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Résumé

L’analyse temporelle quantitative à grande échelle de données textuelles a eu
un grand impact sur la compréhension des tendances sociales. Une analyse
similaire à grande échelle des collections d’images temporelles permettrait de
nouvelles applications en médecine, en science ou en histoire de l’art. Cepen-
dant, l’analyse temporelle des données visuelles est une tâche notoirement
difficile. Le principal défi est que les images n’ont pas un vocabulaire donné
d’éléments visuels, par analogie avec les mots du texte, qui pourraient être
utilisés pour une telle analyse. De plus, les objets représentés dans les images
varient considérablement en apparence en raison du point de vue de l’appareil
photographique, de l’éclairage ou des variations intra-classe. L’objectif de
cette thèse est de développer des outils pour analyser les collections d’images
temporelles afin d’identifier et de mettre en évidence les tendances visuelles
à travers le temps.

Cette thèse propose une approche pour l’analyse de données visuelles non
appariées annotées avec le temps en générant à quoi auraient ressemblé les
images si elles avaient été d’époques différentes. Pour isoler et transférer les
variations d’apparence dépendantes du temps, nous introduisons un nouveau
module bilinéaire de séparation de facteurs qui peut être entraîné. Nous
analysons sa relation avec les représentations factorisées classiques et les
auto-encodeurs basés sur la concaténation. Nous montrons que ce nouveau
module présente des avantages par rapport à un module standard de con-
caténation lorsqu’il est utilisé dans une architecture de réseau de neurones
convolutionnel encodeur-décodeur à goulot. Nous montrons également qu’il
peut être inséré dans une architecture récente de traduction d’images à
adversaire, permettant la transformation d’images à différentes périodes de
temps cibles en utilisant un seul réseau.

Nous appliquons notre modèle à une collection de plus de 13 000 voitures
fabriquées entre 1920 et 2000 et à un ensemble de portraits d’annuaires
d’écoles secondaires entre 1930 et 2009. Cela nous permet, pour une nou-
velle image d’entrée donnée, de générer une “vidéo historique en continu”
révélant les changements dans le temps en variant simplement l’année cible.
Nous montrons qu’en analysant ces vidéos générées, nous pouvons identifier
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les déformations des objets dans le temps et en extraire des changements
intéressants dans le style visuel au fil du temps.

.



Abstract

Large-scale quantitative temporal analysis of heritage text data has made
a great impact in understanding social trends. Similar large-scale analysis
of temporal image collections would enable new applications in medicine,
science or history of art. However, temporal analysis of visual data is a
notoriously difficult task. The key challenge is that images do not have
a given vocabulary of visual elements, in analogy to words in text, that
could be used for such analysis. In addition, objects depicted in images vary
greatly in appearance due to camera viewpoint, illumination, or intra-class
variation. The objective of this thesis is to develop tools to analyze tempo-
ral image collections in order to identify and highlight visual trends over time.

This thesis proposes an approach for analyzing unpaired visual data
annotated with time stamps by generating how images would have looked
like if they were from different times. To isolate and transfer time dependent
appearance variations, we introduce a new trainable bilinear factor separa-
tion module. We analyze its relation to classical factored representations
and concatenation-based auto-encoders. We demonstrate this new module
has clear advantages compared to standard concatenation when used in a
bottleneck encoder-decoder convolutional neural network architecture. We
also show that it can be inserted in a recent adversarial image translation
architecture, enabling the image transformation to multiple different target
time periods using a single network.

We apply our model to a challenging collection of more than 13,000 cars
manufactured between 1920 and 2000 and a dataset of high school yearbook
portraits from 1930 to 2009. This allows us, for a given new input image, to
generate a “history-lapse video” revealing changes over time by simply vary-
ing the target year. We show that by analyzing the generated history-lapse
videos we can identify object deformations across time, extracting interesting
changes in visual style over decades.

.
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Chapter 1

Introduction

1.1 Motivation and objectives

Data-driven analysis through time can have - and already has had - a
significant impact on understanding of our world. Analysis of vocabulary used
in books through centuries [Michel et al., 2011] shows that large collections
of books can be used to perform quantitative analysis and shed light on the
evolution of how people write about different topics. Speech analysis has
been used to help understand the evolution of language acquisition [Roy
et al., 2006]. Similarly, leveraging large-scale time stamped visual data can
enable new applications. Databases of medical imagery have been used to
assess disease progression in radiology [Marcus et al., 2010; Tang and et al.,
2018]. Art museums have collections of sculptures, paintings, or objects
associated with the date of their creation. Recent efforts are making such
art collections publicly available [Dijkshoorn et al., 2018; The Watermark
Project; The Visual Arts Data Service]. While art historians are needed to
analyze these trends, there is also interest to use machine learning tools to
help this analysis [Crowley and Zisserman, 2013; Gonthier et al., 2018; Shen
et al., 2019]. Examples of trend analysis include identifying and highliting
differences over time. Similarly, in architecture, large scale image collections
can be used, with proper annotation, to analyze the characterstic elements
of architecture design from place to place [Doersch et al., 2013] or through
time [Lee et al., 2015].

While all these problems touch different domains, they share common
characteristics. They concern large collections of images that are time
stamped. The objective of this thesis is to develop tools to analyze these
different types of time stamped image collections, in order to identify and
highlight visual trends over time.

9



10 CHAPTER 1. INTRODUCTION

1940s car 1960s car 1990s car

1940s face 1970s face 2000s face

Figure 1.1: Bilinear image translation. Our goal is to take as input (in green) an image of a face
or an object such as a car, and generate what it would have looked like in another time-period (in
blue). Each row shows temporal translation for a different input portrait or car picture. We further
show that analyzing changes between the generated images can reveal structural deformations in
object shape and appearance over time.
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1.2 Approach

In this thesis we propose to perform temporal analysis of visual data by tem-
poral image translation. First, we learn from the input time-stamped image
collection a temporal translation model that takes an image as input and
translates it to a different time period, while preserving its time-independent
characteristics, as illustrated in figure 1.1. Second, we perform temporal
analysis by comparing the resulting generated imagery. We describe these
two steps next.

Time translation. The time translation is an operation that takes an
image and a target time period, and outputs a modified image that has
the characteristics of this target time period, while keeping the visual char-
acteristics of the input image that do not depend on time. We illustrate
this in figure 1.1 with two examples. We “translate” cars and change their
appearance to make them look like they have been built at another period.
In these examples, wheels, headlights, and windshields change their appear-
ance over time. The model has no prior notion of these elements, yet it
learns what are the characteristic elements and how they evolve over time
from the data. At the same time, the type of car, viewpoint, and general
colour don’t change, as these visual characteristics are not dependent on the
time when the car was made. We also apply the same method to historical
yearbook portraits of faces, making them appear as coming from another
decade while preserving the face identity. In this thesis we investigate and
evaluate different approaches to perform such temporal image translation.

Visual discovery. We aim to use image translation for visual discovery.
Once an image is translated, time related variations for this specific image
instance can be identified by simple pixel comparisons. This would be difficult
otherwise and would require finding correspondence across different object
instances and viewpoints. We can use the images we produce to compare
the same car or face at different times (figure 1.2) and highlight the different
trends over time. We can also identify typical and atypical images of different
time periods (figure 1.3).

1.3 Challenges

We proposed to approach temporal analysis of visual data using temporal
image translation, that is answering question “what would this picture be,
if this car was made 20 years earlier?”. This question is, however, a very
difficult one to answer and poses the following key scientific challenges.
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Figure (1.2): Analyzing trends over time. We show how translated images allow us to
examine differences between cars manufactured in different time periods. We show the original
cars from the 1990s (top row), their translation into the 1940s (middle row) and the absolute
differences (bottom row) between the original image and the translated image. The absolute

differences are shown as heatmaps where bright yellow color indicates a high difference. In this
example the most salient differences are: different appearance of wheels, the presence of a runner

board in the 1940s and the bulky distinctive hood in the 1940s.

Portraits that are characteristic of the 2000s that are very different from 1970s portraits.
Long, straight or curly blonde hair are common in 2000s yearbooks, but are not featured

much in 1970s yearbooks.

Portraits that are characteristic of the 1970s that are very different from 2000s portraits.
Short hair is more common in the 1970s than in the 2000s.

Figure (1.3): Visual mining. Analyzing our translated images, we identify images that are
characteristic of a specific time period, but would not pass in another period. This way, we

identify the most striking differences between two decades.

Unpaired data. The first difficulty is that while we have pictures of cars
made in different years, we do not have any example of a car transforming to
appear to be made in a different year. We use the term unpaired to describe
our data, meaning that we only observe single instances of objects at a specific
time. While we know the time associated to a particular object, we do not
have access to a picture of the same object translated to a different time.
Most datasets are naturally unpaired. For example, there is no definitive
way to know how a 20 years old woman in 1930 would have dressed and
changed her hair, had she been transported to the year 2018 for a yearbook
picture. Similarly, while we have pictures of cars manufactured throughout
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16 23 48 59 age

Example of paired data. As it is possible to have images of the same person at a different age,
an “age translation” model could be trained from paired data.

1930 1960 1990 year
Example of unpaired data. Portraits of three different people taken in a different time period. It
is not possible to know how a portrait of the same person would have looked like had it been taken in

a different time period.

Figure (1.4): Illustration of the difference between paired (top) and unpaired data (bottom). In
this work we focus on unpaired data, which is more challenging.

the 20th century, it is not possible to know how a particular car would have
looked like had it been made in different time periods. By contrast, data is
called paired when it contains the same object with different values for the
varying attribute. In some situations, it is possible to obtain paired data.
For example, it is possible to take multiple pictures of the same person as
they age. Such a dataset could be used in order to try to make people appear
older or younger. We illustrate the difference between paired and unpaired
data in figure 1.4.

Working with unpaired data makes our task harder. If we knew how a
Clio-equivalent would look like in 1950, we could train our model to reproduce
this known appearance. However, we aim to tackle the problem with unpaired
data, as it is more common in practice and often easier to obtain. In addition,
evaluation in the unpaired setting is a major challenge. Because we have no
direct way to compare each image generated by our model to a ground truth
reference, we have to take special care when designing metrics to evaluate
our approach.
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Figure (1.5): Challenge: intra-class variation. The car dataset that we use presents very
different types of cars (city cars, sedans, sports, utility cars and others).

Figure (1.6): Challenge: viewpoint variation. The object can be imaged from a variety of
viewpoints.

Figure (1.7): Challenge: illumination variation. Car pictures are generally taken outside,
with different illumination conditions, but some can be also taken inside.

Appearance variations. Another major challenge is the high appearance
variations of the objects in the input datasets. For example, cars of the 1990s
include very diverse types of cars of cars, ranging from pick-up tracks to
sports cars (figure 1.5). This increases the amount of appearance variation
the model has to learn in order to translate between different time periods.
This variability is intrinsic to the objects we consider.

Other factors of appearance variation include camera viewpoint and
illumination, as illustrated in figures 1.6 and 1.7, respectively. Our objective
is to isolate the time-dependent variation (e.g. the type of car tyres) from
other appearance variation such as viewpoint, illumination or car type that
are largely independent of time. The variation in viewpoint means that
depicted objects are not aligned, making it difficult to directly compare
images at the pixel-level, and to analyze changes in the shape of objects.
In addition, analyzing changes in colors and textures is challenging due
to variation in illumination. While it is possible to explicitly control for
viewpoint and illumination when collecting data, we wish to consider real-
world datasets collected in uncontrolled conditions.

Generating images. Finally, another challenge is related to the complex-
ity of the output. This is in contrast to image classification that outputs
only a score whether an image belongs to a specific class. In other words, our
model not only needs to understand that certain parts of the input image
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1940s 1970s

Classification. Deciding whether a particular picture comes from 1940s or 1970s is solving the
classification problem. The output of this problem is a binary value for each image.

1940s 1970s

Image translation. In temporal translation we wish to translate an input image (green) into a
different time period (blue). In contrast to classification the output is another image.

Figure (1.8): Challenge: High-dimensional output. Contrary to the classification task that
has a binary output (top), the translation task (bottom) has a high dimensional output.

are characteristic for a specific time period in order to classify the image
correctly, but needs to generate the appearance of those parts the way they
look like in another time period, as illustrated in figure 1.8. It needs to
understand what elements are typical of the time periods, but also how to
change them to make them relate to other time periods (figure 1.8). In detail,
in image classification the target output is a label, which is often a scalar.
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In image translation the target output is a vector of high-dimension (Rh×w),
where (h, w) is the dimension of the target output image.

In image translation, producing images that look realistic is also very
challenging. The visual quality of the translated images is important in order
to identify the key changes in appearance variation across time. It is hard
to produce images that look realistic, sharp and capture the characteristic
appearance of the target time period. Producing images as output presents
also the additional challenge of performing automatic quantitative evaluation.

1.4 Contributions

This section lists the main contributions of this thesis.

