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Abstract

DESIGN OF DATA DRIVEN DECISION SUPPORT SYSTEMS FOR THE

EARLY DETECTION OF SUBJECTS AT RISK TO DEVELOP ALZHEIMER’S

DISEASE

by Manon ANSART

The goal of this thesis is to design data-driven methods to identify subjects at risk

to develop Alzheimer’s disease. As it is a progressive disease, subtle signs can

appear several years before the first clinical symptoms. Identifying subjects who

show these signs, and who are likely to develop the disease in the coming years, is

a crucial point that could allow researchers to better study the disease mechanism,

select patients for clinical trials and tailor patient care.

In the first chapter, we conduct a review of methods predicting the future diag-

nosis of subjects suffering from mild cognitive impairment. We quantitatively and

qualitatively study these methods, and take a critical view point by identifying se-

veral methodological issues. In the second chapter, we propose our own method

to predict the future diagnosis by using a two-step approach : we first predict the

future subject characteristics, and then use this result to predict the corresponding

diagnosis. In the third chapter, we propose an automatic method to select subjects

with a positive biomarker for clinical trials, so as to minimize the recruitment cost.

In the last chapter, we analyze prescription patterns before and after diagnosis

using a medical record database. We use them to predict if a patient will develop

Alzheimer’s disease in the next five or ten years.

Across these works, we show the importance to take into account the adoption

of these methods and the settings in which they can be used, especially regarding

the test cohort, the data types and the interpretability of the method.
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Résumé

CREATION DE SYSTEMES D’AIDE A LA DECISION POUR LA

DETECTION PRECOCE DE SUJETS A RISQUE DE DEVELOPPER LA

MALADIE D’ALZHEIMER

by Manon ANSART

Le but de cette thèse est de proposer des méthodes d’apprentissage automatique

pour identifier des sujets à risque de développer la maladie d’Alzheimer. L’identi-

fication à un stade très précoce de sujets à risque de développer la maladie est une

problématique clé, qui permettrait de mieux étudier la maladie, de sélectionner

des patients pour des essais cliniques et de leur proposer un suivi adapté.

Dans un premier chapitre, nous effectuons une revue des méthodes prédisant

le diagnostic futur de sujets atteints de troubles cognitifs légers. Nous effectuons

un travail de synthèse, à la fois qualitatif et quantitatif, des méthodes proposées

pour effectuer cette prédiction et des problèmes méthodologiques qu’elles com-

portent. Dans un deuxième chapitre, nous proposons d’effectuer cette prédiction

du futur diagnostic avec une approche en deux temps : nous prédisons d’abord

l’évolution des caractéristiques des sujets, et utilisons ces résultats pour prédire le

diagnostic correspondant à un stade ultérieur. Dans un troisième chapitre, nous

proposons une méthode automatique permettant de repérer des sujets à biomar-

queurs positifs pour les essais cliniques, de manière à minimiser le coût de re-

crutement. Dans un dernier chapitre, nous analysons l’évolution des prescriptions

de médicaments avant et après le diagnostic grâce à des bases d’historiques mé-

dicaux. Nous les utilisons pour prédire si un patient va développer la maladie

d’Alzheimer dans les 5 ou 10 années à venir.

Nous mettons en avant l’importance de prendre en compte l’adoption des mé-

thodes et leur cadre d’utilisation, notamment à travers la cohorte d’étude, les types

de données, et l’interprétabilité de la méthode.
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Introduction

Context

With an estimated 46.8 million people living with dementia in 2015 according

to PRINCE, WIMO et al. (2015), this condition is becoming a global health issue.

As the global population is aging, this number is expected to increase, with 9.9

million new cases each year. These rising numbers result in an important econo-

mic burden on our health care systems, representing up to 1.09% of global GDP.

Alzheimer’s Disease (AD), which is responsible for 60 to 80% of dementia cases

(What is Alzheimer’s? 2019), is the sixth leading cause of death in the United States

according to the National Institute of Health.

Dementia is often diagnosed late in the disease process, and a large number of

cases remain undiagnosed : according to the World Alzheimer Report of 2011, only

20 to 50% of dementia cases are diagnosed in high-income countries, and even fe-

wer in low-income countries (PRINCE, BRYCE et FERRI, 2011). The identification of

individuals who are the most at risk to develop AD is essential for the implementa-

tion of early therapeutic interventions and prevention measures. It allows patients

with dementia to plan ahead their future care when they still can, and to get early

treatment to stabilize their cognition and delay the onset of the symptoms. Iden-

tifying patients at the beginning of the disease course can also help research on

dementia, by allowing the study of the disease mechanisms over larger and earlier

time periods than today.

Several therapeutic hypotheses are currently tested regarding AD, however

many of the recent clinical trials did not lead to satisfactory results. An hypothesis

regarding these failures is that treatments are tested to late in the disease process,

when cognitive damage has already occurred and cannot be reversed. The focus is

therefore now shifting to earlier stages of the disease. Early identification of at risk

subjects, as well as the identification of different groups of subject having a similar

profile, can help select patients for these clinical trials. If treatments targeting pre-

symptomatic or early symptomatic stages of AD proved to be effective, such tools

could be used to identify the patients that could benefit from these treatments.

Machine learning is a branch of statistics that relies on the use of algorithms

to identify patterns in a data set, and exploit these patterns to make prediction
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regarding new data points. Machine learning methods can therefore be used to

either model the typical evolution of the disease, or to make predictions regarding

specific individuals, in order to select of at-risk patients and to predict their evolu-

tion. It represents a great opportunity to make predictions that are tailored to each

patient, thus paving the way for precision medicine.

In this thesis, we propose to apply machine learning techniques to build deci-

sion support systems for selecting individuals who are at risk of developing Alz-

heimer’s disease, in both research and clinical settings.

Alzheimer’s Disease

Alzheimer’s disease is a progressive disease, with early signs that can be ob-

served decades before diagnosis. The process leading to cognitive impairment and

the ordering of biomarker changes has been notably hypothesized by JACK, KNOP-

MAN et al. (2010).

AD is defined by the presence of abnormal protein deposits of two types. First,

the abnormal processing of the amyloid precursor protein leads to an aggregation

of amyloid proteins, forming amyloid plaques in the brain. Second, hyperphos-

phorylated tau proteins form neurofibrillary tangles inside neurons. The presence

of these two lesions is what defines AD neuropathologically and distinguishes it

from other neurodegenerative diseases (JACK, BENNETT et al., 2018). The concen-

tration of these two proteins can be measured in the cerebrospinal fluid (CSF).

Amyloid concentration in the CSF decreases and tau/phosphorylated tau concen-

trations increase as their brain deposit increases. Amyloid plaques can also be

visualized using positron emission tomography (PET) imaging, with Pittsburgh

Compound B (PiB) or fluorine-18 (F-18) tracers (e.g. florbetapir and florbetaben).

Research regarding the development of such tracers for tau imaging is currently

ongoing. Tracers for tau imaging are now coming to the market.

The second biomarker change that can be expected in AD is a change in brain

metabolism, measured using 18F 2-fluoro-2-deoxy-D-glucose (FDG) PET imaging.

These changes are followed by changes in brain structure, including brain atro-

phy, which are measured using structural MRI. Cognitive impairment is suppo-

sed to appear last, and is measured using cognitive and functional assessments,

such as the Alzheimer’s disease assessment scale cognitive sub-scale (ADASCog),

the mini-mental state examination (MMSE), or the clinical dementia rating scale

(CDR).

Studying these various biomarkers can help understand the disease and diag-

nose it. Machine learning techniques allow the identification of very early and
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subtle changes, and can be used to detect small changes in brain images or cog-

nitive assessments that are associated with the future onset of the disease. They

can be used to estimate the current clinical status of an individual, and to predict

how it is likely to evolve : individuals suffering from a Mild Cognitive Impairment

(MCI) can evolve to be diagnosed with AD (MCI individuals progressing to AD,

or MCIp) or not (MCI stable individuals, or MCIs), and identifying those who will

can be especially useful for early diagnosis purposes.

Data sets

In order to facilitate the study of AD, the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study was created in 2004. This longitudinal, multicenter Ame-

rican study is still ongoing. Individuals are followed every 6 months to every

year, and for each visit, a diagnosis (CN, MCI or AD) is given based on memory

complaint and cognitive impairment. The study provides cognitive assessments,

structural and functional imaging, amyloid and FDG PET scans and CSF measure-

ments as well as genetic and socio-demographic information, for 1900 individuals

to date. This data set is widely used in AD research, and has played an important

role in the creation of a large number of automatic methods.

Data bases created for research purposes provide intensive tests, performed on

on a large number of visits in a short period of time. They are ideal for training mo-

dels, however they do not reflect the daily clinical practice. On the other hand, da-

tabases of medical records better reflect the current clinical practice, and the asso-

ciated challenges : patients undergo fewer tests, they are not necessarily observed

as frequently, and medical imaging is performed only on targeted patients with

cognitive impairments. Cegedim, for example, gathers data from patients follo-

wed by general practitioners and specialists all over France. Such electronic health

record data bases represent a good opportunity for the development of automatic

methods that aim at being integrated in the clinical workflow.

Related work

Automatic diagnosis

A large number of existing articles using machine learning for AD pertains to

automatic diagnosis : predicting the current clinical status of an individual, thus

distinguishing cognitively normal (CN) subjects, MCI subjects and AD subjects,

mostly based on imaging features. As cognitive measurements are often used to

establish the diagnosis, they are not included as inputs in these methods.
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A large number of methods work on features extracted from MRI. We observe

three main types of feature extraction for studying structural changes : creation

of density maps of white matter (WM), grey matter (GM), and cerebrospinal fluid

(CSF) ; study of the cortical surface and its thickness ; usage of pre-defined brain

regions (RATHORE et al., 2017). CUINGNET et al. (2011) compared the results ob-

tained using density maps, cortical thickness and hippocampus volume or shape,

and found that for the classification of AD versus CN, the two whole brain me-

thods perform well, whereas using the hippocampus yields a lower performance.

Other methods focus on the use of FDG-PET, such as K. R. GRAY et al. (2012),

which reaches an accuracy of 88 % for distinguishing between AD and CN sub-

jects. Lastly, the combination of different modalities which can complement each

other have been the focus of different methods, such as KIM et LEE (2018), which

combines MRI, FDG-PET and CSF measurements.

Several reviews of the automatic diagnosis of AD have been proposed. HAL-

LER, LOVBLAD et GIANNAKOPOULOS (2011) focuses on methods performing au-

tomatic diagnosis using MRI features, and discuss the difference between classi-

fication methods, which perform a prediction for each individual, and the study

of group differences. FALAHATI, WESTMAN et SIMMONS (2014) studies methods

performing automatic diagnosis based on MRI features, but also PET imaging and

CSF measurements, and present the main types of imaging feature extraction used

in these methods. RATHORE et al. (2017) propose a review of methods based on

neuroimaging, as does SARICA, CERASA et QUATTRONE (2017), with a focus on

random forest classifiers. Lastly, ARBABSHIRANI et al. (2017) reviews methods per-

forming individual prediction based on neuroimaging for a range of brain disor-

ders, and offers a broader view of the opportunities these methods offer, as well as

the issues they raise.

The performance of such methods is very high, but one could question their

use as a decision support system in clinical practice. They aim at reproducing a

diagnosis made by a clinician, which can be easily obtained. An interesting use

of these methods lies in their interpretation. They show that the input modali-

ties contain information that allows to distinguish almost perfectly AD and CN

individuals, showing that the metabolic or structural changes induces by AD are

important. Method offering a visualization of the parts of the image which are

involved in the prediction are useful to identify the brain regions are the most im-

pacted. LEANDROU et al. (2018) gives a complete overview of such methods and

their main findings.
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Prediction of future diagnosis

If predicting the clinical status that would be given by a clinician at the cur-

rent time point is not an interesting task for a clinical decision support system,

predicting the future diagnosis that could be given to a patient can be useful. In

particular, identify the MCI subjects would are likely to develop AD in the future is

an interesting task, and a large number of automatic methods have been proposed.

Some of the proposed methods, especially early on, are extensions of methods

that have been trained at distinguishing AD individuals from CN individuals, and

that are then applied to MCI individuals. MCI patients that are labeled as CN by

the classifiers are expected to stay MCI, whereas those who are labeled as AD

are expected to be diagnosed with AD later on (NHO et al., 2010 ; CHINCARINI et

al., 2011 ; DAVATZIKOS et al., 2011 ; CUI et al., 2011 ; WESTMAN, MUEHLBOECK et

SIMMONS, 2012 ; DUKART, SAMBATARO et BERTOLINO, 2015 ; RETICO et al., 2015 ;

JUNWEI DING et QIU HUANG, 2017 ; CHOI et JIN, 2018). As for automatic diag-

nosis, a large number of previous methods have focused on the use of neuroima-

ging, and on MRI in particular. Several methods focus solely on MRI features, that

can be voxel based (BEHESHTI, DEMIREL et MATSUDA, 2017 ; TONG et al., 2017 ;

SABUNCU, 2013 ; YE, POHL et DAVATZIKOS, 2011) or region based, on the whole

brain (MINHAS et al., 2018 ; RETICO et al., 2015 ; RAAMANA et al., 2015 ; WEST-

MAN, AGUILAR et al., 2013) or specific regions (KAUPPI et al., 2018 ; ARDEKANI et

al., 2017 ; TANPITUKPONGSE et al., 2017 ; HALL et al., 2015 ; ESKILDSEN et al., 2015 ;

CHINCARINI et al., 2011). CUINGNET et al. (2011) compares the performance of

these types of features to predict the evolution of MCI at 18 months, but shows that

the performance is not better than chance. GÓMEZ-SANCHO, TOHKA et GÓMEZ-

VERDEJO (2018) shows that for prediction at 3 years, regional features across the

brain perform better than voxel features or using the hippocampus only, although

the difference is not significant.

Other methods use neuroimaging more broadly, and integrate features of va-

rious modalities (VIVAR et al., 2018 ; SI, YAKUSHEV et J. LI, 2017 ; JUNWEI DING et

QIU HUANG, 2017 ; OTA et al., 2015 ; DUKART, SAMBATARO et BERTOLINO, 2015 ;

SAMPER-GONZALEZ et al., 2019). These approaches may include the current cog-

nitive assessments to predict the future diagnosis. They result in general in an

increased performance (MINHAS et al., 2018 ; KAUPPI et al., 2018 ; ARDEKANI et

al., 2017 ; TONG et al., 2017 ; MUBEEN et al., 2017 ; KOROLEV et al., 2016 ; LEI et al.,

2016 ; SHAFFER et al., 2013).

Another point that differentiates the methods proposed to automatically pre-

dict the evolution of MCI is the choice of temporal horizon. Several methods dis-

tinguish MCIs from MCIp individuals with no fixed time to prediction, so for each
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individual the considered time interval can be different (VECCHIO et al., 2018 ; LEI

et al., 2016 ; HALL et al., 2015 ; DOYLE et al., 2014). Other methods make predictions

at a specific time interval, ranging from 6 months to several years.

Contributions

Several automatic methods have been proposed to predict the evolution of the

clinical status of subjects with a mild cognitive impairment. These methods vary

greatly in terms of feature types, algorithm and test data set. We identified several

reviews regarding the use of machine learning in Azheimer’s disease, but none

of them focused specifically on the progression of MCI subjects to AD, and they

do not provide a quantitative comparison of these articles. We propose a syste-

matic and quantitative review of these methods : we study 172 articles, and for

each one we take note of 36 key elements regarding the method, the input fea-

tures and the test framework in order to compare them. We thus identify current

trends in the domain, and study the impact of various methodological elements on

the performance of the methods. We also study the usability of such methods as

decision-support systems in clinical practice, and recommend several key-points

that should be taken into accounts when building such systems.

Secondly, we propose our own method to predict the evolution on mild cogni-

tive impairment and test it on the ADNI cohort. We propose a method composed

of two parts : in a first part, we predict the evolution of cognitive scores, using pre-

vious measures of cognition, sub-cortical brain volumes and socio-demographic

information. In a second part, we use this estimation of future patient state to pre-

dict the corresponding clinical status. We believe that this two-part prediction is

easier to interpret for clinicians, is thus more likely to be adopted in clinical prac-

tice. In order to ensure our prediction is as accurate as possible, we study the im-

pact of including additional features and longitudinal information.

Thirdly, we propose a tool to help select subjects for clinical trials at a lower

cost. As amyloid deposit is one of the first signs of AD, a dominant hypothesis

is that the formation of amyloid plaques triggers the cascade of events leading to

AD. Several potential AD treatments thus target this protein, with the hope that

clearing it or stopping its formation would stop this cascade. Clinical trials testing

such treatments require to form a cohort of individuals for whom amyloid deposit

has already started but who don’t have any cognitive impairment yet, in order to

target the earliest stages of the disease. We thus propose an automatic method to

identify a group of individuals at risk of having these plaques based on specific

signatures in cognitive and/or imaging data, thus leaving confirmatory PET scans

or lumbar puncture for a smaller set of individuals. We believe that this tool, by
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lowering the cost of recruitment of amyloid targeting clinical trials, could make

the creation of such trials easier and hence facilitate therapeutic research.

Most of the articles using machine learning for identification of patients at risk

of developing AD do so using research cohorts, which do not reflect the complexity

of clinical practice. In a last study, we propose to use clinical data in order to build

a decision support system which could be used in clinical routine. Using Cegedim,

a database of medical records from general practitioners in the French health care

system, we study the longitudinal evolution of treatment prescription of AD pa-

tients, and compare it to other cohorts of MCI or control subjects. We then build a

decision-support system to identify patient who will be diagnosed with AD in the

next 5 or 10 years based on their treatment history.
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Chapitre 1

Predicting the Progression of Mild

Cognitive Impairment Using

Machine Learning : A Systematic and

Quantitative Review

This chapter has been submitted to the Medical Image Analysis journal, as :

— Manon Ansart, Stéphane Epelbaum, Giulia Bassignana, Alexandre Bône,

Simona Botani, Tiziana Cattai, Raphaël Couronné, Johann Faouzi, Igor Ko-

val, Maxime Louis, Elina Thibeau-Sutre, Junhao Wen, Adam Wild, Ninon

Burgos, Didier Dormont, Olivier Colliot, Stanley Durrleman. “Predicting

the Progression of Mild Cognitive Impairment Using Machine Learning : A

Systematic and Quantitative Review.”

Abstract

Context Automatically predicting if a subject with Mild Cognitive Impairment

(MCI) is going to progress to Alzheimer’s disease (AD) dementia in the coming

years is a relevant question regarding clinical practice and trial inclusion alike. A

large number of articles have been published, with a wide range of algorithms,

input variables, data sets and experimental designs. It is unclear which of these

factors are determinant for the prediction, and affect the predictive performance

that can be expected in clinical practice. We performed a systematic review of stu-

dies focusing on the automatic prediction of the progression of MCI to AD demen-

tia. We systematically and statistically studied the influence of different factors on

predictive performance.
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Method The review included 172 articles, 93 of which were published after 2014.

234 experiments were extracted from these articles. For each of them, we repor-

ted the used data set, the feature types (defining 10 categories), the algorithm type

(defining 12 categories), performance and potential methodological issues. The im-

pact of the features and algorithm on the performance was evaluated using t-tests

on the coefficients of mixed effect linear regressions.

Results We found that using cognitive, fluorodeoxyglucose-positron emission

tomography or potentially electroencephalography and magnetoencephalography

variables significantly improves predictive performance compared to not inclu-

ding them (p=0.046, 0.009 and 0.003 respectively), whereas including T1 magnetic

resonance imaging, amyloid positron emission tomography or cerebrospinal fluid

AD biomarkers does not show a significant effect. On the other hand, the algorithm

used in the method does not have a significant impact on performance. We identi-

fied several methodological issues. Major issues, found in 23.5% of studies, include

the absence of a test set, or its use for feature selection or parameter tuning. Other

issues, found in 15.0% of studies, pertain to the usability of the method in clinical

practice. We also highlight that short-term predictions are likely not to be better

than predicting that subjects stay stable over time. Finally, we highlight possible

biases in publications that tend not to publish methods with poor performance on

large data sets, which may be censored as negative results.

