INTRODUCTION MOTIVATION AND CONTEXT

Nowadays, numerical simulations of mechanical structures have become of great interest in industry. If we restrict to the vibration problems, performing numerical simulations can be considerably less expensive than performing experiments. Besides, they can be useful for the characterisation of various mechanical vibration processes because of the multitude of available information that can be obtained easily, quickly and efficiently. It is crucial, for the engineers and the companies, to have both numerical tools and methodologies in vibrations, allowing them to understand, predict or design the highest number of mechanical structures and systems.

Regarding the Dynamics of continuous systems, in the framework of linear elasticity theory, it is well known that the vibration analysis of a structure can be performed through the solving of an eigenvalue problem. Indeed, free vibrations of a structure are a superposition of elementary harmonic motions. The shape taken by the structure during one of these elementary motions is given by an eigenfunction [START_REF] Maia | Theoretical and Experimental Modal Analysis[END_REF]. The corresponding eigenvalue is related to the frequency with which this elementary harmonic motion occurs [2]- [START_REF] Ginsberg | Mechanical and Structural Vibrations: Theory and Applications[END_REF]. One of the objectives of Modal Analysis consists of solving these eigenvalue problems. Nowadays, all these results being well established, the interest for scientific research in the field of vibrations is motivated by industrial applications [4]- [START_REF] Riley | Mathematical Methods for Physics and Engineering[END_REF]. Many works are carried out in order to prevent the harmful consequences of bad vibrations: instabilities and failures of structures, loss of comfort and performances, human diseases. For example, in the field of rotor dynamics, an eigenvalue problem is solved to identify or predict critical speeds of rotation that can cause instabilities for rotors. In the field of machining, we can refer to the problem of quality validation for the dimensions of machined pieces (both dimensional errors and surface integrities). To ensure the stability of the workpiece and its surface during processing, we have to avoid machining conditions that lead to vibrations and oscillations [START_REF] Tlusty | Manufacturing Process and equipment[END_REF]. For instance, vibrations that occur during the tedious operation of thin-walled parts lead to deterioration of the quality of its surface finish and increase the tool wear or the acoustic noise, etc. Furthermore, if the frequency of the exciting force coincides with one of the natural frequencies of the workpiece or with one of those of the tool, a resonance phenomenon arises, leading to a massive increase of the amplitude of the oscillations. Therefore, the modal analysis must be performed for several configurations of the workpiece, due to the fact that the shape continuously changes over time because of the removal of material during machining. In the aeronautical field, during plane design, the identification of natural frequencies and natural shapes of the structure is compulsory before its commercialisation in order to ensure the safety of passengers [START_REF] Austin | Unmanned Aircraft Systems[END_REF]. The modal analysis is done for the whole plane as well as for some structural parts such as engines and blades.

A principal difficulty in carrying out computations for industrial problems arises directly when the shape of the studied structure depends on time. The challenge is to determine the natural frequencies and the corresponding modal shapes of this structure whose geometry changes over time. An analytic approach is only possible in a limited number of situations [START_REF] Meirovitch | Analytical Methods in Vibrations[END_REF]. Of course, a wide range of model-order reduction techniques based on finite-dimensional approximations can be applied In other words, by using directional derivatives, it becomes possible to estimate the natural frequencies for a given configuration without solving an eigenvalue problem for this configuration.

ORGANISATION OF THE CONTENT OF THE CHAPTERS OF THIS WORK

This PhD thesis is composed of three chapters:

• The first Chapter presents a review of the literature concerning vibration and the analysis of structures whose shapes change over time. We review the solution methodologies as well as the Shape Design Sensitivity Analysis. Then, we give a brief introduction to the theory of free oscillations and its variational form. We go on with the mathematical and numerical tools used in our methodology: the X-FEM method and the directional derivatives. We discuss the advantages of X-FEM formulation using the level-set approach. Finally, the theoretical aspects of the directional derivatives used for the development of the following Chapters are introduced.

• The second Chapter is the central part of our work, where the new approach is introduced. We recall the specificities of the changing of configuration in the framework of the configurational mechanics. One of the objectives is to present an asymptotical procedure dedicated to the directional derivatives of 1 st -and 2 nd -orders. In this Chapter, we propose to get expressions for the directional derivatives of eigenvalues and eigenshapes. We continue by establishing a reliable criterion, which permits to automatise the combined methodology based on these two tools, (the directional derivatives and X-FEM). We conclude by presenting some aspects about the choice of the 𝑞𝑞-function, function dedicated to describe the transformation from one domain to another one.

• The third Chapter deals with numerical validations of the proposed method obtained by coupling the two approaches: the directional derivatives and X-FEM. Even if the first developments done are in connection with 1D eigenvalue problem of time-dependent structures, we decide to present in this Chapter the extension to 2D problems. Several numerical tests about mainly drilled plates are exposed. Their gradual objectives are to reveal the main benefits and the possible drawbacks of the approach. For each tested case, a comparison with results obtained via a standard modal analysis is presented for the natural frequencies as well as for the eigenshapes. For the eigenfrequencies, we focus on relative errors between both methods and convergence. Concerning the eigenshapes, the accuracy of estimations is evaluated through the Modal Assistance Criterion. For the last cases, there is a transition to "large" transformations in order to demonstrate the capacities of our methodology. In the last part, we also propose to use our methodology for axially symmetric problems. After describing the theoretical adaptation to this specific type of problem, we study the applicability of the introduced technique through a cylinder that possesses an increasing internal radius. The discussion about the obtained results compared to standard methodology allows us to highlight, once again, the possibilities given by our developed approach.

We conclude by discussing future perspectives of the offered methodology in the framework of industrial applications. The prospects mainly consist of developing and extending the proposed technique by using higher-order approximations in order to increase productivity and accuracy while reducing computational costs. Besides, we also discuss the need to apply this methodology to structures with more complex shapes and in three-dimensional problems. machine-tool system is characterised by two parts: the Frequency Response Function of the workpiece, which cannot be ignored in thin-wall milling [START_REF] Dang | Efficient prediction of varying dynamic characteristics in thin-wall milling using freedom and mode reduction methods[END_REF] and the FRF of the machine-tool [START_REF] Kolluru | Coupled interaction of dynamic responses of tool and workpiece in thin wall milling[END_REF].

Generally, structural vibrations appear during the machining process between the tool and the workpiece. For instance, in literature, cutting, boring or internal turning are considered as ones of the most critical operations from the point of view of oscillations [41]- [START_REF] Cardi | Workpiece dynamic analysis and prediction during chatter of turning process[END_REF]. These vibrations or oscillations are dynamically unstable phenomena [START_REF] Tounsi | Identification of machine-tool-workpiece system dynamics[END_REF]. During the machining process, the deformations due to removed material cause large excitations in the boring bar, which in turn induce vibrations in the whole system (cutting tool, workpiece, cutting machine, etc.). Vibrations in the machine tool can cause performance degradation during machining. As a result, not only the final product does not match the expected precision and the correct shape, but also it can appear some visible roughness or asperity. The operation itself becomes noisiest, the cutting tool quickly wears out, and its surface quality deteriorates [START_REF] King | Handbook of High-Speed Machining Technology[END_REF]. The dynamic properties of the system can change depending on variations of the position of the cutting machine or of the orientation of the cutting tool [START_REF] Munoa | Active Suppression of Structural Chatter Vibrations Using Machine Drives & Accelerometers[END_REF]. They can also change due to the material removal process in case of thin wall machining [START_REF] Budak | Prediction of Workpiece Dynamics & Its Effects on Chatter Stability in Milling[END_REF]. The production costs, the productivity and the quality of a material cutting process can be primarily affected if the frequencies of the exciting force coincide with the natural frequencies of the workpiece, leading to resonance phenomena [47]- [START_REF] Oxley | The Mechanics of Machining: An Analytical Approach to Assessing Machinability[END_REF].

Vibration analysis in machining operations allows accurate evaluation and elimination of possible chatter that corresponds to self-excited vibrations due to the cutting regime, which becomes unstable. Some important factors [50]- [START_REF] Chiou | Chatter stability of a slender cutting tool in turning with tool wear effect[END_REF] that affect the amplitude of vibrations during machining processes are:

• workpiece flexibility [33], [54]-[56],

• machine rigidity,

• material properties of the tool [57],

• tool geometry such as the approaching shear angle, the rake angle, the edge radius, etc. [33], [

35], [47], [58]-[60],

• tool wear,

• cutting conditions like the spindle speed, the feed rate and the depth of cut [36]- [START_REF] Chen | A stability analysis of turning a tailstock supported flexible work-piece[END_REF], [61]- [START_REF] Dombovari | The Effect of Serration on Mechanics & Stability of Milling Cutters[END_REF].

st method: study of material removing without considering the dynamic behaviour of the workpiece

A first way for studying vibrations that occur during machining processes consists in studying the removal of material without modelling the workpiece. Therefore, the dynamic behaviour of the workpiece is not taken into account. For example, in order to predict the stability conditions of cutting, a chatter stability algorithm with general cutter geometry and irregular cutter-workpiece engagement maps are proposed in [START_REF] Budak | Prediction of Workpiece Dynamics & Its Effects on Chatter Stability in Milling[END_REF], [START_REF] Ferry | Virtual Five-Axis Flank Milling of Jet Engine Impellers -Part I: Mechanics of Five-Axis Flank Milling[END_REF] and [START_REF] Alter | Stability of Turning Processes with Actively Controlled Linear Motor Feed Drives[END_REF]. Stability lobe analysis is developed in [66]- [START_REF] Adetoro | Numerical and experimental investigation for stability lobes prediction in thin wall machining[END_REF]. In these models, as we have just said before, the evolution of the shapes of the workpiece is not introduced.

In order to predict the stability of machining processes, stability models are classified into two categories: time methods and frequency methods. In time methods, the dynamical behaviour of the process and its stability are generally studied using a time-periodic system with a single discrete time delay. The use of time-domain simulations allows considering the nonlinearities appearing in machining processes such as the loss of contact between tool and material. The main drawback of these methods lies in the fact that the obtention of stability diagrams are computationally expensive propose a generalised extended discrete-time model, which has advantages when it is linked to the theories of frequency domain stability. This model can predict the stability of thin walls, vibrations, and surface location errors. The paper [START_REF] Masmali | An Analytical Approach for Machining Thin-walled Workpieces[END_REF] suggests an analytical approach to predict the deflections for machining thin-walled workpieces.

The determination of cutting conditions is an important aspect that should be considered in order to guaranty the quality of cutting as well as to avoid the appearance of defects in the processed part. The prevention of the vibration between the tool and the workpiece in machining operations (i.e. prediction of Stability Lobe Diagrams), caused by the relative displacements between the cutting tool and workpiece, is presented in [96]- [START_REF] Merrit | Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research-1[END_REF]. The authors develop a linearized theory. According to this linearised theory, the milling dynamics is approximated as a time-invariant process in [99]-[100] but is still described by a set of differential-difference equations with time-varying periodic coefficients. In [89], the authors suggest a theoretical approach to solve the milling stability using both Fourier analysis and basic properties of the parametric transfer functions of linear periodic systems. In order to determine the limit of stability with standard techniques of control theory, they solve the stability problem using a finite order characteristic equation with constant coefficients. In [START_REF] Altintaş | Analytical Prediction of Stability Lobes in Milling[END_REF], the authors propose a new analytical method called Zero Order Approximation, which gives an analytical estimation of the stability for milling operations without any iteration [101]- [START_REF] Engin | Mechanics and Dynamics of General Milling Cutters: Part I: Helical End Mills[END_REF].

nd method: study of material removing considering the dynamic behaviour of the workpiece

Methods presented above are characterised by the fact that they focus on the removal of material without modelling the workpiece. They are devoted to the determination of stable cutting conditions in what concern machine rigidity, tool behaviour, cutting conditions. Actually, in some cases, using experimental results, it is possible to demonstrate that the dynamic behaviour of the workpiece cannot be regarded as constant and cannot be ignored too [START_REF] Adetoro | Numerical and experimental investigation for stability lobes prediction in thin wall machining[END_REF]. In these cases, natural frequencies and natural shapes of the workpiece are essential properties to identify in order to avoid some resonant behaviour. Besides, the workpiece geometry and the clamping condition(s) are crucial aspects to improve the stability of boring and to reduce the chatter. Therefore, another way to analyse vibrations during machining process is to focus on the workpiece and its changes during time.

There are mainly two approaches for taking into account the dynamic behaviour of the workpiece during the machining process. In the first one, it is assumed that the workpiece can be modelled with few degrees of freedom. Such representation of the workpiece can be obtained theoretically or experimentally. As the workpiece shape varies over time, its model has to be updated. If one works in the frequency domain, the FRF of the workpiece has to be introduced, and this FRF has to be updated since the workpiece changes over time. Through such modelling of the workpiece, several research works have been devoted to obtaining SLD in order to study chattering during the machining process [START_REF] Zhang | Prediction of Dynamic Milling Stability considering Time Variation of Deflection and Dynamic Characteristics in Thin-Walled Component Milling Process[END_REF].

The second approach for considering the dynamic behaviour of the workpiece during a machining operation consists in using a Finite Element model of the part. As the geometry of the workpiece varies over time due to the removal of material, its natural frequencies are changing [START_REF] Bravo | Stability limits of milling considering the flexibility of the workpiece and the machine[END_REF]. In addition, theoretically, the FE model of the workpiece has to be updated. However, in the literature, some works do not take into account this evolution of the dynamic behaviour of the machined part, which simplifies the study of vibrations. In this case, obtained cutting conditions do not guarantee that chattering will not occur during machining. For instance, an attempt to predict the milling process of a thin-walled plate has been carried out in [START_REF] Kline | The Prediction of Surface Accuracy in End Milling[END_REF]. The workpiece is modelled using Finite Element Analysis and considered at rest. The object of this study is to determine the surface location error for rigid or flexible workpieces, considering the flexibility of the tool. An estimation of the cutting forces is introduced to predict the deflection of the workpiece and that of the tool. For the investigated situations, the gap between predicted and measured surface location error is less than 15%. In [START_REF] Seguy | Toolpath dependent stability lobes for the milling of thin-walled parts[END_REF], the authors studied the relation between the chatter vibrations and the surface quality at the end of the milling of a thin-walled plate. It was implemented using FEA for the workpiece dynamics, but the variation of the dynamic characteristics was not taken into account. The cutting tool, the workpiece and the machine tool are often modelled; cutting forces are introduced, but there is no removal of material. The authors in [START_REF] Seguy | Surface roughness variation of thin wall milling, related to modal interactions[END_REF] have investigated the link between the chatter vibrations and surface quality evolution in the milling of a thin-wall plate using an FE model for the workpiece dynamics. However, the variation of the dynamic characteristics of the workpiece has been ignored too. Therefore, the workpiece does not vary over time. The stability of a turning operation by FEA using ANSYS software has been predicted in [START_REF] Mahdavinejad | Finite element analysis of machine and workpiece instability in turning[END_REF]. The flexibility of the machine structure, workpiece and tool has been included in this FEA model. However, the change of workpiece geometry during machining has not been considered; therefore, the corresponding stability chart does not guarantee a conservative estimate of chatter-free cutting.

To obtain a better estimation of machining conditions that takes into account the removal of material, the FE model of the workpiece can be updated. For instance, in order to obtain the evolution of natural frequencies of a large size workpiece during a milling process, a chatter analysis is performed in [39], using FEA, without a considerable computation time cost. In [START_REF] Budak | Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates[END_REF], it is also considered that the workpiece is changing; to obtain an analytic prediction of static form errors caused by milling forces, the workpiece geometry and its mesh are updated at discrete time intervals. A dynamic surface error model is developed, and the effect of cutting conditions on surface errors is formulated in [109]. In the paper [110], authors use a modal superposition method to predict the workpiece deflections. In this case, only few modes are considered in the calculation of the updated dynamic response. Both new eigenvalues and eigenvectors are calculated for each mesh modification, and the response of the thin-walled workpiece is estimated using these modes at every time step. In [41], [START_REF] Bravo | Stability limits of milling considering the flexibility of the workpiece and the machine[END_REF], [START_REF] Mañé | Stability-based spindle speed control during flexible workpiece high-speed milling[END_REF]- [START_REF] Song | Prediction of Simultaneous Dynamic Stability Limit of Time-variable Parameters System in Thinwalled Workpiece High-speed Milling Processes[END_REF], the changing of the dynamic response of flexible parts along the machining process is considered for different tool positions. In [START_REF] Campa | Chatter Avoidance in the Milling of Thin Floors with Bull-Nose End Mills: Model & Stability Diagrams[END_REF], the authors have used an FE model to predict modal parameters variation of the workpiece during the milling of thin floors with bull-nose end cutters. The model is updated at several stages of machining. It takes into account the processing location and the removal of material. It offers the opportunity to create an SLD for selecting the optimal spindle speed for better stability during machining. The tracking of the changing of dynamical properties during machining of thin-walled workpieces has been implemented using the Finite Element Method in [114]- [START_REF] Thevenot | Influence of material removal on dynamic behavior of thin walled structure in peripheral milling[END_REF]. Spindle speed correction for the machining model of the thin blade of a compressor has been performed considering continuous variation of workpiece natural frequencies in [START_REF] Bolsunovskiy | Thin-Walled Part Machining Process Parameters Optimization based on Finite-Element Modeling of Workpiece Vibrations[END_REF],. This procedure has led to lower vibration amplitudes and has permitted to achieve the required surface roughness. In case of the machining of a thin-walled structure [START_REF] Thevenot | Influence of material removal on dynamic behavior of thin walled structure in peripheral milling[END_REF], to take into account the variation of dynamic properties of the workpiece during the process, authors have added a third dimension to the stability lobes diagram, corresponding to the tool position. The 3D lobes construction has been validated by experimental machining that allows to obtain the optimal cutting conditions throughout the machining process. In [116]- [START_REF] Kersting | Simulation concept for predicting workpiece vibrations in five-axis milling[END_REF], an FE-based model of a workpiece coupled with a geometric time-based simulation for computing regenerative workpiece vibrations during a fiveaxis milling process is presented. It can be noted that the movement of the workpiece has been transformed into tool movements since only the relative movement between the tool and the workpiece is relevant. Numerical results obtained with this approach have been validated using experimental results. The modelling of the geometry variation during the pass for turning thin tubular parts with tracing chatter frequency variation is presented using FEA in [START_REF] Gerasimenko | Variable Compliance-Related Aspects of Chatter in Turning Thin-Walled Tubular Parts[END_REF]. In this case, the variation of geometry consists of the variation of the thickness of the turned piece. For a uniform variation of the thickness, it can be noted that only eigenfrequencies are changing. Eigenvectors are the same. Introducing structural modifications and using an FE model of the workpiece, the varying geometry of a plate-type workpiece is modelled in [START_REF] Budak | Prediction of Workpiece Dynamics & Its Effects on Chatter Stability in Milling[END_REF], [START_REF] Stepan | Chatter avoidance in cutting highly flexible workpieces[END_REF] and [START_REF] Tuysuz | Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining[END_REF]. In [121], three different numerical techniques for modelling free-formed flexible workpiece deflections are compared: an FE model, a particle-based approach (avoiding high computation time due to the remeshing procedure) and an oscillator-based model (shortest computation time among the three presented approaches). The dynamics of In-Process Workpiece is efficiently obtained in [START_REF] Budak | Prediction of Workpiece Dynamics & Its Effects on Chatter Stability in Milling[END_REF], [START_REF] Zhang | Matrix perturbation method for predicting dynamic modal shapes of the workpiece in highspeed machining[END_REF]- [START_REF] Song | Application of Sherman-Morrison-Woodbury formulas in instantaneous dynamic of peripheral milling for thin-walled component[END_REF] by analytical methods. It can be noted that the disadvantage of suggested techniques is a considerable time cost caused by the large size of both mass and stiffness matrices of the initial workpiece involved in the calculation. To overcome previous difficulties, the authors in [120] and [START_REF] Tuysuz | Time domain modeling of varying dynamic characteristics in thin-wall machining using perturbation and reduced order substructuring methods[END_REF] present an updated model of the IPW dynamics, which allows to calculate its FRFs efficiently. This method implies a remeshing of the machining piece in order to take into account the removal of material and uses dynamic sub-structuring approach for reducing the size of both total mass and stiffness matrices of the model.

