 5.11 for the DG-SEm and Figure 5.12 for the DGm.
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Figure 5.11: Heterogeneous domain, DGm of order 2 and SEm of order 8, RK4 in time.

Table 5.5 presents the relative L2-error and the computational time. We observe that
in this case we do not have a significant gain of computational time and the error is in
favor of DGm. Regarding the values of CPU times, they might be surprising regarding
the ones obtained in homogeneous domains which are always clearly in favor of DG-SEm.
Here they are of the same order. This might be explained by the fact that we use a SEm
of order 8 applied in areas paved with coarse cells. Hence the number of quadrangles is
low as compared with the number of triangles. Moreover, the order of approximation is
high as compared to the one of DGm. It would be interesting to relaunch this simulation
by having a higher number of quadrangles while decreasing the order of approximation in
the SEm.
We have relaunched the simulation in the same mesh but using this time DGm at order

3 and SEm at order 5 for the coupling and DGm at order 3 in the triangles and order 5

101



CHAPTER 5. DG VS DG/SEM COMPARISON ON HYBRID MESHES
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Figure 5.12: Heterogeneous domain, DGm of order 2 in the triangles and DGm of order 8
in the squares, RK4 in time.

Relative error (%) CPU-time(s)

DGm 2.046e-4 3507

DG-SEm 7.685e-2 3788

Table 5.5: Heterogeneous domain, DGm of order 2 in triangles and 8 in squares, DG-SEm
with DG at order 2 and SEm at order 8, RK4 scheme in time
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in the squares when using full DG discretization. Table 5.6 presents the L2 − error and
computational times for this case. We observe that once again we do not have significant
gain of computational time using DG-SEm instead of DGm. In addition, we observe an
increasing in the L2-error using DGm which is logical because we use a lower order than
before, but the error of DG-SEm has improved. The idea that SEm is at its best when
employed at order 5 has already been illustrated in (Durufle, 2006). Here, we see that
SEm at order 5 performs as well as SEm at order 8. But DG-SEm and DGm have still the
same CPU time and this should be due to the fact that the mesh contains a low number of
quadrangles. It would be interesting to redo these computations by increasing the number
of quadrangles.

Relative error (%) CPU-time(s)

DGm 1.216e-2 2757

DG-SEm 5.131e-2 2818

Table 5.6: Heterogeneous domain, DGm of order 3 in triangles and 5 in squares, DG-SEm
with DG at order 3 and SEm at order 5, RK4 scheme in time

5.3 2D domain including a salt dome

Here we consider a synthetic domain that the team uses to benchmark. It has been con-
structed by L.Boillot (Boillot, Barucq, Diaz, & Calandra, 2015) and offers the advantage
of including Tilted Transverse Isotropy (TTI) anisotropy in addition to heterogeneities.
Hence, we solve the following equations:





ρ∂tvf = −∇p

1

ρc2
0

∂tp = −∇ · vf

(5.1a)

(5.1b)

{
ρ∂tvs = −∇ · σ
∂tσ = −C(ǫ(vs))

(5.2a)

(5.2b)

where the tensor C in the case of TTI anisotropy is given by

CT T I =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66



.

As explained in Chapter 2 the coefficients of this matrix can be computed from the
parameter values displayed in Table 5.7. The initial conditions are vf (x, 0) = 0 in Ωf ,
vs(x, 0) = 0 in Ωs, p(x, 0) = 0 in Ωf , and σ(x, 0) = 0 in Ωs. We apply the boundary
conditions vf · nf = 0 on Γf × (0, T ) and vs · ns = 0 on Γs × (0, T ).

In Figure 5.13, we provide a picture of the domain, the physical and anisotropic pa-
rameters of each area being displayed in Table 5.7. According to the characteristics of
each area of the domain, we use a mesh which is composed of:
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• structured quadrangle cells in the water layer, with the exception of a thin layer
limited by the interface with water sand; there is no topography to take into account,
the use of quadrangles is thus adapted.

• unstructured triangles in the thin water layer touching the upper boundary of the
water sand; this area forms the transition zone between quadrangles and triangles.
Its upper boundary is the place where SEm and DGm communicate through appro-
priate fluxes.

• unstructured triangles in the remainder of the domain.

The mesh is composed of 53969 triangles and 21000 squares and is depicted in Figure
5.14.

The point source is a Ricker function which is placed on the water layer at point
(1500,2650). This function is equal to

S = (1 − 2π2f2
peak(t− tpeak)2)e−π2f2

peak(t−tpeak)2

where fpeak is equal to 10Hz and tpeak = 0.12s. We still use RK4 scheme in time with a ∆t
equal to 3e−5 and the simulation duration is T = 2s. The reference solution is computed
with Elasticus using a full DG scheme of order 5. The DG-SEm coupling involves a SEm
and a DGm which are both of order 3. We compare the DG-SEm solution with a DGm
solution obtained with a full DGm scheme of order 3. Regarding the seismograms, they
are obtained from recordings performed at a receiver placed in the water layer at point
(1000, 2500). The positions of the source and the receiver are depicted in Figure 5.15.

water

water sand

salt

sandstone

1

5

4
3

2

6

Figure 5.13: Topography of the salt dome

Figure 5.16 presents the numerical simulation using the DG-SEm and Figure 5.17
presents the result using full DGm. We see that we get the same results for both simu-
lations. In particular, the combination of the two different meshes does not generate any
numerical artefact. Figures 5.19 and 5.18 provide a superimposition of DG-SEm and DGm
solutions with the reference solution which shows that the numerical solutions all conform
correctly at the receiver. This is confirmed by the L2-error values presented in Table 5.8.
The computational times are still in favor of the DG-SEm coupling with a decrease by a
factor of about 2. As in most of the experiments we have carried out, we still observed
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triangle/quadrangle boundary

Figure 5.14: Mesh of the salt domain using triangle (topography) and quadrangle (layer
of water)

src•
rcv•

Figure 5.15: Position of the point source and the receiver for the heterogeneous case with
a salt dome.

Vp (m/s) Vs (m/s) ρ (kg/m3) ǫ δ θ

Area 1 2000 0 1 0 0 0

Area 2 4633 2675 2.71 -0.026 -0.033 25

Area 3 2609 1506 2.03 0.002 0.018 15

Area 4 4359 2516 2.81 0.172 0 20

Area 5 1500 866 2.03 0.022 0.018 0

Area 6 5334 3080 2.71 0.369 0.579 20

Table 5.7: Physical parameters.
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that the relative error is lower for DGm than for SEm with a reduction by a factor of
about 40.

