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for tracers with valency q ∈ {−1, 0, 1}, for a surface charge density corresponding
to αL = 2.63 and adsorption/desorption rates (ka∆t/∆x, kd∆t) = (10−1, 10−3).
The simulation results (symbols) are compared to the analytical results Eq. 3.17
(solid line). In each case, the analytical solution without adsorption (dashed line). 73

3.8 Average tracer velocity v̄y,q, normalized by the average flow velocity ū, for charged
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"If. . . all of scientific knowledge were to be destroyed, and only one sentence passed on
to the next generations of creatures. . . it is. . . all things are made of atoms"

- Richard Feynman





Introduction

During the last decade, technological developments in nanosciences saw a rapid improve-
ment in the design and tailoring of new devices with specific geometries. They are

characterised by specific lengths, whose size is below of the micrometer, and with adjustable
surface properties. Hence, it has been possible to manipulate fluids at the nanometric scale
and thus create new applications in different technological fields. For instance the transport
of solutions through a nanotube with charged interfaces offers simple analytical tools, which
can detect single molecules ("pore blockade" during DNA [1,2] or ion [3] translocation), as well
as new technologies for water purification and energy production [4]. The possibility to con-
trol and monitor the electrodes surface charge at the interface of nanofluidic devices opens
new paths, such as nano-electrochemistry or new original detection techniques at the molecu-
lar level (redox cycling and Electron Correlation Spectroscopy [5–7]) or improved sensors (e.g.
Nanoscale Ion Sensitive Field Effect transistors, nanoISFET [8]). The unique properties of
these systems come from the presence of charged interfaces between a solid and a liquid for
scales ranging from 1 to a few 100 nm. Experimentalists and engineers are thus limited to the
possibility to understand and predict the experimental properties, preventing them to fully
exploit these new technologies beyond the current state-of-the-art and thus anticipate future
technological developments.

Moving from microfluidics, which is now a well-established field, to nanofluidics requires
a paradigm change. Current understanding and interpretation of the experiments mentioned
above is limited to the macroscopic descriptions of mean-field theories. However, the nano-
metric scale requires taking into account phenomena which are often neglected at larger scales.
Indeed, due to the small number of particles involved, thermal fluctuations are here essen-
tial in the understanding of the dynamics of the system. Furthermore, due to confinement
we observe strong electric potential gradients and strong coupling between electrostatics and
hydrodynamics. In fact confinement of the order of the nanometer reveals the discreteness
of matter and its molecular nature. It is important to point out that these aspects are in-
trinsic properties of the system due to its confinement and are not created by experimental
limitations.

The charge of an electrode in contact with a liquid is kept at a constant potential value
inducing thermal fluctuations, which provide information on microscopic interfacial processes.
Other common applications involving interfaces make use of the electrode capacitance to ac-
quire a mean charge when applying a voltage. It is thus necessary that we better understand
fluctuations, which are often wrongly considered as a source of nuisance. Unfortunately ex-
perimentalists rarely exploit the potential of noise for measurements at the nanoscale. Instead
of merely trying to reduce the signal-to-noise ratio, "listening" to this electrical noise would
open a wide range of applications. Even though we are limited by the available theories to
interpret the signal we can still extract information on the underlying mechanisms present.
We here focus on the noise arising from charged fluids confined by electrodes or any general
charged surface.
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1.1 Coupling nanofluidics, electrokinetics and noise

1.1.1 Nanofluidics

Figure 1.1 – Various length scales at play in nanofluidics [9].

Nanofluidics can be defined in different ways, according to the many different scientific
communities. In the context of this work, we consider nanofluidics as the study of fluidic trans-
port at nanometer scales. It emerged rather recently and proved to be successful in a great
number of technological areas, for instance in biotechnology ("lab on a chip") allowing the
study of individual macromolecules [10–12]. Furthermore, it was possible to develop nanofluidic
transistors [13,14], as well as nanofluidic diodes [15,16]. On the other hand, their study enables
the development of bio-mimetic membranes, which would allow permeability or selectivity [17].
A great example are aquaporin channels, which are excellent water filters across biological
membranes: they are both permeable to water, yet extremely selective to other species [17,18].
Despite the recent development of this field, scientists were already working on confined fluids
when dealing with electrokinetics (e.g. electro-osmosis, electrophoresis . . . see Section 1.1.2),
soil science, membrane science (e.g. ultra-filtration, fuel cells, reverse osmosis . . . ), colloid
chemistry and the study of physiology and biological channels [10]. Such fundamental studies
allow us to design nanofluidic devices and study them with new techniques such as Surface
Force Apparatus (SFA), Atomic Force Microscopy (AFM) and nano-Particle Image Velocime-
try (nano-PIV) coupling PIV to TIRF set-up (Total Internal Reflection Fluorescence). A
great effort was also done in the progress of computational techniques such as Molecular
Dynamics, which allows us to understand, design and observe such devices.

On the other hand, the community rightfully wondered how to describe theoretically
nanofluidic devices. Indeed, as we can see in Fig. 1.1, depending on the considered scale,
available theories usually apply in a given range of length scales. Nonetheless, despite being
developed in the 19th century, the Navier-Stokes equation proved to be efficient even for
confined fluids, down to ∼ 1 nm. This was verified experimentally initially by Chan and
Horn [19] and later, using Surface Force Apparatus, by Georges et al. [20]. Similarly Klein
et al. [21] and E. Riedo et al. [22] showed that water keeps its bulk viscosity down to 1− 2 nm.
However they also observed a drastic change in behaviour for stronger confinement, where
the wettability of the confining walls becomes important, showing how water can produce
exotic behaviour different from the common known picture and theory. Analog studies on
different fluids such as octamethylcyclotetrasiloxane were also carried out [23,24] and similar
observations were made. On the computational side the 1 nm value was confirmed on several
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studies [25–27]. Beyond viscosity, the self-diffusion coefficient was found to deviate from the
classical Stokes-Einstein prediction given by

D =
kBT

3πησ
, (1.1)

where σ is the molecule diameter, because of confinement. More specifically the diffusion
coefficient depends algebraically on the confinement width [28,29], showing that Eq. 1.1 is not
a correct meaure of the viscosity η as previously assumed. The structuring and ordering of
a fluid at the confining walls was found to play an important role in nanofluidics. It was
shown experimentally that it induces an oscillatory dissipation in liquid films with a width of
several molecule diameters [23,24]. Furthermore, non-local effects were observed to impact the
rheology of the confined fluid and depend on the specific nature of the surfaces [30].

Electrokinetic effects also play an important role in the rheology of nanofluids. Before we
discuss them into details let us introduce the most common electrokinetic effects.

1.1.2 Electrokinetics

Solid surfaces in contact with electrolytes have a tendency to gain surface charges. This
phenomenon mainly arises from adsorption or dissociation of chemical groups. As a result,
because of electrostatic forces, the charged surface attracts the counterions present in the
solution and repels the co-ions. Eventually this will form a thin layer made of counterions,
which are adsorbed at the walls. This layer is often referred to as the electric double layer
(EDL), which is shown schematically in Fig. 1.2. It is made of two layers: the Stern and
diffuse layers.

Figure 1.2 – Electric double layer formed at a negatively charged solid surface

The remaining ions then distribute according to Boltzmann statistics. We shall discuss
more in details the derivation of the governing equations of these phenomena and in particular
of the electro-omostic flow, in Chapter 2.
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1.1.2.1 Electroosmosis

If an external electric field is applied parallel to the walls, a force acting upon the ions will be
generated, which in turn will induce a characteristic flow called electro-osmotic flow or EOF.
This is shown in Fig. 1.3.

Figure 1.3 – EOF in a slit channel bearing a uniform negative surface charge inducing an electrostatic
potential ψ(y).

The EOF velocity profile u(y) in a microchannel is almost uniform, and is usually referred
to as a plug-like flow, as shown in Fig. 1.3. Therefore, one can use the constant velocity to
describe the EOF velocity outside the EDL, which is known as the Smoluchowski slip velocity.

1.1.2.2 Electrophoresis

Another electrokinetic phenomenon is electrophoresis where the external applied electric field
is responsible for the the migration of charged suspended particles. For sufficiently small
applied fields (corresponding to the linear response regime), the velocity vp of a particle
subjected to an electric field E reads

Up = µEE (1.2)

which defines the electrophoretic mobility µE .
Consider the zeta potential ζ defined as the potential taken at the interface between the

Stern layer and the diffuse layer, as illustrated in Fig. 1.2 and 1.3. When the zeta potential
of the particle is relatively small (i.e. ζ � kBT/e) the surface conduction within the EDL is
negligible.

Given a to be the characteristic size of the particle, for a thin EDL (i.e. λD � a) the
electrophoretic mobility of a particle suspended in an unbounded medium can be written
as [31]

µE =
εζ

η
, (1.3)

— 4 —



Introduction

Figure 1.4 – Electrophoretic motion of a negatively charged particle.

which is often referred as the Helmholtz-Smoluchowski law and where ε = ε0εr is the permit-
tivity. Conversely, for λD � a, Hückel found that the particle mobility reads:

µE =
2εζ

3η
. (1.4)

For intermediate cases, Henry’s function accounts for the effect of finite EDL with an
arbitrary thickness on electrophoresis of a sphere in an unbounded medium [32].

1.1.2.3 Dielectrophoresis

Figure 1.5 – Sketch of the electric dipole moment created by two opposite charges

Dielectrophoresis is an electrostatic phenomenon (sometimes related to electrophoresis)
which describes the motion of suspended particles resulting from polarisation forces produced
by an inhomogeneous electric field. This is because in some special cases, particles have
both positive and negative charges, thus forming a dipole moment µD = q · r (see Fig. 1.5).
Therefore, they experience a force in an inhomogeneous external electric field. This also
applies for dipoles induced by the external field itself [33]. This is shown schematically in
Fig. 1.6.

The direction of the dielectrophoretic (DEP) force is determined by the ratio of the polar-
izability of particles to that of the electrolyte solution. For an AC field, when averaging over
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time, the dielectrophoretic force can be expressed as [34]

FDEP = 2πr3εRe[K(ω)]∇|Erms|2 (1.5)

where ω and Erms refer to the AC electric field frequency current and the root mean square
electric field strength respectively. Re[K(ω)] accounts for the real part of the Claussius-
Mossotti factor, given by

K(ω) =
ε̄p − ε̄f
ε̄p + 2ε̄f

(1.6)

where ε̄k = εk − iσkω is the complex permittivity, with σk denoting the corresponding conduc-
tivity.

The force of Eq. 1.5 is acting on a sphere of radius r: a positive dielectrophoresis refers to
a DEP force directed toward the region with a higher electric field and vice versa.

Figure 1.6 – Negative dielectrophoresis of an uncharged particle under an external AC E-field

Eq. 1.5 is only valid when the presence of the particle does not significantly affect the
electric field and the particle size is much smaller than the characteristic length of the system.
However, when nanopores are considered, the characteristic length can be roughly of the same
order of the particle size, meaning that the theory is inaccurate. Al Jarro et al. [35] showed
that a better derivation for the force calculation is to directly integrate the Maxwell stress
tensor (MST) over the particle surface.

1.1.2.4 Induced charge electrokinetics

Induced charge electrokinetic (ICEK) occur around any polarizable (metal or dielectric) sur-
face in the presence of any (DC or low-frequency AC) electric field. This leads to a special
type of electrokinetic flow, which is often denoted as ICEK flow. The main difference between
conventional electrokinetics and ICEK is the origin of the surface charges. For the former
case, the surface charge is acquired via adsorption or dissociation of specific chemical groups,
whilst for the latter the surface charge arises from material polarization.

Fig. 1.7 shows schematically the flow field around a conducting spherical particle, which
is a quadruplar EOF, moving toward the particle, in the direction of the electric field, and
eventually leaving the particle in perpendicular directions.
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Figure 1.7 – Schematics of induced-charge electroosmosis around a conducting particle

Therefore, now that electrokinetic effects were introduced, we understand that the Debye
length λD = (8πlBns)

−1/2 (with ns denoting the salt concentration), as depicted in Fig. 1.3,
is an important length scale in nanofluids. Indeed, it was found to play a pivotal role when
the two Debye layers overlap in a nanopore (i.e. when the nanopore is of the order of twice
the Debye length), thereby affecting the fluidic transport in the channel [36]. This leads to new
fluidic phenomena, such as permselectivity [13,14], nanofluidic diodes [15,16] or surface dominated
ion transport [37].

If we consider the slip length b defined as

b∂nvt = vt, (1.7)

where n and t denote the normal and tangential directions of the surface respectively, experi-
mentalists observed that b strongly affects ion transport at charged surfaces [38]. This is shown
in Fig. 1.8.

Figure 1.8 – Sketch of the influence of slippage on the electro-osmotic transport. Slippage reduces
the viscous friction in the electric Debye layer, as the hydrodynamic velocity gradient occurs on a
length b + λD, instead of l without slippage. Flow is accordingly enhanced by a factor 1 + b/λD.
Sketch taken from Ref. 9.

In the recent years, colloidal particles were electrophoretically driven through a nanopore
in order to give rise to a detectable change in the ionic current through the slit. This type of
technique was further developed to achieve affordable and high-throughput nanopore-based
DNA sequencing [39,40]. Furthermore, dielectrophoresis proved to be a great tool to allow
nanoparticles separation [41]. The microfluidic/nanofluidic community started to draw more
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attention to the ICEK in the last fifteen years in order to develop a theoretical framework [42,43],
to account for these phenomena. Until today, ICEK was already successfully used to generate
circulating flows for fluid stirring and mixing in microfluidics [5,44–46]. Particle trapping and
enrichment were also experimentally achieved using ICEK in microchannels [47,48].

It is thus clear that in the context of electrolytes confined at the nanoscale, electrokinetic
effects are essential for an accurate description of the physical phenomena. We now turn to
the origin of noise, which as we said is essential in the understanding of microscopic processes,
and define it in the context of nanofluids.

1.1.3 What is noise?

It was not before the early 18th century that humans started considering matter as composed
of discrete objects instead of a continuous media, as perceived by our senses. One of the early
scientific thinkers of the "atomist" picture was Bernoulli [49], although Democritus was the
first to make use of the word "atom". More specifically, it was in 1738 that Bernoulli tried to
use science to explain something about atoms. Seventy years earlier, Boyle had shown that
air exerts pressure and that it is inversely related to volume, leading to the question of how
does air exert pressure [49]. Boyle himself tried to explain that in a certain way particles repel
each other. Newton made use of his idea to develop the "repulsion theory" of a gas. He then
combined it with the then-prevailing idea that heat is a fluid. On the other hand, Bernoulli
understood that if the gas consists of little balls, then pressure would arise from the force
with which they hit the sides. He could then derive Boyle’s law using this idea. However the
idea was not taken seriously and was forgotten for a while.

On the other hand, Lavoisier understood that substances react to form new substances in
given mass proportions. This was the beginning of stoichiometry, which led Dalton, in 1803,
to propose "atoms" as a solution to the question of why should things always react in the
same way? He claimed that substances are fixed combinations of atoms and as they react they
maintain the same proportions [49]. Similarly, Gay-Lussac carried out studies of how things
combine when the volumes of the reacting gases are considered [49].

In 1811 Avogadro argued that, in a fixed volume, the number of little balls of a gas is
the same for all substances, independently of the mass, size, or nature of the substance. This
was the birth of Avogadro’s number, but once again he was not taken seriously until Einstein
and more particularly Perrin came in the picture. Indeed, it was Perrin who coined the term
"Avogadro’s number" [50]. Still, during the late 19th century, people were trying to estimate
the speed of the molecules in gases and concluded it must be very high. Thus, they wondered
why it takes time for someone across the room to smell food when someone starts cooking
at the other end. Indeed, if molecules moved so fast we should smell almost instantaneously.
However, despite their fast motion, molecules are hindered in their forward progress because
they collide. Clausius wondered about the average time that a molecule goes before colliding
with another, which is the birth of the concept of mean free path. In fact, Clausius assumed
particles to be moving at the same speed for a given temperature. Maxwell, proved Clausius
wrong and came out with the idea that for a given temperature, molecules move with all
speeds (zero to infinity), yet the proportion of each velocity behaves according to a Gaussian
distribution (i.e. the now called Maxwell-Boltzmann distribution). Then Clausius claimed
that temperature is proportional to the average kinetic energy, which is the variance of the

— 8 —



Introduction

distribution, giving a stochastic picture to the problem in 1860.
Another key character in the pursuit of atoms was Boltzmann. He doubted the Maxwellian

distribution to be the correct distribution and realized that collisions are at the root of the
answer to his query [51]. He could then derive the Boltzmann equation, which became essential
in different areas of physics, astronomy, chemistry, and plasma physics. It is an equation of
evolution for the probability density of position and velocity, f(r,v, t)

∂f

∂t
+ v · ∇rf + F · ∇vf =

(
δf

δt

)
coll

(1.8)

where F is the external force.
(
δf
δt

)
coll

denotes the so-called collision term, which is the
change in the distribution due to collisions. Boltzmann derived it originally for a dilute
gas [51]. The collision term makes the process irreversible and is responsible for the Maxwellian
distribution. Boltzmann was the first to fully understand the concepts of stochastic processes
and in particular the idea of an evolving probability distribution. Nevertheless his work was
not sufficient to convince the community of the existence of atoms. It was Einstein who really
did so in his seminal paper of 1905 [52], his "miracle" year. In order to achieve it, he had to
use the concept of "noise".

When we talk about noise, we often talk about Brownian motion. In fact, Einstein intro-
duced these words in his 1905 paper: "It is possible that the movements described here are
identical with the so-called Brownian motion; however the information available to me [. . . ] is
so imprecise that I could not form a definite opinion on this matter". Later, in 1908, he wrote
another paper on "The Elementary Theory of the Brownian Motion" [53], which begins with
"Prof. R. Lorentz has called to my attention, in a verbal communication, that an elementary
theory of the Brownian motion would be welcomed by a number of chemists." He could de-
velop the link with diffusion in an explicit way. Lorentz was among the greatest physicists of
his time, hence the phrase "Brownian motion" became standard.

Thanks to the work of Einstein [52], Perrin could verify his prediction that noise could be
used to calculate Avogadro’s number NA

[50]. Three years afterwards, Langevin started the
field of stochastic differential equations, even though atoms were not his initial motivation.
Einstein maintained a strong interest in noise. Actually, he is the first to define the auto-
correlation function. Indeed in Ref. 54 he introduces a quantity χ(∆), which is called the
"characteristic" and is defined as:

χ(∆) = F (t)F (t+ ∆) = lim
T→∞

1

T

∫ T

0
F (t)F (t+ ∆)dt (1.9)

He claimed that there exists a simple dependence between the characteristic and the
intensity curve, i.e. between the autocorrelation function and the power spectrum. Einstein
concluded (leaving out the constant of integration) that

2χ(∆) =

∫ ∞
0

I(x) cos(x∆)dx (1.10)

where I(x) denotes the spectral intensity, which he derived from the Fourier series. Eq. 1.9 is
the so-called Wiener-Khinchin theorem, one of Einstein’s many contributions to noise signal
analysis.
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A different approach to noise analysis was introduced by Langevin, a student of Pierre
Curie, which makes use of Newton’s equation. Starting from Stokes law, which is given by

F = −6πηaξ (1.11)

where ξ (using his notation) is the velocity, a is the radius and µ the viscosity, Langevin
claimed that, in addition to friction, there is another force because. In his own words [55]: "in
reality [. . . ] the Stokes force is only an average, and because of the irregularity of the collisions
of the surrounding molecules". Therefore the total force is the friction force plus an irregular
force X. Using Newton’s equation he could finally obtain the same result as Einstein.

After the use of noise in the proof of the existence of atoms, it became again important with
the arrival of electronics and, more specifically, with the arrival of the vacuum tube. Indeed, it
initiated the study of noise in electrical engineering in both theory and practice. The vacuum
tube became available thanks to Fleming who, in 1904, invented the vacuum diode. Initially
its purpose was to convert AC into DC. The first contributors in the understanding of noise
in electrical circuits were Schottky, Johnson, and Nyquist.

Schottky was a physicist who, in a milestone paper of 1918, was the first to consider
both shot noise and thermal noise [56]. The term "shot noise" denotes any stochastic process
that is a sum of discrete events, meaning that shot noise are the fluctuations around the
mean value of the process. Besides, the mere existence of shot noise in a vacuum tube shows
that electricity consists of small fluctuating particles, namely electrons. On the other hand,
thermal noise is caused by the fact that some electrons in a conductor are free to move in
random directions. On average, the current vanishes if no voltage is imposed. Nevertheless,
fluctuations appear, meaning that at any given time there could be more electrons moving
to the right than to the left and producing a momentary current. The electrons, like atoms,
have a velocity distribution and the wider the distribution, the larger the fluctuations. This
distribution width is proportional to the temperature; thus the term thermal noise.

John B. Johnson and Harry Nyquist, who worked at the Bell Laboratories, independently
published papers on the same effect in 1928 [57,58]. Johnson reported the experimental results
and Nyquist produced an elegant derivation of the effect. His idea was to relate the fluctuations
to the temperature. He thus obtained (in his notations)

E2dν = 4RkTdν (1.12)

where E2dν is the square of the voltage in the frequency interval dν, and R denotes the
resistance. Nyquist used Planck’s law to get (using angular frequency)

E2 =
2R

π

(
~ω

e~ω/kT − 1

)
(1.13)

which reduces to Eq. 1.12 when ~ω � kBT .
Therefore after Einstein’s paper on Brownian motion, where he first postulated the idea

of spontaneous irregular motion of electricity in electrical circuits [59], the fundamental role
of intrinsic thermal fluctuations in electronics was recognised in 1928 with the pioneering
works of Nyquist and Johnson. Thermal noise is the fluctuation counterpart of the dissipative
resistance of the circuit and was recently examined in the context of fluctuation theorems [60].
Finally, flicker noise or 1/f noise, shows a universal power density spectrum which varies as the
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inverse of the frequency, despite various possible microscopic origins. One such mechanisms,
relevant to the cases considered here (involving confined charged fluids), is the fluctuations in
the number of charge carriers in the system of interest. Landauer understood the imporance of
noise in the context of electrical circuits to understand microscopic mechanisms. In his Nature
paper he stated that "The noise is the signal" [61], which led to exciting developments [62].
Although the condensed matter community has drawn a lot of interest to the development of
noise based techniques and further worked on noise analysis little attention among physical
chemists and electrochemists or in the microfluidics/nanofluidics community was drawn.

1.2 Experiments using noise

In recent years, experimentalists in the nanofluidics community are beginning to focus on noise
based techniques. Instead of considering it a spurious signal, they develop new techniques
which extract microscopic information on nano-confined electrolytes.

Only few electrochemists use noise analysis to extract information on the redox reaction
rates and corrosion processes [63]. In addition it was shown that electrical potential fluctuations
of redox active species play a major role on the rate of electro-chemical reactions [64]. These
local (Madelung) potential fluctuations of the species, fundamentally differ from the mean
(Poisson) potential and are intrinsically linked to the redox properties of the species [65]. Such
fluctuations thus play a wider role on in the electrochemical field, including batteries. When
a potential difference is applied, a motion of the charged species is enabled, thereby, inducing
a polarization current. In addition, redox-active species may be oxidized or reduced, resulting
in a Faradaic current, which leads to a redox cycling device (see Fig. 1.9 (a) ).

Despite electrodes being widely used, knowledge of the physical chemistry at the molecular
level still remains limited. Furthermore, as we are interested in systems such as nanopores, the
signal generated by this device becomes very noisy, due to thermal fluctuations of the charged
species, i.e. Brownian motion. Lemay et al. [67] tried to interpret this noise in order to quantify
the amount of adsorbed and desorbed molecules at the walls. This was achieved using a model
which gave good results compared to experimental data available. However, the model makes
several non-physical assumptions, as only Brownian motion between the analyte molecules is
considered. This means that collisions between the molecules are ignored, which eludes the
possibility to exchange electrons during those collisions, and the motion established by the
charged walls is also ignored. The size of the system may be the reason why the experimental
results are in agreement with the model: thermal fluctuations might be much more important
than the electrical forces driving the molecules. Another reason might also be that the authors
worked only in the low-frequency regime.

Similarly, Lemay and co-workers [68] decided to use noise analysis in order to detect the
passage of single molecules entering and leaving a nanochannel (see Fig. 1.10). Their proce-
dure is as follows: a solution is used, so that it cannot be affected by the potential difference
applied at the walls. A current noise, merely due to thermal fluctuations, can then be mea-
sured and whenever a redox species (e.g. ferrocene) is inserted within the solution, a change
in the background noise is observed. This change was verified to be generated only by the
redox species and therefore reveals the method to be efficient in order to detect the passage
of a single type of molecules. More specifically, cross-correlation analysis of the current noise
signal gives a unique footprint for each type of studied species. Nonetheless, the method only
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Figure 1.9 – Electrochemical single-molecule detection. (a) Basic concept of redox cycling. (b)
Nanoelectrode encased in wax and positioned near a metallic surface. (c) Recessed glass-encased
nanoelectrode immersed in mercury. (d) Lithographically fabricated nanogap device (Figure taken
from Ref. 66)

applies to redox molecules and is sensitive to the type of walls used as well as the voltage
difference applied. Another interesting result from their study is that as the concentration of
those molecules increases, the current distribution becomes a Gaussian [67]. These examples of
experiments show that the experimental reality of the ions dynamics at charged solid/liquid
interfaces, in particular in porous media, results from a complex interplay between diffu-
sion, advection by the fluid flow, electrostatic interactions as well as adorption/desorption
phenomena. The coupling between all of these phenomena is often neglected.

Indeed, one of the main issues when dealing with adsoprtion/desorption dynamics at the
electrodes, is that it strongly depends on the electronic structure of the metal interface, on
the adsorbate, on the nature of the supporting electrolyte and on the potential applied [69,70].
On the other hand, the motion of ions also influences the local charge distribution, hence
the electrical force acting on the fluid. Such electrokinetic effects, which are encountered
from energy conversion exploiting couplings on the scale of interfaces [71,72] to large scales
applications in Earth Sciences [73] have been the subject of extensive theoretical and numerical
studies (see e.g. Refs [28,74–79]) and a number of simulation tools have been proposed to model
them at various levels, from the molecular to the macroscopic ones (see e.g. Refs. [80,81] for
reviews).

Even without electrokinetic couplings, specific effects play an important role on the dy-
namics of charged species. For example, the diffusion of ions in porous materials depends
not only on their charge but also on their chemical nature. An illustration can be found
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Figure 1.10 – (a) Principle of operation of the device. Redox-active molecules undergoing Brownian
motion are repeatedly oxidized and reduced at two parallel electrodes separated by a distance of 70 nm,
leading to a measurable current. (b) Optical micrograph of a device (top view). Visible are the top
electrode and its contacting wires (orange), the access holes (black squares), and the nanochannel
connecting the active region of the device to the access holes (colored magenta for clarity). The active
region of the device is connected to an outside fluid reservoir via the nanochannel, allowing the target
molecules to freely diffuse between these compartments. The bottom electrode is hidden below the
top electrode and the nanochannel such that only its contacting wires are visible (dark orange).The
dashed white line represents the cut in (c). (c) Scanning electron microscope image of the cross-section
of a device. The device was cut open using a focused ion beam. (Figure taken from Ref. 67)

e.g. with the different properties of Na+ and Cs+ tracers in clays, which go beyond their
different behaviour in the bulk. [82] Of course, charged tracers also experience the effects of
hydrodynamics and electrokinetic couplings in the fluid as a whole, in addition to their own
dynamics and interactions with the solid surfaces. This is exploited in practice in analytical
chemistry e.g. in chromatography or electrophoresis experiments. [83] It is well known e.g. in
the chemical engineering community that even in the case of uncharged solids and solutes,
the coupling between pore-scale motion and surface adsorption may result in intricate macro-
scopic transport properties [84]. Surface charge and charged solutes only increase the difficulty
to understand and predict the emerging behaviour.

At the coarse-grained or macroscopic levels, specific interactions with the surfaces are
usually introduced via adsorption and desorption reactions, with corresponding rates. Such
reactions are usually assumed to be of first-order, even though in principle the description
can be improved to account for more complex features such as the saturation of surface sites.

Adsoprtion phenomena at the electrodes strongly depend on the electronic structure of the
metal interface, on the adsorbate, on the nature of the supporting electrolyte and on the po-
tential applied [69,70]. Unfortunately, most experimentalists tend to neglect these phenomena,
as well as electrokinetic effects in general, and model their experiments using only Brownian
motion. Nonetheless, an experimental method [85], which does not require any knowledge of
the diffusion constant of the molecules or of the exact geometry of the electrodes, was pro-
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posed. Measuring the oxidizing and reducing current, they could link them to the amount of
redox molecules present in the solution, and thus quantify the amount of adsorbed species.
The experiment showed that adsorption is detected through a decrease in the amplitude of the
fluctuations in the current, proving once again the usefulness of these fluctuations in deter-
mining transport coefficients. Nevertheless, the method presents some drawbacks: adsorption
can only be detected if the molecules can undergo a redox cycle; furthermore the residence
time in the active region must be significantly longer than the shuttling time between the
electrodes (i.e. the geometry of the system needs to be adapted in order to achieve that) and
finally the current has to be measured sufficiently fast for the full spectrum of the diffusive
fluctuations to be captured. Both results in Ref. 85 and 86 are in agreement, but the fre-
quency based method is somehow weaker as it necessitates extra numerical calculations (finite
differences), in order to compute the escape rate and estimate the rate of adsorption present
in the system. On the contrary, the former study gives a direct experimental method, which
enables quantification of adorption rates. Furthermore, it does not require prior knowledge of
the diffusion constant of the molecules or the exact geometry of the electrodes. Once again,
the issue with both these methods is that they assume free diffusion of molecules caused only
by Brownian motion and hence do not take into account all of the electrokinetic phenomena
or the effect of the local electric field on the charged species. Despite these theoretical issues,
noise based techniques showed high potential in determining highly precise flow measure-
ments. Indeed Lemay et al. [87] used the simple idea that the electrical current measured in a
nanogap is a time-dependent quantity proportional to the number of electrochemically active
molecules in the volume between the electrodes. Then, using cross-correlation spectroscopy,
they could detect the same noise footprint of analyte molecules entering and leaving the pore.
By means of this technique, given the length of the pore and the time period time taken by the
analyte molecules to go through the nanochannel, they were able to detect flow rates below
10 pL · min−1, pushing the limit of ulta-low flow rate masurements. Electrokinetic effects
were also neglected, however the choice was justified as they are negligible for flow rate with
low Péclet number (Pe < 0.1). The method is an analogue to fluorescence cross-correlation
spectroscopy, which is widely used for instance in DNA dectection [88,89]. The method can be
extended to another class of molecules (electrochemically active instead of fluorescent).

We have thus shown how the description of these experiments involves many different phys-
ical phenomena, which require coupling different dynamics (e.g. hydrodynamic, electrokinetic
or sorption effects) and thus cannot be done via simple model. This is why a more detailed
model/algorithm should be carried out, in order to account for these physical chemical phe-
nomena, which are obviously present within the system. This would provide a computational
tool that is as close as possible to what is observed experimentally.

1.3 Modelling charge, current and potential fluctuations at the
nanoscale

In spite of the many improvements during the last century in the description of interfacial
science the canonical picture of Gouy and Chapman prevails in the fields of electrochemistry
and micro/nanofluidics [90]. Although the theory was extended to capture the effects of packing
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and ion correlations at the interface, as it is very important in the context of ionic liquids [91,92],
the theory usually lies on a mean-field approach of the ionic correlations, with only a few
exceptions (e.g. field theories [93] or in the strong coupling approach [94,95]). This is why most
of the advances on the understanding of ions dynamics at interfaces make use of numerical
methods.

Among the successful numerical methods to simulate complex fluids we find Molecular Dy-
namics (MD). MD simulates the motion of molecules (i.e. particles) according to the equations
of motion leading to applications to both thermodynamic equilibrium and non-equilibrium
phenomena. MD yields a correct description of fluids on microscopic and hydrodynamic scales.
One of the drawbacks is that typical length scale is of the order of a few tens of nanometer
and the time scales are about a few hundred nanoseconds for simulations of dense liquids.
Furthermore, its computational cost is prohibitively high such that it cannot be used for prac-
tical fluid flow simulations in micro and nano scales, except for free molecular regimes. This
is because it starts from the integration of Newton’s second law and using integral methods,
such as Verlet method algorithm, the basic dynamics parameters such as position, velocity,
and interaction force can be determined. All of the macroscopic physical properties are then
computed averaging all of the configurations, using statistical mechanics.

Contrary to MD, the Monte Carlo method (MC) produces a series of microscopic states
according to a stochastic law and is thus irrespective of the equations of motion. Hence, it does
not include the concept of explicit time and is thus used for phenomena in thermodynamic
equilibrium. Therefore it is a suitable method for time dependent dynamical properties of
a given system. However, it is limited to high concentration scenarios, if electrolytes are
considered.

These methods due to their high computational cost are limited to the dimension of
the system we wish to simulate. For larger systems ∼ 100 nm mesoscopic method become
natural candidates. Among these we find the Dissipative Particle Dynamics (DPD), where the
fluid is considered as a set of "particles " (fluid volumes) which interact with each other via
conservative forces, whose principle is very close to the Smooth Profile Hydrodynamics (SPH).
We also have the Stochastic Rotation Dynamics (SRD), also called Multi-Particle Collision
Dynamics (MPCD), where we consider particles whose motion is simulated by collisions steps
(where the particles velocity is modified by random rotations) and flow steps. Furthermore, we
have Brownian Dynamics (BD) where we consider particles animated by a random motion,
with hydrodynamic interactions which induce the general motion of the fluid. Finally the
Lattice Boltzmann (LB) method, which we shall introduce in great details in Chapter 2
focuses on the probability density to find a particle in a phase space (position and velocity)
which evolves according to a discretized version of Boltzmann equation.

While MD allows to better account for ionic correlations (all ions are explicit) and naturally
includes thermal fluctuations, it is limited by its computational cost when simulating systems
closer to the experimental literature. Succi [96] showed that for a very fine resolution of ∆x =

σ/4 (where σ in the Lennard-Jones potential is the inter-particle distance where the inter-
particle potential is zero) LB is about a factor of 2000 faster than MD. All of the other
mesoscopic methods can be used to simulate ions transport within charged interfaces, but
they remain close to MD and present a higher computational cost. The LB method can be
easily coupled to other dynamics and because of its low computational cost it is more adapted
to systems in our range of interest. Besides, it is able to account for the coupling of the ions
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with the solvent flow.
All of these methods helped in understanding the structure and the dynamics at interfaces.

However, although fluctuations can be neglected at the micron scale, they can no longer be
ignored at the nanoscale. Very few studies showed the importance and advantages of noise
analysis. For instance, we can find that Wolfrum et al. [97] developed a numerical model that
accounts for noise phenomema present in nanopores, during redox cyles pointing out that
most software codes use finite differences, whenever diffusion processes need to be described.
However, they present several drawbacks, when modeling noise, as they are methods which
use probability densities to account for the location of analyte molecules. Therefore, they are
not convenient for noise descriptions: only averaged currents are present in the calculations.
Two sources of noise are considered: number of fluctuations (which vary between the two
electrodes) and redox cycling shot noise (due to diffusive shuttling of molecules). They used a
Monte Carlo algorithm, on a cubic lattice, to account for random motion, based on three main
assumptions: analyte molecules perform random walks, according to the diffusion equation,
and reflect upon collision with the walls; whenever a wall is hit, the molecule may change its
state to reduced or oxidized; finally, redox molecules do not interact with each other nor with
the electric field. Statistical physics and the connection between fluctuations and observable
properties have been applied to electrical phenomena in bulk liquids, taking in particular
advantage of the possibility to compute microscopic observables using molecular simulations.
The Green-Kubo formalism, which we will discuss extensively in Chapter 6, allows computing
transport coefficients (e.g. electrical conductivity) from time correlation functions (e.g. of the
electric current).

Marcus won the Chemistry Nobel prize in 1992, for underlining the role of the potential,
induced by the solvents, and the electric field fluctuations on redox processes [65]. The role of
fluctuations on a polar solvent was tackled using liquid state theory [98–100] and Gaussian field
theory [101]. We could also mention the link between the Nuclear Magnetic Relaxation (NMR)
relaxation time of quadrupolar nuclei and fluctuations of the electric field gradient (EFG) at
the nucleus [102]. However, applications to charged interfaces between a fluid and a charged
or conducting solid are rather scarce, despite their importance in the contexts introduced in
the previous section. For instance, Dünweg and Schmitz [77] analyzed the effects of flow field
around a single colloidal sphere, such as the ones present in electrolyte solutions. A lot of
attention was brought on electrophoretic effects, and thus on the competition between elec-
trostatic and hydrodynamic effects. Furthermore, the current modulation through nanopores
caused by a polyelectrolyte (e.g. DNA) entering the channel was modeled taking into account
electrokinetic effects using the Poisson-Nernst-Planck theory (PNP) (see Chapter 2) [103] or
with mesoscopic simulations [104,105]. As mentioned in the previous section, most models are
based on a combination of BD or PNP or a combination of the two [106,107]. Neglecting elec-
trostatic effects can for instance lead to a wrong description at low concentrations in the
electrolytes [5,108].

The role of electrical fluctuations at the interface between an electrode and an electrolyte
has only recently attracted attention. Jardat et al. [109], from the PHENIX lab, computed the
relaxation time of the electric double layer after an electron transfer event at the surface using
Brownian Dynamics simulation of electrolytes between uniformly charged electrodes [109]. A
major step forward was achieved when charge fluctuations of electrode atoms, in response to
the thermal fluctuations of the electrolyte in their vicinity, could be taken into account in
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classical MD [110–112].
We note that although the literature has different approaches to model charge, current

and potential fluctuations at the nanoscale, experimentalists often neglect electrokinetic phe-
nomema and simply uses Brownian dynamics. However, since the interplay between hydro-
dynamic and electrokinetic effect proved to be important in the interpretation of noise based
experiments, it is essential for us to be able to model in a compact form (i.e. in a single
algorithm) all of these phenomena. The LB method is a suitable candidate for this task.

1.4 Objectives of the present work

The overall objective of the present thesis is to develop the theoretical framework and the
simulation tools necessary to simulate electrolytes confined at the nanometric scale which are
subject to external perturbations (e.g. a disturbing potential). The method should then be
able to measure the response to the perturbation from which an analysis of the underlying
fluctuations can be carried out. This would provide a useful tool for experimentalists and
engineers to push their setups beyond the current state-of-the-art, e.g. at low ionic strength,
and to anticipate future technological developments, e.g. working at higher frequencies or
with smaller devices. Hence, we are hoping to contribute and enhance the fields of nano-
electrochemistry and single molecule detection. We consider systems where the characteristic
lengths are much larger than the molecular one. Using continuous solvent models, we can
focus on key aspects induced by the large surface to volume ratio and leading to electrical
fluctuations (small number of charge carriers, as well as coupling between hydrodynamics,
electrostatics and adsorption/desorption). Our approach should in the long run allow ratio-
nalizing the manipulation of fluids at the nanoscale that is nowadays feasible but limited by
the ability to interpret such fluctuations.

In order to do so, we extended a Lattice Boltzmann Electrokinetics code originally devel-
oped by M. Levesque and B. Rotenberg at the PHENIX laboratories in order to include the
different physical phenomena important at this scale. The code only included the hydrody-
namics in the LB part and a sorption dynamics of neutral tracers in the moment propagation
method, which we will introduce in more details in Chapter 3.

In Chapter 2 we couple the hydrodynamics with the ions dynamics to understand the
interplay between hydrodynamic and electrokinetic effects. We simulate with boundaries
bearing an imposed surface charge at the solid-liquid interface. We introduce the theory and
algorithm behind the method and validate our modification with known analytical results
with or without added salt.

In Chapter 3 we extend the moment propagation method for the sorption dynamics to
the case of charged tracers. We introduce the theory and validate our results with analytical
results for simple geometries and with previous works available in the literature [113,114].

In Chapter 4 we change the boundary conditions at the solid-liquid interface to simulate
nano-capacitors, which is the common device in the experiments described in this Introduc-
tion. As previously we impose a surface charge density on the electrodes and then extend
the algorithm to simulate an applied constant potential difference between the two electrodes.
This is closer to the experimental reality and allows us to study more in details the charge
at the electrode. We derive and validate the modifications with analytical results in simple
geometries.

— 17 —



Introduction

In Chapter 5 we study the charge response at the electrode under a perturbing potential
and how it evolves during the transient regime. This temporal response can be linked to the
underlying fluctuations using linear response theory.

In Chapter 6 we test linear response theory on our LB method, in the context of ion
diffusion in a box of simulation, allowing us to analyse the finite size effects due to periodic
boundary conditions in the transient regime.

Finally in the General Conclusion chapter we summarize the main achievements of this
PhD and discuss what could be done in the future, in the context of fluctuations, and to
extend the approach to more complex problems.
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"A method is more important than a discovery, since the right method will lead to
new and even more important discoveries"

- Lev Landau
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Chapter 2. Lattice Boltzmann Electrokinetics

In this chapter we ought to present the Lattice Boltzmann Electrokinetics (LBE) method
and the underlying theory to validate its implementation in a code by comparison with

analytical results in simple geometries. In order to do that we consider the electrokinetic
transport of a confined fluid, which bears a surface charge at the solid interface. We consider
here two types of geometries: slit and cylindrical. The governing equations at the continuous
level of description, namely the Poisson-Nernst Planck (PNP) and Navier-Stokes (NS) equa-
tions, are presented in Section 2.1. Analytical solutions may be recovered (see Section 2.5)
both when no salt is added, meaning that only counterions are present, and in the presence of
salt but in low potential condition, in which case a linearization of PNP is possible. The first
solution is exact and is thus needed in order to validate the Lattice Boltzmann electrokinetics
algorithm (LBE). LBE works also in the non-linear regime, i.e. in the high potential regime.
Section 2.2 shows how the macroscopic NS equation is recovered from the Boltzmann equation
and how the Lattice Boltzmann algorithm is implemented. Then, Section 2.3 introduces the
link-flux algorithm (LF) needed for the coupling with the electrostatic interactions. Finally,
Section 2.4 summarizes the main steps of the algorithm and Section 2.5 is the validation of
the algorithm by means of known analytical results, which are presented along.

2.1 Governing Equations

The Navier-Stokes (NS) equation, which is required to describe the hydrodynamics of the
system, has to be coupled with the Poisson-Nernst-Planck (PNP) equation, in order to include
electrokinetic effects. More specifically, we consider a fluid confined in a certain region, which
is bounded by solid walls, constituting the interface. The system studied is then made of two
parts.

The first is a non-mobile solid phase, which could represent a porous material saturated
by water. Clays are for instance common examples. Besides, when solid phases are in contact
with electrolytes, electric charges may appear at the surface. This electric charge is partly
screened by the counterions present in the liquid phase, which adsorb at the interface, forming
the so-called Stern layer. For the time being we neglect adsorption-desorption phenomena as
well as any diffusion in this layer. Thus, the solid phase possesses a surface charge density
σ(r) (e m−2, where e is the electric charge), for all r in the solid part. We consider that the
surface does not change with time.

The second part is made of a liquid phase, in other words the electrolyte, which is made
of dissociated ionic species in a continuous solvent with permittivity ε = εrε0, where εr is
the relative permittivity and ε0 is the permittivity in vacuum. The fluid viscosity η and
temperature T are assumed to be uniform. The ionic species are point-like particles with
charge qk = zke and valence zk. Hence, no excluded volume effects are considered. Likewise,
water molecule deformation, due to electrostatic interactions are also neglected. Finally, no
chemical reaction is taken into consideration.

