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Chapter 1

Introduction

1.1 Cold atom inertial sensor

During the continuous development of atom interferometry in the last 28 years, we
saw the birth of a new generation of inertial sensors. Accelerometers, gravimeters, gyro-
scopes, gradiometers are being studied and developed in the scientific community as well
as in the industry. The versatility of these sensors is shown in the wide range of results
they are achieving: measurements of fundamental constants such as the fine structure
constant [1, 2, 3], prospect of improved navigation systems [4, 5, 6, 7], measurement of
gravity acceleration for geophysics purposes [8, 9] and also tests of fundamental physics
such as test of equivalence principle [10, 11, 12, 13]. In the recent years, propositions for
detecting gravitational waves have also been made [14, 15, 16, 17, 18].

1.2 Sagnac based gyroscopes

The main types of optical gyroscopes in commerce are the ring laser gyroscope (RLG)
and the fiber optic gyroscope (FOG). Both technologies relies on the Sagnac effect to
perform rotation rate measurement. Sagnac effect [19] couples the rotation rate applied
to the interferometer with its physical area. To illustrate in a simple way the effect, we
start by considering an interferometer with a circular optical guide, rotating about its
center with angular velocity Ω, see Figure 1.1. During the time it takes light to cross
half of the guide, the interferometer output has rotated by ΩπR2

c . Here we assume that
the angular velocity is much smaller than c/R. The difference in traveling time between
the two arms then becomes ∆t ≈ 2ΩπR2

c2 .

1
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A B

OUTPUT

INPUT

OUTPUT

INPUT

Figure 1.1: Scheme of a rotating circular interferometer. The light enters from the
input, is split in the two arms A and B and is recombined at the output. The interfer-
ometer is in rotation about its center, thus the output port moves, changing the length
of the optical path.

This leads to a phase difference such as:

∆ΦΩ = 2πc
λ

∆t = 4π
λc
AΩ (1.1)

where ~A is the normal vector of the physical area of the interferometer. Equation (1.1)
can be generalized to other kind of particles using the De Broglie wavelength λ = hc

E :

∆ΦΩ = 4πE
hc2

~A · ~Ω (1.2)

As we can see the effect is proportional to the energy E of the particle used to produce
the interference. In the case of optical gyroscope the energy of the photon is of the order
of 1 eV while, for comparison, in the case of cold atom gyroscope using non relativistic
133Cs atoms, the energy is of the order of 1011 eV.
For inertial navigation, ring laser gyroscope (RLG) are the de-facto standard thanks to
their long term stability and compact size (typical Sagnac area of tens of cm2) and wide
dynamic range. Ring laser gyroscope with larger areas, up to few m2, are also being used
for geosciences. Large Sagnac areas are also achieved by fiber-optic gyroscope (FOG)
reaching hundreds of m2. Both RLG and FOG utilize optical interference, while atomic
gyroscopes make use of matter wave interference, taking advantage of the huge energy
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difference between atoms and photons. The first atomic gyroscope, which used thermal
atomic beams, was realized between the beginning of the 90’s [20] and the first years
2000’s [21]. At SYRTE the first cold atom gyroscope was also built at the beginning of
the first decade of the 2000’s. It was a 6 axis gyroscope-accelerometer and it provided the
basis of a compact design for cold atom inertial sensors [4, 6]. The gyroscope described
in this work is the new generation of cold atom gyroscope being developed at SYRTE.
It has a Sagnac area of 11 cm2, the largest at the moment of writing. Other cold atom
gyroscope are also being developed around the word, at Hanover [22], at NIST [23] or
in China [24].

Stability Stability Integration
Type Sagnac Area Short Term Long term time

(rad · s−1 ·Hz−1/2) (rad · s−1)
Fiber, iXblue
FOG 200 [25] 5, 8 · 10−8 2 · 10−10 ∼ 8 day

RLG
G-Ring 16 m2 3 · 10−11 6 · 10−13 2 hours

(Germany)
[26]

Atomic Jet
(Stanford) 24 mm2 5 · 10−10 2000 s

[5]
Cold atom
3 light pulse 41 mm2 1, 2 · 10−7 2, 6 · 10−8 100 s
(Hanover)

[22]
Cold Atom
3 light pulse 4 mm2 2, 4 · 10−7 1 · 10−8 30 minutes
(SYRTE)

[6]
Cold Atom
4 light pulse 11cm2 3 · 10−8 3 · 10−10 ∼ 8 hours
(this work)

Table 1.1: Brief summary of the state of the art for both optical and atomic gyroscopes.
Integration time refers to the time needed to reach the best long term stability.
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1.3 Purpose of the thesis work

The cold atom gyroscope was already built by Thomas Lévèque [27] in 2008. The very
first atomic interferometer measurements using Raman transitions were performed by
Matthieu Meunier in 2013, who also implemented the first continuous measurement
using a Ramsey interferometer [28, 29]. Following Meunier’s work, Indranil Dutta im-
plemented continuous measurement with a 4 pulse configuration [30]. He also performed
the first measurement correlating the interferometer’s phase with the signal acquired
from classical sensor [31]. Denis Savoie extended Dutta’s work developing a three times
interleaved continuous measurement. He also implemented a system to compensate in
real time the contribution to the interferometers phase due to acceleration noise. He also
introduced a routine to operate the interferometer always at the middle of the fringe,
thus at maximum sensitivity [32].
I started working with Denis Savoie on the long term performance of the gyroscope.
To operate the sensor at its best, most of the systematic effects must be addressed and
minimized. The characterization of these systematic biases has been part of the main
purposes of my work. As I will show in this manuscript, the main systematic effect which
leads to long term stability drift comes from the imperfect optimization of the atomic
trajectory. This couples with the relative misalignment of the two Raman retro-reflection
mirrors used to realize beam-splitter and mirror pulses for the atomic wave packet. Af-
ter an initial optimization of the vertical trajectory in order to reduce phase shift linked
with the vertical alignment of the retro reflecting Raman mirrors, we published state
of the art performances for cold atom gyroscope [33]. A full characterization for both
directions of the mirrors and trajectory followed soon after. The other objective of my
work was the estimation of the scale factor of our large Sagnac area atom interferometer
and its linearity. I implemented different indirect methods to estimate the scale factor,
while finally a first direct measurement has been performed with the installation of a
rotation stage below the experiment. Towards the end of my PhD I also worked on the
implementation of a new 4 pulse scheme using different exchanged momentum which
could lead to an improvement of the overall performances.

1.4 Plan of the Thesis

Chapter 2: Concepts of Atom interferometry

In this chapter I briefly introduce all the necessary concepts for understanding atom
interferometry. I also present the 4 pulse configuration actually in use for our gyroscope,
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with its relative sensitivity function. I then conclude by describing how acceleration and
rotation noise affects our measurements.

Chapter 3: Experimental Set-Up

Here I illustrate the experimental apparatus: the laser systems used to cool, probe and
detect the atomic cloud. I then describe the main structure of the sensor, introducing
the new rotation stage implemented under the sensor. I conclude presenting a study on
the contribution to the phase noise due to vibration, before and after the introduction
of the rotation stage.

Chapter 4: Interleaved atom interferometry for improved sensibility

In this chapter I recall the latest results obtained with our cold atom gyroscope. I start
by describing the methods implemented by previous PhD students and used by me to
achieve a sensor that operates without dead time and with a high sampling rate. I then
present the results achieved in terms of long term stability, which is, at the time of
writing, the state of the art for a cold atom gyroscope. Using the fast sampling rate
together with the high inertial sensitivity, I could perform studies of dynamic rotation
in a so far unexplored range.

Chapter 5: Scale Factor and Bias of the Gyroscope

This chapter addresses the problem of characterizing the scale factor and bias of the
gyroscope. Here I present various techniques and instruments to estimate indirectly the
scale factor of the gyroscope. I then move on measuring directly the scale factor by using
a rotation stage placed below the sensor. To improve the precision of the estimation, in
the second part of the chapter I address the bias linked to non optimized atom trajectory
and relative misalignments between the retro-reflecting Raman mirrors.

Chapter 6: Non equal momentum transfer

This chapter describes the methods used to remove the destructive effects of parasitic
interferometers. I first present the solution implemented by previous PhD students and
the relative effect on the DC acceleration sensitivity. I then introduce a new solution
to prevent the recombination of secondary parasitic interferometers which consists in
the use of different exchanged momentum for the two Raman laser pair collimator. I
also present a new protocol to optimize the frequency ramp used to compensate DC
acceleration phase shift.
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Chapter 2

Basic concepts for cold atom
interferometry

In this chapter I will briefly introduce the concepts of atom interferometry (AI) and
cold atom inertial sensors. I will first introduce the method of using Raman transitions
to create an atomic beam splitter and mirror, such that we can manipulate coherently
atomic waves. I will later explain how inertial quantities such as acceleration and rotation
can be measured using atom interferometry. Subsequently I will describe the 4-pulse
interferometer currently in use for our gyroscope explaining why it is suitable for rotation
measurements. Finally, I will present the sensitivity function associated with the 4 pulse
interferometer in order to estimate how different source of noise can deteriorate our
measurements.

2.1 Raman transition and light pulses

2.1.1 Principles

The schemes here presented can be described in terms of simple optical interferometer.
The general scheme for AI resembles the scheme of Mach-Zehnder interferometer; instead
of using coherent light which is reflected and diffracted by physical mirrors and beam
splitters, we use matter wave as carrier and laser light pulses as “beam splitter and
mirrors.”

7
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2.1.2 Stimulated Raman Transitions

In our gyroscope we manipulate the atomic wave-packet by mean of stimulated Raman
transitions [34, 35]. Using two laser fields, ~E1 and ~E2, set close to the D2 line of
Cesium atom, we connect the Cesium hyperfine states |g〉 =

∣∣∣6S1/2, F = 3
〉
and |e〉 =∣∣∣6S1/2, F = 4

〉
.

Stimulated transition is a process that occurs when the atom, starting from one of the
lower states e.g. |g〉, absorbs one photon of energy ~ω1 from one laser field and emits a
photon of energy ~ω2 with the second laser field, being transfered coherently to the final
state |e〉.

In order for this transition to take place, the two hyperfine states are coupled to
an intermediate virtual level |i′〉 red-detuned by ∆ from |i〉 =

∣∣∣6P3/2, F
′ = 3

〉
. The

detuning ∆, is introduced to minimize one photon transitions to the exited state, thus
limiting spontaneous emission effects that will decrease the coherence of the wave-packet.
Spontaneous emissions processes decrease as 1/∆2 while the coupling efficiency to the
intermediate level |i〉 decreases as 1/∆, therefore an optimum condition can be found in
order to maximize both coherence and coupling.

In the case of counter-propagating laser beams, the two electromagnetic fields ~E1(t)
and ~E2(t) have opposite direction, therefore the exchanged momenta, when the atom
absorbs or emits a photons, have the same sign. The total momentum transfered to the
atom then, will be ~~keff = ~(~k1 − ~k2) ≈ 2~~k1.
The stimulated Raman transition with counter propagating beams then, associate an
external momentum state, |~p〉 or | ~p+ ~keff 〉, to an internal state |g〉 or |e〉, physically
separating the two population into separate arms of the interferometer.

To describe the interaction between the atom and the light pulse, we start from
studying the time-dependent Schrödinger equation associated with the system:

i~
d
dtΨ(t) = Ĥ ·Ψ(t) (2.1)

The wave-function Ψ(t) for our three level system can be expressed as a linear combina-
tion of the atom levels’ eigenstates:

|Ψ(t)〉 = Ci(t) |i〉+ Ce(t) |e〉+ Cg(t) |g〉 (2.2)

The operator Ĥ = Ĥ0 + V̂ (t) describes the complete Hamiltonian of the system with
Ĥ0 as the non interactive Hamiltonian and with V̂ (t) as the time dependent interaction
between the atoms and the total electromagnetic field.
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Figure 2.1: Raman transition in a 3 level Λ-system

The interaction operator, takes the form V̂ (t) = − ~̂D · ~E, where ~̂D is the dipole moment
operator and ~E is the total electromagnetic field:

~E(~x, t) = ~E1e
i(~k1·~x−ω1t+φ1) + ~E2e

i(~k2·~x−ω2t+φ2) + cc (2.3)

We can rewrite the interaction operator in term of Rabi frequencies :

V̂ (t) =
∑
j,k,l

~Ωj,k,l =
∑
j,k,l

− ~̂Djk · ~El |j〉〈k| (2.4)

where l = [1, 2] specifies the electromagnetic fields and j, k = [e, g, i] specifies the state.
To simplify the equations we apply the rotating wave approximation to our system.
In brief we ignore the terms that oscillate with optical frequencies (THz) since they
will average to zero faster than the terms which oscillate with the difference of optical
frequencies (GHz). At the end we obtain a two level system with effective Hamiltonian
[36, 37]:

Ĥeff = p2

2M +
[
~Ωeffe

i(~keff ·~x−φ(t)) |g〉〈e|+ ~Ω∗effe−i(
~keff ·~x−φ(t)) |e〉〈g|

]
(2.5)

where Ωeff = ΩeΩg
2∆ is the effective Rabi frequency.

This Hamiltonian describes the transition between the two hyperfine states with an
exchanged momentum ~~keff and a phase φ(t) imprinted at the time of the pulses. The
diagonalization of Eq. (2.5) yields:

|Ψ(t)〉 = C̃g(t)e−iEgt/~ |g, ~p〉+ C̃e(t)e−iEet/~
∣∣∣e, ~p+ ~~keff

〉
(2.6)

where Eg = p2

2M + ~ωg and Ee = (p+~keff)2

2M + ~ωe are the energy for the two states.
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Using the effective Hamiltonian in Eq. (2.6) and the above wave-function, Eq. (2.6),
in Schrödinger equation Eq. (2.1) we obtain:

|C̃g|2(τ) = 1− Λ sin2
(ΩR

2 τ

)
|C̃e|2(τ) = Λ sin2

(ΩR

2 τ

) (2.7)

where with |C̃g,e|2(τ) we describe the population in the two hyperfine state and their
respective Rabi oscillation. The amplitude of these oscillation is given by Λ = Ω2

eff/Ω2
R,

where Ω2
R =

√
Ω2
eff + δ2 is the generalized Rabi frequency and with δ we indicate the

shift from 2 photon resonance which includes Doppler shift, recoil shift, and light-shift.

Resonance conditions

Since the atoms are free falling the electromagnetic field will experience some detuning
due to Doppler effect. The frequency difference between the Raman lasers pair then will
have to satisfy the sequent condition:

~(ω1 − ω2) = Eg − Ee = ~(ωg − ωe) + ~ωR + ~ωD + ~δdet (2.8)

where ~ωR = ~2|~keff |2
2M is the recoil energy, ~ωD = ~p·~keff

M is the Doppler correction and
~δdet is a general detuning from the 2-photon resonance.

2.2 Atom optics

In the limit where δ � Ωeff , the amplitude of the population oscillation Λ → 1, then
we can simplify equations Eq. (2.7) as :

|C̃g|2(τ) = 1
2(1 + cos (Ωeffτ))

|C̃e|2(τ) = 1
2(1− cos (Ωeffτ)) (2.9)

We now discuss two interesting cases where depending on the length of the pulse we
obtain what are called atom optics.
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π pulses - Mirror

We start by having an atom in the ground state |g〉, |C̃g|2 = 1 which interacts with our
light pulse. In the case the duration of the pulse is τ = τπ = π/Ωeff , from Eq (2.9) we
obtain:

|C̃e|2(τπ) = 1 (2.10)

for the population in the excited state while |C̃g|2(τπ) = 0 for the initial state.
This means we have successfully transferred the whole atomic population from one hy-
perfine state to the other. Since we also associate momentum state with our internal
state, this implies that the atom in the exited state |e〉 has changed direction, producing
a path spatially separated from the original trajectory, acting on the wave-packet as a
mirror.

π
2 pulses - Beam Splitter

In the case the duration of the pulse is τ = τπ
2

= π/2Ωeff Eq (2.9) returns:

|C̃e|2(τπ
2
) = 1

2 (2.11)

as well for |C̃g|2(τπ
2
) = 1

2 . In this case we have created a superposition of both states, |g〉
and |e〉, while generating two spatially separated path, one for each atomic state. This
behavior can be compared to how an optical beam splitter creates two separate outputs
from a single input.

2.3 Mach-Zehnder Atom interferometry - 3 pulse scheme

With a mirror and beam splitter pulse, we now have all the tools to create an atom
interferometer. An optical Mach-Zehnder interferometer requires two beam splitters, and
two mirrors. With atom interferometry we can achieve the same type of configuration,
by using the correct series of pulses. We start with a π/2-pulse to physically separate
the two arms, a single π-pulse to reflect then conclude the sequence with a π/2-pulse
to recombine the wave-packets. We can estimate the phase in one of the output ports
of the interferometer, by calculating the difference of accumulated lasers phase between
the two arms:

∆Φ3P = (φ1 − φ2)− (φ2 − φ3) = φ1 − 2φ2 + φ3 (2.12)
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Here we introduce our sign convention for the imprinted phase; if the starting state is
the ground state |g〉, we apply a positive phase shift, +φ. On the contrary when we
shine the light pulses on the exited state |e〉, phase imprinted is negative, −φ.

2.3.1 Phase shift for a constant acceleration

In the previous section we explained how we are able to create a superposition of atomic
states while also separating the two wave-packets in space. As we saw the separation
is proportional to the effective momentum exchanged but it also depends on the time
between each light pulses. As the separation between the two wave-packets increases,
the interferometer’s sensitivity to ‘inertial’ forces grows. For the case of a 3-pulse Mach-
Zehnder, subjected to a constant acceleration field ~a we are able to generalize the ex-
pression for the phase shift as:

Φa = ~keff · (~x1(0)− ~x2(T ))− (~x2(T )− ~x3(2T ))
= ~keff · (~x1(0)− 2~x2(T ) + ~x3(2T ))
= ~keff · ~aT 2

(2.13)

The displacement of the atom on each path, is obtained by doubly integrating the
acceleration ~a, thus we obtain the phase to scale as T 2.

2.3.2 Phase shift for constant rotations - Sagnac effect

As our Mach-Zehnder atom interferometer encloses a physical area ~A, another famous
interference phenomenon can be observed [19]. Sagnac experimentally proved that when
light is split and recombined after enclosing a certain area, the interference pattern at
the output changes depending on the rotation rate of the apparatus [19, 38]. Sagnac
discovered that such phase shift is proportional to the area ~A enclosed by the two path,
and to the rotation rate, ~Ω. The general expression for Sagnac phase shift is:

∆ΨΩ = 1
~c2

∮ (
~Ω× ~x E · d~x

)
= 2E

~c2
~A · ~Ω

(2.14)

where E is the total energy of the particle used to perform interferometry.
It’s important to notice that Eq. (2.14), holds true for both purely optical interferometer
and matter-waves ones [39, 40, 41]. In Eq. (2.14), lies the reason why performing Sagnac
interferometry with cold atoms is more advantageous with respect to optical interferom-
eters. In fact for equal enclosed area ~A, the energy ratio between an atom (Eat ≈ mc2)
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and a photon (Eph = ~ω) gives:
Eat
Eph

≈ 1011 (2.15)

This relation shows clearly the huge potential gain in sensitivity using atom interferom-
etry compared to photon interferometry. We now proceed to calculate the phase shift
linked to rotation that we can measure with a 3-pulse atom interferometer. We assume
the atoms possess an initial velocity ~v0 and the interferometer perceives a constant ro-
tation rate ~Ω in the plane perpendicular to both ~keff and ~v0. The resulting phase shift
at time t will then be:

Φ(t) = −~keff · ~x = −~keff · (~v0t sin(Ωt) + 2~vrec cos(Ωt)) (2.16)

where we introduced the 2-photon recoil velocity ~vrec = ~~keff
M . We now calculate the full

phase shift for a 3-pulse atom interferometer, with timings 0 − T − 2T :

Φ1 = 0
Φ2 = −~keff · ~v0T sin(ΩT )− ~keff · 2~vrecT cos(ΩT )
Φ3 = −~keff · ~v02T sin(Ω2T )− ~keff · 2~vrec2T cos(Ω2T )

(2.17)

Following the calculation in [42], and combining Eq. (2.17) with Eq. (2.12), we can write
down the phase shift for all direction, in vectorial form:

Φrot = −~keff
(
2~Ω× ~v0

)
T 2 (2.18)

From this equation, plus Eq. (2.14), we can extract the total Sagnac area for a 3-pulse
interferometer:

A = ~
M
~keff · ~v0T

2 (2.19)

2.4 4-pulse Atom Gyroscope

The four pulse atom interferometer uses a sequence of light-pulses (π/2 − π − π − π/2).
The scheme could be seen as two Mach-Zehnder interferometer, where the output of the
first is the input of the second, but with no last(first) pulse.

2.4.1 Constant acceleration - Zero sensitivity

We now demonstrate why this is the configuration of choice to perform a cold atom
gyroscope compared to a simple Mach-Zehnder. We start by calculating the phase shift
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Figure 2.2: (left): Space-time diagram of the 4 pulse butterfly interferometer.
(right): Scheme of the experiment in the xz plane. The color represent the different
momentum states.

for the 4 pulse (see Figure 2.2):

Φ4p
a = (φ1 − φ2 + φ3 − φ4)up − (φ2 − φ3)down

= (φ1 − 2φ2 + 2φ3 − φ4)
= keff · (~x1(0)− 2~x2(T/2) + 2~x3(3T/2)− ~x4(2T )))

(2.20)

If we now substitute the usual equation of motion ~x(t) = ~v0t− 1
2~gt

2, it’s easy to calculate
that Φ4p

a goes to zero. This means the sensitivity to DC acceleration is null, hence at
the output of the interferometer we have an output signal that comes purely from DC
sensitivity to rotation and not a mix of rotation and acceleration.

2.4.2 Rotation Sensitivity - Sagnac area

In order to calculate the rotation phase sensitivity, we need to estimate the area enclosed
by the two wave-packets. As we operate the sensor as an atomic fountain the paths of
the two wave-packets fold onto themselves enclosing an area in the xz-plane.
To begin with, we introduce the velocities of the atoms in the x and z direction:

vz(t) = (v0 − gt)

vx(t) = 2vrec = ~keff
M

(2.21)

where v0 is the initial velocity of the cloud; to make the atomic cloud trajectory sym-
metric in space, we want to make sure the apogee of the trajectory coincide in time with
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the middle of the interrogation time 2T. This means vz(T ) = 0 hence we fix the initial
velocity to v0 = gT . We can now proceed to calculate the area enclosed between the two
path of the wave-packets. Since the AI is now symmetric with respect to the apogee,
the total area of the interferometer will be twice the area enclosed by the point ABCGA
in Figure 2.2. The total area of ABCGA, can also be divided in two separate section:

AABCGA = AABG +ABCG (2.22)

Since the initial velocity v0 is much larger than the recoil velocity vrec we can approximate
the two areas with the areas of two triangles, we begin with AABG:

AABG = 1
2 ×ABz ×BGx

= 1
2

∫ T
2

0
vz(t′)dt′ ×

∫ T
2

0
vx(t′)dt′

= 3
32g

~keff
M

T 3

(2.23)

For the other section we have:

ABCG = 1
2 ×GCz ×BGx

= 1
2

∫ T

T
2

vz(t′)dt′ ×
∫ T

T
2

vx(t′)dt′

= 1
32g

~keff
M

T 3

(2.24)

Finally the total area of our 4 light-pulse atom interferometry is:

A4p = 2× (AABG +ABCG) = 1
4
~
M

(~g × ~keff )T 3 (2.25)

We note that, even though we made some approximation, the result correspond to the
actual area of the interferometer. If we now combine Eq. (2.25) with Eq. (2.14) we obtain
the DC rotation phase shift due to Sagnac effect of the 4 pulse atom interferometer:

ΦΩ = 1
2
~keff ·

(
~g × ~Ω

)
T 3 (2.26)

It’s important to notice that the phase sensitivity to rotation scales as T 3 since the
initial velocity of the atom has to be equal to ~gT , contrary to systematics effect which
scale as T [43]. This property, together with the zero sensitivity to DC accelerations are
what makes this butterfly configuration very advantageous for measuring purely rotation
signals.
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2.5 Sensitivity function of a 4 light pulse interferometer

To describe how our system responds to external perturbation we rely on the sensitivity
function. In this section I will describe how different types of perturbation (Raman
laser phase noise, acceleration noise) modify the phase reading at the output of the
interferometer.

2.5.1 Laser phase sensitivity

We begin by studying the response of our system to an infinitesimal variation of the
phase difference between the two Raman lasers, δφ [44]. Such fluctuation generates a
change δP in the transition probability P = 1

2(1 + cos(Φ)) measured with the sensor.
If we assume the interferometer is operating in the middle of the fringe Φ = π

2 we can
write the sensitivity function as:

gφ = lim
δφ→0

δΦ(δφ, t)
δφ

(2.27)

If the relative phase between the Raman lasers changes with time, φ(t), we can calculate
the total contribution to the interferometer’s phase by integrating over time:

∆Φ =
∫ +∞

−∞
gφ(t)dφ(t) =

∫ +∞

−∞
gφ(t)dφ(t)

dt dt (2.28)

Since the interrogation time 2T is much larger than the pulse length, 2T � τ we can
write gφ(t) as:

gφ(t) =



0 : t < 0

−1 : 0 ≤ t < T/2

+1 : T/2 ≤ t ≤ 3T/2

−1 : 3T/2 < t ≤ 2T

0 : t > 2T

(2.29)

It is important to notice that it is possible to take in consideration both the length and
the shape of the pulse used [31, 32, 45]. We will now use the sensitivity function to
calculate the contribution to the phase generated by perturbations like rotation noise
and acceleration noise. To do so we need to convolve the sensitivity function with the
perturbation to obtain the inertial phase noise.
To simplify the calculation we pass to the Fourier space where the convolution becomes
a simple multiplication. Hence the perturbation will depend on the angular frequency



2.5. SENSITIVITY FUNCTION OF A 4 LIGHT PULSE INTERFEROMETER 17

ω. The Fourier transform of gφ(t) for a 4-pulse interferometer, takes the following form:

|Hφ(ω)|2 = 64 sin2
[
ωT

2

]
sin4

[
ωT

4

]
(2.30)

To obtain the total variance of the laser phase noise then, we need only the power spectral
density, Sφ(ω), of the noise. To do so we calculate σ2

φ:

σ2
φ =

∫ +∞

0
|Hφ(ω)|2Sφ(ω)dω

2π (2.31)

2.5.2 Acceleration phase noise

To characterize the phase noise introduced by external source by means of acceleration
noise is useful to study the response of the sensitivity function to acceleration. If we
subjected the sensor to an acceleration ~a(t), the interferometers phase would evolve as:

d2Φ(t)
dt2 = ~keff · ~a(t) (2.32)

As in the previous section, we now pass to the Fourier space and we obtain:

ω2 φ̃(ω) = ~keff · ã(t) (2.33)

where φ̃ and ã are the Fourier transform of φ and ~a. If we now combine Eq. (2.33) with
Eq. (2.30) we obtain the transfer function for acceleration noise:

|Ha(ω)|2 =
k2
eff

ω2 |Ha(ω)|2

= 64
k2
eff

ω2 sin2
[
ωT

2

]
sin4

[
ωT

4

] (2.34)

As in Eq. (2.31), we can measure the power spectral density, to estimate the phase
contribution of the acceleration noise:

σ2
φ =

∫ +∞

0
|Ha(ω)|2Sa(ω)dω

2π (2.35)

In Figure 2.3, are shown the amplitude spectral density (ASD), acquired with the
use of a seismometer, and the acceleration transfer function |Ha(ω)|2. As we can see,
the transfer function acts as a band-pass filter with a peak sensitivity centered around
1/2T . The result of the numerical integration will be shown in Section 3.3
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Figure 2.3: Amplitude spectral density (ASD) of the linear acceleration noise and the
acceleration transfer function |Ha(ω)|2 for a 4 pulse interferometer with interrogation
time T = 0.4 s. The ASD was acquired with the sensor resting onto a vibration isolation
platform using a seismometer.

2.5.3 Rotation phase noise

Phase sensitivity to rotation comes from the relative angular displacement of the Raman
collimator, rigidly connected to the sensor’s structure, with respect to the atoms, free
falling inside the vacuum chamber. A constant phase bias is due to Earth’s rotation
since the sensor is rotating along with it. However, as the sensor rests onto a vibration
isolation platform, it is free to rotate slightly about the horizontal axis. These small
rotations are one of the source of phase noise. Let us consider a rotation axis parallel to
the y-axis, we can then write the displacement along the x-axis as [32]:

x1 = θ1

(
L− 3

16gT
2
)

x2 = θ2

(
L+ 3

16gT
2
)

x3 = θ3

(
L+ 3

16gT
2
)

x4 = θ4

(
L− 3

16gT
2
)

(2.36)

where L is the distance from the axis of rotation. In this description we are considering
only tangential displacement since the noise acts on the entire structure of the sensor.
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Figure 2.4: Geometry of the 4 pulse butterfly scheme in the XZ plane. The rotation
axis for the noise is distanced L from the geometrical center of the two Raman collimator.

For a generic frequency ω and phase ψ we define rotation noise as Ω(t) = Ωω cos(ωt+ ψ),
therefore we can write ω(t) = Ωω

ω sin(ωt+ ψ). Following this definition, we can explicit
the values of θi for all the pulses :

θ1 = θ(0) = −Ωω

ω
sin(ψ)

θ2 = θ

(
T

2

)
= −Ωω

ω
sin
(
ω
T

2 + ψ

)
θ3 = θ

(3T
2

)
= −Ωω

ω
sin
(
ω

3T
2 + ψ

)
θ4 = θ(2T ) = −Ωω

ω
sin(2ωT + ψ)

(2.37)
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We now combine Eq. (2.20) with Eq. (2.36) to obtain an estimation of the rotation phase
noise:

∆Φω = keff (x1 − 2x2 + 2x3 − x4)

= −8keff
Ωω

ω
cos(ωT + ψ) sin

(
ω
T

2

)[
L sin2(ωT4 ) + 3

16gT
2 cos2(ωT4 )

]
= −Ωω cos(ωT + ψ)|HΩ(ω)|
= Ω(t)|HΩ(ω)|

(2.38)

From Eq. (2.38) then, we define the transfer function for rotation noise |HΩ|2:

|HΩ|2 = −64
k2
eff

ω2 sin2(ωT2 )
[
L sin2(ωT4 ) + 3

16gT
2 cos2(ωT4 )

]2
(2.39)

As we can see, the transfer function depends on a specific L; when L = 0, meaning the
axis of rotation passes precisely in between the two Raman collimator, the cosine term
in Eq. (2.39) is null. On the contrary, When the distance of the axis of rotation from the
center of the sensor is very large, L� 3

16gT
2, the cosine term dominates the expression

between square bracket. In this condition at low frequency, ω → 0, a DC terms appears
in |Hω|2, which takes the form of a constant bias in the rotation phase. This is the case
for Earth’s rotation as the projected rotation axis is far away from the sensor. As for
acceleration noise we can estimate the variance of rotation noise following Eq. (2.31):

σ2
φ =

∫ +∞

0
|HΩ(ω)|2SΩ(ω)dω

2π (2.40)

where SΩ is the power spectral density of rotation noise. Unfortunately we cannot
precisely estimate the contribution to the phase introduced by rotation noise, since we
cannot exactly position in space the axis of rotation. As for the acceleration, which we
can measure the PSD thanks to seismometers or accelerometers, the use of a sensor to
measure rotation noise, is more challenging due to the fact that measuring rotation of
the order of 10−7 rad · s−1Hz−1 can be quite challenging for commercial sensors.

2.6 Conclusion

In this chapter I briefly describe two photons stimulated Raman transition which we use
to create a coherent superposition of different momentum states. This is done by gener-
ating light pulses that act like beam splitters and mirrors for the atomic wave-packets.
Then I showed the calculation to estimate the phase shift of a 4-pulse interferometer due
to Sagnac effect. Finally I present the sensitivity functions of the gyroscope, that allow
us to estimate the impact of noise on the performance of our sensor.



