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The work presented in the first part of this thesis is the result of a collaboration between Alstom and the RATP. We present various models and algorithms that can be used to bound a real-valued function f defined on an interval I and its (d -1) first derivatives by knowing reliable bounds on f in some discrete points and global bounds on its d th derivative. These results are applied to a situation inspired by the railway world. Finally, we present various extensions of our work, and we explain how the previous models can be easily generalized to vector-valued applications defined on an interval. The second part of this thesis is dedicated to the theoretical and numerical study of a shape from shading problem, which consists in a surface reconstitution from a black and white picture, by knowing only the shades of gray and the altitude of the surface at some points. We remind how the viscosity solutions framework allows us to obtain a well-posed formulation of this problem. Then we expose an explicit expression of an approximation scheme associated to this problem, and we propose a significant optimization of some algorithms used to solve numerically such a problem. In the future, the works presented in the two parts of the thesis could be coupled to allow a real-time guidance of flying objects like drones over a given region.

Nous vivons, à mon sens, une bien drôle d'époque, où l'on ne voit pas toujours le temps passer, où l'on ne prend pas forcément le temps de profiter de la vie, des êtres ou des choses qui nous entourent, et où il est donc facile de sombrer dans l'indifférence. Ceci peut avoir pour fâcheuse conséquence de nous amener à ne considérer ou ne dire que ce qui ne va pas, et à ne faire que peu de cas du reste. C'est pourquoi je tiens à prendre le temps, à travers ces quelques lignes, quitte à bousculer les habitudes et au risque de paraître un peu long ou pompeux, de remercier ou évoquer celles et ceux que j'ai associés, de près ou de loin, et pour des raisons que je tenterai d'exposer du mieux que je le peux, à la réalisation et à l'aboutissement des travaux de thèse que je présente dans ce manuscrit.
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Résumé

Les travaux présentés dans la première partie de ce manuscrit de thèse sont le fruit d'une collaboration entre Alstom et la RATP. Nous y présentons différents modèles et algorithmes permettant de borner une fonction réelle f définie sur un intervalle I et ses (d -1) premières dérivées à partir de bornes sur f en certains points et de bornes globales sur la dérivée d-ième de f . Nous appliquons cela à une situation inspirée du monde ferroviaire. Enfin, nous présentons diverses extensions de nos travaux, et nous montrons comment les résultats précédents peuvent se généraliser à des applications définies sur un intervalle I et à valeurs vectorielles. La seconde partie de ce manuscrit est consacrée à l'étude théorique et numérique d'un problème de « shape from shading », qui consiste à reconstituer une surface représentée sur une image en noir et blanc, par la seule connaissance des nuances de gris et d'altitudes en certains points. Nous y rappelons comment le cadre des solutions de viscosité permet d'obtenir une formulation mathématique bien posée de ce problème. Nous donnons ensuite une formulation explicite d'un schéma d'approximation associé à ce problème, et nous proposons une optimisation notable d'algorithmes permettant de résoudre numériquement un tel problème. À terme, l'ensemble des travaux présentés dans ce manuscrit pourraient être couplés pour permettre le guidage en temps réel de mobiles volants, tels que des drones, au dessus d'une région donnée. LOUNICI. Merci également à Kashayar DADRAS et les personnes qui se sont succédées à ses côtés pour s'occuper du parc informatique des laboratoires de Mathématiques du campus. Merci aussi à celles et ceux qui font du laboratoire un lieu convivial et chaleureux. À titre personnel, outre Yvon MADAY que j'ai largement mentionné précédemment, je voudrais plus spécialement (re-)mentionner Fatiha ALABAU, Laurent BOUDIN, Jean-Yves CHEMIN ou Edwige GODLEWSKI, pour leur écoute et leur soutien à différents égards. Enfin, mes différents collègues de bureaux et les (post-)doctorants avec qui j'ai vécu, de plus ou moins près, cette aventure : je leur dédierai un paragraphe spécial dans ce qui suit.

Avant cela, je voudrais redire tout le plaisir que j'ai pris à assurer mes T.D. d'algèbre linéaire (2M371) et de topologie et de calcul différentiel (3M260), en espérant qu'il aura été partagé par celles et ceux qui y ont assisté. À cette occasion, je souhaiterais remercier tous les collègues avec qui j'ai pu interagir à travers ces enseignements, comme par exemple Laurent BOUDIN, Muriel BOULAKIA, Bruno DESPRÉS, Cindy GUICHARD, Pierre-Antoine GUIHÉNEUF ou Didier SMETS, mais aussi Claire DAVID qui m'a accordé sa confiance en me confiant « ses » étudiants de REO en 2017. Il convient également de ne pas oublier Murielle THICOT et Julie CAMONIN, du côté des secrétariats pédagogiques, qui ont toujours donné bonne suite à mes diverses demandes. Et bien-sûr, un grand merci à tous les étudiants qu'il m'a été permis de rencontrer à travers ces enseignements pour leur implication et leur gentillesse, avec des remerciements peut-être encore plus appuyés pour ceux de la promotion PIMA 2017 -les tout premiers que j'ai eus -que j'ai suivis, tout au long de l'année 2016, en 2M371 puis en 3M260 (avec un clin d'oeil amical à l'équipe « Bayonne 2017 », qui se reconnaîtra). Ces premières expériences heureuses dans l'enseignement m'ont convaincu de poursuivre dans cette voie.
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J'aimerais également mentionner Bertrand THIERRY, avec qui j'ai lancé, au début de l'année 2018, le séminaire « infomath » ayant pour but de présenter quelques outils ou bonnes pratiques informatiques aux mathématiciens que nous sommes (ou tentons d'être ?). Mais aussi Pierre MARCHAND (oui, encore lui !) et Alexandre POULAIN, qui sont venus nous prêter main forte à partir de l'année 2018/2019. Et enfin Daphné GIORGI (du LPSM) pour son implication à nos côtés nous permettant d'élargir notre public, et plus généralement tous ceux qui prennent désormais part à l'organisation de ce séminaire.

Sur le plan scientifique, toujours, je voudrais avoir une pensée amicale pour mon cher collègue de la SEME Lyon 2017, Florent DEWEZ, avec qui je garde contact depuis cette aventure, avouons-le, sans doute peu conventionnelle et parfois même un peu folle. . . Et puis aussi pour notre chef d'orchestre durant cette SEME, Christophe PICARD, de MicrodB (précision utile pour éviter toute confusion).

Je tiens également à remercier chaleureusement les enseignants du DAPS, et plus spécialement Jérôme GORI, Jean LOUCHU (qui coule désormais, je l'espère, des jours heureux), Serge MAURO (le premier que j'ai rencontré sur place), Didier NGUYEN et William PETIT, avec qui j'ai pu partager certains cours de musculation ou de P.P.G. à l'université, histoire de (tenter de ?) conserver « un esprit sain dans un corps sain ». Si j'exécrais par dessus tout les cours d'E.P.S. lorsque j'étais collégien ou lycéen, ils ont tous, à leur manière, réussi à me réconcilier avec l'activité physique, et même donné l'envie d'en pratiquer une régulièrement. Un salut amical à Soliman qui, de son cagibi qu'il assimile à une loge, est le gardien nocturne des salles de sport (et de mes lunettes). Et puis, une pensée pour Victor COURTIN, Adrien DELORO (dont j'aurais aussi pu mentionner les qualités pédagogiques), Anne-Françoise de GUERNY, Xavier LHEBRARD, Pierre MARCHAND (qui est décidément partout), Teddy PICHARD et Alexandre POULAIN pour les quelques séances, essentiellement de P.P.G. orchestrées par Serge, que nous avons partagées. Séances durant lesquelles avons fait « hurler nos muscles » (« ischios », « psoas », etc.), toujours « plus vite », en « augmentant les répétitions » et en « diminuant les temps de pause » (« aïe, aïe, aïe ! »), tout cela en sachant que, dans la salle d'agrès-musculation, « le sol est brûlant ».
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Enfin, place à ma famille, qui mérite sans doute bien plus que les modestes mots de remerciements que je peux lui offrir à travers ces quelques lignes, pour son soutien sans faille tant sur le plan moral, affectif que financier. Merci à mes parents, mes grands parents, ma soeur, mes cousins et cousine, mes oncles et tantes d'avoir été à mes côtés, chacune et chacun à leur manière, tout au long de ma vie. De m'avoir transmis des valeurs essentielles pour faire de moi un être responsable, telles que le respect, la tolérance, l'écoute ou la persévérance. À ma mère, pour les nombreux sacrifices qu'elle a pu faire dans le seul but de me construire et de m'assurer un avenir à la hauteur de ses espérances, et dont j'espère avoir été digne. Un grand merci aussi à ma femme, avec qui j'ai partagé une année extrêmement mouvementée et riche en émotions. Nous avons fait face, ensemble, à bon nombre d'épreuves, que nous avons toujours su surmonter, preuve que l'amour permet sans doute bien plus qu'on ne peut le soupçonner. À titre personnel, son amour m'a permis de tenir bon à des moments où je n'avais plus la force de poursuivre jusqu'à mes travaux de thèse. Je souhaiterais donc la remercier du fond de mon coeur d'être là pour moi, de me soutenir, peut-être même de me supporter, de me redonner la confiance qui me fait souvent défaut, et lui dire que je lui dois beaucoup plus qu'elle ne le pense pour cette thèse et à bien d'autres égards. Et puis, je voudrais aussi avoir un petit mot pour notre enfant à venir (du moins, à l'instant où j'achève ces remerciements), une fille semble-t-il, dont nous avons appris l'existence à un mois de la soumission de ce manuscrit.

Pour conclure, je souhaiterais avoir une pensée pour mon grand-père maternel, Jean-Philippe, qui, je pense, aurait sincèrement souhaité connaître le dénouement de cette aventure. Malheureusement, le sort en a décidé autrement, et la maladie a eu raison de lui au début de l'année 2017 ; étrange coïncidence, quinze ans jour pour jour après la disparition de son propre père. J'aimerais donc rappeler que je ne l'oublierai jamais, et lui dédier ce manuscrit puis, je l'espère aussi, mon titre de docteur.

I Reliable estimations of a function and its derivatives Introduction Notations et conventions spécifiques

Dans cette partie :

• I désignera un intervalle de R d'intérieur non vide.

• N désignera un entier supérieur ou égal à 2, et t 1 , t 2 , . . . , t N désigneront N points de I tels que t 1 < t 2 < • • • < t N , non nécessairement régulièrement espacés.

• Si x est un nombre réel, nous noterons σ(x) son signe, qui correspondra au symbole "+" lorsque x 0, et au symbole "-" lorsque x < 0. En particulier, si k ∈ N, le signe de (-1) k sera noté σ k .

• Toutes les simulations numériques ont été réalisées sous M A T L A B, et ce même si la plupart des sorties graphiques ont été reproduites, pour des raisons essentiellement esthétiques, sous L A T E X.

Contexte et problématique

Pour un exploitant de transports en commun ferrés, la bonne localisation des trains en temps réel répond à deux enjeux majeurs. Le premier est d'ordre sécuritaire : pour prévenir tout risque de collision, et donc d'accident grave de voyageurs, il est important de maintenir les trains suffisamment éloignés les uns des autres. Sur le plan commercial, pour éviter la saturation des espaces voyageurs (qui peut d'ailleurs s'avérer source d'accidents. . . ), l'exploitant doit être en mesure de faire circuler, de la manière la plus fluide possible, un maximum de trains sur son réseau. Au final, il s'agit de maintenir les trains en ligne suffisamment proches les uns des autres sans que cela ait un quelconque impact sur la sécurité. Notre étude, menée pour les besoins d'Alstom et de la RATP, rentre dans le cadre de ce problème. Notre objectif était de proposer des modèles et algorithmes mathématiques qui permettent d'estimer les position, vitesse et accélération d'un train, en temps réel, et selon un très haut niveau de garantie. Le comportement d'un train est modélisé par des lois physiques usuelles : la dérivée de sa position correspond à sa vitesse, la dérivée de sa vitesse à son accélération, etc. Le problème est qu'il est extrêmement difficile, voire impossible, de quantifier ces grandeurs, puisqu'ils résultent de processus physiques tels qu'accélérations, décélérations ou glissements que l'on ne sait pas modéliser ou estimer de façon fiable. Pour cette raison, nous pouvions seulement nous fier à des mesures de la position du train données en des temps discrets (par des équipements placés à bord du train ou sur la voie), et en des bornes certifiées sur l'accélération du train et son jerk, i.e. la dérivée de son accélération.

Exprimons tout ceci en termes mathématiques. Supposons disposer d'une fonction f : I → R soumise aux hypothèses suivantes :

(A 1 ) Pour tout i ∈ {1, . . . , N }, il est possible de déterminer des nombres réels f -(t i ) et f + (t i ) tels que :

f -(t i ) f (t i ) f + (t i ), 25 INTRODUCTION (A 2 )
Il existe (au moins) un entier d ∈ N * pour lequel f admet une dérivée d-ième bornée, autrement dit il est possible de déterminer deux constantes réelles f * -and f * + telles que pour tout θ ∈ I :

f * - f (d) (θ) f * + ,
En pratique, la fonction f sera bien évidemment inconnue, et l'entier d égal à 2 ou 3. Plus précisément, pour un réel t de I donné, f (t) correspondra à la position du train (sur la voie) à l'instant t, f ′ (t) à sa vitesse, f ′′ (t) à son accélération et f ′′′ (t) à son jerk. En utilisant ces notations, nous souhaitons donc :

• déterminer, pour tous k ∈ {1, . . . , d -1} et i ∈ {1, . . . , N }, des quantités f

(k) -(t i ) et f (k) + (t i ) telles que f (k) -(t i ) f (k) (t i ) f (k) + (t i ) et que l'écart f (k) + (t i ) -f (k)
-(t i ) soit le plus petit possible, • mettre en cohérence, pour tous les indices k ∈ {1, . . . , d -1} et i ∈ {1, . . . , N }, l'ensemble des bornes

f (k) -(t i ) et f (k) + (t i ) ainsi disponibles.

Principaux outils

Conformément au très haut niveau de sécurité requis, nous avons décidé de ne développer que des modèles ou algorithmes déterministes. Par conséquent, la fiabilité des données qui en sont issues sera la même que celle des données d'entrée. En particulier, toute incohérence des données de sortie sera fatalement imputable aux données d'entrée. Par ailleurs, l'utilisation de modèles probabilistes, comme les filtres de Kalman utilisés dans ce genre de cas, par exemple évoqués par R. FARAGER dans [START_REF] Farager | Understanding the basis of the kalman filter[END_REF], nous a paru inappropriée, les défaillances étant alors localisées dans les queues des distributions de probabilité. L'approche que nous proposons ici est, à notre connaissance, totalement nouvelle. Elle est basée sur les deux résultats suivants, le premier d'entre eux étant la formule de Taylor-Lagrange, dont nous rappelons un énoncé :

Théorème. (Formule de Taylor-Lagrange) Soient m ∈ N * , g une fonction de I dans R, x ∈ I et h ∈ R * tel que x + h ∈ I. On suppose que f est (m -1) fois dérivable en tout point compris entre x et x + h, et m fois dérivable en tout point strictement compris entre x et x + h. Il existe alors ξ strictement compris entre x et x + h tel que :

g(x + h) = m-1 k=0 h k k! g (k) (x) + h m m! g (m) (ξ h ).
Le second, dont la preuve est immédiate, est le suivant :

Proposition. (Principe de sélection) Soit A un nombre réel, k un entier plus grand que 1, et (a - i ) 1 i k and (a + i ) 1 i k deux familles de nombres réels. Si a - i A a + i pour tout i ∈ {1, . . . , k}, alors :

A - A A + où A -= max{a - 1 , .
. . , a - m }, A + = min{a + 1 , . . . , a + m }. De ce fait, à l'exception des techniques proposées par L. JAULIN dans [START_REF] Jaulin | Le calcul ensembliste par analyse par intervalles et ses applications[END_REF], que nous avions considéré en début d'étude mais qui nous ont paru difficiles à mettre en oeuvre, et le papier [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] de S. K. LELE sur les schémas compacts, que nous avions utilisé pour tenter d'optimiser certains modèles que nous proposons, aucune référence bibliographique n'accompagne les travaux présentés dans cette première partie de thèse. Ceux-ci résultent donc exclusivement des échanges que nous avons eu avec des industriels d'Alstom (I. BAINS, R. CADOT et J.-M. KLUTH) et de la RATP (S. FIORONI et F. JASMIN), et certains chercheurs du LJLL (J. GARNIER, Y. PRIVAT, E. TRÉLAT, et surtout Y. MADAY).

Introduction

To solve the problem exposed in introduction, we first need to see how to bound the derivatives of a function. In order to do it, we fix in this chapter t ∈ I and ψ : I → R a(n unknown) function for which:

• for all y ∈ I, we can determine (known) quantities ψ -(y) and ψ + (y) such that:

ψ -(y) ψ(y) ψ + (y). (1.1) 
• there exists p ∈ N * such that ψ admits a p th bounded derivative, i.e. there exists (known) real constants ψ * -and ψ * + such that for all ξ ∈ I:

ψ * - ψ (p) (ξ) ψ * + . (1.2)
Then our goal consists in finding some techniques to bound ψ (k) (t), for all k ∈ {1, . . . , p}.

We will not consider the function f used in introduction for the two following reasons. The first one is that in practice, ψ will correspond to f as well as f ′ . The second one is because in practice, we will just have bounds on ψ = f or ψ = f ′ in t 1 , . . . , t N , and not overall I.

As mentioned in introduction, we will limit our study to cases p = 2 or p = 3, even if by doing heavier computations, most of the models presented here could be extended. From section 1.1 to section 1.9, we will present various ways that permits to bound a k th derivative of ψ, with 0 < k < p. For each one of them, we will proceed as follow:

1) finding generic formulas that enable to bound ψ (k) (t),

2) choosing bounds on ψ (k) (t) as close as possible.

More precisely in section 1.1 we will start with the simpler case p = 2, and so k = 1. Then until section 1.7, we will suppose p = 3. From sections 1.2 to 1.4 we will see how to bound ψ ′ (t) without ψ ′′ , and how to bound ψ ′′ (t) without ψ ′ from sections 1.5 to 1.7. In sections 1.8 and 1.9, we will present alternative ways to bound ψ ′ (t) or ψ ′′ (t) by using bounds on ψ ′′ or ψ ′ . After that we will explain how to adapt the models presented in this chapter when ψ is just bounded in some discrete points (as function f from introduction is), and we will end by doing some general remarks about the models presented in this chapter.

1. HOW TO BOUND THE DERIVATIVES OF A FUNCTION?

1.1 A way to bound ψ ′ (t) when p = 2

1.1.1 --In this section, we assume that p = 2. Thus our goal consists in bounding ψ ′ (t) by using bounds on ψ from (1.1) and ψ ′′ from (1.2). In order to do this, we can apply the Taylor-Lagrange formula that insures, for all δ > 0 satisfying tδ ∈ I, the existence of ξ ∈ ]tδ, t[ such that

ψ(t -δ) = ψ(t) -δψ ′ (t) + δ 2 2 ψ ′′ (ξ).
Therefore

ψ ′ (t) = ψ(t) -ψ(t -δ) δ + δ 2 ψ ′′ (ξ).
Finally for all δ > 0 such that tδ ∈ I, by using (1.1) and (1.2), we obtain

ψ ′ -(t ; δ) ψ ′ (t) ψ ′ + (t ; δ) with        ψ ′ -(t ; δ) = ψ -(t) -ψ + (t -δ) δ + δψ * - 2 , ψ ′ + (t ; δ) = ψ + (t) -ψ -(t -δ) δ + δψ * + 2 .
(1.3)

1.1.2 --Let I t = {δ > 0 | t -δ ∈ I}.
Since inequalities from (1.3) are available for all δ ∈ I t , we need to choose the ones that are as close as possible. To do it, we introduce the associated diameter function

diam ψ ′ t : I t → R, δ → ψ ′ + (t ; δ) -ψ ′ -(t ; δ)
which measures according to δ the diameter of the interval [ψ ′ -(t ; δ), ψ ′ + (t ; δ)] to which ψ ′ (t) belongs, i.e. the distance between ψ ′ -(t ; δ) the lower and ψ ′ + (t ; δ) the upper bounds on ψ ′ (t) obtained in (1.3). For all δ ∈ I t , we clearly have

diam ψ ′ t (δ) = [ψ + (t) -ψ -(t)] + [ψ + (t -δ) -ψ -(t -δ)] δ + δ(ψ * + -ψ * -) 2 
.

(1.4)

According to (1.1) and (1.2), differences ψ + (y)ψ -(y), for all y ∈ I, and ψ * +ψ * -are positive. Consequently diam ψ ′ t is a positive function and: • If ψ + (y)ψ -(y) = 0 for all y ∈ I, then diam ψ ′ t (δ) is minimal when δ is close to 0.

• If ψ * +ψ * -= 0, then diam ψ ′ t (δ) is minimal when δ is as huge as possible.

• In the other cases, we have diam ψ ′ t (δ) → +∞ when δ → 0, but also when δ → +∞ if inf I = -∞, hence the existence of a δ * ∈ I t that minimises the diameter function diam ψ ′ t .

1.1.3 --We now suppose that difference ψ * +ψ * -is positive, and that differences ψ + (y)ψ -(y) are positive and do not depend on y ∈ I. According to (1.4), for all δ ∈ I t we have

diam ψ ′ t (δ) = α δ + βδ,
where α and β are two non-negative constants given by

α = 2[ψ + (t) -ψ -(t)] and β = ψ * + -ψ * - 2 .
When the interval I (where ψ is defined) is sufficiently large, the minimizer of diam ψ ′ t corresponds to the minimizer of the convex function 1.2 Generic expressions of ψ ′ (t) when p = 3

1.2.1 --From now on and until section 1.9, we will suppose that p = 3. According to (1.1) and (1.2), if we want to bound ψ ′ (t), we can just use the various bounds on ψ and ψ ′′′ . In order to do this, we can start from the Taylor expansions, available for all δ 1 and δ 2 in R * such that t + δ 1 ∈ I and t + δ 2 ∈ I,

ψ(t + δ 1 ) = ψ(t) + δ 1 ψ ′ (t) + δ 2 1 2 ψ ′′ (t) + δ 3 1 6 ψ ′′′ (ξ 1 ), (1.5) 
ψ(t + δ 2 ) = ψ(t) + δ 2 ψ ′ (t) + δ 2 2 2 ψ ′′ (t) + δ 3 2 6 ψ ′′′ (ξ 2 ), (1.6) 
where ξ j is strictly between t and t+δ j , for all j ∈ {1, 2}. For all α 1 , α 2 ∈ R, by doing α 1 (1.5)+α 2 (1.6) and by ordering α 1 δ 1 + α 2 δ 2 = 0 and α 1 δ 2 1 + α 2 δ 2 2 = 0, it is possible to express ψ ′ (t) just by using various evaluations of ψ and ψ ′′′ , but not of ψ ′′ , as follows:

ψ ′ (t) = α 1 ψ(t + δ 1 ) + α 2 ψ(t + δ 2 ) -(α 1 + α 2 )ψ(t) α 1 δ 1 + α 2 δ 2 - α 1 δ 3 1 ψ ′′′ (ξ 1 ) 6(α 1 δ 1 + α 2 δ 2 ) - α 2 δ 3 2 ψ ′′′ (ξ 2 ) 6(α 1 δ 1 + α 2 δ 2 )
.

Observing that we can multiply α 1 and α 2 by a same non-null quantity without changing this expression of ψ ′ (t), we can set α 1 = δ 2 2 , and so α 2 = -δ 2 1 (since α 1 δ 2 1 + α 2 δ 2 2 = 0). Moreover, to guarantee 0 = α 1 δ 1 + α 2 δ 2 = δ 1 δ 2 (δ 2δ 1 ), we need to impose δ 1 = δ 2 . In the end, for all δ 1 , δ 2 = 0 such that t + δ 1 ∈ I, t + δ 2 ∈ I and δ 1 = δ 2 , we have obtained

ψ ′ (t) = δ 2 2 ψ(t + δ 1 ) -δ 2 1 ψ(t + δ 2 ) -(δ 2 2 -δ 2 1 )ψ(t) δ 1 δ 2 (δ 2 -δ 1 ) + δ 1 δ 2 2 ψ ′′′ (ξ 2 ) 6(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ ′′′ (ξ 1 ) 6(δ 2 -δ 1 )
.

(1.7)

1.2.2 --Centred formulas.
We suppose here that δ 1 and δ 2 have opposite signs. Then at the risk of exchanging the roles of δ 1 and δ 2 , we can suppose that δ 1 > 0 and δ 2 < 0. Thus by setting δ + = δ 1 > 0, δ -= -δ 2 > 0, ξ + = ξ 1 and ξ -= ξ 2 , formula (1.7) can be rewritten

ψ ′ (t) = δ 2 -ψ(t + δ + ) -δ 2 + ψ(t -δ -) + (δ 2 + -δ 2 -)ψ(t) δ -δ + (δ + + δ -) - δ + δ 2 -ψ ′′′ (ξ + ) 6(δ -+ δ + ) - δ -δ 2 + ψ ′′′ (ξ -) 6(δ -+ δ + )
. (1.8) This exact expression of ψ ′ (t) is called a centred formula on ψ ′ (t). But even if this denomination could be confusing, it does not mean that δ -= δ + .

--Decentred formulas.

With notations from 1.2.1, we now suppose that δ 1 and δ 2 have the same sign, that means δ 1 < 0 and δ 2 < 0, or δ 1 > 0 and δ 2 > 0. But since in practice ψ will be a function of a time variable, we will only treat the case where δ 1 < 0 and δ 2 < 0, that permits to bound ψ ′ (t) just by using past data (useful to perform real time analyses). Obviously the interesting reader will also be able to find analogous results when δ 1 > 0 and δ 2 > 0.

Thus when δ 1 < 0 and δ 2 < 0 by setting δ ′ 1 = -δ 1 and δ ′ 2 = -δ 2 , we note that we can work with positive δ j in formula (1.7) by replacing δ j by -δ j , for all j ∈ {1, 2}. Therefore and at the risk of exchanging the roles of δ 1 and δ 2 , for all

δ 1 , δ 2 > 0 such that t -δ 1 ∈ I, t -δ 2 ∈ I and δ 1 < δ 2 , formula (1.7) is equivalent to ψ ′ (t) = δ 2 1 ψ(t -δ 2 ) + (δ 2 2 -δ 2 1 )ψ(t) -δ 2 2 ψ(t -δ 1 ) δ 1 δ 2 (δ 2 -δ 1 ) + δ 1 δ 2 2 ψ ′′′ (ξ 2 ) 6(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ ′′′ (ξ 1 ) 6(δ 2 -δ 1 )
.

(

This exact expression of ψ ′ (t) is called a decentred formula on ψ ′ (t).

1.3 Centred bounds on ψ ′ (t) when p = 3

1.3.1 --Let P t = {(δ -, δ + ) ∈ R * + | t -δ -∈ I, t + δ + ∈ I}. For all (δ -, δ + ) ∈ P t , by setting          ψ ′ -(t ; δ -, δ + ) = δ 2 -ψ -(t + δ + ) + (δ 2 + -δ 2 -)ψ -σ(δ+-δ-) (t) -δ 2 + ψ + (t -δ -) δ -δ + (δ -+ δ + ) - δ -δ + ψ * + 6 , ψ ′ + (t ; δ -, δ + ) = δ 2 -ψ + (t + δ + ) + (δ 2 + -δ 2 -)ψ σ(δ+-δ-) (t) -δ 2 + ψ -(t -δ -) δ -δ + (δ -+ δ + ) - δ -δ + ψ * - 6 ,
where the sign σ(δ

+ -δ -) of δ + -δ -also corresponds to the sign of δ 2 + -δ 2 -= (δ + -δ -)(δ + + δ -).
Since δ -and δ + are positive, (1.1), (1.2) and the centred formula (1.8) imply: 

ψ ′ -(t ; δ -, δ + ) ψ ′ (t) ψ ′ + (t ; δ -, δ + ). ( 1 
diam ψ ′ t : P t → R, (δ -, δ + ) → ψ ′ + (t ; δ -, δ + ) -ψ ′ -(t ; δ -, δ + ).
For all (δ -, δ + ) ∈ P t , we have:

diam ψ ′ t (δ -, δ + ) = δ 2 -[ψ + (t + δ + ) -ψ -(t + δ + )] + δ 2 + [ψ + (t -δ -) -ψ -(t -δ -)] δ -δ + (δ -+ δ + ) + δ 2 + -δ 2 -[ψ + (t) -ψ -(t)] δ -δ + (δ -+ δ + ) + δ -δ + (ψ * + -ψ * -) 6 
.

According to (1.1) and (1.2), differences ψ + (y)ψ(y), for all y ∈ I, and ψ * +ψ * -are non-negative. Therefore diam ψ ′ t is also non-negative, and:

• If ψ + (y) -ψ(y) = 0 for all y ∈ I, then diam ψ ′ t (δ -, δ + ) is minimal when (δ -, δ + ) is close to (0, 0). • If ψ * + -ψ * -= 0, then diam ψ t (δ -, δ +
) is minimal when δ -and δ + are as huge as possible. • In the other case, since diam ψ ′ t (δ -, δ + ) → +∞ when (δ -, δ + ) → (0, 0), but also when δ -→ +∞ or δ + → +∞ if P t (and thus I) is not bounded, we can conclude that there exists a couple (δ * -, δ * + ) ∈ P t that minimizes the diameter function diam ψ ′ t .

1.3.3 --Until the end of this section, we suppose that difference ψ * +ψ * -is positive, and that differences ψ + (y)ψ -(y) are positive and do not depend on y ∈ I. Then for all (δ -, δ + ) ∈ P t ,

diam ψ ′ t (δ -, δ + ) = α δ 2 -+ δ 2 + + δ 2 + -δ 2 - δ -δ + (δ -+ δ + ) + βδ -δ + ,
where α and β are two non-negative constants given by

α = ψ + (t) -ψ -(t) and β = ψ * + -ψ * - 6 . 
1.3.4 --Lemma. Under the assumptions done in 1.3.3, for all (δ -, δ + ) ∈ P t , we have

diam ψ ′ t (δ -, δ + ) diam ψ ′ t (δ, δ) with δ = min(δ -, δ + ).
Proof.--To start, we can note that for all δ > 0 such that tδ ∈ I and t + δ ∈ I,

diam ψ ′ t (δ, δ) = α δ + βδ 2 .
Let (δ -, δ + ) ∈ P t such that δ -δ + , and c = δ +δ -. Thus c 0 and δ + = δ -+ c. Therefore

diam ψ ′ t (δ -, δ + ) = diam ψ ′ t (δ -, δ -+ c) = α(2δ 2 -+ 4δ -c + 2c 2 ) δ -(2δ 2 -+ 3δ -c + c 2 ) + β(δ 2 -+ δ -c) = α δ - + βδ 2 -+ α(δ -c + c 2 ) δ(2δ 2 -+ 3δ -c + c 2 ) + βδ -c = diam ψ ′ t (δ -, δ -) + α(δ -c + c 2 ) δ(2δ 2 -+ 3δ -c + c 2 ) + βδ -c.
And since c, δ -, α and β are non-negative, we obtain diam

ψ ′ t (δ -, δ + ) diam ψ ′ t (δ -, δ -). Otherwise since when δ -> δ + , we get diam ψ ′ t (δ -, δ + ) diam ψ ′ t (δ + , δ +
) by the same way, the result follows.

--Let

I t = {δ > 0 | t -δ ∈ I, t + δ ∈ I} and D t = {(δ, δ) | δ ∈ I t }.
Under the assumptions from 1.3.3, lemma 1.3.4 implies that the minimum of diam ψ ′ t is reached on D t . Therefore the research of a couple that minimizes the two-variables diameter function diam ψ ′ t on P t becomes a single-variable problem. In practice, we can explicitly determine a pair (δ * , δ * ) ∈ D t that minimizes diam ψ ′ t on P t knowing that the function

ε : R * + → R, δ → α δ + βδ 2 , which satisfies diam ψ ′ t |Dt = ε |It , is decreasing on ]0, δ * ] and increasing on [δ * , +∞[, with δ * = α 2β 1/3 and ε(δ * ) = 3 α 2 2/3 β 1/3 .
1.4 Decentred bounds on ψ ′ (t) when p = 3

1.4.1 --Let P t = {(δ 1 , δ 2 ) ∈ R * + | t -δ 1 ∈ I, t -δ 2 ∈ I, δ 1 < δ 2 }. For all (δ 1 , δ 2 ) ∈ P t , by setting          ψ ′ -(t ; δ 1 , δ 2 ) = δ 2 1 ψ -(t -δ 2 ) + (δ 2 2 -δ 2 1 )ψ -(t) -δ 2 2 ψ + (t -δ 1 ) δ 1 δ 2 (δ 2 -δ 1 ) + δ 1 δ 2 2 ψ * - 6(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ * + 6(δ 2 -δ 1 ) , ψ ′ + (t ; δ 1 , δ 2 ) = δ 2 1 ψ + (t -δ 2 ) + (δ 2 2 -δ 2 1 )ψ + (t) -δ 2 2 ψ -(t -δ 1 ) δ 1 δ 2 (δ 2 -δ 1 ) + δ 1 δ 2 2 ψ * + 6(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ * - 6(δ 2 -δ 1 ) ,
we deduce from (1.1), (1.2) and the decentred formula (1.9) that 

ψ ′ -(t ; δ 1 , δ 2 ) ψ ′ (t) ψ ′ + (t ; δ 1 , δ 2 ). ( 1 
diam ψ ′ t : P t → R, (δ 1 , δ 2 ) → ψ ′ + (t ; δ 1 , δ 2 ) -ψ ′ -(t ; δ 1 , δ 2 ). For all (δ 1 , δ 2 ) ∈ P t we have diam ψ ′ t (δ 1 , δ 2 ) = δ 2 1 [ψ + (t -δ 2 ) -ψ -(t -δ 2 )] + δ 2 2 [ψ + (t -δ 1 ) -ψ -(t -δ 1 )] δ 1 δ 2 (δ 2 -δ 1 ) + (δ 2 2 -δ 2 1 )[ψ + (t) -ψ -(t)] δ 1 δ 2 (δ 2 -δ 1 ) + (δ 1 δ 2 2 + δ 2 δ 2 1 )(ψ * + -ψ * -) 6(δ 2 -δ 1 )
.

Thanks to (1.1) and (1.2), differences ψ + (y)ψ(y), for all y ∈ I, and ψ * +ψ * -are non-negative. Therefore diam ψ ′ t is also non-negative, and:

• If ψ + (y) -ψ(y) = 0 for all y ∈ I, then diam ψ ′ t (δ 1 , δ 2 ) is minimal when (δ 1 , δ 2 ) is close to (0, 0). • If ψ * + -ψ * -= 0, then diam ψ t (δ 1 , δ 2
) is minimal when δ 1 and δ 2 are as huge as possible. • In the other case, since diam ψ ′ t (δ 1 , δ 2 ) → +∞ when (δ 1 , δ 2 ) → (0, 0), but also when δ 1 → +∞ if P t (and thus I) is not bounded, we can conclude that there exists a couple (δ * 1 , δ * 2 ) ∈ P t that minimizes the diameter function diam ψ ′ t .

1.4.3 --When difference ψ * +ψ * -is positive, and differences ψ + (y)ψ -(y) are positive and independent of y ∈ I, then for all (δ 1 , δ 2 ) ∈ P t ,

diam ψ ′ t (δ 1 , δ 2 ) = αδ 2 δ 1 (δ 2 -δ 1 ) + β(δ 1 δ 2 2 + δ 2 δ 2 1 ) δ 2 -δ 1 ,
where α and β are two positive constants given by

α = 2[ψ + (t) -ψ -(t)] and β = ψ * + -ψ * - 6 .
Therefore to determine a global minimizer of diam ψ ′ t , it can be useful to consider the function

ε : U → R + , (δ 1 , δ 2 ) → αδ 2 δ 1 (δ 2 -δ 1 ) + β(δ 1 δ 2 2 + δ 2 δ 2 1 ) δ 2 -δ 1 , where U is the set of couples (δ 1 , δ 2 ) ∈ R * + × R * + such that δ 1 < δ 2 .
Since ε is positive and continue on U with ε(δ 1 , δ 2 ) → +∞ when δ 2 → 0 or δ 2δ 1 → 0 or δ 1 → +∞, this function has actually a global minimizer. Unfortunately we have not found the exact expression of such a global minimizer. But in practice, it will be sufficient to compute an approximation of it.

REMARK. Such a function ε seems graphically convex. Since each critical point of a convex function is a global minimizer of it, the research of a global minimizer of ε could probably be limited to the research of one of its critical point.

1.5 Generic expressions of ψ ′′ (t) when p = 3 1.5.1 --To determine generic expressions of ψ ′′ (t), we will proceed as in section 1.2 by using linear combinations of relations (1.5) and (1.6) to express ψ ′′ (t) by using various evaluations of ψ and ψ ′′′ , but not of ψ ′ . So let δ 1 , δ 2 as in 1.2.1. For all α 1 , α 2 ∈ R, by ordering here α 1 δ 2 1 + α 2 δ 2 2 = 0 and α 1 δ 1 + α 2 δ 2 = 0, and by doing α 1 (1.5) + α 2 (1.6), we get

ψ ′′ (t) = 2[α 1 ψ(t + δ 1 ) + α 2 ψ(t + δ 2 ) -(α 1 + α 2 )ψ(t)] α 1 δ 2 1 + α 2 δ 2 2 - α 1 δ 3 1 ψ ′′′ (ξ 1 ) 3(α 1 δ 2 1 + α 2 δ 2 2 ) - α 2 δ 3 2 ψ ′′′ (ξ 2 ) 3(α 1 δ 2 1 + α 2 δ 2 2 )
.

Since we can multiply α 1 and α 2 by a same non-null quantity without changing this expression of ψ ′′ (t), we can choose α 1 = δ 2 and so α 2 = -δ 1 (since α 1 δ 1 + α 2 δ 2 = 0). Moreover in order to guarantee

0 = α 1 δ 2 1 + α 2 δ 2 2 = δ 1 δ 2 (δ 1 -δ 2 )
, we need to impose δ 1 = δ 2 . In the end, for all δ 1 , δ 2 > 0 such that tδ 1 ∈ I, tδ 2 ∈ I and δ 1 = δ 2 , we get

ψ ′′ (t) = 2[δ 1 ψ(t + δ 2 ) + (δ 2 -δ 1 )ψ(t) -δ 2 ψ(t + δ 1 )] δ 1 δ 2 (δ 2 -δ 1 ) + δ 2 1 ψ ′′′ (ξ 1 ) 3(δ 2 -δ 1 ) - δ 2 2 ψ ′′′ (ξ 2 ) 3(δ 2 -δ 1 )
.

(1.12)

1.5.2 --Centred formulas.
We suppose here that δ 1 and δ 2 have opposite signs. Then at the risk of exchanging the roles of δ 1 and δ 2 , we can assume that δ 1 > 0 and δ 2 < 0. Thus by setting δ + = δ 1 > 0, δ -= -δ 2 > 0, and ξ + = ξ 1 , ξ -= ξ 2 , formula (1.12) can be rewritten

ψ ′′ (t) = 2[δ -ψ(t + δ + ) + δ + ψ(t -δ -) -(δ -+ δ + )ψ(t)] δ -δ + (δ -+ δ + ) + δ 2 -ψ ′′′ (ξ -) 3(δ -+ δ + ) - δ 2 + ψ ′′′ (ξ -) 3(δ -+ δ + )
. (1.13) This expression of ψ ′′ (t) is called a centred formula on ψ ′′ (t), which still does not mean that δ -= δ + .

--Decentred formulas.

With notations from 1.5.1, we now suppose that δ 1 and δ 2 have the same sign. For the same reasons as those from paragraph 1.2.3, we will only consider that the case δ 1 < 0 and δ 2 < 0.

Then by setting δ ′ 1 = -δ 1 and δ ′ 2 = -δ 2 , we note that we can work with positive δ j in formula (1.7) by replacing δ j by -δ j , for all j ∈ {1, 2}. Therefore, and at the risk of exchanging the roles of δ 1 and δ 2 , for all δ 1 , δ 2 > 0 such that tδ 1 ∈ I, tδ 2 ∈ I and δ 1 < δ 2 , we obtain the following decentred formula on ψ ′′ (t), which is just a reformulation of (1.12),

ψ ′′ (t) = 2[δ 1 ψ(t -δ 2 ) + (δ 2 -δ 1 )ψ(t) -δ 2 ψ(t -δ 1 )] δ 1 δ 2 (δ 2 -δ 1 ) + δ 2 2 ψ ′′′ (ξ 2 ) 3(δ 2 -δ 1 ) - δ 2 1 ψ ′′′ (ξ 1 ) 3(δ 2 -δ 1 )
.

(1.14)

1.6 Centred bounds on ψ ′′ (t) when p = 3

1.6.1 --Let P t = {(δ -, δ + ) ∈ R * + | t -δ -∈ I, t + δ + ∈ I}. For all (δ -, δ + ) ∈ P t , by setting          ψ ′′ -(t ; δ-, δ+) = 2[δ-ψ-(t + δ+) + δ+ψ-(t -δ-) -(δ+ + δ-)ψ+(t)] δ-δ+(δ-+ δ+) + δ 2 -ψ * - 3(δ-+ δ+) - δ 2 + ψ * + 3(δ-+ δ+) , ψ ′′ + (t ; δ-, δ+) = 2[δ-ψ+(t + δ+) + δ+ψ+(t -δ-) -(δ+ + δ-)ψ-(t)] δ-δ+(δ-+ δ+) + δ 2 -ψ * + 3(δ-+ δ+) - δ 2 + ψ * - 3(δ-+ δ+) ,
we deduce from (1.1), (1.2) and the centred formula (1.13) that

ψ ′′ -(t ; δ -, δ + ) ψ ′′ (t) ψ ′′ + (t ; δ -, δ + ). (1.15) 
ψ ′′ -(t ; δ -, δ + ) and ψ ′′ + (t ; δ -, δ + ) are respectively called lower and upper centred bounds on ψ ′′ (t).