Limitations of the existing methods in the modal analysis

As we have just seen before, in the context of machining, when the dynamic behaviour of the workpiece has to be taken into account, FEA can be used. Despite apparent advantages [START_REF] Reddy | An Introduction to Finite Element Method (3 rd Edition)[END_REF], this method has limitations for complex workpieces. Among difficulties that appear, some problems are not specific to machining. They concern the use of FEA: generation of mesh, estimation of physical properties, modelling of boundary conditions, numerical errors in calculation [126]- [START_REF] Bathe | Finite Element Procedures (1 st Edition)[END_REF]. On top of that, when the size of the FE model is large, additional problems may occur. In order to validate and improve the quality of the initial FE models, some model updating technologies have been developed [128]- [START_REF] Imregun | Correlation and updating of finite element models using vibration test data[END_REF]: since the discretisation procedure affects the accuracy of results, the mesh density often has to be refiner than usual [131]- [START_REF] Mottershead | On discretization error estimates for finite element model updating[END_REF]. It can influence the results and leads to the fact that dynamic FEA can be very time-consuming for large FE models. Moreover, solving large sets of simultaneous algebraic equations needs a large amount of memory [135]- [START_REF] Ewins | On the reliability of computational dynamic response prediction capabilities (DYNAS)[END_REF].

In addition to the previous difficulties related to the use of FEA, additional issues arise when one uses a FEM to model a workpiece during the machining process. In some situations, if the variation of dynamical properties of the machining piece is not introduced, inaccuracies between predicted results and measured ones appear. Therefore, in these cases, it becomes necessary to update the model in order to ensure consistency with experimental data [23], [START_REF] Ewins | Modal Testing, Theory, Practice, and Application[END_REF]- [START_REF] Van | Comparative Assessment of Harmonic, Random, Swept Sine & Shock Excitation Methods for the Identification of Machine Tool Structures With Rotating Spindles[END_REF]. As the geometry of the workpiece varies over time, several modal analyses of this workpiece must be performed to track the evolution of its dynamic characteristics during the machining process. Therefore, for each configuration of the workpiece where information is needed, its mesh has to be updated in order to suit its shape changes, and an eigenvalue problem has to be solved [START_REF] Huebner | The finite element method for engineers (4th Edition)[END_REF]. It can be noted that these difficulties are not specific to the machining context. They can be observed whenever a modal analysis for time-dependent structure with an FE approach is performed.

Parametrised approaches

Depending on how a structure varies, a parameterised approach can provide information on the evolution of its dynamic behaviour. This kind of approach is especially suitable for cases where the initial geometry of the piece and the considered changes of shape are simple. For example, the dynamic characteristics of a plate with a growing hole can be obtained using such a parametric approach, depending on the shape of the plate and that of the hole. The behaviour of holed plates has been widely studied since this kind of structures is of practical interest. Rectangular plates with holes serve as structural components for many industrial applications (shipbuilding, aircraft building, bridge construction, etc.). Starting from vibration analysis of plates without holes, mathematical models have been developed for understanding how holes affect systems and weaken structures.

The classical theory of the plate vibrations was pioneered in 1969, thanks to Leissa's original work [START_REF] Leissa | Vibration of plates[END_REF]. This work has systematised about 500 publications devoted to the free vibration analysis of rectangular plates. This study has been continued:

• in [142]-[143] using the superposition method, which allows to predict accurate analytical solutions for in-plane natural frequencies and mode shapes of rectangular plates,

• in [144]- [START_REF] Wu | Exact Solutions for Free-Vibration Analysis of Rectangular Plates Using Bessel Functions[END_REF] using an approach based on Bessel's function method, which provided simple, direct and highly accurate exact solutions for the free vibration analysis of a rectangular plate with different edge conditions,

• in [146]-[147] using both FE and finite difference analysis considering the current behaviour of structures. These research papers have given results that are more fundamental because they provided insight and deep understanding of the analysis of complex structures.

Based on the vibration analysis of plates without holes, numerous works in the literature have tackled the vibration analysis of holed plates In [START_REF] Monahan | Natural frequencies and mode shapes of plates with interior cutouts[END_REF], the FEM has been applied to a clamped rectangular plate with a rectangular hole, and then the numerical results have been verified by performed experiments. The authors in [151] use the FEM and Fourier series to compute both natural frequencies and modes of circular plates with multiple circular holes. These results were verified by comparing with ABAQUS results.

The classical Rayleigh-Ritz method [START_REF] Takahashi | Vibration of Rectangular Plates With Circular Holes[END_REF] has been used to calculate the natural vibration characteristics of a rectangular plate with a rectangular hole in [START_REF] Laura | Transverse vibrations of simply supported rectangular plates with rectangular cutouts[END_REF]. Classically, for a holed plate, the Rayleigh-Ritz method consists in taking into account the hole by subtracting energies of the hole domain to total energies. The effectiveness of this approach depends on the geometry of the hole. For a rectangular plate with a rectangular hole, this method can be very efficient. However, this method has some drawbacks for a rectangular plate with a circular hole because admissible functions defined for a rectangular plate have to be integrated on a circular domain [START_REF] Torabi | Vibration analysis for rectangular plate having a circular hole with point support by Rayleigh-Ritz method[END_REF]. The authors in [START_REF] Lam | Vibration analysis of plates with cut-outs by the modified Rayleigh-Ritz method[END_REF] proposed to divide the rectangular plate with a hole into several sub-areas in order to apply the modified Rayleigh-Ritz method using orthogonal polynomial functions as admissible functions. Besides, this method has been adapted to a stiffened plate in [START_REF] Lam | Vibration study on plates with stiffened openings using orthogonal polynomials and partitioning method[END_REF]. The authors in [162]- [START_REF] Eastep | Estimation of fundamental frequency of non-circular plates with free, circular cutouts[END_REF] explored a rectangular plate with a circular hole by the Point-Matching Method using the polar coordinate system.

The Independent Coordinate Coupling Method, based on the Rayleigh-Ritz method, has been proposed in [START_REF] Kwak | Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method[END_REF] to solve the free vibration problem of a rectangular plate with a rectangular or a circular hole. The authors have proposed to use global and local coordinates systems for the plate and the hole. Assuming separation of variables for admissible functions, they can express energies corresponding to the rectangular plate domain and the hole domain independently, using the transformation matrix between these both systems. This method based on the Rayleigh-Ritz method allows to avoid a complex integration in the global coordinate system. The authors in [START_REF] Sakiyama | Free vibration of orthotropic square plates with a square hole[END_REF] have illustrated the effect of the hole size on the natural vibration characteristics of an orthotropic square plate with a square hole using the Green function. In [START_REF] Joga-Rao | Vibrations of plates of irregular shapes and plates with holes[END_REF], the vibration behaviour of plates with holes has been analysed through both algebraic polynomial and bi-harmonic singular functions. The theoretical analysis of a stiffened rectangular plate with a hole has been conducted in [START_REF] Kim | Transverse vibration of stiffened rectangular plates having an inner cutout[END_REF]. Eigen sensitivity analysis has been used in [START_REF] Watkins | Characterizing the vibration of an elastically point supported rectangular plate using eigensensitivity analysis[END_REF] to determine an approximate closedform expression, which, in turn, provided an estimation of frequencies of a square isotropic supported plate. In [START_REF] Gutierrez | Fundamental frequency of transverse vibration of a clamped rectangular orthotropic plate with a free-edge hole[END_REF], it is shown that the fundamental frequency of transverse vibration of a clamped plate increases with the increase of the hole diameter due to the dynamic stiffening.

It can be concluded that for a structure varying simply, when it is possible to have a parameterised representation of its form and its changes, one can alternatively use a Rayleigh-Ritz approach or derived methods for determining vibration characteristics, instead of using an FEA. These approaches seem to be limited because they only allow to study simple structures whose shapes vary in a particular way. For more complex situations, FEM is a more general practical tool for structural vibration analysis.

Conclusion

As we saw in this part, as soon as one wants to take into account the variations of the dynamic behaviour of a time-varying structure, it becomes necessary to model it. For simple initial geometries, when considering particular shape changes, approaches based on Rayleigh-Ritz methods may be possible, avoiding the use of FEA. However, for more complex structures, FEA is usually considered. Concerning time-varying structures, in addition to the usual difficulties associated with the finite elements, two other problems arise: the eigenvalue problem must be solved for each configuration of the structure for which dynamic properties are needed. Therefore, the mesh must be updated to match the changes in the structure as well as the eigenvalue problem must be solved several times, in practice for each configuration to be tested.

Solution methods and models

Let us consider the ways to perform a modal analysis of time-dependent structures using modern technical resources. In general, these time-dependent structures are structures with moving internal or external interfaces (for example, coming from a removal of material or a crack propagation). If there is a need to evaluate the frequency response information of these structures during time, the initial configuration can be not sufficient to predict the variation of the eigenvalues and eigenvectors in a current configuration. Therefore, to consider the changes over time of the structure, if a modal analysis has to be performed for each time configuration where information is needed, an FEA seems to be the best way to achieve it. As we have just said before, two difficulties will arise: the mesh must be updated to match changes in the structure, and the eigenvalue problem has to be solved for each configuration requiring dynamical characteristics. We first present a brief literature review about the application of FEM, and we suggest a review of non-conforming mesh methods. Then, we present an overview of methods enabling to estimate the evolution of eigensolutions without solving an eigenvalue problem.

Dynamics using Finite Element Method

At first, there are many commercial FE software packages (ABAQUS, ANSYS, LS-DYNA, VPS or OPTISTRUCT/RADIOSS, etc.) which are used nowadays for the computation of both natural frequencies and shapes. For evaluate the dynamics of a structure, different model-order reduction techniques are indispensable in order to reduce time computation. In general, they can be classified, such as:

• method based on the reduction of the number of physical coordinates • identification method of frequency domain [START_REF] Van Overschee | Subspace Identification for Linear System: Theory -Implementation -Applications[END_REF].

Despite the benefit of the above methods in the reduction of time computation, they still require the update of the full FE model each time the dynamic structural characteristics change [19], [START_REF] Meshreki | Dynamics Modeling and Analysis of Thin-Walled Aerospace Structures for Fixture Design in Multiaxis Milling[END_REF].

A traditional way to study a varying structure is to remesh the structure in order to follow its changes and to conform the mesh to its current shape. In some cases, the number of degrees of freedom of the structure can be large, especially if a high level of accuracy is required due to the conforming of the mesh to the shape of the structure. A high CPU time cost per configuration can become a real drawback if the number of configurations to be computed is large. A numerical simulation of the dynamic behaviour of a time-varying structure can be computationally expensive. As mentioned before, this computation time is strongly linked to the fact that the mesh must be updated to follow modifications of the structure and to the fact that in theory, an eigenvalue problem has to be solved to determine the dynamic behaviour corresponding to a given configuration.

Considerations of the meshing constraints in case of free surfaces

This section is dedicated to the ways to overcome the difficulty of remeshing that is to say to follow the evolution of a geometry or that of a discontinuity without having to use a new mesh. The literature review is mainly devoted to the consideration of cracks [184], particularly [185] that constitutes an excellent survey about this topic. Among all the possible techniques to avoid the remeshing in crack modelling, the enrichment technique based on the Partition of Unity provided in X-FEM [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF] is the most famous one. The notion of PoU has been introduced by Melenk and Babuška and Duarte and Oden in [187]- [START_REF] Duarte | An h-p adaptive method using clouds[END_REF]. Using the PoU, the X-FEM approach can be split into two parts: the generating of the mesh without discontinuities (cracks or inclusions, etc.) and the enrichment of the FEM approximation with additional functions which model these discontinuities

[189]- [START_REF] Dolbow | Discontinuous enrichment infinite elements with a partition of unity method[END_REF]. The enrichment is characterised as extrinsic, local (associated with element nodes) and mesh-based (standard FE shape functions are used). X-FEM can be coupled with Level-Set Methods [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF] and the Fast Marching Method [193]- [START_REF] Chopp | Some Improvements of the Fast Marching Method[END_REF].

X-FEM is applied to model arbitrary moving discontinuities such as cracks [189], [START_REF] Sukumar | Extended finite element method and fast marching method for three-dimensional fatigue crack propagation[END_REF] but also to solve structures with inclusions [195]- [START_REF] Sukumar | Modeling holes and inclusions by Level Sets in the extended finiteelement method[END_REF] or with holes [197]- [START_REF] Perumal | Analysis of thin plates with holes by using exact geometrical representation within X-FEM[END_REF]. In this last case, the holes are taken into account using both a step enrichment and an integration of the weak form ignoring the part of elements inside the hole. In [START_REF] Perumal | Analysis of thin plates with holes by using exact geometrical representation within X-FEM[END_REF], the authors proposed the exact geometrical representation of the holes using LS. They presented the main points of the numerical and exact integration approaches through appropriate quadrature rules in order to decrease the error in numerical solutions.

One can conclude that the idea of the X-FEM is the same as of the standard FEM approach except that the geometrical changes should not be integrated into the meshing process. Sometimes the moving interface has a complex path, or the geometry itself is complicated to be introduced in the mesh (for example, a curvilinear interface cannot be easily captured and exactly discretised using FEM). To avoid this complexity and reduce the error coming from the discretisation process, the use of X-FEM is an appropriate way. Thanks to this method, the domain of interest can be meshed once, and then the moving interface is introduced by the LS function directly in the FEM program.

Shape design sensitivity analysis (SDSA)

The goal of the following Subsection is to study how solutions of an eigenvalue problem are evolving with changes of the domain without the need to solve the full eigenvalue problem for each configuration.

Shape sensitivity analysis

In case of a variational formulation in continuum mechanics that is adopted by [START_REF] Taroco | Shape sensitivity analysis in linear elastic fracture mechanics[END_REF], the first step is to introduce a velocity field in order to model the change of shape from the initial configuration. Furthermore, the second step is to perform an SDSA by controlling this velocity field. According to the formulation given in [START_REF] Keulen | Review of options for structural design sensitivity analysis. Part 1: Linear systems[END_REF], the sensitivity is defined as a derivative of characteristic quantities with respect to structural parameters (design variables). In order to carry out a shape sensitivity analysis, four approaches are commonly used: (a) global finite differences, (b) discrete derivatives, (c) continuum derivatives and (d) computational or automatic differentiation. The choice between these options is determined by the following criteria: accuracy, computational cost and implementation effort [START_REF] Keulen | Review of options for structural design sensitivity analysis. Part 1: Linear systems[END_REF]. If one wants to use global finite differences and computational differentiation for calculating derivatives of eigenfrequencies and associated eigenvectors, it is not necessary to derivate the governing equations of the structure. However, differentiating the system of motion equations has an essential role if discrete or continuum derivatives approaches are used. In [START_REF] Choi | Equivalence of continuum and discrete methods of shape design sensitivity analysis[END_REF], SDSA has been investigated in the three following different directions: Finite Difference Method, discrete and continuum approaches. Let us consider these three approaches in more detail.

• approximation approach: it is performed by FDM (central and forward difference methods).

The sensitivity study is done by calculating the variation of the characteristic quantities according to those design variables. It is easy to use, and it is implemented by perturbing the current design.

• discrete approach: it is represented by analytical and semi-analytical methods [202]- [START_REF] Paulino | Nodal sensitivities as error estimates in computational mechanics[END_REF].

For methods that include the discrete approach, the sensitivity study is done on the discretised form of the equations governing the behaviour of the structure. The difference between both analytical and semi-analytical methods is the manner of producing a derivative of both stiffness and mass matrices. With an analytical approach, the derivatives of the stiffness matrix are analytically calculated which is quite costly [START_REF] Silva | Velocity fields using NURBS with distortion control for structural shape optimization[END_REF] while in the semianalytical approach, they are calculated using FDM [207]- [START_REF] Lund | Shape design sensitivity analysis of eigenvalues using 'exact' numerical differentiation of finite element matrices[END_REF]. Full review of the literature devoted to calculating sensitivity derivatives for discrete structural systems was presented in [START_REF] Adelman | Sensitivity analysis of discrete structural systems[END_REF]. Accuracy analysis of the semi-analytical method for shape design variables in structures modelled by finite elements has been demonstrated in [START_REF] Barthelemy | Accuracy Analysis of the Semi-Analytical Method for Shape Sensitivity Calculation[END_REF]. In case of the calculation of the finite difference derivatives, the result depends on the chosen time step. Taking a step too rough leads to an approximation less precise. Choosing a step too small, complexities with the computations within the finite-difference approximation (round off errors) can arise. Finally, the analytical methods require deriving the discretised form of equations of motion with respect to design variables, which is not always possible [211].

• continuum approach: it uses the variational formulation of continuum mechanics [212]- [START_REF] Choi | Structural Sensitivity Analysis and Optimization 1 -Linear Systems[END_REF]. The sensitivity study about the design variables is done on the continuous formulation of the equations of motion before discretisation. In the framework of the SDSA approach, design sensitivity expressions are written in the integral form as continuum equations in terms of physical quantities [START_REF] Choi | Structural Sensitivity Analysis and Optimization 1 -Linear Systems[END_REF]. There are two ways to evaluate these design sensitivity expressions: Continuum-Continuum and Continuum-Discrete methods. The CC method provides a procedure using exact solutions, whereas the CD method implies the application of approximation methods (FEM, Boundary Element Method or mesh-free methods).

Some research works used a continuum approach of design sensitivity analysis. For example, the continuum formulation allows using a velocity field as a tool for simulating the shape change from an initial domain [START_REF] Rousselet | Design sensitivity methods in structural mechanics. III. Effects of shape variation[END_REF]. In [216], the authors formulate the material derivative approach of continuum mechanics based on a general variational principle dealing with design sensitivity analysis. The shape sensitivity analysis of an elastic solid in equilibrium with a known load system applied over its boundary was represented in [START_REF] Taroco | Shape sensitivity analysis in linear elastic fracture mechanics[END_REF]. The difference between the discrete and continuum approaches plays an essential role in shape sensitivities [217], namely, the calculation of the response of a structure to shape design variables. Comparisons between these two methods have been presented in [START_REF] Choi | Equivalence of continuum and discrete methods of shape design sensitivity analysis[END_REF], [START_REF] Haftka | Recent developments in structural sensitivity analysis[END_REF] and [START_REF] Yang | Comparison between the variational and implicit differentiation approaches to shape design sensitivities[END_REF]. In the last work, the equivalence between these two methods has been obtained under the following conditions:

• same discretisation (shape function) used for both methods,

• exact integrations (instead of numerical integrations),

• exact (not a numerical solution) solution of FE matrix equation,

• movement of the discrete mesh points must be consistent with the design parameterisation method, which is used in the continuum method [START_REF] Choi | Structural Sensitivity Analysis and Optimization 1 -Linear Systems[END_REF].

As a rule, in complex problems, instead of solving the sensitivity equations analytically, the procedure of problem discretisation is used. The so-called CC and CD approaches of SDSA calculate sensitivity using numerical methods [START_REF] Choi | Equivalence of continuum and discrete methods of shape design sensitivity analysis[END_REF]. The question of using the CD approach of SDSA in this thesis will be discussed in details in the second Chapter (section 2.1).

