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1 General Introduction

1 Climate change and landscape fragmentation: evi-

dence and consequences for biodiversity

The climate is undoubtedly changing at an accelerated pace worldwide. The Inter-

governmental Panel on Climate Change, in their fifth assessment report (IPCC, 2014),

summarized the different components of climate change, their evidence, and their links

with human activities. Global earth surface temperature showed a 0.85◦C increase be-

tween 1880 and 2012. Moreover, the last 30 years (1983-2012) was the warmest period

(90-100% of likelihood) over the last 800 years. The frequency of extreme events such

as extreme warm temperature and extreme precipitation also increased in recent decades

(IPCC, 2014). Global warming trends are predicted to be at least maintained or even

exacerbated in the next century due to the increase in human induced greenhouse gas

emissions (Santer et al., 2013). Depending on the socio-economic contexts, models pre-

dict an increase in average surface temperature of 1.0 to 3.7◦C in 2081-2100 relative to

the 1986-2005 period (Figure 1.1, Table 1.1). Increasing temperatures are predicted to

be associated with higher and longer extreme warm temperature events, a change in the

water cycle and an increase in sea level. Past and future climate change affect human and

natural systems in return, making climate change one of the main causes of biodiversity

changes observed nowadays (Brooks et al., 2002; Parmesan, 2006; Selwood et al., 2015).

Contemporary climate change is already threatening biodiversity worldwide (Parme-
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Mean over
2081-2100 

(°
C

)

Year

a

b

Figure 1.1 – Change in average global air temperature depending on different socio-
economic scenarios (IPCC, 2014). (a) Global average surface temperature change from
2006 to 2100 relative to 1986–2005. (b) Change in average surface temperature for
2081–2100 relative to 1986–2005 under the RCP2.6 (left) and RCP8.5 (right) scenarios.
Figure reconstructed from IPCC (2014).

Scenario 2046 - 2065 2081 - 2100
RCP2.6 1.0 [0.4-1.6] 1.0 [0.3-1.7]
RCP4.5 1.4 [0.9-2.0] 1.8 [1.1-2.6]
RCP6.0 1.3 [0.8-1.8] 2.2 [1.4-3.1]
RCP8.5 2.0 [1.4-2.6] 3.7 [2.6-4.8]

Table 1.1 – Projected change in global mean surface temperature (and 5 to 95% model
range predictions) for the mid- and late 21st century, relative to the 1986–2005 period.
Table reconstucted from IPCC (2014)

san, 2006; Selwood et al., 2015; Urban, 2015, 2018). Both abiotic and biotic factors could

lead populations to go extinct under climate change (Cahill et al., 2013). Warming climate

should indeed make temperature exceed thermal tolerances of most organisms (Deutsch

et al., 2008; Sinervo et al., 2010). It could result in individual death due to overheat-

ing or it could restrict their period of activity. Individuals could indeed hide into cool
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refuge to avoid overheating. However, the time spent into refuge limits time dedicated to

other vital activities such as foraging. As a consequence, restriction in periods of activ-

ity could hamper major physiological functions (metabolism, growth rate, reproduction)

and increase extinction risk (Sinervo et al., 2010). Moreover, climate change can modify

biotic interactions; for instance it could disrupt mutualistic interactions (Memmott et al.,

2007), promote competition and/or pathogens (Pounds et al., 2006) and have a negative

impact on beneficial species such as decreasing the amount of prey for a predator species

(Memmott et al., 2007). Even if evidence remains relatively scarce (Cahill et al., 2013),

population extinction has already been observed (Parmesan et al., 1999; Wilson et al.,

2005; Pounds et al., 2006; Thomas et al., 2006; Pacifici et al., 2017; Urban, 2018). Models

forecasting future species distribution under climate change predicted the extinction of 5

to 37% of all species depending on the geographic location (Thomas et al., 2004; Urban,

2015). Furthermore, these models predicted impacts of climate change on biodiversity

without considering other elements of global change which may act in synergy with cli-

mate change (Opdam & Wascher, 2004; Brook et al., 2008; Bellard et al., 2015). Global

change refers to changes in the earth system and encompasses changes in climate, land

cover, pollution, sea level, urbanization, ocean cycles, carbon cycles. . . . Global change is

commonly used to refer to changes associated with human activities (e.g. climate change,

pollution, landscape fragmentation). Among them, landscape fragmentation is predicted

to be the main threat to biodiversity in terrestrial area (Sala et al., 2000; Jantz et al.,

2015).

Agriculture, deforestation and urbanization change the landscape structure. Impor-

tant amount of natural habitats are lost and the remnant parts are split in small and

isolated patches (i.e. landscape fragmentation, Wilcove et al., 1986; Fahrig, 2003). Land-

scape fragmentation often gathers habitat loss (i.e. loss of sustainable habitat) and habi-

tat fragmentation per se (i.e. the "breaking apart" of habitat independently of habitat

loss; Fahrig, 2003). Landscape fragmentation impacts biodiversity by reducing patch size,

increasing isolation and edge effects and altering patch shapes and matrix structure (Did-

ham, 2010). Whereas habitat loss has a strong negative effect on biodiversity (e.g. Brook
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et al., 2003), habitat fragmentation per se can have either positive or negative effects on

biodiversity (Fahrig, 2017). For instance, reducing patch size decreases the number of

species present in a given habitat (species-area relationship, e.g. Seabloom et al., 2002).

Habitat fragmentation per se also increases the proportion of edges for a given amount

of habitat. Edges could increase population extinction as it promotes emigration of in-

dividuals into the unsuitable matrix (Fahrig, 2003). On the other hand, edges could

be advantageous for particular species preferring warmer and drier conditions (Fahrig,

2003; Didham, 2010). Overall, habitat loss and fragmentation have been shown to reduce

biodiversity by 13 to 75% (Haddad et al., 2015) and could have a long lasting effect on

future species persistence (i.e. extinction debt, Tilman et al., 1994; Debinski & Holt, 2000;

Krauss et al., 2010; Dullinger et al., 2012). Moreover, models predict further extinction

due to the increase in fragmentation related to human activities (Pereira et al., 2010;

Jantz et al., 2015).

Contemporary global change encompasses major threats to biodiversity. The different

factors constituting global change act on their own and in synergy to affect populations,

species, communities and ecosystem structure and functioning (Warren et al., 2001; Op-

dam & Wascher, 2004; Jetz et al., 2007; Brook et al., 2008; Hof et al., 2011; Comte et al.,

2016; Pereira et al., 2010). For instance, Hof et al. (2011) projected the three major

threats to amphibian diversity worldwide (climate change, landscape fragmentation and

pathogens) and noticed that the different threats often co-occurred, making prediction re-

garding threats taken independently irrelevant. Moreover, the different drivers of species

extinction often interact. For example, population decline of a rotifer species under ex-

perimental conditions was 50 times faster when different threats acted in synergy rather

than independently (Mora et al., 2007). Amphibian extinction in Costa Rica was also

due to synergetic effects of different threats. Climate change is threatening amphibians

on its own by increasing risk of overheat and desiccation. Moreover, climate change is

also promoting a pathogen (Batrachochytrium), surging species extinction in this region

(Pounds et al., 2006). The different drivers of global change could also act in opposite di-

rections. In the cooler part of their range, climate change could be beneficial for species.
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However, landscape fragmentation could buffer or reverse the positive effect of climate

change. Warren et al. (2001) observed a strong population decline of many butterfly

species in the northern part of their range, where climate change was predicted to be

beneficial, because of landscape fragmentation.

Landscape fragmentation could also buffer species responses to climate change (e.g.

Opdam & Wascher, 2004). Species are indeed able to respond to climate change (i.e.

range shift, phenotypic changes) through different mechanisms. These responses could

buffer the effect of climate change on biodiversity. Nevertheless, landscape fragmentation

might affect these responses and either limit or hamper species response to climate change

(Warren et al., 2001; Opdam & Wascher, 2004). A better understanding of how climate

change and landscape fragmentation interact to shape future species distribution and

composition is therefore one of the current major scientific challenges in ecology (Selwood

et al., 2015).

2 Responses to climate change in a fragmented land-

scape

2.1 Range shift and phenotypic changes

Two non exclusive responses may allow species to persist under climate change: range

shift, and population phenotypic changes. Individuals can first follow through space the

suitable climatic conditions, resulting in a change in the spatial distribution of populations

(Parmesan & Yohe, 2003). Latitudinal and altitudinal shifts in response to climate change

have been already recorded in different taxonomic groups (e.g. insects (Parmesan et al.,

1999), plants (Kelly & Goulden, 2008), fishes (Perry et al., 2005)). Chen et al. (2011)

measured that species are currently moving on average at a rate of 11 meters per decade

in altitude and 16.9 kilometres in latitude in response to climate change. However, there

is a strong variation among species in their rate of shift (Chen et al., 2011; MacLean &

Beissinger, 2017). Species traits could indeed modulate species range shifts under climate
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change (Angert et al., 2011; MacLean & Beissinger, 2017). Traits might shape the ability

of individuals to colonize new habitats at the cold margin of the species distribution

(Perry et al., 2005; Pearson, 2006; Angert et al., 2011; Schloss et al., 2012; MacLean &

Beissinger, 2017). For example, Schloss et al. (2012) predicted that 9.2 to 39% of mammal

species may be unable to track suitable climatic conditions due to dispersal limitation in

the northern hemisphere. However, as the different responses to climate change are non-

exclusive, trait distributions could also change in response to climate change, and affect

species range shift (Figure 1.2).

Populations could indeed respond to climate warming by changing their phenotypic

composition without shifting their geographical range (Parmesan, 2006; Lavergne et al.,

2010). One of the main phenotypic changes observed in response to recent climate warm-

ing was phenological shift (Parmesan & Yohe, 2003; Réale et al., 2003; Root et al., 2003;

Menzel et al., 2006; Charmantier et al., 2008; Massot et al., 2017). Individuals advanced

their spring events (e.g. breeding, laying date, flowering, budbursting) with increasing

spring temperature (Parmesan & Yohe, 2003). Other phenotypic change, such as change

in melanism (Roulin, 2014; MacLean et al., 2019), body size (Daufresne et al., 2009;

Gardner et al., 2011; Sheridan & Bickford, 2011), morphotype (Gibbs & Karraker, 2006)

and physiology (Seebacher et al., 2015) were also linked to climate change. In particu-

lar, climate change effects on life-history traits (i.e. survival, growth, reproduction and

dispersal) could have important impacts on species responses to climate change as they re-

sult in change in population dynamics (Whitfield et al., 2007; Ozgul et al., 2010; Bestion

et al., 2015b). Climate-dependent population dynamics have been studied in different

taxonomic groups (e.g. insects (Deutsch et al., 2008), birds (Jenouvrier et al., 2018),

mammals (Ozgul et al., 2010), reptiles (Le Galliard et al., 2010)) and encompass changes

in population density, age and size structure (Whitfield et al., 2007; Daufresne et al., 2009;

Cunningham et al., 2017). For instance, climate change affects population size structure

and/or age structure in ectotherms toward smaller and younger individuals (Daufresne

et al., 2009; Gardner et al., 2011; Sheridan & Bickford, 2011). In fish populations, cli-

mate change positively affects body growth and survival of small individuals while it has
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negative effects on the survival of bigger individuals, affecting population size structure

(Vindenes et al., 2014). Change in life-history traits also influences demography by deter-

mining population density. As evolutionary and demographic processes are closely linked

(i.e. eco-evolutionary dynamics (Le Galliard et al., 2005a; Kokko & López-Sepulcre, 2007;

Schoener, 2011)), population density could affect the phenotypic response of population

to climate change (Figure 1.2). For instance a decrease in population density could in-

crease the strength of genetic drift, reduce the efficiency of selection, and lead to the

fixation of deleterious mutations in the population. As a result, mean population fit-

ness should be reduced, leading to further reductions in population size (Legrand et al.,

2017). Changes in population dynamics could therefore affect the relative influence of

the processes behind population phenotypic changes, namely phenotypic plasticity and

evolutionary adaptation.

Phenotypic plasticity is the ability of a genotype to produce different phenotypes in

different environments (Pigliucci, 2001, 2005). Plasticity could thus modify population

phenotypic distribution without any change in allele frequencies. Climate driven pheno-

typic changes due to phenotypic plasticity have been observed in many studies (reviewed

by Boutin & Lane, 2014; Charmantier & Gienapp, 2014; Crozier & Hutchings, 2014;

Franks et al., 2014; Reusch, 2014; Schilthuizen & Kellermann, 2014; Stoks et al., 2014;

Urban et al., 2014). For example, great tit populations in the UK plastically advanced

their laying date in response to warmer spring temperature (Charmantier et al., 2008).

Plasticity allows a fast response to environmental changes. However, the range of phe-

notype which can be produced by plasticity is not infinite. Moreover, plasticity could

be costly to develop (DeWitt et al., 1998). Plasticity could therefore fail to continuously

produce phenotypes able to cope with continuously changing environment (DeWitt et al.,

1998). Furthermore, climate change could modify the link between reaction norm and

fitness, making initially adaptive plastic changes maladaptive (Visser, 2008; Charmantier

& Gienapp, 2014). For instance, breeding time in bird could be influenced by temperature

as temperature determined the period of higher abundance of caterpillar for their chicks.

However, if the correlation between caterpillar abundance and temperature is modified,
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plastic response of bird to temperature will become maladaptive (Visser, 2008).

Evolutionary adaptation affects population phenotypic distribution through changes

in allele frequencies. Under climate change, some genotypes produce phenotypes better

adapted than others to the new climatic conditions and should be favored by natural

selection. Evolutionary adaptation could be fast enough to play a role in population re-

sponses to contemporary climate change. For example evolutionary adaptation accounted

for 13% of the advance in the breeding timing of Canadian populations of red squirrels in

response to increasing spring temperature (Réale et al., 2003). The capacity of a popula-

tion to respond to climate change though evolutionary adaptation should depend on its

genetic diversity; the higher the genetic diversity, the higher the probability for an allele

adapted to the new climatic conditions to be present. Population density could also play

a central role as it will determine the strength of genetic drift that could hinder evolution-

ary adaptation, and the probability for a new mutation to appear. Phenotypic plasticity

could also affect (positively or negatively) evolutionary adaptation (Crispo, 2008).

Phenotypic plasticity and evolutionary adaptation are indeed closely related (Fig-

ure 1.2). Historically, phenotypic plasticity was thought to hinder evolutionary adapta-

tion by buffering the selective pressures able to select optimum genotypes (DeWitt et al.,

1998). However, phenotypic plasticity has been demonstrated to promote evolutionary

adaptation (e.g. Price et al., 2003). Plasticity could indeed allow individuals to fast adapt

to a new environmental condition and then evolutionary adaptation could replace phe-

notypic plasticity, for instance, if plasticity is costly to maintained (Conover & Schultz,

1995). Phenotypic plasticity can also be maladaptive and bring phenotypes to the wrong

direction regarding the environmental conditions. In this case, evolutionary adaptation

could be favored. Evolutionary adaptation could also directly act on phenotypic plastic-

ity. Phenotypic plasticity has been demonstrated to be heritable and susceptible to evolve

(Scheiner, 1993; Pigliucci, 2005; Crispo et al., 2010). Evolutionary adaptation could thus

favor or hinder phenotypic plasticity depending on the costs associated with plasticity

(DeWitt et al., 1998), the spatio-temporal variability in the climatic conditions and if

plasticity is adaptive or maladaptive (Crispo, 2008; Crispo et al., 2010; Gibbin et al.,
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2017). The link between plasticity and evolutionary adaptation could also be shaped by

dispersal and gene flow (Figure 1.2). Among its effects on species responses to climate

change (see below), dispersal could indeed affect the genetic composition of populations,

modifying the potential for evolutionary adaptation, and favor phenotypic plasticity as

dispersers susceptible to persist under different environmental conditions will be advan-

taged (Sultan & Spencer, 2002).

2.2 Central role of dispersal in species response to climate change

Dispersal, the movement of individuals from birth site to breeding site or between two

breeding sites (Howard, 1960), plays a central role in species response to climate change.

Dispersal affects both range shift and population phenotypic change (Figure 1.2). Dis-

persal allows the colonization of new habitat made available by climate change, and thus

species range shift. Dispersal also induces a gene flow among populations which can fur-

ther modulate the evolutionary adaptation to climate change (Figure 1.2, Lavergne et al.

(2010)). Individuals arriving into a population could bring either adaptive or maladaptive

genes, promoting and swamping local adaptation respectively (Lenormand, 2002). Theory

predicts that the swamping effect of dispersal from core populations to margin populations

could limit species distribution (Bridle & Vines, 2007), and could compromise persistence

under climate change (Pease et al., 1989; Polechová et al., 2009). More precisely, dispersal

could either accelerate the phenotypic shift toward phenotypes better adapted to warmer

conditions by bringing pre-adapted genotypes (at the cold margin mostly) or limit adap-

tation through a continuous flow of maladapted individuals (at the warm margin mostly).

At a finer scale, gene flow among populations inhabiting different microclimates could

affect metapopulation dynamics and compositions. Dispersal affects population density

and its link to evolutionary processes (Figure 1.2). Moreover, whereas climate warming

is not homogeneous through the landscape (Ashcroft et al., 2009), habitats less affected

by climate warming may act as source populations allowing the rescue of nearly extinct

populations through dispersal (Pearson, 2006; Hannah et al., 2014; Lembrechts et al.,

2018). Conversely, less affected populations may limit population adaptation to warmer
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conditions by continuously sending maladaptive genes into the most affected populations.

As already mentioned at the end of the previous section, dispersal could modulate the

link between evolutionary adaptation and phenotypic plasticity (Figure 1.2). Dispersal

should shape the relative importance of evolutionary adaptation and phenotypic plastic-

ity in population phenotypic changes in response to climate change. First, by allowing

spatial range shift, dispersal could hamper selective pressures on phenotypes and help

catch up with suitable climatic conditions rather than population phenotypic changes,

reducing both plastic and evolutionary responses. Second, dispersal could reduce evolu-

tionary adaptation by promoting phenotypic plasticity. In presence of random dispersal,

Sultan & Spencer (2002) demonstrated that plastic individuals were favored compared to

specialist and non plastic individuals. Dispersal should therefore promote the evolution

of high phenotypic plasticity in heterogeneous environments (Crispo, 2008). Individu-

als should therefore be prompter to respond plastically to environmental perturbation,

such as climate change. Furthermore, persistence of dispersers, whatever their genotypes,

due to phenotypic plasticity should swamp local genetic adaptation (Lenormand, 2002).

Conversely, dispersal on its own can be regulated by evolutionary processes. In the case

where plasticity is reduced, selection could act against dispersers, when dispersal is ran-

dom, as their probability to persist in a new environment is lower than resident individuals

(Crispo, 2008). In that case, evolutionary adaptation could be favored.

Range shift

Demographic change

Phenotypic change

Dispersal Evolutionary
adaptation

Plasticity

Landscape 
fragmentation

Eco-evo
dynamics

Responses

Mechanisms

Other change

Affect (+/-)

Hinder

Figure 1.2 – Global synthesis of the links between the population responses to climate
change, their underlying mechanisms and landscape fragmentation
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However, all these predictions rely on the fact that dispersal is considered as ran-

dom. Dispersal, though, is increasingly recognized to be a non-random process (Clobert

et al., 2001; Bowler & Benton, 2005; Edelaar et al., 2008; Clobert et al., 2009, 2012; Ede-

laar & Bolnick, 2012; Travis et al., 2012; Lowe & McPeek, 2014). Dispersers are often

characterized by a combination of traits promoting movement (i.e. dispersal syndrome,

Clobert et al., 2009; Ronce & Clobert, 2012; Cote et al., 2017). The different stages

of this process (i.e. departure, transience and settlement) are influenced by individual

phenotype, local context and often their match (i.e. matching habitat choice). Variation

in the phenotype of individuals may imply variation of fitness in specific environments

which should select for inter-individual differences in emigration and immigration deci-

sions according to their fit to local environmental conditions (Edelaar et al., 2008). In

contrast to random dispersal, where individuals move independently of their fitness ex-

pectation, individuals are expected to move from habitats where they expect a low fitness

and to settle in habitats where they expect a higher fitness, making dispersal an adap-

tive process. Non-random dispersal, and matching habitat choice in particular, has been

demonstrated in various species (e.g. insects (Karpestam et al., 2012); fishes (Bolnick

et al., 2009); birds (Dreiss et al., 2012; Camacho et al., 2016; Benkman, 2017); reptiles

(Cote & Clobert, 2007b; Cote et al., 2008)), for different phenotypic traits matching dif-

ferent environmental conditions. For example, in three-spine sticklebacks Gasterosteus

aculeatus, a mark–transplant–recapture experiment showed that dispersers’ preferences

for lake and stream habitats depended on lake-like and stream-like morphological at-

tributes (Bolnick et al., 2009). Moreover, a recent study demonstrated that dispersal

decisions of an ectotherm species depend on the match between individuals’ phenotype

and climatic conditions (Bestion et al., 2015a).

Under variable environmental conditions, matching habitat choice and ensuing adap-

tive gene flow may locally promote an efficient shift in mean populations’ phenotypes and

therefore may influence species’ responses to climate change (Edelaar & Bolnick, 2012).

Non-random dispersal and ensuing adaptive gene flow could also modify the expected

links between phenotypic plasticity, evolutionary adaptation and dispersal. As individu-
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als should move into habitat where they are adapted, the benefit of phenotypic plasticity

should be reduced (Scheiner, 2016) whereas genetic adaptation should be favored. In that

case, matching habitat choice can be seen as a plastic response, where individuals are

able to adjust their position in space according to their phenotype and the local environ-

ment, rather than adjusting their phenotype (i.e. phenotypic plasticity). Furthermore,

as climate warming is expected to increase local mismatch between individual phenotypic

optimum and local temperature, matching habitat choice may make movements towards

more suitable climatic conditions easier and promote an efficient shift of species geographic

distribution (Edelaar & Bolnick, 2012).

2.3 Impacts of landscape fragmentation on dispersal and species

responses to climate change

Landscape fragmentation limits dispersal (Figure 1.2) by decreasing the probability

for individuals to find a suitable habitat and increasing their mortality during transience

(Johannesen et al., 2000; Fahrig, 2003; Bonte et al., 2012). Furthermore, landscape frag-

mentation could reduce the adaptiveness of gene flow by hindering the optimality of

dispersal decisions. Fragmentation indeed magnifies dispersal costs and should there-

fore hamper the exploration of surrounding habitats, reducing the optimality of dispersal

decisions (Jacob et al., 2015a; Cote et al., 2017). As a consequence, landscape fragmen-

tation could affect the two responses to climate change developed earlier in this section

(i.e. range shift and population phenotypic changes). In fragmented landscapes, individ-

uals may fail to follow the suitable climatic conditions, limiting the potential for species

range shift (Warren et al., 2001; Opdam & Wascher, 2004; Selwood et al., 2015; Fourcade

et al., 2017). During climate change, fragmentation may also prevent individuals to access

microclimatic refuges which could avoid individuals to suffer from extreme climatic con-

ditions (Scheffers et al., 2014; Suggitt et al., 2018). As a result, landscape fragmentation

may strengthen the climatic impacts on populations. Finally, landscape fragmentation

should reduce gene flow among populations, limiting the input of new genotypes which

could be selected for and hindering the beneficial effect of adaptive gene flow on genetic
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adaptation.

Landscape fragmentation should thus affect species responses to climate change by

modifying the relative influence of the different mechanisms behind these responses. By

limiting spatial range shift, landscape fragmentation could raise extinction risk (Warren

et al., 2001; Opdam & Wascher, 2004; Jetz et al., 2007; Brook et al., 2008; Hof et al., 2011;

Comte et al., 2016; Pereira et al., 2010). Population persistence will then rely mainly on

population phenotypic change. The relative influence of phenotypic plasticity, evolution-

ary adaptation and dispersal on population phenotypic change will also be shaped by

landscape structure. By hampering dispersal, landscape fragmentation should enhance

selective pressures on phenotypes as individuals could not escape from the stressful en-

vironmental conditions. The relative influence of phenotypic plasticity and evolutionary

adaption will then depend on the genetic diversity, the capacity for plasticity, the cost

associated with this plasticity and whether plasticity is adaptive or maladaptive. Devel-

opment of studies tackling how landscape fragmentation modifies the relative influence of

the different mechanisms behind species responses to climate change is urgently needed

to better predict the future of biodiversity in the face of anthropogenic perturbations.

3 How to study species response to climate change

in fragmented landscape

Complementary approaches can be used to study species response to climate change.

Long term study of natural populations is often used to observe the consequence of climate

change on populations (e.g. Réale et al., 2003; Charmantier et al., 2008; Massot et al.,

2017; Lane et al., 2018). Such studies benefit from large datasets allowing to quantify

precisely impacts on populations and to distinguish between plastic and evolutionary re-

sponses though the use of quantitative genetic approaches (Kruuk et al., 2014). However,

long term datasets are rare and require important time investment and fieldwork survey.

Spatial studies regarding the link between climatic conditions and population composi-

tion and dynamics could also be used to predict the consequence of climate change in
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a space-for-time substitution (e.g. Skelly & Freidenburg, 2000; Kealoha Freidenburg &

Skelly, 2004). For example studies of different populations distributed on a latitudinal or

altitudinal gradient could help understand how population compositions are shaped by

the local climatic conditions and could be extrapolated to a context of climate change.

However, space-for-time substitution induces other biases; studies along altitudinal gra-

dient may, for instance, fail to distinguish between pressures induced by temperature and

oxygen concentration. In a context of global change, using studies of natural popula-

tions to assess species responses to multiple drivers (e.g. climate change and landscape

fragmentation) could be hard to accomplish. For instance, to study population responses

to climate change and landscape fragmentation, it would require the survey of different

populations inhabiting landscapes more or less fragmented to be able to distinguish the

effect of each driver and their interaction. Studies of natural population indeed often fail

to distinguish between the effects of different drivers of global change on populations.

These studies could also suffer from the limited number of replicated sites. Experimental

approaches could be an easier way to study combined drivers of global change.

Experimental approaches allow to test for the combined influence of climate change

and other drivers of global change on biological systems, by manipulating these drivers in

a crossed design. Experiments manipulating climatic variables have already been devel-

oped in many taxa (e.g. Benedetti-Cecchi et al., 2006; Wernberg et al., 2012; Wolkovich

et al., 2012; Bestion et al., 2015a,b; Davenport et al., 2017). Moreover, experiments could

help distinguish between plastic and evolutionary responses to climate change (i.e. exper-

imental evolution, transplant experiment, common garden experiment (Merilä & Hendry,

2014)). For instance, experimental evolution allows to directly link the observed pheno-

typic change to the conditions which have been manipulated rather than using correlative

approaches. Moreover, it often allows to manipulate multiple drivers of global change si-

multaneously (e.g. Davenport et al., 2017). Different methods can be used to distinguish

between evolutionary adaptation and phenotypic plasticity in experimental evolution.

The use of quantitative genetic approaches can be used if the pedigree of the individuals

is known. Common garden experiment can also determine if the experimental treatments
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led to evolutionary adaptation. Common garden experiment consists in raising individ-

uals from different populations/conditions into standardized and common laboratory or

field conditions (Merilä & Hendry, 2014). If the difference among populations/conditions

remain after at least one or two generations of common garden (to minimize interference

from maternal effects and acclimation (Stoks et al., 2014)), we can conclude that evolu-

tionary adaptation played a role in population differentiation. However, experiments are

often limited in space and time. It could be thus difficult to make clear predictions on the

long-term effect of global change on biodiversity with experiments only. The development

of theoretical models, integrating parameters extracted from experiments, could then be

needed.

Theoretical models could either be used to predict future distribution of particular

species (e.g. bioclimatic envelop models (Thuiller et al., 2005)) or to test for the influ-

ence of specific mechanisms in species response to climate change (e.g. biotic interactions

(Bocedi et al., 2013); pollen dispersal (Aguilée et al., 2016)). Models allow to make predic-

tions on large spatio-temporal scales, according to different climatic scenarios, landscape

structures and species characteristics (e.g. Thomas et al., 2001). Models could also be

used to develop theoretical predictions, which could be validated (or invalidated) with the

use of data on natural populations. The coupling of approaches is thus often needed to

make reliable predictions and override the limits of each approach.

Especially, the coupling of models and experiments could be used in two different ways;

experiments could be performed following model development to validate theoretical pre-

dictions (e.g. Fronhofer et al., 2017); experiment could also precede model development.

Experiment could indeed bring light on biological mechanisms which could be then in-

tegrated into a model to test their influence on larger spatio-temporal scales (e.g. Jacob

et al., 2018). Under climate change, significant improvements are needed to better pre-

dict future species distribution (Urban et al., 2016). Experiments could help increase our

knowledge on the interacting effect of climate change and habitat fragmentation on species

persistence. For instance, the relative influence of dispersal, phenotypic plasticity and evo-

lutionary adaptation in population response to climate change could be experimentally
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tested. Mechanisms of dispersal and its influence on population adaptation, range shift

and species persistence, depending on landscape configuration, could then be explored

theoretically to provide more reliable predictions and set up efficient management policies

and conservation plans.

4 Objectives

My PhD project aimed at improving our understanding on species responses to the

combined effect of climate change and landscape fragmentation. I was especially interested

in how dispersal, shaped by landscape structure, could affect species responses to climate

change and modulate population adaptation to new climatic conditions. In 2015, Elvire

Bestion defended her PhD thesis entitled “Impacts of climate change on a vertebrate

ectotherm: from individuals to the community”. During her PhD, she performed exper-

iments on the common lizard and demonstrated that during one-year long experiment,

a 2◦C warmer condition accelerate the pace of life of individuals and may affect popula-

tion persistence when these populations were isolated (Bestion et al., 2015b). However, a

longer period of time is required to assess the effect of accelerated pace-of-life syndrome

on population dynamics. The accelerated pace-of-life syndrome, if maintained on a longer

period of time, should lead to changes in the age and size structure of populations. How-

ever, evolutionary and plastic processes could enhance or buffer the accelerating effect of

warmer temperature on individual pace of life and change the predictions about popula-

tion dynamics. I therefore tested, as a first empirical objective, how climatic conditions

influence population dynamics (Chapter 2) and population adaptation (Chapter 3) using

a 3-years long experiment.

My second objective was to study how the connectivity among habitats could modulate

the impacts of climatic conditions on population dynamics and adaptation. Landscape

connectivity may change the effect of climate change in different ways. First, landscape

connectivity allows the movements between microclimates, which may constitute micro-

climate refuges and slow down the impacts of climate change on population dynamics.

Second, it allows a gene flow between habitats which adds up to the two other mech-
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anisms underlying population adaptation, phenotypic plasticity and evolutionary adap-

tation. The relative influence of these 3 mechanisms in population response to climate

change is still poorly studied. Moreover, common lizard has been demonstrated to per-

form matching habitat choice (Bestion et al., 2015a). Matching habitat choice should

thus promote population adaptation to local climate in connected landscapes (Edelaar &

Bolnick, 2012; Bolnick & Otto, 2013; Scheiner, 2016; Edelaar et al., 2017). Landscape frag-

mentation should alter the relative influence of evolutionary adaptation and phenotypic

plasticity on population response to climate change by preventing dispersal. I used an

experimental approach to study how evolutionary adaptation, dispersal and phenotypic

plasticity shape population phenotypic response to different climatic conditions. To do so,

I manipulated the connectivity between habitats to understand how connectivity between

microclimates could modify the effect of climate on population dynamics (Chapter 2) and

to quantify the role of the different mechanisms involved in population phenotypic change

(Chapter 3).

My third objective was to understand how matching habitat choice could modify

species response to climate change on large spatio-temporal scales. Matching habitat

choice linked to climatic conditions, as demonstrated in Bestion et al. (2015a), could

strongly affect species response to climate change. Under stable environment, previous

models predicted that matching habitat choice should promote adaptive gene flow (Holt,

1987; Jaenike & Holt, 1991; Ruxton & Rohani, 1999; Armsworth & Roughgarden, 2005b,

2008; Bolnick & Otto, 2013; Scheiner, 2016) and favor population adaptation and dif-

ferentiation on small spatiotemporal scales (Edelaar & Bolnick, 2012; Bolnick & Otto,

2013; Scheiner, 2016; Edelaar et al., 2017). Under climate change, matching habitat

choice could also promote an efficient shift of species geographic distribution (Edelaar &

Bolnick, 2012), increasing species persistence. However, this verbal prediction has never

been tested. I used a modeling approach to test how matching habitat choice modifies

predictions of future species distribution under climate change (Chapter 4).
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5 General methods

To reach these objectives, I used a combination of approaches allowing both to under-

stand how populations respond to climate change in fragmented or continuous landscape

and to test for the influence of matching habitat choice on species persistence under

climate change. I used experimental and modeling approaches to tackle these questions.

5.1 The experimental approach

I used experiments to study population responses to climate change in fragmented and

continuous landscape (chapter 2 and 3). The use of experiments allows to manipulate

the drivers of interest rather than using correlative approaches. Moreover, it helps to

distinguish between the processes behind population responses to climate change. Merilä

& Hendry (2014) reviewed the methods which could be used to distinguish evolutionary

adaptation from phenotypic plasticity. Among these methods, the use of experimental

approaches such as experimental evolution and common garden experiments are of central

interest to better understand how selective pressures and plasticity shape phenotypic

responses to climate change. Moreover, landscape structure can be “easily” manipulated

to test for the influence of dispersal on population response.

I performed a 3-years long experiment using populations of the common lizard (Zootoca

vivipara) subjected to different climatic conditions and connectivity treatments. During

three years, populations were inhabiting enclosures of an experimental system, the Meta-

tron, allowing to manipulate climatic conditions and connectivity among populations.

We monitored population composition and dynamics through time and measured evolu-

tionary and plastic processes as well as dispersal. After the three years of treatments,

the individuals were redistributed among the climatic conditions to test whether changes

regarding the treatments induced advantages in the different climatic conditions.
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The common lizard

The common lizard (Zootoca vivipara, Figure 1.3) is a small viviparous lacertid (adult

snout-vent length = 50-70 mm). Its dorsal coloration is highly variable, ranging from light

to dark brown, with some green reflects, and its ventral coloration ranges from pale yel-

low to dark orange. It spreads across Eurasia, from Ireland to Japan and northern Spain

to Scandinavia (Figure 1.4), and can be found from sea level to high altitude (2900m

(Agasyan et al., 2010)). It inhabits a great variety of habitats including grassland, mead-

ows, humid scrubland, hedgerows, open woodland, woodland edges, peat bogs, stream

edges, coastal areas and rural gardens (Agasyan et al., 2010) and feeds on a great variety

of prey including spiders, Coleoptera, Orthoptera, Heteroptera, Homoptera, Diptera, Hy-

menoptera, Gasteropods, Isopods and Lepidoptera caterpillars, with Aranae, Orthoptera,

Heteroptera and Homoptera being its favorite preys (Avery, 1966; Pilorge, 1982; González-

Suárez et al., 2011). The average lifespan of this species is five years (Sorci & Clobert,

1999) but females can reach up to 11 year-old and males up to 7 year-old (Richard

et al., 2005). Three age stages can be distinguished: juvenile (<1 year-old), yearlings

(1 to 2 year-old) and adults (>2 year-old). Most natural populations are composed of

ovoviviparous individuals, except some populations in the southern portion of the range

which are oviparous (Surget-Groba et al., 2006). Reproduction is mainly made by > 2

year-old individuals (Massot et al., 1992), even if yearlings can also reproduce depending

on their body size (Richard et al., 2005; Bestion et al., 2015b).

Common lizards hibernate from November to February in our study system (Ariège,

France). Males emerge from hibernation one or two weeks before yearlings and females

and mating starts right after females’ emergence. Female reproduce with up to 7 males

and males reproduce with up to 12 females (Richard et al., 2005; Eizaguirre et al., 2007).

Gestation time depends on external temperature, but lasts generally two to three months.