Conclusion Using machine learning to predict MCI to AD dementia progression

is a promising and dynamic field. Among the most predictive modalities, cogni-

tive scores are the cheapest and less invasive, as compared to imaging. The good

performance they offer question the wide use of imaging for predicting diagnosis

evolution, and call for further exploring fine cognitive assessments. Issues iden-

tified in the studies highlight the importance of establishing good practices and

guidelines for the use of machine learning as a decision support system in clinical

practice.

1.1 Introduction

The early diagnosis of Alzheimer’s disease (AD) is crucial for patient care and

treatment. Machine learning algorithms have been used to perform automatic diag-

nosis and predict the current clinical status at an individual level, mainly in re-

search cohorts. Individuals suffering from mild cognitive impairment (MCI) are

however likely to have a change of clinical status in the coming years, and to be

diagnosed with AD or another form of dementia. Distinguishing between the MCI
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individuals that will remain MCI (MCI stable, or sMCI) from those who will pro-

gress to AD (pMCI) is an important task, that can allow for the early care and

treatment of pMCI patients. In this article, we will review methods that have been

proposed to automatically predict if an MCI patient will develop AD dementia

in the future by performing a careful reading of published articles, and compare

them through a quantitative analysis.

The application of machine learning to precision medicine is an emerging field,

at the cross roads of different disciplines, such as computer science, radiology or

neurology. Researchers working on the topic usually come from one field or the

other, and therefore do not have all the skills that are necessary to design methods

that would be efficient and following machine learning best practices, while being

understandable and useful to clinicians.

Reviews of the automatic prediction of the current clinical diagnosis in the

context of AD have already been published, but none specifically target the predic-

tion of progression from MCI to AD dementia. They focus on the use of magnetic

resonance imaging (MRI) (FALAHATI, WESTMAN et SIMMONS, 2014 ; LEANDROU

et al., 2018), or of neuroimaging data more broadly (RATHORE et al., 2017 ; ARBAB-

SHIRANI et al., 2017 ; HALLER, LOVBLAD et GIANNAKOPOULOS, 2011 ; SARICA,

CERASA et QUATTRONE, 2017). Several of them are systematic reviews such as AR-

BABSHIRANI et al. (2017) with 112 studies on AD, RATHORE et al. (2017) with 81

studies, FALAHATI, WESTMAN et SIMMONS (2014) with 50 studies and SARICA,

CERASA et QUATTRONE (2017) with 12 studies. They often gather the findings of

each individual article and compare them, but no quantitative analysis of perfor-

mance is proposed.

We propose here to perform a systematic and quantitative review of studies

predicting the evolution of clinical diagnosis in individuals with MCI. We will re-

port different quantitative and qualitative characteristics of the proposed method

such as the sample size, type of algorithm, reported accuracy, identification of pos-

sible issues. We will then analyze this data to identify the characteristics which im-

pact performance the most, and propose a list of recommendations to ensure that

the performance is well estimated, and that the algorithm would have the best

chance to be useful in clinical practice.

1.2 Materials and Method

1.2.1 Selection process

The query used to find the relevant articles was composed of 4 parts :



12

1. As we study the progression from MCI to AD, the words MCI and AD

should be present in the abstract ;

2. We removed the articles predicting only the current diagnosis by ensuring

the words “prediction” and “progression” or associated terms are present

in the abstract ;

3. A performance measure should be mentioned ;

4. A machine learning algorithm or classification related key-word should be

in the abstract. This fourth part ensures the selected articles make individual

predictions and reduces the presence of group analyzes.

The full query can be found in A.1. Running it on Scopus on the 13th of December

2018 resulted in 330 articles. The abstracts were read to remove irrelevant articles,

including studies of the progression of cognitively normal individuals to MCI,

automatic diagnosis methods, review articles and group analyses. After this selec-

tion 206 articles were identified. As this first selection was quite conservative, 34

additional articles were removed from the selection for similar reasons during the

reading process, leaving 172 studied articles. The selection process is described in

Figure A.1 in A.2.

1.2.2 Reading process

For each study, the number of individuals was first assessed and noted. Only

studies including more than 30 sMCI and 30 pMCI (111 articles) were then fully

read, as we consider that experience using less than 30 individuals cannot provide

robust estimates of performance. Articles with less than 30 individuals in each ca-

tegory were still considered when studying the evolution of the number of articles

with time, and of the number of individuals per article with time. The studies

including enough individuals were then analyzed by one of the 19 readers par-

ticipating in this review, and a global check was performed by one author (MA)

to ensure homogeneity. 36 items, of which a list is available in A.3, were reported

for each study, including the used features, the cohort, the method (time to predic-

tion, algorithm, feature selection, feature processing), the evaluation framework

and the performance measures, as well as identified biases in the method. When

several experiments were available in an article, they were all reported in the table.

A total of 234 experiments was thus studied.

1.2.3 Quality check

Several methodological issues were identified during the reading process. This

list of issues was not previously defined, it has been established as issues were
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encountered in the various studies. We identified the following list of issues :

— Lack of a test data set : use of the same data set for training and testing

the algorithm, without splitting the data set or using any kind of cross-

validation method. The performance computed this way is the training per-

formance, whereas a test performance, computed on a different set of indi-

viduals, is necessary to measure the performance that could be obtained on

any other data set (i.e. generalizability of the method) .

— Automatic feature selection performed on the whole data set. When a large

number of features is available, automatic feature selection can be perfor-

med in order to identify the most relevant features and use them as input.

A variety of automatic algorithms exist to do this. Some studies performed

this automatic feature selection on the whole data set, before splitting it into

a training and a test set or performing cross-validation. An example of this

issue is, first, using t-tests to identify features that best separate pMCI from

sMCI, using the whole data set, then splitting the data set into a training

and a test set, to respectively train the classification algorithm and evaluate

its performance. In this example, the individuals from the test set have been

used to perform the automatic feature selection and choose the most rele-

vant features. This is an issue, as individuals in the test set should be used

for performance evaluation only.

— Other data-leakage. More broadly, data leakage is the use of data from the

test set outside of performance evaluation. Using the test data set for pa-

rameter tuning, or for choosing the best data set out of a large number of

experiments, are two common examples of data leakage.

— Feature embedding performed on the whole data set. Feature embedding

(for example principal components analysis) transforms the input features

into a lower-dimension feature space. It is often used to reduce the input

dimension when many features are available, but it does not use the indi-

vidual labels (sMCI/pMCI) to do so, as feature selection often does. This

issue is therefore similar to performing feature selection on the whole data

set, except that only the features of the test individuals are used, and not

their labels.

— Use of the date of AD diagnosis to select the input visit of pMCI individuals.

An example of this issue is using the visit 3 years before progression to AD

for pMCI subjects, and the first available visit for sMCI subjects, to predict

the progression to AD at 3 years, even for testing the method. In this case,

the date of progression to AD of the individuals of the test set was used to

select the input visit, which is not possible in clinical practice, as the date of

progression is not known.
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Other methodological issues, not belonging to these categories, were also re-

ported, such as incompatibility between different reported measures. The articles

in which at least one of these issues was identified were not used when analyzing

the performance of the methods and the method characteristics impacting them.

1.2.4 Statistical analysis

We studied the impact of various method characteristics (input features, al-

gorithm...) on the performance of the classification task, separating sMCI form

pMCI individuals. Several experiments were reported for each article, so we had

to account for the dependency between experiments coming from the same ar-

ticle. In order to do so, we used linear mixed-effects models with a random effect

on the article, and tested if the considered characteristics had a significant impact

by performing a two-sided t-test on the corresponding regression coefficient. Only

the characteristics found in more than one article with an associated performance

measure were taken into account. Unless stated otherwise, the performance mea-

sure used for testing is the area under the receiver operating characteristic (ROC)

curve (AUC), experiments with no reported AUC were therefore not taken into ac-

count in these tests. When testing the impact of various characteristics at the same

time, conditionally to each other (e.g. among all input features, which ones have

an impact on the performance when taking the other features into account), we

performed a linear mixed effect regression with all these characteristics as input.

Concerning the input features, d being the number of features :

AUC = α1 ∗ f eature1 + ... + αd ∗ f eatured + β + βarticle (1.1)

When testing the impact of different characteristics independently (e.g. for each

algorithm, the effect of using this specific algorithm or any other), an individual

linear mixed effect regression was performed for each one separately :

AUC = αi ∗ algoi + β + βarticle (1.2)

for all i, i being the algorithm number.

In both cases, a two-sided t-test was performed on α to test the significance of

each coefficient. The p-values corrected for multiple comparisons were obtained

by using the Benjamini-Hochberg procedure.
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1.3 Descriptive analysis

1.3.1 A recent trend

We observe from Figure 1.1a that the number of articles published each year

on the prediction of the progression of MCI to AD dementia has been steadily

increasing since 2010.

Figure 1.1a also shows that the number of individuals used for the experiments

is increasing over time (p= 10−5). 84.6% of articles used data of the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study. Starting in 2004, this multicenter

longitudinal study provides multiple modalities for the early detection of AD. As

the recruitment of this largely used cohort is still ongoing, it is not surprising to see

the number of included individuals increasing over the years. Studies often select

individuals with a minimal follow-up time, of 3 years for example, and over the

years more and more MCI individuals from the ADNI cohort fulfill these criteria,

so more individuals can be included.

As shown in Figure 1.1b, the reported AUC are also increasing over time (p=

0.045), which can have multiple explanations. First, as new studies often com-

pare their performance with those of previous methods, they tend to be published

only when the obtained results seem competitive compared to previous ones. A

more optimistic interpretation would be that algorithms tend to improve, and that

newly available features might have a better predictive power. It has also been

shown (ANSART, EPELBAUM, GAGLIARDI, COLLIOT, DORMONT, DUBOIS et al.,

2019 ; DOMINGOS, 2012) that having a larger data set leads to a higher perfor-

mance, so there may be a link between the increase in data set size and the increase

in performance.

1.3.2 Features

T1 MRI, cognition and socio-demographic features are used in respectively

69.2%, 43.2% and 33.8% of experiments. On the other hand, fluorodeoxyglucose

(FDG) positron emission tomography (PET), APOE and cerebrospinal fluid (CSF)

AD biomarkers are used in 15 to 20% of experiments, and the other studied fea-

tures (white matter hyper-intensities, electroencephalography (EEG), magnetoen-

cephalography (MEG), PET amyloid, amyloid binary status without considering

the PET or CSF value, diffusion tensor imaging (DTI) and PET Tau) are used in

less than 10% of experiments. No study using functional MRI has been identified.

Studies using T1 MRI mainly use selected regions of interest (46.8%), whereas

34.7% use the whole brain, separated into regions of interest, and 18.5% use voxel
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can assume the phenomenon has been too recent to be visible just yet in the field.

Overall, even if the proportion of SVM has been decreasing until 2013, the field

has not been so prompt to use new algorithms as one could have expected.

1.3.4 Validation method

For evaluating their performance, 29.1 % of experiments use a 10-fold, and

12.8% use a k-fold with k different from 10. Leave-one individual out is also quite

popular, being used in 17.5% of cases. We noted that 7.3% of experiments were

trained and tested on the same individuals, and 7.3% train the method on a first

cohort and test it on a different one.

It should be kept in mind when comparing the performance of different stu-

dies that the cross-validation methods can impact the performance. Using a larger

training set and smaller test set is more favorable, hence the same method might

result in a better performance when evaluated using a leave-one out validation

than using a 10-fold validation, as shown in W. LIN et al. (2018). Bias and variance

also vary across validation methods (EFRON, 1983).

1.4 Performance analyses

1.4.1 Features

We measured the impact on the AUC of each feature compared to the others

by using a linear mixed-effect model including all features used in more than one

article. The results are presented in the first part of Table 1.1, and show that the

performance is significantly better when using cognition (p = 0.046), FDG PET

(p=0.009) or EEG and MEG (p=0.003).

We also considered the impact of using each feature alone compared to a com-

bination of them, by testing each feature independently using a linear mixed effect

regression. We only tested the impact of the features that were used alone (or in

combination with socio-demographic features) more than once with an associated

AUC, and that had been combined with other features more than once, that is T1

MRI, cognition, and FDG PET. It is significantly better to combine T1 MRI with

other features than to use it solely (p = 0.009, coefficient = 5.5). The effect is not si-

gnificant for cognition (p=0.19, coefficient=3.0) and FDG PET (p=0.38 , coefficient

= -6.1).

We distinguished between global neuro-psychological tests, domain-targeted

tests and newly proposed tests. We measured the impact of the type of test on

the AUC by performing independent regressions for each category. Experiences
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using a domain-specific test had a significantly greater AUC than those that did

not (p=0.023, coefficient = 5.0), whereas the effect was not significant for the other

two categories (p > 0.1). We tested the impact on the AUC of using longitudinal

data (repeated visits as input), and of combining images of different modalities,

and both were not significant (p > 0.2)

1.4.2 Cognition

Cognitive variables can be easily collected in clinical routine, at a low cost, and

they are proven to increase the performance of the methods, so their use should

be encouraged. This finding is consistent with comparisons performed in several

studies. MINHAS et al. (2018), KAUPPI et al. (2018), ARDEKANI et al. (2017), TONG

et al. (2017), GAVIDIA-BOVADILLA et al. (2017), MORADI et al. (2015), HALL et al.

(2015) et FLEISHER et al. (2008) showed that using cognition and T1 MRI perfor-

med better than using T1 MRI only. DUKART, SAMBATARO et BERTOLINO (2015),

CUI et al. (2011), THUNG et al. (2018) et Y. LI et al. (2018) showed that adding

cognition to other modalities also improved the results.

More surprisingly, we showed that using other modalities does not signifi-

cantly improve the results compared to using cognition only. Although FLEISHER

et al. (2008) shows that using T1 MRI in addition to cognition does not improve

the performance compared to using cognition only, several studies show the oppo-

site on various modalities (SAMPER-GONZALEZ et al., 2019 ; MORADI et al., 2015 ;

ARDEKANI et al., 2017 ; Y. LI et al., 2018 ; KAUPPI et al., 2018). However, when

taking all studies into account, it appears that the improvement one gains by in-

cluding other modalities along with cognitive variables is not significant. As the

cost of collecting cognitive variables compared to performing an MRI or a FDG

PET is quite low, the non-significant improvement in performance might not be

worth the cost and logistics of collecting data from other modalities specifically to

address this question. Methods focusing on cognition only, such as proposed by

JOHNSON et al. (2014), should therefore be further explored. Such methods should

include domain-specific cognitive scores, which have shown to increase the per-

formance.

1.4.3 Medical imaging and biomarkers

Imaging modalities are not as widely available as cognitive feature, but they

can represent a good opportunity to better understand the disease process by sho-

wing the changes that appear before the individuals progress to AD dementia.

Among the used imaging modalities, we showed that using FDG PET leads to a
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better performance. Similar observations have been made by SAMPER-GONZÁLEZ

et al. (2018). PET images could therefore represent a better alternative for the ima-

ging community than T1 MRI, which does not significantly improve the results

and should not be used alone as it leads to lower results. Changes in FDG PET ap-

pear earlier in the AD process than changes in structural MRI (JACK, KNOPMAN

et al., 2010), therefore these changes might already be visible in MCI individuals

several years before their progression to AD, which can explain why FDG PET is

more predictive of this progression.

No method using Tau PET has been identified in this review. This new modality

should also be affected early in the disease process, and could therefore represent

great hopes for the imaging community. However, surprisingly, Amyloid PET or

CSF value, which is also one of the earliest markers, did not have a significant

impact on the prediction performance.

The use of EEG or MEG had a significant impact on the performance. Howe-

ver, only six experiments use these features, it is therefore difficult to conclude if

this effect is real, and if it is not due to methodological issues that have not been

identified during the quality check.

1.4.4 Combination of different imaging modalities

Multimodality has been put forward in the reviews of AD classification (RA-

THORE et al., 2017 ; FALAHATI, WESTMAN et SIMMONS, 2014 ; ARBABSHIRANI et

al., 2017). As different imaging modalities correspond to various stages of the AD

process, combining them could give a more complete overview of each individual.

However, we did not find the impact of the use of multimodality to be significant.

This result is not surprising, as the most combined modalities are MRI and FDG

PET (19 out of 35 experiments using multimodality), and we showed that inclu-

ding other features does not lead to a significant increase in performance compa-

red to using FDG PET alone. In addition, the cost of collecting images of different

modalities for each patient is not small, and should not be neglected when using

such approaches.

1.4.5 Longitudinal data

In a similar manner, longitudinal data could give a better view of the evolution

of the patient, and hence be more predictive of the progression to AD than cross-

sectional data. Nonetheless, we did not find the use of longitudinal data to have

a significant effect on the performance. Similar findings are reported in AKSMAN

(2017) for the classification of AD and in SCHUSTER et al. (2015) for progressive

diseases in general.
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Feature or algorithm coeff. p-value
correc-

ted
p-value

number
of exp.

T1 MRI 2.217 0.22 0.38 103
Neuro-psychological tests 3.934 0.046 0.11 64
socio-demographic 0.652 0.83 0.83 59
APOE 4.612 0.092 0.18 35
FDG PET 6.768 0.0092 0.037 29
CSF 2.232 0.38 0.41 26
Others 3.12 0.28 0.4 18
EEG/MEG 16.573 0.0025 0.015 6
PET Amyloid 7.743 0.3 0.4 6
White matter hyper-intensities -5.18 0.36 0.41 5
SVM -4.8 0.061 0.24 35
Logistic regression 0.8 0.812 0.93 15
Random Forest 4.1 0.166 0.5 13
MKL -0.3 0.950 0.95 10
Other 0.8 0.851 0.93 7
Bayes 5.4 0.271 0.65 6
Linear regression -5.2 0.434 0.74 6
Neural network 10.1 0.010 0.06 6
OPLS -15.5 0.003 0.04 6
Survival analysis 2.0 0.810 0.93 6
Threshold 1.1 0.791 0.93 6
LDA -6.3 0.325 0.65 5

TABLE 1.1 – Impact of features and algorithm. Benjamini-Hochberg
procedure was applied to get corrected p-values. coeff. :coefficient,
such as defined in Equations 1.1 and 1.2 ; MRI : magnetic resonance
imaging ; APOE : Apolipoprotein E ; FDG : fluorodeoxyglucose ; PET :
positron emission tomography ; CSF : cerebrospinal fluid ; EEG : elec-
troencephalography ; MEG : magnetoencephalography ; LDA : linear
discriminant analysis ; MKL : multiple kernel learning ; OPLS : ortho-

gonal partial least square ; SVM : support vector machine
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1.4.6 Algorithms

We studied the impact of the algorithms on the AUC, by using an independent

linear mixed effect model on each algorithm. The results, presented in the second

part of Table 1.1, show that the orthogonal partial least square (OPLS) algorithm

performs significantly worse than others (p=0.003), whereas neural networks per-

form significantly better (p=0.01).

Only six experiments have been performed using each of these algorithms, so

an unidentified methodological issue in one of them could greatly impact these

results. As neural networks have a large number of parameters, which are often

tuned manually using the test error, we found that experiments using this algo-

rithm have high proportion of data leakage. This is consistent with the findings of

WEN et al. (2019), a literature review conducted on the use of deep learning for AD

classification. No conclusion regarding the impact of the classification algorithm

can therefore be drawn from our results, which might be explained by the variety

of algorithms, and hence the small sample size for each of them.

1.5 Design of the decision support system and metho-

dological issues

1.5.1 Identified issues

1.5.1.1 Lack or misuse of test data

The lack of a test data set is observed in 7.3% of experiments. In 16% of articles

using feature selection, it is performed on the whole data set, and 8% of articles do

not describe this step well enough to draw conclusions. Other data leakage (use of

the test set for decision making) is identified in 8% of experiments, and is unclear

for 4%.