The first contribution, described in chapter 4, is a new trainable bilinear
factorization module that encourages factor separation by architecture design.
We show how this module relates to other existing approaches including
principal component analysis. We show its advantages compared to stan-
dard concatenation-based factor representation when used in a bottleneck
auto-encoder architecture. We then show that our bilinear module can be
plugged into a modern unpaired image translation architecture.

Our second contribution is our introduction of models for image transla-
tion that features our bilinear module. We investigate an encoder-decoder
model with factor separation (section 5.1) and an adversarial traslation model
(section 5.2). We demonstrate that learned factors of variation can be used
for several visual discovery tasks such as discovering typical or non-typical
examples for a particular characteristic attribute (such as a time-stamp).

Our third contribution, described in chapter 6, is the application of
image translation models to the task of visual discovery in temporal image
collections. We first introduce quantitative metrics that allow us to compare
different models for the task of image translation. Then, we apply our image
translation models to two temporal datasets: a dataset of portrait pictures
acquired from yearbooks in the United States from 1930 to 2009 [Ginosar
et al., 2015], and a dataset of cars manufactured between 1920 and 1999 [Lee
et al., 2013]. We compare different models including several baselines using
the proposed quantitative metrics. We also show the qualitative results
obtained by different methods. We provide different ways to visualize the
obtained translation results and show how they can be applied for the task
of temporal visual discovery.
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1.5 Thesis outline
This thesis is organized as follows.

In chapter 2, we overview the previous work this thesis is built upon.
In particular, we detail the relevant work in image factorization, image
translation and visual discovery.
In chapter 3, we overview the general approach common to the different
methods we use for image translation, including the necessary notation.
In chapter 4, we introduce the bilinear operation as a module for image
translation. We explain its relation to other methods, especially the principal
component analysis.
In chapter 5, we explore image translation models. We investigate different
architectures and loss functions. We discuss the strengths and weaknesses of
different models.
In chapter 6, we analyze the results of our translation methods, in both a
quantitative and qualitative way, and compare them to various baselines. We
show results of temporal visual discovery including producing history-lapse
videos.
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Chapter 2

Related Work

We build upon work on linear and multi-linear models, image translation
and temporal analysis. In this chapter we present prior work on these three
topics.

2.1 (Multi-)linear image models

Linear and multi-linear models are useful for many computer vision tasks,
such as classification, detection or recognition. They allow to represent
images as combinations of factors that can be manipulated, which is useful
for our goals in this thesis. In this section, we first discuss linear models,
starting from principal component analysis, as it is the most direct way to
factorize images. We then discuss how mixtures of linear models can be used
when a single linear model is not enough to represent the data. Finally we
discuss multilinear models, and in particular bilinear models, as they can
model interactions that are not possible to obtain with linear models.

Linear models. In this section, we consider N data points x1, . . . , xN ∈
Rd. To simplify notation, we consider that these vectors are centered:∑

1≤i≤N xi = 0. For example, the set {xi} can be a set of images with
subtracted average image. We discuss linear and multi-linear representations
of these data points and their usage.

Principal Component Analysis (PCA [Pearson, 1901]) is the change
of basis to {e1, . . . , ed}, an orthonormal basis that allows to project the
data points on smaller subspaces with minimal reconstruction error. More
specifically, the PCA minimizes quantities

arg min
eS

∑
1≤i≤N

∥∥∥∥∥∥xi −
∑

1≤k≤S

〈xi, ek〉ek

∥∥∥∥∥∥
2

(2.1)

19
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Figure (2.1): The first nine eigenpictures from [Kirby and Sirovich, 1990], ordered left to right
and top to bottom by the order given by the PCA, i.e. by how important they are for accurate

reconstruction of pictures. Faces can be reconstructed by linear combinations of these
eigenpictures. Adding more eigenpictures will lead to better reconstructions, but with

diminishing returns.

for each 1 ≤ S ≤ d. Thus, PCA allows us to approximate the data points xi

by
x̄i =

∑
1≤k≤S

λikek , (2.2)

where λik = 〈xi, ek〉. PCA allows us to reduce the dimensionality of the data
points xi from d to S in an optimal way, i.e. in a way that minimizes the sum
of the reconstruction losses over all data points. The vectors e1, . . . , eN are
called principal components. They can be obtained by performing Singular
Value Decomposition (SVD) of X, as they are the right singular vectors of
X. They are also the eigenvectors of the matrix XT X where X ∈ RN×d is
the matrix with rows x1, . . . , xN .

PCA has been applied to collections of images in [Kirby and Sirovich,
1990], and the resulting principal components are called eigenpictures. Exam-
ples of eigenpictures are shown figure 2.1. [Kirby and Sirovich, 1990] offer a



2.1. (MULTI-)LINEAR IMAGE MODELS 21

Figure (2.2): Illustation of how a one-dimensional surface (left) can be captured by a mixture of
linear models (right) from [Hinton et al., 1997].

measurement of the error made by projecting these face images into this new
space, and show that a linear combination of 50 eigenpictures were enough
to have a good reconstruction of any face.
In [Turk and Pentland, 1991], this representation allows the authors to per-
form classification, detection and recognition tasks. To determine if a query
image is an image of a face (classification task), the distance from the image
to the face space (i.e. the distance between the image and its projection)
is compared to a pre-defined threshold. To recognize a face, the authors
compute the Euclidean distance between the projection of the query face
image and the projection of the faces from the database. The query image is
then assigned to the closest face of the dataset, granted that this minimum
distance is below a defined threshold.

Principal component analysis has been successfully used for simple face
datasets, but this method is not adequate for more complex datasets, for
which a low dimensional orthogonal projection would result in too much
image degradation. In this thesis we show relationship of our work and
principal component analysis, but we apply PCA on an intermediate repre-
sentation (composed of features from a convolutional neural network) instead
of applying it directly on image pixels.

Mixture of linear models. Instead of using a single linear model, be it
PCA or factor analysis, [Hinton et al., 1997] has used a mixture of linear
models, as illustrated in figure 2.2, to represent images and perform classi-
fication. Each different class, e.g. each different digit in a dataset of digit
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images, uses its own linear model. Each image xi is thus approximated by

x̃i =
∑

1≤z≤m

qi
z

∑
1≤k≤S

λik
z ek

z , (2.3)

where m is the number of classes, qi
z is the coefficient soft-assigning image i

to class z, e1
z, . . . , eS

z is the basis obtained by PCA for class z, and the λs are
the associated coefficients. The coefficients qi

z weigh the different z models
for the image of index i, and sum to 1:

∑
z qi

z = 1 for each i.

This method is used for classification of digits. The mixture model is
trained with an expectation-maximization algorithm [Dempster et al., 1977],
which alternates between two phases. The expectation phase consists in
assigning each training example to their respective linear models. The maxi-
mization phase computes the parameters of each linear model.This model is
very close to the Gaussian Mixture Model, although it does not whiten the
projections. It has also been used for face detection [Yang et al., 1999].

The mixture of linear models is useful for image classification, but does
not fully model the possible interactions between factors of variations in
images. We next discuss multilinear factorization, which we use in this thesis,
in order to achieve this.

Multilinear factorization. In order to factor out style and content for
font and face analysis, [Tenenbaum and Freeman, 2000] has explored mul-
tiplicative interactions in a bilinear model. They introduce a “symmetric”
bilinear model (figure 2.3), which consists of describing both a person and a
pose by a vector. With this model, the image xij corresponding to person i
and pose j can be approximated by the vector x̃ij with coordinates:

x̃ij =
∑

1≤k≤S

∑
1≤l≤T

aikbjlekl, , (2.4)

where S and T are the size of the person and pose coefficients, {ekl}1≤k≤S,1≤l≤T

is a set of images, and the image x̃ij is obtained by combination of these
image given by the outer product of the person and pose coefficients ai and
bj . The set of images and coefficients are learned by performing Singular
Value Decomposition repeatedly, fixing alternately the set of coefficient vec-
tors {ai}i and {bj}j .

[Vasilescu and Terzopoulos, 2002] extend this idea by considering an
arbitrary number of factors of variations. To illustrate this, expression, pose,
illumination and person identity are considered. Instead of having eigenfaces,
the authors obtain tensorfaces. These tensors can be flattened into vectors,
forming images similar to eigenfaces for any considered degree of variation.
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Figure (2.3): Illustation from [Tenenbaum and Freeman, 2000] of a symmetric bilinear model.
The parameters (top left) of the model are the basis of the low-dimensional space. Each image is
characterized by a vector containing pose information (bottom left) and person information (top

right). Images can be reconstructed (bottom right) by making the outer product of these two
tensors, and using the resulting matrix as weights for the linear combination of the basis images.

Bilinear models for Convolutional Neural Networks. These models
have rarely been used for more complex images than aligned faces, because
the complex variations that occur in natural images are hard to represent
using linear models in pixel space. In contrast, we formulate bilinear factor
translation in a end-to-end trainable encoder-decoder convolutional neural
network (CNN) architecture. Bilinear layers have recently been used in
CNNs, for example in the context of fine-grained recognition [Lin et al., 2015]
and visual question answering [Fukui et al., 2016], but to the best of our
knowledge, they were not used for visual discovery by image translation.
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Figure (2.4): Rotation of cars obtained by [Tatarchenko et al., 2016]. In these two examples, the
predictions are on the top row, and the ground truths are on the bottom row; the input image

fed to the network is the leftmost image.

2.2 Deep Auto-Encoders and Image Translation

In this thesis, we translate images, which means that we modify an image so
that a specific aspect of it changes, without changing its other characteristics.
We use auto-encoders, i.e. neural networks that are trained to learn a coding
of an image (with an encoder) and restore images from this coding (with
a decoder). In this section, we review auto-encoder models and methods
to translate images that are most relevant to our work. We first discuss
auto-encoders, and how they can be used to modify images. We then focus
on the setup where datasets do not have corresponding images with different
attributes. We then discuss ways to improve the visual quality of images,
especially perceptual losses and adversarial losses. Finally, we discuss cycle-
consistent adversarial networks.

Auto-encoding images. Neural network based models such as Boltzmann
machines have been long used for image generation [Hinton et al., 2006;
Le Roux et al., 2011; Osindero and Hinton., 2008; Salakhutdinov and Hinton,
2008]. In [Vincent et al., 2008], a two-layer auto-encoder is used to denoise
images. The authors note that different losses can be minimized to learn the
parameters of the auto-encoder and generate an image x̃ from an original
data image x, in particular the squared Euclidean loss

l(x, x̃) = ‖x̃ − x‖2
2 . (2.5)

In this thesis we also use, among others, a squared Euclidean loss in order to
minimize the difference between a data point and its reconstruction. More
recently, [Kingma and Welling, 2015] has used a variational auto-encoder to
learn probabilistic models from large datasets, while [Yan et al., 2016] have
used a variational auto-encoder to generate images with different attributes.

Image translation with deep auto-encoders. Several works have used
auto-encoders in order to modify an input image. In [Tatarchenko et al.,
2016], an auto-encoder is trained to modify the viewpoint of an object. They
take as input a rendered image of a 3D model of an object, and a target
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angle for the translated image. The output is the image of the object from a
different viewpoint (see figure 2.4 for examples), along with an estimation of
the depth. Because the method uses rendered images from a 3D model, it is
possible to compare directly the output of the network to an image with the
correct attribute. We say that data is paired when it is possible to obtain a
ground truth for what a translated image should look like. Because data is
paired, the authors train their networks by minimizing the distance between
a rotated version of a car obtained by their network and one obtained by a
render of the 3D model (ground truth). This distance is a combination of the
squared Euclidean loss on pixels and a L1 distance on depth. By contrast,
we use unpaired data in this thesis. As we cannot have a reference for what
the image translated by our model should be, the method of [Tatarchenko
et al., 2016] is not possible to use in our case.

[Kulkarni et al., 2015] propose another approach to build a factorized
representation to generate images. They force specific parts of their code
variable to explain the variation between paired images that only differ by
the respective attribute. Again, this method is only possible to use when
paired data is available.

Another approach, proposed by [Reed et al., 2014], learns a Restricted
Boltzmann Machine that models multiplicative interactions between the
different factors of variations. This model is also applied on paired data, but
the use of multiplicative interactions is also similar to what we use in our
convolutional neural networks.

To generate complex photo-realistic without losing low-level details, it is
possible to modify the network architecture by adding shortcut connections,
as demonstrated for very different sets of paired images in [Isola et al., 2017].