Sensitivity analysis in vibration

The sensitivity analysis can be carried out for vibration problems [START_REF] Choi | Structural Sensitivity Analysis and Optimization 1 -Linear Systems[END_REF]. In order to control the dynamic characteristics, it is efficient to use an optimal design of a structure with frequency constraints [31], [219]- [START_REF] Yang | Shape design sensitivity analysis with frequency response[END_REF]. Indeed, in most cases of low-frequency vibration problems, the response of the structure mainly depends on its lowest frequency and associated modal shape. As we mentioned above, the possibility of controlling the behaviour of a structure at a given frequency makes it possible to significantly improve the productivity of this structure and increase its operating time. Besides, the dependence of eigenvectors on physical variables can be used to optimise the design of the structure and minimise its sensitivity to some of these variables [START_REF] Kelley | Method of Gradients[END_REF]. Finally, in structural design, using the derivatives of eigenvalues and eigenshapes, it can be possible to optimise the modal characteristics of a structure by varying its design parameters [32], [START_REF] Choi | Structural Sensitivity Analysis and Optimization 1 -Linear Systems[END_REF].

The design sensitivity method is successfully applied to obtain the solution of the eigenvalue problems. Results obtained with discrete and continuum approaches are presented in [32], [START_REF] Barthelemy | Accuracy Analysis of the Semi-Analytical Method for Shape Sensitivity Calculation[END_REF], and [225]; those obtained with perturbation methods are presented in [226]- [START_REF] Rand | Perturbation methods, bifurcation theory and computer algebra[END_REF]. However, this process can be restricted due to some technical difficulties coming from the singularity of the characteristic matrices (mass and stiffness) which take part in the calculation of the sensitivity, through which the eigenvalues are calculated. We recall that the basis of the sensitivity analysis of a mechanical structure is the asymptotic procedure, namely, the expansion in a Taylor series of eigenvalues and eigenvectors of the initial structure [211], [START_REF] Poterasu | Approximate method to compute the eigenvalues and eigensensitivities of mechanical systems[END_REF].

Let us provide a brief description of several methods for the computation of the derivatives of eigenvectors:

• Finite Difference Method: despite its convenient implementation, it has high computational costs due to the number of degrees of freedom. It requires determining the derivatives of the stiffness and mass matrices and finding appropriate perturbation size [START_REF] Keulen | Review of options for structural design sensitivity analysis. Part 1: Linear systems[END_REF]. We can notice that the use of the finite difference method to perform a sensitivity analysis on eigenvectors implies a comparison between eigenvectors which are not computed on the same mesh.

• Modal Method: the computational efficiency of this method is limited due to the fact the derivative of an eigenvector for a structure with a perturbation is written in terms of an expansion in series of eigenvectors of the unmodified system [START_REF] Sutter | Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives[END_REF]. We can notice that the modification of an eigenvector, depending on the perturbation, can involve eigenvectors of higher-order. It can constitute a real drawback since these eigenvectors of higher order are not computed in a classical FEA.

• Modified Modal Method: this method can be in competition with Nelson's Method, presented below, for the first mode shape derivative. This technique has faster convergence in comparison with the Modal Method [231].

• Nelson's Method: the benefit of Nelson's Method (also called direct method) is to get an exact solution of the eigenvalue problem [START_REF] Trišović | About eigen sensitivity analysis of mechanical structures[END_REF]. Nelson in [232] proposed to use the information about only those eigenvectors that are to be differentiated for solving sensitivity analysis. He also assumed that the eigenvectors have M-orthogonality (mass normalised). Previously, the methods used almost all eigenvectors; thus, it involved a complicated procedure and a significant increase in computation time.

• Improved First Order Approximation: the main idea of this method presented in [233] is to use a reduced basis approximation for eigenvalues and eigenvectors of the modified structural system. The solution is built using the baseline eigenvector and the first-order approximation based on Ritz vectors. Also, it does not require much computational effort in order to obtain an acceptable quality approximations.

• Iterative Procedure: some works [231], [234]- [START_REF] Zeng | Highly Accurate Modal Method for Calculating Eigenvectors in Viscous Damping Systems[END_REF] are dedicated to an iterative procedure to calculate the eigenvectors derivative without requirements of additional both eigenvalues and eigenvectors. This methodology is easy and efficient to implement; besides, it is numerically stable.

Conclusion

Among all of the mechanical problems that the industry has to deal with, the modal analysis is one of interest, particularly in the manufacturing field. In the case of structures whose shapes change or which have time-dependent boundaries (because of cracks propagation or material removal), the identification and the monitoring of both natural frequencies and modes could bring important information of the design process. Even if experiments can provide a solution to the vibrations of this kind of structures, its achievement could be complicated in terms of both experimental devices and sensors or repeatability. Therefore, numerical simulations are often used; nevertheless, since the structure changes, the eigenvalue problem must be frequently solved; that mainly involves both CPU time and accuracy costs. As the structure changes, the accuracy is related to the continuously remeshing of its geometry in order to describe its changes adequately. The continuous use of a remeshing software and the possible increase in the number of degrees of freedom are not favourable for an easy answer to our main problem. To overcome this first constraint, the literature review demonstrates the primary feature keys and advantages of the X-FEM: the discontinuity of the free-surface can be considered using LS, which helps to enrich the displacement field of FEM using specific functions. The second main issue is the continuous solution of the eigenvalue problem at each time to monitor the eigenvalues of the changing structure. The idea is to decrease the number of iterations to do and to determine if it is possible to approximatively quantify the evolution of eigenvalue quantities as a function of varying parameters in the structure. The related literature review shows that sensitivity analysis can be the right candidate as a methodology for this particular step. Thus, based on these reviews, we suggest in this PhD thesis a methodology based on the coupling of X-FEM and CD approach in order to provide an easy way to monitor the eigenvalue problem of structures containing free-moving surfaces.

Description of the eigenvalue problem associated with free oscillations

According to the classical literature on vibrations in mechanics [181], the modal analysis is defined as the study of the dynamic characteristics of a structure. Modal analysis is required in cases when the safety of the structure has to be characterised or in order to diagnose the degradation, for example, of some components of an aircraft as turbines and blades, bridges or

• 𝑈𝑈 0 * (𝑋𝑋 0 , 𝑑𝑑)
is the displacement field at a material point P0 whose coordinates are 𝑋𝑋 0 and which is depending on time 𝑑𝑑,

• 𝜀𝜀̿ (𝑈𝑈 0 * ) is the strain tensor induced by assuming small perturbations,

• 𝜎𝜎 �(𝑈𝑈 0 * ) is the stress tensor induced by both 𝑈𝑈 0 * (𝑋𝑋 0 , 𝑑𝑑) and the material characteristics of the structure,

• 𝜕𝜕𝛺𝛺 0 𝑢𝑢 is the part of the boundary where the displacements are known; over 𝜕𝜕𝛺𝛺 0 𝑢𝑢 , boundary conditions are essential or geometrical ones (they are also called Dirichlet conditions),

• 𝜕𝜕𝛺𝛺 0 𝜎𝜎 is the part of the boundary where the stresses are known; over 𝜕𝜕𝛺𝛺 0 𝜎𝜎 , boundary conditions are natural ones (they are also called Neumann conditions),

• 𝑛𝑛 is the external normal at a point belonging to the boundary 𝜕𝜕𝛺𝛺 0 𝜎𝜎 ,

• 𝜌𝜌 is the density,

• 𝐸𝐸 � � is elasticity tensor.

Concept of the eigenvalue problem

Usually, the assumption of separation of variables is made for the displacement field 𝑈𝑈 0 * (𝑋𝑋 0 , 𝑑𝑑)

that is to say that 𝑈𝑈 0 * (𝑋𝑋 0 , 𝑑𝑑) is assumed to be a product of functions made up of independent variables (1.5): 𝑈𝑈 0 (𝑋𝑋 0 ) which is a displacement field only function of the space, and 𝑄𝑄 0 (𝑑𝑑) which is a scalar just function of time.

𝑈𝑈 0 * (𝑋𝑋 0 , 𝑑𝑑) = 𝑄𝑄 0 (𝑑𝑑)𝑈𝑈 0 (𝑋𝑋 0 ) (1.5)
Since the governing partial differential equation (1.1) is separable, the use of the separation of variables (1.5) in the system (1.1) leads to obtain:

𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 �(𝑈𝑈 0 ) = 𝜌𝜌 𝑄𝑄 ̈0 𝑄𝑄 0 𝑈𝑈 0 (1.6)
Because of the stability of the solution during the time, it is necessary that 𝑄𝑄 ̈0 = -𝜆𝜆 0 𝑄𝑄 0 where 𝜆𝜆 0 is a constant positive (or potentially null) value:

𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 �(𝑈𝑈 0 ) = -𝜌𝜌𝜆𝜆 0 𝑈𝑈 0 𝑤𝑤𝑑𝑑𝑑𝑑ℎ 𝜆𝜆 0 ≥ 0 (1.7)
In the case when a set of kinematically admissible displacement fields 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) is defined by:

𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) = �𝑊𝑊 � 0 ∈ 𝐻𝐻 1 (𝛺𝛺 0 ) 𝑊𝑊 � 0 (𝑋𝑋 0 ) = 0 ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝑢𝑢 � � (1.8)
The solution of the eigenvalue problem (𝜆𝜆 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 ) satisfies the three following relationships:

� �𝜆𝜆 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 � ∈ ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝑖𝑖 � = -𝜌𝜌𝜆𝜆 0 𝑖𝑖 𝑈𝑈 0 𝑖𝑖 𝜎𝜎 �(𝑈𝑈 0 𝑖𝑖 ) ⋅ 𝑛𝑛 = 0 ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝜎𝜎 (1.9)

Variational formulation of the eigenvalue problem

This Subsection is aimed to develop the variational formulation for an eigenvalue problem. Let (𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆 ) be an element of ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) and be the solution of the eigenvalue problem defined by relations (1.9). Let 𝑉𝑉 0 be an element of 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ). We have:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ (𝑉𝑉 0 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝛻𝛻𝑉𝑉 0 + 𝛻𝛻 𝑇𝑇 𝑉𝑉 0 2 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝛻𝛻𝑉𝑉 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Using integration by parts and the divergence theorem, we obtain:

� 𝜎𝜎 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝑉𝑉 0 𝑖𝑖,𝑗𝑗 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝑔𝑔𝑑𝑑𝑑𝑑 �𝑉𝑉 0 ⋅ 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �� 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� 𝑉𝑉 0 ⋅ 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝑉𝑉 0 ⋅ �𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ⋅ 𝑛𝑛�𝑔𝑔𝜕𝜕𝛺𝛺 0 𝜕𝜕𝛺𝛺 0 -� 𝑉𝑉 0 ⋅ 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Due to both essential (1.3) and natural (1.4) boundary conditions, we get that:

� 𝑉𝑉 0 ⋅ �𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ⋅ 𝑛𝑛�𝑔𝑔𝜕𝜕𝛺𝛺 0 𝜕𝜕𝛺𝛺 0 = 0
We conclude, using (1.7), that:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ (𝑉𝑉 0 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = -� 𝑉𝑉 0 ⋅ 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 � 𝜌𝜌𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 Therefore, if (𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆
) is an element of ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) and is the solution of the eigenvalue problem defined by the relations (1.9), we have:

We now demonstrate the reciprocity. Let (𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆 ) be an element of ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) that satisfies the relation (1.10) and let 𝑉𝑉 0 be an element of 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ). Therefore, we have:

𝜆𝜆 0 � 𝜌𝜌𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ (𝑉𝑉 0 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝛻𝛻𝑉𝑉 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝑉𝑉 0 𝑖𝑖,𝑗𝑗 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � �𝑉𝑉 0 𝑖𝑖 𝜎𝜎 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �� ,𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� 𝑉𝑉 0 𝑖𝑖 𝜎𝜎 𝑖𝑖𝑖𝑖,𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝑉𝑉 0 ⋅ �𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ⋅ 𝑛𝑛�𝑔𝑔𝜕𝜕𝛺𝛺 0 𝜕𝜕𝛺𝛺 0 -� 𝑉𝑉 0 ⋅ 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Since 𝑉𝑉 0 is an element of 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ), we have:

𝑉𝑉 0 (𝑋𝑋 0 ) = 0 ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝑢𝑢 � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ (𝑉𝑉 0 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 � 𝜌𝜌𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∀𝑉𝑉 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) (1.10)
We deduce that:

𝜆𝜆 0 � 𝜌𝜌𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝑉𝑉 0 ⋅ �𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ⋅ 𝑛𝑛�𝑔𝑔𝜕𝜕𝛺𝛺 0 𝜕𝜕𝛺𝛺 0 𝜎𝜎 -� 𝑉𝑉 0 ⋅ 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∀𝑉𝑉 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 )
Hence:

� 𝑉𝑉 0 ⋅ �𝜌𝜌𝜆𝜆 0 𝑈𝑈 0 𝜆𝜆 + 𝑔𝑔𝑑𝑑𝑑𝑑 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 �� 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� 𝑉𝑉 0 ⋅ �𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ⋅ 𝑛𝑛�𝑔𝑔𝜕𝜕𝛺𝛺 0 𝜕𝜕𝛺𝛺 0 𝜎𝜎 = 0 ∀𝑉𝑉 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) Therefore, if (𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆 ) is an element of ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ), it satisfies the relation (1.9).
Thus, the eigenvalue problem admits the following variational formulation. Let (𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆 ) be an element of ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) and be the solution of an eigenvalue problem. We have:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ (𝑉𝑉 0 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 � 𝜌𝜌 0 𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∀𝑉𝑉 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) (1.11)
Equivalently, due to the symmetry of the stress tensor, we can write the relation (1.11) in the form:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝛻𝛻𝑉𝑉 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 � 𝜌𝜌𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∀𝑉𝑉 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) (1.12) 
The last relations (1.11) and (1.12) correspond to the standard variational formulation of the eigenvalue problem that occurs in Dynamics:

�𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆 � ∈ ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ (𝑉𝑉 0 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝛻𝛻𝑉𝑉 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 � 𝜌𝜌 0 𝑉𝑉 0 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∀𝑉𝑉 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) (1.13)

Property of orthogonality between the eigenfunctions

Let consider two elements �𝜆𝜆 0 , 𝑈𝑈 0 𝜆𝜆 � and (𝜇𝜇 0 , 𝑈𝑈 0 𝜇𝜇 ) belonging to ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) which are solutions of the eigenvalue problem. The eigenfunctions 𝑈𝑈 0 𝜆𝜆 and 𝑈𝑈 0 𝜇𝜇 both satisfy the same boundary conditions. Using the relation (1.13), we can write:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 � 𝜌𝜌𝑈𝑈 0 𝜇𝜇 ⋅ 𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (1.14) � 𝜎𝜎 ��𝑈𝑈 0 𝜇𝜇 � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜇𝜇 0 � 𝜌𝜌𝑈𝑈 0 𝜆𝜆 ⋅ 𝑈𝑈 0 𝜇𝜇 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (1.15)
Consider the left side of (1.14):

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � �𝐸𝐸 � � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜆𝜆 �� ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (1.16)
The imposing of the symmetry property of the elasticity tensor leads to state:

𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1.17)
Now, the relation (1.16) using (1.17) can be rewritten as follows:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜇𝜇 �𝜀𝜀 𝑖𝑖𝑖𝑖 �𝑈𝑈 0 𝜆𝜆 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � �𝐸𝐸 � � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �� ∶ 𝜀𝜀̿ (𝑈𝑈 0 𝜆𝜆 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜇𝜇 � ∶ 𝜀𝜀̿ (𝑈𝑈 0 𝜆𝜆 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Finally:

� 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜇𝜇 � ∶ 𝜀𝜀̿ (𝑈𝑈 0 𝜆𝜆 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
We deduce that if 𝑈𝑈 0 𝜆𝜆 and 𝑈𝑈 0 𝜇𝜇 are two eigenfunctions associated with distinct eigenvalues, we can write:

� 𝜌𝜌𝑈𝑈 0 𝜆𝜆 ⋅ 𝑈𝑈 0 𝜇𝜇 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 0 � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝜀𝜀̿ �𝑈𝑈 0 𝜇𝜇 �𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜇𝜇 � ∶ 𝜀𝜀̿ (𝑈𝑈 0 𝜆𝜆 )𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 0 (1.18)
The relations (1.18) generalise, in the case of continuum media, the orthogonality relations existing in the Mechanics of Vibrations between the eigenvectors of a conservative discrete system [START_REF] Géradin | Mechanical Vibrations: Theory and Application to Structural Dynamics (3 rd Edition)[END_REF]. We note that these relations can also be written such as:

� 𝜌𝜌𝑈𝑈 0 𝜆𝜆 ⋅ 𝑈𝑈 0 𝜇𝜇 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 0 � 𝜎𝜎 ��𝑈𝑈 0 𝜆𝜆 � ∶ 𝛻𝛻𝑈𝑈 0 𝜇𝜇 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � 𝜎𝜎 ��𝑈𝑈 0 𝜇𝜇 � ∶ 𝛻𝛻𝑈𝑈 0 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 0 (1.19)
In the case of two eigenfunctions associated with the same eigenvalue, the orthogonality between these two eigenfunctions is not ensured. It can be readily shown that 𝑈𝑈 02𝑏𝑏 𝜆𝜆 is an eigenfunction associated with 𝜆𝜆 and that we have the following relation:

� 𝜌𝜌𝑈𝑈 01 𝜆𝜆 ⋅ 𝑈𝑈 02𝑏𝑏 𝜆𝜆 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 0 (1.20)
Even if it is not compulsory for solving an eigenvalue problem, a normalisation of eigenfunctions can be imposed [START_REF] Oden | Error estimator of eigenfrequencies for elasticity and shell problems[END_REF] in order to ensure the uniqueness of eigenfunction 𝑈𝑈 0 𝜆𝜆 if the multiplicity order of the associated eigenfrequency is equal to one. Moreover, we will see later that the use of normed eigenfunctions is necessary to compute directional derivatives of eigenfunctions correctly. For these both reasons, we choose a norm associated with the bilinear form related to the mass of the system:

�𝑈𝑈 0 𝜆𝜆 � 𝐹𝐹 = 1 (1.21)

Extended Finite Element Method

Since the eigenvalue problem for time-varying structures has to take into account variations of the structure, the mesh of the structure has to be updated in order to match its changes. However, a remeshing of the structure to follow its free-surface changes could be expensive in term of CPU time and number of degrees of freedom. X-FEM offers a helpful answer to overcome this previous issue. The literature review demonstrates that this method has been successfully applied to the analysis of problems characterised by discontinuities, singularities, localised deformations and complex geometries [START_REF] Fries | The extended / generalized finite element method : An overview of the method and its applications[END_REF]. In this part, we give a brief presentation of the LS method, which is used with additional degrees of freedom. Moreover, as mentioned in [START_REF] Rozycki | X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries[END_REF], the identification of both stiffness and mass matrices can be easily made, especially in the case of a lumped mass matrix. Indeed, let have a finite bar element, of length 𝐿𝐿, with only a material part over 𝛼𝛼𝐿𝐿 (Figure 12345678).

Using the standard linear interpolation functions (Figure 12345678), the elementary stiffness matrix of a "full" finite bar element is given by:

[𝐾𝐾 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 ] = � �𝑁𝑁 ,𝑋𝑋 � 𝑇𝑇 𝐸𝐸𝐸𝐸�𝑁𝑁 ,𝑋𝑋 �𝑔𝑔𝑋𝑋 𝐿𝐿 0 = ��𝑁𝑁 ,𝑋𝑋 � 𝑇𝑇 𝐸𝐸𝐸𝐸�𝑁𝑁 ,𝑋𝑋 �� 𝐿𝐿 𝑤𝑤𝑑𝑑𝑑𝑑ℎ [𝑁𝑁] = � 1 - 𝑋𝑋 𝐿𝐿 𝑋𝑋 𝐿𝐿 � ⟹ [𝐾𝐾 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 ] = 𝐸𝐸𝐸𝐸 𝐿𝐿 � 1 -1 -1 1 � (1.28)
where 𝐸𝐸 and 𝐸𝐸 are respectively the Young modulus and the cross-section area of the bar.