Overall, 26.5% of articles use the test set in the training process, to train the

algorithm, choose the features or tune the parameters. This issue, and in particular

performing feature selection on the whole data set, has also been pointed out by

ARBABSHIRANI et al. (2017) in the context of brain disorder prediction.

1.5.1.2 Performance as a function of data set size

We plot the AUC against the number of individuals for each experiment in Fi-

gure 1.3, with the colored dots representing experiments with identified issues.

The colored dots show that there is a higher prevalence of studies with identi-

fied issues among high-performance studies : a methodological issue has been
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1.5.1.4 Use of the diagnosis date

In 5.6% of the experiments, the date of AD diagnosis is used to select the input

visit of pMCI individuals, for training and testing. As explained in section 1.2.3,

this practice can prevent the generalization of the method to the clinical practice,

as the progression date of test individuals is by definition unknown.

These type of experiments answer the question "may one detect some charac-

teristics in the data of a MCI patient 3 years before the diagnosis which, at the

same time, is rarely present in stable MCI subjects?". Which should not be confu-

sed with : "can such characteristics predict that a MCI patient will progress to AD

within the next 3 years". What misses to conclude about the predictive ability is

to consider the MCI subjects who have the found characteristics and count the

proportion of them who will not develop AD within 3 years.

This confusion typically occurred after the publication of DING et al. (2018).

The paper attracted a great attention from general media, including a post on Fox

News (WOOLLER, 2018), stating “Artificial intelligence can predict Alzheimer’s

6 years earlier than medics”. However, the authors state in the paper that “final

clinical diagnosis after all follow-up examinations was used as the ground truth

label”, thus without any control of the follow-up periods that vary across subjects.

Therefore, a patient may be considered as a true negative in this study, namely as a

true stable MCI subject, whereas this subject may have been followed for less than

6 years. There is no guarantee that this subject is not in fact a false negative for the

prediction of diagnosis at 6 years.

1.5.1.5 Choice of time-to-prediction

We find that 22.6% of experiments work on separating pMCI from sMCI, re-

gardless of their time to progression to dementia. We advise against this practice,

as the temporal horizon at which the individuals are likely to progress is an im-

portant information in clinical practice. Methods predicting the exact progression

dates, such as what is asked in the Tadpole challenge (MARINESCU et al., 2018),

should be favored over methods predicting the diagnosis at a given date.

The other experiments have set a specific time to prediction, often between 1

and 3 years, meaning that they intend to predict the diagnosis of the individual

at the end of this time interval. Figure 1.4 shows the evolution of the accuracy of

these methods tested on ADNI with respect to the time to prediction. The time to

prediction did not have a significant effect on AUC, accuracy, balanced accuracy,

specificity nor sensitivity. Figure 1.4 also shows the accuracy that one would get

on ADNI when using a constant prediction, that is predicting that all individuals

stay MCI at future time points. The accuracy of this constant prediction has been
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computed using the proportion of MCI remaining stable at each visit. We show

that most methods predicting the progression to AD within a short-term period

smaller of 3 years do not perform better than this constant prediction. We therefore

advise to use a time to prediction of at least 3 years, as for a shorter time interval

the proportion of MCI individuals progressing to AD is small, predicting that all

individuals remain stable therefore gives a better accuracy than most proposed

methods.

This fact also shows that the accuracy may be arbitrarily increased by using

a cohort with a large proportion of stable subjects. The algorithm may then yield

high accuracy by mimicking a constant predictor. This effect may be alleviated by

optimizing the balanced accuracy instead of the accuracy.

1.5.1.6 Problem formulation and data set choice

A common theme that arises from the previous issues is that the methods are

not always designed to be the most useful in clinical practice. It is for example true

of methods that do not use a specific time-to-prediction, or that use the date of AD

diagnosis to select the included visits.

More generally, we think the most useful decision support system should not

only focus on Alzheimer’s disease but perform differential diagnosis. Clinicians

do not usually need to distinguish between individuals who will develop AD and

individuals who will not develop any neurological disorder. They most likely need

help to determine which disorder an MCI individual is likely to develop. Unfortu-

nately, no widely available data set allows the development methods for differen-

tial diagnosis to date. Methods focusing on AD should therefore target individuals

who have already been identified as at risk of developing AD, by providing insight

on the date at which this conversion is likely to happen. Such methods could be

trained on MCI subjects that are at risk to develop Alzheimer’s disease, defined

for instance as the ones who have a MMSE of 27 or smaller and are amyloid posi-

tive. In addition to being closer to what can be expected in clinical practice, such

data sets of at risk subjects should include a larger proportion of pMCI, leading to

a better performance compared to the constant prediction. For example in ADNI,

71.6% of MCI subjects stay stable 2 years after inclusion, whereas this proportion

drops to 53.7% for MCI subjects who are amyloid positive and have a MMSE of 27

or lower.

The diagnosis of Alzheimer’s disease highly depends on the clinical practice,

and varies greatly across sites and countries (BEACH et al., 2012). Therefore, the

short-term prediction of progression to Alzheimer’s disease are unlikely to gene-

ralize well outside the well controlled environment of a research study. An interes-

ting alternative may be to predict the changes in the imaging or clinical biomarkers



1.6. Conclusion 27

in time rather the change in diagnosis, such as proposed by KOVAL, BÔNE et al.

(2018) and IDDI et al. (2019).

1.5.2 Proposed guidelines

In order to ensure that the proposed method is useful for clinical practice and

that the evaluated performance reflects what could be expected in real life, we

propose a list of attention points :

— Separate train and test data sets by using independent cohorts or, if not

available, cross-validation.

— No element of the test data set, both labels and features, should be used

except for performance evaluation.

— Always pre-register the time window within which one aims to predict

conversion to AD, or predict the date of progression.

— Use a large data set or pool different cohorts to obtain a large data set.

— Define a cohort that best reflects the future use of the method in clinical

practice. For instance, select subjects that will be considered as at risk of

developing the disease rather than all possible ADNI subjects.

— Systematically benchmark the method against the prediction that the sub-

jects will remain stable over time.

1.6 Conclusion

We conducted a systematic and quantitative review on the automatic predic-

tion of the evolution of clinical status of MCI individuals. We reported results from

234 experiments coming from 111 articles. We showed that studies using cognitive

variables or FDG PET reported significantly better results than studies that did

not. These modalities should be further explored, cognition because it can be ea-

sily collected in clinical routine, and FDG PET for the interest it might represent

for the imaging community and for increasing our understanding of the disease.

On the other hand, we showed that using solely T1 MRI yields a significantly lo-

wer performance, despite the great number of methods developed for this imaging

modality. These findings call into question the role of imaging, and more particu-

larly of MRI, for the prediction of the progression of MCI individuals to dementia.

It would therefore be interesting to shift our focus towards other modalities. More

specific cognitive tests could be created, and the impact of using digitized tests,

that can be frequently used at home by the patients themselves, should be studied.

We identified several key points that should be checked when creating a me-

thod which aims at being used as a clinical decision support. When possible, an
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independent test set should be used to evaluate the performance of the method,

otherwise a test set can be separated by carefully splitting the cohort. In any case,

the test individuals should not be used to make decisions regarding the method,

such as the selection of the features or parameter tuning. The time window in

which one aims at predicting the progression to AD should be pre-registered, as

the temporal horizon at which an individual is likely to progress to AD is a use-

ful information for clinicians. Alzheimer’s disease being a very slowly progres-

sive disease, algorithm performance should be systematically compared with the

prediction that no change will occur in the future. We have shown indeed that

the constant prediction may yield very high performance depending on the time

frame of the prediction and the composition of the cohort. Finally, the cohort on

which the method is tested should be carefully chosen and defined, so as to reflect

the future use in clinical practice as best as possible. At a time where one has great

expectation regarding the use of artificial intelligence to support the development

of precision medicine, it becomes urgent that the field of AD research adopts state-

of-the-art standards and good practices in machine learning.
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Chapitre 2

Prediction of future cognitive scores

and dementia onset in Mild Cognitive

Impairment patients

This chapter is in preparation for submission as a journal article. Results were

also published in two conference abstracts :

— Manon Ansart, Ninon Burgos, Olivier Colliot, Didier Dormont and Stan-

ley Durrleman. 2019. “Prediction of Future Cognitive Scores and Demen-

tia Onset in Mild Cognitive Impairment Patients.” In Annual Meeting of

the Organization for Human Brain Mapping – OHBM 2019. https://hal.

inria.fr/hal-02098427

— Manon Ansart, Igor Koval, Anne Bertrand, Didier Dormont, and Stanley

Durrleman. 2018. “Design of a Decision Support System for Predicting the

Progression of Alzheimer’s Disease.” Alzheimer’s & Dementia 14 (7) : P433.

https://doi.org/10.1016/j.jalz.2018.06.371.

2.1 Introduction

Alzheimer’s disease (AD) is characterized by changes in brain structure and

cognition that can be observed before AD diagnosis, in individuals with a Mild

Cognitive Impairment (MCI). Some MCI subjects progress to AD (progressing

MCI, or pMCI), whereas other individuals are diagnosed with other conditions or

keep an MCI clinical status (stable MCI subjects, or sMCI). Identifying MCI indivi-

duals who will develop AD is a crucial challenge, as it can impact patient care, and

allow the development of new therapeutic strategies targeting the earliest stages

of AD.

Several methods, described in Chapter 1 have been proposed to automatically

predict the future diagnosis of MCI subjects. A large number of methods focus
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on the use of T1 magnetic resonance imaging (T1 MRI), to identify patterns dif-

ferentiating pMCI from sMCI subjects (BEHESHTI, DEMIREL et MATSUDA, 2017 ;

MINHAS et al., 2018 ; KAUPPI et al., 2018). CUINGNET et al. (2011) and GÓMEZ-

SANCHO, TOHKA et GÓMEZ-VERDEJO (2018) study the effect of the choice of MRI

features on the prediction of MCI progression. Other methods focus on the use

of neuroimaging more broadly, by integrating features of different modality, in

particular 18F 2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography

(PET) (VIVAR et al., 2018 ; SAMPER-GONZALEZ et al., 2019), and others use cog-

nitive features as well (KAUPPI et al., 2018 ; MUBEEN et al., 2017 ; MORADI et al.,

2015). These methods rely on the use of machine learning algorithms, which are

trained on the input features to directly classify sMCI versus pMCI subjects. They

are often difficult to interpret, and we believe this black box effect has preven-

ted the adoption of these methods in clinical practice. We aim at answering this

need for interpretability, by proposing a method that first predicts the changes of

cognition of the subjects, and uses it to predict the corresponding diagnosis. This

method reduces the black box effect by giving an understanding of how the final

prediction is made, and provides a more comprehensive view of the future patient

state to the clinician.

Alzheimer’s disease is a slow progressive disease, with subtle short term changes.

Studying the changes visible in a subject over multiple visits can therefore be more

informative than looking at one time point only. Taking several visits into account

can however be challenging, as different subjects have a different follow-up du-

ration, and they can be observed at different time points. We propose several me-

thods for using more than on past visit for the prediction of MCI progression, and

compare the performance they yield with the performance one can obtain by using

one past visit only.

We have explained in Chapter 1 that it is important to pre-register the time

window in which one aims at prediction the progression to AD. Individuals who

are observed for a duration shorter than the defined time window and did not pro-

gress to AD should not be included, as they might still be diagnosed with AD in the

considered time window, after their last observation. Following this recommenda-

tion, we compare our different approaches on a one year prediction. Because we

also showed that prediction at more than 2 years is more relevant, we compare

prediction we obtain on a one year, two years and three years interval.

Comparing a prediction methods with others can be challenging, as different

methods are tested on different cohorts, varying in terms of design, number of sub-

jects, prediction time window and proportion of individuals progressing to AD.

The Tadpole challenge aims as proposing a common framework for prediction

evaluation. The participants were asked to predict the future diagnosis of ADNI3
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roll-over participants, with time to prediction ranging from several months to 1.5

years for the first results. We participated in this challenge and report here the per-

formance we obtained with our method, in order to compare it to other proposed

methods evaluated in the same settings.

2.2 Materials and methods

2.2.1 Cross-sectional framework

2.2.1.1 Description

We propose a method composed of two steps (Figure 2.1). In a first step, we

predict the future of cognitive scores (Alzheimer’s disease assessment scale cog-

nitive sub-scale (ADASCog), Mini-mental state examination (MMSE), Rey audi-

tory verbal learning test (RAVLT) and Clinical dementia rating (CDR)) at time t

+ ∆t using MRI extracted volumes (whole brain, entorhinal, fusiform, mid tempo-

ral, ventricles and hippocampus volumes), socio-demographic information, APOE

genotype and the cognitive scores at time t. This prediction is performed using a

Ridge regression (HOERL et KENNARD, 1970), and is trained on the MCI subjects

for which 2 visits separated by a ∆t interval are available, such that the first visit is

associated with a MCI diagnosis. When several pairs of visits are available for one

subject, the last pair of visits is used, so as to have as much past visits available

as possible for the longitudinal methods. To perform the prediction on test MCI

subjects, the last available visit is used.

In a second step, we use the features predicted in the first step to estimate the

diagnosis at the same time point (t + ∆t). This prediction is performed using a

Gaussian kernel Support Vector Machine (SVM), which is trained on all the avai-

lable visits of MCI training subjects and AD subjects.

2.2.1.2 Inclusion of additional features

We consider different approaches to improve this prediction pipeline. We first

consider using more input features : FDG PET SUVr and detailed MRI features

(regional cortical thickness and white matter volumes). As changes in FDG PET

and in MRI should appear before changes in cognition, these additional features

could provide early markers of the state of the patients and hence improve the

prediction of cognition evolution.

We also consider learning the regression on different groups, depending on the

age (< 65 years old and > 65 years old), the amyloid status or the APOE genotype.
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years with a step of 6 months. In an ideal setting, the optimal combination of the

predictions made using the each past visit would be automatically performed. It

would however imply to use the same number of visits for each subjects. We the-

refore choose to use a simple average as it allows for the combination of a different

number of prediction for each subject, and to hence use all available past visits.

2.2.2.2 Temporal regression and stacking

In a second approach, we perform a time linear regression to predict the next

time point of each cognitive score. The next time point is thus predicted using all

the previous time points of the given subject, as one linear regression is trained for

each subject, hence allowing the inclusion of a different number of past visits in

each one. This prediction of the cognitive scores is then combined with the predic-

tion performed in the cross-sectional framework by stacking them in one feature

vector, and this vector is then used to predict the corresponding diagnosis. This

approach is referred to as the stacking approach, and is described in Figure 2.1 B.

(b).

2.2.2.3 Rate of change approach

In a third approach, we compute the rate of change of all the input features

between the two last visits. The prediction of the next time point is then performed

using the input features and their rate of change, using a ridge regression. The

diagnosis prediction is performed as described in the cross-sectional framework.

This approach, referred to as the rate of change approach, is described in Figure

2.1 B. (c).

2.2.3 Experimental setup

2.2.3.1 Data set

We evaluate our method on the MCI patients of the ADNI database. We com-

pare the different approaches on a 1 year prediction, using for each subject the

latest pair of visits separated by a 1 year interval, so as to have as many past visit

available as possible for the longitudinal approaches. Our data set contains 411

subjects with such a pair and a MCI diagnosis before the latest visit. We define

sMCI subjects as subjects who remain stable at one year (354 subjects, 86.1%), and

pMCI subjects as subjects who progress to AD at 1 year (57 subjects, 13.9%).

In order to increase the number of visits with an associated AD diagnosis, 316

AD subjects from the ADNI study are also included in the training set of the pre-

diction of the diagnosis from the cognitive scores.
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We also evaluate the performance of the best approach on a prediction at a 2

year and 3 year interval, for which 354 and 219 MCI subjects are available respec-

tively, among whom 25.4% and 30.1% respectively progressed to AD.

2.2.3.2 Validation procedure

Performance measures are obtained by splitting the cohort 50 times into a trai-

ning (70%) and test (30%) set. The parameters of the ridge regression and SVM are

tuned within a nested 5-fold cross validation. As the cross-validation provides 50

performance measures for each method, the mean performance and its standard

deviation are computed. Two-tailed t-tests are used to compare method perfor-

mance. As a comparison with our method, we predict the diagnosis at time t+∆t

by using a linear SVM on the features at time t directly.

2.2.4 TADPOLE challenge

The TADPOLE challenge consists in the prediction of future clinical status,

ADASCog score and ventricle volume in rollover individuals in the ADNI study.

Participants were asked to make monthly predictions from January 2018 to De-

cember 2022. The previously described framework was designed to make predic-

tions 1 year after the last visit, and is easily extended to make predictions at a ∆t

interval. Several of such methods are trained in order to predict the future of the

cognitive scores at time points 6 months apart for each subject. Monthly predic-

tions of the cognitive scores are then obtained using linear interpolation, and the

monthly values are used as input for the classification. This extension allows to ob-

tain monthly predictions for each subject. The prediction of the ventricle volume

was performed using the same method as for cognitive score prediction.

The prediction of the diagnosis was evaluated using the multiclass area under

the receiver operating curve (mAUC), defined in HAND et TILL (2001).

2.3 Results

2.3.1 Cross-sectional framework

2.3.1.1 Proposed approach

Results are presented in Table 2.1 and the mean absolute errors (MAE) are

shown in Figure 2.2. The proposed cross-sectional approach results in an AUC

of 87.9 ±2.7, whereas direct classification gives an AUC of 86.6 ±2.2. Although

the proposed approach performs significantly better (p < 0.01) than direct classi-

fication, the difference is small. The interest of the method is not only to predict
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the diagnosis but also the value of the cognitive performance in the future. The

prediction of the MMSE yields an MAE of 1.51 ± 0.13 (on a scale of 30), and The

prediction of ADASCog yiels and MAE of 3.69 ± 0.28 (on a scale of 80).

2.3.1.2 Additional features

Additional features are included in an attempt to improve the prediction. As

change in FDG-PET and MRI appear before changes in cognition, one could ex-

pect that including these features would improve the prediction of the evolution

of cognitive scores. However, including FDG-PET in the features lead to a signifi-

cant decrease in AUC (86.7 ± 3.1, p < 0.05), and including detailed MRI features

lead to an non-significant increase in AUC (88.1 ± 2.8, p > 0.05). The significant

decrease in AUC induced by the inclusion of FDG-PET might be explained by the

reduction of the number of available subjects. As some subjects do not have an

FDG-PET value at the used time points, less subjects are including for training the

algorithm, which can lower its performance (DOMINGOS, 2012 ; ANSART, EPEL-

BAUM, GAGLIARDI, COLLIOT, DORMONT, DUBOIS et al., 2019).

2.3.1.3 Building regression groups

We build different regression groups, according to age, amyloid status or APOE

genotype. As subjects within these groups are more similar than in the whole

cohort, one may expect that they exhibit more similar progression patterns. In

this case, the regression would better fit each individual and the cognitive scores

would be better predicted. Building different regression groups however leads to

a non-significant decrease in AUC for all groups. This decrease in AUC may be ex-

plained by the reduction of the number of subjects available to train each regres-

sion. The decrease in performance due to a smaller data set seems to be greater

than the possible increase due to more homogeneous populations.

2.3.2 Longitudinal frameworks

2.3.2.1 Averaging approach

The averaging longitudinal approach uses all the past visit of each subjects by

averaging the predictions from the different visits. Although this approach takes

advantage of all the information available for each subjects, it leads to a signifi-

cantly lower AUC than the cross-sectional approach (83.3 ±3.9 (std), p < 10−9).

Long-term predictions are less precise than short-term ones (see subsection 2.3.3).

So the predictions from the earliest time-points may not add relevant information,

hence leading to a lower performance than the one obtained using the latest visit
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only. This effect might be reduced by affecting a different weight to the various

time points.