Females lay around 5 (1-12) soft-shelled eggs (Massot et al., 1992). Parturition starts in

June and all parturition occurred in a period of one month on average. Juveniles emerge

from the eggs within one hour after parturition and are directly independent (Massot

et al., 1992). At birth, juveniles measured 21 ± 1 mm (snout-vent length) and weigh 0.19
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Figure 1.3 – Lizards thermoregulating into an enclosure of the Metatron. a,e,f) Juvenile
individuals, b) adult male individuals and c,d) adult female individuals. The female in
picture d) finishes moulting

Figure 1.4 – Distribution area of the common lizard Zootoca vivipara. Source: IUCN
spatial distribution data

± 0.03g in our experiment. There is a high mortality during the juvenile stage as 75% of

juveniles die the first year.

Individuals disperse mostly at the juvenile stage (Le Galliard & Clobert, 2003), but

yearlings and adults also disperse to a lower extent. Adult home range of common lizard is

around 20 meters (Clobert et al., 1994), and dispersal distance varies between 19 and 100

m (Clobert et al., 1994, 2012). In this species, dispersal has been shown to be influenced

by extrinsic factors (e.g. density (Clobert et al., 1994; Le Galliard & Clobert, 2003; Cote

& Clobert, 2007b), temperature (Massot et al., 2008), kin competition (Cote & Clobert,

2007b, 2010)), intrinsic factors (e.g. body size (Clobert et al., 1994; Cote & Clobert,

2010), maternal effects (Clobert et al., 1994; Cote & Clobert, 2010, 2007b), social traits
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(Cote & Clobert, 2007b), stress level (Meylan et al., 2002, 2004)) and their interaction

(e.g. social behavior and local density (Cote & Clobert, 2007b)).

The common lizard, as all ectotherms, is dependent on external temperature for its

physiological functions (Box 1). Physiological traits as well as morphological and be-

havioral traits associated with thermoregulation are therefore expected to be affected by

contemporary climate change. For instance, the different parameters of thermal perfor-

mance curve (Box 1) are crucial parameters for species persistence under climate change.

However, their measurements can be challenging, in particular in studies examining the

evolutionary and plastic processes behind phenotypic changes, as phenotype has to be

measured at the individual level. Proxies for evaluating thermal performance are thus

often used to characterize thermal physiology of ectotherms. In lizards, maximal critical

thermal limit (CTmax), mean body temperature of active lizards in the field and pre-

ferred temperature in a laboratory thermal gradient are good proxies of thermal optimum

(Huey et al., 2012). Particular phenotypic and behavioral traits could also play a major

role in buffering the influence of climate change on ectotherms’ body temperature. For

instance, Sinervo et al. (2010) predicted that the increase in external temperature should

reduce the period of activity of lizards, leading to 39% of population extinction within

species ranges. Behavioral adjustment may allow individuals to change their period of

activity to avoid the warmest hours of the day and keep enough activity period for for-

aging and others important physiological functions. Individuals could adjust their period

of activity by advancing their phenology or adjusting their period of activity within a

day. Some morphological characteristics are also known to have a direct effect on body

temperature of ectotherms. For instance, the darkness of the individuals affects their

body temperature as darker individuals should be more at risk of overheating than paler

ones (thermal melanism hypothesis (Trullas et al., 2007)). Focusing on these traits could

thus help predict ectotherm responses to contemporary climate change.

Effect of climate change on common lizard populations have been studied using long

term monitoring of natural populations (Chamaillé-Jammes et al., 2006; Massot et al.,

2008; Lepetz et al., 2009; Le Galliard et al., 2010; Rutschmann et al., 2016; Massot et al.,
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2017) and experimental manipulation (Bestion et al., 2015a,b, 2017). In natural popula-

tions of the Cévennes mountains, warmer temperature affected population dynamics by

promoting body growth, adult body size and clutch size (Chamaillé-Jammes et al., 2006;

Le Galliard et al., 2010), advancing laying date (Le Galliard et al., 2010; Massot et al.,

2017), reducing dispersal of juveniles (Massot et al., 2008) and disturbing reproductive

tradeoffs (Rutschmann et al., 2016). Warmer temperature also affected phenotypic traits

into populations; dorsal pattern distribution changed in response to climate warming

(Lepetz et al., 2009). Furthermore, one year experimental manipulations of climatic con-

ditions highlighted the effect of warmer climate on life-history traits; warmer temperature

accelerated individual pace of life (Bestion et al., 2015b) and affected dispersal patterns

through its influence on matching habitat choice (Bestion et al., 2015a). Finally, warmer

climatic conditions decreased the diversity of the gut microbiota of lizards (Bestion et al.,

2017). All these studies highlight the multiple facets of common lizards’ responses to

climate change. More efforts have to be done to better understand how future climatic

conditions will shape population dynamics and composition of this species, and of all

ectotherms in general, in the context of current global change. I aimed at doing so by

using an experimental approach with populations maintained for several generations and

manipulating simultaneously climatic conditions and connectivity among habitats.
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Box 1: Thermal physiology of ectotherms in the face of climate change

Pe
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rm
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Body temperature

Thermal optimum

CTmaxCTmin Thermal tolerance

Ectotherm body temperature is directly linked to external temperature and shapes
all the behavioral and physiological traits (Angilletta et al., 2002), such as
metabolism (e.g. Gillooly et al., 2001; Brown et al., 2004; Dillon et al., 2010), loco-
motion (e.g. Bennett, 1990), digestion (e.g. Van Damme et al., 1991) and growth
(e.g. Kingsolver & Woods, 1997). The relation between ectotherm physiology and
temperature can be described by thermal performance curves (Huey & Steven-
son, 1979, see Figure above). These curves are defined by a thermal optimum (i.e.
temperature maximizing performance), critical thermal limits (i.e. CTmin and
CTmax the lower and upper temperature allowing performance respectively) and
a thermal tolerance (i.e. range of temperature allowing performance). Thermal
performance curves determine the range of temperature at which a population or
an individual can persist. For instance, Sinervo et al. (2010) predicted that climate
change could lead to 39% of population extinction. They argue that, in absence
of adaptation, body temperature should exceed upper thermal limit, leading to in-
dividual death, population extirpation and species extinction. However, thermal
performance curves may evolve in response to the increase in temperature (Huey
& Kingsolver, 1993; Angilletta et al., 2002). Parameters of thermal performance
curves vary among species, populations and individuals (Kealoha Freidenburg &
Skelly, 2004; Sunday et al., 2011; Artacho et al., 2013). Natural selection could
thus lead to evolutionary adaptation. The link between external temperature and
body temperature could also be buffered by phenotypic, physiological and behav-
ioral traits (Angilletta et al., 2002). For example, behavioral thermoregulation
allows individuals to cool themselves by hiding in shade areas, burrows and cooler
microhabitats. Thermoregulation permits individuals to live into conditions where
external temperature exceeds their thermal limits (Sunday et al., 2014). Such traits
could also change plastically or genetically in response to climate change. Moreover,
multiple physiological and thermoregulatory traits often covary to form thermal
types along a cold-hot continuum (Goulet et al., 2017) that could also evolve to
maintain optimal body temperature.
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The Metatron

The Metatron (Figure 1.5) is an experimental system situated in the south of France

(Ariège) composed of 48 interconnected semi-natural enclosures of 100 m2 surface each

(Legrand et al., 2012). The enclosure size is equivalent to the common lizards’ core home

range size (Clobert et al., 1994; Lecomte & Clobert, 1996; Boudjemadi et al., 1999).

Tarpaulins buried in the soil and nets prevent terrestrial and avian predation and lizard

escapes. Each enclosure acts as a mini-ecosystem with vegetation, insect communities and

habitat heterogeneity with rocks, wood logs for thermoregulation and small water ponds.

Enclosures shelter 133 plant species (estimated in June 2018) and at least 82 invertebrate

families (mostly arachnids and insects, estimated in 2017).

Enclosures can be connected through a 19 meters corridor, corresponding to the min-

imal dispersal distance of the common lizard (Clobert et al., 1994, 2012). Corridors can

be easily opened and closed to manipulate landscape connectivity. When corridors are

open, lizards could disperse from one enclosure to another.

Temperature, hygrometry and illuminance are automatically recorded every 30 min-

utes in each enclosure and can be manipulated via the actuation of motorized shutters and

a sprinkler system. For this experiment, we set up two climatic treatments, by closing the

shutters at different temperatures. For the “present-day climate” treatment, the shutters

automatically closed when ambient temperature in the enclosures reached 28◦C. For the

“warm climate” treatment, the shutters closed when ambient temperature reached 38◦C.

Given that enclosures are intrinsically warmer than outside, the present-day climate treat-

ment allows to obtained thermal conditions similar to the mean temperature outside of

the Metatron (temperature in the nearby meteorological station of Saint-Girons Antichan

(Bestion et al., 2015a,b)). During the three years of our experiment, the mean summer

daily temperatures in the warm climate treatment were on average 1.5 degrees warmer

than the present-day climate treatment. Over the three years of experiments, the mean

summer temperature of the present-day climate treatment was 26.03±0.15◦C and the one

for the warm climate treatment was 27.42±0.18◦C. As our treatments depend on outdoor

climatic conditions, the treatments were efficient during the summer daytime (from mid -
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Figure 1.5 – The metatron. a) is a aerial view of the system. b) is a view of an enclosure
from outside. c,d,e,f) are views from inside of an enclosure, showing vegetation (c,f),
wood logs (d) and water pond (e). We can see the entrance (closed) of a corridor in the
background of picture (f)

June to mid - September) and the difference between treatments varied with the weather.

The mean summer temperature could therefore be slightly different between the years

(26.23±0.25 and 27.71±0.26 in 2015, 26.34±0.24 and 27.88±0.24 in 2016, 25.52±0.24

and 26.67±0.25 in 2017 for present-day climate treatment and warm climate treatment

respectively). Relative to the 1986-2005 period, global mean surface temperature increase

is predicted to be +1.5◦C or more in 2046-2065 for scenario RCP4.5 and RCP8.5 and for
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all scenarii in 2080-2100 except RCP2.6 (IPCC (2014), Table 1.1).

Experimental design and chronology of the experiment (Figures 1.6,1.7)
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Figure 1.6 – Experimental design of the experiment performed in the Metatron. Pairs of
isolated (4 pairs) and connected (4 pairs) enclosures (with one present-day (blue) and one
warm (red) climate) were built. Populations of lizards were introduced and lived there for
3 years. We then performed a reciprocal common garden experiment into 12 enclosures,
6 with present-day climate (blue) and 6 with warm climate (red). The individuals were
split between the two treatments of the common garden (see details in Chapter 3). The
reciprocal common garden lasted three months

Our experimental design consisted in 16 enclosures with two climatic and two con-

nectivity treatments (Figure 1.6). Populations of lizards were maintained in the system

for three years. At the end of these three years of treatments, we did a reciprocal com-

mon garden experiment to test whether the changes in phenotypes resulted in differences

in individuals’ success in the different climatic conditions. Compared to a classic com-

mon garden, where all the individuals are raised in the same condition, we distributed
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the individuals in the two climatic conditions. We used 12 isolated enclosures, 6 with

a present-day climate treatment and 6 with a future warm climate treatment. The re-

ciprocal common garden lasted 2.5 months, from July to mid September 2018. Because

of the short period of time, and because we did not measure phenotypes at the end of

the reciprocal common garden, we did not use it to distinguish between evolutionary and

plastic processes that could occur during the three years of experiment. The chronology

of the experiment is described in Figure 1.7. More details about experimental design and

chronology are provided in Chapters 2 and 3.
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5.2 The modeling approach

I used an individual based model (IBM) to test how different dispersal strategies

(matching habitat choice versus random dispersal) modify predictions of species per-

sistence under climate change compared to model where random dispersal was included

(Chapter 4). IBMs are stochastic models allowing to model explicit landscape and species.

Compare to analytical and deterministic models, complex processes and mechanisms could

be integrated. However, conclusions could be strongly dependent on the initial conditions

and parameter values, requiring to replicate simulations and to explore a wide range of

parameters.

We modeled a two dimensional, continuous landscape on which a climatic gradient

occurred on the latitudinal axis. We simulated two levels of climate change by increasing

through time the temperature at each latitude (1◦C per 100 years or 2◦C per 100 years).

On this landscape, individuals of a virtual species were distributed. The life cycle of

this species is described in Figure 1.8. We modeled a sexual species with two age stages

(juveniles and adults). Individuals could disperse (either randomly or following matching

habitat choice), reproduce (for adults only) and then survived or died. Details about life

cycle, survival rules, reproduction and dispersal decisions are provided in Chapter 4.

With this model, we ran simulations with matching habitat choice and simulations

with random dispersal. We followed populations’ genetic composition through space and

time. After quantifying the adaptiveness of gene flow under both dispersal modes, we

evaluated the influence of matching habitat choice on (i) extinction risk at the edges of

and within the spatial range, (ii) on the proportion of the geographical range within which

the species goes extinct during climate change and (iii) on the time to species extinction.
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Figure 1.8 – Flow diagram of the model. The left side of this diagram depicts the life cycle
of the modeled species. At birth, a juvenile could disperse (emigration and immigration),
then survive to become an adult or die. As an adult, it could disperse again (emigration
and immigration), reproduce and survive or die. The adult stage lasted until the individual
died. The right side shows how we modeled the different events of the life cycle (i.e.
emigration, immigration, survival) in the matching habitat choice and random dispersal
modes. For both modes, survival was a Gaussian function of local temperature (Box
C) and so was thermal adaptation (dashed line, Box A). Emigration probability (solid
line, Box A) depended on local temperature in the matching habitat choice mode and
was constant in the random dispersal mode. After leaving its habitat, an emigrant with
a given phenotype (i.e. the color of the circle) settled in a matching habitat choice its
phenotype (i.e. same color) for the matching habitat choice mode while it settled in a
randomly chosen habitat when dispersal was random (Box B).
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1 Abstract

Contemporary climate change affects population dynamics through changes in life-

history traits (i.e. survival, growth, reproduction and dispersal). Changes in population

dynamics encompass changes in age structure, in individual mean body size and in den-

sity. However, landscape structure could modulate effects of climate change on population

dynamics by affecting movements among populations. Dispersal could indeed allow in-

dividuals to use cool microclimates within a landscape as refuges to avoid overheating.

Connectivity among habitats may therefore buffer the influence of climate change on pop-

ulation dynamics. Here, we experimentally investigated the impacts of warmer climates

on population dynamics (density, age structure and size structure) in landscapes varying

for their habitat connectivity. We monitored for three years populations of the common

lizards (Zootoca vivipara) living in experimental enclosures where climatic conditions and

connectivity were simultaneously manipulated. We found that the influence of warmer

climate on population dynamics depended on landscape structure. In isolated popula-

tions, warmer climate led to a faster pace-of-life compared to present-day climate, with

increased growth and earlier reproductive onset, and lowered survival of older individuals.

The multiple impacts of climate change on life-history led to (i) a modification in popu-

lation age structure towards younger individuals,(ii) an increase of individual body size

but (iii) no effects on population density. However, when populations inhabiting different

microclimates were connected, there was a striking change in the observed impacts of cli-

matic conditions on population dynamics. Indeed, we found that populations in connected

treatments displayed no differences in age structure, while density in cooler microclimate

became lower than density in warmer microclimate. These differences may be due to the

differences in dispersal between climates, where there was an uneven flow of dispersers

and differences in their phenotypic traits between warmer and cooler climatic conditions.

Our results highlighted the importance of considering landscape structure when studying

the influence of climate change on population dynamics. Furthermore, as ecological and

evolutionary processes are closely related (i.e. eco-evolutionary dynamics), the influence
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of landscape structure on population dynamics could affect population adaptation and its

role in population persistence under climate change.
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2 Introduction

Contemporary climate change is a major threat to biodiversity worldwide (Parmesan,

2006; Urban, 2015; Selwood et al., 2015). Climate warming can result in local population

extirpation (Sinervo et al., 2010), changes in populations’ spatial distribution (i.e. range

shift, Parmesan et al., 1999; Chen et al., 2011), phenotypic composition (Charmantier

et al., 2008; Boutin & Lane, 2014) and dynamics (Whitfield et al., 2007; Ozgul et al.,

2010; Bestion et al., 2015b). Climate-dependent population dynamics have been studied

in different taxonomic groups (e.g. insects (Deutsch et al., 2008), birds (Jenouvrier et al.,

2018), mammals (Ozgul et al., 2010), reptiles (Le Galliard et al., 2010)) and encompass

changes in population density, age and size structure (Whitfield et al., 2007; Daufresne

et al., 2009; Cunningham et al., 2017). For instance, climate change affects population size

structure and/or age structure in ectotherms (Daufresne et al., 2009; Gardner et al., 2011;

Sheridan & Bickford, 2011). These alterations of population dynamics result from changes

in individuals’ life-history traits, namely survival, growth, reproduction and dispersal. In

fish populations, climate change positively affects body growth and survival of small

individuals while it has negative effects on the survival of bigger individuals, affecting

populations size structure (Vindenes et al., 2014). These changes in population dynamics

could result in changes in community composition (Brose et al., 2012). Such climatic

impacts on population dynamics are therefore central to predict the future of biodiversity

under climate change.

However, climatic impacts are often studied independently of other contemporary en-

vironmental changes simultaneously acting on population dynamics. For instance, land-

scape fragmentation is another major anthropogenic threat likely interacting with climate

change (Opdam & Wascher, 2004; Brook et al., 2008). Landscape fragmentation splits

suitable habitats into a number of small and isolated patches (Fahrig, 2003). As a con-

sequence, landscape fragmentation alters population dynamics by reducing habitat size,

increasing impacts of demographic/environmental stochasticity and limiting individual

movements (i.e. dispersal) among populations. Dispersal is a cornerstone of popula-
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tion dynamics via the direct effects of emigration and immigration rates on population

density (Burgess & Marshall, 2011). Furthermore, dispersers often have particular life

history traits (i.e. dispersal syndrome, Clobert et al., 2009; Ronce & Clobert, 2012; Cote

et al., 2017) which may affect the dynamics of populations at emigration and immigra-

tion (Bowler & Benton, 2005; Burgess & Marshall, 2011; Sih et al., 2012). Landscape

fragmentation may therefore modulate population dynamics by (i) limiting the number

of emigrants and/or immigrants (Lecomte et al., 2004; Fahrig, 2003), (ii) preventing indi-

viduals with particular characteristics from dispersing (Boudjemadi et al., 1999; Barnes

et al., 2015) and (iii) decreasing survival rate through increased dispersal costs (Johan-

nesen et al., 2000; Bonte et al., 2012; Fahrig, 2003).

Due to their respective effects on life-history traits, climate change and landscape

fragmentation may interact in multiple ways to drive population dynamics. For example,

detrimental impacts of climate warming on local population dynamics, through changes

in reproductive onset, growth and survival rates, may be offset by individual movements

into cooler microclimates. At the regional scale, the landscape is indeed composed of

various microclimates where climate warming is not homogeneous (Ashcroft et al., 2009).

Habitats less affected by climate warming may play the role of climatic refuges (Pearson,

2006), preventing individuals to suffer from extreme conditions (Scheffers et al., 2014;

Suggitt et al., 2018). Less affected habitats may also act as source populations allowing the

rescue of (nearly) extinct populations. Fragmentation may prevent individuals to access

such refuges, strengthening the climatic impacts on populations. In contrast, dispersal

may also exacerbate the impact of climate change on population dynamics, if life-history

traits of immigrants correspond to life-history traits favored under climate change. In

that case, high connectivity may promote difference in population dynamics between

microclimates and reinforce climate change effect on population dynamics.

Here, we experimentally investigated the impacts of warmer climates on populations’

dynamics (density, age structure and size structure) in habitats varying in their con-

nectivity. We monitored populations of the common lizard (Zootoca vivipara) for three

years in an experimental system where both climatic conditions and connectivity were
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simultaneously manipulated. Previous studies showed that both climatic conditions and

habitat connectivity influenced the dynamics of common lizard populations (Boudjemadi

et al., 1999; Sorci & Clobert, 1999; Lecomte et al., 2004; Chamaillé-Jammes et al., 2006;

Marquis et al., 2008; Le Galliard et al., 2010; Bleu et al., 2013; Bestion et al., 2015b;

Rutschmann et al., 2016). Warmer climates had a positive effect on reproductive onset

and success and on juveniles’ body growth (Chamaillé-Jammes et al., 2006; Le Galliard

et al., 2010; Bleu et al., 2013; Bestion et al., 2015b). However, these positive effects on

early life stages were offset by higher mortality latter in life. This accelerated pace of

life was predicted to decrease population growth rate and to lead to populations made of

younger individuals (Bestion et al., 2015b). However, connectivity between habitats may

influence these climatic impacts on population dynamics. Cotto et al. (2015) recently

showed that dispersing females have an accelerated pace of life compared to philopatric

females. We therefore investigated if immigration of these particular individuals could

accelerate pace of life in synergy with warm climatic conditions and reinforce climatic

impacts on population dynamics, or if, conversely, climatic impacts were buffered by dis-

persal because it allowed to rescue populations with a low growth rate and to prevent

cost of warmer climates e.g., through the use of microclimates and refuge areas.

3 Materials and methods

3.1 Model species

The common lizard (Zootoca vivipara) is a small viviparous lacertid (adult snout-

vent length = 50-70 mm) widespread across Eurasia where it inhabits peat bogs and

heathland. The average lifespan of this species is five years (Sorci & Clobert, 1999).

Three age stages can be distinguished: juvenile (<1 year), yearlings (1 to 2 years) and

adults (>2 years). Reproduction is mainly made by adults (Massot et al., 1992), even

if some yearlings also reproduce depending on their body size (Bestion et al., 2015b).

The common lizard has been studied as a model ectotherm species for more than 20 years

(Massot et al., 1992; Cote & Clobert, 2007b; Le Galliard et al., 2008), particularly to study
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the impact of contemporary climate change on population dynamics (Sorci & Clobert,

1999; Chamaillé-Jammes et al., 2006; Marquis et al., 2008; Le Galliard et al., 2010; Bleu

et al., 2013; Bestion et al., 2015b; Rutschmann et al., 2016). The individuals used in this

study were descendants of lizards captured in the Cevennes, France, in 2010 (Licence no.

2010 − 189 − 16 DREAL). Lizard populations were maintained in the Metatron (see next

section) for several experiments (Bestion et al., 2015a,b, 2017) and intermixed regularly to

prevent high levels of inbreeding. In our study system (Ariège, France), lizards hibernate

from November to February and mate just after emergence. Females lay around 5 (1-

12) soft-shelled eggs (Massot et al., 1992). Parturition starts in June and all parturition

occurred in a period of one month on average. Juveniles emerge from the eggs within one

hour after parturition and are immediately independent (Massot et al., 1992).

3.2 Experimental design

We used the Metatron, an experimental system located in the South of France (Ar-

iège) and composed of 48 interconnected semi-natural enclosures of 100 m2 each (Legrand

et al., 2012). Tarpaulins buried in the soil and nets prevent terrestrial and avian predation

and lizard escape. Each enclosure acts as a mini-ecosystem with vegetation, invertebrate

communities and habitat heterogeneity with rocks, wood logs and small water ponds.

Enclosures can be connected through a 19 meter corridor, corresponding to the minimal

dispersal distance of the common lizard (Clobert et al., 1994). Temperature, realtive hu-

midity and illuminance are automatically recorded every 30 minutes. Temperature can

be manipulated via motorized shutters and each enclosure can be watered through sprin-

klers. In 2012, we developed two climatic treatments by closing the automatic shutters at

different temperature (Bestion et al., 2015b). For the “present-day climate” treatment,

the shutters automatically closed when ambient temperature in the enclosures reached

28◦C. For the “warm climate” treatment, the shutters closed when ambient temperature

reached 38◦C. Given that enclosures are intrinsically warmer than outside, the present-day

climate treatment results in thermal conditions similar to the mean temperature outside

of the Metatron (temperature in the nearby meteorological station of Saint-Girons An-
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tichan (Bestion et al., 2015b)). The mean summer daily temperatures in the warm climate

treatment were on average 1.5 degrees warmer than the present-day climate treatment (see

General introduction for more details). As our treatments depended on outdoor climatic

conditions, the treatments were efficient during the summer daytime (mid-June – mid

September) and the difference between treatments varied with the weather. Relative to

the 1986-2005 period, global mean surface temperature increase is predicted to be +1.5◦C

or more by 2046-2065 for scenario RCP4.5 and RCP8.5 and for all scenarii in 2080-2100

except RCP2.6 (IPCC (2014)).

Our experimental design consisted in 16 enclosures with two climatic and two connec-

tivity treatments. Eight pairs of enclosures, one with a present-day climate and one with

a warm climate, were created. The corridor between the two enclosures was open for four

pairs allowing lizards to move from one climatic treatment to the other (i.e. connected

treatment) while the corridor was closed for the four remaining pairs preventing any move-

ment (i.e. isolated treatment). It allowed us to test how the influence of warmer climatic

conditions on population dynamics was affected by connectivity between micro-habitats.

In the connected treatments, corridors were opened from March to mid-October spanning

the entire period of lizards’ activity. In 2017, we opened corridors by the end of March

due to the maintenance of the system. However, it should not have much influence on the

impacts of connectivity as it covers a small period of time.

The experiment started in 2015 and spanned 3 years. Early July 2015, 546 lizards

(240 adults and 306 juveniles) were released into the 16 enclosures. Populations in each

enclosure were composed of 10 females, 5 males and 19 ± 1 juveniles, corresponding to

intermediate density observed in natural populations and used in other semi-natural sys-

tems (Massot et al., 1992; Cote & Clobert, 2007a). All individuals were of known age

because they inhabited the Metatron since birth. We also split clutches among different

enclosures to enhance genetic diversity within populations and released juvenile in enclo-

sures without their mother to avoid kin competition (Cote et al., 2007). All the lizards

present in the system were individually identified (tagged by toe clipping) and measured

for body size (i.e. snout-vent length) and a tail tip was taken for genetic identification
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and paternity analyses. We ensured that there was no difference in age structure and

body size between treatments (p > 0.55 for all comparisons).

3.3 Population monitoring

From 2016 to 2018, we applied the same protocol to monitor populations. In May,

before females started laying eggs, all the individuals were recaptured from enclosures

and brought back to the laboratory. They were identified, measured for body size and

maintained in individual terraria (17x34x20 cm for adult females and gravid yearling

females and 11x17x15 cm for males and non-gravid yearling females). Terraria contained a

3 cm sterilized litter layer, a petri dish with water, a piece of absorbent paper, a cardboard

and a plastic tube as a shelter. A light bulb (25 W) and an ultraviolet lamp (Zoomed

Reptisun 5.0 UVB 36 W) provided heat for thermoregulation and light 6 h per day (from

9:00 to 12:00 and from 14:00 to 17:00). Lizards were lightly sprayed with water three times

a day (in the morning, at mid-day, and in the evening) and offered two crickets (Acheta

domestica) daily. Females laid eggs in their terrarium and the juveniles were isolated

from their mother directly after parturition. They were measured, weighted, marked and

a tail tip was taken for genetic sampling. From these captures, we could further identify

individuals which dispersed between connected enclosures.

Early July, all males, females and their clutch were released into the Metatron. We

released adult individuals back to the enclosure they were captured from in May, and

juvenile individuals in the same enclosure as their mother. Over the course of the ex-

periment, three populations went extinct (two in 2016 and one in 2017). In 2016, the

two extinct populations (one of each climatic treatment in isolated treatment) were reini-

tialized with the same density, age-structure and sex-ratio as in 2015 using lizards from

other experiments. In 2017, the extinct population (from present-day climate in isolated

treatment) was not reinitialized because of the lack of available lizards with same age and

sex as in 2015.
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3.4 Statistical analysis

Statistical analyses were performed in two steps. First, we explored the additive and

interactive effects of climate and habitat connectivity on population density, age structure

and size structure. Second, we analyzed each life-history trait separately to investigate

processes underpinning changes in population dynamics.

Population density, age structure and size structure

We used generalized mixed model with Poisson distribution to test for the influence

of climatic and connectivity treatments on population density and the age of individ-

uals composing populations. We used linear mixed models to test for the influence of

climatic and connectivity treatments on the size of individuals composing populations.

Fixed effects were climatic treatment, connectivity treatment and their interaction. For

population density, the model included climatic treatment, connectivity treatment, num-

ber of years since population initialization (hereafter referred to as “time”), and their

interactions. Only the linear effect of time was considered due to the low number of levels

for this variable. When populations were reinitialized after extinction, the time had 0 as

a value. We only used data after at least one year of treatments and therefore exclude

the data at time 0 from the analyses. For population age structure and population size

structure, the model was run at the individual level with individual age and individual

body size as dependent variables respectively. Independent variables included climatic

treatment, connectivity treatment, time, and their interactions. Independent variables

also included sex and population density. Density was included in the models to account

for the per capita influence of each individual in the age structure and size structure

of its population (i.e. at low density, the relative contribution of each individual in the

structure of its population is greater than at high density). In a second model, age of

the individuals was also included in size structure analysis to disentangle the direct effect

of climate on body size from its indirect effect though its influence on age (Table S2.3).

In all models, the population identity was modeled as a random intercept to account for

the dependency of individuals of same population. For models studying population den-
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sity, the population identity was included as random intercept to take into account the

repeated model structure. To investigate further the interaction between treatments, the

effect of climatic treatments was analyzed in connected and isolated populations sepa-

rately. Models included climatic treatment, time, their interaction and sex as fixed effects

and population identity as random effect.

Life-history traits

All individuals older than 1-year old were considered as adults and analyzed together,

while younger individuals (i.e. juveniles) were analyzed separately. We analyzed in adults

and juveniles the females’ probability of gravidity, the clutch size of (gravid and non-

gravid) females, the survival probability over the past year and the body growth over the

past year from every experimental year (2016, 2017 and 2018, hereafter named t1, t2, and

t3). In the connected treatment, the dispersal status of juveniles and adults (i.e. disperser

or resident) was also analyzed. Dispersal status of individuals was determined by compar-

ing the population where they were released to the one where they were recaptured the

year after. Individuals that moved from a population to the another after one year were

considered dispersers, whereas others were considered as residents. We used generalized

mixed models with binomial distribution for the probabilities of gravidity, survival and

dispersal, with zero-inflated Poisson distribution for clutch sizes and a linear mixed model

for body growth. All models included climatic treatments, connectivity treatments, time,

and all their possible two-way and three-way interactions. Models including the three-

way interaction did not converge for juveniles reproductive traits (i.e. the probability of

gravidity and clutch size) due to a low number of gravid juveniles and for the adults’ prob-

ability of gravidity. Triple interactions were thus excluded from these particular analyses.

Models further included covariates known to influence life-history traits: body size for

all analyses, sex for survival and body growth analyses, and birth date in Julian days in

the analyses of juveniles. Random intercepts included enclosure identity, individual ID

for analyses in which the same individual could be present more than once, and family

identity for analyses on juveniles as sibs from the same clutch were not independent.
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To investigate interactions between climatic and connectivity treatments, we further ran

these analyses in isolated and connected populations separately. Model structures were

the same as described above without the connectivity treatment.

In connected populations, we also analyze dispersal probability to investigate whether

dispersal patterns could explain differences in population dynamics. We added to the

model structure described above the interaction between body size and climatic treat-

ments because it can strongly influence dispersal decisions as well dispersal costs and

benefits (Cote et al., 2007).

Model selection procedure:

Model selection was performed using the following procedure. Full models with all

fixed variables and random effects were built and random structure of each model was se-

lected by AIC, following Zuur et al. (2009). Random structure minimizing AIC was then

selected with the exception of enclosure identity which was kept in models because indi-

viduals are largely influenced by environmental conditions and because we were interested

in population dynamics. All possible models with fixed effects were built and ranked by

AIC and conditional estimates, standard errors, z-value, relative importance and p-value

of all variables present in best models within a delta AIC of 2 were obtained through

model averaging procedure (Burnham et al., 2011). All analyses were performed using

R software version 3.4.3 (http://cran.r-project.org/, R Core Team (2017)) with lme4,

glmAMBD (for models using a zero-inflated poisson distribution) and MuMin packages.

4 Results

4.1 Effects of climate and connectivity on population structure

Population structure was altered by our 3 year manipulation of climatic conditions and

of the connectivity among habitats. Population density depended on climatic conditions

and habitat connectivity (Table 2.1, Figure 2.1a). Population density decreased through

time in connected habitats only (Table 2.1, Figure 2.1a). Warmer conditions had a positive
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influence on population density (Table 2.1, Figure 2.1a). This effect was mainly observed

in connected habitats (Table S2.1, S2.2, Figure 2.1a,) even if the interaction between

connectivity and climatic conditions was not retained in the best models.

Climatic conditions differentially influenced population age structure in isolated and

connected habitats (Table 2.1, Figure 2.1b). When isolated,age structure of a population

was biased towards younger individuals in warmer conditions (Table S2.1) while climatic

conditions had no influence on mean population age in connected populations (Table S2.2).

Finally, population body size structure depended on the three way interaction between

climatic conditions, connectivity and time (Table 2.1, Figure 2.1c). In connected popula-

tions, there was a difference in individuals’ body size appearing through time with larger

individuals in warm than in present-day climates (Table S2.2, Figure 2.1c). Climatic

conditions had no influence on individuals’ body size in isolated populations even if there

was an overall decrease in body size through time (Table S2.1, Figure 2.1c). However,

when we controlled by individual’s age in the analysis, both connected and isolated pop-

ulations were composed of bigger individuals in warm than in present-day conditions and

this effect increased though time (Table S2.3, Figure S2.1).

4.2 Effects of climate and connectivity on life-history traits

We then studied differences in life-history traits to explain observed changes in popu-

lation structure. Climatic conditions differently influenced juveniles’ reproduction in con-

nected and isolated populations (Table 2.2, Figure 2.2a). Warmer conditions increased

the reproductive output of juveniles in isolated population, but not in connected popu-

lations. One-year old juveniles had overall larger clutches in warmer conditions, due to

their higher probability of gravidity in isolated populations only (Table 2.2, Table S2.4,

S2.5, S2.6, Figure S2.2a). There was no influence of climatic conditions on adult repro-

ductive success (Table 2.2, Table S2.6, Figure 2.2b, Figure S2.2b), while connectivity had

a positive effect on adult reproductive output, increasing over time.

Juvenile body growth was also positively influence by warm conditions (Table S2.6,

Figure S2.2c). Population isolation had a negative influence on juvenile growth rate (Ta-
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Figure 2.1 – Population dynamics: Total density (a), mean age (b) and mean body size
(c) of populations through time in isolated (dashed lines) and connected (solid lines)
habitats under present-day (blue circles) and warm climate (red triangles). Mean ± SE
are represented

ble S2.6) but it magnifies the climatic impacts on growth rate (Tables S2.4, S2.5). Cli-

matic conditions and connectivity had a weak influence on adult growth rate (Table S2.6,

Figure S2.2d).

Finally, warmer conditions had a positive but weak effect on juvenile survival prob-

ability (Table 2.2, Figure 2.2c). This effect mainly appeared in isolated populations

(Figure 2.2c) even if the interaction between climatic condition and connectivity was not

retained in best models (Tables S2.4, S2.5). Climatic conditions also influenced adult

survival probability, but this effect varied with time and habitat connectivity to a lower
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Estimate SE z-value RI P-value
Population density
Intercept 2.34 0.28 8.01 1 <0.001
Climate 0.21 0.34 0.59 0.59 0.557
Connectivity -0.14 0.35 0.38 1 0.702
Time 0.05 0.08 0.6 1 0.545
Time*Climate 0.2 0.08 2.34 0.59 0.019
Time*Connectivity -0.27 0.08 3.16 1 0.002
Age structure
Intercept 0.86 0.06 15.37 1 <0.001
Climate -0.21 0.07 3.11 1 0.002
Connectivity -0.22 0.1 2.16 1 0.031
Time 0.05 0.04 1.27 1 0.203
Density -0.06 0.04 1.64 0.58 0.102
Sex 0.12 0.05 2.29 1 0.022
Climate*Connectivity 0.24 0.11 2.12 1 0.034
Time*Connectivity -0.17 0.06 2.78 1 0.005
Body size structure
Intercept 0.16 0.12 1.41 1 0.159
Climate -0.13 0.15 0.86 0.66 0.389
Connectivity -0.07 0.2 0.37 1 0.712
Time 0.21 0.05 4.38 1 <0.001
Density -0.14 0.05 2.82 1 0.005
Sex -0.59 0.09 6.35 1 <0.001
Climate*Connectivity 0.37 0.22 1.67 0.66 0.095
Time*Climate 0.04 0.07 0.51 0.66 0.607
Time*Connectivity -0.33 0.14 2.36 1 0.018
Time*Climate*Connectivity 0.28 0.13 2.08 0.66 0.038

Table 2.1 – Population dynamics. All models included population identity as random
intercept

extent (Table 2.2, Figure 2.2d). In isolated populations, warmer conditions overall de-

creased adult survival probability and this effect disappeared over time (Table S2.7, Fig-

ure 2.2d). The same effect was observed in connected populations the first year, but adult

survival was then better in warmer than in present-day climate (Table S2.5, Figure 2.2d).

