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Résumé

Les matériaux à deux dimensions retiennent l’attention d’un grand nombre physi-

ciens de la matière condensées du fait leur applications potentielles. Parmi eux, le

graphène a été l’objet de nombreuses études depuis la première analyse expérimentale

d’un plan d’atomes de carbone en 2004. Ses propriétés inhabituelles en font un bon

candidat pour remplacer le silicium. Les nano-structures en nid d’abeille, telles

que les ’dots’ quantiques, apparaissent comme des briques élémentaires pour des

nouveaux microcircuits électroniques. Les propriétés de ces nano-structures sont

déterminées principalement par les bords qui sont à l’origine d’états de basses

énergies – canaux de bords – gouvernant les propriétés de transport. En outre

les bords en configuration zigzag, qui favorisent les corrélations électroniques, sont

à l’origine d’un état magnétique alors que le graphène infini est non magnétique. La

combinaison possible de ces propriétés font de cet nano-matériaux de bons candidats

pour des applications en spintronique.

Ce travail de thèse contribue à la compréhension théorique des ces phénomènes.

Concrètement, nous utilisons une approche de champ moyen pour calculer les pro-

priétés magnétiques et de transport de nano-flocons de graphène. Pour cela nous

utilisons un modèle de Hubbard avec énergies d’interaction de Coulomb sur site.

Des études antérieures ont montré que la méthode du champ moyen donne de bons

résultats pour traiter les interactions, y compris pour l’étude des propriétés dy-

namiques. Techniquement, lorsque un état de champ moyen a été déterminé de

façon auto-cohérente, le problème est équivalent à celui d’électrons sans interaction.

La première partie de la thèse est consacrée au graphène infini, dont le résultat en

champ moyen dans l’approximation de Hartree-Fock est connu, pour étudier l’effet

du couplage spin-orbite sur les interactions électroniques et évaluer la précision de

la méthode par rapport aux autres méthodes numériques. Nous montrons, entre

autres, que le semi-métal de gap nul (sans spin-orbite) et l’isolant topologique (avec

spin-orbite) sont stables pour des valeurs faibles et intermédiaires de l’interaction

électron-électron, alors qu’un état anti-ferromagnétique apparâıt aux fortes inter-

actions. L’ordre anti-ferromagnétique sans spin-orbite est un ordre de Néel et un

ordre plan simple avec spin-orbite. La deuxième partie est consacrée à l’étude du

magnétisme des nano-flocons de graphène sans tenir compte du couplage spin-orbite.

L’apparition du moment magnétique aux bords des flocons dépend directement de

leur taille, leur géométrie et la configuration de leurs bords. L’origine du magnétisme
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de bords est due aux états de bords localisés lorsque les bords sont en configura-

tion ’zigzag’ alors que ces états disparaissent lorsque les bords sont en configuration

’armchair’. La dernière partie est consacrée à l’étude du transport résolu en spin

(spin up et spin down) d’une nano-flocon hexagonale magnétique en contact avec

deux réservoirs ayant des températures différentes, par la méthode des fonctions de

Green hors équilibre combinée aux résultats en champ moyen. Lorsque la différence

de température entre les réservoirs est non nulle, des courants de spin up et down cir-

culent en sens opposés dans la nano-flocon de graphène. Cela est dû aux différences

de concentration de porteurs de charge dans les deux réservoirs, déterminée par la

distribution de Fermi-Dirac, et le coefficient de transmission de la nano-flocon. Nos

calculs montrent qu’un effet Seebeck parfait, c’est à dire un pur courant du spin sans

courant de charge, un fort filtrage de spin et une amplification du courant de spin,

peut être obtenu pour certaines valeurs des températures des réservoirs, du gradient

de température et de la tension de grille appliquée. Ces résultats ouvrent la voie

vers de nouvelles applications des nano-flocons de graphène dans le domaine de la

spin-caloritronique.
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Abstract

2D materials are attracting attention from a big research community in solid-state

physics because of a large number of applications. Among these materials graphene

has been at the focus of attention ever since its experimental realization as a single

layer of carbon atoms in 2004 as an alternative to silicon due to its many unusual

properties. Honeycomb nanostructures such as quantum dots constitute fundamen-

tal building blocks for potential device applications. Essential ingredients of such

nanostructures are provided by the edges since they give rise to low-energy excita-

tions. Accordingly, such edge channels will dominate the transport of a nano-device.

Furthermore, zigzag edges are unstable with respect to interactions such that one

may get magnetism at these edges even if for example bulk graphene is non-magnetic.

The combination of both factors bears promise for spintronic applications.

The current work contributes to the theoretical understanding of the aforemen-

tioned phenomena. Concretely, we use a single-band Hubbard model with an on-site

Coulomb interaction combined with the mean-field theory in order to compute the

magnetic and transport properties of graphene nanoflakes. Previous investigations

have shown that a mean-field decoupling of the interaction yields surprisingly ac-

curate answers even for dynamical properties. At a technical level, once a static

mean-field has been determined self-consistently, the problem is reduced to non-

interacting electrons. A first part of this thesis revisits the Hartree-Fock mean-field

approximation for bulk graphene to study the impact of electron-electron interaction

with and without spin-orbit coupling and concurrently assess its accuracy by com-

paring with other numerical methods. The gapless semi-metal (for zero spin-orbit

coupling) and the topological band insulator (for nonzero spin-orbit coupling) are

stable for weak to intermediate electron-electron interaction, and undergo a tran-

sition to an antiferromagnetic phase at strong interaction. The antiferromagnetic

order is of the Néel type without spin-orbit coupling, and of the easy-plane type

with spin-orbit coupling. The systematic investigation of magnetism on graphene

nanoflakes is the second part of the present work when ignoring the spin-orbit cou-

pling. The onset of the edge magnetic moment strictly depends on the size of the

graphene nanoflakes, the geometry and the edge termination. Herein, the origin of

the magnetism on the edges of graphene nanoflakes is attributed to the localized

edge states in zigzag edges which vanish in armchair edges. A final part of the dis-

sertation investigates spin-resolved transport properties depending on the thermal
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bias, typically the transport of charge carriers via spin-up and spin-down states, in

a magnetic hexagonal graphene nanoflake connected with two metallic leads. As a

temperature difference is applied, significant spin-up and spin-down currents, which

are computed using the non-equilibrium Green’s function technique combined with

the mean-field theory, flow in opposite directions through the graphene nanoflakes.

This is the consequence of the imbalance of charge carrier concentrations, which is

determined by the Fermi-Dirac distribution at the two leads, and transmission spec-

tra. Furthermore, our calculations show that a perfect spin-Seebeck effect, a pure

spin current without charge current, a high spin-filtering effect as well as the ampli-

fication of spin current can be obtained by tuning the temperature at the leads, the

temperature gradient and the back-gate voltage. These results pave the way for new

application potential of the graphene nanoflakes in the field of spin caloritronics.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The electronic properties of graphene . . . . . . . . . . . 6

1.2.1 Crystal structure of graphene . . . . . . . . . . . . . . . . 6

1.2.2 Electronic band structure of graphene . . . . . . . . . . . 8

1.2.3 Graphene nanoribbons . . . . . . . . . . . . . . . . . . . . 11

In this chapter, we manifest the motivation, ideas and structure of the thesis. Next

will be the fundamentals and electronic properties of graphene.

1.1 Motivation

According to Mermin-Wagner theorem, two-dimensional materials should be ther-

modynamically unstable and they therefore could not exist in nature. Nevertheless,

the reality indicated the opposite through the appearance of the graphene sheet

which was first isolated in 2004 [1, 2]. That result not only robustly confirms the

existence of two-dimensional materials in nature, but also sets up a stone for an ex-

tremely interesting new field of research. Although graphene has been theoretically

studied since 1947 with the first investigation carried out by Wallace [3], its fame

really began after its isolation and the Nobel Prize which was awarded to A. Geim

and K. Novoselov in 2010. Since then, there is great attention for the isolation,

identification and characterization of graphene and other two-dimensional materials

such as hexagonal boron nitride (hBN), transition metal dichalcogenides (MoS2,

MoSe2, MoTe2, WS2, WSe2,...), silicene, etc.

Both experiment and theory show that graphene with a unique electronic band
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structure near the Fermi energy is a lot more than just a two-dimensional mate-

rial. In particular, the conduction band and valence band touch each other at two

nonequivalent Dirac points, called K and K ′, with zero bandgap and zero density

of states (DOS) at the Fermi energy. Graphene is hence a gapless semiconductor

or a semimetal (SM). Most prominently, graphene can be described by the Dirac

equation for the massless fermions at low energy. However, the spin and the speed of

light in the Dirac Hamiltonian are here replaced by the sublattice degrees of freedom

(known as pseudospin) and graphene Fermi velocity [4]. Moreover, the conservation

of pseudospin can give rise to outstanding properties in graphene such as the absence

of backscattering or Klein tunneling where an incident electron is totally transmitted

by a local defect [4]. Because of these properties, graphene possesses a relatively

large electronic mobility which can reach up to 2×105 cm2V −1s−1 [5,6]. Combining

with the high thermal conductivity [7], graphene has created a great revolution in

the development of efficient electronic devices in the present era. In addition to the

interesting electronic properties, graphene with other impressive properties has been

driving it to various fields, leading to a new graphene era. For instance, owing to its

high surface area and good dispersion in various solvents, graphene can be used to

build a highly efficient capacitor [8]. Graphene has received positive responses for

biomedical applications such as drug delivery, biomedical imaging, biosensors, etc.,

due to its biocompatibility, non-toxicity, selectivity and solubility in a biological sys-

tem [9]. Graphene nanoflakes (GNFs) with the finite band gap have further potential

applications in photodetection, photovoltaic and light-emitting diodes (Leds) [10],

and so on.

Most notably, graphene has attracted much more attention for applications to spin-

tronics for several reasons as follows. (1) The weak spin-orbit coupling of graphene

results in the relatively easy control of the electron spin [11] by the external fields

such as the electric field or the Rashba spin-orbit coupling. It is considered as a

consequence of the simple relation between the carrier wavevector and the external

fields [12]. (2) The spin diffusion length has been theoretically proposed up to 100

µm with the spin lifetime approximately 1 µs [13, 14]. Many recent experimental

results have confirmed the potential of graphene for spin transport with long spin

diffusion length over tens of micrometers and long spin relaxation time at room

temperature [12, 15, 16]. Experimental studies of spin transport in hBN encapsu-

lated single-layer graphene in nonlocal spin valves showed a spin relaxation time

of 2 ns and spin relaxation length exceeding 12 µm at room temperature [12], as
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an example. (3) Furthermore, it is worth mentioning that graphene behaves as a

new magnetic material with nontrivial magnetic properties, i.e., magnetic moment

on zigzag edges, because graphene does not contain d or f electrons. More impor-

tantly, one-dimensional graphene nanoribbons (GNRs) can be fabricated and one

can control precisely the edges of the ribbons in experiment [17, 18]. Consequently,

the investigation of magnetic properties in graphene has been highly encouraged as

the main subject in many works. As indicated, the pristine graphene does not hold

magnetic moment because of the balance of the two graphene sublattices. Yet nu-

merous studies on both theory and experiment show that the magnetic properties in

graphene can be induced by defects because they are considered as sources so as to

generate the imbalance in the two graphene sublattices [19–25]. The defects can be

vacancies, impurities effect, light and heavy adatoms, non-metal doping or Coulomb

correlation. The spins on the same sublattice exhibit ferromagnetic order and the

spins on different sublattices are found to show antiferromagnetic (AF) order. On

the other hand, the emergence of edge states and the reduction of dimensionality

give rise to a significant modification in the electronic band structure of graphene.

So they affect directly on the magnetism of graphene systems at nanoscales such as

graphene nanoribbons and graphene nanoflakes. Not only theoretical findings but

also recent experimental findings have indicated the presence of spin polarization on

the edges of GNRs [26, 27]. The edge magnetism in graphene nanostructures has

been also predicted [28]. Simultaneously their potential application in spintronics

has been proven by numerous proposals in relation to GNF-based devices [29–31] as

well. Therefore, we focus on the investigation of the edge magnetism in the graphene

nanoflakes using the mean-field Hubbard model at half-filling and zero temperature.

In addition, the study of the spin-resolved transport in graphene nanostructures

has been also the goal of numerous works [32–34]. As indicated by Luo et al. [33]

the spin-polarized electron transport through a system of hexagonal zigzag-edge

GNFs attached between two electrodes is decided by the magnetic configuration of

the system. Namely, that work shows that the electron transport at low energy

is not significantly affected by the long-range interactions and the conductance is

found quenched mainly by the short-range interactions in the lowest antiferromag-

netic state. Yet the conductance becomes spin-dependent in the ferromagnetic state.

By applying a bias voltage to such a system, a spin-polarized current is generated

wherein the current in the ferromagnetic state is found to be larger than that in

the antiferromagnetic state [35]. The utilization of the bias voltage is an extensively
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used way for manipulating the electron current via spin-up and spin-down states in

spintronic devices [36–39]. Recently, a novel approach used to modulate the trans-

port of spin current in the spintronic devices is based on the thermal bias [40–43].

Striking advantages of this approach not only solve effectively the problem of heat

dissipation, or energy waste which is one of the big challenges in the design of

nanostructure devices nowadays, but also can integrate multiple functions in a de-

vice with low power consumption. Such a device can be considered as a combination

of thermoelectric and spintronic effects that paves the way for a new and fertile re-

search field, well-known as spin caloritronics. The majority of works in this field

have emphasized on examining the spin-dependent transport in finite GNRs due to

spin polarization along its edges in the ground state [44, 45]. Therefore, we choose

the hexagonal zigzag GNFs as the main component of our spin caloritronic device

because the hexagonal zigzag GNFs can be realized easily in experiment [46]. A

common way for studying the interplay of the spin and heat transport through such

a system is to use the non-equilibrium Green’s function (NEGF) method combined

with the density functional theory (DFT) [45,47]. Nonetheless, it requires a big com-

putational resource and takes a long time if a large number of atoms are calculated.

For simplicity, the mean-field theory is thus prioritized to use for obtaining main

features in a graphene nanoflakes in our work rather than the DFT. The features of

the transport are then computed by the NEGF. Consequently, the present work is

organized as follows:

In the subsequent parts of this chapter, the honeycomb structure of graphene with

characteristic parameters will be described in detail. Next will be a brief introduc-

tion of its unique band structure for the itinerant π-electrons based on the nearest

neighbor-hopping tight-binding (TB) model. The band structure of graphene is

linear and behaves as massless Dirac fermions near the Fermi energy where the con-

duction and valence bands are adjacent at two nonequivalent Dirac points. More

importantly, the huge influence of the electronic edge states on the energy band

structure will be described within the nearest-neighbor hopping TB Hamiltonian for

the graphene nanoribbons.

Chapter 2 begins with a general overview of the models and method which allow us to

study desirable properties of the graphene nanoflakes. The issue of electron-electron

interaction leading to the spin-polarized states in graphene nanostructures is solved

by the Hubbard model which (only) takes into account the Coulomb interaction of
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electrons on the same site. In addition, this chapter also represents how the spin-

orbit coupling (SOC) is involved and its impact on the energy band structure of

graphene by means of the Kane-Mele model. The combination of the Hubbard model

with the Kane-Mele model yields the Kane-Mele-Hubbard (KMH) model which is

employed to study the interplay between the spin-orbit interaction and electron-

electron interaction on the graphene honeycomb lattice. At the end of chapter 2, we

describe the mean-field theory (MFT) within the Hartree-Fock approximation and

its application to the KMH model for the graphene honeycomb lattice.

The numerical results obtained from the Hubbard model and the KMH model within

the MFT are analyzed and discussed in Chapter 3. The beginning of this chapter is

an overview of the magnetism studied in graphene. Next, we reconsider the phase

diagram of the graphene honeycomb lattice without and with the SOC interaction

within the Hartree-Fock mean-field theory. In analogy to more sophisticated meth-

ods such as quantum Monte Carlo simulations, a transition from the semi-metal

phase (without SOC) and the topological insulator phase (with SOC) to the anti-

ferromagnetic insulator phase takes place at strong interaction. Then we discuss

the impact of the electron-electron interaction encoded by a parameter U on the

magnetism in GNFs with different sizes and geometries (typically, hexagon and dia-

mond). Calculations show that the spontaneous magnetization on the edges induced

by the electron-electron interaction crucially depends on the geometry, the edge ter-

mination and the size of the graphene system.

In chapter 4 we give a definition and a brief introduction of the spin caloritronic

devices. The detailed description of a spin caloritronic device based on the magnetic

GNFs sandwiched between two metallic leads will be indicated shortly thereafter.

In such a device, a spin current is expected to flow from the left lead to the right

lead (or vice versa) in the presence of a thermal bias rather than a voltage bias.

Therefore, this chapter provides the Landauer-Büttiker formula to compute the spin

current across the device and describes how the non-equilibrium Green’s function

method invoked to calculate the transport properties.

Chapter 5 presents the results obtained from the NEGF method combined with the

mean-field approximation. A spin current is generated in the graphene nanoflakes

when the temperature gradient and the magnetism on the edges are triggered. How-

ever, depending on the contact location of the leads with the edges of GNFs such

spin current can or can not be produced. Simultaneously, the effect of the repul-
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sive Coulomb energy, back-gate voltage and sublattice potential on the thermally

induced spin current are analyzed and discussed as well. Finally, brief summaries

will be given in chapter 6, then appendices and references for the thesis.

1.2 The electronic properties of graphene

1.2.1 Crystal structure of graphene

Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb

lattice due to their sp2 hybridization. The distance between the nearest carbon

atoms is a ' 0.142 nm. In a solid, each carbon atom has 6 electrons written in the

electron configuration: 1s22s22p2 in which two electrons fill the inner shell 1s and do

not participate in any chemical reactions. All important properties of carbon-based

materials can be determined by the four remaining electrons occupying the outer

shell of 2s and 2p (2px, 2py, 2pz). In the ground state, the energy of the 2s orbital is

less than that of the 2p orbitals, two electrons are thus located in the 2s orbital and

the two remaining electrons are in the 2p orbitals. In graphene, these four electrons

are responsible for forming the sp2 hybridization. Wherein three electrons in the

2s and two 2p orbitals participate in the formation of in-plane sp2 hybridization

which produces three σ bonds. The remaining electron in the pz orbital, which

is perpendicular to graphene plane, forms the π bond [4, 48, 49]. Electrons in σ

bonds (σ electrons) are far away from the Fermi energy, while those in π bonds (π

electrons) are close to the Fermi energy. The π electrons therefore take responsibility

for electronic properties at low energy.

The two-dimensional graphene’s honeycomb lattice can be described in terms of two

inter-penetrating triangular sublattices. Consequently, one can view graphene as a

triangular Bravais lattice with a basis of two carbon atoms per unit cell, labeled A

and B, indicating a bipartite lattice structure. The triangular Bravais lattice vectors

can be written as [50]

a1 =

(
3a

2
,

√
3a

2

)
and a2 =

(
3a

2
,
−
√

3a

2

)
(1.1)

where a is the carbon-carbon distance. Figure 1.1(Left) illustrates that each carbon
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atom on the A sublattice has three nearest-neighbor carbon atoms on the B sub-

lattice and vice versa. Three vectors δ1, δ2 and δ3 which connect a site on the A

sublattice with three nearest sites on the B sublattice are defined as [50]

δ1 =

(
a

2
,

√
3a

2

)
, δ2 =

(
a

2
,
−
√

3a

2

)
, δ3 = (−a, 0) . (1.2)

The six second nearest-neighbor vectors are positioned at: δ′
1,2 = ±a1, δ′

3,4 = ±a2,

δ′
5,6 = ±(a2 − a1).

The reciprocal lattice vectors corresponding to (1.2) are given by

b1 =

(
2π

3a
,
2π
√

3

3a

)
and b2 =

(
2π

3a
,
−2π
√

3

3a

)
. (1.3)

The area of each unit cell of graphene is Su = 3
√

3a ≈ 0.051 nm2 and the density of

carbon atoms is calculated as nc = 2/Su = 39 × 1015cm−2. The density of valence

electrons equals exactly to the density of carbon atoms and is 39×1015cm−2 because

there is one π electron per carbon atom [48].