(a) t=0.1s (b) t=0.5s
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Figure 5.16: Heterogeneous domain, DG-SEm of order 3, RK4 in time.

Relative error CPU-time(s)

DGm 4.546e-4 16317

DG-SEm 1.016e-3 8918

Table 5.8: Heterogeneous domain, DGm of order 3, DG-SEm of order 3, RK scheme in
time

Now that we have seen the efficiency of the coupling in the 2D case, we illustrate how
DG-SEm performs for solving the 3D elasto-acoustic system.

5.4 3D elasto-acoustic wave equation

The extension to 3D problems raises some difficulties regarding the construction of hybrid
meshes. In this work, we restrict the study to the case of meshes composed of cuboids
and tetrahedra and a cuboid can only have two tetrahedra as neighbours (see Figure 5.20
for an example).

We present a simulation done in a 3D elasto-acoustic domain. The domain is of size
1000x1000x1400. The water layer is on the top of the computational domain and is 400
meters thick. The physical interface between water and subsurface coincides with the
numerical interface. The physical parameters associated with this case are given in Table
5.9.
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Figure 5.17: Heterogeneous domain, full DGm of order 3, RK4 in time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4

6

8
·10−7

time (s)

S
p

ee
d

am
p
li
tu

d
e

in
x

d
ir

ec
ti

on

Gar6more solution

Numerical DG solution

Figure 5.18: Seismograms of the reference solution (in blue) and numerical solution using
DGm (in red).

Vp(m.s−1) Vs(m.s−1 ρ(kg.m−3

Acoustic domain 2000 0 1

Elastic domain 2000 1000 1

Table 5.9: Physical parameters used in the 3D elasto-acoustic domain
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Figure 5.19: Seismograms of the reference solution (in blue) and numerical solution using
DG-SEm coupling (in red).

Figure 5.20: Boundary configuration between an hexahedron and two tetraedra
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The domain is meshed with 50000 cuboids in the water layer and 96511 unstructured
tetrahedra in the elastic part. Figure 5.21 pictures a cross-section of the mesh used for the
simulation. The slice shows unstructured tetrahedra that are used in the inferior area of
the domain. The slice also highlights the transition zone matching structured hexahedra
with unstructured tetrahedra.

Figure 5.21: Cross section of the three dimensional mesh

We use DGm in the tetrahedral mesh and SEm in the grid of cuboids, both methods
being implemented at order two.

For the numerical simulation, we use a second order Ricker source:

S = (1 − 2π2f2
peak(t− tpeak)2)e−π2f2

peak(t−tpeak)2

with a peak frequency equal to fpeak = 5Hz and a delay in time tpeak equal to 0.24s. This
point source is placed in the water layer at point (500,500,1150). The initial conditions
are the following: vs(x, 0) = 0 in Ωs, vf (x, 0) = 0 in Ωf , p(x, 0) = 0 in Ωf , σ(x, 0) = 0 in
Ωs. The boundary conditions are: vf ·nf = 0 on Γf × (0, T ) and vs ·ns = 0 on Γs × (0, T ).
The time discretization is carried out with RK4 scheme with a time-step ∆t = 1e − 5.
The final time of simulation is T = 0.6s.

Figure 5.22 pictures the numerical results. As in the two-dimensional case, we can
see that the matching between the two computational subdomains is perfect. We can
see that the propagation is not polluted by artefacts appearing in particular at the fluid-
solid interface. Moreover, some more numerical experiments are necessary to validate this
simulation, for instance, it would be interesting to have the same simulation with full
DGm. This could provide a way for validating the computation and then it would be
relevant to increase the orders of approximation to assess the computational performances
of the coupling in 3D.
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Figure 5.22: Wave propagation in a fluid-solid 3D domain using DG-SEm.

5.5 Conclusion

In this chapter, we have presented several comparisons between the DG-SEm scheme and
DG used in hybrid meshes in 2D. All these comparisons lead to the same conclusion: there
is a clear reduction (by a factor always larger than 2) of the computational times with
DG-SEm without any significant loss of accuracy even if DGm provides a more accurate
solution. In particular, we have considered a synthetic domain which sounds like geo-
physical cases including underwater salt dome. In this case, the computational time of
DG-SEm is twice inferior to the one when we use DGm while keeping a very good level
of accuracy. We have also validated the DG-SEm in an elastic domain. This example
should be studied in more details to analyze if the ratio of triangles versus quadrangles
can be optimized to improve the computational performances of DG-SEm. We have also
observed that it could exist an optimal order for SEm beyond which the SEm performance
is not improving.
In 3D, we have presented a numerical result which is very promising and deserves being
completed to deliver a relevant numerical investigation of the 3D case.
Another important issue is the truncation of the computational domain. In the experi-
ments that we have performed until now, we have considered boundary conditions that
generate reflections and thus may pollute the numerical solution. In the following chapter,
we address the question of introducing non reflecting boundary conditions.
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Chapter 6

Domain truncation conditions

6.1 State of the art

The numerical simulation of seismic waves requires introducing domain truncation condi-
tions. The question of truncating the propagation domain of waves interests researchers
for a while and it turns out that an undeniable answer is still expected. From a theoretical
point of view, we dispose of transparent boundary conditions (TBC) (see (Ionescu & Igel,
2003) and their references therein). They are exact in the sense that they allow for the
computation of the exact wave field in a bounded region limited by a boundary on which
the TBC is set. Unfortunately, TBCs are generally difficult to implement and more impor-
tantly, they generate extra computational costs that make the computations unaffordable.
Extra computational costs are essentially due to the fact that TBS are governed by global
operators both in time and space. Hence TBCs are rather approximated to get local op-
erators requiring lower computational burden. This approach leads to the construction of
absorbing boundary conditions (ABC). Many works deal with the construction of ABCs
since the pioneering works of Clayton, Engquist and Majda (Clayton & Engquist, 1977;
Engquist & Majda, 1977) at the end of the 1970’s who introduced ABCs for acoustic
and elastic waves. Then the issue of stability has been addressed by Reynolds (Reynolds,
1978) who proposed a stable ABC of order 1 for elastic waves. It is worth noting that
the construction of ABCs for elastic waves is much more difficult than for acoustic waves
because the equations are vectorial and govern P and S waves with possible conversions
of P into S and vice versa. But Higdon (Higdon, 1991) succeeded in constructing high
order ABCs for elastic waves that have been widely used by geophysical community and
are based on the combination of low order ABCs. ABCs have proven to be very efficient
and suitable for arbitrarily shaped surfaces but they are not as absorbing than expected.
Actually, one could think that increasing the order of the ABC makes the condition more
absorbing but it turns out that the system of governing equations coupled with high-order
ABC is not surely well-posed as illustrated in (Trefethen & Halpern, 1986). Moreover,
their discretization does not always lead to stable numerical schemes, in particular with
DG approximations (Duprat, 2008). This observation motivated later on the construction
of stable ABCS for elastic waves which are limited to first order approximation and the
resulting boundary value problem is well-posed (Barucq et al., 2014).