Connectivity also had a negative effect on adult and juvenile survival probability, but this

effect varied over time in opposite ways for adults and juveniles (Table 2.2).
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Figure 2.2 – Life history traits: Juvenile clutch size (a), adult clutch size (b), juvenile
survival probability (c) and adult survival probability (d) through time in isolated (dashed
lines) and connected (solid lines) habitats under present-day (blue circles) and warm
climate (red triangles). Mean ± SE are represented

4.3 Effects of climate on dispersal

In connected populations, adult individuals were more likely to disperse from present-

day than from warm climate (Table 2.3, Figure 2.3b). However, these effects varied with

body size. Adult dispersers from the present-day climate had smaller body size than

residents of the present-day climate and dispersers from the warm climate had larger

body size than residents of the warm climates (Table 2.3, Figure S2.3b). In juveniles,

individuals were also more likely to disperse from present-day than from warm climate,
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Variable Estimate SE z-value RI P-value
Clutch size of juveniles
Intercept -0.65 0.47 1.38 1 0.169
Climate 1.64 0.57 2.85 1 0.004
Connectivity 1.53 0.5 3.01 1 0.003
Time -0.81 0.38 2.11 0.67 0.0351
Climate*Connectivity -1.39 0.48 2.85 1 0.004
Body size 0.47 0.2 2.38 0.84 0.017
Time*Climate 0.92 0.4 2.28 0.67 0.022
Time*Connectivity 0.16 0.26 0.6 0.14 0.548
Clutch size of adults
Intercept 1.68 0.04 37.5 1 <0.001
Connectivity 0.03 0.08 0.45 0.67 0.650
Time -0.13 0.06 2.15 1 0.031
Body size 0.16 0.04 4.12 1 <0.001
Time*Connectivity 0.19 0.08 2.37 0.67 0.017
Survival probability of juveniles
Intercept -1.27 0.31 4.03 1 <0.001
Climate 0.47 0.34 1.36 0.47 0.173
Connectivity -0.18 0.37 0.48 1 0.631
Time -0.21 0.15 1.37 1 0.172
Birth date -0.03 0.1 0.33 0.11 0.741
Body size 0.25 0.12 2.14 1 0.033
Sex 0.11 0.17 0.65 0.24 0.517
Time*Climate 0.13 0.18 0.7 0.11 0.482
Time*Connectivity 0.49 0.18 2.7 1 0.007
Survival probability of adults
Intercept 0.03 0.32 0.09 1 0.924
Climate -0.18 0.39 0.45 1 0.652
Connectivity -0.74 0.41 1.81 1 0.071
Time -0.33 0.18 1.85 1 0.064
Body size 0.03 0.09 0.33 0.2 0.741
Sex 0.75 0.18 4.19 1 <0.001
Climate*Connectivity 0.55 0.68 0.81 0.26 0.418
Time*Climate 0.72 0.19 3.82 1 <0.001
Time*Connectivity -0.62 0.19 3.32 1 <0.001

Table 2.2 – Life-history traits: Effects of climatic conditions and connectivity treatments
on clutch size and survival probability of juveniles and adults. All models included pop-
ulation identity as random intercept. Random structure for model analysing the survival
probability of juvenile also included family identity

but the pattern was weak and not constant over time (RI=0.35, Table 2.3, Figure 2.3a).

Moreover, there was no difference between residents and dispersers regarding body size

(Table 2.3, Figure S2.3a).
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Figure 2.3 – Dispersal probability: Juvenile (a) and adult (b) dispersal probability through
time under present-day (blue circles) and warm climate (red triangles). Mean ± SE are
represented

Variable Estimate SE z-value RI P-value
Juveniles’ dispersal probability
Intercept -1.1 0.51 2.17 1 0.030
Sex 0.74 0.47 1.55 0.48 0.121
Climate -0.73 0.64 1.14 0.35 0.254
Body size -0.22 0.25 0.89 0.12 0.376
Adults’ dispersal probability
Intercept -1.43 0.45 3.14 1 0.002
Body size -0.85 0.39 2.16 1 0.031
Sex 1.08 0.52 2.07 1 0.039
Climate -1.57 0.6 2.59 1 0.010
Climate*Body size 2.32 0.64 3.56 1 <0.001
Time 0.13 0.24 0.51 0.27 0.610

Table 2.3 – Dispersal probability: effects of climatic conditions and body size on dispersal
probability of juveniles and adults. All models included population identity as random
intercept

5 Discussion

Our long-term warming experiment showed that when populations were isolated, cli-

mate change led to a faster pace-of-life, with increased growth and earlier reproductive

onset, and lowered survival of older individuals. Further, and contrary to theoretical
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expectations (Daufresne et al., 2009; Gardner et al., 2011; Sheridan & Bickford, 2011),

individuals in warmer climate had bigger body sizes. The multiple impacts of climate

change on life-history led to a modification in population age structure towards younger

individuals but no effects on population density. However, our results depended on the

configuration of the landscape. When we allowed populations in warm and present-day

climate to be connected, there was a striking change in the observed impacts of climate

change on population dynamics. Indeed, we found that populations in connected treat-

ments displayed no differences in age structure, while density of present-day populations

became lower than density of warm populations. These differences may be due to the

differences in dispersal between climates, where there was an uneven flow of individuals

and differences in phenotypic traits between warm and present-day climatic conditions.

In isolated populations, warmer climates led individuals to have a faster pace-of-life.

Indeed, warmer conditions promoted body growth and reproduction of young individuals

and decreased survival of adults. These results are consistent with those from Bestion

et al. (2015b) showing the same pattern after one year of climatic treatments. We demon-

strated that this accelerated pace-of-life was maintained over the three years of exper-

iment. This maintained shift in life-history traits affected population age structure in

such a way that the populations in warmer climates were composed of younger individu-

als than in present-day climate. Warmer climates further increased juvenile growth rate,

likely through a faster metabolism (Gillooly et al., 2001). As the access to reproduction is

positively correlated to body size in this species (Cotto et al., 2015), young individuals in

warm climates had a higher reproductive success than in present-day climates. However,

the effect of climatic conditions on juvenile reproductive outcome was not only due to its

effect on body growth. The positive effect of warmer climate on clutch size was indeed

still detected when controlling for individuals’ body size, suggesting that warmer condi-

tions influenced juveniles’ reproduction not only through its effect on body growth rate.

Warmer temperature could therefore select for individuals with faster pace of life (Brans

& De Meester, 2018), increasing development rate, decreasing age and size at maturity,

promoting reproductive success and reducing lifespan.
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Change in population age structure was not associated with a change in population

body size structure. Climate change commonly leads to a lowered body size, which has

been advocated to be the third universal ecological response to climate change (Daufresne

et al., 2009; Gardner et al., 2011; Sheridan & Bickford, 2011). This effect can come

from both a decrease in size-at-age due to the faster metabolism at higher temperature

(Temperature-Size rule) and from a change in population age structure (Daufresne et al.,

2009; Sheridan & Bickford, 2011). Our results are not consistent with this theory. We even

found a positive effect of warmer climate on body size when controlling for age, because

of the positive effect of warm climate on juvenile body growth . This pattern was general

among studies on common lizards as a long term monitoring of their natural populations

revealed a positive effect of climate change on individual body size (Chamaillé-Jammes

et al., 2006). One potential explanation for this discrepancy might come from the status

of the common lizard as a generalist predator (Avery, 1966), as predators with a diverse

diet could compensate their increased metabolic rate under climate change by shifting

their diet towards bigger prey (Sheridan & Bickford, 2011).

We did not observe any influence of these climate-dependent life-history traits on

the density of isolated populations. At a large scale, the effect of climate change on

ectotherms density is predicted to depend on the geographic location, with populations of

higher latitudes benefiting from warmer climates and those from low latitude decreasing

in density (Deutsch et al., 2008; Tewksbury et al., 2008). In our study, the positive

effect of warm climate on reproductive success of young individuals was offset by its

negative effect on adult survival and therefore population density was not yet altered

by climatic conditions. Bestion et al. (2015b), in a similar but shorter study, predicted

population extirpation due to climate change in 20 years because of the higher sensitivity

of population growth rate to adult survival than to yearling fecundity. We did not observe

population decline in our three-year experiment. Adult survival rate even increased during

the last year of experiment, suggesting that life-history traits may change over time.

Longer experiments are needed to better understand and predict the future of populations

under warmer conditions.
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The impacts of climatic conditions on population dynamics and structure further vary

with the connectivity among habitats. When individuals had access to a cooler microcli-

mate, the effect of warm climate on population age structure was offset. This influence

of habitat connectivity is explained by different impacts of climate on life-history than in

isolated populations. In connected habitats, impacts on juvenile growth rate and survival

were weaker compared to isolated populations and adult survival was even enhanced in

warmer climates. In continuous landscapes, individuals can have access to warm and

cool microclimates more easily and thus avoid temporary extreme climatic events (e.g.

heatwaves (Scheffers et al., 2014; Suggitt et al., 2018)) and only make the most of the

advantages of warmer environments without the costs. Intra annual movements between

microclimates may limit the effect of warmer climatic conditions on population dynamics.

In our study, we only recorded individual position once a year. Movements may there-

fore be underestimated and may quantify dispersal (i.e. individual movements between

reproductive sites) rather than seasonal and daily movements to avoid overheating. Such

movements could influence population dynamics through (i) emigration and immigration

rates (Levins, 1969; Hanski & Gilpin, 1991; Burgess & Marshall, 2011) and (ii) the char-

acteristics of dispersers (Burgess & Marshall, 2011; Clobert et al., 2009; Jacob et al.,

2015a). We showed that both processes were involved in our results. First, we observed

a strongly biased dispersal from present-day climate populations to warm climate pop-

ulations. The flow of individuals affected the dynamics of populations in both climates,

counterbalancing the influence of warm climate on population age structure and reducing

population density in present-day climates. The biased dispersal was indeed stronger in

adults than in juveniles (Table 2.3). This biased dispersal could have both decreased the

density and the mean age in connected populations of present-day climates. We could

have expected adults to disperse more from warm climate given the lower survival in

warmer climates in isolated popualtions and the first year in connected populations (Fig-

ure 2.2d). However, 1.5◦C warmer conditions may appear attractive and beneficial for

an ectotherm species while the costs of living in may be less predictable for a candidate

disperser (i.e. physiological exhaustion, heatwave). Second, we found that movements
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were non-random regarding phenotypic traits. Adult immigrants from warm climate were

larger than their resident counterparts, and conversely in present-day climates. Several

hypotheses may explain this climate-dependent dispersal syndrome. Because metabolism

and energetic needs depends on both temperature and body size (Gillooly et al., 2001;

Brown et al., 2004), warmer conditions may bear additional costs for larger individuals,

through enhanced energetic expenditure, stronger competition and rare resources, while

being beneficial for the growth of smaller individuals. It might in turn drive dispersal

decisions. Alternatively, body size may be related to thermal types. Ecotherms species

may display a hot-cold continuum in phenotypic thermal adaptations (i.e. thermal types,

Goulet et al. (2017)) which may be part of phenotypic and pace-of-life syndromes ranging

from r- to K-types, including body size and potentially linked to habitat matching choice

(Bestion et al., 2015a). This dispersal syndrome was not found in juveniles. Given the

small variation in juvenile natal size, it could explain the absence of syndrome regarding

body size. Further experiments are needed to uncover the real explanations of these dis-

persal syndromes. Regardless of the explanations, our results show that the connectivity

among microhabitats change the impacts of warmer climates on population dynamics.

Increasing efforts have been made in the last few decades to improve our understanding

of climatic impacts on natural populations (e.g. Réale et al. (2003); Charmantier et al.

(2008); Lepetz et al. (2009)) and to better predict their future (Thuiller et al., 2005;

Travis et al., 2013; Bocedi et al., 2013; Pellerin et al., 2018). Only few studies tackled the

combined effect of different drivers of global change on biodiversity (Warren et al., 2001;

Opdam & Wascher, 2004; Jetz et al., 2007; Brook et al., 2008; Hof et al., 2011; Comte

et al., 2016). In this context, we demonstrated the complex interacting effect of climate

change and habitat fragmentation on population dynamics. While climate change is not

spatially homogeneous (Ashcroft et al., 2009), maintenance of connectivity could buffer

the impact of warm climatic conditions on population dynamics by allowing access to

refuge areas (Scheffers et al., 2014; Suggitt et al., 2018). However, we showed that these

movements between microclimates could be costly in terms of density for populations

less affected by climate warming. Accounting for the central role of demography in local
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adaptation and range shift (i.e. eco-evolutionnary dynamics, Schoener, 2011; Legrand

et al., 2017), landscape structure may shape population and species responses to climate

change (Rutschmann et al., 2016). Integrative studies taking into account climate change

and landscape structure on population dynamics and its link to adaptation are therefore

still needed to improve our understanding of anthropogenic actions on biodiversity.

6 Supplementary materials

Variable Estimate SE z-value RI P-value
Population density
Intercept 2.21 0.41 5.05 1 <0.001
Time 0.1 0.05 1.83 0.63 0.068
Age structure
Intercept 0.82 0.07 12.23 1 <0.001
Time 0.09 0.04 2.12 1 0.034
Climate -0.22 0.08 2.69 1 0.007
Density -0.06 0.04 1.41 0.43 0.160
Sex 0.09 0.08 1.06 0.34 0.288
Time*Climate -0.04 0.07 0.54 0.11 0.590
Body size structure
Intercept 0.12 0.11 1.14 1 0.255
Climate -0.13 0.13 0.99 0.36 0.321
Time 0.25 0.04 6.43 1 <0.001
Density -0.14 0.05 2.99 1 0.003
Sex -0.57 0.13 4.39 1 <0.001

Table S2.1 – Population dynamics in isolated populations: effect of climatic conditions
on population density, population age structure and population mean age in isolated
populations. All models included population identity as random intercept
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Variable Estimate SE z-value RI P-value
Population density
Intercept 2.04 0.14 13.24 1 <0.001
Climate 0.44 0.19 2.17 1 0.030
Time -0.27 0.13 2.04 1 0.042
Time*Climate 0.28 0.14 1.96 0.64 0.050
Age structure
Intercept 0.67 0.07 9.17 1 <0.001
Time -0.09 0.05 1.69 0.65 0.090
Density -0.03 0.05 0.59 0.12 0.553
Sex 0.13 0.1 1.24 0.38 0.214
Body size structure
Intercept 0.15 0.16 0.97 1 0.332
Climate 0.17 0.19 0.89 0.82 0.375
Time -0.31 0.1 3.09 0.82 0.002
Time*Climate 0.32 0.12 2.66 0.82 0.008
Density -0.09 0.06 1.38 0.37 0.169
Sex -0.64 0.13 4.94 1 <0.001

Table S2.2 – Population dynamics in connected populations: effect of climatic conditions
on population density, population age structure and population mean age in connected
populations. All models included population identity as random intercept

Variable Estimate SE z-value RI P-value
Body size structure
Intercept 0.17 0.08 2.11 1 0.035
Climate 0.15 0.09 1.77 1 0.076
Connectivity 0.1 0.09 1.07 0.52 0.286
Time -0.12 0.04 3.01 1 0.003
Age 0.68 0.03 21.78 1 <0.001
Density -0.11 0.04 3.12 1 0.002
Sex -0.69 0.07 10.32 1 <0.001
Time*Climate 0.11 0.05 2.24 1 0.025
Time*Connectivity -0.06 0.05 1.03 0.19 0.304

Table S2.3 – Population body size structure: effect of climatic conditions and connectivity
treatments on population body size structure when controlling by age. The model included
population identity as random intercept
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Figure S2.1 – Population body size structure: Residuals of body size ∼ age though time
in isolated (dashed lines) and connected (solid lines) habitats under present-day (blue
circles) and warm climate (red triangles). Mean ± SE are represented
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Variable Estimate SE z-value RI P-value
Juveniles’ probability of gravidity
Intercept -2.64 0.84 3.1 1 0.002
Climate 1.55 0.74 2.08 1 0.038
Time -0.29 0.41 0.7 0.3 0.485
Birth date 0.75 0.38 1.98 1 0.048
Body size 3.58 1.02 3.49 1 0.001
Clutch size of juveniles
Intercept -1.41 0.44 3.19 1 0.001
Climate 1.43 0.35 3.98 1 <0.001
Time 0.11 0.16 0.67 0.29 0.504
Body size 1.2 0.2 5.98 1 <0.001
Survival probability of juveniles
Intercept -1.62 0.56 2.91 1 0.004
Climate 0.93 0.75 1.24 0.63 0.214
Time -0.43 0.25 1.72 0.66 0.085
Birth date -0.19 0.13 1.4 0.24 0.162
Body size 0.41 0.15 2.75 1 0.006
Time*Climate 0.53 0.25 2.13 0.5 0.034
Juveniles’ body growth
Intercept 24.93 1.74 14.24 1 <0.001
Climate 3.9 2.03 1.91 0.86 0.056
Time -3.97 0.88 4.52 1 <0.001
Birth date -0.67 0.41 1.62 0.370 0.106
Body size -2.53 0.52 4.85 1 <0.001
Sex -2.13 0.66 3.22 1 0.001
Time*Climate 1.69 0.8 2.11 0.7 0.035

Table S2.4 – Life-history traits in isolated populations: Effects of climatic conditions on
probability of gravidity, clutch size, survival probability and body growth of juveniles
in isolated populations. All models included population identity as random intercept.
Models analyzing juvenile probability of gravidity, survival and body growth also included
family identity as random intercept
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Variable Estimate SE z-value RI P-value
Juveniles’ probability of gravidity
Intercept -0.96 0.65 1.45 1 0.147
Climate 0.9 0.88 0.99 0.33 0.321
Birth date 0.93 0.46 1.97 1 0.048
Body size 2.46 0.72 3.34 1 <0.001
Adults’ probability of gravidity
Intercept 1.79 0.37 4.8 1 <0.001
Time 0.28 0.39 0.71 0.3 0.475
Body size 0.55 0.35 1.54 0.54 0.125
Clutch size of juveniles
Intercept 1.44 0.16 8.87 1 <0.001
Body size 0.19 0.15 1.22 0.41 0.222
Clutch size of adults
Intercept 1.75 0.07 24.81 1 <0.001
Climate -0.08 0.11 0.67 0.28 0.504
Body size 0.14 0.06 2.29 1 0.022
Survival probability of juveniles
Intercept -1.51 0.26 5.78 1 <0.001
Climate 0.27 0.32 0.85 0.25 0.396
Time 0.14 0.15 0.89 0.26 0.372
Sexe 0.31 0.25 1.22 0.43 0.222
Survival probability of adults
Intercept -0.78 0.26 -3.03 1 0.002
Climate 0.16 0.30 0.53 1 0.595
Time -0.94 0.21 -4.43 1 <0.001
Sex 0.79 0.26 3.00 1 0.003
Time*Climate 0.77 0.27 2.9 1 0.004
Juveniles’ body growth
Intercept 28.65 0.71 39.83 1 <0.001
Climate 0.75 0.93 0.79 0.3 0.429
Time -1.78 0.47 3.76 1 <0.001
Body size -1.75 0.5 3.44 1 0.001
Sex -2.58 0.78 3.25 1 0.001
Adults’ body growth
Intercept 4.6 0.36 12.58 1 <0.001
Time 0.31 0.25 1.23 0.42 0.220
Body size -3.56 0.26 13.41 1 <0.001
Sex -3.96 0.52 7.48 1 <0.001

Table S2.5 – Life-history traits in connected populations: Effects of climatic conditions
on probability of gravidity, clutch size, survival probability and body growth of juveniles
and adults in connected populations. All models included population identity as random
intercept. Model analyzing juvenile survival also included family identity as random
intercept
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Variable Estimate SE z-value RI P-value
Juveniles’ probability of gravidity
Intercept -2.13 0.54 3.95 1 <0.001
Climate 1.28 0.55 2.3 1 0.021
Connectivity -0.56 0.54 1.02 0.29 0.306
Time -0.18 0.32 0.57 0.2 0.571
Birth date 0.63 0.27 2.34 1 0.019
Body size 3.02 0.58 5.18 1 <0.001
Adults’ probability of gravidity
Intercept 1.58 0.29 5.49 1 <0.001
Connectivity 0.2 0.48 0.41 0.59 0.682
Time -0.73 0.25 2.83 1 0.005
Body size 0.53 0.2 2.59 1 0.010
Time*Connectivity 0.87 0.45 1.93 0.42 0.053
Juveniles’ body growth
Intercept 25.35 1.25 20.29 1 <0.001
Climate 2.66 1.42 1.88 0.85 0.061
Connectivity 3.08 1.52 2.02 1 0.043
Time -3.51 0.65 5.37 1 <0.001
Birth date -0.48 0.3 1.58 0.55 0.114
Body size -2.31 0.38 6.00 1 <0.001
Sex -2.61 0.51 5.08 1 <0.001
Climate*Connectivity -2.66 2.03 1.31 0.4 0.191
Time*Climate 0.96 0.66 1.45 0.47 0.146
Time*Connectivity 1.53 0.65 2.33 1 0.020
Time*Climate*Connectivity -1.6 1.15 1.39 0.08 0.165
Adults’ body growth
Intercept 4.61 0.36 12.65 1 <0.001
Climate 0.55 0.44 1.24 0.52 0.213
Connectivity 0.54 0.46 1.17 0.5 0.244
Body size -3.76 0.14 27.22 1 <0.001
Sex -4.02 0.28 14.46 1 <0.001
Climate*Connectivity -0.39 0.82 0.47 0.13 0.635

Table S2.6 – Life-history traits: Effects of climatic conditions and connectivity treatments
on probability of gravidity and body growth of juveniles and adults. All models included
population identity as random intercept. Model analyzing juvenile body growth also
included family identity as random intercept. Model analyzing adult body growth also
included individual identity as random intercept
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Figure S2.2 – Life-history traits: Juvenile probability of gravidity (a), adult probability of
gravidity (b), juvenile body growth(c) and adult body growth (d) through time in isolated
(dashed lines) and connected (solid lines) habitats under present-day (blue circles) and
warm climate (red triangles). Mean ± SE are represented
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Variable Estimate SE z-value RI P-value
Adults’ probability of gravidity
Intercept 13.29 3.73 3.54 1 <0.001
Climate 6.61 3.28 1.99 0.52 0.046
Time -5.35 1.24 4.29 1 <0.001
Body size 5.69 1.56 3.62 1 <0.001
Clutch size of adults
Intercept 1.65 0.05 32.38 1 <0.001
Time -0.15 0.05 -2.99 1 0.003
Body size 0.16 0.05 3.18 1 0.001
Survival probability of adults
Intercept 0.06 0.44 0.14 1 0.889
Climate -0.39 0.6 0.65 1 0.516
Time -0.38 0.22 1.76 1 0.079
Body size 0.04 0.12 0.34 0.27 0.737
Sex 0.71 0.24 2.94 1 0.003
Time*Climate 0.72 0.27 2.68 1 0.007
Adults’ body growth
Intercept 4.89 0.39 12.47 1 <0.001
Climate 0.58 0.56 1.03 0.29 0.304
Time -0.08 0.15 0.54 0.2 0.591
Body size -4.17 0.17 24.84 1 <0.001
Sex -4.22 0.37 11.36 1 <0.001

Table S2.7 – Life-history traits in isolated populations: Effects of climatic conditions
on probability of gravidity, clutch size, survival probability and body growth of adults
in isolated populations. All models included population identity as random intercept.
Models analyzing adult probability of gravidity and body growth also included individual
identity as random intercept
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Figure S2.3 – Phenotype of dispersers: Juvenile body size (a) and adult body size
(b)through time under present-day and warm climate for residents (yellow scares) and
dispersers (green diamonds). Mean ± SE are represented
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1 Abstract

Populations can respond to climate change by changing their geographic distribution

and/or changing their phenotypic composition through phenotypic plasticity and evolu-

tionary adaptation. Dispersal plays a central role in these responses as it allows to colonize

new habitats and induces a gene flow affecting population composition. Dispersal could

indeed hamper or promote genetic adaptation depending on the fitness consequences of

dispersal movements. The fitness consequence of dispersal may further determine the

relative influence of phenotypic plasticity and evolutionary adaptation. However, climate

change is often associated with landscape fragmentation which impedes dispersal and may

therefore shape the evolutionary processes underpinning population responses to climate

change. Here, we experimentally investigated the impacts of a warmer climate on an

ectotherm species distributed in landscapes varying in their habitat connectivity. We

monitored populations of the common lizard (Zootoca vivipara) living in an experimental

system where both climatic conditions (two climatic treatments: present-day and warm)

and connectivity (two connectivity treatments: isolated and connected) were manipu-

lated for three years. We quantified the influence of phenotypic plasticity and selection

on phenotypic differences between climates, in the absence or presence of dispersal, fo-

cusing on three traits related to thermal physiology (dorsal darkness, thermal preference

and daily emergence). We found that adult individuals became paler in warmer climate

than in present-day climate, mostly in isolated populations. This phenotypic differenti-

ation among climates mostly resulted from phenotypic plasticity in isolated populations,

while the joint action of plasticity, selection and dispersal limit the phenotypic differenti-

ation in connected populations. Whereas plasticity increased juvenile dorsal darkness in

present-day climate relative to warmer climates, selection and dispersal acted in synergy

to increase dorsal darkness in warm climate relative to present-day climate. Other ther-

mal traits were weakly influenced by the climatic manipulation. Altogether, our results

demonstrated that connectivity among habitats could modify the strength and direction

of climate-dependent selection pressures on phenotypes. We thus call for future predictive
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studies to better integrate dispersal and landscape structure when studying and predicting

species response to climate change.
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2 Introduction

Contemporary climate change is affecting biodiversity worldwide (Parmesan, 2006;

Selwood et al., 2015; Urban, 2015) and can lead to population and species extinction

(Parmesan, 2006). Models predict the extinction of 5 to 37% of all species due to climate

change depending on the geographic location (Thomas et al., 2004; Urban, 2015). In ad-

dition to extinction, climate change also induces changes in the geographic distribution of

populations which follow suitable climatic conditions in space. Chen et al. (2011) observed

a shift of 11 meters per decade in altitude and 16.9 kilometres in latitude in response to

climate change. Finally, climate change can induce a change in phenotypic composition

of populations allowing them to persist under new climatic conditions (Parmesan, 2006;

Lavergne et al., 2010). The latter response to climate change relies on three main non-

exclusive processes, namely phenotypic plasticity, evolutionary adaptation and dispersal.

Phenotypic plasticity is the ability of a genotype to produce different phenotypes in

different environments (Pigliucci, 2001, 2005), and can be expressed in the form of re-

action norms. Plasticity could thus modify population phenotypic distribution without

any change in allele frequencies. Climate-driven phenotypic changes due to phenotypic

plasticity have been observed in many studies (reviewed by Boutin & Lane, 2014; Char-

mantier & Gienapp, 2014; Crozier & Hutchings, 2014; Franks et al., 2014; Reusch, 2014;

Schilthuizen & Kellermann, 2014; Stoks et al., 2014; Urban et al., 2014). For example,

great tit populations in the UK plastically advanced their laying date in response to

warmer spring temperature (Charmantier et al., 2008). Plasticity allows a fast response

to environmental changes. However, the range of phenotypes which can be produced

by plasticity is not infinite. Moreover, plasticity could be costly to develop (DeWitt

et al., 1998). Plasticity could therefore fail to continuously produce phenotypes able to

cope with continuously changing environment (DeWitt et al., 1998). Furthermore, cli-

mate change could modify the link between reaction norms and fitness, making initially

adaptive plastic changes maladaptive (Visser, 2008; Charmantier & Gienapp, 2014). For

instance, breeding time in a bird could be influenced by temperature as temperature de-
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termine the period of higher abundance of caterpillar for their chicks. However, if the link

between caterpillar abundance and temperature is modified, plastic response of bird to

temperature could become maladaptive (Visser, 2008). Evolutionary adaptation is then

needed to avoid population collapse.

Evolutionary adaptation affects population phenotypic distribution through changes

in allele frequencies. Under climate change, some genotypes produce phenotypes better

adapted than others to the new climatic conditions and should be favored by natural

selection. Evolutionary adaptation could be fast enough to play a role in population re-

sponses to contemporary climate change. For example evolutionary adaptation accounted

for 13% of the advance in the breeding timing of Canadian populations of red squirrels

in response to increasing spring temperature (Réale et al., 2003). However, evidence of

evolutionary adaptation in response to climate change remains elusive because of the diffi-

culty to disentangle it from phenotypic plasticity (e.g. Boutin & Lane, 2014; Charmantier

& Gienapp, 2014; Gienapp et al., 2008). Moreover, dispersal can further modulate the

evolutionary adaptation to climate change by affecting population genetic composition.

Dispersal, the movement of individuals from birth site to breeding site or between two

breeding sites (Howard, 1960), could indeed bring new phenotypes and genotypes into

populations and change their composition. Individuals arriving into a population could

bring either adaptive or maladaptive genes, promoting and swamping local adaptation

respectively (Lenormand, 2002). Theory predicts that the swamping effect of dispersal

from core population to margin populations could limit species distribution (Bridle &

Vines, 2007). In the context of climate change, dispersal could either accelerate the

phenotypic shift toward phenotypes better adapted to warmer conditions by bringing pre-

adapted genotypes (at the cold margin mostly) or limit adaptation through a continuous

flow of maladapted individuals (at the warm margin mostly). However, dispersal is a non-

random process (Clobert et al., 2001, 2012) made by particular individuals. Dispersers

are often characterized by a combination of traits promoting movement (i.e. dispersal

syndrome (Clobert et al., 2009, 2012; Cote et al., 2017)). Also dispersal is driven by

the match between individuals’ phenotype and their local environment: individuals with
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sub-optimal phenotypes disperse to settle into more favorable conditions (i.e. matching

habitat choice (Bowler & Benton, 2005; Edelaar et al., 2008)). Gene flow associated with

dispersal might thus be adaptive and promote phenotypic shift under climate change

(Edelaar & Bolnick, 2012; Pellerin et al., 2018). However, contemporary global changes

often associate climate change and landscape fragmentation. Landscape fragmentation

limits dispersal and could modify its role in population response to climate change.

Landscape fragmentation splits suitable habitats into a number of small and isolated

patches (Wilcove et al., 1986; Fahrig, 2003). As a result, dispersal among habitats and its

associated gene flow decline through a decrease in the probability for individuals to find

a suitable habitat and increasing their mortality during transience (Fahrig, 2003; Bonte

et al., 2012). Landscape fragmentation may thus reduce gene flow and its influence on

phenotypic shift. Moreover, landscape fragmentation constrains individuals into their lo-

cal habitat, preventing spatial range shift and enhancing selective pressures. The relative

influence of phenotypic plasticity, evolutionary adaptation and dispersal on population

phenotypic change should be shaped by landscape structure and the constraints to dis-

persal. As a consequence, studying the influence of phenotypic plasticity, evolutionary

adaptation and dispersal together is crucial to better predict global change impacts on

populations and biodiversity.

Here, we experimentally investigated the impacts of warmer climates on an ectotherm

species distributed in habitats varying in their connectivity. Because their body temper-

ature and hence their physiological functions strongly depend on external temperature,

ectotherms are predicted to be especially sensitive to climate change (Dillon et al., 2010).

Climate change impacts should depend on each species thermal physiology, and recent

studies claimed that tropical ectotherms should be particularly affected due to their low

thermal safety margins (Huey et al., 2010). However, within a species, individuals vary

in their thermal phenotypes (e.g. thermal preference (Artacho et al., 2013)). Phenotypic

plasticity, evolutionary adaptation and dispersal could change thermal phenotypes distri-

bution to help populations keep up with warmer temperatures (reviewed in Urban et al.,

2014). For instance, evolutionary adaptation changes the proportion of melanic morphs in
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a beetle species in response to warmer spring temperature (Brakefield & De Jong, 2011)

where melanism is involved in thermal regulation in this species. Thermal traits are also

involved in dispersal decisions in ectotherms; in the common lizard (Zootoca vivipara),

individuals with high thermal preference dispersed more from cooler habitats whereas

individuals with low thermal preference dispersed more from warmer conditions (Bestion

et al., 2015a).

We monitored populations of common lizard (Zootoca vivipara) living in an experimen-

tal system where both climatic conditions and connectivity were manipulated for three

years. We quantified the influence of phenotypic plasticity and evolutionary adaptation

on phenotypic differences among climates, in absence or presence of dispersal, on three

thermal traits, namely dorsal darkness, thermal preference (a good proxy of thermal opti-

mum (Huey et al., 2012)) and daily emergence. Despite the relative short period of time

of the experiment (2 generations in our experiment), evolutionary adaptation could play

a significant role in phenotypic differentiation given the low survival rate in the youngest

age class (mean mortality over the first year of life: 90% (Avery, 1975), but the mean

mortality was 0.74 in our experiment). Finally, we used a common garden experiment

to test whether the changes in phenotypes over the three years of climatic and connec-

tivity treatments resulted in differences in individuals’ success in the different climatic

conditions.

Although dorsal darkness is involved in complex processes (e.g. thermoregulation

(Trullas et al., 2007), UV protection (Roulin, 2014), resistance against pathogens (Côte

et al., 2018)), we expected it to decrease with warmer climate because darker individu-

als should be more at risk of overheating. Preference for warmer temperature should be

promoted in warmer climatic conditions compared to cooler climatic conditions because

individuals with higher thermal preference should better perform in warmer environment.

Individuals should also emerge earlier in the morning in warm climate to avoid delete-

rious temperatures occurring later in the day (Sinervo et al., 2010). Finally, common

lizards may adjust their dispersal strategies to the climatic conditions according to their

thermal phenotype (Lepetz et al., 2009; Bestion et al., 2015a). We thus expected con-
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nectivity among habitats to promote spatial sorting of phenotypes, favoring population

differentiation and local adaptation.

3 Materials and methods

3.1 Model species

The common lizard (Zootoca vivipara) is a small viviparous lacertid (adult snout-vent

length = 50-70 mm) widespread across Eurasia where it inhabits peat bogs and heath-

land. Three age stages can be distinguished: juvenile (<1 year-old), yearlings (between

1 and 2 year-old) and adults (>2 year-old). The common lizard has been studied as a

model ectotherm species for more than 20 years (Massot et al., 1992; Cote & Clobert,

2007b; Le Galliard et al., 2008), particularly to investigate the impact of contemporary

climate change on population dynamics and population composition (Sorci & Clobert,

1999; Chamaillé-Jammes et al., 2006; Marquis et al., 2008; Le Galliard et al., 2010; Bleu

et al., 2013; Bestion et al., 2015b; Rutschmann et al., 2016). The individuals used in this

study were descendants of lizards captured in the Cevennes, France, in 2010 (2012-10

DREALE). Lizard populations were maintained in the Metatron (see next section) for

several experiments (Bestion et al., 2015a,b, 2017) and mixed regularly to prevent high

levels of inbreeding. In our study system (Ariège, France), lizards hibernate from Novem-

ber to February and mate just after emergence. Females lay around 5 (1-12) soft-shelled

eggs. Parturition starts in June and all parturition occurs within a one-month period

on average. Juveniles emerge from the eggs within one hour after parturition and are

immediately independent (Massot et al., 1992).