2.3.2.2 Stacking approach

Cross-sectional prediction coefficient Time regression coefficient

MMSE 0.93 (0.13) 0.09 (0.09)

ADASCog 0.80 (0.13) 0.19 (0.09)

CDR 0.63 (0.11) 0.42 (0.13)

RAVLT 0.89 (0.14) 0.09 (0.09)

TABLE 2.2 – Coefficients of the regression combining the cross-
sectional prediction and the time linear regression in the stacking ap-

proach. Data are mean (standard deviation).

The stacking approach combines the cross-sectional prediction of the cognitive

scores with a longitudinal one, performed using a time linear regression for each

subject. The two predictions are included in one feature vector which is used then

as input for the classification. As opposed to the averaging vector, the weight gi-

ven to longitudinal prediction and to the cross-sectional one is thus automatically

learned during the classification. This methods lead to an AUC of 87.6±3.3, which

is not significantly different from the cross-sectional approach (p > 0.5). As the pre-

diction of the cognitive score is better using the cross-sectional method than using

a time linear regression for each subject, the weight given to this second feature set

is low, as shown in Table 2.2, and the prediction using this method is close to the

prediction obtained using the cross-sectional method solely.

2.3.2.3 Rate of change approach

The rate of change approach combines the input features and their rate of

change in a larger feature vector, used as input to predict the evolution of the

cognitive scores. This longitudinal approach is the simplest one. It combines only

two time points, but using all the input features of all the subjects, as opposed to

the stacking approach in which the longitudinal prediction of the cognitive scores

is performed using only the past values of this cognitive score for the given sub-

ject. This approach yields an AUC of 87.8± 3.1, which is not significantly different

from the AUC of the cross-sectional framework (p > 0.05). As this simple approach
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does not result in any increase in performance, we can suppose that including lon-

gitudinal information does not lead to a better prediction of the future diagnosis

than using one past visit only. Similar conclusions can be drawn using the MAE.

2.3.3 Prediction at different temporal horizons

1 year 2 years 3 years

Number of individuals 480 354 219

% of MCIc 13.9 25.4 30.1

AUC 87.9 ± 2.7 87.9 ± 2.8 88.8 ± 4.3

bacc 77.1 ± 6.1 78.9 ± 4.4 78.0 ± 6.9

MMSE MAE 1.51 ± 0.13 1.87 ± 0.13 2.20 ± 0.18

ADAS MAE 3.69 ± 0.28 4.51 ± 0.34 5.38 ± 0.52

CDR MAE 5.20 ± 0.38 5.76 ± 0.36 6.16 ± 0.49

RAVLT MAE 0.77 ± 0.07 1.11 ± 0.09 1.42 ± 0.14

TABLE 2.3 – Performance of the cross-sectional approach for pre-
diction at 1 year, 2 years, 3 years, in terms of Mean Absolute Error
(MAE), Area Under the ROC curve (AUC) and balanced accuracy

(bacc).

As no other method outperforms the cross-sectional approach on the one year

prediction, this approach was used for prediction at other time intervals. Perfor-

mance of prediction at one year, 2 years and 3 years are presented in Table 2.3.

Compared to the 1-year prediction, the MAE of the prediction of the cognitive

score at 2 years and 3 years is significantly higher for all cognitive scores (p <

10−10). This result is not surprising, as predicting the change in cognition further

in time is more difficult. However, the AUC of the 2-year prediction is equal to

the AUC at one year, and the AUC at 3 years is better than at 1 year, although not

significantly (p > 0.1). This shows that even though predicting the cognitive scores

further in time is more difficult, the performance of the final prediction, based on

the predicted cognitive scores, is more robust. There is a range of of the cognitive

scores that is associated with the same diagnosis.

In order to compare our method with other approaches tested on the ADNI

data set, we use the review of automatic method for predicting the progression

of MCI presented in Chapter 1. We extracted the methods tested on the ADNI
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challenge, and because several predictions are made for each subject, the perfor-

mance cannot be easily compared with the one obtained on the prediction of MCI

progression.

Results obtained on the TADPOLE challenge are presented in Table 2.4. Our

approach resulted in an mAUC of 90.2% and a balanced accuracy of 82.7% for

diagnosis prediction, and in a MAE of 5.57 for ADASCog prediction and of 0.52 for

ventricle volume prediction. The winners of the competition achieved an MAUC

of 93.1%. Our overall rank was of 6 out of 52 participants, and first as a university

team.

mAUC bacc ADASCog MAE Ventricles MAE

Proposition 90.2 % 82.7 % 5.57 0.52

TABLE 2.4 – Results obtained on the TADPOLE challenge. mAUC :
multiclass area under the receiver operating curve ; bacc : balanced

accuracy ; MAE : mean absolute error.

2.4 Discussion

2.4.1 Cross-sectional experiments

Our results show that the number of individuals available for training is a key

factor influencing the performance. We can indeed hypothesize that this effect

leads to a lower performance when using FDG PET as it reduces the number of

individuals that can be used for training. It may also explain why forming more

homogeneous groups does not lead to an increase in performance. A decrease in

performance due to a decrease in data set size has already been reported in DO-

MINGOS (2012), as well as in our work on amyloidosis prediction (ANSART, EPEL-

BAUM, GAGLIARDI, COLLIOT, DORMONT, DUBOIS et al., 2019) and in our review

of automatic methods for predicting the evolution of MCI, presented in Chapter 1.

Including detailed MRI features did not lead to a significant increase in AUC.

We showed in the in Chapter 1 that including MRI features does not lead to a signi-

ficant increase in prediction of the progression of MCI patients. Simple but relevant

MRI features were already included in the baseline model (whole brain, entorhi-

nal, fusiform, midtemporal, ventricles and hippocampus volumes). Our results

show that more detailed features do not bring information that is useful to predict

MCI progression and that is not already available in the reduced set. Exploring
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methods performing automatic feature extraction on images, in end-to-end lear-

ning approaches or using auto-encoders, could allow to better identify relevant

information in the images themselves.

2.4.2 Longitudinal frameworks

None of the longitudinal frameworks lead to a performance significantly better

than the one obtained using longitudinal data. More sophisticated longitudinal

methods, such as proposed in KOVAL, ALLASSONNIÈRE et DURRLEMAN (2019),

could lead to a better use of longitudinal data. However, the fact that even the

inclusion of the rate of change in the inputs does not lead to an increase in AUC

tends to show that one time-point information is enough for this prediction. This

results meet conclusions made in AKSMAN (2017) for the classification of AD and

in SCHUSTER et al. (2015) for progressive diseases in general. Although this finding

can be disappointing from a methodological view point, from a clinical view point

it is rather positive. Methods based on longitudinal data require patients to be

followed for a certain period of time before a prediction can be made. In clinical

practice however, a immediate prediction, made as soon as the patient arrives, is

more valuable.

2.4.3 Interpretability

The main interest of the method we propose lies in the increase in interpreta-

bility : as the diagnosis prediction is made from the prediction of cognitive scores,

it is easier for the clinician to understand it, and have an overview of the future

patient state. As for longitudinal approaches, inclusion of additional features and

building of different regression groups did not lead to a significant increase in

AUC, our final method is simple, hence easy to use in clinical practice, and more

understandable for clinicians. Despite its simplicity, our method performed well

on the TADPOLE challenge, with a rank of 6 out of 52, and an MAUC close to the

winning one. It also performs well on the prediction at 2 and 3 years compared to

other proposed methods in the literature.

2.4.4 TADPOLE challenge

Comparison of prediction methods for the evolution of MCI can be a difficult

task, as such methods are often evaluated in different settings, on different data

sets, and with different goals. The main interest of a challenge such as TADPOLE

is to propose a common framework in which different prediction methods can be

compared. Data leakage and over-fitting of the test set is often not possible : in the
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TADPOLE challenge, participants had to predict data at future time points before

they were acquired.

An issue that should be mentioned when considering such challenges is their

transposition to the clinical practice. Performance is often the only factor conside-

red for participant ranking. Interpretability for clinicians, the cost and availability

of the input features are not taken into account, whereas they can greatly impact

the usability of the method in practice. Performance alone is not enough, and usa-

bility should be kept in mind when building prediction methods and challenges.

An effort has been made in this regard in the TADPOLE challenge. The partici-

pants had to predict the evolution of the ADASCog and ventricle volumes, which

can bring a better insight on the patient future evolution than a diagnosis category.

A separate ranking was also done for cross-sectional methods which are easier to

use in clinical routine. Finally, as opposed to previous challenges, participants had

to make monthly predictions, hence estimating a date of progression for MCI sub-

jects who are expected to progress to AD. This type of information is crucial for

clinicians, and is often left out of automatic prediction methods that separate sMCI

for pMCI at no specific temporal horizon.

The definition of the test data set can however be questioned. AD and CN sub-

jects were included, when there diagnosis is not expected to change much in the

short term. At the time of the first TADPOLE results, the time to prediction of

the subjects who were the most recently observed was of 6 months to 2 years. As

shown in section 2.3.3 and in Chapter 1, on such short term prediction the propor-

tion of MCI subjects remaining stable is quite high, predicting that all MCI subjects

remain stable can therefore lead to a good performance. This definition of the test

data set therefore favors conservative methods, prediction few changes in diagno-

sis.

Interpretability and usability are not always taken into account when deve-

loping automatic methods to predict MCI evolution. Despite the efforts made in

the TADPOLE challenge, or in methods such as ANTILA et al. (2013), the usage of

machine learning algorithms sometime leads to seeking higher and higher perfor-

mances, at the cost of a loss in usability. As the ultimate goal of such methods is to

be integrated in clinical routine in order to improve patient care, future research

would gain at ensuring the usability of automatic methods in clinical practice.

2.5 Conclusion

We proposed a method for predicting the future diagnosis of MCI subject by

first predicting their change in cognitive scores. This two-step prediction reduces
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the black-box effect of machine learning methods and is easier to interpret for cli-

nicians. It also provides a more complete view of future patient characteristics. The

prediction of the future cognitive scores can be used to perform patient clustering

and to extract a sub-group of patients with similar characteristics. It can also be

used to tailor patient care in a personalized approach. We evaluated our method

on 1, 2 and 3 year prediction, showing that predicting cognitive scores on the long

term is more difficult, but that diagnosis prediction stays robust. We also evaluated

our method on the Tadpole challenge, resulting in a competitive performance.

We compared several methodological options in this prediction framework. We

showed that using detailed MRI features did not improve the performance com-

pared to using simple ones, neither did including FDG PET features. Training the

regression on more homogeneous patients groups, created based on age, Apoe4

and amyloid status, did not increase the performance either. Finally, performing

the prediction based on several past visits for each individual did not improve

the performance compared to using one past visit only. Overall, we showed that

using more complex features, which can be less accessible in clinical practice, did

not lead to a better prediction than using the more simple settings.
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Chapitre 3

Reduction of Recruitment Costs in

Preclinical AD Trials : Validation of

Automatic Pre-Screening Algorithm

for Brain Amyloidosis
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3.1 Abstract

We propose a method for recruiting asymptomatic Amyloid positive indivi-

duals in clinical trials, using a two-step process. We first select during a pre-screening

phase a subset of individuals which are more likely to be amyloid positive based

on the automatic analysis of data acquired during routine clinical practice, before

doing a confirmatory PET-scan to these selected individuals only. This method

leads to an increased number of recruitments and to a reduced number of PET-

scans, resulting in a decrease in overall recruitment costs. We validate our method

on 3 different cohorts, and consider 5 different classification algorithms for the pre-

screening phase. We show that the best results are obtained using solely cognitive,

genetic and socio-demographic features, as the slight increased performance when

using MRI or longitudinal data is balanced by the cost increase they induce. We

show that the proposed method generalizes well when tested on an independent

cohort, and that the characteristics of the selected set of individuals are identical

to the characteristics of a population selected in a standard way. The proposed

approach shows how Machine Learning can be used effectively in practice to op-

timize recruitment costs in clinical trials.

3.2 Introduction

3.2.1 Background

Amyloid plaques, together with neurofibrillary tangles, are one of the earliest

signs of Alzheimer’s disease (AD), appearing before any cognitive impairment

and change in brain structure (DUBOIS, HAMPEL et al., 2016 ; JACK, KNOPMAN

et al., 2010). They are thought to play an important role in the disease, by trigge-

ring a cascade of events leading to neuronal loss and cognitive impairment (J. A.

HARDY et HIGGINS, 1992 ; J. HARDY et SELKOE, 2002 ; J. HARDY et ALLSOP, 1991).

This Amyloid cascade hypothesis has been very influential in therapeutic research,

as it is hopped that stopping the formation of the plaques will stop the cascade

and hence the progression of the disease. Several molecules have been designed
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to target these plaques, by preventing the formation of the Aβ peptides, by clea-

ring them or by stopping them from aggregating to form Amyloid plaques (KAR-

RAN, MERCKEN et STROOPER, 2011). Several of these drugs, such as solanezu-

mab (DOODY et al., 2014) and bapineuzumab (SALLOWAY et al., 2014), have been

tested on individuals with dementia or with mild cognitive impairments, but did

not result in a decrease of the cognitive decline. The focus of clinical trials is the-

refore now shifting towards pre-clinical and prodromal individuals, as in the A4

study (trial identifier : NCT02008357) and the clinical trial for CNP520 (identifier :

NCT03131453). The Amyloid cascade is thought to be a long, progressive process.

Slowing down the formation of Amyloid plaques at the beginning of the process,

when individuals are not yet cognitively impaired, should have effects on the long

run (DOODY et al., 2014 ; BECKER et GREIG, 2014), whereas on symptomatic indi-

viduals cognitive damage has already occurred and might not be reversed.

Setting up clinical trials targeting asymptomatic individuals with amyloid plaques

can however lead to important recruitment costs than can be prohibitive, as it is

necessary to ensure that all enrolled individuals have amyloidosis (O’BRIEN et

HERHOLZ, 2015 ; WATSON et al., 2014). The presence of amyloid plaques on the

brain can be measured using Positron emission tomography (PET), or by measu-

ring the concentration of Aβ protein in the cerebral spinal fluid (CSF). PET scans

are very costly (around 1 000e in Europe, and 5 000$ in the United-States) and

require the injection of a radioactive compound, and CSF measurements require

a lumbar puncture, which is an invasive procedure that cannot be considered for

systematic screening. When recruiting amyloid positive (Aβ+) individuals in a co-

hort of individuals with dementia, doing a PET scan to every possible individual

can be a reasonable solution, as 90% are expected to be Aβ+ (CHÉTELAT et al.,

2013). However, in an elderly asymptomatic population, only one third of the in-

dividuals are Aβ+ (CHÉTELAT et al., 2013).This implies that in order to recruit a

given number of Aβ+ individuals, three times as many individuals should be tes-

ted for amyloid positivity. Therefore, doing a PET scan to every recruited indivi-

dual does not seem to represent a feasible solution for the large-scale recruitment

of asymptomatic amyloid positive individuals (WITTE et al., 2015).

We propose a method for recruiting asymptomatic Aβ+ individuals for clinical

trials, which is composed of two steps, as presented in Figure 1. In a pre-screening

phase, we first identify a subpopulation with a higher prevalence of Aβ+ indivi-

duals than in the original cohort, before doing a PET scan to this sub-population

only in a second phase. In order to identify individuals with a higher risk of being

Aβ+, we propose to use a classifier that has been optimized to minimize the re-

cruitment cost.
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3.2.2 Related works

Several methods have been proposed to automatically predict the amyloid sta-

tus of Cognitively Normal (CN) individuals based on cognitive and socio-demographic

information. Mielke et al (MIELKE et al., 2012) use a logistic regression with a de-

fault threshold value, and evaluate their method by training and testing the algo-

rithm on the same individuals. Insel et al (INSEL et al., 2016) use a Random Forest

and optimize the threshold by maximizing the Positive Predictive Value (PPV) of

the algorithm. Maximizing this value implies having a very high threshold value,

hence being very selective and increasing the number of false negatives. A very

large number of individuals then has to be recruited as input, as many positive

individuals are discarded.

Other methods focus on MRI features, such as Tosun et al (TOSUN, JOSHI et

WEINER, 2013) who predict amyloidosis in subjects with a Mild Cognitive Impair-

ment (MCI) using an advanced anatomical shape variation measure. Apostolova

et al (APOSTOLOVA et al., 2015) also include MRI features by using hippocampus

volume and cognitive, ApoE4 and peripheral blood protein information on MCI

subjects using an SVM. Ten Kate et al (KATE et al., 2018) use an SVM and tree-based

feature selection to predict amyloidosis in CN and MCI subjects using cognitive,

socio-demographic, ApoE4 and MRI features. In this paper, we propose to take a

cost-effective approach of the amyloidosis prediction, by comparing different me-

thods in terms of cost reduction.

Another approach for reducing clinical trial costs consists in adapting clinical

trial design using previous results. Several studies propose to assess treatment

efficacy in a retrospective manner, using drug trial cohorts to identify a subgroup

of patients responding to treatment (FOSTER, TAYLOR et RUBERG, 2011 ; QIAN et

MURPHY, 2011 ; Y. ZHAO et al., 2012). On the other hand, other studies propose

to do so in a prospective manner, adapting the clinical trial as it is ongoing, by

using more advanced methods such as active learning (MINSKER, Y.-Q. ZHAO et

CHENG, 2016 ; SATLIN et al., 2016).

3.2.3 Contributions

Selecting amyloid positive subjects for cohort recruitment requires to find a ba-

lance between being very selective, hence discarding a large number of positive in-

dividuals on one hand, or being too permissive and doing unnecessary PET scans

on the other hand. We propose to take this trade-off into account by optimizing

the algorithm for the recruitment cost, which includes both the cost of recruiting a

number R of individuals and the cost of doing a confirmatory PET scan to a num-

ber S of selected individuals. As R depends on the number of False Negative and
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FIGURE 3.1 – Selecting Aβ+ individuals : current (left) and proposed
(right) process

S on the number of False Positive, both of these measures are taken into account

when the cost is minimized.

In this study, we extend and evaluate more in depth the approach we pro-

posed in 2017(ANSART, EPELBAUM, GAGLIARDI, COLLIOT, DORMONT, HAMPEL

et al., 2017). We will compare the performance obtained using different features

sets, containing cognitive and imaging features at baseline or over a longitudi-

nal follow-up, and compare performance for a variety of classification algorithms.

All the algorithms will be cross-validated to maximize the area under the recei-

ver operating characteristic (ROC) curve (AUC), and the threshold will be chosen

to minimize the cost. We will validate our method on three different data sets,

corresponding to different disease stages (pre-clinical or prodromal) or recruiting

procedures. The performance will be assessed using two different validation pro-

cedures : by using cross-validation on each cohort ; and by training the algorithm

on a first cohort and testing it on a different one. We will then verify that the co-

horts created with our method are unbiased, and can be used as inputs for clinical

trials.

3.3 Materials and Methods

3.3.1 Cohorts

We are interested in studying the performance of our method on different groups

of individuals. To do so, we test the method on three cohorts, noted ADNI-MCI,

ADNI-CN and INSIGHT.

The ADNI-MCI cohort contains MCI subjects from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) study. It is an ongoing, longitudinal, multicenter

American study carried out in North America, which provides biomarkers, ima-

ging, cognitive and genetic data, for the early detection of AD. It started in 2004
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with ADNI1, and two more phases are now available : ADNIGO and ADNI2. A

diagnosis is given at each visit, among CN (Cognitively Normal), MCI or AD. MCI

subjects have a Subjective Memory Concern (SMC) and an objective memory loss

measured by education adjusted scores on Wechsler Memory Scale Logical Me-

mory II, but don’t have any impairment in the other cognitive domains, especially

in activities of daily living. We only consider visits that have an associated Aβ le-

vel, measured with the AV45 PET SUVr (Standardized Uptake Value Ratio) when

available, or with the CSF biomarker when no PET scan was performed. indivi-

duals that changed Amyloid status during the study are removed. We use the first

available visit for each individuals, and a visit at a 12 months interval when stu-

dying the impact of longitudinal data. 596 individuals are available in this cohort,

among which 62.9% are Aβ+.