In the light of those problems, many authors have proposed solution methodologies
like in (Cerjan, Kosloff, Kosloff, & Reshef, 1985) where it is proposed to solve one-way-like
wave equations inside a strip surrounding the computational domain. The resulting ABC
is based on progressive reduction of amplitude in the strip. This method is now commonly
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used as a window taper function. The idea of introducing a layer in which absorption
acts has been discussed again by Bérenger in (Berenger, 1994, 1996) who had the idea
of modifying the governing equations inside the external layer only. The modification
amounts to glue the external layer to the original propagation domain through consti-
tutive parameters that match perfectly with the original ones at the interface with the
absorbing layer and that represent an ideal material in the layer where waves are absorbed
exponentially. Bérenger introduced his method as Perfect Matched Layers (PML) and it
was the beginning of many works devoted to the design of PMLs for different systems of
equations, Maxwell system being the first one. Regarding elastic waves, interesting results
are in (Peng & Toksöz, 1995; Hastings, Schneider, & Broschat, 1996) while acoustic waves
have been considered in (Liu & Tao, 1997). These contributions have been followed by
mathematical and numerical analysis like in (Diaz & Joly, 2006) and in (Hesthaven, 1998)
for the linearized Euler equation. The literature is particularly rich on the implementation
of PMLs in a SEm (see (Komatitsch & Tromp, 2003; Fauqueux, 2003; Festa & Vilotte,
2005; Madec, 2009; Martin, Komatitsch, & Gedney, 2008) and their references) and the
PMLs turn out to be very efficient to absorb both elastic waves with non grazing incidence
and surface waves. Nevertheless, to address the issue of grazing incidence, finite differences
are considered most of the time. In this regard, Komatitsch and Martin (Komatitsch &
Martin, 2007) have proposed a new unsplit PML for the seismic wave equation which calls
for a convolutional technique. The new PML turns out to perform better than classical
PMLs at grazing incidence for the same memory cost. However, it is also shown that
Convolutional Perfectly Matched Layers (C-PML) is unstable in anisotropic materials, as
the classical PML. Later on, the C-PMLs have been adapted to be implemented in higher
order time schemes (Martin et al., 2010). Such absorbing conditions are called Auxiliary
Differential Equation PML (ADE-PML). They keep the advantage of C-PMLs at grazing
incidence and are based on Runge-Kutta time-stepping scheme. More importantly, it is
shown that the ADE-PML formulation is numerically stable up to 100,000 time steps for
isotropic media. In this chapter, we propose the application of the DG-SEm coupled with
ABC or PML. This is an important question since we only validate the DG-SEm with
surface-free conditions on the boundary of the computational domain. We focus first on
the ABC. After introducing the mathematical formulation including an ABC, we present
numerical results in homogeneous and heterogeneous domains formerly presented in chap-
ter 5. We observe that some reflections may pollute the simulations and then we go to the
implementation of a PML. We consider a classic unsplit PML and the ADE-PML proposed
in (Martin et al., 2008). We first test the PML formulations when solving the equations
with a full DGm based upon a quadrangle mesh. The experiment becomes unstable with
time while it is stable when applying SEm. We get this result both in a homogeneous and
heterogeneous domain. Then we implement the ADE-PML in the DG-SEm and we can
see, by performing a 2D and a 3D simulation that the SEm stabilizes the PML.

6.2 Absorbing boundary conditions

Absorbing Boundary Conditions (ABC) are studied for a while, since the pioneering work
of Engquist and Majda (Engquist & Majda, 1977). When an analytical solution is avail-
able, their construction is quite straightforward since it is possible to exhibit an exact
transmission condition which represents the transmission of a wave from a domain to one
other and eventually the reflections if any. In the case of truncating the computational
domain, ideal conditions are those which force the numerical solution to get out of the
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domain. By this way, the boundary used for truncation is artificial and does not inter-
fere with the numerical solution. Unfortunately, ideal conditions are generally represented
by infinite series which cannot be implemented as they are. ABCs are then constructed
by truncating the infinite series and their accuracy depends on the order of truncation.
However, in general cases (where the artificial surface is complex or the domain is hetero-
geneous, etc), we do not dispose of analytical solutions and the construction of ABCs is
much more technical. Engquist and Majda (Engquist & Majda, 1977) have shown that
it is possible to obtain ABCs from microlocal analysis of the acoustic wave equations in
the vicinity of the artificial boundary and their work has been followed by many authors,
some of them extending their idea to a larger scope of equations.

6.2.1 ABC for acoustic isotropic medium in 2D

We keep adopting the notation vf for the velocity and p for the pressure in the fluid
domain, vs for the velocity and σ for the stress tensor in the elastic domain. n denotes
the unitary normal vector outwardly directed to the domain.
The simplest ABC that is used for truncating an acoustic isotropic domain is well-known
when applied to the most common formulation of the acoustic wave equation which is
given in the plane (x, z) by:

1

c2
∂2

t p− 1

ρ
(∂2

xp+ ∂2
zp) = 0. (6.1)

In the above notations, ρ denotes the density of the fluid and c stands for the propagation
velocity. Then the ABC reads:

1

c
∂tp+ ∂np = 0 (6.2)

where n denotes the unitary normal vector outwardly directed to the computational do-
main and associated with the boundary on which the ABC is set. It is easy to rewrite the
ABC for the first order formulation of the acoustic wave system by plugging its equations
in the formulation of the ABC. Indeed, the first order system says that:





ρ∂tvf,x = −∂xp,

ρ∂tvf,z = −∂zp,
1

ρc2∂tp = −∂xvf,x − ∂zvf,z,

(6.3)

Then by taking (6.3) into account, (6.2) modifies to:

1

c
∂tp = ρ∂tvf · n (6.4)

We then obtain that 1
cp− ρvf · n is constant over the time which implies that:

1

c
p = ρvf · n (6.5)

when the initial conditions are zero. This is the condition that we use for truncating a
fluid when solving the first order formulation of the acoustic wave equation.
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6.2.2 Implementation of the ABC into DG-SEm formulation: acoustic
case