3.2 Experimental design and population monitoring

We used the Metatron, an experimental system situated in the south of France (Ariège)

composed of 48 interconnected semi-natural enclosures of 100 m2 surface each (Legrand

et al., 2012). Tarpaulins buried in the soil and nets prevent terrestrial and avian preda-

tion and lizard escapes. Each enclosure acts as a mini-ecosystem with vegetation, insect
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communities and habitat heterogeneity with rocks, wood logs and small water ponds.

Enclosures can be connected through a 19 meters corridor, corresponding to the minimal

dispersal distance of the common lizard (Clobert et al., 1994). Temperature, hygrometry

and illuminance are automatically recorded every 30 minutes. Temperature can be manip-

ulated via motorized shutters and each enclosure can be watered through sprinklers. We

developed two climatic treatments by closing the automatic shutters at different temper-

atures. For the “present-day climate” treatment, the shutters automatically closed when

ambient temperature in the enclosures reached 28◦C. For the “warm climate” treatment,

the shutters closed when ambient temperature reached 38◦C. Given that enclosures are

intrinsically warmer than outside, the present-day climate treatment allows to obtain ther-

mal conditions similar to the mean temperature outside of the Metatron (temperature in

the nearby meteorological station of Saint-Girons Antichan (Bestion et al., 2015b)). Dur-

ing the three years of our experiment, the mean summer daily temperatures in the warm

climate treatment were on average 1.5◦C warmer than the present-day climate treatment.

As our treatments depend on outdoor climatic conditions, the treatments were efficient

during the summer daytime (mid-June to mid September) and the difference between

treatments varied with the weather. The mean summer temperature could therefore be

slightly different between the years (mean ± sd, 26.23 ± 0.25 and 27.71 ± 0.26 in 2015,

26.34 ± 0.24 and 27.88 ± 0.24 in 2016, 25.52 ± 0.24 and 26.67 ± 0.25 in 2017 for present-

day climate treatment and warm climate treatment respectively).

Our experimental design consisted in 16 enclosures with two climatic and two con-

nectivity treatments. Eight pairs of enclosures combining a present-day enclosure and a

warm climate enclosure were created. The corridor between the two enclosures was open

for four pairs allowing lizards to move from one climatic treatment to the other (i.e. con-

nected treatment) while the corridor was closed for the four remaining pairs preventing

any movement (i.e. unconnected treatment). In the connected treatments, corridors were

opened from March to mid-October spanning the entire period of lizards’ activity. In

2017, we opened corridors by the end of March due to the maintenance of the system.

However, it should not have much influence on connectivity as it covers a small period of
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time.

The experiment started in 2015 and spanned 3 years. Early July 2015, 546 lizards (240

adults and yearlings and 306 juveniles) were released into the 16 enclosures. Populations

in each enclosure were composed of 10 females, 5 males and 19 ± 1 juveniles, correspond-

ing to intermediate density observed in natural populations and used in other semi-natural

systems (Massot et al., 1992; Cote & Clobert, 2007a). We split clutches among different

enclosures to enhance genetic diversity within populations and released juveniles in enclo-

sures without their mother to avoid kin competition. All the lizards present in the system

were individually identified (i.e. marked by toe clipping) and measured for body size (i.e.

snout-vent length) and thermal preference (see below), and a tail tip was taken for genetic

identification and paternity analyses. Adults were also measured for dorsal darkness (see

below) before being released. We ensured that there was no difference in age structure,

body size, dorsal darkness and thermal preference between treatments (difference between

treatments for all traits: p > 0.55). After 3 years of experiment, we did a reciprocal com-

mon garden experiment (see below) to test whether the changes in phenotypes resulted

in differences in individuals’ success in the different climatic conditions.

From 2016 to 2018, we applied the same protocol to monitor populations. In May,

before females started laying eggs, all the individuals were recaptured from enclosures and

brought back to the laboratory. They were identified, measured for body size and dorsal

darkness and maintained in individual terraria (17x34x20 cm for adult females and gravid

yearling females and 11x17x15 cm for males and non-gravid yearling females). Terraria

contained a 3 cm sterilized litter layer, a petri dish with water, a piece of absorbent paper,

a cardboard and a plastic tube as shelter. A light bulb (25 W) and an ultraviolet lamp

(Zoomed Reptisun 5.0 UVB 36 W) provided heat for thermoregulation and light 6 h per

day (from 9:00 to 12:00 and from 14:00 to 17:00). Lizards were lightly sprayed with water

three times a day (in the morning, at mid-day, and in the evening) and offered two crickets

(Acheta domestica) daily. After one week of acclimation to the laboratory conditions, all

individuals were tested for their thermal preference and emergence (see below). Females

laid eggs in their terrarium and the juveniles were isolated from their mother directly
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after parturition. They were measured, weighted, marked and a tail tip was taken for

genetic sampling. All juveniles were measured for thermal preference one day after birth,

for emergence 2 days after birth and for dorsal darkness 3 days after birth.

3.3 Thermal preference test

Thermal preference test was performed in a controlled temperature room (18◦C) in

eight 100x20x40 cm glass arenas. Marks on the floor virtually divided each arena in

ten 10 cm zones and a movable separation created a 10 cm acclimation zone at one

end of the terrarium. At the opposite end of each arena, a light bulb (60W) created a

thermal gradient from 40.0 ± 1.3◦C to 19.2 ± 0.7◦C. The temperature in each zone along

the thermal gradient was recorded with thermometers. Individuals were maintained in

the controlled temperature room without a heat and light source on the morning of the

test, and were tested within few hours. This ensured that there were no differences in the

motivation of animals to thermoregulate prior to the experiment and prevented differences

due to hour of the day. Lizards were placed individually into the testing terrarium in the

acclimation zone, at the coolest part of the temperature gradient, and left for 10 minutes

to acclimatize before removing the separation. The separations were then removed and

lizards could move in the arenas for 30 minutes. Video camera recorded the position of

the lizard during the test. Each day, a maximum of 40 lizards could be measured in 5

sessions, from 8:30 to 12:30. Video data were analysed using The Observer 2.01 software.

We calculated thermal preference as the mean of the temperature of the zones where

the lizard stayed during the experiment weighted by the time spent at each position. In

another study, we found that such thermal preference was repeatable over two weeks (R =

0.43 [0.19,0.54]) and was not related to other behavioural traits (p-value of the Pearson’s

correlation between traits: p > 0.13 for activity, exploration, sociability (Bestion et al.,

2015a)).
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3.4 Dorsal darkness

Adult lizards were carefully positioned in a computer scanner (Canon CadoscanLide

110) lined with high density foam to avoid injuries. Pictures of dorsal patterns were taken

at a resolution of 400 dpi. Pictures were analyzed using ImageJ software (Schneider et al.,

2012). Three zones were delimited on the back of the lizard, between front and rear legs: a

central zone and two lateral zones (left and right) corresponding to the flanks. The picture

was transformed in shades of grey and then in black and white according to a fixed grey

threshold. The percentage of black pixels in each zone was computed. Darkness values

corresponded to the average percentage of black of the three zones. A grey threshold

value of 45 was chosen to maximize variance in darkness among individuals. Such mea-

surement was reliable; a test on 46 adult individuals showed a good between-measurement

correlation (Pearson’s correlations, r = 0.91 [0.85, 0.95], p < 0.001). Moreover, this dorsal

darkness was a good proxy of observed darkness, resulting from melanin-based coloration

(San-Jose & Fitze, 2013), as a test on 164 adult individuals showed a good correlation

between measured dorsal darkness and darkness scores attributed on a visual scale from

1 to 6 by an experimented observer (r = 0.52 [0.10, 0.63], p < 0.001).

In juveniles, the method was slightly different as their small size at birth did not

allow us to scan them. Juveniles were softly maintained between two petri dishes and

placed under binocular magnifier at x6.5 magnification. A circular lamp set at 10%

of illuminance and fixed on the magnifier provided constant light conditions. A dorsal

picture was taken with a camera fixed on the top of the magnifier. Pictures were then

analyzed using imageJ software. One central zone was defined, positioned between the

neck and the middle of the back. The flanks could not be measured because they were

blurred. As for adults, the picture was transformed in shades of grey and then, in black

and white. Because juveniles are darker than adult, the grey threshold was fixed at 30

to maximize the variance in darkness among individuals. Darkness values corresponded

to the mean percentage of black pixels. Juvenile darkness was not measured in 2015

because the method was not yet available. However, given the number of juveniles and

the split-clutch design, released juveniles were unlikely different among treatments.
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3.5 Emergence

Emergence was defined as the time of the day at which individuals started to be

active. Each 15 minutes from 8:45 AM (i.e. 15 minutes before the light was turned

on) to 11:00 AM, an observer discretely passed in front of the terraria and recorded

for each lizard if it was active (i.e. thermoregulating, immobile out of the shelter and

ground or moving) or not. Emergence data were then converted in continuous time

from 0 to 135 minutes. Emergence of reproductive females and of other individuals was

measured in separate rooms due to technical constraints. Temperature of both rooms

where maintained constant (18◦C). Emergence was not measured in 2015 for juveniles.

Emergence was repeatable over 2 days in adults (R=0.504 [0.446;0.541], p < 0.001) and

juveniles (R=0.27 [0.207,0.333], p < 0.001).

3.6 Monitoring of life history and phenotypic traits

Early July, all males, females and their clutch were released into the Metatron after

phenotypic measurements. We released adult individuals back to the enclosure where

they were captured from in May and juvenile individuals in the same enclosure as their

mother. Over the course of the experiment, three populations went extinct (two in 2016,

one present-day and one warm enclosures; One present-day enclosure in 2017), reducing

the total number of populations from 16 to 13. In mid-September, individuals were

captured during three capture-release-recapture sessions. Three captures allow to capture

at least 93% of survivors (Bestion et al., 2015b). All captured individuals were identified to

determine summer survival probability and dispersal for each individual, and then released

back into their enclosures for hibernation. Annual survival was measured by capturing

all survivors in May the year after the release. From these captures, we could further

identify individuals which dispersed between connected enclosures. All individuals were

then measured for phenotypic traits, as described above, allowing to estimate phenotypic

plasticity for each trait.
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3.7 Reciprocal common garden

In July 2018, individuals were distributed into 12 enclosures, 6 with a present-day cli-

mate treatment and 6 with a future warm climate treatment. All enclosures were isolated

(no connectivity between enclosures). Each population was composed of 10 ± 1 females,

10± 1 males and 14 ± 1 juveniles. We mixed individuals from the different connectivity

and climate treatments so that half of the individuals belonging to each pair of treatments

were released into present-day climate, and the other half in warm climate. There was

also no significant difference in age structure, body size, thermal preference, emergence

and darkness between individuals released in present-day and warmer climates (difference

between treatments for all traits: p > 0.86 except emergence for which p > 0.14). Further,

lizards were not released in their enclosure of origin, or for connected enclosures between

2015 and 2018, in the enclosure paired with the enclosure of origin. All individuals were

therefore naïve about the enclosure of release. For juveniles, siblings of each clutch were

split into different enclosures of present-day and warm climate treatments avoiding the

enclosure in which their mother was released. In September 2018, all individuals were

captured and brought back to the laboratory through 10 capture sessions. This proto-

col, used every year in May, allows capturing all survivors. The survival status of each

individual was determined and individuals were measured for body size and weight.

As we did not measure thermal phenotypes at the end of the common garden, it did

not allow us to distinguish between plastic and evolutionary processes behind the pheno-

typic changes induced by our 3 years of treatments. However, it allowed to test whether

the changes in phenotypes resulted in differences in individuals’ success in the different

climatic conditions. The present common garden can thus be seen as an adaptation test.

3.8 Statistical analyses

We analyzed juveniles separately from adults and yearlings, hereafter encompassed in

the term “adults”.
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Thermal phenotypes

In a first step, we studied the influence of climatic and connectivity treatments on

adult and juvenile phenotypes in 2018, after three years of manipulation. We analyzed

the influence of experimental treatments on dorsal darkness and thermal preference using

linear mixed models and on emergence using survival models with random effects for

truncated data. Some individuals were indeed never seen during the emergence test and

had therefore a truncated data as emergence. Independent variables included climatic

treatment, connectivity treatment and their interaction. We also included sex, body size

and age class (yearling and adult) for adults, and sex, body size and birth date in Julian

day for juveniles into the models. Random intercept included enclosure identity to account

for the dependency of individuals of the same population and family identity for analyses

on juveniles as sibs from the same clutch were not independent. We included the session

and arena identities as random intercept when analyzing thermal preference and the room

identity as a fixed factor when analyzing emergence.

We also analyzed thermal phenotypes in isolated and connected population separately

using the same model structures.

Adaptive processes

In a second step, we studied the evolutionary processes (i.e. plasticity, selection and

dispersal) explaining the potential phenotypic differences after three years of manipula-

tion. To do so, we studied lifetime individual phenotypic changes and climate-dependent

relationships between phenotype, survival and dispersal.

First, we studied the influence of climatic and connectivity treatments on the plas-

ticity in dorsal darkness, thermal preference and emergence of adults and juveniles using

linear mixed models. Trait plasticity was measured as the difference, for a surviving

individual, between its trait value at May year t+1 and its trait value at May year t.

For juvenile dorsal darkness, plasticity was calculated on centered and scaled values be-

cause methods to estimate dorsal darkness at birth and at one year-old were different.

For emergence, truncated data were arbitrarily fixed at 140 minutes. Emergence data
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were log transformed because of normality issues in plasticity for emergence. All models

included climatic treatment, connectivity treatment and their interaction. Independent

variables also included time, sex and body growth over one year for juveniles and adults,

birth date for juveniles only and age class (i.e. yearling and adult) for adults only. Time

was treated as a categorical variable to account for non linear response of plasticity due

to variability among the years. We further added, as a random intercept, enclosure iden-

tity and individual identity in the analyses where individuals could appear more than

once (i.e. individuals surviving more than one year) and family identity in analyses on

juveniles, as sibs from the same clutch were not independent. Considering that dispersers

experienced both climatic conditions, we excluded dispersers from these analyses. We

also analyzed plasticity in thermal traits in isolated and connected populations separately

using the same model structures.

Second, we calculated selection gradients and selection differentials in the different

experimental conditions, using survival as the fitness variable. Gradients and differentials

allow to distinguish between selection acting directly on the character (selection gradi-

ent) and correlative selection (selection differential (Lande & Arnold, 1983)). We used a

multiple step process to calculate selection gradients. (i) We used a generalized mixed

model with binomial distribution and logit link, with survival as dependent variable and

all three-way interactions of thermal traits, climatic conditions and connectivity treat-

ment as independent variables. We added time, sex, and body size in every model, age

class for adults and birth date for juveniles. Enclosure identity, individual identity in

the analyses where individuals could appear more than once and family identity in the

analyses on juveniles were added as random intercept. (ii) We further explored if stabiliz-

ing or disruptive selection could shape population phenotype composition. To do so, we

added one three way interaction including quadratic term of one thermal trait, climatic

condition and connectivity treatment to the model developed in the previous step. We

compared models with a quadratic term to models without it and kept the model with

the lowest AIC. In all analyses, the best model was the one without quadratic term. Then

the collinearity of the different variables of the models was quantified using variance infla-
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tor factors (V IF ). V IF was <10 in all models, indicating low collinearity (Montgomery

et al. (2012), but see Zuur et al. (2010)). Moreover, we obtained similar results when

running separate models with the different thermal traits one by one, supporting the

fact that covariations among traits did not influence the results. (iii) We selected the best

model structure (see below for selection procedure). When interactions regarding thermal

traits, climatic conditions and connectivity treatments were selected in the best model,

we explored the influence of thermal traits on survival in each combination of treatments

present in these interactions by running the best selected model in each combination of

treatments. (iv) Then, we calculated selection gradients in each of our four combinations

of treatment with generalized mixed models with survival as dependent variable, and the

three thermal traits as independent variables (Lande & Arnold, 1983), plus the covariates

kept in the best model in step (iii). Random structure of these models was also the one

selected in step (iii). Estimates of these logistic models were transformed into average

gradient vectors βavggrad given that the dependent variable was binary (Janzen & Stern,

1998). Selection differentials were calculated as the difference between the mean pheno-

type of survivors and the mean phenotype of the population, before the selective event

(Lush, 1937; Morrissey et al., 2010). Phenotypic values were standardized (mean = 0;

σ2 = 1) to allow between-trait comparisons of selection differentials. Selection gradients

and differential were calculated on summer and annual survival of adults and juveniles

excluding dispersers.

To quantify selection response, we also calculated heritability of each thermal trait.

We used MCMCglmm in an animal model to decompose additive variance (VA), maternal

variance (VM) environmental variance (VE) and residual variance (VR) for dorsal darkness,

preferred temperature and emergence at birth. The model was run on natal phenotype

of juveniles from 2015 (for thermal preference), 2016, 2017 and 2018. We included year

as a fixed effect and animal, mother identity and parents’ population identity as random

effects. The parents’ population identity allows estimating the environmental variance.

Using the variances, we calculated heritability (mean h2 and 95% confident interval) and

coefficients of additive genetic variation (CVA) as a measure of evolvability (Hansen et al.,
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2003).We also compared the DIC of the best model with the DIC of the model without

animal effect.

Third, we explored climate x phenotype-dependent dispersal in connected enclosures

using generalized mixed models with binomial distribution and logit link to analyze the

effects of phenotypic traits and climatic condition on summer and annual dispersal prob-

ability. Independent variables included the three two-way interactions between thermal

traits and the climatic conditions. Independent variables also included time, sex, body

size, birth date (juvenile only) and age class (adults only). Random intercepts included

enclosure identity and family identity for analyses on juveniles.

Common garden

Finally, we analyzed survival during the common garden experiment using generalized

mixed models with binomial distribution and logit link. Models included the climatic

conditions during the 3 years of the main experiment, connectivity during the main ex-

periment, climatic conditions during the common garden experiment and their interaction.

Independent variables also included sex, body size, age class (for adults only) and birth

date (for juveniles only). Random intercepts included the identity of enclosures both

during the 3-year experiment and during the common garden, and family identity in

analysis on juveniles. In a second step, we also developed models integrating individual

phenotypes. However, due to the low number of juveniles, models have been performed

on adults only. Individuals from isolated and connected populations were analyzed sepa-

rately to avoid four-way interactions. Models included survival as dependent variable and

all three way interactions linking thermal traits, climatic conditions during the 3 years

of the main experiment, and climatic conditions during the common garden experiment.

Independent variables included sex, body size and age class. Random intercepts included

the identity of enclosures both during the 3 years experiment and during the common

garden.
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Model selection procedure

Model selection was performed using the following procedure. Full models with all

fixed variables and random effects were built and random structure of each model was

selected by AIC, following Zuur et al. (2009). Random structure (including structure

without random effect) minimizing AIC was then selected. All possible models of different

fixed effects were built and ranked by AIC and conditional estimates, standard errors, z-

value, relative importance and p-value of all variables present in best models within a

delta AIC of 2 were obtained through model averaging procedure (Burnham et al., 2011).

All analyses were performed using R software version 3.4.3 (http://cran.r-project.org/)

with lme4, survival, coxme (survival models for emergence), MCMCglmmm (for heritabil-

ity) and MuMin packages.

4 Results

4.1 Thermal phenotype

Three years of climatic treatment had contrasted influence on the thermal phenotype

of adult and juvenile individuals. At the end of the experiment, adult individuals were

darker in present-day climate than lizards in warm climate (Table 3.1, Figure 3.1a). The

difference in adult dorsal darkness among climates was mostly observed in isolated pop-

ulation (Tables S3.1, S3.2) but the interaction between climate and connectivity was not

retained in the best model (Table 3.1). In juveniles, individuals were also darker in present

day climate than in warm climate (Table 3.1, Figure 3.1b), mostly in isolated populations

(Tables S3.1, S3.2). Climatic conditions had a very weak effect on thermal preference of

adults and juveniles and on emergence of adults (RI < 0.3, Table 3.1, Figure 3.1c,e); adults

preferred slightly lower temperature in warm climate than in present day-climate, mostly

in isolated populations (Tables S3.1, S3.2). They also emerged slightly later in warm

climate, in connected population only (Tables S3.1, S3.2). Conversely, juveniles preferred

slightly higher temperature in warm climate than in present day climate, mostly in iso-
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lated populations (Figure 3.1d, Tables S3.1, S3.2), and showed no difference in emergence

among climates (Table 3.1, Figure 3.1f).

4.2 Phenotypic plasticity

Overall, the link between plasticity in thermal traits and the climatic conditions was

weak (Tables 3.2, 3.3, Figure 3.2). However, both juvenile and adult individuals be-

came darker in present day climate than in warm climate (RI = 0.35 and RI = 0.4 for

adults and juveniles respectively, Tables 3.2, 3.3, Figure 3.2a,b). In adults, individuals

became darker in present-day than in warm climate mostly in isolated populations (Ta-

bles S3.3, S3.4). Juvenile individuals also developed higher thermal preference in warm

climate than in present day climate, mostly in connected populations (Figure 3.2d, Ta-

bles 3.3, S3.3, S3.4). Finally, juvenile individuals decreased their emergence over one year

in present-day climate but not in warm climate, in isolated populations only (Figure 3.2f,

Tables 3.3, S3.3, S3.4).

4.3 Selection

Summer survival of adults was not influenced by climatic conditions or their interaction

with thermal traits (Table 3.4). However, dorsal darkness and, to a lower strength, ther-

mal preference interacted with connectivity to influence survival (Table 3.4, Figure S3.1).

When conducting analysis separately in isolated and connected populations, there was no

significant influence of dorsal darkness on survival in both conditions (isolated popula-

tions: estimate = -0.17, p = 0.412; connected populations: estimate = 0.22, p = 0.234).

In connected populations, there was a marginally significant negative effect of thermal

preference on survival (estimate = -0.352, p = 0.062) whereas the relation was not sig-

nificant in isolated populations (estimate = 0.10, p = 0.629). In juveniles, the three-way

interaction between climatic conditions, connectivity and dorsal darkness affected sum-

mer survival (Table 3.4, Figure 3.3). When running the global average model in each

condition, dorsal darkness had a significant positive effect on survival (estimate = 1.06,

p = 0.026) in warm climatic conditions and a significant negative influence on survival
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(estimate = -0.66, p = 0.042) in present-day climate when populations were connected.

In isolated populations, there was no significant influence of dorsal darkness on survival,

but we observed that selection appeared to be reversed in comparison to selection in con-

nected populations (present-day: estimate = 0.22, p = 0.516; warm: estimate = -0.26, p

= 0.522).

Annual survival of adults was affected by the interaction between thermal preference

and connectivity (Table S3.5, Figure S3.2a), and by the interaction between climatic con-

ditions and emergence (weaker effect, RI = 0.45, Table S3.5, Figure S3.2b). The three-way

interaction between climatic conditions, connectivity and thermal preference was also in

the averaged best model but had a very weak relative importance (RI=0.09, Table S3.5).

In isolated populations, thermal preference had a marginally significant positive effect on

survival (estimate = 0.26, p = 0.077) whereas there was no effect in connected popula-

tions (estimate = -0.24, p = 0.147). In present-day climate, emergence had a marginally

significant positive effect on survival (estimate = 0.32, p = 0.065). There was no effect of

emergence on survival under warm climate (estimate=0.09, P=0.851). Annual survival of

juveniles was very weakly influenced by the interacting effect of connectivity and dorsal

darkness (RI = 0.08, Table S3.5). There was no other differential influence of thermal

traits on survival among climatic conditions or connectivity treatments.

In adults, the only significant selection gradient calculated on summer survival was a

negative selection gradient on thermal preference under present-day climatic conditions

in connected populations (βavggrad = -0.12 [-0.22;-0.02], Table S3.6). In juveniles, there

was a significant negative selection gradient on dorsal darkness under present-day climate

(βavggrad = -0.14 [-0.28;-0.01], Table S3.7) and a significant positive selection gradient

under warm climate (βavggrad = 0.17 [0.02;0.31], Table S3.7) in connected populations.

Over one year, there was a weak positive selection gradient on thermal preference of adults

under present-day climatic conditions in isolated populations (βavggrad = 0.06 [0;0.13],

Table S3.8). The gradient was significantly negative under present-day climatic conditions

in connected populations (βavggrad = -0.11 [-0.2;-0.01], Table S3.8). In juveniles, the

only significant selection gradient over one year concerned dorsal darkness in connected
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populations, under warm climate (βavggrad = 0.12 [0.01;0.24], Table S3.9). Overall, se-

lection differentials were consistent with selection gradients (Tables S3.6, S3.7, S3.8, S3.9).

However, in juveniles, selection differentials of thermal preference calculated on annual

survival were relatively high (between 0.14 an 0.25) whereas selection differential where

small and non significant (Table S3.9).

Finally, all traits were heritable with h2 of 0.25 ([0.10;0.41]), 0.18 ([0.05;0.35]) and

0.22 ([0.05;0.46]) for dorsal darkness, thermal preference and emergence respectively (Ta-

ble S3.10).

4.4 Dispersal

Adult summer dispersal (i.e. the period during which the climatic treatment occurred)

was driven by the interaction between thermal preference and climatic conditions in adults

(Table 3.5, Figure 3.4c). Dispersers from present-day climate had higher thermal prefer-

ence than residents of the present-day climate. Conversely, dispersers from warm climate

had lower thermal preference than residents in warm climate (Figure 3.4c). Dispersal

from warm to present-day climate was also influenced by emergence in adults. Dispersers

emerged earlier than resident individuals of the warm climate. There was no difference

in emergence between dispersers and residents of the present-day climate (Figure 3.4e,

Table 3.5). However, the climate dependent effect of emergence on dispersal was weak (RI

= 0.34, Table 3.5). In juveniles, dispersal was driven by the interaction between dorsal

darkness and climatic conditions. Dispersers were darker than residents in present-day

climate treatment and lighter than residents in the warm climate treatment (Table 3.5,

Figure 3.4b). Juveniles dispersing from warm climate treatment also preferred higher

temperature than residents. However the effect of thermal preference, depending on the

climatic conditions, on juvenile dispersal was weak (RI = 0.11, Table 3.5).

Dispersal pattern over one year was consistent with summer dispersal pattern. Indeed,

one-year dispersal was also influenced by the interacting effect of climatic conditions and

thermal preference in adults (Table S3.11, Figure S3.3). In Juveniles, the interacting effect

of climatic conditions and dorsal darkness on summer dispersal was also maintained over
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one year (Table S3.11, Figure S3.3).

4.5 Common garden

Adult and juvenile survival during the common garden was not dependent on the inter-

action between their climatic treatments or connectivity treatment during the experiment

and the climatic conditions during the common garden (Table S3.12). However, climatic

treatments during the three-year experiment interacted with adult phenotype to influence

survival during the common garden. Summer survival of individuals from connected pop-

ulations depended on the interaction between their previous treatment and their dorsal

darkness (Table 3.6). Darker adults after three years in the present day climatic treat-

ment better survived independently of the climatic condition during the common garden.

Conversely, darker adults after three years in the warm climatic treatment had a lower

survival independently of the climatic condition during the common garden (Table 3.6).

For individuals coming from isolated populations, emergence positively affected summer

survival in present-day enclosures of the common garden, but not in warm enclosures.

Emergence also interacted with previous climatic treatment to affect summer survival.

The three way interaction between emergence, climatic treatment during the experiment

and climatic treatment during the common garden was kept in the best model, but had

a very weak relative importance (RI = 0.02). Two way interactions between dorsal dark-

ness and climate during the common garden, dorsal darkness and the three-year climatic

treatment, and thermal preference and the three-year climatic treatment were also present

in the best model but had a weak effect (RI<0.25, Table 3.6).
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Figure 3.1 – Thermal traits of adults (a,c,e) and juveniles (b,d,e) after three years of
climatic and connectivity treatments. Dorsal darkness (a,b), thermal preference (c,d) and
daily emergence (e,f) in isolated and connected populations of present-day (blue circles)
and warm (red triangles) climatic conditions. Mean ± SE are represented
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Variable Estimate SE z-value P-value RI

Adult dorsal darkness
Intercept 29.95 2.64 11.30 <0.001 1
Age -9.49 3.14 3.01 0.003 1
Body size -2.40 1.34 1.78 0.075 0.72
Sex 4.17 1.45 2.87 0.004 1
Climate -4.64 2.49 1.85 0.065 0.71
Adult thermal preference
Intercept 25.06 1.13 22.06 <0.001 1
Body size 1.35 0.57 2.37 0.018 1
Sex 2.45 0.63 3.85 <0.001 1
Age 1.65 1.14 1.45 0.148 0.42
Connectivity 0.51 0.61 0.83 0.406 0.15
Climate -0.52 0.63 0.82 0.415 0.27
Adult emergence
Sexe 0.17 0.15 1.16 0.247 0.28
Body size -0.07 0.08 0.89 0.372 0.18
Connectivity 0.01 0.28 0.03 0.973 0.25
Emergence room 0.13 0.16 0.80 0.423 0.09
Climate 0.03 0.22 0.14 0.892 0.16
Climate*Connectivity -0.56 0.35 1.60 0.111 0.08
Age 0.04 0.15 0.24 0.812 0.07
Juvenile dorsal darkness
Intercept 51.72 2.83 18.13 <0.001 1
Birth date 4.25 1.63 2.59 0.010 1
Sex 4.23 1.65 2.53 0.011 1
Climate -5.06 3.06 1.64 0.101 0.6
Connectivity 6.18 3.22 1.90 0.057 0.69
Body size -1.12 1.16 0.96 0.338 0.16
Juvenile thermal preference
Intercept 27.97 0.84 32.82 <0.001 1
Body size 0.81 0.35 2.30 0.022 1
Sex -0.50 0.58 0.85 0.398 0.24
Climate 0.70 0.87 0.79 0.429 0.23
Juvenile emergence
Body size 0.39 0.10 3.74 <0.001 1
Sex 0.29 0.19 1.51 0.130 0.58
Birth date 0.05 0.09 0.53 0.595 0.25
Connectivity 0.06 0.19 0.30 0.765 0.12

Table 3.1 – Thermal traits of adults and juveniles after three years of climatic and connec-
tivity treatments. The random structure of models are as follow. Adult dorsal darkness:
enclosure identity; Adult thermal preference: enclosure identity, session and arena iden-
tity; Adult emergence: enclosure identity; Juveniles dorsal darkness: family identity; Ju-
venile thermal preference: family identity, session and arena identity; Juvenile emergence:
enclosure identity
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Figure 3.2 – Plasticity in thermal traits of adults (a,c,e) and juveniles (b,d,e) averaged
over the three years of experiment. Plasticity in dorsal darkness (a,b), thermal preference
(c,d) and daily emergence (e,f) in isolated and connected populations of present-day (blue
circles) and warm (red triangles) climatic conditions. Mean ± SE are represented
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Variable Estimate SE z-value P-value RI

Adult plasticity for dorsal darkness
Intercept 3.17 1.43 2.20 0.028 1
Age 3.13 1.25 2.50 0.013 1
Year2 -4.45 1.55 2.85 0.004 1
Year3 2.12 1.50 1.41 0.159 1
Sex 2.59 1.24 2.08 0.038 1
Climate -1.52 1.26 1.21 0.227 0.35
Connectivity 0.47 1.35 0.35 0.728 0.18
Adult plasticity for thermal preference
Intercept -0.01 0.68 0.01 0.993 1
Year2 0.91 0.86 1.05 0.294 1
Year3 -1.84 0.83 2.19 0.028 1
Connectivity 0.79 0.75 1.06 0.290 0.25
Sex 0.54 0.69 0.78 0.436 0.19
Age -0.24 0.69 0.35 0.729 0.15
Adult plasticity for emergence
Intercept -0.60 0.20 3.04 0.002 1
Year2 -0.48 0.25 1.91 0.056 1
Year3 1.08 0.24 4.45 0.000 1
Connectivity -0.25 0.22 1.16 0.246 0.24
Sex 0.11 0.20 0.53 0.598 0.14
Body growth 0.05 0.11 0.45 0.652 0.14
Climate 0.08 0.20 0.39 0.693 0.13

Table 3.2 – Plasticity in thermal traits of adults after three years of climatic and connec-
tivity treatments. The random structure for all model was without random intercept
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Variable Estimate SE z-value P-value RI

Juvenile plasticity for dorsal darkness
Intercept 0.55 0.29 1.86 0.063 1
Year3 -1.07 0.35 3.02 0.003 1
Body growth -0.48 0.15 3.22 0.001 1
Birth date -0.63 0.14 4.56 0.000 1
Sex 0.33 0.18 1.8 0.072 0.68
Climate -0.37 0.27 1.34 0.181 0.4
Connectivity 0.15 0.28 0.52 0.601 0.11
juvenile plasticity for thermal preference
Intercept 3.08 1.25 2.45 0.014 1
Year3 -4.68 1.14 4.07 0.000 1
Climate 1.3 1.33 0.97 0.330 0.61
Connectivity 1.09 1.53 0.71 0.479 0.62
Climate*Connectivity 2.82 2.14 1.31 0.191 0.22
Sex 1.16 1.02 1.12 0.263 0.35
Birth date -0.48 0.57 0.84 0.400 0.12
Body growth 0.86 0.64 1.33 0.184 0.12
Juvenile plasticity for emergence
Intercept -0.85 0.39 2.16 0.031 1
Year3 1.02 0.42 2.41 0.016 0.58
Birth date 0.41 0.21 2 0.045 0.8
Climate 0.8 0.51 1.58 0.114 0.7
Sex 0.37 0.33 1.12 0.261 0.17
Body growth -0.46 0.24 1.87 0.061 0.56
Connectivity 0.82 0.59 1.37 0.170 0.27
Climate*Connectivity -1.06 0.72 1.46 0.145 0.14

Table 3.3 – Plasticity in thermal traits of juveniles after three years of climatic and
connectivity treatments. The best random structure for all model was without random
intercept, except for plasticity in dorsal darkness where family identity was modeled as
random intercept
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Variable Estimate SE z-value P-value RI

Adult summer survival probability
Intercept 2.13 0.53 3.99 <0.001 1
Age -0.55 0.35 1.54 0.125 0.57
Year2 -0.79 0.33 2.40 0.017 0.84
Year3 -0.46 0.36 1.28 0.201 0.84
Dorsal darkness -0.30 0.19 1.59 0.111 0.92
Body size -0.44 0.21 2.12 0.034 1
Thermal preference -0.20 0.19 1.04 0.297 1
Connectivity -0.50 0.57 0.87 0.387 0.92
Connectivity*Dorsal darkness 0.62 0.24 2.54 0.011 0.92
Connectivity*Thermal preference -0.38 0.24 1.54 0.123 0.52
Sex -0.23 0.31 0.73 0.463 0.14
Emergence 0.05 0.13 0.40 0.692 0.06
Juvenile summer survival probability
Intercept 1.14 0.71 1.60 0.109 1
Dorsal darkness 0.84 0.25 3.40 0.001 1
Climate -0.38 0.98 0.39 0.699 1
Connectivity -1.10 0.93 1.19 0.236 1
Climate*Dorsal darkness -0.91 0.31 2.89 0.004 1
Connectivity*Dorsal darkness -1.35 0.34 3.95 <0.001 1
Climate*Connectivity 0.57 1.30 0.44 0.658 1
Climate*Connectivity*Dorsal darkness 1.30 0.45 2.86 0.004 1
Emergence -0.12 0.10 1.21 0.226 0.19
Body size 0.09 0.11 0.82 0.414 0.13
Thermal preference -0.13 0.15 0.88 0.377 0.21
Year3 -0.20 0.34 0.58 0.562 0.11
Birth date 0.07 0.13 0.57 0.571 0.11
Climate*Thermal preference 0.29 0.21 1.36 0.175 0.1

Table 3.4 – Summer survival of adults and juveniles. The random structure of models
are as follow. Adult summer survival probability: enclosure identity; Juvenile summer
survival probability: enclosure identity and family identity
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Variable Estimate SE z-value P-value RI

Adult summer dispersal
Intercept -1.95 0.48 4.01 <0.001 1
Dorsal darkness -0.40 0.25 1.58 0.114 0.64
Thermal preference 0.88 0.35 2.53 0.012 1
Climate -0.56 0.50 1.13 0.259 1
Climate*Thermal preference -1.35 0.51 2.62 0.009 1
Emergence 0.20 0.32 0.63 0.528 0.39
Climate*Emergence -1.13 0.64 1.75 0.080 0.34
Year2 0.93 0.54 1.70 0.088 0.35
Year3 0.20 0.68 0.30 0.767 0.35
Body size -0.15 0.24 0.62 0.533 0.1
Sex 0.32 0.50 0.65 0.516 0.1
Juvenile summer dispersal
Intercept -2.16 0.58 3.69 <0.001 1
Dorsal darkness 0.72 0.4 1.81 0.070 1
Sex 1.26 0.59 2.12 0.034 1
Climate -1.85 0.87 2.12 0.034 1
Climate*Dorsal darkness -1.52 0.84 1.81 0.071 1
Year3 -1.1 0.89 1.23 0.218 0.39
Thermal preference 0.33 0.32 1.04 0.300 0.49
Climate*Thermal preference 1.02 0.98 1.04 0.300 0.11

Table 3.5 – Summer dispersal probability of adults and juveniles. The random structure
of models are as follow. Adult summer dispersal: NA; Juvenile summer dispersal: NA
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Variable Estimate SE z-value P-value RI

Common garden - Adult summer survival - isolated populations
Intercept 3.47 1.45 2.38 0.017 1
Emergence 2.41 1.3 1.83 0.067 1
Thermal preference 0.51 0.37 1.36 0.175 0.69
Climate exp -1.1 0.79 1.37 0.169 0.85
Climate common garden -0.74 1.53 0.48 0.631 0.87
Emergence*Climate exp 1.43 1.05 1.34 0.179 0.49
Emergence*Climate common garden -3.07 1.4 2.17 0.030 0.87
Dorsal darkness -0.87 0.58 1.5 0.133 0.55
Dorsal darkness*Climate common garden 0.96 0.69 1.37 0.170 0.1
Dorsal darkness*Climare exp 0.95 0.59 1.61 0.108 0.23
Climate exp*Climate common garden -1.41 1.51 0.92 0.355 0.11
Thermal preference*Climate exp 0.65 0.48 1.35 0.177 0.11
Sex 0.79 0.64 1.22 0.223 0.1
Emergence*Climate exp*Climate common garden 3.02 2.71 1.1 0.271 0.02
Common garden - Adult summer survival - connected populations
Intercept 1.61 0.88 1.8 0.072 1
Dorsal darkness 1.77 1.01 1.71 0.087 1
Climate exp -0.1 0.91 0.11 0.911 1
Dorsal darkness*Climate exp -3.11 1.11 2.75 0.006 1
Body saize 0.53 0.44 1.19 0.236 0.33
Age -0.7 0.88 0.78 0.434 0.2

Table 3.6 – Summer survival of adults for isolated and connected populations during the
common garden experiment. The random structure of models are as follow. Isolated
populations: common garden enclosure identity; Connected populations: NA
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Figure 3.3 – Impact of dorsal darkness on the summer survival of juveniles. Summer
survival probability of juveniles as a function of dorsal darkness at birth in isolated (a)
and connected (b) populations of present-day (blue) and warm (red) climatic conditions.
Dots represent observed data. Lines represent predicts of the model presented in Table 3.4,
run on data in isolated (a) and connected (b) populations respectively
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Figure 3.4 – Thermal traits of adult (a,c,e) and juvenile (b,d,e) summer dispersers and
residents depending on climatic conditions. Dorsal darkness (a,b), thermal preference
(c,d) and daily emergence (e,f) of summer residents (yellow circles) and summer dispersers
(green triangles) from population of present-day and warm climatic conditions. Mean ±
SE are represented
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5 Discussion

Thermal phenotypic distribution of populations was variably influenced by the 3-years

long manipulation of climatic conditions and habitat connectivity. Adult individuals be-

came paler in warmer climate than in present-day climate, mostly in isolated populations.