The ADNI-CN cohort contains CN subjects from the ADNI study. These in-

dividuals are cognitively normal, they show no sign of dementia or of cognitive

impairment, but they can have a SMC. individuals and visits are selected and Aβ

values are taken as in the ADNI-MCI cohorts. 431 individuals are available, among

which 37.6% are Aβ+.

The INSIGHT cohort contains individuals from the INSIGHT-preAD study. It is

an ongoing, longitudinal, mono-centric French study carried out in Paris, France,

which aims at studying changes appearing in healthy individuals, over 70 years of

age in order to study the very early phases of AD. 318 CN individuals, with normal

cognition and memory but who have a SMC, are followed. Cognitive, imaging and

genetic data is available for every annual visit. The AV45 PET SUVr is available for

every individual and used as the Aβ value. At the time of the analysis, only the first

visit is available for each individual. 27.7% of the 318 individuals are Aβ+ (n=88).

3.3.2 Input Features

Different sets of features are compared. For all experiments, socio-demographic

features (age, gender, education) and ApoE4 are used.

As cognitive assessments are different in ADNI and the INSIGHT-preAD study,

different cognitive features are used. For the two ADNI cohorts, the Alzheimer’s

Disease Assessment Scale - cognitive subscale (ADASCog) is used. The 13 items

are aggregated into 4 categories : memory, language, concentration and praxis. For

the INSIGHT cohort, the 112 available features, coming from SMC questionnaires

and cognitive tests are used. They target executive functions, behavior and overall

cognitive skills.

MRI extracted features are also used in order to evaluate their predictive po-

wer. The cortical thicknesses are extracted using FreeSurfer for both ADNI and
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INSIGHT subjects. The average thicknesses of 72 cortical regions are used, and di-

vided by the total cortical thickness in order to get comparable measures across

individuals. The hippocampus volume is extracted using FreeSurfer for the ADNI

cohorts, and using SACHA (CHUPIN et al., 2009), an in-house hippocampus seg-

mentation software, for the INSIGHT-preAD study.

The amyloidosis is measured using a PET scan when available and CSF mea-

surments elsewise. The PET SUVr given by the ADNI and INSIGHT-preAD stu-

dies are extracted using different methods. A individual is considered Aβ+ when

PET SUVr is above 1.1 (CLARK et al., 2012) for ADNI and 0.79 for the INSIGHT-

preAD study, or when the concentration of Aβ in the CSF is below 192 pgml(SHAW

et al., 2009).

3.3.3 Algorithms

Different classification algorithms are used to make the prediction and their

performances are compared for the different cohorts, in order to identify an al-

gorithm that would outperform the others. The hyperparameters of all the algo-

rithms are tuned using a cross-validation.

5 algorithms are compared : (1) A Random Forest (BREIMAN, 2001), with vali-

dation of the number and the depth of the trees, (2) A logistic regression (J. FRIED-

MAN, HASTIE et TIBSHIRANI, 2010), with validation of the threshold, (3) a linear

Support Vector Machine (MULLER et al., 2001) (SVM), with validation of the pe-

nalty parameter, (4) an adaptive logistic regression (J. FRIEDMAN, HASTIE et TIB-

SHIRANI, 2000) (AdaLogReg), with validation of the learning rate and the number

and depth of the learners, (5) an adaptive boosting (J. H. FRIEDMAN, 2001)(Ada-

Boost), with validation of the same hyperparameters as for AdaLogReg.

The performance of the algorithms is evaluated using repeated random sub-

sampling validation : the data is repeatedly (50 times) separated into a training

set (drawn without replacement) and a test set (corresponding to the data points

not used in the training set). We use 70% of the data for training and 30% for tes-

ting. For each split, the algorithms are first tuned using a 5-fold validation on the

training set to maximize the AUC, then trained on the whole training set with the

selected hyperparameters, and applied on the test set in order to get a performance

measure. 50 performance measures are therefore obtained, and are used to get a

mean performance and a standard deviation. The whole procedure is described in

pseudocode in the Supplementary Materials (Algorithm 1).
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FIGURE 3.2 – Example of ROC curve (left), S vs R curve (middle)
and corresponding cost curve (right). The solid curve represents the
mean performance, the dotted ones represent the standard deviation

and the 2 black dots the points of minimal cost

3.3.4 Performance Measures

Different performance measures are used in order to evaluate different aspects

of the methods.

The area under the Receiver Operating Characteristic (ROC) curve (AUC) is

used to evaluate the performance of the prediction method. It is used to compare

different algorithms, to tune them, and to evaluate the predictive power of dif-

ferent feature sets.

The minimal cost of recruiting 100 individuals is used to measure the prac-

tical effect of the method, and to find a balance between the number of recrui-

ted individuals and the number of PET scans. In order to compute this minimal

cost, the ROC curve is built by changing the algorithm threshold (Fig 3.2, left). For

each point on the ROC curve, the corresponding number of individuals to be re-

cruited (R) and the number PET scans (S) is computed (Fig 3.2, middle) as such :

S = 100 ∗
TP + FP

TP
(3.1) R = 100 ∗

N
TP

(3.2) where

TP stands for number of True Positive, FP for number of False Positive and N is the

total number of predictions that have been made. As the true positive rate (TPR)

and false positive rate (FPR) depend on the number of True Positive and False Po-

sitive which are used to compute S and R, there is a direct match between each

point of the ROC curve and the R vs S curve. Consequently, as for the FPR and

TPR, R and S should be minimized together and a trade-off has to be made, which

is reflected in the total cost.

For each value of S and R, the corresponding cost can be computed, by ma-

king the hypothesis that recruiting a individual and getting genetic information

and cognitive assessments costs 100e, doing an MRI 400e and doing a PET scan

1000e. When the cost curve (Fig 3.2, right) is built, the minimum is taken to get the
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Data set
Random

Forest

Logistic
regres-

sion
SVM

AdaLo-
gReg

Ada-
Boost

INSIGHT 67.5 (5.5)
62.7 (6.1)

*
62.0 (5.8)

*
67.5 (5.7) 67.2 (6.9)

ADNI-CN 69.1 (4.0) 69.5 (4.1) 67.3 (5.0)
66.4 (4.6)

*
66.5 (5.1)

ADNI-
MCI

82.4 (2.8) 81.9 (2.6) 81.8 (2.7) 80.9 (2.8)
80.5 (3.3)

*

TABLE 3.1 – Benchmark of algorithms. * = statistically significantly
different from the Random Forest at the 0.05 level after Bonferroni
correction for multiple comparisons. Data are : average Area Un-
der the ROC curve (standard deviation). SVM = support vector ma-
chine ; AdaLogReg = adaptive logistic regression ; AdaBoost = adap-

tive boosting ; ROC = receiver operating characteristic.

minimal cost of recruiting 100 individuals, and the corresponding optimal values

of S and R are hence known.

It is to be noted that the cost of recruiting 100 individuals in a cohort will de-

pend on the proportion of amyloid positive individuals in the cohort, as the more

positive individuals there are, the easier it is. This performance measure is hence

useful to evaluate and compare the performance of different methods on one co-

hort, but it cannot be used to compare the performance of a method across different

cohorts.

3.3.4.0.1 Statistical testing Each experiment is performed 50 times with 50 train/-

test split, and 50 performance measures are obtained. When we compare two ex-

periments, a two-tailed t-test is performed using the 50 performance measures of

each experiment. A p-value is obtained, enabling us to test if the performance of

the two experiments is significantly different at the 0.05 level.

3.4 Results

3.4.1 Algorithm and feature choice

3.4.1.1 Algorithm choice

In order to choose the algorithm most suited for this problem, different classi-

fication algorithms are tested on the three data sets. Their performance, measured

using the AUC, is reported in Table 3.1. These results show that there is no al-

gorithm that outperforms all the others for all cohorts. It is however necessary to

make a choice and use the same algorithm on all cohorts. The Random Forest is, for
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FIGURE 3.3 – Performance variations depending on the number of
kept LASSO variables : mean Area Under the ROC curve (plain line)

and standard deviation (dashed lines)

all data sets, among the best performing algorithms. It outperforms each other al-

gorithm in one cohort : the Logistic Regresion in INSIGHT (p = 0.001), the SVM in

INSIGHT (p=0.0001), the adaptive logisitic regression in ADNI-CN (p=0.03) and

AdaBoost in ADNI-MCI (p=0.045). No algorithm significantly outperforms it on

any cohort. The Random Forest therefore represent the best algorithm for this clas-

sification task.

3.4.1.2 Feature selection for cognitive variables

In the INSIGHT cohort 112 cognitive features are available. Using all of them

results in an AUC of 56.2% (±7.5), which is significantly lower than the perfor-

mance obtained on the other cohorts because of a less favorable ratio between

number of features and individuals, as only 318 individuals are available. We the-

refore compare different dimension reduction and feature selection methods in

order to solve this issue and improve the performance on this cohort.

3.4.1.2.1 Automatic methods Principal Component Analysis (PCA) and Inde-

pendent Component Analysis (ICA) using fastICA(HYVARINEN, 1999) are first

considered, but both lead to an AUC under 52%, whatever the number of selected

dimensions.

LASSO feature selection is also considered. In the LASSO, a regularized regres-

sion using a l1 penalty is used, setting some of the feature weights to 0, hence

keeping only the most relevant features. A linear regression using LASSO is per-

formed between the input features and the amyloid status in order to select from

5 up to 60 features. The selected features are then used to perform the classifica-

tion, using a Random Forest. The evolution of the AUC with the number of se-

lected features is presented in Fig. 3.3, showing that the best results are obtained

using 15 features. Using the LASSO features selection leads to an AUC of 64.3%
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(±5.2), which is significantly better than the performance obtained using all fea-

tures (p<0.0001).

3.4.1.2.2 Using expert knowledge In a last analysis, manual feature enginee-

ring is considered. Aggregates are formed for each cognitive test, using expert

knowledge regarding the tests and the features which are most relevant for AD

diagnosis. 26 aggregates are hence built. Using them as input in place of the 112

original cognitive features leads to an AUC of 67.5% (±5.5), which is significantly

better (p<0.005) than the performance obtained using automatic dimension reduc-

tion.

3.4.1.3 Use of MRI

We want to assess the prediction power of MRI-extracted features (cortical thi-

cknesses and hippocampus volume) and compare it with the performance ob-

tained using cognitive features. In all experiments, ApoE4 genotype and socio-

demographic features are also used as inputs.

We first compared the performance obtained by using only cognitive features

on one hand, and only MRI features on the other. As the number of MRI features

is large regarding the number of subject, a LASSO feature selection if performed

to select 12 variables. The results are presented on lines 1 and 2 of Table 3.2. Using

MRI features instead of cognitive scores leads to a significant decrease in the AUC

for all cohorts (p < 0.001). These results show that the used cognitive features are

a better predictor of amyloidosis than the chosen set of MRI features.

Although they are less predictive than cognitive scores, using the MRI features

as input along with cognitive scores could lead to better performance. We therefore

train the algorithm using both MRI and cognitive features and compare its perfor-

mance with the ones obtained using solely cognitive scores. The results, presented

in line 1 and 3 of Table 3.2, show that including MRI features in the inputs does

not lead to a significant increase in the AUC. For the INSIGHT and ADNI-MCI

cohorts, it does lead to non-significant increase in the AUC, but the resulting cost

for recruiting 100 individuals is higher (for INSIGHT, 527,437 e ±36,332, instead

of 291,325e ±57,400), as the cost of doing an MRI to each recruited individual has

to be added to the initial cost. For ADNI-CN including MRI features in the input

leads to a significant decrease in the AUC (p < 0.01). In all the cohorts, including

MRI features leads to an increase in cost.
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INSIGHT
cohort

ADNI-CN
cohort

ADNI-MCI
cohort

Proposed approach 67.5 (5.5) 69.1 (4.0) 82.4 (2.8)
MRI features only 61.9 (6.5) 59.0 (4.6) 80.1 (3.0)
MRI & cognitive

features
68.8 (4.4) 67.1 (3.8) 82.8 (2.2)

With longitudinal
variations

NA 71.7 (8.3) 87.7 (4.8)

After correction for
age

68.5 (5.0) 67.7 (3.9) 80.9 (2.4)

ApoE4 only 63.7 (4.6) 62.1 (3.5) 75.1 (2.9)

TABLE 3.2 – Results in different experimental conditions. Data are :
average percentage of Area Under the ROC Curve (standard devia-

tion). NA = Not Applicable

3.4.2 Use of longitudinal measurements

Longitudinal measurements are available for individuals in the two ADNI co-

horts. In order to evaluate the impact of using longitudinal measurements in amy-

loidosis prediction, the rate of change of the cognitive scores, computed using a

12-month visit, are included in the input features. The results, presented in line

4 of Table 3.2, show that the AUC is significantly better than the one obtained

using only socio-demographic information, ApoE4 and cognitive scores at base-

line, ADNI-MCI (p<0.0001), and not significantly better for ADNI-CN (p = 0.06).

Using longitudinal information overall leads to a better prediction.

However the cost of collecting such measurements has to be taken into account,

since all individuals have to undergo cognitive assessments twice. Setting the cost

of cognitive assessments for the second visit to 50e for each individual, the total

cost of recruiting 100 individuals using longitudinal information is of 243,448e (±

104,597) for ADNI-CN and 133,452e (± 22,140) for ADNI-MCI. This new cost is

slightly lower than the one obtained using cross-sectional measurements in ADNI-

CN (234,591 ± 23,106) and higher for ADNI-MCI (136,205 ± 3678). Therefore, al-

though using longitudinal measurements leads to an increase in AUC, it does not

lead to a decrease in recruitment cost.

3.4.3 Proposed method performance

3.4.3.1 Cost reduction

Table 3.3 presents the cost of recruiting 100 Aβ+ individuals in the different co-

horts with the proposed method, as well as an estimation of the costs of recruiting
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Current
method

Proposed method

Dataset

Estima-
ted

current
cost in e

% of
AUC
(std)

Indivi-
duals to

be
recruited

Number
needed
to scan

New
cost in e

(std)

Estima-
ted

savings
in e

INSIGHT
(27.7%
Aβ+)

397,111
(N=361)

67.5
(5.5)

832 208
291,325
(57,400)

106,174

ADNI-
CN

(37.6%
Aβ+)

292,553
(N=266)

69.1
(4.0)

599 175
234,591
(23,106)

58,063

ADNI-
MCI

(62.9%
Aβ+)

174,880
(N=159)

83.8
(2.1)

264 112
138,294
(4857)

36586

TABLE 3.3 – Comparison of the proposed method results with the
estimated initial costs for recruiting K=100 amyloid positive indivi-
duals. AUC = Area Under the ROC curve ; std = standard deviation.

these individuals with the current method, consisting in scanning all potential in-

dividuals. This estimated current cost depends on the proportion of Aβ+ in the

data set. In order to find 100 Aβ+ individuals in the INSIGHT cohort for example,

100/0.277 = 361 individuals on average should be recruited and undergo a PET

scan, which corresponds to a total cost of 397,111e. However, with the proposed

method, about 832 individuals should be recruited and 208 PET scans would have

to be done, leading to a cost of 291,325e on average for recruiting 100 Aβ+ indivi-

duals. The resulting savings would reach 106,174e for this cohort.

The results presented in Table 3.3 show that the proposed method leads to a

significant cost reduction when recruiting 100 individuals for all cohorts (p<0.001),

representing estimated savings of about 20%.

3.4.3.2 Age difference between groups

In the cohorts we used, the Aβ+ individuals are older than the Aβ- individuals,

especially in the ADNI cohorts (see Table B.1 in Supplementary Materials). One

can therefore ask if the predictor is using this age difference, by simply predicting

that older individuals are Aβ+ and younger individuals are Aβ-, or by predicting

the age of the individuals rather than their amyloid status. To confirm that it is not

the case, we correct all the cognitive variables for age by using a linear regression

and remove the age from the input features. After correction (results shown in

line 5 of Table 3.2), the prediction performance is not impacted in INSIGHT and
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Data set AUC in %
Trained and tested on INSIGHT 61.9 (6.5)
Trained on ADNI-CN, tested on INSIGHT 62.0 (6.6)
Trained on ADNI-CN, tested on INSIGHT (all samples) 66.1 (3.6)
Trained and tested on [INSIGHT ADNI-CN] 61.3 (6.9)
Trained and tested on [INSIGHT ADNI-CN] (all samples) 67.5 (3.2)

TABLE 3.4 – Results using MRI variables, socio-demographic and ge-
netic information on different data sets. Data are : average Area Un-

der the ROC curve in % (std)

does not decrease significantly for ADNI-CN (p>0.05). In the ADNI-MCI cohort,

correcting for age leads to a significant decrease in AUC (p<0.01) but results in

a recruitment cost that is still significantly higher than doing a PET scan for all

individuals (p<0.01). These results show that the prediction algorithm does not

rely on the age difference between the groups and captures differences between

amyloid positive and negative individuals that is not due to aging.

3.4.3.3 Training on a cohort and testing on a different one

The previous results are obtained by training and testing the method on distinct

individuals from the same cohort. We want to confirm that these results would

generalize well in a different setting, by verifying that they hold when the method

is trained on a first cohort and tested on a different one.

ADNI and INSIGHT-preAD are very different studies. They have been desi-

gned for different purposes, as INSIGHT aims at studying very early phases of

AD by studying changes appearing in healthy individuals, and ADNI aims at defi-

ning the progression of Alzheimer’s disease. The INSIGHT and ADNI-CN cohorts

both include individuals who show no sign of dementia but with different inclu-

sion criteria, and hippocampal measures have been extracted using different soft-

wares. Hence, although these 2 cohorts can be compared, they are very different

by design and purpose. In an ideal setup, cognitive features, socio-demographic

information and ApoE4 should be used as input, however the cognitive assess-

ments are different for ADNI and the INSIGHT-preAD study, hence they can’t be

used as inputs when using these two cohorts.

We therefore train the prediction algorithm on ADNI-CN using socio-demographic

information, ApoE4 and MRI features. We then test on INSIGHT the method trai-

ned on ADNI-CN in order to evaluate the generalization performance of our me-

thod. As the number of MRI features is large, LASSO feature selection was per-

formed to select 12 MRI features. In order to have a fair comparison with training

and testing on INSIGHT, the size of the selected training and test size are kept
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the same as the training and test set coming from INSIGHT. We therefore ran-

domly select 318 ∗ 0.7 = 223 from the ADNI-CN cohort to form the training set,

and 318 ∗ 0.3 = 95 from INSIGHT to form the test set. This operation, followed by

the classification, is performed 50 times in order to get a mean performance and a

standard deviation.

The results, presented in Table 3.4, show that training on ADNI-CN and testing

on INSIGHT gives similar performances to training and testing on the INSIGHT

cohort.

3.4.3.4 Representativity of the selected population

For the selected individuals to be used as a clinical trial cohort, it is important

to ensure that the selected population will be representative of the whole popula-

tion of Aβ+ individuals that could have been selected. We therefore compare the

individuals selected using the prediction method followed by a confirmatory PET

scan with the Aβ+ individuals of the cohort.

We first pool together the test data set of the 50 cross-validation runs and look at

the distribution of age, ADASCog (for ADNI cohorts), MMSE, education, age and

gender. The histograms obtained for ADNI-CN are presented in figure 3.4. We can

see that these histogram are very similar for age, gender, education, and cognitive

features, but the proportion of ApoE4 carriers is higher in the group selected with

the proposed method. Similar observations can be made for all cohorts.

In order to evaluate if there is a significant difference for each of these features,

we compare the selected populations of the 50 runs with the populations of Aβ+

individuals of the corresponding test sets. A statistical test is performed for each

of the 50 runs and a p-value is obtained for each of them. The used statistical test is

a t-test for the features with a normal distribution (age and ADASCog), a binomial

proportion test for binary features (presence of ApoE4 alleles and gender) and

a Mann–Whitney U test for the remaining features (MMSE and education). A p-

value is obtained for each run, for each feature. Figure 3.5 presents the proportion

of these p-value that are below 0.05, for each feature.

