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Abstract

This thesis addresses the problem of real-time 3D localization and map-
ping in underwater environments. In the underwater archaeology field, Re-
motely Operated Vehicles (ROVs) are used to conduct deep-sea surveys and
excavations. Providing both accurate localization and mapping informa-
tion in real-time is crucial for manual or automated operation of the robots.
While many localization solutions already exist for underwater robots, most
of them rely on very accurate sensors, such as Doppler velocity logs or fiber
optic gyroscopes, which are very expensive and may be too bulky for small
ROVs. Acoustic positioning systems are also commonly used for underwa-
ter positioning, but they provide low frequency measurements, with limited
accuracy. In this thesis, we study the use of low-cost sensors for accurate un-
derwater localization. Our study investigates the use of a monocular camera,
a pressure sensor and a low-cost MEMS-IMU as the only means of perform-
ing localization and mapping in the context of underwater archaeology. We
have conducted an evaluation of different features tracking methods on im-
ages affected by typical disturbances met in an underwater context. From
the results obtained with this evaluation, we have developed a monocular
Visual SLAM (Simultaneous Localization and Mapping) method, robust to
the specific disturbances of underwater environments. Then, we propose an
extension of this method to tightly integrate the measurements of a pressure
sensor and an IMU in the SLAM algorithm. The final method provides a
very accurate localization and runs in real-time. In addition, an online dense
3D reconstruction module, compliant with a monocular setup, is also pro-
posed. Two lightweight and compact prototypes of this system have been
designed and used to record datasets that have been publicly released. Fur-
thermore, these prototypes have been successfully used to test and validate
the proposed localization and mapping algorithms in real-case scenarios.
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Résumé

Cette thèse aborde le problème de la localisation et cartographie 3D sous-
marine en temps-réel. Dans le domaine de l’archéologie sous-marine, des
véhicules téléopérés (ROV – Remotely Operated Vehicle) sont utilisés pour
étudier les sites. La localisation et la cartographie précises en temps-réel
sont des informations essentielles pour le pilotage manuel ou automatique
de ces engins. Bien que plusieurs solutions de localisation existent, la plupart
d’entre elles reposent sur l’utilisation de capteurs tels que les lochs Doppler
(DVL – Doppler Velocity Log) ou les centrales inertielles à gyroscopes à fibre
optique, qui sont très coûteux et peuvent être trop volumineux ou trop lourds
pour les ROVs les plus petits. Les systèmes de positionnement acoustique
sont également fréquemment utilisés en complément des systèmes précé-
dents, mais leur fréquence d’échantillonnage et leur précision sont limitées.
Dans cette thèse, nous étudions l’utilisation de capteurs à faible coût pour
la localisation sous-marine de précision. Notre étude porte sur l’utilisation
d’une caméra monoculaire, d’un capteur de pression et d’une centrale in-
ertielle MEMS (Micro ElectroMechanical System) à faible coût comme seul
moyen de localisation et de cartographie en contexte archéologique sous-
marin. Nous avons mené une évaluation de différentes méthodes de suivi de
point d’intérêts sur des images affectées par des perturbations typiques ren-
contrées dans un contexte sous-marin. À partir des résultats obtenus nous
avons développé une méthode monoculaire de SLAM (Simultaneous Local-
ization and Mapping) robuste aux perturbations spécifiques de l’environn-
ement sous-marin. Ensuite, nous proposons une extension de cette méthode
pour intégrer étroitement les mesures du capteur de pression et de la centrale
inertielle dans l’algorithme de SLAM. La méthode finale fournit une locali-
sation très précise et s’exécute en temps-réel. En outre, un module de recon-
struction 3D dense, en ligne, compatible avec une configuration monoculaire,
est également proposé. Deux prototypes compacts et légers de ce système ont
été conçus et utilisés pour enregistrer des jeux de données qui ont été publiés.
En outre, ces prototypes ont été utilisés avec succès pour tester et valider en
conditions réelles les algorithmes de localisation et de cartographie proposés.
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1.1 Context

What lies beneath the oceans is mostly unknown to humankind. This is
mainly due to the difficult access of the underwater world to humans. How-
ever, Mars and the Moon are hostile environments too. The impossibility
of large scale visualization, unlike satellite imaging for instance, makes the
study of the seabed much more difficult and much longer. Indeed, the most
efficient way to discover new worlds is to visualize them. The development
of cameras has allowed humans to see beyond what they could naturally
see and act as an artificial extension of humans’ eyes. By equipping satellites
with high-end optical systems or sending high-end telescopes into space, im-
ages of the whole Earth surface and of extra-terrestrial worlds have been ac-
quired, making it possible for humans to visualize and better understand
them. However, the physical principles of cameras (considering the ones
that measure visible wavelengths) relies on the measurement of the reflexion
of light on object surfaces. The problem with oceans’s floor imaging is that
oceans’s water absorbs light very fast. After a few hundreds of meter below
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the surface, natural light has completely vanished. Therefore, it is not possi-
ble to acquire images of the oceans’ floors at great depths from the surface.
A solution is to use sonars, whose acoustic waves well propagate into wa-
ter (even in turbid water). However, the images produced by such systems
do not provide as much information as cameras and are not sufficient for
accurate analysis.

The main target application of this thesis is underwater archeology. In
this field, very accurate information about what lies on the oceans’ floor are
required. Sonar systems are useful for the detection of potential archaeologi-
cal sites (mostly shipwrecks), but archaeologists need optical images of these
wrecks to understand and analyze them. In shallow waters (usually at less
than 50 meters), divers can perform the survey and excavation in person.
However, for wrecks located beyond the limits of human diving, archaeolo-
gists have to use underwater robots. These machines are used as remote eyes
and arms to study the wrecks and sample some artifacts for further analysis.

In underwater robotics, we find two classes of robots: Remotely Operated
Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). AUVs are
fully autonomous robots. Therefore, they have to embed their own batter-
ies and a set of sensors allowing them to navigate autonomously. They are
useful for long-range navigation, but remain difficult to use in areas requir-
ing cautious navigation. On the other hand, ROVs are tethered robots that
can be tele-operated. They do not have any battery issue as they usually get
their energy through the tether. ROVs are most of the time deployed and
piloted from ships. Their versatility allows a wide range of operations, even
in complex environments.

ROVs are the most used kind of underwater robots because of their tele-
operation capability. They can be directly embedded on ships and then de-
ployed on the areas of interest. They are then tether to the ship and piloted
from on-board in order to perform the required tasks. They are very useful
for operations near the seabed, that requires precise and cautious navigation.
ROVs are used in many fields (Oil&Gas Industry, telecoms, mine warfare
archaeology, biology) either for observation or manipulation purposes. Dif-
ferent classes of ROVs exist, with different targeted applications:

• Observation ROVs: small-sized ROVs mainly used for remote observa-
tion in shallow waters.

• Light work class ROVs: medium-sized ROVs mostly operating in mod-
erate or deep depths that can manipulate small objects.
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• Work class and heavy work class ROVs: large-sized ROVs that can
carry many sensors and perform operation in deep depths.

Prototypes are also constantly developed such as the humanoid avatar
OceanOne (Khatib et al., 2016), designed for archeology surveys and equipped
with haptic hands, or the Dive Buddy ROV developed by the U.S. Navy. Ex-
amples of these different ROVs are given in Fig. 1.1.

FIGURE 1.1: Example of ROVs from different classes.

For economical reasons, in archaeology, small or medium-sized ROVs are
usually used and embed cameras, whose video streams are sent to the sur-
face for piloting and analysis purposes. However, piloting such robots from
a video output only is difficult because of the lack of landmarks on the sea-
floor. Furthermore, the remains of shipwrecks (mostly metallic materials)
might create dangerous obstacles, requiring to cautiously navigate in 3D.
This is even more important when ROVs are deployed near modern ship-
wrecks which have become extremely sharp because of corrosion. There-
fore, systems providing, in real-time, the localization of the ROVs’ are highly
beneficial for efficient piloting. Moreover, accurate knowledge of the robot’s
localization opens the path to many useful applications such as: automatic
surveys, servoing or 3D reconstructions.
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1.2 The Localization Problem

In robotics, the problem of localization (or ego-localization) has been mainly
addressed by either dead-reckoning or landmarks-based localization. Dead-
reckoning refers to solutions that infer the localization by means of estimat-
ing the motions performed by a robot through proprioceptive sensors. On
the other hand, landmarks-based solutions rely on exteroceptive sensors to
measure some known landmarks in order to infer the current robots’ local-
ization.

Simultaneous Localization And Mapping (SLAM) is an in-between so-
lution that tackles the localization problem by building a map of the envi-
ronment in order to localize the robot within this map. SLAM hence relies
on exteroceptive sensing of the robot’s environment in order to build such
a map. This map then provides landmarks that can be used to estimate the
current localization of the robot. When evolving in a 3D environment, the
localization is represented by 6 degrees of freedom (DOF), 3DOF to express
the position of the robot and 3DOF to express its orientation (or attitude),
both with respect to a frame of reference. This 6DOF localization is usually
referred to as the pose.

SLAM has been mainly addressed using either LiDARs, SONARs or cam-
eras. Lidars and sonars directly measure the 3D structure of their environ-
ment and provide enough information to incrementally build a map at each
measurement. Cameras, on the other hand, are bearing-only sensors, that
cannot recover the range of their measurements but only provide an infor-
mation about the direction of the light rays hitting the cameras’ sensor. In
order to recover a 3D information from cameras’ measurements, one may
combine them with a vision-based range sensor (RGB-D cameras, Time-Of-
Flight cameras). Another solution is to use two cameras, slightly spaced from
each other and with an overlapping field of view. This forms a stereoscopic
imaging system and distance measurements are obtained by matching pix-
els corresponding to a same 3D landmark in the images gathered by both
cameras. Indeed, if one knows the exact relative poses of each camera with
respect to the other, it is then possible to estimate the 3D position of the land-
marks by estimating the distance at which the related light rays intercept
each other. While these cameras’ configuration allows building metric 3D
map in unknown environments, SLAM can also be performed using only
one camera (referred to as a monocular camera). Similarly to stereoscopic
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systems, with a monocular camera, one can estimate 3D landmarks by cre-
ating a virtual pair of cameras. Such a virtual stereoscopic setup is created
by moving the camera and using the images acquired at two different times
instead of using simultaneous images from two cameras. Then, if the pose
of the monocular camera is known at the images’ acquisition time, the esti-
mation of 3D landmarks can be performed in the same way as with stereo
cameras. However, in the monocular case, an initialization procedure has to
be defined in order to estimate the 3D motion between the two first images
that are going to be used to initialize the map. While no map exists, there
is no way of estimating the pose of the camera. However, without know-
ing the poses of the camera at these times, it is not possible to estimate any
landmark either. To solve this chicken-and-egg problem, monocular SLAM
systems usually rely on multi-view geometry in order to estimate the mo-
tion, up to a scale factor, experienced by the camera between the first and the
second image. The translation of this motion is then arbitrarily scaled and
defines the scale of the map that is going to be built and used for localization.
Monocular SLAM methods hence rely on Structure-from-Motion (SfM) tech-
niques in order to solve the localization and mapping problem. Monocular
cameras can also be coupled with complementary sensors able to estimate
metric motions in order to solve the scale ambiguity and to recover metric
estimations.

We next present some sensors and methods that have been used for the
specific task of underwater localization.
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1.3 Underwater Localization Methods

In this section we first review the most used sensors used to address the lo-
calization problem in underwater environments. Then, we propose a review
of the state-of-the-art methods developed in the past decades to address the
localization and mapping problem for underwater robots.

1.3.1 Localization sensors for underwater environments

We now give a non-exhaustive list of typical sensors used for underwater
localization.

1.3.1.1 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is generally composed of a 3-axes gy-
roscope and a 3-axes accelerometer. Gyroscopes and accelerometers respec-
tively measure angular velocities and linear accelerations. An Inertial Navi-
gation Systems (INS) estimates the position, speed and orientation of an ob-
ject equipped with an IMU by integrating the IMU measurements. The main
issue with an INS is that it accumulates every small errors, leading to sig-
nificant drift over time. Different technologies have been proposed to man-
ufacture IMUs, with different characteristics in terms of accuracy. The most
accurate are often big and bulky in addition to be very expensive. However,
even with the finest technology, INS are affected by non-zero drift. In paral-
lel, cheaper sensors exist such as Micro Electro-Mechanical Systems (MEMS)
which are strapdown IMUs (i.e. with accelerometers and gyroscopes rigidly
attached to a platform). MEMS-IMUs have become extremely popular be-
cause of both their cheapness and their very small size, which allows to put
them in almost any electronic systems. However, such IMUs are quite noisy
and are affected by large time-varying biases. Thus, they cannot be directly
used in an INS for positioning. Yet, they work pretty well as inclinometers
and, if coupled with another sensor able to measure their drift, they can ac-
tually give fairly accurate positioning information. Table 1.1 display some of
the main characteristics for several IMUs, based on different technologies.
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MPU 9250 (Invensense, 2019) ADIS 16448 (Analog, 2019) EN-1000 (Emcore, 2019)

Gyroscope

Technology MEMS MEMS FOG
Noise ( deg /

√
Hr ) 0.6 0.66 0.002

Bias Stability ( deg / Hr ) > 15.0 14.5 0.01

Accelerometer

Technology MEMS MEMS MEMS
Bias Stability ( m / s2 ) 0.3 ·10−3 0.25 ·10−3 0.01 ·10−3

Cross-axis Sensitivity n/a < 0.05 deg < 0.01 deg

Factory Calibrated No Yes Yes

Size (cm× cm× cm) 2.3× 2.3× 0.3 2.4× 3.8× 1.1 15.2× 9.9× 12.4

Weight (Kg) < 0.01 0.015 2.03

Price ≈ 15$ ≈ 500$ > 50k$

TABLE 1.1: Comparison of different Inertial Measurement Unit
technologies.

Gyroscopes

A gyroscope is a sensor that measures the rotation speed (or angular ve-
locity). From a three-axes gyroscope, it is possible to get information in a 3D
world. As the measurements provide a velocity information, they have to be
integrated in order to get an information about the sensor’s current orienta-
tion. Gyroscopes are subject to time-evolving biases in addition to classical
additive noise measurements. Because of these changing biases, integration
of gyroscopes’ measurements lead to drift over time. Several technologies
exist for such sensors. One of the most accurate one, based on fiber optic
gyroscope (FOG), has extremely low bias evolution and even measure the
Earth rotation. However, even such gyroscopes drift over time due to the in-
tegration of small errors, and they have to be coupled with complementary
sensors in order to compensate this drift.

Accelerometers

An accelerometer is a sensor that measures the instantaneous acceleration
it is subject to. When static, this sensor measures the inverse of gravity. From
a three-axes accelerometer, it is possible to recover the full 3D acceleration of
the sensors’ carrier. As the gravity axis is observable with static accelerome-
ters, they can be coupled to the gyroscopes’ measurements in order to correct
the attitude estimations around the axes orthogonal to the gravity axis. Ac-
celerometers are also subject to noise and time-evolving biases. While it is
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theoretically possible to recover the velocity and position of the sensors’ car-
rier by integration of the acceleration measurements, the noise and evolving
biases lead to rapidly increasing error. Furthermore, the acceleration effects
due to gravity have to be compensated to get information about velocity and
position and even small error in the estimation of the gravity axis will results
in error on the velocity and position estimations.

1.3.1.2 Compass

A compass is based on magnetometers and measures the magnetic field of
its environment. If placed in an environment with no magnetic disturbance,
it measures the Earth’s magnetic field and can be used to localize the mag-
netic north. However, in most cases, magnetic disturbances are present in
the sensor environment and a calibration procedure is required to estimate
the so-called hard-iron and soft-iron disturbances.

1.3.1.3 Pressure Sensor

An underwater pressure sensor measures the pressure applied by both the
atmosphere and the water column above it. As the pressure applied by the
water column is linear with respect to its height, the depth from the water
surface can be easily computed.

1.3.1.4 Doppler Velocity Logs

A Doppler Velocity Log (DVL) is a sensor that emits four acoustic beams to-
wards static surface or objects and measures the frequency shift of the echoes
of these signals. Then, based on the Doppler effect, it provides estimation of
the velocity with respect to static objects, such as the sea-floor or the surface.

1.3.1.5 Acoustic Positioning Systems

Acoustic positioning systems can be used as a replacement of GNSS systems
in underwater environments. Different technologies exist for such systems
and are briefly presented here:

Long Baseline

Long Baseline (LBL) positioning systems use a set of acoustic beacons
placed on the sea-floor. By using at least three beacons, and knowing their
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relative positions, the localization of robots evolving in the area they cover
can be estimated by means of time-of-flight measurements and trilateration.

Short Baseline and Ultra-Short Baseline

Short Baseline (SBL) and Ultra-Short Baseline (USBL) sensors combine an
array of acoustic transceivers placed on a static object such as a ship hull and
a transponder located on the robot. With the array of acoustic transducers,
slightly spaced from each other, the position of the robot can be estimated
by means of time-of-flight and phase shift measurements. The difference
between SBL and USBL mainly lies in the spacing distances between the
transceivers, the greater this distance is, the more accurate the positioning
will be.

1.3.1.6 LiDARs

A LiDAR sensor is composed of an emitter, projecting laser beams, and a re-
ceiver measuring the time-of-flight. In the underwater context, green lasers
are used for such sensors, because of their lower absorption.

1.3.1.7 Sonars

Sonars rely on acoustic beams to sense their surrounding environment. There
are several types of sonars (echo-sounders, profiling sonars, imaging sonars,
side-scan sonars, interferometric sonars. . . ) based on one or many beams
and measuring the time-of-flight, acoustic intensity or even the phase shift of
the echoes. Detailing all these technologies is out of the scope of this thesis
but one can note that, unlike cameras, sonars are not affected by the water’s
turbidity. However, they provide much less detailed images, at significantly
lower rates. Furthermore, tracking features from one sonar image to another
is made difficult by the strong dependence of the point of view. Compared
to cameras, sonars are more suited to long-range SLAM.

1.3.1.8 Cameras

Cameras are radiometric optical systems that acquire light rays and convert
them into numerical values to produce an image. Cameras typically combine
a light sensitive sensor with an optical lens. Light rays that goes through the
optical lens are projected onto the imaging sensor, which acts as a 2D matrix
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of Analog to Digital Converters (ADC) to convert the amount of photons re-
ceived into a numerical image.

1.3.2 SLAM methods for Underwater Robotics

Applying SLAM in an underwater context has been a growing research topic
over the past decades. Different SLAM methods, based on different combina-
tions of sensors, have been proposed for navigation, localization, mosaicking
or 3D reconstruction. In this section, we review the major SLAM methods
that have been proposed in the last twenty years.

In underwater robotics, SLAM has been mainly used as a mean of bound-
ing the drift of the motion estimations produced by fusion of navigational
sensors (accelerometer, gyroscope, compass, DVL, pressure sensor) (Paull et
al., 2014). Localization solutions based on navigational sensors are usually
referred to as Dead-Reckoning (DR). In DR systems, the integration of sen-
sors’ measurements leads to unrecoverable drift that grows over time. The
accumulation of drift is due to both noise in the measurements and lineariza-
tion errors when estimating pose from sensors with nonlinear measurement
models. Incorporating an exteroceptive sensor, such as a sonar or a camera,
allows to limit this drift by observing the surrounding environment and find-
ing static landmarks that can be used to estimate the localization of the sensor
with respect to these landmarks. If these landmarks can be observed at dif-
ferent times, they will provide non-drifting pose information. Furthermore,
if one is able to recognize a place already mapped (i.e. a place with already
estimated landmarks), the re-observation of previously estimated landmarks
will correct the trajectory by decreasing the drift accumulated in-between.
The process of recognizing already mapped places is usually referred to as
loop-closure detection.

Sonar-based SLAM

Side-scan sonar is one of the preferred sensors for underwater SLAM be-
cause of its long range and high resolution. It has first been used with Ex-
tended Kalman Filter SLAM (EKF-SLAM) framework in order to update the
pose estimations from DR with the sonar measurements (Mallios et al., 2010,
2014; Ribas et al., 2006, 2007, 2008). A limitation of EKF-SLAM is the integra-
tion of linearization errors in the estimations, which leads to drift over time.
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In order to limit this drift, Graph SLAM methods have been proposed. Graph
SLAM turns the SLAM problem into a factor graph (Dellaert et al., 2017) and
take into account past estimations when estimating the current pose. The
pose estimations are then performed by iteratively minimizing a cost func-
tion based on the states to estimate (robot’s poses and landmarks) and on the
measurements that link them to each other (mainly odometry measurements
from DR and landmarks observations). This minimization is performed by
modeling the cost function as a nonlinear least-squares problem. While such
methods are computationally more demanding than EKF-SLAM, they are
also more accurate. This Graph SLAM paradigm have been used with sonars
in (Fallon et al., 2011; Johannsson et al., 2010; Teixeira et al., 2016) . In parallel,
the use of Particle Filters for representing the 3D map produced by sonars’
measurements have been investigated in (Barkby et al., 2009, 2011, 2012).
While all these methods rely on a Gaussian modeling of the sensors mea-
surements, the use of interval analysis methods has also been proposed in
the context of sonar-based SLAM (Fabrice et al., 2010; Jaulin, 2006; Jaulin,
2009a; Jaulin, 2009b; Jaulin et al., 2007; Sliwka et al., 2011a,b).

Vision-based SLAM

The use of cameras has also been greatly investigated for underwater
SLAM. Cameras provide a way of estimating 3D landmarks and motion es-
timations by matching corresponding pixels in overlapping images. While
they are subject to the poor imaging conditions of underwater environments,
they are also more informative than imaging sonars. As with sonar-based
SLAM, cameras have first been used in EKF-SLAM by either incorporating
measurements from monocular cameras (Aulinas et al., 2011b; Williams et
al., 2004) or stereo cameras (Hildebrandt et al., 2012; Salvi et al., 2008). A
Visually Augmented Navigation (VAN) framework that uses an Extended
Information Filter (EIF), the dual of the EKF, was proposed in (Eustice et al.,
2005; Eustice et al., 2006). The advantage of this VAN framework is that it can
keep past states estimates within the filter, while keeping a low complexity.
This VAN framework has both been used with stereo cameras (Eustice et al.,
2006; Mahon et al., 2008) and monocular cameras (Eustice et al., 2008). How-
ever, EIF integrates linearization errors within the filter in the same way as
EKF. Therefore, Graph SLAM methods have also been employed with vision-
based systems (Hover et al., 2012; Kim et al., 2009, 2013). As cameras provide
a way for detecting loop-closures and re-localizing within prior maps, some
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works proposed to use vision-based systems for multi-session SLAM (Ozog
et al., 2014, 2015).

Vision-based SLAM in Structured Environments

In case of robots navigating in structured environments, visual localiza-
tion methods from known patterns have been proposed. In (Carreras et al.,
2003a; Carreras et al., 2003b; Krupínski et al., 2017; Ribas et al., 2003), lo-
calization is estimated by detecting binary patterns on a pool’s floor from a
monocular camera. The use of ApriTags (Olson, 2011) with known positions
has also been investigated as a mean of removing drift from an EKF-SLAM
(Jung et al., 2017). In (Ozog et al., 2017), a trinocular system, used in conjunc-
tion of navigational sensors in a Graph SLAM, was used to improve the pose
estimates when navigating in areas with a-priori 3D maps.

Vision-based 3D Reconstruction

The advances in vision-based localization have allowed the development
of many underwater 3D reconstruction methods. Vision-based EKF-SLAM
have been used to get a prior trajectory before solving the 3D reconstruction
problem with the acquired images (Johnson-Roberson et al., 2010; Pizarro
et al., 2009; Singh et al., 2007; Williams et al., 2010). The VAN framework
has also been used with stereo cameras to produce 3D reconstructions (Hen-
derson et al., 2013; Mahon et al., 2011; Williams et al., 2009). Some meth-
ods proposed also to combine imaging sonars and cameras to produce 3D
reconstructions (Campos et al., 2016; Gracias et al., 2013). Graph SLAM
methods have also been used to provide prior localization for 3D recon-
struction with imaging sonars (VanMiddlesworth et al., 2015) and cameras
(Johnson-Roberson et al., 2017). While these methods use the localization es-
timations of SLAM framework to perform 3D reconstruction, some purely
visual methods have been investigated through offline 3D reconstructions
using Structure-from-Motion (SfM) techniques (Campos et al., 2015; Ferrari
et al., 2016; Hernández et al., 2016).
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Vision-based Mosaicking

Another great topic of research for underwater localization and mapping
has been the use of cameras for mosaicking. In order to create mosaics, im-
ages acquired from cameras have to be stitched altogether in order to create
visually interpretable 2D maps. The computation of mosaics from homo-
graphies has been used as a way of estimating the motions of underwater
vehicles using monocular cameras (García et al., 2000; Garcia et al., 2001a;
Singh et al., 2004). This method has then been extended to include the mea-
surements of an ultrasonic altimeter in order to recover the metric scale of the
motion estimations (Garcia et al., 2001b; García et al., 2002). These methods
have then been enhanced by the use of Kalman Filters in order to improve the
localization accuracy (Elibol et al., 2010; García et al., 2002, 2003). Mosaicking
has also been used with vision-based EKF-SLAM (Ferreira et al., 2012; Hor-
gan et al., 2007; Ridao et al., 2010) that produces more accurate localization
estimations than vision-only methods. Recently, the use of interval analy-
sis methods has been investigated for the creation of mosaics (Laranjeira et
al., 2016) and submapping techniques have been successfully used to pro-
duce fast mosaics (Elibol et al., 2017). However, localization and mapping
for mosaicking is limited by the assumption of planar scenes. While this as-
sumption is often verified in underwater environments, these methods are
not well adapted to scenes with 3D relief. Ortho-mosaicking methods have
been proposed to tackle this issue on the mapping side (Nicosevici et al.,
2005, 2009). However, localization cannot be reliably performed in highly 3D
environments.

Visual SLAM

Most of the presented solutions can be used for real-time localization of
underwater vehicles. However, they are either based on expensive naviga-
tional sensors or rely on limiting assumptions about the structure of the en-
vironment. A way of localizing in 3D environments from low-cost sensors
only is to rely on Visual Odometry (VO) or Visual SLAM (VSLAM) tech-
niques. VO and VSLAM provide solutions for estimating the pose of cam-
eras without any assumption about the explored environment (besides as-
suming mostly static scenes). VO and VSLAM are very similar in that they
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estimate the camera’s pose by observing 3D landmarks. The main differ-
ence between VO and VSLAM lies on the re-observation of previously esti-
mated landmarks in VSLAM, either by means of loop-closure detections or
re-tracking of lost landmarks. Stereo VO systems have been proposed in the
context of underwater localization in (Bellavia et al., 2017; Corke et al., 2007;
Dunbabin et al., 2006; Nawaf et al., 2018; Wirth et al., 2013) and for real-time
photogrammetry (Drap et al., 2015a,b). The use of stereo VSLAM has also
been investigated in (Carrasco et al., 2016c; Nawaf et al., 2017; Nawaf et al.,
2016; Weidner et al., 2017). A few works studied the use of monocular VS-
LAM and VO. In (Burguera et al., 2015), an EKF is used to perform SLAM
with a monocular camera but assumes that the distance to the sea bottom is
known and reduce the localization to a 2.5D problem, closer to mosaicking.
In (Li et al., 2016), a comparison of state-of-the-art monocular VSLAM meth-
ods in an underwater context. Localization methods based on the fusion of
a monocular camera with a low-cost IMU and a pressure sensor have further
been presented in (Creuze, 2017; Shkurti et al., 2011b).

With respect to all these works, in this thesis we follow the idea of using
low-cost sensors for underwater localization. More precisely, we investigate
the use of a vision-based system that performs VSLAM from a monocular
camera and enhance the pose estimations with a low-cost MEMS-IMU and a
pressure sensor. We propose to solve the localization and mapping problem
in an archaeological context, where small ROVs might be used. The vision-
based system is well adapted to such robots as it only use small sensors, easy
to embed and compliant with the limit payload of small robots. Furthermore,
recent advances in VSLAM (Cadena et al., 2016) have demonstrated that sub-
metric localization can be obtained with such methods. The studies of this
thesis have been performed with the idea of providing accurate localization
information and 3D mapping capability in real-time.

1.4 Problem Statement

The main objective of this thesis is to rely on a monocular camera for the pur-
pose of localization and mapping in an underwater archaeological context.
While monocular setups are not as robust as stereoscopic systems for these
tasks, they are easier to embed on a ROV. Moreover, they do not have any
synchronization issue and many underwater housings are well fitted to their
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shape. It is also easier to set monocular cameras behind spherical domes,
that reduces the diffraction effects, than stereoscopic ones. Furthermore, the
scale issue of monocular systems can be solved by adding complementary
sensors. In this thesis, we investigate the use of a low-cost MEMS-IMU and
a pressure sensor as additional sensors. The great advantage of this setup
is that it is self-contained, in the sense that every sensors can fit in a sin-
gle housing that provides everything required for running a localization and
mapping algorithm.

The different problems that we address in this thesis are the following:

• How to efficiently process video streams of underwater images for the
purpose of localization and mapping ?

• How to accurately ego-localize a robot with only a monocular camera
in underwater environments ?

• How to optimally fuse a pressure sensor and a MEMS-IMU with a
monocular camera for improved localization ?

• How to get a dense 3D reconstruction from a monocular based setup ?

As these problems have been addressed with an out-of-lab application
target, the technical challenges of real-time processing and hardware design
have been taken into consideration.

1.5 Thesis contributions

In this thesis, we investigate the use of vision-based SLAM to tackle the un-
derwater localization challenge in an archeological context. More specifi-
cally, we first study the efficiency of features tracking methods on images
that are affected by typical underwater visual disturbances. Then, we pro-
pose a monocular Visual SLAM algorithm that is well suited to underwater
environments. This monocular SLAM method is then extended to include
the measurements of a pressure sensor and of a low-cost MEMS-IMU. The
resulting Visual-Inertial-Pressure SLAM method integrates the different sen-
sors’ measurements by means of tight fusion within the Visual SLAM algo-
rithm and provides scaled estimations. Two prototypes of acquisition sys-
tems composed of a monocular camera, a pressure sensor, a low-cost MEMS-
IMU and an embedded computer have been developed for field experiments.
We have also used these acquisition systems to record a large dataset, that has



16 Chapter 1. Introduction

been publicly released. Furthermore, the developed SLAM method has been
implemented on the embedded computer and has been successfully tested in
real-time. Finally, we propose a monocular dense 3D reconstruction method
that works online.

1.6 Thesis Outline

The thesis is organized as follows:

• Chapter 2 details the mathematical tools that will be used within this
thesis.

• Chapter 3 presents the conducted evaluation of different features track-
ing methods on underwater images with typical visual disturbances.

• Chapter 4 details the monocular Visual SLAM method developed for
the context of underwater archaeology.

• Chapter 5 presents an extension of the monocular SLAM method to in-
tegrate other sensors. We first propose a Visual-Pressure SLAM method
that integrates the measurements of a pressure sensor in order to in-
crease the accuracy and recover the metric scale of the estimated trajec-
tories. The method is further extended to include the measurements of
a MEMS-IMU to increase the robustness of the SLAM system.

• Chapter 6 describes the design of the acquisition systems and intro-
duces the dataset used to evaluate the SLAM methods described in the
previous chapters. It further presents the proposed dense 3D recon-
struction method and results obtained on the acquired dataset.

Videos

For the interested readers, videos of the proposed SLAM and 3D recon-
struction methods in action are available at :
https://www.youtube.com/channel/UCFsvlI143Evf2F2sF5Hbxuw

https://www.youtube.com/channel/UCFsvlI143Evf2F2sF5Hbxuw
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Chapter 2

Mathematical Notions
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2.1 Introduction

This chapter presents most of the mathematical tools that will be used within
this thesis. We first review the geometry of a camera and the associated
multi-view geometry. Then, we present the optimization tools that are go-
ing to be used for the task of state estimations and sensors’ measurements
fusion. We will go through the notions related to Least-Squares, Maximum
Likelihood Estimation and Factor Graphs. Finally, we will present the Lie
Groups’ properties that apply to 6DOF pose states.
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FIGURE 2.1: Pinhole camera model scheme.

An in-depth presentation of each fields is out of the scope of this thesis,
instead we give an overview of the specific tools and notions that we will use
in the next chapters. However, for the interested readers, we give references
to more detailed materials about each topic.