1.6.2 --We now introduce the diameter function associated to bounds from (1.15)

diam ψ ′′ t : P t → R, (δ -, δ + ) → ψ ′′ + (t ; δ -, δ + ) -ψ ′′ -(t ; δ -, δ + ).
For all (δ -, δ + ) ∈ P t , we have

diam ψ ′′ t (δ -, δ + ) = 2 δ -[ψ + (t + δ + ) -ψ -(t + δ + )] + δ + [ψ + (t -δ -) -ψ -(t -δ -)] δ -δ + (δ -+ δ + ) + 2[ψ + (t) -ψ -(t)] δ -δ + + (δ 2 -+ δ 2 + )(ψ * + -ψ * -) 3(δ -+ δ + )
.

By (1.1) and (1.2), differences ψ + (y)ψ(y), for all y ∈ I, and ψ * +ψ * -are non-negative. Consequently diam ψ ′ t is also non-negative, and:

• If ψ + (y) -ψ(y) = 0 for all y ∈ I, then diam ψ ′′ t (δ -, δ + ) is minimal when (δ -, δ + ) is close to (0, 0). • If ψ * + -ψ * -= 0, then diam ψ ′′ t (δ -, δ +
) is minimal when δ -and δ + are as huge as possible. • In the other cases, since diam ψ ′′ t (δ -, δ + ) → +∞ when (δ -, δ + ) → (0, 0), but also when δ -→ +∞ or δ + → +∞ when P t (and thus I) is not bounded, we can conclude that there exists a couple (δ * -, δ * + ) in P t that minimizes the diameter function diam ψ ′′ t .

1.6.3 --Until the end of this section, we assume that difference ψ * +ψ * -is positive and that differences ψ + (y)ψ -(y) are positive and do not depend on y ∈ I. Then for all (δ -, δ + ) ∈ P t ,

diam ψ ′′ t (δ -, δ + ) = α δ -δ + + β(δ 2 -+ δ 2 + ) (δ -+ δ + )
, where α and β are two non-negative constants given by

α = 4[ψ + (t) -ψ -(t)] and β = ψ * + -ψ * - 3 . 
1.6.4 --Lemma. Under the assumptions from 1.6.3:

(i) For all δ ∈ R * + such that t -δ ∈ I and t + δ ∈ I, we have diam ψ ′′ t (δ, δ) = α δ 2 + βδ.
(ii) For all (δ -, δ + ) ∈ P t such that tδ -∈ I and t + δ + ∈ I, we have

diam ψ ′′ t (δ -, δ + ) diam ψ ′′ t (δ, δ) with δ = δ -+ δ + 2 .
Proof.--We immediately obtain (i) by doing easy calculations. Let us prove (ii). In order to do this, we fix (δ -, δ + ) ∈ P t with tδ -∈ I and t + δ + ∈ I.

-Thanks to (i), we immediatly obtain diam

ψ ′′ t δ -+ δ + 2 , δ -+ δ + 2 = 4α (δ -+ δ + ) 2 + β(δ -+ δ + ) 2 .
-Using the inequality

δ -δ + δ -+ δ + 2 2 = (δ -+ δ + ) 2 4 , we get 1 δ -δ + 4 (δ -+ δ + ) 2 .
-Finally we also have

(δ 2 -+ δ 2 + ) (δ -+ δ + ) = 2(δ 2 -+ δ 2 + ) 2(δ -+ δ + ) = (δ -+ δ + ) 2 + (δ --δ + ) 2 2(δ -+ δ + ) δ -+ δ + 2 .
In the end since α and β are non-negative, we obtain

diam ψ ′′ t (δ -, δ + ) = α δ -δ + + β(δ 2 -+ δ 2 + ) (δ + + δ -) 4α (δ -+ δ + ) 2 + β(δ -+ δ + ) 2 = diam ψ ′′ t δ -+ δ + 2 , δ -+ δ + 2 ,
which ends the proof of this lemma.

1.6.5 --Let

I t = {δ > 0 | t -δ ∈ I, t + δ ∈ I} and D t = {(δ, δ) | δ ∈ I t }.
Under the assumptions from 1.6.3, when the interval I (where function ψ is defined) is sufficiently large, lemma 1.6.4 implies that diam ψ ′′ t reaches its minimum on D t . In this case, to minimize diam ψ ′′ t , we can use the fact that the function

ε : R * + → R + , δ → α δ 2 + βδ as an unique global minimizer δ * which satisfies δ * = 2α β 1/3 and ε(δ * ) = 3α 1/3 β 2 2/3 .
1.7 Decentred bounds on ψ ′′ (t) when p = 3

1.7.1 --Let P t = {(δ 1 , δ 2 ) ∈ R * + | t -δ 1 ∈ I, t -δ 2 ∈ I, δ 1 < δ 2 }. For all (δ 1 , δ 2 ) ∈ P t , by setting          ψ ′′ -(t ; δ1, δ2) = 2[δ1ψ-(t -δ2) + (δ2 -δ1)ψ-(t) -δ2ψ+(t -δ1)] δ1δ2(δ2 -δ1) + δ 2 2 ψ * - 3(δ2 -δ1) - δ 2 1 ψ * + 3(δ2 -δ1) , ψ ′′ + (t ; δ1, δ2) = 2[δ1ψ+(t -δ2) + (δ2 -δ1)ψ+(t) -δ2ψ-(t -δ1)] δ1δ2(δ2 -δ1) + δ 2 2 ψ * + 3(δ2 -δ1) - δ 2 1 ψ * - 3(δ2 -δ1) ,
we deduce from (1. 

diam ψ ′′ t : P t → R, (δ 1 , δ 2 ) → ψ ′′ + (t ; δ 1 , δ 2 ) -ψ ′′ -(t ; δ 1 , δ 2 ). For all (δ 1 , δ 2 ) ∈ P t , diam ψ ′′ t (δ 1 , δ 2 ) = 2 δ 1 [ψ + (t -δ 2 ) -ψ -(t -δ 2 )] + δ 2 [ψ + (t -δ 1 ) -ψ -(t -δ 1 )] δ 1 δ 2 (δ 2 -δ 1 ) + 2[ψ + (t) -ψ -(t)] δ 1 δ 2 + (δ 2 1 + δ 2 2 )(ψ * + -ψ * -) 3(δ 2 -δ 1 )
.

By (1.1) and (1.2), differences ψ + (y)ψ(y), for all y ∈ I, and ψ * +ψ * -are non-negative. Consequently diam ψ ′ t is non-negative, and:

• If ψ + (y) -ψ(y) = 0 for all y ∈ I, then diam ψ ′′ t (δ 1 , δ 2 ) is minimal when (δ 1 , δ 2 ) is close to (0, 0). • If ψ * + -ψ * -= 0, then diam ψ ′′ t (δ 1 , δ 2
) is minimal when δ 1 and δ 2 are as huge as possible. • In the other case, since diam ψ ′′ t (δ 1 , δ 2 ) → +∞ when (δ 1 , δ 2 ) → (0, 0), but also when δ 1 → +∞ if P t (and thus I) is not bounded, we can conclude that there exists a couple (δ * 1 , δ * 2 ) ∈ P t that minimizes the diameter function diam ψ ′′ t . 1.7.3 --When difference ψ * +ψ * -is positive, and when differences ψ + (y)ψ -(y) are positive and independent of y ∈ I, then for all (δ 1 , δ 2 )

∈ P t , diam ψ ′′ t (δ 1 , δ 2 ) = α δ 1 (δ 2 -δ 1 ) + β(δ 2 1 + δ 2 2 ) (δ 2 -δ 1 )
, where α and β are two positive constants given by

α = 4[ψ + (t) -ψ -(t)] and β = ψ * + -ψ * - 3 .
Therefore by setting

U = {(δ 1 , δ 2 ) ∈ R * + × R * + | δ 1 < δ 2 }
, it can be useful to determine the minimizer(s) of the function:

ε : U → R + , (δ 1 , δ 2 ) → α δ 1 (δ 2 -δ 1 ) + β(δ 2 1 + δ 2 2 ) (δ 2 -δ 1 )
.

As for the decentred bounds on ψ ′ (t), we can prove that this function has a global minimizer even if we have not found its exact expression, but it will be sufficient to compute an approximation of it in practice.

1.8 Crossed bounds on ψ ′ (t) when p = 3 Let us precise that it is always possible, for instance by using the theories from sections 1.6 or 1.7. Then the idea consists in using this information to determine other bounds on ψ ′ (t). Let

I t = {δ > 0 | t -δ ∈ I}.
By the Taylor-Lagrange formula, we know that for all δ ∈ I t , there exists ξ ∈ ]tδ, t[ such that

ψ(t -δ) = ψ(t) + δψ ′ (t) + δ 2 2 ψ ′′ (t) + δ 3 6 ψ ′′′ (ξ), (1.18) 
that can be rewritten

ψ ′ (t) = ψ(t) -ψ(t -δ) δ + δψ ′′ (t) 2 - δ 2 ψ ′′′ (ξ) 6 .
Therefore by setting 

       ψ ′ -(t ; δ) = ψ -(t) -ψ + (t -δ) δ + δψ ′′ -(t) 2 - δ 2 ψ * + 6 , ψ ′ + (t ; δ) = ψ + (t) -ψ -(t -δ) δ + δψ ′′ + (t) 2 - δ 2 ψ * -
diam ψ ′ t : I t → R, δ → ψ ′ + (t ; δ) -ψ ′ -(t ; δ). For all δ ∈ I t , diam ψ ′ t (δ) = [ψ + (t) -ψ -(t)] + [ψ + (t -δ) -ψ -(t -δ)] δ + δ[ψ ′′ + (t) -ψ ′′ -(t)] 2 + δ 2 (ψ * + -ψ * -) 6 
.

By (1.1), (1.2) and (1.17), differences

ψ + (y) -ψ -(y), for all y ∈ I, ψ * + -ψ * -and ψ ′′ + (t) -ψ ′′ -(t) are non-negative. Thus diam ψ ′
t is also non-negative, and:

• If ψ + (y) -ψ -(y) = 0 for all y ∈ I, diam ψ ′ t (δ) is minimal when δ is close to 0. • If ψ ′′ + (t) -ψ ′′ -(t) = ψ * + -ψ * -= 0, then diam ψ ′ t (δ)
is minimal when δ is as huge as possible.

• In the other cases, since diam ψ ′ t (δ) → +∞ when δ → 0, but also when δ → +∞ if inf I = -∞, we can conclude that there exists a δ * ∈ I t that minimizes the diameter function diam ψ ′ t .

1.8.3 --We now assume that differences ψ + (y)ψ -(y) are independent of y ∈ I. Then for all δ ∈ I t

diam ψ ′ t (δ) = α δ + βδ + γδ 2 ,
where α, β and γ are three non-negative constants given by

α = 2[ψ + (t) -ψ -(t)], β = ψ ′′ + (t) -ψ ′′ -(t) 2 and γ = ψ * + -ψ * - 6 .
In paragraph 1.8.2 we have explained how to minimize diam ψ ′ t when α = 0 or when β = γ = 0. In the other cases:

• When α > 0, β = 0 and γ > 0, we can refer to paragraph 1.3.5.

• When α > 0, β > 0 and γ = 0, we can refer to paragraph 1.1.3.

In the end, we just need to explain how to minimize diam ψ ′ t when α, β and γ are all three positive.

1.8.4 --Lemma. Let λ, µ, ν > 0 and

u : R * + → R, δ → λδ 3 + µδ 2 -ν.
There exists an unique δ * ∈ R + such that u(δ * ) = 0, and

u is negative on ]0, δ * ], positive on [δ * , +∞[. Proof.--The function u is clearly differentiable and for all δ ∈ R * + u ′ (t) = 3λδ 2 + 2µδ = 3λδ δ + 2µ 3λ .
Since λ and µ are positive, it implies u ′ (δ) > 0 for all δ ∈ R * + . Therefore u is non-decreasing on R * + , and since u(0) = -µ < 0 by hypothesis, u(δ) → +∞ when δ → +∞, we can easily conclude by using the continuity of u.

1.8.5 --Taking the notations from 1.8.3 back, we suppose that α, β and γ are all three positive. Let

ε : R * + → R + , δ → α δ + βδ + γδ 2 .
Functions diam ψ ′ t and ε are obviously linked by the relation diam ψ ′ t = ε |It . Thus to determine the minimizers of diam ψ ′ t , it could be useful to determine the ones of ε. For all δ ∈ R * + ,

ε ′ (δ) = 2γδ 3 + βδ 2 -α δ 2 .
Therefore lemma 1.8.4 applied with λ = 2γ, µ = β and ν = α implies that ε has an unique minimizer

δ * ∈ R * satisfying 2γ(δ * ) 3 + β(δ * ) 2 -α = 0.
As a root of a real polynomial of the third degree, it is possible to determine the exact expression of δ * , but the corresponding formula is so complicated that we prefer to not explicit it. In practice, we suggest the use of an algorithm (e.g. Newton's method especially adapted to polynomial functions) to approach the exact value of δ * the global minimizer of the function ε.

1.9 Crossed bounds on ψ ′′ (t) when p = 3

1.9.1 --In this section, we will lead an analogous analysis with ψ ′′ (t) as the one of section 1.8 with ψ ′ (t). Thus we suppose here that we are able to determine quantities ψ ′ -(t) and ψ ′ + (t) such that

ψ ′ -(t) ψ ′ (t) ψ ′ + (t). (1.20)
Let us take back the notation of I t from paragraph 1.8.1. According to relation (1.18), we have

ψ ′′ (t) = 2[ψ(t -δ) -ψ(t)] δ 2 + 2ψ ′ (t) δ + δψ ′′′ (ξ) 3 .
Therefore by setting 

       ψ ′′ -(t ; δ) = 2[ψ -(t -δ) -ψ + (t)] δ 2 + 2ψ ′ -(t) δ + δψ * - 3 , ψ ′′ + (t ; δ) = 2[ψ + (t -δ) -ψ -(t)] δ 2 + 2ψ ′ + (t) δ + δψ * + 3 , inequalities (1.
diam ψ ′′ t : I t → R, δ → ψ ′′ + (t ; δ) -ψ ′′ -(t ; δ). For all δ ∈ I t , we have diam ψ ′′ t (δ) = 2 [ψ+(t -δ) -ψ-(t -δ)] + [ψ+(t) -ψ-(t)] δ 2 + 2[ψ ′ + (t) -ψ ′ -(t)] δ + δ(ψ * + -ψ * -) 3 .
Thanks to (1.1), (1.2) and (1.20), differences ψ + (y)ψ -(y), for all y ∈ I, ψ * +ψ * -and ψ ′ + (t)ψ ′ -(t) are non-negative. Thus diam ψ ′′ t is also non-negative, and:

• If ψ + (y) -ψ -(y) = ψ ′ + (t) -ψ ′ -(t) = 0 for all y ∈ I, then diam ψ ′′ t (δ) is minimal when δ is close to 0. • If ψ * + -ψ * -= 0, then diam ψ ′′ t (δ)
is minimal when δ is as huge as possible. • In the other cases, since diam ψ ′′ t (δ) → +∞ when δ → 0, but also when δ → +∞ if inf I = -∞, we can conclude that there exists a δ * ∈ I t that minimizes the diameter function diam ψ ′′ t . 1.9.3 --We now assume that differences ψ + (y)ψ -(y) are independent of y ∈ I. Then for all δ

∈ I t diam ψ ′′ t (δ) = α δ 2 + β δ + γδ,
where α, β and γ are three non-negative constants given by

α = 4[ψ + (t) -ψ -(t)], β = 2[ψ ′ + (t) -ψ ′ -(t)] and γ = ψ * + -ψ * - 3 .
In paragraph 1.9.2 we have explained how to minimize diam ψ ′ t when α = β = 0, or when γ = 0. In the other cases:

• When α = 0, β > 0 and γ = 0, we can refer to proposition 1.1.3.

• When α > 0, β = 0 and γ > 0, we can refer to proposition 1.6.5.

In the end, we just need to explain how to minimize diam ψ ′ t when α, β and γ are all three positive.

1.9.4 --Lemma. Let λ, µ, ν > 0 and

u : R * + → R, δ → λδ 3 -µδ -ν.
There exists an unique δ ∈ R * + such that u(δ * ) = 0, u is negative on ]0, δ * [ and u is positive on ]δ * , +∞[.

Proof.--The function u is clearly differentiable and for all δ ∈ R *

+ u ′ (δ) = 3λδ 2 -µ.
Since λ and µ are non-negative, setting down ρ = µ/(3λ), we can observe that u is non-increasing on ]0, ρ] and non-decreasing on [ρ, +∞[. Consequently, having u(0) = -ν < 0, u is negative on ]0, ρ]. Moreover, having u(δ) → +∞ when δ → +∞, we can easily conclude by using the continuity and the monotony of u on [ρ, +∞[. 1.9.5 --Taking the notations from 1.9.3 back, we suppose that α, β and γ are all three positive. Let

ε : R * + → R, δ → α δ 2 + β δ + γδ.
Functions diam ψ ′′ t and ε are obviously linked by the relation ε |It = diam ψ ′′ t . Thus to determine the minimizers of diam ψ ′′ t , it could be useful to determine those of ε. For all δ ∈ R *

+ ε ′ (δ) = γδ 3 -βδ -2α δ 3 .
Therefore lemma 1.9.4 applied with λ = γ, µ = β and ν = 2α implies that ε gets an unique minimizer δ * ∈ R * satisfying γ(δ * ) 3βδ * -2α = 0.

As in 1.8.5, we can determine the exact expression of δ * , but its expression is so complicated that we suggest to approximate it by using a numerical algorithm (e.g. Newton's method).

1.10 When ψ is just bounded in some discrete points 1.10.1 --In this chapter, we have supposed being able to bound ψ at every point of I, which is a strong hypothesis than those done in the introduction of this part I. Indeed in practice ψ will just be estimated in t 1 , . . . , t N . Therefore when inequalities from (1.1) are available only for all y ∈ {t 1 , . . . , t N }, if we want to bound a derivative of ψ in t = t j for such a j ∈ {1, . . . , N }, we must precise how to use the previous models. Thus in this section we will assume that ψ is bounded in t 1 , . . . , t N and that t = t j for a such a j ∈ {1, . . . , N }. In other words it means that ψ still satisfies (1.2) but that (1.1) is now restrained to

∀ i ∈ {1, . . . , N }, ψ -(t i ) ψ(t i ) ψ + (t i ).
Then to bound ψ ′ or ψ ′′ as previously, we can only use:

• bounds from (1.3), (1.19) and (1.21) by choosing δ = t j -t j-r , for all index r satisfying 1 j -r < j, i.e. 1 r j -1 (in particular, we need to suppose j 2 to do this),

• centred bounds from (1.10) and (1.15) by choosing δ -= t jt j-r-and δ + = t j+r+t j , for all indexes r -and r + satisfying 1 jr -< j < j + r + N , i.e. 1 r -j -1 and 1 r + Nj (in particular, we need to suppose 2 j N -1 to do this),

• decentred bounds from (1.11) and (1.16) by choosing δ 1 = t jt j-r1 and δ 2 = t jt j-r2 , for all indexes r 1 and r 2 satisfying 1 jr 2 < jr 1 < j, i.e. 1 r 1 < r 2 j -1 (in particular, we need to suppose j 3 to do this).

With these notations, our goal consists in choosing as well as possible:

• index r ∈ {1, . . . , j -1} with bounds from (1.3), (1.19) and (1.21),

• indexes r -∈ {1, . . . , j -1} and r + ∈ {1, . . . , N -j} with centred bounds from (1.10) and (1.15),

• indexes r 1 ∈ {1, . . . , j -2} and r 2 ∈ {r 1 +1, . . . , j -1} with decentred bounds from (1.11) and (1.16), to minimize the distance between the computed bounds on ψ ′ (t j ) or ψ ′′ (t j ).

1.10.2 --Theoretically the previous indexes r, r -and r + , r 1 and r 2 are obtained by minimization of the corresponding diameter function on a discrete subset. By example, when p = 2 with bounds from (1.3), we have to minimize the diameter function diam ψ ′ tj from 1.1.2 on I tj ∩ {t jt j-s | 1 s j -1}}. And such a problem can be quite complicated and costly (in time) when j is high or when the value of differences ψ + (t i )ψ -(t i ) depend on the index i ∈ {1, . . . , N }. That is why in the rest of this section, we will suggest an alternative way to choose r, r -and r + , r 1 and r 2 when there exists µ > 0 such that for all i ∈ {1, . . . , N }, differences ψ + (t i )ψ -(t i ) are equal or not so far from µ. For the crossed bounds on ψ ′ (t j ) (resp. ψ ′′ (t j )) from (1.19) (resp. (1.21)), it will also be necessary to assume that for all i ∈ {1, . . . , N }, differences ψ ′′

+ (t i ) -ψ ′′ -(t i ) (resp. ψ ′ + (t i ) -ψ ′ -(t i ))
are equal or sufficiently close to a same value µ ′′ > 0 (resp. µ ′ > 0). 1.10.3 --How to choose r with bounds from (1.3), (1.19) and (1.21)?

We will explain it on the example of the bounds from (1.3), knowing that we can do the same by making reference to section 1.8 with bounds from (1.19) and section 1.9 with bounds from (1.21). So let us take the notations from section 1.1 back, and let us fix j ∈ {2, . . . , N }.

1)

We first determine δ * the minimizer of function ε from proposition 1.1.3 taken with

α = 2µ and β = ψ * + -ψ * - 2 . 
2) Since diam ψ ′ t = ε |It , then we should ideally take r ∈ {1, . . . , j -1} such that t jt j-r = δ * . Unfortunately it will never exist such an index r in practice. But since for all i ∈ {1, . . . , N }, differences ψ + (t i )ψ -(t i ) are equal or not so far from µ, the idea consists in choosing an index r such that t jt j-r is not so far from δ * . Knowing that function ε is decreasing on ]0, δ * ] and increasing on [δ * , +∞[, we can proceed as follows:

• If t jt 1 δ * , we choose r = j -1.

• If t jt 1 > δ * , we choose r the smallest index s ∈ {1, . . . , j -1} such that t jt j-s > δ * . We will explain it on the example of centred bounds on ψ ′ (t) from (1.10), knowing that the same method can be used with the centred bounds on ψ ′′ (t) from (1.15) by making reference to section 1.6. So let us take notations from section 1.3 back. In this case, indexes r -∈ {1, . . . , j -1} and r + ∈ {1, . . . , N -j} are chosen independently and similarly as the index r from paragraph 1.10.3.

1)

We first determine δ * the minimizer of function ε from proposition 1.3.5 taken with

α = µ and β = ψ * + -ψ * - 6 . 
2) Then r -is selected as follows:

• If t jt 1 δ * , we set r -= j -1.

• If t jt 1 > δ * , we choose r -the smallest index s ∈ {1, . . . , j -1} such that t jt j-s > δ * .

For index r + :

• If t Nt j δ * , we set r -= Nj. 

= ψ * + -ψ * - 6 . 
2) Here the choice of r 2 depends on the choice of r 1 .

• If t jt 2 δ * 1 , we set down r 1 = j -2 and r 2 = j -1.

• If t j -t 2 > δ *
1 , then we first choose r 1 the smallest index s ∈ {1, . . . , j-2} such that t j -t j-s > δ * 1 . After that: ) can be done once and for all before the bounds computations. In particular, it means that for a use in real time, it is sufficient to research the corresponding index r (resp. r -and r + , r 1 and r 2 ) and doing the bounds computations mentioned in a second time.

-If t j -t 1 δ * 2 , we set r 2 = j -1. -If t j -t 1 > δ * 2 ,

--A possible improvement.

The choice of the indexes r from 1.10.3, r -and r + from 1.10.4, and r 1 and r 2 from 1.10.5 is quite arbitrary. That's why we suggest these possible improvements:

• For the index r, still on the example of bounds from (1.3), when t j -t 1 > δ * and r = 1, we can perform computations of bounds from (1.3) with δ = t jt j-r and δ = t jt j-r+1 , and by choosing ψ ′ -(t) the lower bound and ψ ′ + (t) the upper bound on ψ ′ (t) by applying the selection principle as follows:

ψ ′ -(t) = max ψ ′ -(t ; t j -t j-r ), ψ ′ -(t ; t j -t j-r+1 ) , ψ ′ + (t) = min ψ ′ + (t ; t j -t j-r ), ψ ′ + (t ; t j -t j-r+1
) .

(1.22)

• For r -and r + , still on the example of centred bounds from (1.10), when t jt 1 > δ * 1 and t Nt j > δ * with r -= 1 and r + = 1, by setting ∆ -= {t jt j-r-, t jt j-r-+1 } and ∆ + = {t j+r+1t j , t j-r+t j }, we can compute bounds from (1.10) for all couples (δ -, δ + ) in ∆ -× ∆ + . In the end, by using the selection principle, we can select ψ ′ -(t) the lower bound and ψ ′ + (t) the upper bound on ψ ′ (t) given by:

ψ ′ -(t) = max ψ ′ -(t ; δ -, δ + ) (δ -, δ + ) ∈ ∆ -× ∆ + , ψ ′ + (t) = min ψ ′ + (t ; δ -, δ + ) (δ -, δ + ) ∈ ∆ -× ∆ + .
(1.23)

• For r 1 and r 2 , still on the example of decentred bounds from (1.11), when t N -t 2 > δ * 1 and t N -t 1 > δ * 2 with r 1 = 1 and r 2 = r 1 + 1, by setting

∆ 1 = {t j -t j-r1 , t j -t j-r1+1 } and ∆ 2 = {t j -t j-r2 , t j -t j-r2+1 },
we can compute bounds from (1.11) for all couples (δ 1 , δ 2 ) in ∆ 1 × ∆ 2 . In the end by using the selection principle, we can select ψ ′ -(t) the lower bound and ψ ′ + (t) upper bound on ψ ′ (t) given by:

ψ ′ -(t) = max ψ ′ -(t ; δ 1 , δ 2 ) (δ 1 , δ 2 ) ∈ ∆ 1 × ∆ 2 , ψ ′ + (t) = min ψ ′ + (t ; δ 1 , δ 2 ) (δ 1 , δ 2 ) ∈ ∆ 1 × ∆ 2 .
(1.24)

REMARK. In practice ψ will correspond to a time-variable function. Moreover, N will be a very large integer (N larger than 10 3 ) and t i+1t i sufficiently small for all i ∈ {1, . . . , N -1}. Therefore taking the notations from 1.10.3 (resp. 1.10.4, 1.10.5) back, even if j is close to 1 (resp. 1 or N , 1), we will have most of time t jt j-r > δ * (resp. t jt j-r-> δ * and t j+r+t j > δ * , t jt j-r1 > δ * 1 and t jt j-r2 > δ *

2 ) with r = 1 (resp. r -= 1 and r + = 1, r 1 = 1 and r 2 = r 1 + 1). Thus it will be possible to compute bounds on ψ ′ (t) as in (1.22) (resp. (1.23), (1.24)).

Some remarks about out models

1.11.1 --We have proved that the functions ε associated to the various diameter functions reach their global minimum. Even if we have not found or mentioned for all of them the exact expression of their global minimizer, let us remind that it will be sufficient to approximate it in practice.

1.11.2 --Now let us talk about the advantages and disadvantages of the centred and decentred bounds presented in sections 1.3 and 1.4 for ψ ′ (t) and in sections 1.6 and 1.7 for ψ ′′ (t). To simplify our analysis, we will suppose that differences ψ + (y)ψ -(y) are independent of y ∈ I and we will only focus on bounds on ψ ′ (t), knowing that similar phenomenons can be observed with ψ ′′ (t + (t) an upper bound on ψ (k) (t) as close as possible, by minimizing the associated diameter function. Even if for some of these methods, the global minimum of the diameter function will be lower than for others methods, it does not mean that the more accurate lower or upper bounds on ψ (k) (t) will be given by these first methods. Consequently, it can be useful to compute bounds on ψ (k) (t) by using various techniques and by applying the selection principle to select the best bounds among those.

Introduction

By using the models from chapter 1 we are now able to bound the k th derivatives of the function f , for all k ∈ {1, . . . , d -1}. In this chapter, we will present how to establish coherence between the various available bounds on f and its derivatives in t 1 , . . . , t N . In order to do it, we fix t ∈ I and ϕ : I → R a(n unknown) function satisfying:

• For all k ∈ {0, . . . , p -1}, we can determine (known) real numbers ϕ 

+ (t) such that ϕ (k) -(t) ϕ (k) (t) ϕ (k) + (t). (2.1) 
• There exists p ∈ N * such that ϕ has a p th bounded derivative, i.e. there exists (known) real constants ϕ * -and ϕ * + ∈ R such that for all ξ ∈ I ϕ * -

ϕ (p) (ξ) ϕ * + . (2.2)
In sections 2.1 and 2.2, we will see how to bound ϕ at each point y ∈ I such that y > t and y < t respectively just by using data from (2.1) and (2.2), and how these bounds can be used to correct other bounds on ϕ in such a point y. From section 2.3, we will suppose the inequalities (2.1) satisfied for all t ∈ {t 1 , . . . , t N }, and we will present in this same section two algorithms that perform the previous corrections on bounds on ϕ in t 1 , . . . , t N . An analysis of these two algorithms will be led in section 2.4. In section 2.5 we will present an multi-order algorithm that establishes coherence between all bounds on ϕ and its derivatives in t 1 , . . . , t N . To terminate this chapter, we will illustrate in section 2.6 the performances of the multi-order algorithm on a simple example.

Forward corrections

2.1.1 --For all δ > 0 satisfying t + δ ∈ I, by Taylor-Lagrange formula there exists ξ ∈ ]t, t + δ[ such that

ϕ(t + δ) = p-1 k=0 δ k k! ϕ (k) (t) + δ p p! ϕ (p) (ξ).
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Therefore we deduce from (2.1) and (2.2):

τ F -(t + δ) ϕ(t + δ) τ F + (t + δ) with              τ F -(t + δ) = p-1 k=0 δ k k! ϕ (k) -(t) + δ p p! ϕ * -, τ F + (t + δ) = p-1 k=0 δ k k! ϕ (k) + (t) + δ p p! ϕ * + .
(2.3)

To make it clear, these formulas applied to each value of p in {1, 2, 3} lead to

τ F ± (t + δ) = ϕ ± (t) + δϕ * ± when p = 1, τ F ± (t + δ) = ϕ ± (t) + δϕ ′ ± (t) + δ 2 2 ϕ * ± when p = 2, τ F ± (t + δ) = ϕ ± (t) + δϕ ′ ± (t) + δ 2 2 ϕ ′′ ± (t) + δ 3 6 ϕ * ± when p = 3.
It 

ϕ -(t + δ) ← max ϕ -(t + δ), τ F -(t + δ) and ϕ + (t + δ) ← min ϕ + (t + δ), τ F + (t + δ) . (2.5)
These corrections are called forward corrections , hence the "F" on the bounds τ F ± (t + δ). They are illustrated by figure 7 by considering the same situation as in figure 6. 

t ϕ -(t) ϕ + (t) t + δ τ F -(t + δ) τ F + (t + δ) ϕ -(t + δ) ϕ + (t + δ)

Backward corrections

--

The backward corrections principle is analogous to the forward corrections one, but we have to deal with an additional difficulty due to signs considerations. Indeed for all δ > 0 such that tδ ∈ I, Taylor-Lagrange formula insures the existence of ξ ∈ ]tδ, t[ such that

ϕ(t -δ) = p-1 k=0 (-1) k δ k k! ϕ (k) (t) + (-1) p δ p p! ϕ (p) (ξ).
Therefore by (2.1) and (2.2) we obtain

τ B -(t -δ) ϕ(t -δ) τ B + (t -δ) (2.6) with              τ B -(t -δ) = p-1 k=0 (-1) k δ k k! ϕ (k) -σ k (t) + (-1) p δ p p! ϕ * -σ p , τ B + (t -δ) = p-1 k=0 (-1) k δ k k! ϕ (k) σ k (t) + (-1) p δ p p! ϕ * σ p .
To clarify this, these formulas applied for each value of p in {1, 2, 3} give

τ B ± (t -δ) = ϕ ± (t) -δϕ * ∓ when p = 1, τ B ± (t -δ) = ϕ ± (t) -δϕ ′ ∓ (t) + δ 2 2 ϕ * ± when p = 2, τ B ± (t -δ) = ϕ ± (t) -δϕ ′ ∓ (t) + δ 2 2 ϕ ′′ ± (t) - δ 3 6 ϕ * ∓ when p = 3.
Now we are also able to bound ϕ on D B t = I ∩ ]-∞, t]. As in 2.1.1 we can observe that the lower δ the higher the accuracy of bounds τ B ± (tδ) on ϕ(tδ) will be. 

ϕ -(t -δ) ← max ϕ -(t -δ), τ B -(t -δ) and ϕ + (t -δ) ← min ϕ + (t -δ), τ B + (t -δ) . (2.8) 
These corrections are called backward corrections , hence the "B" on the bounds τ B ± (tδ). They are illustrated by the following figure: 

t -δ ϕ -(t) ϕ + (t) t τ B -(t + δ) τ B + (t + δ) ϕ -(t + δ) ϕ + (t + δ)

The forward-backward and backward-forward algorithms

2.3.1 --From now on, we will suppose the inequalities (2.1) satisfied for all t ∈ {t 1 , . . . , t N }:

∀ (i, k) ∈ {1, . . . , N } × {0, . . . , p -1}, ϕ (k) -(t i ) ϕ (k) (t i ) ϕ (k) + (t i ).
(2.9)

In this section we present various algorithms that enable corrections on bounds on ϕ in t 1 , . . . , t N by using the forward and backward corrections presented in the previous sections. In order to do it, for all i ∈ {1, . . . , N }, we first store the lower and upper bounds on ϕ, . . . , ϕ (p-1) in t i in two vectors:

Φ i -= ϕ (k) -(t i ) 0 k p-1
and

Φ i + = ϕ (k) + (t i ) 0 k p-1 .
Let us remark that by doing this, for all (i, k) ∈ {1, . . . , N } × {0, . . . , p -1}, we have

ϕ (k) ± (t i ) = Φ i ± (k + 1).

--

We first develop an algorithm that uses the forward corrections (2.5) to adapt the bounds on ϕ in t 1 , . . . , t N . As explained in paragraph 2.1.1 the accuracy of bounds τ F ± (t + δ) deduced from the Taylor-Lagrange formula is higher when δ is close to 0. Thus for i going from 2 to N , it seems natural to perform the forward corrections (2.5) with t = t i and δ = t it i-1 . It leads to the forward algorithm :

Forward INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + .
FOR ALL i from 2 to N :

Φ i -(1) ← max Φ i -(1), p-1 k=0 (ti -ti-1) k k! Φ i-1 -(k + 1) + (ti -ti-1) p p! ϕ * - Φ i + (1) ← min Φ i + (1), p-1 k=0 
(ti -ti-1) k k! Φ i-1 + (k + 1) + (ti -ti-1) p p! ϕ * + OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + with their updated values.
To better understanding, the following figure illustrates the principle of this algorithm: By the same way, for i going from N -1 to 1, we can perform the backward corrections (2.8) with t = t i and δ = t i+1t i to adapt the bounds on ϕ in t 1 , . . . , t N . It leads to the backward algorithm :

Backward INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + .
FOR ALL i from N -1 to 1: Forward-backward

Φ i -(1) ← max Φ i -(1), p-1 k=0 (ti+1 -ti) k k! Φ i-1 -σ k (k + 1) + (ti+1 -ti) p p! ϕ * -σ p Φ i + (1) ← min Φ i + (1), p-1 k=0 (ti+1 -ti) k k! Φ i-1 σ k (k + 1) + (ti+1 -ti) p p! ϕ * σ p OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + with
INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + . v 1 -= 0, v 1 + = 0, . . . , v N -= 0, v N + = 0 WHILE there exists i ∈ {1, . . . , N } s.t. Φ i -(1) = v i -or Φ i + (1) = v i + : FOR ALL i from 1 to N : v i -= Φ i -(1), v i + = Φ i + (1) Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Forward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Backward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + with their updated values.
In the same way we can implement the backward-forward algorithm that has the same structure as the forward-backward algorithm, but in which the backward algorithm is applied before the forward one:

Backward-forward

INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + . v 1 -= 0, v 1 + = 0, . . . , v N -= 0, v N + = 0 WHILE there exists i ∈ {1, . . . , N } s.t. Φ i -(1) = v i -or Φ i + (1) = v i + : FOR ALL i from 1 to N : v i -= Φ i -(1), v i + = Φ i + (1) Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Backward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Forward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + with their updated values.
2.3.4 --Considering these algorithms, it is legitimate to ask the following questions:

1) Do the forward-backward and backward-forward algorithm converge in a finite number of iterations? And if so, can this number be estimated or determined?

2) Are there cases in which one of these algorithms gives a more accurate output than the other one?

The following section is intended to answer these two questions.

Analysis of the forward-backward and backward-forward algorithms

2.4.1 --Let us start with some basic observations and by introducing some specific notations.

• The forward and backward algorithms presented in 2.3.2 can only modify Φ i -(1) and Φ i + (1) the values of the lower and upper bounds on ϕ in t i , for all i ∈ {1, . . . , N }. The other components of Φ i -and Φ i + are associated to bounds on ϕ ′ , . . . , ϕ (p-1) and just required to adjust those on ϕ, which means that for all k ∈ {1, . . . , p -1} we will always have

Φ i -(k + 1) = ϕ (k) -(t i ) and Φ i + (k + 1) = ϕ (k) + (t i ).
• It is also useful to remind that the opposite of every lower (resp. upper) bound on ϕ is an upper (resp. lower) bound on -ϕ. Therefore

Forward p, t 1 , . . . , t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + = -Forward p, t 1 , . . . , t N , -Φ 1 + , -Φ 1 -, . . . , -Φ N + , -Φ N -, -ϕ * + , -ϕ * -, Backward p, t 1 , . . . , t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + = -Backward p, t 1 , . . . , t N , -Φ 1 + , -Φ 1 -, . . . , -Φ N + , -Φ N -, -ϕ * + , -ϕ *
-, and we can note that it is sufficient to study how the upper bounds on ϕ are modified by our algorithms.

• For all i ∈ {2, . . . , N } we will denote by δ i the difference t it i-1 .

• Finally for all i ∈ {1, . . . , N }, since it is sufficient to study how the upper bounds on ϕ are modified by our algorithm, we will denote by ϕ 0 (t i ) the initial value of Φ i + (1), the bound on ϕ in t i given by (2.9). Then from paragraph 2.4.3, for all n ∈ N, we will denote by ϕ F n (t i ) (resp. ϕ B n (t i )) the upper bound on ϕ(t i ) obtained after the n th forward (resp. backward) call in the forward-backward algorithm, and by

φ B n (t i ) (resp. φ F n (t i ))
the upper bound on ϕ(t i ) obtained after the n th backward (resp. forward) call in the backward-forward algorithm, with the convention

ϕ F 0 (t i ) = ϕ B 0 (t i ) = φ F 0 (t i ) = φ B 0 (t i ) = ϕ 0 (t i ). Therefore when n 1, ϕ F n (t 1 ) = ϕ B n-1 (t 1 ) , φ F n (t 1 ) = φ B n (t 1 ) , ϕ B n (t N ) = ϕ F n (t N ) , φ B n (t N ) = φ F n-1 (t N ) , if i 2, ϕ F n (t i ) = min ϕ B n-1 (t i ) , ϕ F n (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i-1 ) + δ p i p! ϕ * + , φ F n (t i ) = min φ B n (t i ) , φ F n (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i-1 ) + δ p i p! ϕ * + , and if i N -1, ϕ B n (t i ) = min ϕ F n (t i ) , ϕ B n (t i+1 ) + p-1 k=1 (-1) k δ k i k! ϕ (k) σ k (t i+1 ) + (-1) p δ p i p! ϕ * σ p , φ B n (t i ) = min φ F n-1 (t i ) , φ B n (t i+1 ) + p-1 k=1 (-1) k δ k i k! ϕ (k) σ k (t i+1 ) + (-1) p δ p i p! ϕ * σ p
.

In particular, we obviously have

ϕ 0 (t i ) ϕ F 1 (t i ) ϕ B 1 (t i ) ϕ F 2 (t i ) ϕ B 2 (t i ) • • • ϕ(t i ), ϕ 0 (t i ) φ B 1 (t i ) φ F 1 (t i ) φ B 2 (t i ) φ F 2 (t i ) • • • ϕ(t i ).
2.4.2 --It is reasonable to believe that the forward-backward and backward-forward algorithms have a relatively similar behaviour. An argument which supports this conjecture is that applying the forward (resp. backward) algorithm (to any input data) is like applying the backward (resp. forward) algorithm (to other input data). To clarify and demonstrate it, we introduce the function

ψ : -I → R, t → ϕ(-t)
that morally reverses the time when ϕ is a time-variable function. Clearly, ψ has the same regularity that ϕ and satisfies, for all t ∈ I and k ∈ {0, . . . , p},

ψ (k) (-t) = (-1) k ϕ(t).
Therefore for all (i, k) ∈ {1, . . . , N } × {0, . . . , p -1}, we have

ψ (k) -(-t i ) ψ (k) (-t i ) ψ (k) + (-t i ) with    ψ (k) -(-t i ) = (-1) k ϕ (k) -σ k (t i ), ψ (k) + (-t i ) = (-1) k ϕ (k) σ k (t i ), (2.10)
and for all ξ ∈ I, we have

ψ * - ψ (p) (-ξ) ψ * + with ψ * -= (-1) k ϕ * -σ k , ψ * + = (-1) k ϕ * σ k . (2.11)
For all i ∈ {1, . . . , N }, let us now introduce:

Ψ i -= ψ (k) -(-t i ) 0 k p-1
and

Ψ i + = ψ (k) + (-t i ) 0 k p-1
.

For the needs of this paragraph, we will denote here by:

-ϕ F -(t i ) (resp. ϕ F + (t i )) the value of Φ i -(1) (resp. Φ i + (1)
), the lower (resp. upper) bound on ϕ(t i ) after the call of the forward algorithm with p, t 1 , . . .

, t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + in input, -ψ B -(t i ) (resp. ψ B + (t i )) the value of Ψ i -(1) (resp. Ψ i + (1)
), the lower (resp. upper) bound on ψ(-t i ) after the call of the backward algorithm with p, -t N , . . .

, -t 1 , Ψ N -, Ψ N + , . . . , Ψ 1 -, Ψ 1 + in input, -ϕ 0 + (t i ) (resp. ψ 0 + (-t i )) the value of Φ i + (1) (resp. Ψ i + (1)
) before the application of the forward (resp. backward) algorithm with the input data mentioned below.