The main bias that can be seen across cohorts is a higher proportion of ApoE4

carriers, which is statistically significant in 16% of cases for INSIGHT, 48% for

ADNI-CN and 98% for ADNI-MCI. Although this bias is important, especially for

the ADNI cohorts, it seems acceptable as many current recruiting procedures also

have this bias or only recruit ApoE4 carriers, such as in the Alzheimer’s Prevention

Initiative Generation study (LOPEZ et al., 2017).

The proposed method leads to an unbiased cohort in terms of age, gender, and

education, as well as cognitive scores in more than 94% of cases for the asympto-

matic cohorts, and 82% for ADNI-MCI.
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FIGURE 3.4 – Histogram of the different features for the selected
group (orange) and for the whole Aβ+ group (blue), for the ADNI-

CN cohort

FIGURE 3.5 – Proportion of runs with a significant difference between
the groups for each feature, in each of the 3 cohorts
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3.4.4 Building larger cohorts

3.4.4.1 Pooling data sets

Different cohorts can be pooled in order to create a bigger data set, containing

a large number of individuals. However, this operation requires that the hetero-

geneity of the pooled cohort does not alter the performances of the method that

is applied. In order to verify this hypothesis, we pool the ADNI-CN cohort with

the INSIGHT cohort. We train and test the method on individuals coming from

both of this cohort, using the same training and test size as in INSIGHT, in order

to compare the performances with the one obtained by training and testing solely

on INSIGHT. As in the generalization experiment, we use MRI features instead

of cognitive features which are different in the 2 cohorts. The results, presented

in Table 3.4 show that the performances are not significantly different when the

algorithm is trained and tested on the pooled cohort, which shows that the hete-

rogeneity of pooled data sets does not alter the classification performances.

3.4.4.2 Effect of sample size

When learning on ADNI-CN and testing on INSIGHT to test generalization, we

used the same training and learning size as in INSIGHT to have a fair comparison,

hence using only 52% of the available data at each run. For the same reason, we

used only 42% of the created cohort when we pooled the INSIGHT and the ADNI-

CN cohort. We now want to measure the impact of increasing the cohort size by

using the full cohort in each case, always keeping the same ratio for the size of the

training and test data sets (70%-30%). The results, presented in Table 3.4 show that

increasing the cohort size significantly increases the performances (p<0.0005). This

result comforts the need to create large data sets, or pool existing ones, to create

more accurate prediction tools.

3.5 Discussion

3.5.1 Results of the experiments

3.5.1.1 Algorithm and feature choice

The algorithm benchmark shows there is not one outstanding algorithm that

would outperform all the others on all data sets. These findings support the "No

free lunch" theorem(WOLPERT et MACREADY, 1997 ; WOLPERT, 2002), stating that

different algorithms perform best on different problems. As a choice had to be

made, we used the Random Forest which performed well on the 3 cohorts. It is
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not however a general recommendation. When working on a new classification

problem, even similar to this one, one should always compare different algorithms

to choose the most suited one.

Because the number of features is large compared to the number of available

subjects, using all the available features may result in a low performance(HUGHES,

1968). The low performance we obtained on the INSIGHT cohort using all the

available cognitive features is an illustration of this phenomenon, known as the

curse of dimensionality. A typical way of solving this issue is using automatic

methods for dimension reduction. We showed that, in our case, selecting features

using expert knowledge gives better results. It corroborates the fact that when a

large number of features and a small data set are available, feature engineering

using domain knowledge is necessary(DOMINGOS, 2012).

Hypothetical models of AD suggest neurodegeneration and changes in struc-

tural MRI appear earlier than cognitive decline(JACK, KNOPMAN et al., 2010). This

hypothesis is supported by findings from Bateman et al. (BATEMAN et al., 2012),

showing that, in autosomal dominant AD, brain atrophy occurs 15 years before AD

diagnosis, 5 years before episodic memory decline and 10 years before changes in

other cognitive domains. Studies by Ameiva et al. show changes in several domain

of cognition can be observed 9 years before diagnosis(AMIEVA, JACQMIN-GADDA

et al., 2005), and up to 16 years before diagnosis for individuals with higher educa-

tion(AMIEVA, MOKRI et al., 2014). Overall, brain atrophy may appear before or at

about the same time as cognitive decline, and one could expect using MRI would

improve the prediction of amyloidosis, especially for cognitively normal indivi-

duals. Our analysis however suggests that it is not the case. This finding that clini-

cal signs can allow for efficient pre-screening goes against the current purely bio-

logical definition of AD by NIA-AA(JACK, BENNETT et al., 2018). We can suppose

memory decline has already started for individuals with a SMC, so that cogni-

tive features are already slightly altered. It leads us to think that subtle cognitive

changes appear in late preclinical AD, as hypothesized by Sperling et al. in their

3 stage model of pre-clinical AD(SPERLING et al., 2011). The results can however

depend on the choice of MRI features. In future studies, different neuroimaging

features could be used to test this hypothesis that cognitive changes are anterior to

substantial structural changes, in line with previous studies on optimal neuroima-

ging feature selection in pre-clinical AD(JACK, WISTE et al., 2015). Alternatively,

a more advanced feature selection algorithm might be able to identify the most

informative MRI features and therefore improve their performance, as proposed

in other methods (KATE et al., 2018).

In the ADNI-CN cohort, adding the MRI features even leads to a decrease in

AUC, whereas it leads to a slight increase for INSIGHT. A possible explanation for
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this difference between cohorts is that in ADNI, the number of cognitive features

(4) is low compared to the number of MRI features (73), whereas the difference is

smaller for INSIGHT (26 cognitive features for the same number of MRI features).

In ADNI the cognitive scores can therefore be under-represented compared to the

MRI features. This effect should be handled by the Random Forest, that can give

different weights to different features. It however requires the number of indivi-

duals to be large enough compared to the number of features, which is not the case

here.

Overall, we showed that with our method the best results are obtained without

performing an MRI and without longitudinal features, but using only data that

can be easily acquired. MRI should not be performed in the pre-screening phase,

however performing an MRI at the end of the recruitment process will always be

needed to exclude vascular lesions or tumors and as a reference for adverse event

monitoring.

3.5.1.2 Method performance

We showed that using the proposed method as a pre-screening phase for indi-

vidual recruitment in clinical trials leads to reducing the recruitment cost by about

20%. These findings are however based on cost hypothesis that can seem arbitrary.

In particular, the cost of recruiting a new subject is the same whatever the number

of subjects that have been recruited. In practice, because a large number of studies

intend to recruit large numbers of subjects, the more subjects are recruited, the

more difficult it is to recruit a new one. Having a non-constant cost could therefore

represent an improvement of the proposed method and be closer to the difficulties

encountered in practice.

We can expect the method to generalize well and give similar results when

applied on any cohort of cognitively normal individuals because we showed we

obtain similar performances when training and testing on the same cohort or on

two different ones. The cohorts we used for testing are slightly unbalanced, with

Aβ+ individuals older than Aβ- individuals, but correcting for age gives similar

cost reductions, so the same results should be obtained on cohorts that do not

have the same unbalance. Comparing the selected Aβ+ individuals with all the

Aβ+ individuals of the cohort shows that the subset selected with the proposed

method is unbiased. The proposed method therefore leads to the recruitment of a

representative cohort with a reduced cost.

The proposed approach is time efficient, as in the worst case the training phase

may take few minutes, while testing a new subject could be done in less than a
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second. Therefore, computational time is not a limiting factor for using such me-

thods in practice. Furthermore, since only clinical data may be used for good per-

formance, the method could be easily deployed in the current clinical practice.

3.5.1.3 Data set size

Table 3.4 shows that pooling data sets does not alter the performance of the

prediction, although it brings heterogeneity ; and that increasing the cohort size

improves the prediction. This last finding is supported by the current machine

learning literature, stating that gathering more data often yields an increase in

performance greater than the increase one could obtain by improving the predic-

tion algorithm(DOMINGOS, 2012). It shows the importance of gathering more data

in the medical field and more specifically related to dementia. While the largest

cohorts widely available usually include less than 1500 subjects, creating larger

cohorts could result in a significant increase of performance for predicting amy-

loidosis or for other predictive task, such as automatic diagnosis based on neuroi-

mages(FRANKE et al., 2010 ; ARBABSHIRANI et al., 2017). As long as larger cohorts

are not available, we recommend pooling different cohorts in order to get a better

prediction performance. For example, the preclinical cohorts presented by Epel-

baum et al(EPELBAUM, GENTHON et al., 2017) could be pooled to create a bigger

cohort to train and validate our method.

3.5.2 Comparison with existing methods

3.5.2.1 Univariate approaches

A standard approach for prediction is using univariate methods. As a compari-

son with our method, a Random Forest is trained and tested on each input variable

separately. The best univariate results are obtained using ApoE4 (Table 3.2, line 4).

The AUC obtained using ApoE4 is significantly lower (p<0.0001) than the AUC

of the proposed multivariate method, for all cohorts, with an AUC of 63.7 ±4.6

instead of 67.5 ±5.5 for INSIGHT for example. The proposed method therefore

outperforms its univariate equivalent.

3.5.2.2 Other multivariate approaches

We wanted to compare the performance of our method with that of other simi-

lar studies. Different cohorts and different performance measures have been used

in these studies, the comparison is therefore not straightforward and the results

should be interpreted with caution.
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In the study of Mielke et al (MIELKE et al., 2012) the studied cohort is composed

of CN individuals from the Mayo Clinic Study of Aging. This cohort is comparable

with the ADNI-CN cohort used in this work, as individuals from both cohorts are

CN, and the ratio of Aβ+ individuals is close (34.9% in the Mayo Clinic Study of

Aging cohort, 37.6% in ADNI-CN). A logistic regression is used with an a priori

set and non-optimized threshold, and the performance measures were obtained

by training and testing the algorithm on the same individuals. The resulting AUC,

of 0.71, is significantly better than the AUC we obtain on ADNI-CN (69.1, p<0.05),

which is expected as training and testing an algorithm on the same individuals

generally gives better results than testing it on a different set of individuals.

The cohort used by Insel et al (INSEL et al., 2016) contains CN individuals, with

a proportion of positive individuals of 40.8%, so the closest cohort is again ADNI-

CN. The AUC is not provided in the study, so it cannot be used for comparison.

The Positive Prediction Rate (PPR) and Negative Prediction Rate (NPR) are howe-

ver given and, as shown in Supplementary Materials, they can be used to compute

S and R. The normalized cost can therefore be computed, and is significantly lower

(p < 0.0001) with our method.

The AUC we obtain on the MCI cohort is comparable to the ones obtained in

other studies or slightly higher(TOSUN, JOSHI et WEINER, 2013 ; APOSTOLOVA et

al., 2015 ; KATE et al., 2018). Ten Kate et al (KATE et al., 2018) obtain a slightly better

AUC for the prediction in CN subjects. This difference might be explained by the

use of a different feature selection method.

3.6 Conclusion

We proposed a method for creating cohorts of Aβ+ individuals with a reduced

recruitment cost. In a pre-screening phase, we use a classifier to identify a sub-

population of individuals who are more likely to be amyloid positive, based on

clinical data. We then do a confirmatory PET scan to the individuals of this sub-

population only. The whole algorithm has been optimized so as to minimize the

cost of the cohort recruitment. As such automatic methods are today limited by the

number of subjects, future studies could be performed on a Phase 3 clinical trial

cohort, as such cohorts often include more than 1000 participants. New screening

technologies, such as blood-based biomarkers(SHAW et al., 2009 ; NAKAMURA et

al., 2018), could transform the recruitment process for clinical trials, which could

also be facilitated by web-based cognition evaluation systems, such as the Brain

Health Registry (trial identifier : NCT02402426).
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Chapitre 4

Use of psychotropic drugs throughout

the course of Alzheimer’s disease : a

large-scale study of French medical

records

This chapter is in preparation for submission as a journal article.

4.1 Introduction

Recent therapeutic trial interruptions in the field of Alzheimer’s disease (AD)

have been a tremendous disappointment for patients, their families and the scien-

tific and medical communities alike. There is a critical need to upgrade our unders-

tanding of modifiable risk factors leading to this devastating disease for primary

prevention purposes (NORTON et al., 2014). To achieve this goal, many studies

have focused for instance on vascular risk factors (WHITMER et al., 2005), psy-

chiatric illnesses (BARNES et YAFFE, 2011) and psychotropic drug intake (BILLIOTI

DE GAGE et al., 2014 ; BIÉTRY et al., 2017 ; S. L. GRAY et al., 2016). However, mul-

tiple risk factors have seldom been assessed simultaneously although it seems that

multimorbidity, that is the co-occurrence of at least 3 diseases (MARENGONI et

al., 2009) is associated to AD neuroimaging makers even at the preclinical stage

(MENDES et al., 2018). These risk factors can help in future trials as enrichment

inclusion criteria. They may also yield insights into the aetiopathogeny of AD.

Finally, their identification can help to provide successful prevention strategies.

Previous studies, such as (MENDES et al., 2018 ; ANSART, EPELBAUM, GAGLIARDI,

COLLIOT, DORMONT, DUBOIS et al., 2019) acknowledge generizability limitations

due to the small sample size. However, the availability of larger and larger data-

bases of health records now facilitates analyses on large general population samples

which allows to better identify chronic diseases risk factors (PERERA et al., 2014 ;
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W.-Y. LIN et al., 2019). In this study, we analyze the medical records from more

than 60,000 individuals using a standardized digital database called Cegedim.

4.2 Materials and methods

4.2.1 Cohort description

4.2.1.1 Description

Cegedim is a company developing and commercializing health management

software (standardized electronic record files), hence gathering data on patient

follow-up in the health care system. Its products are used by 25 000 health prac-

titioners in France, among which 3000 have been recruited to constitute GERS-

DATA, also known as THIN (The Health Improvement Network). This observa-

tory includes 2000 general practitioners, which have been used for this study, and

1000 specialists. These practitioners have been selected so as to be representative

of the global practitioner cohort in terms of gender, age and geographic position.

All the prescriptions made by these practitioners are paired with a corresponding

prescription diagnosis.

The collected data is fully anonymized so as to be General Data Protection Re-

gulation (GDPR) compliant.

4.2.1.2 Group definition

Three groups have been defined :

— The AD group includes patients diagnosed with Alzheimer’s disease de-

mentia (international classification of diseases 10th edition : ICD10 codes

F00 or G30), that have been followed for at least 2 years before this first

diagnosis. Patients diagnosed with AD before being 50 years old have been

excluded from the study.

— The MCI group includes patients diagnosed with a memory impairment

(ICD10 codes F06.7 or R41) that is not explained by any neuro-degenerative

conditions. This cohort has been matched for age and sex with the AD

cohort. Complete list of exclusion diagnosis : dementia (F00-F03), mental

retardation (F70–F79), disorders of psychological development (F80–F89),

inflammatory diseases of the central nervous system (G00–G09), systemic

atrophies primarily affecting the central nervous system (G10–G13), extra-

pyramidal and movement disorders (G20–G26), other degenerative diseases

of the nervous system (G30–G32), demyelinating diseases of the central
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nervous system (G35–G37), epilepsy (G40-G42), cerebrovascular disorders

(G45-G46).

— The CN group includes patients with no ICD10 diagnosis of category F

(Mental and behavioral disorders) or G (Diseases of the nervous system),

matching the AD cohort for age and sex. As many patients in France fulfill

these criteria, only randomly selected age and gender matched patients fol-

lowed for at least 7 years have been included so as to have a similar number

of patients as in the AD group.

4.2.1.3 Patient overview

A description of the 3 groups is shown in Table 4.1.

AD MCI CN
number of patients 22 272 12 334 25 956
Age group (%)
21-50 6.2 0.5 *** 0.5 ***
51-75 54.6 48.7 *** 51.2 ***
>75 39.2 50.8 *** 48.3 ***
Gender (%)
Male 35.9 35.7 35.8 ***
Female 64.1 64.3 64.2 ***
Number of visits /
patient

67.53
(56.89)

47.89
(54.51) ***

49.20
(47.55) ***

Number of days
between 2 visits

57.42
(133.60)

57.90
(137.28) ***

94.44
(280.09) ***

Follow-up interval
in years

10.46(4.84) 7.43(6.04) **
12.46(4.03)

***

TABLE 4.1 – Cohort description. Data are mean (standard deviation).
* = significant at the 0.05 level ; ** = significant at the 0.01 level ; *** =
significant at the 0.001 level(two-sided t-test with Bonferroni correc-

tion for multiple comparison).

4.2.2 Studied treatments

When a prescription is made by the practitioner using the Cegedim software,

the treatments listed on the prescription are automatically added to the database.

Studying treatment instead of diagnosis manually added by the clinician is there-

fore reduces variability due to the clinician usage of the software.

It is to be noted that this list of prescribed treatments is available only for pres-

criptions made by the general practitioner following each patient, prescriptions

made by other practitioners are therefore not available.
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The studied treatment categories are defined according to the ATC codes as

follows :

— glucose lowering treatments (A10A, A10B)

— tension reducing treatments (C02, C03, C07, C08, C09)

— anti-inflammatory and anti-rheumatic treatments (M01)

— anti-psychotic treatments (N05A)

— benzodiazepine (N05BA, N05CD, N05CF)

— antidepressant (N06A)

— dementia drugs (N06D)

— herpes treatments (J05AB01, J05AB09, J05AB11)

We chose to interest ourselves in broad categories of treatment instead of indi-

vidual molecules to derive more global messages from our findings. The choice of

categories was based on a review of the literature.

For each treatment category and for each subject at each semester, we create

a feature of values 1 if the subject has been prescribed a treatment of the given

category at least once during the semester.

For patients from the AD group, time 0 corresponds to the semester of first AD

diagnosis. For patients from the MCI and CN groups, time 0 corresponds to the

time at which the subject is 80 years old, which is the median age of AD diag-

nosis in the AD cohort. This choice allows to compare the treatment evolution in

different groups at similar ages.

4.2.3 Descriptive and predictive analysis of treatment history

4.2.3.1 Statistical analysis

We perform two group comparisons : AD vs. MCI and AD vs. CN. For each

comparison, we consider the log-odds of being treated with a category of drugs in

the two groups for each semester of the total follow-up period of 25 years. We mo-

del the change of these log-odds with time using a generalized mixed effect model

with logit as link function and the outcome being the presence of a prescription

for each subject at each semester (see Supplementary Materials for details). In the

AD group, the model assumes a different linear change before and after diagno-

sis ; both linear functions have a fixed intercept and slope, and a random intercept

is added for each subject. In the other groups, the model assumes a single linear

function with a fixed intercept and slope and a random intercept.

We then test whether slopes and intercepts are statistically different in the pre-

diagnosis period between both groups. We also test the change in slope and inter-

cept between the pre-diagnosis and post-diagnosis period within the AD popula-

tion. We use Wald tests corrected for multiple comparisons using the Bonferroni



4.2. Materials and methods 71

method with a significance threshold of 5%.

This analysis was performed in R, using the glmer function of the lme4 pa-

ckage.

4.2.4 Predictive model

We use a machine learning approach to predict if an individual will have a

diagnosis of Alzheimer’s disease in the next 5 or 10 years based on the treatments

of the individual in a given semester. A positive case is therefore an individual

from the AD cohort who is not diagnosed with AD at the considered semester and

has been diagnosed with AD within the following 5 or 10 years.

For all individuals in the AD cohort, a semester before AD diagnosis is ran-

domly selected, which avoids repeated data. If the selected semester is followed

by an AD diagnosis in the next 5 or 10 years, the individual is attributed to the set

of positive cases. Otherwise, it falls within the set of negative cases (see Scenario 1

below).