This difference in darkness was also observed at birth, but to a lower extent. This pheno-

typic differentiation among climates mostly resulted from phenotypic plasticity in isolated

populations, while it resulted from the joint action of plasticity, selection and dispersal in

connected populations. Whereas plasticity increased juvenile dorsal darkness in present-

day climate, selection and dispersal acted in synergy to both reduce dorsal darkness in

present-day climate and increase it in warm climate. Other thermal traits were weakly

influenced by the climatic manipulation, but were affected by habitat connectivity.

The most salient result is that individuals were paler in warmer climate than in present-

day climate, mostly in isolated populations. Conversely, thermal preference and emer-

gence were not strongly affected by the climatic conditions. Climate change is known

to affect color pattern of organisms (e.g. Galeotti et al., 2009; Zeuss et al., 2014).

Melanin-based darkness is involved in many physiological processes such as thermoregu-

lation (Trullas et al., 2007), defense against pathogens (Roulin, 2014; Côte et al., 2018),

UV protection (Roulin, 2014) and is linked to behavioral traits (Ducrest et al., 2008). In

ectotherms, the thermal melanism hypothesis (Trullas et al., 2007) predicts that darker

individuals should be more at risk of overheating under warm conditions than paler indi-

viduals, explaining the geographic distribution of organisms along latitudes and altitudes

(Castella et al., 2013; Zeuss et al., 2014). Whereas external temperature exceeds thermal

limits of ectotherms (Sunday et al., 2014), changes in traits related to the management

of thermal conditions such as thermal parameters (optimum, preference and limits), col-

oration or behavioral profile could reduce mortality risks and extinction (Sinervo et al.,

2010). In the case of coloration, we expect climate change to reduce individual darkness

in ectotherm to diminish risks of overheating (Zeuss et al., 2014). Our results support

this prediction in isolated populations. On the contrary, we did not observe strong ef-
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fects of climatic conditions on thermal preference or emergence, suggesting an absence of

physiological and behavioral adjustment to climatic conditions. In the common lizard,

physiological parameters have been shown to be consistent over space and conditions,

highlighting the relative rigidity of thermal physiology to evolution (Van Damme et al.

(1990), but see Angilletta et al. (2002)). Moreover, we measured phenotypes 6 months

after the end of the climatic treatment, allowing seasonal readjustment of behaviors. In-

deed, early emergence could bring an advantage under warm climate in summer, when

temperatures during the warmest hours of the day exceed thermal limits (Sinervo et al.,

2010). However, winter and spring temperatures rarely exceed thermal limits, making

behavioral adjustments less beneficial.

In isolated populations, adult and juvenile individuals became darker in present-day

climate mostly due to phenotypic plasticity. Although statistical support was low in both

juveniles and adults, the two stages showed the same plastic trend toward an increase in

dorsal darkness in present-day climate relative to warmer climates. Phenotypic plasticity

is responsible for the great majority of observed phenotypic changes driven by climate

change (Charmantier et al., 2008; Charmantier & Gienapp, 2014; Boutin & Lane, 2014;

Urban et al., 2014). Evidence of evolutionary adaptation related to climate change is

scarce, also because of the difficulty to demonstrate it (Merilä & Hendry, 2014). Never-

theless, when appropriate methods were used, only a small portion of phenotypic changes

were due to evolutionary adaptation (e.g. 13% of the advance in breeding timing of North

American red squirrel populations (Réale et al., 2003)). although thermal traits measured

in our study were heritable, selection differentials and gradients related to climatic con-

ditions were not strong in isolated populations. It should, however, be noted that in

juveniles, selection gradients pointed in the same direction as phenotypic plasticity. On

their own, these selection gradients were not strong enough to drive phenotypic changes

and differentiation among climates, but may have strengthened effects of climate-induced

plasticity.

When populations were connected, evolutionary adaptation and adaptive dispersal,

however, offset the influence of phenotypic plasticity. In juveniles, while plasticity slightly
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increased dorsal darkness in present-day climate populations, selection during summer fa-

vored darker individuals in warm climatic conditions and paler individuals in present-day

climatic conditions. As a result, dorsal darkness was not different between climates at

the end of the experiment in connected populations (Figure 3.1a). Evolutionary adap-

tation, dispersal and phenotypic plasticity are predicted to interact to shape population

phenotypic change (Crispo, 2008). First, dispersal could constrain evolutionary adap-

tation through maladaptive gene flow (Lenormand, 2002) but could also promote it by

bringing adapted genes, increasing genetic diversity on which selection could act and

reducing genetic drift (reviewed in Garant et al., 2007). We demonstrated here that dis-

persal was adaptive regarding dorsal darkness in juveniles; individuals with the lowest

survival expectation dispersed more than individuals with advantageous phenotypes in

both climatic conditions. Surprisingly, we observed that dispersal modified the strength

and the direction of selection gradients on phenotypic traits in comparison to a situation

without dispersal. Matching habitat choice is predicted to promote populations differen-

tiation (Edelaar & Bolnick, 2012; Bolnick & Otto, 2013; Scheiner, 2016; Edelaar et al.,

2017), but the spatial sorting of individuals should lessen selective pressures on traits as

maladapted individuals escape selection via dispersal. However, dispersal reduces local

inbreeding and brings phenotypic and genetic diversity on which the selection could act

(Garant et al., 2007). Dispersal is indeed not only driven by the match between pheno-

type and climate. For instance, morphological characteristics, resource availability and

competition also drive dispersal decisions (e.g. Thomas et al., 2001; Cote & Clobert,

2007b; Clobert et al., 2012) and therefore not all the individuals unmatched with local

climatic conditions are able to or make the decision to disperse. Some individuals with

low dorsal darkness indeed stayed in warmer condition and conversely for darker individ-

uals in present-day climate. As the proportion of adapted individuals increased through

dispersal, less adapted individuals might suffer from intraspecific competition with bet-

ter adapted individuals. As a consequence, selection against these individuals could be

stronger in presence of adaptive dispersal than without. However, this hypothesis failed

to explain why the direction of the selection gradients between connected and isolated
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populations were opposed.

An alternative hypothesis to explain the change in the direction and the strength of

selection gradients in presence of dispersal could be linked to the thermal strategies of

the individuals. Dorsal darkness could be part of a thermal syndrome in which indi-

viduals preferring warmer conditions will be characterized, among many traits, by high

dorsal darkness. Darker individuals should warm up faster and could therefore prefer

high temperature. These individuals should on average better perform in warm climate

than individuals preferring cooler climates, explaining the observed pattern of disper-

sal. However, periods of extreme temperature should induce a high risk of mortality for

darker individuals because of their higher risk to overheat (thermal melanism hypothesis

(Trullas et al., 2007)). In connected populations, movement between microclimates may

allow these individuals to temporally escape the periods of extreme temperature. In iso-

lated populations, as individuals are constrained into one microclimatic condition, darker

individuals could be counter-selected by extreme temperature periods in warm climate,

explaining the inverse pattern of selection that we observed between isolated and con-

nected populations. Experiment manipulating extreme climatic events could bring new

elements supporting this hypothesis.

Dispersal may also favor phenotypic plasticity over evolutionary adaptation as dis-

perser success depends on their ability to adapt fast to their new habitat (Crispo, 2008).

Phenotypic plasticity should therefore be favored in presence of dispersal (Sultan &

Spencer, 2002). However, this prediction relies on the fact that dispersal is random.

In our case, dispersers arriving in warm or present-day climatic conditions are already

adapted to the new condition as the interaction between their phenotype and climate

drove their dispersal decisions. Moreover, matching habitat choice could be seen as an-

other way of plastically respond to environmental variations. Indeed, individuals could

move rather than plastically adjust their phenotype to the local condition.

Finally, phenotypic plasticity may release selective pressures on phenotypes, reducing

evolutionary adaptation (Price et al., 2003; Crispo, 2008; Hendry, 2015). However, pre-

vious works suggested that initial phenotypic change due to phenotypic plasticity may
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be followed by evolutionary changes in the same direction as phenotypic plasticity (i.e.

cogradient variation (Conover & Schultz, 1995; Hendry, 2015)). Conversely, phenotypic

plasticity and selection pressures could drive phenotypes in opposite directions (i.e. coun-

tergradient variation (Conover & Schultz, 1995)). In the latter case, phenotypic plasticity

is assumed to be maladaptive and should be reduced in favor of evolutionary adaptation.

In connected populations, we observed such countergradient variation in juvenile dorsal

darkness, even if the difference in plasticity was low among climatic conditions. However,

we did not observe that plastic changes were maladaptive. Juveniles which became darker

in present-day climate the first year were not counter-selected at the adult stage, as no

selection pressures acted on dorsal darkness in adults. This result suggested that selec-

tion acting on the early stage of life could be reversed later in life. Phenotypic plasticity

may allow individuals to cope with local climate despite evolutionary adaptation driving

phenotypes in the opposite direction earlier in the life.

The structure of the landscape thus appeared to influence the mechanisms by which

population responded to the local climatic conditions. Selective pressures related to cli-

matic conditions might also be offset by selection pressures related to landscape struc-

ture. We observed in adults that summer and annual survival were influenced by the

interaction between landscape structure and thermal preference. Over one year, selec-

tion gradients on thermal preference were positive and negative in present day climate of

isolated and connected populations respectively (Table S3.8), underlying the influence of

landscape structure on the direction of selection acting on phenotypes. Previous studies

demonstrated that landscape structure could select for traits related to dispersal (e.g.

emigration probability (Bonte et al., 2006; Schtickzelle et al., 2006), wing shape (Taylor

& Merriam, 1995), body size (Thomas et al., 1998; Hill et al., 1999)) or competition (e.g.

competitive skills (Knell, 2009)). Multiple morphological, physiological and behavioral

traits often correlate to form dispersal syndromes (Clobert et al., 2009, 2012; Cote et al.,

2017). Landscape structure could therefore select for multiple traits and correlations that

either enhance or hamper dispersal. Selection pressures driven by climatic conditions and

landscape structure could act directly or indirectly on the same traits and pull phenotypes
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in the same or opposite directions. Fully crossed experiments manipulating both climatic

conditions and landscape structure could help better distinguish between the pressures

induced by the two treatments. Our experiment, constituted of pairs of present-day and

warm climatic treatments, limited our abilities to distinguish between climatic and land-

scape induced selective pressures on the traits. Isolated and connected pairs of enclosures

with homogeneous climatic conditions (both enclosures with the same climatic treatment),

associated with our current treatments, could reveal the role of landscape structure on

population differentiation, independently of the climatic conditions.

Finally, we did not observe any interaction between the climatic conditions during the

main experiment and during the common garden on survival which would have suggested

an adaptation (or maldaptation) induced by our treatments. However, some phenotypes

performed better in both climates than others, and the favored phenotypes were shaped

by our three years of treatments. Darker adult individuals from the 2015-2018 present-day

climate of the connected treatment indeed survived better than paler individuals during

the common garden experiment, whatever the climatic conditions during the common

garden. Conversely, paler adult individuals from the warm climate treatment performed

better than darker individuals during the common garden. One explanation could be

that these advantaged phenotypes might be more plastic than the others as they were

able to better performed in both climatic conditions of the common garden. As phenotypic

plasticity can evolve (e.g. Crispo et al., 2010), the conditions experienced by individuals

from 2015 to 2018 might have selected for different levels of plasticity. Depending on

the climatic treatment, more plastic individuals might have different phenotypic values

depending on the selective pressures acting in each condition. Further analyses could

link phenotypic values to the level of plasticity and whether degrees of plasticity could

influence survival in both climatic conditions.

Altogether, our results highlighted the influence of landscape structure on population

adaptation to different climatic conditions. Despite the low population phenotypic dif-

ferentiation at the end of the experiment, we demonstrated that phenotypic plasticity,

evolutionary adaptation and adaptive dispersal influenced population phenotypic compo-
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sition under varying climatic conditions. In contrast to previous studies (e.g. Sultan

& Spencer, 2002), we found that connectivity among habitats favored climate-dependent

selection pressures on phenotypes. Moreover, we showed that dispersal could modify the

strength and direction of the selective pressures acting on phenotypes. We believe that

the mechanisms involved in population adaptation to different thermal conditions that

we highlighted in this study could also play a major role under climate change. We thus

advocate future studies to include landscape structure and dispersal mechanisms when

studying and predicting species response to climate change.

6 Supplementary materials

a b

Isolated Connected

Figure S3.1 – Impact of dorsal darkness (a) and thermal preference (b) on the summer
survival of adults in isolated (green) and connected (yellow) populations. Dots represent
observed data. Lines represent predicts of the model presented in Table 3.4 for adult
summer survival

102



a b

Isolated Connected Present-day Warm

Figure S3.2 – Impact of thermal preference (a) and emergence (b) on the annual survival
of adults, in isolated (green) and connected (yellow) populations (thermal preference
only) or in present-day (blue) and warm (red) climatic conditions (emergence only). Dots
represent observed data. Lines represent predicts of the model presented in Table S3.5
for adult annual survival
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Figure S3.3 – Thermal traits of adult (a,c,e) and juvenile (b,d,e) annual dispersers and
residents depending on climatic conditions. Dorsal darkness (a,b), thermal preference
(c,d) and daily emergence (e,f) of annual residents (yellow circles) and annual dispersers
(green triangles) from population of present-day and warm climatic conditions. Mean ±
SE are represented
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Variable Estimate SE z-value P-value RI

Adult dorsal darkness
Intercept 30.28 2.11 14.21 <0.001 1
Age -5.94 3.5 1.69 0.092 1
Sex 5.19 1.85 2.77 0.006 1
Climate -5.96 1.74 3.4 0.001 1
Body size -2.3 1.86 1.22 0.221 0.42
Adult thermal preference
Intercept 25.6 1.11 22.92 <0.001 1
Body size 1.27 0.55 2.29 0.022 1
Sex 1.6 0.76 2.09 0.037 1
Climate -0.77 0.73 1.05 0.293 0.28
Age 1.29 1.62 0.79 0.432 0.22
Adult emergence
Climate 0.14 0.26 0.54 0.588 0.31
Emergence room -0.60 0.46 1.31 0.192 0.4
Body size -0.20 0.15 1.33 0.183 0.42
Sex 0.54 0.31 1.72 0.086 0.26
Age 0.30 0.26 1.14 0.255 0.25
Juvenile dorsal darkness
Intercept 55.38 2.56 21.39 <0.001 1
Birth date 4.01 1.2 3.29 0.001 1
Sex 4.09 2.26 1.79 0.074 0.7
Climate -5.87 2.51 2.3 0.022 1
Body size 0.89 1.21 0.73 0.467 0.21
juvenile thermal preference
Intercept 27.68 0.9 30.48 <0.001 1
Body size 0.78 0.51 1.51 0.131 0.43
Birth date 0.66 0.61 1.06 0.288 0.25
Climate 1.12 1.24 0.89 0.374 0.21
Sex -0.5 0.76 0.64 0.522 0.09
Juvenile emergence
Birth date 0.31 0.13 2.33 0.020 1
Body size 0.34 0.14 2.39 0.017 1
Climate -0.29 0.29 1.00 0.317 0.28
Sex 0.16 0.25 0.62 0.536 0.21

Table S3.1 – Thermal traits of adults and juveniles after three years of climatic treatments
in isolated populations. The random structure of models are as follow. Adult dorsal
darkness: NA; Adult thermal preference: enclosure identity and session; Adult emergence:
enclosure identity; Juveniles dorsal darkness: NA; Juvenile thermal preference: family
identity and arena identity; Juvenile emergence: enclosure identity
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Variable Estimate SE z-value P-value RI

Adult dorsal darkness
Intercept 28.31 2.74 10.2 <0.001 1
Age -7.71 2.8 2.71 0.007 1
Sex 3.04 2.16 1.38 0.168 0.4
Climate -2.59 2.43 1.04 0.297 0.31
Body size -1.95 1.98 0.97 0.332 0.15
Adult thermal preference
Intercept 25.14 1.04 23.8 <0.001 1
Sex 3.32 1.12 2.9 0.004 1
Body size 0.67 0.57 1.15 0.250 0.25
Age -1.09 1.13 0.95 0.343 0.2
Climate 0.85 1.24 0.67 0.502 0.16
Adult emergence
Sex 0.44 0.26 1.69 0.090 0.48
Emergence room 0.40 0.28 1.44 0.149 0.27
Climate -0.30 0.29 1.06 0.291 0.34
Age -0.12 0.26 0.48 0.631 0.1
Juvenile dorsal darkness
Intercept 53.22 2.9 17.95 <0.001 1
Body size -2.85 1.56 1.79 0.073 0.56
Sex 4.53 2.78 1.59 0.111 0.48
Birth date 2.97 2.42 1.2 0.231 0.27
juvenile thermal preference
Intercept 28.39 0.71 39 <0.001 1
Birth date -1.03 0.45 2.25 0.025 0.85
Sex -1.55 0.85 1.77 0.076 0.5
Body size 0.71 0.52 1.34 0.180 0.45
Juvenile emergence
Birth date -0.29 0.19 1.53 0.126 0.61
Climate -0.23 0.49 0.47 0.637 0.31
Sex 0.19 0.31 0.60 0.548 0.13

Table S3.2 – Thermal traits of adults and juveniles after three years of climatic treat-
ments in connected populations. The random structure of models are as follow. Adult
dorsal darkness: NA; Adult thermal preference: NA; Adult emergence: enclosure identity;
Juveniles dorsal darkness: family identity; Juvenile thermal preference: arena identity;
Juvenile emergence: enclosure identity
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Variable Estimate SE z-value P-value RI

Adult plasticity for dorsal darkness
Intercept 2.48 1.87 1.32 0.186 1
Age 2.40 1.44 1.66 0.097 0.47
Year2 -2.22 1.94 1.14 0.256 1
Year3 5.14 1.79 2.85 0.004 1
Sex 2.95 1.43 2.04 0.041 1
Climate -2.61 1.44 1.80 0.072 0.72
Body growth 1.10 0.76 1.44 0.151 0.2
Adult plasticity for thermal preference
Intercept -0.16 0.89 0.18 0.855 1
Year2 0.70 1.13 0.62 0.538 1
Year3 -1.97 1.06 1.85 0.064 1
Sex 0.81 0.85 0.95 0.340 0.24
Climate 0.35 0.85 0.40 0.686 0.16
Body growth 0.18 0.45 0.39 0.695 0.16
Adult plasticity for emergence
Intercept -0.57 0.25 2.28 0.023 1
Year2 -0.52 0.32 1.61 0.107 1
Year3 1.25 0.30 4.16 <0.001 1
Age -0.16 0.24 0.64 0.521 0.3
Juvenile plasticity for dorsal darkness
Intercept -0.08 0.32 0.25 0.801 1
Body growth -0.32 0.17 1.81 0.071 0.7
Birth date -0.52 0.16 3.23 0.001 1
Sex 0.59 0.24 2.42 0.016 1
Climate -0.52 0.38 1.37 0.172 0.37
Year3 -0.47 0.45 1.03 0.303 0.17
juvenile plasticity for thermal preference
Intercept 3.59 1.01 3.56 0.001 1
Year3 -4.71 1.37 -3.45 0.001 1
Juvenile plasticity for emergence
Intercept -1.18 0.42 2.76 0.006 1
Body growth -0.78 0.23 3.29 0.001 1
Climate 1.54 0.52 2.94 0.003 1
Birth date 0.12 0.23 0.51 0.611 0.27

Table S3.3 – Plasticity in thermal traits of adults and juveniles after three years of climatic
treatments in isolated populations. The best random structure for all model was no
random intercept, except for plasticity in dorsal darkness of juveniles where family identity
was modeled as random intercept
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Variable Estimate SE z-value P-value RI

Adult plasticity for dorsal darkness
Intercept 4.55 2.56 1.76 0.078 1
Age 6.63 3.06 2.14 0.032 1
Year2 -7.34 2.87 2.53 0.012 0.84
Year3 -3.50 3.00 1.15 0.249 0.84
Body growth -2.21 1.62 1.35 0.177 0.36
Climate 2.26 2.46 0.91 0.365 0.16
Sex 1.78 2.36 0.74 0.458 0.14
Adult plasticity for thermal preference
Intercept 0.60 0.79 0.75 0.453 1
Climate -1.04 1.19 0.86 0.391 0.21
Year2 1.37 1.38 0.98 0.328 0.18
Year3 -1.23 1.48 0.82 0.412 0.18
Age -0.81 1.22 0.65 0.514 0.18
Adult plasticity for emergence
Intercept -0.81 0.29 2.80 0.005 1
Climate 0.42 0.36 1.16 0.246 0.37
Age 0.43 0.36 1.18 0.240 0.22
Year2 -0.44 0.42 1.04 0.300 0.19
Year3 0.44 0.45 0.95 0.342 0.19
Sex 0.37 0.35 1.05 0.296 0.19
Body growth 0.14 0.18 0.77 0.441 0.09
Juvenile plasticity for dorsal darkness
Intercept 1.09 0.4 2.64 0.008 1
Year3 -1.81 0.5 3.52 <0.001 1
Body growth -0.42 0.19 2.18 0.029 1
Birth date -0.75 0.21 3.44 0.001 1
Climate -0.52 0.37 1.37 0.170 0.41
juvenile plasticity for thermal preference
Intercept 3.2 1.56 2.01 0.044 1
Year3 -5.04 1.66 2.97 0.003 1
Climate 3.3 1.46 2.2 0.028 1
Sex 1.83 1.44 1.24 0.217 0.28
Birth date -0.64 0.87 0.72 0.472 0.16
Body growth 0.71 0.99 0.7 0.485 0.16
Juvenile plasticity for emergence
Intercept -0.12 0.34 0.35 0.727 1
Birth date 0.32 0.28 1.13 0.260 0.29
Sex 0.39 0.49 0.77 0.442 0.14
Body growth -0.18 0.25 0.73 0.468 0.14
Year3 0.5 0.59 0.82 0.413 0.24

Table S3.4 – Plasticity in thermal traits of adults and juveniles after three years of climatic
treatments in connected populations. The best random structure for all model was no
random intercept, except for plasticity in dorsal darkness of juveniles where family identity
was modeled as random intercept
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Variable Estimate SE z-value P-value RI

Adult annual survival probability
Intercept 0.41 0.45 0.91 0.361 1
Age 0.31 0.21 1.50 0.135 0.47
Year2 -0.94 0.26 3.60 <0.001 1
Year3 -0.52 0.30 1.75 0.081 1
Thermal preference 0.26 0.16 1.61 0.108 0.96
Sex 0.68 0.22 3.09 0.002 1
Connectivity -0.70 0.55 1.27 0.205 0.96
Connectivity*Thermal preference -0.55 0.24 2.34 0.019 0.96
Emergence 0.27 0.17 1.60 0.109 0.7
Climate -0.25 0.60 0.42 0.678 0.45
Climate*Emergence -0.40 0.20 1.96 0.050 0.45
Body size -0.11 0.11 1.00 0.318 0.15
Climate*Thermal preference -0.38 0.28 1.38 0.167 0.09
Climate*Connectivity 0.82 0.94 0.87 0.384 0.09
Climate*Connectivity*Thermal preference 0.83 0.40 2.10 0.036 0.09
Dorsal darkness 0.08 0.11 0.71 0.477 0.12
Juvenile annual survival probability
Intercept -1.57 0.46 3.42 0.001 1
Thermal preference -0.20 0.11 1.77 0.077 0.79
Climate 0.83 0.63 1.32 0.187 0.4
Birth date -0.16 0.13 1.21 0.226 0.22
Emergence 0.12 0.11 1.08 0.281 0.21
Year3 0.22 0.24 0.90 0.368 0.09
Dorsal darkness -0.03 0.19 0.17 0.864 0.15
Connectivity -0.04 0.65 0.06 0.955 0.08
Connectivity*Dorsal darkness 0.52 0.25 2.06 0.040 0.08
Sex 0.15 0.22 0.70 0.487 0.1
Body size 0.03 0.13 0.28 0.782 0.03

Table S3.5 – Annual survival of adults and juveniles. The random structure of models are
as follow. Adult annual survival probability: enclosure identity; Juvenile annual survival
probability: enclosure identity and family identity
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Variable Estimate SE z-value P-value RI

Adult annual dispersal
Intercept -1.02 0.41 2.49 0.013 1
Thermal preference 1.28 0.40 3.15 0.002 1
Climate -0.89 0.54 1.62 0.106 1
Climate*Thermal preference -1.39 0.63 2.20 0.028 1
Emergence 0.32 0.26 1.21 0.225 0.23
Body size 0.30 0.29 1.02 0.306 0.19
Sex 0.33 0.57 0.57 0.571 0.13
Dorsal darkness 0.14 0.26 0.53 0.593 0.13
Juvenile annual dispersal
Intercept 2.49 0.94 2.66 0.008 1
Climate -1.63 0.71 -2.29 0.022 1
Dorsal darkness 2.40 0.69 3.49 0.000 1
Year3 -4.90 1.45 -3.39 0.001 1
Birth date -1.13 0.51 -2.21 0.027 1
Climate*Dorsal darkness -1.43 0.70 -2.06 0.040 1

Table S3.11 – Annual dispersal probability of adults and juveniles. The random structure
of models are as follow. Adult annual dispersal: NA; Juvenile annual dispersal: NA
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Variable Estimate SE z-value P-value RI

Common garden - Adult summer survival
Intercept 1.73 0.53 3.24 0.001 1
Body size 0.23 0.2 1.18 0.237 0.19
Climate exp -0.28 0.41 0.67 0.503 0.12
Age -0.2 0.39 0.52 0.603 0.11
Connectivity exp 0.21 0.42 0.51 0.613 0.11
Sex 0.17 0.39 0.44 0.658 0.11
Climate common garden 0.36 0.92 0.39 0.699 0.1
Common garden - Juvenile summer survival
Intercept 1.1 0.51 2.15 0.032 1
Climate common garden 0.8 0.87 0.9 0.366 0.27
Birth date -0.18 0.21 0.86 0.389 0.25

Table S3.12 – Summer survival of adults and juveniles during the common garden exper-
iment. The random structure of models are as follow. Adult summer survival: common
garden enclosure identity; Juvenile summer survival: common garden enclosure identity
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1 Abstract

Species may survive under contemporary climate change by either shifting their range

or adapting locally to the warmer conditions. Theoretical and empirical studies recently

underlined that dispersal, the central mechanism behind these responses, may depend

on the match between an individuals’ phenotype and local environment. Such match-

ing habitat choice is expected to induce an adaptive gene flow, but it now remains to

be studied whether this local process could promote species’ responses to climate change.

Here, we investigate this by developing an individual-based model including either random

dispersal or temperature-dependent matching habitat choice. We monitored population

composition and distribution through space and time under climate change. Relative to

random dispersal, matching habitat choice induced an adaptive gene flow that lessened

spatial range loss during climate warming by improving populations’ viability within the

range (i.e. limiting range fragmentation) and by facilitating colonization of new habitats

at the cold margin. The model even predicted range contraction under random dispersal

but range expansion under optimal matching habitat choice. These benefits of matching

habitat choice for population persistence mostly resulted from adaptive immigration deci-

sion and were greater for populations with larger dispersal distance and higher emigration

probability. We also found that environmental stochasticity resulted in suboptimal match-

ing habitat choice, decreasing the benefits of this dispersal mode under climate change.

However population persistence was still better under suboptimal matching habitat choice

than under random dispersal. Our results highlight the urgent need to implement more

realistic mechanisms of dispersal such as matching habitat choice into models predicting

the impacts of ongoing climate change on biodiversity.
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2 Introduction

Contemporary climate change threatens biodiversity worldwide by impacting species

persistence and distribution (Parmesan, 2006; Selwood et al., 2015; Urban, 2015). Species

may persist under climate change through two main non-exclusive responses: by tracking

suitable climatic conditions across space (geographical range shift, e.g. Hill et al. (2011),

Chen et al. (2011)) or by adapting to the new local climatic conditions without shifting

their geographic range (populations’ phenotypic shift, e.g. (Boutin & Lane, 2014; Merilä

& Hendry, 2014). Both responses are strongly influenced by dispersal (i.e. movement

from the natal site to the first breeding site, or between successive breeding locations

(Howard, 1960)). Dispersal allows the colonization of new habitats made available by

climate change and induces a gene flow affecting population’s phenotypic composition.

Assuming that individuals disperse with a constant probability and settle into randomly

chosen habitats, gene flow is predicted to swamp local adaptation by bringing non-adapted

alleles into populations (Lenormand, 2002), which could compromise persistence under

climate change (Pease et al., 1989; Polechová et al., 2009).

However, dispersal is increasingly recognized to be a non-random process (Bowler &

Benton, 2005; Edelaar et al., 2008; Clobert et al., 2009; Edelaar & Bolnick, 2012; Travis

et al., 2012; Lowe & McPeek, 2014). The different stages of this process (i.e. departure,

transience and settlement) are influenced by individual phenotype, local context and often

their match (i.e. matching habitat choice). Variation in the phenotype of individuals

may imply variation of fitness in specific environments which should select for inter-

individual differences in emigration and immigration decisions according to their fit to

local environmental conditions (Edelaar et al., 2008). Individuals are expected to move

from habitats where they expect a low fitness and to settle in habitats where they expect

a higher fitness, making dispersal an adaptive process.

Matching habitat choice has been demonstrated in various species (e.g. insects (Karpes-

tam et al., 2012), fishes (Bolnick et al., 2009), birds (Dreiss et al., 2012; Camacho et al.,

2016; Benkman, 2017), reptiles (Cote & Clobert, 2007a; Cote et al., 2008)), for dif-
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ferent phenotypic traits matching different environmental conditions. For example, in

three-spine sticklebacks (Gasterosteus aculeatus), a mark-transplant-recapture experiment

showed that dispersers’ preferences for lake and stream habitats depended on lake-like and

stream-like morphological attributes (Bolnick et al., 2009). Under stable environmental

conditions, matching habitat choice is predicted to promote adaptive gene flow compared

to fitness independent dispersal (Holt, 1987; Jaenike & Holt, 1991; Ruxton & Rohani,

1999; Armsworth & Roughgarden, 2005b, 2008; Bolnick & Otto, 2013; Scheiner, 2016).

Such adaptive gene flow acts as one of the main factors favoring population adaptation

and differentiation on small spatio-temporal scales (Edelaar & Bolnick, 2012; Bolnick &

Otto, 2013; Scheiner, 2016; Edelaar et al., 2017). Despite the influence of matching habi-

tat choice on local eco-evolutionary dynamics, there remains scope for exploring whether

this individual behavioral process acting at a small spatial scale can influence species’

responses to environmental conditions at larger spatial scales.

Under variable environmental conditions, matching habitat choice and ensuing adap-

tive gene flow may locally promote an efficient shift in mean populations’ phenotypes

and therefore may influence species’ responses to changing conditions such as ongoing cli-

mate change. For example, in ectotherm species, physiology directly depends on external

temperature and individuals are characterized by a thermal phenotype (i.e. thermal opti-

mum and tolerance) that links their physiology and performance to temperature (Huey &

Stevenson, 1979). This thermal phenotype can vary within species and populations (Ar-

tacho et al., 2013; Goulet et al., 2017). Thereby, individual thermal optimum may shape

individuals’ movements across a landscape through the filter of phenotypic adaptations to

varying temperature (Bestion et al., 2015a). As climate warming is expected to increase

local mismatch between individual thermal optimum and local temperature, matching

habitat choice may make movements towards more suitable climatic conditions easier and

promote an efficient shift of species geographic distribution (Edelaar & Bolnick, 2012).

However to our knowledge, this verbal prediction remains untested and the underlying

mechanisms by which matching habitat choice may influence species’ responses to climate

change are still poorly understood.
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Here we investigate the influence of matching habitat choice on species’ responses to

climate change and more precisely how very local mechanisms, here non-random indi-

vidual movements, could influence species’ global response to environmental change. We

used an individual-based model to tackle this question to allow precise integration of such

a complex process into the model. Thus, we developed a mechanistic individual-based

model representing a virtual species, inspired by the biology of ectotherm species, dis-

tributed along a thermal gradient. We modeled two dispersal modes: random dispersal

and matching habitat choice. We simulated different rates of climate change and followed

populations’ genetic composition through space and time. After quantifying the adap-

tiveness of gene flow under both dispersal modes, we evaluated the influence of adaptive

dispersal on extinction risk at the edges of and within the spatial range, on the proportion

of the geographical range within which the species goes extinct during climate change and

on the time to species extinction.