Let us prove that ψ

B + (-t i ) = ϕ F + (t i ) for all i ∈ {1, . . . , N }.
• By the structure of the forward and backward algorithms we have respectively ϕ

F + (t 1 ) = ϕ 0 + (t 1 ) and ψ B + (-t 1 ) = ψ 0 + (-t 1 ), hence ϕ F (t 1 ) = ψ B (-t 1 ) since ψ 0 + (-t 1 ) = ϕ 0 + (t 1 ) according to (2.10). • If i ∈ {1, . . . , N -1} satisfies ϕ F (t i-1 ) = ψ B (-t i-1
), since the inequalities (2.10) and (2.11) imply

ϕ 0 (t i ) = ψ 0 (-t i ), ϕ (k) + (t i-1 ) = (-1) k ψ (k) σ k (t i-1
) for all k ∈ {1, . . . , p}, and ϕ * + = (-1) p ψ * σ p , then we get

ϕ F + (t i ) = min ϕ 0 + (t i ), ϕ F + (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i-1 ) + δ p i p! ϕ * + = min ψ 0 + (-t i ), ψ F + (-t i-1 ) + p-1 k=1 (-1) k δ k i k! ψ (k) σ k (t i-1 ) + δ p i p! ψ * σ k = ψ B + (-t i ) .
Thus we have proved by induction that

ψ B + (-t i ) = ϕ F + (t i ) for all i ∈ {1, . . . , N }. According to 2.4.1 it implies that ψ B -(-t i ) = ϕ F -(t i ) for all i ∈ {1, . . . , N }.
And since an observation done in this same paragraph insures that the other components of vectors Φ

1 -, Φ 1 + , . . . , Φ N -, Φ N + (resp. Ψ 1 -, Ψ 1 + , . . . , Ψ N -, Ψ N
+ ) are unmodified by the forward (resp. backward) algorithm, we have obtained the point (i) of the following proposition, its point (ii) being obtained by a similar way.

Proposition. For all i ∈ {1, . . . , N } let Ψ i -and Ψ i + be given as previously. (i) The modifications made by the forward algorithm that takes p, t 1 , . . .

, t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N +
in input can be obtained by an application of the backward algorithm with p, -t N , . . .

, -t 1 , Ψ N -, Ψ N + , . . . , Ψ 1 -, Ψ 1 + in input. (ii)
The modifications made by the backward algorithm that takes p, t 1 , . . .

, t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N +
in input can be obtained by an application of the forward algorithm with p, -t N , . . .

, -t 1 , Ψ N -, Ψ N + , . . . , Ψ 1 -, Ψ 1 + in input.
In a nutshell, for all

U = U i -, U i + 1 i N in (R p × R p ) N , by setting U R = U N -i - , U N -i + 1 i N
, the previous assertions can be summarized as follows:

Forward p, t 1 , . . . , t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + = Backward p, -t N , . . . , -t 1 , Ψ N -, Ψ N + , . . . , Ψ 1 -, Ψ 1 + , ψ * -, ψ * + R , Backward p, t 1 , . . . , t N , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + = Forward p, -t N , . . . , -t 1 , Ψ N -, Ψ N + , . . . , Ψ 1 -, Ψ 1 + , ψ * -, ψ * + R .

--

The answers to the questions asked in paragraph 2.3.4 will be based on the following result:

Lemma. For all i ∈ {2, . . . , N } the quantity

C i = p-1 k=1 δ k i k! ϕ (k) + (t i-1 ) + (-1) k ϕ (k) σ k (t i ) + δ p i p! ϕ * + + (-1) p ϕ * σ p is non-negative.
Proof.--Let us suppose that there exists i ∈ {2, . . . , N } such that C i < 0, and let us fix n ∈ N * . As reminded in 2.4.1, we have ϕ F n+1 (t i-1 ) ϕ B n (t i-1 ), and so

ϕ F n+1 (t i ) ϕ F n+1 (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i-1 ) + δ p i p! ϕ * + ϕ B n (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i-1 ) + δ p i p! ϕ * + .
(2.12)

By the same way, ϕ B n (t i ) ϕ F n (t i ), and so

ϕ B n (t i-1 ) ϕ B n (t i ) + p-1 k=1 (-1) k δ k i k! ϕ (k) σ k (t i ) + (-1) p δ p i p! ϕ * σ p ϕ F n (t i ) + p-1 k=1 (-1) k δ k i k! ϕ (k) σ k (t i ) + (-1) p δ p i p! ϕ * σ p . (2.13)
Thanks to (2.12) and (2.13), we obtain

ϕ F n+1 (t i ) ϕ F n (t i ) + C i , which implies that for all n ∈ N * , ϕ(t i ) ϕ F n+1 (t i ) ϕ F 1 (t i ) + nC i . (2.14) But since C i is negative, we have ϕ F 1 (t i )+nC i → -∞ when n → +∞, hence a contradiction! Therefore C i is necessarily non-negative for all i ∈ {2, . . . , N }.
REMARK. It is important to give a graphical interpretation of the previous lemma. For this purpose, let us fix i ∈ {2, . . . , N } and let us introduce the functions

τ F i-1 : R × R → R, (δ, y) → y + p-1 k=1 δ k k! ϕ (k) + (t i-1 ) + δ p p! ϕ * + , τ B i : R × R → R, (δ, y) → y + p-1 k=1 (-1) k δ k k! ϕ (k) σ k (t i ) + (-1) p δ p p! ϕ * σ p .
From an algebraic point of view, for all y ∈ R, we can easily show that

C i = τ B i δ i , τ F i-1 (δ i , y) -y.
Therefore from a graphical point of view, the sign of C i determines the relative position between

C F i-1 (y), the graph of τ F i-1 ( • , y), and 
C B i (z), the graph of τ B i ( • , z) where z = τ F i-1 (δ i , y). Ci y z = τ B i (δi, y) τ F i-1 (δi, z) C B i (z) C F i-1 (y)
ti-1 ti

Figure 12 -Graphical representation of the quantity C i

And since for all n ∈ N * , we have

ϕ F n+1 (t i ) = min ϕ B n (t i ) , τ F i-1 δ i , ϕ F n+1 (t i-1 ) , ϕ B n (t i-1 ) = min ϕ F n (t i-1 ) , τ B i δ i , ϕ B n (t i ) , with ϕ F n+1 (t i-1 ) ϕ B n (t i-1 ) and ϕ B n (t i ) ϕ B n (t i ) ,
we can note that quantity C i must be non-negative, otherwise a graphical analyse would lead step by step to the inequality (2.14) obtained in the proof of the lemma. Figure 13 illustrates this phenomenon. 

ϕ F 1 (ti) ti-1 ti ϕ B 1 (ti) ϕ B 1 (ti-1) Ci ϕ F 2 (ti) ϕ F 2 (ti-1) ϕ B 2 (ti) ϕ B 2 (ti-1) Ci ϕ B 3 (ti) . . .
(i) ϕ B 2 (t i ) = ϕ F 2 (t i ) = ϕ B 1 (t i ), (ii) φ F 2 (t i ) = φ B 2 (t i ) = φ F 1 (t i ).
Proof.--According to the proposition 2.4.2, it is sufficient to establish the point (i).

1) We start by proving that for all i ∈ {1, . . . , N },

ϕ F 2 (t i ) = ϕ B 1 (t i ) . (2.15)
By contradiction, let us suppose that there exists i ∈ {1, . . . , N } such that ϕ F 2 (t i ) < ϕ B 1 (t i ), and let us define:

j = min i ∈ {1, . . . , N } ϕ F 2 (t i ) < ϕ B 1 (t i ) .
According to the structure of the forward algorithm, we have j 2, and by definition of j, we have

ϕ F 2 (t j-1 ) = ϕ B 1 (t j-1 ) and ϕ F 2 (t j ) < ϕ B 1 (t j ). Thus ϕ F 2 (t j ) = ϕ F 2 (t j-1 ) + p-1 k=1 δ k j k! ϕ (k) + (t j-1 ) + δ p j p! ϕ * + = ϕ B 1 (t j-1 ) + p-1 k=1 δ k j k! ϕ (k) + (t j-1 ) + δ p j p! ϕ * + . (2.16) In particular if ϕ B 1 (t j-1 ) = ϕ F 1 (t j-1 ), then ϕ F 1 (t j ) ϕ F 1 (t j-1 ) + p-1 k=1 δ k j k! ϕ (k) + (t j-1 ) + δ p j p! ϕ * + = ϕ F 2 (t j ) ,
and we end up with ϕ

F 2 (t j ) < ϕ B 1 (t j ) ϕ F 1 (t j ) ϕ F 2 (t j ), which is obviously impossible. Therefore ϕ B 1 (t j-1 ) < ϕ F 1 (t j-1
), and

ϕ B 1 (t j-1 ) = ϕ B 1 (t j ) + p-1 k=1 (-1) k δ k j k! ϕ (k) σ k (t j-1 ) + δ p j p! ϕ * σ p . (2.17)
With the notations from the lemma 2.4.3, the relations (2.16) and (2.17) finally imply

C j = ϕ F 2 (t j ) -ϕ B 1 (t j ) < 0,
which is in contradiction with this same lemma. Consequently we have proved that the equality (2.15) is available for all i ∈ {1, . . . , N }.

2) Now let us prove that for all i ∈ {1, . . . , N },

ϕ B 2 (t i ) = ϕ F 2 (t i ) . (2.18)
By the structure of the backward algorithm we have

ϕ B 2 (t N ) = ϕ F 2 (t N ). Now let i ∈ {2, . . . , N } satisfying (2.18), that implies ϕ B 2 (t i ) = ϕ B 1 (t i ) according to (2.15). Then ϕ B 2 (t i-1 ) = min ϕ F 2 (t i-1 ) , ϕ B 1 (t i ) + p-1 k=1 (-1) k δ k i k! ϕ (k) σ k (t i ) + (-1) p δ p i p! ϕ * σ p . Since (2.15) also implies ϕ F 2 (t i-1 ) = ϕ B 1 (t i-1
), we finally obtain:

ϕ F 2 (t i-1 ) = ϕ B 1 (t i-1 ) ϕ B 1 (t i ) + p-1 k=1 (-1) k δ k i k! ϕ (k) σ k (t i ) + (-1) p δ p i p! ϕ * σ p ,
which shows that we also have ϕ B 2 (t i-1 ) = ϕ F 2 (t i-1 ). In the end we have proved by induction the availability of equality (2.18) for all i ∈ {1, . . . , N }.

REMARK. Let us signal that the result established in the step 2) of this proof can be immediately obtained by using the one from step 1), since by starting from the output of the first forward call and by applying the forward-backward algorithm on ψ : t → ϕ(-t), proposition 2.4.2 states that the second forward on ψ corresponds to the second backward on ϕ.

2.4.5 --According to the theorem 2.4.4, we are now able to answer the question 1) from 2.3.4: the forward-backward and backward-forward algorithms precisely converge in one iteration. In other words, it means that these algorithms can be rewritten:

Forward-backward INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + . Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Forward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Backward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + with their updated values.
Backward-forward

INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + . Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Backward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + ← Forward p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N +
with their updated values.

--

Let us now focus on the question 2) from 2.3.4. To answer it, we need to prove some other preliminary results. Here is the first one:

Proposition. For all i ∈ {1, . . . , N } we have φ F 1 (t i ) ϕ F 1 (t i ) and ϕ B 1 (t i ) φ F 1 (t i ).
Proof.--Thanks to the proposition 2.4.2 it is sufficient to prove that φ F

1 (t i ) ϕ F 1 (t i ) for all i ∈ {1, . . . , N }. • Giving the structure of the forward-backward algorithm we have φ F 1 (t 1 ) ϕ 0 (t 1 ) = ϕ F 1 (t 1 ). • Let i ∈ {2, . . . , N } such that φ F 1 (t i-1 ) ϕ F 1 (t i-1
). As a reminder,

ϕ F 1 (t i ) = min ϕ 0 (t i ), ϕ F 1 (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i ) + δ p i p! ϕ * + . If ϕ F 1 (t i ) = ϕ 0 (t i ), then we immediately have φ F 1 (t i ) ϕ 0 (t i ) = ϕ F 1 (t i ). So let us suppose that ϕ F 1 (t i ) = ϕ F 1 (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i ) + δ p i p! ϕ * + .
In this case, our initial hypothesis

φ F 1 (t i-1 ) ϕ F 1 (t i-1 ) implies ϕ F 1 (t i ) φ F 1 (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i ) + δ p i p! ϕ * + min φ B 1 (t i ) , φ F 1 (t i-1 ) + p-1 k=1 δ k i k! ϕ (k) + (t i ) + δ p i p! ϕ * + = φ F 1 (t i ) .
To sum up, we have proved the expected result by induction.

2.4.7 --Lemma. For all index j ∈ {2, . . . , N } such that ϕ B 1 (t j-1 ) < ϕ F 1 (t j-1 ) and ϕ B 1 (t j ) = ϕ F 1 (t j ), we have ϕ F 1 (t j ) = ϕ 0 (t j ). Proof.--Let j be an index from {2, . . . , N } such that ϕ B 1 (t j-1 ) < ϕ F 1 (t j-1 ) and ϕ B 1 (t j ) = ϕ F 1 (t j ). Thus ϕ B 1 (t j-1 ) = ϕ B 1 (t j ) + p-1 k=1 (-1) k δ k j k! ϕ (k) σ k (t j ) + δ p j p! ϕ * σ p = ϕ F 1 (t j ) + p-1 k=1 (-1) k δ k j k! ϕ (k) σ k (t j ) + δ p j p! ϕ * σ p .
Let us suppose that ϕ F 1 (t j ) < ϕ 0 (t j ). Then

ϕ F 1 (t j ) = ϕ F 1 (t j-1 ) + p-1 k=1 δ k j k! ϕ (k) + (t j ) + δ p j p! ϕ * + .
Finally, with the notation from the lemma 2.4.3, we obtain

C j = ϕ B 1 (t j ) -ϕ F 1 (t j ) < 0, which is in contradiction with this same result. Therefore ϕ F 1 (t j ) = ϕ 0 (t j ). 2.4.8 --Proposition. Let i ∈ {1, . . . , N -1}. (i) For all j ∈ {i + 1, . . . , N }, we have ϕ B 1 (t i ) ϕ B 1 (t j ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p , (2.19) 
φ B 1 (t i ) φ B 1 (t j ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p . (2.20) (ii) We assume that ϕ B 1 (t i ) < ϕ F 1 (t i ). Let Γ i be the set of indexes l ∈ {i + 1, . . . , N } such that ϕ B 1 (t l ) = ϕ F 1 (t l ).
Then Γ i = ∅, and for j = min Γ i , we have

ϕ B 1 (t i ) = ϕ 0 (t j ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p . (2.21) 
Proof.

--(i) We will only prove the availability of (2.19), (2.20) being obtained similarly. We proceed by induction on j ∈ {i + 1, . . . , N }, case j = i + 1 being obviously true by the definition of ϕ B 1 (t i ). So let j ∈ {i + 1, . . . , N -1} be an index such that

ϕ B 1 (t i ) ϕ B 1 (t j ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p .
Then by the definition of ϕ B 1 (t j ), we have

ϕ B 1 (t j ) ϕ B 1 (t j+1 ) + p-1 k=1 (-1) k δ k j+1 k! ϕ (k) σ k (t j+1 ) + (-1) p δ p j+1 p! ϕ * σ p , which immediately implies ϕ B 1 (t i ) ϕ B 1 (t j+1 ) + j+1 l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p .
(ii) By the structure of the backward algorithm, we have N ∈ Γ i . Therefore Γ i = ∅, and j = min Γ i is well-defined. By the definition of j, we have ϕ

B 1 (t l ) < ϕ F 1 (t l ) for all l ∈ {i, . . . , j -1}, hence ϕ B 1 (t l ) = ϕ B 1 (t l+1 ) + p-1 k=1 (-1) k δ k l+1 k! ϕ (k) σ k (t l+1 ) + (-1) p δ p l+1 p! ϕ * σ p . Thus ϕ B 1 (t i ) = ϕ B 1 (t j ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p . (2.22)
And since we also have ϕ B 1 (t j-1 ) < ϕ F 1 (t j-1 ) and ϕ B 1 (t j ) = ϕ F 1 (t j ), then the lemma 2.4.7 implies that ϕ F 1 (t j ) = ϕ 0 (t j ). Consequently, we have ϕ B 1 (t j ) = ϕ 0 (t j ), and so the equality (2.21) can be deduced from (2.22).

2.4.9 --Theorem. For all i ∈ {1, . . . , N }, we have

ϕ B 1 (t i ) = φ F 1 (t i ). Proof.--Let i ∈ {1, . . . , N }. • Let us suppose that ϕ B 1 (t i ) < ϕ F 1 (t i ).
Regarding the structure of the backward algorithm, it necessarily implies i ∈ {1, . . . , N -1}, and so we can introduce j as at the point (ii) of the proposition 2.4.8, which satisfies

ϕ B 1 (t i ) = ϕ 0 (t j ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p . Now since φ B 1 (t j ) ϕ 0 (t j ), the point (i) of the proposition 2.4.8 implies φ B 1 (t i ) ϕ 0 (t i ) + j l=i+1 p-1 k=1 (-1) k δ k l k! ϕ (k) σ k (t l ) + (-1) p δ p l p! ϕ * σ p = ϕ B 1 (t i ) .
By the proposition 2.4.6, since we also have

ϕ B 1 (t i ) φ B 1 (t i ), we can conclude that ϕ B 1 (t i ) = φ F 1 (t i ). • If φ F 1 (t i ) φ B 1 (t i ),
then by the proposition 2.4.2, we can go back to the previous case in order to conclude that ϕ

B 1 (t i ) = φ F 1 (t i ). • Let us finally suppose that ϕ B 1 (t i ) = ϕ F 1 (t i ) and φ F 1 (t i ) = φ B 1 (t i ). Then proposition 2.4.6 leads to φ F 1 (t i ) ϕ F 1 (t i ) = ϕ B 1 (t i ) φ B 1 (t i ) = φ F 1 (t i ) , hence ϕ B 1 (t i ) = φ F 1 (t i ).
2.4.10 --Using the previous results we can now provide the answer to the question 2) from 2.3.4, which is given by the following result:

Corollary. The forward-backward and backward-forward algorithms are equivalent, that means, given the same input arguments, their output arguments are precisely the same.

Proof.--According to 2.4.1 and their rewritings proposed in paragraph 2.4.5, the forward-backward and backward-forward algorithms are equivalent if and only if ϕ B 1 (t i ) = φ F 1 (t i ) for all i ∈ {1, . . . , N }. Therefore we can conclude by applying theorem 2.4.9.

--

In a nutshell, to correct bounds on ϕ at t 1 , . . . , t N from (2.9), we can indifferently use the forward-backward or backward-forward algorithm in their final forms from 2.4.5, instead of their initial versions presented in paragraph 2.3.3. It is also important to note that we can explicitly determine the number of operations done by these rewritten algorithms (which is the same for both of them thanks to theorem 2.4.9) since it only depends on p, the derivative order of function ϕ, and on N , the number of data.

A forward-backward multi-order algorithm

2.5.1 --In the previous sections, we have presented and studied algorithms that perform forward and backward corrections to adjust the bounds on ϕ at t 1 , . . . , t n from (2.9). We have more precisely proved in section 2.4 that the forward-backward and backward-forward algorithms from the paragraph 2.4.5 enable these in a totally equivalent way. Now let us remark the two following facts:

-For all k ∈ {1, . . . , p -1} we can also use the forward-backward or backard-forward algorithms to correct bounds on ϕ (k) from (2.9) by replacing p by pk, ϕ by ϕ (k) and, for all i ∈ {1, . . . , N },

vectors Φ i -and Φ i + by Φ i -[k + 1, p] and Φ i + [k + 1, p]
in the previous paragraphs. -For all k ∈ {0, . . . , p -1} the higher the accuracy on bounds on ϕ (k+1) , . . . , ϕ (p-1) the higher the accuracy on bounds on ϕ (k) from the forward-backward or backward-forward algorithms will be.

Thus we can implement the forward-backward multi-order algorithm that establishes coherence between the various bounds on ϕ and its derivatives from (2.9) as follows:

Forward-backward multi-order

INPUT: p, t1, . . . , tN , Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + , ϕ * -, ϕ * + .
FOR ALL k from p -1 to 0:

Φ 1 ± [k+1 : p], . . . , Φ N ± [k+1 : p] ← Forward-backward p-k, t 1 , . . . , t N , Φ 1 ± [k+1 : p], . . . , Φ N ± [k+1 : p], ϕ * ± or equivalently Φ 1 ± [k+1 : p], . . . , Φ N ± [k+1 : p] ← Backward-forward p-k, t 1 , . . . , t N , Φ 1 ± [k+1 : p], . . . , Φ N ± [k+1 : p], ϕ * ± OUTPUT: Φ 1 -, Φ 1 + , . . . , Φ N -, Φ N + with their updated values.
REMARK. In this algorithm we have written

Φ 1 ± [k+1 : p] instead of Φ 1 -[k+1 : p], Φ 1 + [k+1 : p], Φ N ± [k+1 : p] instead of Φ N -[k+1 : p], Φ N + [k+1 : p],
and ϕ * ± instead of ϕ * -, ϕ * + in order to save space. 2.5.2 --The equivalence between the forward-backward and backward-forward algorithms can be used to parallelize some computations of the forward-backward multi-order algorithm. To do this it is sufficient to use the forward-backward algorithm in the for-loop when k is an even number and the backward-forward algorithm when k is an odd number. For instance when ϕ is three times differentiable, i.e. when p = 3, this morally consists in performing successively:

1) forward on ϕ ′′ (t 2 ), . . . , ϕ ′′ (t N ), 2) backward on ϕ ′′ (t N -1 ), . . . , ϕ ′′ (t 1 ), 3) backward on ϕ ′ (t N -1 ), . . . , ϕ ′ (t 1 ), 4) forward on ϕ ′ (t 2 ), . . . , ϕ ′ (t N ), 5) forward on ϕ(t 2 ), . . . , ϕ(t N ), 6) backward on ϕ(t N -1 ), . . . , ϕ(t 1 ).
Now let us highlight that for all i going from N -1 to 1:

-As soon as bounds on ϕ ′′ (t i ) are adjusted by the backward algorithm in step 2), they will no longer be modified by the forward-backward multi-order algorithm.

-Adjustments on ϕ ′ (t i ) done by the backward algorithm from step 3) only require bounds on ϕ ′′ (t i+1 ).

Therefore, computations from steps 2) and 3) can be parallelized by performing in the same time, for i going from N -1 to 1, the backward corrections on ϕ ′′ (t i ) and ϕ ′ (t i ). In the same way computations from steps 4) and 5) can be parallelized by performing at the same time, for i going from 2 to N , the forward corrections on ϕ ′ (t i ) and ϕ(t i ).

--

To finish this section, let us indicate how to bound ϕ, . . . , ϕ (p-1) on overall I just by using their bounds at t 1 , . . . , t N given by the forward-backward multi-order algorithm. In which follows, each bound obtained in output of this algorithm will be called a corrected bound.

Here again, it is sufficient to detail for the function ϕ. So let us fix k ∈ {0, . . . , p -1} and t ∈ I. 

• If t <

A basic example

2.6.1 --In this section we present some numerical simulations that illustrate the general performances of the forward-backward multi-order algorithm from paragraph 2.5.1 on a simple example. We suppose here that I = R and that function ϕ is given by:

ϕ : I → R, t → cos(t) -t 2 .
Function ϕ is clearly two times differentiable on R with ϕ ′′ (t) =cos(t) -2 for all t ∈ R. Therefore the inequalities from (2.2) are satisfied with p = 2, ϕ * -= -3 and ϕ * + = -1. We then suppose that N = 41 and, for all i ∈ {1, . . . , N },

t i = i -21 40 .
In doing so,

t 1 = -2 < t 2 = -1.9 < t 3 = -1.8 < • • • < t N -1 = 1.9 < t N = 2.
We finally generate bounds ϕ -(t i ) and ϕ + (t i ) at ϕ(t i ) and ϕ ′ -(t i ) and ϕ ′ + (t i ) at ϕ ′ (t i ) from (2.9) by defining, for all i ∈ {1, . . . , N },

ϕ -(t i ) = ϕ(t i ) -U i and ϕ + (t i ) = ϕ(t i ) + (1 -U i ), ϕ ′ -(t i ) = ϕ ′ (t i ) -U ′ i and ϕ ′ + (t i ) = ϕ ′ (t i ) + (1 -U ′ i )
, where U i and U ′ i are two uniform continuous distributions on [0, 1] depending on index i. 2.6.2 --We have done ten simulations on data generated as in 2.6.1. For each one of them we have indicated in table 2 ρ (resp. ρ ′ ) corresponding to the average percentage of reduction of the distance between the bounds on ϕ (resp. ϕ ′ ) given in input of the forward-backward multi-order algorithm and those obtained in output of this algorithm. We have also indicate τ the computation time (expressed in milliseconds) required for each one of these simulations. We can observe that our algorithm significantly improve the accuracy of bounds on ϕ and ϕ ′ , and that its computations are executed in a very short time. So even if the hazard on our data would be in practice less important than here, these encouraging results highlight the efficiency of the forward and backward corrections presented in this chapter.

REMARK. Even if it is not mentioned, by the way of these simulations we can check:

1) the validity of statements made in paragraph 2.4.5, i.e. that the forward-backward (resp. backwardforward) algorithms from 2.3.3 and 2.4.5 are indeed equivalent. In doing so we can also observe that their rewritings are (obviously) significantly faster their initial versions.

2) the veracity of corollary 2.4.10, which says that the forward-backward and backward-forward algorithms are equivalent.

Conclusion

In this chapter we have presented various models that establish coherence between bounds on a function and its derivative, and we have suggested and implemented an efficient and optimal algorithm which enables this. According to the study of chapter 1 it means that we are now able to solve the problem presented in introduction. We will do this on a concrete example (and more sophisticated and realistic that the one presented in section 2.6) in the following chapter.

Introduction

In this section, we present various simulations that illustrate possible uses of the models exposed in chapters 1 and 2. Since our study was in particular done for the needs of the RATP, these simulations are inspired by situations taken from the Parisian underground, even if they are totally fictional: how to estimate the position, speed and acceleration of a train online? In section 3.1, we specify the various hypotheses done for our simulations and we precise the problem that will be considered. In section 3.2, we suggest a treatment that will be used to solve this problem. We will perform in section 3.3 a preliminary simulation to show how to initialize our treatment and analyse these first results. Then we will suggest some improvements or adaptations that will be exposed and commented in section 3.4. Finally in section 3.5 will be presented an adaptation of our treatment usable to lead a posteriori analyses. In doing so, we will be able to compare in detail the benefits and disadvantages of the use of centred and decentred bounds from chapter 1.

Hypothesis and objectives

3.1.1 --Hypothesis.

In this section:

• The distances will be expressed in meters (m) and the times in seconds (s). Sometimes speeds will be expressed in kilometres by hour (km/h) for the understanding, as they often are in the daily life.

• f : I → R will represent the distance crossed by a train, which will correspond to its position since the time t 1 supposed to be 0. By doing a simplification of the physical models (e.g. train not deformable), it can be assimilated to the distance crossed by a punctual mobile (for instance corresponding to the front of the train) on a line. We will suppose that I = R + and that f is three times differentiable. Therefore as explained in introduction, if t ∈ R + , f (t) corresponds to the position of the train at the time t, f ′ (t) its speed, f ′′ (t) its acceleration and f ′′′ (t) a quantity called its jerk.

• We will generate 1800 data. Thus we set N = 1800 and, for all i ∈ {2, . . . , N }, we define

t i = (i -1)•0.05 + λ i •0.01,
with λ i a continuous uniform distribution on [-1, 1] (depending on index i). As previously,

t 1 < t 2 < • • • < t N ,
67 and times t 1 , t 2 , . . . , t N are normally not uniformly distributed.

• We suppose the railway road divided in sections of 0.1 m and that on each time t i we are able to determine in which section the (front of the) train is. Therefore, for all i ∈ {0, . . . , N }, there exists an unique

k i ∈ N such that k i •0.1 f (t i ) (k i + 1)•0.1.
Thus assumption (A 1 ) from the introduction of this part I is obtained by setting: 

f -(t i ) = k i •0.1 and f + (t i ) = (k i + 1)•0.1. ( 3 
f -(t i+1 ) f + (t i+1 ) f + (t i ) f -(t i ) 0.1 m 0.1 m 0.1 m 0.1 m f (t)
Figure 14 -Illustration of the generated times t i and lower f -(t i ) and upper f + (t i ) bounds on f (t i )

• We suppose that f ′′ and f ′′′ are bounded. More precisely, for all θ ∈ R + , we assume that

-1.3 f ′′ (θ) 1.2, -1 f ′′′ (θ) 1. (3.2) 
In doing so assumption (A 2 ) from the introduction of this part I is satisfied with d = 2 and d = 3.

• Each second s ∈ N * , we suppose that we receive an new sample of measurements (obtained since the previous second) including the times t i and their associated lower

f -(t i ) and upper f + (t i ) bounds on f (t i ), for all index i such that t i ∈ [s -1, s[.
• All the simulations presented in this chapter were done by using the same input data. It means that differences of performances can only be explained by modifications of our various treatments.

--Objectives.

Let us remind that by the way of our simulations, we want to see how to use our models in order to bound the position, speed and acceleration of a train in real time. Then according to the problem exposed in introduction of this part I, our goal will be the following. Each second s, by using data from paragraph 3.1.1, we want to:

• determine quantities f (k) -(t i ) and f (k) + (t i ) such that f (k) -(t i ) f (k) (t i ) f (k) + (t i ) with difference f (k) + (t i ) -f (k)
-(t i ) as low as possible, for all k ∈ {1, 2} and all index i such that t i ∈ [s -1, s[, • establish coherence between all the available bounds on f , f ′ and f ′′ in times t i such that t i < s, in order to make them as accurate as possible.

3.1.3 --REMARK. Let us remind that in practice, f , f ′ and f ′′ are (obviously) unknown functions. But in order to generate our data and verify the validity of our models, we have generate their exact trajectories. We have first constructed f ′′′ as a piecewise continuous affine function. Then f ′′ , f ′ and f are piecewise polynomial functions obtained by successive integrations. For the clarity and not overwrite this chapter of figures, the graphical representations of f ′′′ , f ′′ , f ′ and f are presented in its appendix.

Suggested treatment

3.2.1 --In order to solve the problem exposed in the previous section, we suggest an iterative treatment that will be divided in two steps. For each second s ∈ N * , this treatment will consist in: STEP 1. For all index j such that t j ∈ [s -1, s[: 

1.1.
ψ = f , ψ ′′ = f ′′ (from step 1.8) and ψ ′′′ = f ′′′ .
1.10. Selection principle on bounds on f ′′ (t j ) from steps 1.6 and 1.9.

STEP 2. Correction of data from the five latest samples (or s latest when s 4) by using the forwardbackward multi-order algorithm with p = 3, ϕ = f and so ϕ (p) = f ′′′ . The use of this iterative treatment in real time is illustrated in figure 15.

--About the step 1.

We need to explain how bounds on f ′ or f ′′ from steps 1.1, 1.2, 1.4, 1.5, 1.7 and 1.9 are computed. In order to do this, we refer to section 1.10. As explained in paragraph 1.10.1, we need to choose: • indexes r 1 and r 2 that enable to apply (1.11) (resp. (1.16)) with δ 1 = t jt j-r1 and δ 2 = t jt j-r2 at step 1.1 (resp. 1.4),

• an index r that enables to apply (1.3) (resp. (1.3), (1.19), (1.21)) with δ = t jt j-r at step 1.2 (resp. 1.5, 1.7, 1.9).

An analysis of our treatment shows that differences f

+ (t i ) -f -(t i ), f ′ + (t i ) -f ′ -(t i ) and f ′′ + (t i ) -f ′′ -(t i )
will be reduced over time and will depend on i ∈ {1, . . . , N }. Thus as suggested in 1.10.3 or 1.10.5, we will suppose that differences f

+ (t i ) -f -(t i ), f ′ + (t i ) -f ′ -(t i ) and f ′′ + (t i ) -f ′′ -(t i )
are respectively close to a same value µ > 0, µ ′ > 0 and µ ′′ > 0 in order to determine:

• r 1 and r 2 by referring to 1.10.5 at steps 1.1 and 1.4,

• r by referring to 1.10.3 at steps 1.2, 1.5, 1.7 and 1.9.

--About the step 2.

Let us explain why we have not limited the use of the forward-backward multi-order algorithm to the sample associated to the second s in the step 2. In fact, when we will compute bounds of f ′ and f ′′ in the step 1 of our treatment, bounds computed for the sample associated to a second s will required bounds on f or f ′ from the previous samples (e.g. associated to seconds s -1 or s -2). And since the higher the accuracy of bounds from the past, the higher the accuracy of new bounds will be, it explains our choice.

A first simulation

3.3.1 --For this first simulation, we have supposed that the distance between bounds on f (t i ) is not so far from µ = 0.1 m for all i ∈ {1, . . . , N }, as are the initial data from (3.1). To compute bounds on f ′ or f ′′ from steps 1.5, 1.7 and 1.9 we have supposed that the differences between the required bounds on f ′ (resp. f ′′ ) are not so far from the minimum of the function ε from 1.4.3 (resp. 1.7.3) taken with:

α = 2µ = 0, 2 and β = 1 -(-1) 6 = 1 3 (resp. α = 4µ = 0, 4 and β = 2[1 -(-1)] 6 = 2 3 
).

In doing so, bounds on f ′ or f ′′ are computed as explained in 3.2.2. Taking the notations from this paragraph back, the various indexes r 1 , r 2 or r computed to do this are obtained by minimizing a certain function ε (see paragraphs 1.10.3 or 1.10.5). For each step, the following tables indicate the minimizer and minimum value of these considering functions ε: REMARK. The attentive reader will have noted that the function considered at step 1.2 is the same as the one represented in figure 1.

step minimizer (δ * 1 , δ * 2 ) minimum value δ * 1 δ * 2 ε(δ * 1 , δ * 2 ) 1.1 0.

--Output data analyses.

In table 5 we have indicated the average distance between the various bounds on f , f ′ or f ′′ obtained on each step of our treatment, and their associated minimal and maximal values. We can first observe that in step 1, using various methods to bound a same derivative and the selection principle to adjust them is really effective. For instance with f ′ , the selection principle from step 1.3 improves the accuracy of bounds obtained at steps 1.1 or 1.2 of approximatively 15%. Nevertheless by analysing the output data from steps 1.8 and 1.10, the improvements from steps 1.7 and 1.9 are relatively limited. This phenomenon will be studied in detail in paragraph 3.3.5. About the use of the FB_algorithm algorithm from step 2, we can note that it improves in average of:

-6% the accuracy of bounds on f ′′ from step 1.10, -16% the accuracy of bounds on f ′ from step 1.8, -more than 30% the accuracy of the initial bounds on f from inequalities 3.1.

Moreover that represents:

-an improvement of 20% in comparison to the first bounds on f ′′ from step 1.4, -an improvement of 30% in comparison to the first bounds on f ′ computed at steps 1.1 or 1.2.

Thus as expected, that illustrates the efficiency of the forward-backward multi-order algorithm presented in chapter 2. However we can observe that some bounds on f are not corrected by our treatment (since the maximal error after step 2 is equal to 0.1). In fact this phenomenon is just observed at the end of the simulation, when the train is stopped.

--Graphical representations.

We have produced various graphical representations on f and f ′ to illustrate the performances of our treatment. At first we have illustrated the effect of our treatment on bounds on f : The same phenomenon can be observed with f ′ and f ′′ , but will limit our graphic analysis to outputs on f ′ because they are more impressive than those on f ′′ . As shown in figure 17, we can note that the oscillations on the various bounds on f ′ computed at step 1 are smoothed by the FB_optimal algorithm.

t
Let us signal that these oscillations are probably due to the use of initial bounds on f from the current sample (not yet corrected).

As previously, we can also observe that bounds on f ′ from steps 1.1 and 1.7 are practically the same, and especially for the lower bounds. That is probably due to the fact that bounds on f ′ are computed by using the same past data at these two steps by doing which is explained at paragraph 3. Each sample is handled in less than 0.001 s in comparison to the second available to perform our various computations. That means our treatment is totally adapted for an use in real time, and that it can be improved (by doing more or quite complicated computations) without any problem. Some improvements of this first treatment that require more computations will be presented and analysed in section 3.4.

--About the usefulness of the various computations from step 1.

As observed in paragraphs 3.3.2 and 3.3.3, some bounds computations on f ′ or f ′′ done in step 1 seem useless. To end the study of this preliminary simulation, we present here the outputs of various adaptations of our treatment that omit some of bounds computations on f In comparison to the outputs of table 5, the analysis of tables 6 to 8 shown that doing all the computations from step 1 seems unnecessary. In particular and as highlighted in the previous paragraphs, computations from steps 1.7 and 1.8 improve almost anything. However the only analysis of tables 6 to 8 proved that computing bounds on f ′ in two different ways is useful, according to the outputs of the various selection principle from steps 1.3 or 1.8. In summary, that means that all of these formulas could be useful, but it is maybe not necessary to use all of them to improve significantly the accuracy of the outputs. In our context, computations from steps 1.7 and 1.8 seem dispensable. We can also observe analogous phenomenons with bounds computations on f ′′ : in this case, computations from steps 1.5 and 1.6 are clearly useless.

Some improvements or adaptations

3.4.1 --We can try to adapt the treatment done in section 3.3 just by taking into account its inputs and outputs. Let us remind that for a given index j ∈ {1, . . . , N }, bounds on f ′ (t j ) or f ′′ (t j ) from step 1 are computed by using bounds on f , f ′ or f ′′ in t i , with i j. Here we suggest to take into account if t i belongs to the current sample or not. If so, that means that the bounds on f , f ′ or f ′′ in t i come from a previous substep of step 1. If not, these bounds have been already corrected by our treatment and come from the step 2 of our treatment applied on the last sample.

• At steps 1.1, 1.2, 1.4, 1.7 and 1.9, data on f from current and previous samples may be used. According to table 5 the distance between bounds on f from the current sample are distant of 0.1 m when those from the previous sample are distant in average of 0.07 m. Thus we can suppose that bounds on f used on these steps are close to the average of these values, i.e. 0.085 m.

• Similarly at step 1.5 bounds on f ′ from current and previous samples may be used. Those from the current sample are obtained in step 1.3 and distant in average of 0.8288 m/s ≃ 0.83 m, while those from the last sample are distant in average of 0.6875 m/s ≃ 0.69 m. Thus we can suppose that bounds on f ′ used at this step are close to the average of these two values, i.e. 0.76 m/s.

• At step 1.7 (resp. 1.9) bounds on f ′′ (t i ) (resp. f ′ (t i )), and so from the current sample, are also used. Since these bounds come from step 1.6 (resp. 1.8), we can suppose that the distance between these bounds is not so far from 1.9646 m/s 2 ≃ 0.96 m/s 2 (resp. 0.9174 m/s ≃ 0.92 m/s).

In doing so bounds from step 1 are computed as explained in 3. In comparison to the simulation performed in 3.4.1, we can note that:

-the final bounds on f ′′ (from step 2) are improved of a little more than 4% in average, -the final bounds on f ′ are improved of a little more than than 10% in average, -the final bounds on f are improved of a little more than 4%.

This constitutes more significant improvements, in particular for the bounds on f ′ . And since here the computation time is almost unchanged in comparison to the previous simulations, we can say that it constitutes an interesting improvement.

--

Observing that bounds on f , f ′ and f ′′ are significantly more accurate after the use of our treatment, we have thought that reapplying our treatment to each sample could improve their accuracy.

In order to do this, we have first treat each sample as in 3.4.2, and a second time by taking in account the improvements provide by the first treatment in computations from the step 1. For the second treatment, we have thus supposed bounds on f close to 0.066 m, those on f ′ close to 0.61 m/s and those on f ′′ close to 1.71 m/s 2 , which leads to the following choice of parameters: In the end, various application of our treatment to a same sample seems inefficient. To conclude, we thus suggest to use it as explained in paragraph 3.4.2.

step minimizer (δ * 1 , δ * 2 ) minimum value δ * 1 δ * 2 ε(δ * 1 , δ * 2 ) 1.1 0.

An alternative use

3.5.1 --As we have seen in section 1.11, even if the centred bounds seem more precise than the decentered, their use to perform real-time analyses seems inappropriate. That is why the treatment suggested in paragraph 3.2.1 does not use them. To highlight and illustrate the differences between these centred and decentred bounds, we now suppose that we want to solve a posteriori the problem exposed in section 3.1. Thus the use of the centred formulas appears now reasonable.

In order to use them, we will modify the suggested treatment from section 3.2 by using:

-the centred bounds from ).

The following tables show the values of the various functions ε considered to computes indexes r -, r + and r in question:

step minimizer δ * minimum ε(δ * , δ * ) 1.1 0.6694 0.2241 1. [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] 1.0627 1.0627 In comparison to the results obtained in table 5 with the preliminary simulation using the decentred bounds on f ′ and f ′′ , we can note that:

-the average distance between bounds on f ′′ from step 1.5 is divided by more than 2, and those from step 2 are all the more accurate, -the average distance between bounds on f ′ from step 1.1 is approximatively divided by 4, and those from step 2 by 3,

-the average distance between the initial bounds on f is in the end reduced of 50%, against 30% when the decentred bounds were used.

Thus as expected, the centred bounds produce more accurate bounds than the decentred. But as confirmed by analysing the values of δ * given by the table [START_REF] Lions | Shape-from-shading, viscosity solutions and edges[END_REF] (which correspond to the waiting time to get the input data used in computations of the centred bounds), their use in real time seems totally unreasonable.

--Computation time.

The computation time is almost unchanged in comparison to the one obtained witrh the preliminary simulation using the decentred formula.

--Graphical representation.