2.1.1 Poisson-Nernst-Planck

The Nernst-Planck Equation is a conservation of mass equation that describes the influence
of an ionic concentration gradient and that of an electric field on the flux of chemical species,
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specifically ions. Starting from the conservation of mass equation and considering an incom-
pressible fluid, i.e. ∇ · u = 0, where u is the fluid velocity, we have for each species k,

Dρk
Dt

+∇ · jk = 0 (2.1)

where D(·)
Dt = ∂(·)

∂t + u · ∇(·) is the material derivative; ρk and jk are the ionic concentration
and the flux, respectively. Thus, the equation becomes:

∂ρk
∂t

+ u · ∇ρk +∇ · jk = 0. (2.2)

u · ∇ρk represents the advection term. The flux for the Nernst-Planck equation is usually
expressed as:

jk = −Mkρk∇µk, (2.3)

with Mk the mobility and where the local electrochemical potential µk is the sum of an ideal
term and an excess term:

µk = kBT ln(ρk/ρ
0
k) + µexk , (2.4)

where ρ0
k is the concentration of reference. The excess part is written as an electrostatic term:

µexk = zkeψ, (2.5)

where e is the elementary charge and ψ the electrostatic potential. The electrochemical
potential gradient is given by:

∇µk =
kBT

ρk
∇ρk + zke∇ψ (2.6)

Then the mobility is given by the Einstein’s relation

Mk =
Dk

kBT
, (2.7)

where Dk denotes the diffusion coefficient of the k-th ionic species and kB and T denote the
Boltzmann constant and the temperature respectively. The flux can therefore be expressed
as:

jk = −Dk

(
∇ρk +

zke

kBT
ρk∇ψ

)
. (2.8)

The first term on the right hand side of Eq. 2.8 is the flux due to diffusion (Fick’s law),
whilst the second term is the flux due to electromigration. Plugging this expression in Eq. 2.1
we obtain the Nernst-Planck Equation for a dilute solution, i.e.

∂ρk
∂t

+ u · ∇ρk +∇ ·
[
−Dk

(
∇ρk +

zke

kBT
ρk∇ψ

)]
= 0 (2.9)

It is important to notice that Nernst-Planck Equation gives N equations with N + 1

unknowns. In order to solve the system of equations one more equation is needed. At the
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mean field level this can be achieved describing the electrostatic potential via the Poisson
Equation

ρf = ∇ ·D (2.10)

ρf is the free charge density andD is the electric displacement. For a linear dielectric material
we can express D as

D = εE (2.11)

where ε = εrε0 is the permittivity of the material, in this case the solvent. E is the electric
field generated by the charges present within the system. We may then write E = −∇ψ.
Thus,

D = −ε∇ψ (2.12)

Plugging this expression in the Poisson equation

ρf = −∇ · (ε∇ψ) = −ε∆ψ (2.13)

if the permittivity is uniform. Using a mean field approximation, the free charge density can
be defined in terms of the local ion concentrations

ρf (r) =

N∑
i=1

zkeρk(r). (2.14)

Therefore, the PNP equations are written
∂ρk
∂t + u · ∇ρk −∇ ·

[
Dk

(
∇ρk + zke

kBT
ρk∇ψ

)]
= 0

ε∆ψ = −ρf = −∑N
i=1 zkeρk

(2.15)

the system has identical number of equations and unknowns.

2.1.2 Navier-Stokes

The fluid considered is a binary electrolyte (1:1) diluted in a solvent, i.e. an aqueous solution
with a monovalent salt (e.g. KCl, NaCl...). We consider only flows at low Reynolds (Re)
number, which can be perturbed by external constraints such as a pressure gradient or an
external electric field. The solvent velocity u(r, t), as shown in Eq. 2.15, is then computed
using NS equation

ρ
(∂u
∂t

+ u · ∇u
)

= η∇2u−
∑
k

ρk∇µk + f ext
V (2.16)

where η is the viscosity, ρ the fluid density, f ext
V is the external force density and where

the second term on the right-hand side corresponds to the thermodynamic force, which is
expressed from the pressure gradient using the Gibbs-Duhem equation.

— 23 —



Chapter 2. Lattice Boltzmann Electrokinetics

Using the excess part of Eq. 2.4 with the contribution of the external force we recover
the usual electric force density e(

∑
k zkρk)(Eapp − ∇ψ), where Eapp is an applied external

electric field.
At equilibrium, the Gibbs-Duhem equation at constant pressure and temperature reads

N∑
k=1

ρk∇µk = 0 (2.17)

The force density f intv imposed by the solutes on the fluid is computed according to

f intv = −
N∑
k=1

ρk∇µexk (2.18)

This forcing term is responsible for the coupling between the ions and the solvent dynamics,
together with the advection of the ions ( i.e. u · ∇ρk in Eq. 2.15).

2.1.3 Discussion

Therefore, Eq. 2.15 and Eq. 2.16 are the governing equations for our system. The model
is thus limited by the prior assumptions of NS and PNP. They are indeed both continuous
equations, which cannot resolve the molecular details of the system. Nonetheless, NS was
shown [9] to hold down to length scales of the order of 1 nm. On the other hand, PNP relies
on a mean field approach meaning that all quantities are averaged and thus ionic correlations
are not taken into account. Furthermore, since the theory was derived considering point-like
charges for ions, excluded volume effects are neglected, so that the description of the system
breaks down at high concentrations. Similarly, excluded volume effects taking place at the
solid-liquid interface are neglected.

As described in the introduction, a good candidate to solve numerically NS-PNP is the
Lattice Boltzmann Electrokinetics (LBE). The LBE scheme couples the Lattice Boltzmann
method (LB), which takes care of the hydrodynamics of the problem, with the link-flux
(LF) method, which tackles the electrostatic interactions. During this thesis we have further
developed an existing code called Laboetie, which prior to this work included only the Lattice
Bolzmann part. Thus no electrostatic interactions were involved in the calculations. LBE
codes have been previously developed (e.g. 115 and 116), hence our first aim was to recover
previous known analytical and numerical results in order to validate this part. In the next
two sections I introduce the theory behind LB and LF and how they are implemented.

2.2 Lattice Boltzmann

The Lattice Boltzmann Method is a grid based method with spacing ∆x and time step ∆t. In
contrast to the traditional numerical schemes such as finite difference method (FDM), finite
volume method (FVM), finite element method (FEM) or spectral element methods (SEM),
which are based on the discretization of macroscopic continuum equations, the LB method
is rooted in microscopic models and mesoscopic kinetic equations. Mesoscopic models, and
notably those arising from kinetic theory such as LB, are natural candidates for intermediate
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scales between the atomistic and continuum levels as they are computationally inexpensive
when compared to Molecular Dynamics (MD) simulations.

The LB method was initially developed as an extension of the lattice gas automaton
(LGA), which was proposed by Pommeau, Hasslacher, Frisch and Wolfram [117,118]. Their
idea was to create a very simplistic MD model which evolves on a two-dimensional triangular
lattice. Particles move from one site to another in discrete time steps. The LGA could then
be a form of MD with structureless particles with perfect conservation laws and could even
process basic symmetries to simulate hydrodynamics. However, the method presented some
shortcomings as the simulations are very noisy due to large fluctuations of particles, forcing
a spatial and temporal average in order to obtain statistically converged results. One way
to overcome these shortcomings is to leave the boolean world of LGA and work at the level
of continuous probabilities. The LB method is indeed an algorithm based on a discretized
kinetic equation.

2.2.1 Kinetic theory

In this section we show how the macroscopic NS equation is recovered from the Boltzmann
equation. Generally speaking, it is possible to view a fluid in a statistical physics framework,
by considering a quantity f(r,v, t)drdv, at a specific time t, located in a volume dr =

dxdydz, which surrounds the position r = [x, y, z] with a velocity, within dv = dvxdvydvz,
of v = [vx, vy, vz]. Both r and v are independent variables, and the ensemble-averaged
hydrodynamic variables are derived from the distribution function f(r,v, t) by integrating
over all possible velocities, i.e. the local mass density is obtained as:

ρ(r, t) :=

∫∫∫
f(r,v, t)dv. (2.1)

The notation
∫∫∫

(. . .)dv corresponds to the definite integral
∫∫∫∞
−∞(. . .)dvxdvydvz. We

shall now use index notation and adopt the Einstein summation convention of implicit sum-
mation over repeated indices. The local average velocity is obtained using

uα(r, t) :=
1

ρ(r, t)

∫∫∫
vαf(r,v, t)dv, (2.2)

and the internal energy density

3

2
ρ(r, t)U2(r, t) :=

∫∫∫
1

2
|v − u(r, t)|2f(r,v, t)dv, (2.3)

with U2(r, t) = kBT (r, t)/m and where the factor 3/2 is due to the three dimensions of the
physical space. In 2D it would be 2/2 and 1/2 in 1D. The velocity in Eq. 2.3 is the thermal
agitation velocity. The total energy density reads

ρ(r, t)Etot(r, t) :=

∫∫∫
1

2
|v|2f(r,v, t)dv =

1

2
ρ(r, t)|u(r, t)|2 +

3

2
ρ(r, t)U2(r, t), (2.4)

The right hand side of the equation was obtained using Eq. 2.2 and Eq. 2.3, as well as the
identity |v − u|2 = |v|2 − 2v · u+ |u|2. The energy flux may be computed using

qα(r, t) :=

∫∫∫
1

2
|v − u(r, t)|2 (vα − uα(r, t)) f(r,v, t)dv (2.5)
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Finally the stress tensor is written as

Παβ(r, t) :=

∫∫∫
(vα − uα(r, t)) (vβ − uβ(r, t)) f(r,v, t)dv (2.6)

2.2.2 Boltzmann equation

The temporal evolution of the mass probability distribution is given by the Boltzmann equa-
tion

∂f

∂t
+ vα

∂f

∂xα
+
Fα
m

∂f

∂vα
= C(f) (2.7)

where Fα are the components of an external force applied upon the fluid, m is the mass of
the fluid particles and C(f) is called the collision operator. Eq. 2.7 means that f is advected
in physical space by the particle velocities. On the other hand, its velocity space is modified
by the acceleration term and redistributed by the collision operator.

2.2.3 BGK approximation

A possible solution for Eq. 2.7 was carried out in 1959 by Bhatnagar, Gross and Krook, who
noticed that the main effect of the collision term is to bring the velocity distribution function
closer to the equilibrium distribution feq. They proposed to approximate the collision kernel
as:

C(f) =
1

τ
(feq − f) (2.8)

This is the so-called BGK formulation [119], where τ represents the relaxation time. Intro-
ducing Eq. 2.7 in Eq. 2.8 we obtain the Boltzmann-BGK equation

∂f

∂t
+ vα

∂f

∂xα
+ aα

∂f

∂vα
=

1

τ
(feq − f) (2.9)

with aα = Fα/m the acceleration. We shall now discuss more in details which equilibrium
solution is best for the purpose of our analysis.

2.2.4 Equilibrium distribution

Ludwig Boltzmann [120] considered gas particles to be animated by Brownian motion and
contributed to the derivation of the Maxwell-Boltzmann distribution feq written as:

feq(r,v, t) =
ρ(r, t)

(2π)3/2U3(r, t)
exp

(
−|v − u(r, t)|2

2U2(r, t)

)
(2.10)

which is merely a Gaussian distribution of velocities vα centred in their averages uα with
standard deviation U . In order to ensure that the collision operator conserves mass, momen-
tum and energy, feq must obey to Eq. 2.1, 2.2 and 2.3. The Maxwell-Boltzmann distribution
satisfies these conditions.

Conservation of mass, momentum and energy can be derived using zeroth, first and second
moments of the Boltzmann-BGK Equation respectively.
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2.2.5 Conservation of Mass

Mass conservation is obtained by considering the zeroth moment of Eq. 2.9, i.e. integrating
over the velocity space

∫∫∫ {
∂f

∂t
+ vα

∂f

∂xα
+ aα

∂f

∂vα

}
dv =

∫∫∫ {
1

τ
(feq − f)

}
dv (2.11)

Temporal and spatial derivatives are independent variables and thus commute with the
velocity integrations. Furthermore, because of the integrability of f we have f → 0 as vα →
±∞ and thus the acceleration term (e.g. gravity) cancels out. Moreover, both distributions
f and feq satisfy Eq. 2.1. Therefore the integral of feq − f vanishes, meaning that collisions
conserve mass. Then, using Eq. 2.1 and 2.2, Eq. 2.11 reduces to

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0 (2.12)

which is the continuity equation.

2.2.6 Conservation of Momentum

First order moments of Eq. 2.9 leads to the momentum equations, i.e.

∫∫∫
vβ

{
∂f

∂t
+ vα

∂f

∂xα
+ aα

∂f

∂vα

}
dv =

∫∫∫
vβ

{
1

τ
(feq − f)

}
dv (2.13)

Expanding the term vαvβ as:

vαvβ = (vα − uα) (vβ − uβ) + vαuβ + vβuα − uαuβ, (2.14)

the advective term is then written as:

∂

∂xα

∫∫∫
vαvβfdv =

∂

∂xα

∫∫∫
(vα − uα) (vβ − uβ) fdv

+
∂

∂xα

∫∫∫
(vαuβ + vβuα − uαuβ) fdv

(2.15)

The first term on the right-hand side may be recognized as the stress tensor, i.e. Παβ ,
whereas the second term corresponds to ρuαuβ . The acceleration term is computed using
vα

∂f
∂vα

= ∂(vαf)
∂vα

− f and the fact that vαf → 0 as vα → ±∞. Since collisions conserve
momentum, the distributions satisfy Eq. 2.2 and thus the term feq − f vanishes. Plugging
Eq. 2.15 in Eq. 2.13 gives the Cauchy momentum equation

∂

∂t
(ρuβ) +

∂

∂xα
(ρuαuβ) +

∂Παβ

∂xα
= ρaα (2.16)
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2.2.7 Stress tensor

Assuming a short relaxation time τ , the stress tensor can be derived using a Chapman-Enskog
expansion. However, since this proof is not the main goal of this PhD thesis, we shall send
the reader to the following references for the mathematical details [121–125]. Introducing the
ideal gas pressure p = ρU2 the stress tensor may be written as:

Παβ = pδαβ + ταβ (2.17)

where ταβ corresponds to the deviatoric component of the stress tensor.
The deviatoric stress tensor or shear stress tensor can be further evaluated in order to

recover a more classical form, i.e.

ταβ = ρτU2

[(
∂uα
∂xβ

+
∂uβ
∂xβ

)
− 2

3

(
∂uγ
∂xγ

)
δαβ

]
(2.18)

which is the constitutive equation for a compressible Newtonian fluid with viscosity

η = ρτU2 = ρUλ (2.19)

where λ is the mean free path. Plugging Eq. 2.18 and 2.19 in Eq. 2.16 we recover the
compressible flow Navier-Stokes (NS) equation. Therefore the NS equation can be derived
from the Boltzmann equation.

The Boltzmann equation can thus correctly describe Newtonian hydrodynamics. If an
incompressible fluid without thermal fluctuations is considered it is necessary to impose two
closing relations on the pressure p and on the kinematic viscosity ν = η/ρ

p = ρc2
s and ν = τc2

s (2.20)

with cs denoting the speed of sound in the fluid. The first relation corresponds to the equation
of state for a perfect gas.

2.2.8 Lattice Boltzmann Equation

The time discretisation is done introducing the time step ∆t. This allows us to discretize the
Boltzmann equation using the BGK approximation:

f (r + v∆t,v, t+ ∆t) = f (r,v, t) +
∆t

τ
[feq(r,v, t)− f (r,v, t)] (2.21)

From this, a numerical scheme can be devised with a precision of ∆t2. Furthermore, a
discretization in space is done via an evenly spaced grid, often cubic. Particles then move
from a node to another during the time step ∆t. Each node is separated by a lattice spacing
∆x and the lattice velocity is thus obtained using |v| = ∆x/∆t. Nodes can either have a solid
or a fluid nature. There have been other LB algorithms developed with irregular meshes, but
since it is not the case of the Laboetie code we shall refer the reader to Ref. 126. Finally the
velocity space is discretized to a finite number of velocity vectors ci such that r + ci∆t is
always a lattice position. The choice of velocities needs to ensure that the isotropy given by
the Boltzmann equation is conserved.
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The equilibrium distribution f eq can be expressed with Hermite polynomials Hn(x) =

(−1)nex
2
∂nx e−x

2 , which form an orthonormal basis for the functions space with an expansion
up to order m. The equilibrium distribution then reads:

f eq(r,u, t) =
ρ(r, t)

(2πc2
s)

3
2

exp

(
−|v|

2

2c2
s

) ∏
α=x,y,z

[
m∑
n=0

1

n!

(
uα
cs

)n
Hn (vα)

]
. (2.22)

This corresponds to a development of the velocity dependence at low Mach (Ma) number
|u|/cs. Without loss of generality, a non-zero moment Mk reads

Mk =

∫
vkxx v

ky
y v

kz
z f

eqdu

=
ρ

(2πc2
s)

3
2

∏
α=x,y,z

[
m∑
n=0

1

n!

(
uα
cs

)n ∫
vkαα exp

(
− v

2
α

2c2
s

)
Hn (vα) dv

] (2.23)

where m ≥ max (kx, ky, kz). The integrals can be evaluated using a finite number of velocities
as Gaussian-Hermite quadrature, which computes the integral with a sum

nq−1∑
k=0

wmαk Hnq (ξk) , (2.24)

where ξk are the roots of Hnq (ξk) = 0 and nq are their corresponding number, which have
corresponding weights

wk =
2nq−1nq!

√
π

n2
qHnq−1 (ξk)

(2.25)

of the quadrature. From these roots the discretized weights can be obtained

wi =
1

(2π)3/2
wixwiywiz exp

(
−|ci|

2

2c2
s

)
(2.26)

where ci = (ξix, ξiy, ξiz) is a discretized velocity. The number of discretized velocities depends
on the chosen model. The velocity of sound in the D3Q19 model is written in LB units as:

cs =
1√
3

∆x

∆t
(2.27)

Let fi(r, t) := wif (r, ci, t), called the populations, then Eq. 2.21 may be rearranged as

fi (r + ci∆t, t+ ∆t) = fi(r, t)−
∆t

τ
[fi(r, t)− f eq

i (r, t)] + Fi(r) (2.28)

The term Fi takes into account the action of an external force F , as well as the internal
forces described by the Gibbs-Duhem equation (see Eq. 2.17). The forcing term satisfies∑

i Fi = 0 and
∑

i ciFi = F .
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Figure 2.1 – D3Q19 model

The equilibrium distribution for the D3Q19 model (which is a 3D model including 19
different velocities, as shown in Fig. 2.1) which corresponds to a quadrature with nq = 3 and
a truncation at order m = 2 reads

feqi = ρwi

[
1 +

u · ci
c2
s

+
(u · ci)2

2c4
s

− u · u
2c2
s

]
(2.29)

the velocities ci = ∆x/∆t for the D3Q19 model are

|ci| =


0 for i = 0

c for i = 1− 6√
2c for i = 7− 18

(2.30)

Their corresponding weights wi are

wi =


1/3 i = 0

1/18 i = 1− 6

1/36 i = 7− 18

(2.31)

The D3Q19 proved to be a good compromise in terms of computational cost and accuracy
and was thus chosen for the purpose of this thesis. The macroscopic quantities are then
recovered with

ρ(r, t) =
∑
i

fi(r, t) (2.32)

ρu(r, t) =
∑
i

cifi(r, t), (2.33)
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2.2.9 Algorithm

Let us define f̃i(r, t) as:

f̃i(r, t) := fi(r, t)−
∆t

τ
[fi(r, t)− f eq

i (r, t)] + Fi(r), (2.34)

which correspond to the populations after the collision step. We consider τ = ∆t. Then, the
propagation step moves particles along the nodes as

fi (r + ci∆t, t+ ∆t) = f̃i(r, t) (2.35)

The algorithm, may be summarised as follows:

• Set appropriate fluid velocities u(r, t) and densities ρ(r, t) at each lattice site.

• Calculate equilibrium densities feqi (i = 0, 1, ..., 18) at each lattice site from Eq. 2.29
and regard these distributions as the initial distributions fi = feqi (i = 0, 1, ..., 18).

• Collision step: compute f̃i using Eq. 2.34.

• Streaming step: update the distribution at the neighbouring site in the i-direction
fi(r + ci∆t, t+ ∆t) as f̃i.

• Calculate the macroscopic densities and velocities using ρ(r, t) =
∑

i fi(r, t) and ρ(r, t)u(r, t) =∑
i fi(r, t)ci, and repeat the procedure from the second step.

Convergence is finally reached when

max
r

(|jt+1
α − jtα|) < C (2.36)

where j is the mass flux in the x, y or z-direction and C is the convergence criterion which is
set by the user.

2.2.10 Boundaries

Figure 2.2 – Bounce-Back step

A final key factor is boundaries, as we are interested in modelling confined fluids. No-slip
boundary conditions are often adopted when dealing with walls, even though slip velocities
may be present for very small pores (∼ 1 nm). Nonetheless, as we are interested in larger
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systems, up to 100 nm, we shall not consider such effects. The simplest yet efficient way to
implement such a boundary is to draw the boundary and then mark all links that are cut
by this boundary. As mentioned earlier the LB is a grid-based method and thus the nodes
have either a fluid or a solid nature. In early implementations of LB, the interface was merely
drawn on the lattice nodes and the method was called the fullway bounce back rule. The
densities that were streamed into the solid were bounced-back during the collision step, at
time t instead of being streamed from a node to another.

Figure 2.3 – Collision step

Figure 2.4 – Streaming step

The information was then passed to the bulk during the streaming step, after which the
time was increased by ∆t. Thus, we have

fi(r, t+ ∆t) = f−i(r, t) (2.37)

where the velocity index −i is defined through c−i = −ci. Mass is conserved by the bounce-
back rule, whereas energy and stress tensor

∏
=
∑

i cicifi are related to the second order
moment of lattice velocity and cannot be conserved since the unknown distribution functions
are modified directly to those in the opposite direction, without taking the conservation of
energy into consideration.

The fullway bounce back rule is simple but it achieves only first order spatial accuracy [127].
This would definetely limit the advantage of LBM, which essentially performs with second
order spatial accuracy. In order to obtain the second order accuracy, the halfway bounce back
rule was introduced. The idea is that the boundary lies between the nodes so that the wall
is placed in the middle of the solid boundary nodes and bulk nodes, as shown in Fig. 2.2.
Fig. 2.2 to 2.4 show the three main steps experienced: in the first step densities are streamed
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in the solid at time t (Fig. 2.2), they are then bounced-back in the fluid during the same time
step (Fig. 2.3) and finally quantities are allowed stream in the other lattice nodes at t + ∆t

(Fig. 2.4).
This approach has been extended to the case of moving boundaries [128]. However, since

we did not need such feature we will not discuss this here.

2.2.11 Concluding remarks and summary of the method

The expansion used to derive the algorithm implies that the LBM is valid only for small
velocities, i.e. at low Mach number, although it was shown that it can be adapted in order
to simulate more complex phenomena such as turbulence for higher speeds [129]. In most
cases, LB is restricted to micro-scale flows with a Knudsen number, Kn < 0.1, even though
Meghdadi Isfahani et al. [130] proposed a modification of the algorithm in order to extend the
ability of LBM to simulate a wider range of Knudsen flow regimes. When comparing with
a purely hydrodynamic description, LB offers some advantages such as providing the fluid
pressure locally available site by site, with no need of solving a computationally demanding
Poisson problem or simply having the momentum diffusion not represented by second-order
spatial derivatives; indeed it merely emerges from the first-order LB relaxation-propagation
dynamics. As we are interested in more complex fluids, we need to couple the LB method
to the thermodynamics of the system via the free energy. Local chemical potential gradients
induce fluxes of the various species (see Eq. 2.3), but also forces which drive the fluid (see
Eq. 2.16). This can be achieved with the link-flux method.

2.3 Link-flux method

In this part the numerical algorithm used to describe the coupling between the solvent and
the ions is presented. This method is coupled with the LB part in order to ensure momen-
tum conservation in the fluid. It also includes the time dependent density functional theory
(DFT) in order to take into account the local evolution of the local ionic composition. The
version of the LF method used is the one introduced by Capuani et al. [131], which aimed at
removing spurious fluxes across the fluid-solid interface, which appeared at steady state in the
previous versions of the algorithm [132], where LB method was directly used in order to model
electroviscous transport problems. More specifically, the Stokes equations was obtained from
the standard lattice Boltzmann equation, the Smoluchowski equations were computed as a
simple extension of the moment propagation method for convective diffusion problems (see
Chapter 3), and the Poisson equation was solved on a lattice by a standard finite difference
scheme.

2.3.1 Solute transport: diffusion-migration

As we said, the first attempts at coupling the LBM for the solvent dynamics with another
algorithm for the ions dynamics were only partly successful. The moment propagation method
was developed and coupled with the LBM [113,132–137] in order to compute statical mechanical
quantities (e.g. the velocity autocorrelation function) of tracers dispersed in a fluid. We shall
discuss more in details this method, which we contributed to improve in Chapter 3. However,
the methods which aimed at solving the PNP equation, introduced spurious fluxes from fluid
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to solid nodes which would appear at steady state. In order to solve this problem Capuani
et al. [131] developed the link-flux (LF) method, which focuses on the solute fluxes between
each node rather than the solutes fluxes at each node. The continuity equation can be written
in its integral form:

∂tNk
(r, t) = −

∫
Ω
∇ · jk(r, t)dΩ, (2.38)

where N
k
(r, t) is the number of ions in a cell Ω centered on a node r and bounded by a surface

∂Ω. Such a cell corresponds to the closest volume to a node rather than another node. The
integral is then on all the volume of such cell. The LF method deals with the diffusive and
migration fluxes (see Section 2.3.2 for advection). Thus, we have

jk(r, t) = −Dkρk∇ ln ρk − zkeDkρk∇ψ. (2.39)

Thanks to the Green-Ostrogradski theorem we can rewrite the integral in the following
manner:

∂tNk
(r, t) = −

∮
∂Ω
jk(r, t) · n∂Ω, (2.40)

where the integral is computed along the cell surface and the unit vector n is perpendicular
to this surface and pointing outside the cell. The integral is here the sum of the ions fluxes
leaving the cell. The concentrations are then updated according to the following discretized
equation:

ρ
k

(r, t+ ∆t)− ρ
k
(r, t)

∆t
∆x3 = −A0

∑
i

jik(r, t). (2.41)

The i-index refers to the discrete velocity directions and jik corresponds to the contribution
of the i-link between r and r + ci∆t to the flux of species k through the cell surface around
node r. A0 is a coefficient which depends on the geometry of the lattice. For the D3Q19
model, A0 = 1 + 2

√
2 (see Ref. 131 for more details). In order to ensure that the ions follow

a Boltzmann distribution at equilibrium, the ions fluxes are first rewritten as:

j
k

= −D
k
e−βµ

ex
k ∇

[
ρ
k
eβµ

ex
k

]
. (2.42)

where β := 1/kBT . An excess part of the electrochemical potential βµex
k

(r) = zkeψ(r) was
here introduced. This allows to discretize them in a symmetric way. The fluxes passing
through the i-links are computed in the LBE algorithm according to

ji
k
(r) = −d

k

e−βµ
ex
k

(r) + e−βµ
ex
k

(r+ci∆t)

2

[
ρ
k

(r + ci∆t) eβµ
ex
k

(r+ci∆t) − ρ
k
(r)eβµ

ex
k

(r)

∆i

]
(2.43)

where d
k

= D
k
/A0 and ∆i = ‖ci∆t‖. This symmetric form ensures the solute conservation.

Hence, we have ji
k
(r) = −ji′k (r + ci∆t) between each link, with ci′ denoting the velocity

opposed to ci. The flux jik is set to zero for the links between liquid and solid nodes. This
ensures that solutes are not transported into the solid.
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2.3.2 Solute transport: advection

The advective fluxes ρku are treated separately [131]. The amount of advected particles is pro-
portional to the overlap between the cell shifted virtually by u∆t and all of the neighbouring
cells (see Fig. 2.5 ). Note that densities used for the diffusive flux computation are modified
by the advection which triggers an artificial diffusion. More precisely, the spurious diffusion
coefficient due to advection results in

Dad =
1

2

∑
α=x,y,z

uα (1− uα) (2.44)

which is written in LB units. By choosing a large diffusion coefficient Dk and a small velocity,
this artificial diffusion coefficient Dad is negligible.

Figure 2.5 – Shifted cell by a velocity v. The quantity of solutes transferred to the neighbouring
nodes during a time step ∆t is proportional to the intersection between the neighbouring cells as well
as the shifted cell. In LB units ∆x = ∆t = 1 the quantity of transferred solute from node 5 to node
6 during a time step is proportional to vx (1− vy), where v is the speed of the fluid at node 5. The
solvent quantity that stays at node 5 is proportional to (1− vx) (1− vy). The notations differ from
ours as the sketch is taken from Ref. 131

2.3.3 Solute transport: force on the fluid

The forcing term given in Eq. 2.18 can be easily computed numerically from the fluxes

Fi(r) = −c2
s∆twi

[
ji+(r)

d+
− ρ+(r + ci∆t)− ρ+(r)

∆i

+
ji−(r)

d−
− ρ−(r + ci∆t)− ρ−(r)

∆i

]
.

(2.45)

with j± given by Eq. 2.43. This force has an influence on the fluid dynamics and enters in
the LB algorithm as described in Eq. 2.28.
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2.3.4 Solute transport: electrostatic potential

The electrostatic potential ψ is computed by means of the charges distribution on the lattice
grid, which is obtained solving Poisson equation. This is achieved using the successive over-
relaxation (SOR) routine [138], which is a standard solver similar to a Gauss-Seidel solver. The
mathematical details of the method are summarized in Appendix A.1.

The matrix system solved leads to a solution of the Laplacian of ψ, which is computed in
the following manner

∇2ψ(r) =
2

∆t2

∑
i

wi
c2
s

[ψ (r + ci∆t)− ψ(r)] (2.46)

The potential is then updated at each time step in an iterative way. Convergence is finally
reached when

∑
r

∣∣∣∣ψl+1(r)− ψl(r)

ψl(r)

∣∣∣∣ < C (2.47)

for all ψ > 0 and where C is a convergence criterion set by the user (typically C = 10−10).

2.3.5 Solute transport: boundary conditions

We use periodic boundary conditions (PBC) in the three directions of space. At the solid-
liquid interface, boundary conditions need to be specified for the solvent (LB part) and for the
ions (LF part). As mentioned before the LB part has no-slip boundary conditions through
the bounce-back rule and the LF part requires the ions fluxes penetrating the walls to be
canceled (i.e. jik = 0).

2.4 Summary of the algorithm

The Lattice Boltzmann Electrokinetics is a hybrid method coupling LB and LF: the dynamics
of the solvent is simulated with LB and the one of the ions with LF. In the LB part the distri-
bution function fi(r, t) is updated, using Eq. 2.28, in two steps: a collision and a propagation
step. The collision operator f̃i(r, t) corresponds to an intermediate distribution function

f̃i(r, t) = fi(r, t)−
∆t

τ
(fi(r, t)− f eq

i (r, t)) + Fi(r, t). (2.48)

This step aims at relaxing the system locally in order to obtain the equilibrium distribution
f eq
i (r, t) in a time equal to the relaxation time τ . Secondly, fluid particles are moved along
the nodes according to

fi (r + ci∆t, t+ ∆t) = f̃i(r, t). (2.49)

Once the streaming step is over, the particles in r, which are moving from this node to a
neibouring node r+ ci∆t, conserve the same velocity at the new node after the time step ∆t.
The distribution function is here modified by the forcing term, which takes into account the
force (Eq. 2.45) applied by the ions on the fluid, as well as the applied pressure gradient. The
fluid internal forces are computed at each time step from the ions fluxes (Eq. 2.43) between
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each link. This requires the ions density to be updated according to Eq. 2.41, taking into
account the effects of advection as well as the computation of the new electric potential on
all the nodes. The algorithm also requires an initial step whose aim is to bring the solvent
and the ions at equilibrium in the absence of external perturbation. Only then, an external
pressure gradient or external electric field can be applied.

The LBE algorithm is implemented in the Laboetie code via:
1) Definition of the nodes: distinguish solid nodes from fluid nodes in the simulation box.

A surface charge is imposed on each interfacial solid node according to the total electric charge
of the solid region. A study on the comparison between imposing charges on the surface nodes
only, with respect to imposing charges on all the solid nodes, in a cylindrical pore, was carried
out by Obliger et al. [139]. See Section 2.5.2.3 for further details.

2) The initial cation and anion concentrations ρk(r, t = 0) are defined. For simplicity they
are taken as homogeneous, but a specific profile corresponding to the solution at equilibrium
can be used to avoid step 3, if the solution is known previously.

3) Computation of the ion distributions at equilibrium solving iteratively the PNP equation
via the SOR algorithm for the potential. The ionic densities are updated at each iteration
in LF until all of the ions fluxes vanish. Here no advection is considered. The LB part,
which includes the dynamics of the fluid is not yet activated. Once convergence is reached
the concentrations and potential correspond to the Poisson-Boltzmann equilibrium.

4) The LB part is initialized by choosing a homogeneous distribution function fi(r, t = 0).
The LBE algorithm now couples the fluid and the ions dynamics together without imposing
external forces. This enable the code to verify whether the ions state of equilibrium is stable.
No flux should appear.

5) External forces (e.g. ∇P or ∇ψ) are applied. Steady state is reached once the flow no
longer evolves according to a convergence criterion.

2.5 Results

The LBE method is available in different open source codes, e.g. Ref. 115 and 116. During this
PhD an initial part of the work was to implement the LF method and the SOR routine needed
to solve the Poisson equation. The Laboetie code was initially developed in the PHENIX
laboratory by B. Rotenberg and M. Levesque. In order to validate these new parts of the
code, comparison with known analytical solutions is necessary. In the next Chapters we
shall introduce new features that were added in the code, which are not available in other
implementations of LBE. The following sections show the available results in two different
geometries: a slit pore and a cylindrical pore.

2.5.1 Poiseuille Flow

2.5.1.1 Slit pore

As a first test of the LBE method as implemented in the code, we verified that even the past
features of the code were not corrupted by our modifications. Here we consider the simple
case of a Poiseuille flow in a slit pore. A uniform pressure gradient −dp/dx was applied and
the resulting flow in the slit is shown in Fig. 2.6.
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Figure 2.6 – Velocity profile in a slit channel. The flow is induced by a pressure gradient resulting in
a Poiseuille flow. The velocity u is normalized with respect to the maximum velocity umax, whereas
the position z in the fluid region is normalized with respect to L the distance between the walls.

The analytical solution at steady state, assuming a laminar flow and no-slip boundary
conditions at the surfaces is:

ux(z) = −L
2

8η

dp

dx

[
1−

(
2z

L

)2
]
. (2.50)

The maximum velocity of the fluid is given by

umax := −L
2

8η

dp

dx
(2.51)

Fig. 2.6 shows the profile of the velocity flow. Here the grid was constructed with Nz = 126

nodes and Nx = Ny = 5 nodes. The fluid region is made of Nf = 120 layers of fluid nodes
with three layers of solid nodes on each side (i.e. Ns = 6 layers of solid nodes). Given a fluid
such as water, which has a Bjerrum length lB = 0.7 nm at room temperature, we picked a
resolution of ∆x = 8.75×10−10m. The walls have a surface charge density σ∆x2/e = −0.0125

and the salt concentration corresponds to a Debye screening length λD/∆x = 6.0. λD and lB
are defined in Section 2.5.2. The corresponding physical data is presented in Table 2.1.

L 1.10× 10−7 m

Lx = Ly 4.38× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

λD 5.25× 10−9 m

σ −3.27× 1014 m−2

dp/dx −2.11× 1011 Pa/m

Table 2.1 – Physical data for the simulation of a Poiseuille flow in a slit. L is the length of the
channel separating the walls, ν is the kinematic viscosity, lB the Bjerrum length, λD the Debye
screening length, σ the surface charge and dp/dx the pressure gradient.
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The numerical data as illustrated in Fig. 2.6 reproduces perfectly the exact solution given
by Eq. 2.50. In order to achieve this result, it is important that the fluid is sufficiently
discretized, as it is here, and that the force is sufficiently low in order to allow a correct
laminar flow as mentioned in the initial assumptions of the problem. It is worthwhile to
mention that although 5 nodes were used in the x and y-directions, a single node would
suffice in order to recover the correct solution. We use periodic boundary conditions (PBC)
to simulate infinite walls. The velocity goes to zero at the walls, which are located half-way
between the solid and liquid planes (as enforced by the Bounce-Back rule). This gives then a
distance between the planes equal to L = Nf∆x = (Nz −Ns)∆x.

2.5.1.2 Cylindrical pore

Figure 2.7 – Coordinate system.

As in the slit case, we now consider a viscous flow of a fluid through a pipe with a circular
cross-section, given by r = R under the constant and uniform pressure gradient dp

dz . We also
consider a laminar flow (Re � 1) and no-slip boundary conditions. The solution for the
velocity profile reads in cylindrical coordinates (see Fig. 2.7):

uz(r) = −dp
dz

1

4η

(
R2 − r2

)
(2.52)

with ur = uθ = 0. Introducing the maximum speed umax:

umax := −dp
dz

R2

4η
, (2.53)

we have

uz(r) = umax

[
1−

( r
R

)2
]

(2.54)

Fig. 2.9 shows the numerical result obtained. Due to the symmetry of the problem, it
is sufficient to look at the profiles along a specific plane (e.g. at Nx/2). Here the grid was
constructed with w = 100 nodes, Nz = 3 nodes and Nx = Ny = 161 nodes. The w-parameter
allows us to have Ns solid nodes outside the fluid region, so that Nf = Ny − w, where Nf

denotes the number of fluid nodes in the plane of interest (see Fig. 2.8). We chose a resolution
of ∆x = 1.75 × 10−9m. The walls have a surface charge density σ∆x2/e = −2.0 and the
salt concentration corresponds to a Debye screening length λD/∆x = 4.0. The Laboetie code
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Figure 2.8 – Box of simulation in a charged cylindrical pore with a distribution of the charge on the
interfacial nodes only (in green). Fluid nodes are in black. PBCs are used in the x, y and z-directions.
w denotes the amount of solid nodes between the interfacial nodes and on of the edges of the box of
simulation.

distributes the charge only on the interfacial solid nodes. The pressure gradient inducing the
flow is dp

dz∆t2/(ρ∆x) = 1.0×10−5. The corresponding physical data is presented in Table 2.2.
Once again, as in the slit case, due to the symmetry of the problem and thanks to the PBCs, a
single node in the z-direction would have been enough in order to recover the correct solution.
As we can see in Fig. 2.9, there is perfect agreement between the numerical data and Eq. 2.54.
r = 0 denotes the centre of the channel and the solid nodes are located at r = ±0.5. The
walls are again half way between the last liquid plane and the first solid plane.

−0.4 −0.2 0.0 0.2 0.4

r/2R

0.0

0.2

0.4

0.6

0.8

1.0

u
(r
)/
u
m
a
x

Theoretical
Numerical

Figure 2.9 – Velocity profile in a cylindrical channel. The flow is induced by a pressure gradient
resulting in a Poiseuille flow. The velocity u is normalized with respect to the maximum velocity
umax, whereas r, which denotes the position in the fluid region, is normalized with respect to 2R the
cylinder diameter.

Now that the hydrodynamic part of the code is validated, we test the implementation of the
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R 5.34× 10−8 m

LPBC 5.25× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

λD 7× 10−9 m

σ −1.14× 1015 m−2

dp/dz −13.16× 109 Pa/m

Table 2.2 – Physical data for the simulation of a Poiseuille flow in a cylinder. R is the radius of the
pore and L its length. ν is the kinematic viscosity, lB the Bjerrum length, λD the Debye length, σ
the surface charge and dp/dz the pressure gradient.

transport of ions, involving both the LF and SOR methods. We first examine the equilibrium
state corresponding to the Poisson-Boltzmann solution for which analytical solutions can be
obtained in both slit and cylindrical pores in two different scenarios:

1. Debye Hückel theory: charged surfaces in low potential condition (i.e. ψ � kBT/e)
with a symmetric monovalent salt and counterions

2. Gouy Chapman theory: with charged surfaces without salt, where only counterions are
present, even for high potentials.

2.5.2 Poisson-Boltzmann theory

The Poisson-Boltzmann (PB) equation gives the configuration of the physical system at equi-
librium. The system is made of chemical species diluted in a solvent, and are supposed to
follow Boltzmann statistics. The system can be described via Poisson equation, i.e.

∆ψ = −ρf
ε

(2.55)

where ε = εrε0 is the permittivity, ψ is the electric potential and ρf is the charge density.
Given the assumption that the charge follows a Boltzmann distribution, the local charge

density ρk is written as

ρk(r) = nk exp

(
−zkeψ(r)

kBT

)
. (2.56)

Note that ρk is a position dependent function, whereas nk is a constant corresponding to
the concentration where the potential reference was taken. Plugging Eq. 2.56 and Eq. 2.14 in
Eq. 2.55 yields,

ε∆ψ = −
N∑
k=1

zkenk exp

(
−zkeψ
kBT

)
(2.57)

This is the so-called Poisson-Boltzmann (PB) equation, whose solution is the electric
potential distribution in the diffuse ionic layer.
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If the potential is low, i.e. eψ/kBT � 1, the PB equation can be linearised via Taylor
expansion. Since exp(X) ' 1 +X, we have

ε∆ψ = −
N∑
k=1

zkenk

(
1− zkeψ

kBT

)
(2.58)

Because of electroneutrality condition
∑N

k=1 zknk = 0, the first contribution vanishes and
we obtain

ε∆ψ =

(
N∑
k=1

nkz
2
k

)
βe2ψ (2.59)

Figure 2.10 – Sketch of the slit geometry. The walls are negatively charged and counterions are
inserted in order to preserve electroneutrality. The system may or may not have added salt. An
external electric field parallel to the walls couples hydrodynamic and electrostatic effects, resulting in
an electro-osmotic flow.

The inverse of the Debye screening length κ := 1/λD is defined as,

κ2 = 4πlB

N∑
k=1

nkz
2
k (2.60)

where the Bjerrum length lB is defined as

lB =
e2

4πεkBT
. (2.61)

In the case of a binary symmetric electrolyte gives

κ2 =
βe2

ε
nsz

2 (2.62)

with ns := n+ +n− the salt concentration and z := z± the valency of the ions. The linearized
PB equation obtained by Debye-Hückel finally reads:

∆ψ = κ2ψ (2.63)
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It is worth mentioning that our LBE code is in the canonical ensemble, meaning that our
λD does not correspond to the actual physical Debye screening length; instead it is used to
fix the initial concentration of added salt in the system via the following equation:

ns =
1

8πlBλ2
D

. (2.64)

2.5.2.1 Slit pore

Debye-Hückel solution
Consider a slit whose surfaces bear a negative surface charge −σ in m−2, as shown in

Fig 2.10, and suppose that a symmetric, binary, monovalent (1:1) salt, such as KCl or NaCl,
is inserted in the channel. Once steady state is reached, the ions will have a potential ψ
according to the PB equation (Eq. 2.57) and distribute according to a Boltzmann distribution.

L 1.10× 10−7 m

Lx = Ly 4.38× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

λD 5.25× 10−9 m

σ −3.27× 1014 m−2

Table 2.3 – Physical data for an electrolyte with added salt in a slit channel (counterions and co-
ions). L is the length of the channel separating the walls, ν is the kinematic viscosity, lB the Bjerrum
length, λD the Debye length and σ the surface charge.

Because of the symmetry of the problem, the potential ψ(z) and the concentrations ρk(z)
only depend on the position z in the direction perpendicular to the walls.