2.2 Pinhole Camera Model

The pinhole camera model is the most classical geometric model of the im-
age formation process for a camera (Hartley et al., 2004) and is depicted into
Fig. 2.1. This model considers that the pose of the camera is expressed at
the optical center (i.e. at the pinhole), with its z-axis oriented towards the
imaged scene, its x-axis oriented along the horizontal axis of the produced
2D image and pointing towards the right border of the image and its y-axis
oriented along the vertical axis of the 2D image and pointing towards the
down border. The extrinsic parameters of the camera express the transfor-
mation from a frame of reference w (often referred to as the world frame) to
the camera frame c. In a 3D context, the pose of the camera is defined by
6DOF. Mathematically, the pose is expressed in the world frame by a rotation
matrix Rwc ∈ SO(3) and a translation vector twc ∈ R(3), where SO(3) is the
Special Orthogonal group that defines the behavior of rotation matrix. Cam-
eras’ poses are hence elements of the Special Euclidean group SE(3). The
transformation from the camera frame to the world frame Twc ∈ SE(3) can
be written in the form of a homogeneous matrix:
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Twc =

[
Rwc twc

01×3 1

]
∈ R4×4 (2.1)

And the inverse transformation, Tcw ∈ SE(3), from the world frame to
the camera frame is defined by the inverse homogeneous matrix:

Tcw = T−1
wc =

[
RT

wc −RT
wc · twc

01×3 1

]
=

[
Rcw tcw

01×3 1

]
∈ R4×4 (2.2)

The transformation Tcw corresponds to the extrinsic parameters of the
camera. A calibrated camera is also characterized by intrinsic parameters
that represents the image formation model. The focal length of a camera’s
lens defines a virtual 2D plane which intercepts every rays coming from 3D
objects in the world frame and projecting onto the camera’s imaging sensor.
This imaging sensor is composed of 2D matrix of light sensitive receptors
that convert the amount of receive light into a numerical value. In case of
a monochromatic camera, these values are directly the pixel intensity val-
ues. The imaging sensor hence defines a 2D plane whose coordinates are ex-
pressed in pixels and which originates at the most top-left pixel. The intrinsic
parameters represent the coefficients that convert the position of points in the
focal plane frame, into their pixel projection on the image frame. In order to
take into account the fact that any point along a defined ray passing through
the camera’s optical center will project onto the same pixel, the intrinsic pa-
rameters are usually expressed as a homogeneous matrix K ∈ R3×3 whose
most general formulation is:

K =

ku · f s cx

0 kv · f cy

0 0 1

 (2.3)

where ku and kv are scaling factors in the horizontal and vertical image
axes, respectively, and represent the possible non squareness of the pixels, s is
a skew factor that can be used to model any shear distortion (non rectangular
pixels) in the image formation process and cx and cy are the pixel coordinates
of the principal point of the image, that is the coordinates of the pixel that
receives the light ray perfectly collinear with the camera’s z-axis.

For modern cameras, the skew factor is often not significant and the in-
trinsic matrix K can be written as:



22 Chapter 2. Mathematical Notions

K =

 fx 0 cx

0 fy cy

0 0 1

 (2.4)

where fx and fy directly encodes the focal length effects in terms of pix-
els. This intrinsic matrix can be estimated by means of a calibration proce-
dure (Zhang, 2000, 2014) using an object with known dimensions (typically
a checkerboard or an apritlag). The matrix K is thus often referred to as the
intrinsic calibration matrix.

The mathematical projection model of a point from the world frame into
the image frame of a camera is finally defined in terms of both the intrinsic
and extrinsic parameters:

x′ = K ·
[
Rcw tcw

]
·w l′ (2.5)

where wl′ ∈ P3 is the homogeneous position of a 3D landmark in the
world frame and x′ ∈ P2 is the homogeneous pixel coordinate of the pro-
jection of wl′ in the image frame. Because of the projective geometry of the
pinhole camera, the homogeneous form is often employed to denote that any
point along a ray that goes through the optical center of a camera will be pro-
jected onto the same pixel. Furthermore, the homogeneous expressions are
very useful for representing the projective transformations in terms of linear
algebra (i.e. in terms of matrices and vectors multiplication only).

In order to recover the Cartesian coordinates wl ∈ R3 and x ∈ R2 from

wl′ and x′, we need to remove their projective factors λl and λx:

wl′ =


xw

yw

zw

λl

 =
1
λl
·


xw

yw

zw

1

 −→w l =
1
λl
·

xw

yw

zw

 (2.6)

x′ =

 u
v

λx

 =
1

λx
·

u
v
1

 −→ x =
1

λx
·
[

u
v

]
(2.7)

Note that homogeneous coordinates can also be used to represent van-
ishing points (also called points at infinity) by setting the projective factor to
zero. The inverse conversion, from Cartesian coordinates to homogeneous
coordinates consists merely in adding one dimension to the Cartesian coor-
dinates at setting its value to 1 (i.e. adding a projective factor set to 1).
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This projection model can also be expressed in terms of Cartesian coordi-
nates through the projection function π : R3 → R2 that projects point in the
camera frame in the image frame:

x = π (K ·c l) and cl = Rcw ·w l + tcw (2.8)

x =

[
xc
zc
· fx + cx

yc
zc
· fy + cy

]
with cl =

xc

yc

zc

 (2.9)

The projection model presented here is yet only valid for undistorted im-
ages. In reality, because of lens’ imperfections, the images produced by a
camera are distorted. The distortion effects can be modeled by means of
a polynomial in order to define a bijective mapping between distorted and
undistorted coordinates. The coefficients of the distortion polynomial can be
estimated during the calibration procedure. We refer the readers to (Sturm
et al., 2011) for more information about camera and distortion models. In the
rest of this thesis we will always consider distortion free images unless when
explicitly stating it.

2.3 Multi-View Geometry

In this section we review some methods from the multi-view geometry the-
ory. Here, we mainly focus on the tools that will be used within this thesis.
We refer the interested reader to (Hartley et al., 2004) for an in-depth of the
whole multi-view geometry field.

2.3.1 Triangulation

Triangulation refers to the estimation of a 3D point from its observation in
two cameras whose poses are known. The estimation of the 3D point is per-
formed by finding the point of intersection of the rays projected from this
point in both cameras. However, because of noise in the measurements (i.e.
non perfect observations of the projected 3D point), the two rays never inter-
sect for real. The triangulation problem is hence solved by searching for the
most likely intersection of two rays if theirs observations were noiseless.

Several methods have been proposed to solve the triangulation problem.
The mid-point method approximates the intersection of the rays as the mid-
dle of the shortest segment that can be drawn between the two rays. A linear
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FIGURE 2.2: Epipolar geometry properties example (taken from
https://en.wikipedia.org/wiki/Epipolar_geometry/).

method based on the Direct Linear Transform (DLT) turns the triangulation
problem in a linear system of equations which is solved by means of SVD
(Singular Value Decomposition). A nonlinear closed-form approximation
method has also been proposed for fast triangulation.

Details about these different approaches to the triangulation problem can
be found in (Hartley et al., 1997; Kanatani, 2005).

2.3.2 Epipolar Geometry

The projective geometry that defines the mathematical model of a perspec-
tive camera leads to some geometrical rules about the formation of images
of a same scene taken from different view points. For instance, when con-
sidering images acquired by two cameras (i.e. by a stereo vision system),
the multi-view geometry properties are those of epipolar geometry. Epipolar
geometry defines the rules that apply on the projection of 3D rays into two
images of a same scene, taken from two distinct positions.

The epipolar geometry properties mostly define point-to-line relation-
ships that have to hold between the projections of 3D points into two im-
ages. As shown on Fig. 2.2, any point XL in the left image is the projection
of a 3D point X that goes through the left camera optical center. Even if the
range of the ray that is defined by the projection of X in the left image is
not known, epipolar geometry shows that this ray has to appear along a spe-
cific line on the right image, the epipolar line. Epipolar lines are defined by
the epipoles, that is the projection of the cameras’ optical centers into their
respective frames. Therefore, an epipolar plane can be defined for any 3D

https://en.wikipedia.org/wiki/Epipolar_geometry/
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point that projects in both images from the position of this 3D point, the op-
tical centers of both cameras and their resulting epipoles.

Epipolar geometry can be used to define 2D / 2D constraints between
points in the two images. Given two corresponding points x′L and x′R in
homogeneous coordinates, respectively defined in the left and right image
frames, epipolar geometry tells us that there exists a matrix F ∈ R3×3 such
that:

x′TL · F · x′R = 0 (2.10)

where F · x′R defines the epipolar line in the left camera associated to the
3D ray observed by x′R in the right image. The matrix F is called the Funda-
mental Matrix.

As epipolar geometry depends on the relative pose of the stereo vision
setup, the Fundamental Matrix encodes the relative transformation that ex-
ists between both cameras, up to a scale factor. Given KL and KR, the intrinsic
matrices of the left and right cameras, and R and t the rotation matrix and
translation vector that transforms any point expressed in the right camera
frame into the left camera frame, the Fundamental Matrix F can be written
as:

F = (KL · RL)
−T · (tR − tL)

∧ ·
(

RT
R ·K−1

R

)
(2.11)

where (·)∧ is the skew matrix operator that turns a 3D vector into a skew
matrix.

Any Fundamental Matrix is of rank 2 and can be estimated from 8 corre-
sponding points (Luong et al., 1996). Furthermore, the Fundamental Matrix
also encodes the intrinsic parameters of both cameras and can hence be used
with uncalibrated cameras.

In the case of calibrated cameras, the Essential Matrix E ∈ R3×3 can be
directly used. The Essential Matrix is defined as follow:

E = K−1
L · F ·KR (2.12)

where E is a specialization of F in the specific case of having normalized
image coordinates (i.e. coordinates obtained by removing the effect of the
calibration matrix K), such that:

x̃T
L · E · x̃R = 0 (2.13)
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with x̃T
L = K−1

L · x
′T
L and x̃T

R = K−1
R · x

′T
R (2.14)

The Essential Matrix hence only depends on the relative pose of the stereo
vision setup and has fewer degrees of freedom than the Fundamental Ma-
trix. Any Essential Matrix must have two equal singular values and one null
singular value and can therefore be estimated from 5 corresponding points
(Nister, 2004). The relative pose, up to a scale factor on the translation vector,
can be recovered by means of SVD.

As the estimation of Essential Matrices requires less corresponding points
than Fundamental Matrices, they are to be preferred when working with cal-
ibrated cameras. Furthermore, the Fundamental Matrix is known to produce
false results when estimated from coplanar points because of a degenerate
configuration whereas the Essential Matrix is more robust to such configura-
tions (Nister, 2004).

2.3.3 Pose Estimation

FIGURE 2.3: Illustration of the P3P problem. P represents the
optical center of the camera and A, B, C represent 3 known

points.

In the case of calibrated cameras, the pose of the camera with respect to
the world frame w can be estimated from the observation of at least three
known 3D world landmarks. More exactly, a set of hypotheses can be ex-
tracted from three 2D / 3D correspondences and the correct pose can be re-
covered from these hypotheses by disambiguating with an additional 2D /
3D correspondence. When using this minimal configuration of three corre-
spondences, the visual pose estimation problem is referred to as Perspective-
from-3-points (P3P). The P3P problem, illustrated in Fig. 2.3, consists in re-
covering the 6DOF pose of the camera by solving the following system of
equations:
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x2 + z2 − y · z · p− b2 = 0

z2 + x2 − x · z · q− c2 = 0

x2 + y2 − x · y · r− a2 = 0

(2.15)

with x = |AP|, y = |BP|, z = |CP|, a = |AB|, b = |BC|, c = |AC|,
α = ∠BPC, β = ∠APC, γ = ∠APB, p = 2 cos(α), q = 2 cos(β) and
r = 2 cos(γ).

By solving Eq.(2.15) for x, y, z, α, β and γ, one can recover the 6DOF
of the camera pose whose optical center is P. Several algorithms have been
proposed over the years to solve this system (Gao et al., 2003; Ke et al., 2017;
Kneip et al., 2011).

All the available 2D / 3D correspondences in an image can also be used
altogether to estimate more robustly the pose of the camera. In this case,
the visual pose estimation problem is referred to as Perspective-from-n-points
(PnP). The PnP problem can be solved by finding an initial solution with the
P3P method and then turn the PnP problem in the form of a least-squares
optimization. Some algorithms have also been proposed to directly estimate
a pose solution from more than four correspondences (Kneip et al., 2014b;
Lepetit et al., 2009).

2.3.4 Robust Estimation with RANSAC

In order to use the set of formulas provided by the theory of multi-view ge-
ometry, correspondences have to be found. A first step of data association is
hence required to provide 2D / 2D or 2D / 3D correspondences. However,
in computer vision, data association will never be perfect and some wrong
correspondences (often referred to as outliers) will appear. Furthermore, be-
cause of noise in the visual measurements, there will be no exact solution
when solving multi-view problems and, as there are usually more correspon-
dences than the minimal amount required, not all configurations will return
the same result.

One way of copping with this data discrepancy is to rely on a RANdom
SAmple Consensus (RANSAC) scheme (Fischler et al., 1981). The idea of
RANSAC is to rely on a voting consensus to estimate a set of parameters.
This is done by iteratively selecting a minimal set of correspondences, esti-
mating the parameters searched for from this set and counting the number of
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correspondences that agree with the current estimation. In order to perform
the counting, an error tolerance threshold is defined and, for every candi-
date, the resulting error given the current estimated parameters is used to
vote for this set of parameters or not. This process is continued until a set of
parameters with enough votes is found or the maximum number of allowed
iterations is reached. The optimal maximum number of iterations to find a
good solution can be computed and depends on the expected ratio of outliers
within the data, the minimum number of samples required to perform one
estimation and the probability of success required.

The effects of RANSAC are twofolds. First, it returns the most likely solu-
tion in terms of consensus as it keeps the solution the most data agrees upon.
Second, it provides a way of detecting possible outliers within the data. In-
deed, as outliers will not fulfill the geometrical properties of multi-view ge-
ometry, data that do not agree with the selected solution can be considered
as unreliable and discarded.

The use of RANSAC provides a way of performing robust estimations
from data corrupted by outliers. Furthermore, as it also returns the sets of
inliers and outliers, it can be used to remove as soon as possible any wrong
data association. This is even more useful if one wants to refine the estimated
parameters with all the available data (i.e. solving an overdetermined system
with noisy data). This is usually done by means of least-squares estimations,
which are very sensitive to the presence of outliers within the data. However,
when coupled with a RANSAC pre-processing, least-squares estimations can
be performed on the inliers only.

2.4 Least-squares methods

In the context of computer vision and multi-view geometry, the number of
data associations (or measurements in a more general way) is almost always
far greater than the minimum number of samples required for the different
problems to solve. As these measurements are noisy, there is no exact solu-
tion and the problem is overdetermined.

In order to solve these overdetermined problems, least-squares methods
can be applied (Nocedal et al., 2006). Least-squares methods perform an esti-
mation of a set of parameters χ by minimization of the sum of squared errors
between the measurements and the model:
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L(χ) = ∑
i
‖ fi(χ)‖2 (2.16)

where L(χ) is the sum of squared errors and each fi(·) denotes the resid-
ual functions associated to each measurement. The sum term can be removed
by stacking all the residuals fi(·) into a vector f:

L(χ) = ‖f(χ)‖2 (2.17)

For linear measurement models, the linear least-squares problem to solve
is the following:

χ∗ = arg min
χ

L(χ) = arg min
χ

‖b−H · χ‖2
2 (2.18)

where H is the observation model matrix and b is the set of measure-
ments.

If H is positive definite, the parameter vector χ is then estimated by solv-
ing the normal equations:

χ =
(

HT ·H
)−1
·HT · b (2.19)

If the measurements are modeled as corrupted by gaussian noise, the
weighted least-squares method can be used to weight the influence of ev-
ery measurement using their covariances Σ. In this case, the minimization is
performed over the sum of squared Mahalanobis distances:

χ = arg min
χ

‖b−H · χ‖2
Σ (2.20)

χ =
(

HT · Σ−1 ·H
)−1
·HT · Σ−1b (2.21)

For nonlinear measurement models however, the least-squares minimiza-
tion cannot be performed in one step and optimization methods have to be
used.

Let h(·) be the nonlinear function that defines the observation model, the
weighted nonlinear least-squares cost function is of the form:

L(χ) = ‖b− h(χ)‖2
Σ (2.22)

This cost function has to be optimized in order to find the best estimates
for χ.
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2.4.1 Gauss-Newton

A nonlinear least-squares problem can be optimized with the Gauss-Newton
method. This method linearizes the function h(·) around the current estimate
of χ in order to solve the nonlinear least-squares problem. The linearization
is done by a first-order Taylor expansion:

h(χ + δχ) ≈ h(χ) +
∂h
∂χ
· δχ (2.23)

The matrix Jχ = ∂h
∂χ is the Jacobian of the cost function. Linearizing the

cost function thus results in the following approximation:

L(χ + δχ) = ‖f(χ + δχ)‖2
Σ = ‖b− h(χ + δχ)‖2

Σ (2.24)

L(χ + δχ) ≈ (e(χ)− Jχ · δχ)T · Σ−1 · (e(χ)− Jχ · δχ) (2.25)

where e(χ) = b − h(χ) is the residual vector. The Gauss-Newton opti-
mization search for updates δχ that minimize the cost function L. The lin-
earization fixes the current state estimates in order to compute the residuals
associated to the cost function and turns the nonlinear problem into a linear
one. The optimal update is searched along the local gradient of the cost func-
tion, defined by the Jacobian, and its search direction is conditioned by the
Hessian of the cost function, approximated by JT

χ · Σ−1 · Jχ in this case.
By deriving the cost function L with respect to δχ and setting to zero, one

obtains the following normal equations:

δχ =
(

JT
χ · Σ−1 · Jχ

)−1
· JT

χ · Σ−1e(χ) (2.26)

Note that the normal equations are exactly the same as in the linear least-
squares case. This is because the Gauss-Newton method approximates the
nonlinear least-squares problem as a linear one around a current guess.

The minimization problem is built and solved iteratively, starting from an
initial guess about the set of parameters χ. After each iteration, the param-
eters are updated with the solution to the normal equations: χ∗ = χ + δχ.
The updated parameters χ∗ are then used at the next iteration to re-compute
the Jacobian and residuals.

Note that because of the nonlinearity and non-convexity of most of the
computer vision problems, the accuracy of the initial guess about the param-
eters χ is crucial to obtain good results and not fall in local minima.
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2.4.2 Levenberg-Marquardt

The Levenberg-Marquardt method is a trust-region extension of the Gauss-
Newton method that better ensures convergence. The minimization of a non-
linear cost function is conditioned by the provided initial solution (i.e. the
initial values of χ). When far from the optimum, the Gauss-Newton opti-
mization might leads to updates that increase the value of the cost function
or get stuck into local saddle points.

This method proposes to enhance the normal equations with a damping
factor α:

δχ =

JT
χ · Σ−1 · Jχ︸ ︷︷ ︸

A

+α · diag(A)


−1

· JT
χ · Σ−1e(χ) (2.27)

where A is the approximated Hessian of the cost function. The damp-
ing factor α acts as a weighting factor which turns the optimization to be
performed like a gradient descent for large α and like the Gauss-Newton
approach for small α. This damping factor is updated at each iteration by
decreasing it if the parameters’ update has led to a significant decrease of the
cost function and by increasing it otherwise. In cases where the cost func-
tion would not decrease by a significant amount, the parameters’ update is
not applied and a new update is computed by again solving Eq.(2.27) for an
increased value of α.

2.5 Maximum Likelihood Estimation

In a Bayesian framework, any sensors measurements are random samples
from a specific probabilistic distribution. State estimation in robotics can
benefit from this modeling as it provides theoretical tools on how to effi-
ciently fuse multiple sensors’ measurements, with different modalities and
noise characteristics.

If the state vector χ is modeled as a multi-variate random variable that
follows a normal distribution, χ can be expressed as:

χ ∼ N (µ, Σ) (2.28)

where µ ∈ Rn is the mean, Σ ∈ Rn×n is the covariance and n = dim(χ).
The sensors measurements zi can further be modeled as being corrupted

by zero-mean gaussian noise η:
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zi = h(χ) + η with η ∼ N (0, Σi) (2.29)

where h(·) is the observation model function. The measurements can thus
be defined in terms of conditional probability p(zi|χ):

p(zi|χ) =
1√

(2π)n · det Σi
· exp

(
−1

2
(zi − h(χ))T · Σ−1

i · (zi − h(χ))
)

(2.30)
which can be simplified by dropping the normalization term:

p(zi|χ) ∝ exp
(
−1

2
(zi − h(χ))T · Σ−1

i · (zi − h(χ))
)

(2.31)

p(zi|χ) = exp
(
−1

2
‖zi − h(χ)‖2

Σi

)
(2.32)

where ‖zi − h(χ)) ‖2
Σi

is the squared Mahalanobis distance.
Given a set of measurements z, the state estimation problem can be ex-

pressed with the Bayes rule:

p(χ|z) = p(z|χ) · p(χ)
p(z)

(2.33)

where p(χ) is the prior over the state vector, p(z) is the normalized prob-
ability factor and p(z|χ) denotes the conditional probability over the set of
measurements.

Considering the measurements zi as being independent, p(z|χ) can be
written as the following product:

p(z|χ) = ∏
i

p(zi|χ) (2.34)

Therefore, from the Bayes equation (2.33), we can infer the states of χ

given the measurements z with a Maximum A-Priori (MAP) estimator:

χ∗ = arg max
χ

p(χ|z)

= arg max
χ

p(z|χ) · p(χ)
p(z)

(2.35)

As χ does not depend on p(z), this term can be dropped:

χ∗ = arg max
χ

p(z|χ) · p(χ) (2.36)
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Furthermore, in the case where we have no a-priori information about χ,
Eq.(2.35) can be turned in the form of a Maximum Likelihood Estimation
(MLE):

χ∗ = arg max
χ

p(z|χ) (2.37)

The MLE returns the state vector that maximizes the joint probability of
p(z|χ). In other words, the MLE searches for the state vector that will maxi-
mize the probability of having the measurements z.

Taking the negative logarithm of equation (2.37) and recalling Eq.(2.32),
one obtain:

χ∗ = arg min
χ

−1
2 ∑

i
‖zi − h(χ)‖2

Σi
∝ arg min

χ
∑

i
‖zi − h(χ)‖2

Σi
(2.38)

Infering a vector of state from a set of measurements through MLE is
done, in the context of gaussian modeling, by solving the least-squares prob-
lem defined by ∑i ‖zi − h(χ)‖2

Σi
. The MLE can hence be solved with the

Gauss-Newton or Levenberg-Marquardt algorithms presented in the previ-
ous section.

2.6 Factor Graphs

Factor graphs are a useful tool for defining a state estimation problem and
representing the underlying probability density functions. An in-depth re-
view of the use of factor graphs for robotics state estimation is given in (Del-
laert et al., 2017).

In a factor graph, states are represented as nodes and these nodes are
linked by factors (or edges), representing the probability density function as-
sociated to some measurements. Considering the simple problem in Fig. 2.4,
with five nodes (three pose states and two landmarks) where the pose state
X1 and X2 are linked to the landmark l1 and the pose states X2 and X3 are
linked to the landmark l2, we can write the resulting likelihood probability
as:

p(z =
{

zij
}
|χ =

{
li, Xj

}
) = p(z11|X1, l1) · p(z12|X2, l1)

· p(z22|X2, l2) · p(z23|X3, l3)
(2.39)
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FIGURE 2.4: Toy factor graph example. The five nodes repre-
sent the states to estimate, with Xi representing pose states and
lj landmark states. The factors define the probability density

functions associated to the measurements zij.

The Maximum Likelihood Estimate of the problem can hence be derived
seamlessly from the factor graph representation. Furthermore, additional
sensors measurements, with different modalities, can be easily inserted in
such graphs. Even priors on states, or direct state measurements, can be
smoothly added through the use of unary edges (i.e. edges connected to just
one state).

Factor graphs are therefore very useful to represent the relationship be-
tween states and measurements for the purposes of state estimation and op-
timization. They are a very common way for defining optimization problem
with many states and many measurements within a Bayesian framework. As
in Visual SLAM, one has usually hundreds of measurements per image, rep-
resenting the (overconstrained) state estimation problems by a factor graph is
straightforward. Furthermore, this representation can easily be extended to
include other sensors measurements such as the ones of an IMU or a pressure
sensor.

2.7 Manifold and Lie Groups

As stated in section 2.2, the pose of cameras are represented as elements of
the SE(3) manifold and rotation matrices are elements of SO(3). These man-
ifolds define respectively the 3D Special Euclidean group and the 3D Special
Orthogonal group, which are both Lie groups. In what follows, we only de-
fine the Lie groups’ properties that are of interest to use. However, the Lie
theory is much deeper than what is presented here. The interested readers
is referred to (Solà et al., 2018) for a concise review about the use of the Lie
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theory for robotics state estimation and to (Barfoot, 2017) for more detailed
explanations.

A consequence of the special structures of manifolds, which do not be-
long to the Euclidean space, optimization of states defined as elements of
such manifolds have to be performed carefully. In our case, the problem
mainly comes from 3D rotation matrices R ∈ SO(3), which have the follow-
ing properties:

SO(3) =
{

R ∈ R3×3|RT · R = I3×3, det (R) = 1
}

(2.40)

As the optimization tools presented in 2.4 are only suited to states defined
in Euclidean space, care has to be taken when optimizing states defined as
manifolds’ elements.

Smooth manifolds, such as SO(3) and SE(3), are locally flat and there
exists a corresponding Lie algebra that is defined as the tangent space at
the identity element. Lie algebra is therefore defined as an Euclidean space,
where any point on this space has a correspondence on the manifold space
(see Fig. 2.5).

FIGURE 2.5: Illustration of the relation between SO(3) spheres
(in orange) and their associated tangent spaces defined by so(3)
(in blue). The red dot and the blue dot represent correspon-
dence between both spaces. Image taken from (Hsiung et al.,

2018a).

The mapping between the Lie algebra se(3) of the SE(3) manifold and
the Lie algebra so(3) of the SO(3) manifold provides a way to express the
current states of its Lie group elements either on the manifold space or on its
local tangent space.

For SO(3), the mapping functions are the following:

• An exponential map, projecting elements from the tangent space onto
the manifold:

exp : so(3) 7→ SO(3) (2.41)



36 Chapter 2. Mathematical Notions

• A logarithm map, mapping elements from the manifold to the Lie al-
gebra tangent space:

log : SO(3) 7→ so(3) (2.42)

These exponential and logarithm mapping functions have closed-forms,
that can be computed as follows.

Let ω ∈ R3 and ω∧ be an element of so(3) associated to the rotation
matrix R ∈ SO(3). Then,

R = exp(ω∧) = I3×3 +
sin(‖ω‖)
‖ω‖ ·ω∧ + 1− cos(‖ω‖)

‖ω‖2 · (ω∧)2 (2.43)

where (·)∧ is here the skew-symmetric matrix operator defined as:

(·)∧ : R3 7→ so(3) (2.44)

If we restrict the exponential mapping to the open ball (‖ω‖ < π), any
rotation matrix R is uniquely defined by one ω. This way, the exponential
map is bijective and its inverse is the logarithm map:

log(R) =
φ

2 · sin(φ)
· (R− RT) (2.45)

with:

φ = cos−1
(

tr(R)− 1
2

)
(2.46)

The same mapping functions exist for SE(3):

exp : se(3) 7→ SE(3) (2.47)

log : SE(3) 7→ se(3) (2.48)

Recalling Eq.(2.1), let x =
[
ω∧ ρ

]T
be an element of se(3) where ω ∈

R3 denotes the 3 rotation coefficients, ρ ∈ R3 determines the translation, and
X its associated state in SE(3). Then,

X = exp(x∧) =

[
exp(ω∧) V(ω) · ρ

01×3 1

]
=

[
R t

01×3 1

]
(2.49)
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where (·)∧ is defined as:

(·)∧ : R(3) 7→ so(3) ; (·)∧ : R(6) 7→ se(3) (2.50)

The left Jacobian1 of SO(3), V(ω), has the following closed-form solution:

V(ω) = I3×3 +
1− cos(‖ω‖)
‖ω‖2 ·ω∧ + ‖ω‖ − sin(‖ω‖)

‖ω‖3 · (ω∧)2 (2.51)

The inverse operation being:

log(X)∨ =

[
log(R)∨

V(ω)−1 · t

]
(2.52)

with log(R) the logarithm map of SO(3) defined in Eq.(2.45) and:

V(ω)−1 = I3×3 −
1
2
·ω∧ +

1− ‖ω‖·cos(‖ω‖/2)
2·sin(‖ω‖/2)

‖ω‖2 · (ω∧)2 (2.53)

For notational convenience, we further define the following operators
that will be used in the next chapters:

Exp : R6 7→ SE(3) ; Log : SE(3) 7→ R6 (2.54)

Exp : R3 7→ SO(3) ; Log : SO(3) 7→ R3 (2.55)

Exp(·) = exp(·∧) ; Log(·) = log(·)∨ (2.56)

These mapping functions can finally be used to perform nonlinear least-
squares optimization on the manifolds’ tangent spaces while keeping the
manifold structure of the states. The optimization operations that are going
to be performed throughout this thesis will highly rely on the Lie groups-Lie
algebra correspondence defined in this section.

1Left and right Jacobians of SO(3) denotes the Jacobians related to a perturbation applied
on the left part or on the right part of a rotation matrix (Solà et al., 2018).



38 Chapter 2. Mathematical Notions

2.8 Conclusion

In this chapter, we have reviewed most of the mathematical tools that we
will use in the next chapters. The application of these different concepts will
be detailed throughout the thesis to perform the tasks of visual localization,
mapping and sensors fusion.
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Underwater Features Tracking
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3.1 Introduction

The problem of features tracking is one of the cornerstones of visual localiza-
tion. Indeed, Visual SLAM (VSLAM) is built on the fact that, by observing
real-world 3D points in successive 2D images (given a small motion between
each), one is able to estimate the pose (position and orientation) of the camera
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with respect to these 3D observations. The first key for accurate localization
is therefore to find the projection of these 3D points into the captured images.
Furthermore, if one is able to determine the image locations of an unknown
3D point between two images taken from two different points of view, these
two observations can be leveraged to estimate the position of this 3D point.
As camera’s pose estimation from known 3D observations and 3D mapping
are the building blocks of any VSLAM system, very accurate features track-
ing is required. This features tracking problem is a special case of what is
referred to as data association in the robotics community.

In this chapter, we conduct a thorough evaluation of several features track-
ing strategies in the underwater context. We mainly investigate and compare
the performance of indirect and direct tracking methods on different under-
water sets of images, each exhibiting some of the classical underwater visual
challenges. First, we formally define the problem of features tracking and de-
tail the workflow of indirect and direct tracking paradigms. Then, we review
some related works and compare them to our approach. Next, we present
the sets of images used to perform our analysis. The evaluation is finally pre-
sented by, first, defining a protocol and some evaluation criteria, and, second,
analyzing the obtained results.

3.2 Problem Statement

The classical approach for features tracking consists in detecting salient points
in an image (refered to as features or keypoints, interchangeably) and trying
to find their new locations in the next images. The whole challenge here is
hence to find appropriate ways of determining these new locations from vi-
sual data only.

In underwater environment, the tracking of features is disturbed by the
poor imaging conditions, mainly due to the presence of turbidity and backscat-
tering. Moreover, the tracking is even more challenging because of artificial
illumination and the presence of many texture-less areas. Illustrations of
these visual challenges are displayed in Fig. 3.1 The suitability of a track-
ing method in this context hence depends on its robustness to these visual
disturbances.

Features tracking is mainly solved by either indirect or direct methods.
Indirect methods rely on an encoding of the appearance of detected features
through the use of descriptors. The problem of features tracking is then
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(A) Turbidity (B) Low Texture

(C) Backscattering (D) Strong illumination variations

FIGURE 3.1: Typical underwater optical perturbations.

solved by computing distances between different descriptors to find corre-
spondences. On the other hand, direct methods directly use the pixel values
around detected features to track them in other images.

We next review in more detail these two different tracking strategies.

3.3 Tracking Strategies

The tracking problem consists in finding corresponding pixels between two
images I1 and I2. In VO and VSLAM, the tracking is often performed by
searching for the corresponding pixels in I2 from a set of keypoints detected
in I1 (Fig.3.2).

We now review two different strategies to solve the features tracking
problem: indirect tracking and direct tracking.

3.3.1 Indirect Tracking

Indirect tracking refers to the use of descriptors as a tracking tool. When
extracting features from an image, each detected keypoint is described and



42 Chapter 3. Underwater Features Tracking

FIGURE 3.2: Illustration of features tracking between two im-
ages I1 and I2. Detected keypoints in I1 (blue dots) are tracked
into I2. The blue dots in I2 represent the new keypoints po-
sition and the blue segment represent the displacement of the

keypoints between I1 and I2.

associated to an encoding vector characterizing its appearance from the sur-
rounding pixels (Fig.3.3). This method models the visual appearance of key-
points (as well as some geometrical properties such as scale or orientation for
invariance) into moderately high dimensional vectors (typically 128 to 1024).
These vectors are called descriptors and can be compared efficiently. This
comparison is done by computing the norm of their differences, referred to
as the matching distance, to obtain scalar-valued similarity measurements
between them.

More formally, the indirect tracking problem can be modeled as follows.
Given Ω, a square image patch:

Ω(u, v) \ Ω ∈Nn×n, u ∈N, v ∈N, n ∈N (3.1)

with (u,v) the pixel coordinates of the patch center and n× n the size of
the patch. The descriptor function f can be defined as :

f : Nn×n 7→ Rk , f (Ω(x)) = d , k ∈N (3.2)

where k is the dimension of the descriptor and d is the descriptor of the
keypoint x with coordinates (u, v).

We define the function g that calculates a distance between two descrip-
tors:

g(di, dj) = norm
(
dj − di

)
s , s ∈ R (3.3)
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FIGURE 3.3: Illustration of the features description process. A
square image patch Ω is extracted around each detected key-
point (blue dots). A description function f is then applied on
this patch in order to compute a vector d that describes the
keypoints (with a binary descriptor here). A similarity score
between descriptors can then be computed in order to find cor-

responding features between two images.

Then, the problem of features tracking is the following. Given K1 and
K2, the sets of extracted features in images I1 and I2, the tracking consists in
looking for the correct matching pair (xi,xj), where xi ∈ K1 and xj ∈ K2 are
the image projections of a same 3D point, for each feature. The computa-
tion of the distance between the descriptors provides then a way of correctly
matching the features.