The improvements due to the use of the centred bounds noted in the paragraph 3.5.2 can be observed graphically. In comparison to the output on f ′ represented in figure 17, the following picture shows an important improvement of the accuracy of the bounds from steps 1.1 and 2: Even if it is more difficult to observe with f (due to a scale problem), we can see in figure 19 that bounds on f obtained at step 2 are closer than those obtained in figure 16. We can for instance look it on the neighbourhood of t = 77.4 s: the lower bounds on f are significantly higher than the initial in comparison to those obtained with the real-time treatment from section 3.3 (where one of them was manifestly not corrected). Figure 19 -Bounds on f obtained with our treatment 3.5.5 --REMARK. As for the real-time treatment presented in section 3.3, it is then possible to improve this a posteriori treatment by doing analogous improvements than those presented in section 3.4. But knowing that we will obtain similar result by doing them, we will not present them in this document.

Conclusion

On a sophisticated example inspired of the Parisian underground, this chapter has shown how the theories from chapter 1 and 2 can be used to solve the problem presented in introduction of this part I. We have developed and improved two treatments that enable to bound a function and its derivative in real time for the first one, and a posteriori for the other. By doing these simulations, we have also highlighted the efficiency of our various models. Now it could be interesting to see how to improve it. Let us give some possible ways to do this:

• As suggested in 3.4.1, by choosing the best data to use in step 1 in real time, and not arbitrary as we have done in this chapter. However in doing so, care should be taken to ensure that the calculations are not too costly in time.

• When we are estimating the position of a mobile (here a train), by taking into account the fact that the mobile is accelerating or decelerating, when such informations are available.

• By coupling our treatments with some other models, etc.

There is probably a lot of other possible improvements as those mentioned here, but these will depend before anything else of the nature of the input data. Some other improvements may also be suggested by an experience feedback. 

Introduction

This chapter gathers various results or ideas that could be used to generalize or improve the models or algorithms presented in the previous chapters, but not really studied in detail, tested in practice or presented in an optimal form. In section 4.1 we extend our works from chapter 1 by presenting various techniques that enable to bound a function by using (other) bounds on it and uniforms bounds on one of its derivatives. We introduce a new kind of forward-backward corrections in section 4.2. Finally we suggest some possible adaptations of our models to functions defined on (a part of) R n to R in section 4.3.

How to bound a function by one of its derivative?

4.1.1 --In chapter 1, we have presented various techniques that enable to bound the derivatives of a function ψ in a point t just by using uniform bounds on one of its p th derivatives. So as in this chapter, let us fix t ∈ I and ψ : I → R a function satisfying inequalities (1.1) and (1.2), that means:

• for all y ∈ I, we can determine (known) quantities ψ -(y) and ψ + (y) such that:

ψ -(y) ψ(y) ψ + (y).
• there exists p ∈ N * such that ψ admits a p th bounded derivative, i.e. there exists (known) real constants ψ * -and ψ * + such that for all ξ ∈ I:

ψ * - ψ (p) (ξ) ψ * + .
In this section, we will how to bound ψ in t by leading similar computations, and here again just by considering cases p = 2 or p = 3.

--

Let us start with the case p = 2. As we did for ψ ′ (t) or ψ ′′ (t) in sections 1.2 or 1.5, we need to find here an expression of ψ(t) that only depends on ψ and ψ ′′ . To do this, we start from the following Taylor expansions, available for all δ 1 and δ 2 in R * such that t + δ 1 ∈ I and t + δ 2 ∈ I,

ψ(t + δ 1 ) = ψ(t) + δ 1 ψ ′ (t) + δ 2 1 2 ψ ′′ (ξ 1 ), (4.1) 
ψ(t + δ 2 ) = ψ(t) + δ 2 ψ ′ (t) + δ 2 2 2 ψ ′′ (ξ 2 ), (4.2) 
85 where ξ j is strictly between t and t + δ j for all j ∈ {1, 2}. For all α 1 , α 2 ∈ R, by doing α 1 (4.1) + α 2 (4.2) and by ordering α 1 + α 2 = 0 and α 1 δ 1 + α 2 δ 2 = 0, we obtain

ψ(t) = α 1 ψ(t + δ 1 ) + α 2 ψ(t + δ 2 ) α 1 + α 2 - α 1 δ 2 1 ψ ′′ (ξ 1 ) 2(α 1 + α 2 ) - α 2 δ 2 2 ψ ′′ (ξ 2 ) 2(α 1 + α 2 )
.

And since we can multiply α 1 and α 2 by a same non-null quantity without changing this expression of ψ(t), we can fix α 1 = δ 2 , and so α 2 = -δ 1 (since α 1 δ 1 + α 2 δ 2 = 0). To guarantee α 1 + α 2 = 0, we this need to impose δ 1 = δ 2 . In the end for all δ 1 , δ 2 ∈ R * such that t + δ 1 ∈ I, t + δ 2 ∈ I and Let us suppose that δ 1 and δ 2 have opposite signs. At the risk of exchanging their roles, we can suppose δ 1 > 0 and δ 2 < 0. Then by setting δ + = δ 1 , δ -= -δ 2 , ξ + = ξ 1 and ξ -= ξ 2 , formula (4.3) can be rewritten:

δ 1 = δ 2 , ψ(t) = δ 2 ψ(t + δ 1 ) -δ 1 ψ(t + δ 2 ) δ 2 -δ 1 + δ 1 δ 2 2 ψ ′′ (ξ 2 ) 2(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ ′′ (ξ 1 ) 2(δ 2 -δ 1 ) . ( 4 
ψ(t) = δ -ψ(t + δ + ) + δ + ψ(t -δ -) δ -+ δ + - δ -δ 2 + ψ ′′ (ξ + ) 2(δ -+ δ + ) - δ + δ 2 -ψ ′′ (ξ -) 2(δ -+ δ + ) . ( 4.4) 
Let us define

P t = {(δ -, δ + ) ∈ R * + | t --δ -∈ I, t + δ + ∈ I}. Thus for all (δ -, δ + ) ∈ P t , by setting        ψ -(t ; δ -, δ + ) = δ -ψ -(t + δ + ) + δ + ψ -(t -δ -) δ -+ δ + - δ -δ + ψ * + 2 , ψ + (t ; δ -, δ + ) = δ -ψ + (t + δ + ) + δ + ψ + (t -δ -) δ -+ δ + - δ -δ + ψ * - 2 ,
we deduce of (1.1), (1.2) and (4.4) that

ψ -(t ; δ -, δ + ) ψ(t) ψ + (t ; δ -, δ + ).
And as in chapter 1 the values of δ -and δ + that minimize the distance between bounds ψ -(t ; δ -, δ + ) and ψ + (t ; δ -, δ + ) on ψ(t) can be found by studying the diameter function

diam ψ t : P t → R + , (δ -, δ + ) → ψ + (t ; δ -, δ + ) -ψ -(t ; δ -, δ + ).
4.1.4 --Decentred bounds on ψ when p = 2.

We now suppose that δ 1 and δ 2 have the same sign, and more precisely that δ 1 < 0 and δ 2 < 0 (the only interesting case for our applications). Then by doing our usual transformations, for all δ 1 , δ 2 ∈ R * + such that tδ 1 ∈ I, tδ 2 ∈ I and δ 1 < δ 2 , formula (4.3) can be rewritten:

ψ(t) = δ 2 ψ(t -δ 1 ) -δ 1 ψ(t -δ 2 ) δ 2 -δ 1 + δ 1 δ 2 2 ψ ′′ (ξ 2 ) 2(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ ′′ (ξ 1 ) 2(δ 2 -δ 1 ) . ( 4.5) 
Let us define

P t = {(δ 1 , δ 2 ) ∈ R * + | t -δ 1 ∈ I, t -δ 2 ∈ I, δ 1 < δ 2 }. Thus for all (δ 1 , δ 2 ) ∈ P t , by setting        ψ -(t ; δ 1 , δ 2 ) = δ 2 ψ -(t -δ 1 ) -δ 1 ψ + (t -δ 2 ) δ 2 -δ 1 + δ 1 δ 2 2 ψ * - 2(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ * + 2(δ 2 -δ 1 ) , ψ + (t ; δ 1 , δ 2 ) = δ 2 ψ + (t -δ 1 ) -δ 1 ψ -(t -δ 2 ) δ 2 -δ 1 + δ 1 δ 2 2 ψ * + 2(δ 2 -δ 1 ) - δ 2 δ 2 1 ψ * - 2(δ 2 -δ 1 ) ,
we deduce of (1.1), (1.2) and (4.5) that

ψ -(t ; δ 1 , δ 2 ) ψ(t) ψ + (t ; δ 1 , δ 2 ).
Here again the values of δ 1 and δ 2 that minimize the distance between these bounds on ψ(t) can be obtained by studying the diameter function

diam ψ t : P t → R + , (δ 1 , δ 2 ) → ψ + (t ; δ 1 , δ 2 ) -ψ -(t ; δ 1 , δ 2 ).
4.1.5 --Decentred bounds on ψ when p = 3. We now suppose that p = 3. To obtain an expression of ψ(t) that only depends on various evaluations of ψ and ψ ′′′ , we need to use three Taylor expansions of the third order to eliminate the contributions in ψ ′ and ψ ′′ . That is why we will only compute decentred bounds on ψ(t). So let δ 1 , δ 2 and δ 3 be three real numbers satisfying

t -δ 1 ∈ I, t -δ 2 ∈ I, t -δ 3 ∈ I and 0 < δ 1 < δ 2 < δ 3 . (4.6)
By the Taylor-Lagrange formula, there exists

(ξ 1 , ξ 2 , ξ 3 ) ∈ ]t -δ 1 , t[ × ]t -δ 2 , t[ × ]t -δ 3 , t[ such that ψ(t -δ 1 ) = ψ(t) -δ 1 ψ ′ (t) + δ 2 1 2 ψ ′′ (t) - δ 3 1 6 ψ ′′′ (t 1 ), (4.7 
)

ψ(t -δ 2 ) = ψ(t) -δ 2 ψ ′ (t) + δ 2 2 2 ψ ′′ (t) - δ 3 2 6 ψ ′′′ (t 2 ), (4.8 
)

ψ(t -δ 3 ) = ψ(t) -δ 3 ψ ′ (t) + δ 2 3 2 ψ ′′ (t) - δ 3 3 6 ψ ′′′ (t 3 ). (4.9) 
For all α 1 , α 2 , α 3 ∈ R, by ordering

α 1 + α 2 + α 3 = 0, α 1 δ 1 + α 2 δ 2 + α 3 δ 3 = α 1 δ 2 1 + α 2 δ 2 2 + α 3 δ 2 3 = 0, (4.10) 
and by doing α 1 (4.7) + α 2 (4.8) + α 3 (4.9), we can obtain the following expression of ψ(t):

ψ(t) = α 1 ψ(t -δ 1 ) + α 2 ψ(t -δ 2 ) + α 3 ψ(t -δ 3 ) α 1 + α 2 + α 3 + α 1 δ 3 1 ψ ′′′ (ξ 1 ) + α 2 δ 3 2 ψ ′′′ (ξ 2 ) + α 3 δ 3 3 ψ ′′′ (ξ 3 ) 6(α 1 + α 2 + α 3 ) . (4.11)
Since we can multiply α 1 , α 2 and α 3 by a same non-null quantity without changing this expression of ψ(t), we can first fix α 1 = 1. In doing so,

(4.10) ⇐⇒ α 2 δ 2 + α 3 δ 3 = -δ 1 α 2 δ 2 2 + α 3 δ 2 3 = -δ 2 1 ⇐⇒        α 2 = δ 1 (δ 1 -δ 3 ) δ 2 (δ 3 -δ 2 ) , α 3 = δ 1 (δ 2 -δ 1 ) δ 3 (δ 3 -δ 2 ) .
Now by multiplying α 1 , α 2 and α 3 by δ 2 δ 3 (δ 3δ 2 ), which is a non-null quantity since thanks to (4.6), we can finally suppose that

α 1 = δ 2 δ 3 (δ 3 -δ 2 ), α 2 = -δ 1 δ 3 (δ 3 -δ 1 )
and

α 3 = δ 1 δ 2 (δ 2 -δ 1 )
.

By using (4.6) we can easily observe that

α 1 > 0, α 2 < 0, α 3 > 0 and α 1 + α 2 + α 3 = (δ 2 -δ 1 )(δ 3 -δ 2 )(δ 3 -δ 1 ) > 0. (4.12)
Consequently, by setting

       ψ -(t ; δ 1 , δ 2 , δ 3 ) = α 1 ψ -(t -δ 1 ) + α 2 ψ + (t -δ 2 ) + α 3 ψ -(t -δ 3 ) α 1 + α 2 + α 3 + α 1 ψ * -+ α 2 ψ * + + α 3 ψ * - 6(α 1 + α 2 + α 3 ) , ψ + (t ; δ 1 , δ 2 , δ 3 ) = α 1 ψ + (t -δ 1 ) + α 2 ψ -(t -δ 2 ) + α 3 ψ + (t -δ 3 ) α 1 + α 2 + α 3 + α 1 ψ * + + α 2 ψ * -+ α 3 ψ * + 6(α 1 + α 2 + α 3 ) ,
we can deduce of (4.11) and (4.12) that

ψ -(t ; δ 1 , δ 2 , δ 3 ) ψ(t) ψ + (t ; δ 1 , δ 2 , δ 3 ).
Here again the triplets (δ 1 , δ 2 , δ 3 ) satisfying (4.6) that minimize the distance between these bounds on ψ(t) can be found by minimizing the corresponding diameter function (where α 1 , α 2 and α 3 must obviously be seen as functions of δ 1 , δ 2 and δ 3 ).

4.1.6 --On the concrete example of the problem solved in chapter 3, these models can for instance be used in the suggested treatment from 3.2.1 to improve the accuracy of the initial bounds on f . By doing it before the step 1.1, it would logically improve the accuracy of bound on f ′ and f ′′ computed after that.

Other forward-backward corrections

4.2.1 --The models presented in chapter 2 enable to determine admissible values on ϕ (k) (t), the k th derivative in a point t of a function ϕ : I → R admitting a p th bounded derivative, by having some informations on ϕ (k) , . . . , ϕ (p) . The models presented in this section are intended to refine that by considering admissible values for couples of the form ϕ (k) (t), ϕ (k+1) (t) , with k ∈ {0, . . . , p -1}, by knowing bounds on couple of the form ϕ (k) (t) ± δ ± ϕ (k+1) (t), for given δ -, δ + > 0. Then the idea consists in using this new bounds on ϕ (k) (t) ± δ (k+1) ±

(t) to adjust those on ϕ (k) (t) and ϕ (k+1) (t).

EXAMPLE. When p = 2, let us suppose that we can determine quantities ϕ ± (t) and ϕ ′ ± (t) such that

ϕ -(t) ϕ(t) ϕ + (t), ϕ ′ -(t) ϕ ′ (t) ϕ ′ + (t),
but also, for given δ -and δ + in R * + , quantities ϕ ± (tδ -) and ϕ ± (t + δ + ) such that

ϕ -(t -δ -) ϕ(t -δ -) ϕ + (t -δ -), ϕ ′ -(t + δ + ) ϕ ′ (t + δ + ) ϕ ′ + (t + δ + ).
Then by using the Taylor-Lagrange formula, we can bound ϕ(t)+ δ + ϕ ′ (t) and ϕ(t)-δ -ϕ ′ (t) as follows:

ϕ -(t + δ + ) - δ 2 + ϕ * + 2 ϕ(t) + δ + ϕ ′ (t) ϕ + (t + δ + ) - δ 2 + ϕ * - 2 , ϕ -(t -δ -) - δ 2 -ϕ * + 2 ϕ(t) -δ -ϕ ′ (t) ϕ + (t -δ -) - δ 2 -ϕ * - 2 .

--

The study leads in this section will use the following terminology:

Definition. We call rectangle of R 2 each Cartesian product of the form I × J, where I and J are two closed and bounded intervals of R.

4.2.3 --By setting x = ϕ (k) (t) and y = ϕ (k+1) (t) in 4.2.1, the corrections suggested in this section requires the resolution of a same geometrical problem. Given eight real numbers x -, x + , y -, y + , m -, m + , µ -, µ + and two positive numbers δ -and δ + , it consists in determining the smallest rectangle of R 2 that contains all the couples (x, y) ∈ R 2 satisfying the following constraints:

x x + , (1) 
x x -, (2) 
y y + , (3) 
y y -, (4) 
x + δ + y m + , (

x

+ δ + y m -, (6) 
xδ -y µ + , (

xδ -y µ -.

For instance on the example from 4.2.1, we will have

x ± = ϕ ± (t), y ± = ϕ ′ ± (t), m ± = ϕ ± (t + δ + ) - δ 2 + ϕ * ∓ 2 and µ ± = ϕ ± (t -δ -) - δ 2 -ϕ * ∓ 2 .
For all i ∈ {1, . . . , 8}, let E i be the set of couples (x, y) ∈ R 2 satisfying the constraint (i), and

E = 8 i=1 E i
the set of couples (x, y) ∈ R 2 satisfying the constraints (1) to [START_REF] Farager | Understanding the basis of the kalman filter[END_REF]. In other word, we are looking for the smallest rectangle of R 2 that contains E. We can first observe this problem is well-posed. Indeed, let P be the set of rectangles of R 2 that contains E. Since E ⊂ [x -, x + ] × [y -, y + ], then we have P = ∅. By setting

P * = P ∈P P ,
it is clear that P * is also a rectangle of R 2 , that E ⊂ P * , and that P * is included in any rectangle of R 2 that contains E. Therefore P * is the unique solution of our problem. When P * = ∅, which is equivalent to say that E = ∅, there exists unique intervals I * and J * such that P * = I * × J * . And since in practice x will be associated to ψ (k) (t) and y to ψ (k+1) (t), we will be able to conclude that ψ (k) (t) ∈ I * and that ψ (k+1) (t) ∈ J * . In the following paragraphs, we will first expose a characterisation of the fact that P * is non empty. Then under the assumption E = ∅, we will explicit the bounds of the intervals I * and J * that define P * .

--

The resolution of the problem exposed in 4.2.3 will we be lead by geometrical considerations.

• For all i ∈ {1, . . . , 8}, the set E i described by the constraint (i) corresponds to a half-space of R 2 .

In the following, we will denote by l i the line that defines the boundary of E i . These lines have for equations:

l 1 : x = x + , l 3 : y = y + , l 5 : y = m + -x δ + , l 7 : y = x -µ + δ - , l 2 : x = x -, l 4 : y = y -, l 6 : y = m --x δ + , l 8 : y = x -µ - δ - .
• For all indexes i and j such that 1 i < j 8 and lines l i and l j are secant, we will denote by (x ij , y ij ) the unique intersection point between l i and l j .

• We will more precisely set A = (x 23 , y 23 ), B = (x 13 , y 13 ), C = (x 14 , y 14 ), D = (x 24 , y 24 ), and A ′ = (x 68 , y 68 ), B ′ = (x 58 , y 58 ), C ′ = (x 57 , y 57 ), D ′ = (x 67 , y 67 ). Thus when rectangle

E 1 ∩• • •∩E 4 (resp. parallelogram E 5 ∩ • • • ∩ E 8 ) is non-empty, then points A, B, C, D (resp. A ′ , B ′ , C ′ , D ′ ) are its vertexes. l1 l2 l3 l4 l5 l6 l7 l8 A B C D A ′ B ′ C ′ D ′ E Figure 24 -Geometrical representation of E with lines l 1 , . . . , l 8 when E = ∅ 4.2.5 --Definition. Let k ∈ {1, . . . , 8} and i 1 , . . . , i k be indexes such that 1 i 1 < • • • < i k 8.
We will say that constraints (i 1 ), . . .

, (i k ) are compatible if the set E i1 ∩ • • • ∩ E i k of points from R 2
satisfying these constraints is non-empty.

--

To characterize the fact that E is non-empty, which means that constraints (1) to ( 8) are satisfied, we can start by finding criteria that insure that some of these constraints are compatible.

Proposition. We have the twelve following compatibility criterion:

• Constraints (1) and (2) are compatible if and only if l 1 is on the right of l 2 , that means:

x - x + . ( R 1 ) 
• Constraints (3) et (4) are compatible if and only if l 3 is above l 4 , that means

y - y + . ( R 2 ) 
• Constraints (5) et (6) are compatible if and only if l 5 is above l 6 , that means

m - m + . ( R 3 ) 
• Constraints (7) et (8) are compatible if and only if l 7 is below l 8 , that means

µ - µ + . ( R 4 ) 
• Constraints (1), ( 6) and (8) are compatible if and only if A ′ is on the right of l 1 , that means

x 68 = δ -m -+ δ + µ - δ -+ δ + x + . ( R 5 ) 
• Constraints (2), ( 5) and (7) are compatible if and only if C ′ is on the right of l 2 , that means

x 57 = δ -m + + δ + µ + δ -+ δ + x -. ( R 6 ) 
• Constraints (3), ( 6) and (7) are compatible if and only if D ′ is below l 3 , that means

y 67 = m --µ + δ -+ δ + y + . ( R 7 ) 
• Constraints (4), ( 5) and (8) are compatible if and only if B ′ is above l 4 , that means

y 58 = m + -µ - δ -+ δ + y -. ( R 8 ) 
• Constraints (2), ( 4) and (5) are compatible if and only if D is below l 5 , that means

y 25 = m + -x - δ + y -. ( R 9 ) 
• Constraints (1), ( 3) and ( 6) are compatible if and only if B is above l 6 , that means

y 16 = m --x + δ + y + . ( R 10 ) 
• Constraint (2), ( 3) and ( 7) are compatible if and only if A is above l 7 , that means

y 27 = x --µ + δ - y + . ( R 11 ) 
• Constraints (1), ( 4) and (8) are compatible if and only if C is below l 8 , that means

y 18 = x + -µ - δ - y -. ( R 12 ) 
Proof.--Criteria associated to relations (R 1 ) to (R 4 ) are obvious. Let us establish criterion associated to relation (R 5 ), criteria associated to (R 6 ) à (R 12 ) being obtained similarly. 6), ( 8) and [START_REF]Kanton zürich webpage[END_REF] By the definition of (x 68 , y 68 ), we can first note that :

m --x 68 δ + = y 68 = x 68 -µ - δ - ,
hence :

x 68 = δ -m -+ δ + µ - δ -+ δ + .
Now let us suppose that (R 5 ) is satisfied, i.e. x 68 x + . Then (x 68 , y 68 ) satisfies (1) by hypothesis, and also ( 6) et ( 8) by definition. Reciprocally, let us suppose that there exists (x, y) ∈ R 2 satisfying (1), ( 6) and ( 8). Since ( 6) and ( 8) are satisfied, by doing δ -(6) + δ + (8), we obtain (δ

-+ δ + )x δ -m -+ δ + µ -, i.e. x δ -m -+ δ + µ + δ -+ δ + = x 68 .
And since (1) is also satisfied, we finally obtain x + x 68 , which precisely corresponds to (R 5 ).

4.2.7 --Theorem. The following conditions are equivalent:

(i) E is non-empty.

(ii) Relations (R 1 ) to (R 12 ) are satisfied.

Proof.--Implication (i) ⇒ (ii) is clear since for all k ∈ {1, . . . , 8} and indexes i 1 , . . . , i k such that

1 i 1 < • • • < i k 8, we have E i1 ∩ • • • ∩ E i k = ∅ as soon as E = E 1 ∩ • • • ∩ E 8 = ∅.
Reciprocally, let us suppose that (ii) is satisfied, and let us prove that (i) is also satisfied. In order to do this, we need to find a point M ∈ R 2 that verifies each of constraints ( 1) to (8). We will reason according to the position of point A ′ = (x 68 , y 68 ) in R 2 . As we have seen in the proof of proposition 4.2.6, by using the equations of l 6 and l 8 ,

x 68 = δ -m -+ δ + µ - δ -+ δ + ,
which implies

y 68 = m --µ - δ -+ δ + . 
1) Since (R 5 ) is satisfied, proposition 4.2.6 says that A ′ must be on the left of l 1 . Let Λ 1 be the straight line of equation

y = y -+ x -x + δ - ,
i.e. the parallel line to l 7 and l 8 passing through point C. We can prove that relation (R 12 ) is also equivalent to say that A ′ is above Λ 1 . Indeed saying that A ′ is above de Λ 1 means that

m --µ - δ -+ δ + 1 δ - δ -m -+ δ + µ - δ -+ δ + -x + + y -, i.e. x + -µ - δ - y -.
which precisely corresponds to relation (R 12 ). By the same way we can prove that relation (R 10 ) means that A ′ is below Λ 2 , the straight line of equation

y = y + + x + -x δ + ,
which is the parallel to l 5 and l 6 passing through B. Finally, by defining

Z = (x, y) ∈ R 2 x x + , y x -x - δ - + y -, y x + -x δ + + y + ,
we have shown that A ′ must belong to Z.

Obviously when A ′ belongs to E, it is sufficient to set M = A ′ to obtain the expected result. Thus in the following, we will suppose that A ′ / ∈ E. First we have A ′ ∈ E 1 by the definition of Z. Next we have {A ′ } = d 6 ∩ d 8 by the definition of A ′ , hence A ′ ∈ E 6 ∩ E 8 , and so A ′ ∈ E 5 ∩ E 7 since conditions (R 3 ) and (R 4 ) are satisfied. Consequently hypothesis A ′ / ∈ E can be rewritten:

A ′ ∈ (Z E 2 ) ∪ (Z E 3 ) ∪ (Z E 4 ). l1 Λ1 Λ2 A B C D Z Figure 26 -Representation of Z, the admissible region to point A ′ in R 2 2) Let us suppose that A ′ ∈ R 1 , with R 1 = (x, y) ∈ R 2 y < y -, y x -x + δ - + y -, y x -x - δ - + y -.
In practice, R 1 corresponds to the region of R 2 constituted of the points strictly below l 4 the straight line of equation y = y -, above Λ 1 , the straight line of equation y = y -+ (xx + )/δ -, and below Λ 3 , the straight line of equation y = y -+ (xx -)/δ -(the parallel to Λ 1 passing through D).

By definition, relation (R 9 ) means that B ′ is above l 4 . Let M be (x 48 , y 48 ) the intersection point between l 4 , the straight line passing through C and D, and l 8 , the straight line passing through A ′ and B ′ . Let us show that M ∈ E. • Since M ∈ l 4 , we have y 48 = y -, and since M ∈ l 8 , we deduce that x 48 = δ -y -+ µ -by using the equation of l 8 given in 4.2.4.

• According to (R 12 ), we have x + -µ -δ -y -, hence x 48 = δ -y -+µ -x + . Therefore M ∈ E 1 .

• Since A ′ = (x 68 , y 68 ) is supposed to be below Λ 3 , then

0 y -+ x 68 -x - δ - -y 68 = y -+ µ --x - δ - ,
and so

x 48 = δ -y -+ µ -x -. Thus M ∈ E 2 . • By definition, M ∈ d 4 ⊂ E 4 ,

and we have in particular

M ∈ E 3 since (R 2 ) is satisfied. • According to (R 8 ) we have m + -µ --(δ -+ δ + )y -0. Therefore m + -x 48 δ + -y 48 = m + -µ --(δ -+ δ + )y - δ + 0,
which proves that M is below l 5 , i.e. M ∈ E 5 .

• Since A ′ / ∈ E 2 , we have

y -- m --µ - δ -+ δ + > 0, hence (δ -+ δ + )y -+ µ --m -> 0. Therefore y 48 - m --x 48 δ + = (δ -+ δ + )y -+ µ --m - δ + > 0,
which proves that M is (strictly) above l 6 , and so belong to E 6 .

• By definition, M ∈ d 8 ⊂ E 8 , and we have in particular M ∈ E 7 since (R 4 ) is satisfied.

Consequently under the hypotheses (ii) and A ′ ∈ R 1 , we have M ∈ E.

3) Let us suppose that

A ′ ∈ R 2 , with R 2 = (x, y) ∈ R 2 x < x -, y x -x - δ - + y -, y x -x - δ - + y + .
In practice, R 2 corresponds to the region of R 2 constituted of the points stricly on the left of l 2 , the straight line of equation x = x -, above Λ 3 , the straight line of equation y = y -+ (xx -)/δ -, and below Λ 4 , the straight line of equation

y = y + + (x -x -)/δ -. If B ′ ∈ E 2 ,
we can show by using (R 1 ) and (R 4 ) that M = (x 28 , y 28 ), the intersection point between l 2 (the straight line passing through A and D) and l 8 (the straight line passing through A ′ and B ′ ), belongs to E. But if B ′ / ∈ E 2 , we can show by using (R 3 ) and (R 9 ) that M = (x 25 , y 25 ) ∈ E.

l2 Λ3 Λ4 A D A ′ B ′ M Figure 28 -Point M solution A ′ ∈ R 2 and B ′ ∈ E 2 l2 Λ3 Λ4 A D A ′ B ′ C ′ M Figure 29 -Point M solution when A ′ ∈ R 2 and B ′ / ∈ E 2 4) Let us suppose that A ′ ∈ R 3 , with R 3 = (x, y) ∈ R 2 y x -x - δ - + y -, y x --x δ + + y + .
In practice, R 3 corresponds to the region of R 2 constituted of the points above Λ 4 , the straight line of equation y = y -+ (xx -)/δ -, and below Λ 5 , the straight line of equation y = y + + (x -x)/δ + .

Here again we need to distinguish two cases. If B ′ is below Λ 5 , knowing that (R 3 ), (R 6 ) and (R 9 ) are satisfied, we can prove that M = (x 25 , y 25 ), the intersection point between l 2 and l 5 , belongs to E. But if B ′ is above Λ 5 , knowing that (R 1 ), (R 2 ) and (R 11 ) are satisfied, we can prove that A = (x -, y + ) belongs to E.

l2 Λ4 Λ5 A D A ′ B ′ C ′ M Figure 30 -Point M solution when A ′ ∈ R 3 and B ′ is below Λ 4 l2 Λ4 Λ5 A D A ′ B ′ Figure 31 -A is solution when A ′ ∈ R 3 and B ′ is above Λ 4 5) Let us end by considering that A ′ ∈ R 4 , with R 4 = (x, y) ∈ R 2 y > y + , y x --x δ + + y + , y x + -x δ + + y + .
In practice, R 4 corresponds to the region of R 2 constituted by the points strictly above l 3 , the straight line of equation y = y + , above Λ 4 , the straight line of equation y = y + + (x -x)/δ + , and below Λ 2 , the straight line of equation y = y + + (x +x)/δ + . In this case, knowing that (R 2 ), (R 3 ), (R 7 ) and (R 10 ) are satisfied, we can prove that M = (x 36 , y 36 ), the intersection point between l 3 and l 6 , belongs to E.

l3 Λ4 Λ2 A ′ D ′ A B M Figure 32 -Point M solution when A ′ ∈ R 4
In the end, having

(Z E 2 ) ∪ (Z E 3 ) ∪ (Z E 4 ) = R 1 ∪ R 2 ∪ R 3 ∪ R 4 ,
we deduce of points 1) to 5) that implication (ii) ⇒ (i) is also true.

--

Let us assume that E is non-empty. According to theorem 4.2.7, that means that relations (R 1 ) to (R 12 ) are satisfied. From now on, we will make explicit the bounds of the intervals that define P * , the smallest rectangle of R 2 that contains E. So let us fix (x, y) ∈ E.

• By doing (5)δ + (4), we can note that

x x 45 = m + -δ + y -.
Similarly, by doing (7) + δ -(3), we can note that

x x 37 = µ + + δ -y + .
Finally, the linear combination δ -(5) + δ -(7) leads to (δ -+ δ + )x δ -m + + δ + µ + , from which we deduce

x x 57 = δ -m + + δ + µ + δ -+ δ + .
And since x x + according to (1), by setting

x * + = min x + , x 37 , x 45 , x 57 , we have obtained x x * + . • By the same way, by setting

x * -= max x -, x 36 , x 48 , x 68 , where

x 36 = m --δ + y + , x 48 = δ -y -+ µ - and x 68 = δ -m -+ δ + µ - δ -+ δ + ,
we can prove that x x * -. • By doing (5)δ + (2), we obtain

y y 25 = m + -x - δ + .
Similarly, relation (8)δ -(1) leads to

y y 18 = x + -µ - δ - .
Finally the difference ( 5) -( 8) provides (δ -+ δ + )y m +µ -, hence

y y 58 = m + -µ - δ -+ δ + .
And since y y + according to (3), by setting y * + = min y + , y 18 , y 25 , y 58 , we can conclude that y y * + . • By the same way, if y * -= max y -, y 16 , y 27 , y 67 , where

y 16 = m --x + δ + , y 27 = x --µ + δ - and y 67 = m --µ + δ -+ δ + ,
we can prove that y y * -. In the end, we have established the following result:

Lemma. If E is non-empty, then it is contained in the rectangle Π = [x * -, x * + ] × [y * -, y * + ].
4.2.9 --Let us take the notations of x * -, x * + , y * -, y * + and Π introduced in 4.2.8 back. Theorem. If E is non-empty, then P * the smallest rectangle from R 2 that contains E is equal to Π.

Proof.--Let us assume that E is non-empty. Then by theorem 4.2.7, conditions (R 1 ) to (R 12 ) are satisfied, and according to lemma 4.2.8, we have already proved that Π is a rectangle of R 2 that contains E, i.e. that P * ⊂ Π. To establish the theorem, it is now sufficient to determine:

-for all x ∈ {x * -, x * + }, an element y ∈ R such that (x, y) ∈ E, and, -for all y ∈ {y * -, y * + }, an element x ∈ R such that (x, y) ∈ E. We will only do it for x = x * + , the other cases being obtained similarly.

1) Let us assume that x * + = x 37 , and let us show that M = (x 37 , y 37 ) = (δ -y + +µ + , y + ) belongs to E. • Since x * + = x 37 , then we have x 37 = x *

+

x + by the definition of x * + , and so M ∈ E 1 . • Since (R 11 ) is equivalent to x -δ -y + + µ + = x 37 , we deduce that M ∈ E 2 .

• We have M ∈ l 3 ⊂ E 3 by definition. In particular we also have M ∈ E 4 according to (R 2 ).

• Since x * + = x 37 , we have x 37 x 57 . And since

x 37 x 57 = δ -m + + δ + µ + δ -+ δ + ⇐⇒ x 37 m + -δ + y + ⇐⇒ y 37 = y + m + -x 37 δ + ,
we can note that M is below l 5 , that means M ∈ E 5 .

• We can easily show that condition (R 7 ) precisely means that M is above l 6 , hence M ∈ E 6 .

• We have M ∈ d 7 ⊂ E 7 . In particular, we also have M ∈ E 8 according to (R 4 ).

Consequently, we have already proved that M ∈ E.

In higher dimension

4.3.1 --In this section, we fix n ∈ N {0, 1}, and we will see how it is possible to generalize in a very elementary way the models and algorithms presented in the previous chapters to functions defined on I and valued in R n . It is well-known that there is no general hypotheses that makes Taylor-Lagrange formula true to functions valued in R n . For instance, if g : R → R 2 , x → (cos x, sin x), then for all ξ ∈ ]0, 2π[ we have g(2π)g(0) = (0, 0) = 2π(-sin ξ, cos ξ) = (2π -0)g ′ (ξ).

However if g : I → R n has a m th derivative, x ∈ I and h ∈ R * satisfies x + h ∈ I, for all j ∈ {1, . . . , n}, it is still possible to apply the Taylor-Lagrange formula to g j : I → R, hence the existence of ξ j strictly between x and x + h such that

g j (x + h) = m-1 k=0 h k k! g (k) j (x) + h m m! g (m) j (ξ j ).
Therefore theories from the previous chapters can be extended to functions from I to R n by working component by component. Thus to solve the problem presented in introduction of this part with a function f : I → R n satisfying for instance analogous hypotheses than those done in chapter 3, that means:

• for all i ∈ {1, . . . , N }, f (t i ) is bounded,

• f ′′ and f ′′′ are uniformly bounded, we can concretely apply the treatment presented in sections 3.2 or 3.5 on each component of f . Let us highlight that in doing this, the various components of f can be handled independently, hence a possible parallelization of the various computations. 

f : R → R 2 , t → (t, f 2 (t)).
By generating analogous input data on f 1 : t → t and using precisely the same as those used in chapter 3 for f 2 , we have noted similar performances in comparison to those observed one the one-dimensional case: equivalent computation time and improvements on each component of f . In particular we have obtained exactly the same performances on f 2 , that illustrates the independence of the treatment done component by component.

--

The extension in higher dimension presented in this section suggests to equip R n of the norm

• ∞ : R n → R + , x → max{|x j | | 1 j n},
which is always possible since all the norms on R n are equivalent. If the initial bounds on f or f (d) are expressed in an other norm of R n , it can require a pejoration of our initial data, which could be nevertheless make up by our treatment. An additional work but not lead until now (since we were only considering a unidimensional problem) could consist in extending our models by taking the initial norm (associated to the input data) on R n .

REMARK. More generally, for functions valued in R n , our goal will consist in reducing the certified domains (in the sense of inclusion) that bounds f and its derivatives in t 1 , . . . , t N . Whatever the shape of these domains, we can thus seek to reduce the diameter of each one of these domains. When n = 1 in the theory presented above, these domains are intervals and we have tried to reduced their diameter: it justifies the terminology of diameter functions adopted in chapter 1.

Conclusion

There are probably many other possible generalizations or extensions to the works presented in chapters 1 to 3. We have only presented here those that we had already considered, or that we thought were the most essential. If the ones presented in sections 4.1 and 4.2 seem now relatively easy to test in practice, the generalization of our models in higher dimension mentioned in section 4.3 could be much more difficult, both theoretically and numerically.

Conclusion et perspectives

L'étude menée dans cette partie nous a permis de voir comment, à partir de bornes en certains points sur une application (inconnue en pratique) f : Si l'on peut déjà se satisfaire de ces premiers résultats encourageants, de nombreuses pistes permettant d'améliorer, de généraliser ou d'appliquer notre travail nous semblent intéressantes à considérer. Donnons-en quelques unes parmi bien d'autres :

I → R n , où n ∈ N * ,
• Au chapitre 1, nous avons proposé différentes façons de borner les dérivées k-ièmes d'une fonction ψ dérivable p = 2 ou p = 3 fois, pour 0 < k < p. Une suite logique consisterait à mener ce travail pour des entiers k et p quelconques, le cas k = 0 ayant été évoqué à la section 4.1.

• Toujours au chapitre 1, en comparant les avantages et incovénients des formules centrées et décentrées, nous avons montré qu'il existe une concession entre leur précision et leur possible utilisation en temps réel. Une autre perspective consisterait à trouver récupérer des bornes aussi précises que celles déduites des formules centrées, mais qui puissent être raisonnablement utilisées en temps réel. Nous avions à cet égard tenté de nous inspirer de ce que permettent les schémas compacts de S. K. LELE dans [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] pour la résolution d'équations différentielles, mais leur adaptation à notre étude ne semble pas si aisée.

• Une extension des corrections forward-backward proposées au chapitre 2 a été considérée à la section 4.2. Il pourrait être intéressant d'étudier en détail l'efficacité de ces nouvelles corrections, en particulier par rapport à celles du chapitre 2, ou bien encore de trouver d'autres modèles similaires permettant de mettre en cohérences différentes bornes sur une fonction et ses dérivées.

• Nos modèles ont été originellement développées pour des fonctions à valeurs réelles. À la section 4.3, nous avons expliqué comment les appliquer très simplement à des applications à valeurs dans R n , pour 101 un entier n arbitrairement grand, en équipant R n de la norme infinie. Il nous semblerait désormais important de trouver des méthodes qui prennent en compte la topologie initiale des données sur R n à traiter, et plus généralement d'étendre tout cela à des applications de R p dans R q , pour p et q choisis quelconques dans N * .

• Nous évoquions enfin le possible couplage de nos modèles à d'autres. Signalons à cet égard une possible application à certaines techniques de machine learning, qui essaient de retrouver les équations régissant un système dynamique spatio-temporel de la forme : • Nous noterons abusivement 0 le vecteur nul de R d .

∂ t u = F (u, ∂ x u, . . . ,
• La famille (e 1 , . . . , e d ) désignera la base canonique de R d .

• Si x ∈ R n et j ∈ {1, . . . , d}, nous noterons généralement x j ou x(j) la j-ième composante de x, de sorte que x = (x 1 , . . . , x d ) ou x = x(1), . . . , x(d) . Dans quelques rares cas, nous préférerons noter celle-ci x j-1 ou x(j -1), de sorte que x = (x 0 , . . . , x d-1 ) ou x = x(0), . . . , x(d -1) . Bien entendu, nous nous efforcerons de chasser toute ambiguïté à cet égard durant cette étude.

• Si x, y ∈ R n , nous noterons x•y = x 1 y 1 + • • • + x n y n le produit scalaire usuel de x et y, et |x| = √ x•x
la norme euclidienne de x.

• R d sera supposé muni de sa structure usuel d'espace euclidien, et, au besoin, toute partie de R d sera vue comme un sous-espace métrique de R d . Pour toute partie A de R d , nous noterons alors A l'adhérence de A dans R d , et ∂A sa frontière dans R d .

• Nous noterons respectivement B(0, 1) et B ′ (0, 1) les boules unités ouverte et fermée de R d .

De plus, si X est une partie de R d :

• Nous noterons respectivement C (X) (resp. C 1 (X), C ∞ (X)) l'ensemble des fonctions continues (resp. différentiables à différentielles continues, indéfiniment différentiables) de X dans R.

• Nous noterons B(X) l'ensemble des fonctions continues et bornées de X dans R. Pour u et v deux fonctions de B(X), nous écrirons en outre u v dès que u(x) v(x) pour tout x ∈ X.

Enfin, toutes les simulations présentées dans cette partie ont été réalisées sous python, et ce même si nombre de sorties graphiques ont été reproduites, pour des raisons esthétiques, sous L A T E X. [START_REF] Prados | Application of the theory of the viscosity solutions to the Shape From Shading problem[END_REF] ou [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF]. Dans ce cas, la solution du problème de s.f.s. sera associée à la solution de viscosité d'une équation de Hamilton-Jacobi stationnaire du premier ordre, et nous tenterons de fait d'en déterminer une approximation. En l'état, nos contributions consistent en un bref état de l'art théorique et numérique de cette approche du problème. Nous proposons également une formulation explicite d'un schéma d'approximation considéré comme implicite, et nous effectuons, code python à l'appui, une optimisation de certains algorithmes utilisés jusqu'alors. De façon plus précise :

Contexte de l'étude, organisation et contributions

• La littérature au sujet des solutions de viscosité étant généralement très spécialisée, nous avons souhaité, au chapitre 5, rappeler les définitions et résultats théoriques nécessaires à l'étude du problème s.f.s., en proposant parfois même des preuves directes de résultats établis dans des cadres plus généraux ailleurs (voir par exemple le résultat d'unicité de la section 5.3). Pour la compréhension, nous mettons cette théorie en oeuvre sur des exemple simples, et nous montrons comment l'appliquer à notre problème.