Chapter 3

Experimental Set-Up

In this chapter the various components of the experimental apparatus will be briefly
presented. A detailed description of the design ideas behind the construction can be
found in previous thesis work [27], while in subsequent work [28, 31] the sensor gets
characterized. In [32] the detection system of the experiment has been improved along
side with the tilt locking systems which now can stabilize the tilt in both horizontal
direction. I will begin by describing the frequency and laser system used to coherently
manipulate and detect the atoms during all phases of the measurement cycle. I will,
then, describe the properties of the anti-vibration stage on which the gyroscope resides.
During my first year of PhD, I characterized a new rotation stage to be implemented
below the sensor. This new stage allows the experiment to rotate about its vertical axis
giving us the chance to measure the scale factor of the gyroscope. In collaboration with
the mechanical team (MUTA) of SYRTE, I designed a system that allows the rotation
stage to sustain the weight of the gyroscope and maintain a low level of vibration. In
this context I will present a characterization of the vibration noise on the experiment
before and after the implementation of the rotation stage. Another feature of the design
is the possibility to adjust independently the tilt both of the rotation stage itself and of
the sensor head, along both horizontal directions. Additionally, I will present a study
on a new voice coil actuator, used for the tilt locking system on the gyroscope.

3.1 Lasers

3.1.1 Frequency chain

A central component of all the optical benches is the frequency chain which provides
the necessary RF reference signals. It relies on a 100 MHz signal obtained from the

21
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Hydrogen Maser situated in SYRTE as a master reference for a quartz oscillator. The
reference frequency of the quartz oscillator is then used to synchronize and synthesize
all frequencies involved with the frequency locking between lasers, such as the frequency
beating between the two Raman lasers.

100Mhz MASER

(SYRTE)

100Mhz 

Quartz

8.9 GHz

9.4 GHz

9.0 GHz

L2 Lock

L2L1
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+
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-
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+-
DRO

Figure 3.1: Simplified scheme of the frequency chain which provides the reference sig-
nals for the laser locks and µ-wave selection pulse

3.1.2 Cooling Laser system

The cooling laser system relies on two external cavity lasers (ECDL) [46]. They are used
for the detection and repumper light as well as masters for injecting the 3 slave diode
lasers and reference for the Raman lasers.

Master optical frequency reference, Repumper, L1 The first ECDL (L1) is
locked by saturated absorption spectroscopy on the crossover transition |6 2S1/2, F =
3〉 → |6 2P3/2, F

′ = 2/3〉 and is used mainly as the repumper laser, mixed with the
cooling light in the 2D-Magneto Optical Traps (MOT) and 3D-MOT. Another part of
the beam is used as reference for the other lasers. The rest of the beam is used as probe
repumper in the detection system.

Cooling and Detection, L2 The second ECDL (L2) is locked close to the transition
|6 2S1/2, F = 4〉 → |6 2P3/2, F

′ = 5〉, thanks to its beating with L1 around 8.8 GHz
which is then compared to a reference signal at 8.9 GHz generated by the frequency
chain. Its light is used for the detection light sheet in the sensor and is also used to
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Figure 3.2: Schematic representation of the cooling laser bench and relative frequency
chain. The system is composed by two extended cavity diode laser and two slave diode
laser.
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injection lock the 2 slave diodes responsible for the atom cooling inside the 2D-MOT
and 3D-MOT.

2D-MOT and 3D-MOT slaves These are two slave diodes1 both injection locked
with L2. The powers are divided in 9 different fibers, 3 for 2D-MOT and 6 for the
3D-MOT.

3D MOT
3.1 3.2 3.3 3.4 3.5 3.6
4.1mW 6.0mW 6.46mW 5.4mW 5.3mW 6.37mW

2D MOT
6.1 6.2 6.3
29mW 24mW 2.2mW

Table 3.1: Fiber input power for the 3D MOT and 2D MOT. The coupling efficiency has
been measured 10 years ago and since has not been measured. Judging by the fluorescence
signal we estimate a total coupling efficiency of 50%.

3.1.3 Raman Laser system

The Raman bench is responsible for the generation of the light pulses to manipulate
coherently the atomic wave-packet. It is composed by two ECDL(L3, L4) phase locked
with each other, then optically amplified through the same single path tapered amplifier
to reach the experiment.

L3 is locked to L1 by frequency locking their beat-note at 350 MHz, in such a way L3 is
sufficiently far red detuned from the crossing transition |6 2S1/2, F = 3〉 → |6 2P3/2, F

′ =
2/3〉. This detuning ∆/2π ' 425 MHz, enough to limit the spontaneous emission during
the interrogation pulses.

L4 is phase locked to L3 with a variable frequency shift close to the hyperfine split-
ting, 9,192 GHz. The beating between the two lasers is then mixed with the dielectric
resonator oscillator’s (DRO) frequency, 9,383 GHz, producing a frequency of around 190
MHz. This frequency is sent to a phase lock loop where it is divided by two and then

1EYP-RWL-0850-00100-1500-SOT12-0000
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compared with a signal at 95.55 MHz, the resulting feedback then acts on the cavity of
L4.

Light amplification and pulse generation The total available power at the output
of L3 and L4 ECDL is around 30 mW, which half of it is used for the locking system
or is lost. To increase the total output power of the Raman bench, the two ECDLs
are injected simultaneously and with the same polarization, into a tapered amplifier2

(MOPA), reaching up to 350 mW after the optical isolator, using 1.6 A as forward
current and depending on the power of the seed. The acousto-optic modulator (AOM)
controls the length and shape of the light pulses which are then injected in the fibers
leading to the Raman collimators. Thanks to a variable retarder we can inject only one
fiber at a time.
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Figure 3.3: Schematic representation of the Raman laser bench. The system is com-
posed by two extended cavity diode laser and one Tapered amplifier. A voltage controlled
variable retarder select the Raman collimator to use.
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Figure 3.4: Cad drawing of the full sensor structure highlighting the different sections
of the experiment.
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3.2 Vacuum chamber - Atomic Fountain

The vacuum system is composed by four separated regions:

• 2D-MOT Initial trapping and optimized loading of 3D MOT

• 3D-MOT Trapping, cooling and launching of the atomic cloud

• Interferometric zone Probing of the atomic matter-wave with Raman Pulses

• Detection State population measurement by fluorescence

3.2.1 2D MOT

The scope of the 2D-MOT is to generate a flux of pre-cooled atoms that is pushed toward
the 3D-MOT system. The complete scheme of the 2D-MOT is described in [27]. In short,
two laser beams are used for trapping the atoms, thanks to a system of beam splitter
and retro-reflection mirrors, constraining the thermal vapor in two transverse directions.
A third beam is then used as a pusher, moving the trapped cloud toward the center of
the 3D-MOT where it is re-captured and cooled down. Two pairs of rectangular coils are
positioned inside the structure and produce a magnetic field gradient of 20 G cm−1[27].
The implementation of a 2D-MOT is useful to achieve a quick loading of the 3D-MOT.

3.2.2 3D MOT - Moving Molasses

The 3D-MOT is responsible for cooling and launching the atomic cloud.
It is composed by 6 independent laser beams, trapping the atoms along three directions
in space. The beams realize 3 pairs of counter propagating beams in a σ+/ σ− config-
uration, forming two tetrahedron pointing each other, trapping the atoms at the center
of the structure. Two pairs of coils provide the necessary magnetic fields; one in an
anti-Helmholtz configuration for creating a B-field gradient during the trap, one in an
Helmholtz configuration for compensating the residual bias field from other magnetic
sources.

Cooling and Launching sequence

After the trapping phase is completed, the magnetic field is switched off in less than a
1 ms, then the atoms are maintained in an optical molasses and further cooled for 6 ms
before being launched toward the interferometric region (a scheme of the full sequence
can be seen in Figure 3.5). To accelerate the atoms vertically the frequency between
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Figure 3.5: Scheme showing the relative intensity for the MOT slave lasers and the
reference frequency detuning during the trapping and launching phase.

the top and the bottom sets of lasers get symmetrically detuned by ±δν by applying a
frequency ramp to the respective AOMs. The resulting launch velocity can be calculated
as:

v0 =
√

3
2 2δν · λ (3.1)

In Figure 3.6 it is shown to see the relation between the launch velocity and the cooling
laser detuning. In this work we used mostly, a launch velocity v0 = 5.043 m · s−1; this
translates in a detuning of δν = 3.38MHz using Eq. (3.1). After the MOT and before
the interrogation, the atoms are prepared in the |F = 4,mF = 0〉 state using a selection
scheme based on the Stern-Gerlach effect (magnetic deflection of the atoms in mF 6= 0
states).

3.2.3 Detection Region

Above the 3D MOT is situated the Detection region, where the atomic cloud falls back
after a parabolic flight in the interferometric region. The detection scheme is described
in detail by [27, 28, 31] and, during the first year of my PhD, has been modified to
reduce the overall detection noise [32].

In brief three light sheets, 3 cm wide each, are propagated along Y direction and
then retro-reflected (see Figure 3.7); the top and bottom detection light sheets, of 1 cm
height, are resonant on transition |6 2S1/2, F = 4〉 → |6 2P3/2, F

′ = 5〉, while the middle
light sheet, only 0.2 cm tall, repumps atoms from |6 2S1/2, F = 3〉 to |6 2S1/2, F = 4〉
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Figure 3.6: Launch velocity versus lasers detuning. Higher velocities are not available
since the cloud collides with the ceiling of the vacuum chamber. On the other hand 3.00
m · s−1 is the lowest velocity to reach one of the Raman windows. The red dashed line
is a linear fit of the data with slope m = 1.0048(1) m · s−1 ·MHz−1

state. Along the X direction two collection systems, gather the photons generated by
fluorescence, onto a pair of bi-quadrant photodiodes3. The total collection efficiency for
each photodiodes is 4%.

In Figure 3.8 is showed the output of the Mirror photodiode representing the time
of flight of one atomic cloud. The fluorescence signal from the top sheet corresponds to
the atoms only in the F=4 state, while the bottom light sheet will detect both atoms in
F=4 and F=3.

Normalization and crosstalk

After the signals from each photodiodes are read with a 16bit acquisition card4 they get
integrated and processed. Since we are in the case were I < Isat, we can assume the
fluorescence to increase linearly with the number of atoms detected, we describe how
the number of atoms in each state is calculated. Using a simple linear equation system
we have: (

N4

Ntot

)
=
(

Kt −CbtKb

−CtbKt Kb

)(
It

Ib

)
(3.2)

where It,b are the integrated signals from the top and bottom light sheets, K is a nor-
malization factor, while Ctb,bt are coefficients to compensate for the crosstalk between
the two light sheet. In an ideal system Cbt and Ctb would be equal to 0, meaning that

3Hamamatsu S5870
4National Instrument PCIe-6341
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Figure 3.7: Detection Scheme with the modification implemented in [32]. Black masks
have been positioned to reduce stray light reflections and to improve the shape of the
detection light-sheet.

all photons generated by one light sheet are captured by the respective photodiodes
quadrant. Since the fluorescence light from detected atoms, scatters in all direction, the
bottom quadrant of the photodiodes can collect photons generated in the upper light
sheet. The same effect is valid with photons generated in the lower light sheet, detected
in the top quadrant. To compensate for this effects, we change the values of Cbt and
Ctb by a few percent from their ideal values. By switching the initial state of the atoms,
between F = 4 and F = 3 (obtained by using a microwave pulse as selection tool instead
of Raman pulse), and without probing the atoms with no Raman lasers, we can finely
adjust these values using the transition probability:

P = N4
Ntot

= N4
N4 +N3

(3.3)

We expect to have transition probability P = 1 for a cloud with only atoms in F=4,
since the atom count in the top and bottom light sheet should be the same. While on
the other hand we expect to see a transition probability P = 0 in the case of an atomic
ensemble prepared in the state F=3. Typical values of these crosstalk factors are usually
around 15% for Cbt and 5% for Ctb.

Detection noise vs atom number

Different type of noise affect our probability measurements. The first type is linked to
the technical nature of the detection. Each individual component of the detection, can
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Figure 3.8: Time of flight signals. The two colors represent the signals from different
quadrant of the photodiodes. The top trace (blue) is proportional to the number of atoms
in the state F = 4 while the bottom trace (yellow) measures the total number of atoms
(that is why the signal is larger compared to the blue trace).

contribute to the noise of the detection. As an example, the photodiodes noise, which is
independent of atom number. Another example is the fluctuation in power or frequency
of the probe lasers, leading to a noise which, on the contrary, scales proportionally with
the number of atoms detected.
The other type of noise is more fundamental. We begin by describing the output wave
function of the interferometer as |Ψ〉 = α |F = 4〉+ β |F = 3〉, and the projection opera-
tor as Π4 = |F = 4〉 〈F = 4|. The probability of measuring an atom in the state F = 4
is given by P = |α|2 and consequently 1−P = |β|2 for an atom in the F = 3 state. The
variance for a single probability measurement then will be:

σ2
4 = 〈Π2

4〉 − 〈Π4〉2 = P − P 2 = P (1− P )

Since the atomic cloud is composed by N independent atoms the total variance can be
calculated as σ2

P = σ2
N4
/N , this constitutes the ultimate limit for our detection, the

quantum projection limit.
It is important, to improve the sensitivity of the sensor, to measure the source of the
noise limiting us, being it technical noise, which can be improved, or if the quantum
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Figure 3.9: Characterization of probability noise as a function of number of atoms.
The black line indicates the quantum projection noise, while the red line is a guide (1/N)
to show the trend of the blue data points.

projection limit is reached. In Figure 3.9 a characterization of the detection noise is
shown. We vary the number of atoms launched by changing the duration of the cooling
sequence. We can study how the detection noise varies with a changing number of atoms
detected. With the black line, we show the quantum projection noise calculated at mid-
fringe (σPN = 1

2
√
N
).

As the dashed red line shows, the trend of the blue point indicates that we are still in
a regime where the limiting noise is proportional to the number of atoms. We operate
between 4 and 5·105 atoms, this corresponds to a σP ' 3 ·10−3. Such level of probability
noise translates to a signal of 1.2 · 10−8 rad · s−1 for a 10% contrast. which is a typical
value at which we operate.

3.2.4 Interferometric Region

Thanks to the several windows, 4 for each side of the chamber, the interferometric
chamber opens up the possibility to use different interrogation time as well as different
configurations, 4 pulses, 3 pulses. On one side of the chamber, all 4 windows are fitted
with a mounted mirror, a black cover and an adjustable quarter-wave plate. Since the
output of the collimator is linearly polarized for both Raman laser at the same time, a
the quarter-wave plate is needed to achieve a lin ⊥ lin transition scheme with counter-
propagating beams. In the case of counter-propagating beam then, it becomes necessary
to resolve the degeneracy between the different transfered momentum ±~keff = ~(k1 +
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Figure 3.10: Frequency Spectrum at different Raman windows. The blue traces is
obtained at the first windows and is characterized by a larger Doppler shift between the
co-propagating peak and the two counter-propagating peaks. The yellow trace is obtained
at the fourth Raman windows, where the atomic cloud is closer to the apex of the ballistic
trajectory, thus the counter-propagating peaks have a smaller Doppler shift. Here we used
a τ = 70 µs light pulse duration and the averaged width is σ̄f = 26.27± 0.57 kHz

k2).
To overcome this, the Raman collimator and the relative mirrors, are tilted with an

angle of 3.8° respect to the gravity acceleration ~g, this introduces a Doppler shift as:

ωD = ~v(t) · ~keff = ±(v0 − gt) · sin θ · keff (3.4)

where v0 is the launch velocity, t is the timing of the pulses, θ is the angle of the
collimator and keff is the effective momentum exchanged. We remove the degeneracy
when the Doppler shift between the peaks, becomes large enough to completely discern
the Doppler width for the velocity distribution. In order to reconstruct the full Doppler
width, we change the relative detuning between the two Raman lasers, L3 and L4.

In Figure 3.10 different pairs of Doppler shifts are shown; the two curves have been
acquired at different windows, this translates to a different mean velocity of the atomic
cloud. The parallelism between the collimator can be roughly tested by using (3.4).
Initially the cloud is launched at 5.014 m s−1, at this velocity it reaches the first and
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fourth window after respectively 0.114ms and 0.314ms. The difference between the
peaks for H1 windows is around 1,2 MHz while (v0 − gt) ≈ 4m s−1, using (3.4) we find
θ = 3.796°± 0.008°.

3.2.5 Rabi oscillation
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Figure 3.11: Rabi oscillation of the 4 light pulse at the bottom (circle marker) and top
(square marker) Raman windows. The blue (orange) curve is acquired after a time of
flight of 114 ms (314 ms) while the cloud is going upwards. The green (red) curve is
acquired after a time of flight of 714 ms (914 ms) while the cloud is falling down.

In Figure 3.11 we present the Rabi oscillation performed at the top and bottom
Raman windows for a cloud going upwards and for the cloud falling down. As we can see
the transfer efficiency is limited due to the velocity selectivity of the counter-propagating
Raman transition. This means only the velocity classes in the cloud that satisfy the
resonant condition, Eq. (2.8), are affected by the light-pulses. A clear difference is also
visible between the curves obtained with the cloud going up and the curves obtained
with the cloud falling down. As the cloud expands, the atoms are more sensitive to the
intensity inhomogeneity of the Raman laser pairs. This effect appears as a damping
factor in the Rabi oscillation which is especially visible after long time of flight (green
and red curves). A solution to mitigate this effect has been studied in [47] with the use
of a top-hat laser beam; in Appendix B I describe my contribution to this work.
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3.3 Vibration Isolation Platform

All of the experiment rests on top of a Minus K platform. This platform has a resonant
frequency around 0.5 Hz with a maximum load about 400 kg.
In Figure 3.12 we can see the transfer function of the Minus K in the 3 axis direction.

Figure 3.12: Transfer Function Ground - Minus K. The vertical dashed red line indi-
cates the nominal resonant frequency for the isolation platform. As we can see all three
direction present a resonant peak close to this line. To adjust the position of such peak,
on the horizontal direction can be done by adjusting the weights on top of it, while for the
vertical direction Z, this adjustment are done by adjusting the stiffness of the internal
springs.

Such graph has been calculated by comparing the signal from a seismometer situated
on the platform and one situated on the ground. As expected a peak is present around
the resonant frequency of the platform, around 0.5 Hz,shown with a red dashed line.
A second peak is very prominent around 2Hz; this feature is being associated with a
rotation mode of the experiment. This hypothesis can be confirmed by looking at the
signal of the two seismometer when both of the sensors are attached to the experiment.
By taking the half difference and the half sum of the signals from the two seismometers we
can distinguish which vibration measurements come from rotations instead of common
accelerations.
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Figure 3.13: Spectrum of acceleration (half sum, blue) and rotation (half difference,
orange) noise along the horizontal axis of the Raman beams. From this graph is clear
how the peak at 2 Hz, (seen also in Figure 3.12) is linked to rotational motions of the
sensor.

We can estimate how each frequency band contributes to the AI’s phase by using the
transfer function |Ha(ω)| of the 4-pulse AI, introduced in Section 2.5.2:

σ2
Φ =

∫ f2

f1
|Ha(ω)|2Sa(ω)dω2π (3.5)

where Sa(ω) is the Power Spectral Density (PSD) of the vibration noise. As we can see,
in Table 3.2 most of vibration noise contribution comes from the frequencies between
0.1 and 1 Hz while for the other frequency band the contribution is almost the same.

3.4 Rotation Stage

As it can be seen in Eq 2.26, the phase shift of the gyroscope depends on the relative
alignment between the effective k vector and the North. In order to study the scale
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Frequency 0.1-1 1-10 10-100 Hz
σφ vib 2.15 0.89 0.51 rad

Table 3.2: Vibration phase contribution for different frequency band. The total phase
noise will be compensated in real time during the interferometer, see Sec 4.2.2.

factor of the gyroscope or to determine possible biases, we need to be able to rotate the
sensor about its vertical axis. In order to turn the whole experiment a rotating stage
ALAR-250LP by Aerotech has been implemented. The stage is a brush-less slotless
motor capable of freely rotating, with a precision of 10 µrad and a maximum payloads
of 500kg. To control and supply the rotation stage we use a Soloist HLe Controller
which is a single-axis digital servo controller with integral power supply and amplifier,
which can be connected to a control computer through USB or Ethernet. To remotely
drive the stage we need to fine-tune the servo loop gains of the controller. This operation
is very critical and a wrong optimization could lead the sensor to spin uncontrollably.
Since at the moment we are not able to perform a full rotation of the sensor due to the
length of multiple cables, we have not yet performed the tuning of the controller in order
to avoid to catastrophically pull on these. Nevertheless the controller allow us to easily
know the angle of rotation, by reading the internal encoder of the motor stage, without
any necessary optimization. We then utilize two brass block to lock the stage in position
and a script to monitor its angle.
The stage does not provide any solution to reduce ground vibration and its requirements
for planarity of the floor are pretty high, 1 µm per 50 mm. A first design to comply
with this problems can be seen in Figure 3.14. The rotation stage is screwed on top of
an aluminium plate on top of 4 adjustable feet, in order to ensure its axis of rotation is
aligned with ~g. A second plate is screwed on the top of the motor ring and it is used
to support the vibration isolation and gyroscope setup. Both plates are reinforced with
two steel bars in a cross configuration, in order to help the plates maintain their flatness.

In Figure 3.15 we can see a comparison of the vibration noise spectrum before and
after the rotation stage was being implemented. The plot shows very comparable noise
levels. Using (3.5) we can estimate the contribution to the phase with the new setup.
Table 3.3 shows the difference in the estimated vibration phase calculated from the

acceleration measurements.
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Figure 3.14: CAD drawing of the rotation stage positioned below the isolation platform.
The feet of the bottom plate can be adjusted in order to adjust the inclination of the
rotation stage. In the picture is also possible to see one of the voice coil actuator used
to lock the tilt of the experiment.

Frequency 0.01-0.1 0.1-1 1-10 10-100 Tot Hz
Minus K 0.01 2.15 0.89 0.51 3.55 rad
Minus K + Alar 0.02 2.15 0.89 0.51 3.56 rad

Table 3.3: Vibration phase contribution for different frequency band. As we can see, the
largest contribution comes from acceleration in the frequency band 0.1 and 1 Hz, which
contains the resonance of the isolation platform.

3.4.1 New Tilt Lock coil

Fluctuation in the projection of ~g onto the direction of our Raman laser pair, can induce
fluctuation in the trajectory of the atoms which as a consequence could bring phase
shift uncounted for. Other phase shift could arise if the gyroscope is operated with
an asymmetric timing configuration. This configuration, render the 4-pulse sequence
sensitive to DC acceleration as seen in:

Φacc = 2~keff · ~gT∆T (3.6)

These fluctuation can introduce phase shift of ∼ 50 mrad for a change in projection
of 10µrad. To achieve a satisfactory long term stability then, it becomes necessary to
stabilize the tilt of the experiment.
A locking system has been implemented, first in the Raman lasers direction [31], then
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Figure 3.15: Comparison of the acceleration noise spectrum with only the isolation
platform Minus k (blue) and the combination of the isolation platform with the rotation
stage Alar250LP (orange).

in the transverse direction [32]. The system is composed by a 2 axis tiltmeter5 and
two separate voice-coil actuator. The voice-coil actuator are made in house and consist
of two coils of 270 spires, with inner radius of 30 mm and with an height of 50 mm.
Since the coils have to sustain 1 A as average current, support is made in aluminum to
help with the heat dissipation. The locking system consists of a feedback loop, which
is a simple numerical integrator, which generates a control voltage signal, based on the
tilt of the experiment acquired from the tiltmeter. This signal is then sent to a Delta
Electronika ES300 power supply, which converts it to a stable current signal. The output
of power supply is connected to the coil and the permanent magnet is connected to the
isolation platform below the experiment. Two of these systems are implemented, one for
both directions of the tiltmeter. In the direction of the Raman beams, which denote the

5Applied Geomechanics Incorporated 700-series HighGain version
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X direction, the actuator is able to lock the tilt with a stability of 0.2 nrad · s−1 after
10 seconds [32]. In the transverse direction, denoted as Y, the actuator fails to lock if
the actual tilt of the experiment drifts too far from the chosen set point. This shorter
active range, is thought to be a consequence of the higher inertial mass present on the
experiment along the Y direction compared to the X direction.
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Figure 3.16: Inclination of the experiment in the Y and X direction as a function of
current. We tested the new coil design by manually changing the current in the voice-coil
and measuring the inclination of the experiment. We tilted the experiment along the Y
direction (top) and we obtained a scale factor of 127.0±1.7 µrad/A, five time higher than
previous coil. The cross talk on the X direction remained the same, 14.4± 1.4 µrad/A.

To overcome this limitation, a new design for the coil holder has been designed and
tested. The new design allows to wind more spires around the support piece, while
maintaining the same inner radius of the old support, effectively increasing the total
field. We are able to wind around 1000 turns around this new support increasing by a
factor of almost 5 the field generated. We then proceed to measure the capabilities of this
new voice-coil actuator directly on the experiment. The previous actuator could achieve
23 µrad ·A−1 in the Y direction with a crosstalk of 15 µrad ·A−1 in the X direction [32].
With the new support we reach a scale factor of 127 µrad · A−1 while maintaining the
same level of crosstalk as before, as can be seen in Figure 3.16. The implementation of
this new actuator has been a decisive upgrade in the study of systematic effects linked
to improper setup of the mean trajectory of the atoms as we will see in future chapter.
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3.5 Conclusion

In this chapter I presented most of the elements that make up the SYRTE cold atom
gyroscope. The design of the sensor is more than 10 years old but different modification
and improvements have been implemented during the course of my thesis. Most notably
the modification to the detection system and the implementation of the piezo-motor
mirror mount, described in more details in [32], and finally the rotation stage. Most of
the results I will present in the next chapter would not have been achievable if these
upgrades were not implemented.
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Chapter 4

Interleaved atom interferometry
for improved sensitivity

In this chapter, I will present techniques that are in use on the cold atom gyroscope
at SYRTE. These techniques aim to overcome the limitation imposed by having dead
time in the scheme of operation for a cold atom sensor. I will describe a solution that
has been studied and implemented on the gyroscope by previous PhD students [28, 31],
which relies on the use of a joint scheme to eliminate dead time in the sequence of the
sensor. During the first year of my PhD, I then contributed to the implementation of
an interleaved scheme, which aims to increase the sampling rate of the gyroscope, that
I will describe in this chapter.

This scheme has been setup by Denis Savoie during his thesis [32]. I have participated
in the optimization and the achievement of the best performances [33]. These parts are
well detailed in his manuscript. I will recall here the methods and the main results
in term of stability. Thereafter, I studied the gyroscope’s response to weak dynamic
rotation rate. By making use of the high sampling rate, I was able to measure the weak
rotation rate signals in a regime that was not studied before for a cold atom sensor.

4.1 Continuous operation

4.1.1 Joint measurement

The general sequence of operation for a cold-atom inertial sensor can be summarized in
few steps: we first prepare a cold ensemble of atoms, then interrogate the ensemble with
light pulses and finally we detect the output states. All of these processes are executed
sequentially before the following measurement is performed. The total duration is the

43
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cycling time, Tc.
During the cooling and the detection phases no atomic cloud is being probed inside

the interferometric region. Since no measurements are being performed, these phases
are then considered as dead time for the sensor. The presence of dead time is a major
limitation for inertial sensor with cold-atoms; similarly to the Dick effect for atomic
clocks [48, 49], the presence of dead time deteriorates the stability of the sensor, due
to an aliasing of the noise, for example vibration noise. The loss of information also
prevents the correct reconstruction of inertial signal that vary rapidly in time [50].

(a) Usual sequential scheme (b) Joint Scheme

Figure 4.1: Comparison between the sequential scheme with dead times (a) and with
continuous interrogation (b)

To avoid these problems one has to setup a scheme of operation that allows the sensor
to measure in continuous, even during the cooling and detection phases.

Once the first cloud has almost reached the bottom window before the last pulse, the
new cloud is launched. By carefully matching the timings, both clouds arrive in front
of the window at the same time and share the same π/2 pulse. With this method the
cycling time Tc is reduced to be equal to the interrogation time 2T .

4.1.2 Interleaved Sequence

The sampling frequency of the experiment, even after the implementation of a joint
scheme, still remain fairly low due to the long flight time of the atoms inside the inter-
ferometric region. While reducing the time of flight of the atoms is a possibility, this
choice leads to a reduction of the scale factor since the sensitivity scales as T 3. An
improved scheme has been implemented [32] during the first year of my PhD, which
relies on interleaving multiple joint sequence together. Exploiting this long flight time,
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we prepare and launch a cold-atom cloud every 2T/3, where 2T is the interrogation time
having then 3 independent and joint atom interferometer. A visualization of triple joint
interleaved can be seen in Figure 4.2.
Interleaving higher number of interferometers was not possible due to technical lim-

Figure 4.2: Representation in time-space of 3 interleaved continuous atom interferom-
eter, where each color represents a different joint sequence.

itation given by the design of our sensor. Another limitation is the possibility to use
only an odd number of interleaved sequence. This comes from the necessity to ramp the
frequency of the Raman lasers to compensate for the Doppler effect. In a simple joint
scheme, two consecutive interferometer share the first and last π/2-pulse. This requires
the Raman lasers to be at resonance for both cloud at the same time. With our design,
this condition is satisfied by changing the sign of the ramp at the moment of the light
pulse. This means we acquire measurements with alternating +keff and −keff momen-
tum transfered. If we were to interleave two joint scheme, we would be in a condition
where interferometers with the same sign of keff share a π-pulse, see Figure 4.3. In
this condition we would not be able to satisfy the resonance condition due to Doppler
effect for both cloud at the same time. By extension a sequence 2n-interleaved would be
equivalent to interleaving n-times a two joint scheme, meaning that with even number of
interleaved sequence, the resonance condition cannot be satisfied for all interferometers.
A solution would be to implement a double diffraction scheme where there is no Doppler
effect.
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+k +k +k-k -k -k

Figure 4.3: Geometry for a double interleaved atom interferometer. As we can see
in this configuration AIs with the same keff share a pulse while the wave packets have
opposite mean velocities. In a simple diffraction scheme this configuration cannot be
satisfied as the two clouds have different resonant conditions.

4.2 Methods

4.2.1 Acquisition and processing based on seismometers

Our sensor is insensitive to DC acceleration, therefore a large contribution to the phase
noise of the interferometer comes from vibrations (AC-accelerations), see Sec 2.4.1. To
better understand this contribution, we show on the right in Figure 4.4, the correla-
tion between the transition probability and the reconstructed vibration phase, φvib. To
determine this vibration phase we use two separate seismometers1. They are rigidly
fixed to the structure that holds the vacuum chamber and are positioned in proximity
of the Raman retro reflection mirrors. We can independently estimate the rotation and
the horizontal acceleration, using linear combination of the signal recorded during the
interrogation time 2T, see Figure 4.6. To do so, we combine the measured vibration
signal with the transfer function of our sensor to estimate the phase noise linked to the
vibration of the mirrors and rotation of the apparatus, as explained in Sec. 3.3. As
shown in Figure 4.4, the vibration phase φvib can sample multiple periods of the in-
terference fringes. This leads a significant number of occurrence to accumulate around
the maximum and minimum of the fringes, as can be seen in the histogram on the left
side of Figure 4.4. The sensitivity of the interferometer around these extremes vanishes.
Effectively operating without dead-times requires to overcome this problem.