We evaluate different scenarios depending on the definition of a negative case :

— Scenario 1 : A negative is an individual from the AD cohort, who is not

diagnosed with AD at the considered semester, have follow-up data until 5

years, and had not been diagnosed with AD within this time period.

— Scenario 2 : A negative is an individual who satisfies the previous definition

at a current semester or an individual from the MCI cohort at the first avai-

lable semester who had been followed for 5 years (therefore without AD

diagnosis). This definition adds 8,412 negative cases from the MCI cohort

to the scenario 1.

— Scenario 3 : A negative is as in the scenario 2 but with MCI replaced by CN.

It adds 29,513 negative cases from the CN cohort to the scenario 1.

— Scenario 4 : A negative is as defined in the scenario 1 but with a 10 years

follow-up period instead of 5.

Figure 4.1 shows an overview of the individuals included in the positive and

negative case sets for each scenario.

Scenario 1 is difficult since an individual progressing to AD at 5 years and 6

months will be considered negative whereas it is very close to be positive. Scenario

4 aims to alleviate the threshold effect by increasing the time-period, at the cost of

reducing the interest of the method for the detection of patients at-risk of rapid

progression to AD. When selecting a random visit before diagnosis, an average of

69.2% (±0.23 std) of patients have a AD diagnosis in the next 5 years, and 92.1%

(±0.15 std) do in the next 10 years.
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and Table 4.2 and 4.3) we show that drug prescriptions for patients diagnosed

with AD are higher before diagnosis for antidepressant, antipsychotic and anti-

dementia drugs compared to MCI and for all studied drug categories when com-

pared to controls (with the highest odd ratios obtained for the same psychotropic

drugs as in the AD vs. MCI + benzodiazepine in the AD vs. CN comparison).

Secondly, when we consider the slopes of prescriptions before AD diagnosis and

compare them to that of the MCI and CN groups, we evidence differences sug-

gesting dynamic changes across the AD continuum. Looking at the AD vs. MCI

or CN models, the most striking differences observed both before and after AD

diagnosis were observed for psychotropic drugs and especially for antidementia

and antipsychotic drugs. At the time of diagnosis there is a dramatic increase in

antidementia, antipsychotic and antidepressant drugs in the AD group compared

to just before diagnosis while the prescription of other drug categories (except for

anti-herpetic drugs) are decreased, most notably for anti-inflammatory and anti-

rheumatic drugs. Then, interestingly, we evidence a gradual decline in the usage

of all type of drug (including antidementia drugs) to the exception of anti-herpetic

drugs in the years following AD diagnosis compared to the prescription practices

in our two control groups.

4.4 Discussion

In this large sample representative of the general population seen in general

practitioner offices in the last 25 years in France we evidenced different prescrip-

tion practices in patients with AD diagnosis as compared to patients with stable

MCI and normal cognition. This case-control study benefits from a large-scale cli-

nical database, called Cegedim, that has been anonymized and deidentified for

clinical research purposes. Among our findings we can distinguish two different

domains : firstly, in the period preceding the diagnosis of AD we can identify pro-

bable risk factors and secondly, in the period encompassing the time of diagnosis

and afterwards we can analyze the drug related management of AD.

4.4.1 Risk factors

We interested ourselves to different classes of reported risk factors of AD. For

instance, infection by herpes simplex virus type 1 (HSV-1) (S. A. HARRIS et E. A.

HARRIS, 2018). HSV-1 is indeed a neurotropic virus that is highly prevalent in

the aged population. Both genomic and proteomic studies revealed an HSV-1 en-

richment in AD brains. Epidemiological data have repeatedly confirmed the link

between HSV-1 & AD. Genetic risk factors for AD (e.g. APOE4) also play a role
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Odd ratio of
AD vs MCI

before
diagnosis

Ratio of
slope for AD
subjects vs

MCI subjects

Odd ratio of
after

diagnosis vs
before

diagnosis for
AD subjects

Ratio of
slope after

diagnosis vs
before

diagnostic
for AD
subjects

Anti herpetic 1 (0.11) 1.01 (0.011) 0.797 (0.056) 0.95 (0.022)
Anti inflamma-
tory and anti-
rheumatic

0.937 (0.024)
1.01

(0.0025)**
0.605

(0.0079)***
0.952

(0.0057)***

Antidepressant 2.76 (0.34)***
1.12

(0.0046)***
1.88

(0.071)***
0.722

(0.0031)***

Antipsychotic 2.39 (0.52)***
1.13

(0.011)***
3.21 (0.38)***

0.869
(0.0077)***

Benzodiazepine 1.11 (0.052)
1.02

(0.0032)***
0.906

(0.017)***
0.913

(0.005)***
Antidementia
drugs

2.84 (0.29)***
1.45

(0.0088)***
7.54 (1.1)***

0.519
(0.0017)***

Glucose lowe-
ring

1.2 (0.16)
1.03

(0.0071)***
0.802

(0.027)***
0.8

(0.0071)***
Tension redu-
cing

1.04 (0.051)
1.05

(0.0033)***
0.812

(0.013)***
0.75

(0.0031)***

TABLE 4.2 – Odd ratios of prescription practices before and after diag-
nosis of AD as compared to MCI control group. Data are odd ratios
(Standard deviations). * = significant at the 0.05 level ; ** = significant
at the 0.01 level ; *** = significant at the 0.001 level (Bonferroni correc-
tion for multiple comparison was applied). AD : Alzheimer’s disease,

MCI : mild cognitive impairment.
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Odd ratio of
AD vs CN

before
diagnosis

Change of
slope for AD
subjects vs

CN subjects

Odd ratio of
after

diagnosis vs
before

diagnosis for
AD subjects

Change of
slope after

diagnosis for
AD subjects

Anti herpetic 1.38 (0.12)*** 1.01 (0.0069) 0.753 (0.051)* 0.958 (0.023)
Anti inflamma-
tory and anti-
rheumatic

1.55
(0.055)***

1 (0.002)
0.604

(0.0079)***
0.952

(0.0058)***

Antidepressant
107

(5.4e+02)***
1.16

(0.0061)***
1.89

(0.073)***
0.72

(0.0031)***

Antipsychotic 17.2 (35)***
1.19

(0.015)***
3.2 (0.37)***

0.87
(0.0077)***

Benzodiazepine 23.4 (23)*** 1.01 (0.003)
0.904

(0.017)***
0.912

(0.005)***
Antidementia
drugs

94.8
(3.7e+02)***

1.52
(0.011)***

7.97 (1.3)***
0.51

(0.0016)***
Glucose lowe-
ring

1.79 (0.28)***
1.05

(0.0055)***
0.802

(0.027)***
0.8

(0.0071)***
Tension redu-
cing

2.06 (0.18)***
1.06

(0.0027)***
0.811

(0.013)***
0.749

(0.0032)***

TABLE 4.3 – Odd ratios of prescription practices before and after diag-
nosis of AD as compared to CN control group. Data are odd ratios
(Standard deviations). * = significant at the 0.05 level ; ** = significant
at the 0.01 level ; *** = significant at the 0.001 level (Bonferroni correc-
tion for multiple comparison was applied). AD : Alzheimer’s disease,

CN : cognitively normal.

AUC J acc bacc sen spe
AD and MCI
groups (5
years)

70.8
(0.61)

32.3
(1.2)

66.2
(0.6)

66.2
(0.6)

61.7
(3.1)

70.7
(3)

AD and CN
groups (5
years)

70.5
(0.6)

30.5
(1.1)

67.8
(1.4)

65.3
(0.54)

58.9
(3.7)

71.6
(3.4)

AD group (5
years)

69.2
(0.85)

30.4
(1.5)

62.8
(1.6)

65.2
(0.74)

59
(3.8)

71.4
(4)

AD group
(10 years)

75.6
(1.1)

41.7
(2.3)

63.7
(3.6)

70.9
(1.2)

62.4
(4.2)

79.3
(4.4)

TABLE 4.4 – Performance of the prediction of the presence of an
AD diagnosis 5 or 10 years after a random visit for different groups
of subjects. AUC = area under the receiver operating characteristic
curve ; J = Youden’s J statistic ; acc = accuracy ; bacc = balanced accu-

racy ; sen = sensitivity ; spe = specificity.
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in the HSV-1 life cycle/infectivity. In vitro and in vivo, HSV-1 favors Aß produc-

tion as well as increased phosphorylation of Tau in neurons (CHIARA et al., 2019 ;

MARTIN et al., 2014 ; WOZNIAK et al., 2007).

An estimated 3.7 billion people are today infected with HSV-1 (ORGANIZA-

TION, 2017) and there is a 90% prevalence of the virus in populations after the age

of 50 years. In a recent population study on 33.000 Taiwanese individuals (TZENG

et al., 2018), the risk to develop AD was 2.5 fold greater in infected people with

recurrent viral reactivations. This risk returned to baseline in people treated with

antiviral medications. In our study, we evidence an increased prescription of anti

herpetic drug prescription before time of AD diagnosis compared to the CN group

that would support these claims.

Midlife diabetes (CHENG et al., 2012), and more generally, vascular risk factors

(WHITMER et al., 2005), have been identified as dementia risk factors. Again, in

our study, AD patients were more frequently treated with tension and glucose

reducing drugs prior to diagnosis as compared to CN.

Anti-inflammatory and antirheumatic drugs were more frequently prescribed

in AD patients before diagnosis as compared to the prescription frequency in the

CN group. The relation between systemic inflammation and AD has been explo-

red thoroughly in the last two decades (HOLMES, 2013) and recent findings sup-

port a role for peripheral inflammation as early as the prodromal stage of AD and

dementia with Lewy Bodies (KING et al., 2018). Our finding suggests that this

inflammation might be earlier still and indeed, another recent study has shown

that neuroinflammation predates amyloid deposition in the brain of patients with

prodromal AD (HAMELIN et al., 2016). At the time of diagnosis, the prescription

frequency of this type of drugs falls below that of stable MCI and NC groups and

continues to decrease afterwards. This is probably due to the rate of adverse events

with non-steroidal anti-inflammatory (NSAID) drugs (HARIRFOROOSH, ASGHAR

et JAMALI, 2013) especially in patients with cognitive decline who may experience

treatment observance difficulties. Finally, the fact that the efficacy of aspirin, ste-

roid and NSAIDs (traditional NSAIDs and selective cyclooxygenase-2 inhibitors)

is not proven and thus not recommended for the treatment of AD (JATURAPAT-

PORN et al., 2012) probably accounts for the findings after AD diagnosis in our

study.

Finally, the most dramatic differences were evidenced for psychotropic drugs.

There was a gradual increase in the over prescription of antidepressant, antipsy-

chotic, and antidementia drugs in the 15 years preceding diagnosis. Interestingly,

the probability of being treated by one of these drugs was already superior to
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that of CN 15 years before diagnosis while it was inferior to that of MCI until 10

to 5 years before AD diagnosis and superior afterwards. As in any case-control

study we can only hypothesize about such findings. Some authors have propo-

sed that differences evidenced 15 years before AD diagnosis are indeed directio-

nal in the sense that it is hardly plausible that AD is already clinically relevant at

this point to justify a psychotropic treatment (RICHARDSON et al., 2018). Howe-

ver, our prescription probability curves are really reminiscent of those described

by AMIEVA, MOKRI et al. (2014) showing a cognitive decline up to 16 years before

the diagnosis of dementia in highly educated individuals in the PAQUID cohort.

This could indicate that subtle changes, related to AD brain lesions occurring up

to 30 years before diagnosis (BATEMAN et al., 2012) would be recognized as psy-

chiatric symptoms and treated as such. On argument in favor of this hypothesis is

the prescription probability curve of antidementia drugs compared to that of the

CN group. We see that the two curves diverge around 8 years before the diagnosis.

This implies that the general practitioners detect subtle cognitive changes in some

patients, years before they later decline to the point of AD dementia. This pre-AD

diagnosis period of 5 to 10 years exactly matches the duration of the prodromal

phase of the disease estimated recently in a large, multicohort study by VERMUNT

et al. (2019). This means that it is in fact possible to diagnose AD earlier which

would help in secondary prevention trials. Nowadays, the frequency of patients

with early stage AD diagnosis in France is quite low for many reasons, including

the low referral by general practitioners to memory clinic specialists (EPELBAUM,

PAQUET et al., 2019).

4.4.2 Prediction

In our study, the simple algorithmic analysis of the combination of studied

drug categories prescription yielded fair screening performances for further AD

diagnosis in the 5 following years. Of note, we selected the model that was the

most clinically pertinent, selecting both from the AD and from the stable MCI

groups as patients. This finding has major public health implications as it opens

new opportunities to screen for dementia in the elderly in a simple, implicit fa-

shion and at no cost. Thus far, screening for dementia or identifying at-risk for de-

mentia individuals relies on genetic (ESCOTT-PRICE et al., 2015), clinical (JOHNSON

et al., 2014) or neuroradiological investigations (ARDEKANI et al., 2017 ; SAMPER-

GONZALEZ et al., 2019 ; CHINCARINI et al., 2011). Integrating the screening pro-

cess to routine practice has many advantages compared to these techniques which

all require the active participation of patients and are costly. Our algorithm could

seamlessly alert the general practitioner about the risk of further dementia which
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would allow to enrich prevention trials in “at-risk” participants and result in de-

creases in recruitment cost (ANSART, EPELBAUM, GAGLIARDI, COLLIOT, DOR-

MONT, DUBOIS et al., 2019).

4.4.3 Management practices

At the time of diagnosis, we evidenced a spectacular increase in psychotropic

prescription in AD patients. Although this seems coherent for antidementia drugs,

this is much more surprising for antipsychotics which use is advised against by

French and European healthcare authorities since 2008 (ANKRI and VAN BROECK-

HOVEN 2013). This is probably due to the fact that the Cegedim aggregates data

from the last 25 years and it will be a particularly useful tool to monitor this prac-

tice, which can be impacted by public health policies (DONEGAN et al., 2017), in

the coming years.

The decrease in almost all drug categories prescription probably reflects the

gradual changes induced by the autonomy loss over the course of AD. The gene-

ral practitioners tend to simplify the therapeutic procedures as much as possible

for these patients, especially in institutions (MASSOT MESQUIDA et al., 2019). The

decrease in antidementia drugs probably relates to the limited magnitude of effect

(BIRKS et GRIMLEY EVANS, 2015 ; KISHI et al., 2017) which can sometime be disap-

pointing for patients and their care giver, and lead to treatment discontinuation.

In fact, most treatment categories display a decreasing slope of prescription af-

ter AD diagnosis which seems opposed to recent findings in a recent observational

study of prescription changes following nursing home admission (ATRAMONT et

al., 2018). However, our study does not indicate if patients were institutionalized

or not which explains part of the discrepancy. One should also note that despite

this gradual post-diagnosis prescription decrease, the frequency of psychotropic

drugs remained higher in AD patients than in the two control groups as already

described (RENOM-GUITERAS et al., 2018).

4.4.4 Strengths and weaknesses of the study

The use of a large sample of patients representative of the general population

in France assessed with the same standardized electronic clinical records software,

is among the main strengths of our study.

Another strength lies in the use of three groups rather than two. In most popu-

lational studies the model analyzes differences between one group with a condi-

tion and a control group (TZENG et al., 2018 ; PERERA et al., 2014 ; W.-Y. LIN et

al., 2019). In AD research however, such a dichotomy does not consider the com-

plexity of this affection. Prior to dementia, stages of preclinical and prodromal AD
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(or MCI due to AD) have been described (DUBOIS, FELDMAN, JACOVA, DEKOSKY

et al., 2007 ; DUBOIS, FELDMAN, JACOVA, HAMPEL et al., 2014 ; JACK, BENNETT

et al., 2018). These stages can sometime be difficult to diagnose. Roughly 50% of

patients with MCI have a genuine AD process (PETERSEN et al., 2013). Using a

stable MCI control group allowed us to distinguish “chronic conditions affecting

cognition” (such as lasting psychiatric conditions such as anxiety of recurring de-

pression, learning disability, traumatic brain injuries) from neurodegenerative di-

sorders leading to dementia. In the stable MCI group for instance psychotropic

drugs are initially more frequently prescribed than in the AD group. However,

this prescription frequency remains stable over time whereas that in the AD group

gradually increases and exceeds it in the 10 to 5-year period before AD diagnosis.

Selecting a CN group allowed us to evidence subtle differences with the AD group

(notably concerning anti herpetic, anti-inflammatory and antirheumatic, glucose

and tension lowering drugs) which might have otherwise remained obfuscated.

Finally, the long period of follow-up is particularly well suited for the study of

such a chronic disease as AD spanning decades of life (VERMUNT et al., 2019).

As in all large scale, populational studies, the diagnosis of AD remains howe-

ver based mostly on its classical, mostly clinical criteria and have not systemati-

cally been validated in expert memory clinics with the latest biomarkers. However,

as in genome wide association studies, the relative lack of precision of data is well

compensated by the large sample size which allows to draw general conclusions.

Finally, the retrospective case control studies do not permit to draw causality in-

ferences from their findings. For instance, as previously discussed, the over pres-

cription of antidepressant in the AD group 15 years before diagnosis could be the

cause or consequence (and maybe even both) of AD later in life. Only intervention

studies and the longitudinal follow-up of patients (in the case of AD for decades)

might be of value in informing on the directionality of the observed associations.

4.5 Conclusion

This large scale naturalistic observational study is informative on the prescrip-

tion practices associated with AD diagnosis. Some of our findings can be interpre-

ted as putative risk factors of the disease while others are more probably related

to healthcare practices and recommendations. We also introduced the concept that

healthcare monitoring over long periods of time could be used to screen for de-

mentia. Such large standardized routinely sustained databases will certainly prove

to be very valuable tools to develop and validate public health policies in the fu-

ture.
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Conclusion & Perspectives

Conclusions

We proposed several clinical decision support systems to automatically iden-

tify groups of at risk individuals based on different criteria. We first considered

the methodological issues that the design of such systems entails, and identified

best practices by conducting a review of studies which perform an automatic pre-

diction of the future diagnosis of MCI subjects. We then take advantage of our

findings to propose our own method for performing this prediction, and compa-

red several methodological options in a simple framework. Thirdly, we proposed

a method for selecting individuals at risk of being amyloid positive, in order to re-

cruit subjects for clinical trials at a lower cost. These decision support systems were

tested on clinical research cohort, which do not always reflect the clinical practice.

In a last study, we therefore focused on electronic health records, and used treat-

ment prescriptions to select individuals who are at risk of developing AD in the

next 5 to 10 years. We summarize here our conclusions regarding each of these

studies.

In a first study, we conducted a systematic and quantitative review of the me-

thods which automatically predict the progression of mild cognitive impairment

to Alzheimer’s disease. We found that predictions based on MRI only performed

significantly worse than others. These findings question the wide use of MRI in

this field, and call for further exploration of cognitive assessments, which can be

easily gathered and lead to a good performance. We identified several methodolo-

gical issues, which pertain to the misuse of the test set during the training phase,

or to the usability of the method in clinical practice. We propose guidelines to re-

solve these issues, and highlight the importance of following machine learning

best practices. We show that short term predictions are not likely to perform better

than predicting that all individuals stay stable over time, showing the importance

of comparing the methods to this constant prediction. We also highlight a possible

bias regarding the non publication of methods resulting in a low performance on

a large data set.
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In a second study, we proposed a method for automatically predicting the fu-

ture diagnosis of MCI subjects, by first predicting their future cognitive scores.

This approach gives a more complete view of how the patient is likely to evolve,

which can be used for diagnosis but also for patient stratification or selection of

a particular subgroup, and to tailor patient care at the individual level. This two-

step prediction is also more interpretable for clinicians. By reducing the black-box

effect, it is more likely to be used in clinical practice. Within this prediction frame-

work we benchmarked a range of methodological options and assessed the per-

formance on the prediction of the progression to AD at one year. We showed that

using longitudinal information did not improve the results compared to using one

visit only for prediction. Overall, using more complex features, which can be less

available in clinical practice, did not lead to a better prediction than the one obtai-

ned using the simple framework.