• Les chapitres suivants sont consacrés à la résolution numérique du problème de s.f.s. Nous y reprenons pour l'essentiel un schéma d'approximation, qualifié d'implicite par E. PRADOS et O. FAUGERAS dans [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF], et nous montrons comment le rendre explicite, dans un cadre unidimensionnel au chapitre 6, puis dans un cadre bi-dimensionnel au chapitre 7. Dans les deux cas, nous proposons un algorithme permettant une résolution effective, et manifestement bien plus rapide, du problème de s.f.s. Nous présentons enfin diverses simulations numériques illustrant les performances de notre algorithme. Dans un soucis de reproductibilité, l'intégralité du code python permettant de reproduire nos simulations est mis en libre accès (à ce jour, nos fichiers sont livrés en l'état, mais un notebook jupyter est en préparation). Si le problème de s.f.s. et l'équation associée sont traditionnellement étudiés en dimension 2, la seule que l'on considère d'un point de vue pratique, l'étude spécifique du cas unidimensionnel permet de fixer les idées et de mieux comprendre comment celles-ci se généralisent en dimension supérieure. C'est pourquoi il nous a semblé utile de consacrer un chapitre entier à l'étude de ce problème en dimension 1.

Bien entendu, et même si ne nous les évoquerons pas ici, il existe bien d'autres manières d'aborder et de résoudre un tel problème. À cet égard, signalons par exemple les méthodes dites de fast marching, présentées par J. A. SETHIAN dans [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF], puis appliquées au problème de s.f.s. par et R. KIMMEL et J. A. SETHIAN dans [START_REF] Kimmel | Optimal algorithm for shape from shading and path planning[END_REF]. Ou bien encore les travaux de B. WU, W. C. LIU, A. GRUMPE et C. WÔHLER qui, dans [START_REF] Wu | Construction of pixel-level resolution dems from monocular images by shape and albedo from shading constrained with low-resolution dem[END_REF], considèrent des modèles prenant en compte la variation de certains paramètres physiques (e.g. l'albedo).

Formulation du problème

Comme nous l'avons précédemment expliqué, notre objectif consiste à reconstituer la surface représentée sur une image en noir et blanc, par la seule connaissances des différentes nuances de gris et de la position exacte de certains points de la surface, et ce dans un cadre tant unidimensionnel que bidimensionnel. En ce sens, si l'image correspond à une traditionnelle photographie en noir et blanc en dimension 2, nous pourrons l'assimiler à une "bande grisée" en dimension 1.

D'un point de vue mathématique, fixant n ∈ {1, 2} :

• Nous supposerons que la surface S observée sur l'image peut être décrite comme suit :

S = x, u(x) x ∈ Ω ,
où Ω désigne un ouvert connexe et borné de R n (physiquement assimilé à la région photographiée) et u une fonction bornée de Ω dans R (correspondant physiquement à la l'altitude).

• L'espace sera supposé éclairé par une unique source lumineuse ponctuelle et située au dessus de S.

Ainsi, à tout point x, u(x) de S, où x ∈ Ω, il est d'associer un unique vecteur L(x) unitaire et orienté vers la source lumineuse. Sous ces conditions, et en utilisant un modèle physique usuel (scène lambertienne et d'albédo constant égal à 1), l'équation de la brillance (brightness equation) stipule que pour tout x ∈ Ω, l'intensité lumineuse I(x) de S au point x, u(x) est décrite par la relation : En pratique, nos scènes seront éclairées par le soleil. Dans ce cas, il est raisonnable de supposer la source lumineuse située à l'infini, et donc qu'il existe un unique triplet (l, l 3 ) ∈ R n × R, avec l 3 > 0, tel que L(x) = (l, l 3 ) pour tout x ∈ Ω. De fait, sachant que pour tout x ∈ Ω, un vecteur normal à S en x, u(x) est donné par (-∇u(x), 1), la précédente équation se réécrit :

I(x) = max 0, n(x)•L(x) |n(x)| =    cos α(x) si -π 2 α(x) π 2 , 0 sinon, n(x) = n 1 (x), n 2 (x), n 3 (x)
I(x) = max 0, -∇u(x)•l + l 3 1 + |∇u(x)| 2 . (II.1)

INTRODUCTION

Pour reconstituer la surface S recherchée, tout revient donc à déterminer la fonction u qui la décrit. Au regard de (II.1), connaissant I : Ω → [0, 1], il est possible de récupérer de l'information sur u à partir de l'équation :

I(x) = -∇u(x)•l + l 3 1 + |∇u(x)| 2 . (II.2)
Ce faisant, si u satisfait à (II.2), elle satisfait en particulier à (II.1), mais le profil de u obtenu par résolution de (II.2) ne sera pas forcément fidèle à la réalité. Signalons qu'il s'agit là d'une limitation uniquement dû au modèle physique : en effet, lorsque I s'annule, (II.1) peut-être satisfaite pour différents profils de u.

Dans cette seconde partie de manuscrit, la surface S sera donc reconstruite par résolution de l'équation simplifiée (II.2). Comme nous le verrons dès le chapitre 5, il s'agit d'une équation de Hamilton-Jacobi du premier ordre, mal posée en l'état : non unicité flagrante, existence de solutions généralement non classiques, etc. Nous y montrerons en particulier comment le formalisme des solutions de viscosité permet, en partie, de palier ces difficultés.

Introduction

In this chapter, we remind various results about the Hamilton-Jacobi equations. To begin with, a definition and first examples of these (ill-posed) equations are given in section 5.1. Then we introduce in section 5.2 the notion of viscosity solutions in the continuous case. In sections 5.3 and 5.4, we state uniqueness and existence results, by giving a direct proof of this first one, and we apply all this to the s.f.s. problem in section 5.5. We shortly explain how to extend this to the discontinuous case in section 5.6. Finally in section 5.7, we will introduce theoritically the approximation schemes that will be used in the following chapters in order to solve numerically the s.f.s. problem in one-dimension as well as in two-dimension.

Definitions and first observations

5.1.1 --From a formal point of view, a first order Hamilton-Jacobi equation is an equation of unknown u : Ω → R that can be written:

∀ x ∈ Ω, H(x, u(x), ∇u(x)) = 0, (5.1)
where Ω is an open subset of R n (with n ∈ N * ) and H : Ω × R × R n → R is a continuous function called a Hamiltonian. Let us remark that if a function u satisfies (5.1), then for all λ ∈ R * , it will also satisfy λH(x, u(x), ∇u(x)) = 0 for all x ∈ Ω. As we will see in section 5.2, this obvious observation will have importance consequences when we will deal with viscosity solutions. A special case of Hamilton-Jacobi equations of the first order is given by those which only depend on x and ∇u(x), i.e. that can be written:

∀ x ∈ Ω, H(x, ∇u(x)) = 0, (5.2) 
where Ω is still an open subset of R n (with n ∈ N * ) and H : Ω × R n → R a continuous function also called a Hamiltonian.

--EXAMPLE. The eikonal equation

∀ x ∈ Ω, |∇u(x)| = 1 (5.3)
is a Hamilton-Jacobi equation of the form (5.2), and functions 

H : Ω × R n → R, (x, p) → |p| -1 and -H : Ω × R n → R, (x, p) → 1 -
H : Ω × R n → R, x → I(x) 1 + |∇u(x)| 2 + ∇u(x)•l -l 3 .
REMARK. In the particular case where the unit light vector (l, l 3 ) ∈ R n × R is defined by l = 0 and l 3 = 1, and the intensity satisfies, for all x ∈ Ω,

I(x) = √ 2 2 ,
we can easily prove that the brightness equation is equivalent to the eikonal equation (5.3).

--

Let us formulate some observations about equations of the form (5.2).

• Boundary conditions. We can note that equation (5.2) is ill-posed. Indeed since this equation only depends on x and ∇u(x), if u is a solution of (5.2) then for all λ ∈ R function u + λ is also solution of (5.2). To avoid this difficulty, we can fix for instance the value of u in at least one point of Ω.

In control theory, by assuming that Ω is convex, the function

d : Ω → R, x → inf y∈∂Ω |y -x|
that measures the distance of a point from Ω to its boundary ∂Ω turns out to be a natural weak solution of the eikonal equation ( 5.3), that satisfies the boundary condition:

∀ x ∈ ∂Ω, d(x) = 0.
More generally, let ϕ : ∂Ω → R be a continuous function and

v : Ω → R, x → inf y∈∂Ω ϕ(y) + |y -x| .
While ϕ(x) ϕ(y) + |y -x| for all x, y ∈ ∂Ω, function v turns out to be a weak solution of the eikonal equation ( 5.3) that satisfies the boundary condition

∀ x ∈ ∂Ω, v(x) = ϕ(x).
That is why equation (5.2) is generally coupled to Dirichlet boundary condition

∀ x ∈ ∂Ω, u(x) = ϕ(x), (5.4) 
for a given continuous function ϕ : ∂Ω → R. But in the case of our shape from shading problem, prescribing Dirichlet boundary conditions seems unreasonable since it physically consists in knowing the altitude of the shape in the boundary of the black and white picture (which is associated to the domain Ω).

• Existence, uniqueness and regularity of the solutions. Now let us suppose n = 1, Ω = ]0, 1[, and focus on the problem still given by the eikonal equation

|u ′ (x)| = 1 if x ∈ ]0, 1[, u(x) = 0 if x ∈ {0, 1}. (5.5)
Rolle theorem shows that all solution of (5.5) is never differentiable on overall ]0, 1[. Therefore this problem does not admit a classical solution, and we will have to look for solutions in a weaker sense. Now for all k ∈ N, let us consider the 2 -k -periodic function u k from [0, 1] to R defined, for all x ∈ 0, 2 -k , by

u k (x) = 1 2 k+1 - 1 2 k+1 -x .
It is clear that u k and -u k are continuous functions on [0, 1] and differentiable on ]0, 1[ except at a finite number of points. Thus these functions constitutes acceptable weak solutions of problem (5.5), and this problem still admits and infinity of solutions.

0 1 2 1 2 1 x u(x) C0 C1 C2 Figure 35 -Representative curves C 0 , C 1 , C 2 of functions u 0 , u 1 , u 2 satisfying (5.5)
The previous considerations show that we can at most hope to find continuous solutions to Hamilton-Jacobi equations of the form (5.2). In addition since it seems necessary and natural to couple this kind of equations to Dirichlet boundary conditions of the form (5.4), this is clearly not sufficient. That is why we need to introduce a class of weak solution that makes problems of the form (5.2)-(5.4) well-posed. The viscosity solutions presented in the following section are intended to do it.

Continuous viscosity solutions

5.2.1 --For the rest of this chapter, we fix n ∈ N * and we denote by Ω an open and bounded subset of R n . Until section 5.6, we will also denote by H a continuous application defined on Ω × R n . In this section 5.2, we will more generally consider the equation of unknown u : Ω → R:

∀ x ∈ Ω, H(x, ∇u(x)) = f (x), (5.6) 
where f is a continuous function from Ω to R.

Definition. Let u ∈ C (Ω).

(i) We say that u is a viscosity subsolution of equation (5.6), or that u satisfies H(x, ∇u(x)) f (x) in a viscosity sense, if for all φ ∈ C 1 (Ω) and all x 0 local maximum of (uφ) we have

H(x 0 , ∇φ(x 0 )) f (x 0 ).
(ii) We say that u is a viscosity supersolution of equation (5.6), or that u satisfies H(x, ∇u(x)) f (x) in a viscosity sense, if for all φ ∈ C 1 (Ω) and all x 0 local minimum of (uφ) we have

H(x 0 , ∇φ(x 0 )) f (x 0 ).
(iii) We say that u is a viscosity solution of equation (5.6), or that u satisfies H(x, ∇u(x)) = f (x) in a viscosity sense, if u is both a subsolution and a supersolution of this equation.

--EXAMPLE.

An important example of viscosity solutions is given by the classical solutions. Indeed if u ∈ C 1 (Ω) is a classical solution of (5.6), then we have H(x, ∇u(x)) = f (x) for all x ∈ Ω.

And since for all φ ∈ C 1 (Ω) and all x 0 local extremum of (uφ) we have ∇u(x 0 ) = ∇φ(x 0 ), then H(x 0 , ∇φ(x 0 )) = 0 and u is therefore a viscosity solution of (5.6).

--

It is important to note that definitions from 5.2.1 depend on the choice of H. This will be confirmed on a concrete example in 5.2.7. For now we can prove the following result, which shows how the definitions from 5.2.1 behave by switching to the opposite.

Proposition. Let u ∈ C (Ω) and let us denote by v the function -u.

(i) Function u satisfies H(x, ∇u(x)) f (x) in a viscosity sense if and only if function v satisfies -H(x, -∇v(x)) -f (x) in a viscosity sense.

(ii) Function u satisfies H(x, ∇u(x))

f (x) in a viscosity sense if and only if function v satisfies -H(x, -∇v(x)) -f (x) in a viscosity sense.

(iii) Function u satisfies H(x, ∇u(x)) = f (x) in a viscosity sense if and only if function v satisfies -H(x, -∇v(x)) = -f (x) in a viscosity sense.

Proof.--It is sufficient to prove (i), (ii) being obtained by a totally similar way and (iii) being an immediate consequence of the previous points by definition 5.2.1. So let φ ∈ C (Ω) and x 0 ∈ Ω.

• Let us suppose that u satisfies H(x, ∇u(x)) f (x) in a viscosity sense. If x 0 is a local maximum of v -φ = -u -φ, then x 0 is a local minimum of -(-u -φ) = u -(-φ). Therefore H(x 0 , -∇φ(x 0 )) -f (x 0 ), hence -H(x 0 , -∇φ(x 0 )) f (x 0 ),
and the arbitrariness on φ and x 0 shows that -v satisfies H(x, -∇v(x)) -f (x) in a viscosity sense.

• Reciprocally let us suppose that v satisfies -H(x, -∇v(x)) -f (x) in a viscosity sense. If

x 0 is a local minimum of u -φ, then x 0 is a local maximum of -(u -φ) = v -(-φ). Therefore -H(x 0 , -∇(-φ)(x 0 )) f (x 0 ), hence H(x 0 , ∇φ(x 0 )) -f (x 0 ),
and the arbitrariness on φ and x 0 shows that u satisfies H(x, ∇u(x)) f (x) in a viscosity sense.

5.2.4 --Until section 5.6, unless otherwise indicated, we will only talk about subsolution, supersolution or solution to mean viscosity subsolution, viscosity supersolution or viscosity solution. Let us highlight that all of our definitions deal with continuous functions. We will shortly explain how to extend them to discontinuous functions in section 5.6. Moreover points (i), (ii) and (iii) of definition 5.2.1 will be extended to continuous functions from Ω to R as long as their restrictions to Ω satisfy the corresponding conditions. By doing so, we will say that a function u ∈ C Ω is a solution (resp. subsolution, supersolution) of the Dirichlet problem (5.2)-(5.4)

H(x, ∇u(x)) = 0 if x ∈ Ω u(x) = ϕ(x) if x ∈ ∂Ω
if u is a solution (resp. subsolution, supersolution) of (5.2) and if it satisfies (5.4).

--

As it stands, it seems difficult to show that a function is a solution of viscosity of equation (5.6) just by applying definition 5.2.1. To make this easier, given a function u ∈ C (Ω) and x ∈ Ω, we introduce the superdifferential of u in x, which is the closed and convex subset of R n given by:

D + u(x) = p ∈ R n lim sup y→x u(y) -u(x) -p•(y -x) |y -x| 0 ,
and the subdifferential of u in x, which is the closed and convex subset of R n given by:

D -u(x) = p ∈ R n lim inf y→x u(y) -u(x) -p•(y -x) |y -x| 0 .
We can graphically observe that a point p ∈ R n is in D + u(x) (resp. D -u(x)) if and only if the hyperplane y → u(x) + (p | yx) is above (resp. under) the graph of u in a neighbourhood of x.

We can also verify that

D ± (-u)(x) = -D ∓ u(x) and D ± (u + λ)(x) = D ± u(x) for all λ ∈ R.
EXAMPLE. If n = 1, Ω = R and u : R → R, x → |x|, we have

D + u(x) =    {1} if x > 0, {-1} if x < 0, ∅ if x = 0, and 
D -u(x) =    {1} if x > 0, {-1} if x < 0, [-1, 1] if x = 0.

--

The following result establishes a link between the superdifferential and subdifferential introduced in the previous paragraph and the viscosity solutions. Its proof can be for instance found in [START_REF] Bressan | Viscosity solutions of hamilton-jacobi equations and optimal control problems[END_REF].

Theorem. Let u ∈ C (Ω). (i) u is a subsolution of (5.6) if and only if H(x, p) f (x) for all (x, p) ∈ Ω × D + u(x).
(ii) u is a supersolution of (5.6) if and only if H(x, p) f (x) for all (x, p) ∈ Ω × D -u(x).

--EXAMPLE.

We suppose here that n = 1, Ω = ]0, 1[, and

H : ]0, 1[ × R → R, (x, p) → |p| -1.
By taking the notations of functions u k from paragraph 5.1.4 back and by using the various results from 5.2.5, we can verify that

D + u 0 (x) =              {1} if x < 1 2 , {-1} if x > 1 2 , [-1, 1] if x = 1 2 ,
and

D -u 0 (x) =              {1} if x < 1 2 , {-1} if x > 1 2 , ∅ if x = 1 2 .
Therefore theorem 5.2.6 easily implies that u 0 is a viscosity solution of the problem

H(x, u ′ (x)) = 0 if x ∈ ]0, 1[, u(x) = 0 if x ∈ {0, 1}, (5.7) 
and that -u 0 is not a viscosity solution of this problem. Now we can also deduce from proposition 5.2.3 that -u 0 is a viscosity solution of

-H(x, u ′ (x)) = 0 if x ∈ ]0, 1[, u(x) = 0 if x ∈ {0, 1}, (5.8) 
but not u 0 . Similarly, we can show that when k 1, functions u k or -u k are not viscosity solutions to either of these two problems.

Uniqueness result

5.3.1 --In this section, we will thus see how it is possible to insure, in a viscosity sense, the uniqueness of a solution to problem (5.2)-(5.4)

H(x, ∇u(x)) = 0 if x ∈ Ω, u(x) = ϕ(x) if x ∈ ∂Ω.
As said in 5.2.4, let us remind that we will talk about solution instead of viscosity solution. Let us start by introducing some vocabulary and reminding some general results of real analysis.

• We call modulus each function m : [0, +∞[ → [0, +∞[ that is non-decreasing, continuous in 0 and that satisfies m(0) = 0.

• If (X, d) is a compact metric space and f : X → R a continuous application, then:

f is bounded and reaches its bounds.

f is uniformly continuous and admits a modulus of continuity, that can be considered as modulus m f such that for all x, y ∈ X:

|f (x) -f (y)| m f (d(x, y)).
Indeed such a function is given by

m f : [0, +∞[ → [0, +∞[, t → sup{|f (x) -f (y)| | x, y ∈ X, |x -y| t}.

--

The uniqueness result is based on a maximum principle . More precisely, we say that equation (5.2) satisfies a maximum principle if for all functions u, v ∈ C Ω such that u and v are respectively subsolution and supersolution of (5.2), we have:

∀ x ∈ ∂Ω, u(x) v(x) =⇒ ∀ x ∈ Ω, u(x) v(x) .
It is then clear that if (5.2) satisfies a maximum principle, the problem (5.2)-(5.4) has at most one solution. Indeed, let be u, v ∈ C Ω two solutions of it. Then:

u and v are both subsolutions and supersolutions of (5.2), u(x) = v(x) for all x ∈ ∂Ω by (5.4).

In particular, having u(x) v(x) for all x ∈ ∂Ω with u subsolution and v supersolution of (5.2), that satisfies a maximum principle, we get u(x) v(x) for all x ∈ Ω. But as u and v play symmetrical roles, we also have v(x) u(x) for all x ∈ Ω, that implies u = v on overall Ω. We can show that equation (5.2) satisfies a maximal principle under the following assumptions:

(A 1 ) There exists a modulus m such that, for all x, y ∈ Ω and p ∈ R n :

H(x, p) -H(y, p) m |x -y|(1 + |p|) . (A 2 ) For all x ∈ Ω, the function H(x, • ) : R n → R, p → H(x, p) is convex.
(A 3 ) There exists α < 0 and ψ ∈ C Ω with ψ |Ω ∈ C 1 (Ω) such that, for all x ∈ Ω:

H(x, ∇ψ(x)) α.
In the rest of this section, we will give a direct proof of this by referring to the work of H. ISHII in [START_REF] Ishii | A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type[END_REF], M. G. CRANDALL, L. C. EVANS and P.-L. LIONS in [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF] and G. BARLES in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF].

--

The classical way to prove the uniqueness result consists in performing a split into two variables. Given u, v ∈ C Ω and ε > 0, the split we will consider will be defined as follows:

Φ ε : Ω × Ω → R, (x, y) → u(x) -v(y) - |x -y| 2 ε 2 .
Since u, v are continuous and Ω is compact (because closed and bounded in R n ), functions u, v, (uv) and Φ ε are bounded and reach they bounds. Thus there exists:

-

R 0 such that |u(x)| R and |v(x)| R for all x ∈ Ω, -M ∈ R such that M = sup u(x) -v(x) x ∈ Ω , -(x ε , y ε ) ∈ Ω × Ω such that the real M ε = Φ(x ε , y ε ) satisfies M ε Φ ε (x, y) for all (x, y) ∈ Ω × Ω.
Conserving the previous notations, we can establish the following result:

Lemma. We assume that u(x) v(x) for all x ∈ ∂Ω and that M > 0. Then:

(i) M ε → M when ε → 0. (ii) |x ε -y ε | 2 ε 2 → 0 when ε → 0. (iii) There exists η > 0 such that x ε , y ε ∈ Ω for all ε ∈ ]0, η].
Proof.--Let ε > 0.

(i) By the definition of M ε , we clearly have

M M ε , (5.9) 
since

M ε = Φ ε (x ε , y ε ) Φ ε (x, x) = u(x) -v(x) for all x ∈ Ω.
In particular, by (5.9) and the definition of R,

M M ε = u(x ε ) -v(x ε ) - |x ε -y ε | 2 ε 2 2R - |x ε -y ε | 2 ε 2 , that implies, since M > 0, |x ε -y ε | 2 2Rε 2 . (5.10) Otherwise as Ω is compact and v continuous, if m v is a modulus of continuity of v, M ε u(x ε ) -v(y ε ) = u(x ε ) -v(x ε ) + v(x ε ) -v(y ε ) M + m v (|x ε -y ε |).
Then by (5.9) and (5.10), we obtain

0 M ε -M [u(x ε ) -v(y ε )] -M m v ε √ 2R . ( 5.11) 
Therefore when ε goes to 0, we deduce from (5.11) that M ε goes to M .

(ii) When ε goes to 0, we also deduce from (5.11) that u(x ε )v(y ε ) goes to M . Thus since by (i),

u(x ε ) -v(y ε ) - |x ε -y ε | 2 ε 2 = M ε ---→ ε→0 M , it necessarily implies that |x ε -y ε | 2 ε 2
goes to 0 when ε goes to 0.

(iii) By contradiction, let us suppose that for all η > 0, there exists ε ∈ ]0, η] such that x ε ∈ ∂Ω. Then we can easily construct a sequence (ε(n)) n∈N of non-negative numbers that converges to 0 and satisfies

x ε(n) ∈ ∂Ω for all n ∈ N. If n ∈ N, since u x ε(n) v x ε(n)
by hypothesis, we deduce from (5.10) and (ii) that:

M ε(n) u x ε(n) -v y ε(n) - x ε(n) -y ε(n) 2 [ε(n)] 2 m v ε(n) √ 2R - x ε(n) -y ε(n) 2 [ε(n)] 2 -----→ n→+∞ 0.
Therefore, we have M 0 by (5.9) whereas M > 0 by hypothesis, which is impossible! Consequently there exists η 1 > 0 such that x ε ∈ Ω as soon as ε ∈ ]0, η 1 ], and we establish in the same way the existence of η 2 > 0 such that y ε ∈ ]0, η 2 ] as soon as ε ∈ ]0, η 2 ]. Then we conclude that (iii) is true by taking η = min(η 1 , η 2 ).

--Lemma.

Let α < 0, f ∈ C (Ω) a function such that f (x) α for all x ∈ Ω, and u, v ∈ C Ω functions that satisfy in a viscosity sense

H(x, ∇u (x)) f (x) and H(x, ∇v(x)) 0. 
Under the assumption (A 1 ), if u(x) v(x) for all x ∈ ∂Ω, then u(x) v(x) for all x ∈ Ω.

Proof.--Let us take the notations of M and, for all ε > 0, of x ε and y ε introduced in 5.3.3 back. Our goal is to prove that M 0 ; by contradiction, let us suppose that M > 0. By (iii) of lemma 5.3.3, we can fix η > 0 such that x ε , y ε ∈ Ω when ε ∈ ]0, η]. Then for all ε ∈ ]0, η]:

-x ε is a local maximum of x → u(x) -v(y ε ) + |x -y ε | 2 ε 2
, so by hypothesis,

f (x ε ) H x ε , 2|x ε -y ε | 2 ε 2 . (5.12) -y ε is a local minimum of y → v(y) -u(x ε ) - |x ε -y| 2 ε 2
, so by hypothesis,

0 H y ε , 2|x ε -y ε | ε 2 . ( 5.13) 
Therefore by (5.12), (5.13) and hypothesis on f , for all ε ∈ ]0, η], we have

H x ε , 2|x ε -y ε | 2 ε 2 -H y ε , 2|x ε -y ε | ε 2 -f (x ε ) -α > 0. (5.14) 
In the same time, since by assumption (A 1 ) and (ii) of lemma 5.3.3,

H x ε , 2|x ε -y ε | 2 ε 2 -H y ε , 2|x ε -y ε | 2 ε 2 m |x ε -y ε | + |x ε -y ε | 2 ε 2 ---→ ε→0 0,
we get a contradiction with (5.14). It means that we cannot have M > 0, hence the result.

--Theorem. (Maximum principle)

Under the assumptions (A 1 ), (A 2 ) and (A 3 ), equation (5.2) satisfies a maximum principle.

Proof.--Let u ∈ C Ω and v ∈ C Ω be respectively subsolution and supersolution of (5.2), with

∀ x ∈ ∂Ω, u(x) v(x). (5.15) 
Let us first note that since ψ and v are continuous on the compact Ω, at the risk of replacing ψ by ψ -C with C a sufficiently large constant, we can always suppose that

∀ x ∈ ∂Ω, ψ(x) v(x). (5.16) 
We now fix θ ∈ ]0, 1[ and we introduce the function

u θ : Ω → R, x → θu(x) + (1 -θ)ψ(x).
• By (5.15) and (5.16), for all x ∈ ∂Ω we have

u θ (x) = θu(x) + (1 -θ)ψ(x) θv(x) + (1 -θ)v(x) = v(x).
• Otherwise we can prove by easy computations that for all x ∈ Ω:

D + u θ (x) = {θp + (1 -θ)∇ψ(x) | p ∈ D + u(x)}.
Therefore if x ∈ Ω and q ∈ D + u θ (x), writing q = θp + (1θ)∇ψ(x) for such a p ∈ D + u(x), we successively deduce from (A 2 ) and (A 3 ) that

H(x, q) = H(x, θp + (1 -θ)∇ψ(x)) θH(x, p) + (1 -θ)H(x, ∇ψ(x)) (1 -θ)α α,
which shows that u θ satisfies H(x, ∇u θ (x)) α in the viscosity sense by theorem 5.2.6.

In the end, lemma 5.3.4 applied to the constant function f : x → α assures that u θ (x) v(x) for all x ∈ Ω. But since θ was arbitrarily chosen in ]0, 1[, the result follows as θ goes to 1. 5.3.7 --EXAMPLE. As in example 5.2.7, we suppose here that n = 1, Ω = ]0, 1[, and

--

H : ]0, 1[ → R, (x, p) → |p| -1.
It clearly satisfies assumptions (A 1 ) and (A 2 ), but also (A 3 ) for any constant function ψ on ]0, 1[. Thus corollary 5.3.6 shows that function

u 0 : [0, 1] → R, x → 1 2 - 1 2 -x
is the unique viscosity solution of problem (5.7). By proposition 5.2.3, we can also note that -u 0 is the unique viscosity solution of problem (5.8).

Existence result

--

The existence result uses the control theory, which is out the scope of this document. Thus we will only remind here the corresponding result and illustrating it on a concrete example. In order to do this, we need to introduce some notations. So let us suppose that (A 2 ) is satisfied, i.e. H(x, • ) convex for all x ∈ Ω, and that H can be extended as a continuous function on Ω × R n , still noted H.

• For all x ∈ Ω, the Legendre transform of H(x, • ) is the function

LH(x, • ) : R n → R ∪ {+∞}, q → sup{p•q -H(x, p) | p ∈ R n }.
• For all T > 0 and x, y ∈ Ω, we denote by Γ x,y (T ) the set of paths γ :

[0, T ] → R n such that γ(0) = x, γ(T ) = y, γ(]0, T [) ⊂ Ω and γ ′ ∈ L ∞ (]0, T [, R n ).
• By using the previous notations, for all x, y ∈ Ω, we finally set

L(x, y) = inf T 0 LH γ(s), -γ ′ (s) ds T > 0, γ ∈ Γ x,y (T ) .
We will see that an existence result can be obtained under the following assumptions:

(A 4 ) Ω is smooth and connected.

(A 5 ) inf{H(x, p) | p ∈ R n } 0 for all x ∈ Ω. (A 6 ) For all x ∈ Ω, function H(x, • ) is coercive, i.e. H(x, p) → +∞ when |p| → +∞.
(A 7 ) H can be extended as a continuous function on Ω × R n , still noted H.

(A 8 ) For all x, y ∈ ∂Ω, function ϕ satisfies the following compatibility condition: ϕ(x)ϕ(y) L(x, y).

--

Here is reminded the existence result. As mentioned by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF], it was described by P.-L. LIONS in [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] (see its chapter 5, and more precisely its theorem 5.3).

Theorem. (Existence result) (i) Under the assumptions (A 2 ) and (A 4 ) to (A 8 ), function

u : Ω → R, x → inf y∈∂Ω ϕ(y) + L(x, y)
is a continuous viscosity solution to the Dirichlet problem (5.2)-(5.4).

(ii) More precisely, under the assumptions (A 2 ) and (A 4 ) to (A 7 ), the function u above is a viscosity solution to the Dirichlet problem (5.2)-(5.4) if and only if assumption (A 8 ) is satisfied.

--EXAMPLE.

As in examples 5.2.7 or 5.3.7, let us suppose that n = 1, Ω = ]0, 1[, and

H : ]0, 1[ → R, (x, p) → |p| -1.
It is clear that assumptions (A 2 ) and (A 4 ) to (A 7 ) are satisfied. On the other hand, by doing easy calculations, we can verify that for all x ∈ ]0, 1[, the Legendre transform LH(x, • ) of H(x, • ) verifies

LH(x, q) = 1 if |q| 1, +∞ if |q| > 1.
Therefore, for all x, y ∈ ∂Ω = {0, 1},

L(x, y) = inf T 0 LH γ(s), -γ ′ (s) ds T > 0, γ ∈ Γ x,y (T ) = inf T 0 LH γ(s), -γ ′ (s) ds T > 0, γ ∈ Γ x,y (T ), γ ′ ∞ 1 = inf {T | T > 0, γ ∈ Γ x,y (T ), γ ′ ∞ 1} = |y -x|.
Consequently assumption (A 8 ) can be rewritten

ϕ(0) -ϕ(1) L(0, 1) = 1, ϕ(1) -ϕ(0) L(1, 0) = 1, i.e. |ϕ(1) -ϕ(0)| 1.
According to theorem 5.4.2, this shows that the equation 

∀ x ∈ ]0, 1[, H(x, u ′ (x)) = 0 has a continuous viscosity solution u : [0, 1] → R if and only if |u(0) -u(1)| 1.

Application to the shape from shading problem

H(x, ∇u(x)) = 0 if x ∈ Ω, u(x) = ϕ(x) if x ∈ ∂Ω.
As explained in the introduction of this part II, in practice n will be equal to 1 or 2, Ω a rectangular domain, and H given, for all (x, p) ∈ Ω × R n , by

H(x, p) = I(x) 1 + |p| 2 + l•p -l 3 .
(5.17)

As a reminder, I is a (known) function from Ω to [0, 1] corresponding to the brightness intensity, and

L = (l, l 3 ) ∈ R n × R *
+ is associated to the unit light vector. For this choice of H, problem (5.2)-(5.4) will be called the shape from shading problem (s.f.s. problem in abbreviated form). In this section, we will present various assumptions on the brightness intensity I and the unit light vector L that insure the existence and uniqueness of a solution to this s.f.s. problem. For the existence, this will be possible by referring to theorem 5.4.2, and by referring to corollary 5.3.6 for the uniqueness.

--

In order to determine assumptions that insure the existence and uniqueness to the s.f.s. problem, we will start by proving some preliminary results. Here is the first one:

Proposition. For all x ∈ Ω, function H(x, • ) is convex.
Proof.--Let us fix x ∈ Ω, and let us denote more simply by H x the function H(x, • ). Whatever the value of n, it is clear that this function is indefinitely differentiable on R n . 1) We first treat the case n = 1. For all p ∈ R, we have

H ′ x (p) = I(x)p 1 + p 2 + l and so H ′′ x (p) = 1 (1 + p 2 ) 3/2 0.
Hence the convexity of H x .

2) We now assume that n = 2. Then if p ∈ R 2 , for all j ∈ {1, 2} we have

∂ j H x (p) = I(x) p j 1 + |p| 2 + l j ,
and so

∂ 2 j H x (p) = I(x) 1 + p 2 j + |p| 2 (1 + |p| 2 ) 3/2 and ∂ 1 (∂ 2 H x (p)) = I(x) p 1 p 2 (1 + |p| 2 ) 3/2 .
Therefore M the Hessian of H x in p is the matrix given by

M = I(x) (1 + |p| 2 ) 3/2 1 + p 2 1 + |p| 2 p 1 p 2 p 1 p 2 1 + p 2 2 + |p| 2 .
We can thus verify that tr M 0 and det M 0, which implies that all the eigenvalues of M are non-negative. Therefore M is non-negative, and H x is a convex function.

--Proposition.

For all x ∈ Ω we have

inf{H(x, p) | p ∈ R 2 } = I 2 (x) -|l| 2 -l 3 if I(x) |l|, -∞ if I(x) < |l|.
Proof.--Let us fix x ∈ Ω and let us take the notation of H x from the proof of proposition 5.5.2 back.

• We first suppose that I(x) > |l|. Whatever the value of n in {1, 2}, we can prove by doing classical computations that

p * = -l I 2 (x) -|l| 2 is the unique critical point of H x .
And since H x is convex in accordance with proposition 5.5.2, we deduce that it corresponds to its global minimizer. Hence

inf{H x (p) | p ∈ R} = H x (p * ) = I 2 (x) -|l| 2 -l 3 .
• We now suppose that I(x) = |l|. Then for all p ∈ R 2 {0},

H x (p) = |l| 1 + |p| 2 + l•p -l 3 = |l||p| 1 + 1 |p| 2 -l•(-p) -l 3 .
According to the Cauchy-Schwarz inequality, we have l•p -|l||p|, hence

H x (p) |l||p| 1 + 1 |p| 2 -|l||p| -l 3 = |l||p| 1 + 1 |p| 2 -1 1 -l 3 -l 3 .
And since H x (0) = -l 3 , we can conclude that:

inf{H x (p) | p ∈ R n } = -l 3 = I 2 (x) -|l| 2 -l 3 .
• Let us finally suppose that I(x) < |l|. Since I(x) 0, it implies that |l| > 0. Now let us fix t > 0 and let us define p t = t|l|. Then,

H x (p t ) = I(x) 1 + t 2 |l| 2 -t|l| 2 -l 3 = t|l| I(x) 1 + 1 t 2 |l| 2 -|l| -l 3 .
(5.18)

And since I(x) < |l|, we easily obtain

H x (p t ) → -∞ when t → +∞, hence inf{H x (p) | p ∈ R} = -∞. 5.5.4 --Proposition. Let x ∈ Ω.
The following conditions are equivalent:

(i) I(x) > |l|. (ii) Function H(x, • ) is coercive, i.e. H(x, p) → +∞ when |p| → +∞. Proof.--(i) ⇒ (ii) : Let us assume that I(x) > |l|, and let us fix p ∈ R 2 {0}. Since H(x, p) = I(x) 1 + |p| 2 + l•p -l 3 = I(x)|p| 1 + 1 |p| 2 + l•p -l 3 ,
then by the Cauchy-Schwarz inequality, we get

H(x, p) I(x)|p| 1 + 1 |p| 2 -|l||p| -l 3 > |l| |p| 1 + 1 |p| 2 -1 1 -l 3 .
Therefore, we clearly obtain H(x, p) → +∞ when |p| → +∞. Hence (i) ⇒ (ii).

(ii) ⇒ (i) : Let us suppose that (i) is not satisfied, i.e. I(x) |l|. Then as in the proof of proposition 5.5.3, let us fix t > 0 and let us set p t = t|l|. According to (5.18), we have

H(x, p t ) = t|l| I(x) 1 + 1 t 2 |l| 2 -|l| -l 3 .
Therefore if I(x) < |l|, then for t large enough, we get

I(x) 1 + 1 t 2 |l| 2 -|l| < 0,
• (A 2 ) is still satisfied thanks to proposition 5.5.2.

• Let us introduce

ψ : Ω → R, x → - x•l l 3 .
It is clear that ψ ∈ C Ω and that ψ |Ω ∈ C 1 (Ω) with, for all x ∈ Ω,

∇ψ(x) = - l l 3 .
But L = (l, l 3 ) is supposed to be an unit vector, hence

|l| 2 + l 2 3 = 1. Therefore if x ∈ Ω, we have H x, ∇ψ(x) = I(x) 1 + |l| 2 l 2 3 - |l| 2 l 3 -l 3 = I(x) |l| 2 + l 2 3 l 2 3 - |l| 2 + l 2 3 l 3 = I(x) -1 l 3 .
Now we can easily observe that if (A 11 ), then (A 3 ) is also satisfied.

5.5.7 --When there exists points x ∈ Ω such that I(x) = 1.

According to 5.5.6, if there exists points x ∈ Ω such that I(x) = 1, then we can not insure the uniqueness of a solution to the s.f.s. problem. To start, let us illustrate it on a concrete example. In order to do this, let us suppose n = 1, Ω = ]-1, 1[, and let us introduce

u : [-1, 1] → R, x → 1 -x 2 .
By supposing I(x) = u(x) for all x ∈ ]-1, 1[ and ϕ(-1) = ϕ(1) = 0, we clearly have I(0) = u(0) = 1, and thanks to theorem 5.2.6, we can prove that u and its opposite -u are two different viscosity solutions of the s.f.s. problem, as shown by the following figure: This very simple example confirms that we can generally loss the uniqueness of a solution to the s.f.s. problem as soon as the brightness intensity at some point of Ω is equal to 1.

-1 x 1 u(x) = √ 1 -x 2 -u(x) = - √ 1 -x 2
In [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF], E. PRADOS and O. FAUGERAS have extended the result established by P.-L. LIONS, E. ROUY and A. TOURIN in [START_REF] Lions | Shape-from-shading, viscosity solutions and edges[END_REF] by proving that if I -1 ({1}), the set of points x ∈ Ω such that I(x) = 1, is equal to a finite union of disjoint connected compact sets, then by setting

Ω ′ = Ω I -1 ({1}),
the uniqueness of a solution to the s.f.s. problem can be obtained again by supposing that ϕ can be extended as a continuous function from ∂Ω ′ to R and by solving

H(x, ∇u(x)) = 0 if x ∈ Ω ′ , u(x) = ϕ(x) if x ∈ ∂Ω ′ ,
instead of the initial s.f.s. problem.

About the discontinuous viscosity solutions

5.6.1 --The aim of this section is not to explain how to generalize the previous theories to discontinuous functions, but just to mention that it is possible to do it. Since we have not studied this in detail, we will only present general ideas that enable it by giving some references that talk about it with a more accuracy (and probably rigorousness) level and by mentioning its possible application to the s.f.s. problem.

As explained by G. Barles in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], the first point is that contrary to the classical point of view adopted with partial differential equations, we will here consider equations posed on closed subset, i.e. of the form:

∀ x ∈ Ω, G (x, u(x), ∇u(x) 
) = 0, (5.19) 
for such a locally bounded function G defined on Ω × R × R n . By doing this, if H is now a continuous function defined on Ω × R n , the Dirichlet problem (5.2)-(5.4) can be seen as an equation of the form (5.19) for G defined, for all x ∈ Ω, u ∈ R and p ∈ R n , by

G(x, u, p) = H(x, p) if x ∈ Ω, u -ϕ(x) if x ∈ ∂Ω.
(5.20)

5.6.2 --Notation. Given d ∈ N * and f a locally bounded function defined on U an open subset of R d , we will denote by f * its upper semi-continuous (u.s.c. in abbreviated form) envelope and by f * its lower semi-continuous (l.s.c. in abbreviated form) envelope. For all x ∈ U , let us remind:

f * (x) = lim sup y→x f (y) and f * (x) = lim inf y→x f (y).
In the following, if the function f depends on several variables, f * and f * will always correspond to the u.s.c. and l.s.c. envelopes through all its variables.

EXAMPLE. With the definition of G from relation (5.20), for all x ∈ Ω, u ∈ R and p ∈ R n , we have

   G * (x, u, p) = G * (x, u, p) = H(x, ∇u(x)) if x ∈ Ω, G * (x, u, p) = min {H(x, p), u -ϕ(x)} if x ∈ ∂Ω, G * (x, u, p) = max {H(x, p), u -ϕ(x)} if x ∈ ∂Ω.