1Trillium Compact Seismometer - 108 Hz-120.2 s bandwidth



4.2. METHODS 47

Figure 4.4: Acquisition of 6100 points. On the left, the distribution of probability
shows the expected twin-horned shape. On the right, we can see the reconstructed fringes
using vibration phase as x-axis. The span of the vibration phase φvib is as estimated in
Section 3.3

4.2.2 Real-time Compensation of vibration noise

The ideal condition would be to operate the sensor in the linear regime, that is the
middle of the fringe, to maximize the sensitivity of the sensor. To operate at the middle
of the fringe we first need to reduce the contribution from the vibration noise to the AI
phase such as to fit into the center of a single fringe. A possible solution is to correct
the relative phase between the Raman lasers [51] just before the last pulse, in order to
compensate φvib in real time.
This operation, requires a finite amount of time to be performed, due to the time needed
to integrate the signals and the response time of DDS, which is controlled by a GPIB
interface. We apply a phase correction 15 ms before the end of the interrogation time
2T to compensate for this limitation. The vibration noise is recorded until this time,
and the missing part, to complete a 2T long acquisition, is filled with an average of the
signal from 15 ms before the correction timing. We have verified that the error in the
estimation of the correction with this method is negligible (70 mrad per shot) at the
moment [32].
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Figure 4.5: Distribution of the reconstructed vibration phase in the case of uncompen-
sated measurements (blue, σ = 2.70rad) and for compensated in real time measurements
(orange, σ = 0.44rad) .

In Figure 4.5 we show the difference between the measured distribution for the vibra-
tion phase in the case of uncompensated acceleration noise versus the compensated one.
In the case where the AI operates without real time compensation, the measurements
have a standard deviation of 2.70 rad (blue counts) while in the compensated case we
have a standard deviation of 0.44 rad. The use of the signal from a classical sensor to real
time compensate the vibration, acts as a filter for the vibration noise. This technique
exploits the best feature of classical and quantum sensor: the accuracy and long term
stability of the atom interferometer and the large bandwidth of classical sensors.

4.2.3 Mid Fringe Lock

As showed in the previous section, real-time compensation of vibration noise constrain
the measurements inside a single fringe. This method, do not compensate for DC-phase
shift and do not prevent the phase of the AI from drifting during an acquisition. These
shifts are generally caused from systematics effects such as the fluctuations of lightshift
or alignment between the Raman retro-reflection mirrors. A locking system has been
put in place to steer the AI toward the middle of the fringe and stabilize it there for the
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Figure 4.6: Simple scheme to illustrate how φvib is calculated. The individual signals
from the seismometers are first convolved with the transfer function |Ha(ω)| and then
are combined together. The resulting vibration phase φvib is then sent to the PLL for
compensation.

whole duration of the acquisition. To estimate the average DC phase shift we alternate
measurements between the two sides of the fringe. This is done by applying additional
π phase-shift between each shot. The error signal of this locking scheme is calculated
from the difference of transition probability between consecutive measurements.

This phase locking loop is a pure integrator. The feedback for the i + 1 measurement
can be described as follow:

φMFL
i+1 = G

i∑
j=0

(−1)j(Pj − Pj−1) = G (−1)i (Pi − Pi−1) + φMFL
i−1 (4.1)

where φMFL
i−1 is the phase jump applied to the i-1 measurement, G is the gain of the

lock, Pi is the transition probability. We adjust the value of the gain G in order for
the sensor to need less than a minute to reach a locking point. With this magnitude
of effective gain the sensor needs few hundreds shots to reach a stable locking point, as
can be seen in Figure 4.7 in the first 30 seconds. The full phase shift added to the atom
interferometer then is:

φDDSi = φvibi + φMFL
i + (−1)i × π

2 (4.2)

4.3 Sensitivity of the Gyroscope

In the previous section we have presented how we overcome the limitation of dead-time
and operate the sensor in the linear regime, thus at the best sensitivity. To demonstrate
the effectiveness of these techniques we measure Earth rotation rate continuously for 30
hours and evaluate the performance of our AI sensor. In Figure 4.8 we can see the ex-
tracted time-trace for the total phase of the interferometer after the real time correction
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Figure 4.7: (Top) Time trace of φMFL showing how the lock converges to a stable
point. The two colors represent the two sign of the momentum transfer, blue for +keff
and red for −keff . Each momentum then is divided in two subset depending on the sign
of (−1)n × π

2 to separate which side of the fringe we are probing. (Bottom) Time traces
of the atomic phase for +keff and −keff . The graphs show how the measurements have
a larger dispersion, shot to shot, while the interferometer is not yet locked (t < 30 s).

of the phase. In order to suppress systematic effects that don’t depend on the direction
of ~keff , such as 1 photon light shift, we rely on the keff reversal techniques. A single
measurement then becomes the combination of two measurements done with opposite
sign of effective exchanged momentum, ±keff . This operation allows us to isolate phase
shifts that are solely linked to inertial effects, such as rotation and acceleration. In our
experiment we switch the sign of keff every shot, effectively interleaving the two inde-
pendent acquisition. The switch between momentum is obtained by changing the sign of
the frequency ramp used to compensate the Doppler shift. The total phase is calculated
by combining the atomic phase, recovered from the transition probability, and the MFL
phase used to steer the interferometer towards the center of the fringe. For a single keff
it will be:

Φi = φati + 1
2(ϕMFL

i + ϕMFL
i−1 ) = (−1)i

2A (Pi − Pi−1) + 1
2(ϕMFL

i + ϕMFL
i−1 ). (4.3)
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Figure 4.8: Moving average of Earth’s rotation rate signal. The blue (orange) trace is
obtained by using a window of 100 (1000) seconds.

Operating at the center of the fringe, allows us to reconstruct the atomic phase with a
linear approximation instead of using an inverse trigonometric function, but in this way
there is a residual error.

4.3.1 Sensitivity with interleaved scheme

In Figure 4.9 we can observe the Allan standard deviation (ADEV) for a portion of 11.3
hours extracted from Figure 4.8. The graph shows how we are able to reach a stability of
3× 10−10rad · sec after 10 000 sec of integration time [33]. This translates in a stability
improvement of factor 3 compared to our previous result in 2016 [30]. The black line
shows also a sensitivity at 1 second of 3× 10−8rad · sec−1 ·Hz−1.
This will give us the ability to study new systematics effect in the 10−9rad · sec−1 range
within a reasonable integration time of 1000 seconds. As is shown in Figure 4.9, the
improvement in the performance is directly linked to our capability of averaging the
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Figure 4.9: Allan Deviation plot showing the stability of the experiment for triple joint
interleaved operation. The dashed lines are guide for the eye describing the different
behavior of the noise. The red line has a slope equals to 1/τ . This is characteristic of
correlated noise which is linked to continuous measurement. The green line decreases
as 1/

√
τ and represents the normal uncorrelated noise due to phase noise and uncom-

pensated acceleration noise.The orange dotted line represented the detection noise which
corresponds to a limit of 8× 10−9 rad · sec−1 ·

√
τ
−1.

rotation noise as τ−1 up to ∼7 seconds. This ability derives directly from the continuous
measurement in which successive phase measurements are correlated. After 7 seconds,
it reaches the regime of 1/

√
τ characteristic of uncorrelated white noise.

When averaging for longer period of time, deviations from the τ− 1
2 regime may appear,

as seen in Figure 4.10.

To avoid these deviations, and the degradation of the AI sensor performances, a deep
and comprehensive study of all the systematic effects is necessary. Currently one of the
main limitation arises from the use of two separated Raman beams. As I will discuss in
the next chapter small misalignment in the parallelism between the mirrors could lead
to significant phase shift which impacts the long-term stability of the gyroscope.
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Figure 4.10: Allan Deviation showing the full data acquisition of 22 hours. After
10 000 seconds we can see the stability of the sensor deviating from the normal regime
of 1/

√
τ

4.3.2 Interpretation of vibration noise averaging in a joint scheme

Non-continuous operation

The accumulated phase at the output of the interferometer for a single measurement
can be written as:

Φ = φb(0)− 2φt(T/2) + 2φt(3T/2)− φb(2T ) (4.4)

where 2T is the total interrogation time, φb,t, denotes the difference of phase between
the Raman lasers, imprinted on the atomic wave packet a the moment of the pulse (b
and t refers to bottom and top Raman laser pairs). The above equation can be rewritten
as:

Φ = φt(0)− 2φt(T/2) + 2φt(3T/2)− φt(2T )
+ [(φb(0)− φt(0))− (φb(2T )− φt(2T ))]

= φacct + keffL(θb(0)− θb(2T )) (4.5)
= φacct + keffL∆θ (4.6)

with L = 3
8gT

2 being the distance the wave packet travels between the π/2 and π pulses2,
φacct indicates the linear acceleration seen by only the top mirror. With L∆θ we indicate

2This distance is valid only if the cloud is at the apogee at time T
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by how much the top mirror rotates with respect of the bottom mirror between the two
π/2-pulses. Using (4.6), we can estimate the mean phase after N measurements as:

ΦN = 1
N

N−1∑
i=0

Φi = 1
N

N−1∑
i=0

(keffL∆θi + ϕ̃i) (4.7)

where ∆θi = θb(i2T )− θb((i+ 1)2T ) and ϕ̃i represents other type of noise contributions
such as detection noise, laser phase noise and uncompensated vibration noise(φvib). We
now look at the variance of the phase shift:

σ2
ΦN

= Var
(

1
N

N−1∑
i=0

Φi

)
= Var

(
1
N

N−1∑
i=0

(keffL∆θi + ϕ̃i)
)

= 1
N2

N−1∑
i=0

Var (keffL∆θi + ϕ̃i)

(4.8)
Here we assumed all the measurements to be independent from each other.
Then assuming the variance of rotation noise and ϕ̃ to be Gaussian white noise:

σ2
ΦN

= 1
N

(σ2
∆θ + σ2

ϕ̃) (4.9)

The standard deviation then decreases as τ−1/2 characteristic of uncorrelated noise.

Continuous Operation

In the case for a joint operation scheme we can rewrite the equation (4.7) as such:

ΦN = 1
N

N−1∑
i=0

(keffL[θb(iTc)− θb((i+ 1)Tc)] + ϕ̃i) (4.10)

where now ∆θi depends on the cycling time which now coincides with the interrogation
time 2T . While in the non-consecutive operation each measurement is uncorrelated since
separated by dead time, here each interferometer share one pulse, making the results
correlated. Expanding the series in equation (4.10) most of the terms in ∆θi cancel each
other resulting in the equation for the mean phase shift as:

ΦN = keffL
(θb(0)− θb((N + 2)Tc))

N
+ 1
N

N−1∑
i=0

ϕ̃i (4.11)

As for the variance we can rewrite equation (4.8), minding that this time we deal with
correlated measurement.

σ2
ΦN

= 2
N2σ

2
∆θ + 1

N
σ2
ϕ̃ (4.12)

We can see that, with a continuous operation scheme, if the correlated noise is domi-
nating for short integration time (small N), the standard deviation of the rotation noise
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decreases as 1/N . This regime is maintained until the uncorrelated noise becomes dom-
inant, at which point the signal falls back to the white noise regime of 1/

√
N .

To better understand this effect a signal was simulated using two independent traces

Figure 4.11: Allan deviation of simulated phase data for different level of uncorrelated
noise. The red line is simulated to have 5 times more noise than blue trace. The dashed
lines are guides to the eyes showing the two different behavior: 1/τ (orange), 1/

√
τ

(green).

of the same length, that simulates correlated and uncorrelated noise. The first trace
is created by using a function that generates random white noise and stores it into an
array. Each element of the array, then, is combined with the preceding one, generat-
ing correlation between each point. To generate simple uncorrelated noise we create a
different array with the same white noise generator. The final trace is obtained by the
sum of these traces. In Figure 4.11, we show the aforementioned traces for two different
levels of uncorrelated noise. As we can see, with the same level of correlated noise, the
change of regime between 1/τ and 1/

√
τ is ruled solely by the amount of uncorrelated

noise present in our measurements.
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4.4 Measurements of weak dynamic rotation rates

The high sampling rate together with the high sensitivity, makes possible to use our
sensor in order to measure the effect of weak dynamic rotation rates. Let us consider
the case where the sensor is rotating about the normal of the interferometric area at a
rate ΩD(t)~ey with ΩD(t) = θ̇(t).
As first step we rewrite the equation of motion, moving from the classical reference frame
of the lab, to the rotating frame of the Raman lasers as:

x(t)cl = ~keff
2M t

z(t)cl = g(Tt− t2

2 )
⇒

X(t) = x(t)cl cos θ(t) + z(t)cl sin θ(t)
Z(t) = z(t)cl cos θ(t)− x(t)cl sin θ(t)

(4.13)

The phase shift equation for a 4-pulse AI is:

Φdyn = ϕ(0)− 2ϕ(T2 ) + 2ϕ(3
2T )− ϕ(2T ) (4.14)

where the phase at each individual pulse can be rewritten with ϕ(t) = keffX(t) as:

ϕ(t) = keff

[
~keff
2M t cos θ(t) + g(Tt− t2

2 ) sin θ(t)
]

(4.15)

Considering weak periodic rotation characterized by small angular θ(t) = θ0 sin(ωt) where
the amplitude θ0 � 1, we neglect the first term in equation (4.15).
We can then rewrite equation (4.14) using the second term of (4.15):

Φdyn = 3
4keffgθ0

(
sin
(
ω

3T
2

)
− sin

(
ω
T

2

))
T 2 ' 3

4keffgΩ0T
3 (4.16)

where we put ourselves in the case of slow rotation, (ωT � 1), and writing θ0ω as Ω0.
It’s important to notice that equation (4.16) has a factor of 3

4 , contrary to the general
Sagnac formula for a 4 pulse gyroscope

ΦS = 1
2
~keff (~g × ~Ω)T 3. (4.17)

This difference comes from the intrinsic nature of our sensor, which is not a simple
gyroscope, but a gyroscope-accelerometer. If the sensor rotates coherently with the
Earth, no change in the projection of ~g would be measured. The sensor, then, will be
only sensitive to Sagnac effect which scales with a factor 1

2 . If the sensor is subject
to rotation in the Earth reference frame, it will measure a phase shift which is the
combination of Sagnac effect and modulation in time of the projection of ~g. This phase
shift ΦAC

acc scales with a factor of 1
4 [52] which summed with the Sagnac phase shift gives:

Φdyn = ΦS + ΦAC
acc = 3

4keffgΩ0T
3. (4.18)
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Figure 4.12: Representation of the loop used to apply a modulated signal through the
voice-coil actuator used to lock the inclination of the apparatus. Using a function gener-
ator a sinusoidal signal is sent to a programmable power supply. The generated current
will then modify the inclination of the experiment through the voice-coil actuator.

4.4.1 How to apply weak dynamic rotation rate

To apply weak dynamic rotation, Ω0 = θ0 sin(ωt) we rely on the tilt lock system. We con-
nect a waveform generator to a programmable power supply 3 as shown in Figure 4.12.
This power supply converts the modulation from voltage to current, feeding it to one
of the voice-coil actuator which locks the sensor tilt in the X direction. Normally this
power supply is controlled by the main experiment computer, which is responsible for
the tilt locking loop. In this case we need to manually take care of using the correct
offset for our modulated signal. This allows us to maintain the sensor’s tilt around the
usual locking point on average during the measurement of dynamic rotation rate.

4.4.2 Classical sensor

The objective of these type of measurements is to reconstruct a modulated signal with
our AI sensor and to verify its quality. To do so we compare the signal from the cold
atom sensor with the signals measured by classical sensors. On the experiment are
present different type of classical sensor: a tiltmeter and an accelerometer, both of
which measure the variation of projection of gravity acceleration on the horizontal axis,
a(t) = gθ(t). The other type of sensor is a seismometer, that instead of measuring
acceleration is sensitive to velocity changes, which can be considered as the integrated
projection of gravity acceleration, v(t) =

∫
a(t)dt. Prior to use the AI sensor to measure

weak dynamic rotation rate, we proceed to calibrate the response of the classical sensor
to such weak modulation. Using the scale factor given by the manufacturers, we move to

3Delta Elektronika ES 030-10
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Figure 4.13: Tilt measurement of the gyroscope, with a modulation of 30 seconds period.
3 different sensors have been used: Tiltmeter (yellow trace), Titan accelerometer (blue),
Trillium seismometer (green)

estimate the amplitude θ0 of the effective modulation applied to the AI sensor apparatus.
In Figure 4.13 we show the signals recorded by the three classical sensors for a modulation
period of 30 seconds and their respective fit. The accelerometer and the tiltmeter are in
anti-phase due to a change in sign of the accelerometer. The difference of phase for the
seismometer is due to the integration of the signal plus the specific time response of the
sensor, which can be seen in Figure 4.15.
For a 30 seconds modulation the reconstructed amplitudes from each individual sensor
are consistent with each other within the error extracted by the fit as shown in Table 4.1
and the estimated error of the scale factor from the manufacturer.

30 s 100 s 200 s
Seismometer 2.2145 ± 0.0003 1.83 ± 0.00002 0.75543 ± 0.00001
Accelerometer 2.216 ± 0.001 2.264 ± 0.001 2.273 ± 0.001
Tiltmeter 2.094 ± 0.004 2.330 ± 0.002 2.197 ± 0.001

Table 4.1: Extracted amplitude θ0 in µrad for different periods but same amplitude of
tilt modulation.

We repeat the measurement using longer modulation period, 100 and 200 seconds,
but keeping the same voltage amplitude on our waveform generator. The measured am-
plitude of the modulation for the tiltmeter and accelerometer didn’t change as expected.



4.4. MEASUREMENTS OF WEAK DYNAMIC ROTATION RATES 59

0 25 50 75 100 125 150
Time (s)

4

2

0

2

4

M
od

ul
at

io
n 

(
ra

d)

(a) 100 seconds modulation
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(b) 200 seconds modulation

Figure 4.14: Comparison of measured amplitude for different modulation periods for
the three classical sensors: Tiltmeter (yellow trace), Titan accelerometer (blue), Trillium
seismometer (green).

The seismometers on the other hand presented a decreased amplitude compared to the
30 seconds signal, as seen in Figure 4.14. We compare the results from the seismometers
with the frequency response graph provided by the manufacturer in Figure 4.15.

Figure 4.15: Frequency and phase response of Nanometrics Trillium Seismometer as
provided by the manufacturer.

The graph shows a clear decrease in the magnitude for frequency smaller than 0.03 Hz
together with a significant phase delay coming from the high pass filter of the seismome-
ters.
We then concentrate our study of dynamic measurement in a frequency range where
both seismometer and AI works simultaneously.
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(a) 5 seconds
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(b) 10 seconds

Figure 4.16: Time trace and sinusoidal fit of the atomic phase. The phase is presented
centered around zero by removing the offset value extracted from the fit.

4.4.3 AI sensor

Following (4.16) we can write the total phase shift of the gyroscope:

Φ(t) = ΦEarth + Φdyn(t) = 1
2
~keff · (~g × ~ΩE)T 3 + 3

4
~keff (~g × ~ΩD(t))T 3 (4.19)

where we reintroduced ~ΩD = Ω0 cos(ωt)~ey. The phase shift ΦE due to Earth rotation
is a constant offset and the phase shift due to induced AC acceleration are negligible at
this moment.
At the end of every cycle, the AI sensor returns a measurement about the change of
angle (due to the applied rotation rate), averaged over the duration of the interrogation
time 2T = 801ms.
Then Φdyn can be rewritten as:

Φdyn(iTc) = S
1

2T

∫ 2T+iTc

iTc
ΩD dt = SΩ0 cos[ω(iTc + T )]× sin(ωT )

ωT
(4.20)

with S = 3
4keffgT

3.
As the interrogation time is not infinitely small compared to the period of oscillation
the measurement gives a reduced amplitude due to the averaging of the signal. This
attenuation of the amplitude is expressed by the latest term in (4.20) and is a function
of the modulation period. For modulation of 5 seconds period the measured signal
corresponds to 0.96 of the original signal while it correspond to 0.99 for 10 seconds
modulations.

In Figure 4.16 we see the evolution of the atomic phase in time for modulation of 5
and 10 seconds. The phase signal is recovered from the transition probability divided
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by the fringe amplitude:
Φat = Pi

A
(4.21)

The estimation of the amplitude and its uncertainty is done by fitting the probability
distribution using a twin horned distribution, see Appendix A; typical operation values
are A = 0.06±0.002. By fitting the time traces, we extract the amplitude of the applied
modulation. The reconstructed amplitudes differ greatly from the values measured with
the seismometers data due to the real time compensation removing useful information
from the data.

To extract properly the modulation, we have to reconstruct the full raw signal sensed
by the AI. To do so we add back the vibration phase noise that was compensated by
the RTC loop. In Figure 4.17, the result of this operation can be seen. The modulated
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Figure 4.17: Time trace of the reconstructed atomic phase recombined with the com-
pensated vibration phase φrtc. No clear sinusoidal modulation are visible after the re-
combination as the vibration noise spans multiple rad

signal is not clearly visible anymore as in Figure 4.16 due to the large amplitude of
the vibrations. We thus rely on using FFTs to analyze the traces. We use two similar
approaches, the first is to apply an FFT to the full extent of the time trace; the second
is to cut the time trace in smaller portion to which we apply the FFT routine, then
compute the average of all the FFTs. The first approach allows us to gain in frequency
resolution sacrificing the signal to noise ratio. The second approach on the other hand,
prioritize lowering the level of noise, by averaging multiple FFTs, while not having the
best possible frequency resolution.
The result obtained, by applying the FFTs routines describe above, are in good agree-
ment with Eq. (4.20). In Table 4.2, the results of these routines applied on the AI data
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are shown. We are able to recover the amplitude of the simulated signal within the
bound imposed by Eq. (4.20).
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Figure 4.18: FFTs of the modulated signals for 10 seconds (Top) and 5 seconds (Bot-
tom) periods. In dashed are showed the averaged FFTs which present a great reduction
in frequency resolution but allow us to present a statistical uncertainty on the measure-
ments. In solid lines are shown the full traces FFTs with our full frequency resolution.

4.5 Conclusion

In this chapter, I presented the principle of continuous and interleaved operation for
our gyroscope. This method allowed us to improve the sensitivity of the experiment,
reaching an unprecedented sensitivity of 3× 10−8 rad · s−1 ·Hz−1/2.

While testing a five times interleaved sequence we notice that the atomic clouds
entering the interrogation region where de-pumped to another state. The cause was
the scattering light from the detection. In fact an ascending atomic cloud has barely
surpassed the detection region while another cloud is being detected, scattering light
in all directions. Another problem that future iteration will have to solve is posed by
the position of the 3DMOT with respect of the interrogation region. With the current
design, the atomic cloud is always in the line of sight of the 3DMOT. Scattered photons
that leaks in the interferometric region heat up the cloud during its flight. This translates
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5 s 10 s
Averaged

Full Phase (Atomic phase plus RTC phase) 0.246± 0.004 0.325± 0.008
Seismometers 0.281± 0.002 0.359± 0.002

Full trace
Atoms without RTC phase 0.058 0.088

Full Phase (Atomic phase plus RTC phase) 0.226 0.322
Seismometers 0.257 0.354

Table 4.2: Extracted values of θ0 from the FFT in µrad. The uncertainties for the
averaged FFTs are the statistical errors calculated from the averages.

in a loss of contrast and an increase in lightshift [32].
At the moment the apparatus can operate with maximum 3 interleaved joint sequences.
This number is imposed by the geometry of the apparatus and it will be improved in
future generation of the design. Considering the typical loading time of a 3D-Mot from
a 2D-Mot and the subsequent launching scheme, we can expect to reach a sampling rate
higher than 10 Hz. Even though we reached state of the art performance we are still
limited by different noise source. One limitation is given by residual vibration that are
not well estimated by the seismometers. At the time of writing, the two seismometer
are placed outside the magnetic shields, this gives a limit on the estimation of vibration
close to the Raman retro reflection mirror. A new mirror mount has been designed in
order to bring the seismometers closer to the mirrors, in order to improve our ability to
measure and compensate vibration noise. The high sampling rate, nevertheless, opened
up the possibility to study dynamic signal. This in conjunction with the large sensitivity
gave us the capability to measure and reconstruct weak dynamic rotation rate signals.
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Chapter 5

Scale Factor and bias of the
Gyroscope

The scope of cold atom inertial sensor is to develop a new generation of instruments
of potentially better accuracy than existing ones. To do so, it is necessary to know
accurately the link between phase measurements and physical quantities, that is the
scale factor and the bias from systematic effects. In this chapter, I will present the first
characterization of the gyroscope’s bias and scaling factor.
I will present the different methods we developed to separate bias contribution to the
AI phase from scale factors ones. To this end, we take advantage of our knowledge of
Earth’s rotation rate and its projection on the oriented area of the atom interferometer.
By turning the gyroscope around its vertical axis, I was able to measure the variation
of the rotation phase from its maximum value when the sensor is oriented to North to
its zero value when it was orientated to West/Est. I will present the setup modification
and its characterization together with a first estimation of the bias and scaling factor.
Subsequently I will present a study regarding what we think to be one of the major
systematic effect: the coupling between the non-perfect wavefront of the Raman laser
and the transversal velocities of atoms [6].
A method to align with µrad precision the 3 laser beams in a Mach-Zehnder like con-
figuration of atom interferometer gyroscope was presented in [53], however the residual
systematic shift was not evaluated in this study. In the case of two separated Raman
pair collimators, we will see the effect depends at first order only on the misalignment
of the retro-reflection mirrors used. I will later present a method to characterize and
minimize the systematics effect, without the implementation of ultra cold-atoms sources.

65
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5.1 Gyroscope scale factor

In the case of our sensor with a 4 pulse atom interferometer, the scale factor can be
written like:

Φ = 1
2T

3
(
~g × ~keff

)
· ~ΩE (5.1)

Let’s explicit Eq. (5.1):

Φrot = 1
2keffgΩE cos(θ0) cos(θL) cos(θN )T3 (5.2)

where θN represents the orientation of the AI area’s normal relative to the geographical
North direction. Since the Raman beams are not perpendicular with ~g, a term cos(θ0)
arises. Lastly we need to take into account in the latitude at which the sensor is situated
with the term cos(θL).

Quantities Symbol Values
Gravity acceleration g 9.8092795(1) m · s−2

Effective momentum exchanged keff 1.4743251924(5) · 107 m−1

Raman collimator inclination θ0 3.79(1)° deg
Interrogation time 2T 800 ms

Earth’s rotation rate ΩE 7.2921150(1) · 10−5 rad · s−1

Laboratory Latitude (GPS) θlat 48.83573(1)° deg
Sensor bearing to North θN 33-38(?)° deg

Table 5.1: Table reporting the values used in the estimation of the sensor’s scale factor.
We also report the values regarding Earth’s rotation rate, the latitude of the sensor and
its estimated latitude.

Most of the terms of Eq. (5.2) are known with great accuracy such as Earth rotation
rate, ΩE , and the gravity acceleration, g, which can be known with a precision up to
10−9. The latitude θL of the experiment is obtained by GPS localization and the incli-
nation of the Raman beam is measured trough spectroscopy.
The orientation, θN , of the experiment towards the geographical North is the only quan-
tity with a large uncertainty. In this section I will present how we measured the scale
factor of the gyro-accelerometer.
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5.1.1 Latitude estimation

To locate any point on the surface of the Earth a set of coordinate, usually latitude
and longitude, together with a specific reference frame are needed. The simplest set of
coordinates around the globe would be using spherical coordinates, associating a polar
angle to the latitude and an azimuthal angle to the longitude.
While this type of approximation could work for simple application, it fails when higher
precision is needed, as in the case of navigation or in the case of large geophysical inves-
tigation, which involves large portion of Earth’s surface. The reason why the spherical
approximation fails on large scales, is due to Earth’s rotation and the viscous composi-
tion of its inner layer. Due to centrifugal forces, the planet bulges around the equatorial
plane and consecutively flattens around the North and South poles. The most reason-
able approximation for the shape of the Earth, then becomes an oblate ellipsoid which
rotates about its smaller axis. Nowadays, the World Geodetic System (WGS), fixes the
characteristics of this ideal ellipsoid, such as major axis and ellipticity, to create a ref-
erence system for cartography and navigation systems, such as GPS. With this peculiar
reference system, new definitions for the latitude arise. As we can see from Figure 5.1,

Figure 5.1: Visual representation of the different type of latitude: geocentric in green,
Geodetic in blue and Astronomical in red. The difference are exaggerated to better present
the possible differences.

for the same point P on the surface of the ellipsoid, two different latitude angle can be
calculated. The first and most intuitive is the geocentric latitude θ, which is the angle
between the equatorial plane and the line connecting the center of the ellipsoid to the
point P (green line in Figure 5.1). The second is the geodetic latitude φ, which is the
angle between the equatorial plane and the normal of the ellipsoid in the point P, (blue
line). If no specification is made, when speaking about latitude one should always refer
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to the Geodetic latitude. What we are interested in, is the latitude that best describes
what is the “down direction”, given by the gravity acceleration. Physically this direction
is defined by a simple plumb line and the angle it forms with the equatorial plane is
called Astronomical latitude (red line).

In normal condition, the astronomical latitude, or true vertical, does not coincide
exactly with the normal of the reference ellipsoid. This is due to the local distribution
of land mass. The presence of mountains or sea bodies can change locally the direction
of the true vertical. The difference between the two latitude is generally below 10 arc-
seconds in low land areas such as Paris metropolitan area. This difference is negligible
as it is equivalent to a phase shift less than 10 mrad.

5.1.2 Estimation of the initial bearing to north, θN

As shown in Table 5.1, θN is the quantity with the largest relative uncertainty. We need
then to measure with better accuracy the orientation of the AI sensor. The apparatus
has been initially aligned compared to the walls of the room, roughly 10 years ago.
Unfortunately, given the age of the building, there is no plan showing precisely its
alignment with the cardinal points. To estimate its orientation then, we relied on GPS
measurements. By measuring the positions at two extremities of the laboratory we can

Figure 5.2: Representation of GPS point used to measure orientation of the building
and relative position of the gyroscope.

extract the bearing of the building with this formula:

θN = arctan 2( sin ∆λ cosϕ2 , cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cos ∆λ) (5.3)
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where arctan2 is a 2-argument arctangent1, ϕ1,2 are the latitude of the two points and
∆λ is the difference in longitude. Using Eq. (5.3) we obtain that the building is oriented
123.8° with half a degree of statistical error. We then proceeded to measure the relative
alignment of the experiment with the lab walls.
We shine a laser pointer perpendicular to the laboratory’s wall onto a small mirror glued
to the collimator of the experiment. The measured relative misalignment is 1.26°±0.15°.
Adding up this contribution we have 35.1°±0.5° as an initial estimation of the orientation
of the experiment. We now use the phase of the AI sensor to try to estimate its own
orientation.

5.1.3 Variation of interrogation time T

The first test we did to estimate the orientation of the sensor, was to change the interro-
gation time of the sensor. By changing interrogation time we can observe how the total
phase of the interferometer changes and then extract θN . We change the interrogation
time T by small quantities, dT , of the order of tenths of milliseconds. These changes are
small compared to the total interrogation time, thus we can rewrite Eq. (5.2) as:

dΦ = 3
2keffgΩE cos(θ0) cos(θL) cos(θN )T2dT (5.4)

To change the interrogation time T we must operate with caution. To make sure the
wave packet recombines we need to maintain the spacing

[
T
2 − T− T

2

]
within the 4

pulses. In addition, to minimize unpredictable wavefront problems, we symmetrically
shift the timings relative to the apex of the parabolic trajectory. This is done to be sure
the centers of the ascending and the descending cloud are positioned in the same spot
relative to the mirror and collimator.

In Figure 5.3 we can see the results from two different sets of measurements done at
a distance of few hours. This was done in order to be certain the measurements were
consistent with each other, independently from the methods used.
The blue points, in Figure 5.3, represents data obtained with an acquisition locked at
midfringe, which is already presented in Section 4.2.3. The red points are obtained
by scanning the relative phase between the Raman lasers with a fixed phase jump of
30°, while still compensating for vibration noise in real time. As with measurements
locked at mid-fringe, we alternate the sign of the exchanged momentum keff to reduce
systematic effects. At the end of the acquisition we separate the two traces to process

1arctan2(x, y) = arctan y
x
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Figure 5.3: Phase shift dΦ as function of dT. The two datasets are acquired on the
same day at a few hours apart. The blue points represents measurements acquired by
locking the AI in the middle of the fringe. Red points are acquired by scanning the relative
phase of the Raman laser with a constant phase shift. The error bars in both case are
the standard deviation of the phase.

them independently. Subsequently we divide the data points in packets containing the
same amount of measurement. We then extract a phase measurement from each packet
by using a sinusoidal fit.
Once all the packets are processed, we obtain our inertial signal by taking the half
difference between the results of ±keff . The final phase values are then obtained by
doing a weighted average of the recombined phases and the error bar is simply the
trace’s standard deviation. The weight used for the average are calculated from the
uncertainties given by the fit routine and properly propagated when the two traces are
recombined. An example of fringe fitting and the relative extracted inertial signal can
be seen in Figure 5.4.
Once all the measurements for different T have been acquired we proceed to extract

the slope dΦ
dT with a linear fit. By inverting Eq. (5.4) we can then recover θN and then

calculate the total phase of the AI, Φrot.