Figure 1.1: Left: Honeycomb crystal structure of graphene consists of two sublat-
tices: A (red) and B (blue) with Bravais lattice vectors (yellow arrows) a1 and a2

together with the nearest neighboring vectors (black arrows) δ1, δ2, δ3. Right: First
Brillouin Zone of graphene with a central point Γ, two nonequivalent so-called K
and K ′ points and M positioned at the middle of KK ′, and the reciprocal lattice
vectors (red arrows) b1 and b2 (these figures are replotted according to Ref. [50]).

Figure 1.1 (Right) presents the first Brillouin Zone (BZ) of graphene which has a

hexagonal shape and shows a set of inequivalent points in the reciprocal space with

the long wavelength excitations situated in the vicinity of the Γ point (Γ = (0, 0))

[48]. The six corners of the first BZ contains two inequivalent points K and K ′,
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known as Dirac points as well, represented as

K =

(
2π

3a
,

2π

3
√

3a

)
and K ′ =

(
2π

3a
,− 2π

3
√

3a

)
(1.4)

while the four remaining corners may be indeed connected to one of these points via

a translation by a reciprocal lattice vector. These points play a crucial role in the

electronic properties of graphene because the low-energy excitations are centered

around the two K and K ′ points [48].

1.2.2 Electronic band structure of graphene

We now describe how the tight-binding (TB) model is applied for π electrons of

graphene to get insight the electronic properties. In the present work, one only

considers the hopping between the nearest-neighbor carbon atoms. Hence the TB

Hamiltonian is given by

Ht = −t
∑
〈i,j〉σ

a+
iσbjσ + h.c (1.5)

where t (t ' 2.8eV ) is the hopping amplitude between the pz orbitals of two adjacent

carbon atoms, a+
iσ (b+

iσ) and aiσ (biσ) are the creation and annihilation operators of an

electron with spin σ =↑, ↓ on site i of the A (B) sublattice and h.c is the Hermitian

conjugate term.

The Fourier transformations for creation and annihilation operators are given by

a+
iσ =

1√
N

∑
kσ

a+
kσe

ikri

aiσ =
1√
N

∑
kσ

akσe
−ikri

b+
iσ =

1√
N

∑
kσ

b+
kσe

ikri

biσ =
1√
N

∑
kσ

bkσe
−ikri (1.6)

where N is the number of lattice points per sublattice and ri is the position vector

of A or B atom located at the ith site. Applying the Fourier transformations to Eq.

(1.5), the TB Hamiltonian is then written in momentum space as

Ht =
∑
kσ

a+
kσbkσ(−t

∑
n

e−ikδn) +
∑
kσ

b+
kσakσ(−t

∑
n

eikδn). (1.7)

8



CHAPTER 1. INTRODUCTION

[a\

Writing Ht in the matrix form

Ht =
∑
kσ

(
a+
kσ b+

kσ

)( 0 −t∑3
n=1 e

−ikδn

−t∑3
n=1 e

ikδn 0

)(
akσ

bkσ

)
. (1.8)

one has

Ht(k) =

(
0 −tγk
−tγ∗k 0

)
(1.9)

with γk =
∑3

n=1 e
−ikδn (δn is the nearest-neighbor vectors).

By diagonalizing the matrix Ht(k), one obtains the energy dispersion as a function

(a) (b)

−3 −2 −1 0 1 2 3

E/t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
O
S

−0.5 0.0 0.5

Figure 1.2: Three dimensional energy dispersion for bulk graphene (a). Density of
states as a function of energy (b).

of k: E±(k) = ±|tγk| [3, 51,52] which can read as follows

E±(k) = ±t
√

3 + 2 cos k(δ1 − δ2) + 2 cos k(δ1 − δ3) + 2 cos k(δ2 − δ3) (1.10)

where E+(k) and E−(k) stand for the conduction and valence bands, respectively. At

half-filling, the valence band is completely filled while the other band is completely

empty because each carbon atom contributes one π electron and each electron may

occupy either the spin-up state or the spin-down state. The density of states (DOS)

of graphene is calculated from the energy dispersion E(k) as

DOS =
2

N

∑
k

δ(E − E(k)) (1.11)

with δ(E − E(k)) describing a Delta function with respect to the energy E. As

illustrated in Figure 1.2(a), the bottom of the conduction band and the top of the

valence band touch each other at the six corners of the first BZ. These two bands are

mirror symmetric with respect to zero energy. Besides, the DOS points out a zero

bandgap between the conduction band and the valence band, as shown in Figure
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1.2(b). Therefore, neutral graphene behaves as a gapless semimetal with zero energy

dispersion and zero density of states at the Fermi energy EF which exactly locates

at Dirac points. One finds that the energy band structure indicates the particle-hole

symmetry due to E±(k) = −E∓(k). Nonetheless, the particle-hole symmetry will be

broken and the two bands will become asymmetric if one takes into consideration the

second nearest-neighbor hopping [48, 50]. In addition, the time-reversal symmetry

is also conversed which implies that E±(−k) = E±(k) [50]. Consequently, if K is a

solution of E(k) = 0, so is K ′, resulting in the necessary occurrence in pairs of Dirac

points [48]. In graphene, there is one pair of Dirac points, the zero-energy states are

thus doubly degenerate. In the proximity of the K points the energy dispersion is

a linear function of the absolute value of the wave vector (k −K) where the DOS

linearly depends on the energy, see a zoom in of the DOS [26].

Low-energy excitations: To clarify such linear properties, it is essential to expand

the energy dispersion in the vicinity of Dirac points by replacing k = ±K + q with

|q| � |K| [4, 48]. Eq. (1.9) can be then written in the form [4]

H(q) = h̄vF (ησxqx + σyqy) (1.12)

where η = 1(−1) for K(K ′) points, vF = 3a|t|/2h̄ is the graphene Fermi velocity with

the value vF ' 106 m/s [50] and does not depend on any energy and momentum,

and σx and σy are the Pauli matrices defined as

σx =

(
0 1

1 0

)
and σy =

(
0 −i
i 0

)
(1.13)

Eq. (1.12) is analogous to the Dirac equation for massless fermions. Therefore the

electrons in graphene are referred to as Dirac fermions. Yet the Pauli matrices in

Eq. (1.12) denote the sublattice degrees of the freedom rather than the spin and the

speed of light is replaced by the graphene Fermi velocity vF [4]. For these reasons,

the sublattice degrees of the freedom and the K points are called pseudospin and

Dirac points, respectively. Now Eq. (1.10) becomes

E±(q) = sh̄vF |q| (1.14)

with s = 1 for the conduction band and s = −1 for the valence band. From Eq.

(1.14), it is evident that the energy dispersion E±(q) is a linear function of q around

the Dirac points. This leads to the fact that the DOS is indeed directly proportional

to energy, DOS = 2|E|/πh̄2v2
F [4].
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On the other hand, interchanging the spinor components of the A and B sublattices

at the K ′ point the effective low-energy Hamiltonian may be represented as [4, 48]

Hη(q) = h̄vF τ
z ⊗ q · σ (1.15)

here the Pauli matrices σ manifest the sublattice pseudospin, τ are also Pauli ma-

trices representing the valley degree of freedom, called valley pseudospin, and ⊗
denotes the tensor product. The fact that the projection of the pseudospin is a

well-defined conserved quantity in the low-energy limit [4, 48]. As a consequence,

the conservation of the pseudospin gives rise to the absence of backscattering in

graphene [53] and is at the origin of Klein tunneling [54] in which a massless Dirac

particle is fully transmitted through a high electrostatic barrier without being re-

flected.

1.2.3 Graphene nanoribbons

In a finite structure, the graphene shows two most important edges including arm-

chair edge and zigzag edge. These two types of edges have a tremendous impact on

the energy spectrum, resulting in the change in the electronic and magnetic prop-

erties of graphene. Most remarkably, the presence of electronic states localized at

the edge is expected as a source of the intrinsic magnetism and peculiar transport

properties in graphene nanostructures [26]. Therefore, we briefly review here the

energy structure of the graphene nanoribbon to indicate a significant edge effect at

the nanoscale.

The graphene nanoribbon can be obtained by reducing the dimension of a graphene

sheet along one direction to the nano-size. Figure 1.3 reveals that the armchair edge

consists of carbon atoms of two graphene sublattices while the zigzag edge is only

formed by carbon atoms of the A sublattice or the B sublattice. The atomically

defined edges recently have been observed and controlled in experiment. By us-

ing STM (Scanning Tunnelling Microscopy) and AFM (Atomic Force Microscopy)

armchair edge [18, 55–57] and zigzag edge [17, 58, 59] GNRs with high quality were

experimentally observed. Even a single graphene quantum dot with zigzag edge

structure was also fabricated and was detected by high-resolution TEM (Transmis-

sion Electronic Microscopy) [60]. Recently, Rajender’s group successfully synthe-

sized few-layer graphene quantum dots with the edge shape (zigzag or armchair)
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controlled by different solvents [61].

Figure 1.3: Honeycomb structure of graphene with two edges: Armchair edge and
zigzag edge.

It has been known that the zigzag edge of graphene supports the electronic states

located at the edge, while the armchair edge does not indicate such localized states.

This difference is interpreted through the analysis of the electronic band structure of

the graphene nanoribbons using the nearest-neighbor hopping TB model (the reader

can see detailed calculations in Ref. [26]). Here, we define N as the width of the

GNRs which identifies the number of dimer (two carbon sites) lines for armchair

GNRs and the number of zigzag lines for zigzag GNRs. Figure 1.4 exhibits the large

difference between the energy band structures of the armchair GNRs and those of

the zigzag GNRs. For the armchair GNRs, the energy band structures rigorously

depend on the width of nanoribbons and this width determines whether the GNRs

are metallic or semiconducting, see Figure 1.4(a) and (b). Particularly, as N =

3m + 2, m is an integer, e.g., N = 20, the conduction band and the valence band

cross each other at a point of ka = 0, so the system becomes metallic. A direct gap

at ka = 0 opens for the remaining widths of the nanoribbons, i.e., N = 3m + 1 or

N = 3m, leading to a semiconducting system with a vanishing density of states at

Dirac point. However the gap decreases gradually with the increase of the width and

approaches zero in the limit of very large width. Experimentally, by using angle-

resolved photoemission spectroscopy and Fourier-transformed scanning tunneling

spectroscopy, the electronic bandgap was measured as 2.37 eV for the 7-armchair

GRN [55], 1.4 eV for the 9-armchair GNR [56] and 0.86 eV for the 15-armchair
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Figure 1.4: Energy band structure of graphene nanoribbons for armchair edge with
the width of N = 10 (a) and 20 (c) and their corresponding DOS (b) and (d),
respectively, for zigzag edge with N = 20 (e) and its DOS (f).

GNR [62]. These experimental results are in good agreement with the theoretical

predictions. Otherwise, the armchair GNRs always behave as a semiconductor for

all widths confirmed by the first-principles calculation within LDA approximation

[63]. That approach also unveils that the smallest gap is obtained in the case of

N = 3m+ 2.

On the other hand, the zigzag GNRs reveal different behavior. The energy band

structures of the zigzag GNRs do not change with an arbitrary value of N and the

zigzag GNRs are always metallic. The most noticeable difference compared to the

armchair nanoribbons is that one sees a pair of flat bands located at the Fermi

energy in the range of 2π/3 < |ka| < π in the zigzag GNRs. The electronic states in
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the flat bands are understood as the localized states (or known as edge states). The

presence of the edge-localized states in the zigzag edge GRNs was recently proved

by experiment [17, 64] using STM. It is apparent that such edge states result in a

large contribution to the DOS, as can be witnessed in Figure 1.4(f). Typically a

sharp peak at zero energy is shown in the DOS of the zigzag GNRs which is not

observed in that of the armchair GNRs as well as of the bulk graphene. When

invoking the electron-electron interaction, the spin polarization of carbon atoms

belonging to the zigzag edge is developed, while there is no spin polarization in

the middle of nanoribbons as well as the armchair edge for small electron-electron

interaction. The origin of this property can be explained by the emergence of the

edge-localized states in which the amplitude of the edge states is only non-zero at

the sites of the zigzag edge and decreases in the inward direction [26]. Therefore it

can be suggested that the edge states take responsibility for the magnetic properties

in graphene nanostructure which will be taken into account in detail in chapter 3.

In conclusion, we reviewed in this chapter the general characteristics of graphene

and applied the tight-binding model to revisit several important properties in the

pristine graphene and graphene nanoribbons. Of particular importance for physical

properties of graphene is the unique band structure near the Fermi energy which

behaves as massless Dirac fermions and the emergence of edge-localized states at

the zigzag edge.
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We briefly introduce in this chapter tools and method used in the present work.

While the Hubbard model contains the information on the electron-electron inter-

action and the nearest-neighbor hopping tight-binding parameters, the Kane-Mele-

Hubbard Hamiltonian involves the information held in the Hubbard Hamiltonian

plus the spin-orbit coupling term. Several general features of the Hubbard model

are taken over in which the particle-hole symmetry is presented more detailed. In

addition, we also re-visit the results of the Kane-Mele model for bulk graphene and

GNRs which was proposed by Kane and Mele in 2005. The ultimate section of this

chapter represents the mean-field theory within the Hartree-Fock approximation to

treat interaction. The key idea of this theory is to decouple the full wave function

of the many-body problem into a single-particle wave function.

2.1 The Hubbard model

The Hubbard model contains information about the interaction of particles, orig-

inal fermions moving in a solid, this model thus exhibits intriguing phenomena in

nature such as ferromagnetism, a Mott-Hubbard transition, superconductivity, a

Tomonaga-Luttinger liquid in one space dimension and a Pomeranchuk instabil-

ity [65]. As a consequence, the Hubbard model is extensively used to study physical

properties under the contribution of electron-electron interaction in the solid.
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The Hubbard model was introduced independently by Hubbard [66], Kanamori [67]

and Gutzwiller [68] for the description of ferromagnetism in metals in 1963. The

Hubbard model is principally constructed by two parts: the hopping of electrons

between the lattice sites and the repulsive on-site Coulomb interaction of electrons

on the same site. The single-band Hubbard Hamiltonian is given by

H = −t
∑
〈i,j〉σ

(c+
iσcjσ + h.c) + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ. (2.1)

The first term is the kinetic energy describing the nearest-neighbor hopping on the

lattice with the creation and annihilation operators c+
iσ and ciσ for an electron with

spin σ at site i, respectively. The second term (usually called Hubbard term) denotes

the electron-electron interaction on the same site. U is the repulsive Coulomb energy

and niσ = c+
iσciσ is the electron number operator for spin σ at site i. µ in the final

term is a chemical potential which is able to control the filling.

Physically, the Hubbard model shows several important symmetries as follows [65].

1, The gauge symmetry. This is a fundamental symmetry of most models describing

fermions in condensed matter physics. When using the transformations: c+
iσ → eiαc+

iσ

and ciσ → e−iαciσ, the Hubbard Hamiltonian does not change and the particle

number is preserved.

2, The lattice symmetry.

3, The spin symmetry. Starting from the definitions of spin operators.

Sαi =
1

2

∑
σσ′

c+
iσσ

αc+
iσ′ and Sα =

∑
i

Sαi with α = x, y, z (2.2)

Sαi and Sα are respectively the local and total spin operators, S = (Sx, Sy, Sz). σα

= (σx, σy, σz) are the Pauli matrices with

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 1

)
(2.3)

The Hubbard Hamiltonian commutes with the global ones, thus exhibiting a SU(2)

symmetry due to the formation of a SU(2) algebra of these operators. One has

[Sx, Sy] = iSz. The eigenvalues of S2 are S(S + 1) with S known as the total spin

of eigenstate.

4, The particle-hole symmetry, one of the important features of the Hubbard model,
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is considered here for a bipartite lattice structure. Lots of relatively attractive phe-

nomena such as Mott insulator, antiferromagnetic order, etc. appear when studying

the Hubbard model at half-filling. We therefore rewrite the Hubbard Hamiltonian

at half-filling with µ = 0.

H = −t
∑
〈i,j〉σ

(c+
iσcjσ + h.c) + U

∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
). (2.4)

One then introduces new operators which exchange the role of creation and annihi-

lation operators [69]

c+
iσ −→ diσ = (−1)ic+

iσ and ciσ −→ d+
iσ = (−1)iciσ. (2.5)

The factor (−1)i becomes +1 if i is in one sublattice and −1 for i belonging to the

other. Using the particle-hole transformations in Eq. (2.5), one gets

d+
iσdiσ = 1− c+

iσciσ. (2.6)

The nearest-neighbor hopping term of Eq. (2.4) is then rewritten in the new opera-

tors

c+
iσcjσ + c+

jσciσ = (−1)i+jdiσd
+
jσ + (−1)i+jdjσd

+
iσ = d+

iσdjσ + d+
jσdiσ. (2.7)

It is apparent that the hopping term takes exactly the same form in term of the

new operators d as it did in term of the old operators c. Therefore, this term is

unchanged under the particle-hole symmetry. Similarly, the Hubbard term written

in new operators, (1
2
− d+

i↑di↑)(
1
2
− d+

i↓di↓) = (d+
i↑di↑ − 1

2
)(d+

i↓di↓ − 1
2
), is invariant. It

turns out that the Hubbard Hamiltonian under the particle-hole transformations is

completely equivalent to the initial Hubbard Hamiltonian which is expressed as

H ′ = −t
∑
〈i,j〉σ

(d+
iσdjσ + d+

jσdiσ) + U
∑
i

(d+
i↑di↑ −

1

2
)(d+

i↓di↓ −
1

2
). (2.8)

The particle-hole symmetry gives us information about the symmetry of the whole

phase diagram of the Hubbard Hamiltonian on a bipartite lattice at half filling [69].

On the other hand, according to Lieb’s theorem [70] the total net spin gets the

value of S =
1

2
|NA − NB| with NA (NB) being the number of sites on the A (B)

sublattice and the ground state of the Hubbard Hamiltonian is unique for all U if

the system is a bipartite structure and a half-filled band in the repulsive Hubbard

model (U > 0). In the meanwhile, the ground state of this Hamiltonian has zero
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angular momentum S = 0 for the attractive case. Note that if the U is very large, the

Hubbard Hamiltonian is an effectively isotropic spin 1/2 Heisenberg antiferromagnet

and the ground state is also unique and 2S =| NA −NB |. Furthermore, depending

on whether the two sublattices are the same size or not, Lieb’s theorem suggests

antiferromagnetic and ferrimagnetic orders for the Hubbard model at half-filling [65].

In addition to Lieb’s theorem, there are several other theorems and their corollaries

considered as rigorous results which are also constructed for the Hubbard model such

as the Mermin-Wagner theorem, Nagaoka’s theorem, flat-band systems, etc [65].

Generally speaking, almost all theorems are closely related to the magnetic ground

state at the zero temperature.

Thanks to the inclusion of electron correlations, simplicity and rich physics the Hub-

bard model becomes universal. The Hubbard model can be exactly solved in one

dimension with the solution of an insulating state at half-filling and a conducting

state for away from the half-filling [71]. Nevertheless, there is no exact solution

for this model in more than one dimension. So a variety of techniques have been

exploited to address the Hubbard model, for instance, the Hartree-Fock approxi-

mation [66], exact diagonalization [72], quantum Monte Carlo calculations [73, 74],

etc.

2.2 The Kane-Mele-Hubbard model

Topological states of matter have been a fertile research field in condensed matter

physics [75]. The topological state is an insulator in the bulk, nevertheless it sup-

ports gapless boundary states robust to disorder [76]. The first topological states

were discovered in the 1980s known as integer and fractional quantum Hall effects

(QHE) in the presence of a large perpendicular magnetic field. The QHE hence

yields the breaking of the time-reversal symmetry. Besides, due to the lack of the

bulk local order parameter, typically in the integer QHE, the bulk is characterized

by an integer topological invariant which is read off by a Chern number. The Chern

number [77] corresponds to the number of stable gapless edge states and is related

to the value of the Hall conductance in units of e2/h. About more than two decades

later, a new topological state of matter, or quantum spin Hall effect (QSHE) which

has paved the way for a revolution in modern condensed matter physics, was de-

scribed independently by Kane and Mele [78,79] in 2005 and Bernevig and Zhang [80]

18



CHAPTER 2. MODELS AND METHOD

[a\

in 2006, and is today called Topological insulator. The model proposed by Kane

and Mele, known as Kane-Mele model, took into account the spin-orbit coupling

(SOC) in graphene based on earlier work of Haldane [81]. The proposal by Bernevig

and Zhang studied the SOC in a strained zinc-blende semiconductor. In contrast

to the QHE, the QSHE is caused by the intrinsic spin-orbit interaction instead of

the external magnetic field, therefore the QSHE does not break the time-reversal

symmetry. Furthermore, the edge states in the QSHE are helical edge modes rather

than chiral edge modes as in the QHE due to the correlation of spin with the direc-

tion of propagation [76]. The topological insulator invariant is denoted by the Z2

invariant which is defined for a time-reversal invariant [79]. The fact that because

such proposed systems have small intrinsic spin-orbit interaction, e.g., about 10−3

(meV ) for graphene, it is hard to measure experimentally the QSHE in the proposed

systems. Nonetheless, the QSHE was eventually observed experimentally in a HgTe

quantum well [82].