Deep auto-encoders for unpaired data. Several works have translated
images with unpaired datasets. In [Cheung et al., 2014], the lack of paired
data is solved by using a combination of multiple losses. In addition to a
reconstruction loss that is used in paired data setups, they use a covariance
loss between two parts of the extracted code, which enforces separation
between the different parts of the code. More specifically, their model is an
encoder f and a decoder g with (z, ŷ) = f(x) and x̂ = g(z, ŷ) , where x is
an image associated with the time labeled y in the dataset, ŷ is the observed
attribute computed by the encoder f , z is called a latent variable and x̂ is
the reconstruction of image x. The model is trained with a combination of a
reconstruction loss between y and ŷ, a cross-entropy loss between y and ŷ,
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Figure (2.5): Translation of faces into different emotions in [Cheung et al., 2014]. Input images,
in the left most column, are encoded into (z, ŷ). Then, the generator takes z and a different

emotion y′ as input, to decode into images shown on the right.

and a cross-covariance loss between z and ŷ:

LCOV
(
(ŷ1,...,N ), (z1,...,N )

)
= 1

2N

∑
ijn

(
(ŷn

i − ¯̂yi)(zn
j − z̄j)

)2
, (2.6)

where (ŷ1,...,N ) and (z1,...,N ) are N associated results of the encoder, and
¯̂y and z̄ their respective means. This cross-covariance loss is computed on
mini-batches of size N . The goal of minimizing the the cross-covariance loss
is to disentangle the attribute coded by y from the other factors of variation
of the image, which are then encoded by z. After training, the model is
able to change ŷ to translate images, without changing the other factors
of variation present in the variable z. Examples shown in figure 2.5 show
how this model can translate faces to different emotions. In section 5.1, we
build on this work by proposing an architecture that uses a separation loss
between the attribute and the non-observed factors of variation. We replace
the cross-covariance loss with a stronger separation loss in order to increase
the variation induced by changing the attribute.

Adversarial networks. As shown by [Denton et al., 2015; Dosovitskiy
and Brox, 2016; Johnson et al., 2016; Radford et al., 2016; Wang and Gupta,
2016; Zhu et al., 2016], the visual quality of the output imagery can be
enhanced using adversarial costs [Goodfellow et al., 2015] that encourage the
network to generate images that cannot be distinguished from natural images.
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While our work is not focused on improving the realism of the translated
images, we make use of adversarial networks to improve their visual quality.

Perceptual loss. Auto-encoders are often trained with a reconstruction
loss on pixels. In [Johnson et al., 2016], the authors introduce a perceptual
loss to compare feature representations of images. In particular, they use a
squared Euclidean loss on a feature reconstruction of both the original and
the translated image, as it captures better the perceptual difference between
images. Similarly, in our work we use feature construction losses.

Unpaired Translation with Cycle-Consistent Adversarial Networks.
In [Zhu et al., 2017], the authors translate images from two domains, C1 and
C2, with unpaired images. They jointly train two networks, M1→2 and M2→1,
translating images from the two domains, such that for an image I ∈ C1,
M2→1 (M1→2 (I)) is close to I. They also use a conditional adversarial loss
with two discriminators, D1 and D2. D1 is trained to distinguish between
images from the domain 1 C1, and images translated from domain 2 to
domain 1 M2→1(C2). The networks M1→2 and M2→1 use residual building
blocks from [He et al., 2016]. We use a similar network in our work. We
extend this work by tackling a dataset with more than two domains.

2.3 Visual mining and temporal analysis

Visual mining has been used in computer vision as a tool to accomplish
various goals. We call “visual mining” the task of extracting images, or parts
of images, from a collection of images that exhibit interesting properties
or can be useful for another computer vision task. In this section, we first
discuss mining whole images in a dataset of images. Then, we discuss mining
discriminative image elements, i.e. parts of images that can be used to
differentiate between objects or other attributes. Finally, we discuss how
mining discriminative image elements have been used for temporal analysis
of visual data.

Mining images. Extracting relevant images from large image collections
has been tackled in a number of related work. In [Quack et al., 2008],
the authors have used external information such as geographical data and
Wikipedia articles in order to mine pictures of interesting landmarks from
very large collections of images. [Martin-Brualla et al., 2015] is related to
both mining and temporal analysis. In this work, the authors reconstruct
time-lapses of various landmarks from a large dataset of pictures across the
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world. To achieve this, they mine multiple pictures of the landmarks, as
well as a reference viewpoint for each of them, before warping the images
to form a time-lapse of each landmark. Similar work is done in [Matzen
and Snavely, 2014], in which the authors build a “scene chronology” by
clustering 3D points of different scenes obtained from a large set of images.
In [Sivic and Zisserman, 2004], objects are mined across different shots of a
movie by clustering feature representations of images. These works concern
instance-level matching, i.e. finding the same object or scene across different
images captured at different times.

In our work, we also mine images that are characteristic of their time in
section 6.2. Beyond this, we focus on finding visual patterns that generalize
beyond instance-level matching. This has generally been done by mining
discriminative image elements.

Mining discriminative image elements. Patches, windows, parts of
images are said “discriminative” if they help distinguishing between at-
tributes, such as the object category (dogs or cats), the location (Barcelona
or Casablanca) or the time (which year).

For example, [Grauman and Darrell, 2006] extracts typical features that
characterize object categories from unsupervised data. To do this, local
features (such as SIFT [Lowe, 1999]) are computed in each image and a
similarity score is computed for each pair. Then, based on this score, the
features are clustered and represent learned image categories. Still for un-
supervised data, [Lee et al., 2009] extracts mid-level visual features from
convolutional Deep Belief Networks. Discovering mid-level features from
unsupervised data has generally been evaluated by using these features to
categorize new images [Singh et al., 2012; Sivic et al., 2005; Karlinsky et al.,
2009]. This discovery of mid-level patches is done without any supervision,
so these models are limited to discovering only visual patterns that are both
very common and highly visually consistent. To address this issue, another
line of work (including ours) uses image-level supervision.

Image datasets can have annotation for each image. This is called weak
supervision as it provides annotations only on. This enabled [Doersch et al.,
2012] to obtain geographically representative elements from different places.
This work features a dataset of street level images from cities such as Paris,
San Francisco or Prague. For each city, they extract patches from these
images that are both common in that particular city and do not appear
in other ones. To achieve this, they compute an image representation for
patches based on histogram of gradients [Dalal and Triggs, 2005] (HOGs)
and a scaled-down version of the patch. Then, using a score based on cross-
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Figure (2.6): Street images of Paris (top) and London (bottom), and results (right) of visual
elements that are characteristic of these two cities from [Doersch et al., 2012].

Figure (2.7): Correlation between weather and presence of sunglasses in pictures from [Matzen
and Snavely, 2015].

correlation, they look for the nearest neighbor patches and select patches
that are only close to those of the same city. The authors refine this selection
several times using discriminative learning to only select patches that would
be best to train a linear Support Vector Machine (SVM) detector. Figure 2.6
shows examples of the resulting patches. For example, blue street signs
are very frequent in Paris, but will rarely be found in other cities. This
approach treats the attribute as a discrete variable (e.g. Paris or London, no
in-between). Our work differs as we present methods that treat time as a
continuous variable.

Temporal analysis. Another approach for retrieving discriminative parts
of objects is examining which parts of images are used by CNNs. In [Matzen
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and Snavely, 2015], the authors train a CNN classifier on “foveal images”,
for which all but a small patch of the image has been blurred, and “bubble
images”, for which all but a small patch of the image has been grayed out.
This network is then used to find the bubble images whose classification
prediction matches best the true label of the images. The bubble images
are then clustered and, again, used to train SVM classifiers. The authors
present an example in which they learn an bubble image classifier to predict
the month of the year in which pictures of people in NYC have been taken.
They show that it is harder to assign the correct time to two pictures when
they have been taken in close months (e.g. July and August) than when
they have been taken a long time apart (e.g. July and January). We make
similar observations when trying to estimate the time period of pictures in
this thesis. [Matzen and Snavely, 2015] also analyze temporal trends with
their method. Noting that the months of March and April are more distinct
than other pairs of consecutive months, they looked at the cluster of patches
and saw that the most discriminative one was images of sunglasses. They
then correlated the presence of sunglasses with clear weather (see figure 2.7).
This work is different from us as we seek to translate full images to exhibit
differences instead of extracting patches.

Also closely related to our work, [Lee et al., 2013] aim to discover elements
whose appearance changes with time and location. They work on multiple
datasets including a dataset of cars that we use. Cars made between 1920
and 1999 are annotated with the time they have been manufactured. We also
use this dataset in this thesis. [Lee et al., 2013] first use HOGs to describe
patches, and mine discriminative patches by taking those whose nearest
neighours across the dataset are only present in images of similar attribute
(such as the year). In a second phase, they establish correspondences between
patches across the attributes. They iteratively train detectors of similar
visual elements, and gradually enlarge the positive training set of the detector
by incorporating matching patches of an increasing range of years. By doing
this, they fully leverage the continuous character of their labels.

We differ from these works as we analyze temporal effects by looking
at generated images, having both a global and local representation of the
changes that occur because of time.



Chapter 3

Approach Overview and
Notation

In this chapter, we present an overview of our model for temporal image
translation, introduce the key notation and provide a detailed roadmap for
the rest of the thesis.

3.1 Objectives and approach overview

We seek to discover patterns in changes of appearance related to time in a
large collection of images. We address this problem by learning a model that
translates images in time to answer question: “What would the input image
look like at a different time?”. More precisely, we develop a factored model
that learns to separate time-specific appearance variation from the rest of the
content of the image. This is illustrated in figure 3.1. The outcome of this
approach is that, for a given input image, we can produce a “history-lapse
video” revealing changes over time by simply varying the target time variable.

More formally, our main hypothesis is that an image is completely de-
termined by a time variable y and a latent content variable zy ∈ RC . For
example, the appearance of a particular car from the 1930s is a combina-
tion of two sets of factors. The first set of factors, determined by a time
vector y, is related to the period the car was built in, due to cars exhibiting
time-characteristic features, such as running boards or round mud guards for
cars from the 1930s. The second set of factors, encoded in a content vector
zy ∈ RC , is independent of the time and includes, for example, viewpoint and
body type (e.g. sedan vs. pick-up truck). Our factorization model will be
trained in an end-to-end manner from a dataset of images with time stamps.
We assume the dataset is unpaired, i.e. each object is observed at only one
time. For example, we observe a particular car made at one specific time
period and we do not know how that particular car would have looked like if
it had been made at a different time period. The objective of the training is
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Image I Year y

y = 1930
y = 1990

Feature encoder A Year embedding

Feature x
Year

feature y

Factorization module
Coding layer f

Content
variable zy

Decoding layer g

Translated
feature xy

Feature decoder A+

Translated Image Iy
I1930 I1990

Figure (3.1): Convolutional neural network architecture for factored visual discovery.
We assume that an image is completely determined by (i) a latent content variable zy capturing
the appearance factors independent of time such as car type and color, and (ii) the time feature
y capturing the appearance factors specific to certain time, such as the running boards for cars

made in 1930s. The input image I is encoded into a feature vector x, which is transformed
together with year variable y using a mapping f(x, y) into a latent content representation zy. A

second mapping g(z, y) then combines the latent content with the input time feature y to
produce new feature xy. The reconstructed feature xy is finally decoded into image Iy .

Parameters of the factorization module together with the encoder and decoder are learnt in an
end-to-end manner.
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to isolate the time dependent appearance variation from such unpaired input
training data. This is achieved by optimizing a cost function that includes a
reconstruction term, possibly together with optional translation and separa-
tion terms. The reconstruction term ensures that the model reconstructs well
the input training images at their given time period. The translation term
ensures that when the input image is translated to different time periods,
the output images exhibit characteristics of the training images from those
target periods. The separation terms encourages the independence of factors
related to time and factors encoding the time-agnostic content of the image.

3.2 Notation

As illustrated in figure 3.1, we assume each input image is associated with a
time stamp, represented by a feature vector y ∈ RT . We denote by x ∈ RK

a K-dimensional feature encoding of image I obtained with an encoder:
x = A(I). Our factorization module (see figure 3.1) computes a mapping of
these features into a latent content factor zy = f(x, y). Then the inverse
mapping xy = g(zy, y) decodes the content factor zy jointly with the time
dependent factor y into a new image feature xy that is reconstructed into
the output image Iy: Iy = A+(xy). The specific form of f and g is discussed
in chapters 4 and 5.

3.3 Detailed Roadmap

In chapter 4, we introduce a trainable bilinear factorization module which
allows us to represent multiplicative interactions between time and content.
used typically in neural network architectures. We also provide details of our
efficient implementation of bilinear factorization, which allows us to apply
our bilinear module on large-scale datasets.

In chapter 5, we discuss different image translation models. We discuss
two different architectures based on an bottleneck auto-encoder and a recent
adversarial image translation architecture. We show how our bilinear factor-
ization module can be inserted in both architectures and discuss in details
the different loss functions used.

In chapter 6, we discuss the quantitative and qualitative results obtained
with our temporal translation approach. We first introduce the two datasets
we experimented on, and discuss the metrics that we use to quantitatively
evaluate our approach and to compare it other methods. Finally, we demon-
strate how to use our temporal image translation model for visual discovery
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in unpaired image collections annotated with time stamps. We show how
to use our model to generate history-lapse videos that translate the input
image into different time periods while preserving the identity of the depicted
object. We analyze the generated images sequences to extract interesting
changes in style over time.