To obtain the stiffness matrix of the X-FEM bar element (Figure 12345678), an identical procedure must be applied, in a usual way, integrating from 0 to 𝛼𝛼𝐿𝐿 (material part). Nevertheless, it can be noticed that since the term inside the integral is constant, the elementary stiffness matrix of the X-FEM bar element, can be deduced from (1.28) just applying to the FEM stiffness matrix, the material fraction in the bar (1.29). This relation between both matrices is true for any constant strain finite element and avoid to subdivide the considered finite element into elementary triangular elements to achieve the integrations.

[𝐾𝐾 𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 ] = 𝛼𝛼[𝐾𝐾 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 ] (1.29) 
Concerning the mass matrix of a "full" finite bar element, the calculations which must be lead, are:

[𝑀𝑀 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 ] = � [𝑁𝑁] 𝑇𝑇 𝜌𝜌𝐸𝐸[𝑁𝑁]𝑔𝑔𝑋𝑋 𝐿𝐿 0 = 𝜌𝜌𝐸𝐸 � [𝑁𝑁] 𝑇𝑇 [𝑁𝑁]𝑔𝑔𝑋𝑋 𝐿𝐿 0 ⟹ [𝑀𝑀 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 ] = 𝜌𝜌𝐸𝐸𝐿𝐿 � 1 3 1 6 1 6 1 3 � (1.30)
where 𝜌𝜌 is the density of the bar material.

In some dynamic problems such as crash/impact studies but also vibrations, a lumped mass matrix is sometimes preferred to the consistent mass matrix in order to decrease the computational costs. Among all the lumping techniques, the most used one consists of summing all values from a row and copying the result on the diagonal term. In the case of the consistent mass matrix (1.30), the associated lumped mass matrix (�M � 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 �) is given by (1.31). The meaning of this lumping technique is to evenly distribute the mass of the bar element on each of its nodes.

�𝑀𝑀 � 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 � = 𝜌𝜌𝐸𝐸𝐿𝐿 2 � 1 0 0 1 � (1.31)
In the case of a finite bar element partially filled with material, this proportionality between the FEM elementary mass matrix and the X-FEM one is no more possible due to the position dependence of the term in the integral (1.32). This problem also appears if the lumping technique is applied (1.33).

[𝑀𝑀

𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 ] = � [𝑁𝑁] 𝑇𝑇 𝜌𝜌𝐸𝐸[𝑁𝑁]𝑔𝑔𝑋𝑋 𝛼𝛼𝐿𝐿 0 = 𝜌𝜌𝐸𝐸𝛼𝛼𝐿𝐿 ⎣ ⎢ ⎢ ⎡ 𝛼𝛼 2 3 -𝛼𝛼 + 1 𝛼𝛼 2 - 𝛼𝛼 2 3 𝛼𝛼 2 - 𝛼𝛼 2 3 𝛼𝛼 2 3 ⎦ ⎥ ⎥ ⎤ (1.32) �𝑀𝑀 � 𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 � = 𝜌𝜌𝐸𝐸𝛼𝛼𝐿𝐿 2 � 2 -𝛼𝛼 0 0 𝛼𝛼 � (1.33)
To overcome this lack of proportionality, the authors in [START_REF] Rozycki | X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries[END_REF] decided to evenly distribute the mass of the finite element on each of its nodes, even if there is a space in the finite element:

�𝑀𝑀 � 𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 � = 𝜌𝜌𝐸𝐸𝛼𝛼𝐿𝐿 2 � 1 0 0 1 � (1.34)
In this particular case, a proportionality between both FEM and X-FEM mass matrices is again possible (1.35). It ends to the same observations, i.e. first, this rule is valid for any constant strain element and second, there is no need to subdivide the X-FEM element to evaluate the integrations.

�𝑀𝑀 � 𝑒𝑒 𝑋𝑋-𝐹𝐹𝐹𝐹𝐹𝐹 � = 𝛼𝛼�𝑀𝑀 � 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 � (1.35)
The different comparisons between FEM and X-FEM results corresponding to structures with free internal or external boundary [START_REF] Rozycki | X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries[END_REF] demonstrates that this lumping technique applied to the X-FEM finite elements leads to good representations of these structures behaviour in transient dynamic.

In conclusion, the use of X-FEM for structures with internal or external free surfaces is advantageous in order to release the mesh constraints. It is also free from additional degrees of freedom because of the pointless of the enrichment function. A last interesting point that we can notice is the possibility to save computational time if a lumped mass matrix is foreseen for the study. In this case, even if the finite element is not entirely filled with material, both stiffness and mass X-FEM matrices can be just computed from the FEM ones knowing the percentage of material of the element.

Material derivatives for shape design sensitivity analysis

The configurational changes of the geometrical parameters in time lead to the evolution of the natural frequencies and the natural shapes. That implies the necessity to solve the eigenvalue problem several times, for each time step. The directional derivatives lead us to predict the evolution of the quantities of interest from a reference configuration to a current one. Therefore, in this way, we can estimate, for the desired time increment, the eigenvalues and eigenshapes over the deformed configuration from the eigensolution associated with the initial configuration. It allows to avoid performing multiple computations.

The main idea of this Subsection is to introduce the concept of the material derivative in continuum mechanics in order to describe the shape change of a structure [214]- [START_REF] Arora | An exposition of the material derivative approach for structural shape sensitivity analysis[END_REF]. We first define the problem of a change of structure shape. Then we briefly detail the derivatives of Gâteaux The determinant of 𝐹𝐹 � is assumed to be strictly greater than zero, because the material cannot vanish (det 𝐹𝐹 � = 0), nor cross itself (det 𝐹𝐹 � < 0).

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞) + 𝜏𝜏 3 𝑔𝑔𝑑𝑑𝑑𝑑 𝛻𝛻𝑞𝑞 = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞) + 𝑂𝑂(𝜏𝜏 3 ) (1.42)
The inverse of 𝐹𝐹 � is:

𝐹𝐹 � -1 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 0 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥 𝜏𝜏 -𝜏𝜏𝑞𝑞) = 𝐼𝐼 ̿ -𝜏𝜏𝑞𝑞 + 𝜏𝜏 2 𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞 + 𝑂𝑂(𝜏𝜏 3 ) (1.43)
The validity of this approximation of 𝐹𝐹 � -1 will be discussed later (cf. (2.15) and (2.98)).

Directional derivative in the sense of the Gâteaux derivative

In differential calculus, the Gâteaux derivative is a generalisation of the notion of directional derivative; and it is often used to formalise the functional derivative in the variational calculus and physics [START_REF] Behmardi | Introduction of Fréchet and Gâteaux Derivative[END_REF]. In [254], the author has compared the definitions of the directional derivatives in topological vector spaces. He noted that all these concepts of directional differentiability (directional derivatives in the sense of Gâteaux and Fréchet) are equivalent in the case of finitedimensional spaces and locally Lipschitz mappings.

Definition

Let be:

• 𝑋𝑋 𝑏𝑏 and 𝑌𝑌 𝑏𝑏 normed 1 Banach spaces,

• 𝑈𝑈 𝑏𝑏 an open subset of 𝑋𝑋 𝑏𝑏 ,

• 𝐹𝐹: 𝑋𝑋 𝑏𝑏 → 𝑌𝑌 𝑏𝑏 a function,

• and 𝑥𝑥 0 an element of 𝑈𝑈 𝑏𝑏 .

The function 𝐹𝐹 is said to be Gâteaux differentiable at 𝑥𝑥 0 if there exists a linear operator D𝐹𝐹(𝑥𝑥 0 ) such that for all 𝑞𝑞 belonging to 𝑋𝑋 𝑏𝑏 we have:

𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞] = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹(𝑥𝑥 0 + 𝜏𝜏𝑞𝑞) -𝐹𝐹(𝑥𝑥 0 ) 𝜏𝜏 (1.44)
Remark #1: if 𝐹𝐹 is Gâteaux differentiable, the Gâteaux derivative can be computed by:

𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞] = 𝑔𝑔𝐹𝐹(𝑥𝑥 0 + 𝜏𝜏𝑞𝑞) 𝑔𝑔𝜏𝜏 � 𝜏𝜏→0
Remark #2: in fact, the Gâteaux derivative is more general that the derivative in the Fréchet sense. If the derivative of 𝐹𝐹 in the Gateaux sense exists, there exists a linear operator 𝐷𝐷𝐹𝐹(𝑥𝑥 0 ) such that:

∀𝜀𝜀 > 0, ∀𝑞𝑞 ∈ 𝑋𝑋 𝑏𝑏 , ∃ 𝛿𝛿 > 0 ∕ 0 < 𝜏𝜏 < 𝛿𝛿 ⇒ � 𝐹𝐹(𝑥𝑥 0 + 𝜏𝜏𝑞𝑞) -𝐹𝐹(𝑥𝑥 0 ) 𝜏𝜏 -𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞]� < 𝜀𝜀
If the derivative of 𝐹𝐹 in the Fréchet sense exists, there exists a linear operator D𝐹𝐹(𝑥𝑥 0 ) such that for all 𝜀𝜀 > 0:

∃ 𝛿𝛿 > 0 ∕ ∀𝑞𝑞 ∈ 𝑋𝑋 𝑏𝑏 , 0 < 𝜏𝜏 < 𝛿𝛿 ⇒ � 𝐹𝐹(𝑥𝑥 0 + 𝜏𝜏𝑞𝑞) -𝐹𝐹(𝑥𝑥 0 ) 𝜏𝜏 -𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞]� < 𝜀𝜀 (1.45)
For derivative in the Fréchet sense, 𝛿𝛿 depends on 𝜀𝜀 only, but with the Gâteaux derivative, 𝛿𝛿 depends on 𝜀𝜀 and 𝑞𝑞. If 𝐹𝐹 is differentiable in the Fréchet sense, it means that it is also differentiable in the Gâteaux sense, but the converse is not valid.

Definition of the directional derivative

The concept of the directional derivative of a function plays an essential role in modern optimisation theory such as to get the 1 st -order optimality conditions or to perform the numerical design algorithms [254]- [START_REF] Nguyen | On necessary conditions for efficiency in directionally differentiable optimization problems[END_REF]. In the last 25 years of literature, one can find some definitions of directional derivatives as a result of the expansion of knowledge in the field of the properties of several classes of non-smooth functions.

Definition

Let 𝑋𝑋 𝑏𝑏 and 𝑌𝑌 𝑏𝑏 be normed Banach spaces, the directional derivative 𝐷𝐷𝑓𝑓 of 𝑓𝑓: 𝑋𝑋 𝑏𝑏 → 𝑌𝑌 𝑏𝑏 at 𝑥𝑥 0 ∈ 𝑈𝑈 𝑏𝑏 ⊆ 𝑋𝑋 𝑏𝑏 in the direction 𝑞𝑞 ∈ 𝑋𝑋 𝑏𝑏 is defined as follows [258]- [START_REF] Wrede | Schaum's Outline of Advanced Calculus[END_REF]:

𝐷𝐷𝑓𝑓(𝑥𝑥 0 )[𝑞𝑞] = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑓𝑓(𝑥𝑥 0 + 𝜏𝜏𝑞𝑞) -𝑓𝑓(𝑥𝑥 0 ) 𝜏𝜏 (1.46)
whenever the limit on the right part of the previous expression exists.

This definition generalises the notion of partial derivative that corresponds to the derivation with respect to one variable, other variables remaining constant. The physical sense of a directional derivative, from the point of view of configurational mechanics, is a rate of change of quantity in a given direction 𝑞𝑞.

If 𝑓𝑓 admits a derivative in the Gâteaux sense, the directional derivative in direction 𝑞𝑞 corresponds to the Gâteaux derivative applied to 𝑞𝑞.

Properties of the directional derivative

In this part, we recall some general properties of the derivatives defined above. The ordinary properties of the derivative are extended to the directional derivative, which are consequently satisfying the following [252]:

• if the function 𝐹𝐹(𝑥𝑥) can be written as 𝐹𝐹(𝑥𝑥) = 𝐹𝐹 1 (𝑥𝑥) + 𝐹𝐹 2 (𝑥𝑥) and if 𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞] , 𝐷𝐷𝐹𝐹 1 (𝑥𝑥 0 )[𝑞𝑞]
and 𝐷𝐷𝐹𝐹 2 (𝑥𝑥 0 )[𝑞𝑞] are defined, then we have linearity of the directional derivative operator at 𝑥𝑥 0 in the direction of 𝑞𝑞:

𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞] = 𝐷𝐷𝐹𝐹 1 (𝑥𝑥 0 )[𝑞𝑞] + 𝐷𝐷𝐹𝐹 2 (𝑥𝑥 0 )[𝑞𝑞] • if 𝐹𝐹(𝑥𝑥) = 𝐹𝐹 1 (𝑥𝑥) ⋅ 𝐹𝐹 2 (𝑥𝑥)
, where the operation «⋅» means any product, applying the product rule, we have:

𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞] = 𝐷𝐷𝐹𝐹 1 (𝑥𝑥 0 )[𝑞𝑞] ⋅ 𝐹𝐹 2 (𝑥𝑥 0 ) + 𝐹𝐹 1 (𝑥𝑥 0 ) ⋅ 𝐷𝐷𝐹𝐹 2 (𝑥𝑥 0 )[𝑞𝑞]
• if we define 𝐹𝐹(𝑥𝑥) = 𝐹𝐹 1 (𝐹𝐹 2 (𝑥𝑥)), using the chain rule, we get:

𝐷𝐷𝐹𝐹(𝑥𝑥 0 )[𝑞𝑞] = 𝐷𝐷𝐹𝐹 1 (𝐹𝐹 2 (𝑥𝑥 0 ))�𝐷𝐷𝐹𝐹 2 (𝑥𝑥 0 )[𝑞𝑞]�

Conclusion

De nombreuses structures au moment de leur conception ou alors pendant leur durée de vie peuvent voir leur forme changer, influant ainsi sur leurs fréquences et modes propres. Ces modifications sont de première importance dans certains domaines car elles peuvent avoir des conséquences drastiques sur la sécurité (comme par exemple la propagation de fissures sur des parties structurelles aéronautiques) ou encore sur les coûts (comme par exemple le non-respect de tolérance, l'usure prématurée des outils…). Il est donc important de pouvoir, dans le cas de structures dont les formes changent ou dont les contours dépendent du temps, identifier et/ou surveiller l'évolution des fréquences et modes propres pour avoir le plus d'informations possibles.

Même si l'expérience peut apporter une solution aux vibrations de ce type de structure, la mise en place d'essais expérimentaux peut s'avérer être complexe et coûteuse en termes de dispositifs, de capteurs ou de répétabilité. Par conséquent, les simulations numériques sont souvent utilisées car elles proposent plus de flexibilité. Néanmoins, étant donné que la structure change, le problème aux valeurs propres nécessite d'être fréquemment résolu amenant ainsi d'autres problématiques principalement positionnées sur les temps de calculs voire de précision. En effet, afin de suivre précisément l'évolution des fréquences et modes propres au cours des changements de la structure, il est nécessaire de continuellement remailler cette dernière, ce qui peut augmenter fortement le nombre de degrés de liberté du système du fait de la nécessaire conformité du maillage aux changements. La revue de la littérature nous a permis de démontrer les avantages de la méthode des éléments finis étendue (X-FEM) : elle permet, via l'utilisation de fonctions Level-Set pour décrire les discontinuités, d'enrichir le champ de déplacement et de ne plus avoir à se conformer d'un point de vue maillage à la discontinuité elle-même. Nous avons vu aussi que dans le cas de surfaces libres et pour des éléments finis à déformations constantes, l'enrichissement n'était pas nécessaire, ce qui permet de ne pas augmenter le nombre de degrés de liberté du système.

Bien que la méthode X-FEM permette de s'affranchir des contraintes de maillage, demeure encore le problème de la résolution en « continu » du problème aux valeurs propres. L'idée serait, en effet, de diminuer le nombre d'itérations à effectuer et de déterminer s'il est possible de quantifier de manière approximative l'évolution des fréquences et modes propres en fonction des paramètres variables de la structure. L'examen de la littérature nous a montré que les études portant sur l'analyse de sensibilité des formes (SDSA) proposent des méthodologies bien adaptées pour cette étape particulière, et notamment les approches CD. Pour cela nous avons rappelé la forme variationnelle d'un problème aux valeurs propres en Mécanique des Milieux Continus. Nous avons aussi donné les points clés théoriques correspondant à une transformation de domaines et nous avons vu comment les dérivées directionnelles peuvent typiquement répondre à la prédiction de quantités dans ce cadre (une fois la forme variationnelle du problème et les transformations déterminées). Bien entendu, cela signifie qu'il est nécessaire d'avoir un critère permettant de confirmer ou d'infirmer la prédiction (auquel cas le processus de maillage sera de nouveau lancé).

Le couplage des trois méthodes (forme variationnelle, X-FEM et dérivées directionnelles) fera l'objet du chapitre suivant, pour des problèmes principalement dans le plan qui traitent de structures dont les surfaces (internes ou externes) varient au cours du temps (temps fictif ou non).

CHAPTER 2: THEORETICAL DEVELOPMENTS OF THE NEW APPROACH

Ce chapitre se concentre sur l'obtention des expressions des fréquences propres et des modes propres sur une configuration courante. Après un bref aperçu des principales notations, la définition de la transformation de la configuration initiale à une configuration courante est présentée. Ensuite, nous établissons la relation entre les dérivées directionnelles définies sur la configuration initiale 𝛺𝛺 0 et les fréquences/modes propres associés à la configuration courante 𝛺𝛺 𝜏𝜏 grâce à la formulation variationnelle du problème. Nous proposons également comment l'estimation d'erreurs peut aider à construire un algorithme efficace en utilisant un critère précisant si la résolution et la prédiction à l'aide des dérivées directionnelles sont toujours satisfaisantes ou non : ce critère s'il n'est plus respecté imposera un nouveau calcul des dérivées directionnelles. Enfin et surtout, nous présentons quelques aspects sur le choix de la 𝑞𝑞-fonction (fonction utilisée pour décrire la transformation) tout en étudiant son influence sur les calculs et déterminations des dérivées directionnelles.

Introduction

Currently, one of the primary needs for structural design and shape optimisation processes is the availability of an effective method for the Design Sensitivity Analysis when the studies are using a numerical approach. As explained in section 1.1.2.3, DSA is based on three approaches [200]:

• approximation method (FDM), When using the finite difference formula to approximate the derivatives, the advantage of FDM lies in its ease of implementation. Nevertheless, this method is not successful for largescale problems in the framework of the design process due to the expensive cost of the structural analysis. Besides, the disadvantages are the poor approximation of the boundaries of complex domains and the dependence on design perturbation size.

• discrete methods (analytical or semi-analytical methods),

The discrete methods realise a sensitivity analysis in shape design of the discretised problem and reduce the shape derivatives into the differentiation of algebraic equations [202]- [START_REF] Paulino | Nodal sensitivities as error estimates in computational mechanics[END_REF]. However, the computation procedure of the analytical derivative of the stiffness matrix is quite expensive. Due to this fact, the semi-analytical methods are used to perform the discrete shape design sensitivity analysis [START_REF] Yang | Comparison between the variational and implicit differentiation approaches to shape design sensitivities[END_REF]. The disadvantage of the semi-analytical method lies in the existence of accuracy problems: in [260], the authors show that for shape design variables in structures modelled by beam, plate or solid elements, the application of this method can cause serious accuracy problems. Besides, during the approximation (the matrix equation solution phase) error multiplication is observed.

• continuum methods (CC or CD).