As mentioned before, some interesting physical phenomena may be caused by the

interaction of electrons. Therefore we investigate in the current work the interplay

of the SOC and electron-electron interaction on graphene using the Kane-Mele-

Hubbard model.

We first re-visit the Kane-Mele model for the graphene honeycomb lattice whose

Hamiltonian is given by

HKM = −t
∑
〈i,j〉σ

(a+
iσbjσ + b+

jσaiσ) + iλ
∑
〈〈i,j〉〉

∑
σσ′

υijσ
z
σσ′(a+

iσajσ′ + b+
iσbjσ′) (2.9)

where a+
iσ and biσ are creation and annihilation operators of the A and B sublattices

for spin σ at site i, respectively. The first term is a sum over the nearest-neighbor

sites, denoted by 〈i, j〉, which describes the nearest hopping tight-binding term.

The second term describing the spin-orbit coupling, introduced by Kane and Mele,

is a sum over the next-nearest-neighbor 〈〈i, j〉〉. In the second term λ denotes the

amplitude of the SOC, υij = ±1 depending on the orientation of the sites gives ”+”

for clockwise and ”− ” for anticlockwise. Note that the hopping from the site of the

A sublattice would yield the opposite sign than the hopping from the B sublattice

in the same direction. σzσσ′ is the Pauli matrix. In order to solve the Kane-Mele

Hamiltonian (2.9), we use Fourier transformations. After substituting Eq. (1.6) to
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Eq. (2.9), the Kane-Mele Hamiltonian is expressed as [83]

HKM = −t
∑
〈i,j〉σ

(a+
iσbjσ + b+

jσaiσ) + iλ
∑
〈〈i,j〉〉

∑
σσ′

σzσσ′(a+
iσajσ′ − b+

iσbjσ′)

= −t
∑
kσ

(γka
+
kσbkσ + γ∗kb

+
kσakσ) +

∑
k

λk(a
+
k↑ak↑ − a+

k↓ak↓ − b+
k↑bk↑ + b+

k↓bk↓)

(2.10)

with λk = 2λ(− sin(
√

3aky) + 2 cos(
3

2
akx) sin(

√
3

2
aky)) and γk =

∑3
n=1 e

−ikδn . After

that it is convenient to write the Hamiltonian in the form HKM =
∑

k Ψ+
kHKM(k)Ψk,

with

HKM(k) =


λk −tγk 0 0

−tγ∗k −λk 0 0

0 0 −λk −tγk
0 0 −tγ∗k λk

 (2.11)

and Ψ+(k) = (a+
k↑, b

+
k↑, a

+
k↓, b

+
k↓). By diagonalizing the 4×4 matrix of HKM(k), one

gets indeed the eigenvalues E(k) = ±
√
|tγk|2 + λ2

k. Figure 2.1 exhibits the single-

particle energy spectra and their corresponding DOS of the graphene honeycomb

lattice obtained from the Kane-Mele Hamiltonian for several values of λ/t. At first

sight, the single-particle energy spectra are mirror symmetric, therefore both the

particle-hole symmetry and the time-reversal symmetry are preserved for all values

of λ/t [78,79,83,84]. As λ = 0t, the upper band and lower band cross each other at

the K point, it coincides with the result obtained from the nearest-neighbor hopping

TB model. It means that the gapless Dirac spectrum is recovered at the K points.

As 0t < λ < (1/(3
√

3))t, a gap at the K point opens and increases linearly with the

increase of the SOC. The distance between two peaks in the DOS is equivalent to that

between the conduction and valence bands at the M point. When λ ≥ (1/(3
√

3))t,

the gap remains constant [83] with the size 2t, however the gap position shifts from

the K point to the M point. The position of the peaks in the DOS moves far away

from zero energy with the increase of the spin-orbit coupling. Noticeably, as shown

in Figure 2.1, at λ = 0.5t one observes a pair of armchair points, named pa, in

the DOS where the energy position of these two points coincides with that of the

conduction band and the valence band at the K point. The distance between these

two points increases linearly in terms of λ/t corresponding to the linear increase of

the gap at K point.

20



CHAPTER 2. MODELS AND METHOD

[a\

−2

0

2

E
/t

λ=0.0t

−2

0

2

E
/t

λ = 0.1t

−2

0

2

E
/t

λ = 0.2t

−2

0

2

E
/t

λ = 0.3t

−2

0

2

E
/t λ = 0.5t

Γ K M Γ

pa

DOS

Figure 2.1: Single-particle energy spectra (left) and corresponding DOS (right) for
the graphene honeycomb lattice with some values of λ/t obtained from the Kane-
Mele model.

At low energy, the spin-orbit termHSO can be expressed asHSO = ∆SOΨ+(q)σzτ zszΨ(q)

with the eigenvalues E(q) = ±
√

(h̄vF q)2 + ∆2
SO [78], where σz, τ z, sz are the Pauli

matrices representing the states on the A (B) sublattice, at the K (K ′) points and

the spin of electron, respectively, and ∆SO = 3
√

3λ. Noticeably, the term σzτ zsz is

invariant under both the parity and the time-reversal symmetry. At the K points,

one finds |E(q = K)| = ∆SO rather than |E(q = K)| = 0 as in the case of zero

spin-orbit coupling. As a result, the bulk graphene is gapped and the gap size at K
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points equals to 2∆SO [78] as shown in Figure 2.1. It can be seen that the band gap

produced in the presence of the SOC is spin dependent and has opposite sign at the

K and K ′ points [85], indicating the difference between the anomalous topological

insulator with the SOC and the ordinary topological state.

0 π/2 π 3π/2 2π

ka

−2
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0

1

2

E
/t

0
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2

(a) N = 4 and λ = 0.2t
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ka
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−2

−1

0

1

2

(b) N = 20 and λ = 0.2t

Figure 2.2: Energy band structure (left) and DOS (right) of the zigzag GNRs for
N = 4 (a) and N = 20 (b), respectively, at λ = 0.2t obtained from the Kane-Mele
model.

In contrast, the opening gap depends rigorously on the width (N) of the zigzag

GNRs. A small gap is only found at half-filling where the Fermi energy is at the Dirac

point in the case of even N , e.g., N = 4, and it decays exponentially with further

increasing the width, shown in Figure 2.2(a) and 2.2(b), while no gap is produced for

all odd values of N [86,87]. The reason for that is due to the breaking of one of the

sublattice translational invariances at the boundaries for an even N , leading to the

finite interedge hopping between the two edge states. Nevertheless, the sublattice

translational invariance symmetry is preserved for an odd N [87]. As mentioned, a

zero-energy flat band corresponding to the edge states in the zigzag GNRs is localized

in the interval of 2π/3 ≤ ka ≤ 4π/3 without the SOC. Meanwhile, the energy band

structure for large N intersects at ka = π with the SOC. More interestingly, the

edge states are spin-filtered, giving rise to the helical edge states, in which electrons

with opposite spin carry currents in opposite direction along the same edge. For

armchair GNRs, in spite of no edge state in the zero SOC case, the spin-filtered

edge states also appear in the presence of the spin-orbit interaction [78, 85, 88] and

two energy bands cross at ka = 0 in the semiconducting armchair GNRs. On the

contrary, the valence band and the conduction band are split, indicating a finite

gap for the armchair GNRs with metallic behavior. This gap induced by the SOC

has the tendency to drop with the increase of the width of the armchair GNRs
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[86]. It can be concluded that the spin-orbit coupling drives graphene into a two-

dimensional topological insulator. It gives rise to a gap in the bulk and a nonzero

spin Hall in relation to the helical states in the gapless edge that are protected against

perturbations by the time-reversal symmetry. According to Kane and Mele [78], the

topological insulator state is insensitive to weak interactions and disorder.

Now by adding the Hubbard term into the Kane-Mele model one gets the Kane-

Mele-Hubbard model with its Hamiltonian

HKMH =HKM + U
∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
)

=− t
∑
〈i,j〉σ

(a+
iσbjσ + b+

jσaiσ) + iλ
∑
〈〈i,j〉〉

∑
σσ′

υijσ
z
σσ′(a+

iσajσ′ + b+
iσbjσ′)

+ U
∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
). (2.12)

This model was first proposed by S. Rachel et al. [83] and studied using a slave-rotor

mean-field theory, and then other techniques have been utilized such as Quantum

Monte Carlo simulations [89], the cellular dynamical mean-field theory (CDMFT)

[90], a variational cluster approach [91], and the density-matrix renormalization

group [92]. While the Hubbard term respects the SU(2) spin symmetry, the SOC

reduces the SU(2) spin symmetry down to a U(1) symmetry and lattice symmetry

C6 to C3. Nevertheless, the time-reversal symmetry is preserved [79].

2.3 The mean-field theory

To address the complicated problems related to the interaction of particles in which

the motion of the individual particle depends on the position of all the others, the

mean-field theory (MFT) can allow us to study such systems in a more convenient

way [93]. This approximation actually reduces the many-body problem to a one-

particle problem. Correspondingly, the interaction part in the Hamiltonian can be

treated more easily. Moreover, the MFT can be realized in the real space with a

big system for all shapes and it is flexible. In addition, it offers the simplest way

to treat the many-body problem and is considered as a starting point for more

elaborate calculations. The idea of the approximation is first to assume that the

full wave function may be decoupled and represented as a product of single-particle

wave functions [94]. After putting this idea into the Schrödinger equation, in the
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end every individual particle is moving in the mean-field built up by the other ones.

Let’s now apply this idea to the Hubbard term: HU = U
∑

i(ni↑ − 1/2)(ni↓ − 1/2).

First, the number operator niσ is expressed as an average value plus a deviation

ni↑ = 〈ni↑〉+ (ni↑ − 〈ni↑〉) = 〈ni↑〉+ δi↑ (2.13)

ni↓ = 〈ni↓〉+ (ni↓ − 〈ni↓〉) = 〈ni↓〉+ δi↓. (2.14)

Using these expressions, one gets

ni↑ni↓ = 〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉+ δi↑δi↓. (2.15)

Eq. (2.15) shows that the spin-up electrons at site i interact with the average density

of spin-down electrons and similarly the spin-down electrons at site i interact with

the average density of spin-up electrons. Then substituting Eq. (2.15) into the

Hubbard term and neglecting the correlation fluctuation δi↑δi↓, the Hubbard term

reads

HMF
U = U

∑
i

〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 −
1

2
(ni↑ + ni↓) +

1

4
. (2.16)

As a consequence, the mean-field Hubbard Hamiltonian only contains single-particle

operators. Hence the initial many-body problem has been reduced to a single-particle

problem, resulting in an easy diagonalization of the Hamiltonian. It is important

to note that such mean-field approximation shows the Hartree term in which the

mean-field Hubbard term is only written for the z component of the spin moment.

This is the most commonly applied way to examine the magnetic properties of a

system [26,28,95–97]. Nevertheless, the magnetic moment can be in favor of the xy-

plane rather than the z-direction in the presence of the spin-orbit coupling [98]. To

include the x (y) component of the spin moment the Fock term should be represented

together with the Hartree term in the Hubbard Hamiltonian. By using Wick’s

theorem, the operators can be decoupled by forming creation-annihilation pairs as

follows

ni↑ni↓ =c+
i↑ci↑c

+
i↓ci↓

→〈c+
i↓ci↓〉c+

i↑ci↑ + 〈c+
i↑ci↑〉c+

i↓ci↓ − 〈c+
i↑ci↑〉〈c+

i↓ci↓〉
− 〈c+

i↓ci↑〉c+
i↑ci↓ − 〈c+

i↑ci↓〉c+
i↓ci↑ + 〈c+

i↑ci↓〉〈c+
i↓ci↑〉

=〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 − 〈S−i 〉S+
i − 〈S+

i 〉S−i + 〈 S+
i 〉〈S−i 〉 (2.17)
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here ni↑ = c+
i↑ci↑, ni↓ = c+

i↓ci↓, S
+
i = c+

i↑ci↓ and S−i = c+
i↓ci↑. Therefore, the Hubbard

term within the Hartree-Fock approximation is given by

HHF
U =HH

U +HF
U

=U
∑
i

〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 − 〈S−i 〉S+
i − 〈S+

i 〉S−i + 〈 S+
i 〉〈S−i 〉

− 1

2
(ni↑ + ni↓) +

1

4
. (2.18)

From the computational point of view, from Eq. (2.16) the diagonal elements of

the Hubbard Hamiltonian matrix now depend on the unknown parameters 〈ni↑〉
and 〈ni↓〉. This problem can be solved by the self-consistent algorithm, as shown

in Figure 2.3. At the first step, one needs to provide initial values for the unknown

parameters which can be chosen randomly to get a good solution. The initial values

are plugged in the Hamiltonian matrix and the iterative calculation is started. At

each cycle, the Hamiltonian matrix is diagonalized to get eigenvalues and eigenvec-

tors which are used to compute new spin densities 〈ni↑〉 and 〈ni↓〉. These new spin

densities are then used as the initial values for the next iteration. The procedure

is repeated until satisfying convergence condition of the self-consistency, it means

that |As+1 − As| < ε (A denotes for the spin densities), with s is the index of the

self-consistent cycle and ε is a small number (usually chosen ε = 10−6).

At half-filling and zero temperature, these spin densities are computed from the

eigenstates (ψi(E)) of the Hamitonian as follows [99]

〈ni↑〉 =
∑
E<EF

ψ∗i (E)ψi(E) and 〈ni↓〉 =
∑
E<EF

ψ∗i+N(E)ψi+N(E) (2.19)

and

〈S+
i 〉 =

∑
E<EF

ψ∗i (E)ψi+N(E) and 〈S−i 〉 =
∑
E<EF

ψ∗i+N(E)ψi(E) (2.20)

where EF is the Fermi energy. To reach the self-consistency it is helpful to use a

linear mixing method, As+1
in = pAsout + (1− p)As−1

out , p is the mixing coefficient. After

accomplishing the self-consistency, we can calculate the local magnetic moments in

the x, y, and z directions as [99]

Mx
i =
〈S+

i 〉+ 〈S−i 〉
2

(2.21)
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Figure 2.3: Algorithm of the self-consistent calculation (this scheme is reproduced
based on Ref. [96]).

My
i =
〈S+

i 〉 − 〈S−i 〉
2j

(2.22)

M z
i =
〈ni↑〉 − 〈ni↓〉

2
. (2.23)

Now applying the Hartree-Fock mean-field approximation into the KMH model for

the graphene honeycomb lattice at half-filling and zero temperature. The KMH
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Figure 2.4: Single-particle energy spectra of the graphene honeycomb lattice using
the Kane-Mele-Hubbard model within the Hartree-Fock mean-field approximation
for (a) U = 0, λ = 0, (b) U = 2.5t, λ = 0, (c) U = 2.5t, λ = 0.1t.

Hamiltonian within the mean-field theory reads

HHF
KMH =− t

∑
〈i,j〉σ

(a+
iσbjσ + b+

jσaiσ) + iλ
∑
〈〈i,j〉〉

∑
σσ′

υijσ
z
σσ′(a+

iσajσ′ + b+
iσbjσ′)

+ U
∑
i

〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 − 〈S−i 〉S+
i − 〈S+

i 〉S−i + 〈 S+
i 〉〈S−i 〉

− 1

2
(ni↑ + ni↓) +

1

4
. (2.24)

To be convenient, one first writes the Kane-Mele-Hubbard Hamiltonian (2.24) in

k-space by using the Fourier transformations Eq. (1.6)

HHF
KMH =

∑
kσ

(a+
kσbkσ(−tγk) + b+

kσakσ(−tγ∗k)) +
∑
k

λk(a
+
k↑ak↑ − a+

k↓ak↓ − b+
k↑bk↑ + b+

k↓bk↓)

+
U

N

∑
k

〈nk↓〉nk↑ + 〈nk↑〉nk↓ − 〈nk↑〉〈nk↓〉 − 〈S−k 〉S+
k − 〈S+

k 〉S−k + 〈 S+
k 〉〈S−k 〉

− 1

2
(nk↑ + nk↓) +

1

4
, (2.25)
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under the form of matrices: HHF
KMH =

∑
k Ψ+

kH
HF
KMH(k)Ψk with

HHF
KMH(k) =



λk + a −tγk −U
N

∑
k〈S−ak〉 0

−tγ∗k −λk + b 0 −U
N

∑
k〈S−bk〉

−U
N

∑
k〈S+

ak〉 0 −λk + c −tγk
0 −U

N

∑
k〈S+

bk〉 −tγ∗k λk + d


(2.26)

with

a =
U

N

∑
k

〈nak↓〉 −
U

2
, b =

U

N

∑
k

〈nbk↓〉 −
U

2
,

c =
U

N

∑
k

〈nak↑〉 −
U

2
, d =

U

N

∑
k

〈nbk↑〉 −
U

2
,

λk = 2λ(− sin(
√

3aky) + 2 cos(
3

2
akx) sin(

√
3

2
aky)),

γk =
3∑

n=1

e−ikδn .

Let

m =
1

2N

∑
k

(〈nak↑〉 − 〈nak↓〉).

At half-filling,

1

N

∑
k

〈nak↑〉 =
1

N

∑
k

〈nbk↓〉 = (
1

2
+m),

1

N

∑
k

〈nak↓〉 =
1

N

∑
k

〈nbk↑〉 = (
1

2
−m),

n =
1

N

∑
k

〈S±ak〉 = − 1

N

∑
k

〈S±bk〉.

Then substituting into the Hamiltonian matrix (2.26), one gets the energy dispersion

after the diagonalization of the Hamiltonian matrix

E(k) = ±
√
−t2γ2

k + (λk − Um)2 − U2n2. (2.27)

Figure 2.4 shows the single-particle energy spectra of the graphene honeycomb lattice

using the Hartree-Fock mean-field KMH approximation for different values of U and

λ. At λ = 0, if U is zero the energy dispersion E(k), E(k) = ±tγk, reduces to the
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nearest-neighbor hopping TB model. Therefore single-particle energy spectrum in

Figure 2.4(a) is gapless. When the electron-electron interaction is involved, U = 2.5t,

a bulk gap at the K point opens within the mean-field approximation, Figure 2.4(b).

Meanwhile, the bulk gap is still gapless at U = 2.5t within the QMC simulations [98].

Turning on the SOC, i.e., λ = 0.1t, the bulk gap is observed in both with and without

the Hubbard interaction U . Figure 2.4(c) indicates that the bulk gap in the presence

of both U = 2.5t and λ = 0.1t is bigger than that for zero SOC (Figure 2.4(b)) or for

zero Hubbard interaction (Figure 2.1). Generally, the bulk gap of graphene depends

simultaneously on the SOC interaction and Hubbard interaction [100, 101] which

will be discussed in detail in the next chapter. Furthermore, for all cases considered

the conduction band and valence band are mirror symmetric, i.e., E(k) = −E(−k).

This implies that the time-reversal symmetry is not broken under the impact of the

electron-electron and spin-orbit interactions at the mean-field theory.

To conclude, in this chapter we have briefly introduced the models and the mean-field

approximation used to study the magnetism and transport properties in graphene.

Besides, some important physical quantities were also reviewed.

29



Chapter 3

Magnetism in graphene nanoflakes

Contents

3.1 Review: Magnetism in graphene . . . . . . . . . . . . . . 31

3.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Magnetism in graphene nanoflakes . . . . . . . . . . . . . 40

As is well known, graphene is a gapless semi-metal with no magnetic properties,

however it becomes a magnetic material in some ways. This chapter will begin with

a review of magnetism in graphene. Subsequently, we will show the numerical results

obtained from the Hubbard Hamiltonian and the Kane-Mele-Hubbard Hamiltonian

within the mean-field approximation. We first re-plot and discuss the phase diagram

of the infinite graphene without and with the spin-orbit coupling at the mean-field

level and then make a comparison with other works. The remaining part of this

chapter presents the findings in relation to the intrinsic magnetism in the zigzag

graphene nanoflakes. Two types of geometries, including hexagonal and diamond

shapes, with various sizes are studied. In addition to the robust influence of the

edge termination, the geometry and the size also have a significant impact on the

edge magnetic properties of a nano-scale graphene system.