In the case of the acoustic DG-SEm, we have two equations which combine the pressure
p and the wavespeed vf . The approximate pressure is continuous in the whole domain
while the velocity is locally continuous and discontinuous across each element of the tri-
angulation. To keep the local (element per element) structure of the associated discrete
system, we have decided to implement the ABC in the equation governed by vf which is
discontinuous both for DGm and SEm. By taking back the notations of Chapter 4, we
thus consider the equation:

ρ

∫

Ωf,h

∂tvh · wh = −
∫

Ωf,h

∇ph · wh +

∫

Γ2,int

[[ph]] · {{wh}} +

∫

Γ1,2

[[ph]] · {{wh}} (6.6)

This equation does not involve any term on the external boundary of the domain since
it does not result from an integration by parts. We then add the ABC by imposing the
condition weakly through an additional term. The equation is then replaced by:

ρ

∫

Ωf,h

∂tvh · wh = −
∫

Ωf,h

∇ph · wh +

∫

Γ2,int

[[ph]] · {{wh}}+

∫

Γ1,2

[[ph]] · {{wh}} −
∫

Γf,h,out

ρc(vf · nf )(wh · nf ) +

∫

Γf,h,out

ph(wh · nf ) (6.7)

where Γf,h,out stands for the exterior boundary of Ωf,h.

6.2.3 Implementation of the ABC into DG-SEm formulation: elastic
case

We still turn back to the notations of Chapter 5. Then, Ωs,h denotes the computational
domain, which is paved with elements K. We denote by Γs,int the set of interior edges/faces
and Γs,out the exterior boundary that is introduced to truncate Ωs,h. According to (Cohen
& Jennings, 1983), the simplest ABC for isotropic elastic media reads as

σn = Bvs, (6.8)

where n stands for the unitary normal vector outwardly directed to Ωs,h and defined on
Γs,out. The matrix B is symmetric, positive definite and depends on the Lamé parameters
or equivalently on the velocities VP and VS . For instance in the 2D case, we have:

(σn) · n = −ρVpvs · n (6.9)

(σn) · τ = −ρVsvs · τ, (6.10)

where τ is the tangential vector associated with n.
As in the acoustic case, we add the ABC in the equation governing the variable that is
discontinuous both in DGm and SEm. In the elastic case, it is σ

h
which is governed by

the equation:

∫

Ωs,h

∂tσh
: ξ

h
=

∫

Ωs,h

((Cξ
h
)) : ∇vh −

∫

Γs,int

Cξ
h

: [[vh]], (6.11)
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In 6.8, the ABC gives the σ as a function of the velocity vs. But since B is positive
definite, we can define its inverse B−1 and write the ABC in the form:

vs = B−1σn

Hence, we get the modified equation including the ABC as follows:
∫

Ωs,h

∂tσh
: ξ

h
=

∫

Ωs,h

((Cξ
h
)) : ∇vh −

∫

Γs,int

Cξ
h

: [[vh]] +

∫

Γs,out

Cξ
h

· (B−1σ
h
n − vs),

(6.12)

6.2.4 Numerical results

The computational domain is a square of side 3000 meters (see Figure 6.1).

3000m

30
00

m

•src

Figure 6.1: Domain of computation

We consider a homogeneous domain which is paved with cells composed of 17930
unstructured triangles and 5250 squares. The squares are located on the top of the domain
(see Figure 6.2). We use a DG-SEm scheme of order 3 in the sense that both DGm and SEm
are of order 3 in space. The time integration is performed with a 4-th order Runge-Kutta
(RK4) time scheme with a CFL number ∆t equals to 1e−4 and the simulation duration
T is T = 2s. The simulations are done using OpenMP on eight threads. Moreover, the
initial conditions are vf (x, 0) = 0 and p(x, 0) = 0 for the acoustic case and vs(x, 0) = 0
and σ(x, 0) = 0 for the elastic case. The ABC is applied on each side of the domain. The
source term is a Ricker function of order 2 placed at point (1500,1500) and defined as:

S = (1 − 2π2f2
peak((t− tpeak)2)e−π2f2

peak((t−tpeak)2

with fpeak = 10Hz and tpeak = 0.12s. The propagation velocity in the acoustic domain is
equal to 2000m.s−1 and the density ρ is 1kg.m−3. Figures 6.3 and 6.4 picture the results
obtained at different times of simulation. The first one illustrates the use of the ABC
in DG-SEm scheme while the second one is obtained with DGm and the ABC. We can
see that both simulations provide the same snapshots and at first glance, we can observe
that the external boundary let the waves out. Nevertheless, if we change the scale of
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Figure 6.2: Hybrid mesh used for the homogeneous cases.

amplitude to flash lower values as it is done at the third line of the two figures, we observe
remaining reflections at grazing incidence. This phenomena is classical when using ABCs,
in particular when they are of low order. We present similar results in an isotropic
elastic domain where the P-wavespeed is equal to 2000m.s−1, the S-wavespeed is equal
to 1555m.s−1 and the density ρ is equal to 1kg.m−3. Snapshots are depicted in Figure
6.5 and 6.6 where we respectively apply DG-SEm and DGm with ABC and the same
conclusions hold.

6.2.5 Numerical results in a heterogeneous case

We consider the propagation domain which has been described in Chapter 5 and contains
an underwater salt dome. The equations that are solved are the elasto-acoustic wave
equations. The domain is discretized with the same mesh depicted in Chapter 5 in Figure
5.14. As in chapter 5, the interface between the areas in which DGm and SEm are applied
is in the fluid domain, near the physical interface separating the fluid and the solid region.
Both DGm and SEm are of order 3 in space and we use a RK4 scheme with a CFL number
equals to 3e−5s. The final time of the simulation here is T = 2s. The simulations are done
using OpenMP on eight threads. In terms of initial conditions, we have: vs(x, 0) = 0,
vf (x, 0) = 0, p(x, 0) = 0, σ(x, 0) = 0, and the ABC is set on each boundary. As source
term, we use the same Ricker function as in the homogeneous domain with fpeak also equal
to 10Hz and a delay tpeak equal to 0.12s. This point source is placed at point (1500,2550) in
the layer of water. Snapshots are presented in Figure 6.7. We observe that the absorption
in both acoustic and elastic domain is acceptable.