An interesting perspective of this study would be to assess the performance of

more complex methods regarding the use of imaging or longitudinal information.

Deep learning methods for example, have been especially known for their good

performance on image analysis on data sets of more than 50,000 samples(LAUZON,

2012 ; LI DENG, 2012). They could be used in our framework to automatically ex-

tract the most relevant features from MRI, although they usually give the best

results when applied on a data set larger than the ADNI. In a similar manner, al-

gorithms modeling the temporal changes of each individual using their full history

could be used to improve the longitudinal prediction.

In a third study, we proposed a method for recruiting subjects for clinical trials

such as to minimize recruitment costs. In this method, we first automatically select

individuals with a higher risk of being amyloid positive, and then perform a PET

scan on these individuals only to confirm their amyloid status. We tested our ap-

proach on three different cohorts and showed that using it to select individuals for

clinical trials can lead to a 20% reduction in recruitment costs. We found that using

cognition, socio-demographic information and Apoe4 leads to a lower recruitment

cost than integrated MRI features or longitudinal data. We showed that the cohort

selected using our method is representative and does not significantly differ from

the cohort that would be selected by performing a PET scan to all possible indivi-

duals, and that it generalizes well when applied to new subject.

A limitation of the study is the data set size. Data set size can greatly impact

the performance, and testing our method on a lager cohort, coming from a Phase 3

clinical trials for example could lead to even better results. We also tested only ba-

sic MRI features, and methods taking advantage of the full MRI to extract features
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that are meaningful to amyloidosis prediction could lead to a better performance

using MRI.

In a fourth study, we modeled the treatment patterns of AD, MCI and CN sub-

jects from french medical records. We first studied the difference in treatment bet-

ween these groups, and the changes in treatment occurring at the time of AD diag-

nosis, in order to identify risk factors and management practices in french health

care. We showed that AD diagnosis resulted in a radical change in patient care.

Differences in prescription between AD and MCI or CN patients can be observed

up to 15 years before AD diagnosis, suggesting that the temporal horizon that is

currently considered in clinical studies and trials is in fact too short. Studies span-

ning over at least a decade could give a better view of the long term changes in

patients, and highlight changes in biomarkers that are not visible on a smaller time

scale.

We then built a model to predict if a patient will develop AD in the coming 5

or 10 years, based on 6 months of treatment history. The adoption of such a system

could help clinicians identify at-risk individuals, who could benefit from additio-

nal exams and a more rigorous monitoring. It could also constitute an interesting

tool for selecting patients for clinical trials, by creating cohort with a higher pro-

portion of individuals progressing to AD.

The main limitation of this study lies in its observational and retrospective na-

ture. Conclusions can only be drown regarding the correlation between events and

not regarding their causality.

Perspectives

A large number of automatic methods have been proposed to diagnose Alzhei-

mer’s disease and to identify individuals at risk of progressing to AD. The machine

learning community provides a range of performance measures that can be used to

evaluate these methods using an objective metric. As a result, research on clinical

decision support systems often aims at maximizing these performance measures.

Although these performance metrics are important to consider, maximizing them

is not the goal per se. When building such a decision support system, one should

also consider how it can be meaningful to the clinical practice, and test it in condi-

tions that best reflect its future use.

Proposed methods are widely tested on clinical research cohorts, which are ea-

sily available. However, a method trained on such a cohort cannot be expected to

perform well in clinical practice, were the available features can be very different
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and patients can have different characteristics. Clinical decision support systems

would therefore gain at focusing on electronic health records (EHR), which are re-

presentative of the clinical practice and of the patients on which we aim at making

predictions. Our work on the Cegedim data base is a good first step in this direc-

tion. We focused on treatment prescriptions, which are easily available, but other

data types could contain additional information. The study of patient hospitaliza-

tion, and the integration of biomarkers in the analysis could lead to a more refined

identification of patients at risk of developing AD.

The wide adoption of such methods requires the evaluation of the cultural

biases of medical practices. We have brought into light management practices

identified in the Cegedim cohort, but these practices might be unique to French

health care, and their generalization to the health care system of other countries is

unclear. Before being ready to be used on a larger scale, decision support systems

should also be tested in a prospective study. In a test framework, clinicians could

receive an alert when an individual at risk of developing AD is identified, so that

patient care can be tailored. The system could also suggest additional tests, such as

cognitive questionnaires, in order to refine the prediction. The deployment of the

system for testing could allow to evaluate its impact on early AD diagnosis and

on the implementation and evaluation of new therapeutic strategies or prevention

measures.

Lastly, our work has focused on the context of Alzheimer’s disease, which is

the most common neuro-degenerative disease. However, when a patient shows

cognitive symptoms, practitioners are interested in knowing which disease the

patient is likely to develop, and rarely focus on one condition in particular. The

generalization of our work to differential diagnosis could therefore represent an

interesting perspective.
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Annexe A

Supplementary materials for the

systematic and quantitative review

A.1 Query

The full query was :

TITLE-ABS-KEY ("alzheimer’s" OR alzheimer OR ad) AND TITLE-ABS-KEY

("Mild Cognitive Impairment" OR "MCI") AND TITLE-ABS-KEY ((

predicting OR prediction OR predictive) AND (conversion OR

decline OR progression OR onset) OR prognosis) AND TITLE-ABS-KEY

(accuracy OR roc OR auc OR specificity OR sensitivity) AND (

TITLE-ABS-KEY ("Deep learning" OR "neural network" OR "neural

networks" OR "convolutional network" OR "convolutional networks"

OR "bayesian network" OR "bayesian networks") OR TITLE-ABS-KEY

("Matrix completion" OR "Support vector machine" OR "linear

mixed-effect" OR "logistic regression" OR "Random Forest" OR "

kernel classifier" OR "kernel" OR "decision tree" OR "decision

trees" OR "least-squares") OR TITLE-ABS-KEY ("Machine learning"

OR "pattern recognition" OR "pattern classification" OR "

classifier" OR "algorithm" OR "classification"))

A.2 Selection process diagram

The process used to select the articles included in the review is shown in Figure

A.1.

A.3 Reported items

For each article, the following elements were reported :
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FIGURE A.1 – Diagram representing who the articles were selected
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— number of MCI subjects progressing to AD;

— number of stable MCI subjects ;

— time to prediction ;

— used cohorts ;

— use of socio-demographic features (yes/no) ;

— use of APOE (yes/no) ;

— use of general cognitive features (yes/no) ;

— use of domain-targeted cognitive features (yes/no) ;

— use of new, home-made cognitive features (yes/no) ;

— use of voxel based features from T1 MRI (yes/no) ;

— use of regions of interest on the whole brain, from T1 MRI (yes/no) ;

— use of selected regions of interest from T1 MRI (yes/no) ;

— use of white matter hyper-intensities (yes/no) ;

— use of PET FDG features (yes/no) ;

— use of PET amyloid features (yes/no) ;

— use of PET tau features (yes/no) ;

— use of CSF features (yes/no) ;

— use of amyloid status (yes/no) ;

— use of DTI features (yes/no) ;

— use of functional MRI features (yes/no) ;

— use of EEG or MEG features (yes/no) ;

— use of other features (yes/no, precision given as a free note) ;

— use of longitudinal features (yes/no) ;

— is feature selection performed (yes/no) ;

— used algorithm (categories defined below) ;

— validation method (categories defined bellow) ;

— feature selection performed on the whole data set (yes/no/unclear) ;

— feature embedding performed on the whole data set (yes/no/unclear) ;

— selection of the input visit of the test subjects using their date of progression

to AD (yes/no) ;

— other data leakage (use of the test set to make decisions) (yes/no/unclear) ;

— other issue (yes/no)

— AUC value ;

— accuracy value ;

— balanced accuracy value ;

— sensitivity value ;

— specificity value ;

Free notes describing the issues, or important points that did not fit in the pre-

vious list, were added.



90

The possible algorithm categories were added by the readers and aggregated.

The final list was : bayesian algorithms, classification by clinicians, gaussian pro-

cess, linear discriminant analysis (LDA), low rank matrix completion (LRMC), li-

near regression, logistic regression, manifold learning, multiple kernel learning,

neural network, orthogonal partial least square (OPLS), random forest, regulari-

zed logistic regression, support vector machine, survival analysis, use of a thre-

shold and others (including home-made algorithms).

The same process was used to create the cross-validation category list, compo-

sed of : 10-fold, k-fold, repeated k-fold, leave one out, out of the bag, single split,

repeated single split, validation on an independent cohort, validation on different

groups (when the algorithm is trained on separating AD and CN subjects, and tes-

ted on predicting the progression of MCI subjects), none, not described (when the

use of cross-validation is mentioned but the used validation method is not des-

cribed) and not needed (for thresholding with a manually chosen threshold for

example).

A.4 Journals and conference proceedings

Table A.1 shows the journals and conference proceedings in which more than

one included article has been published, and the associated number of articles.

A.5 Information table

A table containing all the articles included in the review and all the reported va-

lues can be found on https://gitlab.com/icm-institute/aramislab/mci-progression-review

The issues identified in each articles were removed from this open-access table, to

avoid negatively pointing at these studies. They can be made available if requested

to the corresponding author.
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Journal or conference proceedings
Number of
included
articles

Journal of Alzheimer’s Disease 12
NeuroImage 11
Lecture Notes in Computer Science 7
PLoS ONE 9
Neurobiology of Aging 6
Neurology 3
Brain Topography 3
Current Alzheimer Research 3
Medical Image Analysis 3
Frontiers in Aging Neuroscience 3
Scientific Reports 2
Frontiers in Neuroscience 2
IEEE Journal of Biomedical and Health In-
formatics

2

IEEE Transactions on Biomedical Enginee-
ring

2

NeuroImage : Clinical 2
Journal of Neuroscience Methods 2

TABLE A.1 – Number of included articles published in each journal
or conference proceedings. Only the journals with more than one in-
cluded article are shown here. The articles taken into account are the

one considered for analysis, and that use a large enough data set.
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Annexe B

Supplementary materials for

amyloidosis prediction

B.1 Computing R and S from the PPV and NPR

The number of False Positives (FP) can be computed from the Positive Predic-

ted Value (PPV) and the number of True Positives (TP) as such :

PPV =
TP

FP + TP

TP = PPV ∗ FP + PPV ∗ TP

FP =
1− PPV

PPV
TP (B.1)

In a similar manner, the number of False Negatives (FN) can be computed from

the Negative Predicted Value (NPV) and the number of True Negatives (TN) :

TN =
NPV

1− NPV
∗ FN (B.2)

We know that, NP being the number of positive subjects in the test set,

FN = NP− TP (B.3)

And, N being the total number of subjects in the test set :

FP + FN + TP + TN = N (B.4)

Using equations 3 to 6, we can deduce

TP = (N(1− NPV)− NP)
PPV

1− NPV − PPV

And S and R and be computed using equations 1 and 2.
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B.2 Difference of age in the 3 cohorts

Age average for
Aβ- individuals

(std)

Age average for
Aβ+

individuals
(std)

p-value

INSIGHT 75.7 (3.5) 76.8 (3.4) 0.01
ADNI-CN 74.4 (6.5) 76.2 (6.1) 0.005

ADNI-
MCI

72.0 (8.5) 74.7 (6.9) < 0.001

TABLE B.1 – Age comparison between Aβ- and Aβ+ individuals for
the different cohorts. std = standard deviation.

B.3 Algorithm pseudo-code
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Algorithm 1 Pseudocode of the method
Input : x and y
Output : probs : probability of each subject to be Aβ+; auc : the obtained AUC ;
min_cost : minimal cost for recruiting the subjects ; optimal_threshold : probability
threshold for which the minimal cost is obtained

for i = 1 to 50 do
⊲ Randomly split into training and test set, with 30% in test set
x_train, y_train, x_test, y_test← split(x, y, 0.3)

⊲ Hyper-parameter tuning using the AUC
splits_x, splits_y← split_in_5(x_train, y_train)
for num_fold = 1 to 5 do

⊲ Get the corresponding folds for training and testing
x_test_ f old, y_test_ f old← splits_x[num_ f old], splits_y[num_ f old]
x_train_ f old← all_ f olds_except_i(splits_x, num_ f old)
y_train_ f old← all_ f olds_except_i(splits_y, num_ f old)
for i_size = 1 to number_leaf_sizes do

for i_cycles = 1 to number_num_cycles do
⊲ Train and predict with the selected parameters
r f ← f it_r f (x_train_ f old, y_train_ f old, lea f _sizes[i_size], num_cycles[i_cycles])
probs← get_r f _score(r f , x_test_ f old)
⊲ Compute the corresponding AUC
auc← get_auc(probs, y_test_ f old)
aucs_table.insert(auc)

end for
end for

end for
⊲ Average the AUC for each parameters over all folds
mean_aucs← average_over_ f olds(aucs_table)
⊲ Select the parameter values corresponding to the best AUC
i_best_size, i_best_num_cycles← argmax(mean_aucs)
lea f _size, num_cycle← lea f _sizes[i_best_size], num_cycles[i_best_num_cycles]

⊲ Train and apply the model with the selected hyper-parameters
r f ← train_r f (x_train, y_train, lea f _size, num_cycles)
probs← get_r f _score(r f , x_test)
auc← get_auc(probs, y_test)

⊲ Get the threshold for minimal cost
sen_table, spe_table, thresholds_table← get_all_sensitivities_speci f icities(probs, y_test)
costs_table← all_possible_costs(sen_table, spe_table)
min_cost← min(costs_table)
i_min← argmin(costs_table)
optimal_threshold← thresholds_table[i_min]

end for
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Annexe C

Supplementary materials for the

study of treatment prescriptions

C.1 Statistical analysis

C.1.1 Model description

Let Yi,j be binary variable with value 1 when the subject i has a prescription

at the jth time point, and 0 otherwise. Yi,j follows a Bernouilli distribution with

P(Yi,j = 1) = µi,j. µi,j is modeled as :

log

(

µi,j

1− µi,j

)

= β1 + β2ti,j + β3ADi + β4ADiti,j + β5ADi

(

ti,j
)

+
+ β6ADi

(

ti,j
)

+
ti,j + bi

with ADi = 1 for AD patients and 0 for other patients, and
(

ti,j
)

+
= 1 when

ti,j > 0 and 0 otherwise.

The model is composed of 4 main parts. The first part, β1 + β2ti,j, corresponds

to a linear regression common to all subjects fitted by the model. The second

part,β3ADi + β4ADiti,j, corresponds to the difference between the AD subjects, for

which ADi = 1 and the subjects of the other group fitted in the model (MCI or CN),

for which ADi = 0, in terms of intercept and slope. The third part, β5ADi

(

ti,j
)

+
+

β6ADi

(

ti,j
)

+
ti,j corresponds to the change in response for the AD subjects after

their diagnosis, when ti,j > 0 and ti,j = 1, in terms of intercept and slope. Lastly, bi

corresponds to the random intercept for subject i.

This model therefore accounts for the difference between groups and the change

after diagnosis for the AD patients. Two models are fitted : one for the comparison

between the MCI and AD patients, and one for the comparison between CN and

AD patients.
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C.1.2 Coefficient interpretation

For all the following calculations, we note PAD(t) the probability of receiving

a given treatment at time t for a subject of the AD group, and PAD(t) the same

probability for a subject of another group. In a similar way, we note oAD(t) the

odds of receiving the treatment at time t for a subject of the AD group, and oAD(t)

for a subject of another group. For a given subject i of any group,

o(t) =
P(t)

1− P(t)
= eβ1+β2t+β3 ADi+β4 ADit+β5 ADi(t)++β6 ADi(t)+t+bi (C.1)

C.1.3 Intercept of the non-AD group

oAD(0) =
PAD(0)

1− PAD(0)
= eβ1+bi (C.2)

Estimation of the expectation :

E
(

eβ1+bi

)

= eβ1 E
(

ebi

)

= eβ1 (C.3)

For standard deviation estimation :

β1 ∼ N
(

µβ1 , σβ1

)

(C.4)

bi ∼ N
(

µbi
, σbi

)

(C.5)

eβ1+bi ∼ N

(

eµβ1
+µbi

+
σ2

β1
+σ2

bi
2 ,

(

e
σ2

β1
+σ2

bi − 1
)

e
2µβ1

+2µbi
+σ2

β1
+σ2

bi

)

(C.6)

C.1.4 Slope of the non-AD group

oAD(t + 1)
oAD(t)

=
eβ1+β2(t+1)+bi

eβ1+β2t+bi
= eβ2 (C.7)

C.1.5 Intercept change for the AD group

In order to only consider the changes due to belonging to the AD group without

the effect of the AD diagnosis, we take t <0

oAD(0)
OAD(0)

=
eβ1+β3+bi

eβ1+bi
= eβ3 (C.8)
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C.1.6 Slope change for the AD group

Slope for the AD group, at t < 0 :

sAD =
oAD(t + 1)

oAD(t)
=

eβ1+β2(t+1)+β3+β4(t+1)+bi

eβ1+β2t+β3+β4t+bi
= eβ2+β4 (C.9)

Slope for the non-AD group, such as detailed in C.7 :

sAD = eβ2 (C.10)

Hence,
SAD

SAD
=

eβ2+β4

eβ2
= eβ4 (C.11)

C.1.7 Impact of diagnosis on the intercept

We aim to measure the change of intercept in the AD group after AD diagnosis :

oAD (0+)
oAD (0−)

=
eβ1+β3+β5

eβ1+β3
= eβ5 (C.12)

C.1.8 Impact of diagnosis on the slope

We note s+AD the slope for a subject of the AD group and for a time t > 0 :

s+AD =
oAD(t + 1)

oAD(t)
=

eβ1+β2(t+1)+β3+β4(t+1)+β5+β6(t+1)

eβ1+β2t+β3+β4t+β5+β6t
= eβ2+β4+β6 (C.13)

We note s−AD the slope for a subject of the AD group and for a time t < −1 :

s−AD =
oAD(t + 1)

oAD(t)
=

eβ1+β2(t+1)+β3+β4(t+1)

eβ1+β2t+β3+β4t
= eβ2+β4 (C.14)

Hence,
s+AD

s−AD

=
eβ2+β4+β6

eβ2+β4
= eβ6 (C.15)

C.2 Predictive model

C.2.1 Performance measures

Definition of the performance measures, with TP = number of True Positives,

FP = number of False Positive, TN = number of True Negatives, FN = number of
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False Negatives, and J = Youden’s J statistic.

sensitivity =
TP

TP + FN
(C.16)

specificity =
TN

TN + FP
(C.17)

accuracy =
TP + TN

TP + TN + FP + FN
(C.18)

balanced accuracy =
sensitivity + specificity

2
(C.19)

J = sensitivity + specificity− 1 (C.20)

C.2.2 Results optimized for screening

In the results shown in section 4.3, we used Youden’s method to choose the

point on the ROC curve, hence maximizing Youden’s J statistic (J). Table C.1 shows

the results obtained by maximizing the sensitivity, for a specificity of at least 80%.

AUC acc bacc sen spe
AD and MCI
groups (5
years)

70.8
(0.61)

65.2
(0.56)

65.3
(0.56)

50.5
(1.1)

80
(0.04)

AD and CN
groups (5
years)

70.5
(0.6)

70.8
(0.32)

64.6
(0.55)

49.1
(1.1)

80
(0.035)

AD group (5
years)

69.2
(0.85)

58.2
(1.2)

64.3
(0.89)

48.5
(1.8)

80.1
(0.045)

AD group
(10 years)

75.6
(1.1)

62.1
(2.6)

70.4
(1.4)

60.6
(2.8)

80.1
(0.1)

TABLE C.1 – CPerformance of the prediction of the presence of an
AD diagnosis 5 or 10 years after a random visit for different groups
of subjects. AUC = area under the receiver operating characteristic
curve ; acc = accuracy ; bacc = balanced accuracy ; sen = sensitivity ;

spe = specificity.
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