ε
d2ψ

dz2
=
z2e2ψ

kBT
(n+ + n−) (2.65)

The solutions for Eq. 2.63 are of the form

ψ(z) = A exp(κz) +B exp(−κz) (2.66)

with A and B two constants determined by the boundary conditions

±βedψ
dz
|z=∓L/2 = −4πlBσ (2.67)

and the symmetry condition

dψ

dz
|z=0 = 0 (2.68)

Since

dψ

dz
= Aκ exp(κz)−Bκ exp(−κz) (2.69)
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the symmetry condition gives,

A = B (2.70)

and the boundary conditions yield

A =
4πlBσ

2κ sinh(κL2 )
(2.71)
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Figure 2.11 – Electrostatic potential in a slit channel due to the surface charge density σ∆x2/e =

−0.0125, for a distance L/∆x = 120 between the walls, when salt is added at a concentration cor-
responding to a Debye screening length λD/∆x = 6.0. The potential is non-dimensionalized with
βe = e/kBT and z is normalized with respect to L

Hence the solution for the reduced electrostatic potential is:

φ(z) = βeψ(z) =
4πlBσ

κ sinh(κL2 )
cosh(κz) (2.72)

For a symmetric electrolyte the concentrations read

ρ±(z) = n± [1∓ φ(z)] (2.73)

Then, using n± = ns/2 = κ2/(8πlB) we recover the final expression for the concentration

ρ±(z) =
κ2

8πlB

(
1∓ 4πlBσ

κ sinh(κL2 )
cosh(κz)

)
(2.74)

A simulation was run in the Laboetie code, in order to see if we could recover the solution
for the electrostatic potential and the ionic concentration. We used the same parameters
and resolution as in the simulations given in Section 2.5.1.1 unless specified. The diffusion
coefficients of the ionic species are D±∆t/∆x2 = 0.05. The corresponding physical data of
the system is presented in Table 2.3.
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Fig. 2.11 shows that the correct solution for the electrostatic potential is recovered. More
specifically we can observe the exponential decay of the potential across the electric double
layer (EDL) at the wall. This means that the parameters for σ and λD were correctly chosen
according the low potential condition and the other prior assumptions of the theory. Fur-
thermore a perfect agreement is also observed between the numerical results and theoretical
predictions for the ionic densities as illustrated in Fig. 2.12. However, the theoretical results in
Fig. 2.11 and 2.12 do not correspond exactly to Eq. 2.72 and 2.74. Indeed, some modifications,
which we shall now discuss more in details, had to be done.
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Figure 2.12 – Ionic concentration profile in a slit channel due to the surface charge density
σ∆x2/e = −0.0125, for a distance L/∆x = 120 between the walls, when salt is added at a con-
centration corresponding to a Debye screening length λD/∆x = 6.0. The ions density is in LB units
of ρ±∆x3 and z is normalized with respect to L

Canonical corrections
As mentioned earlier the LBE method is performed in the canonical ensemble, meaning

that we fix the initial concentration in salt ns, in the slit, instead of fixing the chemical
potential. This induces a small difference in the electrostatic potential since the results for
the PB theory were derived in the grand-canonical ensemble. This difference becomes more
apparent in the concentration profiles. Indeed, we need to link our salt concentration ns to the
concentration n0 of reference in the reservoir. Therefore, in order to compute the correction
to apply to our theoretical results, let us define the concentration profile in a more general
manner so that

ρ+ = A exp[−φ(z)] ≈ A[1− φ(z)] (2.75)

ρ− = B exp[ φ(z)] ≈ B[1 + φ(z)] (2.76)

where A and B are constants to be determined. Then, from Poisson equation we can write

ψ′′(z) =
βe2

ε
(ρ+ − ρ−). (2.77)
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Using the definition of the Bjerrum length (see Eq. 2.61) we obtain

φ′′(z) = −4πlB(A+B)φ(z) + 4πlB(B −A). (2.78)

Thus, we have κ2 = 4πlB(A+B). A solution for this equation is

φ(z) =
B −A
A+B

+ α cosh(κz) (2.79)

where α is a constant that is determined from the boundary conditions

φ′(L/2) = ακ sinh(κL/2) = −4πlBσ (2.80)

which leads to

φ(z) =
B −A
A+B

− 4πlBσ

κ sinh(κL/2)
cosh(κz) (2.81)

Consider the average potential

φ̄ =
1

L

∫ L/2

−L/2
φ(z)dz (2.82)

Then we may write the corresponding concentration profiles

ρ̄+ =
1

L

∫ L/2

−L/2
ρ+(z)dz = A[1− φ̄] (2.83)

ρ̄− =
1

L

∫ L/2

−L/2
ρ−(z)dz = B[1 + φ̄] (2.84)

Because we are in the canonical ensemble we know how much salt we insert and thus we
have

ρ̄+ = ns +
2σ

L
(2.85)

ρ̄− = ns (2.86)

We now introduce the Donnan potential φD to write the constants A and B as

A = n0 exp[−φD] ≈ n0(1− φD) (2.87)

B = n0 exp[ φD] ≈ n0(1 + φD) (2.88)

with n0 a reference concentration. Using that AB = n2
0, we then write the product ρ̄+ρ̄− as

ρ̄+ρ̄− = ns(ns +
2σ

L
) = AB[1− φ̄2] (2.89)

= n2
0[1− φ̄2] ≈ n2

0 (2.90)
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to linear order in φ̄. Hence we obtain a closing relation for the concentration n0 in the
reservoir, i.e.

n0 =

√
ns(ns +

2σ

L
) ≈ ns +

σ

L
(2.91)

In order to obtain an expression for the Donnan potential φD we take the ratio of the
average concentrations

ρ̄+

ρ̄−
=
A[1− φ̄]

B[1 + φ̄]
(2.92)

Using Eq. 2.87 and 2.88 we can write

A

B
= exp[−2φD] (2.93)

Hence,

ρ̄+

ρ̄−
= exp[−2φD]

(
1− φ̄
1 + φ̄

)
(2.94)

= 1 +
2σ

nsL
(2.95)

from which a closing relation for φD reads

φD = −1

2

[
ln

(
1 +

2σ

nsL

)
+ ln

(
1− φ̄
1 + φ̄

)]
(2.96)

≈ − σ

nsL
+ φ̄ (2.97)

The second term on the right hand side, φ̄, may be neglected, as we are in the low potential
condition regime, and thus

φD = − σ

nsL
. (2.98)

Using again Eq. 2.87 and 2.88 we can write

A−B
A+B

=
exp[−2φD]− 1

exp[−2φD] + 1
≈ −φD (2.99)

which yields to the final solution for the corrected potential

φ(z) =
σ

nsL
− 4πlBσ

κ

cosh(κz)

sinh(κL/2)
(2.100)

with κ2 = 4πlB(2ns + 2σ/L). Eq. 2.100 is thus the correct solution for the electrostatic
potential, which corresponds more closely to our simulations. Plugging the derived expressions
for A and B in Eq. 2.75 and 2.76 yields to the correct concentration profiles.
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Gouy-Chapman solution
The solution carried out with the Debye-Hückel approximation, required an approximation

which showed differences when compared to the numerical solution. On the contrary, the
Gouy-Chapman solution is obtained when only counterions are present and is an exact solution
of the PB equation. The walls are again negatively charged.

L 1.10× 10−7 m

Lx = Ly 4.38× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

σ −3.27× 1014 m−2

Table 2.4 – Physical data for a fluid without added salt (i.e. counterions only) in a slit channel. L
is the length of the channel separating the walls, ν is the kinematic viscosity, lB the Bjerrum length
and σ the surface charge.
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Figure 2.13 – Electrostatic potential in a slit channel due to the surface charge density σ∆x2/e =

−0.0125, for a distance L/∆x = 120 between the walls, when only counterions are present. The
potential is non-dimensionalized with βe = e/kBT and z is normalized with respect to L

Using the PB equation as shown in Eq. 2.57 and given that only cations are present we
may write

d2φ

dz2
= − e2

εkBT
ρ+ = − e

2n+

εkBT
exp[−φ] (2.101)

Given that the electrostatic potential is defined with respect to a reference potential, we
may take φ(z = 0) = 0 and because of the symmetry of the problem we have again dφ/dz = 0,
the final expression for the electric potential is:

φ(z) = −2 ln [cos(αz)] , (2.102)

where α−1 is the analog of the Debye screening length defined by:

πLlB|σ| =
αL

2
tan

(
αL

2

)
(2.103)
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In order to determine the concentration profile, we use

ρ+ = n+ exp(−φ) (2.104)

and Eq. 2.102 to write:

ρ+(z) =
n+

cos2(αz)
. (2.105)

Then, from electroneutrality we determine n+ using∫ L/2

−L/2
ρ+(z)dz = −2σ (2.106)

with the definition of α we obtain
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Figure 2.14 – Concentration profile of cations in a slit channel due to the surface charge density
σ∆x2/e = −0.0125, for a distance L/∆x = 120 between the walls, when only counterions are present.
The cations density is in LB units of ρ+∆x3 and z/∆x is normalized with respect to L/∆x

ρ+(z) =
α2

2πlB

1

cos2(αz)
(2.107)

The simulation results for both the electrostatic potential and the concentration profiles,
shown in Fig. 2.13 and 2.14 respectively, perfectly reproduce the exact analytical result. This
completes the validation of the code for the equilibrium of the electrostatic problem in this
geometry.

2.5.2.2 Cylindrical pore

The Poisson-Boltzmann solution is now tested in two new different scenarios:
1. A cylindrical pore with charged surfaces in low potential condition (ψ � kBT/e) with

a symmetric monovalent salt inside the channel
2. A cylindrical pore with charged surfaces without salt, where only counterions are

present, in order to preserve electroneutrality.
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Similarly to the slit case, a simulation was run in the Laboetie code, in order to recover the
solution for the electrostatic potential and the concentration. We used the same parameters
and resolution as in the simulations given in Section 2.5.1.2 unless specified. The diffusion
coefficients of the ionic species are D±∆t/∆x2 = 0.05. The corresponding physical data of
the system is presented in Table 2.5.

Debye-Hückel solution

R 5.34× 10−8 m

LPBC 5.25× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

λD 7× 10−9 m

σ −5.68× 1013 m−2

Table 2.5 – Physical data for an electrolyte with added salt (counterions and coions) in a cylindrical
channel. R is the radius of the pore and L its length. ν is the kinematic viscosity, lB the Bjerrum
length, λD the Debye screening length and σ the surface charge.

Similarly to the slit geometry, if the potential is small compared to the thermal energy,
the PB equation can be linearized. In a cylindrical geometry the equation becomes

∇2ψ =
∂r (r∂rψ)

∂r
= κ2ψ (2.108)
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Figure 2.15 – Electrostatic potential in a cylindrical channel due to the surface charge density
σ∆x2/e = −0.1, for a diameter 2R/∆x = 61, in the presence of added salt at a concentration
corresponding to a Debye screening length λD/∆x = 4.0. The potential is non-dimensionalized with
βe = e/kBT and z is normalized with respect to L

The boundary conditions are

• βe∂r ψ|R = 4πlBσ
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• βe∂r ψ|r=0 = 0 (because of the symmetry of the problem)

The solution is then:
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Figure 2.16 – Ionic concentration profile in a cylindrical channel due to the surface charge density
σ∆x2/e = −0.1, for a diameter 2R/∆x = 61, when salt is added. The ions density is in LB units of
ρ±∆x3 and r is normalized with respect to 2R .

φ(r) =
4πlBσ

κ

I0(κr)

I1(κR)
(2.109)

where In correspond to modified Bessel functions of the first kind, which are defined as

In(x) =

∞∑
m

1

m!(m+ n)!

(x
2

)2m+n
,∀x ∈ R (2.110)

The corresponding ionic concentrations are

ρ±(r) =
κ2

8πlB

(
1∓ 4πσlB

κ

I0(κr)

I1(κR)

)
(2.111)

A simulation was carried out in order to recover ψ(r) and ρ±(r), with the same parameters
as in Section 2.5.1.2 except for the surface charge density, which was set to σ∆x2/e = −0.1

in order to be in the low potential condition needed to recover the analytical solution. The
corresponding physical data is shown in Table 2.5. The solution for the electric potential
is correctly reproduced as illustrated in Fig. 2.15. Actually, the potential and concentration
solutions were subjected to the canonical corrections, in a similar fashion as in the slit case (see
next paragraph Canonical corrections). By doing so we recover the correct concentrations
of cations and anions (see Fig. 2.16), although we can see a discrepancy between analytical
and numerical results close to the walls. However, this discrepancy could be merely due to
the way cylindrical boundaries are drawn (see Fig. 2.8), which can introduce errors due to
the periodic boundary conditions (PBCs) of the simulation box. We shall address this issue
in more details in Section 2.5.2.3.
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Canonical corrections
Similarly to the slit case one can correct the potential profile solution deriving the Donnan

potential and the reference concentration n0. The general solution in this geometry reads

φ(r) =
A−B
A+B

− 4πlBσ

κ

I0(κr)

I1(κR)
(2.112)

Using,

φ̄ =
2

R

∫ R

0
2πrφ(r) dr (2.113)

with

ρ̄+ = A[1− φ̄] (2.114)

ρ̄− = B[1 + φ̄] (2.115)

with A and B defined as in the slit case. Because we are in the canonical ensemble the cations
concentration compensating the surface charge is σ2πR/(πR2) = 2σ/R and thus we have

ρ̄+ = ns +
2σ

R
(2.116)

ρ̄− = ns (2.117)

We then obtain

n0 =
√
ns(ns + 2σ/R) (2.118)

and the Donnan potential

φD = − 2σ

ns2R
. (2.119)

Therefore the corrected potential reads,

φ(r) =
2σ

ns2R
− 4πlBσ

κ

I0(κr)

I1(κR)
(2.120)

Gouy-Chapman solution

R 5.34× 10−8 m

L 5.25× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

σ −1.14× 1015 m−2

Table 2.6 – Physical data for an electrolyte with only counterions in a cylindrical channel. R is the
radius of the pore and L its length. ν is the kinematic viscosity, lB the Bjerrum length, σ the surface
charge.
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When no salt is added and only counterions are present, if σ < 0 then the solution for the
PB equation reads:

∆φ = −e
2n+

kBT
exp[−φ] (2.121)

and the exact solution for the electrostatic potential profile is

φ(r) = 2 ln
(
1− α2r2

)
(2.122)

−0.4 −0.2 0.0 0.2 0.4

r/2R
−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

β
eψ

(r
)

Theoretical
Numerical

Figure 2.17 – Electrostatic potential in a cylindrical channel due to the surface charge density
σ∆x2/e = −2.0, for a distance diameter 2R/∆x = 61, when only counterions are present. The
potential is non-dimensionalized with βe = e/kBT and r is normalized with respect to 2R

where α−1 is analogous to the Debye screening length, which can be computed numerically
using the electroneutrality condition, as the solution of

α2R2 =
πR|σ|lB

1 + πR|σ|lB
(2.123)

The corresponding counterions profile may then be written as

ρ+(r) =
2α2

πlB

1

(1− α2r2)2 (2.124)

Eq. 2.122 and 2.124 are exact solutions and indeed, as we can see in Fig. 2.17 and 2.18 they
are perfectly reproduced by our numerical data. Nonetheless, we still observe a discrepancy
between the two solutions close to the walls.

We shall now discuss more in details the errors arising from this type of geometry.

2.5.2.3 Effect of PBCs

This problem was previously tackled by Amaël Obliger [139]. As a further way to validate our
new code, we reproduced the exact system that he simulated. Specifically, he ran simulations
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Figure 2.18 – Concentration profile of cations in a cylindrical channel due to the surface charge
density σ∆x2/e = −2.0, for a diameter 2R/∆x = 61, when only counterions are present. The cations
density is in LB units of ρ+∆x3 and r/∆x is normalized with respect to 2R/∆x

with a solvent mass density ρ = 103kg/m3, a dynamic viscosity η = 0.001 Pa · s, a radius
R = 5 × 10−9m and a surface charge σ = 8 × 1016 m−2. The resolution he adopted was
∆x = 0.208× 10−9m. The corresponding physical data is shown in Table 2.7.

R 5.04× 10−9 m

LPBC 5.25× 10−9 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

σ −8.02× 1016 m−2

Table 2.7 – Physical data for a cylindrical channel with only counterions . R is the radius of the
pore and L its length. ν is the kinematic viscosity, lB the Bjerrum length and σ the surface charge

Errors arise due to periodic boundary conditions because the simulation box is an or-
thorombic cell in which the cylinder boundaries are drawn approximately using the lattice
nodes inside. Thus the cylinder may be affected by the PBC in different ways, depending
on how far the solid nodes are from the boundaries of the box of simulation, as shown in
Fig. 2.8. The parameter w determines the distance of the circle with the boundaries of the
box. Depending on the value of w, more or less errors appear in the final solution. Following
this previous study, we consider two scenarios, with w = 1∆x and w = 50∆x. The relative
error for the charge concentration, δρ+ = (ρsim+ − ρana+ )/ρana+ , was computed and presented in
Fig. 2.19 and 2.20 for w = 1∆x and w = 50∆x respectively.

Maximum error values decrease from 8% to 5% when w is increased. The error maps
clearly show that errors are positive along with the main diagonal (orange/red regions) and
negative along with the vertical and horizontal diameter (blue regions). In other words in the
former case the numerical data overestimates the analytical solution whereas, in the latter
case, the numerical data underestimates the analytical solution. Furthermore, the positive
errors on the main diagonal are smaller than the ones on the horizontal and veritical diameters.
This is due to the fact that the number of solid nodes is higher along with the main diagonal,

— 54 —



Chapter 2. Lattice Boltzmann Electrokinetics

0 10 20 30 40 50
0

10

20

30

40

50

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Figure 2.19 – Relative error on the counteri-
ons density when compared to the analytical
solution. The radius of the pore is R = 5 nm,
no salt is present and the walls bear a surface
charge of σ = −8× 1016m−2. The separation
between the boundary of the channel and the
box of simulation is w = 1∆x
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Figure 2.20 – Relative error on the counteri-
ons density when compared to the analytical
solution. The radius of the pore is R = 5 nm,
no salt is present and the walls bear a surface
charge of σ = −8× 1016m−2. The separation
between the boundary of the channel and the
box of simulation is w = 50∆x

rather than on the vertical and horizontal diameters. The results are in accordance with what
Amaël Obliger observed. This validates once more our implementation of the LF and SOR
algorithms.

2.5.3 Electro-osmotic flow

After validating independently the hydrodynamic (see Section 2.5.1) and the electrostatic (see
Section 2.5.2) parts, we finally consider their coupling by simulating an electro-osmotic flow
(EOF).

2.5.3.1 Microscopic origin and Helmholtz-Smoluchowski theory

An electro-osmotic flow (EOF) is a type of flow induced by an external applied electric field
tangential to a charged solid-fluid interface. They were first reported in 1809 by F. F. Reuss
in Ref. 140, who showed that water could flow through a plug of clay by applying an electric
voltage. This is because clay is composed of closely packed charged aluminosilicate particles.
Water can then flow through the narrow spaces between these particles. More generally, any
combination of an electrolyte confined by charged walls would generate electro-osmotic flows.
For water/silica interfaces the effect is particularly large, due to high surface charge densities.
The reason why such flow takes place is that the mobile ions present in the electrical double
layer (EDL), which forms in the region near the interface, are moved by the Coulombic force
exerted by the electric field applied to the fluid (usually via electrodes placed at inlets and
outlets). This force acting per unit volume of the fluid can be written as:

fV = E

N∑
k=1

zkρke = −
(
ε∇2φ

)
E (2.125)
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where E is the applied electric field.
Therefore, the fluid motion is governed by the the Navier-Stokes (NS) equation, i.e.

ρ
(∂u
∂t

+ u · ∇u
)

= −∇p+ η∇2u−
(
ε∇2φ

)
E (2.126)
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Figure 2.21 – Electro-osmotic flow profile in a slit channel with added salt. The flow is induced by
an external electric field βe∆xE = 0.025 parallel to the walls (resulting in an EOF). The velocity u
is normalized with respect to the maximum velocity umax = eExσ/[ηκ sinh(κL/2)], whereas z, which
denotes the position in the fluid region, is normalized with respect to L the distance between the
walls. The theoretical profile is given Eq. 2.130.

with the incompressibility condition

∇ · u = 0. (2.127)

ρ, u, p and η denote the density, velocity, pressure and fluid dynamic viscosity respectively.

2.5.3.2 Slit pore

As in Section 2.5.2.1, we consider a slit whose surfaces bear a negative surface charge density
−σe in e ·m−2 and a symmetric, binary, monovalent (1:1) salt. Assuming the external applied
electric field to be much weaker than the one induced by the surface charge of the solid surface,
one can consider that the ionic concentrations near the walls are not affected by the external
electric field and thus the induced EOF.

When the EOF is fully developed, i.e. du/dt = 0, with no external pressure gradient across
the charged surface and in the limit of low Reynolds number (⇒ (u · ∇)u = 0) Eq. 2.126 and
2.127 may be simply written as:

η
d2u

dz2
= ε

d2ψ

dz2
Ex . (2.128)

Integration yields

u(z) =
ε

η
Exψ(z) +Az +B (2.129)
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Figure 2.22 – Electro-osmotic flow profile in a slit channel with only counterions. The flow is induced
by an external electric field βe∆xE = 0.025 parallel to the walls resulting in an EOF. The velocity u is
normalized with respect to the maximum velocity uref = eEx/[2πηlB ], whereas z, which denotes the
fluid region, is normalized with respect to L, the distance between the walls. The theoretical profile
is given Eq. 2.131.

where A and B are constants to be determined and ψ(z) is given by Eq. 2.100 or 2.102
depending on whether salt is inserted or not.

The EDL thickness is on the order of nanometers, which is much smaller than the charac-
teristic length of microfluidic devices. The EOF velocity profile in a microchannel is almost
uniform and is referred to as a "plug-like flow". Therefore, one can use the constant veloc-
ity to describe the EOF velocity outside the EDL, which is known as the Smoluchowski slip
velocity [141].

In the presence of salt and under the low potential assumption (i.e. Debye-Hückel regime)
the boundary conditions are:

• u(z = ±L/2) = 0

• ψ(z = ±L/2) = −4πlBσ
κ tanh(κL/2)

and the solution for the velocity profile is given by:

u(z) = umax[cosh(κz)− 1] (2.130)

where umax := eExσ
ηκ sinh(κL/2) .

On the other hand, when no salt is added the exact solution of the non-linear problem
(i.e. Gouy-Chapman regime) reads:

u(z) = uref ln

[
cos

(
αz

αL/2

)]
(2.131)

where uref := eEx
2πηlB

.
Simulations results for these two regimes are presented in Fig. 2.21 and 2.22 respectively

and compared to the analytical solutions given in Eq. 2.130 and 2.131. The simulations
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are performed with the same parameters as in Section 2.5.1.1 and thus correspond to the
potential showed in Fig. 2.11 and 2.13, respectively. The applied electric field was chosen to
be βe∆xE = 0.025. Both solutions are correctly reproduced and we observe in the presence
of salt the plug-like type of flow characteristic of EOF, which differentiates it from a classical
parabolic shape of pressure driven flows (Poiseuille).

2.5.3.3 Cylindrical pore
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Figure 2.23 – Electro-osmotic flow profile in a cylindrical channel with added salt. The flow is
induced by an external electric field βe∆xE = 0.005 parallel to the walls resulting in an EOF. The
velocity u is normalized with respect to the reference velocity uref = σeEx/(κη) × I0(κR)/I1(κR),
whereas r, which denotes the position in the fluid region, is normalized with respect to the channel
diameter 2R. The theoretical profile is given by Eq. 2.130.

As in the slit pore case, we consider the NS equation and we express the term η∇2uz in
cylindrical coordinates as:

η∇2uz = η

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
(2.132)

Given our assumptions,

• the radial and swirl components of the velocity are zero, i.e. ur = uθ = 0

• steady state is reached, i.e. ∂uz/∂t = 0

• the flow is axisymmetric, i.e. ∂(·)/∂θ = 0

• translational invariance, i.e. ∂(·)/∂z = 0

Thus,

η∇2uz = η

[
1

r

∂

∂r

(
r
∂uz
∂r

)]
(2.133)
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Hence, NS equation can be simplified as,

η

[
1

r

∂

∂r

(
r
∂uz
∂r

)]
= εE

[
1

r

∂

∂r

(
r
∂ψ

∂r

)]
(2.134)

In a cylinder u(r = R) = 0 and ψ(r = R) can be determined using Eq. 2.109 or 2.122
depending on whether or not salt is added to the system. Integration for the velocity profile
yields:

u(r) =
εEx
η

[ψ(r) +A ln(r) +B] (2.135)
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Figure 2.24 – Electro-osmotic flow profile in a cylindrical channel with counterions only. The flow
is induced by an external electric field βe∆xE = 0.005 parallel to the walls resulting in an EOF. The
velocity u is normalized with respect to the reference velocity uref = eEz/(2πηlB), whereas r, which
denotes the position in the fluid region, is normalized with respect to the channel diameter 2R. The
theoretical profile is given by Eq. 2.131.

If salt is added under the assumption of low potential (Debye-Hückel regime) the velocity
profile is written

u(r) = −σe
κη

(
I0(κr)− I0(κR)

I1(κR)

)
Ez . (2.136)

On the other hand, if no salt is added the corresponding exact solution of the non-linear
problem, in the Gouy-Chapman regime is:

u(r) = − e

2πηlB
ln

(
1− α2r2

1− α2R2

)
Ez , (2.137)

with α as defined in Eq. 2.123. The parameters of the simulation are the same as in Sec-
tion 2.5.1.2. Fig. 2.23 and 2.24 correspond to the potential profiles of Fig. 2.15 and 2.17
respectively. An electric field βe∆xE = 0.005 parallel to the walls, which induces an EOF,
was applied. The resulting numerical data for the two cases studied, perfectly reproduces the
analytical solutions (see Fig. 2.24 and Fig. 2.23). Coupling between the hydrodynamics and
electrostatics was thus successfully achieved.
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2.6 Conclusion

In this chapter, we introduced the Lattice Boltzmann Electrokinetics method. The governing
equation of the problem were set and their corresponding discretized form, as implemented
in the algorithm, were illustrated. We showed how the NS equation is recovered from the
Boltzmann equation and how it is then coupled with the LF method to couple the solvent
with the ions dynamics.

The hydrodynamics part of the code was validated for two geometries (i.e. a slit and
a cylinder) simulating a Poiseuille flow, whose analytical solution is known. Similarly, we
validated the electrostatics part of the code by comparing our results with analytical solutions
of the PB equation, which were derived for two geometries (slit and cylindrical pores) in the
cases were no salt is added, which is an exact solution of the problem, or in the presence
of salt under the assumption of low potential. Finally the coupling of electrostatics and
hydrodynamics was validated by perturbing the system with an external electric field, which
induces an electro-osmotic flow and comparing with analytical solutions for the two geometries.

The overall code was thus successfully validated. In the next Chapters we will introduce
new features to the code, which introduce new physics, not available to our knowledge in
other LBE codes. In Chapter 3 we introduce the moment propagation method for charged
tracers, which may also experience adorption/desorption dynamics. Then, in Chapter 4 and
5 we introduce the major novelty of this thesis, which is the change of boundary conditions
from surface charges to fixed potentials at the solid-boundaries. Finally Chapter 6 discusses
how the formalism of linear response theory can be applied to LBM.
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It has also become obvious recently that the behaviour of charged solid/liquid interfaces
does not only depend on the electrostatic interactions between the ions and the wall, but

also on their chemical nature, which modifies their short-range interactions, e.g. via the solva-
tion properties of the ions. [142,143] Molecular simulations have clarified such ion-specific effects,
as well as the consequences on the electrokinetic effects on both hydrophilic and hydrophobic
surfaces. [144] Details of the electronic properties of the walls also have strong effects on the
interaction with solutes: Density Functional Theory (DFT) calculations suggest for example
that differences in the interactions between the hydroxide ions and either carbon or boron
nitride nanotubes, which have the same geometry but different electronic structures [145], may
be at the origin of the dramatically different hydrodynamic behaviour observed on larger scale
for the flow of water through these tubes. [4,146] At a more coarse-grained level, specific effects
can be introduced in mean-field theories such as Poisson-Boltzmann via Potentials of Mean
Force (PMF), which can be computed using molecular simulations. [147]. In the present thesis,
we aim at extracting microscopic information on the dynamics of individual mobile species,
which may involve diffusion, advection and migration, but also adsorption and desorption
from surfaces. To that end, we follow the Moment Propagation (MP) approach [113,132–137],
which is not limited to the mere computation of average fluxes but allows the computation of
observables which reflect the statistical properties, averaged over all possible trajectories, of
their dynamics, such as their velocity auto-correlation function (VACF).

Section 3.1 presents the theoretical basis for the description of the transport of solvent
and ions as well as their adsorption/desorption at solid/liquid interfaces. The lattice-based
algorithm is then presented in Section 3.2. It extends previous works treating either the effect
of electrostatics and electrokinetics, or that of adsorption/desorption at the walls. Results
are then presented in Section 3.3 which is divided in two parts. The first one validates the
implementation of the algorithm using two previous works [113,114]. The second one finally
considers the case of dispersion of neutral and charged adsorbing/desorbing tracers, by an
electro-osmotic flow in a slit-pore with charged walls and counterions in the absence of added
salt, for which some properties can be determined analytically. The algorithm is validated
by examining the average velocity of tracers as a function of surface charge, of the tracer
valency and of the adsorption/desorption rates. We then illustrate the ability of the MP
method to estimate properties for which no analytical results are available, by considering
their dispersion coefficient.

3.1 Model and adsorption/desorption equation

The combination of the Poisson and Nernst-Planck equations, as given in Eq. 2.15, with the
Navier-Stokes equation (Eq. 2.16) provides a simple yet reasonably accurate description of
the coupled ionic and solvent dynamics. They must be supplemented by electrostatic and
hydrodynamic boundary conditions. We will focus here on fixed surface charge density σe
(with σ per unit surface), which may in principle depend on the position on the surface, and
no-slip (u = 0) boundary conditions at the fluid-solid interface.

We will further investigate the dynamics of charged tracers within such an ionic solution.
Tracers follow the same evolution of Eq. 2.9 as the major ions, i.e. experience diffusion,
advection and migration, but they do not influence in return the electrostatic potential ψ or
the fluid velocity u (or the other ionic densities). However, we will also consider the adsorp-
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tion and desorption of such tracers at the surface of solid walls. Introducing Γk the surface
concentration of species k (length−2) and assuming first-order kinetics for both processes, the
evolution of the adsorbed and mobile tracers at the surfaces follow:

∂tΓk(r, t) = −kdΓk(r, t) + kaρk(r, t) (3.1)

where kd (time−1) and ka (length·time−1) are the desorption and adsorption rates, respec-
tively. In equilibrium, this results in the Henry law adsorption isotherm.

These coupled non-linear equations, namely Eq. 2.15 and 2.16 for the dynamics of the
major species and of the fluid and Eq. 2.9+3.1 for the adsorbing/desorbing charged tracers
should then be solved, in general numerically, to predict the evolution of the system. At
this mean-field level, however, such a solution does not provide information on the dynamics
of individual tracers and how they explore the fluid and the interface under the combined
effects of all microscopic processes. Here we extend the Moment Propagation method, which
allows the computation of observables which reflect the statistical properties, averaged over
all possible trajectories, of their dynamics, such as their velocity auto-correlation function
(VACF).

3.2 Algorithm - Moment Propagation

In order to compute the VACF of tracers within such electrokinetic flows, we take advantage
of the probabilistic description underlying the LB method via the Moment Propagation (MP)
approch introduced by Lowe and Frenkel [133,148]. Several descriptions and extensions of this
method have since been proposed for various applications, see Ref. 113,114,132,137,149–151.
In the present work, we show that this method can be used for charged mobile (hence experi-
encing diffusion, advection and migration) and adsorbing/desorbing species – a combination
of features which had to date not been investigated previously despite its relevance in the
many contexts described in the introduction. We first show how the MP method can be
implemented to propagate any quantity related to the transport of tracers under the com-
bined effect of all the above-mentioned processes. Then, we show how a particular choice of
propagated quantity can be made to compute the VACF, before finally expressing averaged
quantities such as the average velocity or dispersion coefficient of tracers from their VACF.

We consider here the propagation of an arbitrary quantity P (r, t) defined on the same lat-
tice as the one used for the LB/link-flux simulations. In the absence of adsorption/desorption
processes, it is updated in steps according to P (r, t+ ∆t) = P ∗(r, t+ ∆t) with:

P ∗(r, t+ ∆t) = P (r, t)

[
1−

∑
i

pi(r, t)

]
+
∑
i

P (r − ci∆t, t) pi(r − ci∆t, t) (3.2)

where the sums run over discrete velocities and pi(r, t) stands for the probability of leaving
a node r with velocity ci. The first term therfore corresponds to particles that have not left
r between t and t + ∆t. All the dynamics is then encompassed in the definition of these
probabilities, which are designed to capture the relevant physical processes [113]:
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pi(r, t) = padvi (r, t) + λwi

{
1

4
βeqE · ci∆t+

1

1 + eβ∆µexi (r,t)

}
(3.3)

with wi the weight associated with velocity ci in the underlying LB lattice [152] and ∆µexi (r, t) =

µex(r+ ci∆t, t)−µex(r, t) if r+ ci∆t belongs to the fluid phase, while pi(r, t) = 0 otherwise.
The first term accounts for advection by the fluid, whereas the term between curly brackets is
specific to the tracer and includes both the effect of diffusion and migration under the influ-
ence of the external and internal electric fields (at the present level of description, µex = qeψ

with q the valence of the tracer and ψ the potential arising from the surface charges and major
ions). More precisely, the advective contribution is computed from the LB populations as:

padvi (r, t) =
fi(r, t)

ρ(r, t)
− wi (3.4)

where ρ(r, t) =
∑

iwifi(r, t) is the local density of the fluid, and the λ parameter in Eq. 3.3
is related to the diffusion coefficient D of the tracer via:

λ =
4D

c2
s∆t

(3.5)

with cs the speed of sound associated with the LB lattice. As a result, any property P will
be propagated following the same dynamics as Eq. 2.9. We now complement this algorithm
with the approach of Ref. 114 for adsorption/desorption at the solid-liquid interface. To that
end, we introduce for interfacial fluid nodes a propagated quantity Pads(r, t) associated with
adsorbed particles. It is updated according to:

Pads(r, t+ ∆t) = Pads(r, t)(1− pd) + P (r, t)pa (3.6)

where pa = ka∆t/∆x and pd = kd∆t, with ka and kd the rates defined in Eq. 3.1. Conversely,
the evolution of the propagated quantity for mobile species is modified to:

P (r, t+ ∆t) = P ∗(r, t+ ∆t)− P (r, t)pa + Pads(r, t)pd (3.7)

with P ∗ defined in Eq. 3.2.
The combination of Eqs. 3.2-3.7 therefore corresponds to the evolution of particles accord-

ing to the coupled diffusion-advection-migration and adsorption/desorption equations 2.9 and
3.1 for tracers. However, one can propagate properties beyond the mere density of particles.
Indeed, a proper choice of P (and corresponding Pads), defined by the initialization discussed
below, allows the computation of the VACF. We briefly recall here the derivation of Ref.
113. The starting point is the definition of the VACF for the γ ∈ {x, y, z} component of the
velocity, which in the present case where the velocities of particles can only assume discrete
values reads:

Zγ(t) =
〈
v0
γv
t
γ

〉
=
∑
r0,c0γ

π(r0, c0
γ)π(ctγ |r0, c0

γ)ctγc
0
γ

=
∑
r0,c0γ

π(r0, c0
γ)c0

γ

∑
rt

π(rt, ctγ |r0, c0
γ)ctγ (3.8)
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where the superscripts refer to times 0 and t and the discrete sums run over nodes and set of
velocities associated with the chosen lattice. Moreover, π(r0, c0

γ) is the probability of being at
node r0, with velocity c0

γ and π(ctγ |r0, c0
γ) the probability to have a velocity ctγ , given that the

particle was initially at node r0 with velocity c0
γ (and similarly for the joint distribution in the

sum over rt). Eq. 3.8 can be rewritten by replacing π(rt, ctγ |r0, c0
γ)ctγ by the post-collisional

average π(rt, ctγ |r0, c0
γ)
∑

i pi(r, t)ciγ = π(rt, ctγ |r0, c0
γ)u∗γ(r, t), with the local average tracer

velocity defined by:

u∗(r, t) =
∑
i

pi(r, t)ci (3.9)

which to first order in β||ci ·∇µex||∆t reduces to u∗ ≈ u+βD(qeE−∇µex) = u+βDqe(E−
∇ψ). We can then rewrite the VACF as a sum over all lattice nodes at time t:

Zγ(t) =
∑
rt

∑
r0,c0γ

π(r0, c0
γ)c0

γπ(rt|r0, c0
γ)

u∗γ(r, t) =
∑
r

P (r, t, γ)u∗γ(r, t) (3.10)

which also defines the relevant probabilty P (r, t, γ) to be propagated for each component γ
of the VACF, namely the probability to arrive at node r at time t, weighted by the initial
velocity of the particle. Since the particles adsorbed at the solid-liquid interface are considered
as immobile (i.e. we neglect here surface diffusion), they do not enter directly in u∗. However,
the adsorption and desorption processes do contribute to the VACF via the evolution of P in
Eq. 3.10, which is coupled to that of the corresponding Pads – see Eqs. 3.6 and 3.7. The crucial
step is then the definition of the initial values of both propagated quantities. Specifically, this
is achieved by the following choice:

P (r, 1, γ) =
∑
i

e−βµ
ex(r−ci∆t)

Q
pi(r − ci∆t, 0)ciγ (3.11)

for all fluid (F ) nodes, including interfacial (I) ones, with Q the partition function of the
tracers, which also includes the adsorbed ones:

Q =
∑

r∈F\I

e−βµ
ex(r) +

∑
r∈I

e−βµ
ex(r)

(
1 + e−β∆µads(r)

)
(3.12)

where e−β∆µads = ka/kd∆x defines the tracer sorption free energy. We further initialize
the corresponding propagated quantity for adsorbed tracers to 0, because of their vanishing
velocity.

The initial value of the VACF is simply given by

Zγ(0) =
∑
i

e−βµ
ex(r)

Q
pi(r, 0)ciγ (3.13)

and subsequent values are computed with Eq. 3.10 where the propagated quantity is initialized
via Eq. 3.11 and evolved according to Eqs. 3.2, 3.6 and 3.7. This completes the description of
the algorithm. Note that this should be applied separately for each direction γ and of course
for each tracer, defined in the present case by its valency q (which enters in µex), its diffusion
coefficient D (which enters in the transition probabilities pi) and the adsorption/desorption
rates ka and kd.

All the above algorithms have been implemented in the Laboetie code.
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3.3 Results and Discussion

Figure 3.1 – Electro-osmotic flow in a slit pore between negatively charged walls.

The moment propagation method starts once the EOF reaches steady state, as described
in Chapter 2. The Laboetie code was previously implemented in order to take into account
the effect adsorption/desorption of only neutral tracers. We extended the code to capture the
effect of electrostatic forces coupled with adsorption/desorption. This is shown schematically
in Fig. 3.1. In order to validate this new methodological development, we first validate
it by reproducing the results of Rotenberg et al. [113] for the moment propagation method
with neutral, positive and negative tracers without adsorption/desorption. Furthermore, we
validate the adsorption/desorption dynamics with neutral tracers reproducing the results
obtained by Levesque et al. [114].

3.3.1 Dispersion of charged adsorbing tracers by an electro-osmotic flow

The system showed in Fig. 3.1 is useful to show the ability of the moment propagation method
to capture the combined effects of adsorption/desorption, in addition to that of advection,
electro-migration and diffusion. Specifically, we investigate the dispersion of tracers with va-
lency q ∈ {−1, 0,+1} by an electro-osmotic flow in a slit pore with parallel walls of surface
charge density σe < 0 separated by a distance L, with monovalent counterions. This system
has the advantage that a number of properties can be computed analytically in the absence
of added salt (see Chapter 2). In particular, the electrostatic potential in the direction per-
pendicular to the surfaces is given by: ψ(z) = ψ(L/2) + kBT

e ln
[
cos2(αz)/ cos2(αL/2)

]
, with

z ∈ [−L/2,+L/2] and where the characteristic length α−1 is the solution of αL
2 tan αL

2 =

π|σ|LlB with the Bjerrum length lB = e2/4πε0εrkBT . In the presence of an applied electric
field Ey parallel to the surfaces, the steady-state profile is governed by the balance between
the electrostatic force eρ+(z)Ey (since only monovalent cations are present in the fluid) and
viscous force ηu′′y(z), resulting in the electro-osmotic flow:

uy(z) =
eEy

2πηlB
ln

cos(αz)

cos(αL/2)
≡ urefh(z) (3.14)

which also defines the reference velocity uref := eEy/2πηlB and the scaling function h. For
small surface charge density (αL → 0), the velocity profile is almost parabolic, uy(z) ∼
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uref
(αL)2

8

[
1− 4z2

L2

]
, as in the case of a Poiseuille flow (applied pressure gradient instead of

electric field, which corresponds of course to a different prefactor).
The fraction of adsorbed tracers fads (or equivalently of mobile tracers fmob = 1 − fads)

depends on the surface charge and distance between surfaces via the product αL, as well as on
their valency q and the ratio ka/kdL. More generally, the equilibrium distribution of tracers
within the pore is given by the normalized Boltzmann weights:

Bq(ξ) =
B∗q (ξ)∫ 1/2

−1/2B
∗
q (ξ) dξ + ka

kdL

[
B∗q (1

2) +B∗q (−1
2)
] (3.15)

with ξ = z/L ∈ [−1/2,+1/2] and

B∗q (ξ) = e−qeψ(ξ)/kBT =

[
cos(αLξ)

cos(αL/2)

]−2q

(3.16)

The integral in the denominator of Eq. 3.15 can be performed analytically for q ∈ {−1, 0,+1},
with the results

(
1 + sinαL

αL

)
/ (1 + cosαL), 1 and sinαL

αL respectively. The variation of the frac-
tion of adsorbed tracers with αL and ka/kdL will be discussed below.

From the dynamical point of view, we will analyze two properties relevant in practice for
the transport of tracers, namely the average velocity and the dispersion coefficient, in the
direction of the flow:

v̄y,q =

∫ 1/2

−1/2
Bq(ξ) [βDqEy + urefh(ξ)] dξ (3.17)

and

Dy,q =

∫ ∞
0
〈[vy,q(0)− v̄y,q] [vy,q(t)− v̄y,q]〉 dt (3.18)

Both can be determined from the VACF (computed in the following with the moment
propagation method) as v̄y,q =

√
Zy(∞) and

Dy,q =

∫ ∞
0

[Zy,q(t)− Zy,q(∞)] dt (3.19)

for each tracer q with Zy,q(∞) = limt→∞ Zy,q(t).

3.3.2 Validation

We first reproduced the simulation of Ref. 113, in the absence of adsorption for charged
tracers, which were performed with D3Q19 lattice for c2

s = 1/3(∆x/∆t)2 on Nx×Ny ×Nz =

5 × 5 × 66 lattice points which have three solid sheets on each side, for αL = 1.98. The
distance between walls is thus L = Nz − 6 = 60∆x. A Bjerrum length lB/∆x = 0.4, a
bulk diffusion D = 0.05

(
∆x2/∆t

)
were chosen. An electric field parallel to the walls with

βeEy∆x = 0.05, 0.1 and 0.15 was applied. Once steady state is achieved we recover the EOF
as discussed in Chapter 2. The moment propagation method allows us to compute easily the
VACF, which can then be linked to the time-dependent diffusion coefficient via

Dz(t) =

∫ t

0
dt′Zz

(
t′
)
. (3.20)
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Dz(t) is a quantity which can be easily measured using NMR thanks to pulsed field
gradients and it is often applied to quantify the surface-to-volume ratio of porous media [153].
In the case of neutral tracers, an analytical solution exists, namely

Dz(t)/D =
8

π2

∞∑
n=0

1

(2n+ 1)2
exp

[
−(2n+ 1)2π

2Dt

L2

]
. (3.21)

The corresponding numerical results are illustrated with black upward triangles in Fig. 3.2
and good agreement is found between the theory and the simulation. Moreover, we notice
that the time dependent diffusion coefficient decays faster for anions than for neutral tracers.
This is due to the repulsion from the negatively charged walls which confine the tracers in
a smaller region resulting in a faster memory loss of their initial velocity. Finally, Dz(t) for
the cations exhibits a long time tail. Indeed, the initial part of the decay is explained via the
confinement in the vicinity of one surface, whereas the longer tail is due to the escape from
one surface to the other.
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Figure 3.2 – Time-dependent diffusion coefficient in the direction normal to the surfaces Dz(t) =∫ t
0

dt′Zz (t′) for anions, neutral and cations for αL = 1.98. The red line is analytical result for neutral
tracers as given by Eq. 3.21.