As can be seen from the Table 5.2, over the span of few weeks, the extracted values
for θN have fluctuated. A possible explanation, although only partial, is the possibility
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(a) Fringe fitting T=400.4 ms
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Figure 5.4: Phase extraction by fitting packets of 12 consecutive points. On the left are
shown the fitted fringes for T=400.4 ms. On the right are shown the extracted phases
versus packet number. The weighted averages of this traces are shown in Figure 5.3

θN Φrot

23rd January 35.8°± 2.3° 179.4± 5.2 rad
23rd January

MFL
37.4°± 2.1° 176.1± 5.0 rad

1st February 37.8°± 1.3° 175.1± 3.1 rad
5th March 41.5°± 1.5° 166.1± 3.9 rad

Table 5.2: Values of θN and relative interferometer phase Φrot acquired in the first 3
months of 2018.

the AI sensor was rotating around its vertical axes. The experiment is floating on top of
an anti-vibration platform, so its orientation is not fully constraint. Small rotation are
still possible, caused probably by some cables pulling on the experiment. I will present
a method to monitor and measure these rotations in the next section.

5.1.4 Proximity sensors

To verify possible fluctuation of the orientation around the vertical axis of the sensor, I
set up a system that monitors the relative alignment of the isolation platform, on which
the sensor sits, compared to its base. To do so, I used two separate inductive proximity
sensor2. These sensors work by applying a high frequency voltage through a small coil

2DW-AS-509-M12-390
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positioned on the tip. When a metal target comes in the proximities of the coil, the
inducted current in the target, will modify the amplitude of the high frequency signal.
These changes are then converted into an usable output signal with the help of the
integrated circuit. In Figure 5.5 is shown the response curve of the sensors for different

(a)

Figure 5.5: (a) Current/Voltage response curve provided by the manufacturer. Since
the sensor works by responding to inducted current generated inside a target, we can see
on the left how the sensor has different response depending on the material of the target.
(b) Picture of proximity sensor.

targets’ material given by the manufacturer. We use target of 10x20x30 mm size, made
of steel to maximize the range of measurement. Since the measurement depends on the
material which is made the target and its sensitivity to induced magnetic fields, the
characterization of the sensors can change from target to target. We make sure then,
that the pairing sensor-target remain the same during all the measurements. Moreover
the response is non linear and depends on the actual distance that we don’t know a
priori. This is why we have to characterize the response of the sensors directly with
our set up. We then glue the sensors onto a translation stages and record the distance
from the target as a function of the voltage signal acquired. In Figure 5.6b we present
the respective calibration curves and fit lines for the two sensors. To fit the data points
we rely on a polynomial fit up to the 5-th order. The estimated error associated with
this fit is less than 5 mV in the central linear section of the curve, up to 9 mV on the
outer parts of the curve. These translate to uncertainties in the position of 3 µm for the
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Figure 5.6: (a) Scheme of the setup. The two sensors are distant 70 cm from each
other and locked in place on top of a rail. (b) Characterization of the response of the
proximity sensors using steel target. Using a translation stage and an oscilloscope the
distance and the relative voltage have been recorded.

central part and 4 µm in the outer part.
The next step is to measure the angle of the experiment using the proximity sensors. To
do so we mount the two sensors, with relative translation stage, onto a rail and adjust the
distance between them. To maximize the sensitivity to small rotation, we place the two
metal target at opposite extremes of one side of the floating platform, distanced by 70
cm. The rail is mounted and fixed onto two brass pillar with a collective weight of 30 kg
which rest directly on the floor of the laboratory. This whole setup is kept isolated from
the experiment in order to not bring any vibration from the ground to the AI sensor.
The heavy pillars have been chosen to prevent any accidental displacement of the rail
and affecting, as a consequence, the proximity measurements. Once the rail is brought
in the vicinity of the floating platform, the distance of the two sensors is adjusted thanks
to the micro-metric screws on the translation stage. We do this adjustment to position
the sensors in the middle of their linear regime, in order to maximize voltage response in
both directions. To finally extract the angle from the two distance measurement we use
a simple geometrical formula θ = arctan

(
D1−D2

L

)
where D1,2 is the measured distance

read from the sensor and L is the distance between the two, as seen in Figure 5.6a.
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Figure 5.7: Raw data (lighter trace) and moving average with 10 minutes windows
(darker trace) from proximity sensors (blue for sensor 1 and red for sensor 2) and cal-
culated angle (green). The small spikes between 10-20 and 30-40 hours are the air-
conditioning cycle starting.

In Figure 5.7 is shown the reconstructed angle variation for an acquisition over the
weekend. It is possible to see that both sensors start to measure a continuous drift
that lasts until the end of acquisition 65 hours later. This translates to a total rotation
drift of 6 µrad in the span of 3 days. We associate this small and slow rotation with
temperature fluctuation inside the isolation box that envelop completely the apparatus.

This box is put in place to insulate the sensor from acoustic vibration, but, thanks
to the inside covers made of foam, it also act as a thermal isolator. Using multiple
thermocouples, we measured increases of °2C compared to room temperature inside the
isolation box. During the installation of the proximity sensor rail, the box was left open
for a couple of days and then was closed just before the acquisition started.

The drift seen in Figure 5.7 is probably due to the relaxation of the spring inside the
isolation platform, linked to the small temperature fluctuation. Such small rotations,
nevertheless, cannot explains the large shift in the rotation phase observed between
consecutive days while we changed interrogation time. With the implementation of this
proximity sensor, we can look at different methods to extrapolate the orientation of the
experiment. In the next section I will present how we implemented one of such methods.
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5.1.5 Estimation changing orientation by small angles dθ

The implementation of these proximity sensors creates a new opportunity to evaluate
the angle θN . By applying small rotation about the vertical to the isolation platform,
which we are now able to measure precisely, we can extract the bearing to North of the
gyroscope. We define this small rotation as dθ and rewrite Eq. (5.2) as:

dΦ = 1
2keffgΩE cos(θ0) cos

(
θ̃L
)

sin(θN )dθ (5.5)

The difficulty of this approach lies in applying a force in a controlled way, without
introducing extra noise in the interferometric measurements. The apparatus, while is
isolated from the ground vibration, is very susceptible to any exterior forces applied on
it. The idea is to pull or push the sensor on one corner of the structure that holds the
sensor head, making it rotate around its vertical axis.
The solution found to execute this idea reliably was to connect two corners of the struc-
ture to a mirror mount using very thin strings, as is displayed in Figure 5.8. By adjusting
the horizontal screw of the mirror mount, we can apply small rotation to the sensor in
both direction without affecting the tilt of the sensor and the performance of the mea-
surement.
As Figure 5.8a shows, the signals from the proximity sensors are acquired in continuous

70 cm

(a) (b)

Figure 5.8: (a) Scheme of the strings and mirror setup. The mirror mount is fixed
on the rail, while the strings are attached to two corners of the Gyro apparatus and one
side of the mirror mount. (b) Extraction of the 7 values for the gyroscope’s angle used
in Figure 5.9.)

while the interferometer is operating. From the individual traces it is clear the two cor-
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ners of the isolation platform are moving in opposite directions. This translates to a net
rotation of the gyroscope up to ±3 mrad. The values of the angle dθ are then extracted
by averaging each section of the rotation trace. After each rotation, the platform sta-
bilize itself and we proceed to measure the phase dΦ of the atom interferometer. The
result is shown in Figure 5.9. In Table 5.3 are then shown the extracted values of θN
and the relative rotation phase Φrot. Compared to changing the interrogation time T,
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Figure 5.9: Changes of phase shift dΦ as function of the angle dθ on different days. The
square marker represents measurement acquired by scanning the fringe. Round marker
are measurements obtained by locking the AI to the middle of the fringe. The data set
blue and orange correspond to measurements acquired on the 20th of March 2018 while
green and red were acquired on the 23rd of March 2018

the measured orientation of the experiment fluctuates less within the confidence inter-
val. However, with this level of uncertainty, it is still not possible to estimate the total
scale factor of the gyroscope. As I will explain in the next section, due to the periodic-
ity of the gyroscope measurements we cannot distinguish different measurements which
are distanced with multiples of π. The uncertainty on the scale factor, using the best
measurement of θN from Table 5.2 or Table 5.3, is larger than π, therefore we cannot
estimate without ambiguity the value of the full scale factor.
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θN Φrot

20th March
Phase Scan 35.7°± 3.6° 179.9± 8.1 rad

MFL 32.5°± 1.1° 187.0± 2.31 rad

23rd March
Phase Scan 34.6°± 2.1° 182.5± 4.6 rad

MFL 35.6°± 0.9° 180.2± 2.0 rad

Table 5.3: Extracted θN and relative Φrot extracted from dΦ
dθ in March 2018

5.1.6 Variation of the bearing to North using a rotation stage

To overcome the difficulties in the estimation of the scale factor, we decided to implement
a rotation stage below the sensor. With this new equipment (described in Section 3.4),
we are now able to directly measure the full scale factor of the gyroscope. The stage
allows us to rotate freely the experiment about the vertical axis giving us a direct read
of the rotation angles. By measuring φrot at different angles and using a sinusoidal fit,
we can measure the scale factor by extracting the amplitude of the modulated signal
independently from the bias, which should stay constant.
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Figure 5.10: (left) Extracted Phase versus the orientation of the sensor. The point are
folded between 0 and π. (right) Visual guide showing how many times the fit curve has
been folded. By counting how many times the curves jump, we are able to determine the
number of π to add.

In Figure 5.10 we can see how the phase evolves for a θN between 0° and 40°.
By looking at Eq. (5.2) one would expect a sinusoidal response as a function of θN . As
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we can see in Figure 5.10 the points after 20 degree appear to be randomly distributed
between 0 and π. This is a consequence of the under-sampling over the ∼70 fringes when
changing the orientation of the sensor from North to East. To reconstruct the full scale
factor, then, the measurements must be unfolded. To do this, we need to determine the
number of π-period we have to add (subtract) from our measurements to reconstruct a
proper sinusoidal signal. Knowing all of this problematic, we start to acquire measure-
ments with the gyroscope aligned closely to North. At this orientation, the sensor is
close to one of the extrema of Φ(θN ), thus we can perform multiple measurements being
sure to remain within the same π period.

After acquiring 10 data points at different orientations, between 0° and 8° we can
fit the extracted measurement with a cosine curve, fixing the amplitude of the curve to
the expected value of the scale factor. This amplitude is estimated from the values in
Table 5.1 with an uncertainty of 2 mrad. In Figure 5.10 we show the extracted cosine
with a periodicity of π applied to it. A script then calculates the number of π-period
needed to unfold the data points. This procedure, fit and calculation of the periodicity, is
then repeated with each new measurement. In fact, small phase shift can lead to a wrong
calculation of the periodicity, especially around East/West where the number of fringes
per angle of rotation increases. In Figure 5.11 the unfolded data points are presented. In
the graph are also shown two different fit curves: one obtained by fixing the amplitude to
the expected value of the scale factor and leaving bias and phase parameters free(which
was used to unfold the points). The second one is obtained by leaving the amplitude
free, together with the other parameters, in the fitting routine. As we can see from

Amplitude Fixed Amplitude Free
Offset - Bias (rad) −1.28± 0.13 0.633± 0.12
Phase - θN (deg ) −8.19°± 0.06° −7.84°± 0.03°
Scale Factor (rad) 221.642 219.91± 0.11

Table 5.4: Comparison of the extracted values for the sinusoidal curves in Figure 5.11.
Column Fixes shows the value obtained by constraining the amplitude to the expected
value for the gyroscope’s scale factor. Column Free shows the result of the fit leaving as
free parameters all three components.

Table 5.4 and the inset in Figure 5.11, the two fitted curves produce different results.
To better understand the nature of this discrepancy we need to complete a rotation about
the vertical in order to better estimate the scale factor, by measuring the phase at South,
where the phase shift is at its minimum, and the bias, by measuring the phase at East
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Figure 5.11: Reconstructed phase versus the orientation of the experiment. In red is
shown a fit with only bias and phase as free parameters, while the amplitude is fixed
to the expected value for the scale factor. The green dash-dotted line represents a fit
where also the amplitude is left free. In the inset is shown a magnification of the curves
around the maximum (normal of the sensor’s area aligned with North). To better show
the difference between the fit curves and the data point, on the bottom are plotted the
residual of the fit routines. The error bars in the plot are smaller than the marker size
at this scale.

and West and comparing the results. Unfortunately at this time, it was only possible to
rotate the experiment up to 120°, due to the length of the fibers connecting the optical
benches with the sensors. Other improvements, that can be made with this limitation,
are the minimization of the long-term fluctuation of the bias. For example to change the
orientation we need to open the isolation box around the sensor head for several minutes.
The temperature, inside the box and around the sensor, then constantly fluctuates for
long period of times, leading to diverse effects that worsen the stability of the sensor.
One major effect that we have encountered, is the drift in the alignment of the Raman
retro-reflection mirrors. In the next section, I will show how this misalignment affects
the performances of the sensor and I will present the solution we put in place to reduce
such effect.
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5.2 Bias associated with an imperfect alignment of the
retro-reflection mirrors

In this section I present how the parallelism between the Raman retro-reflection mirrors
is controlled and optimized. Later on, I will present how these misalignments, combined
with an improper mean trajectory of the atomic cloud, can lead to systematic effects in
the phase estimation. Such phase shift are considered as one of the limiting factor in
the current sensor’s performance; it becomes critical to implement protocols in order to
minimize such effects and reduce possible drifts in time.

5.2.1 Interferometer contrast

A misalignment between the Raman mirrors can be seen as using two distinct k-vectors.
These two vectors have different directions but same modulus. We introduce θ as the
relative angle between the two effective vector, then we can rewrite them as:

~kb = keff êr

~kt = keff (êr cos δθ + êθ sin δθ)
(5.6)

where êr is the unit vector aligned with the direction of ~kb and êθ is the unit vector
perpendicular to êr along the plane defined by (~kb,~kt). In the case of perfectly aligned
beams, we fall back on the condition ~kb = ~kt = ~keff .

As a consequence of this misalignment, the wave-packets in the two arms of the
interferometer will not perfectly overlap during the last pulse. We can calculate the
distance, δ~r, between the two wave packet as a function of the angle δθ between the retro-
reflection mirrors. We begin by writing the position of the two wave-packets relative to
the mean trajectory, at the end of the interrogation sequence:

~xup = 2vrecT ((2− cos δθ)êr − sin δθêθ)
~xdown = 2vrecT (cos δθêr + sin δθêθ)

(5.7)

with vrec being the one photon recoil velocity and where ~xup(down) describes the path
followed by the wave-packet after the first pulse. From Eq. (5.7), we calculate the
distance between the wave-packets at the moment of the last pulse:

δ~x = 2vrecT (δθ2)êr − 4vrecT (δθ)êθ ' −4vrecT (δθ)êθ (5.8)

where at the moment we are interested only in the effect at first order in δθ.
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Given the finite temperature of the atomic cloud, Eq. (5.8) imposes a constraint
on the maximum misalignment possible between the two mirrors. In fact, to generate
interference between the two wave-packet, the distance ||δ~x|| has to be smaller than the
coherence length (Lcoh = ~

2Mσv
).

As the misalignment between the mirror increases, we can observe a decrease in the
interferometer’s contrast.
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Figure 5.12: Contrast as function of angle θ between the mirrors. On the left is
presented the vertical direction. The contrast curve is centered around nz = 2(1.3) with
a standard deviation of σθ,z = 34.4(2.6). On the right we show the results obtained by
scanning the horizontal direction. Here the contrast is maximal at ny = 17.60(0.99) with
standard deviation σθ,y = 34.9(1.5). The horizontal profile is higher since it was acquired
after optimizing the vertical alignment.

Therefore, an initial alignment can be performed by looking at how the contrast
evolves as we scan the tilt of the mirrors. To do so, the bottom Raman retro-reflection
mirror is equipped with a piezo-motor mount3, which gives us the ability to finely adjust
the relative alignment between the mirrors in both horizontal and vertical direction.
These linear actuators have a nominal step size of ∼ 20nm. We measured the effective
tilt applied to the mirror to be 0.3µrad by using an autocollimator before mounting
the piezo controlled mount on the gyroscope. In Figure 5.12, is shown the changes of
the interferometer’s contrast as function of the piezo-motor actuator’s step, for both
the vertical and the horizontal direction. Each data point is obtained by fitting the

3Physik Instrumente Piezo Mike Linear Actuator N-470
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probability distribution using a “twin horned” function4. As we can see the mirror
in the horizontal position was distant roughly 20 steps ( ∼ 6 µrad) from the optimal
position. Using a Gaussian function we extract the standard deviation of the two curves:
σθ,z = 34.4(2.6) for the vertical and σθ,y = 34.9(1.5) for the horizontal direction. From
the standard deviation we can estimate the coherence length Lcoh of our cloud, by using
Eq. (5.8):

Lcoh = 2
√

2vrecTσθ (5.9)

where the factor 1/
√

2 rises from the convolution of two Gaussian function of same
width. For both direction we obtain a coherence length of ∼ 40 nm which is compatible
with the length measured in the past using different methods as time of flight or Raman
spectroscopy.

5.2.2 Bias estimation

Another quantifiable effect linked to the misalignment of the retro-reflection mirrors, is
a net phase shift which leads to a bias in our measurements. To estimate this phase shift
we rewrite the interferometer transfer function, keeping in consideration the different
directions of the exchanged momentum by using the notation introduced in Eq. (5.6):

Φ = ϕb(0)− 2ϕt(
T

2 ) + 2ϕt(
3T
2 )− ϕb(2T ) =

= ~kb · ~x(0)− 2~kt · ~x(T2 ) + 2~kt · ~x(3T
2 )− ~kb · ~x(2T ) (5.10)

where we use the subscript {b, t} to specify which of the two Raman laser pairs is being
used.

We write the equation of motion5 for each point of interest, in the laboratory reference
frame:

4More information regarding how we estimate the amplitude, offset, probability noise and relative
uncertainties can be found in Appendix A.

5We neglect the motion induced by Earth’s rotation in this description
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Figure 5.13: Scheme showing the notation used in Eq. (5.11). The blue and red colors
represent the internal states of the atom.
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(5.11)

The terms in square bracket represent the ballistic trajectory of the mean position for
the atomic cloud, while ~v0 is the mean velocity at the first pulse and ~g is the gravity
acceleration. The second terms describe the recoil velocity caused by the Raman light-
pulses, where M is the mass of Cs atoms.
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The difference of phase at the output of the interferometer then becomes:

δΦ =
(
~kb~r0 − ~kt~r1 + ~kt~r3 − ~kb~r5

)
− (~kt~r2 − ~kt~r4) =

= ~kb · (~r0 − ~r5) + ~kt · (~r3 + ~r4 − ~r1 − ~r2) =

= 2T
(
~kt − ~kb

)
· (~v0 + ~g T ) + ~T

M

(
2~kt~kb − ~k2

b

)
=

= 2Tkeff [(cos δθ − 1)êr + sin δθêθ] · (~v0 + ~gT ) + ~
M
k2
effT (2 cos δθ − 2)

(5.12)

If we now consider only the first order in θ, we obtain:

Φ = 2Tkeff êθ · (~v0 + ~gT ) δθ (5.13)

This equation gives us another description for the loss of contrast due to the misalignment
of the mirrors, discussed in the previous section. The velocity dispersion of the cloud,
due to a finite temperature, can lead to different phase shifts among different velocity
classes. As the detection integrates the signal over all possible velocity classes, if the
range of the phase shift is in the order of 2π, destructive interference will decrease the
total signal recorded.

By finely tuning the modulus and direction of the launch velocity, thus ~v0 = −~gT ,
we are able to completely minimize Eq. (5.13). With this adjustment the atomic cloud
reaches the apogee of its ballistic trajectory at time T, thus in the middle of our inter-
rogation time. This means the ascending and descending wave-packet are interrogated
at the same position in the interrogation region, avoiding any wavefront induced phase
shift generated by a non perfect alignment of the mirrors. The idea is to exploit such
phase shift, in order to study and implement a new procedure which simultaneously
adjust atomic trajectory and mirrors’ parallelism.

5.2.3 Mirrors alignment and Trajectory optimization

We start by rewriting Eq. (5.13), highlighting the different components of the scalar
product:

δΦ = 2Tkeff (δθyδvy + δθzδvz) (5.14)

where we indicate with δθy,z the misalignment component in the experimental frame,
and with δvz = vz + gT and δvy = vy the respective velocity components. As we can see
the phase shift components in the y and z direction are independent from each other.
This allows us to study individually the two effects by changing only one component at
a time. The main idea is to use the piezo-motor mirror mount to scan the alignment of
the mirrors for different values of the δvz,y in order to find a common point for all sets
that minimizes the phase shift.
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Optimum vertical mirror alignment

To reliably change the velocity along the vertical direction, we can rely on different
approaches: we could vary the launch velocity while monitoring the timings. Or we could
change the timings of the interferometer to add an effective initial velocity δvz = gδt.
Since we have better control over the timing of the experiment we opt to modify the
timing of the pulses. As we can see in Figure 5.14, for both launch velocities we are
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(a) Launch velocity vl = 5.041 mm · s−1

20 10 0 10 20
Vertical actuator steps nz

0.4

0.3

0.2

0.1

0.0

0.1

0.2

P
h
a
se

 
(r

a
d
)

(b) Launch velocity vl = 5.043 mm · s−1

Figure 5.14: Trajectory adjustment for the vertical direction. Each line in the two plot
represents different timing for the first π/2-pulse separated by δt1 = 0.25 ms: 114.25 ms
(green), 114.0 ms (blue), 113.75 ms (orange), 113.5 ms (red). A change δt1 = 0.25 ms
in the timings corresponds to a change of velocity of ∼2.5 mm · s−1. To demonstrate
the reproducibility of the method we performed the optimization routine for two different
launch velocities which differs by 2 mm · s−1. Comparing the orange data set from figure
(a) (slope 1.20(37) rad · step−1) with the blue data set from (b) (1.47(53) rad · step−1)
we observe they have compatible slopes, thus the method works consistently for both
launch velocities.

able to pinpoint, within few actuator steps, the optimum alignment between the two
retro-reflector mirrors.

We now proceed to compare the optimum position obtained by the adjustment of the
trajectory and the position obtained by maximizing the contrast of the interferometer. In
this case we can compare only Figure 5.14a since it has been acquired on the same day as
Figure 5.12. On the contrary, the data-points shown in Figure 5.14b have been acquired
few months prior. Since the piezo-motor mount do not provide an absolute reading
about the position of the tilting screw, possible human errors as well alignment’s drift
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may have changed the reference point of Figure 5.14b with Figure 5.14a over time. The
optimal positions between the two methods have a difference of 8 actuator steps, which
corresponds to a difference of ∼2.4 µrad.

Optimum Vertical trajectory

As discussed in previous sections, this approach gives us the possibility to also estimate
the correct initial velocity to satisfy vz = −gT , in order to be insensitive to drift in the
mirrors’ alignment. To do so, we show the slopes δΦ

δθ , extracted from Figure 5.14, as
a function of the initial velocities. As shown in Figure 5.15, by fitting the respective
lines, we extract the optimal value for the vertical velocity, as the velocity which put
the phase shift at zero. The two lines present compatible slopes within the error bars:
3.82 ± 0.04 mrad · step−1 · (mm/s)−1 for launch velocity of vl = 5.043 mm · s−1 and
3.46 ± 0.13 mrad · step−1 · (mm/s)−1 for vl = 5.041 mm · s−1. This demonstrates how
consistent is the method for different launch velocities.
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Figure 5.15: Phase shift as function of velocities. In blue the results ob-
tained from a launch velocities vl = 5.041 mm · s−1, with a slope of 3.46 ±
0.13 mrad · step−1 · (mm/s)−1. In red the velocities with vl = 5.043 mm · s−1, and slopes
3.82 ± 0.04 mrad · step−1 · (mm/s)−1. The shaded areas show the confidence region at
one sigma for the blue results.

Optimum horizontal mirror alignment

Changing velocity in the y-direction proved to be more challenging, compared to the
vertical direction. Since we do not have a control knob that allows us to change the
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transverse direction we have to rely on different methods to induce transversal velocities.
If we assume the vertical axis of the sensor to be always aligned with the local direction of
the acceleration of gravity, no transverse velocities should be present in the experiment.
To induce a change in the horizontal velocities δvy, we changed the projection of gravity
acceleration along the y axis; to do so we varied the sensor’s tilt along this same axis.

To apply large rotation to the sensor, we didn’t rely only on the tilt lock setup since
the range of the voice-coil is only ∼50 µrad. To reach inclination close to 1 mrad, in
order to make the effect as visible as possible, we proceed to change the mass distribution
present on top of the isolation platform. By changing the position along the y-direction
of 10 kg lead weights we can reach transverse velocities of the order of ±3.5 mm (corre-
sponding to a tilt of ±0.7 m rad).

The need to manually adjust the tilt though, has a large impact on the measurement
performed after this operations. Opening the thermal-isolation box for the time it’s
needed to adjust the tilt, changes by roughly half a degree the temperature inside the
box. This creates a continuous modulation in the temperature which could lead to a
drift in the alignment of the mirrors. To avoid this we decided to measure the effects for
only three different tilt which are obtained by moving the least amount of free weights.
In Figure 5.16a we show the measurement obtained for 3 different tilt value in the y
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Figure 5.16: Trajectory adjustment for the horizontal direction. The two plot show the
same measurement, without(left) and with(right) phase correction from the proximity
sensors. The optimal mirror position in the corrected graph is ny = 23.1(5), compatible
with the measured position in Figure 5.12

direction. By comparing this graph with the curve obtained in 5.12, we see a discrepancy
of 20 actuators steps, (∼6 µrad), in the position of the optimal value between the two
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methods. By repeating the measurements multiple times, we notice a small rotation
of the isolation platform caused by the adjustment of the weight distribution. This ro-
tation has been discovered after the implementation of the proximity sensor, discussed
in Section 5.1.4. The maximum rotation we measured was about ∼0.2° which using
Eq. (5.2) translates into phase shift of the order of 500 mrad. Knowing the direction
and the angle of these rotations, we are able to correct the phase measurements, as seen
in Figure 5.16b.
After the measurements are corrected, we estimate the optimal position to be at ny =
23.1(5) steps, which compared with the values obtained from contrast curve in Fig-
ure 5.12, reveal a difference of 1.7 µrad.

Optimum horizontal trajectory

Similarly to the vertical case, we can estimate the optimal transverse velocity, thus the
optimal inclination of the sensor in the y direction. In Figure 5.17 we show the slopes
δΦ
δθ as a function of the transverse velocities. We are then able to estimate the optimal
velocity(vy = −0.618(27)mm · s−1), in order to vertically launch our atomic cloud.
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Figure 5.17: Phase shift as function of transverse velocity. The shaded area is one
sigma confidence region. The slope of the linear fit is 2.26±0.08 mrad · step−1 · (mm/s)−1
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5.3 Conclusion

In the first part of the chapter, I presented the first study regarding the scale factor of
the cold atom gyroscope. I first started by investigating different methods to estimate
the initial orientation of the gyroscope to North. This task proved to be difficult, as
the results obtained presented fluctuations in some systematics from day to day which
we were not able to understand. These fluctuation prevented us to measure without
ambiguity the scale factor of our sensor and to estimate the biases affecting it.
To overcome these difficulties, we proceed to setup a rotating stage below the gyroscope,
in order to measure directly the scale factor and the bias.
I then presented the preliminary results regarding a direct measurement of the scale fac-
tor obtained by rotating the sensor head by 120°. We measure 219.91± 0.11 rad, while
from the calculation we expect 221.642(exact) rad. Although agreement is marginal we
differ from the expected value by 15σ due to statistical uncertainties. During the redac-
tion of this manuscript, we identified a problem when we turn the gyroscope. The central
axis of the rotation stage was not well aligned with the vertical axis. This caused the
isolation platform to rotate under the weight of the sensor, causing phase shift which
impacted the estimation of the gyroscope’s scale factor. The complete and corrected
picture will be showed in the manuscript of the next PhD student, Romain Gautier.

In the second part of the chapter, I presented, a new protocol which optimizes the
alignment of the mirrors and the trajectory of the atomic cloud in both vertical and
transversal direction. We are now able of aligning the Raman retro-reflection mirrors
to µrad precision in both direction. To reach levels of stability below 10−10rad · s−1 we
plan to exchange the mirror mounts inside the sensor’s magnetic shield with more rigid
one, to maintain for longer period an optimal alignment. We also plan to implement an
“on the fly” characterization of the phase shift, by automatically scanning the mirror
every N∼104 shots of the interferometer in order to minimize the phase shift. The
characterization would automatically move the piezo controlled mirror by ±40 steps
from the optimal position. If a slope is detected we will adjust the velocity in order to
compensate the phase shift. To be effective such characterization has to be performed
in a limited amount of time in order to not affect the performance of the sensor.

This systematic effect is not limited to 4-pulse geometry but could affect other atomic
interferometers which utilize spatially separated laser beams. As an example, propos-
als of ground-based gravitational wave detectors in the 0.1 to 10 Hz frequency band
shall employ a similar interferometer configuration as that presented here, but with
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atom interferometric sensors spatially distributed along a common laser baseline in a
gradiometer setup [18, 54].



Chapter 6

4 light pulse atom interferometer
with non equal momentum
transfer

The increase of probability noise σP is a known problem in atom interferometry. One of
the major source of the increase are parasitic interferometers. These AI are generated by
imperfection in the pulses used to realize beam-splitters and mirrors. Since they follow
different paths compared to the main interferometer, their scale factor to inertial forces
is different.

Solutions to mitigate this problem, are highly connected to the scheme used in the
interferometer [55]. In our 4 light-pulse configuration, the imprecision in performing
a correct pi-pulse, leads to the generation of 2 secondary parasitic interferometer. In
this chapter I will present the different methods we use in the gyroscope, to eliminate
these effects, in order to recover a good signal to noise ratio (SNR). I will first describe
the solution introduced by previous PhD students [31, 32], which relies on shifting the
timings of the π-pulses. Due to this shift, only the main interferometer is recombined at
the last π/2-pulse while the parasitic interferometers are not. While the implementation
of such solution is fairly easy, it fades the intrinsic zero-sensitivity to DC acceleration of
the 4-pulse butterfly scheme. I will show how we can minimize this unwanted side-effect
by optimizing the frequency ramp, which is already in use to compensate for Doppler
frequency shift. Later in the chapter I will introduce a different interrogation scheme
which mitigates the effects of parasitic interferometer, while maintaining zero sensitivity
to DC acceleration. The scheme relies on the use of non equal momentum transer and
the π pulses [56]. I will then describe how this configuration has been implemented and

91
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I will present the latest result demonstrating the effectiveness of this scheme.

6.1 Parasitic Interferometer

x

t

(a) Symmetric 4-pulse interferometer

x

t

(b) Asymmetric 4-pulse interferometer

Figure 6.1: Space-Time diagram showing the path of the main interferometer (solid
line) and of the parasitic interferometers (dashed green lines). On the left, (a): in the
normal 4-pulse configuration all of the path recombines at the last π/2-pulse (vertical
dashed orange lines). On the right, (b): By shifting the two π-pulses in time by ∆Ta,
only the main interferometer recombines at the last π/2-pulse.