Partial results of this chapter are presented in our paper [102] in which we investigate

the single-band Hubbard model on an infinite graphene honeycomb lattice. The aim

of our paper is to provide a detailed comparison between the results obtained from

the mean-field theory and those obtained from sophisticated methods including the

dynamical mean-field theory and quantum Monte Carlo simulations by computing

ground-state energy, single-particle gap, double occupancy, staggered magnetization

and single-particle spectra. At the mean-field level local moments cannot be gener-

ated without breaking the SU(2) spin symmetry. The dynamical mean-field theory

is found to be very accurate in the Dirac semi-metallic phase because the dynamical
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mean-field theory takes into account local temporal fluctuations and captures the

local moment formation in the paramagnetic phase. However, the impact of spin

fluctuations on the single-particle spectral function is only visible in the lattice quan-

tum Monte Carlo approach. Therefore, the presentation in this chapter is different

from the paper, the reader can visit our paper to obtain more information.

3.1 Review: Magnetism in graphene

The magnetism of carbon-based materials is one of the extremely intriguing research

domains which can lead to a breakthrough in spintronics because it originates from

the π-electrons. Typically, investigations have shown an interestingly unconventional

magnetization at the graphene system on both experiment and theory.

From the experimental point of view : Although atomically precise edge graphene

is rather difficult to synthesize and bare graphene termination is very sensitive to

chemical modification, several recent efforts supported the idea of intrinsic mag-

netism, i.e., edge magnetism, in graphene nanostructures. Tao et al. [64] used the

tunneling spectroscopy measurement to provide a strong signal of magnetization in

the chiral GNRs at T = 7K synthesized by unzipping carbon nanotubes. That work

shows that the finite energy gap was measured for various chiral GNRs with a range

of chiral angle 3.7◦ < θ < 16.1◦ (θ is the angle between the zigzag edge direction

and the actual edge orientation), for example, a gap approximately 23.8± 3.2 meV

for (8,1) GNR (with (n,m) expressing the edge orientation of GNRs in graphene

lattice coordinates). Noticeably, as pointed out in Ref. [27] an electronic bandgap

of about 0.2− 0.3 eV, measured by STM, is revealed for narrow zigzag GNRs with

the width N less than 7, indicating a signature of interaction-induced spin ordering

along the edges. The gap opening associated with the edge magnetism is predicted

by various theories, such as the mean-field theory [103], the density functional the-

ory [63], and quantum Monte Carlo simulations [73]. Additionally, Magda et al. [27]

detected a transition from semiconductor to metal, which can be identified as the

antiferromagnetic-ferromagnetic transition, corresponding to the bandgap changing

from finite value to zero upon increasing graphene nanoribbon width. The findings

in that work also demonstrated the stability of the edge magnetic order even at

room temperature. Differential conductance (dI/dV) spectrum obtained by using

STM displayed the energy splittings of ∆0 = 1.5 eV and ∆1 = 1.9 eV between the
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two occupied states and the unoccupied one, respectively, for 6-zigzag GNR [17],

providing not only the existence of edge-localized states but also edge magnetic

order. The experimental findings in that article are in good agreement with theo-

retical results where the DFT calculation unveiled the energy splittings ∆0 = 1.4

eV and ∆1 = 1.7 eV in the energy band structure of the zigzag GNR. Furthermore,

several other studies were carried out in order to provide important additional ev-

idence about the presence of the magnetic edge states, for instance, using jointly

Near-edge x-ray absorption fine structure (NEXAFS) and Electron-spin resonance

(ESR) on few-layer-graphene nanoribbons synthesized by chemical vapor deposi-

tion [104], using four-pulse DEER (Double electron-electron resonance) on Nitronyl

nitroxide-radical-functionalized GNRs [105] and others [106–108]. Evidently, most

experimental observations have only been successful on the GNRs. Meanwhile, many

reports fabricated successfully GNFs from different approaches with various shapes

and sizes [109–114], but there has not been still any clear evidence about the intrin-

sic magnetic moment in graphene quantum dots yet. Nevertheless, according to a

recent experimental work [115], the purely Curie-like paramagnetism with the mag-

netic moment of 1.2 µB at 2K was obtained on substantially pristine edge graphene

quantum dots which have the average diameter of 2.04 nm and average height of

approximately 0.52 nm (implying that most of the graphene quantum dots are mono

and bi-layer). In spite of the relatively small detected value, that result may be con-

sidered as an experimental proof for the possibility of the spontaneous magnetism

in graphene quantum dots.

From the theoretical point of view : The majority of computational studies are real-

ized within the DFT because it is able to provide information about the spin-resolved

density of states of the system. Albeit so, another approach used widely is the single-

band Hubbard model for π-electrons. According to the single-band Hubbard model,

both local and total magnetic moments depend exclusively on the strength of the on-

site Coulomb interaction U . At half-filling, the graphene honeycomb lattice is in the

semimetallic state with weak Coulomb interaction U . An expected phase transition

to an insulator state with antiferromagnetic order is introduced upon increasing the

strength of U . The threshold value of U where occurs a semimetal-antiferromagnetic

transition is very sensitive such that its magnitude can be influenced easily by ex-

ternal conditions [116] or intrinsic and Rashba spin-orbit coupling (Rashba SOC

arise from the electric field or interaction with a substrate [79]) [91, 98]. Since the

π-electron is localized at the carbon atoms on the zigzag edge, while no such lo-
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calization is expected for the armchair edge, the intrinsic magnetism on the edges

can only be induced by the edge-localized states. Spins localized at the zigzag

edge align in parallel if they belong to the same sublattice. In contrast, the spins

become antiparallel if they belong to different sublattices. Such intrinsic magnetiza-

tion on the edges has been extensively studied on the GNRs by the MFT, DFT or

QMC calculations [63, 73, 103, 117]. As indicated, with arbitrary non-zero Coulomb

interaction U , the magnetic moment on a zigzag edge of pristine GNRs displays

ferromagnetism at the intra-edge and antiferromagnetism at the inter-edge. Its am-

plitude decays sharply from edge sites to inner sites for the weak Coulomb energy.

Similar phenomena have been also predicted in the GNFs. Remarkably, the GNFs

can be semiconducting with a finite bandgap even in the absence of Coulomb inter-

action. The amplitude of such gap declines once increasing the size and vanishes at

limit large size which has been demonstrated both experimentally [118] and theo-

retically [39]. Together with the quantum confinement effect, the magnetization in

the GNFs therefore points out the sensitive dependence on the size, shape and edge

orientation.

Since graphene is a bipartite lattice, for real space there are two counting rules [103];

consisting of the benzenoid graph theory and Lieb’s theorem, that can be applied to

predict a few characteristics including the magnetic properties in a finite graphene

system. The benzenoid graph theory can provide directly the number of zero-energy

states η of the nearest-neighbor TB Hamiltonian which is equal to η = 2α − N ,

where N is the total number of sites and α provides the maximum possible number

of non-adjacent sites. Nevertheless, this theory does not estimate clearly the spin

alignment in the zero-energy states. Lieb’s theorem determines the total spin of

the ground state in the bipartite system described by the Hubbard Hamiltonian,

S = |NA−NB|/2 with NA and NB are the number of sites in the A and B sublattices,

respectively. As a consequence, the GNFs with arbitrary shapes can be classified

into two types, that are, nanoflakes with sublattice balance (NA = NB) like hexagon,

diamond and nanoflakes with sublattice imbalance (NA 6= NB) such as triangle,

pentagon. For the former, because of the balance of the graphene sublattices the

total spin S = 0 results in either a non-magnetic solution or a fully compensated

intrinsic AF solution [119–121]. In the case of nanoflakes with sublattice imbalance,

the total spin is nonzero, thus there exists a finite magnetic moment in the system

[122].
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In addition, the significant effect of the vacancies, doping, strain or edge modifi-

cation on the magnetism of graphene systems has been extensively investigated.

It is theoretically demonstrated that vacancies emerging in GNRs can govern not

only their bandgap but also magnetic state. Because of the imbalance of sublat-

tices, vacancies introduced into the armchair GNRs reveal interesting magnetization

and the magnetic moment values depend on the number of vacancies and distance

of vacancies [19, 123]. Topsakai et al. [124] predicted that metallization, as well as

magnetization, can be induced by repeating vacancies or divacancies in non-magnetic

semiconducting nanoribbons due to the spin polarization of local defect states. In

that work, the change from the AF ground state to the ferrimagnetic state in semi-

conducting zigzag GNRs was observed in the presence of vacancy defects. Using

the determinant QMC simulations, G. Yang et al. [125] provided a way to control

magnetism at room temperature by tunning the strain. The increase of the strain

along the zigzag GNRs can enhance the edge magnetization and a ferromagnetic-

like behavior with a proper strain may be produced at a relatively weak Coulomb

interaction. In analogy to the strained GNRs, these behaviors were also found in

the strained graphene quantum dots [119, 126]. Investigations also suggested that

carrier-doped graphene can tune the magnetic ordering [120,121,127]. Particularly,

according to Ref. [120], the emergence of inter-edge ferromagnetic coupling on the

hexagonal graphene quantum dot with N = 54, without the on-site Coulomb interac-

tion, is due to a single hole or electron doping in which the total magnetic moment

calculated for the hole doping case is larger. While the competition between the

on-site Coulomb interaction and carrier doping gives rise to a complex magnetic

phase diagram: including the intrinsic AF, fully polarized ferromagnetic and mixed

phase. In contrast, the edge modification like reconstruction, hydrogen passivation

has been predicted to suppress magnetism in the GNFs [115,128–130]. Furthermore,

in spite of the small intrinsic spin-orbit coupling, its effect on the magnetism has

been studied using various methods such as QMC simulations [84,89,98], slave-rotor

MFT [83,131], variational cluster approach (VCA) [101], renormalization group [87]

or other approaches [90,132]. A large number of investigations exhibit the interplay

between spin-orbit coupling and electron-electron interactions. In addition to the

emergence of topological insulating phase, the magnetization is in favor of in-plane

rather than being in out-of-plane in the presence of the SOC.

To sum up, it is clear that the variety of GNFs with different shapes and sizes was

studied. However, the systematic investigation to point out the onset of magnetiza-

34



CHAPTER 3. MAGNETISM IN GRAPHENE NANOFLAKES

[a\

tion on GNFs with sublattice balance from the small to large GNFs has been scarce.

In what follows, we therefore will describe in detail the Hubbard model within the

MFT to gain insight the intrinsic magnetism on the GNFs for hexagonal and dia-

mond shapes. Besides, we also analyze the phase diagram in the presence of the

intrinsic SOC at the Hartree-Fock mean-field level which has not been shown yet.

3.2 Phase diagram

We first revisit the phase diagram of the graphene honeycomb lattice in the absence

of the SOC within the mean-field Hubbard approximation at half-filling and zero

temperature. Unlike the two dimensional square lattice (in the case of the nearest-

neighbor hopping considered), where the ground state is an AF state at even an

infinitesimally small onsite Coulomb energy U [133], the transition to the AF phase

occurs at a finite U for the honeycomb lattice, named critical value with the abbre-

viation of Uc. This is considered to be a consequence of the vanishing density of

states at zero energy. The value of Uc is found at 2.23t [134] at the mean-field level.

As shown in Figure 3.1(a), we find a so-called Mott-Hubbard transition point at the

Uc where the graphene undergoes a phase transition from the gapless semi-metal

(SM) to the antiferromagnetically ordered insulator. The staggered magnetization

Ms increases as U/t beyond the critical point Uc/t. The single-particle gap ∆sp is

shown in the inset of Figure 3.1. It opens and climbs up nearly linear with respect

to U/t in the magnetic phase. One considers the dispersion energy E(k) at K point.

In particular, γK in Eq. (2.27) is zero and Eq. (2.27) reads, E(K) = ±U |Ms| with

m = Ms (without spin-orbit coupling). The single-particle gap can be calculated as

follows

∆sp = 2U |Ms|. (3.1)

We see explicitly the direct relation between the staggered magnetization and single-

particle gap within the mean-field approximation by Eq. (3.1) where a finite stag-

gered magnetization gives rise to a finite gap. These findings are in excellent agree-

ment with the established literature [95, 134]. In comparison with other numerical

approaches, the results generally show higher critical values Uc than 2.23t. We per-

formed a study of the single-band Hubbard model on the graphene honeycomb lattice

to compare the mean-field results with the elaborate DMFT and lattice QMC [102].

Due to the inclusion of quantum fluctuation in the DMFT, the transition shifts to
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the value of Uc/t ≈ 3.7 (within DMFT + NRG) and Uc/t ≈ 3.5 (within DMFT

+ QMC) close to the result obtained from the projective auxiliary field QMC sim-

ulations, namely Uc/t ≈ 3.78 (see Ref. [102] for details)1. This value Uc ≈ 3.78t

was also provided by the pinning field approach for QMC of Assaad et al. [135]. In

addition, Sorella et al. found a Uc/t = 4.5 ± 0.5 [134] for clusters containing up to

648 sites, a more accurate estimate Uc/t = 3.869±0.013 [136] for much lager clusters

containing up to 2592 sites using QMC. Other QMC approaches found a Uc/t ≈ 3.6

by Furukawa et al. [137] and a Uc/t ≈ 5 by Paiva et al. [138]. The two-particle self-

consistent approach [139] to the honeycomb lattice reported a Uc/t = 3.79 ± 0.01

which is quite close to the value using large-scale QMC. A Uc/t ∼ 3.8 is given using

the functional renormalization group [140]. Moreover, a finite Uc/t ∼ 3.3 was also

calculated using cluster DMFT combined with continuous-time QMC simulations

given by Wu et al. [52]. Another value Uc = 3.7t was obtained from the two-site

dynamical impurity approximation [141]. In short, although the critical point Uc is

sensitive to different numerical approaches which may be subject to different errors,

the true value is unique and the antiferromagnetic phase exists at strong interaction.

With regard to the presence of the intrinsic SOC λ, Figure 3.1(b) plots the ground-

state phase diagram using the Kane-Mele-Hubbard model within the Hartree-Fock

mean-field approach. At first glance, there are three phases, including the gapless

semi-metal (SM), the topological band insulator (TBI) and antiferromagnetic insu-

lator (AFI), instead of two phases as in the case of zero SOC. The transition points

Uc dramatically increase when the intrinsic SOC λ increases. The reason for that

is the opening of a finite bandgap by the SOC without the electron-electron inter-

action [91], see Figure 2.2(a). In detail, the SM phase, which only exists at λ = 0,

is characterized by ∆sp = 0 and is non-magnetic as mentioned before. A transition

from the SM phase to the TBI phase occurs for arbitrary non-zero λ. In contrast

to the SM phase, the TBI phase has ∆sp > 0, see the inset of Figure 3.2, and the

system still remains non-magnetic. Both the SM and TBI phases are stable against

weak interaction. Nonetheless, a transition to the AFI phase occurs at strong in-

teraction. While the out-of-plane magnetic moment is prioritized for development

at λ = 0, indicating the Néel type, the finite intrinsic SOC suppresses the parallel

orientation of magnetic moment to the z axis. Concurrently, it drives the moment

into a xy-plane AF order. This phenomenon has been confirmed by the slave-rotor

1Numerical calculations are performed by our colleagues: Fakher F. Assaad (QMC), Robert
Peters (DMFT + NRG) and Nayuta Takemori (DMFT + QMC)
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Figure 3.1: (a) Staggered magnetization and single-particle gap (in the inset) ∆sp

versus U/t within the mean-field Hubbard approximation. (b) Phase diagram using
the KMH model at the mean-field level. The inset displays the data obtained from
the MFT (red circles) and QMC (blue triangles).

theory [83,131], QMC [84,98], CDMFT (cellular dynamical mean-field theory) [90],

VCA (variational cluster approach) [91], and pseudofermion functional renormaliza-

tion group [131]. To be explicit, Figure 3.2 denotes the staggered magnetization as
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Figure 3.2: Staggered magnetization and single-particle gap (in the inset) as a func-
tion of U/t with the intrinsic SOC λ = 0.5t.

a function of U/t for λ = 0.5t. The phase transition takes place at Uc ' 3.04t where

the in-plane magnetization Mx turns on and then increases with U/t beyond the

Uc/t, while M z remains at zero. The inset of Figure 3.2 gives information about the

single-particle gap ∆sp for λ = 0.5t in which the ∆sp linearly increases with respect

to U/t in the AFI state. As expected, a finite gap is observed and is not sensitive

to the Coulomb interaction U in the topological insulator phase.

In comparison, the inset of the Figure 3.1(b) also shows the U − λ phase diagram

of the KMH model using the Hartree-Fock MFT (red circles) and QMC simulations

(blue triangles) 2. Not only does the U − λ phase diagram obtained from the QMC

simulations introduce the presence of such three phases but also indicates the in-

crease of transition boundary line with respect to λ/t which has the similar effect

as in the MFT for the range of λ/t considered. However, the critical value Uc cor-

responding to each λ for the QMC simulations is higher than that for the MFT,

for example Uc ≈ 5.7t for the QMC simulations and Uc ≈ 2.4t for the MFT at

λ = 0.2t. In addition, the QMC simulations also show that the magnetic ordering

in the AFI phase only occurs in the transverse spin directions at λ > 0 which is

exhibited in our calculations as well. Similar results have been found in other works

2The data obtained from QMC simulations are computed by Martin Hohenadler (this result
was published in Ref. [98])

38



CHAPTER 3. MAGNETISM IN GRAPHENE NANOFLAKES

[a\

0.0 0.2 0.4 0.6 0.8 1.0

λ/t

0

2

4

6

8

10

U
/t

z direction

x direction

Figure 3.3: Phase diagram using KMH model in the mean-field approximation with
the AF moment in z direction (blue line) and x direction (red line).

where Uc increases with increasing λ [84, 91]. Such a phase diagram was calculated

by S. Rachel et al. [83] using the Hartree-Fock approximation. However, the slope

of the transition boundary line in that study are much higher compared with our

results as well as the results obtained from more sophisticated methods, typically

Uc ' 2.23t− 8.55t in Ref. [83], while Uc ' 2.23t− 4.12t corresponding to λ = 0− 1t

in our calculation. This difference results from the choice of the quantization axis.

To clarify, the phase diagram for the infinite graphene in Ref. [83] is reproduced

and plotted in Figure 3.3 where the z axis is chosen as a quantization axis. For

λ = 0, the mean-field critical point Uc is approximately 2.23t for any quantization

axis. Since the SU(2) symmetry is not broken the magnetization direction is not

important [141]. For λ 6= 0, one sees the difference of the transition boundary lines

between the z direction (blue line) and the x direction (red line). According to the

QMC calculations, the magnetic moment prefers to lie in the in-plane direction, it

thus requires stronger interaction for the stability of the antiferromagnetic state in

the out-of-plane direction. The value of Uc in this case is overestimated, while the

Uc in x direction is underestimated. As a result, the slope of the blue line is higher

than the slope of the red line. Therefore, our results are more accurate than those

published in [83] within Hartree-Fock approximation.
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To conclude, our results show that the phase transition strongly depends on the

intrinsic SOC and the onsite Coulomb energy using the KMH model at the Hartree-

Fock mean-field level which has not been reported yet. By comparing to other

literature, we find a good agreement with previous works.

3.3 Magnetism in graphene nanoflakes

In what follows, we evaluate the intrinsic magnetism on graphene nanoflakes with

two types of geometries: hexagon and diamond with various sizes. The mag-

netic moment for each site i (or local magnetic moment at site i) is computed

as mi = 〈szi 〉 = (〈ni↑〉 − 〈ni↓〉)/2 and the total magnetic moment S =
∑

imi. For

the antiferromagnetic phase, we calculate the staggered magnetization,

Ms =
1

N

∑
i

(−1)i〈szi 〉, (3.2)

where N is the number of carbon atoms on a graphene nanoflake. The factor (−1)i

gets + for i belonging the A sublattice and − for the other. The bigger Ms is,

the stronger the antiferromagnetic phase is. Resembling the infinite graphene, the

GNFs are here non-magnetic without taking into consideration the electron-electron

interaction. The onset of magnetization on the GNFs therefore only occurs at a finite

value of U , called Uc as well, where there is a transition from the paramagnetic

(PM) to the antiferromagnetic (AF) phase. The value of Uc/t is sensitive to the

edge termination, the size as well as the geometry of the GNFs [28, 119, 122, 142].