In the continuum methods, it is assumed that the design derivative can be issued from the variational governing equations before the model discretisation [START_REF] Kwak | A Review on Shape Optimal Design and Sensitivity Analysis[END_REF]. The distinctive feature of the continuum method from the FDM is to give an accurate design sensitivity information without uncertainty in the choice of perturbation size. Moreover, unlike the discrete methods, the design sensitivity is performed without calculations of both mass and 55 𝑞𝑞 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) ⟺ ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝑢𝑢 𝑞𝑞(𝑋𝑋 0 ) = 0 Hence:

𝑞𝑞 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) ⟺ ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝑢𝑢 𝜑𝜑 𝜏𝜏 (𝑋𝑋 0 ) = 𝑋𝑋 0 (2.5)

Second assumption

It also assumes that it cannot appear new essential (or geometrical) boundary conditions with the change of configuration:

𝜕𝜕𝛺𝛺 𝜏𝜏 𝑢𝑢 = 𝜑𝜑 𝜏𝜏 �𝜕𝜕𝛺𝛺 0 𝑢𝑢 � = 𝜕𝜕𝛺𝛺 0 𝑢𝑢 (2.6)
From the two above assumptions, it follows that:

𝑈𝑈 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) = {𝑤𝑤 ∘ 𝜑𝜑 𝜏𝜏 , 𝑤𝑤 ∈ 𝑈𝑈 𝑎𝑎𝑎𝑎 (𝛺𝛺 𝜏𝜏 )}

Last assumption

If the transformation deals with continuous media, it leaves the material unchanged (density and elasticity tensor remain to be the same in both domains) since it characterises only a change of geometry.

Gradient of transformation

The transformation gradient from 𝛺𝛺 0 to 𝛺𝛺 𝜏𝜏 is defined by:

𝐹𝐹 � = 𝛻𝛻𝑥𝑥 𝜏𝜏 = 𝐼𝐼 ̿ + 𝜏𝜏𝛻𝛻𝑞𝑞 (2.

7)

Remark: 𝛻𝛻 describes the material gradient operator (i.e. over the reference configuration).

Determinant of the gradient of transformation

The determinant of the transformation gradient is defined by:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 𝑔𝑔𝑑𝑑𝑑𝑑�𝐼𝐼 ̿ + 𝜏𝜏𝛻𝛻𝑞𝑞� (2.8)
In the case of a three-dimensional problem, its calculation leads to:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 𝜖𝜖 𝑖𝑖𝑖𝑖𝑖𝑖 �𝛿𝛿 𝑖𝑖1 + 𝜏𝜏𝑞𝑞 𝑖𝑖,1 ��𝛿𝛿 𝑖𝑖2 + 𝜏𝜏𝑞𝑞 𝑖𝑖,2 ��𝛿𝛿 𝑖𝑖3 + 𝜏𝜏𝑞𝑞 𝑖𝑖,3 �
where 𝜖𝜖 𝑖𝑖𝑖𝑖𝑖𝑖 is the Levi-Civita symbol, which values are: 

𝜖𝜖 𝑖𝑖𝑖𝑖𝑖𝑖 = � +1 𝑑𝑑𝑛𝑛 𝑑𝑑𝑔𝑔𝑠𝑠𝑑𝑑
𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 1 + 𝜏𝜏�𝑞𝑞 1,1 + 𝜏𝜏𝑞𝑞 2,2 + 𝜏𝜏𝑞𝑞 3,3 � + 𝜏𝜏 2 �𝑞𝑞 2,2 𝑞𝑞 3,3 -𝑞𝑞 3,2 𝑞𝑞 2,3 + 𝑞𝑞 3,3 𝑞𝑞 1,1 -𝑞𝑞 1,3 𝑞𝑞 3,1 + 𝑞𝑞 2,2 𝑞𝑞 1,1 -𝑞𝑞 1,2 𝑞𝑞 2,1 � + 𝜏𝜏 3 �𝑞𝑞 2,2 𝑞𝑞 3,3 𝑞𝑞 1,1 + 𝑞𝑞 3,2 𝑞𝑞 1,3 𝑞𝑞 2,1 + 𝑞𝑞 1,2 𝑞𝑞 2,3 𝑞𝑞 3,1 -𝑞𝑞 2,2 𝑞𝑞 1,3 𝑞𝑞 3,1 -𝑞𝑞 3,2 𝑞𝑞 2,3 𝑞𝑞 1,1 -𝑞𝑞 1,2 𝑞𝑞 3,3 𝑞𝑞 2,1 � = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 2 �2𝑞𝑞 2,2 𝑞𝑞 3,3 + 2𝑞𝑞 3,3 𝑞𝑞 1,1 + 2𝑞𝑞 2,2 𝑞𝑞 1,1 -2𝑞𝑞 1,2 𝑞𝑞 2,1 -2𝑞𝑞 3,2 𝑞𝑞 2,3 -2𝑞𝑞 1,3 𝑞𝑞 3,1 � +𝜏𝜏 3 𝑔𝑔𝑑𝑑𝑑𝑑 𝛻𝛻𝑞𝑞
Hence:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞) + 𝜏𝜏 3 𝑔𝑔𝑑𝑑𝑑𝑑 𝛻𝛻𝑞𝑞 = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞) + 𝑂𝑂(𝜏𝜏 3 ) (2.9)
In the case of a two-dimensional problem, the determinant calculation leads to:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 𝜖𝜖 𝑖𝑖𝑖𝑖 �𝛿𝛿 𝑖𝑖1 + 𝜏𝜏𝑞𝑞 𝑖𝑖,1 ��𝛿𝛿 𝑖𝑖2 + 𝜏𝜏𝑞𝑞 𝑖𝑖,2 �
where 𝜖𝜖 𝑖𝑖𝑖𝑖 is the Levi-Civita symbol adapted for 2D formulations. It is given by:

𝜖𝜖 𝑖𝑖𝑖𝑖 = � +1 𝑑𝑑𝑓𝑓 𝑑𝑑 = 1 𝑔𝑔𝑛𝑛𝑔𝑔 𝑗𝑗 = 2 -1 𝑑𝑑𝑓𝑓 𝑑𝑑 = 2 𝑔𝑔𝑛𝑛𝑔𝑔 𝑗𝑗 = 1 0 𝑑𝑑𝑓𝑓 𝑑𝑑 = 𝑗𝑗
Developing the determinant, we have:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 𝜖𝜖 𝑖𝑖𝑖𝑖 �𝛿𝛿 𝑖𝑖1 𝛿𝛿 𝑖𝑖2 + 𝛿𝛿 𝑖𝑖1 𝜏𝜏𝑞𝑞 𝑖𝑖,2 + 𝛿𝛿 𝑖𝑖2 𝜏𝜏𝑞𝑞 𝑖𝑖,1 + 𝜏𝜏 2 𝑞𝑞 𝑖𝑖,1 𝑞𝑞 𝑖𝑖,2 � = 1 + 𝜏𝜏�𝑞𝑞 2,2 + 𝑞𝑞 1,1 � + 𝜏𝜏 2 �𝑞𝑞 1,1 𝑞𝑞 2,2 -𝑞𝑞 2,1 𝑞𝑞 1,2 � = 1 + 𝜏𝜏�𝑞𝑞 2,2 + 𝑞𝑞 1,1 � + 𝜏𝜏 2 2 �2𝑞𝑞 1,1 𝑞𝑞 2,2 -2𝑞𝑞 2,1 𝑞𝑞 1,2 � = 1 + 𝜏𝜏�𝑞𝑞 2,2 + 𝑞𝑞 1,1 � + 𝜏𝜏 2 2 �𝑞𝑞 1,1 2 + 𝑞𝑞 2,2 2 + 2𝑞𝑞 1,1 𝑞𝑞 2,2 -2𝑞𝑞 2,1 𝑞𝑞 1,2 -𝑞𝑞 1,1 2 -𝑞𝑞 2,2 2 �
Hence:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 𝑔𝑔𝑑𝑑𝑑𝑑 𝛻𝛻𝑞𝑞 = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + 𝜏𝜏 2 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞) (2.10)
We can notice that if the 3 rd -order terms in 𝜏𝜏 are omitted in the relation (2.9) which corresponds to the 3D case, the resulting determinant of the transformation has the same form than the one coming from the 2D problem (2.10).

Obviously, for mono-dimensional problem, the determinant is given by:

𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 1 + 𝜏𝜏 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 (2.

11)

Remark: 𝑔𝑔𝑑𝑑𝑑𝑑 describes the material divergence operator (i.e. over the reference configuration).
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Gradient of inverse transformation

From relation (2.3), we have:

𝑋𝑋 0 = 𝑥𝑥 𝜏𝜏 -𝜏𝜏𝑞𝑞 (2.12)
The gradient of the inverse transformation is, therefore:

𝐹𝐹 � -1 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 0 = 𝐼𝐼 ̿ -𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑞𝑞 (2.

13)

Remark: 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 describes the spatial gradient operator (i.e. over the current configuration).

However, 𝑞𝑞 is defined in the reference configuration, which implies that:

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑞𝑞 = 𝛻𝛻𝑞𝑞 ⋅ 𝐹𝐹 � -1 (2.14)
Using (2.14) in (2.13), for small values of 𝜏𝜏, we have:

𝐹𝐹 � -1 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 0 = 𝐼𝐼 ̿ -𝜏𝜏𝛻𝛻𝑞𝑞 ⋅ 𝐹𝐹 � -1 = 𝐼𝐼 ̿ -𝜏𝜏𝛻𝛻𝑞𝑞 + 𝜏𝜏 2 𝛻𝛻𝑞𝑞 ⋅ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑞𝑞 = 𝐼𝐼 ̿ -𝜏𝜏𝛻𝛻𝑞𝑞 + 𝜏𝜏 2 𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞 + 𝑂𝑂(𝜏𝜏 3 )
If we omit the 3 rd -order terms such as for the determinant of the transformation gradient, the inverse of the gradient of the transformation is given by:

𝐹𝐹 � -1 = 𝐼𝐼 ̿ -𝜏𝜏𝛻𝛻𝑞𝑞 + 𝜏𝜏 2 𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞 (2.15)

Directional derivatives for eigenvalues and eigenshapes of the first order

In this section, we set the definition of the 1 st -order directional derivative of eigensolutions over the reference configuration 𝛺𝛺 0 . The main objective is to obtain their expressions in order to get a 1 st -order estimate of eigensolutions on the current configuration.

Directional derivatives of the first order

The solution of the eigenvalue problem, illustrated in Figure 23, for both configurations, using the definition (1.9), is written as:

�𝜆𝜆 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 � ∈ ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) 𝑤𝑤𝑑𝑑𝑑𝑑ℎ 𝑈𝑈 0 𝑖𝑖 = 𝑈𝑈 𝑖𝑖 (𝑋𝑋 0 ) �𝜆𝜆 𝜏𝜏 𝑖𝑖 , 𝑢𝑢 𝜏𝜏 𝑖𝑖 � ∈ ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 𝜏𝜏 ) 𝑤𝑤𝑑𝑑𝑑𝑑ℎ 𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑢𝑢 𝑖𝑖 (𝑥𝑥 𝜏𝜏 ) (2.16)
where 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 0 ) and 𝒰𝒰 𝑎𝑎𝑎𝑎 (𝛺𝛺 𝜏𝜏 ) are the sets of admissible functions for both considered configurations. With these definitions, the directional derivatives of eigenvalue 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] and eigenshape 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] for the 1 st -order are given by:

𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝜆𝜆 𝜏𝜏 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 𝜏𝜏 = 𝜕𝜕𝜆𝜆 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 (2.17) 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] �= 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑢𝑢 𝑖𝑖 (𝜏𝜏, 𝑋𝑋 0 ) -𝑈𝑈 𝑖𝑖 (0, 𝑋𝑋 0 ) 𝜏𝜏 � = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑢𝑢 𝜏𝜏 𝑖𝑖 -𝑈𝑈 0 𝑖𝑖 𝜏𝜏 = 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 (2.18)
The expressions (2.17) and (2.18) lead to obtain an estimation of the eigensolution for the current configuration when the directional derivatives are provided. Therefore, we have, at 1 storder:

𝜆𝜆 𝜏𝜏 𝑖𝑖 = 𝜆𝜆 0 𝑖𝑖 + 𝜏𝜏𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] + 𝑂𝑂(𝜏𝜏 2 ) (2.19) 𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 𝑂𝑂(𝜏𝜏 2 ) (2.20)
Both the above expressions represent the connection between the previous domain and the current one. They express the current eigenvalues 𝜆𝜆 𝜏𝜏 𝑖𝑖 (2.19) as well as the current eigenshapes 𝑢𝑢 𝜏𝜏 𝑖𝑖 in (2.20) from the reference configuration.

In other words, we can represent eigensolutions related to a current configuration using the solutions of the eigenvalue problem defined over the reference configuration. The directional derivatives, which are computed over the reference domain, allow to predict the eigenvalues over a current domain, defined by the scalar parameter 𝜏𝜏 and the vector field 𝑞𝑞.

Variational formulation of the eigenvalue problem on the reference configuration

We start from the variational formulation of the eigenvalue problem that has to be solved in Dynamics [START_REF] Washizu | Variational Methods in Elasticity and Plasticity[END_REF]. Let us formulate this variational formulation for the reference configuration as follows:

� 𝜎𝜎 ��𝑈𝑈 0 𝑖𝑖 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∀𝑊𝑊 � 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) 𝑔𝑔𝑛𝑛𝑔𝑔 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) = �𝑊𝑊 � 0 ∈ 𝐻𝐻 2 (𝛺𝛺 0 ) 𝑊𝑊 � 0 ⁄ = 0 ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝑢𝑢 � (2.

21)

Remark: in the variational formulation of the eigenvalue problem, we generally choose displacement fields that are kinematically admissible among the elements of vector field 𝐻𝐻 1 (𝛺𝛺 0 ). In order to be able to compute the 2 nd -order derivatives (section 2.4) of the solutions of the eigenvalue problem defined over the reference configuration, we introduce an additional condition: the kinematically admissible displacement fields are also elements of 𝐻𝐻 2 (𝛺𝛺 0 ).

Variational formulation of the eigenvalue problem on the current configuration

As for the previous problem in the reference configuration, we can write for the current one:

� 𝜎𝜎 ��𝑢𝑢 𝜏𝜏 𝑖𝑖 � ∶ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤 � 𝜏𝜏 𝑔𝑔𝛺𝛺 𝜏𝜏 𝛺𝛺 𝜏𝜏 = 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑤𝑤 � 𝜏𝜏 𝑔𝑔𝛺𝛺 𝜏𝜏 𝛺𝛺 𝜏𝜏 ∀𝑤𝑤 � 𝜏𝜏 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 𝜏𝜏 ) 𝑔𝑔𝑛𝑛𝑔𝑔 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 𝜏𝜏 ) = �𝑤𝑤 � 𝜏𝜏 ∈ 𝐻𝐻 2 (𝛺𝛺 𝜏𝜏 ) 𝑤𝑤 � 𝜏𝜏 ⁄ = 0 ∀𝑥𝑥 𝜏𝜏 ∈ 𝜕𝜕𝛺𝛺 𝜏𝜏 𝑢𝑢 � (2.22)
Since the transformation does not change the part of the boundary where displacements are imposed, we have:

59 ∀𝑤𝑤 � 𝜏𝜏 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 𝜏𝜏 ) ⟺ ∀𝑊𝑊 � 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) (2.

23)

Remark #1: as for the variational formulation of the eigenvalue problem over the reference configuration, here we also impose the additional condition allowing the computation of the directional derivatives of the 2 nd -order, i.e. kinematically admissible displacement fields are also elements of 𝐻𝐻 2 (𝛺𝛺 0 ). 

Remark

Relationship between directional derivatives of first order and eigensolutions

Since we expect to use directional derivatives to predict the evolution of the eigensolutions during a change of configuration, it is necessary to rewrite the variational formulation (2.22) by integrating over the reference configuration. This is equivalent to the change of variable (2.3). We write:

𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑢𝑢 𝜏𝜏 𝑖𝑖 (𝑥𝑥 𝜏𝜏 ) = 𝑢𝑢 𝜏𝜏 𝑖𝑖 (𝜏𝜏, 𝑋𝑋 0 ) 𝑤𝑤 � 𝜏𝜏 = 𝑤𝑤 � 𝜏𝜏 (𝑥𝑥 𝜏𝜏 ) = 𝑊𝑊 � 0 (𝑋𝑋 0 ) � 𝑤𝑤𝑑𝑑𝑑𝑑ℎ 𝑥𝑥 𝜏𝜏 = 𝑋𝑋 0 + 𝜏𝜏𝑞𝑞 (2.25)
Since the change of configuration associated with the vector field 𝑞𝑞 leaves invariant the essential boundary conditions due to the fact the vector field belongs to set of kinematically admissible field over the reference domain, we have:

𝑢𝑢 𝜏𝜏 𝑖𝑖 = 0 ∀𝑥𝑥 𝜏𝜏 ∈ 𝜕𝜕𝛺𝛺 𝜏𝜏 𝑢𝑢 ⟺ 𝑢𝑢 𝜏𝜏 𝑖𝑖 (𝜏𝜏, 𝑋𝑋 0 ) = 0 ∀𝑋𝑋 0 ∈ 𝜕𝜕𝛺𝛺 0 𝑢𝑢
Hence:

𝑢𝑢 𝜏𝜏 𝑖𝑖 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 𝜏𝜏 ) ⟺ 𝑢𝑢 𝜏𝜏 𝑖𝑖 (𝜏𝜏, 𝑋𝑋 0 ) ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) (2.26)
In the same way, we have:

𝑤𝑤 � 𝜏𝜏 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 𝜏𝜏 ) ⟺ 𝑊𝑊 � 0 (𝑋𝑋 0 ) ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) (2.27)
It is possible to rewrite the variational form of the eigenvalue problem over the current configuration using (2.26), (2.27) and (2.24):

∀𝑊𝑊 � 0 ∈ 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) � 𝜎𝜎 ��𝑢𝑢 𝜏𝜏 𝑖𝑖 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.28) 𝑤𝑤𝑑𝑑𝑑𝑑ℎ 𝜎𝜎 ��𝑢𝑢 𝜏𝜏 𝑖𝑖 � = 𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 = 𝐸𝐸 � � ∶ � �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � + �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑇𝑇 2 �
The expression (2.28) contains the integrals, which are associated with the reference configuration. Therefore, the solution of the eigenvalue problem (𝜆𝜆 𝜏𝜏 𝑖𝑖 , 𝑢𝑢 𝜏𝜏 𝑖𝑖 ) for the configuration 𝛺𝛺 𝜏𝜏 is an element of the set ℝ + × 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) and satisfies that for any element 𝑊𝑊 � 0 of 𝒰𝒰 𝑎𝑎𝑎𝑎 * (𝛺𝛺 0 ) we have:

� �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ������������������������������� 𝐴𝐴 𝜏𝜏 = 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ����������������� 𝐵𝐵 𝜏𝜏 (2.29)

Formulation of the directional derivatives of the first order

The 1 st -order directional derivatives of the variational formulation of an eigenvalue problem is given by:

𝑔𝑔𝐴𝐴 𝜏𝜏 𝑔𝑔𝜏𝜏 � 𝜏𝜏=0 = 𝑔𝑔𝐵𝐵 𝜏𝜏 𝑔𝑔𝜏𝜏 � 𝜏𝜏=0
(2.30)

Derivative of Aτ

The derivative of 𝐴𝐴 𝜏𝜏 with respect to the parameter 𝜏𝜏, contains four terms:

𝑔𝑔𝐴𝐴 𝜏𝜏 𝑔𝑔𝜏𝜏 = � �𝐸𝐸 � � ∶ �𝛻𝛻 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ��������������������������������� 𝐴𝐴 1 𝜏𝜏 + � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ��������������������������������� 𝐴𝐴 2 𝜏𝜏 + � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ��������������������������������� 𝐴𝐴 3 𝜏𝜏 + � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ������������������������������� 𝐴𝐴 4 𝜏𝜏
The calculation of the value of

𝑎𝑎𝐴𝐴 𝜏𝜏 𝑎𝑎𝜏𝜏 � 𝜏𝜏=0
is obtained by taking the limit, when 𝜏𝜏 tends to zero for the quantities �𝐴𝐴 𝑖𝑖 𝜏𝜏 � 1≤𝑖𝑖≤4 .