3 Materials and methods

All parameters used in the model are summarized in Table 4.1.

3.1 Environment

Individuals were distributed on a two dimensional landscape (i.e. grid map) constitut-

ing 1700 lines (latitudes) and 15 columns (longitudes) built as a tube to avoid edge effects.

A thermal gradient representing mean annual temperatures with 0.01◦C increment per

space unit occurred along the latitudinal axis. Before climate change, temperature ranged

from 19◦C to 36◦C, preventing any individual from surviving at the edges of the latitu-

dinal axis according to their initial genotypic/phenotypic values (Table 1) and therefore

avoiding edge effects on the latitudinal axis. Temperature along the longitudinal axis was

constant (no environmental stochasticity, though see robustness section). We assumed

that all map cells could sustain a population with constant carrying capacity K through

space and time (i.e. continuous landscape with no unsuitable habitats). We simulated two
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Parameters Main simulations Extra simulations
Fecundity 2 1 and 3
Mean juvenile survival
probability 0.12 0.25

Mean adult survival probability 0.5 0.6
Carrying capacity K 100 50 and 150
Juvenile emigration probability
range for matching habitat
choice (εbasal and εmax for
juveniles)

0.3-0.5 0.2–0.4 and 0.4–0.6

Adult emigration probability
range for matching habitat
choice (εbasal and εmax for adults)

0.15–0.35 0.05–0.25 and 0.25 – 0.45

Juvenile emigration probability
for random dispersal 0.3 0.2, 0.4, 0.5 and 0.6

Adult emigration probability for
random dispersal 0.15 0.05, 0.25, 0.35 and 0.45

Dispersal distance 2, 3, 4, 5 and 6 3, 4 and 5
Mutation probability 10−5 10−7

Loci number 25 25
Initial allele range 29–33◦C 29–33◦C
Time of stable climate 600 800
Warming time 600 600
Level of climate change 1 and 2◦C/100 years 1 and 2◦C/100 years
Environmental stochasticity 0 0.01, 0.1, 1
Thermal gradient 0.01◦C/latitude 0.01◦C/latitude
Number of latitude on the map 1700 1700
Number of longitude on the map 15 15
Replicate 50 20

Table 4.1 – Summary of the model parameters and their values in the main simulations
and in extra simulations performed for robustness analyses.
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levels of climate change (1◦C or 2◦C of warming over 100 years) by uniformly increasing

temperature at each location through time.

3.2 Population dynamics and genetics

We modeled a sexual species with two life stages (juveniles and adults). Each indi-

vidual was characterized by a thermal phenotype represented as a Gaussian function of

survival dependency to temperature with constant variance among individuals and mean

corresponding to individual thermal optimum (Equation (4.1))

S(T ) = exp((T − Topt)2

2σ2 ) (4.1)

with S(T ) being the survival probability, T the local temperature, σ2 the gaussian

variance and Topt the thermal optimum. This optimum was genetically determined by

25 additive independent diploid loci with values taken from real numbers (i.e. genotypic

values corresponding to phenotypic ones; the thermal optimum of each individual was thus

obtained by averaging all allele values of its genotype). As a complex continuous trait, we

considered that the thermal optimum was genetically determined by many independent

loci with infinitesimal effects on the phenotypic trait. We arbitrarily chose to fix this

number at 25. We assume no environmental effect (i.e. no phenotypic plasticity). In each

population at each time step (one time step corresponds to one year), individuals could

disperse, then reproduce (adults only) and survive or die (Figure S4.1). Reproduction was

independent of temperature. Each adult female produced a number of offspring taken from

a Poisson distribution, with a mean fecundity of 2. Reproducing males were randomly

chosen from the same patch. For each transmitted allele, mutation occurred with a

probability of 10−5 (Table 4.1). The new allele was taken from a Gaussian distribution

centered on the mean parental allele value and of arbitrary variance 1.11. With such

variance, 95% of new alleles were in a ±1 interval around the parental value. The sex of

offspring was randomly chosen, resulting in a population sex-ratio of 1:1 at birth.

At the end of each time step, individuals died or survived. If juveniles survived they
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became adults and the adult stage lasted until individuals died. Survival probability

depended on the match between thermal phenotype and external temperature in juveniles

and adults (i.e. Gaussian function of temperature (Equation (4.1)); Figure S4.1). For each

phenotype, the Gaussian function was scaled such that within the temperature range of

±2.4◦C around the optimal temperature (which corresponds to the temperature range in

which the non-scaled survival probability was always higher than 0.05), the mean survival

probability was equal to 0.12 for juveniles and 0.5 for adults (Table 4.1). As observed in

many species (e.g. Martin (1995) (birds), Pike et al. (2008)(reptiles), Gaillard & Yoccoz

(2003) (mammals)), we considered the survival probability to be lower in juveniles than in

adults. Survival was also density dependent: when current population size in a patch, N ,

exceeded carrying capacity K, each individual was killed with a probability 1− N
K
, so that

the population size did not exceed on average the carrying capacity after the survival

event. The density-dependent survival event occurred after the phenotype-dependent

survival event.

We implemented two different dispersal modes, random dispersal and matching habi-

tat choice. In the case of matching habitat choice, the departure probability of each

individual depended on its expected lifetime reproductive success (LRS) (Le Galliard

et al., 2008) and was exclusively driven by local thermal adaptation, that is the match

between individual thermal phenotype and local temperature (i.e. survival probability

without density dependence called hereafter thermal survival probability; Figure S4.1).

The lifetime reproductive success was calculated without density dependence for one year

(i.e. the adult stage) for adults and for two years (i.e. the juveniles and the adult stage)

for juveniles (Equation (4.2)).

LRSadult = Fecundity + SurvT ∗ Fecundity

LRSjuvenile = SurvT ∗ LRSadult

(4.2)

with LRSadult and LRSjuvenile being the lifetime reproductive success of adults and

juveniles respectively and SurvT being the thermal survival probability. As we did not

124



know the number of years an individual could live, we assumed the same reproductive

success over the years for adults. LRSadult was therefore calculated for one year as calcu-

lating LRS over a longer period of time will not change its value. Emigration probability

for each individual was calculated as 1 − LRS and scaled to mimic realistic dispersal

probabilities observed in nature. We considered higher dispersal in juveniles than in

adults, as observed in species were natal dispersal is dominant over breeding dispersal

(e.g. Greenwood & Harvey (1982). Dispersal probability thus varied from 0.3 to 0.5 for

juveniles and from 0.15 to 0.35 for adults (Table4.1). The detailed formula was as follow

(Equation (4.3)):

ε = εbasal + (εmax − εbasal) ∗ (1 − (LRS/LRSmax)) (4.3)

with ε the dispersal probability, εbasal the lower dispersal bound (e.g. 0.3 in juveniles),

εmax the upper dispersal bound (e.g. 0.5 for juveniles), LRS the lifetime reproductive

success (Equation (4.2)) and LRSmax the maximum LRS obtained when individual ther-

mal optimum perfectly matches local temperature. Dispersers could visit all habitats on

the perimeter of a circle centered on the middle of the departure habitat and of radius

exactly equal to the dispersal distance and settled in the habitat that maximized their

lifetime reproductive success (Figure S4.1). We assumed that dispersers had access to

every habitat on that perimeter, including those where only a corner was on the circle’s

perimeter (i.e. as each habitat corresponded to a square on the map). Habitats at a

distance from the departure habitat lower than the dispersal distance cannot be chosen

to settle. Within a simulation, dispersal distance was fixed and all individuals thus dis-

persed at the same distance from their departure habitat. When more than one habitat

maximized their lifetime reproductive success, dispersers settled randomly in one of these

habitats (Figure S4.2).

In case of random dispersal, individuals dispersed with a constant probability (0.3 for

juveniles and 0.15 for adults; Table 4.1). As the effective dispersal rate in the case of

matching habitat choice was not constant over space and time, we set the random dis-

persal probability to be equal to the lower dispersal probability εbasal from the matching
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habitat choice scenario. We also ran simulations with random dispersal probability set

to the upper dispersal probability εmax from the matching habitat choice mode, allowing

us to compare random dispersal with matching habitat choice scenarios for compara-

ble dispersal probability (see robustness section). Dispersers visited all habitats on the

perimeter of a circle centered on the middle of the departure habitat and of radius equal to

the dispersal distance and settled in a randomly chosen habitat among these visited habi-

tats (Figure S4.2). Again, all individuals thus dispersed at the same distance from their

departure habitat. It allowed us to compared results obtained under matching habitat

choice to the random dispersal mode without having differences in the effective dispersal

distances between dispersal modes. The results we obtained by comparing simulations

under both dispersal modes were thus only due to the direct effect of habitat choice in

emigration and immigration decisions. The dispersal distance was fixed within simula-

tions; we ran simulations with five dispersal distances (2, 3, 4, 5, 6 units on the landscape

per dispersal event corresponding to a change of 0.02, 0.03, 0.04, 0.05 and 0.06◦C on the

thermal gradient).

To disentangle the influence of emigration from immigration in the matching habi-

tat choice mode, we ran simulations with adaptive emigration only (dispersal probability

depending on the match between phenotype and habitat of origin but random settle-

ment decision) and adaptive immigration only (fixed dispersal probability but settlement

decision depending on the match between phenotype and habitat visited).

3.3 Simulations

At the beginning of simulations, we built a landscape and implemented a popula-

tion of size corresponding to the carrying capacity at each location of that landscape

(i.e. the entire landscape was inhabited at carrying capacity, fixed at 100 individuals at

every location of the map). For each individual, the allele values of the 25 loci determin-

ing the thermal optimum were taken from a uniform distribution between 29 and 33◦C

(Table 4.1). The initial sex-ratio was 1 : 1 and the proportions of juveniles and adults

were 0.5 each. The system evolved under stable climate for 600 years. As mutations
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brought new alleles into the populations, the range was not stabilized and the species

would invade the landscape after a sufficient time under stable climate. We choose 600

years of stable climate before simulated climate change because it matched the minimum

time needed for all phenotypes expressed from the initial distribution of genotypes (i.e.

uniform distribution between 29◦C and 33◦C) to be distributed on the landscape among

all parameter values we tested. In the parameter set that led to the widest range size,

the individuals were distributed between latitude 100 and latitude 900 corresponding to

a range of temperature from 27 to 35◦C on the grid. We also ran simulations with 800

years of stable climate and did not observe any difference in the results we obtained from

those obtained with 600 years of stable climate (Figure S4.18,S4.19,S4.20,S4.21). Then

we simulated climate change for 600 years with two levels of climate change (1◦C and 2◦C

of warming over 100 years) by uniformly increasing temperature at each location through

time. The model was coded in C++ using the GNU Scientific Library for random num-

bers generation (Galassi et al., 2009) and outputs were analyzed using R3.3.1 (R Core

Team, 2017).

We show the results for 20 sets of parameters values (2 dispersal modes * 2 levels of

climate change * 5 dispersal distances), each one replicated 50 times. Simulations with

adaptive emigration only and adaptive immigration only were replicated 20 times. Extra

simulations for the robustness of results against various parameters of the model were

replicated 20 times. The number of replication was sufficient to obtain very low standard

error in our results as running simulations with 40 replicates gave the same results.

3.4 Outputs

At the end of each time step, we calculated the mean thermal survival probability (i.e.

the mean survival probability of all individuals without density dependence) through time

for residents, immigrants and emigrants of each population across the range. We then

calculated gene flow adaptation as the difference between immigrants’ relative adaptation

(i.e. difference between the mean thermal survival probability of immigrants and the

mean thermal survival probability of residents of each population) and emigrants’ relative
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adaptation (i.e. difference between the mean thermal survival probability of emigrants

and the mean thermal survival probability of residents of each population).

The proportion of range loss was computed as 1 − Nt

N0
with Nt the number of non-

empty latitudes (i.e. one individual at least was present at the given latitude) at time

t and N0 the number of non-empty latitudes at time 0 (i.e. just before the start of the

climate change). The extinction time was computed as the number of years of climate

change needed for all populations to go extinct. When extinction did not occur during the

simulation time (600 years), extinction time was arbitrarily recorded as 600 years. Range

contraction was computed as 1 − Rt

R0
with Rt being the range size (difference between

extreme occupied latitudes) at time t. Range fragmentation was computed as Rt−Nt

Rt
.

Finally, the local mean thermal fitness load was computed at each location and time as

one minus the mean thermal survival probability of residents.

3.5 Robustness

To test for the robustness of our results regarding the influence of major demographic

parameters known to impact species’ responses to climate change, we ran additional

simulations for different parameter values of mean survival probability, fecundity, carrying

capacity and dispersal probability. We varied the basal dispersal probability εbasal from

0.2 to 0.4 for juveniles and from 0.05 to 0.25 for adults. For simplicity, the range of

variation of the emigration probability for matching habitat choice was fixed at 0.2 in all

simulations. We added extra simulations of random dispersal with emigration probability

of 0.5 and 0.6 for juveniles and 0.35 and 0.45 for adults, corresponding to the maximal

emigration probability at which individuals could disperse in the matching habitat choice

simulations. This allowed us to compare results obtained under matching habitat choice

and random dispersal with similar dispersal rate. The different values for each parameter

are provided in Table 4.1.

We also tested the influence of spatio-temporal environmental stochasticity on our

results. Environmental stochasticity could influence species’ responses to climate change

because it should reduce the adaptiveness of the immigration decision in matching habitat
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choice mode (a right choice at time t could be wrong at time t+1). At each time step (i.e.

one year), the temperature of each cell of the map was calculated as the current mean

temperature of the latitude + γ, with γ being a temperature randomly taken from a uni-

form distribution centered on 0 and of variance determined by the level of environmental

stochasticity. The higher the environmental stochasticity is, the farther the tempera-

ture of a habitat can be from the mean temperature of the latitude. An individual that

chooses a habitat that fits its phenotype at time t could therefore be maladapted the year

after as the temperature changes stochastically. We ran simulations with environmental

stochasticity corresponding to the temperature difference between 2 latitudes (0.01◦C), 10

latitudes (0.1◦C) and 100 latitudes (1◦C). Parameters values are summarized in Table 4.1.

We also considered density dependence in matching habitat choice to test for the

influence of the other factors involved in dispersal decisions. We thus included the density-

dependent survival term in the lifetime reproductive success of both juveniles and adults

(Equation (4.4)).

LRSadult.density = Fecundity + SurvT ∗ SurvD ∗ Fecundity

LRSjuvenile.density = SurvT ∗ LRSadult

(4.4)

with SurvT being the thermal survival probability and SurvD being the density de-

pendent survival probability.

Finally, we ran simulations with low mutation rate (10−7 per locus; Table 4.1) to study

the influence of mutations on the velocity of range shift.

4 Results

We observed that matching habitat choice induced an adaptive gene flow under climate

change (Figure 4.1A, Figure S4.3A, S4.4A) while gene flow was never adaptive in the

random dispersal mode. Such adaptive gene flow resulted in a higher thermal survival

probability (i.e. survival probability without density dependence) of all individuals in
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the case of matching habitat choice than in the case of random dispersal (Figure 4.1B,

Figure S4.3B, S4.4B). In the matching habitat choice mode, we observed that thermal

survival probability was generally higher for immigrants than for residents and emigrants

excepted at time 0 where thermal survival probability was maximal for all individuals

(Figure 4.1B and Figure S4.3B, S4.4B). In some cases, we also observed that residents’

thermal survival probability was higher than emigrants’ thermal survival probability (for

example: Figure 4.1A; Dispersal distance: 2 space units; Time: 200 years). In the

matching habitat choice mode, immigrants were therefore better adapted than residents

and emigrants were therefore less adapted that residents, resulting in an adaptive gene

flow. Conversely, we did not observe any difference in thermal survival probability between

residents, immigrants and residents from the random dispersal modes (Figure 4.1B and

Figure S4.3B, S4.4B), preventing gene flow from being adaptive.

The adaptive gene flow due to matching habitat choice decreased the probability that

populations go extinct under both climate change scenarios tested and, when extinction

occurred, matching habitat choice delayed it (Figure 4.2C, D). The spatial range loss

was always lower with matching habitat choice than when individuals moved randomly

(Figure 4.2A, B). The difference in spatial range loss between dispersal modes could be

large for some sets of parameters. For example, while climate warming led to an extensive

loss of 50% of the species range under a certain set of parameters of the random dispersal

mode, in the matching habitat choice mode the same set of parameters led to an expansion

of the spatial range (e.g. Figure 4.2A, dispersal distance: 3 space units). The spatial

range loss was above 25% for most of the parameter values in the random dispersal mode

(9 out of 10 sets of parameters), while it only surpassed 25% in three out of 10 sets of

parameters in the matching habitat choice mode (Figure 4.2A, B). Furthermore, matching

habitat choice almost always allowed species persistence for longer periods of time than

random dispersal with a time to extinction up to four times longer in the adaptive than

in the random dispersal mode (Figure 4.2C, D). In the random dispersal mode, species

went extinct during simulation time for three out of five dispersal distances under 1◦C of

warming over 100 years, while extinction was not observed during simulation time under
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matching habitat choice (Figure 4.2C). For faster climate change, matching habitat choice

always extended time to extinction compared to random dispersal (Figure 4.2D).

Matching habitat choice decreased spatial range loss owing to fewer local extinctions

both at the edges of the spatial range and within the spatial range compared to random

dispersal. The spatial range was less contracted in the matching habitat choice mode (Fig-

ure 4.3A, B), because the colonizing front was moving faster (Figure 4.4 and Figure S4.5).

This faster colonizing front, closer to the speed of climate change, was explained by in-

dividuals moving more in the direction of their shifting climatic niche when dispersal

was adaptive (Figure 4.4 and Figure S4.5). It promoted species’ range shift and reduced

population extinction at the edges of the distribution. However for the lowest dispersal

distance, the speed of the colonizing front was slower than the speed of the climate, mean-

ing that the range was not shifting as fast as the climatic niche in the case of matching

habitat choice, leading to important range size reduction. For higher dispersal distances,

the speed of the colonizing front was as fast as or even faster than the speed of climate

evolution in the case of matching habitat choice (Figure 4.4C,E). This was never the case

in the random dispersal mode. The speed of the colonizing front could be faster than

the speed of climate in case of matching habitat choice because of mutations. Mutations

allowed new phenotypes to appear and these phenotypes, when dispersal distance was

sufficient, could colonize new habitats at the cold margin of the range. Matching habitat

choice promoted such colonization and we thus observed a faster colonizing front than the

speed of the climate only in the case of matching habitat choice mode. When mutation

rate was low, the speed of the colonizing front never overtook the speed of the climate

(Figure S4.6).

For all parameter values, matching habitat choice also reduced local population ex-

tinctions within the spatial range (Figure 4.3D,E) compared to random dispersal mode.

Under random dispersal mode, extinctions within the range often occurred right behind

the colonizing front (Figure S4.7B). Local maladaptation was indeed high at this location

(Figure S4.7C) because of the non-adaptive gene flow preventing any change in the mean

populations’ phenotype in response to climate change (Figure S4.7D). Under matching
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habitat choice, adaptive gene flow prevented strong maladaptation behind the colonizing

front, reducing fragmentation of the range (Figure S4.7).

The influence of matching habitat choice on species’ response to climate change could

be explained by adaptive emigration, adaptive immigration or the combination of both.

When we modeled adaptive immigration with no adaptive emigration, most results were

similar to the scenario where both emigration and immigration were adaptive. Indeed, the

spatial range was better maintained (Figure S4.8A,B), less contracted (Figure S4.9A,B)

and – to a lesser extent – less fragmented (Figure S4.9C,D) and the extinction time was

longer (Figure S4.8C,D) than under random dispersal for most parameter values. On the

contrary, the results with adaptive emigration and no adaptive immigration were similar

to those obtained under random dispersal (Figures S4.8, S4.9).

Dispersal distance had a strong influence on observed patterns. The higher the disper-

sal distance was, the higher the thermal survival probabilities of residents, of immigrants

and of emigrants were, particularly in the matching habitat choice mode (Figure 4.1B,

Figure S4.3B, S4.4B). While dispersal was always adaptive under matching habitat choice

(Figure 4.1A, Figure S4.3A, S4.4A), dispersal distance had to be sufficiently high to main-

tain a high survival probability through time for all individuals (Figure 1B, Figure S4.3B,

S4.4B). As dispersal distance positively influenced thermal survival probability, it also pos-

itively influenced range loss limitation, time of persistence, limitation of range contraction

and range fragmentation (except under random dispersal for a warming of 2◦C/100 years;

see below) and colonization success in the two dispersal modes (Figures 4.2, 4.3, 4.4).

However, its effect was much larger in the matching habitat choice mode than in the ran-

dom dispersal mode. For example, an increase of 1 unit in dispersal distance induced a

12% reduction in range loss under random dispersal whereas the same increase allowed a

shift from a range loss of 45% to a range expansion of 20% under matching habitat choice

(Figure 4.2A; dispersal distance of 2 and 3 units). Dispersal distance also promote species

range shift under climate change by increasing the speed of the colonizing front in both

random dispersal and matching habitat choice (Figure 4.4). However, despite the posi-

tive influence of dispersal distance, matching habitat choice promoted species’ responses
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to climate change compared to random dispersal even for low dispersal distances (i.e. 2

space units).

The only situation where dispersal distance did not positively influence species’ re-

sponse to climate change was for range contraction under random dispersal and a warming

of 2◦C/100 years (Figure 4.3D). In this case, fragmentation was higher for intermediate

dispersal distance than for low and high dispersal distances. At low dispersal distance,

the range was nearly extinct after 100 years of warming (range loss equal to 1 in case

of random dispersal with a dispersal distance of 2 space unit; Figure 4.2B), preventing

fragmentation from being high (if the range is small, extinction within the range should

be rare). When dispersal distance increased, the part of the range that remained after

100 years of warming also increased (Figure 4.2B) allowing fragmentation to rise (Fig-

ure 4.3D).

In addition to dispersal distance, we explored the influence of the major demographic

parameters of the model that are survival probability, fecundity, carrying capacity and

emigration probability, on species’ responses to climate change. We found that our con-

clusions held for the different parameter values we tested for. In all cases, matching

habitat choice reduced range loss during climate change compared to random dispersal

(Figure 4.5). For the majority of parameter values, matching habitat choice also extended

extinction time, reduced range contraction and range fragmentation (Figure S4.12, S4.13,

S4.14). The higher the survival probability, fecundity, carrying capacity or emigration

probability was, the lower the range loss during climate change was for both species per-

forming matching habitat choice and random dispersal. Range loss during climate change

however depended much more on survival probability and fecundity than on carrying ca-

pacity which had a very low impact (Figure 4.5). Interestingly, emigration probability

had a greater impact on species performing matching habitat choice than on those dis-

persing randomly. For example, a 0.4 increase in juveniles emigration probability reduced

range loss of 0.25 during climate change with random dispersal whereas a 0.1 increase in

juveniles emigration probability reduced range loss of 0.6 with matching habitat choice

(Figure 4.5, warming = 1◦C/100 years).
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We also tested for the influence of other factors involved in dispersal decisions such

as conspecific density. We found that matching habitat choice depending on temper-

ature and local density improved the persistence of populations (i.e. lower extinction

rate (Figure S4.12A,B) and extended time to extinction (Figure S4.12C,D)) compared to

random dispersal, by reducing range contraction (Figure S4.13A,B) and range fragmenta-

tion (Figure S4.13C,D). Differences between results with and without the dependency of

matching habitat choice on local density were well below the range of differences observed

between matching habitat choice and random dispersal modes (Figure 4.2 and 4.3 versus

Figure S4.12 and S4.13).

Finally, our conclusions also held for the different levels of spatio-temporal environmen-

tal stochasticity we tested for, while stochasticity led to less adaptive dispersal decisions.

For all parameters values, spatial range loss for matching habitat choice during climate

change was lower than, or at least equal to random dispersal (Figure 4.6). For the major-

ity of parameter values, matching habitat choice also extended extinction time, reduced

range contraction and range fragmentation (Figure S4.15, S4.16, S4.17). In both dispersal

modes, spatial range loss was positively correlated to environmental stochasticity. How-

ever, in most cases, environmental stochasticity had a stronger impact on range loss for

the matching habitat choice mode than for the random dispersal mode (Figure 4.6A). In-

deed, for the different dispersal distances tested, range loss under climate change in case of

random dispersal was not impacted by low to moderate environmental stochasticity while

range loss was impacted under matching habitat choice, confirming the negative influence

of environmental stochasticity on the optimality of matching habitat choice. Under very

high environmental stochasticity, range loss strongly increased for both dispersal modes.

For this high environmental stochasticity, species went extinct in both random disper-

sal and matching habitat choice for low dispersal distance and a warming of 2◦C/100

years (Figure 4.6B) such that the benefit of matching habitat choice on species range loss

compared to random dispersal was lost.
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A

Match. hab. choice

B

Match. hab. x emig.
Match. hab. x immig.
Match. hab. x resid.

Figure 4.1 – Adaptiveness of gene flows and thermal survival probability. Adaptiveness of
the gene flow (A) and the thermal survival probability of emigrants, immigrants and resi-
dents (B) through time for different dispersal distances in case of matching habitat choice
(circles and solid lines (A) and blue bars (B)) or random dispersal (triangles and dashed
lines (A), and green bars (B)). Results were obtained under a climate change scenario
of 1◦C of warming over 100 years. A) Thermal adaptiveness of total gene flow through
time for different dispersal distances for the matching habitat choice (black) and random
dispersal (white) scenarios (see methods for details). B) Thermal survival probability of
emigrants (dark blue for matching habitat choice, dark green for random dispersal), im-
migrants (medium blue for matching habitat choice, medium green for random dispersal)
and residents (light blue for matching habitat choice, light green for random dispersal)
through time for different dispersal distances in case of matching habitat choice (blue
bars) and random dispersal (green bars). Means (±SD) over 50 simulations are shown.
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Warming: 1°C/100 years Warming: 2°C/100 years

Dispersal
Match. hab. choice
Random

A B

C D

Figure 4.2 – Consequences of adaptive gene flow on species responses to climate change.
Proportion of spatial range loss (A,B) and extinction time (C,D) depending on dispersal
distance in case of matching habitat choice (black bars) or random dispersal (white bars)
and for two climate change scenarios (scenario A,C: 1◦C/100 years, scenario B,D: 2◦C/100
years). Spatial range loss was measured after 200 years of warming for scenario A and
after 100 years of warming for scenario B. When the species persisted until the end of
simulations (600 years), the extinction time was indicated as 600 years. Means (± SD)
over 50 simulations are shown.
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Figure 4.3 – Spatial range contraction and fragmentation. Proportion of spatial range
contraction (A,B) and spatial range fragmentation (C,D) depending on dispersal distance
in case of matching habitat choice (black bars) or random dispersal (white bars) and for
two climate change scenarios (scenario A,C: 1◦C/100 years, scenario B,D: 2◦C/100 years).
Spatial range contraction was measured after 200 years of warming for scenario A and after
100 years of warming for scenario B. Spatial range fragmentation was measured between
0 and 200 years of warming for scenario C and between 0 and 100 years of warming for
scenario D. Means (± SD) over 50 simulations are shown.
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Figure 4.4 – Colonization dynamics. Mean speed dynamics of colonizing front though
time in case of matching habitat choice (black solid line) or random dispersal (light gray
solid line) and for two climate change scenarios (scenario A,C,E: 1◦C/100 years, scenario
B,D,F: 2◦C/100 years). To keep up with the pace of climate change, the front speed
should be as high as the dashed line. Three different dispersal distances were tested: 2
space units (scenarios A,B), 3 space units (scenarios C,D) and 4 space units (scenarios
E,F). Mean curves over 50 simulations are shown.
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Figure 4.5 – Influence of demographic parameters on spatial range loss during climate
change. Proportion of spatial range loss depending on survival probability (A,B), fecun-
dity (C,D), carrying capacity (E,F) and emigration probability (G,H) in case of matching
habitat choice (open circle, solid line) or random dispersal (open triangle, dashed line)
and for two climate change scenarios (scenario A,C,E,G: 1◦C/100 years, scenario B,D,F,H:
2◦C/100 years). Spatial range loss was measured after 200 years of warming for scenario
A,C,E,G and after 100 years of warming for scenario B,D,F,H. See section "Legend details"
in supplementary materials for additional information. Means (± SD) over 50 (parame-
ter values of main simulations (Table 4.1)) or 20 (parameter values of extra simulations
(Table 4.1)) simulations are shown.
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Figure 4.6 – Influence of environmental stochasticity on spatial range loss during climate
change. Proportion of spatial range loss depending on environmental stochasticity in case
of matching habitat choice (circles and solid lines) or random dispersal (triangles and
dashed lines) for different dispersal distances (A,B: 3 space units; C,D: 4 space units;
E,F: 5 space units) and for two climate change scenarios (scenario A,C,E: 1◦C/100 years,
scenario B,D,F: 2◦C/100 years). The level of environmental stochasticity determined
how much the temperature of habitats on a given latitude could vary around the current
mean temperature of this latitude (see methods section for details). Spatial range loss was
measured after 200 years of warming for scenario A,C,E and after 100 years of warming for
scenario B,D,F. Means (± SD) over 50 (parameter values of main simulations (Table 4.1))
or 20 (parameter values of extra simulations (Table 4.1)) simulations are shown.
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5 Discussion

In this study, we demonstrated that matching habitat choice induces an adaptive gene

flow enhancing individuals’ mean survival probability, reducing population extinction risk

and improving species persistence under climate change compared to random dispersal.

We investigated the influence of matching habitat choice on population dynamics and

adaptation, revealing the specific mechanisms by which this local-scale dispersal strategy

increases population persistence under climate change at a larger scale. Matching habitat

choice (i) promotes colonization and therefore species’ range expansion and (ii) reduces

population extinction within the range and therefore range fragmentation. Predictions

for the probability of extinction and for the time to extinction under random dispersal

and matching habitat choice greatly differed in magnitude. We even found qualitatively

different predictions in some cases, where the model predicted range contraction under

random dispersal while it predicted range expansion under matching habitat choice, es-

pecially for large dispersal distances (Figure 4.2, 4.3). The predicted differences for the

time to extinction can be so large that the species was predicted to go extinct in 200

years in the random dispersal mode while no extinction was recorded for 600 years of

continuing climate change in the matching habitat choice mode. Therefore, for species

performing matching habitat choice efficiently, this dispersal mode has to be considered

when predicting populations’ range shift and extinction risk.

In our model, the benefits of matching habitat choice on species’ responses to cli-

mate change depend much more on adaptive immigration than emigration decisions (Fig-

ure S4.8, S4.9). Emigration decisions depend on individuals gathering information on

local thermal conditions and assessing their phenotypic match to these conditions while

immigration decisions entail a comparison of thermal conditions throughout the environ-

ment. Individuals would therefore have to visit numerous candidate habitats to choose

the most suited one (Delgado et al., 2014). Species with low prospecting and dispersal

abilities should thus be more at risk facing climate change as they might not be able

to visit enough patches to choose habitats adaptively (Edelaar et al., 2008). However,
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accumulating studies evidenced fine-tuned processes underlying informed dispersal and

many species may gather information on surrounding habitats before emigration (Cote &

Clobert, 2007a; Jacob et al., 2015b). These additional processes may reinforce the effects

of adaptive immigration decisions by allowing species to orient their movements towards

habitats with suitable thermal conditions.

The benefits of performing matching habitat choice compared to random dispersal

may therefore depend on species ability to disperse and to gather accurate information

on thermal conditions. Our results indeed show that dispersal distance and emigration

probability positively influenced the benefit of adaptive gene flow - resulting from match-

ing habitat choice - on population persistence, range fragmentation and range shift as

a minimal dispersal distance is required to maintain a high survival probability through

time. The minimal dispersal distance corresponded here to a distance from two to three

times the distance at which the climatic niche was moving from low to high latitudes (e.g.

minimal dispersal distance from 2 space units for a warming of 1◦C/100 years). In the

conditions of our model, 2 space units corresponded to 0.02◦C variations along the gradi-

ent. In the real world, a typical annual temperature decrease with latitude is -0.75◦C per

degree latitude (en Van de Water et al., 1994). Given that one degree latitude corresponds

approximately to 110 km around 45◦ latitude, dispersal distances of 2 space units in our

model correspond to distances of 2.93 km for temperate areas. Such distance might be

achievable by many species as the mean maximum dispersal distance for species dispers-

ing actively was found to be 9.12 km (Jenkins et al., 2007). We found that above this

minimal dispersal distance, species could track climate change without suffering range size

reduction. Overall, species with lower dispersal abilities should therefore be more at risk

from climate change because they might not be able to track suitable climatic conditions

and to choose habitats adaptively (Pearson, 2006; Schloss et al., 2012).

We think our model could be applied to a large variety of species with good movement

skills. However, as outlined above, our model is restricted to species able to perceive vari-

ation in thermal conditions and perform matching habitat choices accordingly. Matching

habitat choice might therefore be easier to perform on an altitudinal than on a latitudi-
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nal axis because of the steeper thermal gradients. In mountain areas, temperature can

strongly vary at local spatial scales, allowing species with low dispersal ability and/or low

thermal sensitivity to detect and choose habitats with suitable microclimates. However,

in lowland areas, species may also be able to perform matching habitat choice as imple-

mented in our model. Climate change may induce important variations during a restricted

period of the year (e.g. summer) while changes in mean annual temperature would appear

small as in our model. These punctual variations might be enough to influence species

dispersal, especially for ectotherms in which small variations near the upper physiological

thermal limits induce important fitness changes (Huey et al., 2012). The pertinence of

matching habitat choice should nonetheless be ascertained on a case-by-case basis.

Our conclusions may further depend on the optimality of dispersal decisions. Sub-

optimal emigration and immigration decisions can result from low prospecting skills and

from variability in climatic conditions and environmental conditions induced by habi-

tat fragmentation or environmental stochasticity. Indeed, in our model, environmental

stochasticity led to suboptimal immigration decisions due to temporal low predictability

of the climate and to increased range loss in the matching habitat choice mode. Induced

suboptimal decisions however still increased species persistence under climate change in

comparison to random dispersal. This is in accordance with the observations of Edelaar &

Bolnick (2012) on population adaptation and differentiation under stable climate for ran-

dom, suboptimal and optimal immigration decisions. Similarly to environmental stochas-

ticity, landscape fragmentation magnifies dispersal costs and should therefore hamper the

exploration of surrounding habitats reducing the optimality of dispersal decisions (Jacob

et al., 2015a; Cote et al., 2017). Landscape fragmentation might therefore decrease the

observed benefits of matching habitat choice and might underpin the expected synergetic

effects of climate change and fragmentation on population persistence and spatial range

shift dynamics (Brook et al., 2008). This hypothesis remains to be tested. Finally, habitat

choice may also become suboptimal in the presence of other major dispersal drivers. For

example, intraspecific competition may influence individuals’ fitness differently than lo-

cal thermal conditions (Paterson & Blouin-Demers, 2018). Matching habitat choice may
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therefore depend on adaptation to both local climates and local density. In our model,

the responses to climate warming were similar when matching habitat choice depended on

both thermal adaptation and local density and when matching habitat choice depended

on thermal adaptation only (Figure S4.12, S4.13). On top of those discussed above, we

expect our conclusions to hold qualitatively for other sources of variation in the optimality

of habitat choice.

Some other assumptions of our model may be critical to our results. Among these

assumptions, selection occurred on survival only. Survival, but not reproductive success,

depended on local temperature and density. It implies that non-adapted individuals

could reproduce and transmit their genes to the next generation before dying. It should

therefore slow down the adaptive process and increase the impact of non-adapted gene

flow on population adaptation under random dispersal. If selection was occurring on both

reproduction and survival, selection would be stronger and adaptation faster, reducing

the transmission of maladapted genes to the next generation and thus the impact of

maladapted individuals. As a consequence, it should limit the influence of maladaptive

gene flow under random dispersal that is involved in range limitation under stable climate

(Kirkpatrick & Barton, 1997; Lenormand, 2002; Bridle & Vines, 2007) and may reduce

the observed differences in population extinction and species’ range shift between random

dispersal and matching habitat choice. However, our conclusions should qualitatively

hold as matching habitat choice promotes dispersal and gene flow in the direction of the

moving climatic niche compared to random dispersal. Colonization of new habitats should

therefore remain higher under matching habitat choice than under random dispersal.