The dispersion coefficient in the direction of the flow is computed using Eq. 3.19. In
this geometry, for all cases the dispersion coefficient increases quadratically with the Péclet
number Pe, more precisely as:

Dy

D
= fmob + f(αL, q)× Pe2 (3.22)

which defines the prefactor f(αL, q), which also depends on the adsorption/desorption rates
ka and kd, and where Pe = Lu/D. The average velocity u is defined as:

ū =
1

L

∫ L/2

−L/2
uy(z) dz. (3.23)

Then, following De Leebeck and Sinton for the case of a cylindrical channel [154], one can
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obtain (see Ref. 113) the expression for the dispersion factor for a slit pore in the no-adsorption
case:

f(αL, q, ka = 0) = −
∫ 1/2

−1/2
dξ Bq(ξ)gq(ξ)

∫ ξ

0
dξ′

1

Bq(ξ′)

∫ ξ′

0
dξ′′ Bq(ξ

′′)gq(ξ
′′) (3.24)

where gq(ξ) = [uy(ξ) + βDqeEy − v̄y,q]/ū measures the local deviation from the average
velocity. Comparison between the numerical results carried out with Laboetie (symbols) and
solution of Eq. 3.24 (line) is presented in Fig. 3.3. The good agreement between the numerical
and analytical results validates the correct implementation of the method in the Laboetie code
without adsorption/desorption. We now turn to the validation of the latter for neutral tracers
in a Poiseuille (i.e. pressure driven) flow as in Ref. 114.
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Figure 3.3 – Dispersion coefficient by an EOF (see text for details) from moment propagation
(symbols) and Eq. 3.24 (line). Anions are less dispersed than neutral and cations, because they are
concentrated in the centre of the slit, where the flow is more homogeneous. Increasing the charge
density increases both the dispersion coefficient and the difference between tracers of different charge.

We carried out the same simulations as in Ref. 114, where the slit pore has a width
L = 100∆x, with no surface charge at the walls and a bulk diffusion coefficient D =

10−2∆x2/∆t. The adsorption rate ka = 10−1∆x/∆t and decreasing desorption rates kd∆t =

10−2, 10−3, and 10−4. This results in an increasing fraction of adsorbed tracers fa of ap-
proximately 16%, 66%, and 95%, respectively. This fraction is defined for neutral tracers
as

fa =

(
1 +

kdL

2ka

)−1

(3.25)

The effect of a pressure gradient was studied on the system. The Poiseuille flow induces a
Taylor-Aris dispersion [155,156] of the tracers with a dispersion coefficient Dy, which is known
exactly in the presence of adsorption and desorption in the simple slit geometry

Dy

D
= 1 + Pe2

[
102χ2 + 18χ+ 1

210(1 + 2χ)3
+

D

L2kd

2χ

(1 + 2χ)3

]
(3.26)
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where χ := ka/kdL. Fig. 3.4 shows that there is perfect agreement between Eq. 3.26 and the
numerical results, as it was also found in Ref. 114.
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Figure 3.4 – Dispersion coefficient of neutral tracers in a slit pore in the direction of the flux,
normalized by the bulk diffusion coefficient, as a function of the Péclet number, as extracted from
our LB scheme (symbols) and from the exact results (lines). Several fractions of adsorbed tracers,
or sorption strength, fa, defined in Eq. 3.25, are presented: blue circles, 16%; red squares, 66%; and
black upward triangles, 95%.

The adsorption/desorption dynamics of the code was thus validated. We can now turn
to the study of the effect of adsorption/desorption effects on neutral or charged adsorb-
ing/desorbing tracers, which experience electrostatic interactions and the effect of electroki-
netic flows.

3.3.3 Simulation parameters

We use the standard D3Q19 lattice, (see Chapter 2). The associated speed of sound is c2
s =

1
3

(
∆x
∆t

)2. [125] We useNx×Ny×Nz = 5×5×106 lattice points, with three layers of solid nodes on
each side. The distance between the solid-liquid interfaces is thus L = (Nz − 6)∆x = 100∆x.
Periodic boundary conditions are used in all directions. The relaxation time in the collision
operator of the LB scheme is chosen as τ = ∆t (with ∆t the time step); this corresponds to a
kinematic viscosity ν = 1

6
∆x2

∆t . The diffusion coefficient of the counterions and all the tracers
is D = 0.05∆x2

∆t , which ensures that the Schmidt number Sc = ν/D is large, as in the case
for small ions in water. In order to resolve the variations of the electrostatic potential, ionic
concentrations and velocities over a distance α−1, we use a lattice spacing ∆x = 2.5 lB. Since
the Bjerrum length in water at room temperature is lB ≈ 7Å, the distance between walls
is L = 100∆x ≈ 175 nm. Simulations are performed for 4 surface charge densities, namely
2NxNyσ∆x2 = −0.1,−1.0,−2.0 and −5.0 corresponding to αL = 0.96, 2.29, 2.63 and 2.91.
For each case, the electric field is applied in the y direction with magnitude βeEy∆x = 0.0 to
0.15 in reduced units.

Finally, once the steady-state is reached in each case with LBE, the populations fi are used
in the moment propagation equations (see Eq. 3.3 and 3.4) for 3 different tracers with valency
q ∈ {−1, 0,+1} to obtain the corresponding VACFs, from which the average velocity v̄y,q
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and dispersion coefficient Dy,q are obtained as explained above. For each tracer, 4 different
simulations were carried out to investigate the effect of adsorption/desorption. In addition
to the reference case without adsorption (ka∆t/∆x = 0), we consider a finite adsorption rate
ka∆t/∆x = 10−1 and three desorption rates kd∆t = 10−2, 10−3 and 10−4.

3.3.4 Fraction of adsorbed tracers
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Figure 3.5 – Fraction of adsorbed tracers fads with valency q = +1 (top), 0 (middle) and -1
(bottom), as a function of αL which quantifies the strength of electrostatic interactions with the walls
(see section 3.3.1). In each panel, we consider a finite adsorption rate ka∆t/∆x = 10−1 and three
desorption rates: kd∆t = 10−2 (red), 10−3 (blue) and 10−4 (green). In the last case simulated in the
present work (without adsorption), obviously fads = 0 regardless of the tracer valency (not shown).
The lines are computed from Eq. 3.15 and the symbols indicate the values of αL corresponding to the
simulated systems.

Before discussing the dynamical properties, we first summarize the equilibrium fraction
of adsorbed tracers for the considered systems in Figure 3.5, which is calculated from the
analytical expression Eq. 3.15. For given electrostatic conditions (fixed αL), fads increases
with increasing ka/kd for all tracers. For fixed ka/kd, the variation of fads with the electrostatic
conditions depends on the valency of the tracer: fads does not depend on αL for neutral
tracers, while for the present case of a negatively charged surface it increases (resp. decreases)
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with αL for cations (resp. anions). This is a direct consequence of the effect of the surface
charge density on the concentration of mobile tracers at the surface, which are in equilibrium
with the adsorbed ones.

3.3.5 Electro-osmotic flow profile
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Figure 3.6 – On the left: electro-osmotic flow profile in a slit pore with uniformly charged walls and
no added salt (counterions only, in the presence of an applied electric field along the surfaces (see text
for details). The Lattice-Boltzmann Electrokinetics simulations, normalized by the reference velocity
uref = eEy/2πηlB , are compared with the analytical solution Eq. 3.14. On the right: average fluid
velocity ū, normalized by the reference velocity uref , as a function of αL.

Figure 3.6a reports the electro-osmotic flow profile for an applied electric field βeEy∆x =

0.1 and a surface charge density 2NxNyσ∆x2 = −2.0. Together with the above simulation
parameters, this corresponds to αL = 2.63. As expected from previous work on a nearly
identical system [113], the LBE results are in excellent agreement with the analytical solution
Eq. 3.14. The fluid velocity is maximal near the center and more inhomogeneous near the
walls (where it vanishes). Figure 3.6b then shows the variation of the average velocity:

ū =
1

L

∫ L/2

−L/2
uy(z) dz (3.27)

with uy(z) given by Eq. 3.14, as a function of αL. As expected, the average electro-osmotic
flow increases with increasing surface charge density. In particular, it vanishes as uref

(αL)2

12

in the limit of small surface charges (αL→ 0).

3.3.6 Average tracer velocity

Figure 3.7 indicates the average velocity v̄y,q of tracers with valency q ∈ {−1, 0, 1} as a function
of the Péclet number Pe = ūL/D with ū the average fluid velocity, for a surface charge
density corresponding to αL = 2.63 and adsorption/desorption rates (ka∆t/∆x, kd∆t) =
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(10−1, 10−3). We first note the excellent agreement between the simulation (LBE/MP) results
and the analytical solution Eq. 3.17 for all tracers. Even though the average velocity depends
only on the limit of the VACF at long times, this provides a first validation of the proposed
MP algorithm combining electrokinetics and adsorption/desorption. We further note that the
latter decreases the average velocity, by an amount which depends on the charge of the tracer.
More precisely, it follows from Eqs. 3.15 and 3.17 that the average velocity is simply equal
to the product of the average velocity without adsorption/desorption (previously studied in
Ref. [113]) and the fraction of mobile tracers, fmob = 1−fads. The proportionality between the
average tracer velocity and average fluid velocity suggests to investigate how the ratio v̄y,q/ū
depends on the surface charge and the adsorption properties. This is illustrated in Figure 3.8.
The good agreement with analytical results in all cases (varying αL, q, ka and kd) further
validates the present MP scheme.
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Figure 3.7 – Average tracer velocity, adimensionalized as a Péclet number v̄y,qL/D as a function
of the actual Péclet number Pe = ūL/D with ū the average fluid velocity, for tracers with valency
q ∈ {−1, 0, 1}, for a surface charge density corresponding to αL = 2.63 and adsorption/desorption rates
(ka∆t/∆x, kd∆t) = (10−1, 10−3). The simulation results (symbols) are compared to the analytical
results Eq. 3.17 (solid line). In each case, the analytical solution without adsorption (dashed line).

In the simpler case of neutral tracers, the average tracer velocity without adsorption is
equal to the average fluid velocity. In the presence of adsorption, the ratio v̄y,0/ū is indepen-
dent of the surface charge and simply equal to the fraction of mobile tracers, which decreases
as kd increases for fixed ka. Similarly, the ratio v̄y,q/ū also decreases with increasing adsorp-
tion in the case of positive and negative tracers. However, the behaviour is more complicated
since the mobile fraction as well as the distribution of charged tracers within the pores (hence
the flow) depends on the surface charge.

For positive tracers, which are located closer to the surface where the fluid is slower than
near the center of the pore, the ratio v̄y,+1/ū decreases with increasing surface charge (αL).
This ratio is larger than 1 for small surface charge, because the motion of the counterions (q =

+1) is dominated by the direct effect of the electric field. Specifically, in this regime v̄y,+1 ∼
βDeEy, while ū ∼ eEy

2πηlB

(αL)2

12 so that their ratio diverges as (αL)−2. It gradually vanishes
as the surface charge increases, because the motion becomes dominated by the advection by
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the electro-osmotic flow, which is more efficient for the fluid as a whole than for the cations
located on average closer to the surface.

In contrast, co-ions (q = −1) are located on average closer to the center of the pore and
the direct effect of the electric field is to drive them in the direction opposite to the electro-
osmotic flow. As a result, the ratio v̄y,−1/ū is negative for small surface charge and diverges as
−(αL)−2 for αL→ 0, but is positive for large αL as the motion of co-ions becomes dominated
by advection by the electro-osmotic flow. This ratio tends to 1 as αL → π regardless of
adsorption, since the fraction of mobile co-ions also goes to 1 in this limit where both v̄y,−1

and ū are dominated by the flow near the center of the pore.
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Figure 3.8 – Average tracer velocity v̄y,q, normalized by the average flow velocity ū, for charged
adsorbing tracers with valency q = +1 (top), 0 (middle) and -1 (bottom), as a function of the strength
of electrostatic interactions with the walls (αL). In each case, simulation results (symbols) for various
adsorption/desorption rates are compared with the anaytical results Eq. 3.17 (lines).

3.3.7 Diffusion coefficient

We now consider the dynamics of tracers in the direction perpendicular to the surfaces by
considering Dz(t). We verified that results for neutral tracers are independent of the surface
charge and we present how Dz(t) decays when ka∆t/∆x = 10−1 and kd∆t = 10−2, 10−3 and
10−4 change for a given surface charge value corresponding to αL = 0.96. This is shown in
Fig. 3.9. We verified that at t = 0, Dz(t)/D corresponds to fmob = 1 − fads. Indeed, in
Fig. 3.9 we see for instance that the red curve gives Dz(0)/D ≈ 0.8, which corresponds to the
red curve value fads ≈ 0.2 in Fig. 3.5. Furthermore, the more tracers adsorb, the longer it
takes for them to relax. Similarly, as we can see in Fig. 3.10, Dz(t) decays faster for positive
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Figure 3.9 – Time-dependent diffusion coefficient in the direction normal to the surfaces Dz(t) =∫ t
0

dt′Zz (t′) for neutral tracers, for αL = 0.96 and βeEy∆x = 0.1. The adsorption/desorption rates
are ka∆t/∆x = 10−1 and kd∆t = 10−2, 10−3 and 10−4.

tracers, for lower values kd∆x, which correspond to more adsorption. We also observe that as
αL increases, the relaxation time also increases. Indeed, as the walls are negatively charged,
tracers experience an electrostatic attraction towards them and thus diffuse longer. Once
again we verified that at t = 0, Dz(t)/D corresponds to fmob = 1− fads. In addition, we can
see in Fig. 3.5 that the red and blue curve increase as αL increases, which implies that Dz(0)

should decrease as αL increases and indeed this is what is observed in Fig. 3.10.
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Figure 3.10 – Time-dependent diffusion coefficient in the direction normal to the surfaces Dz(t) =∫ t
0

dt′Zz (t′) for positive tracers, for αL = 0.96 (left figure), 2.2 (centre figure) and 2.6 (right figure)
and βeEy∆x = 0.1. The adsorption/desorption rates are ka∆t/∆x = 10−1 and kd∆t = 10−2, 10−3

and 10−4.

Likewise, we can see in Fig. 3.5 that for negative tracers all the curves decrease as αL
increases, implying that Dz(0) should increase as αL increases. Once again this is what we
observe in Fig. 3.11. Furthermore, as we can see in Fig. 3.11, negative tracers are repelled
by the negatively charged walls and thus take less time to diffuse in the z-direction, as αL
increases. Overall, both adsorption/desorption and the tracer’s charge strongly affect the
time for them to relax and reach steady state. It is thus clear that these effects cannot be
neglected.
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Figure 3.11 – Time-dependent diffusion coefficient in the direction normal to the surfaces Dz(t) =∫ t
0

dt′Zz (t′) for negative tracers, for αL = 0.96 (left figure), 2.2 (centre figure) and 2.6 (right figure)
and βeEy∆x = 0.1. The adsorption/desorption rates are ka∆t/∆x = 10−1 and kd∆t = 10−2, 10−3

and 10−4.

3.3.8 Dispersion coefficient

Due to their diffusion in the direction perpendicular to the surface, tracers experience various
streamlines with different velocities. The adsorption/desorption processes also participate in
the dispersion since they offer other possibilities for tracers to adopt different states (here the
adsorbed species are considered as immobile, but surface diffusion would also contribute). The
dispersion coefficient in the direction of the flow, Dy, normalized by the diffusion coefficient
D, as a function of the Péclet number ūL/D, is shown for tracers with q ∈ {−1, 0, 1}, for a
surface charge density corresponding to αL = 2.63. In this geometry the dispersion coefficient
behaves according to Eq. 3.22, while in the absence of electric field (Ey = 0) the dispersion
coefficient is simply Dy = fmobD, this is not the case in the presence of an applied field.

The simulation results reported as symbols in Figure 3.12 are in good agreement with this
analytical result, reported as the dashed lines. In this no-adsorption case, also discussed in
Section 3.3.2, counterions (q = +1) are more dispersed than neutral tracers (q = 0) because
they are mainly located near the walls, where the velocity profile is more inhomogeneous
(see Figure 3.6). The opposite behaviour is observed for co-ions (q = −1), which are mainly
located near the center where the flow is more homogeneous.

In the general case with adsorption, Eq. 3.24 does not apply, and the “curvature” f(αL, q)

must be determined numerically by fitting the simulation results to Eq. 3.22. Note that in
each case the only fitting parameter is f(αL, q) since fmob = 1− fads is known independently
(see Figure 3.5). The solid lines in Figure 3.12 illustrate in this particular case that the
behaviour remains indeed quadratic with applied field (hence Pe) and that the effect of
adsorption depends strongly on the valency of the tracer. For example, in this case dispersion
is increased by adsorption/desorption for neutral and negative tracers, while it is decreased
for positive ones. This dependence is shown in more detail in Figure 3.13 which reports
f(αL, q) for the same adsorption/desorption rates as for the discussion of the average velocity
(Figure 3.8). It is less easy to understand than the average velocity, which boils down to the
combined effects of the fraction of mobile species and their individual mobility.

In the limit of small surface charges (αL → 0) where the flow profile is almost parabolic
and where the tracer distribution is (almost) flat even for charged tracers, one recovers the
result for a Poiseuille flow, namely f = 1

210 . Already in this regime the effect of adsorp-
tion/desorption is not simple: Consistently with the analytical result for Taylor-Aris disper-
sion by a Poiseuille flow [155–157], f does not vary monotonically with e.g. decreasing desorption
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Figure 3.12 – Dispersion coefficient, normalized by the diffusion coefficient, Dy,qL/D as a function
of the Péclet number ūL/D, for tracers with valency q ∈ {−1, 0, 1}, for a surface charge density
corresponding to αL = 2.63, without adsorption (dashed lines) and with adsorption/desorption rates
(ka∆t/∆x, kd∆t) = (10−1, 10−3) (solid lines). The simulation results are shown as symbols, while the
lines correspond to the quadratic form Eq. 3.22. In this equation, the value at zero-field fmob = 1−fads
corresponds to Figure 3.5; the curvature is known analytically in the no-adsorption case, see Eq. 3.24
and fitted numerically in the presence of adsorption/desorption. Results of this fitting are discussed
in Figure 3.13.

rate kd at fixed adsorption rate ka. In this case (without any effect of charge), it further de-
pends separately on the ratios ka/kdL and D/kdL2 [84]. In the present case of charged tracers
and electro-osmotic flows, the situation is even more complicated, even though one can note
similar trends for all tracers in the limit αL→ 0.

For very large surface charge densities (αL→ π), f tends to decrease with increasing αL
for both co- and counterions, because their distribution becomes increasingly concentrated
near or away from the surface, respectively, while the electro-osmotic velocity profiles becomes
flatter near the center (which also explains the less pronounced decrease of f for neutral
tracers). For counterions (resp. co-ions), this is likely due to the fact that the fraction of mobile
tracers then becomes very small (resp. large), see Figure 3.5, so that the average velocity
becomes dominated by adsorbed (resp. mobile) tracers, which have the same vanishing (resp.
large) velocity. In the cases with smaller desorption rates kd, this decrease with αL is observed
for relatively small values in the case of co-ions (q = +1), it is preceded for counter-ions
(q = −1) by an increase with αL and is almost not visible for neutral tracers. For the
largest desorption rate, one observes for all tracers a maximum as a function of αL. Overall,
the interplay between adsorption/desorption, migration and advection by the electro-osmotic
flow results in a very rich behaviour of the dispersion coefficient – more difficult to interpret
than the average mobility. This underlines the usefulness of a numerical simulation tool to
investigate the combined effects of all processes.
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Figure 3.13 – Prefactor of the dispersion coefficient vs Péclet number, f(αL, q) defined by Eq. 3.22,
for q = +1 (top), 0 (middle) and -1 (bottom). In the no-adsorption case (black), simulation results
are compared to the analytical expression Eq. 3.24 (solid line). The other simulation results are for
finite adsorption rate ka∆t/∆x = 10−1 and three desorption rates: kd∆t = 10−2 (red), 10−3 (blue)
and 10−4 (green). The dashed-lines are only guide for the eyes.

3.4 Conclusion

We have extended the Moment Propagation (MP) method to capture the combined effects
of adsorption/desorption of charged tracers, their migration under local and applied electric
fields, as well as their advection by the local velocity of the fluid. We validated our modifica-
tion with previous works [113,114]. We thus combined previous developments for the separate
description of these phenomena in particular (adosprtion/desoprtion and charged tracers),
taking advantage of the Lattice Boltzmann Electrokinetics method to capture electrokinetic
effects in the underlying fluid. As a further validation, we examined the simple case of dis-
persion by an electro-osmotic flow in a slit-pore with charged walls and counterions in the
absence of added salt, for which some properties can be determined analytically. We computed
with MP the velocity auto-correlation function (VACF) of charged and neutral tracers, from
which we extracted their average mobility, time-dependent diffusion coefficient and dispersion
coefficient. Comparison with analytical results for the average mobility allowed to validate

— 78 —



Chapter 3. Moment propagation method for adsorbing/desorbing charged
species

the algorithm; the diffusion coefficient for charged tracers and the dispersion coefficient then
illustrates examples of property which can be provided by the MP method when no analytical
results are available. For both properties, we discussed the combined effects of the surface
charge, of the tracer valency and of the adsorption/desorption rates.

Futhermore, the time-dependent diffusion coefficientD(t) is of particular interest in porous
materials since it reflects how each tracer explores the porosity accessible to it (which de-
pends on its valency in charged porous materials) and can be measured experimentally using
NMR [153]. As also mentioned previously, the MP method is not limited to the VACF and
can be used e.g. to compute NMR spectra of species diffusing in porous materials [158]. The
present algorithm allows the computation of such properties for charged species undergoing
adsorption/desorption, migration and advection, in simple geometries as presented here but
also in more complex media. Finally, we note that we have considered here the coupling of
adsorption/desorption with transport of charged tracers only, so that these processes do not
influence the dynamics of the underlying fluid. While in the present case of steady-state in
an infinite slit pore this would only result in the renormalization of the surface charge den-
sity, this is not true in general and a richer behaviour is expected, especially in the transient
regime. In order to do this and hence describe the interplay between adsorption/desorption
and electrokinetic effects, the present development of the MP method would need to be also
extended to the Lattice Boltzmann Electrokinetics scheme.
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So far the LBE method was used in order to simulate fluids confined at the nanoscale
between walls bearing an identical surface charge. Indeed, it is common in the literature

that the simulated systems have always an identical surface charge density in the solid region,
whether colloids or channels are taken into consideration. During this PhD we extended
the LBE method to simulate capacitors: as a first step we considered opposite surface charge
densities at the walls. Then we modified the method to impose a constant potential difference,
which is closer to the experimental situation. In this Chapter we present the development of
this modification, limiting ourselves to the stationary regime. The transient regime will be
addressed in the following chapter.

4.1 Ion distribution on the microscopic scale

In Chapter 2 we have extensively discussed how ions distribute in a channel and what is
their corresonding electrostatic potential. Once steady state is reached, ions are distributed
according to the Boltzmann distribution

ρk = nk exp (−zkφ) (4.1)

where φ := βeψ and nk denotes a constant corresponding to the concentration where the
potential reference is taken. Plugging it in the Poisson equation yields

ε∆ψ = −
N∑
k=1

ezknk exp (−zkφ) (4.2)

which is the so-called Poisson-Boltzmann (PB) equation. In the case of a symmetric 1:1
electrolyte (i.e. with a monovalent salt), the PB equation may be written as

∇2(βeφ) = κ2 sinh(βeφ). (4.3)

the inverse of the Debye screening length κ is defined according to κ2 = 8πlBn± with the
Bjerrum length lB = βe2/4πε being the distance at which the electrostatic energy between
two unit charges is equal to the thermal energy. lB = 0.7 nm in water at room temperature.
When βeφ� 1 the PB equation may be linearized resulting in

∇2φ = κ2φ. (4.4)

4.2 Capacitor imposing a surface charge ±σ
4.2.1 No salt solution

We now restrict ourselves to a slit channel whose walls are separated by a distance L and in
order to simulate a capacitor, we apply an equal but opposite surface charge density on each
wall respectively (i.e.±σ on ±L/2 respectively given σ > 0). In the absence of added salt the
system is equivalent to a capacitor with a dielectric permittivity ε inside the channel. The
PB equation then reads

∆φ =
∂2φ

∂z2
= 0 (4.5)
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Figure 4.1 – Electrostatic potential in a slit channel due to the surface charge density ±σ∆x2/e =

±0.11111, for a distance L/∆x = 89 between the walls in the absence of salt. The potential is non-
dimensionalized with βe = e/kBT and z is normalized with respect to L. The theoretical solution
under PBCs is given by Eq. 4.7

L 5.54× 10−8 m

Lx = Ly 1.75× 10−9 m

ν 1.06× 10−6 m2/s

lB 0.7× 10−9 m

σ −8.16× 1015 m−2

Table 4.1 – Physical data for an Electro-osmotic flow without salt in a slit channel. L is the length
of the channel separating the walls, ν is the kinematic viscosity, lB the Bjerrum length, σ the surface
charge.

Gauss’ law provides an information on the potential derivative at the wall, which leads to
the final solution

φ(z) = −4πlB σz (4.6)

However, as we are working with PBCs, the solution given in Eq. 4.6 is affected and thus
needs to be corrected. Indeed, in order to ensure PBCs, the electrical field −∇ψ maintains its
continuity thanks to a linear correction term. Considering that each wall has a width d/2 (see
Fig. 4.2), i.e. that d is the total width of the walls, the electrostatic potential corresponding
to our simulations is in fact

φPBC(z) =
−4πlB σz

(L+ d)/d
. (4.7)

The scaling factor is then (L+d)/d. Fig. 4.1 illustrates the numerical result obtained and
the solution given by Eq. 4.7. Perfect agreement is found between the two. The simulation
was performed on Nx × Ny × Nz = 3 × 3 × 95 lattice points with three solid layers on each
side. The distance between walls is thus L = 89∆x. A surface charge ±σ∆x2 = ±0.11111

was imposed at the walls and a Bjerrum length lB/∆x = 1.2 was fixed. The corresponding
physical data is shown in Table 4.1.
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Figure 4.2 – Sketch of PBC corrections for no-salt case

4.2.2 Added salt solution

If salt is added in the slit channel, we can solve Eq. 4.4 in the low potential regime, for which
a solution can be written as:

φ(z) = A exp(κz) +B exp(−κz) (4.8)

Considering the boundary conditions ∂zψ(z = ±L/2) = 4πlBσ, we obtain{
Aκ exp(κL/2)−Bκ exp(−κL/2) = 4πlBσ

Aκ exp(−κL/2)−Bκ exp(κL/2) = 4πlBσ
(4.9)

Let γ := κL/2. We solve the system using Cramer’s rule, i.e.

D =

∣∣∣∣ κ exp(γ) −κ exp(−γ)

κ exp(−γ) −κ exp(γ)

∣∣∣∣ = −2κ2 sinh(2γ) (4.10)

DA =

∣∣∣∣4πlBσ −κ exp(−γ)

4πlBσ −κ exp(γ)

∣∣∣∣ = −8πlBσκ sinh(γ) (4.11)

DB =

∣∣∣∣ κ exp(γ) 4πlBσ

κ exp(−γ) 4πlBσ

∣∣∣∣ = 8πlBσκ sinh(γ) (4.12)

Hence,

A =
DA

D
=

4πlBσ

κ

sinh(γ)

sinh(2γ)
(4.13)

B =
DB

D
= −4πlBσ

κ

sinh(γ)

sinh(2γ)
(4.14)
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Therefore the solution for the potential is

ψ(z) =
2πlBσ

κ

sinh(κz)

cosh(κL/2)
(4.15)
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Figure 4.3 – Electrostatic potential in a slit channel due to the surface charge density ±σ∆x2/e =

±0.05, for a distance L/∆x = 89 between the walls, when salt is added. The salt concentration
corresponds to a Debye screening length λD/∆x = 8.0. The potential is non-dimensionalized with
βe = e/kBT and z is normalized with respect to L

Similarly to the case with no salt PBCs modify the solution of the electrostatic potential.
We can write the solution for the reduced potential φ as:

φ(z) = βeψ(z) = ζ sinh(κz) (4.16)

where ζ is a prefactor to be determined according to the effects of the PBCs. Indeed, in
order to ensure PBCs, a linear contribution of the electric field connects points B and C as
illustrated in Fig. 4.4.

Let I and III denote the solid nodes of the left and right wall respectively, as shown in
Fig. 4.4, and II denote the region with fluid nodes. Then in region I and III

∂ψ

∂z
= −ψ(L/2)− ψ(−L/2)

d
(4.17)

where d/2 is the width of each wall and thus d is the distance between the two walls across
the boundary conditions.

Therefore, the electric field may be written, using Gauss’ law, as the difference of the
electric field from both sides of the charged plane. For instance, at z = +L/2

∂ψ

∂z

∣∣∣
z=(L/2)+

− ∂ψ

∂z

∣∣∣
z=(L/2)−

=
σ

ε
. (4.18)

The first term on the left-hand-side may be evaluated with Eq. 4.17, whilst the second
term on the left-hand-side is computed using the derivative of Eq. 4.16 resulting in
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Figure 4.4 – Sketch of PBC corrections

4πlBσ = ζκ cosh(κL/2)− ζ
[
ψ(L/2)− ψ(−L/2)

d

]
= ζ

[
κ cosh(κL/2) +

2 sinh(κL/2)

d

]
(4.19)

Therefore, we obtain

ζ =
4πlBσ

κ cosh(κL/2)
× 2κd

κd+ 2 tanh(κL/2)
(4.20)

and thus,

φ(z) =
4πlBσ

κ cosh(κL/2)
× 2κd

κd+ 2 tanh(κL/2)
sinh(κz) (4.21)

The corresponding numerical data obtained with Laboetie is shown in Fig. 4.3. The
simulation was performed under the same conditions as in the no-salt case, except for the
surface charge, which was lowered to ±σ∆x2 = ±0.05 to fall into the low potential regime.
The concentration was fixed with a Debye screening length λD/∆x = 8.0. The ions have
a bulk diffusion D = 0.05

(
∆x2/∆t

)
. Fig. 4.3 shows a good agreement between theory and

simulation although a small deviation can be observed close to the walls. This is probably
due to the linearization of PB equation, which cannot account for a perfect description close
to the walls. Nonetheless, we do capture the correct behaviour of the PB solution for the
electrostatic potential.
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Figure 4.5 – Electro-osmotic flow profile in a slit channel with added salt due to the surface charge
density ±σ∆x2/e = ±0.05. The flow is induced by an external electric field βe∆xE = 1 × 10−3

parallel to the walls. The velocity u is normalized with respect to the reference velocity uref = εEy/η,
whereas z, which denotes the position in the fluid region, is normalized with respect to the distance
L between the walls.

4.2.3 Electro-osmotic flow

As discussed in Chapter 2, if an EOF is considered in the case of a slit channel, the resulting
flow is written as:

u(z) =
ε

η
Eyψ(z) +Az +B (4.22)

where A and B are integration constants to be determined. Given the following boundary
conditions

• At z = L/2, u = 0 and ψ = ψ(κL/2)

• At z = −L/2, u = 0 and ψ = ψ(−κL/2)

Thus the system of equations reads{
εEyζ
η sinh(κL/2) + AL

2 +B = 0

− εEyζ
η sinh(κL/2)− AL

2 +B = 0
(4.23)

Adding the two equations yields B = 0 and the first equation can then be rewritten as

A = −2εEyζ

ηL
sinh(κL/2). (4.24)

Then the velocity profile is written as follows

u(z) =
εEyζ

η
sinh(κz)− 2εEyζ

ηL
sinh(κL/2)z, (4.25)
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which can be rearranged as

u(z) =
εEyζ

η

[
sinh(κz)− 2

L
sinh(κL/2)z

]
. (4.26)

Fig. 4.5 shows the electro-osmotic flow induced by an electric field βe∆xE = 1 × 10−3

parallel to the walls. Theoretical and numerical results are in good agreement except for the
extrema, which are slightly overestimated by the theory. One could think that the numerical
solution did not converge completely meaning that the profile is no fully developed. However,
decrease of the converge criterion C (see Chapter 2), for the velocity profile, from C = 10−10

to 10−15 did not show major changes in the final result.
At this point we have successfully simulated a nano-capacitor consisting of an electrolyte

with monovalent salt confined between oppositely charged surfaces. However, in a real capac-
itor we impose the potential difference rather than the electrode charges.

4.3 Capacitor with a constant potential difference

Figure 4.6 – Sketch of a capacitor

One of the aims of this work is to create a framework to simulate electrochemical exper-
iments. Given that the experimentalists do not control the surface charge, but rather apply
a potential difference between electrodes, it is necessary to allow the computational scientist
to do the same. This can be achieved in the LBE method, by changing the electrostatic
boundary conditions. Instead of fixing a surface charge ±σ on each wall, we impose two
different reduced fixed potential values φ1 and φ2, resulting in a reduced potential difference
∆V = φ2 − φ1. This is shown schematically in Fig. 4.6. This implementation is a complete
novelty in the field of LBE, although an attempt at implementing constant potential simula-
tions coupling LB with finite differences was previously achieved [159]. Instead of using the LF
method, they resolve the PNP equations via finite differences and the the NS equation via
LBM. They incorporate a body force term, which creates the interaction of the EDL field with
the externally applied electrical field into the discrete Boltzmann equation using the method
described by Guo et al. [160]. Therefore, to the best of our knowledge, we present here the first
implementation of the LBE method coupling LB with LF with constant potential boundary
conditions.
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4.3.1 Boundary conditions

Figure 4.7 – Electrostatic potential values as a function of the position. The discretized green region
denotes the solid part, whereas the remaining region on the right corresponds to the fluid region,
where the Poisson equation is solved. The potential of one electrode is fixed at a constant value φ1.
The wall is located half-way between the discretized solid region and liquid region. The resolution is
∆x.

The boundary conditions of the LB part do not change. On the other hand, the LF part
does need a change. It still requires the ions fluxes penetrating (i.e. such that r + ci∆t is a
solid node) to be canceled. However, the new feature of this LBE method is that the electrodes
are kept at a constant potential instead of bearing a uniform surface charge σ.

The most natural way to implement this constant-potential boundary condition is to
simply assign the target value to solid nodes and not to update them during the resolution
of the Poisson equation via the SOR algorithm. This is however not sufficiently accurate.
Indeed, in that case the potential at the true interface, which is located half-way between the
solid and fluid nodes, differs from that on the solid nodes. This observation provides a simple
solution to cure this problem, as illustrated in Fig. 4.7 for the 1D-case. In order to correctly
compute the potential gradient at the interface, i.e. so that the value of the potential at the
true interface is the target value φ1, it is necessary to double its natural estimate (i.e. divide
the difference φ1 − φ(z = 0) by ∆x/2 instead of ∆x only).

We generalize this fix to the 3D case with the LB lattice velocities and weights, by modi-
fying the estimate of the Laplacian on the lattice (Eq. 2.46), by doubling all contribution of
links which cross the interface. This is achieved by introducing the characteristic function of
the solution defined as:

χ(r) :=

{
0, if r ∈ F .
1, if r ∈ S.

(4.27)

where S denotes the solid region, whereas F denotes the fluid region, and replacing in SOR
the estimate of the Laplacian by:

∇2ψ =
2

c2
s∆t

2

∑
i

wi [ψ(r + ci∆t)− ψ(r)]× [1 + χ(r + ci∆t)− χ(r)] . (4.28)

Note that the potential is computed only on the fluid nodes and that the values of ψ are
kept constant on all of the solid nodes.
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Once the SOR algorithm has converged with this modification, it is possible to estimate
the surface charge density from Eq. 4.28 now computed on the interfacial solid nodes. By
summing on the nodes corresponding to each electrode we obtain their total charge at every
time step. Once steady-state is reached, we can compute the capacitance of the capacitor,
dividing the electrode charge by the applied voltage.

4.3.2 Case of a slit channel

We now consider two planar electrodes separated by a distance L under a reduced potential
difference ∆V .

4.3.2.1 Electrostatic Potential

No salt solution
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Figure 4.8 – Electrostatic potential profile in a slit channel of separation L/∆x = 82 without salt.
The resolution is fixed by the Bjerrum length lB/∆x = 1.44 and ∆V = 0.1.

In the absence of added salt the system is equivalent to a capacitor with a dielectric
permittivity ε inside the channel. The PB equation then reads

∆φ =
d2φ

dz2
= 0 (4.29)

with Neumann boundary conditions

φ(z = L/2) = φ2

φ(z = −L/2) = φ1
(4.30)

where φ1 and φ2 are reduced fixed potentials at the walls so that ∆V = φ2 − φ1.
The solution for the electrostatic potential reads

φ(z) =
φ2 − φ1

L
z =

∆V

L
z (4.31)

The corresponding numerical result is shown in Fig. 4.8. The simulation was performed
on Nx×Ny×Nz = 3×3×82 lattice points with three solid sheets on each side. The distance
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between the walls is thus L = 76∆x = 4.0 × 10−8 m. A potential difference ∆V = 0.1 was
imposed and the Bjerrum length lB/∆x = 1.44 was fixed.
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Figure 4.9 – Electrostatic potential profile in a slit channel of separation L/∆x = 82 with added
salt. The resolution is fixed by the Bjerrum length lB/∆x = 1.44, the salt concentration corresponds
to a Debye screening length λD/∆x = 6.0 and ∆V = 0.1

Added salt solution
When salt is added, using the linearized version of PB equation with the same boundary

conditions results in the following electrostatic potential

ψ(z) =
(ψ1 exp(γ)− ψ2 exp(−γ)) exp(κz) + (ψ2 exp(γ)− ψ1 exp(−γ)) exp(−κz)

2 sinh(2γ)
(4.32)

where γ := κL/2. Since ∆V = βe(ψ2 − ψ1),

φ(z) = βeψ(z) =
∆V

2 sinh(κL/2)
sinh(κz) +

βe(ψ1 + ψ2)

2
(4.33)

The simulation was performed under the same conditions as in the no-salt case, except
for the salt concentration, which corresponds to a Debye screening length λD/∆x = 6.0.
Excellent agreement between the theoretical and numerical results is found, as we can see in
Fig. 4.9.

4.3.2.2 Concentration profiles and errors

Substituting Eq. 4.33 in Eq. 4.1 yields the ionic distributions, which are shown in Fig. 4.10.
We can clearly see that the cations move to one wall and the anions to the opposite one.
Furthermore, we have electroneutrality in the middle of the channel.
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Figure 4.10 – Ion concentration profile in a capacitor of width L/∆x = 82 with added salt under a
reduced voltage ∆V = βe∆ψ = 0.1 (cations are in black and red and anions are in blue and green).
The resolution is fixed by the Bjerrum length lB/∆x = 1.44 and the salt concentration corresponds
to a Debye screening length λD/∆x = 6.0.
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Figure 4.11 – Effect of the resolution on the relative error of the anions concentration profile. The

error is defined as δρ
ρ =

√
1
N

∑
ω

(
ρn
ρa
− 1
)2

, where ρn and ρa denote the numerical and analytical

concentration respectively. The study was carried out by fixing the distance L = 3.7×10−8 m between
the walls and varying the Debye screening length λD (nm) from a curve to another (see Table 4.2).
The fit is f(x) = ALx

2λD
+ B where A and B are the fitting parameters, whose numerical values are

illustrated in Table 4.3.

Nevertheless, a difference between the two solutions (numerical and analytical) exists. We
quantify this error δρ/ρ on the concentration profiles as:

δρ

ρ
=

√√√√ 1

N

∑
ω

(
ρn
ρa
− 1

)2

(4.34)

where ρn and ρa denote the numerical and analytical error respectively; N = Nx×Ny×Nz and
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2λD/L

0.06 0.09 0.16 0.28

L/∆x λD/∆x L/∆x λD/∆x L/∆x λD/∆x L/∆x λD/∆x

76 2.4 76 3.6 76 6 76 10.5

152 4.8 152 7.2 152 12 152 21

253 8 253 12 253 20 253 35

Table 4.2 – Simulations parameters used to obtain the results shown in Fig. 4.11. All of the simu-
lations were carried out for lB/∆x = 1.44, 2.88 and 4.8, under a reduced voltage ∆V = 0.1, to ensure
that the distance between the wall is always the same L = 3.7× 10−8 m.
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Figure 4.12 – Effect of the Debye screening length λD on the relative error of the anions concentration

profile. The error is defined as δρ
ρ =

√
1
N

∑
ω

(
ρn
ρa
− 1
)2

, where ρn and ρa denote the numerical and

analytical error respectively. The study was carried out by fixing the distance L (nm) between the
walls and varying the Debye screening length λD, as shown in Table 4.2.

2λD/L A B

0.06 2.0× 10−4 −8.6× 10−5

0.09 2.3× 10−4 −1.6× 10−5

0.16 2.5× 10−4 1.3× 10−4

0.28 2.6× 10−4 2.6× 10−4

Table 4.3 – Fitting parameters corresponding to the fit f(x) = ALx
2λD

+B as illustrated in Fig. 4.11.

ω is the domain of the fluid nodes. All simulations were carried out with Nx×Ny = 1×1 and
varying λD/∆x as well as Nz under a reduced potential difference ∆V = 0.1. Furthermore,
all simulations have three solid layers on each side. We fixed the distance L = 3.7× 10−8 m

and varied λD according to the data presented in Table 4.2. Fig. 4.11 shows how δρ/ρ

varies with respect to λD and how it varies when increasing the resolution ∆x, choosing
lB/∆x = 1.44, 2.88 and 4.8. We do observe a decrease in the error as the resolution is
increased (i.e. as ∆x decreases). Besides, for all ratios 2λD/L the error scales linearly, which
is why a fit f(x) = Ax+B was carried out on each curve. The computed parameters A and
B are presented in Table 4.3. We notice that the slope A increases as 2λD/L increases.
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Fig. 4.12 shows the same data plotted as a function of λD, for a fixed L = 3.7× 10−8 m.
The error decreases when increasing λD (decreasing the salt concentration). This is probably
due to the fact that the errors between the ρn and ρa mostly occur close to the walls. Hence,
as λD increases for a fixed ∆x, the Debye layer is better resolved and therefore the errors
close to the wall decrease. The data used comes from the same simulations corresponding to
the parameters in Table 4.2.

2λD/L

0.171 0.092 0.083 0.075

L/∆x λD/∆x L/∆x λD/∆x L/∆x λD/∆x L/∆x λD/∆x

28 2.4 52 2.4 58 2.4 64 2.4

56 4.8 104 4.8 116 4.8 128 4.8

93 8.0 173 8.0 193 8 213 8.0

Table 4.4 – Simulations were carried out for lB/∆x = 1.44, 2.88 and 4.8, to ensure that the Debye
screening length is always the same, i.e. λD = 1.17× 10−9 m.

On the other hand, if we vary L instead of λD (see Fig. 4.13), we observe again a linear
scaling for δρ/ρ both for increasing resolution (i.e. decreasing ∆x/lB) and as a function of
the inverse box size ∆x/L (see Fig. 4.14). Contrary to the previous case, the error does
go to zero as 1/∆x or L increases. Thus a fit f(x) = Ax is here appropriate. The input
parameters corresponding to Fig. 4.13 are shown in Table 4.4. Moreover, if we look at the
computed parameters A presented in Table 4.5, we notice that as 2λD/L increases, the slope
A increases.

2λD/L A

0.171 8.4× 10−4

0.092 3.4× 10−4

0.083 2.9× 10−4

0.075 2.5× 10−4

Table 4.5 – Fitting parameters corresponding to the fit f(x) = ALx
2λD

as illustrated in Fig. 4.13.

4.3.2.3 Electrode Capacitance

A fundamental property of the capacitors is their integral capacitance, which is defined as

C =
Q

∆V
(4.35)

In the absence of added salt the capacitance reads

C0 =
ε0εrS

L
, (4.36)

where S is the surface of the electrode. In the presence of added salt, in the low voltage
regime, the Debye-Hückel capacitance reads,

CDH =
βe2S

8πlBλD
. (4.37)
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Figure 4.13 – Effect of the resolution ∆x/lB on the relative error of the anions concentration profile.