We have obtained exactly the same results when using DGm in place of DG-SEm.
As in the homogeneous case, we have also remarked that reflections tend to pollute the
numerical solution. Hence it is very interesting to dispose of Perfectly Matched Layer
facilities. PMLs have indeed demonstrated a better efficiency than ABCs of low order in
many examples. This is the subject of the next section
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Figure 6.3: Wave propagation in a fluid domain using DG-SEm with ABC. The three last
snapshots are scaled up to see reflections at grazing incidence
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Figure 6.4: Wave propagation in a fluid domain using DGm with ABC. The three last
snapshots are scaled up to see reflections at grazing incidence.
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Figure 6.5: Wave propagation in an isotropic elastic domain using DG-SEm with ABC.
The three last snapshots are scaled up to see reflections at grazing incidence
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Figure 6.6: Wave propagation in an isotropic elastic domain using DGm with ABC. The
three last snapshots are scaled up to see reflections at grazing incidence
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Figure 6.7: Heterogeneous domain, DG-SEm of order 3, ABC on each side of the external
boundary.
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6.3 Perfectly Matched Layers (PML)

Perfectly Matched Layers (PML) have been developed to offer an efficient alternative to
ABCs which are not able to absorb waves in each situation, in particular those which
impinge the boundary at incidence far from the normal one. PMLs have been introduced
by Bérenger (Berenger, 1994) for the Maxwell equations and his pioneering work has been
followed by many works which propose different versions of PMLs more or less difficult to
implement. More importantly, they distinguish themselves from their associated compu-
tational cost and/or the stability of the computations. We have first implemented both
classical PML and C-PML formulation for DGm.

6.3.1 Classic PML formulation

We remind here the first-order acoustic system:





ρ
∂

∂t
vf = −∇p,

∂

∂t
p = −∇ · vf .

(6.13)

To present the first version of PMLs, we retain the interpretation provided by F. Collino
(Collino & Tsogka, 2001). A PML formulation is based upon rewriting the above system in
a coordinate system which amounts modifying the derivative with respect to the variable
along which the absorption occurs. For that purpose it is convenient to work in the
frequency domain on which the acoustic system reads:





ρiωvf = −∇p,

iωp = −∇ · vf .

(6.14)

where ω the pulsation and i is the imaginary number satisfying i2 = −1. To explain the
construction of the PML equations, we consider the case of absorption in the x direction
which means that we will modify the coordinate x only. The new system of coordinates
involves a new variable denoted by x̃ which is defined by:

x̃(x) = x− i

ω

∫ x

0
dx(s)ds. (6.15)

The function dx is a damping profile which satisfies dx(x) = 0 outside the PML domain
and is positive inside the layer. It is meant to absorb waves propagation inside the PML.
Then we have:

∂x̃ =
iω

iω + dx
∂x =

1

sx
∂x. (6.16)

with:

sx =
iω

iω + dx
= 1 +

dx

iω
(6.17)

In the case where the PML is applied in a direction parallel to the z-axis, we define a
similar change of coordinates for the z variable:

z̃(z) = z − i

ω

∫ z

0
dz(s)ds. (6.18)
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and we define in a similar way ∂z̃ and sz:

∂z̃ =
iω

iω + dz
∂z =

1

sz
∂z. (6.19)

with:

sz =
iω

iω + dz
= 1 +

dz

iω
(6.20)

Then, we get a PML formulation of the harmonic system by replacing all the derivatives
∂x and ∂z respectively by ∂x̃ and ∂z̃:





iωρvf,x = −∂x̃p

iωρvf,z = −∂z̃p,

iωp = −∂x̃vf,x − ∂z̃vf,z

(6.21)

and it is worth noting that (6.21) coincides with the initial problem (6.14) outside the
PML. To obtain the formulation of the PML system in the time domain, we follow a
two-stage approach: first we rewrite (6.21) in terms of x and z. Then we define auxiliary
unknowns (v1,v2, p1, p2) and by applying an inverse Fourier transform to go back to the
time variable, we get the classical split PML formulation:





(∂t + dx)ρv1
f,x = −∂xp

(∂t + dz)ρv2
f,x = −∂zp

(∂t + dx)ρv1
f,z = −∂xp

(∂t + dz)ρv2
f,z = −∂zp

(∂t + dx)p1 = ∂x(vf,x + vf,z)

(∂t + dz)p2 = ∂z(vf,x + vf,z)

vf,x = v1
f,x + v2

f,x

vf,z = v1
f,z + v2

f,z

p = p1 + p2

(6.22)

It has been shown in (Komatitsch & Martin, 2007) that this classical PML formulation
does not give satisfactory results when it comes to waves at grazing incidence. This can
be overcome by the use of Convolutional-PML (C-PML) formulation which is presented
in the next section.

6.3.2 Convolutional-PML (C-PML)

The C-PML formulation has been introduced by Roden and Gedney in (Roden & Gedney,
2000) for Maxwell equations and then developed by Komatitsch and Martin in (Komatitsch
& Martin, 2007) for elastodynamic problems in strong formulation and in (Martin et al.,
2008) for a weak formulation. The C-PML technique consists in modifying the choice of
the stretching function sx define on equation (6.17) by introducing αx ≥ 0 and κx ≥ 1 two
real variables such as:

sx = κx +
dx

αx + iω
(6.23)

The above change in the stretching variable amounts in some sense to replace the pulsation
by a complex number. By this way, the absorption of waves is increased by considering
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evanescent waves as well. As shown in (Komatitsch & Martin, 2007), the value of the
parameter κx can be taken equal to one without any impact on the accuracy of the
simulation. Hence we consider

sx = 1 +
dx

αx + iω
(6.24)

Then if s̄x(t) is the inverse Fourier transform of 1
sx

, we can express the quantity ∂x as:

∂x̃ = s̄x(t) ⋆ ∂x (6.25)

where ⋆ stands for the convolution product. After a rewriting of (6.24) as:

1

sx
= 1 − dx

αx + iω + 1

we can compute s̄x(t) and we get:

s̄x(t) = δ(t) + dxe
−(dx+αx)tH(t). (6.26)

where δ(t) denotes the Dirac measure and H(t) is the distribution of Heaviside. Hence,
we deduce that:

∂x̃ = ∂x + ζx(t) ⋆ ∂x. (6.27)

where ζx(t) is given by:

ζx(t) = dxe
−(dx+αx)t (6.28)

In practice, ζx(t)⋆∂x is approximated at iterate n∆t. In (Martin et al., 2008), the recursive
convolution method of Luebbers and Hunsberger (see (Luebbers & Hunsberger, 1992) for
details) is applied. It is restricted to the case of zero initial data and reads:

(ζx ⋆ ∂x)n ≃
N−1∑

m=0

Zx(m)(∂x)n−m (6.29)

with

Zx(m) =

∫ (m+1)∆t

m∆t
ζx(τ)dτ

= −dx

∫ (m+1)∆t

m∆t
e−(dx+αx)τdτ

= axe
−(dx+αx)m∆t

and

ax =
dx

dx + αx
(bx − 1), bx = e−dx+αx∆t. (6.30)

Besides including more absorption, one interest of C-PML is that they do not use split
unknowns. However they are not straightforwardly adapted with time-stepping schemes
of order higher than 2.