Chapter 4

Bilinear Factorization
Module

In this chapter we introduce a trainable bilinear factor separation module that
can be plugged into different image translation architectures. In section 4.1
we present and detail this bilinear module. In section 4.2 we describe how
this module relates to other factor separation approaches such as Principal
Component Analysis, style and content factorization as well as simple feature
vector concatenation. Finally, as speed is important for training from large
datasets, in section 4.3 we explain our efficient implementation of the bilinear
module. Chapter 5 will then show how to employ our bilinear module in
different image translation architectures.

4.1 Module description

In this section we describe our new bilinear factored representation module,
which is visualized in figure 4.1a, and that can be used as the core factor-
ization module in the visual discovery architecture shown in figure 3.1 in
chapter 3. Our bilinear factor separation module is composed of two bilinear
layers. The first bilinear layer f(x, y), given by eq. (4.2), combines the input
feature x and given input year y in a multiplicative fashion into a content
vector zy. The second bilinear layer, given by eq. (4.1), combines the content
vector zy with the input time y in a multiplicative way into the reconstructed
feature xy.

The key idea of our approach is to combine the content vector z ∈ RS

and the style vector y ∈ RT in a multiplicative way, using a bilinear layer.
In particular, the decoding layer g(zy, y) reconstructs the feature xy from
the latent content variable zy, representing the input x interpreted using the
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given input time vector y, and the given input time variable y as

xk
y = g(zy, y)k =

S∑
s=1

T∑
t=1

W s,t,k
g zs

yyt , (4.1)

where Wg are the learnable weights of the decoding layer g and ab denotes
component b of the vector a (and similarly for tensor components). Note
that if y is a one hot encoding of the time period y, matrices W ·,t,·

g can be
interpreted as linear weights specific to the period y.

Before we can proceed with translation using equation (4.1), the latent
content vector zy needs to be estimated from the input image feature x. We
compute zy using another bilinear layer as

zs
y = f(x, y)s =

K∑
k=1

T∑
t=1

W k,t,s
f xkyt, (4.2)

where Wf are the weights of the encoding layer f and zs
y is the component s

of the latent content variable zy representing the input x interpreted using
the given input time vector y. Note also that similarly to Wg, if y is a
one hot encoding of the time period y, matrices W ·,t,·

f can be interpreted as
weights of a linear layer for time period t. Also note that the latent content
variable zy depends on the given input time vector y and can be thought
of as a “projection“ of the input representation x onto an “image subspace”
specific to period y.

4.2 Relation to other approaches

In the following we discuss the relation of our bilinear module to (i) image
translation based on concatenation, (ii) principal component analysis, and
(iii) style and content factorziation.

4.2.1 Relation to concatenation-based generation methods

The standard way to combine variables in a CNN architecture is to concate-
nate them (or their transformed versions. See for example [Dosovitskiy et al.,
2016]. Since the latent variables in concatenation based factorization methods
are often estimated independently in a feed forward way, we omit the index
y for the z variable in this paragraph. The output of a decoder g(z, y) of a
single decoding layer g applied to a concatenation of input features z and y
is written as

xk
y = g(z, y)k =

S∑
i=1

W i,k
g zi +

S+T∑
i=S+1

W S+i,k
g yi, (4.3)
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(a) Our bilinear separation module.
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(b) Concatenation-based network.

Figure (4.1): Factorization architectures. Our bilinear factorization module (top) and the
standard concatenation-based architecture (bottom) have two principal differences. First, our

module captures multiplicative interactions between time y and content zy, while concatenation
implies additive interactions. Then, we explicitly include dependency on time y in computing

latent content zy. More layers can be included in our bilinear module similar to the
concatenation architecture.

where Wg are the weights of the fully connected layer g. This equation is to
be compared with equation (4.1), where the interaction between y and z is
multiplicative and not additive.

While the output is in practice often a result of several layers, it builds on
this simple additive combination of the latent style and time. The resulting
architecture is visualized in figure 4.1b, and we compare its representational
power to our bilinear module in chapter 6.
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4.2.2 Relation to principal component analysis (PCA)

In the case where y is a one hot vector representing each time period, there is
a direct relation between our bilinear module and PCA. Indeed, our module
can in this case be rewritten for each time period independently as the
succession of two linear layers. If a L2 reconstruction loss is used between the
output and the input, these two successive linear layers are equivalent, up to a
simple transformation of the feature space, to performing PCA decomposition
followed by reconstruction [Baldi and Hornik, 1989; Sanger, 1989]. Thus,
our architecture is equivalent in this case to performing PCA on each time
period independently, a property that we verified experimentally: for each
time period y, we reconstruct input feature x in the basis given by the PCA
of image features in that period. In contrast to PCA, however, our bilinear
module can naturally be inserted in an encoder-decoder architecture. This
in turn allows training the entire factored image representation (including
the bilinear module, encoder and decoder) in an end-to-end manner using
more complex loss functions that go beyond simple L2 reconstruction.

4.2.3 Relation to bilinear style and content factorization

By representing vectors as a bilinear combination of time and latent content
latent variables in concatenation based factorization methods, our model
is related to the bilinear style and content separation of [Tenenbaum and
Freeman, 2000]. Our approach has, however, three fundamental differences.
First, we assume the style (in our case time) vector is known, given and fixed
for each input instance, and thus we only need to estimate the content vector.
Second, because we assume the style is known, we can estimate the content
vector with a simple linear operation. This is in contrast to [Tenenbaum and
Freeman, 2000] who have to resort to an algorithm based on an iterative SVD.
Because of this key difference the model of [Tenenbaum and Freeman, 2000]
also requires multiple observations of the same content with different styles,
i.e. paired data, which our model does not and can operate on unpaired data
collections. Finally, we include our bilinear separation approach as a module
in a CNN architecture, which allows for end-to-end parameter learning.

4.3 Efficient implementation of the bilinear mod-
ule

We implement our module and networks in Torch [Collobert et al., 2011].
Torch provides an implementation of the bilinear operation called “nn.Bi-
linear”. However, we found this implementation can be too slow for our
purposes, so we implemented another version. In this section, we detail the
differences between these two implementations and give performance results.
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Let’s call n the number of inputs processed simultaneously by the graphics
card. This set of inputs is called a minibatch. In equation 4.1, we give the
definition of the bilinear layer for a pair of vectors. In the neural network,
the operation is implemented for matrices, in order to concatenate several
input images into a single minibatch that can be processed more efficiently on
graphics processing units. With a minibatch of size n, the bilinear operation
can be written as

B(A, B, W )i,c =
∑

1≤a≤nA
1≤b≤nB

Bi,bWc,b,aAi,a ∀i = 1, . . . , n , (4.4)

where B(A, B, W ) ∈ Rn×nC is the output matrix holding n vectors of output
dimension nC , A ∈ Rn×nA and B ∈ Rn×nB are the input matrices holding n
vectors of dimension nA and nB respectively, and W ∈ RnC×nB×nA denotes
the parameters of the bilinear operation. Note that there is no additive bias
in the operation.
The default bilinear module in the Torch implementation makes this operation
in the following order. First, for each c = 1 . . . nC , the quantity

BWc,∗,∗ ∈ Rn×nB

is computed with a call to the matrix multiplication routine, where Wc,∗,∗ ∈
RnB×nA is the matrix obtained by taking the c-th sub-matrix of W :

(BWc,∗,∗)i,a =
∑

1≤b≤nB

Bi,bWc,b,a ∀i = 1, . . . , n ∀b = 1, . . . , nB . (4.5)

Then, the result of the bilinear operation is obtained by making the element
wise product between BWc,∗,∗ and A, and summing over the index a, which
gives Ci,c for each c = 1 . . . n.
While the matrix multiplication, element wise product and sum are fast
operations done on the GPU, the loop over c = 1 . . . n submatrices in
the mini-batch and the associated function call overheads can result in a
significant time loss.
We can reduce the number of loops by rewriting the bilinear equation, for
each c = 1, . . . , nC and i = 1, . . . , n as:

B(A, B, W )i,c =
∑

1≤a≤nA
1≤b≤nB

∑
1≤h≤nAnB

Ih,b,aBi,bWc,b,aAi,a , (4.6)

where I ∈ RnAnB×nA×nB is a sparse indexing matrix given by

Ih,b,a =
{

1 if h = 1 + (b − 1)nA + a ,

0 otherwise.
(4.7)
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By switching the order of the sums we can rewrite equation 4.6 as:

B(A, B, W )i,c =
∑

1≤h≤nAnB

∑
1≤a≤nA
1≤b≤nB

Bi,bIh,b,aAi,aW ′
h,c , (4.8)

where W ′ ∈ RnA×nB ,nC is a 2-dimensional matrix with the same coefficients
as W :

W ′
1+(b−1)∗nA+a,c = Wc,b,a . (4.9)

Finally, we can see that we have re-written the bilinear operation as

B(A, B, W ) = B(A, B, I)W ′ . (4.10)

We have implemented a bilinear layer using this formulation. Note that the
bilinear operation B(A, B, I) (which can be seen as an outer product of
each line of A and B) takes nAnB loops instead of nC , and can thus lead to
significant gain when nAnB < nC .
In our implementation of the model, the bilinear operation is used twice.
First, the code z ∈ RS is obtained by applying the bilinear operation on the
input feature x ∈ RK and the year feature y ∈ RT , where S, K and T are
the dimensions of the content vector, the input feature vector, and the timed
vector, respectively. In this case, using the default implementation of the
bilinear module, we have nC = S loops, which is small: typically S = 16 and
in all of our tests S ≤ 128. (see section 6.4 for a more detailed discussion
about the size of z.). Second, the code is decoded into xy ∈ RK . In this
case we have nC = K, which is 64,896 for our auto-encoder model. We thus
use our bilinear layer implementation instead, which reduces the number of
loops to K × T , which is 128 for a code of size K = 16 and a time feature
of size of T = 8. Our new implementation is in this case approximately
300 times faster. With this implementation, each iteration of our bilinear
layer is as fast as the baseline concatenation module. For our auto-encoder
network, it takes 3 minutes to do a full pass on a dataset of 10,000 images on
a GTX 1080 GPU, i.e. a full pass on 1M images would take about 5 hours.
Furthermore, compared to a concatenation baseline with a similar number
of parameters, our model converges in a smaller number of iterations to a
lower value of the objective.



Chapter 5

Image Translation Models

In chapter 4, we have discussed how we separate time and content infor-
mation using a bilinear module and how this module compares with other
factorization techniques and architectures. While it is possible to apply
the bilinear factor separation directly on the image pixels [Tenenbaum and
Freeman, 2000] with some success on simple images, such as letters or digits,
this approach does not work well for complex natural images. Instead, we
perform bilinear factor separation on higher-level image features extracted
using a convolutional neural network. This is achieved by employing our
bilinear factor seperation module as part of a convolutional neural network
architecture. This model can be trained end-to-end.In this chapter we plug-in
the bilinear factor separation module in two different convolutional network
architectures for image translation.

The first one, described in section 5.1, is a bottleneck auto-encoder.
We explain how the presence of a bottleneck allows us to perform image
translation. We describe how to employ the bilinear module in the auto-
encoder, compare it with standard concatenation, and discuss different losses
used for training.

In section 5.2, we show how to employ the bilinear factorization module
in a modern image translation architecture based on CycleGAN [Zhu et al.,
2017]. We show that employing our bilinear factorization module allows us to
learn a single encoder/decoder for all time periods instead of having a specific
encoder/decoder for each pair of source and target periods. We explain how
this model is trained to translate images thanks to a domain-adversarial loss.

5.1 Image translation using a bottleneck auto-encoder

In this section we show how to employ our bilinear factorization module in
a bottleneck auto-encoder for temporal image translation. We first give an
intuition of how to perform image translation using a bottleneck auto-encoder
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Figure (5.1): The bottleneck auto-encoder. In this model, modification with time is
enforced by the bottleneck and the separation loss Lsep, which separates time and content. The
proximity to the original image is enforced by the reconstruction loss on the feature Lfeat, which
compares the input and output of the factorization module, and the reconstruction loss on the

image Limage, which compares the original image to the output of the model.

and then discuss the different losses used for training. Finally, we discuss
the influence of the bottleneck code size on the model.