--

In comparison to the definition obtained in 5.2.1, here is given its generalization that enable to deal with the discontinuous case:

Definition. A locally bounded and u.s.c. function u : Ω → R is called a viscosity subsolution of (5. [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF]) if for all φ ∈ C 1 Ω and all x 0 local maximum of (uφ), we have

G * (x 0 , u(x 0 ), ∇u(x 0 )) = 0.
A locally bounded and l.s.c. function v : Ω → R is called a viscosity supersolution of (5. [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF]) if for all φ ∈ C 1 Ω and all x 0 local minimum of (uφ), we have

G * (x 0 , u(x 0 ), ∇u(x 0 )) = 0.
Finally, a function from Ω to R is said to be a viscosity solution of (5.19) if it is both a subsolution and a supersolution of this equation.

--

With this extension, we can now find viscosity solutions to equations or problems that do not admit a continuous viscosity solution. That is for instance the case with the Dirichlet problem associated to the eikonal equation

H(x, u ′ (x)) = 0x if x ∈ ]0, 1[ u(x) = 2x if x ∈ {0, 1} with H : [0, 1] → R, (x, p) → |p| -1.
Thanks to the mean value theorem, this problem does not have any continuous viscosity solution. By using the generalized definitions from 5.6.3, we can now prove that the function

u : [0, 1] → R, x → x if x ∈ [0, 1[, 2 if x = 1.
is a discontinuous viscosity solution of this problem.

As for the continuous case, there exists existence and uniqueness taking into account viscosity solutions as defined in 5.6.3. As observed by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF], such an uniqueness result is for instance given by G. BARLES in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] (corollary 4.1). For an existence result, we can refer to the theorem V.4.13 given by M. BARDI and I. CAPUZZO-DOLCETTA in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]. They more specifically consider Hamilton-Jacobi Bellman equations, i.e. equations of the form:

λu(x) + sup{-g(x, a)•∇u(x) -c(x, a) | a ∈ A} = 0, (5.21) 
where λ ∈ R, A is a topological space, g : Ω × A → R n and c : Ω × A → R.

5.6.5 --In relation to 5.6.4, we can terminate this section by showing how the Hamiltonian associated to the s.f.s. problem, which is given by (5.17), can be rewritten in order to obtain an Hamilton-Jacobi Bellman equation of the form (5.21). In order to do this, we can first establish the following result:

Lemma. Let f : R n → R be a differentiable and convex function. Then for all p ∈ R n , we have

f (p) = sup{f (q) -∇f (q)•(q -p) | q ∈ R n }. Proof.--Let us fix p ∈ R n . Since f (p) = f (q) -∇f (q)•(q -p), we clearly have f (p) sup{f (q) -∇f (q)•(q -p) | q ∈ R n }.
Thus to prove our result, we now need to establish:

∀ q ∈ R n , f (p) f (q) -∇f (q)•(q -p). (5.22) 
• We start by supposing n = 1. The result being obvious when q = p, we will suppose that q = p. Given t ∈ ]0, 1[, let us introduce z t = tp + (1t)q. Then we have

q -p = 1 t (q -z t ),
and, by using the convexity of f ,

f (q) -f (z t ) 1 t [f (q) -f (p)].
Thus if qp > 0, we obtain

f (q) -f (p) q -p = 1/t 1/t • f (q) -f (p) q -p f (q) -f (z t ) q -z t ----→ t→+∞ f ′ (q),
whereas when qp < 0,

f (q) -f (p) q -p = 1/t 1/t • f (q) -f (p) q -p f (q) -f (z t ) q -z t ----→ t→+∞ f ′ (q),
Whatever the sign of qp is, we can now easily claim that (5.22) is true.

• Let us suppose that n 2. By fixing q ∈ R 2 and by introducing

γ : R → R n , t → tp + (1 -t)q,
since f • γ : R → R is convex and differentiable, we can deduce of the previous case that

f (p) = (f • γ)(1) (f • γ)(0) -(f • γ) ′ (0)•(0 -1) = f (q) -∇f (q)•(q -p).
5.6.6 --Let us fix (x, p) ∈ Ω × R n . By applying lemma 5.6.5 with f = H(x, • ), we find

H(x, p) = sup {H(x, q) -∇ q H(x, q)•(q -p) | q ∈ R n } ,
where ∇ q H(x, q) corresponds to the gradient of H(x, • ) in q. After calculations, it leads to

H(x, p) = sup I(x) 1 + |q| 2 + I(x) q 1 + |q| 2 + l •p -l 3 q ∈ R n ,
Knowing that the application ϕ : R 2 → B(0, 1) , q → q 1 + |q| 2 is bijective, by setting b = ϕ(q), we obtain

H(x, p) = sup I(x) 1 -|b| 2 + I(x)b + l •p -l 3 b ∈ B(0, 1) .
And since B(0, 1) = B ′ (0, 1), we have finally proved the following result, which effectively shows that the s.f.s. problem can be expressed with an Hamilton-Jacobi Bellman equation of the form (5.21):

Proposition. For all (x, p) ∈ Ω × R n , we have

H(x, p) = sup I(x) 1 -|b| 2 + I(x)b + l •p -l 3 b ∈ B ′ (0, 1) .

Approximation schemes

--

To end this chapter, we will present the notion of approximation scheme, that can be used in order to compute a numerical approximation of the viscosity solution u of a Hamilton-Jacobi equation. As usual, given a mesh M of Ω, we will determine an approximation U of u at each node of M. This approximation U will be computed iteratively:

1) We start from U 0 a first approximation of u at each node of M.

2) Given n ∈ N and U n an approximation of u at each node of M, U n+1 is computed by mimicking the problem we want to solve, i.e. for all x ∈ M,

H(x, ∇u(x)) = 0.
Since the exact value of ∇u(x) will be unknown in practice, we will discretize it by using the values of U n instead of those of u in M (that we are trying to compute).

3) Computations from step 2) will be done as soon as U n+1 -U n ∞ > ε, for a given accuracy threshold ε > 0. Then, for the first index n such that U n+1 -U n ∞ ε, we will set U = U n+1 . This approach motivates the introduction of approximation schemes, as done by G. BARLES and P. E. SOUGANIDIS in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. From a formal point of view, such a scheme is a locally bounded function

S : R * + n × Ω × R × B Ω → R, (h, x, t, u) → S(h, x, t, u). For all h ∈ R * + n , x ∈ Ω and u ∈ B Ω , S(h, x, u(x), u) will morally corresponds to an approximation of H(x, ∇u(x)). Thus given h ∈ R * + n , a function u h ∈ B Ω will be called a solution (resp. a subsolution) of S(h, • , • , • ) if, for all x ∈ Ω, S h, x, u h (x), u h = 0 (resp. S h, x, u h (x), u h 0).
In practice:

• h will correspond to the mesh size of M,

• a solution u h of S(h, •, •, •) will correspond to a numerical approximation of the considered Hamilton-Jacobi equation,

• and the values of such a solution u h will be determined by solving equations of the form: given h and v, for all x ∈ M, find t ∈ R such that S(h, x, t, v) = 0.

In the sequel, we will see how to insure the existence of solutions to an given approximation scheme, and how to insure their convergence to the viscosity solution of the considered Hamilton-Jacobi equation.

REMARK. Since in practice, we are interested in computing approximation of the viscosity solution of an Hamilton-Jacobi equation on a given mesh M of Ω, the definition of approximation schemes could be limited to functions of the form

S : R * + n × M × R × R N → R
where the integer N corresponds to the number of nodes of the mesh M. In fact, the proof of the convergence of a solution of an approximation scheme to the viscosity solution of the Hamilton-Jacobi equation seems simpler by considering a continuous point of view, i.e. approximation schemes defined on R *

+ n × Ω × R × B Ω instead of R * + n × M × R × R N .
In section 6.1, we will construct an approximation scheme S : R *

+ × [-1, 1] × R × B([-1, 1]
) → R that we will be used to compute numerical approximation of the viscosity solution of the s.f.s. problem (6.1). An explicit expression of this approximation scheme will be determined in section 6.2. Then, we will explain in section 6.3 how to determine an explicit solution t ∈ R of the equation S(h, x, t, u) = 0, for fixed h ∈ R, x ∈ Ω and u ∈ B Ω , that will be necessary in order to solve numerically the s.f.s. problem (6.1). In section 6.4, we will expose a numerical algorithm that will enable to solve numerically the s.f.s. problem (6.1), and we will finally analyse its performances by presenting various numerical simulations in section 6.5.

6.1 An approximation scheme associated to the s.f.s. problem 6.1.1 --In this section, we will show how to obtain an approximation scheme associated to equation (6.1). So let us fix h ∈ R * + and let us define Now let explain how to define our approximation scheme S. So let us also fix x ∈ Ω, t ∈ R and u ∈ B Ω . As we have seen in section 5.7, an important assumption that will insure the stability of S as well as the convergence of its solutions to the viscosity solutions of (6.1) is its monotonicity.

Ω h = x ∈ Ω ∀ s ∈ {-
• Let us suppose that x ∈ Ω h . In order to insure the monotonicity of our scheme, given b ∈ [-1, 1], we introduce the differential quotient

q(b ; h, x, t, u) = s t -u(x -sh) h where s = 1 if I(x)b + l 0, s = -1 if I(x)b + l < 0.
By doing this, we always have I(x)b + l s 0.

Consequently, for fixed b, h and x, the quantity

Υ b ; x, q(b ; h, x, t, u) = I(x) 1 -b 2 + I(x)b + l s • t -u(x -sh) h -l 3
is non-decreasing with respect to t and non-increasing with respect to u. Therefore we can set

S(h, x, t, u) = sup b∈[-1,1] Υ b ; x, q(b ; h, x, t, u) = sup b∈[-1,1] I(x) 1 -b 2 + I(x)b + l s • t -u(x -sh) h -l 3 . (6.3)
Let us observe that since q(b ; h, x, t, u) morally corresponds to an approximation of u ′ (x), then thanks to (6.2), S(h, x, t, u) corresponds to an approximation of H x, u ′ (x) .

• Since our s.f.s. problem is given with Dirichlet boundary conditions, we will suppose being able to extend ϕ on ∂Ω h in order to insure the continuity of S(h, x, •, •), which can be easily in one-dimension. Then if x ∈ ∂Ω h , we can set S(h, x, t, u) = tϕ(x). (6.4)

Finally, we have constructed an approximation scheme

S : R * + × [-1, 1] × R × B([-1, 1 
]) → R, (h, x, t, u) → S(h, x, t, u) that is non-increasing with respect to its last variable (u ∈ B([0, 1])) and non-decreasing with respect to its third variable (t ∈ R). It essentially corresponds to the "implicit decentred scheme" used by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF]. In fact, we will prove in the following sections that despite its present expression, we can obtain explicit expressions of its values and solutions.

--

The following result, proved by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF] in the bi-dimensional case, will be useful to prove the stability of the previous approximation scheme S as well as to initialize our numerical algorithms.

Proposition. For all h ∈ R * + , the function

u 0 : [-1, 1] → R, x → -lx l 3 + C,
where C ∈ R is chosen so that u 0 (x) min

∂Ω h ϕ for all x ∈ Ω, is a subsolution of S(h, • , • , • ).
6.1.3 --Now let us explain why the approximation scheme S constructed in 6.1.1 is stable. According to theorem 5.7.4, it is sufficient to explain when assumptions (A 12 ) to (A 16 ) are satisfied.

• The scheme S was constructed in order to insure that it is non-increasing with respect to its fourth variable (u ∈ B([-1, 1])). Thus (A 12 ) is always satisfied.

• Similarly, S was constructed in order to insure that it is non-decreasing with respect to its third variable (t ∈ R). In addition, for fixed h ∈ R * + , x ∈ Ω, u ∈ B Ω and t → +∞: -Thanks to (6.4), if x ∈ ∂Ω h , then we clearly have S(h, x, t, u) = tϕ(x) → +∞.

-Thanks to (6.3), if x ∈ Ω h , except when I(x) = l = 0, there exists b ∈ [-1, 1] such that I(x)b+l > 0 (indeed, I(x) ∈ [0, 1] and (l, l 3 ) is an unit vector such that l 3 > 0), hence S(h, x, t, u) → +∞.

This shows that (A 13 ) is satisfied as soon as we do not have l = I(x) = 0.

• Let us fix h ∈ R * + and x ∈ Ω. -If x ∈ ∂Ω h , for all t ∈ R and U ∈ R 2 , let us set σ h,x (t, U ) = t -ϕ(x).
-Now let us suppose that x ∈ Ω h , and let us fix t ∈ R and U = (U -, U + ) ∈ R 2 . By setting

σ h,x (t, U ) = sup b∈[-1,1] I(x) 1 -b 2 + I(x)b + l s • t -α h -l 3 , where s = 1, α = U -, if I(x)b + l 0, s = -1, α = U + , if I(x)b + l < 0, we can easily observe that S(h, x, t, u) = σ h,x t, u(x -h), u(x + h) .
By extending ϕ to ∂Ω h in order to insure the continuity of S(h, x, • , • ), we can prove by refering to lemma 4 of [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF] that

σ h,x : R × R 2 → R, (t, U ) → σ h,x (t, U )
is continuous, and so that (A 14 ) holds for d = 2 and Ξ h,x = {xh, x + h}.

• According to proposition 6.1.2, assumption (A 15 ) is satisfied.

• Thanks to proposition 6 of [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF], assumption (A 16 ) is also satisfied.

6.1.4 --Now let us terminate this section by indicating when the solutions of the approximation scheme S converge to the viscosity solution of the s.f.s. problem (6.1). In order to do this, we refer to theorem 5.7.6, which says that it is sufficient to satisfy assumptions (A 12 ) and (A 17 ) to (A 19 ).

• We have seen that previously that S was constructed in order to satisfy assumption (A 12 ).

• The stability property (A 17 ) was studied in the previous paragraph (6.1.3).

• Conditions that insure that the consistency assumption (A 18 ) and the strong uniqueness property from (A 19 ) are satisfied and are given by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF]. We will not expose them here and we invite the reader that want to know more detail about it to refer this report.

An explicit expression of the approximation scheme

6.2.1 --As constructed in 6.1.1, given h ∈ R * + , x ∈ Ω h , t ∈ R and u ∈ B Ω , S(h, x, t, u) just corresponds to the supremum of a real function:

S(h, x, t, u) = sup b∈[-1,1] I(x) 1 -b 2 + I(x)b + l s • t -u(x -sh) h -l 3 ,
where the value of s ∈ {-1, 1} depends on the sign of I(x)b + l:

s = 1 if I(x)b + l 0, s = -1 if I(x)b + l < 0,
which does not make calculation of its value easy as soon as I(x) = 0. In this section, for such fixed quantities h, x, t and u, we propose to determine an explicit expression of S(h, x, t, u).

--

To achieve our objectives, we will use the following result, that can be proved by doing very classical calculations.

Lemma. For all δ, α > 0, w, c ∈ R, the function 

ψ : - √ α, √ α → R, b → δ α -b 2 + wb + c

--

In this paragraph, we will fix h ∈ R * + , x ∈ Ω h such that I(x) > 0, t ∈ R and u ∈ B Ω . Since now, h, x, t and u are fixed once for all, for all b ∈ [-1, 1], we will abusively denote by Ψ(b) the quantity Υ b ; x, q(b ; h, x, t, u) . Hence a function Ψ : [-1, 1] → R.

1) Let us introduce

R 1 = {b ∈ [-1, 1] | I(x)b + l > 0} and R -1 = {b ∈ [-1, 1] | I(x)b + l < 0}.
By doing this, S(h, x, t, u) = sup

[-1,1] Ψ = max sup R1 Ψ, sup R-1 Ψ .
2) For all s ∈ {-1, 1}, let ψ s : [-1, 1] → R be the function defined, for all b ∈ [-1, 1], by

ψ s (b) = I(x) 1 -b 2 + I(x)b + l s t -u(x -sh) h -l 3 = I(x) δs 1 αs -b 2 + sI(x) t -u(x -sh) h ws b + sl t -u(x -sh) h -l 3 cs .
Functions Ψ and ψ s are obviously linked by the relation Ψ |Rs = ψ s |Rs . Moreover, thanks to lemma 6.2.2, the function ψ s is concave and has an unique critical point b * s on [-1, 1] corresponding to its global maximizer, and

ψ s (b * s ) = c s + α s (δ 2 s + w 2 s ) = sl t -u(x -sh) h -l 3 + I(x) 1 + [t -u(x -sh)] 2 h 2 . (6.5)
3) Let us suppose that |l| I(x), and let us fix s ∈ {-1, 1}.

• If Ψ has no critical point on R s , then it reaches its maximum on the boundary of R s , i.e. at s or -l/I(x). But it can not be reached at s since Ψ |Rs = ψ s |Rs and ψ s reaches its maximum on ]-1, 1[, according to lemma 6.2.2. Hence

sup Rs Ψ = Ψ -l I(x) = I 2 (x) -l 2 -l 3 . (6.6) 
• If Ψ has a critical point on R s , then it is also a critical point of ψ s . Thus by referring to point 2), we deduce that b * s ∈ R s , and that b * s also corresponds to the global maximizer of Ψ on R s , hence

sup Rs Ψ = ψ s (b * s ) = sl t -u(x -sh) h -l 3 + I(x) 1 + [t -u(x -sh)] 2 h 2 . 4) Let us suppose that |l| > I(x). If l > I(x), then R 1 = [-1, 1], so by referring to point 2), sup [-1,1] Ψ = ψ 1 (b * 1 ) = l t -u(x -h) h -l 3 + I(x) 1 + [t -u(x -h)] 2 h 2 . But if l < -I(x), then R -1 = [-1, 1]
, and so thanks to point 2), sup

[-1,1] Ψ = ψ -1 b * -1 = -l t -u(x + h) h -l 3 + I(x) 1 + [t -u(x + h)] 2 h 2 .
According to points 1) to 4), we have established the following result:

-Ψ(•; t) the function from [-1, 1] to R defined, for all b ∈ [-1, 1], by Ψ(b; t) = Υ b; x, q(b; h, x, t, u) , -for all s ∈ {-1, 1}, by ψ s ( • ; t) the function ψ s , and by b * s (t) its global maximiser.

Since the notations of R 1 and R -1 do not depend on t, we will reuse these notations. By doing this, for all t ∈ R and s ∈ {-1, 1}, the quantity a s (h, x, t, u) used in theorem 6.2.3 to give the explicit expression of S(h, x, t, u) can be rewritten:

a s (h, x, t, u) = ψ s b * s (t) ; t if b * s (t) ∈ R s , Ψ -l/I(x) ; t if b * s (t) / ∈ R s .
6.3.4 --Thanks to the expression of S(h, x, t, u) obtained in 6.2.3, it seems interesting to determine, for all s ∈ {-1, 1}, the elements that can belong to

Θ s = t ∈ R ψ s b * s (t) ; t = 0, b * s (t) ∈ R s .
In order to do this, given s ∈ {-1, 1} and t ∈ R, we will more simply set

q s (t) = s t -u(x -sh) h .
By doing this, we obviously have, for all b ∈ [-1, 1],

ψ s b ; t) = I(x) 1 -b 2 + I(x)b + l q s (t) -l 3 .
Proposition. Let us suppose that I(x) > 0, and let us fix s ∈ {-1, 1} and t ∈ Θ s . Then

Aq 2 s (t) + Bq s (t) + C = 0 with    A = I 2 (x) -l 2 , B = 2ll 3 , C = I 2 (x) -l 2 3 . (6.8) 
Consequently:

(i) If A = 0, then B = 0 and t = u(xsh) -shC B .

(ii) If A = 0, then we have ∆ = B 2 -4AC 0 and existence of σ ∈ {-1, 1} such that

t = u(x -sh) + sh -B + σ √ ∆ 2A .
Proof.--By referring to point 2) from 6.2.3, we have

ψ s b * s (t) ; t = I(x) 1 + q 2 s (t) + slq s (t) -l 3 .
Thus we have

ψ s b * s (t) ; t = 0 =⇒ I(x) 1 + q 2 s (t) = l 3 -lq s (t) =⇒ I 2 (x)[1 + q 2 s (t)] = l 2 3 -2ll 3 + l 2 q 2 s (t) =⇒ (I 2 (x) -l 2 ) A q 2 s (t) + 2ll 3 B q s (t) + (I 2 (x) -l 2 3 ) C = 0,
which proves the validity of relation (6.8). Now let us prove points (i) and (ii).

(i) If A = 0, then |l| = I(x) by the definition of A, and so l = 0 since we have supposed I(x) > 0. In addition, (6.8) can be rewritten

0 = Bq s (t) + C = B t -u(x -sh) h + C.
And since l is non-zero, then B is also non-zero, so we obtain the expected result.

(ii) If A = 0, then since (l, l 3 ) is an unit vector, we have

∆ = (2ll 3 ) 2 -4[I 2 (x) -l 2 ][I 2 (x) -l 2 3 ] = 4I 2 (x)[l 2 + l 2 3 -I 2 (x)] = 4I 2 (x)[1 -I 2 (x)] 0.
Thus according to relation (6.8), we deduce that there exists σ ∈ {-1, 1} such that

q s (t) = -B + σ √ ∆ 2A ,
and we can easily conclude by using the definition of q s (t).

--

The following proposition gives a characterization of the existence of a solution to equation (6.7), that will be useful in order to explicit the value of such a solution.

Proposition. Let us fix x ∈ Ω h such that 0 < I(x) < 1. The following conditions are equivalent:

(i) There exists t ∈ R such that S(h, x, t, u) = 0.

(ii) There exists s ∈ {-1, 1} such that Θ s = ∅.

If these conditions are satisfied, then τ = min(Θ -1 ∪ Θ 1 ) is well-defined and satisfies S(h, x, τ, u) = 0.

Proof.--(i) ⇒ (ii) : According to theorem 6.2.3, the implication is clear as soon as |l| > I(x). If |l| I(x), since I(x) < 1 = l 2 + l 3 , we then have

Ψ -l I(x) ; t = I 2 (x) -l 2 -l 3 < l 3 3 -l 3 = 0.
Consequently, thanks to theorem 6.2.3, we also obtain the expected implication. (ii) ⇒ (i) : Let us suppose that (ii) is satisfied. In this case, thanks to proposition 6.3.4, the sets Θ 1 and Θ -1 are finite, and so the quantity τ = min(Θ -1 ∪ Θ 1 ) is well-defined. We will prove that it satisfies S(h, x, τ, u) = 0, which will immediately imply (i).

• By the definition of τ , let us fix s ∈ {-1, 1} such that τ ∈ Θ s . Then b * s (τ ) ∈ R s , so according to theorem 6.2.3, we get

0 = ψ s b * s (τ ) ; τ sup b∈[-1,1]
Ψ(b ; τ ) = S(h, x, τ, u). (6.9)

• Now let us fix s ∈ {- According to (6.9) and (6.10), we have already proved that S(h, x, τ, u) = 0.

REMARK. Let us observe that since (l, l 3 ) is an unit vector, the assumption I(x) < 1 is always satisfied as soon as |l| > I(x).

6.3.6 --Let us terminate this section by explaining how to determine an explicit solution of the equation (6.7) in the non-obvious case I(x) > 0. In order to do this, let us suppose that 0 < I(x) < 1 and that (6.7) has a solution. Then thanks to proposition 6.3.5, we have S(h, x, τ, u) with τ = min(Θ -1 ∪ Θ 1 ).

To conclude, we now just need to determine the explicit expression of τ . In order to do this, it is sufficient to determine the elements that belong to Θ -1 and Θ 1 , which can be done by referring to proposition 6.3.4. So let us reuse the notations from this proposition.

• If A = 0, then I 2 (x) = l 2 , and so I(x) = |l|. In this case, there exists an unique s ∈ {-1, 1} such that R s = ∅, and for this s, we have

R s = ]-1, 1[ {-s}. Let us consider t s = u(x -sh) - shC B .
Thanks to lemma 6.2.2, it is clear that b * s (t s ) = q s (t)

1 + q 2 s (t) ∈ ]-1, 1[ ⊂ R s .
Otherwise, by referring to relation (6.5) and by using the definitions of t s , B and C, we get

ψ s b * s (t s ) ; t s = - lC B -l 3 + |l| 1 + C 2 B 2 = - l(l 2 + l 2 3 ) 2ll 3 - (l 2 +l 2 3 ) 2l 3 + l 2 (l 2 + l 2 3 ) 2 4l 2 l 2 3 (l 2 +l 2 3 ) 2l 3 = 0.
Consequently, this proves that

Θ s = {t s } = u(x -sh) - shC B .
Therefore, in this case, we have τ = t s , and S(h, x, t s , u) = 0.

• If A = 0, then for all s, σ ∈ {-1, 1}, by setting

t s,σ = u(x -sh) + sh -B + σ √ ∆ 2A ,
we can observe that

Θ s = t s,σ σ ∈ {-1, 1}, ψ s b * s (t s,σ ) ; t s,σ = 0, b * s (t s,σ ) ∈ R s .
REMARK. Let us formulate the following observations:

• When A = 0, we have not found for which values of s and σ we have τ = t s,σ , i.e. S(h, x, t s,σ , u) = 0.

• If I(x) = 1, proposition 6.3.5 becomes generally false, and so that we can not apply the method describe above in order to determine the value of a t satisfying S(h, x, t, u) = 0. In fact, in this case, the expression of S(h, x, t, u) given by theorem 6.2.3 can be independent of t, and it could be impossible to determine the expression of such a t. From a theoretical point of view, we have explained in paragraph 5.5.7 that if there exists x ∈ Ω such that I(x) = 1, then the s.f.s. problem can have several viscosity solutions, but that we can recover the uniqueness of a viscosity solution by solving this problem on

Ω ′ = {x ∈ Ω | I(x) < 1} instead of Ω.
Here, we have highlighted that it is also necessary to do it from a numerical point of view.

Associated algorithm

6.4.1 --Definition. A mesh of Ω = [0, α] (resp. Ω = ]0, α[) is a subset of the form:

Ω N = ih i ∈ {0, . . . , N } (resp. Ω N = ih i ∈ {1, . . . , N -1} , ∂Ω N = Ω N Ω N ),
where N is an integer larger than 2 and h is defined by

h = α N . (6.11) 
With these notations, each element of the mesh is called a node, and h is called the mesh size.

6.4.2 --Let us formulate some remarks about the previous definition and let us specify some notations. So let N be an integer larger than 2.

• We can first observe that

Ω N = Ω N ∪ ∂Ω N .
• Then it is important to note that meshes Ω N and Ω N are fully determined by the integer N : that is why we have chosen to make it appear as an index. Therefore in this sense, Ω N does not correspond to the closure of Ω N and ∂Ω N does not correspond to its boundary.

• It is also important to observe that the mesh-size h is fully determined by N . In order to simplify the notations, we will not signal this dependence (but we will keep it in mind).

In addition, for this choice of h, let us remark that Ω N precisely corresponds to the nodes of Ω N that belong to the set Ω h introduced in 6.1.1. • In what follows, given N 2, h will automatically corresponds to the mesh-size of Ω N , i.e. h will be automatically defined by the relation (6.11). In addition, given i ∈ {0, . . . , N }, we will denote by ω i the node ih.

The following figure, that can be compared to figure 37, illustrates this all:

6.4.3 --Given N 2 and h defined by the relation (6.11), we want to compute an approximation u h of the viscosity solution u of the s.f.s. problem (6.1) at each node of Ω N . This approximation will be computed as suggested by the proof of the stability result 5.7.4:

-We start with u 0 ∈ B Ω a subsolution of S(h, • , • , • ).

-Given n ∈ N and u n a subsolution of S(h, • , • , • ), u n+1 is chosen such that for all x ∈ Ω, S(h, x, u n+1 (x), u n ) = 0.

-In the end, we take u h the limit of the sequence (u n ) n∈N .

Let us remind that in section 6.1, we have presented various conditions that insure that such a sequence (u n ) n∈N is already well-defined and convergent, and that its limit u h converges to u when h goes to 0, i.e. N is sufficiently large. Thus from now on, given v ∈ B Ω , our goal will consist in solving, for all x ∈ Ω N , an equation of the form S(h, x, t, v) = 0 with respect to t ∈ R, which can be done as explained in paragraph 6.3.6. Now let us observe that if v ∈ B Ω , then for all x ∈ Ω N , the value of S(h, x, t, v) only depends on the values of h, x, t and those taken by v in other nodes from Ω N . That is why in the sequel, by using the notation of σ h,x from 6.1.3, we will deal with the function

S N : Ω N × R × R N +1 → R defined, for all x ∈ Ω N , t ∈ R and V = V (i) 0 i N ∈ R N +1 , by: -S N (x, t, V ) = σ h,x t, V (i -1), V (i + 1) if x ∈ Ω N and i ∈ {1, . . . , N -1} satisfies x = ω i , -S N (x, t, V ) = t -ϕ(x) if x ∈ ∂Ω N .
By doing this, V will be called a subsolution of S N if S N (ω i , V (i), V ) 0 for all i ∈ {0, . . . , N }.

--Suggested algorithm.

Given N 2, h defined as in (6.11), ε > 0 an accuracy threshold and n max ∈ N * , let us explain how to obtain U app ∈ R N +1 an approximation of u at each node of Ω N . Just by knowing the values of I at each nodes of Ω N , those of the components of the unit vector (l, l 3 ) oriented to the light source and those of the function ϕ at each node of ∂Ω N , U app will be computed as follows:

1) We start with U 0 = U 0 (i) 0 i N a subsolution of S N satisfying U 0 (i) = ϕ(ω i ) for index i such that ω i ∈ ∂Ω N .
2) Given n ∈ N and U n = U n (i) 0 i N a subsoltion of S N , U n+1 = U n+1 (i) 0 i N is chosen such that, for all i ∈ {0, . . . , N }, S N (ω i , U n+1 (i), U n ) = 0. In practice, U n+1 (i) can be explicitly computed as explained in paragraph 6.3.6.

3) Computations from 2) are done as long as U n+1 -U n ∞ ε and n n max . If there exists n n max such that U n+1 -U n ∞ < ε, we set U app = U n+1 for the smallest of these integer n. If this is not the case, we set U app = U nmax .

Finally, for all i ∈ {0, . . . , N }, U app (i) corresponds to an approximation of the function u h from 6.4.3 at the node ω i . As a reminder, u h converges to u the viscosity solution of (6.1) as soon as h goes to 0.

REMARK. Let us formulate some observations about the previous algorithm:

• At step 2), it is important to note that for all i ∈ {0, . . . , N }, the value of U n+1 (i) depends on the values of U n , but not those of U n+1 . Thus, computations done at this step can be performed independently, hence a possible parallelization.

• Still at step 2), starting with a subsolution U n of S N , for all i ∈ {0, . . . , N }, U n+1 (i) is chosen such that S N (ω i , U n+1 (i), U n ) = 0. Since S N is non-increasing with respect to its last variable, then we have S N (h, U n+1 (i), U n+1 ) 0 for all i ∈ {0, . . . , N }, and so U n+1 is also a subsolution of S N .

• As explain in introduction, if there exists a point of Ω such that I(x) = 1, then we can adapt our algorithm by replacing

Ω N by Ω ′ N = x ∈ Ω N x ∈ Ω ′ and ∂Ω N by ∂Ω ′ N = Ω N Ω ′ N .
6.5 Numerical simulations 6.5.1 --In this section, we will present various simulations done in order to solve the s.f.s. problem (6.1) by a direct use of the algorithm from paragraph 6.4.4, or after various adaptations of it. Thus we will take the notations from this paragraph back, and unless otherwise indicated, for all the simulations presented in this section:

• In step 1), by setting:

µ = min x∈∂ΩN ϕ(x) and C =    µ if l 0, µ + N hl l 3 if l < 0,
then we have C max ∂ΩN ϕ. Thus thanks to proposition 6.1.2, the subsolution U 0 was chosen such that, for all index i satisfying ω

i ∈ Ω N , U 0 (i) = C - ilh l 3 .
• Computations from step 2) will be done by referring to paragraph 6.3.6, and by using a vectorization.

• The accuracy threshold ε from 3) will be always equal to 10 -3 .

• The number of iterations of the algorithm from 6.4.4 will correspond to the first integer n such that U n+1 -U n ∞ < ε. We will denote it by ι, and we will then say that the algorithm from 6.4.4 converges in ι iterations. Concretely, ι corresponds to the number of times the computations from step 2) are performed.

• The vector

U app = U app (i) 0 i N ∈ R N +1
will always corresponds to the vector obtained in output of our algorithm. In addition, given u : Ω → R a viscosity solution of (6.1),

U = U (i) 0 i N ∈ R N +1
• ϕ(0) = 0 and ϕ(1) = 2. We have observed in 5.6.4 that the s.f.s. problem does not admit a continuous viscosity solution, but that

u : [0, 1] → R, x → x if x ∈ [0, 1[, 2 if x = 1.
is a discontinuous viscosity solution of it. Numerically, our algorithm converges in ι = 20 iterations, with η ∞ and η ave smaller than 10 -15 , i.e. η ∞ = η ave = 0 and so U app (i) = u(ω i ) for all i ∈ {0, . . . , 21} with machine precision. These first simulations show that our algorithm enables to obtain approximations of a continuous viscosity solution of a s.f.s. problem as well as a discontinuous. We can also note that for these particular choices of I and (l, l 3 ), we have always recovered the exact value of the viscosity solution of the s.f.s. problem: that is probably because the exact solutions are piecewise linear, so that in this case, discretizations of u ′ in our approximation scheme S are exact. Let us also signal that these two simulations were done almost instantaneously: in less than 4 ms.

6.5.3 --Let us consider a more sophisticated example, by trying to recover the following shape:

u : [0, 1] → R, x → 1 -x 2 4 .
So here, Ω = ]0, 1[, and thanks to the brightness equation (II.1) presented in the introduction of this part II, I is therefore defined by:

I : ]0, 1[ → R, x → lx + 2l 3 √ 4 + x 2 .
In this case, according to theorem 5.2.6, we can indeed prove that u is a viscosity solution of the s.f.s. problem. Thus by fixing N = 20 and supposing that ϕ(x) = u(x) for all x ∈ ∂Ω N , for various choices of (l, l 3 ), the table 19 presented the corresponding values of η ∞ , η ave , ι, but also the number n fix of nodes of Ω N where the intensity I was larger than 0.99 and the computation time τ (expressed in milliseconds). In comparison to the simulations from the previous paragraph, we now obtain approximations that are effectively different to the viscosity solution u of the s.f.s. problem, but really close to it, as shown by the errors η ∞ and η ave . Even if the number of iterations ι seems increasing as soon as the values of I are close to 1, we finally obtain good approximations of u practically instantaneously.

l l 3 I min I max η ∞ η ave ι n fix τ √ 3 
In order to illustrate our simulations, we have represented I, U app and u for various choices of l and l 3 at figures 41 and 42: l = -1/2 at figure 41, l = 1/2 at figure 42, and l 3 = √ 3/2 for both of them. It is interesting to observe that U app have been computed by starting from the exact value of u in x = 0 in the first case, and from its exact value in x = 1 in the other one. In fact, the convergence over iterations of U app to the viscosity solution u seems to follow the light source direction. Unfortunately, we are not able to explain analytically this phenomenon, which can be observed in the other cases, for other simulations, and more generally also in two-dimension. In order to illustrate the behaviour of our algorithm when there exists a shadow area, let us consider that the shape is defined by the following piecewise continuous function u : [0, 4] → R defined, for all x ∈ [0, 4], as follows:

u(x) =    2 if x ∈ [0, 1[, -2x + 4 if x ∈ [1, 2[, 0 if x ∈ [2, 4].
We thus have Ω = ]0, 4[. Now let us suppose that

(l, l 3 ) = - √ 2 2 , √ 2 2 . 

Conclusion

In this chapter, we have mainly proved how to obtain an explicit formulation of an approximation scheme associated to the s.f.s. problem. This was manifestly considered as implicit until now, in the onedimensional case. By using this explicit expression of the approximation scheme, we have been able to implement an effective and efficient algorithm that enables to recover continuous as well as discontinuous solutions of various s.f.s. problems, practically instantaneously.

If the one-dimensional s.f.s. problem has no interest in practice, its study could be useful to understand how to obtain an explicit formulation of the approximation scheme we have considered. As we will see in the following chapter, it will also be possible to introduce an analogous scheme in two-dimension, and we will be able to obtain an explicit expression of it by using mainly the same tricks.

Introduction

In this new chapter, we will essentially extend to the bi-dimensional case what we have done in chapter 6 with the shape from shading problem in the one-dimensional case. Thus from now on, we will assume that n = 2 and Ω = ]0, α 1 [ × ]0, α 2 for such α 1 , α 2 > 0, and we will consider the s.f.s. problem:

H(x, ∇(x)) = 0 if x ∈ Ω, u(x) = ϕ(x) if x ∈ ∂Ω, (7.1) 
where H is given, for all (x, p) ∈ Ω × R, by

H(x, p) = I(x) 1 + |p| 2 + l•p -l 3 .
As a reminder, I is a function from Ω to [0, 1] corresponding to the brightness intensity, l = (l 1 , l 2 ) ∈ R 2 and l 3 > 0 are such that (l, l 3 ) corresponds to the unit vector oriented to the light source, and ϕ : ∂Ω → R a function that is supposed to be continuous. In addition, by introducing

Υ : [-1, 1] × Ω × R → R, (b ; x, p) → I(x) 1 -|b| 2 + I(x)b + l •p -l 3 ,
thanks to 5.5.7, for all (x, p) ∈ Ω × R, we now have

H(x, p) = sup b∈B ′ (0,1) Υ(b ; x, p).
As in chapter 6, everything we will present in this chapter will be available when the set of points from Ω where I is equal to 1 corresponds to a finite union of disjoint connected compact sets by replacing Ω by

Ω ′ = {x ∈ Ω | I(x) < 1}.
But in order to simplify our talk, we will not do it here. So here, on the same principle as in chapter 6, we will first see how to obtain an approximation scheme associated to our s.f.s. problem (section 7.1). Then we will give an explicit expression of this approximation scheme (section 7.2) and of its solutions (section 7.3). We will present a numerical algorithm that will enable to solve (7.1) numerically (section 7.4) and we will illustrate its performances (section 7.5). We will terminate this chapter by presenting possible extensions of our work (section 7.6). 149 7.1 An approximation scheme associated to the s.f.s. problem 7.1.1 --The approximation scheme associated to the bi-dimensional s.f.s. problem is constructed in a totally similar way than in the one-dimensional case. We start by fixing h = (h 1 , h 2 ) ∈ R * + 2 and by introducing

Ω h = x ∈ Ω ∀ (j, s) ∈ {1, 2} × {-1, 1}, x + sh j e j ∈ Ω and ∂Ω h = Ω Ω h .
Let us remind that (e 1 , e 2 ) corresponds to the standard basis from R 2 . By doing this, we still have Ω = Ω h ∪ ∂Ω h , and ∂Ω h does not correspond rigorously to the boundary of Ω h , but can be morally considered as a boundary of Ω h that has h to diameter, as shown by the following figure: • If x ∈ Ω h , for all b ∈ B ′ (0, 1), by introducing the vector q(b ; h, x, t, u) = q 1 (b ; h, x, t, u), q 2 (b ; h, x, t, u) that is defined, for all j ∈ {1, 2}, by q j (b ; h, x, t, u) = s j tu(xs j h j e j ) h j where

0 α1 x1 α2 x2 h 1 h 2 ∂Ω h Ω h
s j = 1 if I(x)b j + l j 0, s j = -1 if I(x)b j + l j < 0, we can set S(h, x, t, u) = sup b∈[-1,1] Υ b ; x, q(b ; h, x, t, u) . • If x ∈ ∂Ω h , by extending continuously ϕ on ∂Ω h in order to insure the continuity of S(h, x, • , • ), we set S(h, x, t, u) = t -ϕ(x).
As in the one-dimensional case, we thus obtain an approximation scheme

S : R * + × [-1, 1] × R × B([-1, 1 
]) → R, (h, x, t, u) → S(h, x, t, u) that is non-increasing with respect to its last variable (u ∈ B([0, 1])) and non-decreasing with respect to its third variable (t ∈ R).

REMARK. In figure 45, we have represented the axes in an non-usual way. Even if our choice can be surprising, it is motivated by an ease of presentation that will be revealed in section 7.4.

--

The following result extend to the bi-dimensional case lemma 6.1.2:

Proposition. For all h ∈ R * + , the function

u 0 : Ω → R, x → -l•x l 3 + C, where C ∈ R is chosen so that u 0 min ∂Ω h ϕ, is a subsolution of S(h, • , • , • ).
7.1.3 --As in paragraph 6.1.3, we can determine conditions that insure that the approximation scheme defined in 7.1.1 is stable:

• S is non-increasing with respect to its last variable (u ∈ B Ω ), thus it always satisfies (A 12 ).

• S is non-decreasing with respect to its third variable (t ∈ R), and for fixed h ∈ R * + 2 , x ∈ Ω and u ∈ B Ω , when t → +∞, we have S(h, x, t, u) → +∞ as soon as we do not have I(x) = l = 0. Thus (A 13 ) is satisfied as soon as we do not have I(x) = l = 0.

• Let us fix

h = (h 1 , h 2 ) ∈ R * + 2 and x ∈ Ω. -If x ∈ ∂Ω h , for all t ∈ R and U ∈ R 4 , let us set σ h,x (t, U ) = t -ϕ(x). -If x ∈ Ω h , for all t ∈ R and U = (U 1 , U 2 , U 3 , U 4 ) ∈ R 4 , by setting σ h,x (t, U ) = sup b∈B ′ (0,1) I(x) 1 -|b| 2 + I(x)b1 + l1 s1 • t -α1 h1 + I(x)b2 + l2 s2 • t -α2 h2 -l3 , where s1 = 1, α1 = U1, if I(x)b1 + l1 0, s1 = -1, α1 = U3, if I(x)b1 + l1 < 0, and s2 = 1, α2 = U2, if I(x)b2 + l2 0, s2 = -1, α2 = U4, if I(x)b2 + l2 < 0,
we can easily observe that S(h, x, t, u) = σ h,x t, u(xh 1 e 1 ), u(xh 2 e 2 ), u(x + h 1 e 1 ), u(x + h 2 e 2 ) .

So by extending continuously ϕ to ∂Ω h , we can prove by refering to lemma 4 from [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF] that

σ h,x : R × R 2 → R, (t, U ) → σ h,x (t, U )
is continuous, and that (A 14 ) happens with d = 4 and Ξ h,x = {x-h 1 e 1 , x-h 2 e 2 , x+h 1 e 1 , x+h 2 e 2 }.