Calculation of 𝑨𝑨 𝟏𝟏 𝟎𝟎

The term 𝐴𝐴 1 𝜏𝜏 is:

𝐴𝐴 1 𝜏𝜏 = � �𝐸𝐸 � � ∶ �𝛻𝛻 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐴𝐴 1 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐴𝐴 1 0 = � �𝐸𝐸 � � ∶ �𝛻𝛻 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 ⋅ 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 � 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
From the relations (2.9) and (2.15), we have:

𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � = 1 ; 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 = 𝐼𝐼 ̿ (2.31)
Including both (2.18) and the above results, we can deduce that:

𝐴𝐴 1 0 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.32)

Calculation of 𝑨𝑨 𝟐𝟐 𝟎𝟎

The term 𝐴𝐴 2 𝜏𝜏 is:

𝐴𝐴 2 𝜏𝜏 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐴𝐴 2 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐴𝐴 2 0 = � �𝐸𝐸 � � ∶ �𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 � 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Due to (2.3), we first have:

𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝛻𝛻𝑢𝑢 𝑖𝑖 (𝜏𝜏, 𝑋𝑋 0 ) = 𝛻𝛻𝑈𝑈 0 𝑖𝑖 (2.33)
Moreover, using (2.15), we have:

𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 = -𝛻𝛻𝑞𝑞 (2.34)
Still introducing (2.31), we finally have:

𝐴𝐴 2 0 = -� �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.35)

Calculation of 𝑨𝑨 𝟑𝟑 𝟎𝟎

The term 𝐴𝐴 3 𝜏𝜏 is:

𝐴𝐴 3 𝜏𝜏 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐴𝐴 3 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐴𝐴 3 0 = � �𝐸𝐸 � � ∶ �𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝜕𝜕𝐹𝐹 � -1 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 � 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Using (2.31), (2.33) and (2.34), we finally have:

𝐴𝐴 3 0 = -� �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = -� ��𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ 𝛻𝛻 𝑇𝑇 𝑞𝑞� ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.36)

Calculation of 𝑨𝑨 𝟒𝟒 𝟎𝟎

The term 𝐴𝐴 4 𝜏𝜏 is:

𝐴𝐴 4 𝜏𝜏 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐴𝐴 4 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐴𝐴 4 0 = � �𝐸𝐸 � � ∶ �𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝐹𝐹 � -1 � 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Due to (2.11), we have:

𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 = 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 = 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 (2.37)
Using the above result and the relations (2.31) and (2.33), we have:

𝐴𝐴 4 0 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.38)

Final result for the limit at zero of the derivative of 𝑨𝑨 𝝉𝝉

Using the previous partial results (2.32), (2.35), (2.36) and (2.38), the limit when 𝜏𝜏 tends to zero of the derivative of 𝐴𝐴 𝜏𝜏 is:

𝑔𝑔𝐴𝐴 𝜏𝜏 𝑔𝑔𝜏𝜏 � 𝜏𝜏=0 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] � 𝑠𝑠 -𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 -�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ 𝛻𝛻 𝑇𝑇 𝑞𝑞 𝛺𝛺 0 + �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞� ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 (2.39)

Derivative of Bτ

The derivative of 𝐵𝐵 𝜏𝜏 , with respect to the parameter 𝜏𝜏, contains three terms:

𝑔𝑔𝐵𝐵 𝜏𝜏 𝑔𝑔𝜏𝜏 = 𝜕𝜕𝜆𝜆 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ����������������� 𝐵𝐵 1 𝜏𝜏 + 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ����������������� 𝐵𝐵 2 𝜏𝜏 + 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ����������������� 𝐵𝐵 3 𝜏𝜏
The calculation of the value of

𝑎𝑎𝐵𝐵 𝜏𝜏 𝑎𝑎𝜏𝜏 � 𝜏𝜏=0
is obtained by taking the limit, when 𝜏𝜏 tends to zero for the quantities �𝐵𝐵 𝑖𝑖 𝜏𝜏 � 1≤𝑖𝑖≤3

.

Calculation of 𝑩𝑩 𝟏𝟏 𝟎𝟎

The term 𝐵𝐵 1 𝜏𝜏 is:

𝐵𝐵 1 𝜏𝜏 = 𝜕𝜕𝜆𝜆 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐵𝐵 1 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐵𝐵 1 0 = 𝜕𝜕𝜆𝜆 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 � 𝜌𝜌 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Using (2.17), (2.3) and (2.33), we have:

𝐵𝐵 1 0 = 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.40)

Calculation of 𝑩𝑩 𝟐𝟐 𝟎𝟎

The term 𝐵𝐵 2 𝜏𝜏 is:

𝐵𝐵 2 𝜏𝜏 = 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐵𝐵 2 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐵𝐵 2 0 = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌 𝜕𝜕𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 ⋅ 𝑊𝑊 � 0 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
If 𝜏𝜏 tends to zero, that means the limit of nth current eigenvalue is coming back to the nth eigenvalue over the reference configuration:

𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝜆𝜆 𝜏𝜏 𝑖𝑖 = 𝜆𝜆 0 𝑖𝑖 (2.41)
Using the previous results as well as (2.18) and (2.33), we have:

𝐵𝐵 2 0 = 𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.42)

Calculation of 𝑩𝑩 𝟑𝟑 𝟎𝟎

The term 𝐵𝐵 3 𝜏𝜏 is:

𝐵𝐵 3 𝜏𝜏 = 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
The evaluation of the limit of 𝐵𝐵 3 𝜏𝜏 when 𝜏𝜏 tends to zero is given by:

𝐵𝐵 3 0 = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝜆𝜆 𝜏𝜏 𝑖𝑖 � 𝜌𝜌 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝜕𝜕𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝜕𝜕𝜏𝜏 � 𝜏𝜏=0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0
Using (2.3), (2.37) and (2.41), we finally have:

𝐵𝐵 3 0 = 𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.43)

Final result for the limit at zero of the derivative of 𝑩𝑩 𝝉𝝉

Using the previous partial results (2.40), (2.42) and (2.43), the limit when 𝜏𝜏 tends to zero of the derivative of 𝐵𝐵 𝜏𝜏 is:

𝑔𝑔𝐵𝐵 𝜏𝜏 𝑔𝑔𝜏𝜏 � 𝜏𝜏=0 = 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.44)

Directional derivatives at first order

Therefore, the equality of the relations (2.39) and (2.44) leads to the relation (2.45) which is satisfied by the directional derivatives at 1 st -order of the solutions of an eigenvalue problem.

� �𝐸𝐸 � � : �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 + �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ 𝛻𝛻 𝑇𝑇 𝑞𝑞� ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �-�𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 � 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.45)
As it has been seen in the first chapter, the relation (2.21) sets the eigenvalue problem on the initial configuration. This eigenvalue problem is defined for a self-adjoint system due to the symmetry of integrals and the nullity of boundary conditions. From this property of selfadjointness, it follows that the eigenfunctions 𝑈𝑈 0 𝑖𝑖 constitute a complete orthogonal set of infinite dimension [181] which we take as a basis for 𝒰𝒰 𝑎𝑎𝑎𝑎 (Ω 0 ). As it is stated by the expansion theorem, any element belonging to 𝒰𝒰 𝑎𝑎𝑎𝑎 (Ω 0 ) can be expanded in an absolutely and uniformly convergent series of eigenfunctions as follows:

𝑤𝑤 = � 𝑑𝑑 𝑒𝑒 𝑈𝑈 0 𝑒𝑒 ∞ 𝑒𝑒=1
It can be clearly deduced from (2.20) and (2.23) that 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] satisfies kinematical boundary conditions defined on 𝜕𝜕Ω 0 𝑢𝑢 , namely 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] belongs to 𝒰𝒰 𝑎𝑎𝑎𝑎 (Ω 0 ). Consequently, taking into account the expansion theorem for self-adjoint systems [181], the directional derivative of eigenshapes on the reference configuration can be written as:

In relation (2.46), it should be pointed out that the series ∑ 𝛼𝛼 𝑖𝑖 𝑖𝑖 𝑈𝑈 0 𝑖𝑖 converges in energy to 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞].

The expressions of the directional derivatives for eigenvalues and eigenshapes can be deduced from relation (2.45) using the expansion (2.46) of 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] and the orthogonality relations between eigenshapes on the reference configuration.

The main idea of the proposed methodology is to search out such 𝛼𝛼 𝑖𝑖 𝑖𝑖 allowing to obtain the estimation of 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] which is as accurate as possible for a given subspace 𝒰𝒰 𝑒𝑒 of 𝒰𝒰 𝑎𝑎𝑎𝑎 (Ω 0 ). The considered subspace 𝒰𝒰 𝑒𝑒 is taken as follows:

𝒰𝒰 𝑒𝑒 = 𝑠𝑠𝑝𝑝𝑔𝑔𝑛𝑛 �𝑈𝑈 0 𝑖𝑖 � 𝑖𝑖=1 𝑒𝑒
where 𝑛𝑛 is an arbitrary integer representing the number of eigenfunctions 𝑈𝑈 0 𝑖𝑖 that are considered to build the development of 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞].

The general formulation (2.45) can be rewritten in integral and discrete forms (section 2.3.6) to gain the directional derivative of eigensolutions in one-, two-dimensional and axially symmetric cases presented in the following Chapters. 

Integral and discrete forms of the directional derivatives of the first order

Since we use a CD approach, the main goal is to write integral expressions in discrete form. First, we suggest the integral form of the directional derivatives, and then we continue with their discrete form.

Integral form of the directional derivatives

Starting from the relations (2.45) and (2.46), we obtain:

� 𝛼𝛼 𝑖𝑖 𝑖𝑖 𝑖𝑖 � � �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = � �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 + �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ 𝛻𝛻 𝑇𝑇 𝑞𝑞� ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �-�𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 � 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.47)
The 1 st -order directional derivatives of the eigenvalues are obtained from (2.47) considering the orthogonal property for eigenshapes defined over the reference configuration in case when 𝑊𝑊 � 0 = 𝑈𝑈 0 𝑖𝑖 (section 1.2.3) as well as the relation (2.21) coming from the variational formulation of the eigenvalue problem. It leads to:

𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] = - 1 ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � � �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 + �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ 𝛻𝛻 𝑇𝑇 𝑞𝑞� ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �-�𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � (2.48)
In order to calculate the 1 st -order directional derivatives of the eigenshapes, a second case 𝑊𝑊 � 0 = 𝑈𝑈 0 𝑖𝑖 in (2.47) is used. Similarly to what we have described above and introducing (2.21), the directional derivatives 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] can be represented as follows:

� 𝛼𝛼 𝑖𝑖 𝑖𝑖 𝑖𝑖 � � �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � = � 𝛼𝛼 𝑖𝑖 𝑖𝑖 𝑖𝑖 �𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 �
From the expression above, if 𝑑𝑑 ≠ 𝑘𝑘 then:

𝛼𝛼 𝑖𝑖 𝑖𝑖 = 1 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 � ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � � �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 + �𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ 𝛻𝛻 𝑇𝑇 𝑞𝑞� ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �-�𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � (2.49)
In order to obtain the last coefficients 𝛼𝛼 𝑖𝑖 𝑖𝑖 (i.e. 𝑘𝑘 = 𝑑𝑑), we recall that we imposed a normalisation of the eigenfunction 𝑢𝑢 𝜏𝜏 𝑖𝑖 based on the M-orthogonality. Over the current configuration, we have:

�𝑢𝑢 𝜏𝜏 𝑖𝑖 � 𝐹𝐹 = � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑢𝑢 𝜏𝜏 𝑖𝑖 𝑔𝑔𝛺𝛺 𝛺𝛺 𝜏𝜏 = 1
Remark: in the context of the eigenvalue problem �𝜆𝜆 𝜏𝜏 , 𝑢𝑢 𝜏𝜏 𝑖𝑖 � (1.9), a normalisation is provided [START_REF] Oden | Error estimator of eigenfrequencies for elasticity and shell problems[END_REF]. It means that:

�𝑢𝑢 𝜏𝜏 𝑖𝑖 � 𝐹𝐹 = 1
where ‖⋅‖ 𝐹𝐹 is the norm associated with the bilinear form 𝑀𝑀(⋅,⋅), i.e.:

�𝑢𝑢 𝜏𝜏 𝑖𝑖 � 𝐹𝐹 = �𝑀𝑀(𝑢𝑢 𝜏𝜏 𝑖𝑖 , 𝑢𝑢 𝜏𝜏 𝑖𝑖 ) = � � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑢𝑢 𝜏𝜏 𝑖𝑖 𝑔𝑔𝛺𝛺 𝜏𝜏 𝛺𝛺 𝜏𝜏 � 1 2 �
If now we switch on the reference configuration, we obtain:

� 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑢𝑢 𝜏𝜏 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 1 (2.50)
Applying (2.10) and (2.20), the relation (2.50) can be rewritten in terms of the reference configuration at 1 st -order:

� 𝜌𝜌 �𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏�2𝑈𝑈 0 𝑖𝑖 ⋅ 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 �� 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 1 (2.51)
Using (2.46) with 𝑘𝑘 = 𝑑𝑑 and �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹 = 1 in the previous relation (2.51), the coefficient 𝛼𝛼 𝑖𝑖 𝑖𝑖 is then:

𝛼𝛼 𝑖𝑖 𝑖𝑖 = - 1 2 ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.52)

Discrete form of the directional derivatives

Now, we have to establish the discrete form of the integral form (2.45) since we plan to use FEM (or X-FEM) in our adopted methodology. First, we introduce a kinematically admissible field of displacement based on standard approximation method for one finite element (2.53) and a nodal approximation for an eigenfunction 𝑈𝑈 0 𝑖𝑖 such as (2.54).
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𝑊𝑊 � 0 = [𝑁𝑁 𝑒𝑒 ]�𝑊𝑊 � 0 � 𝑒𝑒 (2.53) 𝑈𝑈 0 𝑖𝑖 = [𝑁𝑁 𝑒𝑒 ]{𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 (2.

54)

Remark: [𝑁𝑁 𝑒𝑒 ] is a matrix containing the associated shape functions that describes the displacement field approximation of a finite element. {𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 and �𝑊𝑊 � 0 � 𝑒𝑒 are column matrices containing nodal displacements.

According to the resolution of the discrete problem presented in Section 2.1, the expression for the 1 st -order directional derivative for eigenshapes in discrete form is written in the way: 

𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] = � 𝛼𝛼 𝑖𝑖 𝑖𝑖 [𝑁𝑁 𝑒𝑒 ]{𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 𝑖𝑖 ( 2 
[𝐾𝐾 𝑒𝑒 ] = � [𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ]𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 [𝑀𝑀 𝑒𝑒 ] = � 𝜌𝜌[𝑁𝑁 𝑒𝑒 ] 𝑇𝑇 [𝑁𝑁 𝑒𝑒 ]𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 (2.

57)

Remark: [𝐵𝐵 𝑒𝑒 ] is the matrix used in Finite Element approximation for connecting nodal displacements to local strain in an element. In any point of the element 𝑑𝑑, if we use a vector to represent the strain tensor in an element due to the displacement field 𝑊𝑊 � 0 , we have:

{𝜀𝜀} = [𝐵𝐵 𝑒𝑒 ]�𝑊𝑊 � 0 � 𝑒𝑒 [𝐾𝐾 𝑒𝑒 * ] = � ([𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ′ ] + [𝐵𝐵 𝑒𝑒 ′ ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ] -[𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ]𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞)𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 [𝑀𝑀 𝑒𝑒 * ] = � 𝜌𝜌[𝑁𝑁 𝑒𝑒 ] 𝑇𝑇 [𝑁𝑁 𝑒𝑒 ]𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 (2.58)
where [𝐵𝐵 𝑒𝑒 ′ ] is the matrix that links nodal displacements �𝑊𝑊 � 0 � 𝑒𝑒 to local values of �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞�. Using the Finite Element approximation, at any point of the element 𝑑𝑑, we have:

�𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � : �𝛻𝛻𝑊𝑊 � 0 . 𝛻𝛻𝑞𝑞� = �𝑈𝑈 0 𝑖𝑖 � 𝑒𝑒 𝑇𝑇 [𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ′ ]�𝑊𝑊 � 0 � 𝑒𝑒 (2.59)
If now, a loop over all the elements belonging to the meshed structure is made, the sum of all quadratic forms of sub-domains (i.e. finite elements) is the quadratic form associated to the whole domain (structure). That allows to define the assembling of all elementary stiffness and mass matrices ending to the stiffness and mass matrices of the structure. If { * } 𝐹𝐹𝐹𝐹 is defining the displacement field vector of all degrees of freedom of the system, the relation (2.56) becomes:

�� 𝛼𝛼 𝑖𝑖 𝑖𝑖 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾] -𝜆𝜆 0 𝑖𝑖 [𝑀𝑀]� 𝑖𝑖 � �𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 = �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀] + [𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]��𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 (2.60)
Taking into account both the orthogonal property for eigenshapes defined over the reference configuration and the eigenvalue problem equation in (2.60), the discrete directional derivatives of the eigenvalues can be represented, when �𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 = �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 , as follows:

𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] = - �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 (2.61)
Using the discrete eigenvalue problem {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 , we have that:

[𝐾𝐾]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 = 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹
Introducing �𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 = {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 and the relation above in (2.60), we get α 𝑖𝑖 𝑖𝑖 in the case of 𝑘𝑘 ≠ 𝑑𝑑:

𝛼𝛼 𝑖𝑖 𝑖𝑖 = �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 �[𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 (2.62)
In order to find the last coefficient in the case of 𝑑𝑑 = 𝑘𝑘 , we start from the M-orthogonality property and the eigenvectors normalisation such as for the integral form. Thus, the relation (2.52) becomes in the discrete form:

𝛼𝛼 𝑖𝑖 𝑖𝑖 = - 1 2 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 (2.63)
Thus, the approximate expressions at 1 st -order concerning both eigenvalues (2.19) and eigenfunctions (2.20) over the current configuration using a Finite Element approximation can be deduced from the reference configuration such as:

𝜆𝜆 𝜏𝜏 𝑖𝑖 = 𝜆𝜆 0 𝑖𝑖 -𝜏𝜏 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 (2.64) 𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏 �- 1 2 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 [𝑁𝑁 𝑒𝑒 ]�𝑈𝑈 0 𝑖𝑖 � 𝑒𝑒 + � �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 �[𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 [𝑁𝑁 𝑒𝑒 ]{𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 𝑖𝑖≠𝑖𝑖 � (2.65)
The previous expression of 𝑢𝑢 𝜏𝜏 𝑖𝑖 is available at any point of the elementary domain Ω 𝑒𝑒 of the reference configuration. It is also essential to notice that all involved matrices in these last expressions can be computed once.

Directional derivatives for eigenvalues and eigenshapes of the second order

Sometimes, the linear approximation for the directional derivatives may be insufficient and can increase the computational time due to the low accuracy of predictions. Thus, this section deals with the expansion at 2 nd -order of these quantities. The computational procedure for the 2 nd -order derivatives is similar to the one of the 1 st -order.