5.1.1 Intuition and Architecture

The bottleneck auto-encoder model is composed of three parts (figure 5.1):
the feature encoder, the bottleneck factorization module, and the feature
decoder. The feature encoder transforms an image into a vector representa-
tion that we refer to as “feature vector” that is easier to manipulate than
the image itself. The goal of the factorization module is to translate this
feature vector from its original time to its target time. We achieve that
by compressing the encoded feature into a code vector of small size, before
combining it with the year information. Because the code size is small, the
model has to be efficient when storing information in the code. The intuition
is that forcing the size of the code to be small encourages the code to contain
only the time-independent information as the time-dependent information
(in the form of the target time period) is added after the bottleneck during
decompression. In detail, the time information is added either with the
bilinear operation described in chapter 4, or with the standard feature vector
concatenation. We will show experimentally in chapter 6 the benefits of our
bilinear module. The feature obtained by combining these vectors can be
decoded into the translated image.
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More formally, we denote A the encoder, which takes as input an image I
and outputs a feature vector x: x = A(I). Then, the encoding layer f and the
decoding layer g form the factorization module: zy = f(xy, y) where zy is the
latent content variable, and xy = g(zy, y) where xy is the translated feature.
We denote by A+ the decoder that takes this translated and outputs a trans-
lated image Iy: Iy = A+(xy). The factorization, composed of a coding layer
f and a decoding layer g, can either be a concatenation module or a bilinear
module. The concatenation module is composed of a linear layer for a simple
linear layer z = f(x), and a linear layer on the concatenation of z and y for
g as described in equation (4.3). For this module the latent code variable z
does not explicitly depend on y. The bilinear module described in section 4.1.

Architecture details. Our encoder is based on the AlexNet [Krizhevsky
et al., 2012] architecture. We use the decoder with a deconvolutional archi-
tecture similar to [Dosovitskiy and Brox, 2015], but with batch normaliza-
tion ([Ioffe and Szegedy, 2015]) in order to make the training more stable.

AlexNet has 5 convolutional layers followed by 3 fully connected layers.
Features can be extracted from any of these layers, and we have to choose the
best features for our task. Using features extracted from the earlier layers
make the feature inversion easier and closer to the original image, while
deeper features have a higher-level representation of the image. Based on
preliminary results as well as the comparison of the reconstructions based on
different features by [Dosovitskiy and Brox, 2015], we opted to use features
from the 4th layer of AlexNet, conv4.

Training details. The parameters of the encoder are initialized by train-
ing it for classification on the ImageNet [Russakovsky et al., 2015] dataset.
The decoder is pre-trained to minimize the squared distance between the
original image and the auto-encoded image

∥∥A+ (A (I)) − I
∥∥2

2, without any
modification of the feature vector.

After this pre-training, we train the model in two phases. First,we train
the factorization module, f and g. Then, we fine-tune the whole model. We
discuss the losses that we use for this training and fine-tuning in the next
section.
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5.1.2 Training loss

Our full loss for training the network can be written as the combination of
three losses:

Ltotal(M) = Limage(M) + λfeatLfeat(f, g) + λsepLsep(f) , (5.1)

where M is our bottleneck auto-encoder model, and λfeat and λsep are
hyper-paramaters weighing the reconstruction loss on the image Limage(M),
the reconstruction loss on the feature vectors Lfeat(f, g) and the optional
separation loss Lsep(f). We detail these losses in the next paragraphs.

Reconstruction loss on the image. The reconstruction loss on the
image is a combination of a L1 loss and an adversarial loss:

Limage(M) = E
I

[‖M(I, yI) − I‖1] + λadvLadv(f) , (5.2)

where λadv is a hyper-parameter, and yI is the time corresponding to an
image I. The goal of the L1 loss is to match an auto-encoded image M(I, yI)
with the original I as much as possible. As it tends to produce blurry images
(see figure 6.4), the objective of the adversarial term Ladv is to make images
look more realistic, i.e. look more like a natural image, for example presenting
sharp edges. To improve the stability of the training, we use the least-squares
generative adversarial network loss, as described in [Mao et al., 2017]. More
precisely, we train a fully convolutional discriminator network D that takes
as input either a real image I from the dataset, or an image generated by our
model M(I, yI), where yI is the time period corresponding to image I, and
evaluates for each location of the image, in a convolutional way, if it comes
from the dataset or our model. The generator M is trained to both provide
a good reconstruction and confuse the discriminator. The adversarial loss
for the generator thus is:

Ladv(M) = E
I

[
(D(M(I, yI)) − 1)2

]
, (5.3)

where D(M(I, yI)) is the output of the discriminator for the generated
image M(I, yI). In other words, the generator tries to produce images
that are indistinguishable from real images by the discriminator, i.e. the
discriminator outputs label 1. Note that this adversarial loss also depends
on the discriminator D, which is trained jointly with our model using the
following loss function

Ldisc(D) = E
I

[
D (M(I, yI))2 + (D(I) − 1)2

]
, (5.4)

where the expectation is taken over the set of training images I with associated
time stamps yI . The first term, D (M(I, yI) − 0)2, is the loss on generated
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images, which the discriminator is trying to map to class 0, and the second
term, (D(I) − 1)2, is the loss on real images I, which the discriminator is
trying to map to class 1. The intuition is that the discriminator tries to
separate real and generated images while the generator tries to produce
images that are indistinguishable from real photographs. Note that losses
given by (5.3) and (5.4) are applied in a fully convolutional manner as
described in [Zhu et al., 2017]. This adversarial loss is encouraging the
output images to look like real images but does not attempt to discriminate
between different time periods. Adversarial loss that discriminates between
different time periods will be discussed in section 5.2.2.

Reconstruction loss on the feature vector. In addition to the above
reconstruction loss on the pixel-level, we pre-train the bottleneck modules
with a reconstruction loss on the feature vector level:

Lfeat(f, g) = E
y∈Y

∥∥∥xi
y − g(f(xi

y), y)
∥∥∥2

2
, (5.5)

where xi
y is the input image and g(f(xi

y), y) its reconstruction with the given
ground truth time y. As discussed in chapter 4, this is analoguous to Principal
Component Analysis in the case of a bilinear bottleneck module. For both
the bilinear and concatenation modules, the feature-level reconstruction loss
given by equation (5.5) ensures that the features are preserved when the
target year is the year of the original image (no translation).

Separation loss. Finally, the concatenation model can be complemented
with a separation loss Lsep. The aim is to learn a model where the code
and time vector are two independent variables. For example, when the
model is applied to images of faces, the code can capture the identity of
the person and attribute the year of the photograph. Here, knowing the
year of the photograph does not convey any information about the identity
of the person. It is this intuition we would like to capture. We explain in
the following paragraph the details of the separation loss. Please note that
we only use it for the bottleneck auto-encoder with a concatenation mod-
ule. As will be seen in chapter 6, we found that this type of separation loss
is not necessary to achieve good results with our bilinear factorization module.

More formally, we assume that the code z ∈ RK and time vector y ∈ Y are
realizations of random variables Z and Y , with probability distributions p(Z)
and p(Y ), respectively. The aim is to enforce that Z and Y are independent,
i.e. that

P (Z, Y ) = P (Z)P (Y ) . (5.6)
As by definition the joint probability of Z and Y can be written as

P (Z, Y ) = P (Y )P (Z|Y ) , (5.7)
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it can be seen from equation (5.6) that independence can be expressed with
the equation

P (Z|Y ) = P (Z) . (5.8)

Thus, Z and Y are independent if and only if the conditional distribution
P (Z|Y = y) are the same for all y ∈ Y. In other words, knowing y is
not going to bring any additional information about Z. To simplify the
computation, we further assume Z has a Gaussian distribution N(µ, Σ).
Since z is the output of a linear layer and an affine transformation can be
absorbed by this layer, we can further assume without loss of generality that
µ = 0 and Σ = I, i.e. P (Z) = N(0, I). Plugging-in the Gaussian form of
P (Z) into constraint (5.8), leads to

P (Z|y) = N(0, I), ∀y ∈ Y. (5.9)

In other words, the code Z is independent of time Y when for each value y of
the time the observed conditional distribution of codes z is a unit Gaussian.
We translate the constraint (5.9) into the following separation loss

Lsep(f) =
∑
y∈Y

KL (P (Z|Y = y)) , N (0, I)) , (5.10)

where KL(., .) is the Kullback-Leibler (KL) divergence between two dis-
tributions.Note that the separation loss is minimized exactly when the
constraint (5.9) is satisfied, i.e. the conditional distribution of Z for each y
follows a unit Gaussian. To further simplify the computation, we assume
that the dimensions zk of z are independent and Gaussian, which leads to
the following form of the separation loss

Lsep =
∑
y∈Y

K∑
k=1

1
2
(
− log((σy

k )2) + (µy
k)2 + (σy

k )2 − 1
)

, (5.11)

where µy
k and (σy

k )2 are the mean and variance of the k-th dimension of the
codes {zy

1 , . . . , zy
i , . . . zy

Ny
} extracted from the images annotated with time y:

µy
k = 1

Ny

Ny∑
i

zy
i,k , (5.12)

(σy
k )2 = 1

Ny

Ny∑
i

(zy
i,k − µy,k)2 . (5.13)

Note that the loss Lsep(f) is summed over all dimensions of z (inner
sum) and all possible values of time y (outer sum). Note again that above
separation loss is enforcing independence of random variables Z and Y by
pulling the mean and variance of codes zy extracted from images annotated
with a certain time y towards 0 and 1, respectively.
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5.1.3 Discussion

The size of the bottleneck inside the model M , i.e. code zy, is a critical
parameter for the bottleneck auto-encoder. It influences the result in two
different ways. Decreasing the dimension of z corresponds to decreasing the
dimension of the linear space of the possible values of g(zy) = xy, and leads
to the following observations.On one hand, as a result of the information
loss corresponding to this dimensionality reduction, the reconstruction error
‖x − xy‖ will be larger, and the reconstructed image will lack details. On
the other hand, the network has to rely more on the time specific code y
to reconstruct the training data. As a result, the reconstructed images will
exhibit more strongly the characteristic features of the images in the target
period, which is part of our goal. In the extreme case where only the time
specific code y is preserved and the dimension of the bottleneck z is zero, the
best the network could do in terms of the reconstruction loss on the training
data is to produce an output close to an average training image for the given
time period.

We find that the concatenation module is more sensitive to the bottleneck
code size than the bilinear module. For simple datasets, such as for faces, a
balance between preserving image quality and generating typical images for
each period can be found with both modules. In other cases, such as with
the car dataset we use, we find that only the bilinear module allows us to
produce strong appearance variations when changing the time period while
preserving the characteristic features of the particular object depicted in
the image. We compare results obtained with both modules in experiments
presented in section 6.4.

Because the presence of a bottleneck is detrimental to image quality with
both modules, we explore another image translation architecture without
any bottleneck discussed in the next section.

5.2 Adversarial translation

In this section we introduce the domain adversarial translation model. First,
we give an intuition of how this model performs image translation. We then
discuss the different losses used for training. Finally, we compare this model
to the bottleneck auto-encoder presented in section 5.1 and CycleGAN [Zhu
et al., 2017].

5.2.1 Intuition and Architecture

A successful approach to image translation that does not use a bottleneck
auto-encoder, CycleGAN, was recently introduced in [Zhu et al., 2017]. The
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Figure (5.2): The adversarial translation model. In this model, modification with time is
enforced by the domain adversarial loss Ldom-adv, which compares the output of the model to
other images of the same time period. The proximity to the original image is enforced by the

reconstruction loss on the image Limage, which compares the original image to the output of the
model, and the cycle loss Lcycle, which compares the original image to an image translated to

another time period then translated again to its original time.

work is focused on the case of two image domains, such as two different time
periods in our case.

One of the main drawbacks of CycleGAN for our task is that it does
not build a shared factored representation, and thus requires to train two
translation networks per domain pair. It also does not allow to represent
continuous quantities, such as time. We extend the architecture of [Zhu et al.,
2017] to multiple domains. To achieve this we (i) share the network weights
for translations between all periods, and (ii) add a factorization module as
described in chapter 4 as a central block, in parallel to a shortcut connection.
We show this model in figure 5.2.

Architecture details. The network is based on [Johnson et al., 2016]. It
uses residual building blocks ([He et al., 2016]), i.e. blocks of convolutional
layers with the same dimension for the input and output, with an additive
operation that adds the input of the block to the output. This network allows
minimal quality loss in the reconstruction, because there is little dimensional-
ity reduction. Instead, the network can translate images because it is trained
with a domain adversarial loss, which forces the result of the translation
to appear like images of the target time period. We can thus remove the
bottleneck in our bilinear factor separation, which makes it equivalent to
a single bilinear layer. Interestingly, while the architecture with a single
bilinear layer is simpler than the full bilinear module, it typically has more
parameters since it does not have a bottleneck.
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5.2.2 Training Loss

To train our translation architecture denoted M , we use a combination of
multiple losses:

Ltotal(M) = Lid(M) + λcycleLcycle(M) + λdom-advLdom-adv(M) , (5.14)

where Lid, Lcycle, and Ldom-adv are the identity loss, the cycle consistency
loss and the domain adversarial loss detailed in the following paragraphs,
and the λs are the relative weights of each loss.

Identity loss. We use a L1 reconstruction loss on the generated image
without translation, as we did for the bottleneck model:

Lid(M) = E
I

[‖M(I, yI) − I‖1] , (5.15)

where the expectation is taken over all images I and yI is the time period
associated to image I. As the target year is the year of the original image,
this loss enforces that the image is modified as little as possible. The loss
also improves the stability of the training.