• According to proposition 7.1.2, assumption (A 15 ) is satisfied.

• Thanks to proposition 6 from [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF], assumption (A 16 ) is also satisfied.

Finally, conditions that insure that the solutions of S converge to the viscosity solution of (7.1) can be found identically than in paragraph 6.1.4 with the one-dimensional case.

An explicit expression of the approximation scheme

7.2.1 --Now on the same principle as in section 6.2 with the one-dimensional case, given h ∈ R * + 2 ,

x ∈ Ω h such that I(x) > 0, t ∈ R and u ∈ B Ω , we will determine an explicit expression of the approximation scheme S constructed in the previous section in (h, x, t, u). Since h, x, t and u are fixed, we will more simply note Ψ(b) the quantity Υ b; x, q(b; h, ; x, t, u) , hence a function Ψ : B ′ (0, 1) → R. In the one-dimensional, the exact expression of S(h, x, t, u) was essentially found by considering the regions R -1 and R 1 from [-1, 1] where the expression of the quantity q(b ; h, x, t, u) was changing. In the bi-dimensional, we need to do this for each component of q(b ; h, x, t, u), thus we need to consider:

R (1,1) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 > 0, I(x)b 2 + l 2 > 0} , R (1,-1) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 > 0, I(x)b 2 + l 2 < 0} , R (-1,1) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 < 0, I(x)b 2 + l 2 > 0} , R (-1,-1) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 < 0, I(x)b 2 + l 2 < 0} ,
and the regions that corresponds, possibly also with the point -l/I(x), to their boundary in B ′ (0, 1): By the definition of S, we thus have

R (0,1) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 = 0, I(x)b 2 + l 2 > 0} , R (0,-1) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 = 0, I(x)b 2 + l 2 < 0} , R (1,0) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 > 0, I(x)b 2 + l 2 = 0} , R (-1,0) = {(b 1 , b 2 ) ∈ B ′ (0, 1) | I(x)b 1 + l 1 < 0, I(x)b 2 + l 2 = 0} . B ′ (0, 1) b 1 = -l 1 I(x) b 2 = -l 2 I(x) R (1,1) R (-1,1) R (-1,-1) R (1,-1) -l I(x) R (1,0) R (0,1) R (0,-1) R (-1,0)
S(h, x, t, u) = sup B ′ (0,1) Ψ = max sup R (1,1) Ψ, sup R (1,-1) Ψ, sup R (-1,1) Ψ, sup R (-1,-1)
Ψ} . (7.2)

--

To find an explicit expression of S(h, x, t, u), we will use the following result, that can be seen as an extension in the bi-dimensional case of lemma 6.2.2:

Lemma. For all δ > 0, w ∈ R 2 and c ∈ R, the function 

ψ : B ′ (0, 1) → R, b → δ 1 -|b| 2 + w•b + c is concave
Ψ(b) = I(x) 1 -|b| 2 + I(x)b1 + l1 s1 • t -u(x -s1h1e1) h1 + I(x)b2 + l2 s2 • t -u(x -s2h2e2) h2 -l3 = I(x) δs 1 -|b| 2 + I(x) s1 t -u(x -s1h1e1) h1 , s2 t -u(x -s2h2e2) h2 ws • (b1, b2) + l1 t -u(x -s1h1e1) h1 + l2 t -u(x -s2h2e2) h2 -l3 cs , which proves that Ψ coincides with ψ s : B ′ (0, 1) → R, b → δ s 1 -|b|
Ψ = ψ s (b * s ) = c s + δ s + |w s | 2 .
But if Ψ has no critical point on R s , then Ψ reaches its supremum on the boundary of R s in B ′ (0, 1), which is included in R (0,1) ∪ R (0,-1) ∪ R (1,0) ∪ R (-1,0) ∪ {-l/I(x)}.

• Now let us fix s 2 ∈ {-1, 1} and let us set s = (0, s 2 ). For all b = (b 1 , b 2 ) ∈ R s , we have

Ψ(b) = I(x) 1 - l 2 1 I 2 (x) -b 2 2 + I(x)b 2 + l 2 s 2 t -u(x -s 2 h 2 e 2 ) h 2 -l 3 = I(x) δs 1 - l 2 1 I 2 (x) αs -b 2 2 + I(x)s 2 t -u(x -s 2 h 2 e 2 ) h 2 ws • b 2 + s 2 l 2 t -u(x -s 2 h 2 e 2 ) h 2 -l 3 cs , which proves that Ψ coincides with ψ s : [-α s , α s ] → R, b 2 → δ s 1 -b 2 2 + w s b 2 + c s on R s .
Therefore if Ψ has a critical point on R s , then according to lemma 6.2.2, it necessarily corresponds to the maximiser b * s of ψ s , hence

sup Rs Ψ = ψ s (b * s ) = c s + δ s + |w s | 2 .
But if Ψ has no critical point on R s , then Ψ reaches its supremum on the boundary of R s , and so necessarily in -l/I(x) since Ψ |Rs = ψ s |Rs is concave.

• Similarly, if s 1 ∈ {-1, 1} and s = (s 1 , 0), for all b = (b 1 , b 2 ) ∈ R s , we have 

Ψ(b) = I(x) 1 - l 2 2 I 2 (x) -b 2 1 + I(x)b 1 + l 1 s 1 t -u(x -s 1 h 1 e 1 ) h 2 -l 3 = I(x) δs 1 - l 2 2 I 2 (x) αs -b 2 1 + I(x)s 2 t -u(x -s 1 h 1 e 1 ) h 1 ws • b 1 + s 1 l 1 t -u(x -s 1 h 1 e 1 ) h 1 -l 3 cs , which proves that Ψ coincides with ψ s : [-α s , α s ] → R, b 1 → δ s 1 -b 2 1 + w s b 1 + c s on R s . Therefore if Ψ
a (0,0) (h, x, t, u) = Ψ -l I(x)
and, if s = (0, 0),

a s (h, x, t, u) = ψ s (b * s ) if b * s ∈ R s , Ψ -l/I(x) if b * s / ∈ R s ,
thanks to (7.2), we have proved that S(h, x, t, u) = max {a s (h, x, t, u) | s ∈ Σ} .

7.2.4 --Now let us suppose that |l| > I(x). In this case, we have -l/I(x) / ∈ B ′ (0, 1), which leads to some differences in comparison to the previous case, studied in 7.2.3.

• If s = (s 1 , s 2 ) ∈ {(1, 1), (1, -1), (-1, 1), (-1, -1)}, for all b = (b 1 , b 2 ) ∈ R s , we still have Ψ(b) = I(x) δs 1 -|b| 2 + I(x) s1 t -u(x -s1h1e1) h1 , s2 t -u(x -s2h2e2) h2 ws • (b1, b2) + l1 t -u(x -s1h1e1) h1 + l2 t -u(x -s2h2e2) h2 -l3 cs ,
and Ψ coincides with

ψ s : B ′ (0, 1) → R, b → δ s 1 -|b| 2 + w s •b + c s on R s . Thus if Ψ has a critical point on R s , then it still corresponds to the critical point b * s of ψ s , hence sup Rs Ψ = ψ s (b * s ) = c s + δ s + |w s | 2 .
But if Ψ has no critical point on R s , then Ψ reaches its supremum on the boundary of R s in B ′ (0, 1), 

which is now only included in R (0,1) ∪ R (0,-1) ∪ R (1,0) ∪ R (-1,0) . • If s 2 ∈ {-1, 1} and s = (0, s 2 ), for all b = (b 1 , b 2 ) ∈ R s , we still have Ψ(b) = I(x) δs 1 - l 2 1 I 2 (x) αs -b 2 2 + I(x)s 2 t -u(x -s 2 h 2 e 2 ) h 2 ws • b 2 + s 2 l 2 t -u(x -s 2 h 2 e 2 ) h 2 -l 3 cs , which proves that Ψ coincides with ψ s : [-α s , α s ] → R, b 2 → δ s 1 -b 2 2 + w s b 2 + c s on R s . But since -l/I(x) / ∈ B ′ (0,
Ψ = ψ s (b * s ) = c s + δ s + |w s | 2 . • Similarly, if s 1 ∈ {-1, 1} and s = (s 1 , 0), for all b = (b 1 , b 2 ) ∈ R s , we have Ψ(b) = I(x) δs 1 - l 2 2 I 2 (x) αs -b 2 1 + I(x)s 2 t -u(x -s 1 h 1 e 1 ) h 1 ws • b 1 + s 1 l 1 t -u(x -s 1 h 1 e 1 ) h 1 -l 3 cs , which proves that Ψ coincides with ψ s : [-α s , α s ] → R, b 1 → δ s 1 -b 2 1 + w s b 1 + c s on R s . And since -l/I(x) / ∈ B ′ (0, 1), then R s = [-α s , α s ],
thus denoting by b * s the maximiser of ψ s , we obtain sup

Rs Ψ = ψ s (b * s ) = c s + δ s + |w s | 2 .
Consequently, by reusing the previous notations, by introducing Σ = {(s 1 , s 2 ) | s 1 , s 2 ∈ {-1, 0, 1}}, and by setting, for all s ∈ Σ {(0, 0)},

a s (h, x, t, u) = ψ s (b * s ) if b * s ∈ R s , -∞ if b * s / ∈ R s ,
thanks to (7.2), we have proved that S(h, x, t, u) = max {a s (h, x, t, u) | s ∈ Σ {(0, 0)}} .

REMARK. It is maybe important to highlight that when |l| > I(x), there still exists s ∈ Σ {(0, 0)} such that b * s ∈ R s , that is to say S(h, x, t, u) = -∞. Indeed, we the previous notations: -If |l 1 | > I(x) and |l 2 | > I(x), then there exists s ∈ {(1, 1), (1, -1), (-1, 1), (-1, -1)} such that R s = B ′ (0, 1), that obviously implies b * s ∈ R s . -If |l 1 | I(x) or |l 2 | I(x), then there exists s ∈ {(1, 0), (-1, 0), (0, 1), (0, -1)} such that R s = ∅, and for such a s, we have R s = [-α s , α s ], hence b * s ∈ R s . 7.2.5 --By taking the notations from 7.2.3 and 7.2.4 back, results from these two paragraphs can be summarized as follows:

Theorem. Let us fix h = (h 1 , h 2 ) ∈ R * + 2 , x ∈ Ω h such that I(x) > 0, t ∈ R and u ∈ B Ω . If a (0,0) (h, x, t, u) = Ψ -l/I(x) if |l| I(x), -∞ if |l| > I(x), , 
and, for all s ∈ Σ {(0, 0)},

a s (h, x, t, u) = ψ s (b * s ) if b * s ∈ R s , a (0,0) (h, x, t, u) if b * s / ∈ R s ,
then we have S(h, x, t, u) = max {a s (h, x, t, u) | s ∈ Σ} .

Explicit solutions of the approximation scheme

7.3.1 --Given h = (h 1 , h 2 ) ∈ R * + 2 ,
x ∈ Ω h and u ∈ B Ω , we are now interested in the equation of unknown t ∈ R: S(h, x, t, u) = 0.

(7.3)

As in section 6.3, equation (7.3) does not necessarily has a solution. Assuming that this equation has a solution, our goal will consist in finding an explicit expression of such a solution. Here again, if x ∈ ∂Ω h , it is obvious that t = ϕ(x) is its only solution.

In addition, when x ∈ Ω h and I(x) = 0, the definition of S easily implies

S(h, x, t, u) = s 1 l 1 h 1 + s 2 l 2 h 2 t - s 1 l 1 u(x -s 1 h 1 e 1 ) h 1 - s 2 l 2 u(x -s 2 h 2 e 2 ) h 2 -l 3 ,
where, for all j ∈ {1, 2}, the value of s j only depends on the sign of l j :

s j = 1 if l j 0, -1 if l j < 0.
In this case, if the quantity

λ = s 1 l 1 h 1 + s 2 l 2 h 2
is null, then we can not conclude anything. But if λ is non-null, then

t = 1 λ s 1 l 1 u(x -s 1 h 1 e 1 ) h 1 + s 2 l 2 u(x -s 2 h 2 e 2 ) h 2 + l 3
is the only solution of equation (7.3).

In the following, we will thus only consider that x ∈ Ω h and I(x) > 0. We will take the notations introduced in section 7.2 back, but in a similar way as in section 6.3, we will more precisely denote by: -Ψ(•; t) the function from [-1, 1] to R defined, for all b ∈ [-1, 1], by Ψ(b; t) = Υ b; x, q(b; h, x, t, u) , -for all s ∈ Σ {(0, 0)}, by ψ s ( • ; t) the function ψ s , and by b * s (t) its global maximiser.

7.3.2 --For all s ∈ Σ {(0, 0)}, let us introduce:

Θ s = t ∈ R ψ s b * s (t) ; t = 0, b * s (t) ∈ R s .
As for the one-dimensional problem, it seems natural to determine the elements that belongs to such a set Θ s . To begin with, let us fix s = (s 1 , s 2 ) ∈ {(1, 1), (1, -1), (-1, 1), (-1, -1)} and t ∈ Θ s . In order to simplify our notations, let us set q(t) = q 1 (t), q 2 (t) where, for all j ∈ {1, 2},

q j (t) = s j t -u j h j with u j = u(x -s j h j e j ).
Therefore, for all b ∈ B ′ (0, 1),

ψ s (b ; t) = I(x) δs 1 -|b| 2 + I(x)q(t) ws • b + I(x)q(t)•l -l 3 cs .
Thus thanks to lemma 7.2.2, we have

ψ s b * s (t) ; t = 0 =⇒ I 2 (x)[1 + q 2 1 (t) + q 2 2 (t)] = [l 3 -l 1 q 1 (t) -l 2 q 2 (t)]. (7.4) 
By the definition of q(t), we have

I 2 (x)[1 + q 2 1 (t) + q 2 2 (t)] = I 2 (x) 1 h 2 1 + 1 h 2 2 a t 2 -2I 2 (x) u 1 h 2 1 + u 2 h 2 2 b t + I 2 (x) 1 + u 2 1 h 2 1 + u 2 2 h 2 2 c l 3 -l 1 q 1 (t) -l 2 q 2 (t) = - s 1 l 1 h 1 + s 2 l 2 h 2 α t + l 3 + s 1 l 1 u 1 h 1 + s 2 l 2 u 2 h 2 β .
Therefore, implication (7.4) can be rewritten

ψ s b * s (t) ; t = 0 =⇒ (α 2 -a) A t 2 + (2αβ -b) B t + (β 2 -c) C = 0.
With the previous notations (and especially those of A, B and C), we now immediately obtain the following result:

Proposition. Let us assume that I(x) > 0 and let us fix s ∈ {(1, 1), (1, -1), (-1, 1), (-1, -1)}, t ∈ Θ s .

(i) If A = 0 and B = 0, then t = -C B . (ii) If A = 0, then we have ∆ = B 2 -4AC 0 and existence of σ ∈ {-1, 1} such that t = -B + σ √ ∆ 2A
.

REMARK. This result can be linked to proposition 6.3.4. In the case (ii) of this last proposition, we have proved algebraically that ∆ is always non-negative, whereas here, we can just say that ∆ is nonnegative since we have supposed that (there exists) t ∈ Θ s . In a general way, there is no reason for such a discriminant ∆ be always non-negative, but it is maybe possible to prove that it is always the case.

7.3.3 --Now let us suppose that s 2 ∈ {-1, 1}, and let us set s = (0, s 2 ). By observing that R s = ∅ as soon as |l 1 | > I(x), we will in addition suppose that |l 1 | I(x). Therefore by setting

q 2 (t) = s 2 t -u(x -s 2 h 2 e 2 ) h 2 ,
we obtain, for all b ∈ B ′ (0, 1),

ψ s (b ; t) = I(x) δs 1 - l 2 1 I 2 (x) αs -b 2 2 + I(x) q 2 (t) ws b 2 + l 2 q 2 (t) -l 3 cs .
Thus thanks to lemma 7.2.2,

ψ s b * s (t) ; t = 0 ⇐⇒ l 3 -l 2 q 2 (t) = I(x) 1 - l 2 1 I 2 (x) 1 + q 2 2 (t) =⇒ [I 2 (x) -l 2 1 -l 2 3 ] A q 2 2 (t) + 2l 2 l 3 B q 2 (t) + I 2 (x) -l 2 1 -l 2 2 C = 0. (7.5) 
Consequently:

Proposition. Let us fix x ∈ Ω h , and let us suppose that 0 < I(x) < 1 and that the assumptions from points (i) and (ii) from proposition 7.3.2 are satisfied for all s ∈ {(1, 1), (1, -1), (-1, 1), (-1, -1)}.

Then following conditions are equivalent:

(i) There exists t ∈ R such that S(h, x, t, u) = 0.

(ii) There exists s ∈ Σ {(0, 0)} such that Θ s = ∅.

If these conditions are satisfied, then by setting

Θ = s∈Σ {(0,0)} Θ s
we have S(h, x, τ, u) = 0 with τ = min Θ.

Proof.--Implication (i) ⇒ (ii) can be proved as those from proposition 6.3.5 in the one-dimensional case, by referring to theorem 7.2.5. For (ii) ⇒ (i), thanks to propositions 7.3.2 to 7.3.4, we can verify that the various assumptions done in our proposition insure that the above quantity τ is well-defined. Then the equality S(h, x, τ, u) = 0 can be established as in 6.3.5.

7.3.6 --Finally, when the equation ( 7.3) has a solution, we can explicitly determine one of it as in 6.3.6 in the one-dimensional case: under the assumptions from proposition 7.3.5, we will have S(h, x, τ, u) = 0, and an explicit expression of τ can be obtained by referring to propositions 7.3.2 to 7.3.3. We can maybe highlight that the hypotheses done in proposition 7.3.5 are pretty heavier and (physically) complicated than those done in proposition 6.3.5 in the one-dimensional case. Until now, we have not found how to simplify them (but is it possible to do it?), or considered what it could happened when they are not satisfied (but can they not be satisfied?).

Associated algorithm

7.4.1 --In the following, we will denote by N the Cartesian product (N {0, 1}) 2 .

Definition. A mesh of Ω (resp. Ω, ∂Ω) is a subset of the form:

Ω N = (ih 1 , jh 2 ) i ∈ {0, . . . , N 1 }, j ∈ {0, . . . , N 2 } (resp. Ω N = (ih 1 , jh 2 ) i ∈ {1, . . . , N 1 -1}, j ∈ {1, . . . , N 2 -1} ,

∂Ω N = Ω N Ω N ),
where N = (N 1 , N 2 ) is a couple from N , and h 1 and h 2 are defined by

h 1 = A 1 N 1 and h 2 = A 2 N 2 . ( 7 

.6)

With these notations, each element of the mesh is called a node, and the couple h = (h 1 , h 2 ) is called the mesh-size.

7.4.2 --Given N ∈ N , and in a similar way as in section 6.4:

• We still have Ω N = Ω N ∪ ∂Ω N .

• Notations Ω N and ∂Ω N could be still abusive or confusing, but they are motived by the same reasons as those exposed in 6.4.2 in the one-dimensional case.

• The mesh-size h is also fully determined by N , even if we do not mention this dependence, and for this choice of h, Ω N still corresponds to the nodes of Ω N that belongs to the set Ω h defined in 7.1.1.

• In the following, given N = (N 1 , N 2 ) ∈ N , h = (h 1 , h 2 ) will automatically corresponds to the mesh size of Ω N , i.e. defined by (7.6). In addition, for all i ∈ {0, . . . , N 1 } and j ∈ {0, . . . , N 2 }, we will denote by ω i,j the node (ih 1 , jh 2 ).

The following figure illustrates all of this: -if x = ω i,j with (i, j) ∈ {1, . . . , N 1 -1} × {1, . . . , N 2 -1}, S N (x, t, v) = σ h,x t, V (i -1, j), V (i, j -1), V (i + 1, j), V (i, j + 1) , -if x ∈ ∂Ω N , S N (x, t, u) = tϕ(x).

Such a matrix V will be called a subsolution if, for all (i, j) ∈ {0, . . . , N 1 } × {0, . . . , N 2 }, it satisfies S N (ω i,j , V (i, j), V ) 0.

REMARK. Given a function v ∈ B Ω , let us suppose that

V = v(ω i,j ) 0 i N1 0 j N2 =      v(ω 0,0 ) v(ω 0,1 ) • • • v(ω 0,N2 ) v(ω 1,0 ) v(ω 1,1 ) • • • v(ω 1,N2 ) . . . . . . . . . v(ω N1,0 ) v(ω N1,1 ) • • • v(ω N1,N2 )      ∈ M N +1 (R) . (7.7)
The orientation of our axes in figure 47 (and 45) was chosen such that the nodes of the mesh Ω N can be visually ordered as the values of v (at each node of Ω N ) in the matrix V from (7.7). If this choice is maybe not natural, it will be largely comfortable from algorithmic and graphical points of view.

7.5.2 --As in paragraph 6.5.3 in the one-dimensional case, we can consider the surface given by: u : [0, 1] 2 → R, (x, y) → x 2 1 + x 2 2 4 .

In this case, we thus have Ω = ]0, 1[ 2 , and

I : ]0, 1[ 2 → R, (x 1 , x 2 ) → l 3 -l 1 x 1 -l 2 x 2 4 + x 2 1 + x 2 2 .
For our simulations, we have supposed N = [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF]. The following table indicates, for various choices of l 1 , l 2 and l 3 , the global performances of each one of them. As we can easily observe, the performances of our bi-dimensional algorithm are globally similar to those obtained with the one-dimensional algorithm. We can especially appreciate the very short computation time due to the parallelization of our computations, which is encouraging if we have in mind to use this algorithm with higher values of N , that means with larger and/or refined meshes.

l
7.5.3 --When the mesh-size goes to 0.

Linked to the simulations done in 7.5.2, we can focus on the behaviour of our algorithm for various choices of N , and so mesh-size h. Thus we have deal here with the same u and I as in the previous paragraph, and by supposing

(l 1 , l 2 , l 3 ) = 1 2 , 1 2 , √ 2 2 . 
As shown by the table 21, the errors η ∞ and η ave are of order 1/h, which illustrates the convergence of our approximation to the viscosity solution of our s.f.s. problem. Moreover, the number of iterations ι seems linear. More precisely, we always have ι = N 1 + N 2 -2 in these particular cases, which seems to be a strange coincidence. In fact, for other choices of l 1 , l 2 and l 3 , ι still increases linearly with respect to N 1 and N 2 , but there generally does not such an elegant formula. With this same notation of k, the computation time seems to increase quadratically with respect to k. This is totally logical since the number of nodes equals to k 2 , and since we have an explicit method to compute U app .

( 

--About the computation time

Let us consider the same situation than those considered in the previous paragraph. We will now illustrate the efficiency of the parallelization of the computations done in step 2). In order to do this, we will consider a punctual version of our algorithm. Concretically, we have done the computations from step 2) as suggested by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF]:

• We start with U n+1 = U n .

• Then the values of U n+1 are updated one by one. For i going from 1 to N 1 , if i is an odd (resp. even) number, for j going from 1 to N 2 (resp. N 2 to 1), if ω i,j ∈ Ω N , U n+1 (i, j) is now taken as the solution with respect to t of the equation S(ω i,j , t, U n+1 ) = 0.

Consequently, these computations are no more independent, and so, not parallelizable! This can be illustrated by the following figure: The table 22, that must be compared with the table 21, presents the general performance of this modified algorithm. If the errors η ∞ and η ave are mainly identical and the number of iterations is globally divided by two, the computation time is dramatically increasing. It is for instance multiplied by more than 40 when N 1 = N 2 = 200. . . This illustrates the real efficiency of the parallelization of the computations done in the step 2) of our algorithm. More generally, this shows how we have been able to take advantage of the explicit formulation of our approximation scheme. So even if in the end, from a numerical point of view, we have mainly done adaptations of existent methods, this would probably have been impossible without the theoretical analyses done in sections 7.2 and 7.3.

( 7.5.5 --It is possible to give more examples like the previous, but we will not do it longer. We will rather focus on an application of the shape from shading we have considered: how to determine the relief of a given countryside just by knowing I and some altitudes? This will constitute the topic of the next section. But before that, let us illustrate graphically the situations considered both in paragraphs 7.5.2 and 7.5.3.

In figure 49, we have represented the black and white picture associated to the surface described by the viscosity solution u. The figure 50 shows the surface we have recovered with our approximation U app . 7.6 A possible application 7.6.1 --An application we have considered consists in recovering the surface of a given countryside just by using informations associated to one black and white virtual images. We can find (e.g. on the internet) such images with data sets that indicates an approximation of the brightness intensity at each pixel of the images, and the altitudes at each pixel of the images. In this section, we will present various simulations done by using this kind of data sets. Here are mentioned the main assumptions done for our simulations:

• The unit light vector is given by (l 1 , l 2 , l

3 ) = -1 2 , - 1 
2 , √ 2 2 . 
• The altitudes will be expressed in meters. Whatever the value of N , the mesh-size will h = (h 1 , h 2 ) will satisfy h 1 = h 2 = 1.

• Given indexes i and j, the brightness intensity I(ω i,j ) was computed (and so, the virtual image obtained) by replacing ∇u(ω i,j ) by an approximation ∇ app u(ω i,j ) in the brightness equation (II.1). The approximation ∇ app u(ω i,j ) = ∂ 1,app u(x), ∂ 2,app u(x) was defined as follows:

∂1,appu(ωi,j) = [u(ωi+1,j-1)u(ωi-1,j-1)] + 2[u(ωi+1,j )u(ωi-1,j )] + [u(ωi+1,j+1)u(ωi-1,j+1)] 4h1 , ∂2,appu(ωi,j) = [u(ωi-1,j+1)u(ωi-1,j-1)] + 2[u(ωi,j+1)u(ωi,j-1)] + [u(ωi+1,j+1)u(ωi+1,j-1)] 4h2 .

Then, we have performed our algorithm in the following situations: As we can see, the errors η ∞ and η ave are close to 1, i.e. of the order of 1/h 1 = 1/h 2 , which is coherent with the results observed in section 7.5. It also proves that our algorithm tolerates the imprecision on the values of the brightness intensity I (given in input). These errors are also very satisfying in comparison to the associated differences u maxu min .

We can also note that the number of iterations ι and the computation times τ are equivalent to those obtained in our previous situations. In order to illustrate graphically our simulations, we have presented in figures 54 to 56 the surfaces recovered with the computed altitudes (stored in U app , given in output of our algorithm) associated to simulations n o 1 to n o 3. In particular with the surface from figure 55 (associated to the situation n o 2), we can observe the plateau that seems to be represented in the left top of figure 52. such that U i,j corresponds to an approximation of u(ω i,j ), for all (i, j) ∈ {0, . . . , N 1 } × {0, . . . , N 2 }.

As explained in 7.6.1, in our case, for such a couple (i, j), the brightness intensity I(ω i,j ) satisfies -∇ app u(ω i,j )•l + l 3 1 + |∇ app u(ω i,j )| 2 -I(ω i,j ) = 0.

By setting

d 1 (U ) = [U i+1,j-1 -U i-1,j-1 ] + 2[U i+1,j -U i-1,j ] + [U i+1,j+1 -U i-1,j+1 ] 4h 1 , d 2 (U ) = [U i-1,j+1 -U i-1,j-1 ] + 2[U i,j+1 -U i,j-1 ] + [U i+1,j+1 -U i+1,j-1 ] 4h 2 ,
then d 1 (U ), d 2 (U ) corresponds to an approximation of ∇ app u(ω i,j ). Thus by considering the function

F : M N +1 (R) → M N +1 (R) , U = (U i,j ) 0 i N1 0 j N2 → F (U ) = F i,j (U ) 0 i N1 0 j N2
where, for all (i, j) ∈ {0, . . . , N 1 } × {0, . . . , N 2 }, we have thus applied the Newton's method in order to solve the equation F (U ) = 0, by starting with the matrix U app obtained in output of our algorithm. Unfortunately, it is well-known that the Newton's method is convergent for initial data sufficiently close to the solution. In our case, U app seems still too far from the solution of our s.f.s. problem, so the Newton's method does not converge. At the moment, we have not find a way that enables to overcome this difficulty.

7.6.4 --In comparison to the data sets used as explained in 7.6.1, we can also find sets where we still know (an approximation of) I at each pixel of the corresponding image, but the altitudes only at some pixels not necessarily located on the boundary of the image. This raises the question of the adaptability of our models when the brightness equation is not associated to Dirichlet boundary conditions.

For now, we are not able to recover any information on u without Dirichlet boundary conditions. In practice, this constitutes an important limitation of our work. In his P.h.D. thesis [START_REF] Prados | Application of the theory of the viscosity solutions to the Shape From Shading problem[END_REF], E. PRADOS has proposed a new formulation of the s.f.s. problem in order to overcome this difficulty, but we have not considered it for now.

Conclusion

In this chapter, we have shown how to extend our theory and algorithm from chapter 6 to the bidimensional case. Therefore, we have been able to implement an efficient algorithm that enables to solve numerically various s.f.s. problems. Unfortunately, our algorithm requires Dirichlet boundary conditions. If this hypothesis was motivated theoretically in chapter 5, it is not realistic for many applications of the s.f.s. problem. For now, we have not tried to overcome this difficulty.

Conclusion et perspectives

Pour rappel, dans cette partie, nous nous intéressions à un problème de shape from shading, ou comment reconstituer une surface représentée sur une image en noir et blanc, à partir des seules nuances de gris et d'altitudes connues en certains points. Nous avons vu qu'un tel problème pouvait mathématiquement être modélisé par une équation de Hamilton-Jacobi du premier ordre, que nous avons résolu dans un cadre classique : une équation couplée à des conditions de type Dirichlet.

Ce faisant, au chapitre 5, nous avons montré comment l'utilisation du formalisme des solutions de viscosité permettait d'assurer l'existence et l'unicité d'une solution à un tel problème, de base mal posé. Nous avons ensuite proposé une formulation explicite d'un schéma d'approximation adapté au problème de s.f.s, considéré comme implicite jusqu'alors, dans un cadre unidimensionnel au chapitre 6 puis dans un cadre bidimensionnel au chapitre 7. En nous basant sur ce schéma, et plus particulièrement sur sa formulation explicite, nous avons ainsi pu proposer un algorithme de résolution du problème de s.f.s. qui, dans les cas que nous avons considéré, s'avère significativement plus rapide que ceux proposés jusqu'alors. À présent, une continuation logique de notre travail consisterait à sortir de ce cadre d'étude classique, où notre équation est couplée à des conditions de type Dirichlet. Si cette approche usuelle peut s'avérer raisonnable dans certains cadres, elle se révèle bien trop contraignante dans le nôtre. En effet, dans bon nombre de cas concrets, l'altitude de la surface que l'on cherche à reconstruire est inconnue au bord, mais connue en un certain nombre de points situés à l'intérieur du domaine. Un premier travail pourrait donc consister à voir comment adapter notre travail, si tenté qu'il puisse l'être, à ce type de situations.

Terminons en signalant une application possible du shape from shading. Comme nous l'avons évoqué à la section 7.6, on trouve aujourd'hui en accès libre de nombreuses images, par exemple satellites ou virtuelles, en noir et blanc avec les jeux de données d'intensité associés, mais pas nécessairement les altitudes correspondantes. Une fois que les difficultés liées à la résolution du problème de s.f.s., précédemment évoquées, seront surmontées, l'information que nous récupérerions sur l'altitude pourrait permettre à des mobiles volants, tels que les drônes, de connaître les éventuels obstacles à éviter. Utilisant en outre les modèles présentés dans la partie I de ce manuscrit, nous pourrions ainsi permettre leur guidage en temps réel. Même si ce cadre applicatif resterait à préciser et considérer, nous pourrions ainsi unifier de manière concrète les théories présentées dans les deux parties de ce manuscrit. Et nous donnerions de cette façon, à celles et ceux qui en douteraient encore, une nouvelle illustration du caractère applicatif des Mathématiques à de très larges situations.

Numbers

• N and R respectively correspond to the sets of natural numbers, integers and real numbers.

• We denote by the usual order on N or R. In addition, we define

N * = N {0}, R * = R {0}, R + = {x ∈ R | x 0} and R * + = R * ∩ R + .
• We add to R two symbols, -∞ and +∞, and we extend the usual ordering relation on R admitting that -∞ x +∞ for all x ∈ R ∪ {-∞, +∞}.

• We will adopt the french notation to designate the intervals. Concretely, if a, b ∈ R, we define • If A is a part of R, we define -A = {-a | a ∈ A}.

• If A is a non-empty subset (or family of elements) of R lower (resp. upper) bounded, we denote by inf A (resp. sup A) the infimum (resp. supremum) of A, and we also denote it by min A (resp. max A) when there exists a an element of A such that a = inf A (resp. a = sup A). When A is not lower (resp. upper) bounded, we set inf A = -∞ (resp. sup A = +∞).

Applications

• The identity application of a set X is id X : X → X, x → x.

• We denote by f |A the restriction of an application f to a set A.

• We denote by g • f the application that composes an application g with an application f .

• If n ∈ N / ∈ {0, 1}, k ∈ {1, . . . , n}, X 1 , . . . , X n , Y are (n + 1) sets and f : X 1 × • • • × X n → Y is an application, given x j ∈ X j for all j ∈ {1, . . . , n} {k}, we define the k th partial application of f by f (x 1 , . . . , x k-1 , • , x k+1 , . . . , x n ) : X k → Y, x → f (x 1 , . . . , x k-1 , x, x k+1 , . . . , x n ).

• If n ∈ N * , X, Y 1 , . . . , Y n are (n + 1) sets, f : X → Y 1 × • • • × Y n , x ∈ X and j ∈ {1, . . . , n}, we denote by f j (x) the j th component of f (x), hence an application f j : X → Y j , x → f j (x).

• When it makes sense, we write lim x→a f (x) = λ, or f (x) → λ when x → a, or f (x) ---→ x→a λ to mean that the limit of f (x) when x approaches a is equal to λ.

Functions

A function corresponds to an application that is real valued.

• If X is a set, f and g are two functions defined on X, and λ ∈ R:

-function f + g is given by (f + g) : X → R, x → f (x) + g(x),

-function λf is given by λf : X → R, x → λf (x), with in particular -f = (-1)f , -function f + λ is given by f + λ : X → R, x → f (x) + λ, -functions fg and fλ respectively corresponds to functions f + (-g) and f + (-λ),

-we write f g to mean that f (x) g(x) for all x ∈ X.

• If A is a set and f (x) a real quantity depending on x, we define 

Derivatives and differentials

• When it makes sense, if f is a function defined on a non-empty interval I, a ∈ I and k ∈ N * , we denote by f (k) (a) the k th derivative of f in a, hence a function f (k) : I → R, x → f (k) (x). By convention we set f (0) = f . Finally we can also write f ′ instead of f (1) , f ′′ instead of f (2) , etc. More generally, if f : I → R n (n ∈ N * ), we extend these notations by setting f (k) = f 
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 1 Figure 1 -Representative curve C ε of the function ε of proposition 1.1.3 when α = 0.2 and β = 1.25
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 7 Figure 7 -Example of a forward correction (2.5) on an upper bound of ϕ in t + δ
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 9 Figure 9 -Example of a backward correction (2.8) on a lower bound of ϕ in tδ
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 10 Figure 10 -Illustration of the forward algorithm
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 13 Figure 13 -Graphical illustration of the contradiction obtained in the proof of the lemma when C i < 0
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 15 Figure 15 -Illustration of the iterative treatment presented in 3.2.1
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 16 Figure 16 -Bounds on f obtained with our treatment
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 17 Figure 17 -Bounds on f ′ (in km/h) obtained with our treatment

( 1 . 1 -

 11 10) instead of the decentred (1.11) in step 1.1, -the centred bounds from (1.15) instead of the decentred from (1.16) in step 1.4.Then bounds on f ′ or f ′′ from step 1 are computed by referring to paragraphs 1.10.3 and 1.10.4, in the same way as in section 3.3. By taking notations from these paragraphs back, the various indexes r, r - and r + used to compute bounds on f ′ and f ′′ are obtained by supposing bounds f distant of 0.1 m, and those on f ′ (resp. f ′′ ) of the minimum of function ε from 1.3.5 (resp. 1.6.5) taken with α = µ = 0.1 and β =
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 7218 Figure 18 -Bounds on f ′ (in km/h) with our a posteriori treatment (using centred bounds)
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 20212223 Figure 20 -Exact trajectory of f ′′′ (in m/s 3 )

. 3 ) 4 . 1 . 3 -

 3413 -Centred bounds on ψ when p = 2.
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 25 Figure 25 -Graphical illustration of compatibility between constraints (6), (8) and[START_REF]Kanton zürich webpage[END_REF] 
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 27 Figure 27 -Point M solution when A ′ ∈ R 1

Figure 33 -

 33 Figure 33 -Example of forward-backward corrections when n = 2

•

  L'intensité lumineuse en un point x ∈ Ω sera modélisée par une quantité I(x) comprise entre 0 et 1, d'où une fonction I : Ω → [0, 1]. Très concrètement, I mesurera le niveau de gris sur l'image, le noir correspondant à une intensité nulle (zone d'ombre) et le blanc à une intensité égale à 1.

Figure 34 -

 34 Figure 34 -Représentation de S, L(x) et n(x) en dimension 1

  According to 5.3.2 and 5.3.5, we can now say loud and clear: Corollary. (Uniqueness result) Under the assumptions (A 1 ), (A 2 ) and (A 3 ), the Dirichlet problem (5.2)-(5.4) has at most one solution.
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 51 -In sections 5.3 and 5.4, given n ∈ N * , Ω an open subset of R n , H : Ω × R n → R a Hamiltonian and ϕ : ∂Ω → R a continuous function, we have presented various assumptions on H and ϕ that insure the existence and uniqueness of a viscosity solution to the problem
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 36 Figure 36 -Two different viscosity solutions of a same s.f.s. problem when I reaches 1

  is concave. It has an unique critical point b * on ]-√ α, √ α[, which corresponds to its global maximiser and which satisfies b * = w √ α √ δ 2 + w 2 and ψ(b * ) = c + α(δ 2 + w 2 ).
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 38 Figure 38 -Representation of the meshes Ω N and Ω N of Ω and Ω
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 40 Figure 40 -Graphical representations of u and U app when ϕ(0) = 0 and ϕ(1) = 2
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 4142 Figure 41 -Graphical representations of I, u and U app when (l,l 3 ) = -1 2 , √3 2
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 452 Figure 45 -Representation of the domains Ω h and ∂Ω h Now by fixing x ∈ Ω, t ∈ R and u ∈ B Ω , the approximation scheme S : R * + 2 × Ω × R × B Ω → R is constructed as follows:
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 46 Figure 46 -Representation of the regions R (±1,±1) , R (0,±1) and R (±1,0)

  . It has an unique critical point b * on B ′ (0, 1), which corresponds to its global maximiser and which satisfies b * = w δ 2 + |w| 2 and ψ(b * ) = c + δ 2 + |w| 2 . 7.2.3 --Let us start by supposing |l| I(x), which is equivalent to say that -l/I(x) ∈ B ′ (0, 1). • Let us fix s = (s 1 , s 2 ) ∈ {(1, 1), (1, -1), (-1, 1), (-1, -1)}. For all b = (b 1 , b 2 ) ∈ R s , we have

Figure 47 -

 47 Figure 47 -Representation of the meshes Ω N and ∂Ω N of Ω and ∂Ω
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 48 Figure 48 -Computation order from step 2) with a punctual version of our algorithm

Figure 49 -N 1 = N 2 = 20 Figure 50 -N 1 =

 49120501 Figure 49 -Initial image corresponding to I when (l 1 , l 2 , l 3 ) = 1 2 , 1 2 , √ 2 2 and N 1 = N 2 = 20

n o 1 :

 1 N = (200, 200), and the black and white picture is given by the figure 51. In this case, I min = 0.22, I max = 0.82, and the minimal and maximal altitudes are u min = 1087.78 m and u max = 1143.70 m.
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 51 Figure 51 -Black and white image associated to the situation n o 1
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 52 Figure 52 -Black and white image associated to the situation n o 2

Figure 53 -

 53 Figure 53 -Black and white image associated to the situation n o 3

Figure 54 - 1 Figure 55 - 2 Figure 56 -

 54155256 Figure 54 -Graphical representation of the approximation U app associated to the situation n o 1

F 3 1 + d 2 1 (

 31 i,j (U ) = -l 1 d 1 (U )l 2 d 2 (U ) + l U ) + d 2 2 (U ) -I(ω i,j ),

  [a, b] = {x ∈ R | a x b}, [a, +∞[ = {x ∈ R | x a}, ]a, b[ = {x ∈ R | a < x < b}, ]-∞, a] = {x ∈ R | x a}, [a, b[ = {x ∈ R | a x < b}, ]a, +∞[ = {x ∈ R | x > a}, ]a, b] = {x ∈ R | a < x b}, ]-∞, a[ = {x ∈ R | x < a}.

  inf x∈A f (x) = inf{f (x) | x ∈ A} (resp. sup x∈A f (x) = sup{f (x) | x ∈ A}).

•

  If n ∈ N * , k ∈ {1, . . . , n}, f is a sufficiently smooth function defined on U an open subset of R n and a ∈ U , we denote by ∂ k f (a) the k th partial derivative of f in a and by ∇f (a) = (∂ j f (a)) 1 j n its gradient, hence applications ∂ k f : U → R, x → ∂ j f (x) and ∇f : U → R n , x → ∇f (x). We will also write ∂ 2 k f instead of ∂ k (∂ k f ).