6.3.3 Auxiliary Differential Equation-PML (ADE-PML)

The idea of ADE-PML has been proposed in (Gedney & Zhao, 2009) and applied to seismic
wave propagation in (Martin et al., 2010). The idea is to remove the computation of the
convolution product by reformulating the memory variable defined in the previous section
in a similar form which can be interpreted as a time evolution of the memory variable.
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By this way, it is possible to use time scheme of order higher than 2 (like Runge-Kutta
4 for example). Moreover, it has been proved in (Martin et al., 2010) that the ADE-
PML formulation is equivalent to the C-PML formulation when using a second-order time
scheme. Here we describe the method by restricting ourselves to the first equation of
(6.21), the others variables are handled in exactly the same way. This equation reads:

iωρvf,x = −∂x̃p.

Then according to (6.24), we have:

iωρvf,x = −∂xp− dx

dx + iω + αx
∂xp. (6.31)

Now we define the auxiliary memory variable noted Ψp,x:

Ψp,x = − dx

dx + iω + αx
∂xp, (6.32)

Using this definition, equation (6.31) becomes:

iωρvf,x = −∂xp+ Ψp,x.

and Ψpx satisfies the following equation :

(dx + αx + iω)Ψpx = −dx∂xp. (6.33)

Then by going back to the time domain, we obtain:
{
ρ∂tvf,x = −∂xp+ Ψp,x

∂tΨp,x = −(dx + αx)Ψp,x − dx∂xp.

To construct the ADE-PML formulation, we then have to introduce an auxiliary vari-
able Ψz associated with vf,z and in the same way, the pressure is associated with two
auxiliary unknowns. Finally we have the following ADE-PML system:





ρ∂tvf,x = −∂xp+ Ψp,x,

ρ∂tvf,z = −∂zp+ Ψp,z,
1

c2
0ρ
∂tp = −∂xvf,x − ∂zvf,z + Ψvf,x

+ Ψvf,z
,

∂tΨp,x = −(dx + αx)Ψp,x − dx∂xp,

∂tΨp,z = −(dz + αz)Ψp,z − dz∂zp

∂tΨvf,x
= −(dx + αx)Ψvf,x

− dx∂xvf,x

∂tΨvf,z
= −(dz + αz)Ψvf,z

− dz∂zvf,z

We end up with a system of 7 variables which has the following discrete form:




Mvf,h
∂tvf,h,x +Rvf,h,x

ph +Mvf,h
Ψph,x

= 0,

Mvf,h
∂tvf,h,z +Rvf,h,z

ph +Mvf,h
Ψph,z

= 0,

Mph
∂tph +Rph

vf,h,x +Mvf,h
Ψvf,h,x

+Rph
vf,h,z +Mvf,h

Ψvf,h,z
= 0,

Mvf,h
∂tΨph,x

− dxRvf,h,x
ph − (dx + αx)Mvf,h

Ψph,x
= 0,

Mvf,h
∂tΨph,z

− dzRvf,h,z
ph − (dz + αz)Mvf,h

Ψph,z
= 0,

Mvf,h
∂tΨvf,h,x

− dxRvf,h,x
vf,h,x − (dx + αx)Mvf,h

Ψvf,h,x
= 0,

Mvf,h
∂tΨvf,h,z

− dzRvf,h,z
vf,h,z − (dz + αz)Mvf,h

Ψvf,h,z
= 0.

where the matrices Mvf,h
, Mph

and Rph
, Rvf,h,x

and Rvf,h,z
are the mass and stiffness

matrices defined in chapter 3.
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6.3.4 Numerical experiments

In this section, we perform some numerical experiments to assess the performance of DG-
SEm when solving the PML formulation of acoustic and elastic wave equations. It is
worth noting that the layer introduced for absorbing the waves is systematically paved
with quadrangles or cuboids. In practice, the layer does not contain any complex shape
that could justify the use of triangles or tetrahedra. Since we aim at solving the PML
formulation with DG-SEm applied on quadrangle mesh, we proceed step by step and first
test the PML formulation with full DGm.

PML formulation solved with full DGm

We consider a 3000mx3000m square domain. It is a homogeneous elastic domain with
Vp = 2500m.s−1, Vs = 1250m.s−1 and ρ = 1kg.m−3. This domain is discretized with
20000 quadrangles and we apply DGm of order 3. The time discretization is done with
RK4 scheme with a time-step equals to 2.4e−4 and the simulation stands during T = 10
seconds. The PML is ended with the boundary condition σn = 0. The PML layer is
placed at the top boundary and is 400 m thick (see Figure 6.8). On the other side of the
domain, we apply a free-surface condition σn = 0. We have performed simulations with
the two PML formulations: classic PML with ADE-PML and CPML with ADE-PML. As

•src

40
0m

Figure 6.8: Position of the point source and the PML layer (in blue), homogeneous elastic
domain

in (Komatitsch & Martin, 2007) and (Madec, 2009), the damping profile is polynomial. In
the PML, the waves are absorbed in the direction of the z axis so we have dz defined by:

dz = Cd0(z/L)N (6.34)

where L is the thickness of the PML (here, L = 400), N is the degree of absorption. We
also have d0 = −(N +1)V max

P log(Rc)/(2L) as in (Collino & Tsogka, 2001) where Rc is the
theoretical coefficient of reflection, V max

P is the maximal P -wavespeed in the propagation
domain and C is a constant.
In the case where we consider a C-PML, the polynomial αz has the same form as the one
used in (Martin et al., 2008):

αz = αmax[1 − (z/L)m] (6.35)
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with αmax = πfpeak (see (Komatitsch & Martin, 2007)) and fpeak is the dominant fre-
quency of the source. Here we have: L = 400m, N = 2, C = 1, V max

p = 2000m.s−1, m =
1, and Rc = 0.001%

We set the following initial conditions: vs(x, 0) = 0 and σ(x, 0) = 0. The source we
apply is a second order Ricker point source defined as:

S = (1 − 2π2f2
peak(t− tpeak)2)e−π2f2

peak(t−tpeak)2

and we take fpeak = 10Hz and tpeak = 0.12s. It is placed at the middle of the domain
at point (1500,1500). Figure 6.9 depicts the numerical results obtained with the classical
PML formulation and Figure 6.10 the ones corresponding to C-PML formulation. We
observe that for both cases, instabilities appear on the PML layers which lead to an
explosion of our solution.
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(d) t=4s

Figure 6.9: Speed modulus of an elastic wave propagation done using DGm and PML
formulation.