Due to its size and the multiple velocity class present in the cloud, the efficiency of
our Raman lasers pairs is not 100%. As a consequence, part of the atomic cloud do not
interact with our π/2 and π pulses. In our 4-pulse interrogation scheme, this phenomenon
generates a pair of secondary interferometers which recombine at the same time as the
primary interferometer. The main effect connected to this secondary interferometers
is the increase of probability noise σP . The signal at the output of the interferometer
then, will be a combination of different fringe patterns, one for each interferometers.
This mixture of signals is translated in probability noise in our detection system, thus
decreasing the signal to noise ratio of our measurements. As discussed in [57, 58], a
possible method to recover good level of SNR, consists in translating the two central π-
pulses by ∆Ta in an asymmetric way with respect to the apogee, as seen in Figure 6.1b;
with this modification, the parasitic interferometers do not recombine as the two paths
overlap at a different time while the total paths of the main interferometer remain
unchanged. To the shift in time ∆Ta, we associate a distance ∆X which measure the
separation between the point of recombination of the primary interferometer and the
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point of recombination of the parasitic AI. This distance can be estimated as:

∆X = 2∆Ta
~keff
M

= 4∆Tavrec (6.1)

To recover the best signal to noise ratio then, the separation ∆X between the recombina-
tion point, has to be larger than the coherence length of the wave packet, ∆X ≥ 2 ·Lcoh:

∆Ta ≥ Lcoh
M

~keff
= Lcoh

2vrec
(6.2)

From the previous chapter 5.2.1, we estimate the coherence length to be of the order of
40 nm, which translates to a minimum shift of ∆Ta = 6 µs.
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Figure 6.2: Probability distribution for different values of the time shift ∆Ta. As we
can see as the time shift decreases, the feature of the distribution are blurred by the
probability noise until they completely disappear.

To visualize the increase of σP linked to the parasitic interferometer, we show in Fig-
ure 6.2 the probability distribution for three different values of the time-shift ∆Ta={-40
µs, -10 µs, 0 µs}. As we can see for large ∆Ta, hence σP is small, the distribution
presents two sharp features at the extremities, and low count number at the center. As
∆Ta goes to zero, thus σP increases, we see how the sharp features fade into the main
body of the distribution. To estimate correctly the SNR of these distributions, we use
a statistical method [59] that allows us to measure and separate amplitude noise from
phase noise. The full description regarding this statistical tool and the uncertainties
associated with it, is described in Appendix A. Using the “twin-horned” function that
comes with this tool, we are able to determine all three parameters independently of the
phase of the sensor.

In Figure 6.3, we show how the probability noise evolves as a function of the time shift
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Figure 6.3: Probability noise (left) and interferometer contrast (right) as function
of the time shift ∆Ta. As we can see from the graph on the right the interferometer
contrast remains constant within the error bars. The graph on the left shows how fast
the probability noise decreases once ∆Ta is bigger than 6 µs (red dashed vertical lines).

∆Ta. As expected, σP is maximal when we do not introduce any asymmetry in the
4 pulse scheme. For ∆Ta > 6 µs, σP decreases rapidly until it reaches a level of less
than 1%. The figure shows also how the contrast of the interferometer stays the same,
independently from the time shift ∆Ta. This proves our fit function is capable of estimat-
ing, separately and independently, all three parameters. A more in depth study on the
goodness of the extracted parameters and their uncertainties is presented in Appendix A.

6.2 DC acceleration sensitivity and ramp optimization

As discussed in the previous section, to prevent the simultaneous recombination of the
parasitic interferometers with the primary one, the central π-pulses are translated in
time by ∆Ta. This shift deteriorates the intrinsic zero sensitivity to DC acceleration by
introducing a phase shift proportional to ∆Ta. We calculate then this contribution by
adjusting the timing in Eq. (2.20):

∆Φ∆Ta = φ1(0)− 2φ2(T/2±∆Ta) + 2φ3(3T/2±∆Ta)− φ4(2T ) (6.3)

which results in:
∆Φ∆Ta = ±2T∆Ta

(
~keff · ~g

)
(6.4)

To mitigate this phase shift alternating measurements with opposite sign of ±∆Ta can be
acquired, averaging in post process the measured phase shift. Another possible solution,
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is inspired by cold-atom gravimetry, which utilizes frequency ramps to measure gravity
[60, 61]. This technique aims to compensate the gravity induced phase shift by scanning
the relative frequency of the two Raman lasers, thus inducing an ulterior phase shift
with opposite sign.

6.2.1 Frequency ramp

With the atoms constantly in free fall, their velocity steadily changes during the inter-
rogation phase. To compensate the relative Doppler effect then, we sweep the frequency
of one of the Raman laser by chirping the reference frequency of the phase lock loop
(PLL). We use a linear ramp 2πf(t) = α · t with α being the ramp rate expressed in
Hz/s. This change of frequency introduce a phase shift which cumulates with time and
can be described as:

∆Φτ =
∫ τi

τi−1
2πf(t)dt = 2πα

(
τ2
i − τ2

i−1

)
(6.5)

where τi indicates the timing of the i-th pulse. If we sum the contribution from each
pulse, using Eq. (6.5) together with Eq. (6.4), we obtain the total phase shift for DC
acceleration of the gyroscope as:

∆Φ = 2T∆Ta
(
~keff · ~g − 2πα

)
(6.6)

By carefully choosing α then, we can compensate the gravity induced phase shift. From
Eq. (6.6) we can extract the general expression for α:

α =
~keff · ~g

2π (6.7)

6.2.2 Ramp optimization

In previous work [28, 31, 32], the techniques used to estimate the optimal value of α
required to setup a 3-pulse interferometer using only one Raman laser pair collimator.
By utilizing this scheme the sensor was operated as a pure accelerometer, measuring the
projection of gravity acceleration onto the Raman laser pair axis. Once the sensor is set
up to operate with 3-pulse, two different set of measurements with different interrogation
times T1,2 are performed. The two measurements will give:

ΦT1 =
(
~keff · ~g − 2πα

)
T 2

1

ΦT2 =
(
~keff · ~g − 2πα

)
T 2

2
(6.8)
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By taking the difference of the two equation we obtain:(
~keff · ~g − 2πα

)
= ΦT1 − ΦT2

T 2
1 − T 2

2
(6.9)

The old optimization routine, requires to minimize the right hand term of Eq. (6.9) for
multiple values of T1 and T2. By increasing the difference between the interrogation
times, the precision in the estimation of the ramp rate increases. By combining different
acquisitions, it is possible to estimate α = −~keff · ~g with an accuracy of 10−4 g levels.
The value of α was then estimated to be ∼ 1.525 MHz · s−1 and it becomes our reference
value for future estimation, α0.
While this method could reach good levels of accuracy, it has its limitations. The
estimation of the ramp is limited directly by the level of precision to which we can
discern the two phases Φ1,2. Another limitation is the time needed to complete such
procedure. In fact it requires multiple acquisitions at different interrogation time for
different values of the frequency ramp. Moreover, once the optimal ramp has been
found, the procedure has to be repeated on the second Raman laser pair collimator in
order to verify the parallelism between the mirrors.
To reduce the time needed in order to tune the frequency ramp, a new procedure has
been developed and implemented. We leverage our capability to interleave multiple
measurements with opposite sign of ∆Ta. As the phase shift written in Eq. (6.6) is
also directly proportional to the phase shift ∆Ta, we proceed to acquire multiple sets
of measurements with a combination of different ∆Ta and different values for α. In
Figure 6.4a we present the results obtained for three different ramp rate values, in order
to show how sensitive this operation is. The first ramp rate being used is our reference
ramp α0, while the other two are deviation of ±0.4% from the reference value. For
each ramp, we acquire multiple values of ±∆Ta, to clearly show how the phase shift is
proportional to the value of the time shift.
In order to determine the optimal ramp rate, we extract the various slopes ∆Φ

∆Ta and we
display them as a function of the ramp rate in Figure 6.4b. To estimate the correct
ramp rate we need to pinpoint the values of α that nullify the phase shift ∆Φ

∆Ta . From
Figure 6.4b and using a linear fit, we measure the optimal ramp rate to compensate DC
acceleration phase shift is α = 1.5232(1) MHz · s differing by only 1.6 kHz · s from our
reference ramp.
This new procedure proves to be a good alternative to operate the sensor as a pure
accelerometer. Nevertheless the use of asymmetric 4-pulse configuration does not appear
to be the ideal solution in order to remove the destructive interference from parasitic
interferometer. In fact, with only 0.05% deviation from the optimal value, our reference
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Figure 6.4: On the left: Phase shift for different values of the frequency ramp as a
function of the asymmetric time shift ∆Ta. In yellow is depicted the reference frequency
ramp α0 = 1.5248 MHz · s−1. In blue (green) we show a frequency ramp 0.4% higher
(lower) than α0. No measurements have been performed at ∆Ta = 0 due to the increased
probability noise. On the right: Phase shift Φ/∆Ta as a function of the applied ramp
rate (error bars covered by the marker): slope −5.104(16) rad · µs−1/MHz · s−1. By
minimizing the absolute value of Φ/∆Ta we determine the optimal ramp rate to be α =
1.5232(1) MHz · s−1.

ramp introduces 100 mrad phase shift at ∆Ta = 40 µs, meaning we still have to alternate
between measurements with opposite sign of ∆Ta to compensate for this.

6.3 Non Equal keff momentum transfer

A different solution to mitigate the interference of parasitic interferometers is proposed in
[57]. By choosing distinct combination of exchanged momentum and light-pulse timing,
it is possible to recover good signal to noise level by not recombining parasitic interfer-
ometer. Contrary to the method presented earlier in the chapter, this 4-pulse scheme
with different exchanged momentum between the π/2-pulses and π-pulses, retains the
inherent zero sensitivity to DC acceleration phase.
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x

t

Figure 6.5: Space-Time diagram showing the path of the interferometer with non equal
momentum transfer, with the π-pulses symmetrically shifted in order to recombine the
main interferometer. The gray dashed lines represent the symmetric 4-pulse interferom-
eter with equal momentum exchanged. The secondary parasitic interferometer are shown
with the green dashed lines.

6.3.1 Change of exchanged momentum modulus

In order to precisely change the modulus of ~keff for either π or π/2 pulses we exploit
the Raman pairs’ collimator system. The top collimator is responsible only for the
π-pulses; by changing the angle of input, compared to the bottom Raman collimator,
we can modify the modulus of the effective momentum exchanged keff . By using a
micrometric screw positioned on top of the collimator mount, we can apply rotations ∆θ
in the vertical direction with a precision of 2 · 10−6 rad. To estimate the tilting angle
applied to the collimator, we use this simple relation ∆θ = arctan (∆X/D), where D=10
cm is the distance between the pivot of the mount and the screw and ∆X indicates the
displacement of the micrometric screw on the mount. Since we will apply only small
rotation, less than 40 mrad to the top Raman pair collimator, it is possible to rewrite
the relation between the two k-vector taking the bottom one as a reference

k′t = keff cos ∆θ ' keff (1− ∆θ2

2 ) = keff −∆k (6.10)

where we indicate the difference in exchanged momentum as ∆k = keff ·∆θ2/2.
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Figure 6.6: (a) Collimator with micro-metric screw to adjust the tilt of the laser
beam.(b) Scheme of the retro-reflection

Closing the interferometer

In order to recombine the two wave packets at the output of the interferometer, we
shift the two π-pulses symmetrically, with respect of the apogee, by ∆Ts, as shown in
Figure 6.5. To calculate the value of such shift we determine the position of the two
wave packet at the output of the interferometer:

xup = ~~kb
M

(2T )− ~~k′t
M

(3T
2 + ∆Ts

)
+ ~~k′t
M

(
T

2 −∆Ts
)

xdown = ~~k′t
M

(3T
2 + ∆Ts

)
− ~~k′t
M

(
T

2 −∆Ts
) (6.11)

We then impose the two clouds to be completely overlapped:

∆x = xup − xdown = (T )kb − (T + 2∆Ts)k′t = 0 (6.12)

If we now combine the definition in (6.10) with equation in (6.12) we find the relation
between the relative change of exchanged momentum and the time-shift we need to apply
to our middle pulses:

1
2

∆k
keff

(
1− ∆k

keff

) = ∆Ts
T

(6.13)

Since the ratio between ∆k and keff is small we rewrite the (6.13) as

1
2

∆k
keff

' ∆Ts
T

(6.14)

The change of momentum, also displace the parasitic interferometer by a distance
∆X = 2T ~

M∆k; as for Eq. (6.1) we impose this distance to be larger than the coherence
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length and we obtain the minimum change of momentum needed to kill the parasitic
interferometer:

∆k
keff

= Lcoh
2Tvrec

∼ 1.5 · 10−5 (6.15)

6.3.2 Zero sensitivity to DC acceleration

Following the procedure used in the previous chapter we now demonstrate how, using
this scheme, the sensor remain insensitive to DC acceleration. We start again by writing
the equation of motion for the two wave-packet along the two path:

x

t
x2

x1 x3

x4 x5/6

x0

Figure 6.7: Scheme showing the notation used in Eq. (6.16). The blue and red colors
represent the internal states of the atom while the gray dashed lines represent the path
of the 4 pulse interferometer with equal momentum.

x1 =
[
~v0

(
T

2 −∆Ts
)

+ ~g

2

(
T

2 −∆Ts
)2
]

+ ~~kb
M

(
T

2 −∆Ts
)

x2 =
[
~v0

(
T

2 −∆Ts
)

+ ~g

2

(
T

2 −∆Ts
)2
]

x3 =
[
~v0

(3T
2 + ∆Ts

)
+ ~g

2

(3T
2 + ∆Ts

)2
]

+ ~~kb
M

(3T
2 + ∆Ts

)
− ~~k′t
M

(T + 2∆Ts)

x4 =
[
~v0

(3T
2 + ∆Ts

)
+ ~g

2

(3T
2 + ∆Ts

)2
]
− ~~k′t
M

(T + 2∆Ts)

x5 =
[
~v0(2T ) + ~g

2(2T )2
]

+ ~~kb
M

(2T )− ~~k′t
M

(T + 2∆Ts)
(6.16)
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where we fixed x0 to zero for convenience.
We then calculate the phase-shift accumulated along the paths and take the difference:

Φ =
(
~kb · ~x0 − ~k′t · ~x1 + ~k′t · ~x3 − ~kb · ~x5

)
−
(
~k′t · ~x2 − ~k′t · ~x4

)
=

= − ~kb · ( ~x5) + ~k′t · ( ~x3 + ~x4 − ~x2 − ~x1) =

=
[
~k′t(T + 2∆Ts)− ~kbT

]
·
(

2(~v0 + ~gT ) + ~~kb
M

) (6.17)

If we use the condition (6.12) for overlapping wave-packet, it is easy to see how equation
(6.17) goes to zero. This result shows how, the implementation of non equal keff momen-
tum transfer, is a better solution to avoid the recombination of parasitic interferometer,
while still maintaining zero-sensitivity to DC acceleration.

6.3.3 Probability noise and ramp optimization

To demonstrate the validity of Eq. (6.14), we proceed to measure the contrast of the
interferometer as a function of the symmetric time shift ∆Ts. In Figure 6.8 we show the
measurement repeated for a values of ∆θ equals to 10 mrad and 20 mrad, which requires
a ∆Ts of respectively 10 µs and 40 µs.

By fitting the two curves with a Gaussian profile we extract the center of the profiles
10.6± 0.1µs for 10 mrad (blue curve) and 41.20± 0.15µs for 20 mrad (red curve). The
extracted values differ from the expected ones by 5% for 10 mrad and 3% for 20 mrad.
By using Eq. (6.14), and the relation ∆k

keff
= ∆θ

2 we can estimate an initial misalignment
between the collimator of 0.3 mrad that was not measured before. In Figure 6.8, on
the bottom, is also shown the probability noise, σp, for these measurement. Contrary to
the asymmetric time-shift case, we can see how σp remains relatively flat for all time-
shift measured, meaning the adverse effect from parasitic interferometer are completely
removed.

To better compare the two schemes, we repeat the ramp optimization procedure with
the non equal momentum configuration. To do so, we sum up the two different time shift,
∆Ta and ∆Ts, for each combination of ∆Ta and ramp. As we can see in Figure 6.9, the
results are visually similar, with the notable exception that with non equal momentum
exchange we are now able to measure phase shift without any asymmetric time shift
∆Ta. This will lead us to an improved rejection of the DC acceleration phase noise.

In order to estimate how well we are rejecting DC-acceleration, we set our self at
∆Ta = 0 with a ∆θ equals to 20 mrad. We then proceed to measure the output phase
of the interferometer for different values of the ramp. We subsequently acquire the same
set of measurements with ∆θ = 30 mrad.
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Figure 6.8: (Top) Interferometer contrast as a function of the time-shift ∆Ts for two
different vertical tilt of the collimator: ∆θ = 10mrad, showed in blue, ∆θ = 20mrad,
showed in red. (Bottom) In this panel is shown the probability noise σp linked to the
contrast curves shown above.

In Figure 6.10, are then showed the results of these sets of measurements. By fitting
the data points we extract for both sets a variation of phase of ∼ 0.1 rad per 6% of
ramp variation. Analogously, from Figure 6.4a, for a ∆Ta = 40 µs, the asymmetric
interferometer presents a phase shift of 2.5 rad per 0.8% of total ramp variation. If we
compare the results, these translate to a suppression factor for DC accelerations of 180
for the non equal momentum transfer scheme compared to the asymmetric configuration.
In other words, the residual sensitivity measured can be compared to an interferometer
with ∆Ta = 40

180 µs = 0.22 µs time shift, which could be linked to the small initial
misalignment between the Raman laser pair collimator showed in Figure 6.8.

6.3.4 Sensitivity to rotation - Scale factor

The introduction of non equal exchanged momentum, as depicted in Figure 6.5, changes
the path of the diffracted wave packet in order to avoid the simultaneous recombination
of the main interferometer with the parasitic ones. Contrary to the asymmetric case,
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Figure 6.9: On the left: Phase shift for different values of the frequency ramp as a
function of the asymmetric time shift ∆Ta. In yellow is depicted the reference frequency
ramp α0 = 1.5248 MHz · s−1. In blue (green) we show a frequency ramp 0.4% higher
(lower) than α0. It’s important to notice that this are different sets of measurement with
respect to Figure 6.4a. A key difference is the ability to measure the interferometer’s
phase at ∆Ta = 0. On the right: Phase shift Φ/∆Ta as a function of the applied ramp
rate. By minimizing the absolute value of Φ/∆Ta we can determine the optimal ramp
rate to be α = 1.5234 MHz · s−1 with an uncertainty smaller than 100 Hz.

this leads to a change in the size of the area opened by the interferometer. We now want
to characterize how this change, linked to ∆k modifies the scale factor of the gyroscope,
thus its sensitivity to rotation. We then rewrite the equation for the phase shift as :

ΦΩE = kbx(0)− 2ktx(T/2−∆Ts) + 2ktx(3T/2 + ∆Ts)− kbx(2T ) (6.18)

We can write the mean position of the atoms as x(t) = 1
3ΩEgt

3. Using the definition
(6.14) we can write the positions as:

x(0) = 0

x

(
T

2 −∆Ts
)

= 1
3gΩE

(
T

2

)3
(1− ε)3

x

(3T
2 + ∆Ts

)
= 1

3gΩE

(3T
2

)3(
1 + 1

3ε
)3

x(2T ) = 1
3gΩE(2T )3

(6.19)
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Figure 6.10: Interferometer phase as a function of the ramp rate. In red (blue) are
shown the results for an angle ∆θ equals to 20 (30) mrad.

where we introduce the definition ε = ∆k
keff

.
Combining Eq. (6.18) with Eq. (6.19) we obtain at first order in ε:

ΦΩE '
1
2keffgT

3ΩE

[
−1 + 2

3ε
]

(6.20)

At the time of writing, only preliminary measurements have been acquired. To better
understand this effect we need to perform multiple measurements spanning a full turn
of the sensor, to compare the results with the scale factor measurement obtained with
an asymmetric configuration. Unfortunately, as we have shown in the previous chapter,
at the moment we can only perform 1/3 of a full rotation of the sensor also we need to
improve the precision at which we estimate the scale factor as this correction is in the
order of ∼10−4.

6.4 Conclusion

In this chapter I showed how, due to imperfect light pulses, parasitic interferometers are
generated, thus leading to an increase of probability noise in our measurements. The
default solution to mitigate this problem has been until now the introduction of a small
asymmetry in the light pulses’ scheme. The drawback of this method though, is the
reintroduction of sensitivity to DC acceleration noise, in the 4-pulse configuration.

I demonstrated how we are able to reduce the phase contribution of gravity accel-
eration, by adjusting the frequency sweep between the Raman laser pair, a method
commonly used in cold atom gravimeter [9, 62, 63, 64].
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I studied and characterized a new routine for estimating the optimal ramp rate which
makes use of the full sensitivity of our sensor, without any modification to the appa-
ratus. By alternating measurements with different asymmetric time shift I was able to
estimate the optimal ramp rate within 100 Hz which corresponds to an estimation of
gravity acceleration as σg/g = 10−4. This approach, while still producing good results,
cannot compensate for phase shift linked to fluctuation of DC acceleration from shot to
shot.
In the second part of the chapter, I presented a scheme which operates with different
momentum exchanged between the π/2 and the π-pulses. This scheme, as for the asym-
metric one, prevents the recombination of the parasitic interferometer in conjunction
with the main interferometer, but on the contrary it maintains zero sensitivity to DC
acceleration. By using this novel scheme, I showed how we are able to reject by a fac-
tor of 180 the DC acceleration without the need to interleave measurements with time
asymmetry ±∆Ta. In the future perspective of having a sensor operating with high
number of interleaved measurements, the implementation of non equal exchanged mo-
mentum would also remove the complexity of designing of a sequence with alternating
time asymmetry. The use of non equal momentum exchange can also be extended to
horizontal gravity gradiometers in order to compensate the gravity gradient term in a
gravitational wave detectors [56, 65, 66].
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Chapter 7

Conclusion

This manuscript presented the implementation of new techniques to improve the accu-
racy and stability of the SYRTE cold atom gyroscope of 11 cm2 Sagnac area. After
an introduction to the main theoretical concepts of cold atom interferometry with stim-
ulated Raman transition, I presented the core of the experimental apparatus and the
modifications that I implemented. Previous PhD thesis detailed the implementation of
continuous operation and interleaved operations in our cold atom sensor. I participated
in setting up interleaved atom interferometry with real time compensation of vibration
noise which allowed us to reach a sensitivity 3 × 10−8 rad · s−1 ·Hz−1/2 together with
a sampling rate of nearly 4 Hz. This sensitivity level currently represents the state of
the art for cold atom gyroscopes. Moreover interleaving is a general technique for atom
interferometry, as it allows to achieve high sampling rates without compromising the
sensitivity of the sensor that scales with the interrogation time. This technique is in
particular important when targeting time varying signals as in inertial navigation for
example. To illustrate this, I used the interferometer to measure time varying rotation
rate signals of the order of 10−7 rad · s−1 with periods of few seconds which was so far
unexplored range for cold atom interferometer. This result is published in [33].

I also presented a first study of the scale factor and the systematic effects of the
gyroscope. Since the orientation of the sensor compared to North was known with very
low precision, I used different techniques to estimate the bearing to North of the sensor.
Thus, I gradually improved our estimation of the gyroscope’s scale factor. The best
result were obtained by using a rotation stage, hence by measuring directly the phase
shift associated with Earth’s rotation. This gave us the first estimation of the scale
factor, although the results significantly deviate from the expected value. At the time
of writing multiple limitations have been identified and are being addressed by ongoing
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measurements. These measurements, made available by the implementation of the rota-
tion stage, should allow us to perform a test of the Sagnac effect for matter wave at the
10−4 level of relative accuracy, which would improve by 2 orders of magnitude compared
to previous experiments involving matter waves.

To further improve the estimation of the bias of the gyroscope, I set up a new
protocol in order to optimize the trajectory of the wave-packets. By using a piezo con-
trolled mirror mount we are now able to characterize the coupling between the atomic
trajectory and the relative misalignment of the Raman laser mirrors. A preliminary
characterization of this effect was done during the last year of PhD of Denis Savoie
(my first year of PhD) [32]. In this manuscript I have shown a more complete and in
depth characterization of this systematic effect. Accurate control of the trajectory of the
atoms and the relative alignment of the mirrors enabled us to demonstrate a stability of
3× 10−8 rad · s−1 after 10 000 seconds of integration time, which represents the state of
the art of atomic gyroscopes.

The last chapter describes the mitigation of the DC-acceleration bias of the gyro-
scope. I presented a novel technique which rejects more efficiently this contribution
while preventing the recombination of parasitic interferometers. At the time of writing
this manuscript a complete characterization of this method is undergoing, in particular
focusing on the correction to the gyroscope scale factor.

Perspectives The performance of our cold atom gyroscope can be further improved
by addressing different points that currently limit our sensitivity and stability. On the
one hand the short term sensitivity of the sensor is limited by residual vibration noise.
On the other hand the long term stability is affected by wave front aberration coupled
to an imperfect trajectory of the atoms, which is linked to thermal expansion.

Different approaches can be used to mitigate the effects of vibration noise: first
we can increase the number of interleaved sequences. By introducing three times inter-
leaved, we saw a clear improvement in rejection of vibration phase contribution. Because
the main noise source is between 0.1 Hz and 1 Hz increasing the number of interleav-
ing should improve our ability to correlate measurement between each other, yielding
a scaling of the sensitivity as 1/τ for longer period of time than the current ∼7 s. At
the moment the number of interleaved sequence is limited by the design of the sensor.
As this limitation is purely geometrical, e.g. multiple atom cloud entering the detection
region, a new physical design is required to solve this problem, which is currently un-
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der study. Regarding the limitation imposed by the resonance condition for the Raman
lasers pair, a solution could be the implementation of a double diffraction scheme [55],
thus removing the need to compensate for Doppler effect.
A second approach would be to directly mitigate the vibration on the sensor by using
an active isolation platform [67, 68, 69, 70]. This solution would allow us to reduce vi-
bration noise in the frequency band where the gyroscope is more sensitive. Designing an
active isolation platform requires first to study the frequency response of the structure
holding the sensor. This will be presented in the PhD thesis of Romain Gautier.

Improving the short term sensitivity will allow us to characterize faster the systematic
effects, in particular the effect linked to the misalignment of the Raman retro-reflection
mirrors coupled to the trajectory of the atoms, which is currently limiting the long term
stability. To this end we anticipate to perform an on the fly characterization of this
effect. Efficiently performing this characterization requires to increase the span to which
we misalign the mirrors beyond the ∼15 µrad range allowed by the finite temperature of
the cloud. Therefore a colder atom ensemble is desirable. More generally a colder atom
source would mitigate the effects of wavefront aberration coupled to atomic trajectories,
which is a common problem in atom interferometry [63, 71, 72]. To achieve temperatures
below the level of optical molasses and on the order of hundreds of nK, we plan to use
degenerate Raman sideband cooling [73, 74, 75]. This is the ideal solution since it is
compatible with our existing 3D-MOT design and, most importantly, it is compatible
with interleaved atom interferometry at high sampling rate.
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Appendix A

Method to estimate the visibility
and amplitude noise of the
interferometer

The goal of this appendix is to show how we estimate the probability noise and the am-
plitude of the fringes independently from the general phase of the interferometer. The
method here discussed has been introduced in [76] and used in different studies [59, 77,
78].

Figure A.1: Simulated data illustrating of the method used to obtain a simulated prob-
ability distribution. We generate an interferometer fringe (left) with 12% Amplitude and
σp = 2.5%. On the right we see the histogram with step size ∆x = 0.9%, describing the
probability distribution of the fringe.
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Principles

The output probability P depends on the interferometer’s phase Φ as:

P (Φ) = P0 +A cos(Φ) + P̃ (A.1)

where with P̃ we indicate the normally distributed detection noise. The probability
density function (PDF) associated to Eq. (A.1), seen in Figure A.1, can be described as
the convolution of two separate distribution functions. The first is the PDF of the cosine
term of Eq. (A.1) and, assuming the phase Φ to be uniformly distributed between [0, π],
can be written as:

f(x) =


1

π

√
1−
(
P0−x
A

)2
if x ∈]P0 −A,P0 +A[

0 otherwise
(A.2)

where x = P0 + A cos(Φ). The second distribution is simply the normal distribution of
our probability noise:

fP = 1
σp
√

2π
exp

(
− x2

2σ2
P

)
(A.3)

Since the histogram in our calculation returns a discrete distribution for our measure-
ments we can rewrite Eq. (A.2) as follows:

F(x) =


1

∆x

[
arccos

(
P0−x
A

)
− arccos

(
P0−(x+∆x)

A

)]
if x ∈ [P0 −A,P0 +A]

0 otherwise
(A.4)

were we introduced ∆x as the step-size of the bin used for the histogram. In the case
where ∆x becomes very small Eq. (A.4) tends to Eq. (A.2). This function is characterized
by two distinct peaks at x = P0 ± A, as we can see on the left in Figure A.2, thus the
name of“twin-horn” distribution.
We can now write the convolution product using Eq. (A.4) and Eq. (A.3):

B(x) = N
+∞∫
−∞

dx′
[
arccos

(
P0 − x
A

)
− arccos

(
P0 − (x+ ∆x)

A

)]
× 1
σP

exp
(
−(r − r′)2

2σ2
P

)
(A.5)

where N is a normalization factor. In Figure A.2 we see three different simulated prob-
ability distributions and the respective twin-horn function generated using the same
parameters as the simulation. As we can see the function B(x) well describes the prob-
ability distribution presented in the figure.
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Figure A.2: Simulated twin-horned distribution of 2000 points with amplitude A = 12%
and step-size ∆x = 0.5%. As the probability noise σp increases, the two peaks fade and
the characteristic twin-horned shape is gradually lost.

Study of the uncertainties

In order to obtain statistically relevant uncertainties we rely on bootstrapping. This
method relies on the generation of simulated data in order to statistically estimate the
wanted parameters. Following this idea I chose to simulate multiple datasets with typi-
cal amplitudes A that we can find with the gyroscope data, and a wide range of possible
values of probability noise σp. As the minimization function allows us to choose different
values for ∆x, we decided to study how the choice of the bin size affects the estimation
of the parameters.

In Figure A.3 I present the results obtained for three different values of ∆x. Fur-
thermore I show the extracted values for the amplitude and the probability noise σp as
a function of the theoretical signal to noise ratio SNR = A/σp. I simulated 4 different
fringe amplitudes over a range of twelve values of σp. In order to reach a good statistical
relevance I randomly generate 50 datasets composed of 500 shots for each combination
of parameter [A, σp].
As we can see choice of ∆x plays an important role in the estimation of the parameters.
With a high number of bins, hence a smaller step-size, the evaluation of the amplitude
and more importantly of the SNR is more reliable across the whole range of theoretical
SNR values. For larger values of step-size the minimization routine fails consistently in
the estimation of the theoretical SNR. Using large step-size then, lead to an overestima-
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tion of the probability noise since the amplitude is well estimated even with large ∆x.
Regarding the amplitude we can see that, in the case of lower SNR, the extracted values
fluctuates leading to larger error bars. In conclusion this study allowed us to better have
a statistical calibration for the typical error bar that we can associate to our extracted
fringe’s parameter. For values of SNR ≥ 10 we see that we can reliably associate abso-
lute uncertainties between 0.1% and 0.4% for high values of SNR depending also on the
value of the amplitude. For lower values of estimated SNR the absolute uncertainties
increases ranging between 0.5% to 2%.