  

  -, δ + ) and ψ ′′ + (t ; δ -, δ + ) are respectively called lower and upper decentred bounds on ψ ′′ (t). 1.7.2 --We now introduce the diameter function associated to bounds from (1.16):

	1), (1.2) and the decentred formula (1.14) that	
	ψ ′′ -(t ; δ 1 , δ 2 )	ψ ′′ (t)	ψ ′′ + (t ; δ 1 , δ 2 ).	(1.16)
	ψ ′′ -(t ; δ			

  In this section, we suppose that we are able determine real numbers ψ ′′ -(t) and ψ ′′ + (t) such that

	ψ ′′ -(t)	ψ ′′ (t)	ψ ′′ + (t).	(1.17)

1.8.1 --

  • If t Nt j > δ * , we choose r -the smallest index s ∈ {1, . . . , N -j} such that t j+st j > δ * . Choice of indexes r -and r + when t jt 1 > δ * and t Nt j > δ *

	t1	tj-r -	tj	tj+r +	tN
		δ *	δ *		
	Figure 4 -1.10.5 --How to choose r 1 and r 2 with decentred bounds from (1.11) and (1.16)?	
	As previously we will limit our explanations by focusing on the decentred bounds on ψ ′ (t) from (1.11),
	knowing that we can do it similarly with the decentred bounds on ψ ′′ (t) from (1.16) by refering to
	section 1.7.				
	1) We first determine (δ * 1 , δ * 2 ) (an approximation of) the minimizer of function ε from 1.4.3 taken with
		α = 2µ and β		

  we choose r 2 the smallest index s ∈ {r 1 + 1, . . . , j -1} such that t jt j-s > δ * 2 .Figure5-Choice of indexes r 1 and r 2 when t jt 2 > δ * 1 and t jt 1 > δ *

	t1	tj-r 2	tj-r 1	tj
			δ * 1	
			δ * 2	
				2
	1.10.6 --REMARK. When we suppose that differences ψ + (t i ) -ψ -(t i ) are equal or sufficiently close to a same value µ, computations of δ * (resp. δ * , δ * 1 and δ * 2 ) in the first time from 1.10.3 (resp. 1.10.4, 1.10.5

  ). In this chapter, we have seen various methods that enable to bound a same k th derivative of a function ψ : I → R in a point t. For each one of them, we have explained how to compute ψ

	1.11.3 --(k) -(t) a lower
	bound and ψ					
	For various values of parameters ψ + (t) -ψ -(t) and ψ * + -ψ * -the following table shows:
	-the value of δ * the minimizer of function ε from proposition 1.3.5 (linked to the diameter function
	associated to bounds from (1.10)) and its evaluation ε(δ * ),		
	-a pair (δ * 1 , δ * 2 ) that minimizes function ε from paragraph 1.4.3 (linked to the diameter function asso-ciated to bounds from (1.11)) and its associated evaluation ε(δ * 1 , δ * 2 ), obtained by using a M A T L A B minimization algorithm.
	Parameters		Results with ε from 1.3.5	Results with ε from 1.4.3
	ψ + (t) -ψ -(t) ψ * + -ψ * -0.05 1	δ * 0.5313	ε(δ * ) 0.1412	δ * 1 0.3760 1.7466 δ * 2	ε(δ * 1 , δ * 2 ) 0.5084
	0.05	2	0.4217	0.1778	0.2984 1.3863	0.6406
	0.05	4	0.3347	0.2241	0.2368 1.1003	0.8071
	0.1	1	0.6694	0.2241	0.4737 2.2006	0.8071
	0.1	2	0.5313	0.2823	0.3760 1.7466	1.0169
	0.1	4	0.4217	0.3557	0.2984 1.3863	1.2812
	0.2	1	0.8434	0.3557	0.5968 2.7725	1.2812
	0.2	2	0.6694	0.4481	0.4737 2.2006	1.6141
	0.2	4	0.5313	0.5646	0.3760 1.7466	2.0337
	Table 1 -Values of minimums and minimizers associated of functions ε from 1.3.5 and 1.4.3
	We can observe that for a same choice of parameters, minimums of functions ε from 1.3.5 are about four
	times smaller than those of functions ε from 1.4.3, that means that the centred bounds are much more
	accurate than the decentred.					
	Nevertheless when ψ is a time-valued function with time expressed for instance in seconds, it means that
	we must wait around δ * seconds to compute the more accurate centred bounds on ψ ′ (t). And since δ * is
	quite high, the use of centred bounds to perform a real time analysis seems not reasonable.

  means that if we are able to bound the p th derivative of ϕ on overall I and its first (p -1) th derivatives just at one point t of I, then we can bound ϕ at each point of D F t = I ∩ [t, +∞[. Nevertheless we can easily observe that the difference ∆τ F : δ → τ F + (t + δ)τ F -(t + δ) is increasing with respect to δ on D F t , with ∆τ F (δ) → +∞ when δ → +∞ and sup I = +∞. Therefore the lower δ the higher the accuracy of lower and upper bounds τ F ± (t + δ) of ϕ in t + δ will be.

	τ F + (t + δ)			
	ϕ + (t)			
	τ F -(t + δ)			
	ϕ -(t)			
		t	t + δ	
	Figure 6 -Example of bounds on ϕ on D F t deduced from (2.3)	
	2.1.2 --We now suppose that for a fixed δ > 0 such that t + δ ∈ I, we have determined real numbers ϕ -(t + δ) and ϕ + (t + δ) such that
	ϕ -(t + δ)	ϕ(t + δ)	ϕ + (t + δ).	(2.4)
	Then by applying the selection principle with A = ϕ(t + δ), we can use (2.3) to adjust the bounds from
	(2.4) as follows:			

  their updated values. Consequently if we want to correct the bounds on ϕ in t 1 , . . . , t N by using these algorithms, we suggest to successively apply the forward and backward algorithms until a bound on ϕ in t 1 , t 2 , . . . , or t N is adjusted. That is what the forward-backward algorithm does:

	backward	backward		backward
					ϕ
	t1	t2	t3	tN-1	tN
	Figure 11 -Illustration of the Backward algorithm applied with ϕ in t 1 , . . . , t N
	2.3.3 --We can easily note that the forward (resp. backward) algorithm is idempotent, which means that nothing happens if we reapply the forward (resp. backward) algorithm to the output of the first call of the
	forward (resp. backward) algorithm.			

  t 1 , it is sufficient to take bounds deduced from (2.8) and the corrected bounds on ϕ in t = t 1 .• If t > t N , it is sufficient to take bounds deduced from (2.5) and the corrected bounds on ϕ in t = t N .• Let us suppose that there exists i ∈ {2, . . . , N -1} such that t ∈ ]t i , t i+1 [. We get a lower bound τ F -(t) and an upper bound τ F + (t) on ϕ(t) by using (2.5) and the corrected bounds on ϕ in t = t i , and a lower bound τ B -(t) and an upper bound τ B + (t) on ϕ(t) by using (2.8) and the corrected bounds on ϕ in t = t i+1 . Therefore by using the selection principle we get ϕ

-(t) ϕ(t) ϕ + (t) with ϕ -(t) = max τ F -(t), τ B -(t) and ϕ + (t) = min τ F + (t), τ B + (t) .

Table 2 -

 2 Performances of the forward-backward multi-order algorithm on ten simulations

	ρ 69.1% 56.8% 1.65 ms ρ ′ τ 2 nd 66.6% 66.8% 2.14 ms 1 st 3 rd 80.0% 64.2% 1.88 ms
	4 th	71.6% 68.8% 2.49 ms
	5 th	72.2% 55.0% 2.22 ms
	6 th	74.6% 60.8% 1.66 ms
	7 th	78.4% 55.9% 2.26 ms
	8 th	76.9% 64.0% 2.09 ms
	9 th	73.4% 63.6% 3.11 ms
	10 th 76.7% 55.0% 1.66 ms

Table 3 -

 3 Minimizers and minimums of functions ε considered at steps 1.1 and 1.4

		3760	1.7466	1.0169
	1.4 0.3760	1.7466	2.3288
	step minimizer δ * minimum ε(δ * )
	1.2		0.4	1
	1.5	1.4142	2.8284
	1.7	0.3777	1.0114
	1.9	1.9052	2.4301

Table 4 -

 4 Minimizers and minimums of functions ε considered at steps 1.2, 1.5, 1.7 and 1.9

Table 5 -

 5 General performances of this preliminary simulation

	average	min/max

  3.1: with other initial values of f+ (t i )f -(t i ) (i ∈ {1, . . . N })or uniform bounds on f ′′ or f ′′′ , it generally does not happen. In other words, it just means that we had bad luck in our special case. . .

	f ′ (t)		
	39		
	38		exact trajectory
	37		
	36		bounds from step 1.1
	35		bounds from step 1.2
	34		bounds from step 1.7
	33		
			bounds after step 2
	32		
	31		
			t
	20	21	22

Table 6 -

 6 Performances of our treatment without steps 1.1 and so 1.3

	average	min/max

′ .

Table 8 -

 8 Performances of our treatment without steps 1.7 and so 1.8

Table 9 -

 9 2.2. In comparison to tables 3 and 4 from paragraph 3.3.1, the following tables indicate the minimizers and minimum values of the various functions ε considered to compute these various bounds on f ′ and f ′′ . New minimizers and minimums of functions ε considered at steps 1.1 and 1.4 step minimizer δ * minimum ε(δ * )

	step 1.1 0.3561 minimizer (δ * 1 , δ * 2 ) minimum value δ * 1 δ * 2 ε(δ * 1 , δ * 2 ) 1.6545 0.9124
	1.4 0.3561	1.6545	2.2060
	1.2	0.3688	0.9220
	1.5	1.1747	2.3495
	1.7	0.3721	0.8677
	1.9	1.6973	2.1451

Table 10 -

 10 New minimizers and minimums of functions ε considered at steps 1.2, 1.5, 1.7 and 1.9The performances associated to this adapted simulation are given by the following table:

	average	min/max

Table 11 -

 11 General performances of this adapted simulationIn the end, we can note that there are almost no improvements in comparison to the preliminary simulation done in section 3.3. Consequently it seems difficult to improve the general performances of our treatment just by doing this kind of adjustments. It is maybe possible to do better by adjusting the previous parameters in real time, but we have not tried to do it for now.3.4.2 --An other idea consists in trying to improve the previous treatments by doing what it is indicated in paragraph 1.10.7. With this aim in mind, we compute the required index r, r 1 and r 2 as in paragraph 3.4.1 (since our output data are a little bit better). Here are the associated output performances:

	average	min/max

Table 12 -

 12 Performances of the simulation adapted as suggested in 1.10.7

Table 13 -

 13 Minimizers and minimums of functions ε for steps 1.1 and 1.4 of the second treatment step minimizer δ * minimum ε(δ * )

	3273	1.5207	0.7708
	1.4 0.3273	1.5207	2.0276

Table 14 -

 14 Minimizers and minimums of functions ε for steps 1.2, 1.5, 1.7 and 1.9 of the second treatment Unfortunately it does not improve almost anything, as shown by the following table:

	average	min/max

Table 15 -

 15 Performances when we apply twice the treatment used in 3.4.2

Table 16 -

 16 Minimizer and minimum of functions ε considered at steps 1.1 and 1.4 step minimizer δ * minimum ε(δ * )

	1.2	0.4	1
	1.5	1.1045	2.2091
	1.7	0.4839	0.7483
	1.9	1.2713	1.4476

Table 17 -

 17 Minimizer and minimum of functions ε considered at steps 1.2, 1.5, 1.7 and 1.93.5.2 --Output data analyses.The following table presents the average distance between bounds on f , f ′ and f ′′ obtained at each step of our treatment:

	average	min/max

Table 18 -

 18 Performances of our a posteriori treatment (using centred bounds instead of the decentred)

  et de bornes uniformes sur au moins l'une de ses dérivées d-ième, il était possible de borner les applications f ′ , . . . , f (d-1) d'une part, et mettre en cohérence différentes bornes sur f , f ′ , . . . , f (d-1) d'autre part. En ce sens, notre travail se révèle particulièrement adapté aux situations où l'on ne parvient pas à modéliser mathématiquement, que ce soit de façon totale ou partielle, le phénomène ou le système étudié. Dans notre cas, nous souhaitions estimer les position, vitesse et accélération d'un train sans avoir une connaissance suffisante de ses caractéristiques techniques (mécanismes d'accélération ou de freinage) ; nous pouvions seulement nous fier à des bornes ponctuelles sur sa position, et des bornes uniformes sur son accélération et son jerk. Rappelons que notre approche, à notre connaissance novatrice en la matière, est totalement déterministe.

À cet égard, elle se distingue des méthodes probabilistes (e.g. filtrage de Kalman), souvent inadaptées lorsque qu'un très haut niveau de sureté est requis, comme c'était le cas pour les applications que nous considérions. Par ailleurs, nos modèles et algorithmes peuvent être sans crainte couplés à d'autres existant sur le sujet, sans que cela risque d'impacter le niveau de fiabilité, et peuvent en outre être utilisés pour détecter certaines incohérences dans les jeux de données traités. En combinant les différents algorithmes que nous avons conçus, nous avons résolu une problématique inspiré du monde ferroviaire. Nous avons à cet effet illustré l'efficacité de nos modèles, et montré qu'ils permettent de réaliser tant des analyses en temps réel qu'a posteriori.

  x, θ), Ici, u désigne une fonction, l'inconnue du système, dépendant d'une variable temporelle t et d'une variable d'espace x connu ou partiellement, F une fonctionnelle non nécessairement connue, et θ un paramètre. Pour parvenir à leurs fins, ils se basent sur diverses observations de u, et éventuellement ∂ t u, ∂ x u, etc. à disposition. Pour de plus amples informations, nous renvoyons le lecteur à l'article [2] d'I. AYED, E. de BÉZENAC, A. BRAJARD et P. GALLINARI. À partir de l'information disponible sur u, et l'une de ses dérivées dans le meilleur des cas, ou, le cas échéant, sur certains processus liés à la dynamique du système, nos modèles permettraient sans doute d'obtenir plus d'information sur les dérivées de u, puis raffiner toute les informations sur u et ses dérivées ainsi récupérées. Ainsi, les équations obtenues par ces techniques de machine learning expliqueraient d'autant mieux le système ou phénomène étudié. La plupart des notations ou conventions spécifiques à cette étude seront spécifiées tout au long du texte, ou pour les plus traditionnelles d'entre elles, à la fin de ce document. Nous ne préciserons donc ici que les plus essentielles d'entre elles. Sauf mention explicite du contraire, étant donné d ∈ N

	Introduction
	Notations et conventions spécifiques

Bien entendu, il existe sans doute bien d'autres applications, adaptations ou améliorations de nos travaux ; nous en proposerons d'ailleurs de nouvelles à l'issue de l'étude menée dans le partie II de ce me manuscrit. Mais insistons sur le fait qu'en pratique, celles-ci dépendront avant tout du système ou phénomène étudié, et nous seront suggérées par la nature des données à disposition, ou encore par un retour d'expérience. * :

  INTRODUCTIONpoints de la surface. Une première modélisation mathématique de ce problème à partir d'une équation différentielle non linéaire a été proposée par B. K. HORN dans[START_REF] Horn | Obtaining shape from shading information. The psychology of computer vision[END_REF] en 1975. Depuis, de nombreux auteurs ont considéré ce problème et diverses approches ont été proposées. Notre étude est essentiellement basée sur les travaux initialement menés par P.-L. LIONS, E. ROUY et A. TOURIN, par exemple dans[START_REF] Lions | Shape-from-shading, viscosity solutions and edges[END_REF] ou[START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF], et plus récemment repris par E. PRADOS et O. FAUGERAS, par exemple dans

  In connection with the shape from shading problem we are interested in, by fixing n ∈ {1, 2}, we can note that the brightness equation (II.2) presented in introduction of this part II is a Hamilton-Jacobi of the form (5.2), with for Hamiltonian

	5.1.3 --	
	are two Hamiltonians associated to (5.3).	|p|
	109	

  1, 1}, x + sh ∈ Ω and ∂Ω h = Ω Ω h . These definitions obviously imply that Ω = Ω h ∪ ∂Ω h . Let us indicate that the notation of ∂Ω h is abusive since it does not rigorously correspond to the boundary of Ω h . However ∂Ω h can be morally seen as a boundary of Ω h that has h to diameter, as shown by the following figure:Figure 37 -Representation of the domains Ω h and ∂Ω h

	h	h	∂Ω h
	0	α	Ω h

  1, 1} and t s ∈ Θ s . By the definition of τ , we thus have τ t s . But since for all b ∈ [-1, 1], function Ψ(b ; • ) is non-decreasing by construction, it implies

	Consequently, for all s ∈ {-1, 1}, we have obtained	
		sup	Ψ(b ; τ )	0,
		b∈Rs			
	so thanks to point 1) from 6.2.3,				
	S(h, x, τ, u) =	sup b∈R-1 Ψ(b ; t s ), sup b∈R1	Ψ(b ; t s )	0	(6.10)
		sup	Ψ(b ; τ )	sup	Ψ(b ; t s ).
		b∈Rs		b∈Rs
	And since t s ∈ Θ s , therefore thanks to point 2) from 6.2.3,
	b * s (t s ) ∈ R s	and	sup b∈Rs	Ψ(b ; t s ) = ψ s b * s (t s ) ; t s = 0.

Table 19 -

 19 Values of I min , I max , η ∞ , η ave , ι, n fix and τ for various choices of (l, l 3 )

	2 √ 2 2 1 2	1 2 √ 2 2 √ 3 2	0.52 0.82 1.19•10 -2 5.65•10 -3 20 0.72 0.94 1.19•10 -2 5.65•10 -3 26 0.88 1 1.00•10 -2 4.05•10 -3 53	0 0 3	4.90 ms 6.82 ms 11.8 ms
	0	1	0.90	1	8.75•10 -3 3.12•10 -3 28	5	7.29 ms
	-1 2	√ 3 2	0.57 0.85 1.19•10 -2 5.65•10 -3 21	0	4.51 ms

  2 +w s •b+c s on R s . Therefore if Ψ has a critical point on R s , then according to lemma 7.2.2, it necessarily corresponds to the maximiser b * s of ψ s , hence sup

	Rs

  has a critical point on R s , then according to lemma 6.2.2, it necessarily corresponds to the maximiser b * s of ψ s , hencesup Rs Ψ = ψ s (b * s ) = c s + δ s + |w s | 2 .But if Ψ has no critical point on R s , then Ψ reaches its supremum on the boundary of R s , and so necessarily in -l/I(x) since Ψ |Rs = ψ s |Rs is concave.Consequently, by reusing the previous notations, by introducing Σ = {(s 1 , s 2 ) | s 1 , s 2 ∈ {-1, 0, 1}}, and by setting

  1), we now have R s = [-α s , α s ]. Thus denoting by b * s the maximiser of ψ s , now we always have sup

	Rs

Table 20 -

 20 Values of I min , I max , η ∞ , η ave , ι, n fix and τ for various choices of (l 1 , l 2 , l 3 )

	1	l 2	l 3	I min I max	η ∞	η ave	ι	n fix	τ
	0	0	1	0.82	1	2.24•10 -2 8.05•10 -3	38	20 40.8 ms
	1 2 -1 2 1 2 1 2 -1 2	0 0 1 2 -1 2 -1 2	√ 3 2 √ 3 2 √ 2 2 √ 2 2 √ 2 2	0.52 0.85 1.61•10 -2 6.21•10 -3 0.78 1 2.15•10 -2 7.91•10 -3 105 12 34 0 0.18 0.69 2.10•10 -2 6.82•10 -3 38 0 0.42 0.84 1.89•10 -2 6.59•10 -3 45 0 0.72 0.98 2.18•10 -2 7.73•10 -3 86 0	32.3 ms 112 ms 35.5 ms 44.1 ms 87.8 ms

Table 21 -

 21 N 1 , N 2 ) η ∞ η ave ι τ (10, 10) 3.72•10 -2 1.07•10 -2 18 1.59•10 -2 s (20, 20) 2.10•10 -2 6.82•10 -3 38 3.55•10 -2 s (30, 30) 1.46•10 -2 4.93•10 -3 58 6.80•10 -2 s (50, 50) 9.12•10 -3 3.16•10 -3 98 1.90•10 -1 s (100, 100) 4.71•10 -3 1.66•10 -3 198 9.87•10 -1 s (200, 200) 2.40•10 -3 4.93•10 -4 398 8.14•10 0 s Values of η ∞ , η ave , ι, n fix and τ for various choices of (N 1 , N 2 )

Table 22 -

 22 N 1 , N 2 ) η ∞ η ave ι τ (10, 10) 3.72•10 -2 1.07•10 -2 10 4.23•10 -2 s (20, 20) 2.10•10 -2 6.82•10 -3 20 3.44•10 -1 s General performances with a punctual implementation of our algorithm .

	(30, 30)	1.46•10 -2 4.93•10 -3	29	1.19•10 0 s
	(50, 50)	1.46•10 -2 4.93•10 -3	47	5.53•10 0 s
	(100, 100) 4.61•10 -3 1.66•10 -3	90	4.52•10 1 s
	(200, 200) 2.33•10 -3 8.52•10 -4 398	3.63•10 2 s

Table 23 -

 23 7.6.2 --For each situation, we have applied our algorithm as for the simulations done in section 7.5. The following table indicates their associated performances: Values of η ∞ , η ave , ι and τ depending on the considered situation

	situation	η ∞	η ave	ι	τ
	n o 1	1.32 0.36 398 11.59 s
	n o 2	2.55 0.31 396 11.24 s
	n o 3	2.05 0.47 516 15.18 s

HOW TO BOUND THE DERIVATIVES OF A FUNCTION?

THE FORWARD-BACKWARD CORRECTIONS

NUMERICAL SIMULATIONS

SOME POSSIBLE EXTENSIONS

Dans cette partie, on s'intéresse à la résolution d'un problème de shape from shading (abrégé en s.f.s. dans ce qui suit), qui consiste à reconstituer la surface représentée sur une image en noir et blanc, par la seule connaissances des différentes nuances de gris et, bien entendu, de la position exacte de certains 105

Remerciements

2) If x * + = x 45 , by using the relations (R 2 ), (R 3 ), (R 8 ), (R 9 ) and inequalities x 45 x + and x 45 x 57 , that are implied by the hypothesis x * + = x 45 , we can demonstrate as in point 1) that (x 45 , y 45 ) = (m + -δ + y -, y -) ∈ E.

3) If x * + = x 57 , by using conditions (R 2 ), (R 6 ), (R 11 ) and inequalities x 57 x + , x 57 x 37 and x 37 x 45 , that are implied by the hypothesis x * + = x 57 , then we can prove as in point 1) that

4) To conclude, we need to suppose that x * + = x + . This case will be treated a little differently from previous cases. Let us define β + = min(y + , y 15 , y 18 ), β -= max(y -, y 16 , y 17 ), where

x +µ + δ - and y 18 =

x +µ - δ - .

• We first prove that β -β + .

-We have y - y + according to (R 2 ), but also y 16 y + according to (R 10 ). Finally, since x * + = x + , we deduce that x + x 37 = δ -y + + µ + , which is equivalent to y 17 y + . -Since x * + = x + , we obtain x + x 45 , and so y -y 15 . Inequality y 16 y 15 immediately results from (R 2 ). Finally since x * + = x + , we also have x + x 57 , which is equivalent to y 17 y 15 . -Condition (R 12 ) implies that y - y 18 , and (R 2 ) implies that y 17 y 18 . Finally by using (R 5 ), we can demonstrate that y 17 y 18 . For all u ∈ {y -, y 16 , y 17 } et v ∈ {y + , y 15 , y 18 }, we have proved that u v. Hence β -β + .

• Now let us fix y ∈ [β -, β + ], and let us consider M = (x + , y). We have M ∈ l 1 ⊂ E 1 , and also M ∈ E 2 since (R 1 ) is satisfied. In addition we have M ∈ E 3 ∩ E 5 ∩ E 8 (resp. M ∈ E 4 ∩ E 6 ∩ E 7 ) according to inequality y β + (resp. y β -). Therefore M ∈ E.

In any case, we have been able to determine y ∈ R such that (x * + , y) ∈ E. Hence the result. 4.2.10 --Let us summarize the study leads in the previous paragraphs. According to theorem 4.2.7, if conditions (R 1 ) to (R 12 ) are satisfied, then E the set of couples (x, y) from R 2 satisfying the constraints (1) to (8) from 4.2.3 is non-empty. When it happens, theorem 4.2.9 insures that bounds x -and x + on x and y -and y + on y can be corrected by doing:

x -← x * -, x + ← x * + , y -← y * -and y + ← y * + , quantities x * ± and y * ± having been defined in 4.2.8. When it is possible to do it with x = ψ (k) (t) and y = ψ (k+1) (t), then we obtain new corrections on bounds on ψ (k) (t) and ψ (k+1) (t). These corrections are still associated to a forward-backward process since as seen on the example 4.2.1, constrains of type ( 1) to ( 8) on x = ψ (k) (t) and y = ψ (k+1) (t) are in practice obtained by applying the Taylor-Lagrange formula on ψ at points lower and upper that t. Now an interesting work would consist in implementing numerically these new forward-backward corrections, in order to evaluate their efficiency and comparing it with the one obtained with our classical forward-backward corrections from chapter 2. It is also important to signal that if the classical forwardbackward corrections are efficient when they are used with sufficiently close data, nothing says that it will be the same with this new kind corrections. Unfortunately for a lack of time, we have essentially lead this theoretical study, but we have not yet taken the time to do enough numerical simulations. hence H(x, p t ) → -∞ when t → +∞. On the other hand, when I(x) = |l|, (5.18) implies

hence H(x, p t ) → -l 3 when t → +∞. In any case, (ii) is not satisfied. 5.5.5 --We will start by showing how to insure the existence of a viscosity solution to the s.f.s. problem. According to theorem 5.4.2, we have to see when assumptions (A 2 ) and (A 4 ) to (A 8 ) are satisfied. We can first note that the validity of (A 8 ) depends on the choice of function ϕ, and must be considered in practice on a case-by-case basis. To insure that the other assumptions are satisfied, we will see that it is sufficient to suppose:

Theorem. (Existence of a solution to the s.f.s. problem)

(ii) In addition if (A 8 ) and (A 10 ) are also satisfied, then the s.f.s. problem has a solution.

Proof.--Point (i) is obvious. According to theorem 5.4.2, to obtain (ii), we need to prove that assumptions (A 2 ) and (A 4 ) to (A 6 ) are satisfied, (A 7 ) being true thanks to (i) and (A 8 ) being supposed true.

• (A 2 ) is true thanks to proposition 5.5.2.

• Since Ω is supposed to be rectangular, then assumption (A 4 ) is satisfied.

3l 3 = l 3l 3 = 0, and (A 5 ) is also satisfied.

• (A 6 ) is also true as soon as (A 10 ) thanks to proposition 5.5.4.

5.5.6 --Now let us consider the uniqueness of solutions to the s.f.s. problem. We will show that the uniqueness to this problem can be obtained with this additional hypothesis: (A 11 ) There exists α < 1 such that I(x) α for all x ∈ Ω.

Theorem. (Uniqueness of a solution to the s.f.s. problem) Under the assumptions (A 9 ) and (A 11 ), the s.f.s. problem has at most one solution.

Proof.--According to corollary 5.3.6, it is sufficient to prove that assumptions (A 1 ) to (A 3 ) are satisfied.

• For all x, y ∈ Ω and p ∈ R n , we have

And since for all t ∈ R + , we have 1 + t 2 (1 + t) 2 , then

Thus if (A 9 ) is satisfied, it is now clear that (A 1 ) is also satisfied.

5.7.2 --First, we have to insure the existence of a solution to a given approximation scheme, a property called stability, which is traditionally defined as follows:

Definition. An approximation scheme S : R *

n , it admits a solution u h ∈ B Ω that can bounded independently of h. 5.7.3 --An important notion, that will insure the stability of an approximation scheme as well as the convergence of its solutions to the viscosity solution of the considered Hamilton-Jacobi equation is the monotonicity of the scheme.

Definition. An approximation scheme S : R *

x ∈ Ω and t ∈ R, the function S(h, x, t, • ) is non-increasing, i.e. if for all u, v ∈ B Ω , we have S(h, x, t, u) S(h, x, t, v) as soon as u v.

--

A stability result is for instance given by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF] (theorem 8). Given an approximation scheme S : R * + n × Ω × R × B Ω → R, it uses on the following assumptions: (A 12 ) S is monotonous (in the sense of the definition 5.7.3).

(A 13 ) For all h ∈ R * + n , x ∈ Ω and u ∈ B Ω , the function S(h, x, • , u) is non-decreasing and has a positive limit in the neighbourhood of +∞.

, the scheme S admits a subsolution.

(A 16 ) All the subsolutions of S are upper bounded independently with respect to the first variable of S.

Theorem. (Stability result)

If the assumptions (A 12 ) to (A 16 ) are satisfied, then S is stable.

REMARK. The general idea of the proof of this result is given by E. PRADOS and O. FAUGERAS in [START_REF] Prados | A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras[END_REF]: given h ∈ R * + and u 0 a subsolution of S(h, • , • , • ), they construct by induction a sequence (u n ) n∈N of subsolutions of S. Then by considering u the limit of this sequence (which is well-defined), they prove that it is a solution of S(h, • , • , • ). However, they have not justified why u n , for all n ∈ N, and u are in B Ω , what should be done before talking about subsolution or solution. . . 5.7.5 --It seems important to highlight that if the notion of stability is essential to insure that an approximation scheme is not without solution, it does not depend on the considered Hamilton-Jacobi equation. Thus in order to obtain a convergence result, it will be necessary to link the scheme with the equation. The notion of consistency will enable this. As used by G. BARLES and P. E. SOUGANIDIS in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF], it deals with equation of the form (5.19). So let us take the notation of G from 5.6.1 back.

Definition. An approximation scheme S : R *

and

5.7.6 --Given an approximation scheme S : R * 

Conclusion

The notion of viscosity solution turns out to be a way to insure the existence and uniqueness of a solution to Hamilton-Jacobi equations. As we have seen in introduction, our shape from shading problem is describes by a Hamilton-Jacobi equation. To solve it, we now need to see when it admits a viscosity solution, which constitutes one of the aims of the following chapter.

Chapter 6

Numerical resolution of the one-dimensional shape from shading problem Introduction By using the notion of viscosity solutions, we have seen in chapter 5 how to insure the existence and uniqueness of the shape from shading problem. In this new chapter, we intend to solve it numerically in the one-dimensional case. Even if it is not the most interesting case in practice, its study can be useful for a better understanding of the bi-dimensional case.

Thus here, we will assume that n = 1 and, without loss of generality, Ω = ]0, α[ for some α > 0. Then we are interesting in computing an approximation of the viscosity solution of the s.f.s. problem:

where H is given, for all (x, p) ∈ Ω × R, by

Let us recall that I is a function from Ω to [0, 1] corresponding to the brightness intensity, and that (l, l 3 ) ∈ R 2 is an unit vector such that l 3 > 0 and that is oriented to the light source. Moreover, as we have proved in 5.6.6, or as we can check in this simple case, by introducing

for all (x, p) ∈ Ω × R, we also have

We have seen in paragraph 5.5.7 that when there exists points x ∈ Ω such that I(x) = 1, we can loose the uniqueness of a solution to problem (6.1). As suggested in this same paragraph, when the set of points from Ω where I equals 1 is a finite union of disjoint connected compact sets, it is possible to avoid this difficulty by solving

instead of (6.1), with H defined as above, Ω ′ = {x ∈ Ω | I(x) < 1} and ϕ extended as a continuous function from ∂Ω ′ to R. So even if we will not do it here in order to simplify our talk, everything we will do in this chapter can be extended to this particular case by replacing Ω by Ω ′ and ∂Ω by ∂Ω ′ .
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we have S(h, x, t, u) = max{a s (h, x, t, u) | s ∈ {-1, 1}}.

• If |l| > I(x), then we have

As a reminder, the exact values of ψ s (b * s ) and Ψ -l/I(x) are respectively given in (6.5) and (6.6).

Explicit solutions of the approximation scheme

6.3.1 --In paragraph 6.1.3, we have exposed various conditions that insure that our approximation scheme S is stable, i.e. that for all h ∈ R * + , there exists a function u h ∈ B Ω such that for all x ∈ Ω, S(h, x, u h (x), u h ) = 0.

In this section, given h ∈ R * + and u ∈ B Ω such that for all x ∈ Ω, the equation S(h, x, t, u) = 0 (6.7) has a solution t ∈ R, we will determine the explicit expression of such a solution t. Since when x ∈ ∂Ω h , we have S(h, x, t, u) = tϕ(x), it is clear that t = ϕ(x) is the only solution in this case. As in the previous section, the non-obvious case consists in considering this equation when x ∈ Ω h . In order to do this, we will thus fix h ∈ R * + , x ∈ Ω h and u ∈ B Ω . REMARK. Let us note that for an arbitrary choice of u ∈ B Ω , equation (6.7) can note have a solution. But as soon as S satisfies assumptions (A 12 ) to (A 14 ), we can for instance verify that for all subsolution u of S(h, • , • , • ) and all x ∈ Ω, equation (6.7) has a solution t ∈ R.

--

To begin with, let us suppose that I(x) = 0. In this particular case, by using the definition of S from 6.1.1, equation S(h, x, t, u) = 0 can be immediately rewritten

• If l = 0, we thus obtain S(h, x, t, u) = 0 for all t ∈ R.

• If l = 0, then it is clear that its unique solution is t = u(xsh) + shl 3 l .

--

From now, we will focus on the non-obvious case I(x) > 0. In paragraph 6.2.3, we were looking for an explicit value of S(h, x, t, u), for fixed h ∈ R * + , x ∈ Ω h such that I(x) > 0, t ∈ R and u ∈ B Ω . Here, for such fixed quantities h, x and u, we are looking for the solutions t ∈ R of the equation (6.7), i.e. S(h, x, t, u) = 0. Thus, in the rest of this section, by the same principle as in paragraph 6.2.3, since h, x and u will be fixed once for all, in accordance with the value of t ∈ R, we will abusively denote by: will always corresponds to the vector such that U (i) = u(ω i ) for all i ∈ {0, . . . , N }. With these notations, we will consider the following errors:

• In accordance with the remark from 6.4.4, if there exists points x ∈ Ω such that I(x) = 1, we have in practice supposed that Ω ′ = {x ∈ Ω | I(x) < 0.99} for numerical reasons (round of errors). We will then denote by n fix the number of points from Ω N where I is larger than 0.99.

• We will denote by I min and I max the minimal and maximal values of I on Ω N .

• Finally, we will denote by τ the computation time of the considered simulation, from the first computations done in step 1) to the last computations done in step 2).

6.5.2 --For our first simulations, we can solve numerically the s.f.s. problem (6.1) with Ω = ]0, 1[, (l, l 3 ) = (0, 1) and I(x) = √ 2/2 for all x ∈ ]0, 1[. As observed in 5.1.3, this leads to the eikonal problem largely studied in chapter 5:

Then for N = 20, we have applied the algorithm presented in 6.4.4 with the following choices of ϕ:

• ϕ(0) = ϕ(1) = 0. In this case, thanks to 5.2.7 and 5.3.7, we know that

is the only continuous viscosity solution of the s.f.s. problem. Numerically, our algorithm converges in ι = 11 iterations, with η ∞ and η ave smaller than 10 -15 , i.e. η ∞ = η ave = 0 and so U app (i) = u(ω i ) for all i ∈ {0, . . . , 21} with machine precision. Then, from a theoretical point of view, for all x ∈ ]0, 4[, the brightness equation (II.1) implies

But as shown by the figure 43, from a physical point of view, the orientation of the light vector makes that a shadow area can be observed on the interval [1, 3[, and not only [1, 2[ (to better visualize it, we can for instance suppose that u describes the profile of a mountain). That is the reason why we will finally suppose, for all x ∈ [0, 4], that

As described in paragraph 6.3.2, over the shadow area, we expect to recover a shape that has the same direction than the light source in output of our algorithm. By fixing N = 20, this is precisely what we get in practice, as shown by the figure 44. Numerical resolution of the bi-dimensionnal shape from shading problem

, and since (l, l 3 ) = (l 1 , l 2 , l 3 ) is an unit vector, we can thus observe that l 2 = 0 if and only if I(x) = 1. So if we also have I(x) < 1, then we get B = 0, and

• If A = 0, by setting ∆ = B 2 -4AC and knowing that (l, l 3 ) is an unit vector, we can observe that

Thus, according to (7.5), we have existence of σ ∈ {-1, 1} such that

.

Finally, by using the expression of q 2 (t), we obtain the following result:

Proposition. Let us suppose that I(x) > 0, and let fix s 2 ∈ {-1, 1}, s = (0, s 2 ) and t ∈ Θ s .

(i) If A = 0 and I(x) < 1, then

.

REMARK. Here again, we can note that the particular case I(x) = 1 is problematic. . . 

we can establish the following result:

Proposition. Let us suppose that I(x) > 0, and let fix s 1 ∈ {-1, 1}, s = (s 1 , 0) and t ∈ Θ s .

7.3.5 --On the same model as proposition 6.3.5, the following result gives a characterization about the existence of a solution to the equation (7.1):

7.4.4 --Suggested algorithm.

Given N = (N 1 , N 2 ) ∈ N , h defined as in (7.6), ε > 0 an accuracy threshold and n max ∈ N * , an approximation U app ∈ R N +1 at each node of Ω N will be computed as follows. Just by knowing the values of I at each nodes of Ω N , those of the components of the unit vector (l 1 , l 2 , l 3 ) oriented to the light source and those of the function ϕ at each node of ∂Ω N , U app will be computed as follows:

1) We start with U 0 ∈ M N +1 (R) a subsolution of S N satisfying U 0 (i, j) = ϕ(ω i,j ) for all indexes i and j such that ω i,j ∈ ∂Ω N .

2) Given n ∈ N and

In practice, U n+1 (i) can be explicitly computed as explained in paragraph 7.3.6.

3) Computations from 2) are done as long as U n+1 -U n ∞ ε and n n max . If there exists n n max such that U n+1 -U n ∞ < ε, we set U app = U n+1 for the smallest of these integer n. If this is not the case, we set U app = U nmax .

REMARK. As for the one-dimensional case:

• At step 2), let us highlight that for the same reasons as in 6.4.4, U n+1 is a subsolution if S N as soon as U n is a subsolution of S N , and it is also possible to lead the computations in parallel.

• If there exists point from Ω such that

Numerical simulations

7.5.1 --All the simulations done in this section were done in a total similar way as those performed in section 6.5 in one-dimension. Consequently, by taking the notations from 7.4.4, the hypotheses and notations adopted for our bi-dimensional simulations will be mutatis mutandis the same as those exposed in 6.5.1. Let us just explain how to initialize the subsolution U 0 from step 1). By considering

then thanks to proposition 7.1.2, we observe that we can set, for all indexes i and j satisfying ω i,j ∈ Ω N ,

Main assumptions done in part II

(A 1 ) There exists a modulus m such that, for all x, y ∈ Ω and p ∈ R n :

(A 2 ) For all x ∈ Ω, the function H(x, • ) : R n → R, p → H(x, p) is convex.

(A 3 ) There exists α < 0 and ψ ∈ C Ω with ψ |Ω ∈ C 1 (Ω) such that, for all x ∈ Ω:

(A 4 ) Ω is smooth and connected. 

General notations and conventions

We specify here the general notations and conventions used in all this document.

Abbreviations

e.g. corresponds to the abbreviation of the Latin locution exampli gratia, which means for instance.

etc. corresponds to the abbreviation of the Latin locution et cetera, which means and the rest.

i.e. corresponds to the abbreviation of the Latin locution id est, which means that is.

l.s.c. corresponds to the abbreviation of lower semi-continuous.

resp. corresponds to the abbreviation of respectively.

s.f.s. correspond to the abbreviation of shape from shading.

s.t. corresponds to the abbreviation of such that.

u.s.c. corresponds to the abbreviation of upper semi-continuous.

Quantifiers

We denote by ∀ the universal quantifier and by ∃ the existential quantifier.

Sets theory

• Symbols ∈, ⊂, ∪ and ∩ have their usual signification.

• We denote by ∅ the empty set.

• If X is a set and A, B two subsets of X, B A is the set of x ∈ X such that x ∈ B and x / ∈ B.

• If n is an integer larger than 2, X 1 , . . . , X n are n sets, and x ∈ X 1 × • • • × X n , for all integer j from 1 to n, we denote by x j or x(j) the j th component of x.

Abstract

The work presented in the first part of this thesis is the result of a collaboration between Alstom and the RATP. We present various models and algorithms that can be used to bound a real-valued function f defined on an interval I and its (d -1) first derivatives by knowing reliable bounds on f in some discrete points and global bounds on its d th derivative. These results are applied to a situation inspired by the railway world. Finally, we present various extensions of our work, and we explain how the previous models can be easily generalized to vector-valued applications defined on an interval.

The second part of this thesis is dedicated to the theoretical and numerical study of a shape from shading problem, which consists in a surface reconstitution from a black and white picture, by knowing only the shades of gray and the altitude of the surface at some points. We remind how the viscosity solutions framework allows us to obtain a well-posed formulation of this problem. Then we expose an explicit expression of an approximation scheme associated to this problem, and we propose a significant optimization of some algorithms used to solve numerically such a problem. In the future, the works presented in the two parts of the thesis could be coupled to allow a real-time guidance of flying objects like drones over a given region.

Keywords. Differentiable functions, bounded functions, certified bounds, Taylor-Lagrange formula, optimisation, real time computations, Hamilton-Jacobi equations, finite differences schemes, shape from shading.

Résumé

Les travaux présentés dans la première partie de ce manuscrit de thèse sont le fruit d'une collaboration entre Alstom et la RATP. Nous y présentons différents modèles et algorithmes permettant de borner une fonction réelle f définie sur un intervalle I et ses (d -1) premières dérivées à partir de bornes sur f en certains points et de bornes globales sur la dérivée d-ième de f . Nous appliquons cela à une situation inspirée du monde ferroviaire. Enfin, nous présentons diverses extensions de nos travaux, et nous montrons comment les résultats précédents peuvent se généraliser à des applications définies sur un intervalle I et à valeurs vectorielles. La seconde partie de ce manuscrit est consacrée à l'étude théorique et numérique d'un problème de « shape from shading », qui consiste à reconstituer une surface représentée sur une image en noir et blanc, par la seule connaissance des nuances de gris et d'altitudes en certains points. Nous y rappelons comment le cadre des solutions de viscosité permet d'obtenir une formulation mathématique bien posée de ce problème. Nous donnons ensuite une formulation explicite d'un schéma d'approximation associé à ce problème, et nous proposons une optimisation notable d'algorithmes permettant de résoudre numériquement un tel problème. À terme, l'ensemble des travaux présentés dans ce manuscrit pourraient être couplés pour permettre le guidage en temps réel de mobiles volants, tels que des drones, au dessus d'une région donnée.

Mots-clés. Fonctions différentiables, fonctions bornées, bornes certifiées, formule de Taylor-Lagrange, optimisation, calculs en temps réel, équations de Hamilton-Jacobi, schémas aux différences finies, problème de « shape from shading ».