As indicated by J. Viana Gomes et al. [119] the armchair GNFs do not support any

magnetic structure for the value of U < U bulk
c (' 2.23t). In addition, that study

confirmed that the presence of the zigzag termination gives rise to the reduction

of Uc/t. Hence, the origin of the edge magnetization is believed to be due to the

presence of the edge states [95, 120, 121]. Therefore, we neglect the armchair GNFs

in the current work.

As shown in Figure 3.4, Uc is suppressed to approximately zero upon increasing the

size of the nanoflakes for both geometries. Particularly, the value of Uc decreases

from Uc ' 2.2t (Uc ' 1.51t) to a tiny Uc > 0t corresponding to N = 24 (N = 30)

to N = 1350 ( N = 286) sites for the hexagonal (diamond) nanoflakes at the

mean-field level. For a large enough size, the magnetization on the zigzag edges

40



CHAPTER 3. MAGNETISM IN GRAPHENE NANOFLAKES

[a\

(a)

0 1 2 3 4 5 6 7 8

U/t

0.0

0.1

0.2

0.3

0.4

0.5

M
s

0 500 1000

N

0

1

2

U
c/
t

(b)

0 1 2 3 4 5 6 7 8

U/t
0.0

0.1

0.2

0.3

0.4

0.5

M
s

0 200 400

N

0.0

0.5

1.0

1.5

U
c/
t

(c)

0 1 2 3 4 5 6 7 8

U/t

0

1

2

3

4

5

6

7

8

∆
sp

N = 54

N = 96

N = 294

N = 600

N = 1350

(d)

0 1 2 3 4 5 6 7 8

U/t

0

1

2

3

4

5

6

7

8

∆
sp

N = 30

N = 70

N = 126

N = 198

N = 286

N = 1350, U = 0.5t

0.1152

0.0989

0.0673

- 0.1152

- 0.0989

- 0.0673

(e) N = 286, U = 0.5t

0.1330

0.0950

0.0343

- 0.1318

- 0.0950

- 0.0343

Figure 3.4: Staggered magnetization Ms on the edges (a, b) and single-particle gap
∆sp (c, d) versus U/t, and local magnetic moments (e, f) for hexagonal and diamond
GNFs, respectively. Pink circles denote the magnitude of spin-up densities, while
yellow ones are proportional to the magnitude of spin-down densities. The insets of
figures (a) and (b) display the dependence of Uc/t on the number of sites on each
nanoflake.

of GNFs is developed at a tiny Uc, like square-shaped nanoflakes [119] and GNRs

[26, 143]. The reduction of Uc is also shown for the hexagonal GNFs within the

DMFT where Uc decrease from ' 3.1t (N = 54) to ' 2.0t (N = 150) [39]. The

origin of this reduction has been controversial. Among the reasons the amplitude

of the quantum confinement gap ∆sp without the on-site Coulomb energy [39] can

be considered as the main reason. Typically, Figure 3.4(c) and 3.4(d) display that

the gap ∆sp is inversely proportional to the increase of the nanoflake size. The
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gap of diamond nanoflakes is smaller than that of hexagonal nanoflakes, as a result

the transition point in the diamond nanoflakes shifts to a smaller value. Another

explanation, suggested by S. Ganguly et al. [130], is in relation to the armchair bond

density, defined as ρ = Narm/Nt with Narm (Nt) being the number of the armchair

(total) bonds along the edges, on the edges, because the armchair defect gives rise

to the damage to magnetization. ρ decreases with increasing nanoflake size, thus

resulting in the favor of the AF order in larger nanoflakes rather than in smaller

ones at the weak interaction. Besides, changing the shape from the hexagon to

the diamond yields a significant reduction of ρ, so the diamond nanoflakes require

weaker interaction to trigger the antiferromagnetism than the hexagonal nanoflakes.

In other words, the number of carbon atoms on the edges determines directly the

value of Uc. In addition, since the number of sites on an edge of the diamond

nanoflakes is much larger than that of the hexagonal nanoflakes with the relatively

equivalent number of sites on whole nanoflakes the amplitude of magnetization on the

diamond GNFs is bigger for the range of Uc < U < U bulk
c . However, the amplitude

of magnetization remains constant being independent on the size as well as the

geometry for the intermediate and strong U/t. The reason for that is the magnitude

of the gap being almost equal for all sizes and geometries at the same U/t.

(a) N = 1350, E = 0 (b) N = 286, E = 0

Figure 3.5: Local density of states (LDOS) at each site of the hexagonal (a) and
diamond (b) nanoflakes for the energy of E = 0 eV . The area of each blue circle is
proportional to the amplitude of the LDOS.

In the AF state, with U/t close to Uc/t the magnetic moment on the zigzag edges

largely contributes to the magnetization of the nanoflakes and the magnetic moment

decreases sharply as moving toward the center of the nanoflakes, see Figure 3.4(e)

and 3.4(f). The spin-polarization would occur at all sites of the nanoflakes with

strong enough electron-electron interaction, i.e., U > 2.23t. The amplitude of the

local magnetic moments at the edge sites is substantially larger than that at others.

This is a consequence of the reduction of the number of hopping channels for the edge

42



CHAPTER 3. MAGNETISM IN GRAPHENE NANOFLAKES

[a\

sites [120–122] compared with the inner sites of the nanoflakes. Remarkably, for the

hexagonal GNFs, the magnetic moments on all sites at a given edge align ferromag-

netically because all of the carbon atoms belong to the same graphene sublattice.

Meanwhile, the magnetic moments on the neighboring edges have antiferromagnetic

alignment due to two adjacent edges connected by an armchair defect. Similar find-

ings were reported for small hexagonal nanoflakes, N = 54 [39] and N = 96 [95].

For the diamond GNFs, we can assume that a diamond nanoflake is constructed

by two triangular shapes which are connected by two armchair defects. In analogy

to the square nanoflakes or the nanoribbons, if the upper triangular part exhibits

parallel spin moments at two edges, the other shows antiparallel spin moments. The

net total magnetic moment S for both geometries equals to zero and this result is

in accordance with Lieb’s theorem for the case of sublattice balance. Furthermore,

since there exists the armchair bond at the junction of the edges for both geome-

tries the local magnetic moment increases far away from the armchair defect. As

a consequence, the largest magnetic moment resides at the middle site of the edge

for the hexagonal nanoflakes. The maximum value of local magnetic moment dwells

in the edge sites close to the corners for the diamond nanoflakes. Such local mag-

netic moment distribution may be due to the electron distribution along the zigzag

edges. To be clear, we plot the local density of states (LDOS), the LDOS at site

i, LDOS = (−1/π)=Gii(r) with Gii(r) being the retarded Green’s function, for the

hexagonal and diamond GNFs at the zero energy. Figure 3.5 reveals that the elec-

tron distribution at each site is similar to the distribution of local magnetic moment

where the electron densities of the nanoflakes congregate principally on the zigzag

edges. These densities dwindle sharply as going toward the bulk sites and close to

the armchair defects. Such electron distribution for the hexagonal and triangular

nanoflakes was also pointed out in Ref. [144].

To sum up, the electron-electron interaction encoded by U takes responsibility for

switching on the magnetism in graphene. Depending on the characteristic of each

graphene system, it requires different coupling which is a function of the geometry,

edge and size. These findings are in good agreement with previous works [120, 122,

130].
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Due to the difficulties in solving exactly transport issues of a complicated many-

body system, approximation methods are required. Recently, a common approach

to deal with the transport problems is based on the Green’s function, typically

the non-equilibrium Green’s function formalism. Not only does it allow to describe

various systems but one can also conveniently realize computations because the main

results of the non-equilibrium Green’s function formalism can be summarized in a

few equations. In this chapter, we review in short the important equations of the non-

equilibrium Green’s function formalism. Before doing that, this chapter will begin

with an introduction to spin caloritronics. Then we sketch a spin-caloritronic device

based on a magnetic zigzag graphene nanoflake used for studying the transport

properties.

4.1 Introduction

How to cope with the increasing dissipated heat and improve the performance in elec-

tronic devices are the main challenges in the design of these devices at the nanoscale.
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In this regard, a new field of study emerges, known as spin caloritronics, which in-

tegrates two well-established fields, namely spintronics and thermoeletronics. The

former explores the spin degree of freedom of an electron and the latter can convert

directly heat into electrical power and vice versa. Therefore, the spin caloritronics

describes the interaction of spins with heat currents [145–148]. Thanks to this com-

bination, the spin-caloritronic devices can bring interesting features such as minia-

turization of device, recovery of waste energy, easy control of the spin current by

temperature, development of an effective way for future non-dissipative information

transmission and low-energy consumption technology [40], etc.

In general, the fundamental structure of a spin-caloritronic device requires an in-

terface between a material with the possibility of spin-polarization and a normal

metal, a semiconductor, or another spin-polarized material. When a temperature

gradient is applied to a spin-polarized material, the thermally induced carrier cur-

rents flow in opposite directions via two spin channels and a spin current can be

generated [40, 149, 150]. Unlike the spintronics where a spin-polarized current is

generated by a bias voltage, the spin current in the spin caloritronics is induced by a

temperature difference rather than by an electrical gradient. The generation of the

spin current driven by the temperature gradient is in intimate relation to an effect

known as the spin Seebeck effect (SSE). This effect was first observed by Uchida’s

group in 2008 [151]. In that work, they found a spin voltage and spin current only

produced by a temperature gradient in a metallic magnet without an external field.

Up to now, the SSE has been measured in many materials by the inverse spin-Hall

effect such as half-metallic La0.7Sr0.3MnO3 [152], the ferromagnetic semiconduc-

tor GaMnAs [153], the ferrimagnetic insulator Y3Fe5O12 [154], antiferromagnetic

Cr2O3 [155], MnF2 [156], NiO [157], the magnetic insulator LaY2Fe5O12 [158],

and the non-magnetic semiconductor InSb [159]. Noticeably, a perfect SSE can be

achieved when there is only a spin current flowing in the device, giving rise to the

reduction of the heat dissipation caused by the total charge current [160].

Graphene is an ideal material for spintronic applications due to its weak spin-orbit

coupling, long relaxation time and length, as mentioned in Chapter 1. A large num-

ber of studies have focused on the spin transport which is brought on by an external

bias in the graphene-based spintronic devices [44,161–164]. On the other hand, albeit

the pure graphene sheet shows the limitations in thermoelectric applications due to

its high thermal conductivity [7], which decreases the thermoelectric efficiency, the
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modified graphene offers a relatively large Seebeck coefficient in both theory [165]

and experiment [166,167]. Ouyang et al. [168] reported that the Seebeck coefficient

of GNRs was found to be much higher than that of two-dimensional graphene. High

thermoelectric power at high temperature was measured in graphene deposited on

hBN by F. Ghahari et al. [167]. Moreover, Zeng et al. [40] found that the thermally

induced spin current could be generated by applying a temperature difference be-

tween two electrodes in a magnetic zigzag GNR. From these considerations, it can

result in the possibility of developing graphene-based spin caloritronics.

A variety of theoretical researches in the spin-caloritronic field have been mainly

done on the GNRs with the zigzag-shaped edge [40, 169–171] due to the rich mag-

netic properties [103] and on the armchair GNRs [150, 172] because of its high See-

beck coefficient [173] using the first-principle calculations and the mean-field the-

ory combined with the NEGF technique. In addition to the spin Seebeck effect,

the GNR-based spin caloritronic devices exhibit other excellent properties such as

spin-filtering effect, spin-Seebeck diode, giant thermal magnetoresistance, negative

differential resistance effect [44, 148, 169, 172, 174, 175], etc. Those studies indicated

that the substantial spin-up and spin-down currents flowing in opposite directions

were induced by the temperature gradient without external electric bias. A pure

spin current without charge current also generated in the GNR-based devices was

reported [171,176]. Recently, experimental measurements have predicted the possi-

bility of the spin Seebeck effect in graphene [177]. Furthermore, the devices based on

graphene with a perfect SSE have been still a challenge and very little attention has

been paid to thermally induced spin currents in the graphene nanoflakes. Therefore,

we aim to address such spin current in graphene nanoflake-based spin caloritronic

devices in the present study.

4.2 Setup transport problem

Figure 4.1(a) sketches the device used to investigate the transport properties in the

present work. Particularly, this device consists of a magnetic hexagonal GNF with

zigzag edge and two metallic leads (i.e., Au). The GNFs act as the scattering region

(central part), while the left and right leads act as the source (S) and the drain

(D) with different temperatures TS and TD, respectively. It assumes that there are

no direct interactions between the source and the drain. These two leads are con-
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Figure 4.1: (a) The schematic configuration of a two-lead device. The contact
position of leads with the edges of GNFs in three configurations: (b) ortho, (c)
meta and (d) para.

nected with two zigzag edges of the GNFs. Depending on the contact position of

the leads with the edges, there are three possible configurations denoted as ortho

(4.1(b)), meta (4.1(c)) and para (4.1(d)), respectively. In the ortho and para config-

urations, the leads are connected with carbon atoms belonging to different graphene

sublattices. Hence, as the magnetization is triggered the magnetic moments on the

edges are antiparallel. In contrast, the leads are attached to carbon atoms of the

same graphene sublattice in the meta configuration, so the magnetic moments be-

come parallel. The difference among these configurations is expected to bring about

interesting spin transport phenomena.

With the device proposed, the total Hamiltonian of the device is given as [178,179]

H = HC +HS +HD +HSC +HDC (4.1)

HC = −t
∑
〈i,j〉σ

(c+
iσcjσ + h.c) + U

∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
)

HS/D =
∑
αkσ

εαkσd
+
αkσdαkσ

HSC/DC =
∑
αikσ

Vαikσc
+
αiσdαkσ + h.c

where HC describes the graphene nanoflakes with the nearest hopping and Coulomb
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interaction. HS/D is the Hamiltonian of the source/drain with α = S/D and d+
αkσ

(dαkσ) creates (annihilates) an electron with energy εαkσ in the source/drain. HSC/DC

is the Hamiltonian for tunneling between the leads and the nanoflake with Vαikσ

denoting the hopping between the site i of the central region and the state k of the

leads. When there is a difference in the temperatures of the leads, the system is

driven out of equilibrium and therefore a current will flow through the device. The

calculation of such a current is realized by the non-equilibrium Green’s function

formalism.

4.3 The non-equilibrium Green’s function formal-

ism

4.3.1 Basic formulas

The non-equilibrium Green’s function method is an elegant and powerful computa-

tional approach for treating the transport properties in a nanoscale system. It is

developed based on the quantum field theory. In the early 1960s, the initial devel-

opments of the non-equilibrium Green’s function (NEGF) method were formed with

the first key contributions of Martin and Schwinger [180] in the formulation of the

general N -particle Green’s function. The next important contributions came from

Baym and Kadanoff [181] and Keldysh [182]. More remarkably, Keldysh introduced

a useful diagrammatic technique for treating the Green’s function in non-equilibrium

systems, known as Keldysh contour, so the NEGF is sometimes known as the Key-

dysh formalism [183]. So far this method has been applied successfully to various

nonequilibrium problems such as particles in plasmas, electrons, spins and phonons

in semiconductors, superconductors, etc, see Ref. [184] and its cited references. Par-

ticularly, the NEGF method enables us to effectively calculate the currents, current

densities, occupation numbers and spin densities in the systems including a finite

bias and interactions [184]. In this section, we briefly present the NEGF formalism

for a system including a central region (C) (can be a wire, molecule, quantum dot,

etc) connected to the left and right leads acting as the source (S) and drain (D),

respectively, see Figure 4.1(a). Each block in the system can be described by a

corresponding Hamiltonian.
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To derive the main equations in the NEGF method, we start with the definitions of

Green’s functions. In quantum mechanics, the single-particle Green’s function G(E)

of a system described by a Hamiltonian H can be found from the equation

(E −H)G(E) = 1. (4.2)

The solution of Eq. (4.2) gives the formal Green’s function

G(E) = (E −H)−1. (4.3)

The retarded and advanced Green’s functions are defined respectively [185]

Gr(E) = (E + iη −H)−1 (4.4)

Ga(E) = [Gr(E)]∗ = (E − iη −H)−1 (4.5)

here η is a positive infinitesimal number. Consider now the two-terminal system

above, the retarded Green’s function of the whole system can be determined by

solving Eq. (4.2) when replacing G(E) by Gr(E). Eq. (4.2) is recast under the

matrix form as follows

((E + iη)I −H)Gr(E) = I (4.6)

where I is an identity matrix. In this case H = HS +HD +HC +HSC +HDC is the

total Hamiltonian of the system with HS/D and HC describing the Hamiltonian of

the source/drain and central region respectively, and HSC/DC denoting the coupling

between the leads and central region. Since there are no direct interactions between

the two leads the Hamiltonian HSD and H∗SD are zero. Here HC is a finite matrix

while the others are infinite matrices in size. We can write Eq. (4.6) in the following

form
E + iη −HS −HSC 0

−H∗SC E + iη −HC −H∗DC
0 −HDC E + iη −HD



Gr
S Gr

SC Gr
SD

Gr
CS Gr

C Gr
CD

Gr
DS Gr

DC Gr
D

 =


IS 0 0

0 IC 0

0 0 ID


(4.7)

here Gr
S and Gr

R describe the source and drain retarded Green’s functions, Gr
SC

and Gr
RC are the retarded Green’s functions manifesting the interaction between the

leads and the central region. The direct scattering between two leads is Gr
SD and

finally Gr
C is the retarded Green’s function of the central region. IC is the identity

matrix of the central region while IS and ID are the identity matrices of the leads.
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With the aim to find Gr
C , we are only interested in the following set of three equations

in Eq. (4.7)

(E + iη −HS)Gr
SC −HSCG

r
C = 0

−H∗SCGr
SC + (E + iη −HC)Gr

C −H∗DCGr
DC = IC (4.8)

−HDCG
r
C + (E + iη −HD)Gr

DC = 0

Implementing simple mathematical calculations, equations above are rewritten as

Gr
SC = (E + iη −HS)−1HSCG

r
C

Gr
DC = (E + iη −HD)−1HDCG

r
C (4.9)

(E + iη −HC)Gr
C −H∗SCGr

SC −H∗DCGr
DC = IC

Substituting the first and second equations into the third equation of the set of

equations above, one gets

Gr
C = [E+iη−HC−H∗SC(E+iη−HS)−1HSC−H∗DC(E+iη−HD)−1HDC ]−1 (4.10)

Ultimately, the retarded Green’s function of the central region is found as

Gr
C = [E + iη −HC − ΣS(E)− ΣD(E)]−1 (4.11)

where

ΣS(E) = H∗SCg
r
SHSC (4.12)

and

ΣD(E) = H∗DCg
r
DHDC . (4.13)

ΣS and ΣD are the self-energies of the source and drain, respectively. grS and grD are

the retarded surface Green’s functions for the leads attached to the central region

which are defined respectively

grS = (E + iη −HS)−1 (4.14)

and

grD = (E + iη −HD)−1. (4.15)

Eq. (4.11) shows that the retarded Green’s function Gr
C contains all information
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about the electronic structure of the central region connected to the leads. Therefore,

solving Eq. (4.11) plays a crucial role in the study of transport phenomena in a

nanoscale system. From the computational technique, the main task for finding the

solution of Eq. (4.11) revolves around the calculation of the self-energies of the leads

or, more accurately, the retarded surface Green’s functions grS/D.

4.3.2 The current of charge carriers

As is well known, a current flows through a system when the charge carrier con-

centration at the source and drain is out of equilibrium caused by a bias voltage

or temperature gradient. In the ballistic transport regime, this current can be

treated within the so-called Landauer-Büttiker formalism which was proposed by

Landauer [186] and Büttiker [187]. The current in this formalism is related to the

probability of an electron to be transmitted through the system and it is given

by [188,189]

I =
2e

h

∫ ∞
−∞

dET (E)(fS(E)− fD(E)) (4.16)

where e is the absolute value of the electron charge, h is the Planck constant. T (E)

is the transmission coefficient which is the summation of transmission probabilities

of electrons with energy E. fS/D(E) is the Fermi-Dirac distribution function for the

source/drain.

fS/D(E) =
1

1 + eβ(E−µS/D)
(4.17)

with the chemical potential of the source/drain µS/D and β inversely proportional to

temperature. In the case when the current is induced by the temperature gradient,

all the temperature dependences are in the distribution functions fS/D while the

transmission coefficient does not depend on the temperature [189].