We find two families of descriptors, real-valued and binary. Real-valued
descriptors are usually the most accurate, as they can encode more infor-
mation than binary ones, but they come at a significantly higher computa-
tional cost (see Table 3.1 for timing comparison). On the opposite, binary
descriptors are quite fast to compute as they are merely the result of pixels’
intensities comparison performed following a predefined pattern (e.g. (0 if
I(u, v) ≤ I(u + i, v + j) and 1 otherwise).

TABLE 3.1: Average run-time per keypoint for keypoint detec-
tion and description. Extracted from (Miksik et al., 2012).

Methods

Binary Real-Valued

ORB BRISK FAST BRIEF FREAK SURF SIFT

Detection time (µs) 11.8 5.34 0.39 x x 60.5 217.8
Description time (µs) 4.2 10.6 x 3.8 6.151 117.1 448.6

1Value extracted from (Alahi et al., 2012) and adjusted to match the evaluation performed
in (Miksik et al., 2012)
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The computation of the matching distance is also less complex with bi-
nary descriptors compared to real-valued ones, as it relies on the Hamming
norm between bits – efficiently computed with a XOR operation – instead of
classical `2 norm.

In the following, we use the SIFT (Lowe, 2004) and SURF (Bay et al., 2006)
real-valued descriptors and the ORB (Rublee et al., 2011), BRISK (Leuteneg-
ger et al., 2011), BRIEF (Calonder et al., 2012) and FREAK (Alahi et al., 2012)
binary ones. Details about these methods and how they differ from each
others can be found in (Baroffio et al., 2016; Mikolajczyk et al., 2005).

The most basic way of solving the matching problem is to proceed with
an exhaustive solution by searching for the nearest neighbor of each descrip-
tor. The descriptor distance between all the features extracted in the images
I1 and I2 is calculated. Then, the most likely matchings can be recovered by
looking for the pairs (xi,xj) with the lowest descriptor distance. In order to
limit the number of wrong matchings, the calculation of the descriptor dis-
tances can be performed twice. Once from the features in I1 towards the
features in I2 and once in the inverse way. As it is very unlikely that there is
a perfect one-to-one matching between the features in both images, different
results might be obtained between both steps. The most likely matchings are
then the pairs with the lowest distance in both cases (I1 → I2 and I2 ← I1).
An additional way of making more robust the matching process is to look
at the second lowest distance for each selected pair and to only validate it if
the difference between the lowest matching distance and the second lowest
is higher than a threshold (typically set as 80 % of the second lowest dis-
tance (Lowe, 2004)). This way, ambiguous matchings can be removed and
only distinctive ones are kept. However, brute-force tracking can be compu-
tationally quite expensive. In the context of VSLAM and VO, the matching
process can be improved and alleviated by using a motion prior in order to
limit the search area. In this case, for each feature xi in I1, the matching dis-
tance is only computed between the features of I2 located within a window
around the predicted location of xi in I2. Such improvements both increase
the robustness and the computational speed of the matching process.

3.3.2 Direct Tracking

Direct tracking methods define the tracking problem as the problem of find-
ing the correct pairs (xi,xj) by working directly on the pixel’s intensities. In
the direct tracking formulation, one only needs to detect features in the first
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image I1. The location of each feature in the second image is then generally
estimated by computing the intensity difference between a patch around xi

in I1 and patches in I2. The new location of xi in I2 is then estimated as the
center of the patch with the minimum intensity difference in I2. As in the
indirect tracking, the tracking problem can either be solved in a brute-force
way, by sliding a patch around every possible locations in I2, or using a mo-
tion prior to limit the search area.

In order to estimate similarity between two intensity patches several met-
rics can be used. The Sum of Squared Differences (SSD) and Zero-Mean Nor-
malized Cross-Correlation (ZNCC) are two examples of direct tracking:

SSD(Ω1, Ω2) =
N

∑
i

N

∑
j
(Ω1(i, j)−Ω2(i, j))2 (3.4)

ZNCC(Ω1, Ω2) =
1

N2 ∑N
i ∑N

j [(Ω1(i, j)− µ1) · (Ω2(i, j)− µ2)]

σ1 · σ2
(3.5)

where Ω1 and Ω2 are image patches of size N × N pixels, (µ1, σ1) and
(µ2, σ2) are, respectively, the mean and standard deviations of the intensities
of the patches Ω1 and Ω2.

In the context of sequential features tracking, an elegant way to perform
a direct tracking is to use the notion of optical flow. Optical flow defines the
velocity of each pixel in a stream of images. Dense optical flow methods con-
sist in estimating the motion between two images trough the computation of
a 2D velocity vector field. The same idea can be applied for sparse tracking
problems such as ours. The Lucas-Kanade (Baker et al., 2004) algorithm is a
solution to sparse optical flow estimation that can be performed iteratively
(Bouguet, 2000).

The iterative form of the Lucas-Kanade method works as follows.
Given two images It and It+1, we want to find in It+1 the new position

of a keypoint x(t), with known position in It. If one makes the following
assumptions:

• the brightness stayed constant between t and t + 1

• the displacement between It+1 and It+1 is small

Then, we can express the new position of x as: x(t + 1) = x(t) + dx , with
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x(t) =

[
u
v

]
, x(t + 1) =

[
u + du
v + dv

]
, dx =

[
du
dv

]
(3.6)

Moreover, if ones assumes an identical motion for neighboring pixels, we
can extend the previous statement over image patches of size N × N:

N

∑
i

N

∑
j

(
It+1(u + du, v + dv)− It(u, v)

)
= 0 (3.7)

The tracking problem is hence solved by finding the 2D vector dx which
satisfies the previous equation. The problem being overconstrained and the
inputs of the problem being non-linear, we can solve it by a non-linear least-
squares method. We define a small perturbations around (du, dv) as (du +

δu, dv + δv).

N

∑
i

N

∑
j

(
It+1(ui + du + δu, vj + dv + δv)− It(ui, vj)

)2
= 0 (3.8)

Then, applying a Taylor first-order propagation, one gets:

N

∑
i

N

∑
j

(
It+1(ui + du, vj + dv)− It(ui, vj) +

∂It+1

∂u
· δu +

∂It+1

∂v
· δv
)2

= 0

(3.9)
In this context, the resulting Jacobian appends to be the horizontal and

vertical gradients of the image:

∇I =
[

∂It+1
∂u

∂It+1
∂v

]
(3.10)

leading to:

N

∑
i

N

∑
j

(
It+1(ui + du, vj + dv)− It(ui, vj) +∇I ·

[
δu
δv

])2

= 0 (3.11)

The minimum of this cost function is finally found by solving the normal
equations: [

δu
δv

]
= −

N

∑
i

N

∑
j

(
∇IT · ∇I

)−1
· ∇IT · δI (3.12)

δI = It+1(ui + du, vj + dv)− It(ui, vj) (3.13)
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∇IT · ∇I =

[
∇Iuu ∇Iuv

∇Ivu ∇Ivv

]
(3.14)

where δI is the current intensities residual and ∇IT · ∇I is the second
derivative of the function, which can be estimated from the image gradients.

This problem is solved iteratively by updating the 2D vector after each
iteration:

du← du + δu ; dv← dv + δv (3.15)

This optimization problem can be performed at multiple resolutions by
building pyramids of the images It+1 and It. Starting at a coarse resolution
and refining the solution layer by layer in the pyramids, the formulation of
this problem can handle larger pixels displacements. Last, the δI residual can
be used to validate or not a tracking (by setting a minimum residual to reach
for instance).

In this thesis, we use such a pyramidal implementation of the Lucas-
Kanade algorithm. The details of the exact algorithm are given in (Bouguet,
2000).

We couple this tracking algorithm with the detection of Harris corners
computed through the method of Shi and Tomasi (Shi et al., 1994; Tomasi et
al., 1991). Such a combination is often referred to as the KLT (Kanade-Lucas-
Tomasi) tracker in the literature.

3.4 Related Works

In the underwater context, (Aulinas et al., 2011a) evaluates the use of SURF
features (Bay et al., 2006) in their SLAM algorithms and assess improvements
in the localization but their method does not run in real-time. The authors of
(Shkurti et al., 2011a) evaluates several combinations of feature detectors and
descriptors and they show that keypoints detected the SURF or Shi-Tomasi
detector (Shi et al., 1994) matched by ZNCC (see Eq.(3.5)) performed bet-
ter for visual state estimation than the other considered methods. However,
these works did not include the evaluation of binary features such as BRIEF
(Calonder et al., 2012) or ORB (Rublee et al., 2011) nor of optical-flow, which
are widely used methods for features tracking in VO and VSLAM. In (Hart-
mann et al., 2013), binary descriptors have been evaluated along real-valued
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ones in the context of VSLAM for a terrestrial wheeled robot. The results ob-
tained are in favor of SIFT but they also show that BRIEF perfoms better than
other binary descriptors. In (Codevilla et al., 2015; Garcia et al., 2011), many
feature detectors are evaluated on underwater images with a focus on their
robustness to turbidity. They follow the evaluation protocol of (Mikolajczyk
et al., 2005) by using the detectors repeatability as their metric. Robustness to
turbidity is essential for underwater visual localization, but only evaluating
repeatability of the detectors does not ensure good features tracking capac-
ity. Indeed, ambiguities can still arise when trying to match these features
between two images.

Our features tracking evaluation differs from these previous works in that
we analyze the features tracking efficiency of a wide range of feature detec-
tors and tracking methods in the specific context of underwater VO and VS-
LAM.

3.5 Underwater Sets of Images

We have used two different sets of images to conduct the evaluation of the
different tracking methods. The first one is the TURBID dataset (Codevilla et
al., 2015), which consists of three series of static pictures of a printed seabed
taken in a pool (Fig. 3.4). Turbidity was simulated on these images by adding
in the water a controlled quantity of milk between two shots. The second one
consists of a sequence of images extracted from a video recorded by a mov-
ing camera close to the seabed (Fig. 3.5). This sequence exhibits the typical
characteristics of underwater images: low texture and repetitive patterns. As
this set is a moving one, we will refer to it as the VO set. On both sets, all the
images used are resized to 640 × 480 and gray-scaled to fit the input format
of classical VO methods.

3.6 Evaluation Metrics

In order to evaluate and analyze the performance of the different features
tracking strategies, we need to define some evaluation metrics. The choice
of these metrics is based on our expectations in terms of tracking quality
and accuracy in a visual localization context. Ideally, we would like to use a
method able to track every observable keypoints from one image to another,
with perfect keypoints’ localization and no mis-matching (that is matching
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FIGURE 3.4: Images from the TURBID dataset (Codevilla et al.,
2015).

FIGURE 3.5: Images from the VO set acquired on a deep an-
tic shipwreck (depth: 500 meters, Corsica, France) - Credit:
DRASSM (French Department of Underwater Archaeological

Research).

wrong pairs of keypoints).

First, we use the Turbid sets of static images, degraded by a simulated
increase of turbidity. As the images are static, we have a ground-truth to
evaluate the tracking quality and accuracy here.

We define the tracking quality, for indirect tracking methods, as the dis-
tinctiveness of the features in comparison with their nearest neighbors. In ad-
dition, we define the tracking accuracy as the pixel error between the tracked
features’ positions and the real one. This second criterion is both used for
direct and indirect tracking methods. These evaluations allow us to measure



50 Chapter 3. Underwater Features Tracking

the robustness to turbidity of the different methods.
Then, we use the both the Turbid sets and the VO set of images to evalu-

ate the efficiency of the tracking methods on a real-case scenario. We define
the tracking efficiency as being proportional to the number of successfully
tracked features.

We now give in-depth details about how we quantify these criteria and
how we can interpret them.

3.6.1 Indirect tracking evaluation criteria

For the indirect methods, we want to evaluate the distinctiveness of the ex-
tracted features in small areas. Indeed, as presented in section 3.3.1, the
matching selection will be based on the similarity scores between descrip-
tors located in a bounded area. Intuitively, the more distinctive the features
are in a small area, the better the matching quality is, as it does not suffer
from matching ambiguities (several candidates with high similarity). To do
so, we run an evaluation by taking successive image pairs, extracting features
in both images and matching each feature of the first image to the features of
the second image, located in a 20× 20 pixels area around it.

We define Di as the set of features extracted in the first image of each
pair and Dij as the sets of features from the second image located within the
20× 20 pixels window around an element i of Di. The criteria that we use to
evaluate the performance are the following statistics 2:

1. The statistics over the matching distance: the matching distance with
all features located in a close area

µ1 =
1
N

N

∑
i

(
1
M

M

∑
j

(
g
(
di − dj

)))
(3.16)
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1
N

N

∑
i

√√√√( 1
M− 1

M

∑
j

(
g
(
di − dj

)
− µ1

)2

)
(3.17)

with di ∈ Di, dj ∈ Dij and g(·) taken from Eq.(3.3) and N and M the
number of features in the Di and Dij sets.

2. The statistics over the minimum matching distance: the minimum match-
ing distance found for each feature

2By statistics we understand the mean and standard deviation here.
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with dminj the most similar descriptor to di in Dij.

3. 80% of the 2nd minimum matching distance: the 2nd minimum match-
ing distance multiplied by 0.8 for each feature

µ3 =
1
N
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with d2ndminj
the second most similar descriptor to di in Dij.

4. The good matching distance: the distance relating two matched fea-
tures considered as inliers (assessed by an error less than 2 pixels)

µ4 =
1
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with dgoodj the most similar descriptor to di in Dij given an error of less
than 2 pixels between both related features.

5. The statistics over the tracking error: the pixel error between matched
features (i.e. the ones with the most similar descriptors)

µ5 =
1
N
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(3.25)
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with xdi and xdminj
the pixel coordinates associated to the descriptors di

and dj and the pixel error represented by the euclidean norm.

The first four criteria relate to a prediction of the tracking quality of the
methods. Indeed, if all these distances are close, one cannot expect good re-
sults in a practical VSLAM scenario, as many ambiguities will arise in the
matching process. On the opposite, if the minimum matching distances can
be strongly distinguished from the others, numerous correct matching are
expected to be found. The last criterion gives an insight of the tracking accu-
racy that can be expected in similar imaging conditions.

3.6.2 Direct tracking evaluation criterion

For the direct methods, we only use the tracking error metric. The evaluation
is again run by taking successive image pairs.

As these methods look for the minimum photometric residual between
patches extracted from two images, we evaluate the expected tracking ac-
curacy as the pixel errors between the found minima and the groundtruth.
Here, we evaluate the results obtained with the SSD method and with the
KLT. For the SSD method, we first extract keypoints in the first image, take
a patch of 15× 15 pixels around each keypoint and finally compute the SSD,
using Eq.(3.4), between this patch and patches in the second image by mov-
ing in a 20× 20 pixels window around the original keypoint. The pixel er-
ror between the found minimum and the original keypoint location will be
averaged over all extracted keypoints to obtain an estimate of the tracking
accuracy. For the KLT method the tracking is performed using Eq.(3.11) with
a patch of 15× 15 pixels and three layers.

3.6.3 Tracking efficiency evaluation

In a second time, we evaluate the tracking efficiency of each method on the
Turbid dataset. To do so, we divide each image in 500 cells and try to extract
one feature per cell (this technique is sometimes referred to as bucketing in
the VO literature (Sanfourche et al., 2013)). Then, we try to track each feature
in the following image. We consider a tracking successfull if the pixel error
is less than 2 pixels. For the indirect methods, the search space is limited to
a 40× 40 pixels window around the original feature in order to simulate the
matching case of VO scenarios. The best candidate among the found features
is simply selected as the one with the minimum matching distance. Within
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the direct methods here we only use the KLT. For the KLT method, we re-
cover, if any, the location of the found minimum. Note that, the KLT method
acts locally and starts its search at the exact location of the original feature.
Hence, to avoid perfect initialization of the search space for the KLT, we ap-
ply a virtual translation of 10 pixels to the target image. By doing so, we
avoid advantaging any method in front of another.

The last analysis that we perform is on the VO set of images. On this
set, we apply a pure VO scenario to our analysis: we try to track features
extracted in a reference image (a keyframe) in all the following images. This
scenario is typical when one is tracking a keypoint over several images, wait-
ing for enough parallax between the original keypoint location and the cur-
rent one in order to triangulate it accurately. Here, we are again interested
in the tracking efficiency of each method. However, as we don’t have any
ground-truth to refer to on this set, we apply some classical outlier removal
techniques for features tracking in a VO context. Once the tracking of fea-
tures in each new image is completed, we check the epipolar consistency be-
tween the tracked features by computing the Essential Matrix in a RANSAC
scheme and remove the detected outliers (see section 2.3.4 page 27). Further-
more, for the KLT, a forward-backward check is applied to remove any am-
biguous track. This forward-backward check is simply done by running the
optical flow algorithm twice, once from the current image toward the target
image and once from the target image toward the current image (using the
tracked feature’s location as the new starting point). If there is a difference
higher than 1 pixel between the original feature and the backward one, the
feature is removed. Otherwise, the protocol is the same as the previous one.
The only deviations are that, for the indirect methods, the matching is always
performed between the first image and the following ones and, for the KLT
method, features are only extracted in the first image and then tracked im-
age by image (then if a feature is lost at some point, it cannot be recovered
later as with indirect methods). Furthermore, the center of the search space
window for the indirect methods is set by the average disparity between the
keyframe and the features successfully tracked in the previous image. As the
VO set contains images of the seabed, the assumption that every pixels are
approximately moving in the same direction and with the same magnitude
is true here.

For these last two evalutations, another consideration is the number of
successfully detected features in each image. Indeed, if a given method is
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not able to detect many features in the images it will most likely perform
poorly in a VO application. Hence, we also record the number of success-
fully detected features per image.

Summary

In short, the criteria that we are interested in for evaluating the different
tracking methods are:

• The tracking quality, defined as the evaluation of features distinctive-
ness compared with their close neighbors (indirect methods only)

• The tracking error, defined as the pixel error between the tracked fea-
tures and the groundtruth

• The tracking efficiency, defined by the number of successfully tracked
features on a sequence of images

3.7 Evaluation Results

We now compare the results obtained for the different methods. We have
used the OpenCV library implementation of all the tested methods but the
SSD, which we implemented ourselves.

3.7.1 Tracking Quality and Tracking Error Analysis

3.7.1.1 Evaluation Criteria Recall

We start by recalling what we expect to analyze from the tracking quality
statistics of the different indirect methods. As these kinds of methods rely on
descriptors as a mean of measuring the similarity between different features,
an efficient tracking method should present high similarity between related
features and low similarity between unrelated ones. As the similarity score is
computed as the norm of the descriptors difference, the higher the similarity
is, the lower the norm is. The norm is referred to as the matching distance.
Here, we have computed the matching distances between features using a
search window. So, what we analyze is more specifically the similarity dif-
ferences between features located in a precise area.

Hence, from an efficient indirect method, we first expect the matching dis-
tance of two related features to be unambiguously lower than the average of
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FIGURE 3.6: Tracking quality statistics for ORB and BRISK.
Each row displays the results obtained for the different sets of
images: (a) TURBID #1, (b) TURBID #2, (c) TURBID #3. The y

axis is the normalized matching distance.
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FIGURE 3.7: Tracking quality statistics for FAST combined with
BRIEF and FREAK. Each row displays the results obtained for
the different sets of images: (a) TURBID #1, (b) TURBID #2, (c)

TURBID #3. The y axis is the normalized matching distance.
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FIGURE 3.8: Tracking quality statistics for SIFT and SURF. Each
row displays the results obtained for the different sets of im-
ages: (a) TURBID #1, (b) TURBID #2, (c) TURBID #3. The y axis

is the normalized matching distance.
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FIGURE 3.9: Tracking error statistics for ORB and BRISK. Each
row displays the results obtained for the different sets of im-
ages: (a) TURBID #1, (b) TURBID #2, (c) TURBID #3. The y axis

is the euclidean norm in pixel of the error.
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FIGURE 3.10: Tracking error statistics for FAST combined with
BRIEF and FREAK. Each row displays the results obtained for
the different sets of images: (a) TURBID #1, (b) TURBID #2, (c)
TURBID #3. The y axis is the euclidean norm in pixel of the

error.
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FIGURE 3.11: Tracking error statistics for SIFT and SURF. Each
row displays the results obtained for the different sets of im-
ages: (a) TURBID #1, (b) TURBID #2, (c) TURBID #3. The y axis

is the euclidean norm in pixel of the error.
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the matching distances obtained with all the others features in the searching
area. Otherwise, it would mean that the correct matching is almost impossi-
ble to recover. Secondly, we also expect the correct matching distance to be
significantly lower than the second lowest distance. As explained in section
3.3.1, a classical ambiguity checking is to ensure that the minimum distance
is lower than 80% of the second one to validate a matching. By adding to
this analysis the average distance values of correct matchings only, we ex-
pect to draw out a meaningful distance threshold that could be used to filter
potential wrong matchings. Again, we expect this distance to be well distin-
guishable.

For both the indirect and direct methods, we also analyze their tracking
error to evaluate their expected accuracy.

3.7.1.2 Tracking Quality Results Analysis

We now discuss the obtained results. First, we look at the tracking quality
plots displayed in Fig. 3.6, 3.7, 3.8. As we can see, the general trend for
all the methods is that the minimum distances are more and more difficult
to identify as the turbidity increases. The same is true when we look at the
good distances only. Hence, we expect these methods to perform quite well,
as long as the turbidity remains below a certain level (approximately around
the ninth image of the sets) but their efficiency quickly decreases past this
level. The use of ORB, SIFT and SURF seems to give the best results as the
good distance stays slightly lower than the others on most of the images.

If we now turn to the tracking error results displayed in Fig. 3.9, 3.10, 3.11,
we can see that most of the methods perform poorly with an average error
of 5 to 6 pixels when selecting the good matching for a feature as the one
with the lowest distance. Only the ORB, SURF and SIFT methods perform
better, with the average error of 2 to 4 pixels. This confirms the observation
made on the tracking quality results. Note that, on the plots of Fig. 3.9-3.11,
some spurious results sometimes appear on the last values. These are due to
the fact that, with some detectors, a very low amount of features have been
detected in the most turbid images. This also the reason why with BRISK the
tracking errors seem to improve when turbidity increases.

We now compare these results to the ones obtained by computing the
SSD. The tracking error statistics for this direct tracking method are dis-
played in Fig. 3.12. We can observe that the tracking errors are very low
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FIGURE 3.12: Tracking error statistics for the Sum of Squared
Difference (SSD) method and the Kanade-Lucas-Tomasi (KLT)
method. Each row displays the results obtained for the different
sets of images: (a) TURBID #1, (b) TURBID #2, (c) TURBID #3.

The y axis is the euclidean norm in pixel of the error.
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on the first three quarters of the sets (error ≤ 2 px) and get worse on the
last quarter (around 4 to 5 pixels of error). If we now look at the KLT results
on the same figure, we can see that the tracking accuracy is even better and
barely exceeds 4 pixels of error in the highest level of turbidity. We can also
note that, in the lowest levels of turbidity, the KLT results are very close of
those obtained with the SSD method. The reason for the improvements ob-
tained with the KLT over the most turbid images lies in the fact that the KLT
method rejects keypoints whose final solution are inaccurate (assessed by a
final residual higher than a threshold).

From these first results, we can observe that the KLT method is the most
accurate among the tested methods and ORB, SURF and SIFT seem to be
more robust to the highest turbidity levels than the other descriptors.

3.7.2 Tracking Efficiency and Turbidity Robustness Analysis

We now look at the performance of the different methods in terms of the
number of detected and correctly tracked features on the Turbid sets of im-
ages. The results are displayed in Fig. 3.13(a,b) which shows the evolution
of the metrics for more and more turbid images. We recall that, here, the
tracking is evaluated between pairs of successive images. It appears that the
KLT method largely surpasses the indirect based ones in terms of the number
of correctly tracked features. However, we can also see that, for most of the
indirect methods, their detectors struggle in finding 500 well spread features
over the images. On the other hand, the Shi-Tomasi detector used with the
KLT is more efficient here. In order to remove any bias coming from a de-
tector dependency, we run again the same analysis but using the Shi-Tomasi
detector for every method. The results obtained are the ones shown in Fig.
3.13(c,d). The number of correctly tracked features increases impressively for
every methods in this case. This is most likely due to a better repeatability
of the Shi-Tomasi corner detector on this dataset. One can be surprised that
the number of detections is different between the different methods whereas
the same detector has been used. This is in fact due to the computation of the
descriptors, which automatically removes features not suitable for a given
descriptor. Nevertheless, we can notice that the KLT method still outper-
forms all the indirect methods on the first three quarters of the images sets
and then performs comparably on the last quarter. This result is consistent
with the tracking error analysis and highlights the robustness to mid-levels
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FIGURE 3.13: Tracking efficiency evaluation on the TURBID
dataset (Codevilla et al., 2015) (presented in Fig. 3.4). Graphs
(a) and (b) illustrates number of features respectively detected
and tracked with different detectors while (c) and (d) illustrates
number of features respectively detected with the Harris cor-
ner detector and tracked as before (the SURF and SIFT curves

coinciding with the Harris-KLT one in (c)).

of turbidity of all the tested methods. Although, in front of very strong tur-
bidity levels, no method seems to be really efficient.

3.7.3 Tracking Efficiency and Low-Texture Robustness Anal-

ysis

We finally look at the performances obtained on the VO set. We recall that,
on this set, we try to track features from the first image in all the following
images – simulating a real VO scenario.
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FIGURE 3.14: Tracking efficiency evaluation on the VO dataset
(presented in Fig. 3.5). Graphs (a) and (b) illustrate the num-
ber of features respectively detected and tracked with different
detectors, while (c) and (d) illustrate the number of features re-
spectively detected with the Harris corner detector and tracked
as before (the SIFT curve coinciding with the SURF one in (c)).

The results are displayed in Fig. 3.14(a,b). Once again the KLT method
gives clearly better results. However, we also notice that the detectors em-
ployed with the indirect methods performs poorly on these low-textured im-
ages. Hence, we also run the same analysis using the Shi-Tomasi detector for
all the methods. While this improves the performances of all the methods but
SURF, it appears that the KLT method is more suited to the tracking task on
these images. Besides, we can notice that the number of successfully tracked
features with the ORB and BRIEF descriptors is quite high given the number
of detected features in this case.
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3.8 Conclusion

In this chapter, we have presented a thorough evaluation of the performance
of different features tracking methods in an underwater context. We have
compared indirect tracking methods, relying on the computation of descrip-
tors as a mean of matching features, to direct tracking methods, based on the
minimization of photometric errors. The conducted evaluation included the
real-valued descriptors SIFT and SURF, the binary descriptors ORB, BRISK,
BRIEF and FREAK (the last two used in combination with the FAST detec-
tor), the use of SSD and the Kanade-Lucas-Tomasi (KLT) sparse optical flow
algorithm. We have focused this analysis on the efficiency of the different
tracking methods in front of images with low-texture and varying levels of
turbidity, which are typical characteristics of underwater imaging. The re-
sults obtained highlight the better performance of the KLT method in front
of the indirect ones. This seems to be due to the fact that photometric min-
ima are well defined until mid-levels of turbidity and in low-texture areas
whereas the computed descriptors get more and more ambiguous.

In front of these results we conclude that the KLT method is well suited
for the development of a visual localization system in underwater environ-
ment. It is still worth noting that the KLT method only detect features in the
first image and then simply tracks them from one image to another. While
this leads to a general lower computational cost of the KLT as new features
do not have to be detected in each new image, it also means that any lost
feature is definitely lost, even if only temporarily occluded. In opposition,
the indirect methods, by extracting features in every images, have a way of
finding temporarily invisible features. This can become an important flaw
of the KLT if many occlusions occur in the acquired images. As underwater
images sometimes suffer from such short occlusions due to the presence of
moving animals, appealed by the embedded lighting systems.

As a perspective, it would be interesting to conduct a similar evaluation
with recent deep learning based methods for features tracking, such as DELF
(Noh et al., 2017) or Superpoint (DeTone et al., 2018). Also, a more robust
version of the KLT method, partly due to the use of a robust estimator (Hol-
land et al., 1977), has been recently added to OpenCV and would be worthy
to test (Senst et al., 2016).

In the next chapter we will present a VSLAM method that builds upon
the KLT method for the purpose of features tracking. Furthermore, the short
occlusions issue will be taken into consideration.
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4.1 Introduction

In this chapter we investigate the use of a monocular camera to perform si-
multaneous localization and mapping (SLAM). From the results obtained
in the previous chapter, we propose a monocular Visual SLAM (VSLAM)
method using the KLT (Kanade-Lucas-Tomasi) to perform features tracking
through optical flow (Bouguet, 2000). The method builds upon recent ad-
vances in VSLAM and is suited to underwater environments. The proposed
VSLAM algorithm is keyframe-based and makes heavy use of Bundle Adjust-
ment for optimizing the accuracy of the estimated trajectories.

Our contributions are the following:

• We propose UW-VO (UnderWater Visual Odometry), a real-time keyframe-
based monocular VSLAM method that performs features tracking with
the KLT method.

• We propose a features retracking mechanism to overcome the KLT weak-
ness about lost features and gain in robustness.

• We show that the proposed method is more accurate and more robust
than state-of-the-art monocular VSLAM methods on real-case under-
water datasets.

This chapter is organized as follows. First, we review some of the major
works in the monocular Visual SLAM field. Then, we expose formally the
problem we are addressing. The proposed monocular VSLAM method is
then detailed and experimental results are given to assess its efficiency.

4.2 Problem Statement

Visual SLAM (VSLAM) systems are localization solutions which estimate the
trajectory followed by a camera from the images it acquires. The task of a VS-
LAM algorithm is to provide an estimation of the camera’s pose at the cam-
era’s frame rate. Considering that a camera can move freely in a 3D space
(6DOF), its pose can be modeled as an element of the 3D Special Euclidean
group SE(3) composed of a rotational part R, where R is a Rotation matrix
and hence an element of the Special Orthogonal group SO(3), and a transla-
tional part t ∈ R3.

The pose of the camera Xi at frame i can be expressed through its homo-
geneous representation:
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FIGURE 4.1: Illustration of the Visual SLAM problem.
Keyframes are represented in turquoise and consist in informa-
tive past camera’s states that are kept for the purpose of Bundle
Adjustment. The map is composed of 3D landmarks (in pink)
that are linked to keyframes through visual measurements (dot-
ted lines). The current pose of the camera is linked to some of

the most recent 3D landmarks.

Xi =

[
Ri ti

01×3 1

]
(4.1)

The matrix Xi here defines the transformation from the camera frame at
frame i to a reference frame, often defined as the world frame w. To symbol-
ize the transformation effects we use the following notations: Xwci , to model
the transformation from the camera frame to the world frame, and Xciw for
the inverse transformation. These two transformations relate as:

Xwci =

[
Rwci twci

01×3 1

]
(4.2)

Xciw = X−1
wci

=

[
RT

wci
−RT

wci
· twci

01×3 1

]
(4.3)

The localization problem in VSLAM is solved by comparing 2D visual
measurements, x̃ ∈ R2, to 3D landmarks, wl ∈ R3. These 2D-3D correspon-
dences relate through the projection functions h (·) : SE(3)×R3 7→ R3 and
π (·) : R3 7→ R2:
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h
(
Xwci , wlj

)
= RT

wci
·
(

wlj − twci

)
=
[

x′ y′ z′
]T

(4.4)

x̂j = π
(
K · h

(
Xwci , wlj

))
=

[
x′
z′ · fx + cx
y′
z′ · fy + cy

]
(4.5)

with K =

 fx 0 cx

0 fy cy

0 0 1

 (4.6)

where x̂j is the pixel projection of the 3D landmark wlj mapped through
the intrinsic calibration matrix K of the camera. From these projections, vi-
sual error terms can be defined as:

eij = x̃ij − x̂ij (4.7)

where eij represent the reprojection error term obtained for the landmark

wlj observed from the pose Xwci .
In this thesis, the developed VSLAM system is keyframe-based, meaning

that, in addition to the current pose of the camera, we also continuously esti-
mate the poses of keyframes along with the 3D landmarks observed by these
keyframes. The full states of interest at frame i are therefore:

χi =
[
Xwci Xwk wlm

]T
(4.8)

where Xwk is the set of previously selected keyframes and wlm the set of
estimated 3D landmarks. An illustration of the full VSLAM problem under
the form of a graph is given in Fig. 4.1.

4.3 Related Works

Monocular SLAM has been first addressed with filtering methods (Civera et
al., 2008; Davison et al., 2007; Eade et al., 2006). In these works, an Extended
Kalman Filter is used to jointly estimate the pose of the the camera along
with the 3D landmarks at every frame. However, the EKF is not well suited
to handle such large state vector and, because of the high nonlinearity of the
VSLAM problem, many linearization errors are integrated. The application
of these filtered methods have therefore been limited to small areas.

In opposition to filtered methods, keyframe-based methods have been
proposed. The idea behind keyframes is that using every acquired frames for



4.3. Related Works 71

estimating 3D landmarks has little interest, because of high redundancy in
the measurements, and only selecting non-redundant frames (i.e. keyframes)
for the mapping steps ends up being more efficient and more accurate. Fur-
thermore, the subsampling implied by the keyframes paradigm provides a
way of efficiently using Bundle Adjustment optimization (Triggs et al., 2000)
in real-time. Bundle Adjustment is a nonlinear least-squares optimization
which aims at estimating both cameras’ poses and 3D landmarks by mini-
mizing visual reprojection errors. Bundle Adjustment is more costly than a
single iteration in an EKF but provides better estimates as it iteratively re-
fines its estimations (Strasdat et al., 2012). PTAM (Klein et al., 2007b) was
the first monocular SLAM algorithm able to handle Bundle Adjustment in
real-time. Their main idea, besides making use of keyframes, was to sepa-
rate the tracking and mapping part of the VSLAM algorithm in two differ-
ent threads. Hence, their method efficiently uses Bundle Adjustment in the
mapping thread while the tracking thread takes care of features tracking and
pose estimation at frame rate. Even if the Bundle Adjustment operation takes
longer than the processing of one frame in the tracking thread, the algorithm
is not impacted and still benefit from it (thanks to the optimization of 3D
landmarks currently observed).