Figure A.3: Uncertainties study regarding the estimation of the amplitude A and prob-
ability noise σp using a minimization routine. We repeated the study for different values
of the step-size used to calculate the probability distribution. We simulated 50 datasets
of 500 point for each mark in the graphs in order to extract a statistically relevant mean
and standard deviation. The solid orange line in the graphs of the right column indicates
the expected value of the measured SNR.
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Publications

Study of temporal pulse shaping
B.Fang, N.Mielec, D.Savoie, M.Altorio, A.Landragin and R.Geiger
"Improving the phase response of an atom interferometer by means of temporal pulse
shaping"
New J. Phys. 20 023020

During my first year of PhD I worked on the study regarding temporal pulse shaping
and its influence on the performance of an atom interferometer. In particular we showed
how with smooth pulses we are able to reject high frequency fluctuation of the phase
noise or frequency noise of the Raman laser pair used in the experiment. To do so,
I implemented an arbitrary pulse shape generator together with Bess Fang. The first
measurement I performed is showed in Figure 4 of the paper, where using co-propagating
Raman transitions, I realized a Ramsey interferometer with Ramsey time T = 20 ms.
To study the transfer function H(ω) I measured in quadrature the phase response of the
interferometer to both high and low frequency sinusoidal phase modulation using differ-
ent pulse shapes. I later studied the frequency selectivity of the different pulse shapes
using Raman spectroscopy, shown in Figure 6 of the paper. The measured spectra are
in agreement with the theoretical expectation, showing the spectroscopy shapes are the
Fourier transform of the temporal pulse shape.

Implementation of a top-hat laser beam on the gyroscope
N.Mielec, M.Altorio, R.Sapam, D.Horville, D.Holleville, L.A.Sidorenkov,
A.Landragin and R.Geiger
“Atom interferometry with top-hat laser beams”,
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Appl. Phys. Lett. 113, 161108 (2018), p. 161108
During the second year of my PhD I worked with Nicolas Mielec on the implemen-

tation and characterization of a top-hat laser beam. While the optical assembly and
characterization was performed by Nicolas, I took care of the characterization on the
atom interferometer. In particular I measured the local Raman intensity using the cold
atom ensemble, shown in Figure 2 of the paper. Subsequently I compared the top-hat
collimator with our Gaussian collimator by performing a 3-pulse interferometer, observ-
ing a clear improvement in the contrast of the interferometer, as show in Figure 3 of the
paper. I then compared the Rabi oscillation using the two type of collimator, seen in
Figure 4, showing a clear improvement in the oscillation after long time of flight using
the top-hat laser beam.

Other publications:
D.Savoie, M.Altorio, B.Fang, L.A.Sidorenkov, R.Geiger, A.Landragin
“Interleaved atom interferometry for high-sensitivity inertial measurements”
Science Advances 4.12 (2018)

M.Altorio, L.A.Sidorenkov, R.Gautier, A.Landragin, R.Geiger,
"Accurate trajectory alignment in cold-atom interferometers with separated laser beams"
In preparation

https://doi.org/10.1063/1.5051663
https://doi.org/10.1126/sciadv.aau7948
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Abstract
We study theoretically and experimentally the influence of temporally shaping the light pulses in an
atom interferometer, with a focus on the phase response of the interferometer.We show that smooth
light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and
thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving
the interferometer. The light pulse shape is also shown tomodify the scale factor of the interferometer,
which has to be taken into account in the evaluation of its accuracy budget.We discuss the trade-offs
to operate when choosing a particular pulse shape, by taking into account phase noise rejection,
velocity selectivity, and applicability to largemomentum transfer atom interferometry.

1. Introduction

Precisionmeasurements rely on a careful analysis of the relevant noise sources and systematic effects. In the field
of inertial sensors, instruments based on light-pulse atom interferometry allowmeasurements of gravito-inertial
effects such as linear accelerations [1–3], rotations [4–6], Earth gravityfield [7, 8] and of its gradient [9] or
curvature [10]. They have also been used for precise determinations of fundamental constants [11, 12] and tests
of theweak equivalence principle (see, e.g. [13–21]), and have been proposed for gravitational wave detection in
the sub-10 Hz frequency band [22, 23]. These sensorsmost often use two counter-propagating laser beams to
realize the beam splitters andmirrors for the atomicwaves associated to two differentmomentum states. The
stability and accuracy of the sensors critically depends on the control of the intensity and of the relative phase of
these two lasers, both spatially and temporally. For example, the spatial profile of the relative laser phase is the
main source of systematic effects inmost accurate atomic gravimeters [7, 8], and is an important concern in the
design of future gravitational wave detectors based on atom interferometers (AIs) [24].

The temporal shape of the light-pulses (i.e. of the laser intensity)driving anAIdetermines the efficiency of the
beam splitters andmirrors acting on the twomomentumstates of theAI.More precisely, for velocity selective
transitions, the transfer efficiency of the pulse is given by the convolution between the velocity distribution of the
atoms and the Fourier transformof thepulse shape [25]. Efficient transitions (i.e. high contrasts) can thus be
achieved by temporally shaping the pulse intensity andphase, as shown in [26, 27].Moreover,whendriving an
interferometerwith largemomentum transfer (LMT) atomoptics, it has been shown that pulses ofGaussian
temporal shape significantly improve the transfer efficiencywith respect to rectangular pulse shapes [28, 29].
Adiabatic rapid passage (see, e.g. [30])was also considered inLMT interferometry, butwas shown to require
stringent control of the laser phase noise compared topulse shaping [31].

In addition to the influence on the contrast of the interferometer, the temporal shape of the pulse is expected
to affect the (frequency-dependent) response of the interferometer to phase fluctuations, which is an important
source of instability in AIs. Furthermore, as the phase response of the AI ismodified, pulse shaping should
introduce a correction to the scale factor of the interferometer, which has to be accounted for in the accuracy
budget of atomic sensors.
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In this article, we study the phase response of anAI driven by arbitrary temporal light pulse shapes. Ourmain
interest is to highlight the strong difference in the phase response of anAI driven by rectangular and smooth
pulse shapes.We concentrate on a fewpulse shapes that are representative for the optimization of the following
criteria: rejection of high-frequency laser phase (or frequency)noise, velocity selectivity of the pulse, and
applicability to LMT interferometry. Experimentally, we focus on the comparison of the phase sensitivity
function (section 2) and of the rejection of laser phase noise (section 3) between the twomostly employed
rectangular andGaussian pulses, in order to validate our calculations. In addition to the rectangular and
Gaussian pulses, we discuss two other representative pulse shapes: (i) theGSinc pulse, which is the product
of aGaussian and a cardinal sine, and (ii) theGaussian-Flat pulse (labeledGFlat thereafter)which is aflat pulse
withGaussian edges. For completeness of the presentation, we study in section 4 the influence of pulse shaping
on the frequency selectivity, in linewith previousworks [26, 27]. Finally, we present in section 5 a correction to
the interferometer scale factor associatedwith pulse shaping, and discuss its relevance for different precision
measurements involving AI based sensors.We conclude our paperwith a discussion of the trade-offs to operate
when selecting a given pulse shape for a particular application (section 6).

2. Sensitivity functionwith arbitrary pulse shape

2.1. Theory
The sensitivity functionwasfirst introduced to study the degradation of an atomic clock due to the phase noise
of the local oscillator [32], but the idea ismore general. It describes the response of an atom interferometer phase
to infinitesimal changes of external parameters.We investigate here the response of the AI phase dF to an
instantaneous variation df ( )t of the relative phase between the two lasers driving the AI, occurring at a given
time t. As in previous works [33], we define the sensitivity function as

d df
df

=
F

df
( ) ( )

( ) ( )g t
t

t
lim

,
. 1

0

It can be calculated for an interferometer composed of perfect beam splitters andmirrors using
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where W( )t is the Rabi frequency seen by the atoms during the interferometric sequence [34], with W =( )t 0 for
<t t0. The overall shape of ( )g t depends on the AI configuration, i.e. on the number of light-pulses. In this

work, ourmain interest lies in the effect of temporal pulse shape. Therefore, we consider without loss of
generality, a two-light pulse interferometer, i.e. a Ramsey configuration. For a Ramsey sequence with two
rectangular p 2 pulses characterized by a Rabi frequency WR and duration τ separated by Ramsey timeT, the
sensitivity function reads
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where the origin of the time axis is (arbitrarily) alignedwith the center of the first light pulse.
We show ( )g t as a dashed line infigure 1(a). In the limit of infinitely short laser pulses, ( )g t is box-like, as the

interferometer copies the phase jitter of the interrogation laser ( =( )g t 1) between the two laser pulses.
We show infigure 1(b) a zoomof of the rising slope (i.e. during the first p 2 pulse) of ( )g t for a sequence

based on rectangular pulses (blue dashed line) andGaussian pulses (red dashed–dotted line).We have chosen to
use the same peak intensity in our calculation (and our experiments later), and adjust the pulse duration to
obtain the desired Rabi angle. This ismotivated by the fact that the peak laser intensity depends on the total
power available, which is often the limiting experimental factor. Themain difference in the sensitivity function
takes place around t= -t 2, where τ denotes the duration of the rectangular p 2 pulse. The sudden intensity
variation of a rectangular pulse gives rise to a fast rise in the sensitivity function, and a discontinuity in its
derivative. This fast rise is in contrast with the gradual change induced by a smooth intensity variation of a
Gaussian pulse. Such a difference results in different spectral behaviors of ( )g t for the two pulse shapes, as we
will discuss in section 3.

2.2.Measurement of the sensitivity function for rectangular andGaussian pulses
Wemeasure ( )g t using the experimental setup described in [6, 35]. Briefly speaking, we use an atomic fountain
to prepare cold cesium-133 atoms. At each experimental cycle, about 106 atoms are prepared into the

2
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magnetically insensitive = = ñ∣F m4, 0F ground state and launched into the interferometric zone. The
Ramsey pulses are realized via stimulated Raman transitions, using a doubly seeded tapered amplifier [36]. The
seeding external cavity diode lasers have afixed phase relation bymeans of an optical phase locked loop (PLL)
close to theCs clock transition frequency. Both lasers are about 500MHz red-detuned from the excited state of
the D2 line to reduce spontaneous emissions during the Raman transition. At the end of the interferometer
sequence, the population in each of the hyperfine ground statesN3 andN4 is detected byfluorescence, and the
transition probability is obtained by = +( )P N N N4 4 3 4 .

The laser phase jump is implemented by applying aDCvoltageVoffset to the feedback port in the PLL through
a voltage controlled switch, which is triggered at different times. See figure 2 for the control schematics. The
voltage offset corresponds to a phase jump of about 340mrad. The switch has a delay of m0.3 s, whereas the PLL
has a locking bandwidth of 1.6MHz. Thus, the total delay in the phase jump implementation is under m1 s,
much shorter than the duration of the rectangular p 2 pulse t m= 21 s (peak Rabi
frequency pW =2 12 kHzR ).

We shape the Raman light pulses by attenuating the radio-frequency signal driving the acousto-optic
modulator (AOM), which controls the intensity of the Raman pulses shone on the atoms. A commercial direct
digital synthesizer (Rigol 4620) is used to generate a waveform that takes into account the desiredwaveform (e.g.
aGaussian pulse) aswell as the response of the chain of a voltage-controlled attenuator followed by anRF
amplifier. This response is calibrated against amonitor photodiode in order to ensure that the intensity of the
Raman pulses follows the desiredwaveform.

Figure 1. Sensitivity function ( )g t of a Ramsey sequence. (a)Complete ( )g t for two rectangular p 2 pulses separated by Ramsey time
T. (b)Zoomon the rising slope for rectangular (blue) andGaussian (red) pulses.We compare calculations (lines) according to
equation (3) and ourmeasurements (points). Errorbars on themeasurements are smaller than the plot symbol.

Figure 2. Schematic of the phase jump control. The beat note of two lasers (Raman 1 and 2) is detected on a fast photodiode (PD) and
phase locked onto a reference signal at theCs ground-state hyperfine splitting frequency of about 9.192GHz. Phase jumps are
implemented by sending aDC voltage Voffset to the feedback port of the PLL through a voltage controlled switch. By appropriately
attenuating the radio-frequency signal driving theAOM, arbitrary temporal profiles of laser pulses can be sent onto the atoms.

3
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With a Ramsey time ofT=20ms, the phase noise of the clock sequence is about 30mrad Hz -1 2, which
enables amid-fringe operation of the interferometer.We further stabilize the phase offset of the interferometer
by applying amid-fringe lock [37], which converts themeasurement of the atomic transition probability directly
to the interferometric phase. This technique is immune to variations in the probability offset and reduces the
sensitivity to the noise in the fringe amplitude, thereby allowing a robustmeasurement of the interferometric
phase.

To compare the experimental data with the calculations, we offset themeasured phase shift to 0 and
normalize by 340mrad to obtain the experimental ( )g t .We display ourmeasurements infigure 1(a) for the
complete ( )g t with rectangular pulses [33]. Figure 1(b) shows the rising slope for rectangular (circles) and
Gaussian (rectangulars) pulses. The relative phase uncertainty of eachmeasurement is below 4mrad, i.e. smaller
than the plot symbol. The time axis for the experimental data is shifted by m0.22 s to account for the delay
through the switch and the PLL.Ourmeasurements confirm the temporal formof ( )g t given by equation (3),
andwell resolve the differences between the two pulse shapes implemented.

3. Frequency response of the AI to pulse shaping

3.1. Calculations
The impact of the sensitivity function on the interferometer phase noise can bemore easily understood in
Fourier space. According to [33, 35], the variance of the interferometric phase noise can be expressed as

òs
w
p

w w= fF

¥ ∣ ( )∣ ( ) ( )H S
d

2
, 42

0

2

where the transfer function w w w=( ) ∣ ( )∣H G , w( )G is the Fourier transformof the sensitivity function ( )g t ,
and wf ( )S is the power spectral density of the Raman laser phase noise.

We plot infigure 3 the transfer function p∣ ( )∣H f2 2 as a function of frequency f for a 3 light pulse sequence
(p p p– –2 2) for various pulse shapes: rectangular (blue dashed line), Gaussian (red dashed–dotted line), GSinc
(purple dotted line), andGFlat (green). The peak Rabi frequency is the same for all pulse shapes. The calculation
is analytic for rectangular pulse and numerical for the other pulse shapes. TheGaussian pulse is truncated at 6
standard deviations on both sides. The definition of theGSinc andGFlat pulse shapes is given in appendix A.

Independent of the pulse shapes used, the transfer function p∣ ( )∣H f2 2 is oscillatorywith arches spanning
T1 , i.e. 50Hz for our choice ofT=20ms. This is illustrated at low frequency up to 3kHz, beyondwhichwe

plot themean value over 3kHz in order to illustrate the general frequency dependence of the envelope.
The difference between the four pulse shapes liesmainly in the low-pass cut-off occurring near the peak Rabi

frequency (here 12kHz). For a rectangular pulse, the high-frequency noise isfiltered outwith a f1 2 scaling of
H2, whereas the use of smoother pulses warrants a significantly faster decay, and therefore a better suppression of
high-frequency noise. In particular, Gaussian pulses give rise to the strongest high-frequency cut-off inH2. The

Figure 3.Transfer function p∣ ( )∣H f2 2 for a 3 pulse AIwithT=20msdriven by different pulse shapes: rectangular (blue dashed
line), Gaussian (red dashed–dotted line), GSinc (purple dotted line), andGFlat (green solid line). The peak Rabi frequency is the same
for all pulse shapes.
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GSinc pulse gives a similar behavior as theGaussian pulse around the peak Rabi frequency, before following a
f1 4 scaling at high frequency. The frequency at which the slope changes is determined by thewidth of the

Gaussian relative to the length of the sine cardinal (the smaller thewidth of theGaussian, the further the change
of slope). TheGFlat pulse gives rise to f1 6 scaling inH2 beyond the peak Rabi frequency.

To understand the asymptotic behavior of the transfer function qualitatively, we performed calculations
with various pulse shapes, including temporally asymmetric pulses, and using different shapes for the p 2 andπ
pulses.We found that the high frequency behavior isfirst determined by the steepness of ( )g t at the beginning of
thefirst p 2 and the end of the last p 2 pulses. Even faster decay of the transfer function is then related to the
steepness of ( )g t at the end of thefirst p 2 pulse, the beginning of the last p 2 pulse, and theπ pulse. Further
details on this qualitative interpretation in linewith equation (2) can be found in appendix B.

3.2.Measurements of the transfer function
Wemeasure the transfer function w( )H for different pulse shapes by realizing a Ramsey sequence (p p–2 2)
using co-propagating Raman transitions, with a Ramsey time of =T 20 ms, and aRabi frequency of 8.3kHz.
Tomeasure the transfer function, we follow the approach of [33]: we apply a sinusoidal phasemodulation of
angular frequencyω starting at the first Raman pulse and lasting during thewhole interferometer, andmeasure
its effect on the phase of the atom interferometer.We perform twomeasurements corresponding to two
quadratures of the phasemodulation, which are added quadratically in order to extract the value of w( )H . The
maximumof w( )H corresponds to a phase shift of 1.05 rad. The relative uncertainty of the phasemeasurements
are at the level of 1%. To show the asymptotic behavior of w( )H , wemeasure the position of themaxima of the
transfer function over several decades. Themeasurements are shown infigure 4(a) , together with the calculation
presented in the previous subsection, without free parameters. The experimental data and the calculation agree
well within the uncertainties of the experimental parameters (~10% on the Rabi frequency and~10% on the
position of themaxima at frequencies above 10 kHz). In particular, themeasurements resolve the difference in
asymptotic behavior of the three pulse shapes.We also observe that the positions of the zeros of the transfer
function are indistinguishable for all pulse shapes at frequencies lower than the Rabi frequency, as illustrated
around 8.3 kHz in panel (b).

3.3. Experimental demonstration of noise rejection
Todemonstrate experimentally the robustness of smooth pulses against high-frequency laser phase noise
(compared to rectangular pulses), we realize Ramsey sequences (p p–2 2)with additional relative phase noise
in the Raman lasers. The difference between the Ramsey sequence and the 3-pulse sequence (p p p– –2 2) only
lies in the low frequency behavior of the transfer function (at ~f T1 ), while the high frequency behavior (for
fon the order of and higher than the Rabi frequency) is the same for both sequences.We concentrate on the
comparison betweenGaussian and rectangular pulse shapes. Adding phase noise is achieved by sending a noisy
signal (instead of a switchableDCvoltage as illustrated infigure 2) into the feedback port of the PLL.We generate
awhite noise using a commercial synthesizer, filtered into the 40–300kHz band pass and amplified using a
commercial low-noise amplifier. By varying the amplifer gain, we control the additional phase noise of the
Raman lasers, giving rise to the power spectral density shown infigure 5(a). For each noise level, wemeasure the
short-termphase stability of a Ramsey sequence (T=20ms)with rectangular (circles) andGaussian

Figure 4.Transfer functions for a Ramsey sequence p p–2 2 with a Rabi frequency of 8.3kHz, and aRamsay time of 20ms. Three
pulse shapes are considered: rectangular (total duration of 30 μs), Gaussian, andGFlat. (a)Asymptotic behavior of w( )H , where the
experimental and theoretic data are themaxima of the arches. (b)A zoomaround the Rabi frequency. The errorbars correspond to
statistical errors at the 68% confidence interval. The dashed horizontal line in (a) corresponds to the noisefloor of ourmeasurements.
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(rectangulars) pulses, as shown infigure 5(b). In comparison, Gaussian pulses consistently rejects a significant
fraction of the additional noise.

We calculate numerically the induced phase noise according to equation (4), by numerically integrating over
the 10kHz–2.5MHz range. The contribution of frequencies out of this band is negligible. The total noise is

s s s= + Fdet
2 2 , where s = -22 mrad Hzdet

1 2 is ourmeasured detection noise. To account for the
uncertainty in the absolute phase noise level applied to the interferometer, wemultiply the phase noise PSDof
figure 5(a) by a global factor. This factor is obtain bymatching the calculation andmeasurement for upper right
point infigure 5(a), which is almost exclusively influenced by phase noise (and not detection noise). Apart from
this global factor common to both pulse shapes, there are no free parameters. The calculation followswell the
experimental data, and shows how theGaussian pulse rejects the high frequency phase noise, above the Rabi
frequency.

3.4.Discussion and applications to inertial sensors and optical clocks
The strong rejection of the relative laser phase noise by a smooth pulse (Gaussian, GSinc, GFlat) at frequencies
higher than the Rabi frequencywill help designing optical PLLs for AI experiments, as it relaxes the requirements
on the PLL bandwidth. Regarding the limitation to the sensitivity of cold atomgravimeters due to Raman laser
phase noise, we calculate the noise rejection in state of the art instruments. For thework presented in [38], we
compute a phase noise of 7.5mrad per shot (assuming aπ rectangular pulse with a duration of 15 μs), in
agreementwith themeasured short term stability. Using aGFlat pulse yields a noise of 6.1mrad, and aGaussian
pulse reduces this contribution to 5.9mrad per shot. For thework presented in [39], the rectangular pulse
corresponds to a phase noise of 1.1mrad per shot, whichwill be reduced to 0.5mrad per shotwhen usingGFlat
orGaussian pulses.

In AIs driven by Bragg diffraction, the relative phase noise between the twoBragg lasers is not a concern,
since the twomomentum states used in the two interferometer arms correspond to the same internal energy
state. However, because of propagation delay from the atoms to themirrorwhich retro-reflects the Bragg lasers,
the laser frequency noise converts into phase noise on theAI [40]. Such noise is amajor concern in long baseline
AI gradiometers, e.g. in gravitational wave detectors based onAIs [23, 41]. Smooth pulses can therefore relax the
requirements on the laser frequency noise at high frequencies (above the Rabi frequency, i.e. above typically
10–100 kHz).

We also investigate the potential interest of temporally shaping pulses to improve the stability of optical
clocks. The stability of optical clocks critically depends on the frequency stability of the interrogation laser [42],
the design of which requires careful attention [43]. In that context, we found that pulse shaping in clocks is less
interesting than inAIs. The reason is that the relevant transfer function for themeasurement of frequency
(instead of phase) is w w w=∣ ( )∣ ∣ ( )∣G H2 2 2, which scales as w-4 (for a rectangular pulse) after the cut-off given
by the pulse Rabi frequency W0. Forwhite frequency noise, the contribution of high frequencies (w > W0) is

Figure 5. (a)Power spectral density of the laser phase noise recordedwith a spectral analyzer with a resolution bandwidth of 1kHz.
The yellow line shows the spectrumwithout additional noise (gain=0 in the low-noise amplifier), whereas the purple, green and
cyan lines correspond to increasing noise levels (amplifier gain=2, 5, and 10). (b) Short-termphase stability of a Ramsey
interferometer.We overlay ourmeasurements (points)with calculations (lines) for rectangular (blue) andGaussian (red) pulses. The
errorbars correspond to statistical errors at the 68% confidence interval.
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thus 1/3 of that of low frequencies (w < W0), in power of the noise. Therefore, faster decay (than w-4) of the
transfer function does not significantly impact the stability. Pulse shaping can however be used to relax the
constraints on potential spurious high frequency noise components in the clock laser, e.g. infield applications or
compact clock design [44].

4. Frequency selectivity of the pulse

We investigate in this section the frequency selectivity of the pulse shapes studied in this article, in line with
previousworks [26, 27].Wemeasure the influence of the pulse shape on the frequency selectivity of the pulse, by
varying the Raman laser frequency difference andmeasuring the transition probability. The results are presented
infigures 6(a) and (b) for a p 2 pulse and aπ pulse correspondingly, for the four pulse shapes investigated in the
previous section: rectangular, Gaussian, GFlat, andGSinc.

TheGSinc pulse is technicallymore difficult to implement than the other pulse shapes as it requires the
introduction of phase jumps ofπ at the points in time corresponding to the zeros of the power envelope in order
to reverse the sign of the effective Rabi frequency (see figure A2 in the appendix for the time trace of the Sinc
pulse). Theπ phase jumps are applied on the relative phase between the twoRaman lasers through the phase lock
loop, in a similar way as for themeasurement of the sensitivity function presented in section 2.2. For the data
presented in panels (a) and (b), theGSinc is the product of aGaussian and of a Sinc functionwith 5 zeros on each
side of themaximum (see appendix A). The total duration of the pulse is 300 μs, and the peak power is the same
as for all pulse shapes. The standard deviation of theGaussianmultiplying the Sinc function is 1/6 of the total
duration (i.e. 50 μs).

The experimental data are in agreementwith the theoretical expectation, shown infigure 7, that the
spectroscopy is the Fourier transformof the pulse shape. In particular, the side lobes associated to the
rectangular pulse are absent in theGFlat, Gaussian, andGSinc pulses. Themeasurements also resolve the larger
width of theGFlat pulse compared to theGaussian pulse. Finally, theGSinc pulse clearly shows sharper edges
than the other pulse shapes. The asymmetry in theGSinc spectroscopy is not fully understood: we think that it is

Figure 6. Spectroscopy of different pulse shapes. (a) p 2 pulse. (b)π pulse. In both cases, the duration of the rectangular pulse is 30 μs.
The peak power is the same for all pulse shapes in (a), and the same for all pulse shapes in (b). In (c), the total duration of each pulse is

m300 s and the peak power is varied to perform a p 2 pulse. In (d), the peak power is kept constant and the pulse duration is kept
constant to 150 μs. Themaximummeasured probabilities for the p 2 andπ pulse are different from the ideal values of, respectively,
0.5 and 1 because of experimental imperfections (inhomogeneous Rabi frequency and imperfect normalization of the transition
probability).
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due to a nonlinearity in the acousto-opticmodulator which is driven for a longer duration for theGSinc pulse
(300 μs) compared to the other pulse shapes (the spectroscopywere less asymetric when using shorter pulses).

We investigate experimentally in further details the influence of the number of zeros in the Sinc pulse on the
sharpness of the spectroscopy. The results are shown infigures 6(c) and (d). Panel (c) shows themeasurements
for a p 2 pulsewhere the total duration of all pulses is kept constant to 300 μs, and the peak power is varied.
Panel (d) showsmeasurements were the peak power is kept constant and the pulse duration is kept constant to
150 μs.

In conclusion, the Sinc andGSinc pulses exhibit an almost flat response to detuning, and a sharper decay
than the other pulse shapes. They therefore optimizes the velocity acceptance of the pulse, at the expense ofmore
complexity in the implementation.

5. Scale factor of the interferometer

Thefinite duration of the light pulses influences the scale factor of atom interferometers, i.e. their response to
inertial effects. The interferometer phaseΦ is related to the relative laser phase f ( )t through the sensitivity

function as òF = f( )g t td
t

d

d
.Without loss of generality, we look at the example of aMach–Zehnder-like

interferometer sequence, where there are three light pulses (p 2–π–p 2 pulses) separated byT between each
consecutive pulse pairs. See figure 8 for an illustration. Thefinite duration τ of the p 2 (rectangular) pulses
modifies the scale factor of an atomaccelerometer from F = k T aeff

2 to F = arec , with  = +(k Trec eff

t t+ -
p( )( )) T2 4 3

2
[45]2. For experiments where the inertial effect is inferred froma phasemeasurement,

such a change of scale factor has to be taken into account when evaluating the accuracy budget.
Furthermore, bymodifying the temporal pulse shape, the scale factor  differs from that of rectangular

pulses rec. Since t T is typically on the order of -10 4 or smaller, the relative correction  



- rec

rec
scales linearly

with t T , and can be evaluated numerically with the appropriate formof ( )g t . For example, forT=100ms
and a peak Rabi frequency of 12.5kHz (t m= 10 s rectangular pulse), this correction amounts to ´ -9.4 10 6

for a sequence ofGaussian pulses, ´ -6.8 10 6 forGSinc pulses and ´ -4.2 10 7 forGFlat pulses.

Figure 7.Calculations of the line shapes. The panels correspond to themeasurement shown in figure 6. The parameters are fixed to the
valuesmeasured in the experiment (pulse duration, peak Rabi frequency). Note that themaximal probability of transition in this ideal
calculation is 0.5 for the p 2 pulses and 1 for theπ pulses.

2
The correction in themain text corresponds to equation (2.45) on page 38withTdefined as the time elapsed between the center of adjacent

pulses.
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6.Discussion

We summarize the properties of the four pulse shapes studied in this article in table 1.We report (i) the velocity
selectivity of a p 2 pulse (defined as the bandwidth in units of the peak Rabi frequency, see appendix A), (ii) the
suitability for LMT interferometry, (iii) the rejection of phase noise at high frequencies (according to section 3),
and (iv) the ease of implementation. Themain focus of this article was on the phase noise rejection. Details on
the velocity selectivity are given in appendix A.

Regarding LMTapplications [28, 29], we extended the numerical calculations performed in [46] to
implement arbitrary pulse shapes, and computed the Rabi oscillations for k10 LMT atomoptics.We found
that all smooth pulse shapes (Gaussian, GSinc, GFlat) support LMTbeam splitters for pulse durations of few
inverse peak Rabi frequency, in contrast to the rectangular pulse.

Regarding the ease of implementation, the rectangular pulse is themost simple as it only requires a digital
signal to drive, typically, a voltage controlled oscillator. The implementation of theGaussian or theGFlat pulse
shapes require awaveform generator and can be realizedwith relative ease. TheGSinc pulse (characterized by
negative values in the Rabi frequency) can be implemented experimentally by settingπ phase shifts at the points
of zero crossing. It requires awaveform generator in combinationwith a sufficiently fast phasemodulation, and
is thusmore challenging to implement.

Disregarding the implementation of the pulse shapes, theGSinc pulse is suited for all applications, as it
presents the largest velocity acceptance, can efficiently performLMT transitions, and rejects high frequency laser
phase noise. In comparison, although theGFlat pulse has a reduced velocity acceptance, it fulfills all other
criteria, and can therefore be considered as a good compromise for various applications.

As afinal note in this discussion,we remark that the interest of using an optical cavity to drive the light pulses in
anAI has been raised recently [46, 47]. The power enhancement at the cavity resonance requires sufficientfinesse
 , whichmodifies the intensity build up time t = L c2cav , and therefore the temporal shape of the pulse. The
effect on the pulse shapewill beparticularly important in long-baseline gradiometers usingAIs in an optical cavity,
as planned in [41], where tcav maybeof theorder of thepulse duration (i.e. fewμs).We computed the sensitivity
function for such a cavity-like pulse shape (see appendixC), which shows a f1 4 high-frequencybehavior.

7. Conclusion

We investigated the influence of temporally shaping the light pulses on the response of anAI. Themain focus of
our studywas on themodification of the AI sensitivity function to phase, at frequencies of the order of and
higher than the effective Rabi frequency.We demonstrated that smooth pulse shapes allow for a significant

Figure 8. Illustration of the three-pulse interferometer sequence for rectangular andGaussian pulse shapes. The pulse separationT
denotes the time elapsed between the center of two consecutive light pulses, and τ is the duration of the p 2 rectangular pulse.

Table 1. Summary of the properties of the pulse shapes studied in this article. The bandwidth is defined as the two-
photon detuning (in units of the peakRabi frequency)where the transition probability falls to 50%and 95%of its
maximumvalue. The phase noise rejection (weak/strong) is defined according to the decay of the transfer
function above the Rabi frequency, as shown infigure 3.

Pulse Bandwidth (50% ∣ 95%) LMT Noise rejection Ease of implementation

Rectangular 1.73 ∣ 0.49 Not suitable Weak, f1 2 Easiest

Gaussian 1.31 ∣ 0.36 Suitable Strong Medium

GSinc 1.73 ∣ 1.01 Suitable Strong Difficult

GFlat 1.65 ∣ 0.47 Suitable f1 6 Medium
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rejection of high frequency phasefluctuations compared to rectangular pulses.We also presented the
modification of the scale factor of the AI due to pulse shaping, which has to be considered in the evaluation of
systematic effects of AI sensors.Wefinally discussed the trade-offs between the different representative pulse
shapes considered in the article. One important conclusion of our study is that the rejection of high frequency
phasefluctuations can be achievedwith aminor effect on the velocity acceptance of the pulse by employing, for
example, aGFlat pulse shape, which can also efficiently performLMTbeam splitters.