For a small bias voltage and at low temperature around the Fermi energy EF , the

current of charge carriers through the system is mainly determined by the transmis-

sion coefficient T (EF ) with [190]

I ∼ T (EF )(µS − µD). (4.18)

It can be seen that the calculation of the current concentrates on the evaluation

of the transmission coefficient. Although the Landauer-Büttiker formalism (4.16)
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has proven its usefulness for the understanding of mesoscopic transport, it is not an

effective tool when dealing with problems such as carriers scattering off impurities,

lattice vibrations, the mutual influences of the electron and phonon subsystems on

each other, etc [188,191]. In the meanwhile, such effects can be in general treated by

the NEGF method. Moreover, in 1971 Caroli et al. [192] gave an explicit calculation

of the current for a metal-insulator-metal tunneling junction to all orders in the

applied bias based on the NEGF method. That paper also first provided an efficient

way to compute the transmission coefficient in terms of Green’s function, the so-

called Caroli formula

T (E) = Tr(GaΓDG
rΓS), (4.19)

where ΓS/D denotes the interaction between the source/drain and the central region

with

ΓS/D = i(ΣS/D − Σ+
S/D). (4.20)

Since then, the NEGF has been applied to various systems to formulate an expression

for the charge current in terms of the Green’s function [183, 191, 193–195]. Those

reports not only reproduce the Caroli formula but also derive a Landauer-Büttiker-

like formula (see detailed calculations in Refs. [183,191,193–195]). In particular, the

current flowing from the source to the central region can be calculated by taking

the expectation value of the rate of the occupation number operator NS of the

source [193]

IS = −ie
h̄
〈[H,NS]〉, (4.21)

here

H =
∑
i

εic
+
i ci +

∑
k,α∈S,D

εkαd
+
kαdkα +

∑
i,k,α∈S,D

Vkα,ic
+
i dkα + h.c (4.22)

is the Hamiltonian of the two-terminal system and

NS =
∑
k,α∈S

d+
kαdkα. (4.23)

Where c+
i (ci) creates (destroys) an electron in state i with energy εi for the central

region while d+
kα and dkα are the creation and annihilation operators with energy εkα

for the source (S) or the drain (D), and V S,D
ki describes the coupling of an electron

with a momentum state k in the lead to an atomic orbital i on the central region.
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The current IS obtained after some algebra is

IS =
ie

h̄

∑
k,i,α∈S

(Vkα,i〈d+
kαci〉 − V ∗kα,i〈c+

i dkα〉). (4.24)

Using definition of the Keldysh Green’s function G<
i,kα(t) ≡ i〈d+

kαci(t)〉 [183,193], one

arrives at

IS =
e

h

∑
k,i,α∈S

∫
dE

2π
(Vkα,iG

<
i,kα(E)− V ∗kα,iG<

kα,i(E)). (4.25)

In the NEGF method, by introducing the Dyson equations (see Ref. [183] for details),

the steady state current I across the system is determined by

I =
ie

h

∫
dE(Tr{[fS(E)ΓS − fD(E)ΓD](Gr −Ga)}+ Tr{(ΓS − ΓD)G<}). (4.26)

Applying the Dyson equations for the Green’s function in the central region into Eq.

(4.26) [183],

G< = ifS(E)GrΓSG
a + ifD(E)GrΓDG

a (4.27)

and

Gr −Ga = −iGr(ΓS + ΓD)Ga. (4.28)

One gets

I =
2e

h

∫ ∞
−∞

dE(fS(E)− fD(E))Tr(GaΓDG
rΓS) (4.29)

with 2 accounting for the spin degeneracy. Note that Gr and Ga are the retarded

and advanced Green’s functions of the central region. Comparing Eq. (4.29) with

Eq. (4.16) and together with Eq. (4.19), one can reproduce the Landauer-Büttiker

formula from the non-equilibrium Green’s function formalism. Consequently, the

problem of the calculation of the transmission coefficient in the Landauer-Büttiker

formula can be solved by the NEGF method. In analogy to Eq. (4.11), the trans-

mission coefficient T (E) can be obtained if one knows the retarded surface Green’s

function grS/D. Because of the important role of the surface Green’s function for the

non-equilibrium transport problem, a general algorithm to compute them has been

proposed. This algorithm is reviewed in Ref. [189] and is not introduced here. Since

the DOS of the metallic leads is approximately constant near the Fermi energy, for

simplicity, we apply the wide-band limit approximation in this PhD work to find the

transmission coefficient as well as the retarded Green’s function Gr
C . We will return

to this discussion in more detail in the subsequent section.
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4.4 Wide-band limit approximation

The wide-band limit method is an effective approximation employed to treat the

self-energies of the leads in the nanoscale. This approximation assumes that the

density of states in the leads does not affect the description of the transport in the

device [196]. Concretely, the retarded self-energies ΣS(E) and ΣD(E) in the Eq.

(4.11) can be split into a Hermitian and anti-Hermitian terms [193,197]

ΣS,D(E) = ΛS,D(E)− i

2
ΓS,D(E), (4.30)

where ΛS,D(E) gives rise to a shift of the orbital resonances and ΓS,D(E) describes

a level broadening. The imaginary part of the self-energy ΓS,D(E) can be expressed

as

ΓS,Dij (E) = 2π
∑
k

V S,D
ki V ∗S,Dkj δ(E − Ek). (4.31)

Near the Fermi energy, V S,D
ki is generally a slowly-varying function of the momentum

k [193]. We have

ΓS,Dij (E) ≈ 2πV S,D
i V ∗S,Dj

∑
k

δ(E − Ek) = 2πV S,D
i V ∗S,Dj ρ(E) (4.32)

where ρ(E) is the DOS in the leads. The fact that the DOS is approximately constant

near the Fermi energy for a metallic lead such as gold. Therefore, within the wide-

band limit approximation, it assumes that Γ is an energy independent constant, i.e,

ΓS = ΓD = Γ, and the level-shift Λ is neglected [197]. The self-energy then has the

form

ΣS,D = − i
2

ΓS,D. (4.33)

It can be seen that this approximation has effectively replaced the complexity of the

full self-energies at the leads by a single parameter ΓS,D [197]. Despite the simplicity,

the wide-band limit approximation still captures the main physical properties and

has the great advantage of yielding explicit analytic results [193]. The problem for

finding the solution of the transmission coefficient T (E) and the retarded Green’s

function Gr
C become relatively simple rather than the cumbersome calculations for

the surface Green’s function. The transmission coefficient within the wide-band

limit approximation becomes

Tσ(E) = Γ2
∑
ijσ

(Gr
ijσ(E))∗Gr

ijσ(E) (4.34)
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with i and j labelling the number of sites on the edges connected to the leads in

our device. According to Valli et al. [39], the increase of Γ results in the extension

of spectral features of the transmission and the increase of overall transmission. For

the aim of definiteness, the value of Γ/t in this work is set to be 0.02 [39].

To conclude, Eqs. (4.11), (4.19), (4.31) and (4.29) are the main ingredients of the

NEGF method often utilized to solve the transport problem in nanodevices and can

be conveniently implemented on a computer. We apply them for the next investi-

gations in this PhD thesis. From the computational point of view, the elements in

the Hamiltonian matrix HC need to be known before addressing Eq. (4.11). There-

fore, the NEGF method usually combines with another method such as the density

functional theory, the dynamical mean-field theory or the mean-field theory which

takes responsibility for the calculation of HC . In the current work, we choose the

combination of the NEGF with the mean-field theory. The findings obtained from

the approaches will be discussed in the subsequent chapter.
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In the following, we discuss the spin-dependent thermoelectric effects of magnetic

zigzag graphene nanoflakes in the ballistic regime. The charge and spin currents

across such graphene nanoflakes are computed by the Landauer-Büttiker formalism

in the framework of the non-equilibrium Green’s function method combined with

the mean-field theory. Our obtained results exhibit that a pure spin current with-

out charge current is generated when a temperature difference is applied. This is a

consequence of the flowing of the carrier currents via the up spin and down spin in

opposite directions with the same magnitude. Furthermore, the back-gate voltage

effects on the thermally driven spin currents are also studied. Results show that

a high spin-filtering effect can be achieved by adjusting the temperature difference,

the source temperature and the back-gate voltage. In comparison with the graphene

nanoribbon-based devices which require an external condition such as an external

magnetic field to be active the spin current, our study just explores sublattice chi-

rality and geometrical symmetry of the graphene nanoflakes without the external

condition to attain good results. Therefore, the results in our study have not been

found in literature. These results will be presented in our next article.
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5.1 Thermally induced spin current

In the present work, we examine the spin-dependent current of the hexagonal zigzag

graphene nanoflakes with different sizes. For the ortho and para configurations,

our calculations show that the spin degeneracy of the transmission coefficient is

protected (this will be discussed in the next section). This result also indicated by

Valli et al. [39], which stems from the symmetry, for a small nanoflake N = 54. As

a result, a zero current is generated in the device (without the external conditions

such as substrate, gate voltage). In the meanwhile, the spin-resolved transmission

coefficient is established in the meta configuration. Consequently, this work just

concentrates on studying the spin current in the meta configuration. Applying a

temperature gradient, ∆T = TS−TD, the current of charge carriers via spin-up and

spin-down states flows in the device estimated by the Landauer-Büttiker formula

within the NEGF method combined with the mean-field theory. The value of η in

Eq. (4.10) and Γ in Eq. (4.34) are chosen 10−2t and 0.02t (t: the nearest hopping

parameter), respectively. Further calculations that are not shown here indicate that

the absolute of the thermally spin-resolved current is affected by this choice of η,

while the qualitative behavior of these currents as a function of temperature is not

affected by this choice. Note that the spin-orbit coupling is neglected, the mean-field

approximation via Eq. (2.16) is thus used for all calculations in this investigations

because the spin moments develop in the z-direction.

We first study the impact of the on-site Coulomb interaction U on the thermally

induced spin current flowing in the device. Figure 5.1(a) displays the spin-resolved

current as a function of U/t at the source temperature TS = 0.026t and temperature

difference ∆T = 0.0052t for the hexagonal zigzag GNFs. It can be seen that the

current through the device is absent when the GNFs are in the paramagnetic phase.

However, we find three different behaviors in the antiferromagnetic (AF) phase: (i)

The spin-up and spin-down currents induced by the temperature gradient rise up

to an absolute maximum value at Uh/t. The position of Uh/t is sensitive to the

size of the nanoflakes due to the instability of the Uc/t (Uc/t is the critical point

of the GNFs) to the nanoflake size. Figure 5.1(b) and Table 5.1 unveil that the

Uh gradually decreases, while the absolute maximum value of spin-up (spin-down)

current Imax↑(↓) rapidly increases by increasing of the nanoflake size up to N = 726

(N is the number of carbon atoms on a graphene nanoflake) for the TS and ∆T

considered here. The highest value of Imax↑(↓) is found for the nanoflake of N = 726
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Figure 5.1: Spin-resolved currents versus U/t at TS = 0.026t and ∆T = 0.0052t for
different sizes of hexagonal zigzag GNFs (a). The maximum value of spin-up current
(blue curve) and corresponding value Uh/t (red curve) with respect to the number
of sites of nanoflakes N (b). Here η = 10−2t and Γ = 0.02t.

with Imax↑ ' 11.3 nA at Uh ' 0.6t. The Imax↑(↓) has the tendency to decrease with

further increasing the nanoflake size. (ii) Both the spin up and spin-down currents

then decrease relatively fast in the range of Uh < U < U bulk
c (U bulk

c ' 2.23t at the

mean-field level). (iii) For U ≥ U bulk
c , since the graphene nanoflake becomes an

insulator with a large gap the spin-up and spin-down currents completely disappear.

From the results obtained, it can be concluded that the spin-resolved current driven

by the temperature difference is only generated by the edge-localized magnetism. As

a consequence, we believe that such currents do not exist in the hexagonal armchair

GNF-based devices (without the external conditions or defects).

To proceed, we choose U = Uh for each nanoflake to investigate the subsequent
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behaviors of the spin-resolved current because each nanoflake has different critical

point Uc as seen in Table 5.1. Here we focus on four zigzag graphene nanoflakes:

N = 54, 96, 294 and 600, with their corresponding Coulomb interactions Uh/t =

2.1, 1.9, 1.1 and 0.8, respectively.

Table 5.1: The maximum/minimum magnitude of spin-up/spin-down currents and
the Uh/t corresponding to each graphene nanoflake.

N Uc/t Uh/t I↑max (nA) I↓max (nA)
54 2.0 2.1 0.00115 -0.00115
96 1.7 1.9 0.00752 -0.00752
150 1.5 1.6 0.1064 -0.1064
216 1.24 1.3 0.7301 -0.7301
294 0.9 1.1 2.7913 -2.7913
384 0.6 0.9 5.1618 - 5.1618
486 0.5 0.9 7.0113 -7.0113
600 0.3 0.8 10.0909 -10.0909
726 0.2 0.6 11.3395 - 11.3395
864 0.13 0.5 9.2635 -9.2635
1014 0.09 0.8 7.6319 -7.6319
1176 0.05 0.7 8.8453 -8.8453
1350 0.04 0.6 8.3785 -8.3785
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Figure 5.2: Spin-resolved currents versus TS/t and temperature gradient ∆T for
different nanoflake sizes with η = 10−2t and Γ = 0.02t.

59



CHAPTER 5. THERMALLY INDUCED SPIN CURRENT ACROSS A SPIN
CALORITRONIC DEVICE

[a\

Figure 5.2 presents the thermally induced spin current versus the source temperature

TS for three temperature differences ∆T = 0.0017t, 0.0034t and 0.0052t. There

exists a threshold temperature Tth that the current is negligible for TS < Tth. The

Tth diminishes with the expansion of the nanoflake size. In addition, the Tth shares

the same amplitude for the spin-up and spin-down currents. When TS exceeds

Tth the spin-up and spin-down currents are detected with significant magnitude

in the device. For the range of TS and ∆T considered, one finds that the spin-up

current I↑ and the spin-down current I↓ have opposite signs, indicating their opposite

flowing directions. Typically, a positive spin-up current flows from the source to the

drain, while a negative spin-down one flows from the drain to the source. Since

the magnitude of the spin-up current is equal to that of the spin-down current, a

net charge current Icharge = I↑ + I↓ is totally suppressed, while the net spin current

Ispin = I↑ − I↓ flowing the source to the drain is twice as large as the spin-up (or

spin-down) current. This result gives rise to a pure spin current and a perfect spin

Seebeck effect in the device. These effects are also predicted in the zigzag grahene

nanoribbons [40, 171], nevertheless an external magnetic field is required. In the

meanwhile, our proposed device can easily achieve these effects without the external

magnetic field. For a fixed ∆T , the spin-up and spin-down currents increase with

increasing TS. Due to the substantial reduction of the threshold temperature in

large nanoflakes, i.e., N = 294 and N = 600, the spin current goes up relatively fast

at low temperature. It is worth mentioning that a significant spin current Ispin ≈ 20

nA is recorded for the nanoflake with size N = 600 at TS = 0.026t (TS ≈ 300K) and

∆T = 0.0052t. When TS is now fixed, the spin-dependent currents go up almost

linearly as ∆T increases. Moreover, one also finds that the spin-up and the spin-

down currents in bigger nanoflakes are much higher than those in smaller ones at a

fixed TS or ∆T , for example, an insignificant spin current, Ispin ≈ 0.02 nA, obtained

in the 54-nanoflake, while a large Ispin ≈ 22.3 nA obtained in the 600-nanoflake at

TS = 0.043t and ∆T = 0.0052t. In comparison, the similar results for N = 600

are also obtained within the DMFT + NRG1 (NRG: Numerical Renormalization

Group), see Appendix A.1, indicating the reliability of our findings obtained from

the mean-field level. The nature of these phenomena will be discussed in the next

section.

1The DMFT+NRG calculations are carried out by our colleague, Robert Peters coming from
Kyoto University, Japan.
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5.2 The physical mechanism of thermally induced

spin current

According to the Landauer-Büttiker formula,

Iσ =
e

h

∫ ∞
−∞

dE(fS(E, TS)− fD(E, TD))Tσ(E), (5.1)

the spin-resolved current depends not only on the Fermi-Dirac distribution difference

between the source and drain (fS−fD) but also on the spin-dependent transmission

Tσ(E). Therefore, to understand the underlying physical mechanism of the transport

properties, we analyze the distribution of charge carrier concentration at the two

leads and the spin-dependent transmission coefficient.

Because of no electric voltage applied, the difference of the Fermi-Dirac distribution

functions, (fS − fD), is entirely determined by the difference of the temperatures at

the leads. The sign of the function (fS − fD) decides the flowing direction of the

current at a certain energy considered [43]. When TS = TD, the device is in the

equilibrium state due to fS(E, TS) = fD(E, TD), resulting in hindering the charge

carrier current. For TS > TD, (fS − fD) is positive at the energy being higher than

the Fermi energy EF . The charge carriers with energy above EF hence flow from

higher temperature (the source) to lower temperature (the drain), yielding a positive

electron current (Ie). On the contrary, (fS − fD) is negative at the energy being

lower than EF . As a result, a negative hole current (Ih) is created due to carriers

below EF flowing from the drain to the source. As exhibited in Figure 5.3, (fS−fD)

is symmetric with respect to the Fermi energy (set to be zero), the currents hence

induced by the carriers above and below the Fermi energy can cancel each other

if the transmission spectrum is symmetric with respect to EF [40]. To obtain the

current, the asymmetric distribution of the transmission spectrum around EF is

indispensable. Furthermore, Figure 5.3 also indicates that the peaks of (fS − fD)

are located at the energies close to EF = 0, therefore the transmission peaks around

EF contribute more to the current [43]. On the other hand, since electrons and holes

carry charge and spin, they might bear concurrently both charge current and spin

current in the device.

We consider first the transmission coefficient of nanoflakes for the ortho and para

configurations. As plotted in Figure 5.4, even though the magnetization is turned
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Figure 5.3: The carrier concentration difference between the source and the drain.

on, the spin degeneracy of Tσ is still protected as in the paramagnetic phase for

all nanoflakes. Therefore, the spin-dependent transmission spectra are symmetric

with respect to EF , resulting in the cancellation of the carrier currents in these

two configurations. The reason for that can be explained through the Green’s func-

tion because, in our description of the leads, the transmission coefficient, Tσ(E) =

Γ2
∑

ijσ(Gr
ijσ(E))∗Gr

ijσ(E), is entirely governed by the Green’s function. According

to Valli et al. [39], in the presence of the particle-hole symmetry the Green’s function

transforms in the following way (see Appendix A.2 for details)

Gr
ijσ(−E) = −(−1)i+j(Gr

ijσ(E))∗ (5.2)

where the prefactor (−1)i+j equals to ±1 depending on whether i and j belong to the

same or different sublattices. In the AF state, the relation above is written in com-

bination with the spin inversion σ = σ̄ = −σ as Gr
ijσ(−E) = −(−1)i+j(Gr

ijσ̄(E))∗,

yielding the relation for spin-dependent transmission

Tσ(E) = Tσ̄(−E) (5.3)

for all configurations considered. Since the magnetic order coincides with the chi-

ral sublattices, the spin inversion is analogous to the inversion of the chiral pseu-

dospin [39], i.e., exchanging the role of spin and sublattices indices. Thus when i

and j belong to different sublattices, as in the ortho and para configurations, the

transmission becomes Tσ(E) = Tσ(−E) and along with Eq. (5.3), resulting in the
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Figure 5.4: Transmission coefficient as a function of E/t in (a) ortho and (b) para
configurations for four nanoflakes plotted in separate panels. Here U = Uh, η = 10−2t
and Γ = 0.02t.

conservation of the spin degeneracy of the transmission: Tσ(E) = Tσ̄(E). Conse-

quently, the spin transport in these two configurations is hindered. This is why

there is no current observed in the ortho and para configurations. By contrast,

TAAσ (E) = TBBσ̄ (E) in the meta configuration which shows the asymmetric spin-

resolved transmission spectrum, giving rise to a nonzero current. In the following,

we present the detailed analysis for the meta configuration.