Since PTAM, many improvements have been proposed to address monoc-
ular VSLAM. In (Strasdat et al., 2010), a dense tracking based on optical flow
and implemented on GPU was proposed. In addition, SURF features (Bay
et al., 2006) were extracted for loop-closure detection and they proposed to
use 7DOF similarity constraints (6DOF for the pose and 1DOF for the scale)
to optimize the resulting pose-graph and recover from potential scale drift
in the monocular estimations. The same author proposed, in (Strasdat et al.,
2011b), an improved version of PTAM by adding loop-closure detection and
pose-graph optimization within the mapping thread. In (Song et al., 2013),
a Visual Odometry method inspired by PTAM and targeting autonomous
car navigation was proposed. Their method uses ORB features (Rublee et al.,
2011) for fast tracking and several modifications of the algorithm architecture
were applied to optimally run on multicore CPUs. Then, in (Lim et al., 2014),
a monocular VSLAM able to perform tracking, mapping and loop-closure in
real-time was proposed. The algorithm is largely inspired by PTAM and uses
BRIEF features (Calonder et al., 2012) for both tracking and loop-closure. At
the same time, ORB-SLAM (Mur-Artal et al., 2015) was proposed. This algo-
rithm is also able to perform tracking, mapping and loop-closure in real-time.
However, it uses ORB features instead of BRIEF, with better relocalization
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properties. ORB-SLAM has been considered as the state-of-the-art feature-
based monocular VSLAM so far and its open-source release has made it very
popular.

In parallel to feature-based methods, that handle the VSLAM problem by
the tracking of features, direct methods have been emerging recently. Direct
methods solve the SLAM problem by performing localization and tracking
in a joint optimization, directly using the pixels intensities to define the asso-
ciated cost function. Direct methods can be dense, DTAM (Newcombe et al.,
2011), meaning that all the image’s pixels are used, semi-dense, LSD-SLAM
(Engel et al., 2014), if only pixels with strong gradients are used, or sparse,
DSO (Engel et al., 2017), if only a small set of pixels is used. The advantage
of direct methods is that they do not rely on detected features but directly
leverage the pixels’ intensity for the localization and mapping task. They are
expected to be more robust to scenes with low texture as they do not require
strong distinctive features as feature-based methods do. However, they are
computationally more demanding and not as mature as feature-based meth-
ods yet. A so-called semi-direct method (Forster et al., 2014, 2017) has also
been proposed. It combines the accuracy of sparse direct methods with the
robustness of features detector to initialize the set of sparse pixels to use for
localization and mapping. This method was shown to be extremely fast but
also works better with high frame-rate cameras.

With respect to these works, our monocular VSLAM method is similar to
recent feature-based methods. However, the features tracking part does not
depend on descriptors but on a direct tracking method based on optical flow.
This relax the constraint of extracting features in every image. Instead, fea-
tures are only detected in keyframes and tracked frame-to-frame using their
photometric appearance. To the best of our knowledge, there is no previous
keyframe-based monocular VSLAM method that has been proposed for un-
derwater localization.

4.4 Overview of the Visual SLAM algorithm

The pipeline of UW-VO is summarized in Fig. 4.2. The system is based
on the tracking of 2D features over successive frames in order to estimate
their 3D positions in the world referential. The 2D observations of these 3D
landmarks are then used to estimate the motion of the camera. Frames used
for the triangulation of the 3D map points are considered as keyframes and
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FIGURE 4.2: Pipeline of the proposed Visual SLAM algorithm
UW-VO. The front-end thread is responsible for the tracking
and pose estimation at frame-rate while the back-end thread
takes care of the mapping and Bundle Adjustment related op-

erations.

the most recent ones are stored in order to optimize the estimated trajectory
along with the structure of the 3D map through bundle adjustment. The
method follows the approach of (Klein et al., 2007a; Mur-Artal et al., 2015;
Strasdat et al., 2011a). However, in opposition to these methods, we do not
build the tracking on the matching of descriptors. Instead we use the KLT
method, more adapted to the underwater environment as demonstrated in
the previous chapter. The drawback of the KLT in opposition to descriptors
is that it is only meant for tracking features between successive images. This
is a problem when dealing with a dynamic environment as good features
might be lost because of short occlusions. To make the KLT robust to such
events, a retracking mechanism is added to the tracking part of the VSLAM
framework. This mechanism will be described in section 4.5.4.

As illustrated in Fig. 4.2, the algorithm is divided into two threads. A
front-end thread is responsible for the tracking part and the pose estimation
at frame-rate. In parallel, the back-end thread takes care of the operations
related to the creation of new keyframes, that is mapping and Bundle Ad-
justment. The front-end thread outputs a real-time estimation of the cam-
era’s pose while the back-end thread performs the more complex optimiza-
tion tasks.
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We first describe the processing performed within the front-end thread
and then we describe in-depth how the back-end thread handles the Bundle
Adjustment operations.

4.5 Visual SLAM Front-End

4.5.1 Handling Image distortion

The visual measurements are formed by the detection and tracking locations
of specific keypoints. These measurements can hence directly be modeled

by their pixel coordinates in the image: x =
[
u v

]T
, x ∈ R2. However,

the processed images always suffer from lens distortion effects which inval-
idate most of the multi-view geometry properties, defined for pinhole cam-
eras with perfect lenses. The undistorted coordinates of the keypoints can
be obtained by applying an undistortion function γ(·): xundist = γ(x). The
function γ(·) is a polynomial function reflecting the lens geometry. These
distortion effects can be estimated through a calibration step along with the
intrinsic parameters of the camera’s sensor (Zhang, 2000, 2014).

To avoid the need of applying this undistortion function to every visual
measurement, a classical solution is to compute a 2D mapping of the pixel
positions between the distorted and undistorted image. The distortion ef-
fects being constants, this mapping can hence be computed once and then
applied to all the images acquired by the camera. The advantage is that the
visual measurements directly correspond to their undistorted coordinates.
However, the distortion removal process often leads to some cropping in the
original image.

The downside of cropping all the images is the loss of visual information,
thus reducing the keypoints tracking boundaries. In order to keep using the
full image, the visual measurements can also be modeled as bearing vectors
as represented in Fig. 4.3. This way the keypoints are defined as undistorted
3D unit-length vectors originating from the optical center of the camera. This
representation can be used to directly solve the classical multi-view geome-
try algorithms, without any constraints over the cameras’ models used. In
practice, the bearing vectors are computed as follow:

bv(x) =
xc

‖xc‖2 , with xc = K−1 ·
[

γ(x)
1

]
(4.9)
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FIGURE 4.3: Bearing vectors representation. The undistorted
keypoints are represented as unit vectors bvi, projected onto
the unit sphere around the optical center of the camera and and

pointing towards their landmarks lmi.

This representation is the one used in UW-VO and hence makes it com-
pliant with any camera models, as long as the undistortion function is given.
Furthermore, the use of bearing vectors allows to model easily multi-cameras
systems (Kneip et al., 2014a). The developed algorithm could therefore be ex-
tended for such configurations.

4.5.2 Image Pre-Processing

The poor imaging conditions of underwater environments often lead to the
acquisition of images with a lack of contrast. This might be due to the lack
of texture of the imaged scenes but also to shadows or overexposed areas
created by the embedded lighting system.

As a minimum of contrast in the images is required for the tracking and
detection of keypoints, we pre-process the acquired images before using them
in UW-VO. This pre-processing applies a Contrast Limited Adaptive Histogram
Equalization (CLAHE) (Zuiderveld, 1994) technique in order to enhance the
contrast in the images. This method is somewhat similar to the classical His-
togram Equalization (HE) method but, instead of performing it onto the full
image, it applies HE locally, on patches moved over the image. By increasing
the contrast of patches, based on the patches’ intensity dynamic, we ensure
a better local contrast enhancement than with classical HE, which actually
might decrease the contrast of some image regions in order to increase the
global contrast of the image. The price to pay for this contrast enhancement
is an increase of noise in the image. However, the CLAHE algorithm reduces
this tendency by clipping the intensities histogram in order to keep an homo-
geneous spreading of intensities over the patches. This is especially useful
with homogeneous patches, which become very noisy if no clipping is used.
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The effect of this contrast enhancement can be seen within the pipeline figure
of UW-VO in Fig. 4.2.

Despite the slight increase of noise, this pre-processing tends to improve
the VSLAM algorithm by making the tracking and the detection of keypoints
more robust to a lack of contrast and to overexposure.

4.5.3 Frame-to-Frame Features Tracking

The tracking of features is done frame to frame, that is from the image It−1 to
the image It. The tracking is performed through the estimation of the optical
flow using the KLT method (Bouguet, 2000) described in chapter 3.

In order to increase the robustness of the tracking and remove outliers as
soon as possible, this tracking is performed in a forward-backward scheme.
The estimation of the optical flow is therefore computed two times: first from
It−1 to It and then from It to It−1. The error between the original keypoints
position and the one found in the backward step is used to validate or not
the tracking of each keypoint. In practice, we consider any keypoint with an
error of more than 1 pixel as being ambiguous and remove it from the set of
tracked features.

The removal of outliers is extended further by checking the epipolar ge-
ometry consistency of the currently tracked features. This is done by com-
puting the Essential Matrix between the last keyframe and the current frame
(see sec. 2.3.2). The Essential Matrix E is defined as follow:

x′ · E · x = 0 (4.10)

where x and x′ are the homogeneous coordinates of the observations of
a same 3D landmark in two different images. Using the method of Nister
(Nister, 2004), E can be computed from 5 pairs of keypoints. However, in
general, we will track many more keypoints and a unique solution will not
exist because of noise in the observations and because of the potential pres-
ence of outliers. In order to detect and remove such outliers, E is computed in
a RAndom SAmple Consensus (RANSAC) scheme. RANSAC is a robust pa-
rameters estimation mechanism able to detect outliers from a set of sample,
described in section 2.3.4 (page 27).

This tracking step ensures that only reliable features will enter in the next
stages of the algorithm.
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FIGURE 4.4: Sequence of images disturbed by moving fishes.
Better seen in pdf format when zooming.

4.5.4 Features Retracking

As pointed out in chapter 3, the main drawback of optical flow tracking is
that lost features are usually permanently lost. In opposition, the use of
descriptors gives a way of retracking lost features. In the underwater con-
text, the powerful lights embedded by ROVs often attract schools of fishes
or shrimps in the camera’s field of view (see Fig. 4.4). The occlusions due
to animals can lead to strong photometric shifts and consequently to a quick
loss of features. However, fishes are moving very fast in comparison with
the camera motions. We take advantage of this fact to increase the robust-
ness of our tracking method over short occlusions. The employed strategy is
too keep a small window of the most recent frames (five frames are enough
in practice) with the features lost through optical flow in it. At each tracking
iteration, we try to retrack with the KLT the lost features contained in the re-
tracking window. Finally, retracked features are added to the set of currently
tracked features. This features retracking mechanism is used to retrack both
pure 2D features, for future triangulation, and 2D observations of already
mapped points, for pose estimations.
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4.5.5 Pose Estimation

The estimation of the 6DOF of the pose of every frame uses their respective
2D-3D correspondences. The pose is computed with the Perspective-from-3-
Points (P3P) formula (presented in sec. 2.3.3), using the algorithm of (Kneip
et al., 2011). P3P requires a total of four 2D-3D observations to estimate the
pose of the camera, three to compute a first set of hypotheses and the last one
to disambiguate and find the right solution within these hypotheses.

This operation is also done within a RANSAC loop to remove inaccurate
correspondences. The pose of the current camera Xi is hence computed from
the combination of points giving the most likely estimation for the set of
features.

In order to improve the accuracy of the estimated pose, we further refine
it through the minimization of the global reprojection error in the image. This
is done by minimizing the following Mahalanobis distance:

X∗i = arg min
Xi

∑
j∈Li

∥∥xij − π(Xi, wlj)
∥∥2

Σvisual
(4.11)

where Li is the set of landmarks observed from Xi, xij is the keypoint
corresponding to the observation of the landmark wlj in Xi and Σvisual is the
covariance associated to the visual measurements.

This minimization is done through a nonlinear least-squares optimization
using the Levenberg-Marquardt algorithm. The detail of how this optimiza-
tion is performed are not given here but will be described in depth in section
4.6.

4.5.6 Keyframe Selection and Mapping

The developed VSLAM algorithm is keyframe-based, meaning that only a
subset of the processed frames are used for the mapping stage of the algo-
rithm. Moreover, these keyframes are also stored for the purpose of contin-
uously optimizing the estimated trajectory and 3D map. By merely using
keyframes instead of every frame for optimization, the computational load
is highly reduced and very redundant measurements are discarded to the
benefit of more distinctive ones.

If the creation of a new keyframe is triggered, the current frame is stored
and new 3D landmarks are estimated from the pure 2D keypoints tracked
from the previous keyframe. New features to track are then detected within
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the current image using the Shi-Tomasi detector (Shi et al., 1994; Tomasi et al.,
1991). Last, this new keyframe is sent to the back-end thread of the algorithm
along with the newly mapped 3D landmarks for a multi-view optimization
through a Bundle Adjustment operation.

The mapping process is triggered by the creation of new keyframes. Sev-
eral criteria have been set as requirements for the creation of a keyframe. The
first criterion is the parallax. If an important parallax from the last keyframe
has been measured (30 pixels in practice), a new keyframe is inserted as it
will allow the computation of accurate 3D landmarks. The parallax is esti-
mated by computing the median disparity of every tracked pure 2D features
from the previous keyframe. To ensure that we do not try to estimate 3D
landmarks from false parallax due to rotational motions, we unrotate the cur-
rently tracked features before computing the median disparity. The second
criterion is based on the number of 2D-3D correspondences. We ensure that
we are tracking enough 3D landmarks and trigger the creation of a keyframe
if this number drops below a threshold.

4.5.7 Initialization

Monocular systems are subject to a "Chicken and Egg" problem at the begin-
ning. Indeed, the motion of the camera is estimated through the observations
of known 3D world points, but the depth of the imaged world points (i.e. the
real distance between the 3D point and the camera’s optical center) is not
observable from a single image. The depth of these world points can be es-
timated using two images with a sufficient baseline (i.e. taken from different
positions). However, this baseline needs to be known to compute the depth
and vice-versa. This is why monocular VSLAM requires an initialization step
to bootstrap the algorithm in opposition to stereoscopic systems where the
baseline is fixed and known (from a calibration step).

Here, we propose to initialize the algorithm by computing the relative
pose between the current frame and the first keyframe as soon as enough
parallax is detected. This relative pose is estimated from the Essential Matrix
E:

E = R · t∧ (4.12)

where the (·)∧ operator turns a 3D vector into a skew-symmetric matrix.
Four possible solutions for R and t can be extracted from E, but only one is
realistic and results in a motion that produces 3D landmarks in front of both
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cameras (the three others solutions leading to solutions that would produce
3D landmarks behind one or both of the cameras).

The relative pose between both keyframes, up to a scale factor is recov-
ered, from this valid solution. The actual length of the translation vector
cannot be recovered because of the scale invariance and is thus arbitrarily
fixed. The resulting relative pose is used to bootstrap the algorithm by esti-
mating a first set of 3D landmarks. Note that this initialization step fixes the
scale of the trajectory, as the depth of the first set of 3D landmarks is derived
from the chosen norm of the translation.

4.6 Visual SLAM Back-End

The back-end thread of the VSLAM algorithm is responsible for the opti-
mization of the current trajectory. By receiving every keyframes along with
their observed 3D landmarks, it builds a minimization problem that applies
multi-view constraints to the estimated 3D landmarks from their observ-
ing keyframes. The minimization is performed over the visual reprojection
errors and allows to find an optimal configuration between the keyframes
poses and the 3D landmarks. This process is referred to as Bundle Adjust-
ment in the literature (Triggs et al., 2000).

4.6.1 The Bundle Adjustment Problem

Bundle Adjustment is a technique, first developed in the Photogrammetry
field, that aims at simultaneously optimizing the poses of cameras and the
3D landmarks observed by these cameras. This optimization is performed by
minimization of the reprojection errors and can be seen as a way of adding
multi-view constraints on the 3D landmarks. If no prior is provided (besides
an initial solution to the nonlinear problem), the Bundle Adjustment opera-
tion can be defined as a Maximum Likelihood Estimation (see sec. 2.5), where
the states of interest are the cameras’ poses and the 3D landmarks, which are
linked by visual measurements (the respective observations of the landmarks
into the cameras’ images).

The Bundle Adjustment can therefore be used as a full smoothing estima-
tor, where all the states of interest are optimized, or as a fixed-lag smooth-
ing estimator, where only a subset of the most recent states are optimized
(Särkkä, 2013).
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The Bundle Adjustment problem is written as a Non-Linear Least Squares
(NLLS) problem where one wants to minimize the Mahalanobis distance
over the set of reprojection errors:

χ∗ = arg min
χ

∑
i∈K

∑
j∈Li

∥∥xij − π(Xi, wlj)
∥∥2

Σvisual
(4.13)

where is χ is the state vector, K denotes the set of keyframes, Li the set of
landmarks observed from these keyframes and Σvisual is the covariance over
the visual measurements.

A direct way for solving this problem would be to apply a Gauss-Newton
like method to estimate the optimal keyframes states Xwkn and landmarks
positions wlj. However, NLLS solvers expect that the states which are to be
optimized belong to a pure Euclidean space. This is not the case here because
the keyframes states, being elements of SE(3), evolves on a manifold (see sec.
2.7).

The problem when using classical NNLS optimization with states defined
on a manifold is that the optimization will be performed without accounting
for the special structure of this manifold. In other words, the optimizer will
come up with a solution that might violate the properties of a manifold. For
example, optimizing rotation matrices, which are elements of SO(3), would
most likely update the coefficients that define these matrices in a way such
that the optimized matrices will not be element of SO(3) anymore (for ex-
ample the matrices orthogonality might disappear). Moreover, elements of
manifolds are often represented with more parameters than degrees of free-
dom. For instance, a rotation matrix has 9 parameters for only 3DOF. There-
fore, optimizing these 9 coefficients would be suboptimal and would lead to
an excessive complexity.

The correct way of handling NNLS optimization over elements defined
on manifolds is to use their associated Lie algebra (Hertzberg et al., 2013; Solà
et al., 2018). Lie algebra defines a local parametrization for manifolds that is
Euclidean. This local parametrization is generally called the tangent space.
Through this Euclidean tangent space, Lie algebra provides a tool for opti-
mizing states defined on a manifold. The general idea is that the optimiza-
tion does not have to be performed over the full parametrization of the states
anymore, but only over their local parametrization. Such optimizations are
built upon a lift-solve-retract scheme (Absil et al., 2007), which allows the op-
timization to be performed on the Euclidean tangent spaces while keeping
the manifold structure of the states of interest.
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In our case, the optimization has to be done over the SE(3) manifold
(which defines the cameras’ poses). Such parametrization leads to the fol-
lowing modifications in the NLLS solving approach:

• The optimization has to be performed within a lift-solve-retract scheme
in order to compute the small perturbations to apply to the states in the
Euclidean space defined by the Lie Algebra of the manifold (se(3) in
our case).

• Defining box-plus � and box-minus � operators which adapts the clas-
sical vector addition and subtraction to the manifold elements.

4.6.2 On-Manifold Optimization

SE(3) is a 6-dimensional manifold with the manifold structure SO(3)×R3,
where SO(3) stands for the 3D Special Orthogonal group manifold defining
3D rotation matrices. Any elements of SE(3) is thus composed of 12 param-
eters, 9 defining the rotation matrix and 3 defining the translational com-
ponent, but can only move according to its underlying 6DOF. Manifolds’
structures are non-Euclidean and hence prevents the direct use of classical
addition and subtraction operations. However, smooth manifolds can be
considered as being locally flat and their associated Lie algebra defines an
Euclidean tangent space. SE(3) and SO(3) are both smooth manifolds with
such tangent spaces defined by their associated Lie algebra se(3) and so(3).

Using the mapping functions between the Lie groups and their associated
Lie algebra, defined in section 2.7, one can express the pose of the camera
either on its manifold space or on its Euclidean tangent space.

The idea of the lift-solve-retract scheme is to take advantage of these map-
ping operators to define the cost function in the Euclidean tangent space and
to perform the states updates directly on the manifold.

The Bundle Adjustment cost function defined by Eq.(4.13) can therefore
be extended to an on-manifold representation:

χ∗ = arg min
χ

∑
i∈K

∑
j∈Li

∥∥xij � π(Xi, wlj)
∥∥2

Σvisual
(4.14)

which can be turned into the following expression:
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δχ∗ = arg min
δχ

∑
i∈K

∑
j∈Li

∥∥xij � π(Xi � δXi, wlj � δlj)
∥∥2

Σvisual
(4.15)

where δχ defines the updates to apply to the state vector χ from its tan-
gent space parametrization:

χ∗ = χ� δχ∗ (4.16)

In Eq.(4.14-4.16), the box-minus operator is the classical subtraction op-
eration, as the visual reprojection errors are defined in R2, and the box-plus
operator is the classical vector addition for the 3D landmarks and is defined
as follows for the pose of the camera:

Xi � δXi = Xi · Exp(δXi) (4.17)

where Exp : R6 7→ SE(3) and δXi =
[
ω ρ

]T
where ω ∈ R3 and

ρ ∈ R3 respectively represent the rotational and translational coefficients of
the underlying Lie algebra (see sec. 2.7). The update of Xi is finally computed
as:

Xi � δXi =

[
Ri · Exp(δXi(ω)) R ·V(δXi(ω)) · δXi(ρ) + ti

01×3 1

]
(4.18)

where V(·) is the left Jacobian of SO(3).

When using a Gauss-Newton optimizer, the optimization is going to be
performed as follows.

First, the cost function is lifted to the Lie algebra subspace through a first-
order Taylor expansion:

π(Xi � δXi, wlj � δlj) ≈ π(Xi, wlj) + JδXi,δlj(Xi, wlj) ·
[

δXi

δlj

]
(4.19)

δχ = arg min
δχ

∑
i∈K

∑
j∈Li

∥∥∥∥∥xij − π(Xi, wlj)− JδXi,δlj(Xi, wlj) ·
[

δXi

δlj

]∥∥∥∥∥
2

Σvisual

(4.20)
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where JδXi,δlj is the Jacobian of the projection function π(·) over the man-
ifold tangent space. Written in the equivalent vector form, we have:

δχ = arg min
δχ

∥∥eχ − Jδχ(χ) · δχ
∥∥2

Σvisual
(4.21)

where eχ is the residuals vector.
The optimization step can then solved by taking the weighted normal

equations of the problem:

(
JT

δχ(χ) · Σ−1
visual · Jδχ(χ)

)
δχ = −JT

δχ(χ) · Σ−1
visual · e(χ) (4.22)

However, as the initial estimates of recent states can be quite far from their
true values, we prefer using the Levenberg-Marquardt method:

JT
δχ(χ) · Σ−1

visual · Jδχ(χ)︸ ︷︷ ︸
A

+λ · diag(A)

 δχ = −JT
δχ(χ) ·Σ−1

visual · e(χ) (4.23)

where A is the Gauss-Newton approximation of the Hessian matrix.
After each optimization iteration, the states are updated in the retract step:

Xi ← Xi · Exp(δXi) ; wlj ← wlj + δlj (4.24)

In practice, because of potential numerical approximation errors, it might
be required to normalize the rotational component in order to ensure that it
keeps being an element of SO(3).

The lift-solve-retract scheme is hence an elegant way to optimize states de-
fined on a manifold while keeping a euclidean structure in the real optimiza-
tion process by projecting the cost function over the tangent space of this
manifold.

4.6.3 Adaptive Windowed Bundle Adjustment

An ideal VSLAM algorithm would optimize a state vector χ composed of ev-
ery camera poses and all the estimated 3D landmarks. However, this rapidly
becomes intractable if one seeks real-time performance because of the un-
bounded growing of states to include in the optimization. The idea of se-
lecting keyframes within the whole set of processed frames is a first step to
reduce the number of states to optimize. Neverless, this does not bound the
complexity of the Bundle Adjustment as 6+ 3N new parameters are going to
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be added to χ at each new selected keyframe (N being the number of land-
marks associated to this new keyframe).

FIGURE 4.5: Illustration of the Windowed Local Bundle Adjust-
ment. Each time a new keyframe is added, the N most recent
keyframes are optimized along with the 3D landmarks they ob-
serve. Every older keyframe observing a 3D landmarks that is
optimized is added to the Bundle Adjustment as a fixed con-
straint. As the current camera is also observing the optimized
3D landmarks, the pose estimation at frame-rate will benefit

from their optimization.

In order to prevent the unbounded growth of new states to be optimized,
the Bundle Adjustment optimization is instead performed over a window of
the most recent keyframes along with the 3D landmarks associated to them.
In this form, it can be seen as a fixed-lag smoothing estimator.

The use of a window ensures an approximatively constant complexity
when solving the NLLS problem. Moreover, when exploring an unknown
environment, many keyframes will be associated to landmarks far from the
current camera’s position and hence have a very limited impact on the op-
timization of the most recent keyframes. Including older keyframes in this
case would mainly act on the global consistency of the optimization results,
but will have very low local effect on the most recent part of the trajectory.

On the other hand, a specific weakness of monocular VSLAM system is
that the global scale is not observable and might hence drift over long trajec-
tories. More exactly, in the monocular case, the cost function defined for the
Bundle Adjustment is invariant to global change in translation, rotation and
scale (7DOF). This issue is known as the problem of gauge freedom (Triggs
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et al., 2000). In order to fix this, two keyframes can be fixed during the opti-
mization. Doing so, the invariance of the cost function is removed. However,
in monocular VSLAM this is usually not sufficient to prevent scale drift.

One way of reducing this drift is to link current states to the oldest ones
to propagate the scale of the oldest part of the trajectory to the current one. In
order to limit this scale drift, we further add every keyframes associated to a
3D landmark included in the states to optimize, as fixed constraints, within
the Bundle Adjustment problem. This way, many visual measurements are
added to the problem without increasing the size of the state vector. The
fixed keyframes will have a conditioning effect on the Bundle Adjustment
outputs, as they will enforce the convergence of the optimization towards a
solution compliant with their states. The number of keyframes added to the
Bundle Adjustment problem is therefore set adaptively, as it depends on the
number of keyframes associated to the most recent landmarks. This adaptive
windowed local Bundle Adjustment is graphically presented in Fig. 4.5.

4.6.3.1 Applying a Robust Cost Function

Another challenging issue to deal with in such NLLS optimization is wrong
data associations. Indeed, wrong associations would lead to outliers in the
measurements that would completely violate the gaussian noise model as-
sumptions required by the NLLS theory. The presence of even a few outliers
can lead to catastrophic results, as the optimization might focus on mini-
mizing the huge residuals induced by these outliers and return completely
wrong state updates. This outliers sensitivity is due to the squaring of the
residuals, which leads to very high residuals. One way to mitigate the ef-
fects of outliers within the provided measurements is to rely on a robust M-
Estimator (Holland et al., 1977) to weight the residuals. Instead of applying a
`2 cost to every measurement errors, robust estimators decrease the influence
of measurements with too high residual. Examples of such M-Estimator are
the Huber and Cauchy robust norms.

The Huber robust norm of a residual x is defined as:

ρ(x) =

{
x2

2 if |x| ≤ k

k ·
(
|x| − k

2

)
else

(4.25)

In comparison, the effect of the Cauchy robust norm is the following:

ρ(x) =
k2

2
· log

(
1 +

x2

k2

)
(4.26)
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FIGURE 4.6: Robust Huber and Cauchy Norm versus `2-norm
for a threshold k = 1.

The robust norm is hence preserving the NLLS problem from a quadratic
growth of the residuals and, consequently, decreases the impact of outliers.

Even if the front-end of the VSLAM algorithm is in charge of removing
outliers, as explained in sections 4.5.3 and 4.5.5, it is impossible to fully en-
sure that no outlier remains. Therefore, we employ the Huber norm over
visual measurements to make more robust the solving of the Bundle Adjust-
ment:

χ∗ = arg min
χ

∑
i∈K

∑
j∈Li

∥∥xij − π(Xi, wlj)
∥∥Huber

Σvisual
(4.27)

In practice, this new cost function is optimized by the Iteratively Reweighted
Least Squares (IRLS) method:

χ∗ = arg min
χ

∑
i∈K

∑
j∈Li

w
(√∥∥eij

∥∥2
Σvisual

)
·
∥∥eij

∥∥2
Σvisual

(4.28)

where eij is defined in Eq.(4.7) and w(eij) is the robust weighting to apply
to the residual. This robust weighting function is derived from the chosen
cost function:

w(x) =
1
x
· ∂ρ(x)

∂x
(4.29)

Finally, once the IRLS done, the final residuals can be analyzed to discover
potential outliers. Indeed, as the Huber weighting limits the influence of out-
liers, the optimization should not update the states in a way that decreases
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their residuals. Consequently, measurements related to a high final residual
can be considered as an outlier and removed to prevent it from wrongly in-
fluence future optimization steps. Once the outliers have been identified and
removed, one can also solve again the Bundle Adjustment problem without
the use of a cost function in order to get more accurate estimates.

4.6.3.2 Accelerate via the Schur Complement

A last consideration that can be taken into account in order to accelerate the
solving of Bundle Adjustment, is to take advantage of the special sparse
structure of the underlying problem. This structure is usually very sparse
as the Jacobian elements only have non-zero values between the landmarks
and their observing poses. If taken into account, this sparse structure can be
leveraged to highly accelerate the computation of the optimal increment δχ

by means of Cholesky decomposition (Chen et al., 2008). In addition to that,
the landmarks are all independents in the problem and we generally have
many more landmarks than poses in the state vector χ. The resulting sparse
structure of the Hessian can be defined as:

H · δχ =

[
Hll HlX

HT
lX HXX

]
·
[

δl
δX

]
=

[
bl

bX

]
(4.30)

where Hll and HXX are blocks diagonal matrices with 3× 3 blocks in Hll,
representing the landmark states, and 6× 6 blocks in HXX, representing the
keyframe states.

The Schur Complement can then be used to solve this problem (Agarwal
et al., 2010) by first marginalizing the landmarks states in order to estimate
the poses increments δX and, then, optimize the landmarks state:

[
Hll HlX

0 HXX −HT
lX ·H

−1
ll ·HlX

] [
δl
δX

]
=

[
bl

bX −HT
lX ·H

−1
ll · bl

]
(4.31)

The Schur Complement formulation hence reduces the size of the matrix
to invert and takes advantage of the sparse structure of the problem.

4.6.3.3 Summary of the Bundle Adjustment Solving

We now summarize the way the Bundle Adjustment is solved in UW-VO.
First, we define the states to optimize, that is the states to add to the χ state
vector, as the N most recent keyframes and the M 3D landmarks observed by
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these keyframes. We hence use a sliding window formulation to define the
states. This sliding window is further enhanced by adding, as fixed states,
older keyframes associated to at least one of the M landmarks. By making
the size of the sliding window adaptive, we limit the scale drift that might
happen when solving the Bundle Adjustment problem. The optimization is
then performed with the Levenberg-Marquardt method. The cost function
to minimize is turned into the Huber form in order to be robust to poten-
tial outliers within the measurements. The optimization is hence executed as
an IRLS estimation. As the keyframes states to optimize are elements of the
SE(3) manifold, the minimization of the cost function is solved by lifting the
problem onto the tangent space, solving it and applying the estimated states’
updates by retracting these updates onto the manifold. Taking advantage
of the special sparse structure of the Bundle Adjustment problem to speed-
up the optimization process, the landmarks are first marginalized onto the
keyframes’ poses through the use of the Schur Complement. This results
in a two steps optimization as the updates to apply to the poses are com-
puted first and, then, the marginalized landmarks updates are computed.
The optimization is performed with a fixed number of iterations to limit the
computation time allowed to the Bundle Adjustment. Once finished, every
measurements whose final residual is higher than a threshold are removed.
The Bundle Adjustment is finally run once again on the inliers only, with
the standard `2 norm. This last step is usually really fast because the states
should already be almost optimal.

As a result, after the selection of every new keyframe, the most recent
part of the trajectory gets optimized and, by optimizing the set of the most
recent landmarks, we ensure that the pose estimation of the next frames will
be done by considering only statistically optimal 3D landmarks.

4.7 Experimental Results

Implementation: The proposed method has been developed in C++ and uses
the ROS middleware (Quigley et al., 2009). The tracking of features is done
with the OpenCV implementation of the Kanade-Lucas algorithm (Bouguet,
2000). Epipolar geometry and P3P pose estimations are computed using the
OpenGV library (Kneip et al., 2014a). Bundle Adjustment is performed using
the graph optimization framework g2o (Kümmerle et al., 2011) and runs in a
parallel thread.
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We use the following settings in UW-VO: the covariances of the visual
measurements are set as the identity matrix, the Huber threshold is set to
5.991 (i.e. a probability of 95%) and we set the number of keyframes to op-
timize to 10. The average run time is of 25 ms per frame, with the track-
ing set to 250 features per frame. The run time goes up to 35 ms when a
new keyframe is required because of the features detection and triangula-
tion overload. The Bundle Adjustment optimization takes around 10 ms but
the whole process in the back-end thread takes longer because of the use of
mutex. Thus UW-VO can run in real time for video sequences with a frame
rate up to 30 Hz. The experiments have been carried out with an Intel Core
i5-5200 CPU-2.20GHz-8 Gb RAM.