Then we move on with the same computations but this time, we use the DG-SEm
method, the SEm being applied inside the PML. We use the same mesh as in Chapter 5.
Both DGm and SEm are applied at order three, the discretization in time is done using
RK4 scheme with ∆t = 1e−4 and the simulation lasts until T = 10s. The PML layer
and the position of the source are the same as depicted in Figure 6.8. Moreover, to be
consistent we take the same boundary conditions, the same source and the same PML
and C-PML parameters. In Figure 6.11 we present the numerical results using classical
PML formalism. We can see that some instabilities appear after 7s of simulation. On the
other hand, we can see in Figure 6.12 than when we use the C-PML formalism, the wave
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Figure 6.10: Speed modulus of an elastic wave propagation done using DGm and CPML
formulation
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is correctly absorbed and there are no instabilities appearing in the PML layer during
the whole simulation. We have the confirmation as formerly observed in (Martin et al.,
2008) that the addition of αx in the PML formulation makes the PML stable and more
efficient at grazing incidence. Now the difference between the two series of simulations
is the use of SEm inside the PML. This numerical experiment is thus showing that the
SEm does not impact on the property of the PML while the DGm makes it unstable,
even in isotropic medium where the continuous PML system has been proven to be stable
(Bécache, Fauqueux, & Joly, 2003).
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Figure 6.11: Speed modulus of an elastic wave propagation done using DG-SEm and PML
formulation

This result is clearly in favor of coupling SEm with DGm, even in cases where the
propagation domain justifies the use of triangles or tetrahedra. We go further by addressing
the case of a heterogeneous medium.

6.3.5 Numerical results on a heterogeneous domain

Here we assess the case of the heterogeneous domain presented in Chapter 5 in Figure
5.13. We know that the PML formulation is unstable in anisotropic media. Hence we
restrict ourselves to isotropic wave equation. We remind the equations we aim to solve on
this domain:





ρ∂tvf = −∇p

1

ρc2
0

∂tp = −∇ · vf

(6.36a)

(6.36b)
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Figure 6.12: Speed modulus of an elastic wave propagation done using DG-SEm and
CPML formulation

130



6.3. PERFECTLY MATCHED LAYERS (PML)

{
ρ∂tvs = −∇ · σ
∂tσ = −C(ǫ(vs))

(6.37a)

(6.37b)

where the matrix representation of the isotropic elastic tensor C reads:

Ciso =




λ+ 2µ λ λ 0 0 0
λ+ 2µ λ 0 0 0

λ+ 2µ 0 0 0
µ 0 0

µ 0
µ



. (6.38)

λ and µ are the Lamé parameters which have been defined in Chapter 2. The physical
parameters Vp, Vs and ρ are the same as the ones given in Table 5.7 in Chapter 5. The
domain is discretized using 55368 unstructured triangles and nearly 200000 squares. The
high number of squares is due to the choice of surrounding the computational domain
with squares in order to apply PML on every side and we can not reduce the number of
cells by changing the space step because we do not have implemented h-adaptivity. The
considered mesh is depicted on Figure 6.13. We apply the DG-SEm with DGm and SEm

Figure 6.13: Heterogeneous case meshed and surrounded by quadrangles for PML(The
PML layers are between the red lines)

both at order 3. The time scheme used is a Runge-Kutta 4 scheme with a time-step ∆t
equals to 1e − 5. The final time of simulation is T = 2s. For the PML layers, we use
the C-PML formulation with a damping profile di and αi, ∀i = x, z defined with formula
(6.34) and (6.35). For these simulations, we use the following parameters: L = 300m
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in every direction, N = 2, m = 1, V max
p = 5334m.s−1, Rc = 0.0000001% . For these

simulation we use the same second order Ricker source as for the homogeneous cases with
fpeak = 10Hz and tpeak = 0.12s. It is placed in the water layer at point (1500,2650)

Figure 6.14 presents the obtained snapshots and we observe that the PML absorbs
the waves correctly in every direction and without any instability. This heterogeneous
case shows thus that as in the previous case, the SEm applied in the PML contributes to
stabilize the computations. We have performed the computations during a long time and
we do not observe any spurious solution inside the layer.
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Figure 6.14: Wave propagation on a domain representing a salt dome with PML all around
the domain.

6.3.6 Numerical results on a 3D elastic domain

To end this section on PML, we address the case of a three dimensional elastic domain
with a PML layer placed on the top of the computational domain.

We consider a 1000x1000x1400 m elastic domain. In this domain we have a P -
wavespeed equal to 2000m.s−1 and a S-wavespeed equal to 1000m.s−1. The density ρ
is equal to 1kg.m−3 everywhere in the domain.

This domain is discretized using a hybrid mesh composed of 95511 unstructured tetra-
hedra and 50000 hexahedra placed at the top of the domain. For the space discretization,
we use the DG-SEm with DGm and SEm of order two. The time integration is done using
a RK4 scheme with a time step ∆t equals to 1e − 5. The PML is placed at the top of
the domain, where we apply SEm with cuboids and it is 300m thick. We use the C-PML
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formalism with the following parameters to define the damping dz and the polynomial αz:
L = 300m, N = 2, m = 1, V max

p = 2000m.s−1, Rc = 0.0000001% and C = 1. We use the
following initial conditions: vs(x, 0) = 0, σ(x, 0) = 0 and the boundary condition σn = 0
on the external boundary of the computational domain, including the end of the PML.

The propagation is generated by a second order Ricker point source define as:

S = (1 − 2π2f2
peak((t− tpeak)2)e−π2f2

peakt2

with a central frequency fpeak equal to 20Hz and a delay tpeak equal to 0.06s. This source
is placed at point (500,500,950). The simulation lasts 0.8s.