Cycle consistency loss. Similar to [Zhu et al., 2017], we also consider a
cycle consistency loss

Lcycle(M) = E
I,y

[‖M(M(I, y), yI) − I‖1] , (5.16)

where the expectation is taken over all images I and all possible target time
periods y, and yI is the time period associated to image I. This loss ensures
that a source image I translated to time y, M(I, y), can be converted back
to the source image I when using the source time yI as the input to the
generator.

Domain adversarial loss. Finally, to enforce that the generated images
look different for each time period, we rely on a domain adversarial loss

Ldom-adv(M) = E
I,y

[
(1 − Dy (M(I, y)))2

]
, (5.17)

where the expectation is taken over all images I and all possible target time
periods y, and Dy (M(I, y)) ∈ [0, 1] indicates if M(I, y) resembles images
from the dataset with attribute y. The intuition is that the generated image
M(I, y) for time period y should be classified correctly by the discriminator
D. We train a single discriminator D that takes an image as input and is
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trained to output a vector that contains one hot encoding of the input image
time period. Dy denotes the component of the output vector corresponding
to time y. The discriminator is trained jointly with the generator M using
the following loss

Ldom-disc(D) = E
I

[
(1 − DyI (I))2

]
+ β E

I,y

[
Dy(M(I, y))2

]
, (5.18)

where β is a hyper-parameter. The first term encourages that the discrimina-
tor predicts 1 for the correct time period yI for training images I. The second
term encourages that for the translated images M(I, y) the discriminator
output for period y, Dy should be zero. In other words, the discriminator
should be able to detect that the generated image does not belong to the
target period. Note again that this loss is evaluated in a fully convolutional
manner as described in [Zhu et al., 2017].

5.2.3 Discussion

This approach has some similarities with the aforementioned bottleneck
auto-encoder described in section 5.1. In both cases, a L1 loss is used to
compare an original image to the output of the network after translation is
performed. With the auto-encoder, an adversarial loss sharpens the results
and makes them more realistic. This addition is not necessary in the case
of the adversarial translation model, because its domain adversarial loss,
which is necessary for translation, also makes images more realistic. With
this domain adversarial loss, the adversarial translation model does not rely
on a bottleneck and is thus capable of outputting images of better quality.

We note here the differences between CycleGAN and our network. In
CycleGAN, only two classes are considered, while we can consider an arbitrary
number of classes (in our case time periods) using a single network. We do
not need one generator network and one discriminator network for each class,
but we use one generator network for all classes and one discriminator for
all classes. The only parts of our networks that use more parameters when
considering new classes are the bilinear factorization module in the middle
of the generator, and the last layer of the discriminator which determines
the time period of an image.



Chapter 6

Visual Discovery in Unpaired
Image Collections

In the previous chapter, we have described how we incorporate the bilinear
module in different image translation architectures. The goal of this chapter
is to experimentally compare these architectures and demonstrate their use
for visual discovery. The objectives are threefold. First, we wish to validate
whether the previously described architectures can perform temporal im-
age translation. Second, we wish to compare their performance to sensible
baselines on the image translation task. Finally, we wish to demonstrate
visual discovery in unpaired image collections via learning and applying the
proposed temporal image translation models.

This chapter is organized as follows. In section 6.1, we introduce the
datasets and metrics that we use to evaluate our models. In section 6.2,
we present preliminary results obtained with the bottleneck auto-encoder.
These results demonstrate the difficulty of temporal translation on complex
visual data and have been for us the motivation for developing our bilinear
factorization module (described in chapter 4).

In the remainder of this chapter we present results of our bilinear mod-
ule incorporated in the two image translation architectures described in
chapter 5. In section 6.3, we analyze the effect of different architectures
and losses on the results of temporal image translation. In section 6.4, we
provide an in depth comparison of our bilinear module with the the standard
feature concatenation. In section 6.5, we give examples of the new type of
image analysis enabled by our model: generating history-lapse videos and
discovering trends by analyzing changes across time.
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6.1 Datasets and metrics

To illustrate the generality of our method, we use two datasets of historical
images for our evaluation. The historical car dataset [Lee et al., 2013] is a set
of cars made in a span of 80 years. The historical yearbook portraits [Ginosar
et al., 2015] contains pictures of students taken across 80 years. For both
datasets, we grouped the images by decades and selected three decades with
clear differences to analyse the results of our method (40s, 70s and 2000s
for the faces and 40s, 60s and 90s for the cars). We thus obtained 3600
training images and 300 testimages for the face dataset across three decades,
and 7299 training images and 1258 test images for the car dataset. Below
we give details of the two datasets and introduce appropriate metrics to
quantitatively compare the results of the different approaches.

Historical car dataset. We show results on the challenging car dataset
introduced in [Lee et al., 2013], containing modern images of cars together
with their construction date, between 1920 and 1999. This dataset presents
several difficulties, with cars having different appearance and different back-
grounds. The cars are also imaged in a variety of lighting conditions and
from a variety of viewpoints. To localize the cars in the image, we first
run a standard Faster R-CNN car detector [Ren et al., 2015] pre-trained on
Pascal VOC images. The detected bounding boxes are then resized to fit
the input of the networks without preserving the aspect ratio. Despite this
pre-processing, this dataset remains a great challenge.

Historical yearbook portraits. We also applied the proposed model
to the historical photograph collection of American high school yearbook
portraits from 1930s to 2000s of [Ginosar et al., 2015]. Aligned face images
are known to be relatively easy to analyze, and results on this type of data
have been demonstrated for example in [Ginosar et al., 2015; Reed et al.,
2014; Yan et al., 2016].

Evaluation metrics. Quantitative evaluation for our task is difficult as
there is no ground truth for how a specific car or portrait looked like in
both 1920s and 1990s. We evaluate the different methods by looking at a
reconstruction metric and a classification metric. Our reconstruction metric
is simply the L1 distance between the input image and its translation into
its ground truth period. While this is not a very precise metric of image
similarity, we found that for our task it correlated well with percieved image
quality. As pointed above, this reconstruction metric is limited since it can
only be used together with the ground-truth time period, and doesn’t evaluate
wether the generated image shows characteristics of the target time period.
This is the goal of our classification metric. Following [Isola et al., 2017], we
use an off-the-shelf classifier to assess whether our model is able to generate
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images that “look” like the images of the intended time period. This metric
is related to the “inception score” [Salimans et al., 2016], object detection
evaluation in [Wang and Gupta, 2016] and the “semantic interpretability”
measure in [Zhang et al., 2016]. In detail, we trained a classifier on the conv4
features of an AlexNet network trained on ImageNet [Russakovsky et al.,
2015] to predict time periods on real images and applied it (i) to a validation
set of previously unseen real images, and (ii) to images generated by the
different methods.

For each model and dataset, we report two numbers: (i) the percentage
of correctly classified images in the case when the input image is translated
into its ground truth time period (“Same year”), and (ii) the percentage of
correctly classified images when the input image is translated to a different
time period (“Modified year”). The first score evaluates whether the model
preserves the temporal characteristic of the image when the time period
is unchanged. The second score evaluates whether the model manages to
change the time characteristics of the generated image in a way that fools the
classifier. Higher numbers are better for both metrics; they can be interpreted
as a success of the translation model to change the time period of the input
image. The quantitative results are discussed in sections 6.3 and 6.4. In
the following section, we present preliminary results using the bottleneck
auto-encoder architecture, which served as a motivation for developing our
bilinear factorization module.

6.2 Preliminary results with the bottleneck archi-
tecture

In this section, we describe the preliminary results obtained with the bottle-
neck auto-encoder architecture with a concatenation factorization module.
We present results only on the easier face dataset, which contains relatively
well aligned images. We found that this type of architecture was not able
to learn image translation models on more varied image data such as the
dataset of historical cars, where objects are not aligned and imaged from
a variety of viewpoints and under different illuminations. These negative
results served as the main motivation for developing the bilinear factorization
module, which is evaluated in sections 6.3 and 6.4.

Architecture details. In this section, we use the bottleneck auto-encoder
architecture described in section 5.1. The year embedding y is a continuous
mapping of the time t, defined by:

yi(t) = Kt exp
(

(i − αt)2

2σ2

)
, (6.1)
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1930 1940 1950 1960 1970 1980 1990 2000

(a) Face image from the 2000s reconstructed at different time periods.

(b) Face image from the 2000s reconstructed at different time periods.

(c) Face image from the 1930s reconstructed at different time periods.

(d) Face image from the 1930s reconstructed at different time periods.

Figure (6.1): Results of the bottleneck auto-encoder with concatenation factorization
module. For each face the top row shows the generated appearance over time and the bottom

row shows the differences compared to the reconstruction at the true time period. Blue
represents darker pixels and red represents lighter pixels in the reconstruction of the specific

period compared to the true period. In these examples we can see that most of the difference is
located around the lips.

where σ and α are hyper-parameters and Kt is a normalization factor set so
that ‖y(t)‖2 = 1. This mapping provides a soft discretization of continous
time into bins representing different time periods. We use concatenation to
combine the code z and the year embedding y. Both z and y have a code
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Network part Encoder: z = fθ (A (I)) Concat (z, y)
layer type conv max conv max conv conv conv concat
kernel size 11 3 5 3 3 3 3 -
dimension 21 11 11 6 6 6 6 6
nb features 96 96 256 256 384 384 8 8 + 8

stride 4 2 1 2 1 1 1 1
batch norm - - - - - - - -

non-linearity ReLu - ReLu - ReLu ReLu - -
Network part Decoder: Iy = A+

(
gφ (z, y)

)
layer type conv conv up conv up conv up conv up conv
kernel size 5 5 2 5 2 5 2 5 2 5
dimension 6 6 12 12 24 24 48 48 96 96
nb features 256 256 256 256 256 128 128 64 64 3

stride 1 1 1 1 1 1 1 1 1 1
batch norm BN BN - BN - BN - BN - -

non-linearity lReLu lReLu - lReLu - lReLu - lReLu - -

Table 6.1: Details of the auto-encoder architecture used in section 6.2.

size of 8. Details of this architecture are presented in table 6.1.

6.2.1 Visualizing differences over time

We first use our network to visualize trends over time from the perspective
of a specific image. A first possible approach would be to simply look at the
reconstructed images with the same content code z (the same person) for
different time periods, as visualized in the top row for each person shown in
figure 6.1. Looking at the images, the main observation is the change in the
facial expression. As was previously noted in [Ginosar et al., 2015], people
in later pictures tend to smile more.

6.2.2 Quantitative analysis of reconstruction errors

While in 6.2 we have shown temporal translation results for specific individ-
uals, here we try to extract patterns by analyzing the reconstruction errors
of translated images across decades. In figure 6.2 we show eight plots, one
for each time period showing the reconstruction error over time for all 100
testing instances in that time period. Within each graph the curves are
shifted so that the error is zero for the ground truth period. The colors of
individual curves correspond to the specific years inside the decade – cold
colors represent the early years and warm color the later years.

The first observation is that the evolution pattern of errors is consistent
for all test samples inside each decade. For example, graph (a) shows that
images from 1930s have overall low reconstruction error for the neighbouring
1940s but also 1960s and 1970s. The reconstruction error is higher in 1950s
and 1980s. Also, the smallest errors are often attained for the ground truth
decade.
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Figure (6.2): Reconstruction errors (y-axis) for different time periods (x-axis). See text.

Second, one can notice clear trends for the years inside the decade shown
by consistent pattern of colors for the individual curves, despite the fact that
the annotations used during training are exactly the same for all the years
inside a decade. This effect is especially evident for the early decades. For
example, inspecting graph (a) the images from early 30s encoded by blue and
cyan colors have low reconstruction errors for 1950s but are not reconstructed
well in 1980s. Interestingly, the reverse is true for the images of late 30s
encoded by yellow and red colors that have relatively high reconstruction
errors for 1950s bur are reconstructed relatively well in 1980s.

Finally, one can notice three clearly different groups. The first group is
formed by 30s, 40s, 60s and 70s for which the errors are generally small but
are slightly higher in the 50s and after (including) 80s. The second salient
group is formed by the 80s, 90s and 2000s, which have a relatively high error
for the earlier periods. Finally, the last group is the 50s, that consistently
appeared as an outlier decade in this experiment.

6.2.3 Finding typical and non-typical examples

In this section we report results of visual data mining based on generated
imagery. We generate a reconstruction of each test image for all time-periods
and mine the test set for example faces that follow a specific temporal pattern
in the reconstruction error. Results are shown in figure 6.3 and analyzed
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(a) Test images for which the average reconstruction error across all time periods is the lowest.

(b) Test images for which the average reconstruction error across all time periods is the highest.

(c) Test images for which the range of the reconstruction errors across time is the lowest.

(d) Test images for which the range of the reconstruction error across time is the highest.

(e) Test images from the 2000s most different from the 1970s.

(f) Test images from the 1970s most different from the 2000s.

(g) Test images from the 1930s most different from the 1950s.

(h) Test images from the 1950s most different from the 1930s.