In the paramagnetic phase, the transmission spectrum (gray curve in Figure 5.5)
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Figure 5.5: Transmission coefficient for spin-up and spin-down versus E/t in meta
configuration for four nanoflakes. Here U = Uh, η = 10−2t and Γ = 0.02t.

is symmetric around the Fermi energy as in the ortho and para configurations.

The spin current is not triggered due to the competition of the electron and hole

currents. In the antiferromagnetic phase, as can be seen in Figure 5.5 for all GNFs

of interest, the transmission spectra for up spin show that the spin-up electrons and

holes can pass above and below EF , respectively. Since the magnitude of the spin-

up transmission peaks above EF is much larger than that below EF , the electron

current dominates compared with the hole current for the spin-up state, giving a

thermal spin-up electron current. On the contrary, the spin-down transmission peaks

below EF are much higher than those above EF , leading to a thermal spin-down

hole current. As a result, a nonzero thermally induced spin-dependent current are

produced. In addition, since the spin-up and spin-down transmission spectra are

symmetric to each other with respect to EF , the spin-up electron current equals the

spin-down hole current.

On the other hand, the overlap of the Fermi-Dirac distribution difference (fS −
fD) and the spin-dependent transmission Tσ(E) determines the amplitude of the

thermally induced spin current in the device [40,171]. Since the peaks of (fS − fD)

are close to the Fermi energy, as shown in Figure 5.3, depending on the distance

of the transmission peaks to EF it requires different source temperatures to trigger
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Figure 5.6: Spin-resolved current spectra J(E) versus energy E/t for different TS
and a fixed ∆T = 0.0052t for four nanoflakes: N = 54 (a), 96 (b), 294 (c) and 600
(d) with U = Uh, η = 10−2t and Γ = 0.02t.

the spin current. In particular, the transmission peaks of two smaller GNFs are

relatively far away from the Fermi energy due to the existence of a quite large

bandgap, it thus needs high threshold temperatures Tth to broaden the Fermi-Dirac

distribution difference so as to overlap with transmission peaks. It only needs a low

Tth to apply in two bigger ones to get the spin current owing to the proximity to

EF of the transmission peaks. Therefore, it can be said that the reduction of the

Tth is explained by how close the transmission peaks are to the Fermi energy. In

addition, the bigger the overlapping region is, the higher the spin current is. As

a result, the spin current in bigger nanoflakes is much higher than that in smaller

ones. In other words, the transmission peaks are far away from the Fermi energy
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Figure 5.7: Spin-resolved current spectra versus energy E/t at several ∆T and a
fixed TS = 0.026t for four configurations: N = 54 (a), 96 (b), 294 (c) and 600 (d)
with U = Uh, η = 10−2t and Γ = 0.02t.

due to the enlargement of the gap with strong U/t. The spin-resolved current thus

reduces gradually and reaches zero when U/t increases. In addition, we can deduce

that due to the limitation of the peaks of (fS − fD), the transmission peaks just

around EF will contribute more to the current than those far away from EF .

Moreover, we plot the current spectra Jσ(E),

Jσ(E) = Tσ(E)(fS(E, TS)− fD(E, TD)), (5.4)

to analyze quantitatively the spin-resolved current. Figures 5.6 and 5.7 show the

current spectra with different TS at the same ∆T and different ∆T at the same
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TS, respectively. The area verified by the curve of Jσ(E) and the horizontal energy

axis determines the amplitude of spin currents [47,175]. The spin-up and spin-down

current spectra are symmetric to each other through E/t = 0 and J↑(E) = −J↓(−E).

It means that the current spectrum for J↑ is equal to that for J↓, giving |I↑| = |I↓|.
At fixed ∆T , see Figure 5.6, for N = 54 and 96, the black spectra (TS = 0.0086t)

are nearly symmetric for both spin-up and spin-down, indicating approximately zero

current. Although the spectra corresponding to TS = 0.017t and TS = 0.026t are

asymmetric, the contribution of the spectra to the current is very small. Thus the

spin current obtained in these two small nanoflakes is tiny. A high temperature

(far away from room temperature) is required to attain a reasonable spin current

for the two small nanoflakes. In the meanwhile, in the two bigger nanoflakes, the

contribution of spin-resolved current spectra to the current is substantial, yielding

the detection of a significant spin current. The same behavior is observed, Fig. 5.7,

in the case fixing TS and tuning ∆T . Typically, the more the temperature gradient

goes up, the more the current spectra increases, resulting in the enhancement of the

spin current.

5.3 The back-gate voltage-modulated spin current

By localizing back-gate voltage below the graphene nanoflakes, we study in this

section the effect of the back-gate voltage Vg on the thermally induced spin currents

of the graphene nanoflakes. The nanoflake is described by the following Hamiltonian

HC = −t
∑
〈i,j〉σ

(c+
iσcjσ + h.c) + U

∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
) + Vg

∑
iσ

c+
iσciσ. (5.5)

An applied back-gate voltage can lead to the change of the electron density in the

graphene nanoflakes. As a result, the magnetic solution of such nanoflakes can be

modified [120]. However as long as the back-gate voltage is less than the gap of the

graphene nanoflakes, the magnetic state is unaffected, only a back-gate voltage larger

than the gap induces electron doping and thus possible changes of the magnetic state.

In the following, we will neglect effects of the back-gate voltage on the magnetic

solution and use the transmission coefficient of the systems determined at half filling.

Figure 5.8 shows the spin-up and spin-down currents as a function of the back-gate

voltage Vg/t at TS = 0.026t and ∆T = 0.0052t. As can be seen, the spin-resolved
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Figure 5.8: The dependence of the spin-resolved currents on the back-gate voltage
Vg at TS = 0.026t and ∆T = 0.0052t for the nanoflakes with U = Uh, η = 10−2t and
Γ = 0.02t.

currents are now asymmetric under the spin inversion with Iσ(Vg/t) = −Iσ̄(−Vg/t),
giving rise to an even (odd) spin (charge) current. For two bigger nanoflakes, i.e.,

N = 294 and 600, a pure spin current without charge current therefore only exists at

Vg = 0t, while both the spin current and charge current are expected to be generated

for non-zero back-gate voltage. For two smaller nanoflakes with N = 54 and 96,

they require a finite Vg/t applied to trigger the currents in the device, typically

|Vg/t| > 0.2 for N = 54 and |Vg/t| > 0.1 for N = 96. While the back-gate voltage

drives the spin-up and spin-down currents flowing in the same direction in the two

smaller nanoflakes, these currents either flow in the same direction or in the opposite

direction in the two bigger nanoflakes. The flowing direction of the currents changes

from the positive side to the negative side and vice versa observed in all nanoflakes.

Taking N = 600 as an example, when −0.08 < Vg/t < 0.08, the positive I↑ flows

from the source to the drain, but with−0.43 < Vg/t < −0.08 the I↑ with the negative

sign flows in the opposite way. Such flowing effect of the spin-dependent currents is
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attributed to the change in the charge carrier type from electrons (holes) to holes

(electrons) for the spin-up (spin-down) current due to the chemical potential passing

the transmission peak [40]. Furthermore, the response of the thermally induced spin

current modulating by Vg exhibits dependence on the nanoflake size. Typically, a

moderate Vg is required to amplify the spin-dependent currents and reach up to a

maximum value in the two smaller nanoflakes, namely |Vg/t| ∼ 0.33 for N = 54 and

|Vg/t| ∼ 0.41 for N = 96. In the meanwhile, the maximum value of the current

shifts to smaller Vg for the two bigger nanoflakes, that is to say, it only needs a tiny

Vg to harvest the highest peak of the spin-dependent current in 294 (|Vg/t| ∼ 0.07)

and 600 (|Vg/t| ∼ 0.035) sizes. In addition, a nearly perfect spin-filtering effect can

be achieved by tuning the back-gate voltage such that either the spin-up current

or spin-down current is completely suppressed. Thereby both the charge current

and spin current are contributed by only the spin-up or spin-down current, resulting

in the equivalence in magnitude. Their currents flow either in the same or in the

opposite direction depending on either the negative or positive back-gate voltage

applied.

To proceed, we now fix Vg/t = −0.04 and consider two nanoflakes with the size of

N = 96 andN = 600. The spin-up current is much larger than the spin-down current

as shown in Figure 5.9. This effect can be understood by means of the transmission

spectra. As indicated in Figure 5.9(c) and 5.9(f), although the symmetry of the spin-

resolved transmission Tσ is still preserved well, the symmetric position in which the

T↑ and T↓ cross each other shifts to the left-hand side of E/t = 0. The transmission

peaks for spin-up channel get closer to zero energy than those of T↓. Consequently,

the overlap between the Fermi-Dirac distribution difference and the transmission for

the spin-up channel is much bigger than that for the spin-down channel. Therefore

the spin-up current is amplified, while the spin-down current is suppressed. For the

nanoflake with N = 96, an unipolar spin transport is displayed where the spin-up

current goes up quickly as rising either the source temperature with TS > Tth at fixed

∆T or the temperature gradient ∆T at the same TS, while the spin-down current is

negligible in the range of TS and ∆T studied. We find an interesting transition from

bipolar, where I↑ = I↓ without the back-gate voltage, to unipolar spin transport

under the modulation of the temperature bias and the back-gate voltage. Such a

transition was also detected in a magnetic local-gated ZGNR-based device by using

the NEGF combined with the mean-field Hubbard at Vg = 0.2 V [171]. For the

nanoflake with N = 600, when ∆T is fixed, the spin-up current increases linearly
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Figure 5.9: Spin-up and spin-down currents with respect to TS and ∆T , and trans-
mission coefficient as a function of E/t for N = 96 (a), (b), (c) and N = 600 (d),
(e), (f) at a fixed Vg/t = −0.04, respectively, with η = 10−2t and Γ = 0.02t.

to a maximum value at low temperature and then decreases with further increasing

TS, indicating the existence of a negative differential thermoelectric resistance [149].

In the meanwhile, there is no spin-down current at low TS. When TS overcomes a

threshold temperature, I↓ increases slowly. In addition, both the spin-up and spin-

down currents increase linearly with rising the temperature difference at a fixed TS

70



CHAPTER 5. THERMALLY INDUCED SPIN CURRENT ACROSS A SPIN
CALORITRONIC DEVICE

[a\

with different slopes.

0.0

0.1

0.2

0.3

I c
h
a
rg
e
(n
A

)

(a)

0.000

0.025

0.050

0.075

0.100

0.125

I s
p
in

(n
A

)

(e)Vg = −0.04t

Vg = −0.08t

Vg = −0.12t

Vg = −0.16t

Vg = −0.2t

0

1

2

3

4

I c
h
a
rg
e
(n
A

)

(b)

0

1

2

3

I s
p
in

(n
A

)

(f)

−10

−5

0

5

10

15

I c
h
a
rg
e
(n
A

)

(c)

−10

−5

0

5

10

15

I s
p
in

(n
A

)

(g)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

U/t

−20

−10

0

10

20

I c
h
a
rg
e
(n
A

)

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

U/t

−20

−10

0

10

20

I s
p
in

(n
A

)

(h)

Figure 5.10: The impact of the Coulomb energy U on the charge and spin currents
under several Vg for four nanoflakes, wherein (a) and (e) for N = 54, (b) and (f)
for N = 96, (c) and (g) for N = 294, and (d) and (h) for N = 600, respectively, at
TS = 0.026t and ∆T = 0.0052t with η = 10−2t and Γ = 0.02t.

Furthermore, increasing the back-gate voltage will shift further the symmetric posi-

tion of the Tσ away from zero energy. On the other hand, the Vg/t does not change

the nature of the transmission spectra, as seen in Figure 5.5 and Figure 5.9(c), (f).

Combining these considerations with the effect of the gap, the peaks of the Tσ of
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the two smaller nanoflakes approach to zero energy. Therefore, the overlap between

the Fermi-Dirac distribution difference and the transmission for up spin (down spin)

increases for the intermediate positive (negative) back-gate voltages, yielding to en-

large the currents in the device. On the contrary, for the two bigger nanoflakes, due

to the tiny gap the small peaks of the spin-dependent transmission spectra mainly

contribute to the current for an intermediate and high Vg/t. Hence, the currents

get suppressed rather than being amplified, as indicated in Figure 5.8. A similar

scenario exists for the two smaller nanoflakes at higher Vg/t.

We next discuss the influences of the on-site Coulomb energy and the back-gate

voltage on the thermally induced spin-dependent current. Figure 5.10 plots the

charge current and spin current as a function of U/t and Vg/t at TS = 0.026t and

∆T = 0.0052t. One observes three different characteristics of the currents flowing

in the device. Firstly, the back-gate voltage induces a net constant charge current

and zero spin current for all U < Uc. The magnitude and current direction of

such a net charge current can be tuned by Vg/t and nanoflake size as shown in

Figure 5.10. The emergence of a net charge current is due to the asymmetry of

the transmission spectra (gray curve) around zero energy, as shown in Figure 5.9(c)

and 5.9(f). Secondly, the spin-dependent currents are observed as U > Uc with

different responses for all nanoflakes proposed. For small nanoflakes, i.e., N = 54

and N = 96, the charge current strongly decreases to approximately zero from Uc/t

to U bulk
c ' 2.23t. In contrast, the spin current skyrockets to the maximum value

before dwindling drastically to zero. It is also indicated that the increase of Vg/t (in

the range considered) enhances the spin current in the small hexagonal nanoflake-

based devices. More interesting responses are seen in the nanoflakes with N = 294

and N = 600. The change of the current direction of both the charge current and the

spin current is displayed upon increasing Vg/t, while the flowing direction is stable

with Vg/t = −0.04,−0.08 for N = 294 and Vg/t = −0.04 for N = 600. In more

detail, when the current direction remains unchanged, the charge and spin currents

exhibit the same behavior as in the zero back-gate voltage case. For the case when

the current direction changes, Icharge and Ispin first decrease to a minimum value and

then increase to zero. Subsequently, these currents change their signs from negative

to positive and keep rising until reaching a positive maximum value before gradually

reducing to zero. The maximum value shifts to the right-hand side corresponding to

the increment of Vg/t. Finally, there is no current if U/t goes far from U bulk
c /t due

to the presence of a large gap in the nanoflakes.
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In conclusion, From the results obtained above, the gate-localized graphene nanoflakes

can support for developing multi-function spintronic devices.

Furthermore, apart from the above, similar current responses can be also exploited

when depositing the graphene nanoflake on the hBN (see Appendix A.3 for details).

At the computational level, the effect of hBN on GNFs can be encoded by ε which

can be understood as a sublattice potential. Herein, if ε is less than the bandgap of

GNFs, the magnetic properties are not affected. In contrast, the magnetic moments

are partially quelled if ε exceeds the bandgap. Therefore, it requires larger Coulomb

energy to switch on the edge magnetization on the GNFs. As a result, the spin

current might vanish with further increasing ε. In addition, our calculations show

that a nearly complete spin-filtering effect can be achieved in this case.

5.4 The charge and spin thermovoltage

A thermovoltage can be generated at two electrodes when the thermal currents are

produced across the hexagonal GNF junction. The thermovoltage can be determined

from the open-circuit condition with the definitions [198]

Icharge(V
th
charge,∆T ) = 0,

Ispin(V th
spin,∆T ) = 0. (5.6)

Herein the thermally activated currents (thermocurrents) in the device are defined

as Icharge(V,∆T ) = (I↑ + I↓) and Ispin(V,∆T ) = (I↑ − I↓), with V the bias voltage

applied across the junction in which one puts to be zero, V = 0. Therefore, we

emphasize the flow of charge carriers driven by the thermal flux in the device. Once

having the thermocurrents, the thermovoltages are found from Eqs.(5.6). The nu-

merical results are shown in Figure 5.11 which displays the charge and spin thermo-

voltages as a function of the temperature difference ∆T and the negative back-gate

voltage. With the increase of ∆T both V th
charge and V th

spin increase for a fixed Vg. This

result exhibits a good correlation between the V th
charge and Icharge and the V th

spin and

Ispin curves in which both Ispin and Icharge go up corresponding to the enlargement

of ∆T in the presence of the back-gate voltage. As fixing ∆T and changing the mag-

nitude of Vg/t ∈ [−0.005,−0.01,−0.02,−0.03,−0.04], the back-gate voltage shows

an opposite impact on the V th
charge and V th

spin. In particular, the charge thermovoltage
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Figure 5.11: Charge and spin thermovoltages as a function of ∆T and Vg for four
nanoflakes: (a) and (b) for N = 54, (c) and (d) for N = 96, (e) and (f) for N = 294,
and (g) and (h) for N = 600, respectively, with η = 10−2t and Γ = 0.02t.

has an uptrend while the spin thermovoltage has a downtrend with increasing the

Vg of interest. A similar trend will be observed with the opposite sign if the positive

back-gate voltage is applied.

On the other hand, we know well the relation between the thermovoltage and ther-
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mopower (the Seebeck effect) in the thermal device [199],

Scharge/spin = −
V th
charge/spin

∆T
. (5.7)

As can be seen in Figure 5.11, for the values of Vg considered, when the V th
charge and

V th
spin are positive both the charge and spin thermopowers are negative. Thus the

spin-up carriers play a crucial role in the transport, indicating in a good agreement

with the numerical results in Figure 5.8. In contrast, the thermopower will change its

sign from negative to positive if the back-gate voltage has a positive sign, giving rise

to the majority of spin carriers being spin-down. These findings explicitly show that

a strong thermoelectric effect can be obtained in the hexagonal graphene nanoflakes

with tuning the back-gate voltage.
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Summary

We presented in this dissertation our numerical results obtained in our research on

graphene nanoflakes. Herein, the role of the electron-electron interaction on the

magnetic and transport properties of GNFs was explored. Three main topics are

emphasized including: (1) The phase transition from the non-magnetic state to

the AF state on the bulk graphene without and with SOC; (2) Interaction effect

on the zigzag GNFs with different sizes and geometries; (3) Spin-resolved trans-

port of charge carriers in the magnetic GNFs in contact with the electrodes (spin

caloritronic device) induced by the temperature difference. All three problems were

solved using the Hartree-Fock mean-field approximation.

(1) The impact of the electron-electron interaction was studied in the framework of

the single-band Hubbard model without adding and with the spin-orbit interaction.

The gapless SM (for zero SOC) and the topological band insulator (for nonzero

SOC) are stable for weak to intermediate electron-electron interaction. The system

undergoes a transition to the AF phase at strong coupling. The AF order is of the

Néel type without SOC, and of the easy-plane type with SOC. At the Hartree-Fock

meal-field level, we indicated that a semimetal-Mott insulator transition occurring

at U bulk
c ' 2.23t (t is the nearest-neighbor coupling in graphene) without the SOC

is independent on the quantization axis. As the SOC is introduced, the λ−U phase

diagram within the Hartree-Fock meal-field Kane-Mele-Hubbard model computed is

believed to be more accurate than that shown in the work of Rachel et al. [83].

(2) Neglecting the contribution of SOC, our numerical results obtained from the

single-band Hubbard model at half-filling and zero temperature demonstrated theo-

retically the existence of the intrinsic magnetization in zigzag graphene nanoflakes.

Because of the presence of the edge-localized states, a weak repulsive Coulomb energy

U (U < U bulk
c ' 2.23t) might induce the intrinsic magnetic moment on the zigzag

edge, while zero magnetization on the armchair edge. The ferromagnetic orders
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show in the intra-edges while the antiferromagnetic or ferromagnetic orders develop

in the inter-edges depending on the type of inter-edge connection either the arm-

chair defect or the zigzag defect. Most importantly, by investigating systematically

the instability of the magnetization on the zigzag edge with respect to the electron-

electron interaction in hexagonal and diamond graphene nanoflakes with the range

from small to big size, our calculations indicated that the value of Uc/t decreases

upon increasing the number of carbon atoms on the zigzag edge of the nanoflakes.

This can be considered as a consequence of the reduction of the bandgap and the

density of the armchair defect when the nanoflake size increases. When the strength

of electron-electron interaction overcomes the U bulk
c , the antiferromagnetic pattern

is preserved without the dependence on the size or geometry as well as edge termi-

nation. Although numerous studies of the magnetism on the graphene nanoflakes

have been implemented, there has been still no a detailed study indicating the shift

to approximately zero of Uc/t at large enough nanoflake size. Therefore, our investi-

gation suggests the possibility of fabricating the magnetic graphene nanoflakes with

all shapes when the size of nanoflakes is large enough in experiment.