In the context of LMT interferometry, future work should study themodifications of the sensitivity function
for AIs driven by LMTbeam splitters (see [48] for a preliminary analysis) and the influence on the rejection of the
laser frequency noise, as has been done, for example, for laser intensity noise induced light shift [49].
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AppendixA.Definition of the pulse shapes

Wedefine the time-dependent Rabi frequency as

W = W( ) ( ) ( )t f t , A10

with W0 the peak Rabi frequency. The pulses are defined by the function ( )f t withmaximal amplitude 1.
TheGSinc pulse is defined as

p= ´ a
-( ) ( ) ( )f t t tsinc e . A2

t
t1

1
2

2

2
1
2

With =( ) ( )x x xsinc sin , t1 the time of the first zero of the sinc, at1 the standard deviation of theGaussian
modulation. The total pulse duration is defined as nt2 1. Infigure 3 the parameters of theGSinc pulse are n=6
and a = 2.4.

TheGFlat pulse is even and defined as

=
<

>
- -

⎪

⎪

⎧
⎨
⎩

( ) ( )( )f t
t t

t t

1 if ,

e if ,
A3t t

r t

0

1
2

0

0
2

2
0
2

where t0 is the half length of the plateau, and rt0 is the standard deviation of theGaussian. The total pulse
duration is defined as +t nrt2 20 0. In themain text, we consider GFlat pulses with r=1 and n=6.

The pulse shapes are illustrated infigure A1.
In section 4we study experimentally several Sinc pulse shapes with different number of zeros on each side of

themaximum.As an illustration of implementation of such pulses, a time trace of a Sinc pulsewith 8 zeros on
each side of themaximum is shown infigure A2.

Figure A1. Illustration of the different pulse shapes considered in this article: rectangular (plain blue line), Gaussian (green dashed),
GFlat (violet dotted–dashed), GSinc (dotted red). Note that the peakRabi frequency is kept constant for all pulse shapes. For ease of
illustration, we have cropped theGSinc pulse to its center part in themain panel. The inset shows the full GSinc pulse shape. The time
axis is in units of the inverse Rabi frequency.

10

New J. Phys. 20 (2018) 023020 B Fang et al



Appendix B.Details on the qualitative study of the influence of the pulse shape on the
transfer function

The high frequency behavior of the transfer function can be qualitatively understood from the pulse shape
according to the position of the pulses in the interferometric sequence.We recall that the transfer function is

w w w=∣ ( )∣ ∣ ( )∣H G2 2 2, where w( )G is the Fourier transformof ( )g t , which is itself the sine of the integral of the

time-dependent Rabi frequency, see equation (2).We define ò= W
-¥

( ) ( )I t u ud
t

.

Our first observation, illustrated infigure B1(left), is that a decay faster than f1 2 can be obtained by
smoothing the beginning of thefirst p 2 and the end of the last p 2 pulses. At these points in time, where

Figure A2.Time trace of the sinc pulse with 8 zeros on each side of themaximum. The blue line shows the voltage recorded by the
photodiodewhichmonitors the power of the Ramanbeam. The green trace shows the digital signal which triggers phase jumps ofπ
applied to the phase lock loop. The inset is a zoomon the zeros of the power and on the phase jumps.

Figure B1. Illustration of the behavior of p∣ ( )∣H f2 2 at high frequency using different sequences of pulses. The calculations are for a 3
pulse interferometer with 12kHz peakRabi frequency andT=20ms, using different pulse shapes. The top panel shows the
considered pulse sequences. Left: evolution from the f1 2 scaling to the f1 4 scaling, which occurs when smoothing the outer parts of
the interferometer pulses, i.e. the beginning of thefirst p 2 pulse and the end of the last p 2 pulse. Right: evolution from the f1 4

scaling to even faster decays when smoothing the inner parts of the interferometer pulses.
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( )I t 0, the sensitivity function can be Taylor-expanded as +( ) ( ) ( ( ) )g t I t O I t 3 . A rectangular pulse
results in a triangular formof ( )I t , giving rise to a f1 2 dependence in p∣ ( )∣G f2 and hence to a f1 2 dependence
in p∣ ( )∣H f2 2. In contrast, smooth pulses are characterized by a slower growth of ( )I t and hence a faster decay of

p∣ ( )∣H f2 2. This is illustrated in figure B1(left) by calculating the transfer function using half Gaussian pulses for
the p 2 pulses and a rectangularπ pulse.

Evolution from f1 4 to a faster decay is governed by the end of the first p 2 pulse, the beginning of the last
p 2 pulse, and the beginning and end of the centralπ pulse. At these positions, p( )I t 2, and the sensitivity

function can be approximated by - +( ) ( ) ( ( ))g t I t O I t1 1

2
2 4

. Here the leading order of the time-

dependence is quadratic, which explains why the influence of this part of the pulses has aweaker influence on the
high frequency behavior. The rectangularπ-pulse, for example, results in a parabolic shape of ( )I t , yielding a

f1 4 dependence of ∣ ∣H 2. Figure B1(right) illustrates the need to smooth these parts of the pulses in order to
obtain a decay faster than f1 4 in the transfer function.

AppendixC. Transfer function for an atom interferometer in an optical cavity

Wepresent in figureC1 the temporal shape (top), the velocity selectivity (middle) and the transfer function for a
pulse shape resembling the response of an optical cavity.We assumed an intensity build up time of t m= 5 scav .
Comparedwith rectangular pulses (blue), cavity pulses ismore selective to detuning but rejects better the high-
frequency laser phase noise.

FigureC1. (Top) Shape of a cavity-like pulse and (middle) selectivity to detuning for a p 2 pulse. Here t m= 5 scav .We show the
shape of a rectangular pulse for comparison. Bottom: p∣ ( )∣H f2 2 in a 3 pulse interferometer with 12kHz peakRabi frequency and
T=20ms.We showhere again the response of the rectangular andGaussian pulses for the ease of comparison.

12

New J. Phys. 20 (2018) 023020 B Fang et al



ORCID iDs

RemiGeiger https://orcid.org/0000-0003-4678-7139

References

[1] Canuel B et al 2006Phys. Rev. Lett. 97 010402
[2] Geiger R et al 2011Nat. Commun. 2 474
[3] Rakholia AV,McGuinnessH J andBiedermannGW2014Phys. Rev. Appl. 2 054012
[4] GustavsonTL, Landragin A andKasevichMA2000Class. QuantumGrav. 17 2385
[5] TackmannG, Berg P, Schubert C, Abend S, GilowskiM, ErtmerWandRasel EM2012New J. Phys. 14 015002
[6] Dutta I, SavoieD, Fang B, VenonB, Alzar CG,Geiger R and Landragin A 2016Phys. Rev. Lett. 116 183003
[7] Louchet-Chauvet A, FarahT, BodartQ, ClaironA, Landragin A,Merlet S andPereira Dos Santos F 2011New J. Phys. 13 065025
[8] Freier C,HauthM, Schkolnik V, Leykauf B, SchillingM,WziontekH, ScherneckH-G,Müller J and Peters A 2016 J. Phys.: Conf. Ser.

723 012050
[9] McGuirk JM, Foster GT, Fixler J B, SnaddenM J andKasevichMA2002Phys. Rev.A 65 033608
[10] Rosi G, Cacciapuoti L, Sorrentino F,MenchettiM, PrevedelliM andTinoGM2015Phys. Rev. Lett. 114 013001
[11] Bouchendira R, Cladé P, Guellati-Khélifa S, Nez F andBiraben F 2011Phys. Rev. Lett. 106 080801
[12] Rosi G, Sorrentino F, Cacciapuoti L, PrevedelliM andTinoG 2014Nature 510 518
[13] VaroquauxG,NymanRA,Geiger R, Cheinet P, Landragin A andBouyer P 2009New J. Phys. 11 113010
[14] Schlippert D,Hartwig J, AlbersH, Richardson L L, Schubert C, Roura A, SchleichWP, ErtmerWandRasel EM2014 Phys. Rev. Lett.

112 203002
[15] Zhou L et al 2015Phys. Rev. Lett. 115 013004
[16] BonninA, ZahzamN, Bidel Y andBressonA 2013Phys. Rev.A 88 043615
[17] DuanX-C,DengX-B, ZhouM-K, ZhangK, XuW-J, Xiong F, XuY-Y, ShaoC-G, Luo J andHuZ-K 2016 Phys. Rev. Lett. 117 023001
[18] AguileraD et al 2014Class. QuantumGrav. 31 115010
[19] Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A andBouyer P 2016Nat. Commun. 7 13786
[20] Rosi G,D’AmicoG, Cacciapuoti L, Sorrentino F, PrevedelliM, ZychM, Brukner C andTinoGM2017Nat. Commun. 8 15529
[21] Overstreet C, AsenbaumP, Kovachy T,Notermans R,Hogan JMandKasevichMA2017 arXiv:1711.09986
[22] Dimopoulos S, GrahamPW,Hogan JM,KasevichMAandRajendran S 2009Phys. Lett.B 678 37
[23] Geiger R 2016 Future gravitational wave detectors based on atom interferometryAnOverview of GravitationalWaves: Theory, Sources

andDetection edGAuger andE Plagnol (Singapore:World Scientific) pp 285–313 (https://arxiv.org/abs/1611.09911)
[24] Hogan JM et al 2011Gen. Relativ. Gravit. 43 1953
[25] KasevichM,WeissD S, Riis E,Moler K, Kasapi S andChu S 1991Phys. Rev. Lett. 66 2297
[26] LuoY, Yan S,HuQ, Jia A,Wei C andYang J 2016Eur. Phys. J.D 70 262
[27] DunningA, Gregory R, Bateman J, CooperN,HimsworthM, Jones J A and Freegarde T 2014Phys. Rev.A 90
[28] MüllerH, Chiow S andChu S 2008Phys. Rev.A 77 023609
[29] Szigeti S S, Debs J E,Hope J J, RobinsNP andClose JD 2012New J. Phys. 14 023009
[30] Santos F PD,MarionH, Bize S, Sortais Y, ClaironA and SalomonC2002Phys. Rev. Lett. 89 233004
[31] Kovachy T,WeyChiow S andKasevichMA2012Phys. Rev.A 86 011606(R)
[32] DickG J 1987Proc. 19th Annu. Precise Time Time Interval vol 19, p 133
[33] Cheinet P, Canuel B, Santos F PD,Gauguet A, Yver-Leduc F and Landragin A 2008 IEEETrans. Instrum.Meas. 57 1141
[34] Bize S 2001Tests fondamentaux à laaide dahorloges à atomes froids de rubidium et de césiumThesesUniversité Pierre etMarie Curie—

Paris VI p 49, equation (4.21) (https://tel.archives-ouvertes.fr/tel-00000981)
[35] MeunierM,Dutta I, Geiger R, Guerlin C, Alzar C LG andLandragin A 2014Phys. Rev.A 90 063633
[36] Lévèque T,Gauguet A, ChaibiWand Landragin A 2010Appl. Phys.B 101 723
[37] Merlet S, Gouët J L, BodartQ, ClaironA, Landragin A, Santos F PD andRouchonP 2009Metrologia 46 87
[38] HuZ-K, SunB-L, DuanX-C, ZhouM-K,Chen L-L, Zhan S, ZhangQ-Z and Luo J 2013Phys. Rev.A 88 043610
[39] Gouët J L,Mehlstäubler T, Kim J,Merlet S, ClaironA, Landragin A and Santos F PD 2008Appl. Phys.B 92 133
[40] Gouët J L, Cheinet P, Kim J,Holleville D, ClaironA, Landragin A and Santos F PD 2007Eur. Phys. J.D 44 419
[41] Canuel B et al 2014E3SWebConf. 4 01004
[42] QuessadaA, Kovacich RP,Courtillot I, ClaironA, Santarelli G and Lemonde P 2003 J. Opt. B: QuantumSemiclass. Opt. 5 S150
[43] NicholsonTL,MartinM J,Williams J R, BloomB J, BishofM, SwallowsMD,Campbell S L andYe J 2012 Phys. Rev. Lett. 109 230801
[44] Koller S, Grotti J, Vogt S, Al-Masoudi A, Dörscher S,Häfner S, SterrU and Lisdat C 2017Phys. Rev. Lett. 118 073601
[45] Cheinet P 2006Conception and realisation of a cold atom gravimeterThesesUniversité Pierre etMarie Curie—Paris VI (https://tel.

archives-ouvertes.fr/tel-00070861)
[46] Riou I,MielecN, Lefèvre G, PrevedelliM, Landragin A, Bouyer P, Bertoldi A, Geiger R andCanuel B 2017 J. Phys. B: At.Mol. Opt. Phys.

50 155002
[47] Hamilton P, JaffeM, Brown JM,Maisenbacher L, Estey B andMüllerH 2015Phys. Rev. Lett. 114 100405
[48] Decamps B 2016Atom interferometry: experiments with electromagnetic interactions and design of a Bose–Einstein condensate setup

PhDThesisUniversité Toulouse III—Paul Sabatier (https://tel.archives-ouvertes.fr/tel-01447591)
[49] Cladé P, Plisson T,Guellati-Khélifa S, Nez F andBiraben F 2010Eur. Phys. J.D 59 349

13

New J. Phys. 20 (2018) 023020 B Fang et al



Atom interferometry with top-hat laser beams

N. Mielec,1 M. Altorio,1 R. Sapam,1 D. Horville,2 D. Holleville,1 L. A. Sidorenkov,1

A. Landragin,1 and R. Geiger1,a)

1LNE-SYRTE, Observatoire de Paris, Universit�e PSL, CNRS, Sorbonne Universit�e, 61 Avenue de
l’Observatoire, 75014 Paris, France
2GEPI, Observatoire de Paris, Universit�e PSL, CNRS, 5 Place Jules Janssen, 92190 Meudon, France

(Received 10 August 2018; accepted 6 October 2018; published online 18 October 2018)

The uniformity of the intensity and the phase of laser beams is crucial to high-performance atom

interferometers. Inhomogeneities in the laser intensity profile cause contrast reductions and system-

atic effects in interferometers operated with atom sources at micro-Kelvin temperatures and detri-

mental diffraction phase shifts in interferometers using large momentum transfer beam splitters.

We report on the implementation of a so-called top-hat laser beam in a long-interrogation-time

cold-atom interferometer to overcome the issue of inhomogeneous laser intensity encountered

when using Gaussian laser beams. We characterize the intensity and relative phase profiles of the

top-hat beam and demonstrate its gain in atom-optic efficiency over a Gaussian beam, in agreement

with numerical simulations. We discuss the application of top-hat beams to improve the perfor-

mance of different architectures of atom interferometers. Published by AIP Publishing.
https://doi.org/10.1063/1.5051663

Inertial sensors based on light-pulse atom interferometry

address various applications ranging from inertial naviga-

tion,1–3 metrology,4–6 gravimetry,7–13 gradiometry,14,15 and

tests of fundamental physics,16–21 to gravitational wave

astronomy.22,23 Light-pulse atom interferometers rely on the

coherent transfer of momentum from the photons of counter-

propagating laser beams to free falling atoms in order to

split, deflect and recombine the matter-waves. The sensitiv-

ity and the accuracy of the instruments thus crucially depend

on the relative phase uniformity of the laser beams realizing

these atom-optic functionalities. State-of-the-art cold-atom

sensors typically use sources at few lK temperatures, inter-

rogation times of several hundreds of milliseconds, and two-

photon transitions.5,10,24 Inhomogeneities in the laser inten-

sity across the atom cloud degrade the atom optic efficiency,

which causes a decrease in interferometer contrast and hence

a lower signal to noise ratio, as well as systematic effects.25

Such detrimental effects are amplified in interferometers

employing large momentum transfer (LMT) techniques (in

which several momenta are transferred to the atoms),21,26 in

particular, because of diffraction phase shifts.27 The problem

of intensity inhomogeneity can be mitigated by employing

Gaussian beams with a size much larger than that of the

atom cloud, at the cost of reduced peak intensity.

In this work, we report on the implementation of a colli-
mated top-hat laser beam (i.e., with uniform intensity distri-

bution in the central part28) as a solution to circumvent the

problems encountered in atom interferometers employing

Gaussian beams.

Beamshaping is a topic of intense development, with

applications ranging from micro-lithography, optical data

storage, to optical tweezers, where different approaches are

followed to produce structured light patterns. For application

in atom interferometry, the requirement for the relative phase

homogeneity motivates a scheme where the counter-

propagating beam pair is obtained by retro-reflection (the

retro-distance typically lying in the ten-centimeters-to-meter

scale). The interrogation laser beams are thus required to be

well collimated over such distances. This requirement of the

beam shaping technique amounts to achieving a flat phase

profile.

The simplest form of shaping the intensity distribution

of a laser beam, apodization, results in significant loss of

optical power (for example, the optimal transformation of a

Gaussian beam into a beam with a flat intensity profile sacri-

fices 64% of power). More efficient techniques involve dif-

fractive optical elements, such as spatial light modulators

(SLMs), in order to produce focused light patterns29 or colli-

mated structured beams when multiple SLMs are cascaded.30

However, the bulkiness of the optical setup, the potential

drift of the beam-shaping performance linked to the use of

an active material, and the limited incident peak intensity

make such solutions cumbersome for atom interferometry

experiment. Instead, passive refractive techniques based on

aspheric optical elements31 seem favorable, owing to their

compactness, stability, and efficiency.

Our passive top-hat collimator solution is based on a

recently released commercial beamshaper from the

Asphericon Company (model TSM-25–10-S-B), see Fig.

1(a). The beamshaper shall receive at its input a Gaussian

beam of 10 mm 1/e2-diameter and produce a top-hat beam of

15 mm full width at half maximum (FWHM), with a region

of about 14 mm where the intensity varies by less than 10%

(Ref. 32). The beamshaping is done with multiple aspheric

optics, based on principles similar to those of Ref. 31. The

advertized uniformity of the intensity plateau is 0.056 rms,

with a phase inhomogeneity of k/3 peak-valley (PV) and �k/

20 rms, allowing the beam to propagate without deformation

on distances of several meters.32 We inject the beamshaper

with a home-made fiber collimator made of 3 simple lenses,

to produce a Gaussian beam of 9.95 6 0.05 mm 1/e2 diame-

ter. At the output of the beamshaper, the top-hat beam isa)Electronic mail: remi.geiger@obspm.fr

0003-6951/2018/113(16)/161108/5/$30.00 Published by AIP Publishing.113, 161108-1
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magnified by a factor of two with two achromatic doublets,

in order to reach a useful region of 28 mm. The optical sys-

tem can be mounted conveniently during an experiment. The

power transmission of the input collimator plus the beam-

shaper is 91%, while that of the full system is 85%. The

quality of the generated top-hat beam mainly depends on the

input beam size (which must fall within the 10 mm diameter

specification at the 10% level32) and its collimation.

To align the top-hat collimator, we image the beam on a

paper screen and optimize the intensity profile by moving

the input fiber placed on a 5-axis mount. We target a flat cir-

cular intensity profile maintained over a propagation distance

of at least 150 cm. Figure 1(b) shows the beam imaged on

the paper screen at the output of the expander. While this

method is convenient for the alignment procedure, it is not

suited for a precise measurement of the intensity uniformity

of the beam because of the speckle produced on the paper

screen. We use a large-area beamprofiler (11.3� 6.0 mm2) to

measure the uniformity of the plateau. Figure 1(c) shows the

stitched images acquired by scanning the beamprofiler in

front of the beam after 40 cm of propagation. The beam

exhibits a qualitatively flat plateau. Large diameter rings

concentric to the beam are attributed to the beamshaper. The

uniformity of the plateau over a diameter of 28 mm is 0.11

rms and the FWHM is 31.7 6 0.2 mm. Figure 1(d) shows a

profile of the vertical cut through the middle of the beam

(along the blue line). The orange line is a moving average

over 1 mm of the profile, shown here to illustrate lower fre-

quency inhomogeneities. For comparison, the green line

shows a Gaussian beam with 40 mm diameter at 1/e2 (as

used in Ref. 24) and same peak intensity as the top-hat

beam.

In an atom interferometer, the relative phase between

two counter-propagating laser beams is imprinted on the

atomic wave-function during the light pulses. This relative

phase contains a term associated with the free propagation,

uðx; y; 0Þ � uðx; y; 2LÞ, where L is the distance between the

atom cloud and the retro-mirror.33 We measured such a rela-

tive phase field for our top-hat beam using an asymmetric

Michelson interferometer with the difference of its arms set

to 2L. At the output, the interference pattern carries the 2D

relative phase map, which we recover using Fourier analy-

sis.34 A lower bound on the accuracy is set by the planarity

of the mirrors and the beamsplitter used in the interferome-

ter, specified to be k/10 peak-valley (PV). The relative phase

map in a pupil of 28 mm diameter corresponding to the use-

ful part of the beam is shown in Fig. 1(e), for a difference in

propagation distance 2L ¼ 70 cm. We find relative phase

inhomogeneities of k/5 PV and a k/28 rms. Additional phase

maps for further propagation distances are given in the sup-

plementary material. Our characterization shows that the

top-hat beam is suitable for high-precision atom interferome-

try, where relative wavefront inhomogeneities are an

issue.13,25,33,35

We implemented the top-hat beam on a cold-atom gyro-

scope-accelerometer experiment. The setup has been

described in previous works24,36 and we recall here the main

features which are relevant to this study. Laser-cooled

cesium atoms (at a temperature of 1.2 lK) are launched ver-

tically with a velocity of up to 5.0 m s�1. After a selection

step of the mF ¼ 0 magnetic sublevel, we realize the atom

interferometer by means of two-photon stimulated Raman

transitions from counter-propagating laser beams, which

couple the jF ¼ 3;mF ¼ 0i and jF ¼ 4;mF ¼ 0i clock states.

The direction of the Raman beams is nearly horizontal. We

use two beams separated vertically by a distance of 211 mm.

The top-hat collimator was set up at the position of the top

beam, while the bottom beam is a Gaussian beam of 40 mm

diameter at 1/e2 [Fig. 2(a)]. The state of the atoms at the out-

put of the interferometer is finally read out using fluores-

cence detection.

We first probe the intensity profile of the top-hat beam

by applying a Raman pulse of fixed duration s at different

FIG. 1. (a) Schematic view of the optical system with the input collimator, the beamshaper, and the expander (dimensions in mm, / denoting the diameter of

the optics). (b) Image of the top-hat beam on a paper screen. The dashed purple line is a circle of 28 mm diameter. (c) Image obtained with a beamprofiler, after

40 cm of propagation. Between the 2 dashed lines separated by 28 mm, the uniformity of the plateau is 0.11 rms. (d) (blue) Vertical line profile of the top-hat

beam shown in (c); the intensity has been normalized to the mean plateau intensity (orange). Moving average over 1 mm (green). Theoretical profile of a

Gaussian beam with 40 mm 1/e2 diameter. (e) Relative phase of the top-hat beam with 70 cm propagation difference, in a disk of 28 mm; the deviation is k/5

(PV) and k/28 (rms).

FIG. 2. (a) Sketch of the experiment. (b) Measurement of the local Raman

lasers intensity with a cold atom cloud, by recording the transition probabil-

ity versus time-of-flight. The duration of the Raman pulse is fixed (s ¼ 9 ls)

and set close to that of a p/2 pulse, where the sensitivity to intensity fluctua-

tions on the plateau is maximum. The horizontal axis (z) is obtained by mul-

tiplying the TOF with the mean velocity of atoms in the beam (3.0 m s�1).

161108-2 Mielec et al. Appl. Phys. Lett. 113, 161108 (2018)



times as the atoms travel on their way up. The atoms are

launched with a velocity of 4.7 m s�1 and their mean trajec-

tory intersects the center of the beam after a time of flight

(TOF) of 170 ms. After this relatively short TOF, the size of

the cloud is still close to that of the initially launched atoms

(’1.5 mm rms radius) and much smaller than the beam size.

The transition probability, P / sin2ðXðzÞs=2Þ, is determined

by the local value of the two-photon Rabi frequency, X(z),

and can thus be used as a probe of the local intensity of the

beam (here, z denotes the direction parallel to gravity).

Figure 2(b) shows the transition probability versus the rela-

tive position of the cloud inside the beam. We observe a

qualitatively flat intensity profile in the center, with a width

consistent with the optical characterization reported in

Fig. 1.

The size of a cold atom cloud increases over free propa-

gation due to finite temperature. This results in an inhomoge-

neous atom-light coupling when the cloud size approaches

the waist of the Gaussian beam, thereby decreasing the inter-

ferometer contrast. The intensity homogeneity of the top-hat

beam allows in principle to improve on this effect. To illus-

trate this improvement, we operate a 3 light-pulse interfer-

ometer sequence with a pulse separation time T¼ 1 ms, after

a long TOF of 855 ms to bring forward the effect of the atom

cloud expansion. For a quantitative comparison, the differ-

ence in height between the two beams (211 mm) was

matched by the respective change in launch velocity, in order

to obtain nearly the same TOFs when crossing the Gaussian

and top-hat beams. Figure 3 presents the comparison and

shows the advantage of the top-hat beam.

To assess the limitations to the gain in atom-optic effi-

ciency offered by our top-hat beam over our Gaussian beam,

we recorded Rabi oscillations after various TOFs, when the

launched atom cloud crosses the beams on its way up and on

its way down. Figure 4(a) shows the Rabi oscillations on the

way up after a TOF of 170 ms and on the way down after a

TOF of 855 ms for the top-hat and Gaussian beams. On the

way up, the cloud size is smaller than the beam sizes and the

Rabi oscillations have a similar shape for the Gaussian and

top-hat beams, as expected. The transfer efficiency of �70%

is limited by the velocity selectivity of the two-photon transi-

tion, given by the finite Rabi frequency (i.e., laser power)

and the velocity spread of the atoms in the direction of the

beams. On the contrary, on the way down, the Rabi oscilla-

tion in the top-hat beam (green) is significantly improved

with respect to that in the Gaussian beam (red), owing to the

homogeneity of the two-photon Rabi frequency from the

top-hat beam. To model the Rabi oscillations, we employ a

Monte-Carlo simulation where we generate an ensemble of

atoms with individual velocities following the distribution

measured with the Doppler-sensitive Raman transitions (cor-

responding to a 3D temperature of 1.2 lK), and propagate

them in the Raman beams. The details of the model are given

in the supplementary material. The model reproduces well

the data and allows one to assess the residual intensity inho-

mogeneities of the top-hat beam. Figure 4(b) shows the mea-

sured Rabi oscillation confronted to a simulation where the

intensity noise of various levels is added on the top-hat pro-

file.37 The data match best with the numerical simulation

assuming an inhomogeneity of 8.3% rms, consistent with the

optical characterization of the intensity inhomogeneities of

11% reported in Fig. 1.

Finally, we demonstrate that the top-hat beam is suited

for high-sensitivity atom interferometry, by running a 3-

pulse atom interferometer sequence with a pulse separation

time T¼ 147 ms. The first p/2 pulse is realized in the

Gaussian beam (on the way up, TOF ¼ 170 ms), while the

second and third pulses are realized in the top-hat beam

(TOF ¼ 317 and 464 ms). For such long interrogation time,

the interferometer is highly sensitive to vibration noise pro-

ducing at its output a typical rms phase shift of more than p
rad. Running the interferometer results in a random sampling

of the fringe pattern by vibration noise, which appears

blurred without additional knowledge on the vibration noise

at each run. To extract the contrast, we follow the method of

FIG. 3. Interference fringes for a 3-pulse interferometer sequence with a

pulse separation time T¼ 1 ms, after a TOF of 855 ms. Red: Gaussian beam.

Green: top-hat beam. The interference fringes are scanned by varying the

relative Raman laser phase at the third light pulse. The same optical power

was used for the Gaussian and the top-hat beams.

FIG. 4. Rabi oscillations. (a) Plain lines: measured oscillations on the way

up after 170 ms of TOF (blue and orange for Gaussian and top-hat, respec-

tively) and on the way down after 855 ms of TOF (red and green). Dotted

lines: numerical simulation. (b) Green plain line: measured Rabi oscillation

in the top-hat beam after 855 ms of TOF [the same as in (a)]. Dashed:

numerical simulation for various levels of rms intensity noise on the top-hat

(brown: 0%, black: 8.3%, violet: 15%).
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Ref. 2 and compute the histogram of the transition probabil-

ity data [Fig. 5(a)], from which we extract a contrast of 35%.

Furthermore, we recover the interference fringes by correlat-

ing the atom interferometer output with the phase calculated

from vibration data acquired with two broadband seismome-

ters,24,38 see Fig. 5(b). The uncertainty (1r) on the fitted

phase is 80 mrad, corresponding to a horizontal acceleration

uncertainty of 2.5� 10�7 m s�2. Although the measurement

sensitivity is limited by residual vibration noise, this experi-

ment shows that the top-hat beam is compatible with high-

sensitivity inertial measurements based on long-interroga-

tion-time cold-atom interferometry.

In conclusion, we have set up and characterized a colli-

mated top-hat laser beam and reported on its implementation

for a long interrogation time cold-atom interferometer. Our

top-hat beam features a constant intensity over a region of

28 mm with rms variations of about 10%. We expect that the

intensity homogeneity offered by top-hat beams compared to

Gaussian beams will be beneficial to various atom interfer-

ometer geometries which we discuss below. We present

additional advantages in the supplementary material.

The intensity homogeneity of the interrogation beams

will allow reducing or canceling important systematic effects

in cold-atom interferometers, such as the two photon light

shift.39 It can also be used to improve the efficiency and the

stability of atom launching techniques based on the coherent

transfer of photon momenta, such as in Bloch oscilla-

tions.4,6,21 Moreover, this beamshaping solution could be

adapted for atom interferometers with baselines of several

meters as in Ref. 21.

Employing a single top-hat beam can be used to build

compact, yet precise, cold-atom inertial sensors. For exam-

ple, a D¼ 28 mm a wide homogeneous intensity profile

should allow one to run a fountain interferometer with a total

interferometer time of 2T ’ 2�
ffiffiffiffiffiffiffiffiffiffiffi
2D=g

p
¼ 151 ms, if the

atoms are launched from the bottom of the beam. Moreover,

the design of gyroscopes, where the atoms travel through

successive laser beams with a velocity transverse to the

momentum transfers25,40,41 could be simplified with a single

top-hat beam.

Homogeneity of the intensity profile should reduce the

diffraction phase shifts encountered in LMT Bragg

diffraction.42–44 For example, a variation of 1% of laser

intensity in 4�hk Bragg diffraction amounts to a variation in

the diffraction phase of about 84 mrad.27 The rms intensity

uniformity of our top-hat beam is between 8% and 11% over

a region of 28 mm [Fig. 1(c)]. Keeping a 10% rms intensity

variation within a Gaussian beam requires working within a

reduced portion around the center, which translates into

using only 25% of the total power. This suggests that the

efficiency and the accuracy of LMT beam splitters should be

significantly improved by employing top-hat beams.

See supplementary material for additional data regard-

ing intensity profiles (Fig. S1) and relative phase maps (Fig.

S2) for various propagation distances, for the impact of rela-

tive phase inhomogeneities on the atom interferometer bias,

for the details of the model of Rabi oscillations, and for

numerical examples of the gain in contrast with top-hat

beams compared to Gaussian beams for specific interferome-

ter geometries.
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25A. Gauguet, B. Canuel, T. L�evèque, W. Chaibi, and A. Landragin, Phys.

Rev. A 80, 063604 (2009).
26T. Mazzoni, X. Zhang, R. Del Aguila, L. Salvi, N. Poli, and G. M. Tino,

Phys. Rev. A 92, 053619 (2015).
27M. B€uchner, R. Delhuille, A. Miffre, C. Robilliard, J. Vigu�e, and C.

Champenois, Phys. Rev. A 68, 013607 (2003).
28F. Gori, Opt. Commun. 107, 335 (1994).
29V. Pal, C. Tradonsky, R. Chriki, N. Kaplan, A. Brodsky, M. Attia, N.

Davidson, and A. A. Friesem, Appl. Opt. 57, 4583 (2018).
30H. Ma, Z. Liu, P. Zhou, X. Wang, Y. Ma, and X. Xu, J. Opt. 12, 045704

(2010).
31J. A. Hoffnagle and C. M. Jefferson, Appl. Opt. 39, 5488 (2000).
32See https://www.asphericon.com/en/asphere/shape-it-til-you-make-it-top-hat-

beam-shaping-with-aspheres/ for “Asphericon Website” (last accessed

October 9, 2018).
33A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S.