Figure (6.3): Visual data mining based on generated imagery. We generate a
reconstruction of each test image for all time-periods and mine the test set for example faces that

follow a specific temporal pattern in the reconstruction error. See discussion in section 6.2.3.
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next.

Average MSE over time. One of the simplest statistics to look at is the
mean square error of the reconstruction, that we can average over all time
periods. Figures 6.3a and 6.3b show the images that have a small and large
average MSE over time.

Range of reconstruction errors. To avoid the bias in the MSE error,
we sort here images based on the range of the reconstruction error, i.e. the
absolute difference between the reconstruction error in the best and the
worst year. Intuitively, if the range is large, then the images are easy to
reconstruct in one period but very hard to reconstruct in some other period.
On the contrary, if the range of errors is small, the image is just as likely to
come from any period. The results are shown in figures 6.3c and 6.3d. We
observe that the images with the highest range of errors are the minorities
(figure 6.3d) that are badly reconstructed using the early decades because
they are absent from the yearbook collections, but are well reconstructed in
the recent years. The least distinctive images (figure 6.3c) with low range
of errors are faces without explicit features associating them to any specific
year.

Comparison of specific decades. The above analysis mines for the most
striking differences across the entire test collection. We can, however, use
our method to pinpoint images with large differences in reconstruction errors
between two specific decades. For example, figures 6.3e and 6.3f highlight
the differences between the 1970s and the 2000s. These images highlight
two dominant differences: there are much more girls that are smiling and
have long hair in the 2000s (figure 6.3e), and much more girls with shorter,
dark, but voluminous hair in the 1970s (figure 6.3f). There are some outliers,
which is expected as we are mining eight images out of only 100 test images
for a specific period. Similarly, we compare in figures 6.3g and 6.3h the 1930s
and 1950s and find that faces from the 1930s, which are the most different
from the 1950s are the ones with very curly well combed hair. On the other
hand, the short hairstyle with more volume around the ears is characteristic
of the 1950s compared to the 1930s.

6.2.4 Discussion

In this section we have reported results using the bottleneck autoencoder with
concatenation factorization. While these results were promising, we found
this architecture has only limited ability to capture appearance variation
over time. While it could extract (some) temporal variation from the face
dataset, where the faces are fairly well spatially aligned, this model was not
able perform temporal translation for the car dataset (results not shown),
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(a) original image
(b) bilinear bottleneck

autoencoder + L1 fine-tuning

(c) bilinear bottleneck
autoencoder + adversarial

fine-tuning
(d) bilinear adversarial

translation

Figure (6.4): Comparison of different architectures and losses. From left to right: (a)
original input image in the 1990s ; (b) translation into 1940s generated with a bilinear

bottleneck autoencoder fine-tuned using only a L1 reconstruction loss produces rather blurry
output ; (c) Fine-tuning using an additional adversarial loss produces sharper results ; (d) the

best results are obtained using the bilinear adversarial translation model.

which has much larger variation of appearance due to intra-class variation,
changes in viewpoint, background and illumination conditions. These results
led us to develop the bilinear factorization module (chapter 4) which we
employ in two different temporal translation architectures (as described in
chapter 5. We report results for these models in the following sections.

6.3 Analysis of architectures and losses for image
translation

In the previous section, we have shown preliminary results obtained with
the bottleneck auto-encoder and the concatenation factorization module.
While the results were promising on the aligned face dataset of yearbook
portraits, this architecture was not able to capture the larger image variation
in the more complex and non-aligned car dataset. These results served
as the primary motivation for developing the bilinear factorization module
(chapter 4) and incorporating this module in two different temporal trans-
lation architectures (chapter 5): (i) the bottleneck auto-encoder (the same
as used in the previous section) as well as (ii) the recent adversarial image
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(a) original 1960 car
(b) bilinear adversarial

translation (1940s)
(c) bilinear adversarial

translation (1990s) (d) CycleGAN (1940s) (e) CycleGAN (1990s)

Figure (6.5): Comparison between our bilinear adversarial translation model and
CycleGAN [Zhu et al., 2017]. (a) The input image (1960s). (b)-(c) translation by our

approach into 1940s and 1990s, respectively. (d)-(e) translation by CycleGAN into 1940s and
1990s, respectively. Both our bilinear adversarial translation and CycleGAN produce sharp
images and clear changes over time with comparable visual quality of results. However, our

bilinear adversarial translation architecture has the advantage of being a single model whereas a
separate CycleGAN model needs to be trained for each target time period.

translation architecture [Zhu et al., 2017]. In this section we report we report
experimental results of comparing these two architectures. We show that the
bilinear factorization module makes it possible to learn temporal variation
using the bottleneck auto-encoder even from the challenging car dataset as
it builds factorization capability directly into the architecture. However, we
further demonstrate that even better results can be obtained by inserting
our bilinear factorization module in the recent adversarial image translation
architecture [Zhu et al., 2017]. In this case our bilinear module enables image
translation to multiple different target time periods using a single network.
We begin with the analysis of visual quality of the results, then perform
quantitative analysis and finally discuss the typical failure modes.

In the next section 6.4 we analyze the differences between the standard
concatenation based factorization module and our new bilinear factorization
module when used in the bottleneck auto-encoder. Finally, in section 6.3 we
demonstrate how to apply our bilinear adversarial translation model for the
task of visual discovery in an unpaired image collection annotated with time
stamps.
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Qualitative analysis. We focus our qualitative analysis on the more
challenging car dataset. Qualitative results on the face dataset are shown
in section 6.5 and on our project webpage [web]. First, in figure 6.4, we
compare the results of translation of cars from the 1990s to the 1940s using
our bilinear factorization module inserted into the bottleneck auto-encoder
architecture without (b) and with (c) adversarial loss as well as inserted into
the adversarial translation framework (d). The results in column (b) show
that using only the L1 reconstruction loss with a bottleneck auto-encoder
architecture results in blurry images that show some changes related to the
time period but are hard to interpret. As shown in column (c), adding
an adversarial loss to the bottleneck auto-encoder produces more realistic
images with clearer differences between the time periods. However, there is
still significant loss in image quality, due to the dimensionality reduction in
the bottleneck. Finally, images produced with the adversarial translation
(column (d)) are the most realistic and make changes over time easiest to
interpret.

Second, in figure 6.5, we show a comparison between our bilinear ad-
versarial translation model and CycleGAN [Zhu et al., 2017], which is the
state-of-the-art model for image translation. For CycleGAN, we have trained
three pairwise models, in order to cover transformations from and to each
time period. Note that our bilinear adversarial model is only trained once
with the three time periods. While the images are slightly different, the
overall image quality and the temporal changes are similar. However, our
bilinear adversarial translation architecture has the advantage of being a
single model that is faster to train, as most of the weights of the model are
shared. Note that the adversarial translation using a concatenation based
factorization module produces similar quality of results and is not shown in
the figure.

Quantitative analysis. The visual results are supported by the quantita-
tive results reported in table 6.2. First, for both datasets, there is a clear gap
between reconstruction errors for methods using adversarial translation and
the bottleneck auto-encoder, with more than an order of magnitude difference.
This confirms the visual results form figure 6.4. The reconstruction error for
the bottleneck auto-encoder architecture is improving with the size of the
bottleneck, but does not reach the quality of the result of the adversarial
translation model. Second, the classification results, which are much higher
than chance for all adversarial translation frameworks and for some bottle-
neck auto-encoder architectures demonstrate that both the auto-encoder
and adversarial translation models can effectively change the appearance of
the input image towards the target period. Finally, the joint results of the
three independently trained pairwise CycleGAN models are similar to the
results of our single bilinear adversarial translation model, which confirms
the visual results from figure 6.5. The adversarial translation models, and
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a) Viewpoint b) Open hood c) Unusual car

Figure (6.6): The main failure modes of our bilinear adversarial translation model.
Each column shows one failure mode (unusual viewpoint, open hood, rare car type). In each

column the top image shows the input (car from the 1940s, green border) and the bottom image
shows the output translation into the 1990s (blue border). In all cases the model fails to modify

the input image in a substantial way, but often still modifies some small parts, such as the
wheels or the headlights.

in particular our bilinear adversarial translation model, show both a high
classification score and a low reconstruction error. This makes these models
good candidates to perform visual discovery in unpaired temporal image
collections, as we will demonstrate in section 6.5.

Failure cases. Figure 6.6 shows several typical failure examples of our best
performing approach, the bilinear adversarial translation model. In general,
our method fails on uncommon images, where it typically produces a car
that is nearly identical to the original input image, with sometimes localized
changes on small parts such as the wheels. In other words, the model defaults
to the original input image when it doesn’t know how to modify the image
correctly. These failure cases typically correspond to unusual viewpoints
(figure 6.6(a)), open trucks or boots (figure 6.6(b)), or rare or otherwise
unique cars in our dataset (figure 6.6(c)).

6.4 Comparison of bilinear and concatenation fac-
torization modules

In this section, we analyze the differences between the standard concatenation
based factorization module and our new bilinear factorization module. We
focus this comparison only on the simple bottleneck auto-encoder architec-
ture. In the more powerful framework of adversarial translation, both types
of factorization modules produce similar results.
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Figure (6.7): Comparison of bilinear and concatenation modules in the bottleneck
auto-encoder architecture. In each example we show: (a) input original image (1960s); (b-d)
concatenation-based translation to 1940s (top) and 1990s (bottom) using different code size of 4
(b), 16 (c) and 64 (d); (e-f) bilinear translation to 1940s (top) and 1990s (bottom) using code

size of 16 (e) and 64 (f). Note that concatenation modules produce either limited temporal
changes (larger code size) or low quality reconstruction (small code size). On the contrary, the

bilinear factorization module (e-f) produces significant temporal variations with reasonable
image quality for a range of code sizes.
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cars (3 periods)
Same year Modif. year L1 error

Classification Reconstruction
Real images 93% n.a. n.a.
Bilinear auto-encoder (64) 84% 69% 0.13
Bilinear auto-encoder (16) 86% 80% 0.16
Concat. auto-encoder (64) 55% 23% 0.13
Concat. auto-encoder (16) 64% 48% 0.16
Concat. auto-encoder (4) 64% 64% 0.20
Bilinear translation (ours) 83% 63% 0.017
Concat. translation 83% 63% 0.016
CycleGAN [Zhu et al., 2017] 76% 70% 0.015

(a) Quantitative evaluation for the cars dataset [Lee et al., 2013].

faces (3 periods)
Same year Modif. year L1 error

Classification Reconstruction
Real images 96% n.a. n.a.
Bilinear auto-encoder (64) 95% 15% 0.08
Bilinear auto-encoder (16) 99% 90% 0.11
Concat. auto-encoder (64) 80% 11% 0.10
Concat. auto-encoder (16) 81% 9% 0.11
Concat. auto-encoder (4) 96% 81% 0.14
Bilinear translation (ours) 97% 91% 0.008
Concat. translation 98% 88% 0.009
CycleGAN [Zhu et al., 2017] 97% 87% 0.009

(b) Quantitative evaluation for the faces dataset [Ginosar et al., 2015].

Table 6.2: Quantitative evaluation of our models and baselines. We evaluate both a reconstruction
error (normalized L1 loss, lower is better) and a “inception” type of score (percentage of correctly
classified images, higher numbers are better).

Qualitative analysis. As in the previous section, we focus our qualitative
analysis on the more challenging car dataset and provide results on the face
dataset on the project webpage [web]. Qualitative translation results for
different code sizes are shown in figure 6.7 and demonstrate clear differences
between the concatenation-based and bilinear models. Indeed, for the code
size 16 and 64, the image quality is similar for both types of factorization
modules, but the concatenation based module produces almost no differences
between the two target time periods, while very visible changes happen using
the bilinear module. By reducing the code size of the concatenation based
module further, for example to 4, it is possible to force the model to produce
some changes, but only at the cost of very low quality images, where a large
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part of the image identity has been lost. These results clearly demonstrate
the advantage of the bilinear factorization module that we introduced and
analyzed in chapter 4.

Quantitative analysis. The visual analysis is supported by the the quan-
titative results reported in table 6.2a. The reconstruction error is similar
using both factorization modules with the same code size, but the classifi-
cation scores are much higher, on both datasets, using our bilinear module.
Obtaining higher classification scores using the concatenation-based model
is possible only at the cost of strongly decreasing the code size, and thus
reducing the image quality. However, even with a code size of 4, resulting in
an important decrease of the reconstruction error, the classification scores
of the concatenation module are still lower than the scores of our bilinear
module. This demonstrates the clear advantage of our bilinear factorization
module when employed in the bottleneck auto-encoder architecture.

6.5 Visual discovery via bilinear image translation

In this section we demonstrate how to apply our bilinear adversarial transla-
tion model for the task of visual discovery in an unpaired image collection
annotated with time stamps. First, we train a bilinear translation model on
the input image collection using the time stamp of each image as its (observed)
time variable. Note that the model is able to extract temporal changes over
time from the unpaired data, i.e. despite never seeing a particular object
instance (e.g. a car or a face) evolve over time. Then, we apply the trained
model on a new unseen test image. By varying the input time stamp we
generate a history-lapse video that translates the input image into different
time periods while preserving the identify of the depicted object. Finally, we
analyze the generated image sequence to extract interesting changes in style
over time.