To the best of our knowledge, there is no underwater method able to es-
timate localization from monocular images available open-source. Further-
more, no publicly available datasets were released with these methods, so we
cannot compare our method with them. Hence, UW-VO has been evaluated
and compared to three state-of-the-art open-source monocular SLAM meth-
ods: ORB-SLAM (Mur-Artal et al., 2015), LSD-SLAM (Engel et al., 2014) and
SVO (Forster et al., 2017). The evaluation has been conducted on different
datasets which are all available online, allowing future methods to compare
to our results.

All the algorithms are evaluated on real underwater datasets. In addition,
UW-VO and ORB-SLAM are also evaluated on a simulated dataset (Duarte
et al., 2016), whose frame rate (10 Hz) is too low for SVO and LSD-SLAM.
Indeed, SVO and LSD-SLAM are direct methods which require very high
overlap between two successive images in order to work. Please note that
ORB-SLAM and SVO have been fine-tuned in order to work properly. For
ORB-SLAM, the features detection threshold was set at the lowest possible
value and the number of points was set to 2000. For SVO, the features de-
tection threshold was also set at the lowest possible value and the number of
tracked features required for initialization was lowered to 50.

For each method, every results presented are the averaged results over
five runs. Moreover, as we are comparing monocular systems here, the tra-
jectories have to be aligned and scaled with respect to the groundtruth in
order to compare them. The alignment and scaling is performed by comput-
ing a similarity transformation using the method of (Umeyama, 1991).
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4.7.1 Results on a Simulated Underwater Dataset

A simulated dataset created from real underwater pictures has been made
available to the community by (Duarte et al., 2016). Four monocular videos
of a triangle-shaped trajectory are provided, with four different levels of tur-
bidity. The turbidity effects are simulated by corrupting each video sequence
with an certain amount of visual noise. The turbidity effect is increased be-
tween each sequence and ends up turning the original images into more
blueish versions (see Fig. 4.7). Even if VSLAM systems process images in
their gray-scale form, the increase in turbidity has an impact on the track-
ing as it reduces the contrast of the images. The images resolution of these
videos is 320x240 pixels. In each sequence, the triangle-shaped trajectory is
performed twice and it starts and ends at the same place. These four se-
quences have been used to evaluate the robustness against turbidity of UW-
VO with respect to ORB-SLAM. For fair comparison, ORB-SLAM has been
run with and without its loop-closing feature. We will refer to the version
without loop-closure as V.O. ORB-SLAM in the following.

FIGURE 4.7: The four different turbidity levels of the simulated
dataset (Duarte et al., 2016).

Table 4.1 presents the final drift at the end of the trajectory for each method.
On the first three sequences, ORB-SLAM is able to close the loops and there-
fore has the lowest drift values, as the detection of the loop closures allows
to reduce the drift accumulated in-between. On the same sequences, V.O.
ORB-SLAM has the highest level of drifts. Note that ORB-SLAM and its
V.O. alternative fail half the time on the third level of noise sequence and
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have been run many times before getting five good trajectories. It is worth
noting that the localization drift increases significantly for V.O. ORB-SLAM
when the turbidity level gets higher. This is mostly due to the increased in-
accuracy in its tracking of ORB features. On the last sequence, the turbidity
level is such that ORB descriptors get too ambiguous and leads to failure in
ORB-SLAM tracking. These results highlight the deficiency of ORB-SLAM
tracking method on turbid images.

In comparison, UW-VO is able to run on all the sequences, including the
ones with the highest levels of noise (Fig. 4.8). The computed trajectories are
more accurate than V.O. ORB-SLAM and we can note that it is barely affected
by the noise level (Fig. 4.9). These results confirm the efficiency of UW-VO
as a robust VSLAM system in turbid environments.

FIGURE 4.8: Drift of ORB-SLAM (green), V.O. ORB-SLAM
(blue) and UW-VO (red) on the simulated underwater dataset

(Duarte et al., 2016).

4.7.2 Results on a Real Underwater Video Sequences

We now present experiments conducted on five real underwater video se-
quences. These sequences were gathered 500 meters deep in the Mediter-
ranean Sea (Corsica), in 2016, during an archaeological mission conducted by
the French Department of Underwater Archaeological Research (DRASSM).
The videos were recorded from a camera embedded on an ROV and gray-
scale 640x480 images were captured at 16 Hz. The calibration of the camera
has been done with the Kalibr (Furgale et al., 2013a) library. Calibration was
done in situ in order to estimate the intrinsic parameters and the distortion
coefficients of the whole optical system. The camera recording the videos
was placed inside an underwater housing equipped with a spherical dome
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TABLE 4.1: Translation drift (in % of the traveled distance) on
the simulated underwater video sequences with different level
of turbidity. The given results are the average drift over five
runs for each algorithm. V.O. ORB-SLAM designates ORB-
SLAM without the loop closing feature enabled. ORB-SLAM
results are given for information. The (*) denotes very frequent

failure of the algorithm.

Drift (in %)

Seq. Noise Level Turbidity ORB-SLAM V.O. ORB-SLAM UW-VO

1 None 0.18 0.97 0.78
2 Low 0.18 0.93 0.81
3 Medium 0.17* 1.21* 0.85
4 High X X 0.89

FIGURE 4.9: Trajectories estimated with (a) UW-VO on the se-
quence with a high level of turbidity and with (b) V.O. ORB-

SLAM on the sequence with a medium level turbidity.

and we obtained good results using the pinhole-radtan model (assessed by a
reprojection error < 0.2 pixel).
These five sequences can be classified as follows:

• Sequence #1: low level of turbidity and almost no fish.

• Sequence #2: medium level of turbidity and some fishes.

• Sequence #3: high level of turbidity and many fishes.

• Sequence #4: low level of turbidity and many fishes.

• Sequence #5: medium level of turbidity and many fishes.
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For each of these sequences, a ground truth was computed using the state-
of-the-art Structure-from-Motion software Colmap (Schönberger et al., 2016).
Colmap computes trajectories offline by exhaustively trying to match all the
images of a given sequence, thus finding many loops and creating very re-
liable trajectories. We could assess the accuracy of the reconstructed trajec-
tories both visually and by checking the validity of the matched features be-
tween the images.

Here, we compare ORB-SLAM, LSD-SLAM and SVO to UW-VO. We eval-
uate the results of each algorithm against the trajectories computed offline by
Colmap by computing the absolute trajectory error (Sturm et al., 2012) (Fig.
4.10). The results are displayed in Table 4.2. To observe the effect of the
retracking mechanism described in section 4.5.4, we have run the UW-VO
algorithm with and without enabling this feature, respectively referring to it
as UW-VO and UW-VO∗.

TABLE 4.2: Absolute trajectory errors (RMSE in % of the trav-
eled distance) for five underwater sequences with different
visual disturbances. The given results are the average drift
over five runs for each algorithm. UW-VO* designates our
method without the retracking step, while UW-VO designates

our method with the retracking step.

Absolute Trajectory Error RMSE( in %)

Seq. # Duration Turbidity
Level

Short
Occlusions LSD-SLAM ORB-SLAM SVO UW-VO* UW-VO

1 4’ Low Few X 1.67 1.63 1.78 1.76
2 2’30” Medium Some X 1.91 2.45 1.78 1.73
3 22” High Many X X 1.57 1.10 1.04
4 4’30” Low Many X 1.13 X 1.61 1.58
5 3’15” Medium Many X 1.94 X 2.08 1.88

As we can see, LSD-SLAM fails on all the sequences. This is most likely
due to its semi-dense approach based on the tracking of edges with strong
gradients, which are not frequent on deep-sea images. SVO computes accu-
rate trajectories on the sequences that are barely affected by dynamism from
moving fishes. The tracking of SVO, which is similar to optical flow, works
well even on turbid images, but its direct pose estimation method is not ro-
bust to wrongly tracked photometric patches like the ones created by moving
fishes (seq. #3, #4, #5). ORB-SLAM on the other hand performs well on highly
dynamic sequences, but loses in accuracy when turbidity is present (seq. #2,
#3, #5). Its pose estimation method, based on the observations of indepen-
dent features, is hence robust to short occlusions and dynamic objects, but its
tracking method fails on images degraded by turbidity. Furthermore, we can
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note that despite loop closures in the trajectories (see Fig. 4.10), ORB-SLAM
is not able to detect them. The failure to detect the loop closures indicates that
the Bag of Words approaches (Galvez-Lopez et al., 2012) might not be suited
to the underwater environment, which does not provide many discriminant
features.

UW-VO is the only method able to run on all the sequences. While the
estimated trajectory is slightly less accurate on the easiest sequence (seq. #1),
UW-VO performs better than ORB-SLAM and SVO on the hardest sequences
(seq. #2, #3, #5, with turbidity and dynamism, which is very common dur-
ing underwater archaeological operations). We can see the benefit of the de-
veloped retracking mechanism on most of the sequences. Nonetheless, this
optical flow retracking step is not as efficient as the use of descriptors when
the number of short occlusions is very large (seq. #4). Studying the effect of
combining optical flow tracking with the use of descriptors could result in an
interesting hybrid method for future work.

4.8 Conclusion

In this chapter we have presented UW-VO, a new vision-based underwa-
ter localization method. We propose a keyframe-based monocular VSLAM
method, robust to typical disturbances of the underwater environment. We
use the KLT method to track features frame to frame through optical flow.
We further enhanced the KLT by adding a retracking mechanism, making it
robust to short occlusions due to the environment dynamics. We have shown
that UW-VO outperforms the state-of-the-art VSLAM algorithms ORB-SLAM,
LSD-SLAM and SVO in terms of robustness on underwater video sequences.

Some perspectives would be to combine the use of the KLT with descrip-
tors as a way of retracking lost features on a larger scale. Furthermore, these
descriptors could be used for the purpose of loop-closure detection. How-
ever, we have observed that loop-closing approaches based on classical Bag
of Words (Galvez-Lopez et al., 2012) do not work as expected in our tests (see
the results obtained with ORB-SLAM) and alternative methods, more suited
to underwater images, in the lead of (Carrasco et al., 2016a; Carrasco et al.,
2016b) need to be investigated. Also, online Bag of Words methods (Angeli et
al., 2008; Garcia-Fidalgo et al., 2018; Nicosevici et al., 2012) seems promising
for this task as they are incrementally built online and are therefore always
adapted to the current environment.
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FIGURE 4.10: Trajectories of ORB-SLAM, SVO and UW-VO
over the five underwater sequences. (a) Sequence 1, (b) Se-
quence 2, (c) Sequence 3, (d) Sequence 4, (e) Sequence 5.

Ground-truths (GT) are extracted from Colmap trajectories.

As any monocular VSLAM method, UW-VO do not estimate scaled tra-
jectories and scale drift is unavoidable on long trajectories. The problem of
scale drift can be tackled by the detection of loop-closures. However, this is
only efficient when the robot is often coming into previously mapped areas.
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A way for both recovering the scale of the trajectories and to limit drift is to
fuse additional sensors within a monocular VSLAM. This will be the purpose
of the next chapter in which will present an extension of UW-VO that inte-
grates the measurements of a pressure sensor and a low-cost MEMS-IMU.
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5.1 Introduction

In the previous chapter, we have proposed UW-VO, a monocular Visual SLAM
algorithm, robust to the visual disturbances produced by underwater envi-
ronments. However, as any pure monocular localization method, the metric
scale of the trajectories estimated by UW-VO is unknown and scale drift is
unavoidable on long trajectories.

This chapter presents a localization algorithm based on the fusion of a
monocular camera with a low-cost Micro Electro-Mechanical System Inertial
Measurement Unit (MEMS-IMU) and a pressure sensor. The goal of the fusion
process presented in this chapter is both to recover the scale of the trajectories
and to improve the localization estimations. Moreover, adding an IMU and a
pressure sensor provides motion information that can be useful during short
period of poor visual information.

The contributions of this chapter are the following:

• A deep investigation about the fusion of a pressure sensor with a monoc-
ular camera for the purpose of localization.

• A tight fusion of vision and pressure to perform Visual-Pressure SLAM.

• A Visual-Inertial-Pressure SLAM extension that further integrates an
IMU thanks to the use of preintegration.

This chapter is organized as follows. We first review the fusion techniques
that have been applied in previous works when dealing with vision-based se-
tups. Then, we investigate the fusion of vision and pressure and propose dif-
ferent strategies to solve the localization problem with such a setup. Finally,
we present an extension of this Visual-Pressure SLAM by leveraging prein-
tegrated IMU measurements. Both the Visual-Pressure and Visual-Inertial-
Pressure SLAM methods are evaluated on real data sequences extracted from
the AQUALOC dataset (Ferrera et al., 2019a). This dataset will be presented
in the next chapter.

5.2 Related Works

The fusion of IMU’s measurements with monocular cameras has received
quite a lot of attention from the community because of its ability in retrieving
the scale factor and handling fast motions.
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A first set of works tackled this problem by loosely coupling the visual
and IMU sensors. In loosely coupled systems, visual and inertial measure-
ments are individually processed and their individual pose estimations are
then fused together (usually with an EKF). This fusion paradigm has been
used in (Grabe et al., 2013; Weiss et al., 2012) to feed an EKF with the mea-
surements of an IMU and speed terms derived from the pose estimated from
vision only. A modular framework for loosely coupling additional sensors,
not just IMUs and cameras, was also proposed in (Lynen et al., 2013).

The weakness of loose fusion is that complementary measurements are
not tied together for the purpose of state estimation. To cope with this, tight
fusion estimators have been proposed in the literature. When used to couple
cameras and IMUs, the visual and inertial measurements are directly pro-
cessed altogether. A direct benefit is that more data are used for pose estima-
tion than in loosely coupled approaches, where the visual measurements are
converted into a single pose estimation. Furthermore, the tight coupling is
very useful when using visual measurements as it allows to early detect po-
tential outliers. However, they come at the price of a higher computational
complexity compared to loose approaches. They also usually require a finer
modeling of the sensors than loose approaches because of the tight fusion of
the different sensors measurements in the optimization steps.

Tight fusion estimators have been proposed with filtering paradigm in
(Bloesch et al., 2015; Clement et al., 2015; Li et al., 2012, 2013; Mourikis et al.,
2007) and optimization frameworks (Forster et al., 2017; Leutenegger et al.,
2013; Leutenegger et al., 2015; Mur-Artal et al., 2017; Qin et al., 2018). The
optimization frameworks can be seen as enhancement of the Bundle Adjust-
ment operations in VSLAM by adding IMU related measurements into it.
They usually provide more accurate estimations than filtered-based meth-
ods but at the expense of more computation (Leutenegger et al., 2015). Some
works also used to tight fusion estimators with additional sensors such as
odometers (Wu et al., 2017) or array of magnetometers (Caruso, 2018; Caruso
et al., 2017).

In underwater robotics, the filtering method of (Mourikis et al., 2007) has
been extended in (Shkurti et al., 2011b) to include a pressure sensor which
provides measurement updates applied to constrain the estimated position
along the z-axis. More recently, an extension of (Leutenegger et al., 2015)
was proposed in (Rahman et al., 2018) to include the measurements of a pro-
filing sonar. A very light framework was also proposed in (Creuze, 2017) to
iteratively estimate the position of a ROV from a monocular camera whose
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measurements are scaled and corrected by means of a low-cost IMU and a
pressure sensor. However this method is mostly restricted to horizontal ser-
voing in small areas.

With respect to these works, we follow the idea of tightly coupling dif-
ferent sensors. However, to the best of our knowledge, there is no previous
work about tightly coupling a monocular camera, a pressure sensor and a
low-cost IMU.

5.3 Visual-Pressure SLAM

We first investigate the fusion of depth measurements from a pressure sensor
within UW-VO. By adding depth measurements to the monocular system,
we seek the recovery of the metric scale of the estimated trajectories, scale
drift elimination and global improvements in the localization estimations.

5.3.1 Pressure Sensor

Pressure sensors measure the applied force per unit of surface area. When
dived into a fluid on Earth, a pressure sensor senses the amount of pres-
sure due to the fluid in addition to the pressure due to the atmosphere. The
pressure due to a non-compressible fluid is directly proportional to the fluid
level, that is to the height of the fluid above the pressure sensor. The pressure
measurements are related to this height through the following equation:

P̃ = ρfluid · g · d + Patm (5.1)

where P̃ and Patm are respectively the measured pressure and the atmo-
spheric pressure (in Pa), ρfluid is the fluid density (in kg.m−3), g is the gravi-
tational constant (≈ 9.81 m.s−2) and d is the height of the fluid column above
the sensor (in meters).

The height of the fluid column corresponds to the actual depth of the
sensor with respect to the surface. This depth is hence directly related to the
pressure measurements:

d̃ =
P̃− Patm

ρfluid · g
(5.2)

The use of a pressure sensor for underwater localization hence provides
an absolute, one-dimensional, position information.
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In our SLAM problem, we do not consider global positioning but local
positioning, that is, the trajectory performed by the robot from the initial
position at t = 0. Hence, instead of using the raw depth measurements in
the algorithm, we use the depth difference between the current measurement
and the depth measured at the initialization time. In what follows, the depth
values will always correspond to:

d̃i = rawd̃i − rawd̃0 (5.3)

where d̃i is the depth value linked to the state at time i, rawd̃i is the direct
depth measurement computed from the pressure received at time i, and rawd̃0

is the first raw depth measured at time 0, that is at the initialization time. All
the depth measurements are expressed in meters.

Besides, in our case, we decided to model the depth measurements as
corrupted by gaussian noise:

d̃i = di + ηdepth , ηdepth ∼ N
(

0, σ2
depth

)
(5.4)

where di is the true depth and ηdepth is the zero-centered depth gaussian
noise of standard deviation σdepth.

5.3.2 Problem Statement

We first recall the states of interest of our SLAM problem. We use the same
notations that in the previous chapter and define the state of interest as:

χi =
[
Xwci Xwk wlm

]T
(5.5)

where Xwi is the pose of the current frame, Xwk is the set of previously
selected keyframes and wlm the set of estimated 3D landmarks.

In this section, we propose to tightly fuse vision and pressure measure-
ments within our SLAM system. In opposition with loose fusion methods,
the tight fusion of vision and pressure allows the visual part of the algorithm
to benefit from the pressure measurements. This is especially useful to early
detect potential outliers within the visual measurements. In order to follow
the factor graph formulation of the Visual SLAM, we formulate the fusion by
adding depth measurements as new factors linked to the camera pose states.

While the fusion of depth measurements might seem trivial given their
simplicity, correctly coupling them within a monocular VSLAM algorithm
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FIGURE 5.1: Camera - Pressure sensor setup. The pressure
sensor provides depth measurements which are given along
the depth axis, orthogonal to the surface. The camera’s frame
(~xc, ~yc, ~zc) is arbitrarily defined by its physical orientation and

the position of its optical center.

is actually tricky and many considerations have to be taken into account.
First, as the monocular setup cannot recover the metric scale of its estima-
tions, the depth measurements have to be used to recover the visual scale
factor. Secondly, there is a reference frame issue (see Fig. 5.1). Indeed, depth
measurements are given along a specific axis, that can be considered as or-
thogonal to the water surface and aligned with the gravity axis. If we use
a frame of reference that is aligned with this axis, we can directly relate the
depth measurements to the robot’s positions. For instance, if an accelerom-
eter is available, gravity can be observed and the frame of reference for the
pose estimations can be aligned with this axis. Furthermore, if a compass
or a fiber optic gyroscope (FOG) is also available, the frame of reference can
be set in a NED (North-East-Down) or ENU (East-North-Up) configuration.
However, with a monocular camera there is no way of measuring any of this.
In pure VSLAM, the frame of reference is arbitrary and is usually defined as
being aligned with the first camera’s pose. In UW-VO, the first keyframe is
used as the reference frame and its pose is represented by a zero vector for
its position and an identity matrix for its rotation matrix.

5.3.2.1 Camera-Depth misalignment Effect

The pose estimations performed by a monocular VSLAM are always done
relatively to a frame of reference C0 (defined as the first selected keyframe
in our case). The physical installation of the camera on the robot mostly de-
termine the orientation of C0 with respect to the depth axis. As visual pose
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FIGURE 5.2: Difference between depth measurements and the
frame of reference of camera’s poses. C0, C1 and C2 represent
the camera’s frame at time 0, 1 and 2. C0 is the initial frame and
the following poses are expressed with respect to this frame.
However, this frame of reference is not aligned with the depth

axis.

estimations are always performed relatively to a 3D map whose landmarks
are defined in C0 (fixed at initialization by the first 3D mapping), the random-
ness that exists on C0 does not impact at all VSLAM algorithms. However,
when fusing a monocular camera with a pressure sensor, this turns out to
be a real issue. On the one hand, depth measurements are given along a
specific axis and, on the other hand, we have a VSLAM method that cannot
relate the reference of its estimation to any real-world physical constant. In
the underwater context, bottom looking camera are very often used. By bot-
tom looking we mean that the field of view of the camera is mostly oriented
towards the seabed. Nevertheless, as we have no way of ensuring that the
camera’s z-axis will be perfectly aligned with the depth axis, we can assume
that there will always be some misalignment between the depth axis and the
(non-orthogonal) axes of the frame of reference C0. Therefore, if one wants to
integrate depth measurements to constrain the visual pose estimations, the
depth measurement should be projected into C0 in order to recover its impli-
cation along the axes of C0. Yet, with no way of knowing the misalignment
between C0 and the depth axis, this is not possible.

If we assume a bottom looking camera, we can further assume that the
majority of the depth measurements contribute to constraining the estima-
tion of the position along the z-axis of C0. However, as illustrated in Fig.
5.2, the existing misalignment will lead to the following relation between the
depth measurements and the pose estimated by the VSLAM algorithm along
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the z-axis:

di = tzc0ci · cos (α) (5.6)

where di is an ideal noiseless depth measurement at frame i, tzc0ci is the
true robot’s position along the z-axis in C0 at frame i and α is the misalign-
ment angle that exists between the depth axis and the z-axis of C0.

We can see that the error between the depth measurements and the true
robot position is linear in cos(α). The bigger the depth variations are, the
bigger the error is. Furthermore, the magnitude of cos(α) will highly impact
the growth of the error rate.

The misalignment error in depth can be seen as a varying error depending
on an unknown parameter, the α angle. Properly handling this issue would
require to adjust the confidence given to the depth measurements which is
quite difficult without knowing the α angle.

In the following, we will drop the C0 notation and use instead w to denote
the frame of reference. This is to stay consistent with the notations in the
previous chapters but also to be more general as defining C0 as the frame of
reference is purely arbitrary.

5.3.2.2 Practical Assumptions

We make some assumptions about the visual-pressure acquisition system.
First, we consider a bottom looking camera, that is a camera oriented toward
the seabed, but without assuming a purely vertical system. This allows the
development of a localization solution flexible enough to work with different
setups. In practice, embedding a camera on an underwater robot might be
constrained by the other embedded equipments, which can prevent setting
up the camera vertically.

Secondly, we consider a system equipped with a camera and a pressure
sensor rigidly mounted. Last, we consider two kinds of pressure sensors.
A first kind with an acquisition rate lower than the camera’s one and an-
other kind with a higher acquisition rate. In the first case, we face a sys-
tem which will have no pressure measurements linked to some frames. In
the second case, we are ensured to receive several pressure measurements
between every acquired frame. Once again, this assumption is made to fit
different practical cases that can be met in the context of underwater opera-
tions. For both kinds of pressure sensors, we further approximate that, for a
camera running at 20 Hz and given the low dynamics of ROVs, a pressure
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measurement received at time t, between a frame taken at ti and another at
tj (with tj > ti), the time difference δt = tj − t is not significant in front of the
pressure sensor accuracy. Hence, in the following, we consider any pressure
measurement taken right before the acquisition of a new frame as measuring
the depth of this frame at its acquisition time. If several pressure measure-
ments are received between two consecutive frames i and j, we average the
M measurements received to create a single measurement:

d̃j =
1
M
·

M−1

∑
k=0

d̃k (5.7)

In this case, the measurement noise is updated as σ̂depth = σdepth/
√

M.
For notational convenience, we will simply refer to σ̂depth by σdepth in what
follows. This way, the notations will suit both kinds of pressure sensors.

5.3.3 Depth Integration Strategies

We next describe the developed strategies to tackle this visual-pressure local-
ization problem. We first explore different ways of integrating the pressure
measurements within the nonlinear least-squares (NLLS) optimization of the
Visual SLAM algorithm. Then, we propose an initialization procedure to
handle the initialization of scale and the camera-depth misalignment issue.

For all the strategies, we propose a first modification of the SLAM algo-
rithm which ensures having a depth measurement linked to every selected
keyframe. This is done by conditioning the keyframe creation process to the
presence of a depth measurement in addition to the visual tracking quality
thresholds (see 4.5.6 page 78).

5.3.3.1 Strategy 1: Integration of absolute depth measurements

The first fusion strategy explored consists in directly integrating the depth
measurements as absolute constraints. This strategy tackles the fusion prob-
lem by adding a depth error term directly on their associated pose during the
pose estimations. This error term is defined as the following Mahalanobis
distance:

Edepth(Xi) = ‖d̃i − t̂z
Wci‖

2
σ2

depth
(5.8)
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FIGURE 5.3: Strategy 1: Visual-Pressure SLAM with absolute
depth measurements. This schema represents the factor graph
that can be derived from this SLAM problem. The states to
optimize are the poses of the keyframes and of the current
frame along with the visual landmarks. The different states are
bound together by visual measurements (dark dotted line) and
absolute depth measurements are linked to each pose (green

squares).

where t̂z
Wci ∈ R is the z-axis component of the translational part of the

pose Xi.

The depth related error terms are then used both for the pose estimations
at frame rate and for the Bundle Adjustment part of the VSLAM algorithm.
The estimation of pose at frame-rate is the one done in the front-end thread
of UW-VO (see section 4.5) and the Bundle Adjustment is the optimization
operation performed in the back-end thread of UW-VO (see section 4.6).

Frame-rate Pose Estimation

For the pose estimation at frame rate, we first estimate the current pose
from vision-only measurements with the P3P method described in section
4.5.5 (page 78). Then, if a depth measurement is linked to the current frame,
we include it in the pose refinement step. So, instead of optimizing the pose
estimate with visual measurements only, we add the depth error term to the
cost function:
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X∗i = arg min
Xi

(
Evisual (Xi) + β · Edepth (Xi)

)
(5.9)

with β = 0 if no depth measurements are linked to frame i or β = 1
otherwise, and Evisual (Xi) defined as:

Evisual (Xi) = ∑
j∈Li

ρ
(

eT
ij · Σ−1

visual · eij

)
(5.10)

where Li is the set of 3D landmarks observed by frame i and ρ (·) is the
robust Huber cost function. The error terms eij are the reprojection errors, as
defined in section 4.2 (page 70).

Depth-enhanced Bundle Adjustment

Equation 5.10 allows to benefit from depth measurements in the pose es-
timation at frame-rate. We can further extend the Bundle Adjustment to ben-
efit from these measurements as well. We do it by extending the factor graph
defining the Bundle Adjustment step of UW-VO as illustrated in Fig. 5.3. The
resulting optimization is therefore modeled as:

χ∗ = arg min
Xi

(
Evisual (χ) + Edepth (χ)

)
(5.11)

where Evisual (χ) and Edepth (χ) are defined as:

Evisual (χ) = ∑
i∈K

∑
j∈Li

ρ
(

eT
ij · Σ−1

visual · eij

)
(5.12)

Edepth (χ) = ∑
i∈K

Edepth (Xi) = ∑
i∈K
‖d̃i − t̂z

Wci‖
2
σ2

depth
(5.13)

with K the set of keyframes included in χ and Li the sets of landmarks
observed by these keyframes.

This strategy directly uses the absolute depth readings to constrain the
pose estimations. This leads to a globally constrained scale in the estimation
process as the pressure sensor measurements do not vary as a function of
time (at least not within the short timelapses during which we use them).

However, it completely neglects the misalignment effect between the cam-
era and the depth axis. Therefore, the second fusion strategy we propose
takes into account this misalignment.
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5.3.3.2 Strategy 2: Integration of relative depth measurements

In order to limit the misalignment effect, we propose to instead apply relative
depth constraints between camera’s poses instead of absolute ones. This will
reduce the error due to the misalignment of the camera with respect to the
depth axis because, given the low dynamic of the motions performed by the
robot and the relatively high frequency of pressure sensors (> 5 Hz) and of
the camera (around 20 Hz in our case), the relative depth difference between
two cameras’ poses will stay low.

From Eq.(5.6), we model the effect of using a relative depth measurement
between Xi and Xj:

dij = dj − di (5.14)

dij = tzc0cj · cos (α)− tzc0ci · cos (α) (5.15)

dij =
(

tzc0cj − tzc0ci

)
· cos (α) (5.16)

where C0 denotes the frame of reference. The resulting error due to mis-
alignment will therefore be most of the time lower than when using absolute
measurements (unless in the rare case where tzc0cj < |tzc0cj − tzc0ci |).

As in the first strategy, the relative depth error terms are used both in pose
estimation at frame-rate and in the Bundle Adjustment part.

Frame-rate Pose Estimation

For the pose estimation at frame rate, we compute a first estimate of the
camera’s pose by means of the P3P method. Then, we extend the pose re-
finement step by linking the current frame to the previous keyframe. The
refinement of the pose can then be written as:

X∗i = arg min
Xi

(
Evisual (Xi) + β · Erel-depth (Xk, Xi)

)
(5.17)

with β defined as in Eq.(5.9) and Erel-depth (Xk, Xi) defined as:

Erel-depth (Xk, Xi) =

(
‖
(
d̃i − d̃k

)
−
(
t̂z

Wci − t̂z
Wck

)
‖2
(2·σdepth)

2

)
(5.18)

The previous keyframe pose Xk and the set of landmarks Li observed from
the current pose Xi are kept fixed during this optimization.
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FIGURE 5.4: Strategy 2: Visual-Pressure SLAM with relative
depth measurements. This schema represent the factor graph
that can be derived from this SLAM problem. The states to op-
timize are the poses of the keyframes and of the current frame
along with the visual landmarks. The different states are bound
together by visual measurements (dark dotted lines) and rel-
ative depth measurements (orange squares with light dotted

lines).

Depth-enhanced Bundle Adjustment

For the enhancement of the Bundle Adjustment, we could similarly add
a relative depth error term between two consecutive keyframes. However,
most of the time, the motion along the z-axis between consecutive keyframes
is small and the resulting depth measurement is below the pressure sensor
measurements’ noise. Such measurements will be useful to constrain the lo-
calization estimations but, during the initialization phase, they will not bear
any meaningful information to estimate the scale factor. Therefore, in or-
der to maximize the chance of having significant depth variations, we create
a relative depth measurement between each keyframe and its 10 preceding
keyframes.

This new strategy is illustrated by Fig 5.4. The visual part of the graph
stays identical to what it was in the vision-only problem but the graph is en-
hanced by adding depth factors between consecutive keyframes. Moreover,
for the pose estimation at frame-rate, a depth factor is also added between
the last keyframe and the current frame.
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Following this new graph formulation, we define the new Bundle Adjust-
ment problem to solve as:

χ∗ = arg min
χ

(
Evisual (χ) + Erel-depth (χ)

)
(5.19)

where Erel-depth (χ) is the energy term related to the relative depth factors
that we write as:

Erel-depth (χ) = ∑
i∈K∗

i−10

∑
j=i−1

Erel-depth
(
Xj, Xi

)
= ∑

i∈K∗

i−10

∑
j=i−1

(
‖
(
d̃i − d̃j

)
−
(

t̂z
Wci − t̂z

Wcj

)
‖2
(2·σdepth)

2

) (5.20)

where K∗ is the set of keyframes in χ but without including the first one,
t̂z

Wci is the SLAM estimated position of the i’th keyframe with respect to the
z axis of the reference frame and d̃i is the depth measured at keyframe i. The
same notation holds for the keyframe j. Note also that the variance of the
depth error term is set to

(
2 · σdepth

)2 to account for the two measurements
used to defined the error term.

We note that linking each keyframe to the ten previous ones will also
slightly increase the misalignment error compared to linking only two con-
secutive keyframes. However, it should also better prevent the localization
estimations from drifting compared to simply constraining the position along
the z-axis with respect to the previous keyframe. This trade-off between ac-
curacy and consistency has been chosen empirically.

5.3.4 Visual-Pressure Monocular Initialization

To improve the convergence of the estimations toward the true scale of the
trajectory, we also apply several modifications to the initialization procedure
of UW-VO. First, we ensure performing the visual initialization between two
frames linked to a depth measurement. This will serve in the scale factor
initialization detailed next.
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5.3.4.1 Scale Factor Initialization

After extracting the relative rotation and translation between these two frames,
as described in 4.5.7 (page 79), we scale the translation with the depth mea-
surement related to the second frame X1:

s =
d̃1

t̂z
WC1

and scaled t̂WC1 = s · t̂WC1 (5.21)

However, due to the sensor noise, potential low motion along the depth
axis and misalignment error, this first estimated scaled factor s might still be
far from the truth. In order to ensure a fast convergence towards the true
scale, we additionally modify the Bundle Adjustment steps.