Matching habitat choice positively influenced species’ responses to climate change by

limiting the mismatches between individuals’ phenotypes and local environments (Figure

1A). Phenotypic plasticity may also limit such mismatches. Phenotypic plasticity has

been demonstrated to influence species’ responses to climate change by limiting range

size reduction (Valladares et al., 2014). Recent models allowing evolution of both match-

ing habitat choice and phenotypic plasticity demonstrated that under temporally stable

climate (i.e. no change in the mean temperature in the landscape but environmental
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stochasticity integrated), phenotypic plasticity evolved more frequently than matching

habitat choice (Scheiner, 2016; Edelaar et al., 2017). However under climate change, phe-

notypic plasticity might delay evolutionary response in the long term, whereas matching

habitat choice promotes it by inducing an adaptive gene flow (Valladares et al., 2014).

Under such conditions, the benefit of phenotypic plasticity could be lower than those

of matching habitat choice, promoting the evolution of the latter. On the other hand,

phenotypic plasticity could limit the mismatch between phenotypes and climate until the

limits of plasticity are reached. If plasticity evolved, it could allow further coping with

environmental change without any evolutionary change of the traits under selection. De-

pending on the cost of plasticity and matching habitat choice, both mechanisms could

thus evolve to facilitate species’ responses to climate change. Future models could tackle

this question by allowing the evolution of both phenotypic plasticity and matching habitat

choice under a continuous period of climate change.

The influence of informed dispersal on local adaptation and population differentiation

has been theoretically well-studied (Holt, 1987; Armsworth & Roughgarden, 2005b,a,

2008; Ravigné et al., 2009; Bolnick & Otto, 2013; Holt & Barfield, 2015)). Others have

investigated its evolution under various conditions (Travis et al., 1999, 2009; Hovestadt

et al., 2010; Scheiner, 2016; Edelaar et al., 2017) and its feedback effect on dispersal

propensity, range limits and range expansion (Enfjäll & Leimar, 2009; Kubisch et al.,

2010, 2011; Bocedi et al., 2014; Poethke et al., 2016). Here we investigated the effect of

a particular type of informed dispersal, matching habitat choice, on species’ responses to

climate change. Using a simple model with robust predictions, we showed that neglecting

these mechanisms may lead to inaccurate estimates of species extinction risk and spatial

range shift. Similarly, matching habitat choice should greatly affect predictions of popu-

lation dynamics, evolutionary adaptation, species interactions, and changes in community

composition in response to climate warming. While our model focused on the match be-

tween thermal optimum and external temperature, conclusions should be similar for any

other phenotypic trait interacting with environmental variables affected by contempo-

rary global change (e.g. hygrometry and UV intensity). We therefore recommend future
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research to pay more attention to matching habitat choice when studying populations’

dynamics and spatial range shift to improve model predictions and management policies.

6 Supplementary materials

Legend details

Figure 4.5: In A,B) only juvenile survival probability was represented but it was

associated with adult survival probability (0.5 for juvenile survival probability of 0.12 and

0.6 for juvenile survival probability of 0.25). In G,H the x axis represented the basal juve-

nile emigration probability. It was associated with an adult emigration probability (0.05

for the basal juvenile emigration probability of 0.2, 0.15 for the basal juvenile emigration

probability of 0.4, 0.25 for the basal juvenile emigration probability of 0.4, 0.35 for the

basal juvenile emigration probability of 0.5 and 0.45 for the basal juvenile emigration

probability of 0.6). In case of random dispersal emigration probabilities for juveniles and

adults was fixed whereas emigration probabilities could vary in case of matching habitat

choice (from 0.2 to 0.4 and 0.05 to 0.25 for juveniles and adults respectively for the basal

juvenile emigration probability of 0.2; from 0.3 to 0.5 and 0.15 to 0.35 for juveniles and

adults respectively for the basal juvenile emigration probability of 0.3; from 0.4 to 0.6 for

juveniles and adults respectively for the basal juvenile emigration probability of 0.4).

Figure S4.12: In A,B) only juvenile survival probability was represented but it was

associated with adult survival probability (0.5 for juvenile survival probability of 0.12 and

0.6 for juvenile survival probability of 0.25). In G,H the x axis represented the basal juve-

nile emigration probability. It was associated with an adult emigration probability (0.05

for the basal juvenile emigration probability of 0.2, 0.15 for the basal juvenile emigration

probability of 0.4, 0.25 for the basal juvenile emigration probability of 0.4, 0.35 for the

basal juvenile emigration probability of 0.5 and 0.45 for the basal juvenile emigration

probability of 0.6). In case of random dispersal emigration probabilities for juveniles and

adults was fixed whereas emigration probabilities could vary in case of matching habitat

choice (from 0.2 to 0.4 and 0.05 to 0.25 for juveniles and adults respectively for the basal
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juvenile emigration probability of 0.2; from 0.3 to 0.5 and 0.15 to 0.35 for juveniles and

adults respectively for the basal juvenile emigration probability of 0.3; from 0.4 to 0.6

for juveniles and adults respectively for the basal juvenile emigration probability of 0.4).

Overall the results were the same as in Figure 4.5: Extinction time was always higher or

the same in case of matching habitat choice than in case of random dispersal. Survival

probability, fecundity and emigration probability had a positive influence on extinction

time.

Figure S4.13: In A,B) only juvenile survival probability was represented but it was

associated with adult survival probability (0.5 for juvenile survival probability of 0.12 and

0.6 for juvenile survival probability of 0.25). In G,H the x axis represented the basal juve-

nile emigration probability. It was associated with an adult emigration probability (0.05

for the basal juvenile emigration probability of 0.2, 0.15 for the basal juvenile emigration

probability of 0.4, 0.25 for the basal juvenile emigration probability of 0.4, 0.35 for the

basal juvenile emigration probability of 0.5 and 0.45 for the basal juvenile emigration

probability of 0.6). In case of random dispersal emigration probabilities for juveniles and

adults was fixed whereas emigration probabilities could vary in case of matching habitat

choice (from 0.2 to 0.4 and 0.05 to 0.25 for juveniles and adults respectively for the basal

juvenile emigration probability of 0.2; from 0.3 to 0.5 and 0.15 to 0.35 for juveniles and

adults respectively for the basal juvenile emigration probability of 0.3; from 0.4 to 0.6

for juveniles and adults respectively for the basal juvenile emigration probability of 0.4).

Overall the results were the same as in Figure 4.5 and Figure S4.12: Range contraction

was always lower in case of matching habitat choice than in case of random dispersal.

Survival probability, fecundity and emigration probability had a negative influence on

spatial range contraction.

Figure S4.14: In A,B) only juvenile survival probability was represented but it was

associated with adult survival probability (0.5 for juvenile survival probability of 0.12 and

0.6 for juvenile survival probability of 0.25). In G,H the x axis represented the basal juve-

nile emigration probability. It was associated with an adult emigration probability (0.05

for the basal juvenile emigration probability of 0.2, 0.15 for the basal juvenile emigration
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probability of 0.4, 0.25 for the basal juvenile emigration probability of 0.4, 0.35 for the

basal juvenile emigration probability of 0.5 and 0.45 for the basal juvenile emigration

probability of 0.6). In case of random dispersal emigration probabilities for juveniles and

adults was fixed whereas emigration probabilities could vary in case of matching habitat

choice (from 0.2 to 0.4 and 0.05 to 0.25 for juveniles and adults respectively for the basal

juvenile emigration probability of 0.2; from 0.3 to 0.5 and 0.15 to 0.35 for juveniles and

adults respectively for the basal juvenile emigration probability of 0.3; from 0.4 to 0.6

for juveniles and adults respectively for the basal juvenile emigration probability of 0.4).

Overall the results were the same as in Figure 4.5, Figure S4.12 and Figure S4.13: For

most parameters values range fragmentation was lower in case of matching habitat choice

than in case of random dispersal. Range fragmentation was similar between random dis-

persal and matching habitat choice for the lowest emigration probability and de warming

of 1◦C/100 years and for le lowest fecundity and a warming of 2◦C/100 years.

Figure S4.17: Overall the results were the same as in Figure 4.6, Figure S4.15

and Figure S4.16: For most parameters values range fragmentation was lower in case

of matching habitat choice than in case of random dispersal. Range fragmentation was

higher for matching habitat choice than for random dispersal for the highest environ-

mental stochasticity and a warming of 2◦C/100 years. Environmental stochasticity had a

positive influence on range fragmentation for a warming of 1◦C/100 years in both random

dispersal and matching habitat choice. For a warming of 2◦C/100 years, the environ-

mental stochasticity has a positive influence on range fragmentation in case of matching

habitat choice and a negative influence on range fragmentation in case of random disper-

sal. The relation was negative in case of random dispersal because the range was nearly

extinction for high environmental stochasticity, preventing fragmentation to occur.
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Figure S4.1 – Flow diagram of the model. The left side of this diagram depicts the life cycle
of the modeled species. At birth, a Juvenile could disperse (emigration and immigration),
then survive to become an adult or die. As an adult, it could disperse again (emigration
and immigration), reproduce and survive or die. The adult stage last until the individual
died. The right side shows how we modeled the different events of the life cycle (i.e.
emigration, immigration, survival) in the matching habitat choice and random dispersal
modes. For both modes, survival was a Gaussian function of local temperature (Box
C) and so does thermal adaptation (dashed line, Box A). Emigration probability (solid
line, Box A) depending on local temperature in the matching habitat choice mode and
was constant in the random dispersal mode. After leaving its habitat, an emigrant with
a given phenotype (i.e. the color of the circle) settled in a matching habitat choice its
phenotype (i.e. same color) for the matching habitat choice mode while it settled in a
randomly chosen habitat when dispersal was random (Box B).
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Figure S4.2 – Dispersal rules. Details of the different steps of dispersal for matching
habitat choice and random dispersal after emigration decision to settlement. After emi-
grating, the disperser visited all patches on a the perimeter of a circle of radius equal to
dispersal distance. In case of matching habitat choice it chose the settlement habitat that
maximized its lifetime reproductive success. When more than one habitat maximized its
lifetime reproductive success, the disperser settled in one of these habitat randomly. In
case of random dispersal, the dispersers settled in a randomly chosen habitat among all
habitats he visited, on the perimeter of a circle of radius equal to dispersal distance.
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Match. hab. choice
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B

Figure S4.3 – Thermal survival probability and the adaptiveness of gene flows for dispersal
distance of 3 and 5 space units and a warming of 1◦C/100 years. Same as Figure 4.1 1
but for dispersal distance of 3 and 5 space units: adaptiveness of the gene flow (A) and
the thermal survival probability of emigrants, immigrants and residents (B) through time
for different dispersal distances in case of matching habitat choice (circles and solid lines
(A) and blue bars (B)) or random dispersal (triangles and dashed lines (A), and green
bars (B)). Results were obtained under a climate change scenario of 1◦C of warming over
100 years. A) Thermal adaptiveness of total gene flow through time for different dispersal
distances for the matching habitat choice (black) and random dispersal (white) scenarios
(see methods for details). B) Thermal survival probability of emigrants (dark blue for
matching habitat choice, dark green for random dispersal), immigrants (medium blue for
matching habitat choice, medium green for random dispersal) and residents (light blue
for matching habitat choice, light green for random dispersal) through time for different
dispersal distances in case of matching habitat choice (blue bars) and random dispersal
(green bars). Means (±SD) over 50 simulations are shown.
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Figure S4.4 – Thermal survival probability and th adaptiveness of gene flows for a warm-
ing of 2◦C/100 years. Same as Figure 4.1 and Figure S4.3 but for a warming of 2◦C/100
years Adaptiveness of the gene flow (A) and the thermal survival probability of emi-
grants, immigrants and residents (B) through time for different dispersal distances in case
of matching habitat choice (circles and solid lines (A) and blue bars (A)) or random dis-
persal (triangles and dashed lines (A), and green bars (B)). Results were obtained under
a climate change scenario of 1◦C of warming over 100 years. A) Thermal adaptiveness
of total gene flow through time for different dispersal distances for the matching habitat
choice (black) and random dispersal (white) scenarios (see methods for details) B) Ther-
mal survival probability of emigrants (dark blue for matching habitat choice, dark green
for random dispersal), immigrants (medium blue for matching habitat choice, medium
green for random dispersal) and residents (light blue for matching habitat choice, light
green for random dispersal) through time for different dispersal distances in case of match-
ing habitat choice (blue bars) and random dispersal (green bars). Means (±SD) over 50
simulations are shown. Overall the observed pattern was the same as in Figure 4.1 and
Figure S4.3 but the difference in thermal survival probability between the matching habi-
tat choice mode and the random dispersal mode was higher than for a warming of 1◦C/100
years, particularly for large dispersal distance (4, 5, 6 space units). The adaptiveness of
gene flow was also higher than for a warming of 1◦C/100 years in case of matching habitat
choice.
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Figure S4.5 – Colonization dynamics for dispersal distance of 5 and 6 space units. Same
as Figure 4.4 but for dispersal distance of 3 and 5 space units: mean speed dynamics
of colonizing front though time for matching habitat choice (black solid line) or random
dispersal (light gray solid line) for two climate change scenarios (scenario A,C: 1◦C/100
years, scenario B,D: 2◦C/100 years). To keep up with the pace of climate change, the
front speed should be at least as high as the dashed line. Two different dispersal distances
were tested: 3 space units (scenarios A,B) and 5 space units (scenarios C,D). Mean curves
over 50 simulations are shown. In the two climate change scenarios, the colonizing front
was moving faster in case of matching habitat choice than in case of random dispersal.
For a warming of 1◦C/100 years, the colonizing front reached or exceed the speed of the
climate in case of habitat. Under random dispersal the colonizing front never kept up
with the pace of climate change.
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Figure S4.6 – Colonization dynamics for simulations with low mutation rate. Same as
in Figure 4.4 and FigureS4.5 but with a mutation rate of 10-7 rather than 10−5 and for
dispersal distance of 3, 4 and 5 space units only: mean speed dynamics of colonizing front
though time for matching habitat choice (black solid line) or random dispersal (light gray
solid line) for two climate change scenarios (scenario A,C: 1◦C/100 years, scenario B,D:
2◦C/100 years). To keep up with the pace of climate change, the front speed should be at
least as high as the dashed line. Three different dispersal distances were tested: 3 space
units (scenarios A,B), 4 space units (scenarios C,D) and 5 space units (scenarios E,F).
Mean curves over 20 simulations are shown. Overall we obtain the same results as in
Figure 4.4 and FigureS4.5. The speed of the colonizing front was always higher in case
of matching habitat choice than in case of random dispersal. However, the speed of the
colonizing front never exceed the speed of the climate in case of matching habitat choice
as observed with a higher mutation rate.
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Figure S4.7 – Range fragmentation and associated gene flows. A,B) Populations density
through space and time in case of matching habitat choice (A) and random dispersal (B).
Solid lines represent the shift of the initial climatic niche of the species. Dashed circles
represent the position in space and time at which D was taken. C) Local mean thermal
fitness load (i.e. local maldaptation level) after 100 years of warming (1◦C/100 years) in
case of matching habitat choice (gray line) or random dispersal (black line). Arrow points
in the space position delimited by dashed circles on A and B. D) Gene flow adaptation
(see Methods) after 100 years of warming (1◦C/100 years) behind the colonizing front
(delimited by dashed circles on A and B) in case of matching habitat choice or random
dispersal. Figures were taken for simulations under a warming of 1◦C/100 years and
a dispersal distance of 3 space units. A and B were drawn from a single simulation
representative of others. In C, means over 50 simulations are shown. In D, means (±SD)
over 50 simulations are shown.
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Figure S4.8 – Relative influence of adaptive immigration and adaptive emigration on
species responses to climate change. Proportion of spatial range loss (A,B) and extinc-
tion time (C,D) depending on dispersal distance for matching habitat choice (adaptive
immigration and adaptive emigration; circles and solid lines), adaptive immigration only
(squares and dotted lines), adaptive emigration only (diamonds and dashed lines) or ran-
dom dispersal (triangles and dashed lines) and for two climate change scenarios (scenario
A,C: 1◦C/100 years, scenario B,D: 2◦C/100 years). Spatial range loss was measured after
200 years for scenario A and after 100 years for scenario B. When the species persisted
until the end of simulations (600 years), the extinction time was indicated as 600 years.
Means (± SD) over 50 (matching habitat choice and random dispersal) or 20 (adaptive
immigration and adaptive emigration) simulations are shown.

156



Warming: 1°C/100 years Warming: 2°C/100 years

Dispersal
Match. hab. choice
Immig. only
Emig. only
Random

A B

C D

Figure S4.9 – Relative influence of adaptive immigration and adaptive emigration on spa-
tial range contraction and fragmentation. Proportion of spatial range contraction (A,C)
and spatial range fragmentation (B,D) depending on dispersal distance for matching habi-
tat choice (adaptive immigration and adaptive emigration; circles and solid lines), adap-
tive immigration only (squares and dotted lines), adaptive emigration only (diamonds and
dashed lines) or random dispersal (triangles and dashed lines) and for two climate change
scenarios (scenario A,C: 1◦C/100 years, scenario B,D: 2◦C/100 years). Spatial range con-
traction was measured after 200 years for scenario A and after 100 years for scenario B.
Spatial range fragmentation was measured between 0 and 200 years for scenario C and
between 0 and 100 years for scenario D. Means (± SD) over 50 (matching habitat choice
and random dispersal) or 20 (adaptive immigration and adaptive emigration) simulations
are shown.
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Figure S4.10 – Influence of density- and temperature- in matching habitat choice on
species responses to climate change. Same as Figure 4.2 but for matching habitat choice
depending on both temperature and density: proportion of spatial range loss (A,B) and
extinction time (C,D) depending on dispersal distance in case of matching habitat choice
depending on temperature and density (circles and solid lines) or random dispersal (trian-
gles and dashed lines) and for two climate change scenarios (scenario A,C: 1◦C/100 years,
scenario B,D: 2◦C/100 years). Spatial range loss was measured after 200 years for scenario
A and after 100 years for scenario B. When extinction time reached 600 years, the species
persisted until the end of the simulations. Means (± SD) over 50 (random dispersal )
or 20 (matching habitat choice depending on temperature and density) simulations are
shown.
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Figure S4.11 – Influence of density- and temperature- in matching habitat choice on spatial
range contraction and fragmentation. Same as Figure 4.3 but for matching habitat choice
depending on both temperature and density: proportion of spatial range contraction
(A,C) and spatial range fragmentation (B,D) depending on dispersal distance in case of
matching habitat choice depending on temperature and density (circles and solid lines)
or random dispersal (triangles and dashed lines) and for two climate change scenarios
(scenario A,C: 1◦C/100 years, scenario B,D: 2◦C/100 years). Spatial range contraction
was measured after 200 years for scenario A and after 100 years for scenario B. Spatial
range fragmentation was measured between 0 and 200 years for scenario C and between 0
and 100 years for scenario D. Means (± SD) over 50 (random dispersal) or 20 (matching
habitat choice depending on temperature and density) simulations are shown.
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Figure S4.12 – Influence of demographic parameters on species extinction time facing
climate change. Extinction time depending on survival probability (A,B), fecundity (C,D),
carrying capacity (E,F) and emigration probability (G,H) in case of matching habitat
choice (open circle, solid line) or random dispersal (open triangle, dashed line) and for two
climate change scenarios (scenario A,C,E,G: 1◦C/100 years, scenario B,D,F,H: 2◦C/100
years). When extinction time reached 600 years, the species persisted until the end of
the simulations. See section "Legend details" in supplementary materials for additional
information. Means (± SD) over 50 (parameter values of main simulations (Table 4.1))
or 20 (parameter values of extra simulations (Table 4.1)) simulations are shown.
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Figure S4.13 – Influence of demographic parameters on spatial range contraction during
climate change. Spatial range contraction depending on survival probability (A,B), fecun-
dity (C,D), carrying capacity (E,F) and emigration probability (G,H) in case of match-
ing habitat choice (open circle, solid line) or random dispersal (open triangle, dashed
line) and for two climate change scenarios (scenario A,C,E,G: 1◦C/100 years, scenario
B,D,F,H: 2◦C/100 years). Spatial range contraction was measured after 200 years for
scenario A,C,E,G and after 100 years for scenario B,D,F,H. See section "Legend details"
in supplementary materials for additional information. Means (± SD) over 50 (parame-
ter values of main simulations (Table 4.1)) or 20 (parameter values of extra simulations
(Table 4.1)) simulations are shown.
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Figure S4.14 – Influence of demographic parameters on spatial range fragmentation during
climate change. Spatial range fragmentation depending on survival probability (A,B),
fecundity (C,D), carrying capacity (E,F) and emigration probability (G,H) in case of
matching habitat choice (open circle, solid line) or random dispersal (open triangle, dashed
line) and for two climate change scenarios (scenario A,C,E,G: 1◦C/100 years, scenario
B,D,F,H: 2◦C/100 years). Spatial range fragmentation was measured between 0 and 200
years for scenario A,C,E,G and between 0 and 100 years for scenario B,D,F,H. See section
"Legend details" in supplementary materials for additional information. Means (± SD)
over 50 (parameter values of main simulations (Table 4.1)) or 20 (parameter values of
extra simulations (Table 4.1)) simulations are shown.

162



Warming 1°C/100 years Warming 2°C/100 years

Match. hab. choice
Random dispersal

Dispersal

Disp. dist. 3 Disp. dist. 3

Disp. dist. 4Disp. dist. 4

Disp. dist. 5Disp. dist. 5

Env. stochasticity

Env. stochasticity

Env. stochasticity

Env. stochasticity

Env. stochasticity

Env. stochasticity

E
xt

in
ct

io
n 

tim
e

 

E
xt

in
ct

io
n 

tim
e

 

E
xt

in
ct

io
n 

tim
e

 

A B

C D

E F

Figure S4.15 – Influence of environmental stochasticity on extinction time facing climate
change. Extinction time depending on environmental stochasticity in case of matching
habitat choice (circles and solid lines) or random dispersal (triangles and dashed lines) for
different dispersal distances (A,B: 3 space units; C,D: 4 space units; E,F: 5 space units)
and for two climate change scenarios (scenario A,C,E: 1◦C/100 years, scenario B,D,F:
2◦C/100 years). When extinction time reached 600 years, the species persisted until the
end of the simulations. Means (± SD) over 50 (parameter values of main simulations
(Table 4.1)) or 20 (parameter values of extra simulations (Table 4.1)) simulations are
shown. Overall the results were the same as in Figure 4.6: Extinction time was always
higher or the same in case of matching habitat choice than in case of random dispersal.
Environmental stochasticity had a negative influence on extinction time.
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Figure S4.16 – Influence of environmental stochasticity on spatial range contraction dur-
ing climate change. Spatial range contraction depending on environmental stochasticity
in case of matching habitat choice (circles and solid lines) or random dispersal (triangles
and dashed lines) for different dispersal distances (A,B: 3 space units; C,D: 4 space units;
E,F: 5 space units) and for two climate change scenarios (scenario A,C,E: 1◦C/100 years,
scenario B,D,F: 2◦C/100 years). Spatial range contraction was measured after 200 years
for scenario A,C,E and after 100 years for scenario B,D,F. Means (± SD) over 50 (param-
eter values of main simulations (Table 4.1)) or 20 (parameter values of extra simulations
(Table 4.1)) simulations are shown. Overall the results were the same as in Figure 4.6
and Figure S4.15: Range contraction was almost always lower in case of matching habitat
choice than in case of random dispersal (excepted for a dispersal distance of 3 space units,
a warming of 2◦C/100 years and an environmental stochasticity of 0.1). Environmental
stochasticity had a positive influence on spatial range contraction.
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Figure S4.17 – Influence of environmental stochasticity on spatial range fragmentation
during climate change. Spatial range fragmentation depending on environmental stochas-
ticity in case of matching habitat choice (circles and solid lines) or random dispersal
(triangles and dashed lines) for different dispersal distances (A,B: 3 space units; C,D: 4
space units; E,F: 5 space units) and for two climate change scenarios (scenario A,C,E:
1◦C/100 years, scenario B,D,F: 2◦C/100 years). Spatial range fragmentation was mea-
sured between 0 and 200 years for scenario A,C,E and between 0 and 100 years for scenario
B,D,F. Means (± SD) over 50 (parameter values of main simulations (Table 4.1)) or 20
(parameter values of extra simulations (Table 4.1)) simulations are shown. See section
"Legend details" in supplementary materials for interpretation.
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Figure S4.18 – Influence of burning time spatial range loss during climate change. Pro-
portion of spatial range loss depending on time of stable climate before the period of
climate change in case of matching habitat choice (circles and solid lines) or random dis-
persal (triangles and dashed lines) for different dispersal distances (A,B: 3 space units;
C,D: 4 space units; E,F: 5 space units) and for two climate change scenarios (scenario
A,C,E: 1◦C/100 years, scenario B,D,F: 2◦C/100 years). Spatial range loss was measured
after 200 years of warming for scenario A,C,E and after 100 years of warming for scenario
B,D,F. Means (± SD) over 50 (parameter values of main simulations (Table 4.1)) or 20
(parameter values of extra simulations (Table 4.1)) simulations are shown.
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Figure S4.19 – Influence of burning time on extinction time facing climate change. Ex-
tinction time depending on time of stable climate before the period of climate change in
case of matching habitat choice (circles and solid lines) or random dispersal (triangles
and dashed lines) for different dispersal distances (A,B: 3 space units; C,D: 4 space units;
E,F: 5 space units) and for two climate change scenarios (scenario A,C,E: 1◦C/100 years,
scenario B,D,F: 2◦C/100 years). When extinction time reached 600 years, the species
persisted until the end of the simulations. Means (± SD) over 50 (parameter values of
main simulations (Table 4.1)) or 20 (parameter values of extra simulations (Table 4.1))
simulations are shown.
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Figure S4.20 – Influence of burning time on spatial range contraction during climate
change. Spatial range contraction depending on time of stable climate before the period
of climate change in case of matching habitat choice (circles and solid lines) or random
dispersal (triangles and dashed lines) for different dispersal distances (A,B: 3 space units;
C,D: 4 space units; E,F: 5 space units) and for two climate change scenarios (scenario
A,C,E: 1◦C/100 years, scenario B,D,F: 2◦C/100 years). Spatial range contraction was
measured after 200 years for scenario A,C,E and after 100 years for scenario B,D,F. Means
(± SD) over 50 (parameter values of main simulations (Table 4.1)) or 20 (parameter values
of extra simulations (Table 4.1)) simulations are shown.
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Figure S4.21 – Influence of burning time on spatial range fragmentation during climate
change. Spatial range fragmentation depending on time of stable climate before the period
of climate change in case of matching habitat choice (circles and solid lines) or random
dispersal (triangles and dashed lines) for different dispersal distances (A,B: 3 space units;
C,D: 4 space units; E,F: 5 space units) and for two climate change scenarios (scenario
A,C,E: 1◦C/100 years, scenario B,D,F: 2◦C/100 years). Spatial range fragmentation was
measured between 0 and 200 years for scenario A,C,E and between 0 and 100 years for
scenario B,D,F. Means (± SD) over 50 (parameter values of main simulations (Table 4.1))
or 20 (parameter values of extra simulations (Table 4.1)) simulations are shown.
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5 General Discussion

1 Discussion

The common method used in science to tackle a specific question, or to understand a

biological system, is to start with the simplest scenario and to gradually add complexity in

the system. The simplest scenario will be used as a reference to compare results obtained

with a more complex scenario. This gradual approach enables to isolate the influence

of parameters or mechanisms added at each step of the complication process. Then,

when isolated and fully understood, each mechanism can be modeled to extrapolate its

influence on larger spatio-temporal scales. This step by step approach has been used as

a guideline for this PhD. In our experimental system (Chapters 2 and 3), the simplest

scenario was the pairs of isolated enclosures, one with a present-day climate and the other

with a warm climate. This simple scenario measures population responses to different

climatic conditions excluding the influence of dispersal. Then, the scenario with connected

enclosures was compared to this “simple” scenario to explore how dispersal, in its complex

rules, modulate other processes shaping population responses to climate change. Then,

we integrated dispersal, as we observed it in our experiment, into a theoretical model to

predict its influence on population responses to climate change on the whole geographical

distribution of the species, over hundreds of year. The same logic has been used in the

following discussion.

The aim of this thesis was to better understand how populations respond to climate

171



change and how dispersal and landscape structure modulate these responses, thanks to a

combination of experimental and modeling approaches. We found that climate change af-

fected population age structure and population mean body size by accelerating individual

pace of life (Chapter 2). Individuals had a faster growth rate and reproduced earlier under

warm climatic conditions while adult survival was reduced. Phenotypic composition of

the population was also affected by the climatic conditions; after three years of climatic

treatment, individuals living in warm climatic conditions were paler than individuals liv-

ing in present-day climatic conditions (Chapter 3). Phenotypic differentiation was mainly

due to phenotypic plasticity. However, we found a strong influence of landscape structure

on population response to climate change. When populations were connected, individuals

could disperse from one climatic condition to another. The influence of climate change on

population dynamics and population phenotypic composition was buffered by this flow of

individuals. Indeed, we did not observe climatic effect on population age structure and on

population phenotypic composition in connected populations. We observed that dispersal

was non random regarding individual characteristics and climatic conditions. The flow

of individuals was biased from present-day climate to warm climate. Moreover, dispersal

was adaptive and driven by the match between individual phenotype and local tempera-

ture. Non-random dispersal affected population density and enhanced selective pressures

acting on phenotypes. The relative roles of phenotypic plasticity and evolutionary adap-

tation were thus determined by dispersal. On a larger spatio-temporal scale, we found

that non-random dispersal, in particular matching habitat choice that we observed in

our experiments, strongly affected species persistence under climate change (Chapter 4).

When considered into predictive models, matching habitat choice promoted species range

shift and reduced population extinction risk under climate change.

In isolated conditions (i.e. without dispersal), populations inhabiting warmer climatic

conditions for three years differed from populations inhabiting present-day climatic con-

ditions regarding both their dynamics and their phenotypic composition. Populations in

warmer climate were indeed composed of younger, larger and paler individuals than those

composing populations in present-day climate. Changes in population dynamics and phe-
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notypic composition may interact with each other to shape the general response to climate

change. In an eco-evolutionary feedback loop (Le Galliard et al., 2005a; Kokko & López-

Sepulcre, 2007; Schoener, 2011), demographic and ecological processes affect evolution and

vice versa. In our system, the climate-related change in population age structure might

have driven population phenotypic change. We observed that the proportion of young

individuals increased in warm conditions. If selection on particular phenotypic traits act

mostly on younger age classes, evolutionary phenotypic change might be enhanced by

the change in population age structure that increase the density of young individuals.

Conversely, if selective pressures act mainly on the adult stage, then evolutionary changes

would be hampered by the global decrease in adult survival. On the other hand, changes

in population phenotypic composition may also affect population dynamics. If particular

phenotypes have selective advantage over others, they could thus be more competitive,

have easier access to resources, grow faster and thus reproduce earlier, enhancing the

decrease in population mean age. From a broader point of view, phenotypic distribution

could correlate with life history strategies. In the commonly used r to K pace of life

continuum (Pianka, 1970), some phenotypic traits could be associated with the different

strategies (e.g. thermal type, Goulet et al., 2017). Climate-related changes regarding

phenotypes may thus lead to changes in population dynamics. In the present study, the

effect of the climatic treatment on adult dorsal darkness was still present when controlling

for individual age and body size, meaning that change in population phenotypic composi-

tion was not directly caused by the change in age structure. However, we did not explore

the direct link between life history strategies and thermal phenotypes. Further analyses

on our dataset could bring light on how climate change could favor thermal “type” or

“syndrome” affecting both population dynamics and composition, rather than treating

them as separate population responses.

Correlations between life-history traits and/or other phenotypic traits are also known

to influence dispersal. Indeed, dispersers are often characterized by a combination of

traits promoting movements, decreasing dispersal costs or increasing benefits of dispersal

(i.e. dispersal syndromes (Clobert et al., 2009; Ronce & Clobert, 2012; Cote et al., 2017)).
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Also, dispersal is driven by individual phenotypes (e.g. presence of wing), local conditions

(e.g. conspecific density) and often their match (i.e. matching habitat choice (Bowler &

Benton, 2005; Edelaar et al., 2008)). In the first two chapters of this thesis, we demon-

strated that dispersal was affected by the climatic condition (Chapter 2), the phenotype

of the individuals (body size, Chapter 2) and the match between individual phenotype

and the local climatic condition (body size/thermal preference in adults (Chapter 2 and

3), dorsal darkness in juvenile(Chapter 3)). Previous studies already demonstrated that

in the common lizard (Zootoca vivipara), dispersal was affected by the local context (e.g.

local density (Le Galliard et al., 2005b), temperature (Massot et al., 2008)) and the

match between phenotype and local context (e.g. social behavior and local density (Cote

& Clobert, 2007b), dorsal pattern and climatic conditions (Lepetz et al., 2009), thermal

preference and climatic condition (Bestion et al., 2015a)). Matching habitat choices have

already been demonstrated in numerous species and different phylogenetic groups (e.g.

insects (Karpestam et al., 2012), fishes (Bolnick et al., 2009), birds (Dreiss et al., 2012;

Camacho et al., 2016; Benkman, 2017), reptiles (Cote et al., 2007, 2008); reviewed in

Edelaar et al. (2008)). Despite these evidences, dispersal is often considered as a neutral

and stochastic process (Lowe & McPeek, 2014). The three chapters of this thesis demon-

strated that the complexity of dispersal is of central importance in population responses

to new climatic conditions and to predict the future of biodiversity in the context of global

change.

Indeed, dispersal had various consequences on population responses to climate change.

We observed that dispersal buffered the influence of climatic conditions on population age

structure and phenotypic composition. However, the movement of individuals between the

two climatic conditions affected population density and modulate the relative influence

of phenotypic plasticity and evolutionary adaptation in population phenotypic change.

Indeed, dispersal modify the strength of selection on heritable traits, making response to

selection possible (R = S ∗ h2, breeder equation, see Morrissey et al. (2010) for details

and criticism). The observed effects on population dynamics and composition rely on the

fact that dispersal was non-random. Dispersal buffered the impact of climate change on
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age structure and induced demographic changes because of the biased flow from present-

day climate populations to warmer climate populations. Climate-dependent dispersal

creates a disequilibrium between emigration and immigration rates resulting in a source-

sink system. Furthermore, the influence of phenotypic plasticity in driving phenotypic

differentiation among climates was offset by matching habitat choice. Dispersal indeed (i)

drove population phenotypic composition in the opposite direction of phenotypic plasticity

and (ii) strengthened selective pressures on phenotypes also in the opposite direction

of phenotypic plasticity. Whereas theory predicts that phenotypic plasticity should be

promoted against evolutionary adaptation in presence of random dispersal (Sultan &

Spencer, 2002), we experimentally demonstrated the opposite. Moreover, considering

matching habitat choice when forecasting future species distribution under climate change

strongly affected predictions. In a situation where matching habitat choice was perfect

(i.e. individuals were able to choose the habitat that perfectly match their phenotype), we

showed that predictions regarding the evolution of range size could be reversed; the model

predicted important range contraction under random dispersal whereas species range was

predicted to expand when matching habitat choice was considered. For a few decades,

species distribution models (SDMs) have been the main used models to predict future

species distribution under climate change (e.g. Bakkenes et al., 2002; Thuiller et al.,

2005; Broennimann et al., 2006; Schwartz et al., 2006). Despite some improvements

of these models, SDMs usually considered species as entities (i.e. ignored population

differentiation and local adaptation), ignored biological interactions and either ignored

dispersal or modeled it as random (Hampe, 2004). Here we highlighted the urgent need

to consider dispersal as a complex and non random process.