The error is defined as δρ
ρ =

√
1
N

∑
ω

(
ρn
ρa
− 1
)2

, where ρn and ρa denote the numerical and analytical

concentrations respectively. The study was carried out by fixing the distance λD = 1.1 × 10−9 m

between the walls and varying L (nm) from a curve to another, as shown in Table 4.4. The fit is
f(x) = ALx

2λD
, where A is the fitting parameter.
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Figure 4.14 – Effect of the Debye screening length λD on the relative error of the anions concentration

profile. The error is defined as δρ
ρ =

√
1
N

∑
ω

(
ρn
ρa
− 1
)2

, where ρn and ρa denote the numerical

and analytical concentrations respectively. The study was carried out by fixing the distance λD =

1.1× 10−9 m and varying the distance L between the walls, as shown in Table 4.4.

In our simulations of capacitors, we compute the capacitance from the steady-state charge
of the electrodes, as described in Section 4.3.1.

Concentration Study

We study the effect of the concentration i.e. λD on the relative error for the calculations
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of the capacitance δC
C , which is defined as:

δC

C
=
Cn
Ca
− 1 (4.38)

where Cn is the numerical result for the capacitance and Ca = CDH as given by Eq. 4.37. We
observe that as the resolution of the grid increases, whenever salt is added, the error scales
linearly as ∆x/2λD.
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Figure 4.15 – Effect of the concentration (i.e λD) on the capacitance error δC
C = Cn

Ca
− 1 for a fixed

distance L = 7.35× 10−8 m between the walls and fixed lB/∆x = 1.2. δC/C scales linearly following
δC/C = ∆x/2λD. The fit is shown in red and the numerical simulations are shown as black dots.

Fig. 4.15 is an example of how the relative error varies when λD changes. More specifically,
λD/∆x = 1.5, 4.5, 6, 7.5 and 9. We repeated this analysis for different lB values and plot
the corresponding slope values on Fig. 4.16. The simulations were performed with a stencil
Nx×Ny = 1× 1 and Nz = 42, 84, 124, 168, 210 and 252 (with three solid layers on each side),
for each concentration λD/∆x and for lB/∆x = 0.4, 0.8, 1.2, 1.6, 2 and 4. This ensures that
L = 7.35 × 10−8 m. The slope is then computed from the linear fit (red line on Fig. 4.15).
The value of the slope is close to one and in fact the slope varies according to the following
scaling law:

δC

C
=

∆x

2λD

[
1−A

(
λD
lB

)B]
(4.39)

where A and B are fitting parameters whose values are 0.12 and 0.40 respectively. We do not
have yet an interpretation.

4.3.2.4 Electro-osmotic flow

We recall from Chapter 2 that when an external electric field is applied parallel to the walls
a flow called electro-osmotic flow (EOF) is induced. When the EOF is fully developed, i.e.
du/dt = 0, with no external pressure gradient across the charged surface and in the limit of
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Figure 4.16 – Scaling of the slope of δC/C vs. ∆x/(2λD) as a function of λD/lB . The numerical
data obeys to Eq. 4.39. The fit is shown in red and the numerical simulations are in shown as black
dots.
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Figure 4.17 – Electro-osmotic flow profile in a slit channel of width L/∆x = 82 with added salt.
The salt concentration corresponds to a Debye screening length λD/∆x = 6.0 and a reduced voltage
∆V = 0.1 is applied. The EOF flow is induced by an external electric field βe∆xEy = 0.01 parallel
to the walls. The resolution is fixed by the Bjerrum length lB/∆x = 1.44.

low Reynolds number (⇒ (u · ∇)u = 0) the NS equation reduces to

η
d2u

dz2
= ε

d2ψ

dz2
Ey . (4.40)

Integration yields,

u(z) =
εEy
η
ψ(z) +Az +B (4.41)

where A and B are constant to be determined with the following boundary conditions

• φ(z = L/2) = φ2
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• φ(z = −L/2) = φ1

• u(z = ±L/2) = 0

yielding the final solution

u(z) =
εEy
η

[
φ(z)− ∆V

L
z

]
× kBT

e
(4.42)

We carry out a simulation with the same parameters as in Section 4.31, in the case where
salt is added to the system, with an external electric field βe∆xEy = 0.01 parallel to the
walls, as shown in Fig. 4.17. We recover the solution given in Eq. 4.42 (see Fig. 4.17). The
fact that cations and anions are in excess on opposite walls creates a sort of shear flow: the
anions move opposite to the electric field direction, whilst the cations move in its direction.
This represents an exotic type of motion, which could be considered for possible experimental
applications that would for instance allow to separate cations from anions. Indeed, if we were
to consider a pore connecting two reservoirs, we could consider to insert KBr in the reservoir
and NaCl in the pore. Then, if we induced an EOF in the pore, we could collect K+ on one
side and Br− on the other. Hence, this could be an alternative technique for ions separation.

4.3.3 Case of a coaxial cylindrical channel

Figure 4.18 – Sketch of a coaxial cylindrical channel

We now consider the case of a coaxial cylindrical channel, as shown in Fig. 4.18, with an
inner cylindrical electrode of radius R1 and and outer cylindrical electrode of radius R2. In
this case the PB equation reads

1

r

d

dr

[
r
dψ

dr

]
= −e

ε

∑
k

nkzk exp [−zkβeψ] (4.43)

In the linear (Debye-Hückel) regime, the corresponding ionic concentrations are written
as

ρ±(r) = n±[1∓ φ(r)], (4.44)
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with φ := βeψ and n± the concentrations of reference, which need to be expressed as a
function of ns (the salt concentration), φ1 and φ2 (the electrodes reduced potentials).

4.3.3.1 Electrostatic potential

No salt solution
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Figure 4.19 – Electrostatic potential profile in a coaxial cylindrical channel with radii R1/∆x = 2

and R2/∆x = 35 without salt. The resolution is fixed by the Bjerrum length lB/∆x = 1.2 and a
potential difference ∆V = 0.1 was imposed between the two cylinders. The separation between the
external boundary of the outer cylinder and the box of simulation is w = 4∆x.

If no salt is added between the two cylinders, Eq. 4.43 may be simplified as

1

r

d

dr

[
r
dφ

dr

]
= 0 (4.45)

with Neumann boundary conditions

φ(r = R1) = φ1

φ(r = R2) = φ2
(4.46)

the solution is given by

φ(r) =
∆V

ln (R2/R1)
ln(r/R2) + φ2 (4.47)

The simulation was performed on Nx×Ny×Nz = 74×74×1 lattice points. The radii of the
inner and outer cylinder are R1 = 2 and R2 = 35 lattice points respectively. The separation
between the external boundary of the outer cylinder and the box of simulation is w = 4∆x. A
reduced potential difference ∆V = 0.1 was imposed between the two cylinders and a Bjerrum
length lB/∆x = 1.2 was fixed. The corresponding physical data is shown in Table 4.6. The
numerical result corresponding to Eq. 4.47 is shown in Fig. 4.19. The agreement with the
theoretical result is excellent despite the small radius of the inner cylinder. In particular, the
potential is correctly imposed at the hydrodynamic interface (midway between the solid and
fluid nodes) by the method introduced in Section 2.2.10.
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R1 1.16× 10−9 m

R2 2.04× 10−8 m

LPBC 5.83× 10−10 m

ν 1.0× 10−6 m2/s

lB 0.7× 10−9 m

Table 4.6 – Physical data for a coaxial cylindrical channel with a constant reduced potential difference
of ∆V = 0.1. R1 and R2 are the inner and outer cylinder radii respectively. ν and lB denote the
dynamic viscosity and the Bjerrum length.

Added salt solution
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Figure 4.20 – Electrostatic potential profile in a coaxial cylindrical channel with radii R1/∆x = 2

and R2/∆x = 35 with added salt. The resolution is fixed by the Bjerrum length lB/∆x = 1.2 and
a reduced potential difference ∆V = 0.1 was imposed between the two cylinders. The separation
between the external boundary of the outer cylinder and the box of simulation is w = 4∆x. The salt
concentration corresponds to a Debye screening length λD/∆x = 9.0.

On the other hand, when salt is added, the linearized PB equation reads

∆φ = −4πlB(ρ+ − ρ−) (4.48)

= −4πlB(n+ − n−) + 4πlB(−n− + n−)φ (4.49)

which can be rewritten as

∆φ = κ2φ− κ2δ (4.50)

where κ2 = 4πlB(n+ + n−) = f(ns, φ1, φ2) and δ = n+−n−
n++n−

.
A solution for this equation is:

φ(r) = AK0(κr) +BI0(κr) +D (4.51)
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where A, B and D are constants to be determined. Using the same boundary conditions and
Gauss’ law

R1
dφ

dr

∣∣∣
r=R1

= R2
dφ

dr

∣∣∣
r=R2

(4.52)

we obtain:

A =
(φ1 − φ2)(R1K

1
1 −R2K

2
1 )

ξ
(4.53)

and

B =
(φ1 − φ2)(R1I

1
1 −R2I

2
1 )

ξ
(4.54)

where

ξ := (I1
0 − I2

0 )(R1K
1
1 −R2K

2
1 )

+ (R1I
1
1 −R2I

2
1 )(K1

0 −K2
0 ).

(4.55)

and where we defined

Iβα := Iα(κRβ) (4.56)

Kβ
α := Kα(κRβ) (4.57)

for α ∈ {0, 1} and β ∈ {1, 2}. Finally, the constant D can be expressed using the boundary
conditions so that

D = φ1 −AK1
0 +BI1

0 . (4.58)

The concentration ns can then be expressed in terms of the average of the ionic concen-
trations, i.e.

ρ̄± = n±[1∓ φ̄] = ns (4.59)

which means that

κ2

4πlB
= n+ + n− (4.60)

= ns

[
1

1− φ̄ +
1

1 + φ̄

]
(4.61)

=
2ns

1− φ̄2
(4.62)

In other words, when φ̄� 1 we recover

ns =
n+ + n−

2
. (4.63)
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The simulation was carried out with the same parameters as in the no-salt case and the
salt concentration corresponds to a Debye screening length λD/∆x = 9.0. Fig. 4.20 compares
the resulting electrostatic potential to the analytical result in Eq. 4.51. Once again excellent
agreement is found between the two.

4.3.3.2 Electrode capacitance

When no salt is added, the capacitance per unit length can be easily derived from Gauss’
law [161] so that

C0 =
2πε

ln(R2/R1)
, (4.64)

or using the Bjerrum length:

C0 =
βe2/lB

2 ln(R2/R1)
. (4.65)

On the other hand, when salt is added and in the Debye-Hückel regime limit the capaci-
tance per unit length reads:

CDH =
2πR1ε

∆V

dψ

dr

∣∣∣
r=R1

=
2πR1ε

∆V
[κAI1(κR1)− κBK1(κR1)] (4.66)

with A and B defined in Eq. 4.53 and 4.54 respectively.
We performed a set of simulations to see if the capacitance values are recovered correctly.

We used Nx × Ny × Nz = 54 × 54 × 3 lattice points. The radii of the inner and outer
cylinders are R1 = 2 and R2 = 25 lattice points respectively. The separation between the
external boundary of the outer cylinder and the box of simulation is w = 4∆x. A reduced
potential difference ∆V = 0.1 was imposed between the two cylinders and a Bjerrum length
lB/∆x = 1.2 was fixed. We varied the concentrations which correspond to Debye screening
lengths λD = 3, 6, 9 and 12. Table 4.7 illustrates the relative error between the numerical
data and the theoretical result given by Eq. 4.66. We notice that the error decreases as λD
increases, which is probably due to the fact that the Debye layer is better resolved. We notice
that even with only three nodes resolving the Debye layer (which is rather small), we recover
a value for the capacitance with a relative error of only 2.3%.

λD/∆x 3 6 9 12

δCDH/CDH 2.3% 1.2% 1% 0.94%

Table 4.7 – Error the capacitance for a coaxial cylindrical channel with added salt (see Eq. 4.66),
when varying λD (see text for details on parameters).

4.3.3.3 Electro-osmotic flow

Considering the radial and swirl components of the velocity to be zero, i.e. ur = uθ = 0, the
flow fully developed, i.e. ∂uz/∂t = 0, and the flow to be axisymmetric, i.e. ∂(·)/∂θ = 0, the
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Figure 4.21 – Velocity profile in a coaxial cylindrical channel with radii R1/∆x = 2 and R2/∆x = 35

with added salt, corresponding to a Debye screening length λD/∆x = 9.0. The flow is induced by an
external electric field βe∆xE = 0.0001 parallel to the walls resulting in an EOF. The resolution is
fixed by the Bjerrum length lB/∆x = 1.2.

NS equation can be simplified as

η

[
1

r

∂

∂r

(
r
∂uz
∂r

)]
= εEz

[
1

r

∂

∂r

(
r
∂φ

∂r

)]
(4.67)

Using the following boundary conditions

• φ(r = R1) = φ1

• φ(r = R2) = φ2

• u(r = R1) = u(r = R2) = 0

yields the solution

u(r) =
εEz
η

[φ(r) +A ln(r) +B] (4.68)

with A = (φ1 − φ2)/ ln(R1/R2) and B = φ1 + (φ1 − φ2) ln(R1)/ ln(R1/R2).
As we can see in Fig. 4.21 there is perfect agreement between the analytical solution and

the numerical data obtained with an external electric field βe∆xE = 0.0001 parallel to the
walls.

4.4 Conclusion

In this Chapter we have successfully simulated a nano-capacitor in two different geometries,
with two different kinds of boundary conditions. The first one, which is in a similar fashion
as in the two previous chapter, imposes opposite surface charges on the two electrodes (i.e.
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walls). The second involved a modification of the boundary conditions in order to apply a
constant potential difference between the two electrodes. Electrostatic potentials, concentra-
tions and velocity profiles (at steady state) were tested with and without added salt with
analytical results which we derived. This change in the LBE method allows the Laboetie code
to reproduce more faithfully electrokinetic experiments, as discussed in the Introduction of
this thesis, and is a first step towards modelling the fluctuations of the electrostatic potential.
In order to do so, we analyse in the next chapter the transient regime of a charging capacitor,
which (as we will show in the last chapter of this thesis) can be related to the equilibrium
fluctuations of the system.
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The experimental community has drawn a growing interest to the transient regime as
the time-dependent applied voltages have encountered different applications, such as

pumping liquid electrolytes [162–170], separation or self-assembly of colloidal particles [170–174]

and manipulation of biological cells and vesicles [175–177]. Furthermore, pressure driven flows
were observed to produce a frequency-dependent streaming potential, which can be used to
determine the structure of porous media [178]. This is why double-layer charging, which is a
phenomenon not as well understood as one may think [42], and its corresponding time scales
need to be explored. Indeed, the community long thought that the only time scale at play for
the relaxation of the electrolytes was the Debye characteristic length τD = λ2

D/D, which is
a material property of the electrolyte (τD being of the order of ns/µs for a Debye screening
length ranging from 1− 100 nm - for aqueous solutions - with D ≈ 10−9m2 · s−1). We shall
discuss more in details the origin of this time scale in the next sections and show how this
description is in fact partially inaccurate. Usually electrochemists describe their theoretical
problem by doing an analogy between the system studied and its equivalent electrical cir-
cuit [179,180]. In fact, it was Helmholtz himself who suggested to treat the electrolyte interface
as a thin capacitor [181,182] (this is why he used the term "double layer"). From this anal-
ysis it was found that the relaxation time needed to charge the double layers depends on
the electrode separation, via the bulk resistance of the electrolyte [183]. The study of diffuse
charge in the double layer allowed Gouy to link the excess ionic charge near the electrode to
a capacitance per unit area CD = ε/λD. Eventually, he considered the ions screening on a
flat surface, from which he derived the exact solution of the electrostatic potential profile at
steady state, for the full nonlinear equations [184].

In the same spirit as the electrochemical community we can consider that the charge time
response at one electrode has an exponential nature as in a RC circuit, i.e.

Q(t) = Q∞(1− et/τ ) (5.1)

where τ = RC is the characteristic time and R and C are the resistance (of the interface, i.e.
the conductivity inverse) and the capacitance respectively. Q∞ is the steady state value for
Q(t). As Bazant et al. pointed out, over the last century τ was thought to be equivalent to
the Debye characteristic time. However, using an equivalent circuit model, they showed that
this is not the case and that the electrolyte experiences several characteristic times.

In Section 5.1 we derive the Debye time to point out the origin and prior assumptions of
this time scale, as well as showing the difference with the result obtained by Bazant et al. [42].
In Section 5.2 we present a new numerical approach, which we validate in the linear response
regime with a new theoretical prediction, carried out by our collaborator Ivan Palaia. This
approach is more precise than the analysis of Bazant et al. [42], whose result is limited to the
case where λD � L/2, with L denoting the distance between the electrodes. We thus obtain
the charge time response and its corresponding relaxation characteristic time. We also extend
the analysis to the non-linear regime, to prove the efficiency of the method beyond theoretical
predictions. Finally, In Section 5.3 we extend the analysis and validation to the case of a
coaxial cylindrical channel, which was not tackled previously.

5.1 Debye relaxation time

For the purpose of clarity we shall briefly derive the Debye time with two different methods.
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5.1.1 Macroscopic point of view

The first method is a macroscopic approach. Let ψ be a disturbing potential applied at time
zero to a system whose conductance is χ and where the free charge density is ρf . The current
density is thus given by

i = −χ∇ψ. (5.2)

The equation of continuity can then be written as

∂ρf
∂t

= −∇ · i = χ∆ψ (5.3)

Combined with Poisson equation

∆ψ = −ρf
ε

(5.4)

we find

dρf
dt

= −χρf
ε
. (5.5)

Integration then leads to

ρf (t) = ρf (0) exp(−t/τ) (5.6)

with τ defined as:

τ =
ε

χ
. (5.7)

Neglecting ion-correlations, the conductance can be expressed with the Nernst-Einstein
relation:

χ =
∑
k

βe2ρkDkz
2
k (5.8)

If all the ionic mobilities are the same, the expression may be simplified as

χ ' εDκ2 (5.9)

Plugging this result in Eq. 5.7 yields

τD =
1

Dκ2
=
λ2
D

D
, (5.10)

which is the so-called Debye-time, which corresponds to the diffusion of ions over the Debye
screening length.
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5.1.2 Microscopic point of view

The relaxation time can also be obtained from a more microscopic approach. We can use
start from Eq. 2.1 to write

∂ρ+

∂t
+∇ · j+ = 0 (5.11)

∂ρ−
∂t

+∇ · j− = 0 (5.12)

where + and − denote the physical quantity corresponding to cations and anions. Advection
was here neglected. Ionic fluxes include migrational effects beside diffusional ones. Thus we
can use Eq. 2.8 to write

j+ = −D+

(
∇ρ+ +

z+e

kBT
ρ+∇ψ

)
(5.13)

j− = −D−
(
∇ρ− +

z−e

kBT
ρ−∇ψ

)
. (5.14)

The expression does not consider deviations from Einstein’s relation, such as the elec-
trophoretic contribution or the gradient of the activity coefficient. Then, considering only
first order terms of the perturbation in Eq. 5.11 and 5.12 yields the following relations

∂(δρ+)

∂t
+∇ · (δj+) = 0 (5.15)

∂(δρ−)

∂t
+∇ · (δj−) = 0 (5.16)

Macroscopic and microscopic diffusion processes originate simply due the distribution of
charge inhomogeneities. Considering electroneutrality of the ion equilibrium distribution the
potential is computed using the Poisson equation

∆ψ =
e

ε

∑
k=+,−

(ρ0
k + δρk)zk (5.17)

Since
∑

+,− ρ
0
kzk = 0 the equation reduces to

∇ · δj+ = −D+∇ · [∇(δρ+)] + κ2
+D+δρ+ + κ2

+D+
z−
z+

(5.18)

∇ · δj− = −D−∇ · [∇(δρ−)] + κ2
−D−δρ− + κ2

−D+
z+

z−
(5.19)

where the Debye screening lengths are defined as:

κ2 = κ2
+ + κ2

− (5.20)

=
βe2

ε
(ρ+z

2
+ + ρ−z

2
−) (5.21)

= 4πlB

N∑
k=+,−

ρkz
2
k (5.22)
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Eq. 5.11 and 5.12 are subsequently written as

[
∂

∂t
−D+∆ + κ2

+D+

]
δρ+ + κ2

+D+
z−
z+
δρ− = 0 (5.23)

κ2
−D−

z+

z−
δρ+ +

[
∂

∂t
−D−∆ + κ2

−D−

]
δρ− = 0 (5.24)

Taking a Fourier and a Laplace tanformations yields,

[
s+ (q2 + κ2

+)D+

]
δρ+(q, s) + κ2

+D+
z−
z+
δρ−(q, s) = δρ+(q, t = 0) (5.25)

κ2
−D−

z+

z−
δρ+(q, s) +

[
s+ (q2 + κ2

−)D−
]
δρ−(q, s) = δρ−(q, t = 0) (5.26)

The roots of the principal determinant can then be determined with[
s+ (q2 + κ2

+)D+ κ2
+D+

z−
z+

κ2
−D−

z+
z−

s+ (q2 + κ2
−)D−

]
= 0 (5.27)

The matrix system has two independent solutions for s, which yields to the nondiffusional
modes when q2 goes to zero.

s2 + s[κ2
+D+ + κ2

−D−] = 0 (5.28)

the roots are

s1 = 0, s2 = −[κ2
+D+ + κ2

−D−] (5.29)

The first root corresponds to an overall mass conservation. The second corresponds to the
Debye relexation time, which in the general case (more than two species) reads:

1

τD
= 4πlB

∑
k

ρkz
2
kDk (5.30)

If we further assume D+ = D− and use the definition of κ we recover the simple expression

τD = s−1
2 = (κ2D)−1 (5.31)

5.1.3 From bulk to confined electrolytes

However, when the electrolyte is confined between walls, in particular between electrodes, the
presence of an additional length scale results in the emergence of additional time scales. In
particular, the slowest relaxation time for the charge reads:

τρ =
λDL

2D
− λ2

D

D
(5.32)
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Since the screening length is usually much smaller than half of the distance separating the
electrodes (i.e. λD � L/2) the expression typically reduces to

τρ =
λDL

2D
. (5.33)

These lengths scales were originally derived by Bazant et al. [42].

5.2 Case of a slit channel

We now want to compute numerically the characteristic relaxation time of a confined elec-
trolyte with our constant potential LBE simulations. In order to do that we compute the
charge accumulating on an electrode with respect to time.

5.2.1 Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

t/(LλD/2D)
0.000000

0.000005

0.000010

0.000015
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Q
(t
)/
e

Theory
LBE

Figure 5.1 – Evolution of the electrode charge for a capacitor, submitted to a voltage step ψ(t) =

ψ0θ(t), with θ denoting the Heaviside step function. The charge accumulates in a monoexponential
manner analog to a RC circuit. The distance between the solid-liquid interfaces is L = 253∆x. The
resolution is fixed with the Bjerrum length lB/∆x = 4.8. The reduced potential difference applied at
the walls is ∆V = 0.1, the salt concentration corresponds to a Debye screening length of λD/∆x = 35.0

and the ions have a bulk diffusion coefficient D = 0.05
(
∆x2/∆t

)
.

We consider the time-dependent response of a capacitor initially uncharged and submitted
to a voltage

ψ(t) = ψ0θ(t), (5.34)

with θ denoting the Heaviside step function, in the linear regime (i.e. ψ0 � kBT/e). In the
LBE simulations, the charge is computed on a node according to Eq. ??; the total charge
is then obtained summing on all the solid nodes constituting the electrode. Fig. 5.1 shows
numerical simulations results for a system with ε = 2λD/L = 0.28 and a reduced voltage
βeψ0 = 0.1. The results are in excellent agreement with the analytical results carried out
by our collaborator I. Palaia (see Appendix A.2). This validates our extension of the LBE
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method both to simulate the time-dependent response to an applied voltage and to determine
the induced surface charge on the electrodes.

As we can see on Fig. 5.1 the charge at t = 0 is not equal to zero. This can be explained
because the ions present in the fluid do not have enough time to move and therefore the
profile of the potential is equivalent to the case where no salt is present in the solution (see
e.g. Fig. 4.8). Hence, the analytical solution for the electrostatic potential at t = 0 can be
computed from the capacitance without salt (i.e. Eq. 4.36), which yields:

Q(0) =
ε∆ψS

L
, (5.35)

whereas for t→∞, Q can be expressed using Eq. 4.37, i.e.

Q∞ =
βe2∆ψS

8πlBλD
. (5.36)

λD/∆x 8 12 20 35

δQ∞/Q∞ 0.19% 0.08% 0.04% 0.04%
δQ(0)/Q(0) 0.50% 0.22% 0.21% 0.21%

Table 5.1 – Error on Q∞ and Q(0) when varying λD (see text for details on parameters)

Comparison of the relative error onQ∞ andQ(0) to the analytical resullts given by Eq. 5.35
and 5.36 is shown in Table 5.1 and 5.2. Simulations were carried out for a resolution fixed by
the Bjerrum length lB/∆x = 4.8 and with Nx = Ny = 1 × 1 lattice points. In Table 5.1 we
fix Nz = 259 lattice points, with three solid nodes on each side, and the salt concentration
corresponds to a Debye screening length λD/∆x = 8, 12, 20 and 35. In Table 5.2 we fix
λD/∆x = 8 and the distance between the electrodes varied so that Nz = 99, 179, 199, 219

and 259 lattice points. The reduced potential applied at the electrodes is ∆V = 0.1. We
observe that the error on Q(0) seems to decrease as λD increases, whereas it increases as Nz

increases. It is expected that as the Debye length is more discretized the error would decrease
and similarly, for a given resolution value, as the distance L increases, less details are captured
and therefore the error increases. However, contrary to the capacitance study in the previous
chapter, the simulations were all carried out at a high resolution value (fixed by lB/∆x = 4.8)
and we can thus observe that the errors for both Q(0) and Q∞ are all below 0.5%, which is
extremely precise.

L/∆x 93 173 193 213 253

δQ∞/Q∞ 0.189% 0.189% 0.188% 0.187% 0.186%
δQ(0)/Q(0) 0.068% 0.234% 0.291% 0.354% 0.500%

Table 5.2 – Error on Q∞ and Q(0) when varying L, for a fixed resolution lB/∆x = 4.8 and salt
concentration corresponding to λD/∆x = 8.

Fig. 5.1 showed that Q(0) 6= 0 and therefore the usual exponential response of an electric
circuit needs to be modified in order to take into account the shift Q(0) at t = 0. We can
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thus write the charge temporal response of the system as:

Q(t) = Q∞ + (Q(0)−Q∞) exp[−t/τ ] . (5.37)

In order to compute the characteristic time we replot our results according to

− t
τ

= ln

[
Q(t)−Q∞
Q(0)−Q∞

]
, (5.38)

as shown on Fig. 5.2, meaning that the characteristic time is given by the inverse of the slope:

τ =
1

d
(
− ln

[
Q(t)−Q∞
Q(0)−Q∞

])
/dt

(5.39)
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Figure 5.2 – Natural logarithm of the temporal charge evolution of Fig. 5.1 as described by Eq. 5.38.
The inverse of the slope of the straight line corresponds to the characteristic time at which the capacitor
relaxes (see Eq. 5.39).

We use Nx×Ny×Nz = 1× 1× 259 lattice points, with three layers of solid nodes on each
side for the simulation shown in Fig. 5.1. The distance between the solid-liquid interfaces is
thus L = (Nz − 6)∆x = 253∆x. Periodic boundary conditions are used in all directions. The
resolution is fixed with the Bjerrum length lB/∆x = 4.8. The reduced potential difference
applied at the walls is ∆V = 0.1, the salt concentration corresponds to a Debye screening
length of λD/∆x = 35.0 and the ions have a bulk diffusion coefficient D = 0.05

(
∆x2/∆t

)
.

The resulting charge evolution with respect to time is shown in Fig. 5.1. The numerical data is
presented with the theoretical prediction discussed in Section A.2. The theoretical curve was
obtained doing an inverse Laplace transform numerically (with Mathematica) of Eq. A.27
and applying the residue theorem truncated up to the 8th pole (the first pole would have
been enough considering that we have a monoexponential function). As we can see there is a
perfect agreement between the two sets of data.

On the other hand, Fig. 5.3 illustrates how the characteristic time evolves as 2λD/L

changes. The simulations carried out are the same as the ones used to compute the data in
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Figure 5.3 – Characteristic time in a slit when varying ε := 2λD/L. The simulations were carried
out under a reduced potential difference of ∆V = 0.1 with a fixed L while λD varies so that L/∆x =

253 and the concentration corresponds to Debye screening lengths λD/∆x = 8, 12, 20 and 35. The
analytical results described in Appendix A.2 is shown with a green solid line, our numerical results
with red triangles and Bazant’s results i.e. Eq. 5.32 with a blue solid line.

Table 5.1. Numerical LBE results perfectly match the theoretical prediction. Also shown on
this figure is the simpler result corresponding to Eq. 5.32, depicted with a blue solid line, to
illustrate the deviation between the correct relaxation time and the one predicted by Bazant
et al. [42], which is only valid for low values of ε = 2λD/L.

5.2.1.1 Resolution and concentration study

We studied the effect of the resolution on the characteristic relaxation time relative error.
This is illustrated in Fig. 5.4. The simulations were carried out in the same conditions as for
Fig. 5.1. The Bjerrum length values used to fix the resolution are lB/∆x = 1.44, 2.88 and
4.8. As we can see the maximum errors are close to 2% and as the resolution increases (i.e.
as ∆x/lB → 0) the error goes to zero.

Similarly, Fig. 5.5 illustrates the effect of the concentration (i.e. when λD varies) on the
characteristic time relative error for a fixed lB/∆x = 4.8. The Debye screening lengths used
are λD/∆x = 8, 12, 20 and 35. Once again, whenever λD increases, the error also goes to zero.

Overall, the results of the present section demonstrate the ability of the LBE method to
quantitatively predict the time-dependent response of an electrolyte confined between planar
electrodes in the linear regime.

5.2.1.2 Non-linear analysis

We mentioned in the previous chapters that we usually validate our algorithms and their
implementation with analytical results in the linear regime. However, the LBE method is not
limited to this regime and can actually carry out non-linear simulations. Indeed, this is one of
the assets of this computational method and now that we validated the linear response part,
we can explore the physics beyond this regime.
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Figure 5.4 – Relative error on the characteristic time τ for lB/∆x = 1.44, 2.88 and 4.8, for a fixed
L/lB ratio. Four different values of ε := 2λD/L were tested: 0.06, 0.09, 0.16, 0.28.
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Figure 5.5 – Relative error on the characteristic time τ for λD/∆x = 8, 12, 20 and 35, for a fixed
L/lB ratio. Four different values of ε := 2λD/L were tested: 0.06, 0.09, 0.16, 0.28.

We use again Nx × Ny × Nz = 1 × 1 × 259 lattice points, with three layers of solid
nodes on each side for the simulation shown in Fig. 5.1. The distance between the solid-
liquid interfaces is thus L = (Nz − 6)∆x = 253∆x. The resolution is fixed with the Bjerrum
length lB = 4.8/∆x. The salt concentration corresponds to a Debye screening length of
λD/∆x = 35.0 and the ions have a bulk diffusion coefficient D = 0.05

(
∆x2/∆t

)
. We then

vary the reduced potential difference so that ∆V = 0.5, 1, 2, 3, 4, 5, 6, 8, 10 and 20.
Fig. 5.6 shows how the characteristic time τ varies according to the applied potential

difference. We notice that for reduced voltages lower than 6 the electrolyte takes more time
than in the linear regime (∆V → 0). However, above this threshold value, the character-
istic time drastically decreases. In order to understand this phenomenon we looked at the
electrostatic potential profiles at steady-state, which are illustrated in Fig. 5.7. We observe
that as ∆V increases the corresponding potential profile is flattened, to eventually resemble
a straight line similar to the case when no salt is inserted (e.g. Fig. 4.8). In fact, if we look
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Figure 5.6 – Characteristic time in s slit when varying the reduced potential ∆V =

0.5, 1, 2, 3, 4, 5, 6, 8, 10 and 20. The distance between the solid-liquid interfaces is L = 253∆x. The res-
olution is fixed with the Bjerrum length lB/∆x = 4.8. The salt concentration corresponds to a Debye
screening length of λD/∆x = 35.0 and the ions have a bulk diffusion coefficient D = 0.05

(
∆x2/∆t

)
.

The time for the electrolyte to relax increases for ∆V ≤ 6/βe, whereas it decreases for higher values.
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Figure 5.7 – Steady-state electrostatic potential profile for ∆V = 1, 2, 6, 10, 20 and 30. As ∆V

increases the potential profile becomes more and more linear and therefore resembles the case where
no salt is added.

at the cations concentration profiles shown in Fig. 5.8, we see that as the potential difference
increases, cations move towards the electrode on the left until leaving almost no ions in the
centre of the channel. We are actually observing a phenomenon of depletion. Hence, for large
∆V values the ions move fast towards the electrodes, forming a positive and negative layer
on the anode and cathode respectively and thereby acting like a new capacitor, with no salt,
and with a slightly shorter separation between the electrodes. We know that when no salt is
added the relaxation time is almost instantaneous (at this level of description, which does not
include the solvent relaxation explicitly) and thus it is normal to observe that τ is incredibly
fastened in the case of depletion. It is worth mentioning that this phenomenon takes place
because we are in the canonical ensemble. Such a depletion effect should also be observed in
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the more general grand-canonical case, when the time needed to repopulate the capacitor by
ions from the reservoir is long compared to the charging time (e.g. when the lateral extension
of the electrodes is much larger than the inter-electrode distance). We now turn to the case
of a coaxial cylindrical channel and test this geometry in the linear regime.
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Figure 5.8 – Steady-state cation density profiles for ∆V = 1, 2, 6, 10, 20 and 30. As ∆V increases,
the ions move away from the bulk region, eventually leaving almost no salt, to stick to the walls. The
initial salt concentration is shown with a black solid line.

5.3 Case of a coaxial cylindrical channel

5.3.1 Results
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Figure 5.9 – Temporal charge evolution at one electrode of a coaxial channel. The charge accumulates
in a monoexponential manner analog to a RC circuit. The distance between the electrodes is L/∆x =

(R2 − R1)/∆x = 40, with the inner and outer cylinder R1 = 2∆x and R2 = 42∆x respectively. The
resolution is fixed by lB/∆x = 1.2. The reduced potential difference applied at the walls is ∆V = 0.1,
the salt concentration corresponds to a Debye screening length λD/∆x = 8.0 and the ions have a bulk
diffusion coefficient D = 0.05

(
∆x2/∆t

)
.
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Similarly to the slit channel case, we perform a set of simulations in order to recover
the theoretical prediction of I. Palaia (see Appendix A.3), for this geometry, for the charge
evolution at one electrode, as well as the characteristic time, as shown in Fig. A.2.
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Figure 5.10 – Characteristic time in a coaxial cylindrical channel when varying ε := 2λD/L. The
simulations were carried out under a reduced potential difference of ∆V = 0.1 with a fixed L while
λD varies so that the inner and outer cylinder are R1 = 2∆x and R2 = 42∆x respectively. The salt
concentration corresponds to Debye screening lengths λD/∆x = 4, 6, 8, 12, 16 and 26.

We recover again an exponential response as described by Eq. 5.37 (see Fig. 5.9). We use
Nx ×Ny ×Nz = 134× 134× 1 lattice points. The separation between the external boundary
of the outer cylinder and the box of simulation is w = 4∆x. The radii of the inner and
outer cylinder are R1 = 2∆x and R2 = 42∆x respectively. Periodic boundary conditions
are used in all directions. The resolution is fixed with the Bjerrum length lB/∆x = 1.2.
The reduced potential difference applied at the walls is ∆V = 0.1, the salt concentration
corresponds to a Debye screening length λD/∆x = 8.0 and the ions have a bulk diffusion
coefficient D = 0.05

(
∆x2/∆t

)
.

In order to validate the results in Fig. A.2, we carry out six simulations in the same condi-
tions as in Fig. 5.9 except for λD/∆x = 4, 6, 8, 12, 16 and 26. We compute the characteristic
times in the same fashion as for the slit channel case and compare it to the corresponding
theoretical curve (see Fig. 5.10). We observe that we recover perfectly the theoretical predic-
tion (numerical data shown in green triangles) and in particular the LBE simulations are able
to capture the small "bump" on the curve. It is important to point out that the theoretical
curve not only depends on the distance between the two electrodes, as in the slit channel case,
but also has an important dependence on the inner radius R1 as discussed in Section A.3.

5.4 Conclusion

In this chapter we have extended the analysis of constant potential simulations of the previous
chapter to the transient regime. The charge fluctuations at the electrodes are at the heart
of the understanding of current fluctuations and thus of electrical noise. We verified that
our numerical results correspond to the theoretical analysis carried out by I. Palaia (see
Appendix A.2 and A.3) of the charge response and in particular of the electrolyte relaxation
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time. In the spirit of Bazant et al. we showed that the relaxation time differs from the Debye
time and we underlined the deviation from Bazant’s result for larger values of ε. We pushed
the analysis of the relaxation time to the non-linear regime, leading to interesting physical
phenomena not obviously expected. Hence we could observe a phenomenon of depletion for
large values of ∆V , which drastically accelerate the relaxation time of the electrolytes, which
we could link to the depletion of the electrolyte in the bulk due to the concentration of
ions near the electrodes. This is but one example of the rich physical phenomena that we
will be able to investigate thanks to this new numerical tool. A first natural step in this
direction would be to identify the key physical parameters controlling the transition between
the two regimes (increasing/decreasing with voltage) observed for the relaxation time in a
single system (fixed distance and salt concentration). Furthermore, from the point of view of
the Lattice Boltzmann community, to the best of our knowledge, this is the first analysis of the
charge response on an electrode for fluids confined at the nanoscale. We will see in the next
chapter how a general response can be linked to electrical or thermal fluctuations. Finally we
extended the analysis of the slit geometry to the case of a coaxial cylindrical channel, which
was never tackled before. Once again the numerical values verified the theoretical predictions.

We have thus successfully developed a new computational method to analyse the charge
response at the mesoscale. In the next Chapter we turn to the linear response theory to
show that it can be applied to LB simulations to extract microscopic information (such as
ion diffusion) from macroscopic quantities like a potential perturbation or any other external
force. Indeed, now that this computational development was achieved, we need to test our
method to available theoretical tools for the study of electrical noise arising from nanofluids.
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This PhD thesis aims at providing a theoretical and numerical framework to study thermal
fluctuations in electrolytes. During the previous chapters, we have studied the response

of a system to an external perturbation, which was either purely mechanical (via a pressure
gradient), or electrical (via an external electric field, an imposed surface charge or a potential
difference). The response to such perturbations provides information on the equilibrium
flucutuations of the unperturbed system. Linear response theory can be used to derive the
essential relations such as the fluctuation-dissipation theorem [185], which we shall discuss more
in details in Section 6.1. For example the response of the differential capacitance can inform
us on the fluctuations in the electric charge

Cdiff =
∂〈Q〉
∂∆ψ

= β
〈
δQ2

〉
(6.1)

where 〈·〉 denotes the average, Q the charge and δQ = Q − 〈Q〉. Eq. 6.1 is an example of a
fluctuation-dissipation relation [186] known in electronics as the Johnson-Nyquist relation [57,58].
Fluctuations of the electric current can also be linked to the conductivity. If a time dependent
electric field is applied to a system of charged particles, such field will create a current

ejZ(t) =
N∑
k=1

zkeṙk(t) = Ṁ(t) (6.2)

where ˙(·) denotes the time derivative and Ṁ(t) is the total dipole moment of the sample. An
hamiltonian describing the interaction of the system with such field can then be written as

H′(t) = −
N∑
k=1

M(t) ·E(t) (6.3)

Supposing that the electric field is applied in the x-direction and that the system is
isotropic, then only the current in the x-direction will survive. Therefore, the linear response
to a real, periodic field reads

e
〈
jZx (t)

〉
= Reσ(ω)E0 exp(−iωt) (6.4)

Finally, using an after-effect function and a complex dynamic susceptibility, which is also
called a dynamic response function (see Ref. 185 for further details on these functions), one
can write a Green-Kubo formula for the frequency-dependent conductivity, i.e.

σ(ω) =
βe

V

∫ ∞
0

N∑
k=1

〈
jZx (t)zkeẋk

〉
exp(iωt)dt (6.5)

=
βe2

V

∫ ∞
0

〈
jZx (t)jZx

〉
exp(iωt)dt (6.6)

The usual static electrical conductivity σ can be computed as σ = limω→0 σ(ω). The
statistical average in Eq. 6.6 is the autocorrelation function of the fluctuating charge current
in the absence of the electric field. As we will see in Section 6.1, Einstein made an argument
relating the diffusion coefficient to the mobility, which can be extended to yield a correlation
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function expression for the thermal conductivity. In the present chapter, we show how lin-
ear response theory can be used together with hydrodynamic LB simulations to investigate
equilibrium velocity fluctuations and the related transport coefficient, namely the diffusion
coefficient.

In Section 6.1 we discuss the links between diffusion and mobility. Later, in section 6.2
and 6.3 we present the formalism of linear response theory for the specific case studied, i.e.
a singular perturbation in a fluid, and the algorithm used to study such a perturbation. We
validate the method in Section 6.4 with known results on diffusion coefficients, present in the
literature. Finally, Section 6.5 illustrates the new results considering both steady state and
transient regimes.

6.1 Diffusion and mobility

In the introduction we mentioned that Einstein proved the existence of Brownian motion.
More specifically, Einstein imagined that particles move due to a force F , whose nature
is not specified, acting on them, which can depend on the position but is independent of
time. As particles move in a medium, namely the fluid, they experience a viscous force (i.e.
friction), which limits them to a maximum velocity umax = F /ζ, where ζ is the viscous
friction coefficient. At equilibrium, the particle flux is compensated by a diffusion flux, which
is linked to the concentration gradient so that

ρkF

ζk
−Dk∇ρk = 0 (6.7)

Furthermore, Einstein makes use of the Van’t Hoff law and applies it to a suspension so
that the sum of the external and osmotic forces per unit volume vanish, i.e.

ρkF −
RT

NA
∇ρk = 0 (6.8)

where NA is Avogadro’s constant, T the temperature and R is the perfect gas constant. Using
Eq. 6.7 and 6.8 yields

Dk =
kBT

ζk
. (6.9)

Historically, this is the first formulation of a fluctuation-dissipation relation. If the par-
ticles are assumed to be spherical with radius R, one can use Stokes formula for the friction
coefficient, resulting in a new expression for the diffusion coefficient

D =
kBT

cπηR
(6.10)

where c is a constant which depends on the prior assumptions of the problem. Integration of
the stress tensor over all the sphere leads to the friction force, yielding c = 6 and 4 for no-slip
and slip boundary conditions respectively.