(3) By the exploitation of the graphene sublattice, geometric symmetry and intrinsic

magnetism of the hexagonal zigzag graphene nanoflakes, we obtained good effects

compared to previous works. The crucial result in this topic is a spin-resolved cur-

rent induced by a thermal gradient produced in the device. Since the transmission

peaks for the spin-up and spin-down channels are symmetric to each other with

respect to the Fermi energy (EF = 0), the spin-up and spin-down currents flowing

in opposite directions are equal to each other in magnitude. Hence a perfect Spin

Seebeck effect and a pure spin current without a charge current are acquired, ex-

hibiting the potential for developing a perfect spin caloritronic device based on the

hexagonal zigzag GNFs. Noticeably, the thermally induced spin-resolved current is

only generated in the meta configuration, where the leads are connected with all

carbon atoms of the same graphene sublattice either A or B. In the meanwhile,

there is no spin-polarized transport in the ortho and para configurations, where the

leads are connected with sites belonging to different graphene sublattices, due to

the symmetry in the configuration. Furthermore, the findings also indicated the

nanoflake size dependency of such a spin-resolved current. A very tiny spin current

flows in small graphene nanoflakes, namely N = 54 and 96, while a substantial spin

current can be harvested in large ones as in N = 294 and 600 at room temperature.

In addition, the shifting of the crossing position of spin-up and spin-down transmis-
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sion spectra below or above the Fermi energy depending on whether the sign of the

back-gate voltage Vg is either negative or positive gives rise to the asymmetry of the

spin-up and spin-down currents. By tuning the back-gate voltage, some impressing

expected effects of the spin-resolved current were acquired such as a transition from

the bipolar to unipolar spin transport, the amplification of spin-resolved current,

the manipulation of the flowing direction of the currents, the nearly complete spin-

filtering effect and the negative differential thermoelectric resistance. On the other

hand, the impact of the electron-electron interaction on the thermally induced spin-

resolved current was studied which has never been found in other graphene-based

devices. The spin-resolved current only flows across the device as Uc < U < U bulk
c

and no current with U > U bulk
c due to the graphene nanoflake becoming an antifer-

romagnetic insulator with large bandgap. In the paramagnetic state, the presence

of the back-gate voltage induces a net charge current while it vanishes if Vg/t = 0.

Moreover, due to the change in the carrier type from electrons (holes) to holes (elec-

trons) for spin-up (spin-down) current in the presence of the Vg, the flowing direction

of the spin-up and spin-down currents changes in opposite side upon increasing either

Vg/t at fixed U/t or U/t at fixed Vg/t. These results allow us to potentially design

a multi-functional spin caloritronic device based on a back-gate voltage-localized

graphene nanoflake hosting the intrinsic edge magnetism. With the considerations

in our investigation, we believe that a similar scenario can be obtained in all shapes

of graphene nanoflakes with the graphene sublattice balance (where NA = NB).

This is confirmed by our calculations for diamond graphene nanoflakes.

Future work: I will exploit the transport properties in the spin caloritronic devices

based on bilayer (multi-layer) graphene nanoflakes. Interesting effects are expected

when rotating an angle between graphene layers because such rotation can modulate

magnetic structure in graphene [200,201].
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Appendix A

Thermally induced spin current

across a spin caloritronic device

A.1 The thermally induced spin current within

the dynamic mean-field theory

For comparison, the results obtained from the real-space dynamical mean-field the-

ory (DMFT) combined with the numerical renormalization group (NRG) are pre-

sented here. The real-space DMFT is well-established as a non-pertubative treat-

ment of local electron correlation. The key idea of this theory is to map the many-

body problem of the Hubbard model onto an effective quantum impurity problem

with a self-consistent condition [202]. With the real-space DMFT, the self-energies

which take into account all interaction effects are local but site dependent for an

inhomogenous system [203]. In the real-space DMFT approximation, the Hubbard

Hamiltonian can be mapped onto a set of single-site problems. To be convenient, a

local effective action Seff for that site which is described in terms of an imaginary-

time action for the fermionic operators ciσ and c+
iσ is given as [202]

Seff = −
∫
dτ

∫
dτ ′
∑
σ

c+
iσ(τ)G0iσ(σ, τ − τ ′)−1ciσ(τ ′) +U

∫
dτni↑(τ)ni↓(τ), (A.1)

with τ being the imaginary time. G0iσ(σ, τ−τ ′) is the local non-interacting propaga-

tor which can be interpreted as a local dynamical Weiss field. This Weiss function is

a function of time instead of a single number, thus it takes into account local quan-

tum fluctuation [202]. Comparing with the mean-field theory which assumes that

fluctuations are frozen, the dynamical mean-field theory freezes spatial fluctuation

but considers the local temporal fluctuations. The local self-energies are determined

from solving Eq. (A.1). G0iσ(ω) is obtained from the local Dyson equation in the
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Figure A.1: Spin-resolved currents driven by the temperature gradient versus TS
with ∆T (a) and transmission coefficient (b) as a function of E/t for N = 600 at
U/t = 0.8 and 1.6 using the real-space DMFT.

real-space

G0iσ(ω)−1 = Giiσ(ω)−1 + Σσ(ω), (A.2)

where the interacting Green’s function of the whole system from the real-space

Dyson equation is Gijσ(ω)−1 = (ω + η)I − tij − Σσ(ω) with the identity matrix I

and the hopping amplitude tij. To address the equations above, the NRG method

is employed. In the computational point of view, the self-consistent solution is

realized iteratively starting from the initial input of the Weiss field G0iσ(ω) for each

site. Then the mangetic solution on each site i is evaluated as 〈Si〉 = 〈ni↑ − ni↓〉.
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Combining with the NEGF, the responses of the spin-dependent current induced

by the temperature difference obtained from the DMFT+NRG approximation are

analogous to those obtained from the MFT level, as can be seen in Figure A.1(a).

Here, the spin-up and spin-down currents with the same magnitude also flow in the

opposite directions. As a result, there is only a net spin current Ispin generated in the

device. When ∆T is fixed, these currents increase rapidly at low source temperature

TS. With further increasing TS, these currents decrease slightly in the range of TS

studied. These behaviors are the consequence of the symmetry of the spin-up and

spin-down transmission spectra with respect to zero energy, shown in Figure A.1(b).

A.2 The transmission coefficient under the particle-

hole symmetry

As mentioned in the main text, the spin current driven by the thermal bias flows

in the meta configuration, while it is blocked in the ortho and para configurations.

This is interpreted by the transmission coefficient Tσ(E) because such spin current

is a function of Tσ(E). We recall the transmission coefficient through in the device

is estimated within the framework of the non-equilibrium Green’s function

Tσ(E) = Tr[Gr∗ΓDG
rΓS]. (A.3)

In the wide-band limit approximation, the transmission coefficient,

Tσ(E) ∼ Gr∗(E)Gr(E), (A.4)

is entirely determined by the Green’s functions. This represents a direct relation of

the Tσ(E) with the electronic properties of the graphene nanoflakes. Hence, we can

use the Green’s function for explaining the behaviors of the Tσ(E). One starts from

the definition of the retarded Green’s function [179,204]

Gr
ijσ(E) = −i

∫
θ(t)〈{ciσ(t), c+

jσ(0)}〉e−iEtdt. (A.5)

At half-filling, the particle-hole transformations for graphene are

ciσ → (−1)ic+
iσ,

c+
iσ → (−1)iciσ (A.6)
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where the factor (−1)i = ±1 depends on whether i belongs to either the A graphene

sublattice or the B graphene sublattice. Under these transformations, the retarded

Green’s function is expressed

Gr
ijσ(E) = −i

∫
θ(t)〈{(−1)ic+

iσ(t), (−1)jcjσ(0)}〉e−iEtdt

= −i(−1)i+j
∫
θ(t)〈{c+

iσ(t), cjσ(0)}〉e−iEtdt,

Gr
ijσ(−E) = −i(−1)i+j

∫
θ(t)〈{c+

iσ(t), cjσ(0)}〉eiEtdt. (A.7)

The complex conjugate of Eq. (A.5) is given by

(Gr
ijσ)∗(E) = i

∫
θ(t)〈{c+

iσ(t), cjσ(0)}〉eiEtdt. (A.8)

Comparing Eq. (A.8) with Eq. (A.7), one gets the following relation

Gr
ijσ(−E) = (−1)i+j+1(Gr

ijσ)∗(E). (A.9)

On the other hand, one has

Tσ(E) ∼
∑
ijσ

(Gr
ijσ)∗(E)Gr

ijσ(E), (A.10)

Tσ(−E) ∼
∑
ijσ

(Gr
ijσ)∗(−E)Gr

ijσ(−E). (A.11)

Using the relation (A.9), Eq. (A.11) can recast

Tσ(−E) ∼
∑
ijσ

Gr
ijσ(E)(Gr

ijσ)∗(E). (A.12)

Comparing between Eq. (A.10) and Eq. (A.12), the transmission coefficient satisfies

the following relation, Tσ(E) = Tσ(−E), for all transport configurations in this work.

This implies that the transmission is an even function in the absence of the intrinsic

magnetization, yielding a zero current (without the back-gate voltage applied).

Now, examining the system in the antiferromagnetic state, the particle-hole sym-

metry is still preserved. However, the particle-hole transformations are modified as

follows

ciσ → (−1)ic+
iσ̄,

c+
iσ → (−1)iciσ̄. (A.13)
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In this case, one obtains the relations below

Gr
ijσ(−E) = (−1)i+j+1(Gr

ijσ̄)∗(E),

Tσ(E) = Tσ̄(−E). (A.14)

These are correct for all configurations. Furthermore, one can change the role of

spin and sublattice indices in the particle-hole transformations as the magnetic order

coincides with the sublattices, corresponding particle-hole transformations are [179]

ciσ → (−1)ic+
jσ,

c+
iσ → (−1)icjσ. (A.15)

When the leads are contacted with carbon atoms of different graphene sublattices,

the invariance of the retarded Green’s function under the new definition of the

particle-hole transformations implies

Gr
ijσ(E) = −i(−1)i+j

∫
θ(t)〈{c+

jσ(t), ciσ(0)}〉e−iEtdt

= i

∫
θ(t)〈{c+

jσ(t), ciσ(0)}〉e−iEtdt

with (−1)i+j = −1. Similarly

Gr
ijσ(−E) = i

∫
θ(t)〈{c+

jσ(t), ciσ(0)}〉eiEtdt.

On the other hand, we have

(Gr
ijσ)∗(E) = i

∫
θ(t){〈c+

iσ(t), cjσ(0)}〉eiEtdt.

This deduces

(Gr
ijσ)∗(E) = −Gr

jiσ(−E). (A.16)

From Eq. (A.16), the transmission coefficient in the ortho and para configurations

becomes Tσ(E) = Tσ(−E) and along with Eq. (A.14), resulting in Tσ(E) = Tσ̄(E).

This results indicates that the spin-resolved transmission in these two configurations

is prevented. Consequently, these configurations do not support any spin transport

phenomena. In contrast, the invariance of the retarded Green’s function under Eq.
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(A.15) expressed in the meta configuration is

GrAA
ijσ (E) = −i

∫
θ(t)〈{c+BB

jσ (t), cBBiσ (0)}〉e−iEtdt.

Similarly

GrBB
jiσ (−E) = i

∫
θ(t)〈{c+AA

iσ (t), cAAjσ (0)}〉eiEtdt,

and together with

(GrAA
ijσ )∗(E) = i

∫
θ(t)〈{c+AA

iσ (t), cAAjσ (0)}〉eiEtdt

yielding

(GrAA
ijσ )∗(E) = GrBB

jiσ (−E) (A.17)

where the AA and BB superscripts indicate that the leads are connected to carbon

atoms belonging to the same graphene sublattice either A or B. The transmission

coefficient in this case is estimated by the following relation TAAσ (E) = TBBσ (−E)

and along with Eq. (A.14) one eventually gets

TAAσ (E) = TBBσ̄ (E). (A.18)

Eq. (A.14) and (A.18) demonstrate the splitting of the transmission coefficient via

the spin-up and spin-down states, and the symmetry of the spin-resolved trans-

mission coefficient in the meta configuration. In addition, Eq. (A.18) implies the

symmetry of Tσ(E) via graphene sublattice-symmetry. In particular, Tσ(E) in the

case when the leads connect to the A graphene sublattice is equal to Tσ̄(E) in the

case when the leads connect to the B graphene sublattice. This yields the change

of the flowing direction of the spin current. Since the graphene sublattice-symmetry

is broken the symmetry of the spin-resolved transmission coefficient is predicted to

vanish. This effect was reported in the work of Valli et al. [179] for small graphene

nanoflake N = 54. However, the thermally induced spin current in the nanoflakes

when breaking the graphene sublattice-symmetry has yet to been studied. Therefore,

we will discuss this investigation in the next section.
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A.3 The impact of the degree of chiral symmetric

breaking on magnetism and transport prop-

erties in graphene nanoflakes

In addition to the findings obtained in terms of the symmetries of the Hubbard

Hamiltonian, we focus here on the responses of the thermally governed spin current

when the graphene sublattice-symmetry is broken, quintessentially by depositing

the graphene nanoflakes on a substrate. One of the candidates chosen to realize

the thermal devices is hBN [205]. According to the DFT calculation of Ref. [206]

indicates that one of two inequivalent C atoms of graphene located on top of the B

atom and the other centered over a hBN ring is the most stable configuration. This

gives rise to the breaking of the graphene sublattice-symmetry due to the asymmetric

absorption of C on the substrate wherein two graphene sublattices undergo the

different chemical environment [39]. So, the graphene nanoflake can be described in

the following Hubbard Hamiltonian within the mean-field level as

H =− t
∑
〈i,j〉σ

(c+
iσcjσ + h.c) + U

∑
i

(〈ni↓〉 −
1

2
)ni↑ + (〈ni↑〉 −

1

2
)ni↓ − 〈ni↑〉〈ni↓〉+

1

4

− ε(
∑
i∈Aσ

niσ −
∑
i∈Bσ

niσ) (A.19)

where ε denotes the effect of hBN on the GNFs or can be understood as the sublattice

potential. Before analyzing the thermally excited current through the device, let us

begin with the magnetic properties on the graphene nanoflakes. Calculations show

that the sublattice potential ε/t has a tendency to suppress the magnetic order

in the graphene nanoflakes which appears in bulk graphene [141]. Therefore, the

value of Uc/t is shifted to higher value when increasing ε/t, as shown in Figure

A.2. This is considered as a consequence of the opening of the gap caused by the

graphene nanoflake-substrate interaction [206]. In comparison with large nanoflakes,

namely N = 600, where Uc/t goes up nearly linearly, the value of Uc/t of small

nanoflakes, as in N = 96, increases much slower with rising ε/t. As a result, the

slope of the U − ε phase boundary of N = 600 is higher than that of N = 96. This

difference is due to the existence of a larger gap in small nanoflakes in the absence

of ε compared to large nanoflakes. Accordingly, for ε/t less than the gap, Uc/t is

invariant. According to Figure A.2(a), a transition from the paramagnetic phase

to the antiferromagnetic insulating phase occurs at higher interaction compared
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Figure A.2: Phase diagram of graphene nanoflakes: N = 96 and N = 600 using the
mean-field Hubbard model (a). Staggered magnetization on the edges of graphene
nanoflake of 600 sites for ε = 0t, 0.1t, 0.2t and 0.3t (b).

to the GNFs with ε/t = 0. Remarkably, except for the partial quench of magnetic

moments, the antiferromagnetic pattern of graphene nanoflakes is still preserved [39],

as indicated in Figure A.2(b).

Figure A.3 exhibits that the spin-resolved current induced by the temperature differ-

ence at ∆T = 0.0052t and TS = 0.026t (≈ 300K) is controlled by ε/t. Since ε/t does

not enhance dramatically the spin-resolved current, a very tiny spin-resolved current

is generated in N = 54 and N = 96 nanoflakes at room temperature, so they are

neglected in this study. Taking a first glance, one finds a point of ε/t, hereinafter re-
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ferred to as εq/t, where the spin current Ispin is suppressed completely (it means that

the spin-up current is equal to the spin-down current, see the inset of Figure A.3).

The value of εq is around 0.08t − 0.09t. When ε < εq, the spin-up and spin-down

currents flow either in the opposite directions or in the same direction depending

on ε/t. In detail, at first the spin-up current flowing from the source to the drain

increases slightly, then decreases relatively rapidly to zero and subsequently drops to

a negative value corresponding to changing its direction. In contrast to the spin-up

current, the spin-down current reduces gradually and keeps the direction from the

drain to the source. As a consequence, Ispin is larger than Icharge. As ε ≥ εq Ispin is

approximately zero, there is only net Icharge, nevertheless, its magnitude decreases

gradually to approximately zero. With much higher ε/t, no current is detected.

Figure A.4 displays the spin-up and spin-down currents with respect to U/t with

some values ε/t for two graphene nanoflakes: N = 294 and 600. As observed, a van-

ishing current flows through the device when U is greater than U bulk
c . A significant

spin-resolved current is detected when the spin on the edge sites is polarized. More

detailed, the spin-up current skyrockets and reaches a peak, after that it goes down

to zero. Compared to the spin-up current, the spin-down current, being smaller in
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Figure A.3: The dependence of the spin-up and spin-down currents on ε/t at TS =
0.026t and ∆T = 0.0052t for several hexagonal graphene nanoflakes with the zigzag
edge. Herein the repulsive Coulomb energy is Uh/t corresponding to each nanoflake,
see Table 5.1, η = 10−2t and Γ = 0.02t.
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Figure A.4: Spin-resolved current as a function of U/t for several values of ε = 0t,
0.1t, 0.2t and 0.3t at TS = 0.026t and ∆T = 0.0052t for N = 294 (a) and N = 600
(b) with η = 10−2t and Γ = 0.02t.

magnitude, flows in the opposite direction and its magnitude decreases gradually to

zero. It is worth noting that for N = 600, the spin-down current is very small, while

the spin-up current is rather large, resulting in a nearly complete spin-filtering effect.

Moreover, with increasing ε/t, the maximum value of the spin-up current moves to
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higher U/t due to the shifting to the higher value of Uc/t and the magnitude of

the maximum value is higher than the corresponding value with ε = 0t. In the

paramagnetic state, there merely exists net charge current because the transmission

is asymmetric around E/t = 0, i.e., T (−E) 6= T (E). In addition, the transmission

peaks below zero energy E/t = 0 are much larger than those above zero energy,

resulting in a negative net charge current. The increase of the Icharge is due to the

transmission peaks being closer to zero energy. Similar to the symmetric case, even

when the edge magnetization of the graphene nanoflakes is switched on, the trans-

mission through the device is spin-polarized. Figure A.5 shows the asymmetry of the

spin-up transmission and the spin-down transmission with respect to zero energy,

Tσ(E) 6= Tσ(−E), and Tσ(E) 6= Tσ̄(−E) which is a consequence of the charge imbal-

ance between the two graphene sublattices [39]. The part of the spin-up transmission

spectrum above E/t = 0 gives the bigger overlap with the Fermi-Dirac distribution

difference than that below E/t = 0. As a result, the spin-up current with positive

sign flows from the left to the right lead. The opposite trend is recorded for the

spin-down transmission spectrum as well as the spin-down current. Furthermore,

increasing ε/t make the graphene nanoflake possible to become nonmagnetic, so the

transmission coefficient is not spin-polarized with the dominance of the transmission

peaks below E/t = 0. Thus one obtains a negative net charge current. With further

increasing ε, the transmission peaks move far away from E/t = 0. Therefore, the

net charge current decreases gradually to zero.
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Figure A.5: Spin-resolved transmission spectra with respect to E/t for N = 600 at
U = 0t, 0.8t, 1.2t and a fixed ε = 0.1t with η = 10−2t and Γ = 0.02t.

In summary, our calculations show that the graphene sublattice symmetry breaking
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can generate a dramatic spin current subjected to the temperature gradient and a

nearly complete spin-filtering effect in the graphene nanoflakes deposited on hBN.

This result indicates the possibility of the realization of such spin-caloritronic devices

in experiment.
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[16] M. Drögeler, F. Volmer, M. Wolter, B. Terrés, K. Watanabe, T. Taniguchi,

G. Güntherodt, C. Stampfer, and B. Beschoten. Nanosecond spin lifetimes

in single- and few-layer graphene-hBN heterostructures at room temperature.

Nano Letters, 11:6050, 2014.

[17] P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz,

P. Shinde, C.A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen,
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