Beside this, dispersal has been shown to evolve quickly (e.g. Phillips et al., 2006;

Legrand et al., 2016). Dispersal is shaped by selection pressures link to biotic and abiotic

factors such as population density (Simmons & Thomas, 2004; Massol et al., 2011), kin

competition (Rousset & Gandon, 2002), and landscape structure (Hill et al., 1999; Hanski

et al., 2004; Schtickzelle et al., 2006). Under climate change, dispersal could also evolve

and modulate range expansion (Travis et al., 2009; Bocedi & Travis, 2016). In the context
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of global change, landscape fragmentation plays an important role on dispersal evolution.

It is predicted that dispersal probability should be reduced in fragmented landscape due

to the increase in dispersal cost associated with movements through unsuitable habitats

(Travis et al., 1999). However, the influence of landscape fragmentation on dispersal

evolution could be more complex (e.g. see Schtickzelle et al., 2006), making prediction

of species response to climate change in an increasingly fragmented landscape hard to

achieve (Bocedi et al., 2014).

Throughout this thesis, I gave some new arguments/predictions on the potential in-

fluence of habitat fragmentation on species response to climate change. In the extreme

situation where fragmentation was total and populations were totally isolated, we demon-

strated that the effects of climate change on population dynamics and composition were

strong compared to the situation of connected populations. On a larger scale, this extreme

situation should surge species extinction under climate change. For example, Thomas

et al. (2004) predicted the extinction of 26-37% of all species in 2050 with a mid-range

climate change scenario in absence of dispersal (similar to a situation of total fragmen-

tation preventing dispersal) whereas the extinction concerned “only” 15-20% of species

when dispersal was allowed. However, such an extreme situation is not realistic. The

process of fragmentation splits suitable habitats into a number of small and isolated

patches (Wilcove et al., 1986; Fahrig, 2003), reducing habitat surface and increasing the

distance among patches. Despite being constrained, dispersal among patches is often

maintained. In that case, the structure of the landscape is expected to play an important

role as it should shape dispersal pattern and influence species range shift (McInerny et al.,

2007). Landscape structure could also directly influence dispersal in constraining individ-

ual movements. Indeed, habitat fragmentation may reduce the adaptive potential of gene

flow in limiting the exploration of surrounding habitat by dispersers. Dispersal decisions

thus should be non-optimal (Jacob et al., 2015a; Cote et al., 2017). We demonstrated in

Chapter 4 that decreasing optimality in dispersal decision strongly affected species per-

sistence compared to a situation where dispersal decisions were optimal. For that reason,

we predicted landscape fragmentation to have an unexpectedly strong negative influence
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on species persistence in the context of climate change. Whereas we argued that models

predicting future species distribution might be too pessimistic in ignoring matching habi-

tat choice, we think that landscape fragmentation might offset the benefice of adaptive

dispersal, making current global change a “deadly anthropogenic cocktail” (Travis, 2003).

On a smaller scale, landscape fragmentation limits contacts between populations in-

habiting different microclimates. Microclimates could be used very locally by the individ-

uals to avoid overheating during heatwaves (Scheffers et al., 2014; Suggitt et al., 2018). It

could also play the role of refuge area during periods of environmental perturbations such

as climate change, allowing fast recolonization at the end of the perturbation (Pearson,

2006). Finally, microclimates are predicted to buffer the influence of climate change on

biodiversity and reduce predictions of species extinction (Lenoir et al., 2017; Lembrechts

et al., 2018). Indeed, whereas temperature should increase continuously through time at

the global scale, climate change should not be homogenous at the local scale (Ashcroft

et al., 2009). Populations may benefit from these “cool” microclimates to persist. We

experimentally demonstrated that microclimates indeed allowed to buffer the influence

of climate change. However, it could be costly for population initially inhabiting cool

microclimate (i.e. decreased density). As in classic source-sink dynamics, the continuous

flow of individuals from the source population to the sink could unbalance the source

populations and then the whole system (Gundersen et al., 2001). However, adaptive dis-

persal could also promote adaptation to the warm microclimate. Moreover, refuges, when

they are accessible, could allow individual and population persistence for longer period of

time, letting time for genetic adaptation to happen. Further experiments manipulating

climatic conditions in connected populations on longer period of time may help predict

in which direction the system should evolve. In limiting dispersal among microclimates,

landscape fragmentation impaired the potential role of microclimate in buffering climate

change impact on populations. Moreover, fragmentation on its own could induce climatic

modifications (Foley et al., 2005). In forest habitat, fragmentation changes the thermal

environment by increasing solar radiation at the edge of the patches (Murcia, 1995; Chen

et al., 1999; Laurance, 2004). As a consequence, remnant patches become often hot-
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ter, drier and with more variable climatic conditions (Murcia, 1995; Chen et al., 1999;

Laurance, 2004). The climatic consequences of fragmentation could affect all biological

levels, from individuals to ecosystems (Tuff et al., 2016). Landscape fragmentation may

thus modify the role of microclimates in species response to climate change.

Finally, landscape structure induced different selective pressures on the phenotypes.

We observed that selective gradients and differentials could act on phenotypes in opposite

directions depending on the landscape structure (Chapter 3). However, we did not study

how these landscape-driven selective pressures could interact with climate-driven selective

pressures. As developed earlier in this discussion, traits often correlate into syndromes

and selection could act on these syndromes (e.g. Cote et al., 2017). Different syndromes,

related to behaviors (Sih et al., 2012), dispersal (Legrand et al., 2016; Cote et al., 2017)

and pace-of-life (Goulet et al., 2017; Brans & De Meester, 2018) could be under different

selective pressures. Some traits, involved in different syndromes could be under multi-

ple selection pressures induced by multiple drivers. Depending on the direction of these

pressures, the traits could evolve fast if the different selection pressures go in the same

direction. Conversely, evolution of the trait could be slowed down if selective pressures

go in opposite directions. Evolution of the trait will thus depend on the relative strength

of the different selective pressures. In the particular case of climate change and habitat

fragmentation, it could be possible to disentangle the different pressures using our ex-

perimental system. Indeed, the Metatron could allow to add four other combinations of

treatments to test for the influence of connectivity in homogeneous climatic conditions

(pairs of connected and isolated present-day climate enclosures and warm climate enclo-

sures). However, such fully crossed design experiment could be hard to achieve on large

animals such as lizards due to technical constraints (number of enclosures needed, total

number of animals). In that case, microcosm experiment in laboratory conditions could

help tackle these questions (see Appendix A).
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2 Conclusion, limits and perspectives

Through three years of climatic and connectivity manipulations on lizard populations

as well as model development, this PhD thesis aimed at understanding the role of dispersal

in population responses to climate change. Both experiments and theoretical models un-

derlined the importance to consider dispersal when studying the effects of climate change

on biodiversity. We provided new evidence that dispersal is a complex and non random

process, where phenotypes and environment interact to shape movement decisions. We

demonstrated that considering dispersal as random could lead to wrong predictions on

its role in population adaptation and its interaction with phenotypic plasticity and evolu-

tionary adaptation. Predictions of future species distribution were also strongly affected

by how dispersal was considered; models considering dispersal as random could strongly

overestimate species extinction under contemporary climate change. All these results re-

garding dispersal highlighted the strong influence that landscape structure and habitat

fragmentation could have on species response to climate change. By hampering individual

movements, modifying dispersal and subsequent gene flow, habitat fragmentation should

affect the two responses to climate change that are range shift and change in population

phenotypic composition. Whereas the evidences of population extinctions in response

to climate change is growing (Urban, 2018), habitat fragmentation could precipitate the

loss of biodiversity by hindering adaptive dispersal. This PhD thesis contributes to the

comprehension of the interacting effect of climate change and habitat fragmentation on

biodiversity, and call for further studies in that domain to better capture the complexity

of population responses to anthropogenic disturbances.

The present work provided a mechanistic view on species responses to climate change.

Our experimental approach allowed to measure selective pressures, phenotypic plasticity

and dispersal over three years. We did not observe strong selective pressures, on average,

on the thermal traits that we studied, in particular in isolated populations. Selection on

multiple years can be hard to identify. Previous studies demonstrated that the longer the

observational period was, the weaker selection was (Hendry & Kinnison, 1999; Hoekstra
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et al., 2001; Schoener, 2011). Selection could be fluctuating or acting with different inten-

sities among the years. It could then be complicated to detect a global trend. However, if

directional selection linked to climate acts on a trait, the longer the observational period is

the higher the probability to observe the pattern of selection should be. Therefore, longer

studies could help detect global selective trends on traits. The duration of our study

might fall in the gap between very short studies allowing to detect one year selective pres-

sures and long term studies allowing to detect global directional trends. Moreover, longer

studies could help understand the long lasting effect of climate change on populations and

better understand how phenotypic plasticity promotes or hinders evolutionary adaptation

over time.

Experiments on species with shorter generation time, could also make easier the ob-

servation of evolutionary responses to climate change by allowing to follow populations

on more generations than we could do with lizards. However, shorter generation time

often correlates with higher population density. It could make it difficult to monitor indi-

viduals through time and thus to distinguish between the processes incurring population

responses. Tackling the same questions with different organisms could also allow us to

generalize the conclusions. Using different clades, with different evolutionary history, dif-

ferent life cycles or different dispersal modes might be useful to make reliable predictions

on the different groups. Modeling approaches could also help better understand the influ-

ence of different species characteristics on their response to environmental perturbations.

Our experimental approach also underlined the potential influence of landscape struc-

ture on species response to climate change. We considered two extreme types of landscape

structure, one where dispersal was impossible and one where dispersal was allowed. Habi-

tat fragmentation has multiple facets (see Figure 2 in Fahrig (2003) for example) and can

affect dispersal pattern in many different ways, depending on the size of the remaining

habitat, its shape and the distance separating him from other suitable habitats (McIn-

erny et al., 2007; Martin & Fahrig, 2016). Our experimental system did not allow us to

explore many types of landscape structure. Alternative systems could be more appropri-

ate to tackle such questions. For example, in laboratory conditions, it could be easier
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to manipulate the distance among habitats, the viscosity of the matrix or the size of

the habitats. The system described in Appendix A, using Tetrahymena thermophila in-

habiting interconnected patches could be modified to increase landscape complexity (e.g.

increase distance among patches). Models could also be very useful as they allow to build

very complex landscapes to test how landscape configuration modulates species responses

to climate change.

The combination of approaches that we used allowed us to highlight important mech-

anisms in the responses of species to climate change and to predict their consequences

over larger spatio-temporal scales. However, it is insufficient to make reliable predictions

on the future of specific species in the face of anthropogenic global change. Parameters

on population compositions and landscape structure could be extracted from studies on

natural populations. These parameters could be used in our model to predict the fu-

ture distribution of the species under climate change, in integrating the mechanisms of

dispersal that we highlight in our experiments. Moreover, merging the monitoring of nat-

ural populations with our experimental approach could allow to identify which processes

uncovered in the experiment are acting in natural populations. Natural populations of

common lizards are being monitored for almost 30 years in the Cévennes mountain. For

instance, this long term study allowed to demonstrate that climate change increased indi-

vidual body size (Chamaillé-Jammes et al., 2006) and released particular trade-offs, that

may accelerate pace of life (Rutschmann et al., 2016). The results that we obtained in

our experiment support their findings. Further comparisons could help design new exper-

iments, or explain pattern observed in natural populations. For instance, Massot et al.

(2008) observed a decrease in juvenile dispersal in parallel to the rise in temperature. In

the light of our results, we can expect that this reduction in dispersal could affect popu-

lation dynamics and composition and have future consequences on the relative influence

of phenotypic plasticity and evolutionary adaptation.

In the near future, further analyses on the data coming from our experiment on lizard

could focus on traits covariation and syndromes. As already developed earlier in this

discussion, traits often covary and selective pressures could act on these syndromes by
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acting on single traits or on many traits simultaneously. The climatic conditions could

favor or disrupt combinations of phenotypic, physiological and life-history traits related

to the pace-of-life syndrome (e.g. Brans & De Meester, 2018), or the thermal type (e.g.

Goulet et al., 2017). Landscape structure may interact with the climatic conditions to

shape these syndromes. Syndromes related to dispersal could be selected in connected

habitat compared to isolated ones (see Appendix B). The analyses of the traits used in the

first two chapters of this thesis altogether might shed light on global patterns of population

differentiation regarding trait combinations. It could also help better understand the

selective conflicts related to climatic conditions and landscape structure acting on the

traits.

Moreover, as a first step, we focused on the influence of climatic conditions on life-

history-traits and thermal phenotypes as we expected these particular traits to be strongly

affected by climate change in ectotherms. However, climate change is also expected to

strongly affect the physiology of the organisms. The stress induced by warm climatic

conditions could be observed at the cellular and molecular level (e.g. heat stress). The

study of stress hormones or telomere length could give important information on individ-

uals’ state of health in the difference climatic conditions. For instance, telomere length

gives information on the level of ageing of the individuals at the molecular scale. As in-

dividuals had faster pace-of-life in warm climatic conditions, we expected their telomere

to be shorter than for individuals living in present-day climatic conditions. A part of

the genetic samples that we have is going to be used to analyze telomere length of each

individual between the different treatments.

Looking at the molecular level can also improve our ability to detect microevolu-

tionary processes as it is not limited to a group of phenotypic traits measured. For

instance genomic data could be used in association mapping analyses in order to link

phenotypic variations to genotypic variations (Franks & Hoffmann, 2012). Development

of methods based on the analyses of single nucleotide polymorphisms (SNPs), could also

identify climate-related changes in alleles frequency at the genomic scale. By comparing

sequences in different populations/conditions, it is possible to identify outliers represent-
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ing the markers diverging between populations. Locating loci on a reference genome allows

to identify the genes concerned by SNPs variation and to look at their function in order to

relate it to phenotypic variations (e.g. Prunier et al., 2011; Franks & Hoffmann, 2012).

Comparing populations from present-day and warm climatic conditions might revealed

population differentiation and genetic adaptation to the climatic conditions in presence

and absence of gene flow. Selection pressures derived from landscape structure could also

be investigated at the molecular level. To do so, the genetic samples collected during the

experiment are being sequenced.

Finally, a recent study highlighted the consequence of climate change on gut micro-

biota of common lizard over one year of climatic treatment and the potential consequences

for lizards’ survival and conditions as well as climate-dependent lizards diet (Bestion et al.,

2017). From 2015 to 2018, we also sampled cloacal bacteria of all adult and yearling indi-

viduals. Using metabarcoding, we could identify operational taxonomic unit (OTUs) and

measure gut composition and diversity. The analyses of these data may help understand

how the gut changed through time in response to climate change, and how connectivity

and dispersal shape its composition and bacterial diversity. Bestion et al. (2017), in a one

year experiment, detected the first negative impacts of climatic conditions on microbiota,

while on the long run, changes in microbiota may help lizards to deal with changing ther-

mal conditions (Alberdi et al., 2016). For instance, changes in gut composition under cold

conditions could modify phenotypes of the host by increased intestinal absorptive capac-

ity (Chevalier et al., 2015). Under climate change, gut modification could thus affect the

individual ability to persist.

Besides data analysis, the model that has been developed in this thesis could be

used as a basis for further development. Indeed, the current model integrates only a

continuous landscape. Whereas our observations underlined the importance of landscape

structure on population responses to climate change, complex landscape structure has

to be integrated in our model for further investigation on large spatiotemporal scales.

For instance, fractals allow to build virtual landscapes in which habitat loss and habitat

fragmentation (i.e. habitat aggregation) can be independently manipulated (e.g. Martin
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& Fahrig, 2016). We already developed such model, using a species with simplified life

cycle (one stage only, non-overlapping generations). Dispersal algorithm has also been

modified compared to the previous model. We used stochastic movement simulator (SMS

(Palmer et al., 2011)). This algorithm allows to model each step of the dispersal process

(emigration, transience and settlement). At each time step, individuals can emigrate, and

then move into the landscape via a step by step process, where at each step it can decide

to settle. We modified emigration and immigration rules to allow matching habitat choice.

Interestingly, preliminary analyses in continuous landscape gave similar results to the ones

obtained in Chapter 4, meaning that our results are robust against life cycles, and how

dispersal is modeled. In a next step, the landscape structure has to be manipulated to

understand how it interacts with random dispersal and matching habitat choice to shape

species persistence under climate change.

All of these perspectives will allow to have a better understanding on how climate

change affects species, how selective pressures shape phenotypes and how population re-

sponses are dependent of landscape structure. With the work presented in this manuscript,

we contribute to the global knowledge on species response to contemporary global change.

Further analyses will be needed to have a precise understanding on the mechanisms in-

volved in these responses. From this understanding will depend the future of biodiversity,

as it will determine future conservation plans and could help alert policy-makers on the

importance to consider ecology, in its political definition, as the main objective of their

decisions rather than infinite economic growth in a finite world.
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6 Appendices

A Influence of landscape structure and genetic diver-

sity on population adaptation to warm tempera-

ture: a microcosm experiment

The following appendix describes an experiment that has been realized during my

PhD thesis in collaboration with Staffan Jacob, Delphine Legrand, Michèle Huète, Robin

Aguilée and Julien Cote at the Theoretical and Experimental Ecology Station in Ariège.

The objectives and the general methods of this experiment are presented here.

The aim of the study was to test how landscape structure and genetic diversity in-

fluence population adaptation to local climatic conditions. We used Tetrahymena ther-

mophila as a model species. Tetrahymena thermophila is a ciliate protozoa unicellular

species inhabiting water ponds in Northern America. Its reproduction is mainly asexual,

with sexual recombination occurring between compatible lines in very stressful conditions.

Regarding the conditions of our experiment, reproduction was only asexual (Collins, 2012).

At 23◦C, the generation time is on average 8 hours and is temperature dependent. As

every ectotherm species, Tetrahymena’s physiology and performance depend on external

temperature, and the link between temperature and physiology is described by thermal

performance curve (Huey & Stevenson, 1979). The different lines of Tetrahymena ther-

mophila vary in their thermal performance curve (thermal optimum and tolerance). The
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different lines could thus be either generalists or specialists and prefer different tempera-

tures.

Here, we built 2-patch systems (5ml eppendorf tubes) connected with a 5 cm long

silicon tube with 4mm internal diameter and filled with growth media (see Chaine et al.,

2010). We built 12 combinations of treatments (Figure 6.1), replicated eight times each;

two temperature treatments (23 and 35◦C), two connectivity treatments (isolated and

connected systems) and two genetic diversity treatments (4 and 12 genotypes). Tempera-

ture in patches was manipulated using dry bath systems placed in incubators. In isolated

conditions, the corridors between the two patches were closed by crushing them with plas-

tic clamps. From a pool of 20 genotypes, we formed 16 mixes, 8 with four genotypes/lines

and 8 with twelve genotypes/lines. Each mix was distributed in all the combinations of

climatic and connectivity treatments.

23°C

35°C

Connected

Isolated

{ {Genetic diversity:
4 genotypes

Genetic diversity:
12 genotypes

Figure 6.1 – Experimental design

Populations were initially introduced into each patch by inoculating the different mixes

of genotypes at a concentration of 20 000 cells/ml. Within a system, the two patches

contained the same mix. Then we let the populations evolve in the systems for 5 days,

corresponding to 15 generations at 23◦C and more at 35◦C. We followed density in each

patch through time by counting the number of cells on counting slides (Kima precision cell,

186



five samples of 10 µL per patch) and taking digital pictures under dark-field microscopy.

Cell density was measured based on an automatic analysis of pictures using IMAGEJ

software (Schneider et al. (2012), see Jacob et al. (2018)).

At the beginning of the experiment, and after 5 days of treatments, we performed two

parallel measurements:

1. We sampled cells by transferring 10 µL of each patch into 96-well plates containing

240 µL of growth media. The samples were reared at 8 different temperatures into

incubators (11, 15, 19, 23, 27, 31, 35 and 39◦C). Twice a day, we followed population

growth rate by measuring population density into each well of the 96-wells plates

(Optic density (DO) measurement) for two weeks. Using growth rate at each tem-

perature, we constructed thermal performance curve of each population before and

after the experimental treatments. By comparing the thermal performance curve of

each population before and after the experimental treatments, we could observe if

temperature had an influence on thermal optimum of populations and if the pres-

ence of dispersal, and genetic diversity could influence temperature related change

in thermal performance curve.

2. We isolated 20 cells per patch into 96-wells plates and reared them at both tem-

peratures (23 and 35◦C). Their growth rates were followed through time using DO

measurement. The aim was to quantify the variability in growth rate into each

population at the different times of the experiment to see how the initial variation

was maintained through time.

At the end of the experiment, populations of each patch were split and reared at

two different temperatures (23 and 35◦C) in isolated conditions in a reciprocal common

garden design. After two days, we measured the growth rate of each sub-population at

the temperature in which they were maintained during the common garden experiment.

Comparing their growth rate before and after the common garden could allow us to

determine if the differences induced by our 5 days of treatments were maintained through

the common garden, and thus, if they were due to phenotypic plasticity or evolutionary

adaptation.
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In comparison with the experiment on common lizard, the present experiment was de-

veloped to study population response to climate change and habitat fragmentation over

many generations. It also made possible the manipulation of genetic diversity to tackle its

role in adaptation. Moreover, asexual species might respond differently to environmental

pressures than sexual species. The comparison between our two experiments could be a

good opportunity to generalize our results and highlight the singularities of the different

clades. Finally, as in lizards, Tetrahymena thermophila has been showed to disperse non-

randomly. Individuals are indeed able to choose their habitat depending on the match

between their thermal phenotype and the local climatic condition (Jacob et al. (2017),

matching habitat choice). Matching habitat choice should promote population differen-

tiation and local adaptation to temperature in connected systems (Jacob et al., 2017).

Habitat fragmentation should therefore hinder local adaptation. However, the genetic

diversity could also strongly influence the adaptation patterns. We indeed expected pop-

ulations to better adapt when genetic diversity is high than when it is low because the

probability that a given genotype had a thermal optimum matching the local temperature

is higher when genetic diversity is high. For the same reason, matching habitat choice

could also be influenced by genetic diversity. Matching habitat choice, and subsequent

adaptive gene flow, should be favored by genetic diversity. The spatial segregation of

genotypes/phenotypes through dispersal according to the match between phenotype and

climate should indeed depend on the presence of genotypes/phenotypes matching the local

temperature in both patches. If any phenotype matches the local temperature, dispersal

decisions will be sub-optimal.
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B How landscape structure shapes dispersal syndrome?

Landscape structure may induce changes in population phenotypic distribution by in-

ducing selective pressures on phenotypes. For instance, traits related to dispersal should

be affected by landscape structure as habitat fragmentation is predicted to reduce emi-

gration probability (Travis et al., 1999). Previous studies demonstrated that landscape

structure can select for traits related to dispersal (e.g. emigration probability (Bonte

et al., 2006; Schtickzelle et al., 2006), wing shape (Taylor & Merriam, 1995), body size

(Thomas et al., 1998; Hill et al., 1999)). Whereas the traits associated to dispersal often

covary under syndromes (Clobert et al., 2009; Ronce & Clobert, 2012; Cote et al., 2017),

landscape structure may affect the distribution of individuals on a low to high dispersive

continuum.

Here we explored the influence of landscape structure (isolated versus connected habi-

tats) on morphological and behavioural traits related to dispersal, and tested if its effect

varied with the climatic conditions.

Methods

We followed populations of the common lizard (Zootoca vivipara) inhabiting the Meta-

tron, an experimental system where both climatic conditions and landscape structure were

manipulated for 3 years (see general methods for details). We built pairs of enclosures,

one with a present day climatic condition and one with a warm climatic condition. Within

pairs, populations could be either connected (i.e. the corridor between the two enclosures

was open) or isolated (i.e. no connection between the two enclosures). During the three

years of experiment, we followed morphological and behavioural traits distribution related

to dispersal within each population. Once a year, we measured tibia length, femur length,

leg width (adults and yearlings only), tail width (juveniles only), prospecting behavior

and activity (adults and yearlings only) of each individual.

189



Morphology

In May of each year, we measured leg morphology in adults and yearlings, using a

calliper (0.1 mm of precision). All individuals were measured for their right posterior leg.

Femur length was measured from the groin to the knee, following the femoral pores. Tibia

length was measured from the top of the knee to the base of the hand. Leg width was

measured on a sagittal plane, in the middle of the thigh.

Because of their small sizes, we used a different method to measure leg morphology

in juveniles. Three days after birth, juveniles were softly maintained between two petri

dishes and placed under binocular magnifier at x6.5 magnification. A circular lamp set

at 10% of illuminance and fixed on the magnifier provided constant light conditions. A

ventral picture of the posterior legs was taken with a camera fixed on the top of the

magnifier. Pictures were then analyzed using imageJ software (Schneider et al., 2012).

We defined three segments, one for femur length (from the groin to under the knee), one

for tibia length (from under the knee to the base of the hand) on the right posterior leg

and one for the tail width (tail width measured on a coronal plane at a distance of 8 scales

from the cloaca).

Behaviour

Adults and yearling individuals were tested for two behavioural traits, activity and

prospecting behaviour. To measure prospecting behaviour, individuals were positioned

in a terrarium (17x34x20 cm) separated in 3 parts of equal surface by movable plastic

separations. Lizards were maintained in the left side of the terrarium with a cardboard as

shelter for one night at 18◦C. This zone was considered as the “home” zone. The rest of

the terrarium was considered as the “new” zone. At 8:30 AM a light bulb (25 W) allowed

lizard to thermoregulate. 30 minutes before the test, lights were turned off. Then a light

bulb was turned on above the opposite part of the terrarium (i.e. the new zone) and the

movable separation was removed. Tests were recorded by camera and lasted 10 minutes.

Videos were analyzed using The Observer 2.01 software. From these videos, we extracted

the time spent by each lizard in the different zones of the terrarium (home and new),

190



the time spent to walk in each zone and the time at which the lizard first entered in the

new zone. All these variables were summarized into a PCA analysis, with the first axis

representing prospecting behavior.

To measure activity, we used data from two different tests. We extracted the time spent

by each lizard walking and scratching in the test described in the previous paragraph and

in another test used to measure individual sociability (not described here). The different

variables were summarized with a PCA analysis, with first axis representing activity.

Statistical analysis

We analyzed juveniles separately from adults and yearlings, hereafter encompassed in

the term “adults”. For both juveniles and adults, we used PCA analysis to summarize

the different correlated variables into syndromes. In adults, the first axis represented

morphology and the second axis represented behaviour (Figure 6.2). In Juveniles, since we

did not assess the behaviour we only used first axis representing morphology (Figure 6.3).

To explore the influence of our experimental treatments on traits distribution we used

linear mixed model with PCA axes as dependent variables. Independent variables included

connectivity treatment, climatic conditions, time and the three-way interaction. Only the

linear effect of time was considered. We only used data after at least one year of treatment

and therefore excluded the data at time 0 from the analyses. Covariables included body

size, sex, age stages (adults only), and birth date (juveniles only). Juveniles were measured

only one time, at birth, whereas adults could be measured multiple times during their

life, once per year. Random intercept thus included individual identity for analysis on

adults. It also included enclosure identity to account for the dependency of individuals of

the same population, and family identity for analyses on juveniles as sibs from the same

clutch were not independent.

Model selection was performed using the following procedure. Full models with all

fixed variables and random effects were built and random structure of each model was

selected by AIC, following Zuur et al. 2009. Random structure (including structure

without random effect) minimizing AIC was then selected. All possible models with fixed
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effect were built and ranked by AIC and conditional estimates, standard errors, z-value,

relative importance and p-value of all variables present in best models within a delta

AIC of 2 were obtained through model averaging procedure (Burnham et al., 2011). All

analyses were performed using R software version 3.4.3 (R Core Team, 2017) with lme4,

ade4 and MuMin packages.

Results

In both juveniles and adults, we observed that landscape structure affected the com-

bination of traits that we measured. Indeed, individuals had bigger legs in connected

populations than in isolated populations (Figure 6.4, 6.6, Table 6.1, 6.2). Moreover, adult

individuals prospected more and were more active in connected populations than in iso-

lated populations (Figure 6.5, Table 6.1). These results highlighted the presence of a

syndrome, which was affected by landscape configuration. This syndrome is assumed to

be related to dispersal, but this assumption remains to be tested. The difference between

isolated and connected populations observed in adults increased through time (mostly

for behaviour, Table 6.1, Figure 6.5) and was also observed in juveniles after 2 years of

treatment (Table 6.2, Figure 6.6).

The climatic conditions also affected morphology of adults and juveniles but less than

habitat structure, and this effect was time-dependent (Table 6.1, 6.2). Adults had indeed

bigger legs in warm climate than in present-day climate at the end of the experiment,

mostly in connected populations (Figure 6.4). Conversely, juveniles had bigger legs in

present day climate than in warm climate at the end of the experiment, mostly in isolated

populations (Figure 6.6).

Conclusions

These first results seemed to demonstrate that connectivity among habitats promoted

combinations of traits related to higher dispersal ability. The difference in leg size be-

tween the two connectivity treatments was already observed at birth at the end of the

experiment, meaning that developmental plasticity alone could not explain the observed
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pattern. Further analysis could relate individual phenotypes/syndrome to their survival

probability and reproductive success in order to distinguish between evolutionary adap-

tation and phenotypic plasticity. If evolutionary adaptation plays a significant role in the

development of bigger legs and more active/prospecting behaviours in connected than in

isolated populations, and that these traits actually promote dispersal, it will be, to our

knowledge, the first evidence of dispersal evolution related to landscape structure in a

vertebrate species over very short time scale.

Prospecting Activity

Tibia

Femur

Leg witdth

Figure 6.2 – PCA analysis of adults. The first axis (horizontal) represented 50% of the
initial variance, and the second (vertical) 31%

Tibia

Femur

Tail width

Figure 6.3 – PCA analysis of juveniles. The first axis (horizontal) represented 67% of the
initial variance, and the second (vertical) 18%
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Figure 6.4 – First axis PCA of adults as a function of time in connected and isolate
populations of present-day (blue circles) and warm (red triangles) climatic conditions.
Mean ± SE are represented
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Figure 6.5 – Second axis PCA of adults as a function of time in connected and isolate
populations of present-day (blue circles) and warm (red triangles) climatic conditions.
Mean ± SE are represented
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Figure 6.6 – First axis PCA of juveniles as a function of time in connected and isolate
populations of present-day (blue circles) and warm (red triangles) climatic conditions.
Mean ± SE are represented

Variable Estimate SE z-value P-value RI

Adult - ACP axis 1 (morphology)
Intercept -0.63 0.11 5.8 <0.001 1
Age -0.64 0.09 6.81 <0.001 1
Time -0.65 0.06 11.83 <0.001 1
Body size 0.89 0.05 17.86 <0.001 1
Sex 1.52 0.07 23 <0.001 1
Climate 0.07 0.12 0.56 0.574 0.64
Connectivity 0.26 0.12 2.12 0.034 1
Time*Climate 0.13 0.06 2.08 0.037 0.64
Time*Connectivity 0.1 0.22 0.47 0.636 0.18
Adult - ACP axis 2 (behavior)
Intercept -0.55 0.1 5.31 <0.001 1
Age 0.25 0.09 2.62 0.009 1
Time -0.26 0.06 4.53 <0.001 1
Sex 0.63 0.1 6.15 <0.001 1
Connectivity 0.27 0.1 2.59 0.010 1
Time*Connectivity 0.23 0.09 2.39 0.017 1
Climate 0.14 0.1 1.4 0.163 0.49

Table 6.1 – Statistical models for leg morphology and behavior of adults
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Variable Estimate SE z-value P-value RI

Juvenile - ACP axis 1 (morphology)
Intercept -0.56 0.25 2.25 0.024 1
Time -0.26 0.09 2.87 0.004 1
Birth date -0.28 0.06 4.91 <0.001 1
Body size 0.3 0.06 5.14 <0.001 1
Sex 0.6 0.09 6.94 <0.001 1
Connectivity 0.56 0.31 1.79 0.074 1
Time*Connectivity 0.51 0.12 4.13 <0.001 1
Climate 0.22 0.3 0.72 0.472 0.51
Time*Climate -0.19 0.12 1.6 0.109 0.28

Table 6.2 – Statistical models for leg morphology of juveniles
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Contemporary climate change is leading to population extinction, range shift and com-
position changes. Dispersal shapes these two last responses by allowing colonization of
new habitats and by affecting population composition through gene flow. Depending on
its adaptiveness, dispersal can promote or hinder local adaptation and modify the relative
influence of phenotypic plasticity and evolutionary adaptation in population phenotypic
change. However, landscape fragmentation hampers dispersal, affecting both popula-
tion responses to climate change, and modifying the relative influence of the different
processes involved in these responses. The aim of this PhD was to understand how pop-
ulation responses to climate change could be influenced by landscape fragmentation and
by dispersal. By monitoring lizards inhabiting experimental populations where both cli-
matic conditions and connectivity among them were manipulated, we demonstrated that
connectivity among populations buffered climate change effects on population dynamics
and phenotypic composition. We found that dispersal decisions depended on multiple
intrinsic and extrinsic factors allowing to reduce the influence of warmer climate on pop-
ulation dynamics, but decreasing population density in cooler climate. Surprisingly, we
also found that dispersal could modify the strength and direction of climate-dependent
selection pressures on phenotypes. As a consequence, selection and dispersal acted in
synergy to counteract the plastic response of the individuals. When integrated into a
model, similar adaptive dispersal behavior strongly altered predictions of species persis-
tence under climate change. We indeed found that adaptive dispersal promoted species
range shift and reduced extinction probability compared to a model where dispersal was
random (i.e. independent of intrinsic and extrinsic factors). Rather than considering
dispersal as a neutral process, our results highlighted the importance to consider it as a
complex mechanism shaped by multiple factors and able to drive population responses to
climate change. Our results further suggest that fragmentation could strongly increase the
influence of climate change on populations and may therefore precipitate their extinction.
We thus call for a better integration of dispersal and landscape structure when studying
population responses to climate change.
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Le changement climatique actuel entraine l’extinction de populations ainsi que des chan-
gements dans leur aire de répartition et leur composition. La dispersion impacte ces deux
dernières réponses puisqu’elle permet de coloniser de nouveaux habitats de influence la
composition des populations au travers du flux de gènes. En fonction de son adaptativité,
la dispersion peut promouvoir ou réduire l’adaptation locale et modifier l’importance
relative de la plasticité phénotypique et de l’adaptation génétique dans le changement
de composition phénotypique des populations. Cependant, la fragmentation du paysage
entrave la dispersion, affectant les deux réponses des populations au réchauffement et
modifiant l’influence relative des différents processus impliqués dans ces réponses. Le but
de cette thèse était de comprendre comment les réponses des populations au change-
ment climatique pouvaient être affectées par la fragmentation du paysage et la dispersion.
En suivant des populations de lézards distribuées dans un système expérimental per-
mettant de manipuler simultanément les conditions climatiques et la connectivité entre
habitats, nous avons démontré que la connectivité réduisait les effets du réchauffement
sur la dynamique et la composition des populations. Nous avons observé que les décisions
de dispersion étaient influencées par des facteurs intrinsèques et extrinsèques permettant
de réduire l’influence d’un climat plus chaud sur la dynamique des populations, mais en
réduisant également la densité des populations en climat plus froid. Etonnamment, nous
avons aussi trouvé que la dispersion pouvait modifier la force et la direction des pressions
de sélections agissant sur les phénotypes. Les actions conjointes de la dispersion et de la
sélection contrebalançaient ainsi la réponse plastique des individus. En les intégrant dans
un modèle, des décisions de dispersion adaptative similaires avaient une forte influence sur
la persistance prédite des espèces face au réchauffement. En effet, nous avons démontré
que la dispersion adaptative favorisait le changement d’aire de répartition des popula-
tions et réduisait leur risque d’extinction, en comparaison à un modèle avec dispersion
aléatoire (indépendante de facteurs intrinsèques et extrinsèques). Plutôt que de considé-
rer la dispersion comme un processus neutre, nos résultats soulignent l’importance de la
considérer comme un mécanisme complexe, façonné par de multiples facteurs et capable
de déterminer les réponses des espèces au changement climatique. Nos résultats suggèrent
que la fragmentation pourrait fortement augmenter l’influence du changement climatique
sur les populations et précipiter leur extinction. Nous appelons donc à une meilleure in-
tégration de la dispersion et de la structure du paysage dans les études sur les réponses
des populations au changement climatique.
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