Einstein finally concludes his calculations on a more probabilistic basis. Indeed, particles
at positions {r(0)} diffuse over a time t to eventually reach a new positions {r(t)}. The
probability density to find a given particle at a position r at a time t is given by the solution
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of the diffusion equation. Therefore, the mean square value of the displacement is linked to
the diffusion coefficient at long times giving

D = lim
t→+∞

1

6t

〈
|r(t)− r(0)|2

〉
(6.11)

the average is here taken on the initial conditions. This relation is the result of a random
walk where the mean square displacement of the walker becomes a linear time function after
a sufficient large number of random steps. Smoluchowski established a relation between this
random walk and Brownian motion [187,188]. Eq. 6.11 implies that the thermodynamical limit
is taken before the limit t → +∞. For a finite volume V , the diffusion coefficient is strictly
zero considering that the maximum of the mean square displacement is of the order to V 2/3.
In fact, the right hand side of Eq. 6.11 reaches a plateau for times shorter than the ones
necessary for the particle to reach the edges of the system of reference. It is thus this plateau
value that allows us to define the diffusion coefficient for a finite system. For a given particle
we may write

r(t)− r(0) =

∫ t

0
v
(
t′
)

dt′, (6.12)

which yields

〈
|r(t)− r(0)|2

〉
=

∫ t

0
dt′
∫ t′

0
dt′′
〈
v
(
t′
)
· v
(
t′′
)〉

(6.13)

=

∫ t

0
dt′
∫ t′

0
dt′′
〈
v
(
t′ − t′′

)
· v(0)

〉
(6.14)

= 2

∫ t

0

(
t− t′

) 〈
v
(
t′
)
· v(0)

〉
dt′ (6.15)

which is obtained using the stationary property of the correlation function and applying a
change of variable. Plugging Eq. 6.15 in 6.11 and remembering that it only applies for large
time scales we can write

D =
1

3

∫ +∞

0
〈v(t) · v(0)〉dt (6.16)

Eq. 6.16 is a typical example of a Green-Kubo formula [189–191], which is a class of relations
where the dynamical properties are written in the form of a time integral of microscopic
correlation functions. At long times (i.e. longer than relaxation times) the initial and final
velocities are completely decorrelated. Hence, when t → +∞, 〈v(t) · v(0)〉 = 0. It was
until the 1960s that the scientific community believed the velocity autocorrelation function to
decay exponentially, as this result was predicted by the linearized Boltzmann equation [121],
the Fokker-Planck equation [192], as well as the Enskog equation.

Thanks to the pioneering work of Alder and Wainwright, who studied the behaviour of
the velocity autocorrelation function on a model of disks or hard spheres, the community un-
derstood that the decay had a slow asymptotic behaviour in t−d/2, where d is the dimension
of the system. They also provided a simple hydrodynamical explanation of such a decay [193].
Shortly after, other types of theoretical explanations, on for instance a kinetic basis, were
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formulated [194–196]. A review with other types of theoretical formulations, which include
Brownian motion and group renormalisation, was carried out by Pomeau and Resibois [197].
Eq. 6.11 and 6.16 are relations which can be easily computed via trajectories obtained ex-
perimentally or with a numerical simulation. This is a quantity obtained at equilibrium, but
when simulations are used, it can be affected by finite size effects. Indeed, it is by now well
established that hydrodynamic finite size effects arise in simulations due to the use of peri-
odic boundary conditions (PBC). These effects can be understood as the result of spurious
hydrodynamic interactions between particles and their periodic images.

Following Dünweg and Kremer [198], Yeh and Hummer [199] proposed a complete analysis
of the finite size effect on the diffusion coefficient of fluid particles in a cubic box based on
the mobility tensor T (see below):

DPBC = D∞1 + kBT lim
r→0

[TPBC(r)− T∞(r)] , (6.17)

where PBC and ∞ subscripts denote properties under periodic and unbounded conditions,
respectively, while 1 is the identity matrix. This results in a finite size scaling of the diffusion
coefficient

D(L) = D∞ − ξkBT/6πηL (6.18)

for a cubic box of size L, with ξ ≈ 2.837 a constant and η the fluid viscosity. The same scaling
was found independently [200] and has been confirmed in molecular dynamics simulations of
simple fluids [199], including several water models [201,202], ionic liquids [203] or more complex
fluids such as solutions of star polymers [204]. More recently, the extension to anisotropic
boxes was also investigated [205,206] and interpreted in terms of the same hydrodynamic argu-
ments [207,208].

The distortion of the flow field due to the finite size of the system (and the associated use
of PBC) does not only affect the diffusion coefficient of particles, but in principle all dynamical
properties. In particular, hydrodynamic flows in an unbounded fluid result in long-time tails of
correlations functions, e.g. as t−3/2 for the velocity autocorrelation function (VACF) in three
dimensions [185,209]. Such long time tails have been reported in molecular simulations for the
VACF since the pioneering work of Ref. 210 (see e.g. [211]) as well as in purely hydrodynamic
lattice simulations for the VACF or other correlation functions [133,135,148,212].

They have further been observed experimentally on colloidal particles [213–215]. Their trap-
ping in a harmonic potential by optical tweezers modifies the decay of the VACF which
remains however algebraic [216]. Such slow hydrodynamic modes also manifest themselves in
the non-Markovian dynamics of solutes, which includes a deterministic component of the
force exerted by the suspending fluid, well described for colloidal spheres by the Basset-
Boussinesq force [217,218]. Simulations displaying such a hydrodynamic memory, either on a
coarse-grained [213] or molecular [219] scale, may therefore suffer from artefacts associated with
the use of PBC, at least on long time scales. This was already recognized by Alder and Wain-
wright in their seminal paper where they reported their results “up to the time where serious
interference between neighbouring periodically repeated systems is indicated” [193].

Here we address this issue of finite size effects on the transient regime by revisiting the
above hydrodynamic approach. We investigate the transient response to a singular pertur-
bation of the fluid, previously considered to predict the steady-state mobility [199,220]. More
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precisely, we determine numerically the time-dependent Green’s function for the Navier-Stokes
(NS) equation using Lattice Boltzmann (LB) simulations [125]. We validate this new approach
in the steady-state by comparison with known results, before turning to the transient hy-
drodynamic response. We show that the multiple features of these finite size effects can be
rationalized analytically by considering the decay of the relevant hydrodynamic modes.

6.2 Perturbation in a fluid and its linear response

The dynamics of an incompressible fluid of mass density ρm and shear viscosity η can be
described by the mass conservation ∂tρm +∇ · (ρmv) = 0 and NS equation:

ρm
∂v

∂t
+ ρm(v · ∇)v = η∇2v −∇p+ f (6.19)

where v is the velocity field, p is the pressure and f is a force density. In the limit of small
Reynolds number (Re = ||ρm(v·∇)v||

||η∇2v|| ∼ uL
ν with u and L the typical velocity and length, and

ν = η/ρm the kinematic viscosity), both tensors in Eq. 6.17 can be obtained by determining
the Green’s function for the Stokes equation. This corresponds to a vanishing left hand side
in Eq. 6.19 and a perturbation:

f(r′) =

[
δ(r′ − r)− 1

V

]
F , (6.20)

with δ the Dirac distribution, F a force and V the volume of the system, i.e. a sin-
gular point force at r and a uniform compensating background. The mobility tensor then
follows from the steady state velocity as v(r′) = T(r′, r) · F. Note that the limit in Eq. 6.17
corresponds to r′ → r. The result for the unbounded case is the well-known Oseen tensor

T∞(r) =
1

8πηr

(
1 +

rr

r2

)
, (6.21)

while under PBC it is more conveniently expressed in Fourier space [199].
Similarly, the full dynamical response can be obtained by considering a perturbation of

the form f(r′)Θ(t), where Θ(t) is the Heaviside function and the spatial dependence is given
by Eq. 6.20, applied on a fluid initially at rest. The Green’s function for the time-dependent
NS equation, which corresponds to a perturbation f(r′)δ(t) is obtained as the time-derivative
of the solution v(r′, t). In the limit Re� 1, the response to f(r′)Θ(t) converges at long times
toward the stationary field corresponding to the mobility tensor.

The transient hydrodynamic regime, as quantified by the Green’s function, is also related
to the equilibrium fluctations of the velocity field. Using linear response theory [185], we can
perturb the system with a small Hamiltonian expressed as:

H(t) = −
∫
drA(r, t)f(r, t). (6.22)

where f(r, t) is a force density and A(r, t) the conjugate field. Its corresponding linear
response is then written as

d〈∆B(r, t)〉
dt

=
1

kBT

∫
dr′
〈
B(r, t)Ȧ

(
r′, 0

)〉
f
(
r′, t

)
(6.23)
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where B is an observable and ∆B = B(t) − B(0). We can then take f(r, t) to be equal to
Eq. 6.20 and its conjugate field A corresponds to

Ȧ(r, t) = v(r, t). (6.24)

For the particular choice of observable

B(r, t) = ρv(r, t), (6.25)

and noting that the initial velocity vanishes, Eq. 6.23 shows that the average velocity v

(canonical average over initial configurations) in the direction of the force at the position
where it is applied, evolves as:

d

dt
〈v(r, t)〉 =

1

kBT

∫
dr′
〈
v(r, t)v(r′, 0)

〉
f(r′, t) (6.26)

This simplifies for the perturbation considered in Eq. 6.20, since the total applied force
vanishes and so does the total momentum

∫
dr′v(r′, 0). One can finally express the velocity

auto-correlation of the local velocity field (LVACF) as:

Z(t) ≡ 〈v(r, t)v(r, 0)〉 =
kBT

F

d 〈v(r, t)〉
dt

, (6.27)

where 〈v(r, t)〉 is the response to the perturbation Eq. 6.20. This expression, although similar
to the one for the velocity of a particle under a constant force F , has in fact a very different
meaning: Here a perturbation is applied at a fixed position r (together with the compensating
background) and the fluid velocity is followed at that position. Indeed, the average and
auto-correlation functions are taken for the local fluid velocity defined by ρ(r, t)v(r, t) =

〈∑i δ[ri(t)− r]ui(t)〉, with ρ(r, t) = 〈∑i δ[ri(t)− r]〉 the number density, ri and ui the
position and velocity of particle i.

Integrating between 0 and infinity, one obtains the steady state velocity:

v∞(r) = lim
t→∞
〈v(r, t)〉 =

F

kBT

∫ ∞
0
〈v(r, t)v(r, 0)〉 dt (6.28)

This relation is analogous to Einstein’s relation for the mobility of a particle, µ = v/F =

D/kBT , with the diffusion coefficient D =
∫∞

0 Z(t)dt. In the following we will therefore refer
to the integral of the LVACF as the diffusion coefficient.

6.3 Algorithm

Here we use LB simulations [125], with the Laboetie code, to solve the above hydrodynamic
problem, i.e. the NS equation for a fluid initially at rest on which the perturbation Eq. 6.20
is applied. As mentioned in the previous Chapters, the LB method evolves the one-particle
velocity distribution f(r, c, t) from which the hydrodynamic moments (density, momentum,
stress tensor) can be computed. In practice, a kinetic equation is discretized in space (lattice
spacing ∆x) and time (time step ∆t) and so are the velocities, which belong to a finite set
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{ci} (here we use the D3Q19 lattice). The populations fi(r, t) ≡ wif(r, ci, t) are updated
following:

fi(r + ci∆t, t+ ∆t) = fi(r, t)−
∆t

τ
[fi(r, t)− feqi (r, t)] + F exti (r, t) , (6.29)

where feqi (r, t) corresponds to the local Maxwell-Boltzmann equilibrium with density ρ(r, t) =∑
i fi(r, t) and momentum ρv(r, t) =

∑
i fi(r, t)ci, expanded to second-order in the velocity

to minimize discretization effects resulting e.g. in numerical viscosity. The relaxation time τ
controls the fluid viscosity. Here we use τ = ∆t, which results in a kinematic viscosity ν =
c2s∆t

2 = 1
6

∆x2

∆t since for the D3Q19 lattice the speed of sound is cs = 1√
3

∆x
∆t and F exti accounts

for the external force acting on the fluid [125]. We perform simulations for orthorhombic cells
with one length (L⊥) different from the other two (L‖), as illustrated in Figure 6.1a, in order
to analyze the effect of both the system size and shape.

Starting from feqi for a uniform fluid at rest, we apply the singular perturbation to a single
node (an extension to arbitrary singular forces, including off-lattice, has been proposed in Ref.
221) with the compensating background everywhere and monitor the velocity on that node
(see Figure 6.1b). The same force F is applied for all systems (10−4 lattice units to ensure
that the Mach number is always small: Ma= v

cs
< 10−3) whose sizes are chosen to remain in

the limit of small Knudsen numbers (Kn∼ Ma
Re = ν

csL
∼ ∆x

L < 0.1), with Re at most O(1).

(a)	 (b)	

Figure 6.1 – a. A bulk fluid in an orthorhombic cell with one length different from the other two is
submitted to a perturbation Eq. 6.20 which corresponds to a singular point force (in one of the two
relevant directions indicated by red arrows) and a uniform compensating background. Both elongated
(L⊥ > L‖, as shown) and flat (L⊥ < L‖) boxes are considered. b. Velocity at point r where the
perturbation is applied, as a function of time, from Lattice Boltzmann simulations with various cubic
boxes of size L = L⊥,‖. The inset shows the scaling at long times used to extrapolate the steady-state
velocity, for the largest system.

6.4 Validation of the method

As a validation of this new approach for the computation of hydrodynamic Green’s functions,
we first describe the results for the diffusion coefficient, obtained from the steady-state velocity
as D = kBTv∞(r)/F . Here the diffusion tensor is anisotropic and the two independent
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components D‖,⊥ are determined by applying the perturbation Eq. 6.20 in the corresponding
directions. Continuum hydrodynamics predicts a scaling with system size [207]:

D‖,⊥ = D∞ +
kBT

6πηL‖
h‖,⊥

(
L⊥
L‖

)
, (6.30)

where the two functions h‖,⊥ depend only on the aspect ratio L⊥/L‖ (see Ref. 207). For the
isotropic case h‖,⊥(1) = −ξ ≈ −2.837. The inset of Figure 6.2 shows the diffusion coefficient
for a cubic box as a function of the size L⊥ = L‖. For reasons discussed below, the velocity
〈v(r, t)〉 converges slowly to its steady-state value, as v∞−α/

√
t (see the inset of Figure 6.1b).

Therefore we used a fit to this expression at long times to determine v∞ for the larger systems.
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Figure 6.2 – Scaling functions h‖,⊥ = (D‖,⊥−D∞)/(kBT/6πηL‖) defined in Eq. 6.30 as a function
of the aspect ratio L⊥/L‖. Lattice Bolzmann results (symbols) are compared to analytical results
(lines) from Ref. 207. Note the logarithmic scale on the x-axis. Each point corresponds to the slope of
a scaling with system size at fixed aspect ratio, as illustrated in the inset for a cubic box (L = L⊥,‖),
where the line again corresponds to Eq. 6.30.

The LB results are in excellent agreement with the slope expected from Eq. 6.30, even
though some deviations are observed for the smaller box sizes (∼ 10∆x) as expected. The
extrapolated value for an infinite system is D∞ ≈ 0.286∆x2/∆t. By performing similar
size scalings for various aspect ratios (see Table 6.1), we can compute the scaling functions
h‖,⊥ for both components of the diffusion tensor. The results, shown in the main part of
Figure 6.2, are also in excellent agreement with Eq. 6.30. This validates the present approach
combining linear response and LB simulations to determine hydrodynamic finite size effects
on the steady-state dynamics.

6.5 Finite size effects in the transient regime

6.5.1 Velocity auto-correlation of the local velocity field

We now turn to the the finite size effects in the transient regime. As explained above, the
Green’s function for the time-dependent NS equation is obtained from the derivative of the
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Size ratio α Lengths Values (in lattice unit ∆x)
1/16 L‖ 175 271 337 429

L⊥ 11 17 21 27
1/8 L‖ 103 119 135 151 169

L⊥ 13 15 17 19 21
1/4 L‖ 85 115 125 155 165 175

L⊥ 21 29 31 39 41 43
1/2 L‖ 31 41 51 61 71 101

L⊥ 15 21 25 31 35 51
1 L‖ 11 21 41 81 161

L⊥ 11 21 41 81 161
2 L‖ 11 17 23 29 35 41 47 53 59

L⊥ 22 35 47 59 71 83 95 107 119
4 L‖ 11 17 23 29 35 41 47

L⊥ 45 69 93 117 141 165 189
8 L‖ 11 17 23 29 35

L⊥ 89 137 185 233 281
16 L‖ 11 17 23 29 35

L⊥ 175 273 369 465 561

Table 6.1 – The simulated systems correspond to orthorhombic boxes with Lx = Ly = L‖ and
Lz = L⊥. For each size ratio α = L⊥/L‖, we compute the steady-state velocity as a function of
kBT/6πηL‖, for a singular force applied either in the x or z directions. The corresponding slopes
provide the scaling functions h‖,⊥ reported in Figure 6.2.

response v(r, t) to the perturbation f(r′)Θ(t). More precisely, we discuss here the LVACF
defined by Eq. 6.27 which is proportional to this Green’s function and quantifies the equilib-
rium hydrodynamic fluctuations. In an unbounded medium, such fluctuations result in the
long-time tail of the VACF in simple fluids according to [185]:

Z∞(t) =
2

3

kBT

ρm
[4πνt]−3/2 . (6.31)

Mode-coupling theory predicts in fact a scaling with D+ ν instead of ν, but here the Green’s
function is not associated with the diffusion of a tagged particle, so that D is not involved.

Figure 6.3 reports the LVACF computed from Eq. 6.27 using the present LB approach,
for various cubic boxes of size L. For the larger systems, the simulation results coincide
exactly with the hydrodynamic scaling Eq. 6.31 over several orders of magnitude, without
any ajustable parameter. This scaling, together with Eq. 6.27, justifies a posteriori the fit
of the velocity as v∞ − α/

√
t to extrapolate the steady-state value. However, we observe a

cross-over from the algebraic decay to an exponential regime (and oscillations discussed in
more detail below), with a cross-over time that decreases with decreasing L.

The algebraic decay Eq. 6.31 arises from the superposition of an infinite number of modes
(corresponding to the hydrodynamic limit of vanishing wave numbers k → 0) for momen-
tum diffusion, which in Fourier space decay as ∼ e−νk

2t. The exponential decay therefore
results from the cut-off at low wave numbers introduced by the PBC, with the slowest mode
corresponding to kL = 2π/L and a characteristic time τL = 1/νk2

L. The vertical arrows in
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Figure 6.3 – Local velocity auto-correlation function (LVACF) computed from Lattice Boltzmann
simulations in a cubic cell, for various cell sizes L/∆x. The double logarithmic scale underlines the
algebraic decay expected from hydrodynamics in an unbounded fluid, Eq. 6.31. The finite size results
in a cross-over to an exponential decay, analyzed in further detail in Figure 6.4. The arrows indicate
the diffusion time for the slowest mode, τL = 1/νk2L, with kL = 2π/L, which corresponds to the
exponential decay rate and is also typical of the cross-over between the algebraic and exponential
regimes.

Figure 6.3, which indicate this time, show that it is also typical of the cross-over from alge-
braic to exponential decay ALe−νk

2
Lt of the LVACF. The scaling of the cross-over time τL is

consistent with that reported for the velocity decay of a particle submitted to an impulsive
force in LB simulations with fixed system size and varying viscosity [221]. The prefactor AL
can be roughly estimated by assuming the continuity between the two regimes at t = τL.
Using Eq. 6.31, this results in:

AL =
2e

3 [4π]3/2
kBT

ρm
k3
L . (6.32)

6.5.2 Propagation of acoustic modes

Another striking feature in Figure 6.3 is the presence of oscillations, with a frequency which
depends on the size of the simulation box. This is clearly another finite size effect, which can
be understood in terms of the slight compressibility of the fluid. Indeed, in the LB method
the fluid is only quasi-incompressible. In such a case, while the transverse mode decays as
∼ e−νk

2t (as for an incompressible fluid), the longitudinal modes follow a dispersion relation
which can be obtained by linearizing the mass conservation and compressible NS equation,
for an isothermal perturbation of the form ei(ωt−k·r). Since the equation of state of the LB
fluid is that of an ideal gas (p = ρkBT = ρmc

2
s), one obtains:

(iω)2 + iωk2

(
4

3
ν + ν ′

)
+ c2

sk
2 = 0, (6.33)

with ν ′ = ζ/ρm the kinematic bulk viscosity. In the case of the D3Q19 lattice, for which
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ν ′ = 2
3ν, the solutions are of the form

iω = −νk2 ± ikcs
√

1− ν2k2/c2
s ∼ −νk2 ± ikcs (6.34)

(for k � cs/ν), i.e. attenuated sound waves. Such a dispersion relation had already been
considered for the LB simulation of acoustic waves, see e.g. [222–224].
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Figure 6.4 – LVACF computed from Lattice Boltzmann simulations in a cubic cell, for various cell
sizes L/∆x, normalized by the expected exponential scaling at long times ALe−νk

2
Lt with kL = 2π/L

and AL given by Eq. 6.32, as a function of time rescaled by the frequency ωL = kcs
√

1− ν2k2/c2s.
The oscillations are due to the small compressibility of the LB fluid, which results in damped acoustic
waves. For the larger systems the contribution of faster modes nkL is still visible on the time scale of
the simulations.

For periodic systems, the slowest modes correspond to kL = 2π/L and longitudinal modes
decay as ∼ e−νk2Lt cosωLt, with a frequency

ωL = kLcs

√
1− ν2k2

L/c
2
s ∼ kLcs. (6.35)

Figure 6.4 reports the LVACF normalized by the exponential decay ALe−νk
2
Lt, as a function

of the rescaled time ωLt, for various system sizes spanning more than one order of magnitude.
It clearly shows that the above analysis captures all the main features of the finite size effects
on the transient hydrodynamic response: 1) the rate of the exponential decay, since at long
times the curves oscillate around a plateau; 2) the order of magnitude AL of the exponential
regime, since the value of the plateau is the same for all system sizes; 3) the frequency of
the oscillations, which are in phase after rescaling by ωL. While only the slowest mode
contributes to the oscillations for the smallest system (L = 11∆x), others are increasingly
visible in this time range as the system size increases. Indeed, the other modes nkL decay as

∼ e−νn2k2Lt = e
− νn

2k2L
ωL

ωLt, i.e. νn
2k2L
ωL

= n2 νkL
cs

times faster – a difference which decreases with
increasing L. Using more elaborate LB schemes for compressible thermal flows [225] or any
other hydrodynamic simulation algorithm (or even the continuous Boltzmann equation from
which the LB algorithm follows), will also result in the cross-over to the exponential regime,
which is an inevitable consequence of the finite size of the system and the associated PBC.
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It should also manifest itself with strictly incompressible flow simulations, even though we do
not expect oscillations in the VACF in that case.

6.6 Conclusion

In this Chaper, we have used Lattice Boltzmann and analytical calculations to investigate
transient hydrodynamic finite size effects induced by the use of periodic boundary conditions.
These effects are inevitable in simulations at the molecular, mesoscopic or continuum levels
of description. We analyzed the transient response to a local perturbation in the fluid and
obtained the local velocity correlation function via linear response theory. This new approach
was validated by comparing the finite size effects on the steady-state velocity with the known
results for the diffusion coefficient. We next investigated the full time-dependence of the local
velocity auto-correlation function. We found at long times a cross-over between the expected
t−3/2 hydrodynamic tail and an oscillatory exponential decay, and studied the scaling with the
system size of the cross-over time, exponential rate and amplitude, and oscillation frequency.
We interpreted these results from the analytic solution of the compressible Navier-Stokes
equation for the slowest modes, which are set by the system size. The present work not only
provides a comprehensive analysis of hydrodynamic finite size effects in bulk fluids, which arise
regardless of the level of description and simulation algorithm, but also establishes the Lattice
Boltzmann method as a suitable tool to investigate such effects in general. More specifically,
the present work shows that it is possible to rationalize all finite size effects in terms of
the cut-off of hydrodynamic modes at small wave numbers introduced by the use of PBC.
Coming back to Alder and Wainwright’s quote [193], the time where neighbouring periodically
repeated systems seriously interfere corresponds to momentum diffusion for the slowest mode,
τL = 1/νk2

L. It is crucial for the setup and analysis of molecular simulations to control these
finite size effects, which can be efficiently computed from the present approach combining
linear response and LB simulations. In turn, such an analysis is useful to extrapolate the
macroscopic limit without actually performing the simulations for too large systems. One
could exploit these effects further to determine material properties, not only the viscosity
from the slope of the diffusion coefficient vs inverse box size (as for water in first principles
molecular dynamics simulations [226]), but also e.g. the speed of sound from the oscillation
frequency of the LVACF, as shown here.

The systematic finite size analysis of the transient response could also be extended to
other situations. For example, the long-time decay of the VACF under confinement or near a
boundary, in an otherwise unbounded fluid, scales as t−5/2 instead of t−3/2 in the bulk [136,227],
but PBC in the directions parallel to the interface will also result in deviations from the
algebraic decay. Similarly, the diffusion coefficient of lipids and carbon nanotubes embedded
in a membrane diverges logarithmically with system size [208] and one should also observe the
impact of PBC on the transient dynamics. This may also prove important for extracting from
finite size simulations other dynamical properties for which hydrodynamics play an important
role, such as memory kernels [219].

Therefore, we may consider this Chapter as a first form of validation to prove the effec-
tiveness of the LB method to tackle analysis involving linear response theory, which in the
future will help us to understand the origin of electrical noise via macroscopic quantities such
as the fluctuations of electric current, by readapting this problem to the case presented in
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Eq. 6.6, but also to the electrokinetic response, related to the cross-correlation between mass
and electric currents [74,79].
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Our work is inscribed in a succession of attempts at understanding fluctuations, nanofluidic
sensings or simply nanoelectrodes from different angles (i.e. different computational

tools). Lattice Boltzmann Electrokinetics (LBE) and more specifically its implementation in
the Laboetie code represents another brick in the wall with the other available algorithms
which simulate electrodes maintained at fixed electrical potentials (e.g. Ref. 228).

Our contribution within the Lattice Boltzmann community was to extend the moment
propagation method to include the combined effects of adsorption/desorption of charged trac-
ers, their migration under local and applied electric fields, as well as their advection by the
local velocity of the fluid. Furthermore, we modified the algorithm to simulate nano-capacitors
in different geometries - we only tested two different kinds but the method can be applied to
any arbitrary geometry - under a constant potential difference between the electrodes. This
moved the LBE method in the community of algorithms simulating electrodes maintained at
fixed electrical potentials, as mentioned above. Besides, the constant potential method and
more generally the LBE method was used for the first time to analyse the transient regime of
nanocapacitors charging. By doing so, we could retrieve the temporal evolution of the charge
at an electrode (i.e. the charge response to a perturbation) and point out that, in the case of
small applied potential differences, the electrolytes relaxation time present characterstic times
more complex than the simple Debye time or even the time found by Bazant. Furthermore
we could extend the analysis to the non-linear regime and show an interesting depletion phe-
nomenon taking place, which leads to a more complex temporal response. Contrary to the
other methods mentioned (e.g. Ref. 228) LBE is a mesoscopic method and has thus the advan-
tage of simulating large systems ∼ 100 nm, which reinforces the idea that it provides a useful
computational framework for the experimentalists, allowing them to better understand their
results. Finally we showed the efficiency of the LB method to study confined electrolytes using
linear response theory and the link between response and fluctuations. This will enable us to
understand the origin of electrical noise, via macroscopic quantities, such as the fluctuations
of electric current. Indeed, Nyquist gave an expression for the generalized noise for devices
with a partially reactive response, such as a capacitor, and showed that the power spectral
density of the series noise voltage can be linked to a frequency-dependent complex electrical
impedance. A Fourier transform of the temporal charge response would provide us with the
capacitor impedance. Hence, the charge response can be linked to the impedance and thus
to the electrical fluctuations. Furthermore, we will also be able to study the electrokinetic
response related to the cross correlation response between mass and electric currents.

Therefore, we provided the basis of a computational framework, which in a compact form
can model a large variety of physical phenomena, coupling different dynamics, and can be
applied to available theories to understand intrinsic microscopic mechanisms from macroscopic
quantities. This is the first note of this noisy symphony, which we are trying to listen. Let us
listen carefully...
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6.7 Perspectives

Because of the prior assumptions of PNP theory, excluded volume effects are not taken into
account at this stage (in the Laboetie code). Moreover, we have considered only symmetric
electrolytes so far. However, we could consider modifying the method with other available
theories to include volume effects [229] or simulate N -component electrolytes [230] i.e. for tracers
which do not influence the dynamics of the other species. In addition, as the sorption dynamics
is only present in the moment propagation method, it would be interesting to also include
it in the LB part of the code. This would help us understanding the interplay between
adsorption/desorption and electrokinetic effects during the transient regime for instance.

From a general perspective, the study of electrical fluctuations in a number of geometries
and conditions, corresponding to the available experimental literature, would allow us to pre-
dict the expected signal (i.e. the experimentally measured signal). The problem can be viewed
in two different directions: experimentalists measure a signal and try to understand the un-
derlying mechanisms, whereas we can predict the expected signal and its noise characteristics
as a function of the geometrical and physical parameters defining the experimental system.
This allows in turn to extract the latter from the experimental data, as the noise footprint
is unique for any given molecule or atom. We can thus consider an inverse approach to the
problem and provide noisy signals to the experimentalists, which correspond to a system of
reference. We could then explore new strategies and optimise the available setups in order
to push the detection limits, allowing experimentalists and engineers to exploit their tools
beyond the current state-of-the-art, e.g. working at low ionic strength, at higher frequencies
or with smaller devices.

During this PhD we focused on modelling electric charge and current fluctuations. How-
ever, it would be interesting to introduce thermal fluctuations into LBE simulations. This
would then provide the right computational tools to directly simulate single molecule detection
and nano-electrochemical experiments, as described in the introduction.

On the longer term, the basis of this work could have implications for the development
of nanofluidic sensors. Simulations related to the development of nanoISFETs (Nanoscale
Ion Sensitive Field Effect transistors) could be considered. Our methodological development
would provide a basis for further developments that would create simulation tools which could
be transferable to other scientific and technological contexts, such as biological sensors or the
production of "Blue energy" from salinity gradients (e.g. between salty sea water and fresh
river water) and sea water desalination.
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Appendix A

Mathematical derivations and
algorithms

A.1 Successive Over Relaxation Algorithm

The electrostatic potential ψ is solved via Poisson equation, which is computed at each time
step using the Succesive Over Relaxation algorithm, namely SOR. It is a numerical recipe
which solves linear systems such as

Ax = b (A.1)

where A ∈ Rn,m, b ∈ Rn. In our case A corresponds to the Laplacian operator, x to the
electrostatic potential ψ and b to the charge density.

It is an iterative algorithm which constructs a series of vectors x(k) ∈ Rn such that
limk→∞x

(k) = x = A−1b. x(k) is a serie convergent in x for all k ∈ N.
More specifically, SOR is based on a Gauss-Seidel algorithm. It makes use of a matrix

Ωω, which depends on a chosen parameter ω which is picked so that the spectral radius
ρ(Ωω) is as small as possible. We decompose the matrix A according to A = M − N with
M = 1/ω(D − ωE) ⇒ A = D − E − F . The a priori assumption is that (D − ωE) is
invertible (i.e. ai,i 6= 0 ∀i). We define Ωω with Ωω = M−1(M − A) = I −M−1A, where
Ωω = (D−ωE)−1[(1−ω)D+ωF ] = (I−ωL)−1[(1−ω)I+ωU ], with L = D−1E, U = D−1F

and Cω = M−1b where Cω = ω(D − ωE)−1b = ω(I − ωL)−1(D−1b).

The method works then as follows,

M =
1

ω
D − E ⇒ N =

(
1

ω
− 1

)
D + F ; Lω = (D − ωE)−1[(1− ω)D + ωF ] (A.2)

then we solve (
1

ω
D − E

)
xk+1 =

[(
1

ω
− 1

)
D + F

]
xk + b (A.3)

Proposition : If ω 6∈ (0, 2) then SOR diverges ⇒ ρ(Lω) ≥ 1

det(Lω) = det[D − ωE]−1det[(1− ω)D + ωF ] (A.4)

= det[D]−1det[D]−1det[(1− ω)D] (A.5)

= (1− ω)n (A.6)
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Let W = LtωLω, then νi are the eigenvalues of W ⇒ ρ(Lω) = sup1≤i≤n
√
νi. We have

det(W ) = [det(Lω)]2 (A.7)

=
n∏
i=1

νi (A.8)

≤ [ρ(Lω)]2n (A.9)

and thus,

(1− ω)2n ≤ [ρ(Lω)]2n (A.10)

If ω ≤ 0⇒ (1− ω) ≥ 1⇒ ρ(Lω)

If ω ≥ 2⇒ −1 ≥ (1− ω)⇒ (1− ω)2 ≥ 1⇒ ρ(Lω)

Hence, in order for SOR to converge we need to have 0 < ω < 2. For our purposes we use
ω = 1.4.

A.2 Ions dynamics and relaxation times, linear regime - slit
channel case

The following section corresponds to the analytical derivations carried out by Ivan Palaia to
estimate the electrolyte relaxation time, in the linear regime, in a slit channel. The corre-
sponding numerical comparisons are discussed in Section 5.2.

The dynamics is determined by the Nernst-Planck drift-diffusion equations,

∂ρ±
∂t

= −D ∂

∂x

(
−∂ρ±
∂x
∓ βeρ±

∂ψ

∂x

)
(A.11)

The electric potential is linked to the volumic density of charge ρf = e(ρ+ − ρ−) through
the Poisson equation

−∇2ψ =
ρf
εrε0

(A.12)

The fact that ions are confined within the two slabs of the capacitor imposes that the
current of cations and anions at +L/2 and −L/2 be vanishing:

−∂ρ±
∂x

(−L/2, t)∓ βeρ±(−L/2, t)∂ψ
∂x

(−L/2, t) = 0

−∂ρ±
∂x

(+L/2, t)∓ βeρ±(+L/2, t)
∂ψ

∂x
(+L/2, t) = 0

(A.13)

Finally, the potential must be continuous between slab and solution, so

ψ(±L/2, t) = ±V (t) (A.14)
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Eq. A.11 can be linearised around the equilibrium values of ψ and ρ± when the voltage
source is off: namely, ψ = 0 and ρ± = ns, ns being the uniform initial concentration of the
two ionic species (salt concentration). The linearisation will give accurate results as long as
|ψ(x, t)| � (βe)−1 and |ρ±(x, t)−ns| � ns during the evolution of the system; these conditions
logically translate into |V (t)| � (βe)−1 and |ρf (x, t)| � 2nse, respectively. Subtracting the
linearised equation for ρ− from the linearised equation for ρ+ yields the so-called Debye-
Falkenhagen equation for ρf :

∂ρf
∂t

= D

(
∂2ρf
∂x2

+ 2βe2ns
∂2ψ

∂x2

)
(A.15)

Using Eq. A.12, we get
∂ρf
∂t

= D

(
∂2ρf
∂x2

− κ2ρf

)
(A.16)

We now make the equations adimensional: we measure lengths in units of L/2, times in
units of LλD

2D , potentials in units of 1
βe , electric charge density in units of 2ens, and denote

ε the adimensional ratio 2λD
L = 2

κL . Note that ε can but need not be a small quantity.
From now onwards, x and t will denote the adimensional coordinates, ρf (x, t) and ψ(x, t) will
be adimensional functions of adimensional coordinates, and ε will be the only adimensional
parameter of the system. Eq. A.16 can be rewritten as

ε
∂ρf
∂t

= ε2
∂2ρf
∂x2

− ρf (A.17)

The Poisson equation reads

−ε2∂
2ψ

∂x2
= ρf (A.18)

The boundary condition given in Eq. A.13 can be written in terms of the charge density
upon linearization; its dimensionless version reads

−∂ρf
∂x

(±1, t)− ∂ψ

∂x
(±1, t) = 0 (A.19)

Finally, boundary condition given in Eq. A.14 still reads

ψ(±1, t) = ±V (t) (A.20)

We present two equivalent derivations of the exact relaxation times in the linear regime:
in the first one we make use of the Laplace transform to solve the PNP equation, in the second
one we start from an ansatz about its solution and work in the time domain.

A.2.0.1 Laplace domain

Eq. A.17 can be easily solved by using Laplace transforms (as in [42]), that we denote by hats
and define as follows:

ρ̂f (x, s) = L{ρf (x, t)} =

∫ ∞
0

ρf (x, t) e−st dt (A.21)
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In the Laplace domain, knowing that ρf (x, 0) = 0 since we start from a discharged EDLC,
Eq. A.17 reads

1 + εs

ε2
ρ̂f =

∂2ρ̂f
∂x2

(A.22)

Any x-antisymmetric solution will be of the type

ρ̂f (x, s) = A(s) sinh(kx) (A.23)

where k is in principle any of the two solutions of the equation

k2 =
1 + εs

ε2
(A.24)

In the following, we will always assume k to be the solution with positive imaginary part
(thus operating a branch cut of the square-root function along the positive real axis) and
we will see in a while that the complementary choice gives the same results. Using the the
Laplace-domain version of Eq. A.18, one gets the general form of ψ̂. Fixing the null-potential
plane at x = 0, and imposing boundary conditions of Eq. A.19 and A.20, again, in their
Laplace-domain version, the following result can be obtained:

ψ̂(x, s) =
sinh(kx) + xk(ε2k2 − 1) cosh(k)

sinh(k) + k(ε2k2 − 1) cosh(k)
V̂ (s) (A.25)

ρ̂f (x, s) = − ε2k2 sinh(kx)

sinh(k) + k(ε2k2 − 1) cosh(k)
V̂ (s) (A.26)

Other interesting adimensional quantities are the superficial density of charge σ(t) on the
left plate, expressed in unites of 2e

L βe2

εrε0

, the integrated charge density Q(t) =
∫ 0
−1 ρf (x, t) dx,

of course in units of 2nseL/2 = eL

2λ2D
βe2

εrε0

, and the electric field E(0, t) at x = 0, in units of

2
Lβe . Their Laplace transforms read

σ̂(s) = −∂ψ̂
∂x

(−1, s) (A.27)

= −k coth(k)
ε2k2

1 + k(ε2k2 − 1) coth(k)
V̂ (s)

Q̂(s) =

∫ 0

−1
ρ̂(x, s) dx (A.28)

=
tanh(k2 )

k

ε2k2

1 + k(ε2k2 − 1) coth(k)
V̂ (s)

Ê(0, s) = −∂ψ̂
∂x

(0, s) (A.29)

=

[
tanh(k2 )

ε2k
− k coth(k)

]
ε2k2

1 + k(ε2k2 − 1) coth(k)
V̂ (s)
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Note that these three quantities satisfy exactly Gauss’ theorem, in the form

σ̂(s) +
1

ε2
Q̂(s) = Ê(0, s) (A.30)

All these expressions for Laplace transforms of real observables are invariant under the
transformation k → −k, meaning that considering the second solution of Eq. A.24 gives the
exact same results.

To study the time relaxation of the system to equilibrium, we recall that by the Bromwich-
Mellin inversion formula

ρf (x, t) = L−1{ρ̂(x, s)} =

∫ S+i∞

S−i∞
ρ̂(x, s) est ds (A.31)

for some real S such that ρ̂(x, s) has no pole lying on the right of S. We observe that, if the
integrand function is such that its integral over the semi-circumference of infinite radius in a
left half-plane goes to zero, the integral amounts to the sum of the residues of the integrand
itself. Hence, each non-zero pole of the function ρ̂(x, s) will contribute to the inverse Laplace
transform with a term esnt Resρ̂(x,s)(sn). The non-zero poles of ρ̂, σ̂, Q̂ or Ê0 are thus the
relaxation rates of our system.

For a step potential V (t) = v for t > 0, the non-zero poles of functions in Eq. A.25 to
A.29 all coincide. Indeed, such quantities can all be expressed as products of entire functions
(except in 0) times the following H(s):

H(s) =
ε2k2

1 + k(ε2k2 − 1) coth(k)
=

1 + εs

1 + s
√

1 + εs coth
(√

1+εs
ε

) (A.32)

The same branch cut introduced before for the square root is used.
We denote the poles of H(s) by sn, with n ∈ {0, 1, 2...}, and we order them such that the

highest their index n, the most distant they are from the origin. They all lie on the negative
real axis and are all of order 1. To identify them, we analyse first the case s < −1

ε and then
the case s > −1

ε ; notice that s = −1
ε is not a pole but a removable singularity.

In the case s < −1
ε ,
√

1 + εs = iy(s) with y real and positive. Finding the zeroes of
Eq. A.32 amounts therefore to finding the roots of the transcendental equation

tan

(
y(s)

ε

)
=
y(s)

ε

(
y(s)2 + 1

)
(A.33)

They can be easily found graphically and numerically and they are included in the interval
επn < yn < επ(n+ 1

2), with n ≥ 1 if ε ≤ 1√
3
or n ≥ 0 if ε > 1√

3
. This corresponds to poles sn

such that

−1

ε
− επ2

(
n+

1

2

)2

< sn < −
1

ε
− επ2n2 (A.34)

with

n ≥ 1, if ε ≤ 1√
3

n ≥ 0, if ε > 1√
3

(A.35)
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Figure A.1 – On the left, poles sn and corresponding relaxation times τn for ε = 0.1; the first pole
is s0 = −1.057 and the longest relaxation time is τ0 = −s−10 = 0.946. On the right, the same thing
for ε = 10; in this case the first pole is s0 = −24.693 = −10.008π

2

4 and the longest relaxation time is
τ0 = −s−10 = 0.04050.

As n→∞, sn approaches the left extremum of the interval and scales as n2.
In the case s > −1

ε , we take
√

1 + εs = z(s) with z real and positive. Now, finding the
zeroes of the denominator of H(s) amounts to finding the roots of another transcendental
equation:

tanh

(
z(s)

ε

)
= −z(s)

ε

(
z(s)2 − 1

)
(A.36)

If ε ≤ 1√
3
, this equation has only one root −1

ε < s0 < 0. If ε > 1√
3
, it has no roots.

Summarising, the infinitely many poles sn of quantities in Eq. A.25 to A.29 are to be
found as follows. For n ≥ 1, the poles sn are the roots of Eq. A.33 over the intervals Eq. A.34;
for n = 0, the pole s0 corresponds to the root of Eq. A.33 over the interval −1

ε − επ2

4 < s < −1
ε

if ε ≥ 1√
3
, and to the root of Eq. A.36 if ε < 1√

3
.

Studying numerically the value of these relaxation rates, one can identify two limits. When
ε � 1, as in [42], s0 ∼ −1, so the slowest time scale τ0 = −s−1

0 tends to 1 (in dimensioned
time LλD

2D ); all the other sn lie on the left of −1
ε , corresponding to infinitely many very

short relaxation times τn, smaller than or of the order of ε (in dimensioned time λ2D
D ) and

accumulating around 0. When ε� 1, s0 ∼ −επ
2

4 , so the slowest time scale τ0 tends to 4
π2ε

(in
dimensioned time 4L2

4π2D
); 0 is again an accumulation point for the other time scales τn. For

ε = 0.1 and 10, the first few poles sn and time scales τn are represented in Fig. A.1.
This derivation, although with a much heavier notation, can be found in [231], whose au-

thors arrived independently to the same results.
Finally, computing explicitly the residue

ResH(s)(sn) =
2sn(1 + εsn)

3− s2
n

(A.37)
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allows to retrieve immediately expressions such as

ρf (x, t) = −v sinh x
ε

sinh 1
ε

− v
∞∑
n=0

2(1 + εsn)

3− s2
n

sinh
√

1+εsn
ε2

x

sinh
√

1+εsn
ε2

esnt (A.38)

which can be shown to be equivalent to Eq. 40 in Ref. 231.

A.2.0.2 Time domain

We here make the ansatz that potential ψ(x, t) and electric density ρf (x, t) relax to equilibrium
as

ψ(x, t) = v
sinh

(
x
ε

)
sinh

(
1
ε

) + v
∞∑
n=0

bn(x) esnt (A.39)

ρf (x, t) = −v sinh
(
x
ε

)
sinh

(
1
ε

) + v
∞∑
n=0

Bn(x) esnt (A.40)

with Bn(x) = −ε2b′′n(x) by Eq. A.18, and sn real. Putting Eq. A.40 in Eq. A.17 and enforcing
asymmetry gives

Bn(x) = cn sinh

(√
1 + εsn
ε

x

)
(A.41)

This expression can be integrated to get the corresponding bn(x). Fixing the gauge ψ(0) = 0

and imposing Eq. A.19 one finds

bn(x) = −cn

sinh
(√

1+εsn
ε x

)
1 + εsn

+ x
sn cosh

(√
1+εsn
ε

)
√

1 + εsn

 (A.42)

Finally, Eq. A.20 gives, for any n, either cn = 0 or

1 + sn
√

1 + εsn coth

(√
1 + εsn
ε

)
= 0 (A.43)

which is exactly the defining equation for the poles of Eq. A.32. Notice that we have taken the
same branch cut for the square root as in the previous section; when s < −1

ε the hyperbolic
cotangent has imaginary argument and a situation like the one of Eq. A.33 is recovered
(infinitely many solutions), while when s > −1

ε the situation is analogous to Eq. A.36 (one or
no solution, depending on the value of ε).