Definition

The directional derivatives of eigenvalue 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] and eigenshape 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] for the 2 nd -order are given by:

𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 2�𝜆𝜆 𝜏𝜏 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 -𝜏𝜏𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞]� 𝜏𝜏 2 = 𝜕𝜕 2 𝜆𝜆 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 2 � 𝜏𝜏=0 (2.66) 𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] = 𝑙𝑙𝑑𝑑𝑚𝑚 𝜏𝜏→0 2�𝑢𝑢 𝜏𝜏 𝑖𝑖 -𝑈𝑈 0 𝑖𝑖 -𝜏𝜏𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝜏𝜏 2 = 𝜕𝜕 2 𝑢𝑢 𝜏𝜏 𝑖𝑖 𝜕𝜕𝜏𝜏 2 � 𝜏𝜏=0 (2.67)
The expressions (2.66) and (2.67) lead to obtain an estimation of the eigensolution for the current configuration when the directional derivatives are provided. So we have, at 2 nd -order:

𝜆𝜆 𝜏𝜏 𝑖𝑖 = 𝜆𝜆 0 𝑖𝑖 + 𝜏𝜏𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] + 𝜏𝜏 2 2 𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] + 𝑂𝑂(𝜏𝜏 3 ) (2.68) 𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 𝜏𝜏 2 2 𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 𝑂𝑂(𝜏𝜏 3 ) (2.69)

Relationship between directional derivatives of the second-order and the eigensolutions

In the previous section, we already identified the directional derivatives of 1 st -order that are in both relations (2.68) and (2.69). We start from the transformation of the eigenvalue problem over the current configuration into the reference one (2.29): it leads to the definition of both quantities 𝐴𝐴 𝜏𝜏 and 𝐵𝐵 𝜏𝜏 . The directional derivatives at 1 st -order come from the equality of the derivatives with respect to 𝜏𝜏 of 𝐴𝐴 𝜏𝜏 and 𝐵𝐵 𝜏𝜏 (2.30). The calculations end to the integral form given by (2.45).

In order to deduce the expressions for the 2 nd -order directional derivatives of eigenvalue 𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] and eigenshape 𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞], we now have to calculate both terms of the following definition: (2.73)

𝑔𝑔 2 𝐴𝐴 𝜏𝜏 𝑔𝑔𝜏𝜏 2 � 𝜏𝜏=0 = 𝑔𝑔 2 𝐵𝐵
� �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � ��𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 -�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ (𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞)� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � ��𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 -�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ (𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞)�� 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �-�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 � ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞)𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞𝑈𝑈 0 𝑖𝑖 � ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.74)
In order to simplify the expression (2.74), we can notice that:

�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 -�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ (𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞)� = �𝛻𝛻 𝑇𝑇 𝑊𝑊 � 0 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ⋅ �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞�� ∶ 𝛻𝛻𝑞𝑞 (2.75)
As well as:

�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 -�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ (𝛻𝛻𝑞𝑞 ⋅ 𝛻𝛻𝑞𝑞)� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 = �𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑊𝑊 � 0 � 𝑠𝑠 � ⋅ �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞�� ∶ 𝛻𝛻𝑞𝑞 (2.76)
Besides, we also can notice that:

(𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞 = �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞� ∶ 𝛻𝛻𝑞𝑞 (2.77)
And that:

�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� = �𝐸𝐸 � � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� (2.78)
This final relation (2.78) allows to establish two more relations: 

�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� = �𝛻𝛻 𝑇𝑇 𝑊𝑊 � 0 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑑𝑑 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 �� ∶ 𝛻𝛻𝑞𝑞 �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� = �𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑑𝑑 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 �� ∶
𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑊𝑊 � 0 � = 1 2 �-�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 � 𝐼𝐼 ̿ + 𝛻𝛻 𝑇𝑇 𝑊𝑊 � 0 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑊𝑊 � 0 � 𝑠𝑠 � (2.80) � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.81) -2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑊𝑊 � 0 � ⋅ �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞�� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � �𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 + 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� �𝛻𝛻 𝑇𝑇 𝑊𝑊 � 0 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 �� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0

Integral and discrete forms of the directional derivatives of the second-order

Using the same methodology than for the 1 st -order directional derivatives, we describe here the results obtained for integral and discrete forms for the 2 nd -order directional derivatives. In this case, we assume that:

𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] = � 𝛽𝛽 𝑖𝑖 𝑖𝑖 𝑈𝑈 0 𝑖𝑖 𝑖𝑖 (2.82)

Integral form of the directional derivatives

� 𝛽𝛽 𝑖𝑖 𝑖𝑖 𝑖𝑖 � � �𝐸𝐸 � � : (𝛻𝛻𝑈𝑈 0 𝑖𝑖 ) 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � -𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 = 2 � �𝐸𝐸 � � ∶ (𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝛻𝛻𝑞𝑞) 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝐸𝐸 � � ∶ (𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]) 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -2 � �𝐸𝐸 � � ∶ (𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]) 𝑠𝑠 � ∶ 𝛻𝛻𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑊𝑊 � 0 � ⋅ �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞�� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] ��𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 + 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� �𝛻𝛻 𝑇𝑇 𝑊𝑊 � 0 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 �� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.83)
Starting from the relations (2.81) and (2.82), we have (2.83) from which the 2 nd -order directional derivatives of the eigenvalues are still obtained considering the orthogonal property for eigenshapes over the reference configuration, the case 𝑊𝑊 � 0 = 𝑈𝑈 0 𝑖𝑖 and with the relation (2.21). It leads to:

𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] = - 2 ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + � �𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 � ⋅ �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞�� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � �𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 + 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 - 1 2 � �𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 �� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � 𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 � = 1 2 �-�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝐼𝐼 ̿ + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � (2.84)
Now if we take 𝑊𝑊 � 0 = 𝑈𝑈 0 𝑖𝑖 in (2.83) and we introduce (2.21), the 2 nd -order directional derivatives of the eigenshapes are if 𝑑𝑑 ≠ 𝑘𝑘:

𝛽𝛽 𝑖𝑖 𝑖𝑖 = 1 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 � ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 �2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -2 � �𝐸𝐸 � � ∶ �𝛻𝛻𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 + 2 � �𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 � ⋅ �𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐼𝐼 ̿ -𝛻𝛻 𝑇𝑇 𝑞𝑞�� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.85) +2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � �𝜌𝜌𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 + 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞�𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 -� �𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 ⋅ 𝛻𝛻𝑞𝑞� 𝑠𝑠 �� ∶ 𝛻𝛻𝑞𝑞 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � 𝛯𝛯�𝑈𝑈 0 𝑖𝑖 , 𝑈𝑈 0 𝑖𝑖 � = 1 2 �-�𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � ∶ 𝛻𝛻𝑈𝑈 0 𝑖𝑖 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝐼𝐼 ̿ + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � + 𝛻𝛻 𝑇𝑇 𝑈𝑈 0 𝑖𝑖 ⋅ �𝐸𝐸 � � ∶ �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 �
For the last coefficients 𝛼𝛼 𝑖𝑖 𝑖𝑖 (i.e. 𝑘𝑘 = 𝑑𝑑), we still use the normalisation of the eigenfunction 𝑈𝑈 𝜆𝜆 based on the M-orthogonality (2.50). Applying (2.10) and (2.69), the relation (2.50) can be rewritten in terms of the reference configuration at 2 nd -order:

� 𝜌𝜌 �𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏�2𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 + 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝛺𝛺 0 + 𝜏𝜏 2 �𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 + 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 2 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 + 1 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞)𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 �� 𝑔𝑔𝛺𝛺 0 = 1 (2.86)
Using (2.82) with 𝑘𝑘 = 𝑑𝑑, introducing the relation (2.51) and �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹 = 1 in the previous relation (2.86), the coefficient 𝛽𝛽 𝑖𝑖 𝑖𝑖 is then:

𝛽𝛽 𝑖𝑖 𝑖𝑖 = - 1 ∫ 𝜌𝜌𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 � 𝜌𝜌 �𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] + 2 𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑈𝑈 0 𝑖𝑖 𝛺𝛺 0 + 1 2 ((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞)𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝑔𝑔𝛺𝛺 0 (2.87)

Discrete form of the directional derivatives

The discrete form of the directional derivatives of 2 nd -order are obtained using the same methodology used for the ones of 1 st -order. In this case, we still use the approximation (2.53), (2.54) and (2.55) and we define the expression for the 2 nd -order directional derivative for eigenshapes in discrete form such as:

𝐷𝐷 2 𝑢𝑢 𝑖𝑖 [𝑞𝑞] = � 𝛽𝛽 𝑖𝑖 𝑖𝑖 [𝑁𝑁 𝑒𝑒 ]{𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 𝑖𝑖 (2.88)
For one finite element, the integral form (2.83) becomes (including the definitions (2.57),

(2.58), (2.62) and (2.63)):

�� 𝛽𝛽 𝑖𝑖 𝑖𝑖 {𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 𝑇𝑇 �[𝐾𝐾 𝑒𝑒 ] -𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 𝑒𝑒 ]� 𝑖𝑖 � �𝑊𝑊 � 0 � 𝑒𝑒 = 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝑒𝑒 𝑇𝑇 �[𝐾𝐾 𝑒𝑒 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 𝑒𝑒 * ] + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 𝑒𝑒 ]��𝑊𝑊 � 0 � 𝑒𝑒 + �𝑈𝑈 0 𝑖𝑖 � 𝑒𝑒 𝑇𝑇 �𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 𝑒𝑒 ] + 2[𝐾𝐾 𝑒𝑒 * * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 𝑒𝑒 * * ] + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 𝑒𝑒 * ]��𝑊𝑊 � 0 � 𝑒𝑒 (2.89) [𝐾𝐾 𝑒𝑒 * * ] = � �[𝐵𝐵 𝑒𝑒 ′ ] 𝑇𝑇 [𝐷𝐷] [𝐵𝐵 𝑒𝑒 ]𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 + [𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ′ ]𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 -[𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ′′ ] -[𝐵𝐵 𝑒𝑒 ′′ ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ] 𝛺𝛺 𝑒𝑒 -[𝐵𝐵 𝑒𝑒 ′ ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ′ ] - 1 2 [𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷] [𝐵𝐵 𝑒𝑒 ]((𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞)� 𝑔𝑔𝛺𝛺 𝑒𝑒 [𝑀𝑀 𝑒𝑒 * * ] = � 𝜌𝜌[𝑁𝑁 𝑒𝑒 ] 𝑇𝑇 [𝑁𝑁 𝑒𝑒 ]((𝑔𝑔𝑑𝑑𝑑𝑑𝑞𝑞) 2 -𝛻𝛻 𝑇𝑇 𝑞𝑞 ∶ 𝛻𝛻𝑞𝑞)𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 (2.90) 
where [𝐵𝐵 𝑒𝑒 ′ ] is the matrix given by the relation (2.59). Using a Finite Element approach, [𝐵𝐵 𝑒𝑒 ′′ ] is the matrix that links nodal displacements �𝑊𝑊 � 0 � 𝑒𝑒 to local values of �∇W � 0 ⋅ ∇q ⋅ ∇q�. In fact, as we have seen with the discrete form of 1 st -order Directional Derivatives, using Finite Element approximation, at any point of the element 𝑑𝑑, it is possible to write:

�𝐸𝐸 � � : �𝛻𝛻𝑈𝑈 0 𝑖𝑖 � 𝑠𝑠 � : �𝛻𝛻𝑊𝑊 � 0 . 𝛻𝛻𝑞𝑞. 𝛻𝛻𝑞𝑞� = �𝑈𝑈 0 𝑖𝑖 � 𝑒𝑒 𝑇𝑇 [𝐵𝐵 𝑒𝑒 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒 ′′ ]�𝑊𝑊 � 0 � 𝑒𝑒 (2.91) 
After the assembly of the elementary matrices, for the entire system, the relation (2.89) becomes:

�� 𝛽𝛽 𝑖𝑖 𝑖𝑖 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾] -𝜆𝜆 0 𝑖𝑖 [𝑀𝑀]� 𝑖𝑖 � �𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 = 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ] + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀]��𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 + �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀] + 2[𝐾𝐾 * * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * * ] + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 * ]��𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 (2.92) 
Taking into account both the orthogonal property for eigenshapes defined over the reference configuration and the eigenvalue problem equation in (2.92), the discrete directional derivatives of the eigenvalues can be represented, when �𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 = �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 , as follows:

𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] = - 1 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 ��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �2[𝐾𝐾 * * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * * ] + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 * ]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 + 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ] + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 � (2.93)
Using the discrete eigenvalue problem {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 , we have that :

[𝐾𝐾]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 = 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹
Introducing �𝑊𝑊 � 0 � 𝐹𝐹𝐹𝐹 = {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 and the relation above in (2.92), we get 𝛽𝛽 𝑖𝑖 𝑖𝑖 in the case of 𝑘𝑘 ≠ 𝑑𝑑:

𝛽𝛽 𝑖𝑖 𝑖𝑖 = 1 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 �[𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 ��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �2[𝐾𝐾 * * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * * ] + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 * ]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 + 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ] + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 � (2.94)
In order to find the last coefficient in the case of 𝑑𝑑 = 𝑘𝑘 , we start from the M-orthogonality property and the eigenvectors normalization such as for the integral form. Thus, the relation (2.87) becomes in the discrete form:

𝛽𝛽 𝑖𝑖 𝑖𝑖 = - 1 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 ��𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 + 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 + 1 2 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 * * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 � (2.95)
Thus, the approximate expressions at 2 nd -order concerning both eigenvalues (2.68) and eigenfunctions (2.69) over the current configuration using a Finite Element approximation can be deduced from the reference configuration such as:

𝜆𝜆 𝜏𝜏 𝑖𝑖 = 𝜆𝜆 0 𝑖𝑖 -𝜏𝜏 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 - 𝜏𝜏 2 2 1 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 ��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �2[𝐾𝐾 * * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * * ] + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 * ]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 + 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ] + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀]��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 � (2.96) 
𝑢𝑢 𝜏𝜏 𝑖𝑖 = 𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏 �- 1 2 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 [𝑁𝑁 𝑒𝑒 ]�𝑈𝑈 0 𝑖𝑖 � 𝑒𝑒 + � �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 �[𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 [𝑁𝑁 𝑒𝑒 ]{𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 𝑖𝑖≠𝑖𝑖 � + 𝜏𝜏 2 2 �- 1 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 ��𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀]�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 + 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 + 1 2 �𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 [𝑀𝑀 𝑒𝑒 * * ]�𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 � [𝑁𝑁 𝑒𝑒 ]�𝑈𝑈 0 𝑖𝑖 � 𝑒𝑒 + � 1 {𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 𝑇𝑇 �𝜆𝜆 0 𝑖𝑖 -𝜆𝜆 0 𝑖𝑖 �[𝑀𝑀]{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 ��𝑈𝑈 0 𝑖𝑖 � 𝐹𝐹𝐹𝐹 𝑇𝑇 �2[𝐾𝐾 * * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * * ] 𝑖𝑖≠𝑖𝑖 + 2𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀 * ]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 + 2�𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� 𝐹𝐹𝐹𝐹 𝑇𝑇 �[𝐾𝐾 * ] + 𝜆𝜆 0 𝑖𝑖 [𝑀𝑀 * ] + 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞][𝑀𝑀]�{𝑈𝑈 0 𝑖𝑖 } 𝐹𝐹𝐹𝐹 � [𝑁𝑁 𝑒𝑒 ]{𝑈𝑈 0 𝑖𝑖 } 𝑒𝑒 � (2.97)
The previous expression (2.97) of 𝑢𝑢 𝜏𝜏 𝑖𝑖 is available at any point of the elementary domain Ω 𝑒𝑒 of the reference configuration. In the same way, as for the 1 st -order discrete expressions, all involved matrices in these last expressions can be computed once.

Construction of an error estimator

During numerical resolutions, the appearance of errors at one or another stage is inevitable. Indeed, the error corresponds to the deviation of the approximate solution from the correct solution. The total error of the solution of the problem consists of the following three parts:

• unrecoverable error: this error is related to the approximate nature of the original content model, as well as its mathematical description. In particular, the origin of this error lies in the impossibility of taking into account all the factors required in the investigation of the phenomenon. The error, as mentioned above, can also arise due to the incorrect initial parameters of the mathematical model, which can somehow deviate, from the practical measurements.

• discretisation error: this error is related to the method for solving the formulated mathematical problem (usually made up of partial differential equations). It appears as a result of the discretisation of this problem. During the development of a numerical method, it is possible to trace such errors and bring them to an arbitrarily small level [239], [START_REF] Prudhomme | Estimation des erreurs de discrétisation pour des problèmes de mécanique[END_REF].

• error due to numerical stability: underlined error arises due to performing the computations with the finite arithmetic precision. This type of error can accumulate and dominate in the process of calculations, for example, in ill-conditioned problems.

Note that one can be interested either in estimating the error of the full solution of the problem or in estimating the error associated with some specific quantities (e.g., eigenvalues).

The error estimation is divided into two basic classes: a priori and a posteriori. These two types of approaches are intended for different purposes:

• the main objective of a priori estimates is to describe the asymptotic behaviour of the discretisation errors. A priori error estimator provides an estimate and bounds for the solution error ‖𝑢𝑢 ℎ -𝑢𝑢‖ in a specified norm (or in a functional of interest) without available finite element solution 𝑢𝑢 ℎ .

• concerning the a posteriori estimates, this type of estimates typically provides the certification of the computed solution, i.e. an upper bound of the associated error ‖𝑢𝑢 ℎ * -𝑢𝑢 ℎ ‖. Such error estimation is for the particular solution 𝑢𝑢 ℎ * , which has to be provided beforehand (in contrast to the a priori error estimation) The a posteriori estimates require additional computational costs but usually are much more effective than the a priori ones. Besides, for the finite element method, they enable adaptive mesh refinement by indicating the regions that need more excellent resolution due to locally high error. One can repeat the mesh refinement process until a desired error tolerance is reached.

One of the main objectives of this thesis is to introduce an error estimator, which allows to characterise the quality of the approximated solution 𝑢𝑢 ℎ * of the eigenvalue problem without solving the full problem for each current configuration.

Thanks to this limit established about the parameter 𝜏𝜏, the use of the estimations (2.19), (2.20) (in the case of 1 st -order directional derivatives) and (2.68), (2.69) (in the case of the 2 nd -order directional derivatives) of the solutions of the eigenvalue problem are ensured from the reference (or initial) configuration to the configuration defined by 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 (i.e. the estimations (2.19), (2.20), (2.68) and (2.69) remain valid over the interval [0 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 ]).

Estimation of the error of solving the eigenvalue problem

Even if the limit of the parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 ensures the validity of the use of directional derivatives, their approximation at 1 st -or 2 nd -order can lead to introduce errors regarding the value of 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 . It is then essential to be able to control the committed error while solving the eigenvalue problem with the directional derivatives. To do it, we start from the variational formulation of the eigenvalue problem over the current configuration and represent this error of resolution in the integral form:

�𝐼𝐼 1 -𝜆𝜆 𝜏𝜏 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 𝐼𝐼 2 � ∞ (2.100)
where 𝐼𝐼 1 and 𝐼𝐼 2 are two integrals defined by (2.101) and (2.102).

𝐼𝐼 1 = � �𝐸𝐸 � � ∶ �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 � ∶ �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 �𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.101) 
𝐼𝐼 2 = � 𝜌𝜌𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 0 𝛺𝛺 0 (2.102) 
After discretisation, the resolution error can be written under the next relation, where 𝜆𝜆 𝜏𝜏 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 and 𝑢𝑢 𝜏𝜏 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 are respectively, the estimated eigenvalue and eigenshape:

��[𝐾𝐾] 𝑒𝑒𝑠𝑠𝑡𝑡 -𝜆𝜆 𝜏𝜏 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 [𝑀𝑀] 𝑒𝑒𝑠𝑠𝑡𝑡 �𝑢𝑢 𝜏𝜏 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 � ∞ (2.103) 
The discretisation of the two integral forms (2.101) and (2.102) leads to the definition of the elementary estimated stiffness and mass matrices [𝐾𝐾 𝑒𝑒 ] 𝑒𝑒𝑠𝑠𝑡𝑡 (2.104) and [𝑀𝑀 𝑒𝑒 ] 𝑒𝑒𝑠𝑠𝑡𝑡 (2.106). Once their evaluation is completed, the assembly over all finite elements gives the stiffness and mass matrices involved in (2.103).