Snapshots of the numerical waves are presented in Figure 6.15. The first slice at the
top of each picture corresponds to the interface between cuboidal mesh and tetrahedral
mesh. We see that as in the two dimensional case, the computation is stable and the PML
absorbs correctly the waves.
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(f) t=0.8s

Figure 6.15: Speed modulus, DGm and SEm at order 2, 3D elastic domain, PML layer at
the top

6.3.7 Conclusion

Besides illustrating the implementation of PML inside the DG-SEm, this chapter provides
an interesting application of the DG-SEm for stabilizing the PML. Indeed, even in isotropic
media, the PML turns out to be unstable when full DGm is applied. We aim at pursuing
in this direction by performing more numerical experiments.
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Chapter 7

Conclusion

In the field of seismic imaging, computational domains are complex and very large. Hence
reducing the computational costs for solving wave problems is an important issue that re-
quires the evolution of existing numerical methods or the creation of new methods. In this
thesis, we have proposed to couple two numerical methods that have proven their efficiency
for solving wave equations: the Spectral Element Method (SEm) and the Discontinuous
Galerkin method (DGm). This coupling has been carried out on hybrid meshes composed
of structured quadrangular (cuboid) cells and unstructured triangular (or tetrahedral)
cells. The use of hybrid meshes is justifies by the fact that SEm is easier to implement on
quadrangle (or cuboid grids) and we wanted to keep the geometrical flexibility of unstruc-
tured triangle (or tetrahedral) meshes in which DGm had been developed previously by
the team Magique-3D. To reach our objective, we have first developed DGm in quadran-
gle meshes. By this way, we aimed at verifying that when applied in the same structured
mesh, SEm performs faster than DGm. We actually observed this property and it is worth
mentioning that if DGm performs slower than SEm, it always provides a better relative
error. Then we have proposed a coupled formulation combining SEm and DGm. For that
purpose, we have first considered the area in which SEm is applied as a macro-element
for DGm. This approach required considering a mixed-primal formulation of DGm to end
up with a uniform expression for SEm and DGm with numerical fluxes acting as coupling
terms at the interface between "SE" computational area and "DG" computational area.
It is worth noting that the coupling is achieved by assuming that the numerical interface
is flat. The formulation has been proven to be stable thanks to an energy analysis lead-
ing to a stability result. The DG-SEm has been validated in various situations including
the solution of the 3D elasto-acoustic wave equation. 2D numerical experiments clearly
show that the DG-SE is faster than the full DGm. We acknowledge that more 3D ex-
periments should be performed to get the same conclusions in 3D. In particular, it would
be interesting to compare the DG-SEm in 3D with full DGm and full SEm. We have
also investigated the introduction of domain truncation conditions into the DG-SEm by
considering a first-order ABC and ADE-PMLs. The ABC has been implemented in the
formulation as a penalization term and we have performed simulations which turn out to
be stable in time but some reflections are generated by the external boundary. Regarding
the implementation of PMLs, we have observed that the application of SEm inside the
PML contributes to stabilize the computation while DGm introduces important numerical
pollution turning quickly into blow up of the numerical solution. Some more investigations
are on going to complete the works that have been performed in this PhD thesis. Our
next objectives are:
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• Go further by performing 3D simulations with a comparison with full DGm and
possibly SEm. This is a reasonable perspective given that the full DGm is already
operational and the full SEm is not far from being.

• Include local time-stepping to take advantage of the local characteristics of the mesh;
At first, we planned to adapt the time-step to each numerical method, given that we
knew that the CFL number of SEm is larger than the one of DGm. However, the
numerical tests that we have performed in 2D for comparing full SEm and full DGm
have shown that the SEm keeps outperforming the full DGm when applied with
the same time-step. Hence we plan to improve the DG-SEm by adding local-time
stepping in the DGm.

• Use the DG-SEm for solving 2D direct elasto-acoustic problems in view of Full
Waveform Inversion (FWI) in the time domain. We have seen that DG-SEm is
faster than the full DGm which is currently used in the team in a FWI algorithm
that is currently under development in the team Magique-3D. The use of a DG-SE
propagator should decrease the computational time of the method and thus widen
the field of applications of the inversion method. This task should be achieved in
collaboration with Total in the framework of the Total-Inria agreement DIP.

• Extend the method to the use of general hybrid meshes. The method has been
developed for particular meshes composed on structured quadrangles or cuboids and
we have assumed that in the vicinity of the numerical interface, a quadrangle is the
neighbour of only one triangle and a cuboid is the neighbour of not more than two
tetrahedra. For that purpose, we aim at using the recent developments in (Reberol,
2018) which permit the construction of hybrid meshes including pyramids.
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Résumé Pour résoudre des équations d’ondes posées dans des milieux hétérogènes avec
des éléments finis et un coût numérique raisonnable, nous couplons la méthode Discontinue
de Galerkine (DGm) avec des éléments finis spectraux (SEm). Nous utilisons des maillages
hybrides composés de tétraèdres et d’hexaèdres structurés. Le couplage est réalisé en
partant d’une formulation DG mixte primale posée dans un maillage hybride composé
d’un macro-élément hexaédrique et d’un sous-maillage composé de tétraèdres. La SEm
est appliquée dans le macro-élément découpé en hexaèdres structurés et le couplage est
assuré par les flux numériques de la DGm appliqués sur les faces internes du macro-
élément communes avec le maillage tétraédrique. La stabilité de la méthode couplée est
démontrée quand l’intégration en temps est effectuée avec un schéma Saute-Mouton. Les
performances de la méthode couplée sont étudiées numériquement et on montre que le
couplage permet de réduire les coûts numériques avec un très bon niveau de précision. On
montre aussi que la formulation couplée peut stabiliser la méthode DG appliquée dans des
domaines incluant des couches parfaitement adaptées.

Mots-clés Galerkine Discontinue, Elements Spectraux, couplage, maillage hybride

Abstract To solve wave equations in heterogeneous media with finite elements with
a reasonable numerical cost, we couple the Discontinuous Galerkin method (DGm) with
Spectral Elements method (SEm). We use hybrid meshes composed of tetrahedra and
structured hexahedra. The coupling is carried out starting from a mixed-primal DG
formulation applied on a hybrid mesh composed of a hexahedral macro-element and a
sub-mesh composed of tetrahedra. The SEm is applied in the macro-element paved with
structured hexahedrons and the coupling is ensured by the DGm numerical fluxes applied
on the internal faces of the macro-element common with the tetrahedral mesh. The sta-
bility of the coupled method is demonstrated when time integration is performed with a
Leap-Frog scheme. The performance of the coupled method is studied numerically and it
is shown that the coupling reduces numerical costs while keeping a high level of accuracy.
It is also shown that the coupled formulation can stabilize the DGm applied in areas that
include Perfectly Matched Layers.

Keywords Discontinuous Galerkin, Spectral Elements, coupling, hybrid meshes
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