An approximation for s0 can also be found in a simpler way by assuming a monoexpo-
nential relaxation. This leads to the correct B0(x), as in Eq. A.41, and to the following
approximate version of

1 + s0 coth

√
1 + εs0

ε
= 0 (A.44)

which is correct in the small ε limit, when s0 is well separated from the other relaxation rates.
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A.3 Ions dynamics and relaxation times - cylindrincal channel
case

The following section corresponds to the analytical derivations carried out by Ivan Palaia to
estimate the electrolyte relaxation time, in the linear regime, in a coaxial cylindrical channel.
The corresponding numerical comparisons are discussed in Section 5.3.

The Debye-Falkenhagen equation for charge, equivalent to Eq. A.16 reads

∂ρf
∂t

= D

[
1

r

∂

∂r

(
r
∂ρf
∂r

)
− κ2ρf

]
(A.45)

We here use the same nondimensional units as in Section A.2, choosing as reference length
L = R2 − R1. The two adimensional parameters that describe the system are now ε = 2λD

L

and η = 2R1
L . Now Eq. A.45 reads

ε
∂ρf
∂t

= ε2
1

r

∂

∂r

(
r
∂ρf
∂r

)
− ρf (A.46)

In terms of the Laplace transform of the charge density, ρ̂(r, s), this becomes

k2ρ̂ =
1

r
ρf +

∂2ρf
∂r2

(A.47)

In cylindrical coordinates, boundary conditions of Eq. A.19 and A.20 read

∂ρf
∂r

(η) +
∂ψ

∂r
(η) = 0 (A.48)

∂ρf
∂r

(η + 2) +
∂ψ

∂r
(η + 2) = 0 (A.49)

ψ(η) = −V̂ (s) (A.50)

ψ(η + 2) = V̂ (s) (A.51)

Solving for the charge density gives

ρ̂(r, s) =

− 2k3V̂ (s)ε2
(
ηI1(kη)K0(kr)− (η + 2)I1(k(η + 2))K0(kr)

+ (ηK1(kη)− (η + 2)K1(k(η + 2))) I0(kr)

)/
[
k

(
ηI1(kη)

(
(η + 2)k log

(
η

η + 2

)(
k2ε2 − 1

)
K1(k(η + 2))

+K0(k(η + 2))

)
+ (η + 2)I1(k(η + 2))

(
2ηk coth−1(η + 1)

(
k2ε2 − 1

)
K1(kη) +K0(kη)

)
+ ηI0(k(η + 2))K1(kη) + (η + 2)I0(kη)K1(k(η + 2))

)
− 2

]
(A.52)
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Figure A.2 – In continuous lines, τ as a function of ε, for different values of η. In dotted blue lines,
the circuit-model approximation for τ (Eq. A.57), for the same values of η.

Eq. A.52 gives the correct steady state behavior at infinite time, for a step applied
potential. It also tends to Eq. A.26 as η →∞.

As before, we can retrieve at least numerically the poles of this function. Starting from
η → ∞ and going toward η → 0, one can see that a slight curvature splits each zero of
Eq. A.32 into two zeros with a pole in between. These poles sn correspond to the relaxation
rates of the system. In Fig. A.2 we plot the slowest timescale τ0 = s−1

0 as a function of ε, for
different values of η.

For ε � 1, the relaxation process is diffusive: τ0 = 1
a2ε

, or L2

4a2D
in physical units. For

arbitrary η, a is given by the solution of

I1 (a(η + 2))K1 (aη)− I1 (aη)K1 (a(η + 2)) = 0 (A.53)

and it is equal to π/2 in the planar limit and to 3.67049... in the η → 0 limit. It represents a
purely geometrical effect of curvature in diffusion problems, see for instance [? ].

For ε � η � 1, the double layer width is smaller than the radius of curvature and the
cylinders appear as locally flat. In this regime τ is constant with respect to ε, as in the planar
case, but is value crucially depends on η. For η � ε � 1, the double layer is oddly defined
around the inner cylinder.

A simple circuit model explains well the whole η � 1 and ε � 1 regime. We model
each charged cylinder with its double layer (ε � 1) as a regular cylindrical capacitor, whose
electrodes are at distance ε. The capacitance (per unit length), in units of 2πε0εr, turns out
to be

1

ln η+ε
η

(A.54)

for the inner cylinder, and
1

ln 2+η
2+η−ε

(A.55)

for the outer cylinder. We model the whole ionic solution, as a resistance with conductivity
2nsβDe

2. Assuming a certain potential difference across the resistance, one can derive the
electric field from Gauss’ theorem, in cylindrical geometry. Ohm’s law then gives the resistance
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(per unit inverse length), that measured in unit of λDL
4πε0εrD

reads

ε
ln(2 + η)

ln(η)
(A.56)

We compute the characteristic time of the circuit as the product of this resistance and the
total capacitance. The result is

τ =
ε ln
(

2+η
η

)
ln
(

(η+2)(η+ε)
η(η−ε+2)

) (A.57)

This approximation performs spectacularly in the whole regime ε� 1 (see Fig. A.2).

— 145 —



Bibliography

[1] Dekker, C. Solid-state nanopores. Nature Nanotechnology, 2(4):209–215, 2007. URL https:
//www.nature.com/articles/nnano.2007.27. Cited on page 1

[2] Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J. & Golovchenko, J. A. Ion-beam
sculpting at nanometre length scales. Nature, 412(6843):166–169, 2001. URL https://www.
nature.com/articles/35084037. Cited on page 1

[3] Choi, W., Ulissi, Z. W., Shimizu, S. F. E., Bellisario, D. O., Ellison, M. D. & Strano, M. S.
Diameter-dependent ion transport through the interior of isolated single-walled carbon nan-
otubes. Nature Communications, 4:2397, 2013. Cited on page 1

[4] Siria, A., Poncharal, P., Biance, A.-L., Fulcrand, R., Blase, X., Purcell, S. T. & Bocquet,
L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nan-
otube. Nature, 494(7438):455–458, 2013. URL http://www.nature.com/nature/journal/
v494/n7438/full/nature11876.html?WT.ec_id=NATURE-20130228. Cited on pages 1 & 62

[5] Zevenbergen, M. A. G., Wolfrum, B. L., Goluch, E. D., Singh, P. S. & Lemay, S. G. Fast
Electron-Transfer Kinetics Probed in Nanofluidic Channels. Journal of the American Chemical
Society, 131(32):11471–11477, 2009. URL http://dx.doi.org/10.1021/ja902331u. Cited on
pages 1, 8, & 16

[6] Singh, P. S., Kätelhön, E., Mathwig, K., Wolfrum, B. & Lemay, S. G. Stochasticity in Single-
Molecule Nanoelectrochemistry: Origins, Consequences, and Solutions. ACS Nano, 6(11):9662–
9671, 2012. URL https://doi.org/10.1021/nn3031029. Cited on page 1

[7] Hüske, M., Stockmann, R., Offenhäusser, A. & Wolfrum, B. Redox cycling in nanoporous
electrochemical devices. Nanoscale, 6(1):589–598, 2014. Cited on page 1

[8] Chen, S., Bomer, J. G., Carlen, E. T. & van den Berg, A. Al2o3/Silicon NanoISFET with Near
Ideal Nernstian Response. Nano Letters, 11(6):2334–2341, 2011. URL https://doi.org/10.
1021/nl200623n. Cited on page 1

[9] Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chemical Society Reviews,
39(3):1073–1095, 2010. URL https://pubs.rsc.org/en/content/articlelanding/2010/
cs/b909366b. Cited on pages iv, 2, 7, & 24

[10] Eijkel, J. C. T. & Berg, A. v. d. Nanofluidics: what is it and what can we expect from
it? Microfluidics and Nanofluidics, 1(3):249–267, 2005. URL https://doi.org/10.1007/
s10404-004-0012-9. Cited on page 2

[11] Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanoflu-
idic transport. Nature Nanotechnology, 4(11):713–720, 2009. URL http://www.nature.
com.accesdistant.upmc.fr/nnano/journal/v4/n11/full/nnano.2009.332.html. Cited on
page 2

[12] Plecis, A., Schoch, R. B. & Renaud, P. Ionic transport phenomena in nanofluidics: Experimental
and theoreitical study of the exclusion-enrichment effect on a chip. Nano Letters, 5(6):1147–
1155, 2005. URL https://doi.org/10.1021/nl050265h. Cited on page 2

— 146 —

https://www.nature.com/articles/nnano.2007.27
https://www.nature.com/articles/nnano.2007.27
https://www.nature.com/articles/35084037
https://www.nature.com/articles/35084037
http://www.nature.com/nature/journal/v494/n7438/full/nature11876.html?WT.ec_id=NATURE-20130228
http://www.nature.com/nature/journal/v494/n7438/full/nature11876.html?WT.ec_id=NATURE-20130228
http://dx.doi.org/10.1021/ja902331u
https://doi.org/10.1021/nn3031029
https://doi.org/10.1021/nl200623n
https://doi.org/10.1021/nl200623n
https://pubs.rsc.org/en/content/articlelanding/2010/cs/b909366b
https://pubs.rsc.org/en/content/articlelanding/2010/cs/b909366b
https://doi.org/10.1007/s10404-004-0012-9
https://doi.org/10.1007/s10404-004-0012-9
http://www.nature.com.accesdistant.upmc.fr/nnano/journal/v4/n11/full/nnano.2009.332.html
http://www.nature.com.accesdistant.upmc.fr/nnano/journal/v4/n11/full/nnano.2009.332.html
https://doi.org/10.1021/nl050265h


Bibliography

[13] Schasfoort, R. B. M., Schlautmann, S., Hendrikse, J. & Berg, A. v. d. Field-Effect Flow
Control for Microfabricated Fluidic Networks. Science, 286(5441):942–945, 1999. URL
http://science.sciencemag.org/content/286/5441/942. Cited on pages 2 & 7

[14] Karnik, R., Fan, R., Yue, M., Li, D., Yang, P. & Majumdar, A. Electrostatic Control of Ions
and Molecules in Nanofluidic Transistors. Nano Letters, 5(5):943–948, 2005. URL https:
//doi.org/10.1021/nl050493b. Cited on pages 2 & 7

[15] Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of Ionic Current
in a Nanofluidic Diode. Nano Letters, 7(3):547–551, 2007. URL https://doi.org/10.1021/
nl062806o. Cited on pages 2 & 7

[16] Siwy, Z. & Fulinski, A. Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters,
89(19):198103, 2002. URL https://link.aps.org/doi/10.1103/PhysRevLett.89.198103.
Cited on pages 2 & 7

[17] Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific
transport through the AQP1 water channel. Nature, 414(6866):872–878, 2001. Cited on page 2

[18] Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A. & Fujiyoshi,
Y. Structural determinants of water permeation through aquaporin-1. Nature, 407(6804):599–
605, 2000. Cited on page 2

[19] Chan, D. Y. C. & Horn, R. G. The drainage of thin liquid films between solid surfaces. The
Journal of Chemical Physics, 83(10):5311–5324, 1985. URL https://aip.scitation.org/
doi/abs/10.1063/1.449693. Cited on page 2

[20] Georges, J. M., Millot, S., Loubet, J. L. & Tonck, A. Drainage of thin liquid films between
relatively smooth surfaces. The Journal of Chemical Physics, 98(9):7345–7360, 1993. URL
https://aip.scitation.org/doi/abs/10.1063/1.465059. Cited on page 2

[21] Raviv, U. & Klein, J. Fluidity of Bound Hydration Layers. Science, 297(5586):1540–1543, 2002.
URL http://science.sciencemag.org/content/297/5586/1540. Cited on page 2

[22] Li, T.-D., Gao, J., Szoszkiewicz, R., Landman, U. & Riedo, E. Structured and viscous water in
subnanometer gaps. Physical Review B, 75(11):115415, 2007. URL https://link.aps.org/
doi/10.1103/PhysRevB.75.115415. Cited on page 2

[23] Maali, A., Cohen-Bouhacina, T., Couturier, G. & Aimé, J.-P. Oscillatory Dissipation of a Simple
Confined Liquid. Physical Review Letters, 96(8):086105, 2006. URL https://link.aps.org/
doi/10.1103/PhysRevLett.96.086105. Cited on pages 2 & 3

[24] Becker, T. & Mugele, F. Nanofluidics: Viscous Dissipation in Layered Liquid Films.
Physical Review Letters, 91(16):166104, 2003. URL https://link.aps.org/doi/10.1103/
PhysRevLett.91.166104. Cited on pages 2 & 3

[25] Thomas, J. A. & McGaughey, A. J. H. Water Flow in Carbon Nanotubes: Transition to
Subcontinuum Transport. Physical Review Letters, 102(18):184502, 2009. URL https://
link.aps.org/doi/10.1103/PhysRevLett.102.184502. Cited on page 3

[26] Leng, Y. & Cummings, P. T. Fluidity of Hydration Layers Nanoconfined between Mica Surfaces.
Physical Review Letters, 94(2):026101, 2005. URL https://link.aps.org/doi/10.1103/
PhysRevLett.94.026101. Cited on page 3

— 147 —

http://science.sciencemag.org/content/286/5441/942
https://doi.org/10.1021/nl050493b
https://doi.org/10.1021/nl050493b
https://doi.org/10.1021/nl062806o
https://doi.org/10.1021/nl062806o
https://link.aps.org/doi/10.1103/PhysRevLett.89.198103
https://aip.scitation.org/doi/abs/10.1063/1.449693
https://aip.scitation.org/doi/abs/10.1063/1.449693
https://aip.scitation.org/doi/abs/10.1063/1.465059
http://science.sciencemag.org/content/297/5586/1540
https://link.aps.org/doi/10.1103/PhysRevB.75.115415
https://link.aps.org/doi/10.1103/PhysRevB.75.115415
https://link.aps.org/doi/10.1103/PhysRevLett.96.086105
https://link.aps.org/doi/10.1103/PhysRevLett.96.086105
https://link.aps.org/doi/10.1103/PhysRevLett.91.166104
https://link.aps.org/doi/10.1103/PhysRevLett.91.166104
https://link.aps.org/doi/10.1103/PhysRevLett.102.184502
https://link.aps.org/doi/10.1103/PhysRevLett.102.184502
https://link.aps.org/doi/10.1103/PhysRevLett.94.026101
https://link.aps.org/doi/10.1103/PhysRevLett.94.026101


Bibliography

[27] Bocquet, L. & Barrat, J.-L. Flow boundary conditions from nano- to micro-scales. Soft Matter,
3(6):685–693, 2007. URL https://pubs.rsc.org/en/content/articlelanding/2007/sm/
b616490k. Cited on page 3

[28] Joly, L., Ybert, C., Trizac, E. & Bocquet, L. Liquid friction on charged surfaces: From hy-
drodynamic slippage to electrokinetics. The Journal of Chemical Physics, 125(20):204716–
204716–14, 2006. URL http://jcp.aip.org/resource/1/jcpsa6/v125/i20/p204716_s1?
isAuthorized=no. Cited on pages 3 & 12

[29] Saugey, A., Joly, L., Ybert, C., Barrat, J. L. & Bocquet, L. Diffusion in pores and its dependence
on boundary conditions. Journal of Physics: Condensed Matter, 17(49):S4075, 2005. URL
http://stacks.iop.org/0953-8984/17/i=49/a=005. Cited on page 3

[30] Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. Spatial cooperativity in soft
glassy flows. Nature, 454(7200):84–87, 2008. URL https://www.nature.com/articles/
nature07026. Cited on page 3

[31] J. H Masliyah & S. Bhattacharjee. Electrokinetic and Colloid Transport Phenomena. New York:
Wiley, new york: wiley édition, 2006. Cited on page 4

[32] Henry, D. C. The Cataphoresis of Suspended Particles. Part I. The Equation of Cataphoresis.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
133(821):106–129, 1931. URL http://rspa.royalsocietypublishing.org/content/133/
821/106. Cited on page 5

[33] H. A. Pohl. Dielectrophresis. Cambridge University Press, Cambridge UK, 1978. Cited on
page 5

[34] G. Karniadakis, A. Beskok & N. Aluru. Microflows and Nanoflows: Fundamentals and
Simulation. New York: Springer, 2005. Cited on page 6

[35] Al-Jarro, A., Paul, J., Thomas, D. W. P., Crowe, J., Sawyer, N., Rose, F. R. A. & Shakesheff,
K. M. Direct calculation of Maxwell stress tensor for accurate trajectory prediction during
DEP for 2d and 3d structures. Journal of Physics D: Applied Physics, 40(1):71, 2007. URL
http://stacks.iop.org/0022-3727/40/i=1/a=S11. Cited on page 6

[36] Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Reviews of Modern
Physics, 80(3):839–883, 2008. URL https://link.aps.org/doi/10.1103/RevModPhys.80.
839. Cited on page 7

[37] Stein, D., Kruithof, M. & Dekker, C. Surface-Charge-Governed Ion Transport in Nanofluidic
Channels. Physical Review Letters, 93(3):035901, 2004. URL https://link.aps.org/doi/
10.1103/PhysRevLett.93.035901. Cited on page 7

[38] Bouzigues, C. I., Tabeling, P. & Bocquet, L. Nanofluidics in the Debye Layer at Hydrophilic and
Hydrophobic Surfaces. Physical Review Letters, 101(11):114503, 2008. URL https://link.
aps.org/doi/10.1103/PhysRevLett.101.114503. Cited on page 7

[39] Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F. & Dekker, C. Fast DNA
Translocation through a Solid-State Nanopore. Nano Letters, 5(7):1193–1197, 2005. URL
http://dx.doi.org/10.1021/nl048030d. Cited on page 7

[40] Lathrop, D. K., Ervin, E. N., Barrall, G. A., Keehan, M. G., Kawano, R., Krupka, M. A., White,
H. S. & Hibbs, A. H. Monitoring the Escape of DNA from a Nanopore Using an Alternating
Current Signal. Journal of the American Chemical Society, 132(6):1878–1885, 2010. URL
http://dx.doi.org/10.1021/ja906951g. Cited on page 7

— 148 —

https://pubs.rsc.org/en/content/articlelanding/2007/sm/b616490k
https://pubs.rsc.org/en/content/articlelanding/2007/sm/b616490k
http://jcp.aip.org/resource/1/jcpsa6/v125/i20/p204716_s1?isAuthorized=no
http://jcp.aip.org/resource/1/jcpsa6/v125/i20/p204716_s1?isAuthorized=no
http://stacks.iop.org/0953-8984/17/i=49/a=005
https://www.nature.com/articles/nature07026
https://www.nature.com/articles/nature07026
http://rspa.royalsocietypublishing.org/content/133/821/106
http://rspa.royalsocietypublishing.org/content/133/821/106
http://stacks.iop.org/0022-3727/40/i=1/a=S11
https://link.aps.org/doi/10.1103/RevModPhys.80.839
https://link.aps.org/doi/10.1103/RevModPhys.80.839
https://link.aps.org/doi/10.1103/PhysRevLett.93.035901
https://link.aps.org/doi/10.1103/PhysRevLett.93.035901
https://link.aps.org/doi/10.1103/PhysRevLett.101.114503
https://link.aps.org/doi/10.1103/PhysRevLett.101.114503
http://dx.doi.org/10.1021/nl048030d
http://dx.doi.org/10.1021/ja906951g


Bibliography

[41] Green, N. G. & Morgan, H. Dielectrophoretic separation of nano-particles. Journal of Physics
D: Applied Physics, 30(11):L41, 1997. URL http://stacks.iop.org/0022-3727/30/i=11/a=
001. Cited on page 7

[42] Bazant, M. Z. & Squires, T. M. Induced-Charge Electrokinetic Phenomena: Theory and Mi-
crofluidic Applications. Physical Review Letters, 92(6):066101, 2004. URL http://link.aps.
org/doi/10.1103/PhysRevLett.92.066101. Cited on pages 8, 106, 110, 113, 138, & 141

[43] Bazant, M. Z. & Squires, T. M. Induced-charge electrokinetic phenomena. Current Opinion
in Colloid & Interface Science, 15(3):203–213, 2010. URL http://www.sciencedirect.com/
science/article/pii/S135902941000004X. Cited on page 8

[44] Wu, Z. & Li, D. Mixing and flow regulating by induced-charge electrokinetic flow in a microchan-
nel with a pair of conducting triangle hurdles. Microfluidics and Nanofluidics, 5(1):65–76, 2007.
URL http://link.springer.com/article/10.1007/s10404-007-0227-7. Cited on page 8

[45] Wu, Z. & Li, D. Micromixing using induced-charge electrokinetic flow. Electrochimica
Acta, 53(19):5827–5835, 2008. URL http://www.sciencedirect.com/science/article/
pii/S0013468608003939. Cited on page 8

[46] Jain, M., Yeung, A. & Nandakumar, K. Efficient Micromixing Using Induced-Charge Electroos-
mosis. Journal of Microelectromechanical Systems, 18(2):376–384, 2009. Cited on page 8

[47] Rahul Dhopeshwarkar, Dzmitry Hlushkou, Mark Nguyen, Ulrich Tallarek & Richard M. Crooks.
Electrokinetics in Microfluidic Channels Containing a Floating Electrode. Journal of American
chemical Society, 130:10480–10481, 2008. Cited on page 8

[48] Yalcin, S. E., Sharma, A., Qian, S., Joo, S. W. & Baysal, O. On-demand particle enrichment
in a microfluidic channel by a locally controlled floating electrode. Sensors and Actuators B:
Chemical, 153(1):277–283, 2011. URL http://www.sciencedirect.com/science/article/
pii/S0925400510008324. Cited on page 8

[49] Pullman, B. L’Atome dans l’histoire de la pensée humaine. Fa-
yard édition, 1995. URL https://www.fayard.fr/sciences-humaines/
latome-dans-lhistoire-de-la-pensee-humaine-9782213594637. Cited on page 8

[50] Nye, M. J. Molecular reality: a perspective on the scientific work of Jean Perrin. Macdonald,
1st édition, 1972. Cited on pages 8 & 9

[51] Lindley, D. Boltzmanns Atom: The Great Debate That Launched A Revolution In Physics.
Simon and Schuster, 2nd édition, 2015. Cited on page 9

[52] Einstein, A. über die von der molekularkinetischen theorie der warme geforderte bewegung von in
ruhenden flussigkeiten suspendierten teilchen. Annalen der Physik, 322(8):549–560, 1905. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053220806. Cited on page 9

[53] Einstein, A. Elementare theorie der Brownschen Bewegung. Zeitschrift für elektrochemie
und angewandte physikalische chemie, 14(17):235–239, 1908. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/bbpc.19080141703. Cited on page 9

[54] Einstein, A. Méthode pour la détermination de valeurs statistiques d’observations concernant
des grandeurs soumises à des fluctuations irréguliéres. Archives des Sciences, 37, 1914. URL
http://adsabs.harvard.edu/abs/1914ArS....37..254E. Cited on page 9

[55] Langevin, P. Sur la théorie du mouvement Brownien. Compt. Rendus, 146:530–533, 1908. URL
https://ci.nii.ac.jp/naid/10020793023/. Cited on page 10

— 149 —

http://stacks.iop.org/0022-3727/30/i=11/a=001
http://stacks.iop.org/0022-3727/30/i=11/a=001
http://link.aps.org/doi/10.1103/PhysRevLett.92.066101
http://link.aps.org/doi/10.1103/PhysRevLett.92.066101
http://www.sciencedirect.com/science/article/pii/S135902941000004X
http://www.sciencedirect.com/science/article/pii/S135902941000004X
http://link.springer.com/article/10.1007/s10404-007-0227-7
http://www.sciencedirect.com/science/article/pii/S0013468608003939
http://www.sciencedirect.com/science/article/pii/S0013468608003939
http://www.sciencedirect.com/science/article/pii/S0925400510008324
http://www.sciencedirect.com/science/article/pii/S0925400510008324
https://www.fayard.fr/sciences-humaines/latome-dans-lhistoire-de-la-pensee-humaine-9782213594637
https://www.fayard.fr/sciences-humaines/latome-dans-lhistoire-de-la-pensee-humaine-9782213594637
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053220806
https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19080141703
https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19080141703
http://adsabs.harvard.edu/abs/1914ArS....37..254E
https://ci.nii.ac.jp/naid/10020793023/


Bibliography

[56] Schottky, W. Uber spontane stromschwankungen in verschiedenen elektrizitätsleitern. Annalen
der Physik, 362(23):541–567, 1918. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/andp.19183622304. Cited on page 10

[57] Johnson, J. B. Thermal Agitation of Electricity in Conductors. Phys. Rev., 32:97, 1928. Cited
on pages 10 & 120

[58] Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Physical Review, 32(1):110–
113, 1928. URL https://link.aps.org/doi/10.1103/PhysRev.32.110. Cited on pages 10
& 120

[59] Einstein, A. Zur Theorie der Brownschen Bewegung. Annalen der Physik, 324(2):371–381, 1906.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063240208. Cited on
page 10

[60] van Zon, R., Ciliberto, S. & Cohen, E. G. D. Power and Heat Fluctuation Theorems for Electric
Circuits. Physical Review Letters, 92(13):130601, 2004. URL https://link.aps.org/doi/
10.1103/PhysRevLett.92.130601. Cited on page 10

[61] Landauer, R. Condensed-matter physics: The noise is the signal. Nature, 392(6677):658–659,
1998. URL https://www.nature.com/articles/33551. Cited on page 11

[62] Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R. & Lutz, E. Exper-
imental verification of Landauer’s principle linking information and thermodynamics. Nature,
483(7388):187–189, 2012. URL https://www.nature.com/articles/nature10872. Cited on
page 11

[63] Bertocci, U. & Huet, F. Noise Analysis Applied to Electrochemical Systems. CORROSION,
51(2):131–144, 1995. URL http://corrosionjournal.org/doi/10.5006/1.3293585. Cited
on page 11

[64] Garcia-Morales, V. & Krischer, K. Fluctuation enhanced electrochemical reaction rates at the
nanoscale. Proceedings of the National Academy of Sciences, 107(10):4528–4532, 2010. URL
http://www.pnas.org/content/107/10/4528. Cited on page 11

[65] Marcus, R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.
i. The Journal of Chemical Physics, 24(5):966–978, 1956. URL https://aip.scitation.org/
doi/abs/10.1063/1.1742723. Cited on pages 11 & 16

[66] Lemay, S. G., Kang, S., Mathwig, K. & Singh, P. S. Single-molecule electrochemistry: present
status and outlook. Accounts of Chemical Research, 46(2):369–377, 2013. Cited on pages iv
& 12

[67] Enno Kätelhon, Kay J. Krause, Klaus Mathwig, Serge G. Lemay & Bernhard Wolfrum. Noise
Phenomena Caused by Reversible Adsorption in Nanoscale Electrochemical Devices. American
Chemical Society, 8(5):4924 – 4930, 2014. Cited on pages iv, 11, 12, & 13

[68] Marcel A. G. Zevenbergen, Pradyumna S. Singh, Edgar D. Goluch, Bernhard L. Wolfrum &
Serge G. Lemay. Stochastic Sensing of Single Molecules in a Nanofluidic Electrochemical Device.
Nano Letters, 11:2881 – 2886, 2011. Cited on page 11

[69] Magnussen, O. M. Ordered Anion Adlayers on Metal Electrode Surfaces. Chemical Reviews,
102(3):679–726, 2002. URL http://pubs.acs.org/doi/abs/10.1021/cr000069p. Cited on
pages 12 & 13

— 150 —

https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19183622304
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19183622304
https://link.aps.org/doi/10.1103/PhysRev.32.110
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063240208
https://link.aps.org/doi/10.1103/PhysRevLett.92.130601
https://link.aps.org/doi/10.1103/PhysRevLett.92.130601
https://www.nature.com/articles/33551
https://www.nature.com/articles/nature10872
http://corrosionjournal.org/doi/10.5006/1.3293585
http://www.pnas.org/content/107/10/4528
https://aip.scitation.org/doi/abs/10.1063/1.1742723
https://aip.scitation.org/doi/abs/10.1063/1.1742723
http://pubs.acs.org/doi/abs/10.1021/cr000069p


Bibliography

[70] Tripkovic, D. V., Strmcnik, D., Vliet, D. v. d., Stamenkovic, V. & Markovic, N. M. The
role of anions in surface electrochemistry. Faraday Discussions, 140(0):25–40, 2008. URL
http://pubs.rsc.org/en/content/articlelanding/2009/fd/b803714k. Cited on pages 12
& 13

[71] Morrison, F. A. & Osterle, J. F. Electrokinetic Energy Conversion in Ultrafine Capillaries.
The Journal of Chemical Physics, 43(6):2111–2115, 1965. URL http://scitation.aip.org/
content/aip/journal/jcp/43/6/10.1063/1.1697081. Cited on page 12

[72] Siria, A., Bocquet, M.-L. & Bocquet, L. New avenues for the large-scale harvesting of blue
energy. Nature Reviews Chemistry, 1:91, 2017. URL https://www.nature.com/articles/
s41570-017-0091. Cited on page 12

[73] Jouniaux, L. & Ishido, T. Electrokinetics in Earth Sciences: A Tutorial. International Journal of
Geophysics, 2012:1–16, 2012. URL http://www.hindawi.com/journals/ijge/2012/286107/.
Cited on page 12

[74] Marry, V., Dufrêche, J.-F., Jardat, M. & Turq, P. Equilibrium and electrokinetic phenomena
in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmo-
rillonite. Molecular Physics, 101(20):3111–3119, 2003. URL http://www.tandfonline.com/
doi/abs/10.1080/00268970310001626432. Cited on pages 12 & 132

[75] Qiao, R. & Aluru, N. R. Charge Inversion and Flow Reversal in a Nanochannel Electro-osmotic
Flow. Physical Review Letters, 92(19):198301, 2004. URL http://link.aps.org/doi/10.
1103/PhysRevLett.92.198301. Cited on page 12

[76] Storey, B. D. & Bazant, M. Z. Effects of electrostatic correlations on electrokinetic phenomena.
Physical Review E, 86(5):056303, 2012. URL http://link.aps.org/doi/10.1103/PhysRevE.
86.056303. Cited on page 12

[77] Schmitz, R. & Dünweg, B. Numerical electrokinetics. Journal of Physics: Condensed Matter,
24(46):464111, 2012. URL http://stacks.iop.org/0953-8984/24/i=46/a=464111. Cited on
pages 12 & 16

[78] Botan, A., Marry, V., Rotenberg, B., Turq, P. & Noetinger, B. How Electrostatics Influences
Hydrodynamic Boundary Conditions: Poiseuille and Electro-osmostic Flows in Clay Nanopores.
The Journal of Physical Chemistry C, 117(2):978–985, 2013. URL http://dx.doi.org/10.
1021/jp3092336. Cited on page 12

[79] Yoshida, H., Mizuno, H., Kinjo, T., Washizu, H. & Barrat, J.-L. Molecular dynamics simu-
lation of electrokinetic flow of an aqueous electrolyte solution in nanochannels. The Journal
of Chemical Physics, 140(21):214701, 2014. URL http://scitation.aip.org/content/aip/
journal/jcp/140/21/10.1063/1.4879547. Cited on pages 12 & 132

[80] Rotenberg, B. & Pagonabarraga, I. Electrokinetics: insights from simulation on the microscopic
scale. Molecular Physics, 111(7):827–842, 2013. URL http://www.tandfonline.com/doi/
abs/10.1080/00268976.2013.791731. Cited on page 12

[81] Pagonabarraga, I., Rotenberg, B. & Frenkel, D. Recent advances in the modelling and simula-
tion of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions.
Phys. Chem. Chem. Phys., 12(33):9566–9580, 2010. URL http://pubs.rsc.org/en/content/
articlepdf/2010/cp/c004012f. Cited on page 12

— 151 —

http://pubs.rsc.org/en/content/articlelanding/2009/fd/b803714k
http://scitation.aip.org/content/aip/journal/jcp/43/6/10.1063/1.1697081
http://scitation.aip.org/content/aip/journal/jcp/43/6/10.1063/1.1697081
https://www.nature.com/articles/s41570-017-0091
https://www.nature.com/articles/s41570-017-0091
http://www.hindawi.com/journals/ijge/2012/286107/
http://www.tandfonline.com/doi/abs/10.1080/00268970310001626432
http://www.tandfonline.com/doi/abs/10.1080/00268970310001626432
http://link.aps.org/doi/10.1103/PhysRevLett.92.198301
http://link.aps.org/doi/10.1103/PhysRevLett.92.198301
http://link.aps.org/doi/10.1103/PhysRevE.86.056303
http://link.aps.org/doi/10.1103/PhysRevE.86.056303
http://stacks.iop.org/0953-8984/24/i=46/a=464111
http://dx.doi.org/10.1021/jp3092336
http://dx.doi.org/10.1021/jp3092336
http://scitation.aip.org/content/aip/journal/jcp/140/21/10.1063/1.4879547
http://scitation.aip.org/content/aip/journal/jcp/140/21/10.1063/1.4879547
http://www.tandfonline.com/doi/abs/10.1080/00268976.2013.791731
http://www.tandfonline.com/doi/abs/10.1080/00268976.2013.791731
http://pubs.rsc.org/en/content/articlepdf/2010/cp/c004012f
http://pubs.rsc.org/en/content/articlepdf/2010/cp/c004012f


Bibliography

[82] Altmann, S., Tournassat, C., Goutelard, F., Parneix, J.-C., Gimmi, T. & Maes, N.
Diffusion-driven transport in clayrock formations. Applied Geochemistry, 27(2):463–478, 2012.
URL http://www.sciencedirect.com/science/article/pii/S0883292711004057. Cited on
page 13

[83] Hlushkou, D., Khirevich, S., Apanasovich, V., Seidel-Morgenstern, A. & Tallarek, U. Pore-Scale
Dispersion in Electrokinetic Flow through a Random Sphere Packing. Analytical Chemistry,
79(1):113–121, 2007. URL http://pubs.acs.org/doi/abs/10.1021/ac061168r. Cited on
page 13

[84] Brenner, H. & Edwards, D. Macrotransport Processes. Butterworth-Heinemann Series I.
Butterworth-Heinemann, London, 1993. Cited on pages 13 & 77

[85] Pradyumna S. Singh, Hui-Shan M. Chan, Shuo Kang & Serge G. Lemay. Stochastic Ampero-
metric Fluctuations as a Probe for Dynamic Adsorption in Nanofluidic Electrochemical Systems.
Journal of American chemical Society, 133:18289 – 18295, 2011. Cited on pages 13 & 14

[86] Marcel A. G. Zevenbergen, Pradyumna S. Singh, Edgar D. Goluch, Bernhard L. Wolfrum &
Serge G. Lemay. Electrochemical Correlation Spectroscopy in Nanofluidic Cavities. American
Chemical Society, 81:8203–8212, 2009. Cited on page 14

[87] Mathwig, K., Mampallil, D., Kang, S. & Lemay, S. G. Electrical Cross-Correlation Spec-
troscopy: Measuring Picoliter-per-Minute Flows in Nanochannels. Physical Review Letters,
109(11):118302, 2012. URL http://link.aps.org/doi/10.1103/PhysRevLett.109.118302.
Cited on page 14

[88] Meller, A., Nivon, L. & Branton, D. Voltage-Driven DNA Translocations through a Nanopore.
Physical Review Letters, 86(15):3435–3438, 2001. URL https://link.aps.org/doi/10.1103/
PhysRevLett.86.3435. Cited on page 14

[89] Auger, T., Mathe, J., Viasnoff, V., Charron, G., Di Meglio, J.-M., Auvray, L. & Montel,
F. Zero-Mode Waveguide Detection of Flow-Driven DNA Translocation through Nanopores.
Physical Review Letters, 113(2):028302, 2014. URL http://link.aps.org/doi/10.1103/
PhysRevLett.113.028302. Cited on page 14

[90] Parsons, R. The electrical double layer: recent experimental and theoretical developments.
Chemical Reviews, 90(5):813–826, 1990. URL https://pubs.acs.org/doi/abs/10.1021/
cr00103a008. Cited on page 14

[91] Kornyshev, A. A. Double-Layer in Ionic Liquids: Paradigm Change? The Journal of Physical
Chemistry B, 111(20):5545–5557, 2007. URL https://doi.org/10.1021/jp067857o. Cited
on page 15

[92] Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double Layer in Ionic Liquids: Overscreening
versus Crowding. Physical Review Letters, 106(4), 2011. URL https://link.aps.org/doi/
10.1103/PhysRevLett.106.046102. Cited on page 15

[93] di Caprio, D., Stafiej, J. & Badiali, J. P. Field theory for ionic systems. From fluctuations and
structure at a hard wall to thermodynamics. Electrochimica Acta, 48(20):2967–2974, 2003.
URL http://www.sciencedirect.com/science/article/pii/S0013468603003621. Cited on
page 15

[94] Samaj, L. & Trizac, E. Wigner-crystal formulation of strong-coupling theory for counterions
near planar charged interfaces. Physical Review E, 84(4):041401, 2011. URL https://link.
aps.org/doi/10.1103/PhysRevE.84.041401. Cited on page 15

— 152 —

http://www.sciencedirect.com/science/article/pii/S0883292711004057
http://pubs.acs.org/doi/abs/10.1021/ac061168r
http://link.aps.org/doi/10.1103/PhysRevLett.109.118302
https://link.aps.org/doi/10.1103/PhysRevLett.86.3435
https://link.aps.org/doi/10.1103/PhysRevLett.86.3435
http://link.aps.org/doi/10.1103/PhysRevLett.113.028302
http://link.aps.org/doi/10.1103/PhysRevLett.113.028302
https://pubs.acs.org/doi/abs/10.1021/cr00103a008
https://pubs.acs.org/doi/abs/10.1021/cr00103a008
https://doi.org/10.1021/jp067857o
https://link.aps.org/doi/10.1103/PhysRevLett.106.046102
https://link.aps.org/doi/10.1103/PhysRevLett.106.046102
http://www.sciencedirect.com/science/article/pii/S0013468603003621
https://link.aps.org/doi/10.1103/PhysRevE.84.041401
https://link.aps.org/doi/10.1103/PhysRevE.84.041401


Bibliography

[95] Naji, A., Kanduc, M., Forsman, J. & Podgornik, R. Perspective: Coulomb fluids-Weak coupling,
strong coupling, in between and beyond. The Journal of Chemical Physics, 139(15):150901,
2013. URL https://aip.scitation.org/doi/abs/10.1063/1.4824681. Cited on page 15

[96] Horbach, J. & Succi, S. Lattice Boltzmann versus Molecular Dynamics Simulation of Nanoscale
Hydrodynamic Flows. Physical Review Letters, 96(22):224503, 2006. URL http://link.aps.
org/doi/10.1103/PhysRevLett.96.224503. Cited on page 15

[97] Kätelhön, E., Krause, K. J., Singh, P. S., Lemay, S. G. & Wolfrum, B. Noise characteristic of
nanoscaled redox-cycling sensors: Investigations based on random walks. Journal of American
Chamical Society, 135:8874 – 8881, 2012. Cited on page 16

[98] Chandra, A. & Bagchi, B. Microscopic free energy functional for polarization fluctuations:
Generalization of Marcus-Felderhof expression. The Journal of Chemical Physics, 94(3):2258–
2261, 1991. URL https://aip.scitation.org/doi/10.1063/1.459896. Cited on page 16

[99] Karlström, G. & Halle, B. A fluctuation approach to solvation in polar fluids. The Journal of
Chemical Physics, 99(10):8056–8062, 1993. URL https://aip.scitation.org/doi/abs/10.
1063/1.465632. Cited on page 16

[100] Stenhammar, J., Linse, P. & Karlström, G. A unified treatment of polar solvation us-
ing electrostatic fluctuations. Chemical Physics Letters, 501(4):364–368, 2011. URL http:
//www.sciencedirect.com/science/article/pii/S0009261410015782. Cited on page 16

[101] Song, X., Chandler, D. & Marcus, R. A. Gaussian Field Model of Dielectric Solvation Dynamics.
The Journal of Physical Chemistry, 100(29):11954–11959, 1996. URL https://doi.org/10.
1021/jp960887e. Cited on page 16

[102] Abragam, A. The Principles of Nuclear Magnetism. International Series of Monographs on
Physics. Oxford University Press, Oxford, New York, 1983. Cited on page 16

[103] van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the elec-
trophoretic force on DNA in solid-state nanopores. Nature Physics, 5(5):347–351, 2009. URL
https://www.nature.com/articles/nphys1230. Cited on page 16

[104] Reboux, S., Capuani, F. & Frenkel, D. Lattice-Boltzmann Simulations of Ionic Current Mod-
ulation by DNA Translocation. Journal of Chemical Theory and Computation, 2(3):495–503,
2006. URL https://doi.org/10.1021/ct050340g. Cited on page 16

[105] Marconi, U. M. B. & Melchionna, S. Ionic conduction in non-uniform nanopores and DNA
translocation: a Nernst-Planck-Jacobs one-dimensional description. Molecular Physics, 111(22-
23):3493–3501, 2013. URL https://doi.org/10.1080/00268976.2013.826828. Cited on
page 16

[106] Gabrielli, C., Huet, F. & Keddam, M. Fluctuations in electrochemical systems. I. General theory
on diffusion limited electrochemical reactions. The Journal of Chemical Physics, 99(9):7232–
7239, 1993. URL https://aip.scitation.org/doi/10.1063/1.465440. Cited on page 16

[107] Hassibi, A., Navid, R., Dutton, R. W. & Lee, T. H. Comprehensive study of noise processes
in electrode electrolyte interfaces. Journal of Applied Physics, 96(2):1074–1082, 2004. URL
https://aip.scitation.org/doi/10.1063/1.1755429. Cited on page 16

[108] Kätelhön, E., Krause, K. J., Singh, P. S., Lemay, S. G. & Wolfrum, B. Noise Characteristics
of Nanoscaled Redox-Cycling Sensors: Investigations Based on Random Walks. Journal of
the American Chemical Society, 135(24):8874–8881, 2013. URL https://doi.org/10.1021/
ja3121313. Cited on page 16

— 153 —

https://aip.scitation.org/doi/abs/10.1063/1.4824681
http://link.aps.org/doi/10.1103/PhysRevLett.96.224503
http://link.aps.org/doi/10.1103/PhysRevLett.96.224503
https://aip.scitation.org/doi/10.1063/1.459896
https://aip.scitation.org/doi/abs/10.1063/1.465632
https://aip.scitation.org/doi/abs/10.1063/1.465632
http://www.sciencedirect.com/science/article/pii/S0009261410015782
http://www.sciencedirect.com/science/article/pii/S0009261410015782
https://doi.org/10.1021/jp960887e
https://doi.org/10.1021/jp960887e
https://www.nature.com/articles/nphys1230
https://doi.org/10.1021/ct050340g
https://doi.org/10.1080/00268976.2013.826828
https://aip.scitation.org/doi/10.1063/1.465440
https://aip.scitation.org/doi/10.1063/1.1755429
https://doi.org/10.1021/ja3121313
https://doi.org/10.1021/ja3121313


Bibliography

[109] Grün, F., Jardat, M., Turq, P. & Amatore, C. Relaxation of the electrical double layer after
an electron transfer approached by Brownian dynamics simulation. The Journal of Chemical
Physics, 120(20):9648–9655, 2004. URL http://scitation.aip.org/content/aip/journal/
jcp/120/20/10.1063/1.1718201. Cited on page 16

[110] Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on
water/electrode systems. The Journal of Chemical Physics, 102(1):511–524, 1995. URL
https://aip.scitation.org/doi/abs/10.1063/1.469429. Cited on page 17

[111] Reed, S. K., Lanning, O. J. & Madden, P. A. Electrochemical interface between an ionic liquid
and a model metallic electrode. The Journal of Chemical Physics, 126(8):084704, 2007. URL
https://aip.scitation.org/doi/abs/10.1063/1.2464084. Cited on page 17

[112] Gingrich, T. R. & Wilson, M. On the Ewald summation of Gaussian charges for the sim-
ulation of metallic surfaces. Chemical Physics Letters, 500(1):178–183, 2010. URL http:
//www.sciencedirect.com/science/article/pii/S0009261410013606. Cited on page 17