Merlet, and F. P. D. Santos, New J. Phys. 13, 065025 (2011).
34M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).
35V. Schkolnik, B. Leykauf, M. Hauth, C. Freier, and A. Peters, Appl. Phys.

B 120, 311 (2015).
36M. Meunier, I. Dutta, R. Geiger, C. Guerlin, C. L. Garrido Alzar, and A.

Landragin, Phys. Rev. A 90, 063633 (2014).
37We varied the spatial frequencies of the added intensity noise and found

no substantial difference in the simulation results as long as the spatial

period was smaller than about 1/10 of the beam size. In the simulation

reported in Fig. 3, the spatial period of the noise is 1/100 of the beam size.
38S. Merlet, J. LeGou€et, Q. Bodart, A. Clairon, A. Landragin, F. Pereira Dos

Santos, and P. Rouchon, Metrologia 46, 87 (2009).
39A. Gauguet, T. E. Mehlst€aubler, T. L�evèque, J. Le Gou€et, W. Chaibi, B.
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Interleaved atom interferometry
for high-sensitivity inertial measurements
D. Savoie*, M. Altorio*, B. Fang, L. A. Sidorenkov, R. Geiger†, A. Landragin

Cold-atom inertial sensors target several applications in navigation, geoscience, and tests of fundamental physics.
Achieving high sampling rates and high inertial sensitivities, obtainedwith long interrogation times, represents a chal-
lenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where three atomic
clouds are interrogated simultaneously in an atom interferometer featuring a sampling rate of 3.75 Hz and an inter-
rogation time of 801 ms. Interleaving improves the inertial sensitivity by efficiently averaging vibration noise and
allows us to perform dynamic rotation measurements in a so far unexplored range. We demonstrate a stability of
3 × 10−10 rad s−1 , which competes with the best stability levels obtained with fiber-optic gyroscopes. Our work va-
lidates interleaving as a key concept for future atom-interferometry sensors probing time-varying signals, as in on-
board navigation and gravity gradiometry, searches for dark matter, or gravitational wave detection.

INTRODUCTION
Quantum sensing relies on the manipulation of internal or external
degrees of freedom in atoms, molecules, optomechanical devices,
and photonic or solid-state systems and covers various applications
such as magnetometry (1–3), the definition of frequency standards
(4, 5), short-range force measurements (6), or electromagnetic mea-
surements (7, 8). Inertial sensors based on the coherent manipulation
of superpositions of momentum states in atom interferometers have
been developed for more than 25 years (9–11), with the goal of ad-
dressing various applications. Examples of remarkable achievements
are tests of fundamental physics (12–16), metrology (17), or absolute
gravimetry (18–21). These precision measurements of gravito-inertial
effects directly take benefit from the inherent accuracy and long-term
stability of cold-atom sensors. These two properties can eventually be
combined with the high bandwidth of relative sensors, which is at the
basis of sensor fusion (22). This approach is reminiscent of atomic
clocks, where probing the stable atomic energy structure is used for
stabilizing a microwave or optical oscillator (4, 5) or for tests of fun-
damental physics.

The extension of applications of cold-atom inertial sensors to mea-
surement of time-varying signals has been challenged by their reduced
sampling rate, which originates from their sequential operation and
from the long interrogation time of the atoms that is required to achieve
high inertial sensitivity. This limitation is, for example, an obstacle for
applications to inertial navigation (23) or to fundamental research
related to darkmatter detection (24) or gravitational wave astronomy
(25, 26). In this study, we report on the interleaved operation of a cold-
atom inertial sensor,whichoperateswith a sampling frequencyof 3.75Hz
and features a high inertial sensitivity, as given by the 801-ms interroga-
tion time of the atoms in the interferometer. The method of interleav-
ing, which we demonstrate for both static and dynamic rotation rate
measurements, can be generalized to other atom interferometer ar-
chitectures and therefore paves the way to the development of high-
bandwidth and high-sensitivity cold-atom inertial sensors.

Besides an increase in sensor bandwidth, we show that interleaving
allows us to efficiently average vibration noise (as 1/t, where t is the
integration time), which represents the most important noise source

in cold-atom inertial sensors. As a consequence, we demonstrate a
record rotation rate sensitivity of 3 × 10−8 rad s−1 Hz−1/2 . Such a
high-sensitivity level allows us to characterize the systematic effects of
a cold-atom gyroscope in a so far unexplored range (27, 28) and to sta-
bilize them at the few 10−10 rad s−1 level. Previous research on atomic
beam gyroscopes has already demonstrated excellent sensitivities (29)
and long-term stabilities close to the state-of-the-art optical gyroscopes
(30). As the long-term instability of gyroscopes is a limiting factor in
inertial navigation systems, achieving the performance of the best
fiber-optic gyroscopes (31) was a long-standing goal, which we attain
for the first time with a cold-atom sensor.

RESULTS
Experimental setup
Experimental sequence and principle of the gyroscope
The core of the experimental setup used in this work has been described
in (32) and is sketched in Fig. 1. The essential techniques are given in
Materials and Methods, with further details in the Supplementary
Materials. In short, we laser-cool cesium atoms to a temperature of
1.2 mK and launch them vertically at a velocity of 5.0 m s−1. After a se-
lection step of themF = 0magnetic sublevel, we interrogate the atoms in
the interferometer and finally detect their state at the output of the in-
terferometer, on their way down, using fluorescence detection. We rea-
lize the light-pulse atom interferometer using two-photon stimulated
Raman transitions with counter-propagating laser beams, which couple
the |F = 3,mF = 0〉 and |F = 4,mF = 0〉 clock states of the cesium atom.

According to the Sagnac effect, the rotation sensitivity is proportional
to the area between the two arms of the interferometer. Our gyroscope is
based on a fountain configurationwith four light pulses to create a folded
geometry owing to gravity (33). The symmetric four-pulse fountain
configuration allows us to achieve a large area (11 cm2 in this work) and
leads to a vanishing sensitivity to constant linear accelerations. The in-
terferometer phase shift, F, can be calculated from the relative phase
between the twoRaman lasers,DφlaserðtÞ ¼ k

→

eff ⋅r
→
b;tðtÞ þ DφðtÞ, which

is imprinted on the diffracted part of thematter wave at the time t of the
pulse. It reads

F ¼ k
→

eff ⋅ r
→
bð0Þ � 2r

→
t
T
2

� �
þ 2r

→
t
3T
2

� �
� r

→
bð2TÞ

� �
þ DF0 ð1Þ
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where k
→

eff is the two-photon wave vector, r
→
b;tðtÞ is the position of the

mirror retroreflecting the Raman lasers with respect to the center of
mass of the free-falling atoms (subscripts {b, t} for bottom and top mir-
ror; see Fig. 1), and 2T is the total interrogation time. The last term DF0

is a controllable laser phase shift independent of inertial effects. The
phase shift associated to the stationary Earth rotation rateW

→

E is given by

FW ¼ 1
2
k
→

eff ⋅ðg→ �W
→

EÞT3 ð2Þ

where g
→
is the acceleration of gravity (34).

Interleaved operation
We use a sequence of joint interrogation of successive interferometers,
which is obtained by using the same p/2 Raman pulse for the atom
clouds entering and exiting the interferometer zone (32). Consequently,
the sensor can operate without dead times. The interleaved operation,
which is reminiscent from the atom juggling technique of (35), is then
implemented by extending this joint sequence to a multiple-joint
sequence, as proposed in (36). The sequence of Raman pulses is given
in Fig. 1. If we denote 2T = 801 ms as the total duration of the interfer-
ometer, then we launch an atom cloud every Tc = 2T/3 = 267ms, which
supposes that a cloud is laser cooled while three previously launched
clouds are interrogated in the interferometer. Because of timing con-
straints, the loading time of the magneto-optical trap (MOT) is limited.
The atoms are loaded in the MOT during 55 ms, and we detect 2 × 105

atoms at the end of the interferometer. The light scattered from the
MOT atoms causes incoherent photon absorption and emission from
the interrogated atoms and therefore a loss of contrast (36). The contrast
of the interferometer is 7.4%, limited by the expansion of the cloud dur-
ing the free fall in the Raman beams of Gaussian profile and by the light
scattered from the MOT.
Technical upgrades
We implemented several key upgrades of our setup compared to (32).
First, we improved the detection noise, which was limiting the sensitivity
in (32). The equivalent one-shot phase noise is now 71 mrad, cor-
responding to a rotation noise of 8 nrad s−1 Hz−1/2 . Second, we imple-
mented a real-time compensation of linear acceleration noise (22)

and a servo loop to operate the interferometer at mid-fringe, i.e.,
in its linear range. These techniques are described in Materials and
Methods. These upgrades result in a sensor that effectively operates
without dead times, as statistically very few points sit on the top or
bottom of a fringe, where the sensitivity vanishes.
Rotation rate acquisition
Figure 2 shows a 32.5-hour acquisition of rotation rate measurements
obtained between 23 and 25 September 2017. To obtain this series of
data, we alternated the direction of the Raman wave vector (±k

→

eff ) and
computed the half-difference of two successive measurements to reject
noninertial (k

→

eff -independent) effects, such as AC Stark shifts (see
Materials and Methods and section S1 for the details of the sequence
and section S2 for the raw data). In the following, we will analyze the
sensitivity and the stability of the gyroscope from this acquisition.

Efficient averaging of vibration noise and record sensitivity
Vibration noise is the most important source of sensitivity degradation
in cold-atom inertial sensors of large area [i.e., using long interrogation
time and/or large momentum transfer techniques (37)]. Efficient vibra-
tion isolation at low frequencies (below a few hertz) is technically chal-
lenging [e.g., (38)] and not suited for field applications. We will show
that interleaving allows us to reduce the impact of this key noise source.

In our sensor, the impact of inertial noise can be analyzed by con
sidering a center of rotation located at the top Raman beam: Inertial
noise then appears as linear acceleration noise of both mirrors plus
rotation noise of the bottom mirror. The rotation noise translates
into random variations of the angle qB(t) of the Raman beam with
respect to a geostationary reference frame (34) and affects the inter-
ferometer phase as [qB(2T) − qB(0)] (Eq. 1). In joint measurements,
in which p/2 pulses are shared (occurring at times 0 and 2T), the
contribution of rotation noise cancels out when averaging N succes-
sive measurements (see Materials and Methods for a derivation).
Therefore, the gyroscope sensitivity should improve as t−1, where t =
2NT is the integration time, instead of t−1/2 in the case of uncorrelated
measurements affected by rotation noise.

Besides averaging rotation noise, the interleaved operation of our
sensor allows us to reduce the impact of residual linear acceleration
noise: Because our sampling frequency (1/Tc = 3.75 Hz) is higher than
the frequencies at which the acceleration noise mostly contributes
(around 0.5 Hz; see table S1), correlations appear between successive

Time

Z

 

Seismometers

Vibration isolation 
platform

 

Mirrors Collimators

Detection

Preparation

Fig. 1. Principle of the experiment. (A) Sketch of the experiment, where the
atoms are laser cooled (blue cloud) and launched vertically, interrogated by
two Raman beams (brought from the gray collimators and retroreflected on
the blue mirrors), and detected on their way down (green box). The distance be-
tween the Raman beams is L ¼ 3

8 gT
2≃59 cm. (B) Diagram of the atom interferom-

eter in the (xz) plane (not to scale), with the blue and red lines labeling the j0→i and
ℏk
→

eff momentum states, respectively. The dashed and plain lines show the two
paths of the matter waves in the interferometer, which enclose an area of 11 cm2.
(C) Trajectories of the successively launched atom clouds in interleaved operation.
Each interferometer has an interrogation time 2T = 801 ms, and the cycle time is
Tc = 2T/3 = 267 ms. The p/2 pulses are shared between the atom clouds entering
and exiting the interferometer.

Fig. 2. Rotation rate measurement during 32.5 hours. In the blue (orange)
trace, each data point is the average over segments of 26.7 s (267 s) of raw inertial
phase measurements. The right axis translates inertial phase to rotation rate using
the scale factor of the gyroscope to stationary Earth rotation (from Eq. 2).
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measurements, yielding a scaling of the sensitivity that approaches
t−1 (rather than t−1/2).

Figure 3 shows the Allan deviation of the gyroscope stability for an
11.3-hour portion of night data of Fig. 2. The improvement of the sen-
sitivity as t−1 for integration times up to≃ 7 s is clear. The stability then
gradually enters the t−1/2 regime characteristic of uncorrelated white
noise, corresponding to a sensitivity of 3 × 10−8 rad s−1 Hz−1/2 . This
sensitivity, which improves by more than a factor of 3 on our previous
result (32), establishes the new record for cold-atom gyroscopes. As a
comparison, our short-term sensitivity competes favorably with that of
the best fiber-optic gyroscopes (31). This sensitivity enables us to study
several systematic effects affecting a cold-atom gyroscope for the first
time in the range of low 10−9 rad s−1.

Systematic effects and gyroscope long-term stability
A systematic shift specific to the interleaved interrogation originates
from the light scattered from the MOT toward the atoms interrogated
in the interferometer (36). TheMOT scattered light is close to resonance
and induces a loss of contrast and a differential light shift (AC Stark
shift). The influence of induced light shifts is reduced by the spin-
echo–like four-pulse sequence and by the use ofk

→

eff reversal: Alternating
±ℏk

→

eff momentum transfers changes the sign of the inertial phase shift
but not the one of the clock terms (e.g., differential light shift), which
are rejected when taking the half-difference of twomeasurements (as
done in Fig. 2). We measured the residual effect and showed that it
corresponds to an instability below 7 × 10−11 rad s−1 (see Supplemen-
tary Materials). Although currently negligible, this effect is purely
technical and could be resolved by having the MOT and the detec-
tion region out of view from the atom interferometer region in future
designs.

The most important systematic effects in atom interferometers with
separated Raman beams originate from relative wavefront mismatch
coupled to deviations of the atom trajectories with respect to the ideal
one (27, 39). In our system, a relative angular misalignment d

→
q be-

tween the top and bottommirrors used to retroreflect the Raman beams
(Fig. 1), coupled with an error of launch velocity d

→
v (with respect to a

velocity of�g
→
T at the first Raman pulse) in the (y, z) plane, results in a

phase shift

DF ¼ 2Tkeff ðdvydqy þ dvzdqzÞ
¼ 12mrad� dvy;z

1mm:s�1

� �
� dqy;z

1mrad

� �
ð3Þ

We explain in Materials and Methods how we set the parallelism
between the two Raman beams and the velocity of the atoms to ap-
proach the ideal trajectory to achieve an uncertainty on the residual sys-
tematic shift of 21 mrad (i.e., 4.6 nrad s−1, from Eq. 2).

After this systematic analysis and the corresponding fine-tuning of
the apparatus, we recorded the rotation rate acquisition displayed on
Fig. 2. The stability of the gyroscope over the entire acquisition is ana-
lyzed in the Supplementary Materials (fig. S5) and is in agreement with
that read from Fig. 3 for shorter integration times.

Dynamic rotation rate measurements
We use the unprecedented sampling rate and inertial sensitivity of our
gyroscope to perform measurements of weak dynamic rotation rates.
To this end, we modulate the orientation of the experiment around
the y axis. This was performed by applying a force on the bottom plate
linking the experimental frame to the vibration isolation platform via
the voice-coil actuator controlling the tilt qx of the apparatus. We apply
sinusoidalmodulations of the form qx(t) = q0 sin(wt) with a period 2p/w
andwith an amplitude q0 of a few 10−7 rad. The resulting rotation rate is
of the form W

→ðtÞ ¼ W0cosðwtÞûy , with W0 = wq0. The measurements
are reported in Fig. 4 for modulation periods of 5 and 10 s. The respec-
tive modulation amplitudes are 2.3 × 10−7 and 3.4 × 10−7 rad. Figure 4
(A and B) shows the atomic phase extracted from the transition prob-
ability, P(t), which follows the sinusoidal modulation. The total rotation
signal from the atom interferometer is the sum of this atomic phase and
the phase compensated in real time. A Fourier analysis of the total signal
is shown in Fig. 4C. Within our frequency resolution, we find that the
amplitude of the reconstructed rotation rate signal agrees with the ex-
pectation ofW0 with a relative precision of 5%. Amore detailed analysis
is presented in section S5. Our proof-of-principle experiment, per-
formed in a so far unexplored range of time resolution and inertial sen-
sitivity for a cold-atom sensor, demonstrates the impact of interleaved
atom interferometry for dynamic measurements.

DISCUSSION
We have demonstrated the method of interleaving in a large-area atom
interferometer, as a way to reach high sampling frequencies and high in-
ertial sensitivities together. Interleaving enables us to efficiently average
vibration noise (the largest noise source in cold-atom inertial sensors)
and is thus a promising way of reaching the quantum projection noise
limit, a necessary condition before increasing the atom flux or imple-
menting schemes to approach theHeisenberg limit. As a result, we dem-
onstrated record short-term sensitivities for a cold-atom gyroscope and
could thus characterize systematic effects in a so far unexplored range.
The rotation rate sensitivity and stability that we achieved competes with
that of the best strategic-grade fiber-optic gyroscopes [long-term stability
in the range of 5 × 10−10 rad s−1 (31)]. Our results thus pave the way for a
change of technology in future high-precision inertial navigation systems.

In our setup, the maximum number of interleaved measurements is
technically limited to three because of the arrangement of our detection
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Fig. 3. Gyroscope sensitivity. Stability analysis of an 11.3-hour portion of rota-
tion rate measurements of Fig. 2, between 1:22 a.m. and 12:47 p.m. on 24 Sep-
tember 2017. The error bars represent the 68% confidence intervals on the
estimation of the Allan deviation. Dashed black line, 3.3 × 10−8 rad s−1 × t−1/2; green
dashed line, t−1/2 scaling from the one-shot Allan deviation; red dotted-dashed line,
t−1 scaling from the one-shot Allan deviation; orange dotted line, detection noise
limit corresponding to 8 × 10−9 rad s−1 × t−1/2.
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systemwith respect to theMOT region (seeMaterials andMethods). In
a dedicated design, e.g., where the detection regionwould be out of view
from the upcoming clouds, sampling frequencies of 20 Hz or higher
could be reached. As an alternative, the use of atoms characterized
by different transition wavelengths for the cooling/detection/atom in-
terferometer would be beneficial to circumvent the effects associated
with the scattered light from the source or the detected atoms.Our tech-
nique is thus well suited for ongoing developments of atom interfer-
ometers with alkaline-earth atoms (40).

Interleaving ties well with laser-cooling techniques, which are able to
rapidly (in less than 100 ms) produce cold samples with more than
107 atoms. Laser cooling beyond optical molasses such as degenerate
Raman sideband cooling appears as a suitable solution for an increased
brightness without compromising the cycling frequency. Interleaving is,
in principle, also compatible with the production of ultracold, col-
limated, atom sources (16), provided that they can be produced
(41) or extracted at sufficiently high (several hertz) repetition rates.

The method of interleaved atom interferometry can be applied to
different sensor architectures, such as multi-axis accelerometers (by
alternatingmeasurements along different axes at a high repetition rate),
gavimeters, or gradiometers. For example, interleaving can be exploited
to realize a gravimeter of both high accuracy and high sensitivity in a
single instrument, potentially allowing to surpass superconducting
gravimeters that currently feature record sensitivities but require regular
calibrations. Hence, interleaving is representative of the flexibility of
cold atoms for realizing versatile inertial sensors, as compared to archi-
tectures involving macroscopic masses and electromechanical systems.
Regarding fundamental physics applications, achieving high sampling
rates is a prerequisite for future studies on dark matter with atomic ac-
celerometers (24), as well as for gravitational wave detection with atom
interferometers (25, 26). Interleaving is therefore a key concept for fu-
ture applications of cold-atom inertial sensors.

MATERIALS AND METHODS
Details of the experiment
Cesiumatoms loaded froma two-dimensional (2D)MOTwere trapped
and laser cooled in a 3D MOT. We launched the atoms vertically at a
velocity of 5.0 m s−1 usingmovingmolasseswith a (3D) cloud tempera-
ture of 1.2 mK. After the MOT and before the interrogation, the atoms
were prepared in the |F = 4,mF = 0〉 state using a selection scheme based
on the Stern-Gerlach effect (magnetic deflection of the atoms inmF ≠ 0
states). Light pulse interferometry is realized using two phase-locked
Raman lasers that couple the cesium clock states (hyperfine splitting
of 9.192 GHz). The Raman lasers have awavelength close to theD2 line
(wavelength l≃ 852 nm) and are detuned by 470MHz from the excited
state to reduce incoherent scattering. The impact of residual relative Ra-
man laser phase noise has been estimated to 50 mrad per shot of atom
interferometer phase. The Raman lasers were sent to the atoms through
two optical windows separated by L ¼ 3

8 gT
2≃59 cm, with an interro-

gation time 2T = 801 ms. We used Gaussian Raman beams with 1/e2

diameter equal to 40 mm and about 120 mW of total power. The inter-
ferometer output signal was determined by the probability of transition,
P, from the F = 4 to the F = 3 state, which is read out via fluorescence
detection of the two levels’ populations after the atom interferometer
light-pulse sequence. The probability of transition was modulated
according to P = P0 + A sinF, where C = 2A is the interferometer con-
trast and F is the interferometer phase.

Our experiment uses retroreflected Raman beams, such as to form
two pairs of Raman beams inducing two transitions: one in the þk

→

eff

direction and another in the�k
→

eff direction. Selectivity of the±k
→

eff tran-
sitions is provided by tilting the Raman beams by an angle q ≃ 3.80°
with respect to the horizontal to introduce a Doppler shift (± keffgT
sin q/2p ≃ ±611 kHz at the first and last p/2 pulses), which is much
larger than the width of the atom Doppler distribution (~ 40 kHz).
To follow the resonance condition at each Raman pulse, we stepwise
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Fig. 4. Measurement of dynamic rotation rates. Atom interferometer phase deduced from the transition probability, for rotation ratemodulations of 5-s period (A) and 10-s
period (B). Plain line, sinusoidal fit to guide the eye. (C) Fourier analysis of the total rotation rate signal, with a frequency resolution of 0.37 mHz.
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changed the relative frequency between the two Raman lasers during the
sequence, tomatch the values given by the underlying frequency chirp pat-
tern (see details in fig. S2). To apply the frequency steps, we used a direct
digital synthesizer driven by an FPGA (field-programmable gate array).

Real-time compensation of vibration noise
and mid-fringe lock
We measured the vibrations of the setup with two broadband seis-
mometers (model Trillium Compact 120 s from Nanometrics) located
at the bottom and top of the experimental frame (see Fig. 1). From the
measured signal, we estimated the interferometer phase shift due to vi-
brations and applied a corresponding phase jump to the relative phase
of the Raman lasers 15 ms before the last pulse. This allows us to
reduce the standard deviation (SD) of the interferometer phase from
about 3.2 to 0.5 rad. To work within the linear regime where the sen-
sitivity is maximal, we alternated measurements on both sides of a
fringe and computed an error signal from two successivemeasurements
of the transition probability. This error signal was integrated and
used to servo-lock the interferometer at mid-fringe via a feedback on
the Raman laser relative phase. More details are given in section S1.

Efficient averaging of vibration noise
Following Eq. 1 and assuming that the Raman lasers are oriented
purely in the x direction, the four-light-pulse atom interferometer
phase shift is given by (we neglect the duration of the Raman pulse)

F ¼ keff ½xbð0Þ � 2xtðT=2Þ þ 2xtð3T=2Þ � xbð2TÞ� ð4Þ

with xb,t(t) as the position of the bottom and top retro-mirrors with re-
spect to the free-falling atom cloud. The phase shift can be rewritten as

F ¼ keff ½xtð0Þ � 2xtðT=2Þ þ 2xtð3T=2Þ � xtð2TÞ �
þ keff ð½xbð0Þ � xtð0Þ� � xbð2TÞ � xtð2TÞ½ �Þ
¼ Facc

t þ keffLðqbð0Þ � qbð2TÞÞ ð5Þ

withL ¼ 3
8 gT

2 as the distance between the bottom and topmirrors and
Facc

t as the term associated to the linear acceleration of the top mirror.
The second term represents pure rotation of the bottom mirror about
the position of the top one. Recalling that Tc = 2T/3 and writing asFi =
F(iTc) the atom interferometer phase at cycle i, the mean phase afterN
measurement reads

�FN ¼ 1
N
∑
N�1

i¼0
Fi ¼ 1

N
∑
N�1

i¼0
ðkeffL½qbðiTcÞ � qbððiþ 3ÞTcÞ�

þ d~fiÞ ð6Þ

The term d~fi encompasses contributions of detection noise, un-
compensated linear acceleration noise, and laser phase noise. When
expanding the sum in Eq. 6, most of the qb terms mutually cancel such
that the mean phase reads

�FN ¼ keffL
qbð0Þ � qbððN þ 2ÞTcÞ

N
þ 1
N
∑
N�1

i¼0
d~fi ð7Þ

This equation shows that the random rotation noise averages asN−1

(first term). The second term represents the uncorrelated noise contri-

butions of SD sdϕ. Their sum equals
ffiffiffiffi
N

p � sdϕ, which corresponds to a
scaling of the phase sensitivity as N−1/2.

Besides rotation noise, uncompensated linear accelerations in the
frequency range [0.1 − 1] Hz contribute, to a large part, to the interfer-
ometer phase noise (see section S3 for details). This contribution, esti-
mated to typically about 500mrad per shot, dominates the noise budget
and may prevent from observing a clear t−1 scaling of the gyroscope
sensitivity. Interleaving, however, allows us to oversample these fluctua-
tions, thus introducing correlations between successive measurements,
which also contribute to the t−1 dependence of the instrument sensitivity.

Alignment of the two Raman beams and atom trajectory
We set the parallelism between the top and bottom Raman beams by
means of a two-axis piezo-motorizedmirrormount with a resolution of
0.7 mrad. By optimizing the contrast of the interferometer, we ap-
proached the parallelism with an uncertainty of about 3 mrad, which
is required for the matter waves to recombine at the output of the in-
terferometer. For the fine adjustment, we measured the dependence of
the phase shift of Eq. 3, DF = 2Tkeff(dvydqy + dvzdqz), on dqy,z and dvy,z
(as defined in the main text). To this end, we set the atom trajectory in
the (y, z) directions by varying the tilt of the experiment (y direction)
and the launch velocity during themovingmolasses phase (z direction).
In the z direction, we could zero the systematic effect with an uncertainty
of 5mrad. This amounts to set the velocity of the atoms at the first Raman
pulse to the ideal velocity (vz= gT) with an uncertainty of 0.6mms−1 and
to set the parallelism between two mirrors in the z direction with an
uncertainty of 0.7 mrad.

Theminimization of the systematic shift in the y direction was tech-
nically more difficult to achieve than in the z direction: recording the
dependence of the phase shift on dqy for various velocities required to
tilt the entire apparatus by several mrad to vary dvy by several mm s−1.
This procedure required to manually move masses on the base plate of
the experiment sitting on a floating vibration isolation platform, which
introduced instabilities. We managed to set the y velocity close to the
ideal velocity (vy = 0) with an uncertainty of 1.8 mm s−1. The residual
shift corresponds to a phase variation of 21mrad permicroradian of dqy
variation.

Limitation to the number of interleaved interferometers
When trying five interleaved cycles, we observed a marked loss of
contrast of the interferometer. The reason is that when a (descending)
atom cloud at the output of the interferometer enters the detection
region, a part of the light scattered by the atoms is directed toward
the (ascending) cloud, which optically pumps atoms to unwanted
magnetic states and heats them before they enter the interferometer.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaau7948/DC1
Section S1. Real-time compensation of vibration noise, mid-fringe lock, and details of the
sequence
Section S2. Raw data
Section S3. Analysis of vibration noise
Section S4. Stability analysis
Section S5. Analysis of the dynamic rotation rate measurements
Section S6. Systematic effect from the scattered light
Fig. S1. Histogram of the vibration phase and of the interferometer phase with real-time
compensation of vibration.
Fig. S2. Details of the sequence.
Fig. S3. Raw interferometer measurements corresponding to the data presented in Fig. 2.
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Fig. S4. Analysis of vibration noise.
Fig. S5. Stability analysis of the gyroscope.
Table S1. Contribution of the linear acceleration noise to the interferometer phase noise by
frequency band.
Reference (42)
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Sujet: Nouvelles techniques d'interférométrie atomique pour un gyrometre  

à atomes froids de grande aire de Sagnac 

 
Résumé: Cette thèse décrit la mise en œuvre de nouvelles techniques d'interférométrie atomique améliorant la 

stabilité et l’exactitude d'un gyromètre à atomes froids situé au laboratoire SYRTE. Des transitions Raman 

stimulées permettent de séparer et recombiner les ondes atomiques. Une séquence de quatre impulsions 

lumineuses génère un interféromètre avec une aire Sagnac de 11 cm2. 

Je présente la mise en œuvre d'un schéma d'interrogation entrelacé dans un interféromètre dont le temps 

d'interrogation est de 801 ms, dans lequel trois nuages atomiques sont interrogés simultanément résultant en 

une cadence de mesure de 3,75 Hz. Avec ce schéma, nous démontrons une sensibilité de 30 nrad/s/√Hz. Nous 

présentons ensuite des mesures de rotation dynamiques dans une plage jusqu'ici inexplorée pour un capteur 

à atomes froids. 

Un biais important du capteur provient d'un couplage entre un désalignement relatif des miroirs 

rétroréfléchissant les faisceaux Raman et la trajectoire de l'atome. Une technique est introduite pour réduire 

ce biais au niveau de 1 nrad/s  et atteindre une stabilité à long terme de 0,3 nrad/s qui représente l'état de l'art 

des gyromètres atomiques. 

Le manuscrit décrit ensuite la première caractérisation du facteur d'échelle du gyromètre à l'aide de 

différentes techniques. En particulier, la mise en place d’une plateforme de rotation sous le capteur permet 

de faire varier la projection du vecteur rotation de la Terre sur l'interféromètre et donc de moduler le 

déphasage de rotation.  

Les techniques présentées dans cette thèse ouvrent la voie à un test de l'effet Sagnac pour les ondes de matière 

avec une précision relative inférieure à 100 parties par million. 

 

Mots clés: Interférométrie atomique, capteur inertiel, atomes froids, gyrometre, effet Sagnac  

Subject: Novel atom interferometry techniques for a cold-atom gyroscope 

 of large Sagnac area 

Abstract: This thesis describes the implementation of new atom interferometry techniques to improve the 

stability and accuracy of a cold-atom gyroscope located at the SYRTE laboratory. Stimulated Raman 

transitions are used to split and recombine the atomic waves. A sequence of four light pulses generates an 

interferometer with a Sagnac area of 11 cm2. 

I present the implementation of an interleaved interrogation scheme, where three atomic clouds are 

interrogated simultaneously in an atom interferometer featuring a sampling rate of 3.75 Hz and an 

interrogation time of 801 ms. 

With this scheme we demonstrate a short-term sensitivity of 30 nrad/s/√Hz. We then present measurements 

of dynamic rotation rates in a so far unexplored range for a cold atom sensor. 

An important bias of the sensor originates from a coupling between a relative misalignment of the mirrors 

which retro-reflect the Raman beams and the trajectory of the atom. A technique is introduced to reduce this 

bias at the level of 1 nrad·s-1 and to achieve a long-term stability of 0.3 nrad·s-1 which represents the state 

of the art for atomic gyroscopes. 

The manuscript then describes the first characterization of the scale factor of the gyroscope using different 

techniques. In particular, the implementation of a rotation stage below the sensor enables us to vary the 

projection of the Erath rotation rate vector onto the interferometer area and therefore to modulate the rotation 

phase shift. The implementation of the techniques presented in this thesis pave paving the way to a test of 

the Sagnac effect for matter waves with a relative accuracy level below 100 parts per million. 

 

Keywords: Atom interferometry, inertial sensor, cold atoms, gyroscope, Sagnac Effect 
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