In UW-VO, the cost function defined for the Bundle Adjustment is in-
variant to global change in translation, rotation and of the scale (see section
4.6.3). The resulting 7DOF possible drift from the frame of reference has to
be handled by fixing at least two keyframes when solving the Bundle Ad-
justment problem. This process is known as gauge fixing (Triggs et al., 2000).
However, scale is now observable through the depth measurements and the
gauge can be fixed by simply keeping one keyframe fixed during optimiza-
tion. Therefore, we do not fix any keyframe’s pose but the first one in the
Bundle Adjustment until a certain quantity N of keyframes has been reached.
This allows a smooth convergence of the scale and enough motions to relate
the visual measurements to the depth ones. Indeed, if there is almost no ver-
tical motion, the scale will not be recoverable. Hence, if we were to follow
the exact same strategy as in the pure Visual SLAM methods, that is fixing
at least two keyframes in the problem and more if older keyframes are ob-
serving currently optimized 3D landmarks, the global scale of the trajectory
would be highly constrained by the fixed states.

In practice, using N = 30, we obtain good scale estimations. Once, the N
first keyframes created, we turn back to the local adaptive windowed strat-
egy employed in the Visual SLAM (see sec. 4.6.3).

5.3.4.2 Camera - Depth Alignement by Relaxation of the Gauge Constraint

In order to tackle the camera-depth alignment issue, we have also investi-
gated another strategy that further improves the initialization procedure de-
tailed above.

It appears that the depth measurements render the depth axis observable
and can in fact be used as a reference frame that would be aligned with this
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FIGURE 5.5: Difference between depth measurements and the
frame of reference of camera’s poses when relaxing the gauge
constraint. C0, C1 and C2 represent the camera’s frame at time
0, 1 and 2. C0 is the initial frame but not the frame of reference
in this case. The orientation of the frame of reference is freed
by the gauge relaxation which allows it to align with the depth

axis during the initialization phase.

axis. Therefore, we propose to relax the gauge constraint over the orientation
of the frame of reference in the Bundle Adjustment steps taken during the
initialization phase. As the visual pose estimations are always relative to
a frame of reference (the first keyframe here), relaxing the gauge constraint
over the orientation of this first keyframe will allow it to move in order to
maximize the likelihood of the depth measurements given the current visual
estimations.

In other words, initially the first keyframe defined the frame of reference
and was therefore represented by a zero vector for its position and an iden-
tity rotation matrix. In order to keep this frame of reference (or gauge) fixed
during the Bundle Adjustment steps, the first keyframe included in the opti-
mization was kept fixed. What we now propose is to only fix the position of
the first keyframe and not its orientation, which is included in the states to
estimate.

In practice, this relaxation leads to a quick convergence towards a solution
that scales the estimated trajectory to the metric scale. What happens here is
that the scaling is done not only by fitting the norm of the visual position
estimations with the depth measurements, but also by rotating the frame of
reference in a way that aligns its z axis to the depth axis (see Fig. 5.5).
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5.3.5 Experimental Results

We now present the results obtained with the different strategies proposed.
Moreover, we compare these strategies using three different configurations
for the algorithm:

• Regular: In this mode, the initialization is performed as explained in
section 5.3.4.1 and the optimization steps are then performed normally.

• Free Gauge: In this mode, we relax the gauge constraint during the
initialization phase as described in section 5.3.4.2.

• IMU Aligned: In this mode, we use the accelerometer measurements
from an IMU to align the first keyframe z-axis, that is the frame of ref-
erence, with gravity.

The IMU alignment step is performed by averaging the first 50 accelerom-
eter measurements to estimate the gravity axis and we then compute the
rotation matrix that rotates the frame of reference such that its z-axis gets
aligned with the gravity axis. This alignment procedure is not perfect, but is
mainly used to analyze the misalignment effects by comparing it to the reg-
ular mode. Moreover, the low dynamics of ROVs ensure that the ROV’s own
acceleration will not influence too much the accelerometer measurements,
resulting in relatively low errors when estimating the gravity axis.

We also include results obtained by using UW-VO, the vision-only SLAM
system presented in chapter 4, and simply scaling its first estimated trans-
lation using the depth measurements (we refer to it as Init. Only in what
follows).

We evaluate the different strategies and configurations on sequences ex-
tracted from the AQUALOC dataset, which is actually composed of two
datasets recorded with a different hardware.

The first dataset has been recorded in a harbor, in shallow waters, and
its measurements come from a fisheye-modeled camera and from a pressure
sensor with 2 mm of resolution and an acquisition frequency of 5 Hz. The
camera is installed approximately vertically on the ROV and is oriented to-
wards the seabed. A light work class ROV was used here, leading to quite
dynamic sequences.

The second dataset has been recorded on archaeological sites, in deep wa-
ters (≈ 400 meters), and its measurements come from a pinhole-modeled
camera and from a pressure sensor with 3 cm of resolution and an acquisition
frequency of 60 Hz. In this dataset, the camera is placed with an approximate
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angle of 30 degrees with respect to the vertical axis. More detailed informa-
tion about these datasets are given in chapter 6. A work class ROV was used
here, well stabilized and with very slow motions.

Both these datasets contain a comparative baseline trajectory computed
offline by means of photogrammetry and scaled with the depth measure-
ments (more details in the next chapter). As in the previous chapter, we use
the Absolute Trajectory Error (ATE) (Sturm et al., 2012) as the metric to eval-
uate the accuracy of the estimated trajectories.

TABLE 5.1: Absolute trajectory errors (RMSE in m) on the Har-
bor dataset.

Absolute Trajectory Error (m)

Init. Only Regular Free Gauge IMU Aligned

Seq. Length (m) UW-VO Strat. 1 Strat. 2 Strat. 1 Strat. 2 Strat. 1 Strat. 2

# 1 39.3 1.01 0.55 0.53 0.56 0.49 0.52 0.64
# 2 75.6 1.70 1.23 0.40 1.08 0.36 0.63 0.36
# 3 23.6 0.52 0.30 0.26 0.23 0.25 0.25 0.24
# 5 28.5 0.96 0.19 0.11 0.12 0.13 0.15 0.13
# 6 19.5 0.17 0.11 0.06 0.04 0.04 0.04 0.05

Results on the first dataset

Table 5.1 displays the absolute trajectory errors obtained on the first dataset.
On this dataset, as the camera is already oriented vertically, that is with a
small angle between its z-axis and the depth axis, the different configura-
tions do not influence much the accuracy of most of the estimated trajecto-
ries. Yet, when using absolute depth measurements (strategy 1), there is a
noticable improvement when the misalignment issue is taken into account.
We can also see that the results obtained with the second strategy are the best
in the regular configuration and are equivalent in the free gauge and IMU
align modes. This highlights the fact that using relative depth measurements
is more robust to any potential misalignment between the camera and the
depth axis, even when the misalignment is small.

Furthermore, we can see that fusing the pressure sensor measurements
within the SLAM algorithm very efficiently recovers the scale of the trajecto-
ries and improves the localization accuracy compared to UW-VO. Note that
no results are displayed for the sequences 4 and 7, because in both these se-
quences the visual information become unusable at some point. The pressure
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sensor alone is not sufficient to estimate the motions performed by the cam-
era and hence the algorithm is not able to recover from such disturbances.

TABLE 5.2: Absolute trajectory errors (RMSE in m) on the Ar-
chaeological dataset.

Absolute Trajectory Error (m)

Init. Only Regular Free Gauge IMU Aligned

Seq. Length (m) UW-VO Strat. 1 Strat. 2 Strat. 1 Strat. 2 Strat. 1 Strat. 2

# 8 41.2 0.96 0.58 0.52 0.44 0.34 0.41 0.53
# 9 65.4 1.3 0.99 0.90 1.01 0.72 0.72 0.71

Results on the second dataset

Table 5.2 displays the absolute trajectory errors obtained on the second
dataset. On this dataset, because there is a big misalignment between the
camera’s z-axis and the depth axis (about 30 degrees), the influence of the
different strategies and configurations is well highlighted. First, in the regu-
lar setup, the second strategy performs better than the first one. This reflects
that using relative depth measurements is more efficient than using absolute
ones when there exists a strong misalignment between the camera and the
depth axis. Second, in the free gauge configuration, the second strategy also
performs better. It seems that the optimization behaves more consistently
in the initialization phase with the second strategy but this should be fur-
ther investigated in future works. Third, in the IMU aligned mode, the first
strategy obtains more accurate results in average. As the gravity alignment
method employed is simplistic here, some misalignment might still exists in
this case. However, the first strategy directly benefits from the alignment cor-
rection while the second strategy estimations are closer to the ones obtained
in the regular setup, highlighting the fact that taking relative depth measure-
ments reduces the misalignment effects. In all the different cases, we can
also see that fusing the depth measurements improves the accuracy of the
estimated trajectories compared to UW-VO.

5.3.6 Discussion

These results show that a simple pressure sensor can provide all the informa-
tion required for recovering the scale of the trajectories. However, cares has
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to be taken when fusing depth measurements within a Visual SLAM algo-
rithm because of potential misalignment between the camera and the depth
axis. Among the proposed strategies, the best results are obtained when us-
ing relative depth measurements and relaxing the gauge constraint over the
orientation of the frame of reference during the initialization phase, suggest-
ing that this would be the optimal configuration for tightly fusing vision and
pressure in a SLAM framework.

While the depth measurement provides a very useful information for the
estimation of accurate trajectories, the localization is still completely depen-
dent on the visual information and any strong visual disturbance leads to
failure. In order to be robust to short loss of visual information, we next in-
vestigate the fusion of a MEMS-IMU within the Visual-Pressure localization
framework.

5.4 Visual-Inertial-Pressure SLAM

We now investigate the tight fusion of an MEMS-IMU sensor within the
Visual-Pressure SLAM algorithm described in the previous section. By do-
ing so, we expect to further improve the localization accuracy and to gain in
robustness, especially during short loss of visual information.

5.4.1 Inertial Measurement Unit Sensor

A typical MEMS-IMU is composed of a three axes gyroscope and a three axes
accelerometer. The gyroscope measures the angular velocity of the sensor
and the accelerometer measures the force compensating its free-fall.

In this section, we investigate the fusion of a low-cost MEMS-IMU within
the SLAM framework. Such IMUs are not accurate enough to measure the
Coriolis acceleration and the magnitude of the earth rotation. The gyroscope
and accelerometer measurements can hence be modeled as follows Kok et al.,
2017:

ω̃B(t) = ωB(t) + bg(t) + ηg (5.22)

ãB(t) = RWB(t)T · (aW(t)− gW) + ba(t) + ηa (5.23)

where ω̃B ∈ R3 and ãB ∈ R3 represent the outputs of the IMU sensor,
RWB ∈ SO(3) is the orientation of the IMU sensor with respect to the World
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frame, ωB ∈ R3 and aB ∈ R3 represent the actual angular velocity and linear
acceleration applied to the IMU in the world frame, bg ∈ R3 and ba ∈ R3 are
the gyroscope and accelerometer biases and ηg ∈ R3 and ηa ∈ R3 models the
IMU noise.

Here, we consider a simplified IMU model where we neglect the poten-
tial issues about the misalignment and scale errors of the accelerometer and
gyroscope axes. The noise terms are modeled as zero-mean gaussian distri-
butions:

ηg ∼ N (03×1, I3×3 · σ2
g) (5.24)

ηa ∼ N (03×1, I3×3 · σ2
a ) (5.25)

where σg and σa are estimated by calibrating the IMU and computing the
Allan Deviation (El-Sheimy et al., 2007).

5.4.2 Problem Statement

The task at hand here is to integrate the measurements from a low-cost IMU
and a pressure sensor to the Visual SLAM algorithm. In order to keep the
NLLS form of our localization solution and to make the vision part benefit
from these other sensing modalities, we propose to tightly fuse the IMU and
pressure measurements to the visual data. As the SLAM problem can be
formulated with a factor graph, fusing new sensors measurements within
the SLAM problem is equivalent to adding new factors and nodes within the
graph.

The IMU’s gyroscope measures the angular velocity, which can be inte-
grated to provide rotational constraints between two consecutive pose nodes.
The IMU’s accelerometer gives an information about the linear acceleration
applied to it. Constraining the position differences between two consecutive
nodes thus requires double integrating the accelerometer measurements, first
estimating the velocity and then estimating the position. As the velocity is
going to be an intermediate state of interest, a velocity node has to be added
to the graph. Furthermore, the gyroscopes and accelerometers measurements
are influenced by time-varying biases which have to be estimated as well.

More formally, the navigational state’s parameters we want to estimate at
each time step in this Visual-Inertial-Pressure SLAM system are:
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Xi =
[
RWBi pWBi vWBi bg

i ba
i

]T
(5.26)

where RWBi ∈ SO(3) is the body orientation with respect to the World
frame, pWBi ∈ R3 is the body position, vWBi ∈ R3 is the body velocity
and bg

i ∈ R3 and ba
i ∈ R3 are time-varying biases of the gyroscope and

accelerometer, respectively. The body frame B is centered on the IMU as clas-
sically done for Visual-Inertial navigation systems and is used as the new
coordinate frame (instead of using the camera’s coordinate frame as in the
VSLAM and Visual-Pressure SLAM methods).

In order to estimate these states within a NLLS solver, we define the fol-
lowing optimization problem:

χ∗ = arg min
χ

(
Evisual (χ) + Eimu (χ) + Edepth (χ)

)
(5.27)

The update to apply to the navigational state δXi ∈ R15 during the opti-
mization steps are defined as:

X∗i = Xi � δXi (5.28)

In the context of Visual-Inertial SLAM, NLLS optimizations have to be
performed more frequently than in Visual SLAM in order to keep low er-
rors when integrating the IMU measurements (especially by estimating the
IMU biases required to correct the IMU measurements). Hence, instead of
defining the pose states (RWBi, pWBi) ∈ SE(3) and having to compute the
potentially expensive Jacobian V (δR) (see section 2.7 page 34), we define
the pose as a pseudo-SE(3) (Blanco, 2010). The pose state updates are there-
fore expressed as:

R∗WBi = RWBi � δRi = RWBi · Exp(δRi)

p∗WBi = pWBi � δpi = pWBi + RWBi · δpi
(5.29)

where Exp(·) is the exponential mapping from R3 to the Special Orthog-
onal group SO(3) defined as in section 2.7 (page 34).

The remaining state parameters belonging to R3, their updates are de-
fined by classical addition:
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v∗WBi = vWBi � δvi = vWBi + δvi

bg
i
∗
= bg

i � δbg
i = bg

i + δbg
i

ba
i
∗ = ba

i � δba
i = ba

i + δba
i

(5.30)

The next objective for solving the Visual-Inertial-Pressure SLAM problem
is to define the different error terms of the cost function (Eq.(5.27)).

5.4.3 State Parameters Evolution

In order to link the IMU measurements to the state parameters, we define the
evolution of the state X as following this kinematic model:

ṘWB = RWB ·ω∧B , ṗWB = vWB , v̇WB = aWB (5.31)

where (·)∧ is the skew-symmetric matrix operator.

The state at time t + ∆t can be obtained by integrating Eq.(5.31):

RWB(t + ∆t) = RWB(t) · exp
(∫ t+∆t

t
ωB(τ)

∧dτ

)
vWB(t + ∆t) = vWB(t) +

∫ t+∆t

t
aW(t)dτ

pWB(t + ∆t) = pWB(t) +
∫ t+∆t

t
vWB(τ)dτ +

∫ ∫ t+∆t

t
aW(τ)dτ2

(5.32)

Assuming that aW(τ) and ωB(τ) are constant in τ ∈ [t, t + ∆t], we can
solve Eq.(5.32) in discrete-time using Euler integration method:

RWB(t + ∆t) = RWB(t) · Exp (ωB(t) · ∆t)

vWB(t + ∆t) = vWB(t) + aW(t) · ∆t

pWB(t + ∆t) = pWB(t) + vWB(t) · ∆t +
1
2
· aW(t) · ∆t2

(5.33)

Linking Eq.(5.33) to the IMU measurements model Eq.(5.22-5.23), we ob-
tain:



122
Chapter 5. Tight Visual-Inertial-Pressure Fusion for Underwater

Localization

RWB(t + ∆t) = RWB(t) · Exp ((ω̃B(t)− bg(t)− ηg) · ∆t)

vWB(t + ∆t) = vWB(t) + gW · ∆t + RWB(t) · (ãB(t)− ba(t)− ηa) · ∆t

pWB(t + ∆t) = pWB(t) + vWB(t) · ∆t +
1
2
· gW · ∆t2

+
1
2
· RWB(t) · (ãB(t)− ba(t)− ηa) · ∆t2

(5.34)

The biases are modeled as random-walk processes:

ḃg = 03×1 , ḃa = 03×1 (5.35)

bg(t + ∆t) = bg(t) + ηbg (5.36)

ba(t + ∆t) = ba(t) + ηba (5.37)

ηbg ∼ N (03×1, I3×3 · σ2
bg
) , ηba ∼ N (03×1, I3×3 · σ2

ba
) (5.38)

In discrete time, we can model our system as following this state propa-
gation:

RWB(k + 1) = RWB(k) · Exp ((ω̃B(k)− bg(k)) · ∆tkk+1)

vWB(k + 1) = vWB(k) + gW · ∆tkk+1 + RWB(k) · (ãB(k)− ba(k)) · ∆tkk+1

pWB(k + 1) = pWB(k) + vWB(k) · ∆tkk+1 +
1
2
· gW · ∆t2

kk+1

+
1
2
· RWB(k) · (ãB(k)− ba(k)) · ∆t2

kk+1

bg(k + 1) = bg(k)

ba(k + 1) = ba(k)

(5.39)

where ∆tkk+1 = tk+1− tk, i.e. ∆tkk+1 is the time interval between two IMU
measurements.

Note that the derivation of this model is based on the approximation that
aW(τ) and ωB(τ) are constant within a time interval. The accuracy of this
approximation is hence dependant of the length of this time interval. In the
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context of this thesis, we have mainly worked with IMU measurements pro-
duced at 200 Hz and more. Such high rates ensure that the constant approx-
imation over the angular velocity and linear acceleration measurements is
realistic enough. However, when using low-rates IMU, high order methods
such as Runge-Kutta integrations should be used (Cartwright et al., 1992).

5.4.4 IMU Preintegration

The discrete state evolution equations (5.34) define how the IMU measure-
ments interact with the states of interest. However, adding IMU measure-
ments into the factor graph at the IMU rate rapidly becomes intractable as
they would have to be re-computed for each update of their related bias value
during optimization (Lupton et al., 2012).

The way to deal with these high rates measurements is to turn them into
preintegrated IMU measurements (Lupton et al., 2012). The idea of preintegra-
tion is to accumulate the IMU measurements between two visual measure-
ments (i.e. between two images) in order to provide single measurements
linking the states related to the visual measurement times. In this case, the
nodes of the factor graph are the states at the camera-rate (i.e. exactly as in
the Visual SLAM formulation). Furthermore, in addition to the factors repre-
senting the 3D landmarks observations, each node is linked to the previous
one and to the next one by a preintegrated IMU factor.

The IMU preintegration technique has been first proposed by (Lupton et
al., 2012). This technique was applied using Euler angles and was then ex-
tended to the quaternion form in (Atchuthan et al., 2018; Qin et al., 2018) and
to the SO(3) manifold in (Forster et al., 2017). As the Visual SLAM method
was based on a manifold formulation by using states defined on SE(3) and
directly optimizing on this manifold space, we follow the preintegration the-
ory developed in (Forster et al., 2017).

Taking Eq.(5.34) and assuming the camera and IMU measurements per-
fectly synchronized and constant IMU biases, we can model the relative mo-
tion between image i and image j as:
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RWBj = RWBi ·
j−1

∏
k=i
·Exp

((
ω̃k − bg

k − ηg) · ∆tkk+1
)

vWBj = vWBi + gW · ∆tij +
j−1

∑
k=i

RWBk · (ãk − ba
k − ηa) · ∆tkk+1

pWBj = pWBi +
1
2
· gW · ∆t2

ij

+
j−1

∑
k=i

[
vWBk · ∆tkk+1 +

1
2
· RWBk · (ãk − ba

k − ηa) · ∆t2
kk+1

]
(5.40)

with ∆tij = tj − ti, where ti and tj are respectively the timestamps of the
images i and j.

The sum and product terms of Eq.(5.40) contain all the IMU measure-
ments and could hence be used as preintegrated measurements that could
be readily added to our factor graph. However, if we directly use this for-
mulation, the preintegration would have to be recomputed every time the
estimates of the rotational component of the states RWBk is updated. This is
due to the fact that, here, the preintegrated measurements are defined as rela-
tive motions in the World frame. In order to avoid repeating the computation
of the preintegrated measurements, we instead express them as relative mo-
tions in the body frame Bi:

∆R̃BiBj
.
= RBiW · RWBj

=
j−1

∏
k=i
·Exp

((
ω̃k − bg

k − ηg) · ∆tkk+1
)

∆ṽBiBj
.
= RBiW ·

(
vWBj − vWBi − gW · ∆tij

)
=

j−1

∑
k=i

∆RBiBk · (ãk − ba
k − ηa) · ∆tkk+1

∆p̃BiBj
.
= RBiW ·

(
pWBj − pWBi − vWBi · ∆tij −

1
2
· gW · ∆t2

ij

)
=

j−1

∑
k=i

[
∆vWBk · ∆tkk+1 +

1
2
· ∆RBiBk · (ãk − ba

k − ηa) · ∆t2
kk+1

]

(5.41)

With this new formulation, the preintegrated measurements do not de-
pend on the rotational states anymore. Putting apart the variations due to
varying biases for now, these preintegrated measurements are hence constant



5.4. Visual-Inertial-Pressure SLAM 125

over time and can be considered as normally distributed random variables,
whose expectations are:

∆pBiBk+1 = ∆pBiBk + ∆vBiBk · ∆tkk+1 + ∆RBiBk · δpBkBk+1

∆vBiBk+1 = ∆vBiBk + ∆RBiBk · δvBkBk+1

∆RBiBk+1 = ∆RBiBk · δRBkBk+1

(5.42)

This new formulation defines how the preintegration measurements are
updated upon reception of a new IMU measurement, the preintegration in-
crements being defined as:

δpBkBk+1 =
1
2
· (ãk − ba

k) · ∆t2
kk+1

δvBkBk+1 = (ãk − ba
k) · ∆tkk+1

δRBkBk+1 = Exp
(
ω̃k − bg

k

) (5.43)

The computation of the preintegrated IMU measurements can be seen as
the state prediction step of a Kalman Filter. In order to use these measure-
ments efficiently within a NLLS solver, we have to estimate their covariance.

With a slight abuse of notation, we define the following state and error
state:

∆Îik =
[
∆pBiBk ∆vBiBk ∆RBiBk

]T
(5.44)

δÎkk+1 =
[
δpBkBk+1 δvBkBk+1 δRBkBk+1

]T
(5.45)

The state prediction of the preintegrated measurements can then be writ-
ten as:

∆Îik+1 = f
(
∆Îik, δÎkk+1

)
(5.46)

and the covariance Σ∆I
ik+1 can be incrementally estimated using the jaco-

bians of f (·):

Σ∆I
ik+1 =

∂ f
∂∆Îik+1

· Σ∆I
ik ·

∂ f
∂∆Îik+1

T
+

∂ f
∂ηa,g · Σ

η · ∂ f
∂ηa,g

T
(5.47)

where Ση is the covariance associated to the gyroscope and accelerometer

noises: ηa,g =
[
ηa ηg

]T
. The jacobian related to the IMU noise ηa,g can be
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computed from the chain rule:

∂ f
∂ηa,g =

∂ f
∂δÎkk+1

· ∂δÎkk+1

∂ηa,g (5.48)

where the different jacobians are defined as:

∂ f
∂∆Îik+1

=

I3×3 I3×3 · ∆tkk+1 ∆RBiBk ·
(
δpBkBk+1

)∧
03×3 I3×3 ∆RBiBk ·

(
δvBkBk+1

)∧
03×3 03×3 RT

BkBk+1

 ∈ R9×9

∂ f
∂δÎkk+1

=

∆RBiBk 03×3 03×3

03×3 ∆RBiBk 03×3

03×3 03×3 I3×3

 ∈ R9×9

∂δÎkk+1

∂ηa,g =


1
2 · I3×3 · ∆t2

kk+1 03×3

I3×3 · ∆tkk+1 03×3

03×3 V
((

ω̃k − bg
k

)
· ∆tkk+1

)
· ∆tkk+1

 ∈ R9×6

(5.49)

with V (·) the left Jacobian of SO(3) (defined in section 2.7).

Last, we recall that until here, the IMU biases have been considered as
being known and constant. This is not true and, as these biases are parts
of the states we want to estimate, we have to define how slight changes in
the biases values influence the preintegrated measurements. Since we want
to avoid recomputing the preintegrated measurements when the states esti-
mates are updated, the effects of modifying the biases are modeled through
a first-order Taylor propagation:

∆R̃BiBj = ∆R̃BiBj · Exp

(
∂∆R̃BiBj

∂bg · δbg

)

∆ṽBiBj = ∆ṽBiBj +
∂∆ṽBiBj

∂bg · δbg +
∂∆ṽBiBj

∂ba · δba

∆p̃BiBj = ∆p̃BiBj +
∂∆p̃BiBj

∂bg · δbg +
∂∆p̃BiBj

∂ba · δba

(5.50)

where the bias-dependent jacobians can be computed iteratively as well
(see the appendix B. in (Forster et al., 2017)).
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These final preintegrated measurements can now be integrated into a fac-
tor graph for optimization.

5.4.5 Visual-Inertial-Pressure Cost Function

We now detail the different error terms that we use to solve the proposed
Visual-Inertial-Pressure SLAM. We recall that the related cost function is de-
fined as:

χ∗ = arg min
χ

(
Evisual (χ) + Eimu (χ) + Edepth (χ)

)
(5.51)

We first detail the IMU related error terms Eimu (χ), then the visual ones
Evisual (χ) and finally the pressure related ones Edepth (χ).

5.4.5.1 IMU Error Terms

The IMU error terms to use within the NLLS optimization are constructed
from the preintegrated measurements (Eq.(5.50)) :

e∆RBiBj = R̂BiBj � ∆R̃BiBj

= Log

(R̃BiBj · Exp

(
∂∆R̃BiBj

∂bg · δbg

))T

· R̂BiW · R̂WBj

 (5.52)

e∆vBiBj = v̂BiBj � ∆ṽBiBj

= R̂BiW ·
(
v̂WBj − v̂WBi − gW · ∆tij

)
−
[

∆ṽBiBj +
∂∆ṽBiBj

∂bg · δbg +
∂∆ṽBiBj

∂ba · δba
] (5.53)

e∆pBiBj = p̂BiBj � ∆p̃BiBj

= R̂BiW ·
(

p̂WBj − p̂WBi − v̂WBi · ∆tij −
1
2
· gW · ∆t2

ij

)
−
[

∆p̃BiBj +
∂∆p̃BiBj

∂bg · δbg +
∂∆p̃BiBj

∂ba · δba
] (5.54)
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e∆bg
BiBj

= b̂g
Bj � b̂g

Bi = b̂g
Bj − b̂g

Bi

e∆ba
BiBj

= b̂a
Bj � b̂a

Bi = b̂a
Bj − b̂a

Bi

(5.55)

Concatenating these error terms we model the IMU error term Eimu (χ) of
Eq.(5.27):

Eimu (χ) = ∑
K∗

(
eimu(Xi, Xj)

T · Σimu
BiBj
−1 · eimu(Xi, Xj)

)
(5.56)

with the IMU error term eimu(Xi, Xj):

eimu(Xi, Xj) =
[
e∆RBiBj e∆pBiBj e∆vBiBj e∆bg

BiBj
e∆ba

BiBj

]T
(5.57)

and the related covariance Σimu
BiBj expressed as:

Σimu
BiBj =

[
Σ∆I

BiBj 06×6

06×6 Σbg,a

BiBj

]
, Σbg,a

BiBj =

[
Σbg

03×3

03×3 Σba

]
· ∆tij (5.58)

where Σ∆I
BiBj is extracted from Eq.(5.47) and Σbg,a

BiBj is set according to the
IMU calibration.

5.4.5.2 Visual Error Terms

As we now work in the body frame, instead of the camera frame, we need
to re-define the visual error terms eij that represent the reprojection error
between the visual measurement x̃ij and the correspond 3D landmark Wlj

in the keyframe Xi. Assuming a known extrinsic calibration between the
camera and the IMU, we can define the projection function h(·) : SO(3) ×
R3 ×R3 7→ R3 that maps a 3D vector from the World frame to the camera
frame as:

h(Xi, Wlj) = RCB ·
(
RBiW ·Wlj + pBiW

)
+ pCB (5.59)

where RCB ∈ SO(3) and pCB ∈ R(3) are respectively the known rotation
and translation between the camera and the IMU.
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The resulting projection can then be used to define visual reprojection
error terms eij from the known camera intrinsic calibration matrix K, in the
same way as in the pure Visual SLAM method (see Eq.(4.4) in page 70):

eij = x̃ij − π
(
K · h(Xi, Wlj)

)
(5.60)

where π (·) : R3 7→ R2 is defined as:

π
(
K · x′

)
=

[
x′
z′ · fx + cx
y′
z′ · fy + cy

]
with x′ = h(Xi, Wlj) (5.61)

and K =

 fx 0 cx

0 fy cy

0 0 1

 (5.62)

The visual energy term Evisual (χ) of Eq.(5.27) is finally defined as:

Evisual (χ) = ∑
i∈K

∑
j∈Li

ρ
(

eT
ij · Σ−1

visual · eij

)
(5.63)

where ρ (·) is the robust Huber norm.

5.4.5.3 Pressure Error Terms

The IMU sensor provides a way of sensing the gravity force direction and
thus to align the World reference frame with the gravity axis. Thanks to this
alignment and assuming that the gravity vector is collinear with the depth
axis, the misalignment effect between the camera and the pressure sensor
described in the previous sections (sec. 5.3.2.1) does not exist anymore.

Therefore, we can use the depth measurements as absolute measurements.
In this Visual-Inertial-Pressure SLAM method, the depth energy term Edepth (χ)

of Eq.(5.27) is defined as in strategy 1 of the Visual-Pressure SLAM (see sec-
tion 5.3.3.1):

Edepth (χ) = ∑
i∈K

Edepth (Xi) = ∑
i∈K
‖d̃i − p̂z

WBi‖
2
σ2

depth
(5.64)

5.4.6 Visual-Inertial-Pressure Initialization

Before exploiting the IMU measurements for localization purpose, an ini-
tialization procedure has to be performed. In fact, we have to estimate the
unknown parameters required to exploit the accelerometer and gyroscope
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readings within the Visual SLAM framework. These unknown parameters
are: the direction of the gravity vector gWB0 in the initial body frame, the ini-
tial velocities vWBi, the IMU biases bg

i and ba
i and the scale factor s relating

the unscaled visual pose estimates to a metric scale.
Here we follow the initialization procedure proposed in (Qin et al., 2018)

and refer the interested reader to their work for more details.
Using the estimated gravity vector gC0 , we compute the rotation matrix

RWC0 by aligning this gravity vector with the gravity in the world referential
gW =

[
0, 0, g

]
, where g is the gravitational constant:

gW = RWC0 · gC0 (5.65)

The metric scale factor s and the World alignment rotation matrix RWC0

are then used to scale and align the frame states (RWBk , pWBk , vWBk). From
this Visual-Inertial initialization, we hence expect to get a rough estimate of
the scale factor s. The scale will then converge to its true value when solving
the NLLS problem, as the estimation of the accelerometer’s bias will refine it.
Furthermore, the pressure sensor measurements will highly help in correct-
ing the accelerometer’s bias and the scale.

5.4.7 Visual-Inertial-Pressure Algorithm

Once initialized, the Visual-Inertial-Pressure SLAM problem is solved in a
fixed-lag smoothing fashion by performing optimization over the factor graph
displayed in Fig. 5.6.

A fixed sized window of the N most recent keyframes along with the most
recent frame is processed at every new frame. Moreover, all the 3D land-
marks observed by at least two frames within this window are also added to
the states to optimize. The state vector χi at each new frame is hence defined
as:

χi =
[
Xi χKFi χλi

]
(5.66)

where Xi is the state (Eq.(5.26)) related to the current frame, χKFi is the
set of states related to the N most recent keyframes and χλi is the set of 3D
landmarks observed by at least two frames within χi.

The factor graph describing the problem to solve is illustrated in Fig. 5.6.
The underlying NLLS formulation is hence defined following Eq.(5.27):
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FIGURE 5.6: Factor graph related to the Visual-Inertial-Pressure
SLAM problem. The states of every (key)frame is composed of
a pose (position and orientation), a velocity and IMU related

bias values.

χ∗ = arg min
χ

(
∑
i∈K

∑
j∈Li

ρ
(
‖eij‖2

Σvisual

)
+ ∑

K∗
‖eimu(Xi, Xj)‖2

Σimu
BiBj

(5.67)

+ ∑
i∈K
‖d̃i − p̂z

WBi‖
2
σ2

depth

)
(5.68)

This optimization problem is solved on-manifold with the Levenberg-
Marquardt algorithm, in the same manner as in the Visual SLAM Bundle
Adjustment (sec. 4.6). In order to fix the gauge of the problem and given that
roll and pitch are observable from the IMU measurements, we only fix the
position and yaw of the oldest keyframe in the window.

If a new keyframe is required by the SLAM algorithm, the current frame
is turned into a keyframe and the oldest keyframe is removed from the win-
dow. Otherwise, the current frame is removed but its related IMU preinte-
grated measurements are kept and updated with the new coming IMU mea-
surements, forming a new preintegrated factor for the next frame.