History-lapse videos. Given a pre-trained bilinear adversarial translation
model we generate a history-lapse for a new test image. This is achieved by
varying the input time variable. In detail, using soft-assignment of the year
y to define the time vector y, we produce history-lapse videos with dense
sampling of time. We generate videos at a sampling rate of 1 frame per year.
Please see the videos on the project webpage [web]. Example frames are
shown in figure 6.8. The videos reveal interesting changes of car style learnt
from the entire dataset but applied on a specific instance of a car depicted
from a given fixed viewpoint and captured in given imaging conditions. Note
how some parts appear, disappear or are transformed over time. For example,
the running board on the side of the car, characteristic for the 1940s gradually
disappears over time; the round lights of the 1940s are transformed into
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(a) Input images of cars from the 1960s (top row) and their generated translations into 1990s (middle row). The
difference images (bottom row) highlight the changes in the headlights of the cars, going from small round ones to large

rectangular ones, as well as the increasing size of the car windows and windshield.
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(b) Input images of cars from the 1940s (top row) and their generated translations into 1990s (middle row). In addition
to the changes in the shape of headlights and the size of windows, similar to (a), the difference images (bottom row)

highlight the disappearing metallic bumpers as well as the evolution of the shape of the hood, which flattens over time.
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(c) Input images of cars from the 1990s (top row) and their generated translations into 1940s (middle row). The
difference images (bottom row) highlight the appearing running board (or footboard) as well as the changing appearance

of wheels.

Figure (6.9): Analyzing trends over time. Each plate (a-c) shows consistent changes over
time. In each plate, we show the original input images (top row), their translation into another

period (middle row) and the absolute differences (bottom row) between the top and middle
images. The absolute differences are shown as heatmaps where bright yellow color indicates the

maximum absolute difference within the image, while dark blue colors correspond to small
differences. We superimpose the heatmaps on a low contrast version of the original input image
to further highlight the changes produced by our model. Please see more results on the project

webpage [web].
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(a) Input portraits from the 1940s (top row) and their generated translations into 2000s (middle row).
The difference images (bottom row) reveal consistent changes in haircuts, with hair getting longer,

and less curly in the 2000s.
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(b) Input portraits from the 1970s (top row) and their generated translations into 2000s (middle row).
The difference images (bottom row) reveal a particular trend in the hairstyle of African American
women, who often had a voluminous afro haircut in the 1970s, which mostly disappeared in the

2000s.
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(c) Input portraits from the 1940s (top row) and their generated translations into 2000s (middle row).
In addition to changes in haircut, the difference images (bottom row) reveal changes in facial

expression with bigger smiles showing more teeth in the 2000s as well as the color of the lips getting
lighter, possibly because of changes in the popular lipstick color and use.

Figure (6.10): Analyzing trends over time. Each plate (a-c) shows consistent changes over
time. In each plate, we show the original input images (top row), their translation into another

period (middle row) and the absolute differences (bottom row) between the top and middle
images. The absolute differences are shown as heatmaps where bright yellow color indicates the

maximum absolute difference within the image, while dark blue colors correspond to small
differences. We superimpose the heatmaps on a low contrast version of the original input image

to further highlight the changes produced by our model. Please note consistent changes in
hairstyle in plates (a) and (b), and smile in plate (c).
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rectangular ones in the 1990s; or the windows, initially small, are enlarged
over time. Note that the model learns to generate such changes without
annotated part correspondence in the training data or seeing a specific object
instance evolve over time in training. Please note also that such translation
with a continuously changing attribute (here the time variable) would not
be possible using the standard CycleGAN approach [Zhu et al., 2017].

Analyzing trends over time. An analysis of appearing, evolving and
disappearing parts can be performed by looking at the differences between
the images generated at the different time periods and the original input
image. This way we can highlight the most important differences for a
specific generated time period. Figure 6.9 shows such difference images for
several examples from the car dataset. Please note the consistent changes
over time. For example, the strong image differences (bright yellow color) at
the base of windows and windshields indicate the evolution of their size over
time, clearly showing the trend of having larger windows and windshields in
later time periods. This trend is consistently exhibited in the input dataset
on many different cars. Some elements are also characteristic for a specific
period. For example, the running board on the side of the car is often present
in the 1940s, but disappears (and hence is highlighted in bright yellow in the
difference images) in the later periods. The wheels and headlights are also
elements that have characteristic appearance at a specific time period and
are often highlighted in the difference images.

Similarly, figure 6.10 reveals the trends in hairstyle and facial expression
across time in women’s yearbook portraits. More examples of difference
images can be found on the project webpage [web].

Please note how the vocabulary of parts (wheels, headlights or windshields
for cars and hair, eyes or mouth for faces) as well as their correspondence
across different instances is learnt implicitly by our model from the unpaired
training data. The outcome is that the model is able to synthesize appearance
variation over time for a specific new input object instance despite changes
in viewpoint or specific new appearance of the input car. Note also that our
model enables pixel-level analysis of temporal trends by just comparing the
synthesized time-lapse image sequences.
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Chapter 7

Discussion

In this chapter, we summarize the contributions made in this thesis in
section 7.1 and present possible extensions of our work in secion 7.2.

7.1 Contributions of the thesis

In this thesis, we have developed models for temporal image translation and
used them for visual discovery.

In chapter 4, we have introduced a trainable bilinear factorization module
that allows us to isolate and transfer time dependent appearance variations.
We have articulated the close relation between our bilinear factorization
module and principal component analysis. We have compared the bilinear
module to other approaches such as the standard concatenation module.
Finally, we have shown how to implement the bilinear factorization module
in an efficient way to speed up the computation of the bilinear operation.

In chapter 5, we have introduced two different architectures to perform
temporal image translation. We have discussed the bottleneck auto-encoder
model, which reduces the size of the vector representing the image in order to
translate it to different time periods. We have discussed the different losses
including a separation loss that can be used to train this model. We have
also incorporated our bilinear module in an adversarial translation model to
perform temporal image translation.

In chapter 6, we have shown how we can apply our models for temporal
analysis of unpaired image collections. We have discussed how a combination
of a reconstruction loss and a classification loss were applied to evaluate the
different models. We have applied the bottleneck auto-encoder model to
translate simple images of faces and to find typical and atypical images in
the dataset. We have shown how the bilinear module performs in different
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architectures, and how it compares to the concatenation module. Finally,
we have shown how our models can be used to identify and highlight the
differences between time periods and how they can be used to create history-
lapse videos.

7.2 Future work

In this section we discuss different directions for future work. We first discuss
two direct extensions of our work: training the model with more time periods
or more factors of variation. We then discuss evaluation of translation models
and ideas for that could be applied to our models.

7.2.1 Training the translation model with more time periods

We trained the bottleneck auto-encoder with a bilinear module using the
whole cars dataset, representing time with a continuous variable. We expe-
rienced difficulties doing the same with the domain adversarial translation
model, and stabilized the training by using three time periods only. With
more than 3 time periods, our current discriminator does not learn to dis-
tinguish between the periods, and hence does not provide a good domain
adversarial loss for the generator.

Below we discuss a possible change in the training loss in order to improve
the training of the discriminator in the domain adversarial translation model
and thus enable training the model for a larger number of time periods.
The model currently uses for the discriminator the square loss described in
equation (5.18), and similarly, the domain-adversarial loss for the generator
is the square loss as described in equation (5.17). Instead, one possibility
would be to replace the square loss of the discriminator by a cross-entropy
loss, as it is commonly used for classification. With a cross-entropy loss, a
single discriminator D could be used, which would take as input an image I
or a translated image M(I, y) and output a vector of dimension T + 1, where
T would be the number of time periods. The discriminator would be trained
to output the correct time period for images from the dataset and identify
translated images. The cross-entropy loss, replacing equation (5.18), would
be given by:

Ldom-disc(D) = −E
I

∑
1≤i≤T

[yIi log (D(I)i)] − β E
I,y

[log (D(M(I, y))0)] , (7.1)

where D is the discriminator, M the generator, M(I, y) the output of the
translation of image I to time y, yI ∈ RT the one hot vector corresponding
to the time period of image I, and β a hyper-parameter weighting the
importance of images translated by M and images from the datasets to
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train the discriminator. Please note that the first term in equation (7.1) is
encouraging the discriminator to classify the time period of real images, while
the second term encourages the discriminator to identify images translated
with the model M . As the cross-entropy loss is commonly used to train
classifiers, it may help for training the discriminator which we found difficult
to train when using many time periods. Similarly, the domain-adversarial
loss would also change to the cross-entropy loss:

Ldom-adv(M) = E
I,y

∑
1≤i≤T

[yIi log (D(I)i)] . (7.2)

The translation model would try to output images that the discriminator
classifies as the target time period.

7.2.2 Multiple factors of variation

In this thesis we have focused on the evolution of images through time and
introduced a trainable bilinear module to model relations between time,
annotated in the datasets we use, and other factors of variations. A possible
extension is to introduce other annotated factors of variation. For example,
how do building facades vary with time across different locations? The
bilinear module can be extended to a multilinear module, with multiplicative
interactions between the different factors. This task would be challenging
because the size of the parameter tensor would require the computation to
be efficient in both memory and speed.

7.2.3 Metrics for quantitative evaluation

In section 6.1, we have discussed metrics to evaluate our models for image
translation and proposed to use a combination of a classification loss to check
if the image was correctly translated and a reconstruction loss to evaluate
if identity can be preserved when the model does not perform translation.
These metrics are imperfect as they do not evaluate if the identity is preserved
when the model performs translation. Other approaches for evaluation can
be considered.

A possible approach is to test our methods on a dataset for which other
metrics are available. In [Dosovitskiy et al., 2016], images of cars and chairs
are rendered from 3D models. They evaluate their methods of translating
from one viewpoint to another by comparing their translations with the
ground truth renders that are available for different views of the same object.
The advantage of this method is that we could use a square loss to compare
directly the translated image with our methods and a generated image of
what the object looks like with a different attribute that serves as ground
truth. While this metric can only be used on generated datasets, it would
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allow us a direct evaluation what we want to achieve with our translation
model. However, the square loss on pixels is not a direct metric for how
humans evaluate proximity between images.

Another possible approach is to use human evaulators. Human perceptual
studies have been used to assess the visual quality of generated or translated
images. For example, in [Isola et al., 2017], Amazon Mechanical Turk (AMT)
participants are asked to discern generated images from real images. In [Choi
et al., 2018], AMT participants rank images from different methods for
transferring attributes such as the hair color or the gender to images of faces.
Similarly, human perceptual studies would help us evaluate and compare
the different methods we discuss for temporal image translation. To achieve
this, a possible solution would to ask annotators to rank translations of the
same image at the same time period by different models, ranking best the
translations that convincingly change the time period of the image while
preserving its identity. It would also be possible to evaluate the quality of
the image by presenting to participants sets of two images of the time pe-
riod, one translated and one from the dataset, and ask them to identify them.
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ABSTRACT 

 

This thesis proposes an approach for analyzing unpaired visual data annotated with time 

stamps by generating how images would have looked like if they were from different 

times. To isolate and transfer time dependent appearance variations, we introduce a new 

trainable bilinear factor separation module. We analyze its relation to classical factored 

representations and concatenation-based auto-encoders. We demonstrate this new 

module has clear advantages compared to standard concatenation when used in a 

bottleneck encoder-decoder convolutional neural network architecture. We also show that 

it can be inserted in a recent adversarial image translation architecture, enabling the 

image transformation to multiple different target time periods using a single network. 

MOTS CLÉS 

 

Apprentissage, Découverte Visuelle, Vision par Ordinateur 

RÉSUMÉ 

 

L'objectif de cette thèse est de développer des outils pour analyser les collections d'images 

temporelles afin d'identifier et de mettre en évidence les tendances visuelles à travers le temps. 

Cette thèse propose une approche pour l'analyse de données visuelles non appariées annotées 

avec le temps en générant à quoi auraient ressemblé les images si elles avaient été d'époques 

différentes. Pour isoler et transférer les variations d'apparence dépendantes du temps, nous 

introduisons un nouveau module bilinéaire de séparation de facteurs qui peut être entraîné. Nous 

analysons sa relation avec les représentations factorisées classiques et les auto-encodeurs 

basés sur la concaténation. Nous montrons que ce nouveau module présente des avantages par 

rapport à un module standard de concaténation lorsqu'il est utilisé dans une architecture de 

réseau de neurones convolutionnel encodeur-décodeur à goulot. Nous montrons également qu'il 

peut être inséré dans une architecture récente de traduction d'images à adversaire, permettant la 

transformation d'images à différentes périodes de temps cibles en utilisant un seul réseau. 
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Machine Learning, Computer Vision, Visual Discovery 
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