[113] Rotenberg, B., Pagonabarraga, I. & Frenkel, D. Dispersion of charged tracers in charged
porous media. EPL (Europhysics Letters), 83(3):34004, 2008. URL http://stacks.iop.
org/0295-5075/83/i=3/a=34004. Cited on pages 17, 33, 62, 63, 64, 66, 67, 69, 72, 73, & 78

[114] Levesque, M., Duvail, M., Pagonabarraga, I., Frenkel, D. & Rotenberg, B. Accounting for
adsorption and desorption in lattice Boltzmann simulations. Physical Review E, 88(1):013308,
2013. URL http://link.aps.org/doi/10.1103/PhysRevE.88.013308. Cited on pages 17,
62, 63, 64, 66, 69, 70, & 78

[115] Limbach, H. J., Arnold, A., Mann, B. A. & Holm, C. Espresso - an extensible simulation package
for research on soft matter systems. Computer Physics Communications, 174(9):704–727, 2006.
URL http://www.sciencedirect.com/science/article/pii/S001046550500576X. Cited on
pages 24 & 37

[116] Desplat, J.-C., Pagonabarraga, I. & Bladon, P. LUDWIG: A parallel Lattice-Boltzmann code
for complex fluids. Computer Physics Communications, 134(3):273–290, 2001. URL http://
www.sciencedirect.com/science/article/pii/S0010465500002058. Cited on pages 24 & 37

[117] Frisch, U., Hasslacher, B. & Pomeau, Y. Lattice - Gas Automata for the Navier - Stokes
Equation. Physical Review Letters, 56(14):1505–1508, 1986. URL https://link.aps.org/
doi/10.1103/PhysRevLett.56.1505. Cited on page 25

[118] Wolfram, S. Cellular automaton fluids 1: Basic theory. Journal of Statistical Physics, 45(3):471–
526, 1986. URL https://doi.org/10.1007/BF01021083. Cited on page 25

[119] Bhatnagar, P. L., Gross, E. P. & Krook, M. A Model for Collision Processes in Gases. I.
Small Amplitude Processes in Charged and Neutral One-Component Systems. Physical Review,
94(3):511–525, 1954. URL https://link.aps.org/doi/10.1103/PhysRev.94.511. Cited on
page 26

[120] Boltzmann, L. Vorlesungen über Gastheorie. Leipzig Johann Ambrosius Barth, 1896. URL
https://trove.nla.gov.au/work/2995281. Cited on page 26

[121] Chapman, S., Cowling, T. G. & Burnett, D. The Mathematical Theory of Non-uniform Gases:
An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases.
Cambridge University Press, 1990. Cited on pages 28 & 122

— 154 —

http://scitation.aip.org/content/aip/journal/jcp/120/20/10.1063/1.1718201
http://scitation.aip.org/content/aip/journal/jcp/120/20/10.1063/1.1718201
https://aip.scitation.org/doi/abs/10.1063/1.469429
https://aip.scitation.org/doi/abs/10.1063/1.2464084
http://www.sciencedirect.com/science/article/pii/S0009261410013606
http://www.sciencedirect.com/science/article/pii/S0009261410013606
http://stacks.iop.org/0295-5075/83/i=3/a=34004
http://stacks.iop.org/0295-5075/83/i=3/a=34004
http://link.aps.org/doi/10.1103/PhysRevE.88.013308
http://www.sciencedirect.com/science/article/pii/S001046550500576X
http://www.sciencedirect.com/science/article/pii/S0010465500002058
http://www.sciencedirect.com/science/article/pii/S0010465500002058
https://link.aps.org/doi/10.1103/PhysRevLett.56.1505
https://link.aps.org/doi/10.1103/PhysRevLett.56.1505
https://doi.org/10.1007/BF01021083
https://link.aps.org/doi/10.1103/PhysRev.94.511
https://trove.nla.gov.au/work/2995281


Bibliography

[122] Chapman, S. Vi on the law of distribution of molecular velocities, and on the theory of viscosity
and thermal conduction, in a non-uniform simple monatomic gas. Phil. Trans. R. Soc. Lond.
A, 216(538-548):279–348, 1916. URL http://rsta.royalsocietypublishing.org/content/
216/538-548/279. Cited on page 28

[123] Chapman, S. V on the kinetic theory of a gas. Part II. - A composite monatomic gas: diffu-
sion, viscosity, and thermal conduction. Phil. Trans. R. Soc. Lond. A, 217(549-560):115–197,
1918. URL http://rsta.royalsocietypublishing.org/content/217/549-560/115. Cited
on page 28

[124] Enskog, D. The numerical calculation of phenomena in fairly dense gases. Arkiv Mat. Astr.
Fys., 16, 1921. Cited on page 28

[125] Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University
Press, 2001. Cited on pages 28, 70, 124, 125, & 126

[126] Peng, G., Xi, H., Duncan, C. & Chou, S.-H. Lattice Boltzmann method on irregular meshes.
Physical Review E, 58(4):R4124–R4127, 1998. URL https://link.aps.org/doi/10.1103/
PhysRevE.58.R4124. Cited on page 28

[127] Zou, Q. & He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK
model. Physics of Fluids, 9(6):1591–1598, 1997. URL https://aip.scitation.org/doi/10.
1063/1.869307. Cited on page 32

[128] Kuron, M., Rempfer, G., Schornbaum, F., Bauer, M., Godenschwager, C., Holm, C. & de Graaf,
J. Moving charged particles in lattice Boltzmann-based electrokinetics. The Journal of
Chemical Physics, 145(21):214102, 2016. URL http://aip.scitation.org/doi/full/10.
1063/1.4968596. Cited on page 33

[129] Chen, X.-P. Applications of Lattice Boltzmann Method to Turbulent Flow Around Two-
Dimensional Airfoil. Engineering Applications of Computational Fluid Mechanics, 6(4):572–580,
2012. URL https://doi.org/10.1080/19942060.2012.11015443. Cited on page 33

[130] Meghdadi Isfahani, A. H., Tasdighi, I., Karimipour, A., Shirani, E. & Afrand, M. A joint lattice
Boltzmann and molecular dynamics investigation for thermohydraulical simulation of nano flows
through porous media. European Journal of Mechanics - B/Fluids, 55, Part 1:15–23, 2016.
URL http://www.sciencedirect.com/science/article/pii/S0997754615000989. Cited on
page 33

[131] Capuani, F., Pagonabarraga, I. & Frenkel, D. Discrete solution of the electrokinetic equations.
The Journal of Chemical Physics, 121(2):973–986, 2004. Cited on pages iv, 33, 34, & 35

[132] Warren, P. B. Electroviscous transport problems via Lattice-Boltzmann. International Journal
of Modern Physics C, 8(4):889, 1997. Cited on pages 33, 62, & 63

[133] Lowe, C. P. & Frenkel, D. The super long-time decay of velocity fluctuations in a two-dimensional
fluid. Physica A: Statistical Mechanics and its Applications, 220(3):251–260, 1995. URL http:
//www.sciencedirect.com/science/article/pii/037843719500208O. Cited on pages 33, 62,
63, & 123

[134] Lowe, C. P., Frenkel, D. & Hoef, M. A. v. d. Deviations from Fick’s law in Lorentz gases.
Journal of statistical physics, 87(5):1229–1244, 1997. URL http://www.springerlink.com/
index/P17T87T8JK707181.pdf. Cited on pages 33 & 62

— 155 —

http://rsta.royalsocietypublishing.org/content/216/538-548/279
http://rsta.royalsocietypublishing.org/content/216/538-548/279
http://rsta.royalsocietypublishing.org/content/217/549-560/115
https://link.aps.org/doi/10.1103/PhysRevE.58.R4124
https://link.aps.org/doi/10.1103/PhysRevE.58.R4124
https://aip.scitation.org/doi/10.1063/1.869307
https://aip.scitation.org/doi/10.1063/1.869307
http://aip.scitation.org/doi/full/10.1063/1.4968596
http://aip.scitation.org/doi/full/10.1063/1.4968596
https://doi.org/10.1080/19942060.2012.11015443
http://www.sciencedirect.com/science/article/pii/S0997754615000989
http://www.sciencedirect.com/science/article/pii/037843719500208O
http://www.sciencedirect.com/science/article/pii/037843719500208O
http://www.springerlink.com/index/P17T87T8JK707181.pdf
http://www.springerlink.com/index/P17T87T8JK707181.pdf


Bibliography

[135] van der Hoef, M. A. & Frenkel, D. Long-time tails of the velocity autocorrelation function in two-
and three-dimensional lattice-gas cellular automata: A test of mode-coupling theory. Physical
Review A, 41(8):4277–4284, 1990. URL http://link.aps.org/doi/10.1103/PhysRevA.41.
4277. Cited on pages 33, 62, & 123

[136] Hagen, M. H. J., Pagonabarraga, I., Lowe, C. P. & Frenkel, D. Algebraic decay of velocity
fluctuations in a confined fluid. Physical Review Letters, 78(19):3785, 1997. URL http:
//journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.3785. Cited on pages 33, 62,
& 131

[137] Merks, R., Hoekstra, A. & Sloot, P. The Moment Propagation Method for Advection–
Diffusion in the Lattice Boltzmann Method: Validation and Péclet Number Limits. Journal
of Computational Physics, 183(2):563–576, 2002. URL http://linkinghub.elsevier.com/
retrieve/pii/S0021999102972098. Cited on pages 33, 62, & 63

[138] Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd édition, 1993.
Cited on page 36

[139] Obliger, A., Duvail, M., Jardat, M., Coelho, D., Békri, S. & Rotenberg, B. Numerical
homogenization of electrokinetic equations in porous media using lattice-Boltzmann simula-
tions. Physical Review E, 88(1):013019, 2013. URL https://link.aps.org/doi/10.1103/
PhysRevE.88.013019. Cited on pages 37 & 53

[140] Reuss, F. F. Notice sur un nouvel effet de l’électricité galvanique. Mémoires de la Société
Impériale des Naturalistes de Moscou, 2:327–337, 1809. Cited on page 55

[141] Wang, M. & Chen, S. Electroosmosis in homogeneously charged micro- and nanoscale random
porous media. Journal of Colloid and Interface Science, 314(1):264–273, 2007. URL http:
//www.sciencedirect.com/science/article/pii/S0021979707007217. Cited on page 57

[142] Horinek, D. & Netz, R. R. Specific ion adsorption at hydrophobic solid surfaces. Physical Review
Letters, 99(22):226–104, 2007. URL http://link.aps.org/doi/10.1103/PhysRevLett.99.
226104. Cited on page 62

[143] Schwierz, N., Horinek, D., Sivan, U. & Netz, R. R. Reversed Hofmeister series: The rule
rather than the exception. Current Opinion in Colloid & Interface Science, 23:10–18, 2016.
URL http://www.sciencedirect.com/science/article/pii/S1359029416300474. Cited on
page 62

[144] Bonthuis, D. J. & Netz, R. R. Unraveling the Combined Effects of Dielectric and Viscosity
Profiles on Surface Capacitance, Electro-Osmotic Mobility, and Electric Surface Conductivity.
Langmuir, 28(46):16049–16059, 2012. URL http://dx.doi.org/10.1021/la3020089. Cited
on page 62

[145] Grosjean, B., Pean, C., Siria, A., Bocquet, L., Vuilleumier, R. & Bocquet, M.-L. Chemisorp-
tion of Hydroxide on 2d Materials from DFT Calculations: Graphene versus Hexagonal
Boron Nitride. The Journal of Physical Chemistry Letters, 7(22):4695–4700, 2016. URL
http://dx.doi.org/10.1021/acs.jpclett.6b02248. Cited on page 62

[146] Secchi, E., Marbach, S., Niguès, A., Stein, D., Siria, A. & Bocquet, L. Massive radius-dependent
flow slippage in carbon nanotubes. Nature, 537(7619):210–213, 2016. URL https://www.
nature.com/nature/journal/v537/n7619/abs/nature19315.html. Cited on page 62

— 156 —

http://link.aps.org/doi/10.1103/PhysRevA.41.4277
http://link.aps.org/doi/10.1103/PhysRevA.41.4277
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.3785
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.3785
http://linkinghub.elsevier.com/retrieve/pii/S0021999102972098
http://linkinghub.elsevier.com/retrieve/pii/S0021999102972098
https://link.aps.org/doi/10.1103/PhysRevE.88.013019
https://link.aps.org/doi/10.1103/PhysRevE.88.013019
http://www.sciencedirect.com/science/article/pii/S0021979707007217
http://www.sciencedirect.com/science/article/pii/S0021979707007217
http://link.aps.org/doi/10.1103/PhysRevLett.99.226104
http://link.aps.org/doi/10.1103/PhysRevLett.99.226104
http://www.sciencedirect.com/science/article/pii/S1359029416300474
http://dx.doi.org/10.1021/la3020089
http://dx.doi.org/10.1021/acs.jpclett.6b02248
https://www.nature.com/nature/journal/v537/n7619/abs/nature19315.html
https://www.nature.com/nature/journal/v537/n7619/abs/nature19315.html


Bibliography

[147] Huang, D. M., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. Acqueous electrolytes near
hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamicslip. Langmuir,
24(4):1442–1450, 2008. URL http://pubs.acs.org/doi/abs/10.1021/la7021787. Cited on
page 62

[148] Lowe, C. P., Frenkel, D. & Masters, A. J. Long–time tails in angular momentum correla-
tions. The Journal of Chemical Physics, 103(4):1582–1587, 1995. URL http://jcp.aip.org/
resource/1/jcpsa6/v103/i4/p1582_s1. Cited on pages 63 & 123

[149] Vanson, J.-M., Coudert, F.-X., Rotenberg, B., Levesque, M., Tardivat, C., Klotz, M. & Boutin,
A. Unexpected coupling between flow and adsorption in porous media. Soft Matter, 11(30):6125–
6133, 2015. Cited on page 63

[150] Vanson, J.-M., Boutin, A., Klotz, M. & Coudert, F.-X. Transport and adsorption under liquid
flow: the role of pore geometry. Soft Matter, 13(4):875–885, 2017. URL http://pubs.rsc.
org/en/content/articlelanding/2017/sm/c6sm02414a. Cited on page 63

[151] Vanson, J.-M., Coudert, F.-X., Klotz, M. & Boutin, A. Kinetic Accessibility of Porous Material
Adsorption Sites Studied through the Lattice Boltzmann Method. Langmuir, 33(6):1405–1411,
2017. URL http://dx.doi.org/10.1021/acs.langmuir.6b04472. Cited on page 63

[152] Benzi, R., Succi, S. & Vergassola, M. The lattice Boltzmann equation: theory and ap-
plications. Physics Reports, 222(3):145–197, 1992. URL http://www.sciencedirect.com/
science/article/pii/037015739290090M. Cited on page 64

[153] Sen, P. N. Time-dependent diffusion coefficient as a probe of geometry. Concepts in Magnetic
Resonance Part A, 23A(1):1–21, 2004. URL http://onlinelibrary.wiley.com/doi/10.
1002/cmr.a.20017/abstract. Cited on pages 68 & 79

[154] De Leebeeck, A. & Sinton, D. Ionic dispersion in nanofluidics. Electrophoresis, 27(24):4999–5008,
2006. URL http://onlinelibrary.wiley.com/doi/10.1002/elps.200600264/abstract.
Cited on page 68

[155] Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. P. Roy. Soc.
A, 219(1137):186–203, 1953. URL http://rspa.royalsocietypublishing.org/cgi/doi/10.
1098/rspa.1953.0139. Cited on pages 69 & 76

[156] Aris, R. On the dispersion of a solute in a fluid flowing through a tube. P. Roy. Soc.
A, 235(1200):67–77, 1956. URL http://rspa.royalsocietypublishing.org/cgi/doi/10.
1098/rspa.1956.0065. Cited on pages 69 & 76

[157] Levesque, M., Bénichou, O., Voituriez, R. & Rotenberg, B. Taylor dispersion with adsorption
and desorption. Phys. Rev. E, 86(3):036–316, 2012. URL http://link.aps.org/doi/10.
1103/PhysRevE.86.036316. Cited on page 76

[158] Merlet, C., Forse, A. C., Griffin, J. M., Frenkel, D. & Grey, C. P. Lattice simulation method
to model diffusion and NMR spectra in porous materials. The Journal of Chemical Physics,
142(9):094701, 2015. URL http://scitation.aip.org/content/aip/journal/jcp/142/9/
10.1063/1.4913368. Cited on page 79

[159] Hlushkou, D., Kandhai, D. & Tallarek, U. Coupled lattice-Boltzmann and finite-difference sim-
ulation of electroosmosis in microfluidic channels. International Journal for Numerical Methods
in Fluids, 46(5):507–532, 2004. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
fld.765. Cited on page 87

— 157 —

http://pubs.acs.org/doi/abs/10.1021/la7021787
http://jcp.aip.org/resource/1/jcpsa6/v103/i4/p1582_s1
http://jcp.aip.org/resource/1/jcpsa6/v103/i4/p1582_s1
http://pubs.rsc.org/en/content/articlelanding/2017/sm/c6sm02414a
http://pubs.rsc.org/en/content/articlelanding/2017/sm/c6sm02414a
http://dx.doi.org/10.1021/acs.langmuir.6b04472
http://www.sciencedirect.com/science/article/pii/037015739290090M
http://www.sciencedirect.com/science/article/pii/037015739290090M
http://onlinelibrary.wiley.com/doi/10.1002/cmr.a.20017/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cmr.a.20017/abstract
http://onlinelibrary.wiley.com/doi/10.1002/elps.200600264/abstract
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1953.0139
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1953.0139
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1956.0065
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1956.0065
http://link.aps.org/doi/10.1103/PhysRevE.86.036316
http://link.aps.org/doi/10.1103/PhysRevE.86.036316
http://scitation.aip.org/content/aip/journal/jcp/142/9/10.1063/1.4913368
http://scitation.aip.org/content/aip/journal/jcp/142/9/10.1063/1.4913368
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.765
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.765


Bibliography

[160] Guo, Z. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical
Review E, 65(4), 2002. Cited on page 87

[161] Tipler, P. A. Physics. Worth Publishers, 1st édition, 1976. Cited on page 101

[162] Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. Ac electrokinetics: a review of forces
in microelectrode structures. Journal of Physics D: Applied Physics, 31(18):2338, 1998. URL
http://stacks.iop.org/0022-3727/31/i=18/a=021. Cited on page 106

[163] Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. AC Electric-Field-Induced Fluid
Flow in Microelectrodes. Journal of Colloid and Interface Science, 217, 1999. URL https:
//eprints.soton.ac.uk/372372/. Cited on page 106

[164] Green, N. G., Ramos, A., Gonzàlez, A., Morgan, H. & Castellanos, A. Fluid flow induced
by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measure-
ments. Physical Review E, 61(4):4011–4018, 2000. URL https://link.aps.org/doi/10.
1103/PhysRevE.61.4011. Cited on page 106

[165] Gonzàlez, A., Ramos, A., Green, N. G., Castellanos, A. & Morgan, H. Fluid flow induced
by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer
analysis. Physical Review E, 61(4):4019–4028, 2000. URL https://link.aps.org/doi/10.
1103/PhysRevE.61.4019. Cited on page 106

[166] Green, N. G., Ramos, A., Gonzàlez, A., Morgan, H. & Castellanos, A. Fluid flow induced by
nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines
and numerical simulation. Physical Review E, 66(2):026305, 2002. URL https://link.aps.
org/doi/10.1103/PhysRevE.66.026305. Cited on page 106

[167] Ramos, A., Gonzàlez, A., Castellanos, A., Green, N. G. & Morgan, H. Pumping of liquids with
ac voltages applied to asymmetric pairs of microelectrodes. Physical Review E, 67(5):056302,
2003. URL https://link.aps.org/doi/10.1103/PhysRevE.67.056302. Cited on page 106

[168] Ajdari, A. Pumping liquids using asymmetric electrode arrays. Physical Review E, 61(1):R45–
R48, 2000. URL https://link.aps.org/doi/10.1103/PhysRevE.61.R45. Cited on page 106

[169] Brown, A. B. D., Smith, C. G. & Rennie, A. R. Pumping of water with ac electric fields
applied to asymmetric pairs of microelectrodes. Physical Review E, 63(1):016305, 2000. URL
https://link.aps.org/doi/10.1103/PhysRevE.63.016305. Cited on page 106

[170] Nadal, F., Argoul, F., Hanusse, P., Pouligny, B. & Ajdari, A. Electrically induced interactions
between colloidal particles in the vicinity of a conducting plane. Physical Review E, 65(6):061409,
2002. URL https://link.aps.org/doi/10.1103/PhysRevE.65.061409. Cited on page 106

[171] Yeh, S.-R., Seul, M. & Shraiman, B. I. Assembly of ordered colloidal aggregrates by electric-field-
induced fluid flow. Nature, 386(6620):57–59, 1997. URL https://www.nature.com/articles/
386057a0. Cited on page 106

[172] Faure, C., Decoster, N. & Argoul, F. AC field induced two-dimensional aggregation of multil-
amellar vesicles. The European Physical Journal B - Condensed Matter and Complex Systems,
5(1):87–97, 1998. URL https://doi.org/10.1007/s100510050422. Cited on page 106

[173] Green, N. G., Ramos, A. & Morgan, H. Ac electrokinetics: a survey of sub-micrometre particle
dynamics. Journal of Physics D: Applied Physics, 33(6):632, 2000. URL http://stacks.iop.
org/0022-3727/33/i=6/a=308. Cited on page 106

— 158 —

http://stacks.iop.org/0022-3727/31/i=18/a=021
https://eprints.soton.ac.uk/372372/
https://eprints.soton.ac.uk/372372/
https://link.aps.org/doi/10.1103/PhysRevE.61.4011
https://link.aps.org/doi/10.1103/PhysRevE.61.4011
https://link.aps.org/doi/10.1103/PhysRevE.61.4019
https://link.aps.org/doi/10.1103/PhysRevE.61.4019
https://link.aps.org/doi/10.1103/PhysRevE.66.026305
https://link.aps.org/doi/10.1103/PhysRevE.66.026305
https://link.aps.org/doi/10.1103/PhysRevE.67.056302
https://link.aps.org/doi/10.1103/PhysRevE.61.R45
https://link.aps.org/doi/10.1103/PhysRevE.63.016305
https://link.aps.org/doi/10.1103/PhysRevE.65.061409
https://www.nature.com/articles/386057a0
https://www.nature.com/articles/386057a0
https://doi.org/10.1007/s100510050422
http://stacks.iop.org/0022-3727/33/i=6/a=308
http://stacks.iop.org/0022-3727/33/i=6/a=308


Bibliography

[174] Ristenpart, W. D., Aksay, I. A. & Saville, D. A. Electrically Guided Assembly of Planar
Superlattices in Binary Colloidal Suspensions. Physical Review Letters, 90(12):128303, 2003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.90.128303. Cited on page 106

[175] Helfrich, W. Deformation of Lipid Bilayer Spheres by Electric Fields. Zeitschrift für
Naturforschung C, 29(3-4):182–183, 2014. URL https://www.degruyter.com/view/j/znc.
1974.29.issue-3-4/znc-1974-3-417/znc-1974-3-417.xml. Cited on page 106

[176] Mitov, M. D., Méléard, P., Winterhalter, M., Angelova, M. I. & Bothorel, P. Electric-field-
dependent thermal fluctuations of giant vesicles. Physical Review E, 48(1):628–631, 1993. URL
https://link.aps.org/doi/10.1103/PhysRevE.48.628. Cited on page 106

[177] Pethig, R. Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and
Manipulate Cells. Critical Reviews in Biotechnology, 16(4):331–348, 1996. URL https:
//doi.org/10.3109/07388559609147425. Cited on page 106

[178] Reppert, P. M. & Morgan, F. D. Frequency-Dependent Electroosmosis. Journal of Colloid and
Interface Science, 254(2):372–383, 2002. URL http://linkinghub.elsevier.com/retrieve/
pii/S0021979702985966. Cited on page 106

[179] Macdonald, J. R. Impedance spectroscopy: old problems and new developments. Electrochimica
Acta, 35(10):1483–1492, 1990. URL http://www.sciencedirect.com/science/article/
pii/0013468690800026. Cited on page 106

[180] Geddes, L. A. Historical evolution of circuit models for the electrode-electrolyte interface. Annals
of Biomedical Engineering, 25(1):1, 1997. URL https://doi.org/10.1007/BF02738534. Cited
on page 106

[181] Helmholtz, H. Uber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leit-
ern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss.). Annalen der Physik,
165(7):353–377, 1853. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.
18531650702. Cited on page 106

[182] Helmholtz, H. Studien über electrische Grenzschichten. 1879. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/andp.18792430702. Cited on page 106

[183] Randles, J. E. B. Kinetics of rapid electrode reactions. Discussions of the Faraday
Society, 1:11–19, 1947. URL https://pubs.rsc.org/en/content/articlelanding/1947/df/
df9470100011. Cited on page 106

[184] Gouy, M. Sur la constitution de la charge électrique á la surface d’un électrolyte.
J. Phys. Theor. Appl., 9(1):457–468, 1910. URL https://hal.archives-ouvertes.fr/
jpa-00241565/document. Cited on page 106

[185] Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids: with Applications to Soft Matter.
Academic Press, 2013. Google-Books-ID: pbJfOUqZVSgC. Cited on pages 120, 123, 124, & 128

[186] Limmer, D. T., Merlet, C., Salanne, M., Chandler, D., Madden, P. A., van Roij, R. &
Rotenberg, B. Charge Fluctuations in Nanoscale Capacitors. Physical Review Letters,
111(10):106102, 2013. URL http://link.aps.org/doi/10.1103/PhysRevLett.111.106102.
Cited on page 120

[187] Smoluchowski, M. v. Zur kinetischen Theorie der Brownschen Molekularbewegung und der
Suspensionen. Annalen der Physik, 326(14):756–780, 1906. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/andp.19063261405. Cited on page 122

— 159 —

https://link.aps.org/doi/10.1103/PhysRevLett.90.128303
https://www.degruyter.com/view/j/znc.1974.29.issue-3-4/znc-1974-3-417/znc-1974-3-417.xml
https://www.degruyter.com/view/j/znc.1974.29.issue-3-4/znc-1974-3-417/znc-1974-3-417.xml
https://link.aps.org/doi/10.1103/PhysRevE.48.628
https://doi.org/10.3109/07388559609147425
https://doi.org/10.3109/07388559609147425
http://linkinghub.elsevier.com/retrieve/pii/S0021979702985966
http://linkinghub.elsevier.com/retrieve/pii/S0021979702985966
http://www.sciencedirect.com/science/article/pii/0013468690800026
http://www.sciencedirect.com/science/article/pii/0013468690800026
https://doi.org/10.1007/BF02738534
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18531650702
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18531650702
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18792430702
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18792430702
https://pubs.rsc.org/en/content/articlelanding/1947/df/df9470100011
https://pubs.rsc.org/en/content/articlelanding/1947/df/df9470100011
https://hal.archives-ouvertes.fr/jpa-00241565/document
https://hal.archives-ouvertes.fr/jpa-00241565/document
http://link.aps.org/doi/10.1103/PhysRevLett.111.106102
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063261405
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063261405


Bibliography

[188] Smoluchowski, M. v. Sur le chemin parcouru par les molecules d’un gaz et sur son rapport avec
la théorie de la diffusion. pages 202–213, 1906. Cited on page 122

[189] Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenom-
ena. The Journal of Chemical Physics, 20(8):1281–1295, 1952. URL https://aip.scitation.
org/doi/10.1063/1.1700722. Cited on page 122

[190] Green, M. S. Comment on a Paper of Mori on Time-Correlation Expressions for Transport
Properties. Physical Review, 119(3):829–830, 1960. URL https://link.aps.org/doi/10.
1103/PhysRev.119.829. Cited on page 122

[191] Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple
Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan,
12(6):570–586, 1957. URL https://journals.jps.jp/doi/10.1143/JPSJ.12.570. Cited on
page 122

[192] Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Reviews of Modern Physics,
15(1):1–89, 1943. URL https://link.aps.org/doi/10.1103/RevModPhys.15.1. Cited on
page 122

[193] Alder, B. J. & Wainwright, T. E. Decay of the Velocity Autocorrelation Function. Physical
Review A, 1(1):18–21, 1970. URL https://link.aps.org/doi/10.1103/PhysRevA.1.18.
Cited on pages 122, 123, & 131

[194] Dorfman, J. R. & Cohen, E. G. D. Velocity-Correlation Functions in Two and Three Dimensions:
Low Density. Physical Review A, 6(2):776–790, 1972. URL https://link.aps.org/doi/10.
1103/PhysRevA.6.776. Cited on page 123

[195] Dorfman, J. R. & Cohen, E. G. D. Velocity-correlation functions in two and three dimensions.
II. Higher density. Physical Review A, 12(1):292–316, 1975. URL https://link.aps.org/
doi/10.1103/PhysRevA.12.292. Cited on page 123

[196] Theodosopulu, M. & Résibois, P. Kinetic approach to the long-time behaviour in fluids: III.
The one-particle propagator. Physica A: Statistical Mechanics and its Applications, 82(1):47–
71, 1976. URL http://www.sciencedirect.com/science/article/pii/0378437176900911.
Cited on page 123

[197] Pomeau, Y. & Résibois, P. Time dependent correlation functions and mode-mode coupling the-
ories. Physics Reports, 19(2):63–139, 1975. URL http://www.sciencedirect.com/science/
article/pii/0370157375900198. Cited on page 123

[198] Dünweg, B. & Kremer, K. Molecular dynamics simulation of a polymer chain in solution. The
Journal of Chemical Physics, 99(9):6983–6997, 1993. URL https://aip.scitation.org/doi/
10.1063/1.465445. Cited on page 123

[199] Yeh, I.-C. & Hummer, G. System-Size Dependence of Diffusion Coefficients and Viscosities from
Molecular Dynamics Simulations with Periodic Boundary Conditions. The Journal of Physical
Chemistry B, 108(40):15873–15879, 2004. URL http://dx.doi.org/10.1021/jp0477147.
Cited on pages 123 & 124

[200] Fushiki, M. System size dependence of the diffusion coefficient in a simple liquid. Physical Review
E, 68(2):021203, 2003. URL https://link.aps.org/doi/10.1103/PhysRevE.68.021203.
Cited on page 123

— 160 —

https://aip.scitation.org/doi/10.1063/1.1700722
https://aip.scitation.org/doi/10.1063/1.1700722
https://link.aps.org/doi/10.1103/PhysRev.119.829
https://link.aps.org/doi/10.1103/PhysRev.119.829
https://journals.jps.jp/doi/10.1143/JPSJ.12.570
https://link.aps.org/doi/10.1103/RevModPhys.15.1
https://link.aps.org/doi/10.1103/PhysRevA.1.18
https://link.aps.org/doi/10.1103/PhysRevA.6.776
https://link.aps.org/doi/10.1103/PhysRevA.6.776
https://link.aps.org/doi/10.1103/PhysRevA.12.292
https://link.aps.org/doi/10.1103/PhysRevA.12.292
http://www.sciencedirect.com/science/article/pii/0378437176900911
http://www.sciencedirect.com/science/article/pii/0370157375900198
http://www.sciencedirect.com/science/article/pii/0370157375900198
https://aip.scitation.org/doi/10.1063/1.465445
https://aip.scitation.org/doi/10.1063/1.465445
http://dx.doi.org/10.1021/jp0477147
https://link.aps.org/doi/10.1103/PhysRevE.68.021203


Bibliography

[201] Tazi, S., Botan, A., Salanne, M., Marry, V., Turq, P. & Rotenberg, B. Diffusion coefficient and
shear viscosity of rigid water models. Journal of Physics: Condensed Matter, 24(28):284117,
2012. URL http://stacks.iop.org/0953-8984/24/i=28/a=284117. Cited on page 123

[202] Rozmanov, D. & Kusalik, P. G. Transport coefficients of the TIP4p-2005 water model. The
Journal of Chemical Physics, 136(4):044507, 2012. URL https://aip.scitation.org/doi/
10.1063/1.3677196. Cited on page 123

[203] Gabl, S., Schröder, C. & Steinhauser, O. Computational studies of ionic liquids: Size does
matter and time too. The Journal of Chemical Physics, 137(9):094501, 2012. URL https:
//aip.scitation.org/doi/10.1063/1.4748352. Cited on page 123

[204] Singh, S. P., Huang, C.-C., Westphal, E., Gompper, G. & Winkler, R. G. Hydrodynamic
correlations and diffusion coefficient of star polymers in solution. The Journal of Chemical
Physics, 141(8):084901, 2014. URL https://aip.scitation.org/doi/10.1063/1.4893766.
Cited on page 123

[205] Kikugawa, G., Ando, S., Suzuki, J., Naruke, Y., Nakano, T. & Ohara, T. Effect of the compu-
tational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid. The
Journal of Chemical Physics, 142(2):024503, 2015. URL https://aip.scitation.org/doi/
abs/10.1063/1.4905545. Cited on page 123

[206] Kikugawa, G., Nakano, T. & Ohara, T. Hydrodynamic consideration of the finite size effect
on the self-diffusion coefficient in a periodic rectangular parallelepiped system. The Journal
of Chemical Physics, 143(2):024507, 2015. URL https://aip.scitation.org/doi/abs/10.
1063/1.4926841. Cited on page 123

[207] Botan, A., Marry, V. & Rotenberg, B. Diffusion in bulk liquids: finite-size effects in anisotropic
systems. Molecular Physics, 113(17-18):2674–2679, 2015. URL http://dx.doi.org/10.1080/
00268976.2015.1021730. Cited on pages xi, 123, & 127

[208] Vögele, M. & Hummer, G. Divergent Diffusion Coefficients in Simulations of Fluids and Lipid
Membranes. The Journal of Physical Chemistry B, 120(33):8722–8732, 2016. URL https:
//doi.org/10.1021/acs.jpcb.6b05102. Cited on pages 123 & 131

[209] Ernst, M. H., Hauge, E. H. & van Leeuwen, J. M. J. Asymptotic Time Behavior of Correlation
Functions. I. Kinetic Terms. Physical Review A, 4(5):2055–2065, 1971. URL https://link.
aps.org/doi/10.1103/PhysRevA.4.2055. Cited on page 123

[210] Alder, B. J. & Wainwright, T. E. Velocity Autocorrelations for Hard Spheres. Physical Review
Letters, 18(23):988–990, 1967. URL https://link.aps.org/doi/10.1103/PhysRevLett.18.
988. Cited on page 123

[211] Levesque, D. & Ashurst, W. T. Long-Time Behavior of the Velocity Autocorrelation Function
for a Fluid of Soft Repulsive Particles. Physical Review Letters, 33(5):277–280, 1974. URL
https://link.aps.org/doi/10.1103/PhysRevLett.33.277. Cited on page 123

[212] Hoef, M. A. v. d. & Frenkel, D. Computer simulations of long-time tails: What’s new? Transport
Theory and Statistical Physics, 24(6-8):1227–1247, 1995. URL https://doi.org/10.1080/
00411459508203951. Cited on page 123

[213] Franosch, T., Grimm, M., Belushkin, M., Mor, F. M., Foffi, G., Forro, L. & Jeney, S. Resonances
arising from hydrodynamic memory in Brownian motion. Nature, 478(7367):85–88, 2011. URL
https://www.nature.com/articles/nature10498. Cited on page 123

— 161 —

http://stacks.iop.org/0953-8984/24/i=28/a=284117
https://aip.scitation.org/doi/10.1063/1.3677196
https://aip.scitation.org/doi/10.1063/1.3677196
https://aip.scitation.org/doi/10.1063/1.4748352
https://aip.scitation.org/doi/10.1063/1.4748352
https://aip.scitation.org/doi/10.1063/1.4893766
https://aip.scitation.org/doi/abs/10.1063/1.4905545
https://aip.scitation.org/doi/abs/10.1063/1.4905545
https://aip.scitation.org/doi/abs/10.1063/1.4926841
https://aip.scitation.org/doi/abs/10.1063/1.4926841
http://dx.doi.org/10.1080/00268976.2015.1021730
http://dx.doi.org/10.1080/00268976.2015.1021730
https://doi.org/10.1021/acs.jpcb.6b05102
https://doi.org/10.1021/acs.jpcb.6b05102
https://link.aps.org/doi/10.1103/PhysRevA.4.2055
https://link.aps.org/doi/10.1103/PhysRevA.4.2055
https://link.aps.org/doi/10.1103/PhysRevLett.18.988
https://link.aps.org/doi/10.1103/PhysRevLett.18.988
https://link.aps.org/doi/10.1103/PhysRevLett.33.277
https://doi.org/10.1080/00411459508203951
https://doi.org/10.1080/00411459508203951
https://www.nature.com/articles/nature10498


Bibliography

[214] Li, T. & Raizen, M. G. Brownian motion at short time scales. Annalen der Physik, 525(4):281–
295, 2013. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.201200232.
Cited on page 123

[215] Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. Observation of Brownian Motion
in Liquids at Short Times: Instantaneous Velocity and Memory Loss. Science, 343(6178):1493–
1496, 2014. URL http://science.sciencemag.org/content/343/6178/1493. Cited on
page 123

[216] Clercx, H. J. H. & Schram, P. P. J. M. Brownian particles in shear flow and harmonic potentials:
A study of long-time tails. Physical Review A, 46(4):1942–1950, 1992. URL https://link.
aps.org/doi/10.1103/PhysRevA.46.1942. Cited on page 123

[217] Boussinesq, J. Théorie analytique de la chaleur, vol. 2. 1901. URL https://gallica.bnf.
fr/ark:/12148/bpt6k61635r. Cited on page 123

[218] Chow, T. S. & Hermans, J. J. Effect of Inertia on the Brownian Motion of Rigid Particles
in a Viscous Fluid. The Journal of Chemical Physics, 56(6):3150–3154, 1972. URL https:
//aip.scitation.org/doi/10.1063/1.1677653. Cited on page 123

[219] Lesnicki, D., Vuilleumier, R., Carof, A. & Rotenberg, B. Molecular Hydrodynamics from Mem-
ory Kernels. Physical Review Letters, 116(14):147804, 2016. URL https://link.aps.org/
doi/10.1103/PhysRevLett.116.147804. Cited on pages 123 & 131

[220] Hasimoto, H. On the periodic fundamental solutions of the Stokes
equations and their application to viscous flow past a cubic array of
spheres. Journal of Fluid Mechanics, 5(2):317–328, 1959. URL https:
//www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/
on-the-periodic-fundamental-solutions-of-the-stokes-equations-and-their-application-to-viscous-flow-past-a-cubic-array-of-spheres/
F0F666CB13F9F4508FF24329E5589709. Cited on page 123

[221] Nash, R. W., Adhikari, R. & Cates, M. E. Singular forces and pointlike colloids in lattice
Boltzmann hydrodynamics. Physical Review E, 77(2):026709, 2008. URL https://link.aps.
org/doi/10.1103/PhysRevE.77.026709. Cited on pages 126 & 129

[222] Dellar, P. J. Bulk and shear viscosities in lattice Boltzmann equations. Physical Review E,
64(3):031203, 2001. URL https://link.aps.org/doi/10.1103/PhysRevE.64.031203. Cited
on page 130

[223] Li, Y. & Shan, X. Lattice Boltzmann method for adiabatic acoustics. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 369(1944):2371–2380, 2011. URL http://rsta.royalsocietypublishing.org/
content/369/1944/2371. Cited on page 130

[224] Viggen, E. M. Viscously damped acoustic waves with the lattice Boltzmann
method. Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 369(1944):2246–2254, 2011. URL http://rsta.
royalsocietypublishing.org/content/369/1944/2246. Cited on page 130

[225] Prasianakis, N. I. & Karlin, I. V. Lattice Boltzmann method for simulation of compressible
flows on standard lattices. Physical Review E, 78(1):016704, 2008. URL https://link.aps.
org/doi/10.1103/PhysRevE.78.016704. Cited on page 130

— 162 —

https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.201200232
http://science.sciencemag.org/content/343/6178/1493
https://link.aps.org/doi/10.1103/PhysRevA.46.1942
https://link.aps.org/doi/10.1103/PhysRevA.46.1942
https://gallica.bnf.fr/ark:/12148/bpt6k61635r
https://gallica.bnf.fr/ark:/12148/bpt6k61635r
https://aip.scitation.org/doi/10.1063/1.1677653
https://aip.scitation.org/doi/10.1063/1.1677653
https://link.aps.org/doi/10.1103/PhysRevLett.116.147804
https://link.aps.org/doi/10.1103/PhysRevLett.116.147804
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/on-the-periodic-fundamental-solutions-of-the-stokes-equations-and-their-application-to-viscous-flow-past-a-cubic-array-of-spheres/F0F666CB13F9F4508FF24329E5589709
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/on-the-periodic-fundamental-solutions-of-the-stokes-equations-and-their-application-to-viscous-flow-past-a-cubic-array-of-spheres/F0F666CB13F9F4508FF24329E5589709
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/on-the-periodic-fundamental-solutions-of-the-stokes-equations-and-their-application-to-viscous-flow-past-a-cubic-array-of-spheres/F0F666CB13F9F4508FF24329E5589709
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/on-the-periodic-fundamental-solutions-of-the-stokes-equations-and-their-application-to-viscous-flow-past-a-cubic-array-of-spheres/F0F666CB13F9F4508FF24329E5589709
https://link.aps.org/doi/10.1103/PhysRevE.77.026709
https://link.aps.org/doi/10.1103/PhysRevE.77.026709
https://link.aps.org/doi/10.1103/PhysRevE.64.031203
http://rsta.royalsocietypublishing.org/content/369/1944/2371
http://rsta.royalsocietypublishing.org/content/369/1944/2371
http://rsta.royalsocietypublishing.org/content/369/1944/2246
http://rsta.royalsocietypublishing.org/content/369/1944/2246
https://link.aps.org/doi/10.1103/PhysRevE.78.016704
https://link.aps.org/doi/10.1103/PhysRevE.78.016704


Bibliography

[226] Kuhne, T. D., Krack, M. & Parrinello, M. Static and Dynamical Properties of Liquid Water
from First Principles by a Novel Car - Parrinello - like Approach. Journal of Chemical Theory
and Computation, 5(2):235–241, 2009. URL https://doi.org/10.1021/ct800417q. Cited on
page 131

[227] Huang, K. & Szlufarska, I. Effect of interfaces on the nearby Brownian motion. Nature
Communications, 6:8558, 2015. URL https://www.nature.com/articles/ncomms9558. Cited
on page 131

[228] Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on
water/electrode systems. The Journal of Chemical Physics, 102(1):511–524, 1995. URL
https://aip.scitation.org/doi/10.1063/1.469429. Cited on page 133

[229] Dufrêche, J.-F., Bernard, O., Durand-Vidal, S. & Turq, P. Analytical theories of transport
in concentrated electrolyte solutions from the MSA. The Journal of Physical Chemistry. B,
109(20):9873–9884, 2005. Cited on page 134

[230] Allaire, G., Brizzi, R., Dufrêche, J.-F., Mikelic, A. & Piatnitski, A. Ion transport in porous
media: derivation of the macroscopic equations using upscaling and properties of the effective
coefficients. Computational Geosciences, 17(3):479–495, 2013. URL https://doi.org/10.
1007/s10596-013-9342-6. Cited on page 134

[231] Janssen, M. & Bier, M. Transient dynamics of electric double layer capacitors: Exact expressions
within the Debye-Falkenhagen approximation. arXiv:1802.02777 [cond-mat, physics:physics],
2018. URL http://arxiv.org/abs/1802.02777. ArXiv: 1802.02777. Cited on pages 141
& 142

— 163 —

https://doi.org/10.1021/ct800417q
https://www.nature.com/articles/ncomms9558
https://aip.scitation.org/doi/10.1063/1.469429
https://doi.org/10.1007/s10596-013-9342-6
https://doi.org/10.1007/s10596-013-9342-6
http://arxiv.org/abs/1802.02777


"Physics is like sex: sure, it may give some practical results,
but that’s not why we do it." - Richard Feynman
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