As the optimization run-time required to solve Eq.(5.68) might be longer
than the delay between the acquisition of two consecutive images, the pose
estimation at frame-rate is done by fixing the most recent keyframe along
with the 3D landmarks (older keyframes are not included). The IMU biases
are also fixed in this case. This step hence estimates only the current frame’s
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FIGURE 5.7: Estimated trajectory from UW-VIP on the sequence
#7 from the harbor dataset. The red circle denotes the part of the
sequence with a loss of visual information. Image samples from
this part are given in the red box (to be read left to right and top

to bottom).

pose and velocity using not only the visual measurements but also the IMU’s
and depth’s ones. The resulting optimization problem can be solved in a very
fast way as it does not involve many states.

5.4.8 Experimental Results

We now present the results obtained with this Visual-Inertial-Pressure SLAM
method. We use the same data sequences than for the Visual-Pressure SLAM
here (see section 5.3.5).
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We compare the results obtained with the Visual-Inertial-Pressure algo-
rithm to those obtains with the Visual-Pressure algorithm using strategy 2
and gauge relaxation. For clarity, we will refer to the Visual-Inertial-Pressure
SLAM as UW-VIP and to the Visual-Pressure SLAM as UW-VP.

TABLE 5.3: Absolute trajectory errors (RMSE in m) on the Har-
bor dataset.

Absolute Trajectory Error (m)

Seq. Length (m) UW-VP UW-VIP

# 1 39.3 0.49 0.42
# 2 75.6 0.36 0.37
# 3 23.6 0.25 0.26
# 4 55.8 X 1.56
# 5 28.5 0.13 0.09
# 6 19.5 0.04 0.06
# 7 32.9 X 1.16

TABLE 5.4: Absolute trajectory errors (RMSE in m) on the
Archeological dataset.

Absolute Trajectory Error (m)

Seq. Length (m) UW-VP UW-VIP

# 8 41.2 0.34 0.36
# 9 65.4 0.72 0.69

Table 5.3 and Table 5.4 display the absolute trajectory errors obtained on
each dataset. In general, there is no significant improvement over the accu-
racy of the estimated trajectories, which were already very accurate with UW-
VP. However, we can see a significant improvement in robustness with UW-
VIP. Indeed, it is able to handle the sequences #4 and #7 of the first dataset,
whereas UW-VP failed because of short visual information loss. The final
error is over 1 meter on these sequences but this is mainly due to the fact
that, because vision could not be used during a short amount of time, the
trajectory slightly drifted from the frame of reference, leading to an increase
in terms of absolute trajectory error.

The trajectory estimated by UW-VIP on the sequence # 7 along with a
sample of the images received during the short loss of visual information is
illustrated in Fig. 5.7.
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What happens in these cases of short losses of vision is the following.
When the images acquired by the camera become unusable, the IMU and
pressure sensor are providing the motion information required to continue
the estimation of the current pose. However, the IMU is going to quickly drift
during this time because of its evolving bias. This drift is a little bit limited by
the depth measurements but only the visual measurements provide sufficient
information for correctly estimating the biases of the IMU. As soon as vision
is recovered, the biases of the IMU are corrected. If the timelapse without
visual measurements is not too long, the drift will be recoverable and the
biases correction will be propagated through the sliding window (Fig. 5.6).
However, if vision is lost for more than a few seconds, the drift of the MEMS-
IMU will be too important to be recoverable.

5.5 Conclusion

In this chapter, we have first investigated different strategies to estimate accu-
rate and scaled localization from a monocular camera and a pressure sensor.
The proposed Visual-Pressure SLAM is able to produce accurate and scaled
trajectories by tightly coupling the visual and pressure measurements. We
note here that some of the investigated strategies were based on the data se-
quences we had to test the algorithm. As the trajectories performed by the
ROVs during these sequences were quite random, we had to deal with some
issues such as low depth variations during the initialization phase. In a real
scenario, with a human in the loop, we could imagine that vertical motions
are applied on the ROV at the beginning to ensure a good initialization for
instance. Yet, having a robust algorithm that can handle non ideal or pre-
defined motions is always better.

An extension of this Visual-Pressure SLAM was then proposed to inte-
grate a low-cost MEMS-IMU. We showed that the final Visual-Inertial-Pressure
SLAM method is more robust and can handle short loss of visual informa-
tion. This Visual-Inertial-Pressure SLAM runs in real-time thanks to the use
of preintegration for the IMU measurements.

The accuracy of the Visual-Inertial-Pressure estimations could probably
be improved by means of marginalization (Leutenegger et al., 2015), as a
way of keeping information about keyframes and landmarks that leave the
optimization window. However, marginalization is still tricky to use opti-
mally without leading to an excessive computational overload (Hsiung et al.,
2018b). Besides, even if adding the measurements of a pressure sensor and
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a low-cost MEMS-IMU helped in improving the localization and the robust-
ness of the SLAM algorithm, drift might still occur. This especially true when
vision is really poor. The only way of recovering from such drift would be to
add a loop-detection feature to the SLAM algorithm. These suggestions are
left for future work.
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6.1 Introduction

In order to validate the SLAM methods presented in the previous chapters,
we have designed two acquisition systems suited to our needs. These acqui-
sition systems are self-contained in that they both embed the required sensors
and a computer to run the algorithms in real-time. Their design hence makes
them easy to embed on almost any ROV and they have been successfully
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tested in real-case scenarios during an archaeological camping conducted by
the DRASSM (Department of underwater archaeology, French Ministry of
Culture).

We have taken the opportunity offered by this campaign to further record
a large dataset. It is this dataset that has been used in the previous chapter to
evaluate the performance of the proposed SLAM methods. We have named
this dataset AQUALOC (Ferrera et al., 2018a, 2019a) and we have publicly
released it for the benefit of the community.

The first topic of this chapter is about the presentation of these acquisi-
tion systems and of the AQUALOC dataset. Moreover, the data sequences
contained in AQUALOC have given us material to work on for the devel-
opment of a 3D reconstruction method. This chapter further presents a new
dense 3D reconstruction method, compliant with a monocular setup. The
proposed 3D reconstruction method takes as input both the images acquired
by the camera and the output of the SLAM methods proposed in this thesis.
The 3D reconstruction module runs online and can therefore be seen as a way
of performing online photogrammetry.

This chapter is organized as follows. We first describe the acquisition
systems tested during our field experiments. We also deeply describe the
AQUALOC dataset and the acquisition conditions. Last, we present the pro-
posed 3D reconstruction method suited to monocular systems.

6.2 Dataset Acquisition

In order to run the SLAM algorithm online during ROVs operational surveys,
we have desgined acquisition systems that are composed of a monochro-
matic camera, a Micro Electro-Mechanical System (MEMS) based Inertial
Measurement Unit (IMU) and a pressure sensor. These acquisition systems
further embed a computing unit for running in real-time the SLAM algo-
rithm.

These acquisition systems have been embedded on ROVs equipped with
lighting systems and navigating close to the seabed in different environments
and at different depths. These experiments have allowed us to validate the
use of the SLAM algorithm online and to record a dataset with synchronized
measurements.

The recorded video sequences exhibit the typical visual degradation in-
duced by the underwater environment such as turbidity, backscattering, shad-
ows and strong illumination shifts caused by the artificial lighting systems.
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Three different sites have been explored to create a dataset and test the SLAM
algorithm: a harbor and two archaeological sites. The recording of the se-
quences occurred at different depths, going from a few meters, for the harbor,
to several hundred meters, for the archaeological sites. The video sequences
are hence highly diversified in terms of scenes (low-textured areas, texture
repetitive areas...) and of scenarios (exploration, photogrammetric surveys,
manipulations...).

In order to quantitatively evaluate SLAM algorithms, we have computed
a comparative baseline to evaluate the quality and accuracy of the SLAM es-
timated trajectories. As the acquisition of ground truth is very difficult in nat-
ural underwater environments, we have used the state-of-the-art Structure-
from-Motion (SfM) library Colmap (Schönberger et al., 2016) to compute
comparative baseline trajectories for each sequence. Colmap processes of-
fline the sequences and performs a 3D reconstruction to estimate the posi-
tions of the camera. This 3D reconstruction is done by matching exhaustively
all the images composing a sequence, which allows the detection of many
loop-closures and, hence, the computation of accurate trajectories, assessed
by low average reprojection errors (< 1 pixel on all the sequences).

In addition to using this dataset for evaluating the efficiency of the pro-
posed SLAM algorithm, we have publicly released this dataset (Ferrera et
al., 2018a, 2019a) in order to give to the community an opportunity to work
on data that are difficult to acquire. Indeed, the logistic (ship availability)
and the required equipment (deep-sea compliant underwater vehicles and
sensors), as well as regulations (official authorizations), can prevent possible
works on this topic. We hope that the availability of this dataset will increase
the development of algorithms dedicated to the underwater environment.
Both raw and ROS bag formatted field data are provided along with the full
calibration of the sensors (camera and IMU). Moreover, the provided com-
parative baseline makes this dataset suitable for benchmarking Visual SLAM
and Visual-Inertial(-Pressure) SLAM algorithms.

The rest of this section is organized as follows. First, we review some
works that have led to the release of similar datasets. Then, we deeply de-
tail the design of the acquisition systems used and the calibration procedures
employed. Next, we present the acquired dataset and the acquisition con-
ditions on each site are detailed, highlighting the associated challenges for
visual localization. Finally, the processing of the data sequences to create a
baseline is described.
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6.2.1 Related Work

In ground and aerial robotics, the availability of many public datasets, such
as KITTI (Geiger et al., 2013), Malaga (Blanco-Claraco et al., 2014) or EuRoC
(Burri et al., 2016), to cite a few, has greatly impacted the development of
VSLAM methods.

In the underwater field, there is a limited amount of public datasets ded-
icated to the evaluation of SLAM methods. Moreover, the fact that these
data are difficult to acquire, because of the required equipment and logistic,
limits the development of new methods. In (Bender et al., 2013), a dataset
containing the measurements of navigational sensors , stereo cameras and a
multi-beam sonar was proposed. Another another dataset dedicated to local-
ization and mapping in an underwater cave from sonar measurements was
proposed in (Mallios et al., 2017). Images acquired by a monocular camera
are also given for the detection of cones precisely placed in order to have a
mean of estimating drift. However, in both datasets, the acquisition rate of
the cameras is too low (<10 Hz) for most of VSLAM methods. A synthetic
dataset was created in (Duarte et al., 2016), simulating the navigation of a
vehicle in an underwater environment and containing monocular cameras
measurements at a frame-rate of 10 Hz. Many public datasets have also been
made available by the Oceanography community through national websites
(https://www.data.gov/, http://www.marine-geo.org). However, these datasets
have not been gathered with the aim of providing data suitable for VSLAM
and often lack essential information such as the calibration of their sensors
setups.

With respect to these works, we propose a new dataset aiming at the de-
velopment of VSLAM and Visual-Inertial(-Pressure) SLAM methods dedi-
cated to the underwater environment.

6.2.2 The Acquisition Systems

In order to acquire the sequences of the dataset, we have designed two simi-
lar underwater systems. These acquisition systems have been designed to al-
low the localization of underwater vehicles from a minimal set of sensors in
order to be as cheap and as versatile as possible. Both systems are equipped
with a monochromatic camera, a pressure sensor, a low-cost MEMS-IMU
and an embedded computer. The camera is placed behind an acrylic dome
to minimize the distortion effects induced by the difference between water

https://www.data.gov/
http://www.marine-geo.org
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(A) System A (B) System B

FIGURE 6.1: The acquisition systems equipped with a monoc-
ular monochromatic camera, a pressure sensor, an IMU and a

computer along with the sensors’ reference frames.

and air refractive indices. The image acquisition rate is 20 Hz. The IMU
delivers measurements from a 3-axes accelerometer, 3-axes gyroscope and
3-axes magnetometer at 200 Hz. The embedded computer is a Jetson TX2
running Ubuntu 16.04 and is used to record synchronously the sensors’ mea-
surements thanks to the ROS middleware. The Jetson TX2 is equipped with a
carrier board embedding the mentioned MEMS-IMU and a 1 To NVME SSD
to directly store the sensors measurements, thus avoiding any bandwidth or
package loss issue. An advantage of the self-contained systems that we have
developed, is that they are independent of any robotic architecture and can
thus be embedded on any kind of Remotely Operated Vehicle (ROV) or Au-
tonomous Underwater Vehicle (AUV). The interface can either be Ethernet
or a serial link, depending on the host vehicle’s features.

To record data at different depths, we have designed two systems that we
will refer to as “System A” and “System B”. These systems have the same
overall architecture, but they differ on the camera model, the pressure sensor
type and the diameter and material of the enclosure. System A (Fig. 6.1a)
is designed for shallow waters and was used to acquire the sequences in the
harbor. Its camera has been equipped with a wide-angle lens, which can
be modeled by the fisheye distortion model. The pressure sensor is rated
for 30 bars and delivers depth measurements at a maximum rate of 10 Hz.
System A is protected by an acrylic enclosure, rated for a depth of 100 meters.
System B (Fig. 6.1b) was used to record the sequences on the archaeological
sites at larger depths. Its camera has a slightly lower field of view and the
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System A
(Harbor

sequences)

Camera sensor UEye - UI-1240SE
Resolution 640×512 px
Sensor Monochromatic
Frames per second 20 fps
Lens Kowa LM4NCL C-Mount
Focal length 3.5mm
Pressure Sensor MS5837 - 30BA
Depth range 0 - 290m
Resolution 0.2 mbar
Output frequency 5-10 Hz
Inertial Measurement Unit MEMS - MPU-9250
Gyroscope frequency 200 Hz
Accelerometer frequency 200 Hz
Magnetometer frequency 200 Hz
Embedded Computer Nvidia - Tegra Jetson TX2
Carrier board Auvidea J120 - IMU
Storage NVME SSD 1 To
Housing 4" Blue Robotics Enclosure
Enclosure 33.4 x 11.4 cm
Enclosure Material Acrylic
Dome 4" Blue Robotics Dome End Cap

System B
(Archaeo.

sequences)

Camera sensor UEye - UI-3260CP
Resolution 968×608 px
Sensor Monochromatic
Frames per second 20 fps
Lens Kowa LM6NCH C-Mount
Focal length 6mm
Pressure Sensor Keller 7LD - 100BA
Depth range 0 - 990m
Resolution 3 mbar
Output frequency 60 Hz
Inertial Measurement Unit Same as System A
Embedded Computer Same as System A
Housing 3" Blue Robotics Enclosure
Enclosure 25.8 x 8.9 cm
Enclosure Material Aluminium
Dome 3" Blue Robotics Dome End Cap

TABLE 6.1: Technical details about the acquisition systems A
and B.
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lens can be modeled by the radial-tangential distortion model. It embeds
a pressure sensor rated for 100 bars, delivering depth measurements at 60
Hz. Its enclosure is made of aluminum and is 400 meters depth rated. The
technical details about both systems and their embedded sensors are given
in table 6.1.

Each camera-IMU setup has been cautiously calibrated to provide the in-
trinsic and extrinsic parameters required to use it for localization purpose.
We have used the toolbox Kalibr (Furgale et al., 2012; Furgale et al., 2013b)
along with an apriltag target to compute all the calibration parameters.

The cameras calibration step allows to obtain an estimate of the focal
lengths, principal points and distortion coefficients. These parameters can
then be used to undistort the captured images and to model the image for-
mation pipeline, with the following notation:

[
u
v

]
= ΠK (Rcam

w Xw + tcam
w ) (6.1)

[
u
v

]
=

[
fx. xcam

zcam
+ cx

fy. ycam
zcam

+ cy

]
= ΠK (Xcam) (6.2)

with K =

 fx 0 cx

0 fy cy

0 0 1

 and Xcam =

xcam

ycam

zcam


where ΠK(·) denotes the projection: R3 7→ R2, K is the calibration matrix,
Xw ∈ R3 is the position of a 3D landmark in the world frame, Rcam

w ∈ SO(3)
and tcam

w ∈ R3 denote the rotational and translational components of the
transformation from the world frame to the camera frame, Xcam ∈ R3 is the
position of a 3D landmark in the camera frame, fx and fy denotes the focal
lengths in pixels and (cx, cy) is the principal point of the camera (also in pix-
els). The distorted pixel coordinates (u, v) are the projection of Xcam into the
undistorted image frame.

As these parameters are medium dependent, the calibration has been per-
formed in water to account for the additional distortion effects at the dome’s
level. The results of the calibration of the fisheye camera can be seen in figure
6.2.
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The camera-IMU setup calibration allows to estimate the extrinsic param-
eters of the setup, that is the relative position of the camera with respect to
the IMU, and the time delay between camera’s and IMU’s measurements.
This relative position is expressed by a rotation matrix Rimu

cam and a transla-
tion vector timu

cam. Camera and IMU’s poses relate to each other through:

Tw
cam = Tw

imuTimu
cam (6.3)

with Timu
cam

.
=

[
Rimu

cam timu
cam

01×3 1

]
∈ R4×4

and (Tw
cam)−1 = Tcam

w
.
=

[
Rcam

w tcam
w

01×3 1

]
∈ R4×4

where Rimu
cam ∈ SO(3), timu

cam ∈ R3, Tw
cam ∈ SE(3), Tcam

w ∈ SE(3), Timu
cam ∈ SE(3)

and Tw
imu ∈ SE(3). Tw

cam and Tw
imu respectively represent the poses of the

camera and of the body, with respect to the world frame. Tcam
w is the inverse

transformation of Tw
cam and Timu

cam is the transformation from the camera frame
to the IMU frame.

Before estimating these extrinsic parameters, the IMU noise model pa-
rameters have been derived from an Allan standard deviation plot (El-Sheimy
et al., 2007), obtained by recording the gyroscope and accelerometer mea-
surements for several hours, while keeping the IMU still. These noise pa-
rameters are then fed into the calibration algorithms to model the IMU mea-
surements. As these parameters (IMU noises, camera-IMU relative transfor-
mation and measurements’ time delay) are independent of the medium (air
or water), they have been estimated in air. Doing this calibration step in
air allowed to perform easily the fast motions required to correlate the IMU
measurements to the camera’s ones.

All the calibration results are included in the dataset, that is the cameras’
models (including the intrinsic parameters and the distortion coefficients),
the IMUs’ noise parameters, the relative transformation from the camera to
the IMU and the time delay between the cameras’ and the IMUs’ measure-
ments.
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FIGURE 6.2: Distortion effects removal from Kalibr calibration
on one of the harbor sequences. Left: raw image. Right: undis-

torted image.

6.2.3 The AQUALOC dataset

These systems have been used to record a dataset. As explained in sec-
tion 6.2.2, System A was used to record the shallow harbor sequences, while
System B was used on the two deep archaeological sites. The dataset consist
in a total of 17 sequences: 7 recorded in the harbor, 4 on the first archaeolog-
ical site and 6 on the second site. As each of these environments is in some
ways different from the others, we describe the sequences recorded in each
environment separately. Table 6.2 summarizes the specificities of each data
sequence. Note that, for each sequence, the starting and ending points are ap-
proximately the same. In most of the sequences, there are closed loops along
the performed trajectories. Some sequences also slightly overlap, which can
be useful for the development of relocalization features.

6.2.3.1 Harbor sequences

To record the harbor sequences, System A was embedded on the lightweight
ROV Dumbo (DRASSM-LIRMM) with the camera facing downward, as shown
in figure 6.3. The ROV was navigating at a depth of 3 to 4 meters over an area
of around 100 m2. Although the sun illuminates this shallow environment,
a lighting system was used in order to increase the signal-to-noise ratio of
the images acquired by the camera. The explored area was mostly planar
but the presence of several big objects made it a real 3D environment, with
significant relief.

For each sequence, loops are performed and an apriltag calibration target
is used as a marker for starting and ending points. On these sequences, vision
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FIGURE 6.3: The Remotely Operated Vehicle Dumbo and the
acquisition system A, used to record the harbor sequences.

FIGURE 6.4: The Remotely Operated Vehicle Perseo, used on the
archaeological sites.

Credit: F. Osada - DRASSM / Images Explorations.

is mostly degraded by turbidity, light absorption, strong illumination varia-
tions and backscattering. In two sequences, visual information even becomes
unavailable for a few seconds because of collisions with surrounding objects.
Another challenge is the presence of areas with seagrass moving because of
the swell. Moreover, the ROV is sensitive to waves and tether disturbances,
which results in roll and pitch variations.

6.2.3.2 Archaeological sites sequences

The archaeological sites sequences were recorded in the Mediterranean sea,
off Corsica’s coasts. The System B, designed for deep waters, was embed-
ded on the Perseo ROV (Copetech SM Company) displayed in Fig. 6.4. In the
way it was attached to the ROV, the camera viewing direction made a small
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(A) Sandy cloud (B) Texture repetitive area (ballast stones)

FIGURE 6.5: Images acquired on the first archaeological site
(depth: 270m).

angle with the vertical line (≈ 20− 30 degrees). Perseo was equipped with
two powerful LED lights (250,000 lumens each) and with two robotics arms
for manipulation purposes. As localization while manipulating objects is a
valuable information, to grab an artifact for instance, in some sequences the
robotic arms are in the camera’s field of view. A total of 10 sequences have
been recorded on these sites, with 3 sequences taken on the first site and 7 on
the second one.

The first archaeological site explored was located at a depth of approxi-
mately 270 meters and hosted the remains of an antic shipwreck. Hence, this
site is mostly planar and presents mainly repetitive textures, due to numer-
ous small rocks that were used as ballast in this antic ship (Fig. 6.5a). These
sequences are affected by turbidity and moving sand particles, increasing
backscattering and creating sandy clouds (Fig. 6.5b). These floating particles
are stirred up from the seabed by the water flows of the ROV’s thrusters and
lead to challenging visual conditions. A shadow is also omnipresent in these
sequences in the left corner of the recorded images, because of the orientation
of the lighting system, optimized for the ROV’s own camera and not for the
SLAM ones.

The second visited archaeological site was located at a depth of approx-
imately 380 meters. On this site a hill of amphorae is present (Fig. 6.6b),
whose top is culminating a few meters above the surrounding seabed level.
During these sequences, the ROV was mainly operated for manipulation and
photogrammetry purposes. While the amphorae presented high texture, the
ROV was also sometimes hovering over low-textured sandy areas around
the hill of amphorae (Fig. 6.6a). Because of the presence of these amphorae,
marine wildlife was present on this site. Hence, the environment is quite dy-
namic, with many fishes getting in the field of view of the camera and many
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(A) Low texture area (B) Hill of amphorae

FIGURE 6.6: Images acquired on the second archaeological site
(depth: 380m).

Site Sequence Duration Length Visual Disturbances

Turbidity Collisions Backscattering Sandy clouds Dynamics Robotic Arm

Harbor
(depth ≈ 4 m)

Acquired by system A,
embedded on a lightweight ROV

#01 3’49" 39.3m X - X - - -
#02 6’47" 75.6m X - X - - -
#03 4’17" 23.6m X - X - - -
#04 3’26" 55.8m X X X - - -
#05 2’52" 28.5m X - X - - -
#06 2’06" 19.5m X - X - - -
#07 1’53" 32.9m X X X - - -

First Archaeological Site
(depth ≈ 270 m)

Acquired by System B,
embedded on a medium workclass ROV

#01 14’39" 32.4m X - X X X X
#02 7’29" 64.3m X - X X X -
#03 5’16" 10.7m X - X X - -

Second Archaeological Site
(depth ≈ 380 m)

Acquired by System B
embedded on a medium workclass ROV

#04 11’09" 18.1m X - X X X X
#05 3’19" 42.0m X - X - X -
#06 2’49" 31.8m X - X - X -
#07 9’29" 122.1m X - X - X -
#08 7’49" 41.2m X - X - X -
#09 5’49" 65.3m X - X - X -
#10 11’54" 83.5m X - X - X -

TABLE 6.2: Details on all the AQUALOC sequences and their
associated visual disturbances.

shrimps moving in the vicinity of the amphorae. In one of the sequences,
both arms get in front of the camera. Otherwise, the visual degradation are
the same as on the first site.

6.2.4 Comparative Baseline

As the acquisition of a ground truth is very difficult in natural underwater
environment, we have used the state-of-the-art Structure-from-Motion (SfM)
software Colmap (Schönberger et al., 2016) to offline compute a 3D recon-
struction for each sequence and extract a reliable trajectory from it. By setting
very low the features extraction parameters, we were able to extract enough
SIFT features (Lowe, 2004) to robustly match the images of each sequence.
Performing a matching of the images in an exhaustive way, that is trying to
match each image to all the other ones, allows to get a reliable trajectory re-
construction, as many closed loops can be found (Fig. 6.7). In Table 6.4, we
provide statistics for each sequence about Colmap’s 3D reconstructions to
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Harbor sequences

#01 #02 #03 #04 #05 #06 #07

Nb. of used images 918 1590 1031 770 692 508 447
Nb. of 3D points 112659 305783 355130 194407 236845 188807 181964
Mean tracking length 14.9 13.2 17.2 9.7 10.7 12.1 9.5
Mean reproj. err. (px) 0.896 0.816 0.713 0.715 0.688 0.733 0.846

TABLE 6.3: Colmap trajectories reconstruction statistics on the
Harbor sequences. The number of provided images, the

number of reconstructed 3D points, the mean tracking length
for the 3D points and the mean reprojection error for the 3D

reconstruction are given for each sequence.

Archeological sites sequences

#01 #02 #03 #04 #05 #06 #07 #08 #09 #10

Nb. of used images 880 445 311 637 200 170 569 470 350 715
Nb. of 3D points 196857 174514 160531 249048 42877 45799 251620 237882 114814 329686
Mean tracking length 23.5 12.6 8.4 8.5 7.6 6.7 7.4 9.1 7.9 9.2
Mean reproj. err. (px) 0.746 0.621 0.474 0.673 0.601 0.569 0.645 0.616 0.660 0.661

TABLE 6.4: Colmap trajectories reconstruction statistics the
Archaeological sites sequences. The number of provided
images, the number of reconstructed 3D points, the mean

tracking length for the 3D points and the mean reprojection
error for the 3D reconstruction are given for each sequence.

highlight the reliability of the reconstructed models. These statistics include
the number of images used, the number of estimated 3D points, the average
track length of each 3D points (i.e. the number of images observing a given
3D point) and the average reprojection error. The high average track lengths
for each sequence (going from 6.7 to more than 20) assess the accuracy of the
3D points’ estimation, as it leads to a high redundancy in the bundle adjust-
ment steps of the reconstruction. Moreover, given these high track lengths,
the average reprojection error is a good indicator of the overall quality of a
SfM 3D model and for each one of the sequences this error is below 0.9 pixel.

The extracted trajectories have been scaled using the pressure sensor mea-
surements and hence provide metric positions. Although these trajectories
cannot be considered as being perfect ground truths, we believe that it pro-
vides a fair baseline to evaluate and compare online localization methods.
Evaluation of such methods can be done using the standard Relative Pose
Error (RPE) and Absolute Trajectory Error (ATE) metrics (Sturm et al., 2012).

Furthermore, we have made available the list of overlapping images (i.e.
matching) according to Colmap for each sequence. These files could hence
be used to evaluate the efficiency of loop-closure or image retrieval methods.
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(A) Colmap reconstruction - Harbor #02

(B) Colmap reconstruction - Archaeological Site #07

(C) Colmap reconstruction - Archaeological Site #10

FIGURE 6.7: Examples of trajectories reconstructed with
Colmap. The camera’s poses are represented in red and the

reconstructed 3D landmarks in black.

6.2.5 Discussion

The presented datasets and acquisition systems have provided the data used
in the chapter 5 to quantitatively evaluate the accuracy of the proposed SLAM
algorithm. Furthermore, we have been able to run the SLAM algorithm in
real-time on the Tegra TX2 embedded within the acquisition systems during
the surveys. These tests thus allowed us to validate the different algorithms
developed during this thesis for the purpose of localization and mapping in
an underwater archaeological context.

This dataset has also provided us material to work on for developing a
dense 3D reconstruction method. By integrating a 3D reconstruction module
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to the SLAM algorithm, we wish to further enhance the usefulness of the
proposed system for piloting and navigation purposes during archaeological
surveys. This 3D reconstruction method is detailed in the next section.

6.3 Towards Online Photogrammetry

We now propose a method to perform dense 3D reconstruction online. This
method is built upon the SLAM methods developed in this thesis and is ap-
plicable with the acquisition systems described in this chapter.

The SLAM algorithm provides a way to estimate the localization of an
underwater vehicle along with a sparse 3D map composed of the 3D land-
marks estimated for the visual localization purpose. The 3D reconstruction
method we propose is adapted to the monocular case and leverages all the
keyframes and 3D landmarks estimated by the SLAM algorithm.

This method assumes that once a keyframe is old enough to be fixed
within the SLAM algorithm, its pose and observed 3D landmarks estimates
have converged towards their true values and are hence accurate enough to
be reliable. These 3D observations are augmented and used as depth seeds
to create a depth map. These seeds are then interpolated using a 2D Delau-
nay triangulation. From this, we get 2D depth maps that we can turn into
3D dense point clouds using the known keyframe’s pose and camera’s cali-
bration matrix. These 3D point clouds are finally used to create 3D meshes
through a Truncated Signed Distance Field (TSDF) (Curless et al., 1996).

This 3D reconstruction module is run in an individual thread within the
SLAM algorithm for the creation of the dense 3D reconstruction in parallel
of the SLAM estimations. The reconstruction is hence performed online but,
because of the monocular camera that prevents a direct observation of the 3D
structure of the imaged scenes, there is a slight delay between the dense 3D
reconstruction and the SLAM estimations.

6.3.1 Turning sparse 3D measurements into 2D depth maps

The 3D reconstruction module receive every keyframe leaving the optimiza-
tion window of the SLAM algorithm. This way, the 3D reconstruction mod-
ule only process keyframes accurately estimated. Every time a keyframe is
received, we process it as follows:
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6.3.1.1 Redundancy Check

First, we check the similarity of this keyframe with the last processed keyframe.
This is done by counting the number of common 3D landmarks they both ob-
serve and comparing it to the total number of 3D landmarks observed by the
current keyframe. If this number drops below a threshold (≤ 75%), we con-
sider the new keyframe informative enough to be processed. Otherwise, the
received keyframe is dropped and the module waits for the next keyframe.
This similarity check allows to reduce the computational time allocated to
the 3D reconstruction thread by avoiding redundant computations.

6.3.1.2 3D Augmentation

Secondly, if the keyframe is selected for the dense 3D processing, a 3D aug-
mentation step is performed using the current keyframe and the last keyframe
used in this 3D reconstruction pipeline. This 3D augmentation step aims at
increasing the number of 3D observations (i.e. keypoints corresponding to
known 3D landmarks) per keyframe.

This 3D augmentation is done as follows. First, many new keypoints are
detected in the last keyframe in order to get a dense spread of keypoints over
the image. In practice, between 1000 and 2000 points are sought in this step
and we try to detect at least one keypoint every 5 pixels. Then, all the key-
points belonging to this previous keyframes and not observed in the current
keyframe are tracked in the current keyframe’s image through optical flow
tracking with the KLT method. For the keypoints that already correspond to
a 3D landmark, a prior solution is provided to the KLT tracking by projecting
the corresponding landmarks into the current keyframe.

The keypoints that are successfully tracked are then run through an out-
lier test using the epipolar geometry. Using the known poses of both keyframes,
we compute the fundamental matrix F defined by their relative configura-
tion:

F =
(

K · ∆RT
)−T
· (K · ∆R · ∆t)∧ ·K−1 (6.4)

where K ∈ R3×3 is the camera’s calibration matrix, ∆R ∈ SO(3) is the
relative rotation matrix from the current keyframe to the last keyframe, ∆t ∈
R3 is the relative translation from current keyframe to last keyframe and (·)∧

is the skew-symmetric matrix operator.
The outliers removal is then done by computing the geometrical error of

each keypoint tracked with respect to the keyframe’s epipolar geometry. The
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fundamental matrix F defines the epipolar planes between two camera’s im-
ages. These planes are constructed from corresponding lines in both images
and we know from epipolar geometry that a 3D point that projects onto such
a line in one image has to project on the corresponding line in the other im-
age. The fundamental matrix F encodes this relation as follows:

xT · F · x′ = 0 (6.5)

with x′ ∈ R3 and x ∈ R3 are the homogeneous coordinates of matching
keypoints between the last keyframe and the current keyframe, respectively.

Because of noise in the visual measurements, Eq.(6.5) is never perfectly
satisfied. The geometrical error r of each tracked keypoint is then computed
as the pixel distance from the corresponding epipolar line:

l = F · x′ =
[
lx ly lz

]T
and x =

[
u v 1

]T
(6.6)

r =
lx · u + ly · v + lz√

l2
x + l2

y

(6.7)

Each tracked keypoint whose epipolar error r is higher than 1.5 pixels is
discarded. The keypoints that pass the epipolar check are then triangulated
and, those with a reprojection error lower than 1 pixel in both images, are
added to the set of 3D keypoints of both keyframes. We voluntarily prune
many keypoints in this step in order to prevent the inclusion of spurious
matchings. Results of this 3D augmentation process are illustrated in Fig. 6.8
- 6.9.

6.3.1.3 Depth Map Densification

Next, a 2D depth map is created from all the 3D keypoints in the current
keyframe, using a 2D Delaunay triangulation. These 3D kepoints (i.e. key-
points observing a known 3D landmark) are used as seeds for a 2D Delaunay
triangulation step. The goal of the 2D Delaunay triangulation is to create tri-
angles from the nearest neighbors of each seed by ensuring that no triangle
circumcircle contains any other triangle within its surface 1. This is done by
maximizing the smallest angle over the set of all the angles defined by the
created triangulation.

1Note that, if one takes all these circles’ centers and connect them to their three nearest cir-
cles centers neighbors we will get the 2D Voronoi diagram, which is the dual of 2D Delaunay
triangulation.
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(A) Initial set of 3D corresponding features between the current and previous keyframes.

(B) Augmented set of 3D corresponding features between the current and previous
keyframes.

FIGURE 6.8: Sample results #1 of 3D augmentation.

(A) Initial set of 3D corresponding features between the current and previous keyframes.

(B) Augmented set of 3D corresponding features between the current and previous
keyframes.

FIGURE 6.9: Sample results #2 of 3D augmentation.
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The 2D Delaunay triangulation thus returns a set of triangles, whose sum-
mits are the provided seeds and whose connected summits correspond to
nearest neighbors. While the Delaunay triangulation could be directly per-
formed over the 3D point cloud, we chose to do it in 2D as it highly reduces
the complexity of the task.

Once the 2D Delaunay diagram computed, the sparse depth map is den-
sified by interpolating the depth values of each seed over the depth image.
This is done by computing the barycentric coordinates (λ1, λ2, λ3) of every
void pixel pi within a triangle with summits (s1, s2, s3):

pi =
[
ui vi

]T
and sj =

[
uj vj

]T
(6.8)

ui = λ1 · u1 + λ2 · u2 + λ3 · u3 (6.9)

vi = λ1 · v1 + λ2 · v2 + λ3 · v3 (6.10)

with:

λ1 =
(v2 − v3)(ui − u3) + (u3 − u2)(vi − v3)

(v2 − v3)(u1 − u3) + (u3 − u2)(v1 − v3)
(6.11)

λ2 =
(v3 − v1)(ui − u3) + (u1 − u3)(vi − v3)

(v2 − v3)(u1 − u3) + (u3 − u2)(v1 − v3)
(6.12)

λ3 = 1− λ2 − λ1 (6.13)

The depth value di of the pixel pi is finally computed from the depth
values (d1, d2, d3) of (s1, s2, s3) as:

di = λ1 · d1 + λ2 · d2 + λ3 · d3 (6.14)

The computation of the dense depth map assumes that neighboring pixels
will have similar depth values. In order to limit the effects of this approxi-
mation, we add a regularization parameter γ(·) to remove pixels which are
too far from the triangles’ vertices:

di = γ(pi) · (λ1 · d1 + λ2 · d2 + λ3 · d3) (6.15)

γ(pi) =

1, if 1
3 ∑3

j=1
∥∥pi − sj

∥∥ ≤ threshold

0, otherwise
(6.16)



156 Chapter 6. Field Experiments and Online Photogrammetry

In practice, we have obtained satisfying results when setting the threshold
to 20 pixels.

In the context of underwater archaeology, we know that there should not
be big depth variations in the 3D scene acquired by the camera. We use this
assumption to further regularize the dense 2D depth maps by computing the
mean and standard deviation of the depth values within each depth map and
remove those farther from the mean than five times the standard deviation.
This threshold has been chosen empirically and gives good results on our
data. Two examples of densified 2D depth maps are given in Fig. 6.10 - 6.11.
These examples illustrate well the impact of the regularization that prevent
from taking into account inaccurate areas.

The dense 2D depth map obtained is finally turned into a 3D dense point
cloud by projecting every pixel pi with a defined depth value di into the
world frame using the known current keyframe’s pose (Rwc, twc) and cam-
era’s calibration matrix K:

wlj = Rwc · p′i + twc with p′i = di ·K−1 ·
[

pi

1

]
(6.17)

where wlj ∈ R3 is the 3D landmark associated to the pixel pi.
The resulting 3D point clouds are then used in a 3D truncated signed

distance field for 3D meshing.

(A) 2D Delaunay triangulation result for
Fig 6.8b.

(B) 2D densified depth map from the
Delaunay-based interpolation.

FIGURE 6.10: Sample results #1 for depth maps densification.

6.3.2 Dense 3D Meshing

The estimated dense 3D point clouds are then fused within a Truncated Signed
Distance Field (TSDF). The principle of the TSDF is to discretized the 3D world
space into voxels and to assign a signed distance to surface values to each
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(A) 2D Delaunay triangulation result for
Fig 6.9b.

(B) 2D densified depth map from the
Delaunay-based interpolation.

FIGURE 6.11: Sample results #2 for depth maps densification.

voxel (a 2D example of a TSDF is given in Fig. 6.12). The surfaces are defined
by the hitting points of the rays projected from the camera, that is by the
endpoints of rays defining the projection of the observed 3D landmarks from
the camera. The TSDF takes into account the uncertainty of the 3D points to
define a hitting probability area and retrieve the associated voxels. For each
one of these voxels, a distance value is assigned by computing the distance
between the voxel’s center and the hitting point of the ray, a positive distance
is assigned to voxels between the camera and the 3D point (i.e. outside of the
surface) and negative distance to voxels behind the 3D point (i.e. inside the
surface). As we are only interested in close to surface voxels for the 3D re-
construction purpose, the assigned distances which are greater than or lower
than a threshold are truncated. This truncation is then used in the reconstruc-
tion phase to reduce the computation time by not taking into account voxels
whose distance absolute value is equal to this threshold. This threshold is
usually set to reflect the expected noise of the provided 3D point clouds.

The voxels’ distance values are updated for each new point cloud. The
voxels within the hit probability of each ray composing the point cloud are
updated by recursively computing an estimate of their signed distance val-
ues with a weighted running average. Therefore, for each ray, both the signed
distance and a weighting factor of the close voxels are updated. This way, the
final signed distance assigned to each voxel takes into account the amount
of information received and the noise of the measurements (i.e. of the 3D
points).

Once the signed distance values are computed, the surfaces of the scene
can be extracted by looking for the iso-contours (i.e. the 0 values) defined by
the voxels. These iso-contours are finally turned into meshes by applying an
incremental Marching Cubes algorithm (Lorensen et al., 1987).
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FIGURE 6.12: Example of a 2D TSDF grid (image taken from
http://pointclouds.org/documentation/tutorials/using_

kinfu_large_scale.php).

In the same way, the TSDF also fuses the pixel intensities related to the
3D points in order to add texture (in our case a color to each vertex) to the 3D
meshes.

6.3.3 Implementation Details

We have used the OpenChisel (Klingensmith et al., 2015) module to imple-
ment the TSDF. OpenChisel is a ROS library that implements a TSDF 3D
reconstruction. This library is highly optimized to run on CPU in real-time.
To do so, it uses a voxel hashing internal representation (Nießner et al., 2013).
This representation dynamically allocates chunk of voxels (i.e. small blocks
of generally 16× 16× 16 voxels) near the estimated surfaces when needed.
This way it avoids allocating the whole volume of voxels but stick to the im-
portant areas. In order to optimize the voxels’ access, a hashing function is
used to recover the index of a voxel from its 3D coordinates.

One of the great advantage of such a TSDF 3D reconstruction is that it al-
lows flexible reconstruction which can either focus on accuracy or on speed.
For instance, the resolution of the voxels will highly impact the computa-
tional load. A maximum distance at which we consider the 3D information
to be accurate enough to be processed can also be set in order to avoid recon-
structing poorly accurate areas which are far away from the camera. Besides
improving the visual representation of the model, this maximum distance
also limit the allocation of new chunks of voxels which results in lower mem-
ory storage.

http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php
http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php
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As in our case we want the 3D reconstruction to be performed online, we
have empirically set the TSDF parameters as follows:

• Chunk size: 16× 16× 16 voxels

• Voxel resolution: 0.05 m

• Maximum distance: 4 m

• Expected noise on the 3D data: 0.1 m

In order to test the proposed 3D reconstruction module, we have imple-
mented it in an individual thread that runs in parallel with the SLAM algo-
rithm.

6.3.4 Results

An illustration of the method running online on the archaeological sequence
#8 is give in Fig. A.5. The trajectory of the camera is drawn in green and
the currently optimized keyframes are shown in blue. Some little black dots
appear over the 3D reconstruction and correspond to the 3D landmarks used
by the SLAM algorithm. As we can see, the reconstruction is accurate enough
to be visually pleasant and exploitable for archaeologists.

In Fig. 6.14 we illustrate the final 3D reconstruction obtained after run-
ning the SLAM along with the reconstruction module on the archaeological
sequence #9. This illustration highlights well one potential use of this 3D
reconstruction for archaeologists: ensuring the full coverage of a wreck. Fur-
thermore, we can see that the accuracy of the 3D reconstruction is sufficient
to well distinguish the different amphorae.

On the wreck covered by both sequences, the amphorae are quite massive
(at least 30 centimers long) and are hence well above the voxel’s resolution
set. If one would use the same reconstruction module on a different wreck
with smaller objects of interest, the voxel resolution should be set accordingly
but at the expense of a heavier computational load. While this should not be
a problem on a modern laptop, it could become an issue on the Tegra TX2
embedded in the acquisition systems. As we said, there is a trade-off between
real-time performance and accuracy.

6.3.5 Discussion

The proposed dense 3D reconstruction module is pretty simple and yet it
works very well in practice. The main limitation is the 3D augmentation step
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FIGURE 6.13: Online 3D reconstruction for archaeological se-
quence #8. The trajectory of the camera is drawn in green. The
position of the current keyframes in the sliding window are

shown in blue.

FIGURE 6.14: Final 3D reconstruction for archaeological se-
quence #9.

which is not optimal. Indeed, there is usually a significant motion of the
camera between keyframes and the KLT method is generally not well suited
to track features between images that have big pixels displacement. Even
if in practice the results are convincing, it would be more adequate to use
descriptors at this stage. Descriptors with invariance to rotation and scale
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would probably be the best candidates as it is the kind of motions that can
be expected between keyframes. Also, the regularization steps performed on
the 2D depth map are quite empiric and might not be well suited for other
environments.

Another limitation is the fact that the 3D reconstruction is purely static.
This why we have to slightly delay the 3D reconstruction in order to only
process 3D landmarks that are fixed or that we consider as accurate enough
to be reliable for the purpose of 3D meshing. An enhancement would be to
manage moving 3D landmarks in the 3D reconstruction process (Piazza et al.,
2018) in order to perform the dense 3D reconstruction at the SLAM’s rate.

In the underwater archaeological context, one of the big issue when per-
forming the acquisition of data for offline photogrammetry is to discover
later that some parts of the wrecks are missing. The 3D reconstruction mod-
ule proposed here is therefore very useful to ensure a full coverage of the area
of interest. Furthermore, even if the 3D reconstruction quality will depend
on the accuracy of the localization, we can imagine performing offline a full
Bundle Adjustment at the end of a session in order to optimize the SLAM es-
timates before running the 3D reconstruction module. In this case, we could
also allow more processing to the 3D reconstruction module in order to get
finer 3D meshes.

6.4 Conclusion

In this chapter we have presented the design of two acquisition systems that
embed a monocular camera, a pressure sensor, a MEMS-IMU and a com-
puter. These acquisitions systems are hence self-contained and their small
size make them very easy to embed on almost any ROV. These acquisition
systems have been used to record a large dataset that includes a comparative
baseline for the purpose of evaluating vision-based SLAM methods. These
datasets have been publicly released for the benefit of the community.

Additionally, we have presented a new 3D reconstruction module, com-
pliant with monocular setups. This 3D reconstruction module uses the out-
put of the SLAM algorithm in order to densify its 3D estimations and create
a dense 3D meshing from it. The meshing part of this module is done using
a truncated signed distance field and is therefore very efficient. This dense
3D reconstruction module runs online but with a slight delay with respect to
the SLAM outputs in order to ensure processing only reliable data.
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With this new 3D reconstruction module that can be run in parallel of
the SLAM algorithm and the design of acquisition systems that can be used
to run in real-time all these methods, we have opened the path for online
photogrammetry. This application should be of great interest for future un-
derwater archaeology surveys.
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Chapter 7

Conclusion

In this thesis we have investigated the problem of localization and mapping
in underwater archaeological context. We have proposed a solution based on
a vision-based SLAM method that tightly integrates the measurements of a
monocular camera, a pressure-sensor and a low-cost MEMS-IMU.

More specifically, the different problems that we have addressed are the
following:

How to efficiently process video streams of underwater images for the purpose of lo-
calization and mapping ?

We have addressed this problem in chapter 3 by conducting an evalua-
tion of both indirect features tracking methods, based on the use of descrip-
tors, and direct features tracking methods, leveraging on the surrounding
pixel intensities, on the specific case of images degraded by typical under-
water visual disturbances. We have shown that the Kanade-Lucas-Tomasi
(KLT) method, based on the estimation of the optical flow, performed better
than other methods for the purpose of features tracking when images are de-
graded by turbidity or are poorly textured. We have further highlighted that
methods based on descriptors have some ambiguity issues that prevent an
accurate tracking in such conditions.

We have then used the conclusion of this evaluation to propose a localiza-
tion and mapping solution which simply requires a monocular camera.

How to accurately ego-localize a robot with only a monocular camera in underwater
environments ?

To tackle the problem of monocular localization, we have proposed UW-
VO in chapter 4, a keyframe-based Visual SLAM (VSLAM) method that heav-
ily relies on Bundle Adjustment for continuous optimization of both the 3D
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map and the trajectory. We designed a feature-based monocular VSLAM that
uses the KLT method for frame to frame features tracking. We have also pro-
posed a retracking mechanism to overcome a weakness of the KLT. We have
shown that this retracking mechanism was helpful during video sequences
affected by numerous short occlusions due to moving animals (fishes and
shrimps mainly). We have finally evaluated UW-VO along some state-of-the-
art monocular VSLAM methods and the results demonstrated that UW-VO
was more robust to typical underwater disturbances.

An unavoidable flaw when performing pure monocular VSLAM in an
unknown environment is that the scale of the trajectories is not observable.
In order to both recover the scale and increase the accuracy of the estimated
trajectories, we have then proposed to combine this VSLAM method with a
pressure sensor and a low-cost MEMS-IMU.

How to optimally fuse a pressure sensor and a MEMS-IMU with a monocular cam-
era for improved localization ?

In chapter 5, we have first investigated the fusion of the monocular cam-
era with the pressure sensor. We proposed to use a tight fusion paradigm
by including the pressure measurements within the nonlinear least-squares
optimization of UW-VO (i.e. the pose estimation step and the Bundle Adjust-
ment). By delivering depth measurements, the pressure sensor provides a
one dimensional absolute information about the vertical position of the sys-
tem with respect to the water surface. We have shown that this problem was
difficult because of a gauge issue due to different frame of references for both
sensors (i.e. camera and pressure sensor). Different integrations of the depth
measurements have been proposed and we have shown that using relative
depth error terms within the SLAM method produces better results than ab-
solute depth error terms when there is a significant misalignment between
the camera and the depth axis (i.e. gravity aligned axis). We have further
highlighted that by relaxing the gauge constraint over the orientation of the
frame of reference used by the SLAM we could align this frame with the
depth axis. We have shown that significant improvement in terms of accu-
racy could be reached using this method.

The proposed Visual-Pressure SLAM method (UW-VP) produces accurate
and scaled trajectories. Yet, it is completely dependent on the visual measure-
ments and fails during short visual information losses. To gain in robustness
we further proposed to integrate a MEMS-IMU within the SLAM algorithm.
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Following recent advances in the preintegration of IMU measurements,
we have proposed to tightly fuse preintegrated IMU measurements within
UW-VP. The resulting Visual-Inertial-Pressure SLAM method (UW-VIP) pre-
sented similar accuracy in terms of localization compared to UW-VP. How-
ever, we have shown that, by integrating inertial measurements, UW-VIP is
able to successfully localize during short periods of visual loss, highlighting
its higher robustness compared to UW-VP and UW-VO.

The accurate localization and mapping performed by the proposed SLAM
methods have then led us to develop a dense 3D reconstruction method,
compliant with a monocular camera.

How to get a dense 3D reconstruction from a monocular based setup ?

We have proposed in chapter 6 a dense 3D reconstruction module that
leverage the SLAM estimations in order to produce visually accurate 3D
meshing. This method uses the keyframes that are not optimized anymore to
create dense depth maps by means of interpolation of their 3D observations
through a 2D Delaunay triangulation. These depth maps are then integrated
into a 3D truncated signed distance field (TSDF) to create the 3D meshes
of the reconstruction. The library OpenChisel implements an efficient 3D
TSDF method and has been used to render the 3D reconstructions. The fact
that the method we propose waits for optimized keyframes create a delay
with respect to the SLAM estimations, thus preventing an efficient use for
the purpose of trajectory planning or obstacle avoidance. However, we have
shown that the 3D reconstructions are accurate enough to be exploited by ar-
chaeologists ofr piloting and analysis purpose. While not being as accurate
as offline photogrammetry, the proposed method opens the path for online
photogrammetry.

All these algorithms have been developed to be embedded on ROVs used
in underwater archaeology. Therefore, we have designed two self-contained
acquisition systems, that embed a monocular camera, a pressure sensor and
a low-cost MEMS-IMU, along with a Tegra TX2 computer, as presented in
chapter 6. We have validated the proposed algorithms by successfully run-
ning them in real-time on the embedded computer during an archaeological
campaign conducted by the DRASSM (Department of underwater archae-
ology, French Ministry of Culture). We have further taken the opportunity
of this campaign to record a large dataset, named AQUALOC, that we have
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publicly released for the benefit of the community. The data sequences com-
posing AQUALOC contain synchronized measurements suitable to the de-
velopment of localization and mapping methods. We have also included a
comparative baseline trajectory for each sequence by using a Structure-from-
Motion library, thus providing a way of quantitatively evaluating the accu-
racy of different localization methods.

The results of this thesis open the path to very interesting applications. In-
deed, the estimation of accurate localization along with the creation of dense
3D reconstruction in real-time provides two information that are highly valu-
able in other robotic fields such as control and planning, but also to other
fields (coral reef monitoring for biologists, for instance). However, the pro-
posed system is still far from being perfect. As vision is the main source
of information used in the algorithms, any too strong disturbances for more
than a few of seconds would lead to failures. We next discuss about the limi-
tations of the current system and propose some perspectives.

Limitations and Perspectives

A first obvious limitation of the proposed system is a lack of loop-closure
capability. Detecting loops in a trajectory is the best way of reducing drift in
localization estimations in unknown environments, when no global position-
ing information is available (such as acoustic positioning systems or GNSS).
By detecting a loop at a given point in a trajectory, pose graph optimization
can then be performed in order to correct the past trajectory in addition to
correcting the current pose. However, as shown in chapter 4, classical tech-
niques based on Bag of Words (BoW) (Galvez-Lopez et al., 2012) do not work
well in underwater environments. The most likely cause of failure is the
fact that these BoW are trained offline on big set of images in order to learn
what kind of features are good for the problem of relocalization. As under-
water images have different characteristics, compared to land or air images,
the learnt BoW are very likely to be unsuited. Some works propose to use
global descriptors for this task (Carrasco et al., 2016a; Carrasco et al., 2016b).
The use of online BoW (Angeli et al., 2008; Nicosevici et al., 2012) also seems
to be promising for underwater environments. Indeed, online BoW are not
trained online but incrementally built from the processed images. Therefore,
the BoW used for the task of loop-closure detection is well adapted to the cur-
rent environment. While such methods are a bit more demanding in terms
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of computation, some fast methods, with potential real-time capacity, have
been proposed recently (Garcia-Fidalgo et al., 2018).

Another limitation, which affects all fusion estimators for the task of lo-
calization, is that measurements have to be dropped over time to keep a
real-time capability. However this is non-optimal, as the current estima-
tions mainly come from a Maximum Likelihood Estimation over the most
recent measurements. A way to deal with this is to rely on marginalization
(Leutenegger et al., 2015). Marginalizing states instead of dropping them al-
lows to project their covariances on the more recent states, that are kept into
the sliding window estimator. The marginalized states then create a prior for
the next optimization. However, if not done carefully, this process creates fill-
in in the initially sparse Hessian matrix used for optimization, leading to sig-
nificantly slower optimizations. Yet, by removing measurements that would
lead to big fill-in, marginalization can provide a good way for improving
the consistency of the estimations. Furthermore, recent methods have shown
that Hessian matrix affected by fill-in could be sparsified by setting to zero
all the elements that do not provide a significant prior information (Hsiung
et al., 2018b). The SLAM methods proposed in this thesis could therefore
greatly benefit from this kind of enhancement.

Eventually, the use of a monocular camera is kind of a limitation as well.
Even if monocular cameras provide enough information for the task of local-
ization and mapping (at least up to a scale factor), they are not as robust as
stereo setups (Mur-Artal et al., 2017). Moreover, when even coupling them
with complementary sensors, such as IMUs, the non-observability of scale
makes everything more complex. For instance, the estimation of the iMU
bias over the accelerometer is a lot easier with stereo cameras thanks to the
direct observation of scale (Leutenegger et al., 2015; Usenko et al., 2016). Con-
sidering the small size of the acquisition systems designed in this thesis, it
would be interesting to embed two of such systems on a ROV in order to
create a binocular system (Paul et al., 2017). If the sensors measurements
could be shared between these two acquisition systems, these latter could be
turned into a multi-cameras system with a very large field of view. In prac-
tice, such a system with one camera at the front and another at the back of an
ROV would be very useful for continuous localization during manipulation
tasks. Indeed, durign manipulations, the sediment is moved by the ROV’s
arm and by the thrusters, which may completely blur the field of view of one
of the cameras. But, if installed on the other side of the ROV, the second one
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could keep a good visibility and continue to provide a localization informa-
tion. Another use case would be to have one camera set horizontally and
one set vertically. Such setups could prove to be useful to localize from both
the seabed and potential vertical structures at the same time (in a harbor for
instance).

These limitations put apart, the proposed SLAM methods and 3D recon-
struction pipeline already provide accurate enough information for many
tasks. Besides, SLAM is often a key component in robotic systems for the de-
velopment of high level features. Given that, the proposed SLAM methods
open many perspectives. Multi-temporal navigation (i.e. navigation in al-
ready mapped areas) (Lynen et al., 2015), multi-robots navigation (with map
sharing between the robots) (Dubois et al., 2019; Saeedi et al., 2016) or visual
servoing (Chaumette et al., 2006; Laranjeira et al., 2017) are good examples
of scenarios which could benefit from the SLAM outputs.

The rise of deep learning in computer vision has also brought many per-
spectives for the tasks of localization and mapping in robotics. One could
imagine integrating Convolutional Neural Networks (CNNs) within the map-
ping module to create semantic 3D reconstructions (Boulch et al., 2018; Car-
valho et al., 2019; Zhi et al., 2019), which could both be useful for better a
interpretation of the 3D reconstructions, but also as an additional informa-
tion to integrate within the SLAM for more accurate localization (McCormac
et al., 2018; Salas-Moreno et al., 2013; Xu et al., 2019). CNNs have also proven
to be efficient for the task of stereo matching (Chang et al., 2019; Ferrera et
al., 2019b; Mayer et al., 2016) or monocular depth estimation (Carvalho et
al., 2018; Godard et al., 2017) and could provide better 3D estimations for
localization and mapping. Another obvious application is the use of deep
learning for underwater image enhancement (i.e. denoising or dehazing) and
several works have already be proposed on this topic (Fabbri et al., 2018; Li
et al., 2018; Li et al., 2017).

Yet, the use of deep learning in underwater scenarios is rather scarce at
the time of writing, mainly because of the requirement of large annotated
datasets to train CNNs. Yet, we believe that it is just a matter of time before
seeing more and more underwater datasets publicly released for this pur-
pose. Moreover, the perspectives offered by unsupervised or weakly super-
vised learning methods (Caye Daudt et al., 2019; Zhou et al., 2017) are very
interesting in contexts where the acquisition and annotation of large enough
datasets is complex.
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As a final note, the methods developed within this thesis are actually not
tied to the underwater environment and could be used in other fields as well.
For instance, the monocular VSLAM method has been successfully tested on
video sequences acquired by cameras embedded on UAVs, cars and even
airplanes, and its robustness to the challenging underwater visual conditions
has proven to be useful in the general case of performing Visual SLAM in
visually degraded conditions.
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Appendix A

Résumé Étendue

Introduction

Dans cette thèse, nous étudions l’utilisation du SLAM basé vision pour
relever le défi de la localisation sous-marine dans un contexte archéologique.
Plus spécifiquement, nous étudions d’abord l’efficacité des méthodes de suivi
de points d’intérêts dans des images dégradées par des perturbations vi-
suelles typiques en milieux sous-marins. Nous proposons ensuite un al-
gorithme de SLAM visuel (VSLAM) monoculaire, bien adapté aux environ-
nements sous-marins. Cette méthode de SLAM monoculaire est ensuite éten-
due aux mesures d’un capteur de pression et d’une centrale MEMS-IMU
à faible coût. La méthode finale de SLAM Vision-Inertiel-Pression intègre
les différentes mesures des capteurs au moyen d’une fusion serrée au sein
de l’algorithme VSLAM et fournit des estimations sur l’échelle des trajec-
toires. Deux systèmes d’acquisition comprenant une caméra monoculaire,
un capteur de pression, une MEMS-IMU et un ordinateur embarqué ont été
développés pour des expériences sur le terrain. Nous avons également util-
isé ces systèmes d’acquisition pour enregistrer un grand jeu de données, qui
a été rendu public. En outre, la méthode SLAM développée a été mise en œu-
vre sur l’ordinateur embarqué et a été testée avec succès en temps réel. Enfin,
nous proposons une méthode de reconstruction 3D monoculaire dense en qui
fonctionne en ligne.

Cette thèse est organisée comme suit:

1. La première partie détaille l’évaluation des méthodes de suivi de points
d’intérêts sur des séquences d’images sous-marines.

2. La deuxième partie présente l’algorithme de SLAM visuel monoculaire
que nous proposons.
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3. La troisième partie détaille nos travaux sur la fusion d’un capteur de
pression et d’une MEMS-IMU au sein de l’algorithme de SLAM visuel.

4. La dernière partie présente les systèmes d’acquisitions que nous avons
conçus et le jeu de données que nous avons enregistré avec, ainsi qu’une
méthode de reconstruction 3D adapté aux systèmes monoculaires.

1. Évaluation du suivi de points d’intérêts en milieux sous-
marins

Le problème du suivi de points d’intérêts est l’une des pierres angulaires
de la localisation visuelle. En effet, le SLAM visuel (VSLAM) repose sur le
fait que, en observant des points 3D réels dans des images 2D successives
(avec un petit mouvement entre eux), il est possible d’estimer la pose (posi-
tion et orientation) de la caméra par rapport à ces observations 3D. Un point
clé pour une localisation précise consiste donc à trouver la projection de ces
points 3D dans les images capturées. En outre, si l’on est capable de déter-
miner les emplacements d’un point 3D inconnu entre deux images prises à
partir de deux points de vue différents, ces deux observations peuvent être
exploitées pour estimer la position de ce point 3D. Comme l’estimation de la
pose de la caméra à partir d’observations 3D connues et la cartographie 3D
sont les éléments constitutifs de tout système VSLAM, un suivi très précis
des points d’intérêts est requis. Ce problème de suivi de points d’intérêts est
un cas particulier de ce qu’on appelle association de données dans la commu-
nauté robotique.

Cette section est consacrée à l’évaluation de méthodes directes et indi-
rectes pour le suivi de points d’intérêts. Plus précisément, nous comparons la
robustesse du suivi de points d’intérêts sur des images sous-marines présen-
tant des effets de turbidité et peu de texture.

FIGURE A.1: Images prises sur une épave antique (profondeur:
500 mètres, Corse, France) - Credit: DRASSM (Département de

Recherche en Archéologie Sub-aquatique et Sous-Marine).



Appendix A. Résumé Étendue 173

Nous avons donc comparé des méthodes basées sur l’utilisation de de-
scripteurs (méthodes indirectes) à une méthode basée sur le calcul du flot
optique (méthode directe) (Bouguet, 2000). Les résultats obtenus nous ont
montré que la méthode basée flot optique était plus robuste que les méth-
odes indirectes quand les images présentent des dégradations typiques de
l’environemment sous-marin.

2. SLAM Visuel Monoculaire Robuste en Environemments
Sous-marin

Cette partie présente UW-VO, la méthode de SLAM visuel monoculaire
que nous proposons. Cette méthode est basée sur la sélection d’images clés
et utilise fortement des techniques d’ajustement de faisceaux pour optimiser
à la fois la carte 3D et la trajectoire estimée.

Au vu des résultats de la section précédente, nous avons appliqué une
technique de suivi de point d’intérêts par flot optique au sein d’UW-VO. Les
points suivis servent ensuite à construire la carte 3D de l’environemment
dans lequel la caméra évolue, et à estimer la pose courante de la caméra.
Afin de fonctionner en temps-réel, UW-VO est divisé en deux threads: un
thread de suivi de points et d’estimation de pose à la fréquence caméra et un
thread gérant les tâches plus complexes et plus lourdes en temps de calcul
de cartographie et d’optimization. Le fonctionnement d’UW-VO est résumé
dans le schéma suivant :

Nous avons comparé UW-VO à des méthodes de l’état de l’art en SLAM
visuel monoculaire, à savoir ORB-SLAM (Mur-Artal et al., 2015), LSD-SLAM
(Engel et al., 2014) et SVO (Forster et al., 2017), et nous avons montré qu’UW-
VO est plus robuste et plus précis que ces méthodes sur des séquences vidéos
prises en milieux sous-marins.

Nous avons ensuite étendue UW-VO de façon à fusionner les mesures
d’un capteur de pression et d’une IMU-MEMS.

3. SLAM Vision-Pression-Inertiel pour une localisation sous-
marine robuste

Une limitation d’UW-VO est que l’échelle métrique des trajectoires n’est
pas observable. Cela est dû au fait qu’UW-VO est une méthode qui utilise
uniquement une caméra et n’a donc pas d’information directe sur la 3D des
scènes imagées. De plus, cette méthode est complètement dépendante des
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FIGURE A.2: Schéma block représentant le fonctionnement
d’UW-VO.

conditions visuelles et est mise en défaut quand ces dernières sont trop mau-
vaises.

Pour palier cela, nous proposons une fusion serrée des mesures d’un
capteur de pression et d’une IMU-MEMS. Le capteur de pression fournit
une information sur la profondeur et l’IMU fournit des informations sur
l’accélération et la vitesse angulaire du capteur (de façon assez bruité et avec
de large biais qui évolue dans le temps).

Nous proposons d’inclure les mesures de ces capteurs dans le graphe de
facteurs défini par l’ajustement de faisceaux d’UW-VO. Les mesures du cap-
teur de pression sont inclues en tant que mesures absolues et les mesures de
l’IMU sont préintégrées afin de former une seule mesures, facilement inté-
grable dans le graphe de facteur.

Une fenêtre glissante est utilisée afin d’optimiser le problème d’estimation
de pose à partir des différents capteurs. Cette optimisation est réalisée en
grâce à la méthode de Levenberg-Marquardt.

Cette méthode rend l’échelle des trajectoires observable et permet d’être
robuste à de courtes pertes de visibilité grâce aux informations fournies par
le capteur de pression et l’IMU.

Cette méthode de SLAM a pu être testée en conditions réelles grâce à la
conception de systèmes d’acquisition.
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FIGURE A.3: Graphe de facteurs représentant le problème de
SLAM Vision-Pression-Inertiel.

4. Systèmes d’acquistion et Reconstruction 3D

Afin de valider l’utilisation des méthodes de SLAM proposées en con-
ditions réelles nous avons conçus deux systèmes d’acquisitions, embarquant
les capteurs requis ainsi qu’un ordinateur embarqué. Ces systèmes sont donc
autonomes dans le sens où ils peuvent être embarqués sur n’importe quel
robot sous-marin. De plus, du fait de leur faible volume, ils sont très facile-
ment embarquables.

FIGURE A.4: Les systèmes d’acquistion.

En plus d’être utilisé pour valider nos algorithmes, nous avons enregisté
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un large jeu de données avec ces systèmes. Ce jeu de données a été mis à dis-
position de la communauté sous le nom d’AQUALOC (Ferrera et al., 2018a,
2019a). Les séquences contenues dans AQUALOC sont adaptés au dévelope-
ment de nouvelles méthodes de SLAM basée vision monoculaire.

Nous avons également exploité les données d’AQUALOC pour dévelop-
per une méthode de reconstruction 3D dense, adapté aux systèmes monoc-
ulaires. Cette méthode produit des cartes de profondeurs dense à partir des
estimations 3D de l’algorithme de SLAM. Ces cartes de profondeurs sont en-
suite intégrées dans une carte de distance signée 3D afin de créer le meshage
3D.

FIGURE A.5: Reconstruction 3D en ligne.

Conclusion

Dans cette thèse, nous avons proposé des solutions au problème de local-
isation et de cartographie de précision en environemment sous-marin. Plus
précisément, nous avons développé une méthode de localisation basée sur
un algorithme de SLAM monoculaire, robuste en milieu sous-marin. Cette
méthode à ensuite été étendue pour intégrer de façon serré les mesures d’un
capteur de pression et d’une IMU à faible coût. Nous avons montré que la
méthode de SLAM Vision-Inertiel-Pression qui en a suivi permet d’estimer
des trajectoires à l’échelle et d’être robuste à des pertes de visibilité tempo-
raires. Nous avons testé ces algorithmes de SLAM en conditions réelles grâce
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à la conception de deux systèmes d’acquisitions. Nous avons également util-
isé ces systèmes d’acquisition afin d’enregistrer un large jeu de données, que
nous avons rendu public. Finalement, à partir des données acquises et des
estimations du SLAM, nous avons proposé une méthode de reconstruction
3D dense, adaptée à des systèmes monoculaires et fonctionnant en ligne.
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