[𝐾𝐾 𝑒𝑒 ] 𝑒𝑒𝑠𝑠𝑡𝑡 = � [𝐵𝐵 𝑒𝑒𝑒𝑒𝑛𝑛 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒𝑒𝑒𝑛𝑛 ]𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 (2.104)
As we have done for (2.59) and (2.91), using Finite Element methodology, at any point of the elementary domain Ω 𝑒𝑒 of the reference configuration, we can write:

�𝐸𝐸 � � : �𝛻𝛻𝑢𝑢 𝜏𝜏 𝑖𝑖 ⋅ 𝐹𝐹 � -1 � 𝑠𝑠 �: �𝛻𝛻𝑊𝑊 � 0 ⋅ 𝐹𝐹 � -1 � = �𝑢𝑢 𝜏𝜏 𝑖𝑖 � 𝑒𝑒 𝑇𝑇 [𝐵𝐵 𝑒𝑒𝑒𝑒𝑛𝑛 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒𝑒𝑒𝑛𝑛 ]�𝑊𝑊 � 0 � 𝑒𝑒 (2.105) 
The integration of [𝐵𝐵 𝑒𝑒𝑒𝑒𝑛𝑛 ] 𝑇𝑇 [𝐷𝐷][𝐵𝐵 𝑒𝑒𝑒𝑒𝑛𝑛 ]𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � over the elementary domain Ω 𝑒𝑒 leads to the expression of [𝐾𝐾 𝑒𝑒 ] 𝑒𝑒𝑠𝑠𝑡𝑡 . By proceeding in the same way, we obtain the expression of [𝑀𝑀 𝑒𝑒 ] 𝑒𝑒𝑠𝑠𝑡𝑡 :

[𝑀𝑀 𝑒𝑒 ] 𝑒𝑒𝑠𝑠𝑡𝑡 = � 𝜌𝜌[𝑁𝑁 𝑒𝑒 ] 𝑇𝑇 [𝑁𝑁 𝑒𝑒 ]𝑔𝑔𝑑𝑑𝑑𝑑𝐹𝐹 � 𝑔𝑔𝛺𝛺 𝑒𝑒 𝛺𝛺 𝑒𝑒 (2.106)

Description of the algorithm for finding the error estimator

In a numerical simulation concerning the change of shape between an initial configuration to a final configuration (Figure 2345), the procedure to calculate all intermediate steps is incremental and follows the algorithm depicted in Figure 23456.

At one intermediate state, we assume that the previous step is solved, which leads to define the current starting state as a reference configuration. From this point, it is possible to evaluate the eigenvalues using (2.61) if the directional derivatives are at 1 st -order or using (2.93) if they are written at 2 nd -order. Of course, we can calculate the eigenvectors via the relations (2.55), (2.62) and (2.63) if the numerical simulations involved directional derivatives at 1 st -order or via the relations (2.88), (2.94) and (2.95) if 2 nd -order are used. The final calculation that can also be done concerns the parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 according to the transformation (2.99).

With the previous quantities, it is now possible to estimate the eigensolutions �𝜆𝜆 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖 , 𝑢𝑢 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖 � (using (2.64) and (2.65) for 1 st -order directional derivatives and (2.96) and (2.97) for the 2 nd -order one). We also compute the elementary estimated stiffness and mass matrices using (2.104) and (2.106), which allows to find the global estimated stiffness and mass matrices after an assembly over all finite elements of the structure.

All quantities are ready to evaluate the error estimation (2.107). We choose the maximal normvalue between N-estimated (where N is representing the number of eigenvalues).

𝑚𝑚𝑔𝑔𝑥𝑥 𝑖𝑖=1,𝑁𝑁 � ��⌊𝐾𝐾⌋ 𝑒𝑒𝑠𝑠𝑡𝑡 -𝜆𝜆 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖 (𝜏𝜏)[𝑀𝑀] 𝑒𝑒𝑠𝑠𝑡𝑡 �𝑢𝑢 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖 � ∞ �⌊𝐾𝐾⌋ 𝑒𝑒𝑠𝑠𝑡𝑡 𝑢𝑢 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖 � ∞ � ≤ 𝜀𝜀 (2.107) 
If the relative error (2.107) is correct (i.e. less than a fixed tolerance 𝜀𝜀), the current position of the interface is updated, leading to the determination of the corresponding q-function. Then we can also update the associated Level Set as well as all the variables and the mesh. If now the relation (2.107) is not valid, we use a dichotomy identification to find the right parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 .

Mesh quality

As we mentioned in the introduction of this Subsection, the mesh quality can affect the accuracy of the numerical simulations, especially when FEM is involved. In the framework of our approach, when the shape of the considered structure is changed, the effective mesh (Figure 234567) is also modified due to the 𝑞𝑞-function (2.2). Since in this work, we only consider triangular meshes (with constant strain, the accuracy of such discretisation directly depends on the sizes and shapes of the finite triangular elements. A mathematical relationship between mesh geometry and the different types of errors is presented in [START_REF] Shewchuk | What is a good linear element? Interpolation, conditioning, and quality measures[END_REF].

At 𝑋𝑋 0 = 0, the boundary conditions for the 𝑞𝑞-function is 𝑞𝑞(0) = 0 due to the clamping. Since the length of the bar is decreasing, at its other end, we can state that the boundary condition for 𝑋𝑋 0 = 𝐿𝐿 is 𝑞𝑞(𝐿𝐿) = -1. Indeed, the change of configuration is given by (2.2) and the regulating parameter 𝜏𝜏 is compulsory a positive real (2.2.1): hence, the 𝑞𝑞-function at the end of the bar must be negative.

To describe the 𝑞𝑞-function, the best approximation we found is polynomial because it can suit most engineering problems and it is easy to implement in programs. As we mentioned in 2.2.1, the 𝑞𝑞-function must be sufficiently smooth. It means that it must be a function, which has continuous derivatives up to some desired order over the considered domain. In our case, the 𝑞𝑞-function has to be smooth over the restricted interval [ 0 𝐿𝐿 ]. Of course, it is difficult to predict the order of smoothness of the 𝑞𝑞 -function since it is directly linked to the type of problem itself. As the calculation of directional derivatives (1 st -or 2 nd -order) involves some extra matrices (2.58) and

(2.90) using the gradient or the divergence of the 𝑞𝑞-function, its order of smoothness must be at least three.

Remark: it must be a 3 rd -order polynomial because we have, at the chosen bounds, two conditions for the 𝑞𝑞-function and two other conditions for its 1 st -derivative.

However, all the integral and discrete forms we developed in 2.3 and 2.4 are related to Taylorseries expansion at 1 st -or 2 nd -order. So increasing the order of smoothness from three to five appears to be the minimum choice order for the 𝑞𝑞-function due to the introduction of two extra conditions about its 2 nd -derivatives at the chosen bound.

Regarding the additional conditions about the 1 st -and 2 nd -derivatives of the 𝑞𝑞 -function, we choose to impose a null value to them, at the chosen bounds, i.e.: 𝑞𝑞′(0) = 0 ; 𝑞𝑞 ′ (𝐿𝐿) = 0 𝑞𝑞 ′′ (0) = 0 ; 𝑞𝑞 ′′ (𝐿𝐿) = 0 Most of the time, Chebyshev polynomial is preferred in case of approximations due to the fact it is made up of orthogonal polynomials. It also offers a minimum error property and allows better condition number of the matrix belonging to the equation system to be solved. For these reasons, we decide to use a 5 th -order Chebyshev polynomial to express the 𝑞𝑞-function. Now, to define the 𝑞𝑞-function, we have to notice that the calculation of directional derivatives involves the calculation of extra matrices (2.58) and (2.90): hence, the time computation can be reduced if we only focus on the part of the structure that is really changing. In our case, most of the bar (from 𝑋𝑋 0 = 0 𝑚𝑚 to 𝑋𝑋 0 = 1.8 𝑚𝑚) remains identical to the reference configuration. That means we can extend the boundary conditions 𝑞𝑞(0) = 𝑞𝑞 ′ (0) = 0 until 𝑋𝑋 0 = 1.8 𝑚𝑚.

Remark: of course, this expansion of boundary conditions implies that the bar cannot reduce more than 0.2 𝑚𝑚.

Using a Chebyshev polynomial of 5 th -order (2.112), the boundary conditions 𝑞𝑞(0) = 0, 𝑞𝑞(𝐿𝐿) = -1 and (2.109), the solved equations system leads to the definition of 𝑞𝑞-function (Figure 2345678910). The new position of the points belonging to the bar after 𝜏𝜏 = 0.2 𝑠𝑠 is shown in Figure 2-11. We can observe that there is a problem because the transformation does not remain bijective: it is mainly because of the smoothing order of the 𝑞𝑞 -function, which obviously influences its 1 stderivative. Indeed, the criterion about 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 (2.99) dedicated to ensure this bijectivity, gives that: Hence, the 𝑞𝑞-function defined using the bound 𝑋𝑋 0 = 1.8 𝑚𝑚 is only valid for calculations in the range 𝜏𝜏 ∈ [0 𝑠𝑠 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 = 0.11 𝑠𝑠].

⎩ ⎪ ⎨ ⎪ ⎧ 𝑞𝑞(𝑋𝑋 0 ) = 0 𝑑𝑑𝑓𝑓 𝑋𝑋 0 ≤ 1.8 𝑞𝑞(𝑋𝑋 0 ) = � 𝑔𝑔 𝑖𝑖 𝑇𝑇 �𝑑𝑑, 2(𝑋𝑋 0 -2.0) 1.8 -2.0 � 5 𝑖𝑖=0 𝑑𝑑𝑓𝑓 1.8 < 𝑋𝑋 0 < 2.0 𝑞𝑞(𝑋𝑋 0 ) = -1 𝑑𝑑𝑓𝑓 𝑋𝑋 0 = 2.0 𝑤𝑤𝑑𝑑𝑑𝑑ℎ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 𝑔𝑔 0 ≅ -0.
𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 = 1 ‖𝛻𝛻𝑞𝑞‖ ∞ = 1 
If we want to ensure the bijectivity of the transformation, the bound 𝑋𝑋 0 = 1.8 𝑚𝑚 for the 𝑞𝑞function definition should be moved from 𝑋𝑋 0 = 1.8 𝑚𝑚 to 𝑋𝑋 0 = 1.43 𝑚𝑚 . Since the Chebyshev polynomial of 5 th -order is defined on the interval [-1,1], we only have to adapt the function (2.113) to the new bounds (Figure 23456789101112). The calculation of the criterion (2.99) leads to 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 ≅ 0.3 𝑠𝑠. Hence using this new 𝑞𝑞-function, it is possible to ensure the transformation and its bijectivity over the interval [ 0 𝑠𝑠 0.2 𝑠𝑠 ] (Figure 2345678910111213).

To conclude this example, the easiest way to identify the 𝑞𝑞-function for a given transformation is to use the available information instead of trying to guaranty the bijectivity over a given initial interval. Indeed, the criterion (2.99) is helpful to indicate the corresponding interval ensuring the bijectivity of the found 𝑞𝑞-function. It is also easy to implement it and use it in computing programs even if its main disadvantage is that two steps are required to end the transformation instead of one.

• the relations (2.19) and (2.20) which define, respectively, the eigensolutions in the current configuration,

• the behaviour law (1.2) in the case of a bar made up of a material possessing a Young's modulus 𝐸𝐸,

we have:

� 𝐸𝐸𝐸𝐸�1 -𝜏𝜏𝑞𝑞 ′ + 𝜏𝜏 2 𝑞𝑞 ′ 2 � 2 (1 + 𝜏𝜏𝑞𝑞 ′ )�𝑈𝑈 0 𝑖𝑖 ′ + 𝜏𝜏𝐷𝐷 ′ 𝑢𝑢 𝑖𝑖 [𝑞𝑞]� ⋅ 𝑊𝑊 � 0 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = �𝜆𝜆 0 𝑖𝑖 + 𝜏𝜏𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞]� � 𝜌𝜌𝐸𝐸(1 + 𝜏𝜏𝑞𝑞 ′ )�𝑈𝑈 0 𝑖𝑖 + 𝜏𝜏𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞]� ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 (2.

116)

Remark: since the problem is one-dimensional, •′ indicates the unique derivative with respect to the reference configuration (i.e. 𝑋𝑋 0 ) of the quantity •.

The 1 st -order directional derivative of the variational formulation (2.116) is given by (2.30), hence:

� 𝐸𝐸𝐸𝐸𝐷𝐷 ′ 𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐸𝐸𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = ��𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 �𝑞𝑞 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 (2.117) 
Let us consider the right-hand side of the (2.116) separately. Using integration by parts, it leads to:

��𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 �𝑞𝑞 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = ��𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 �𝑞𝑞� 0 𝐿𝐿 -� 𝑞𝑞�𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′′ ⋅ 𝑊𝑊 � 0 ′ + 𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 ′ �𝑔𝑔𝑋𝑋 0 𝐿𝐿 0
If we introduce the boundary conditions for the 𝑞𝑞-function (𝑞𝑞(0) = 0 and 𝑞𝑞(𝐿𝐿) = 1), it ends, for this right-hand part, to:

��𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 �𝑞𝑞 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = 𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 � 𝑋𝑋 0 =𝐿𝐿 -� 𝑞𝑞 ��𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 � ⋅ 𝑊𝑊 � 0 ′ + 𝑈𝑈 0 𝑖𝑖 ′ �𝐸𝐸𝐸𝐸 ⋅ 𝑊𝑊 � 0 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸 ⋅ 𝑊𝑊 � 0 �� 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 (2.118)
For the left-hand side, we introduce the relation (2.46); hence:

� 𝐸𝐸𝐸𝐸𝐷𝐷 ′ 𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 -𝜆𝜆 0 𝑖𝑖 � 𝜌𝜌𝐸𝐸𝐷𝐷𝑢𝑢 𝑖𝑖 [𝑞𝑞] ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = � 𝛼𝛼 𝑖𝑖 𝑖𝑖 ���𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ -𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 �𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 � 𝑖𝑖 -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 (2.119)
Finally, the relation (2.117) becomes due to (2.118) and (2.119):

� 𝛼𝛼 𝑖𝑖 𝑖𝑖 ���𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ -𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 �𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 � 𝑖𝑖 -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = 𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑊𝑊 � 0 ′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑊𝑊 � 0 � 𝑋𝑋 0 =𝐿𝐿 -� 𝑞𝑞 ��𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 � ⋅ 𝑊𝑊 � 0 ′ + 𝑈𝑈 0 𝑖𝑖 ′ �𝐸𝐸𝐸𝐸 ⋅ 𝑊𝑊 � 0 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸 ⋅ 𝑊𝑊 � 0 �� 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 (2.120)
Applying in (2.120), the boundary conditions 𝑈𝑈 0 𝑖𝑖 (0) = 0 and 𝑈𝑈 0 𝑖𝑖 ′ (𝐿𝐿) = 0, and assuming that 𝑊𝑊 � 0 = 𝑈𝑈 0 𝑖𝑖 , we obtain:

� 𝛼𝛼 𝑖𝑖 𝑖𝑖 ���𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′ ⋅ 𝑈𝑈 0 𝑖𝑖 ′ -𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 �𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 � 𝑖𝑖 -𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝑋𝑋 0 =𝐿𝐿 -2 � 𝑞𝑞�𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 � ⋅ 𝑈𝑈 0 𝑖𝑖 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0
According to the orthogonality of eigenshapes 𝑈𝑈 0 𝑖𝑖 and 𝑈𝑈 0 𝑖𝑖 , the last relation is reduced to:

-𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] � 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 = 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 ⋅ 𝑈𝑈 0 𝑖𝑖 � 𝑋𝑋 0 =𝐿𝐿 -2 � 𝑞𝑞�𝐸𝐸𝐸𝐸𝑈𝑈 0 𝑖𝑖 ′′ + 𝜆𝜆 0 𝑖𝑖 𝜌𝜌𝐸𝐸𝑈𝑈 0 𝑖𝑖 � ⋅ 𝑈𝑈 0 𝑖𝑖 ′ 𝑔𝑔𝑋𝑋 0 𝐿𝐿 0 (2.121)
The exact solution of the eigenvalue problem for a clamped-free continuous bar, is given by 𝑈𝑈 0 𝑖𝑖 = sin 𝑊𝑊 𝑖𝑖 𝑋𝑋 0 , where 𝑊𝑊 𝑖𝑖 = (2𝑖𝑖-1)𝜋𝜋 2𝐿𝐿

and

𝜆𝜆 0 𝑖𝑖 = 𝐹𝐹𝑊𝑊 𝑖𝑖 2 𝐿𝐿
. Introducing the value of 𝑊𝑊 𝑖𝑖 into (2.121), it follows that:

𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] = - 2𝜆𝜆 0 𝑖𝑖 𝐿𝐿 (2.122)
As a consequence of this expression, we find that the directional derivatives of the eigenvalues do not strictly depend on the 𝑞𝑞-function; only the values of the 𝑞𝑞-function at the bounds have a role. It is the main reason why we choose 0 to describe a non-affected domain and 1 to describe the opposite domain. • and finally, a Chebyshev polynomial of 5 th -order (2.112).

For all numerical simulations, a general triangular mesh is used, assuming a stress plane state. The material of the plate is standard steel (𝐸𝐸 = 210 000 𝑀𝑀𝑃𝑃𝑔𝑔, 𝜈𝜈 = 0.3 and 𝜌𝜌 = 7800 𝑘𝑘𝑔𝑔/𝑚𝑚 3 ). The values of the 1 st -order directional derivatives of the first five eigenvalues are calculated using (2.61) for four different 𝑞𝑞-functions; they are presented in Table 2.1. The results reveal that the values of the 1 st -order directional derivatives of eigenvalues do not change significantly with the choice of 𝑞𝑞-function: the differences can be attributed to the quality of mesh as well as to the round-off errors.

Linear

Conclusion

L'analyse de sensibilité joue un rôle essentiel dans de nombreux problèmes de conception technique. Comme nous l'avons déjà souligné auparavant, cette analyse pour de nombreuses raisons peut être contraignante à réaliser. Pour remédier à cela et dans le cadre du problème aux valeurs propres en vibrations, nous nous sommes proposés d'utiliser les dérivées directionnelles qui permettent de prédire les solutions propres. L'objet de ce chapitre a été non seulement de formuler les bases théoriques pour la résolution du problème aux valeurs propres sur une configuration courante mais aussi de proposer l'ensemble des développements relatifs aux dérivées directionnelles d'ordre 1 et 2, tant sous des formes intégrales que discrètes. Afin d'améliorer l'outil d'analyse, il était important de pouvoir disposer de critères pendant les calculs numériques afin de s'assurer que les solutions propres trouvées satisfassent bien le problème aux valeurs propres traité dans une configuration donnée. Pour cela, nous avons proposé deux critères qui permettent, respectivement, de déterminer le paramètre de régulation 𝜏𝜏 optimal et de contrôler que les solutions sont bien des solutions du problème aux valeurs propres.

Pour le premier critère, ce dernier est relié aux conditions imposées pour satisfaire le déroulement correct d'une transformation ; c'est la raison principale pour laquelle le critère est basé sur le gradient de la transformation. Dans le point sur les considérations à propos de la 𝑞𝑞fonction, nous avons insisté sur le fait que celle-ci doit être suffisamment lisse pour assurer la transformation. De ce fait, pour permettre un bon ordre de lissage, nous avons choisi d'imposer des conditions sur les dérivées premières et secondes de la 𝑞𝑞-fonction aux bornes du domaine. Ce choix influe bien évidemment sur la valeur maximale du paramètre de régulation obtenue par le critère.

Assurer que la transformation se déroule correctement, n'assure pas forcément que l'estimation des valeurs et vecteurs propres d'un problème donné, s'effectue aussi correctement. Le second critère mis en place est destiné à contrôler cela. D'une manière générale, comme on le verra dans le chapitre suivant, la valeur réelle du paramètre de régulation est inférieure à celle fournie par le premier critère : en effet, la qualité du maillage et les ordres de dérivées directionnelles utilisés jouent un rôle sur cette valeur réelle. Ce fait justifie que l'on ait proposé un algorithme de calcul automatique dans lequel, les solutions sont identifiées par dichotomie. Même si les solutions ne peuvent être trouvées immédiatement avec le paramètre de régulation obtenu par le premier critère, il est à noter que pour suivre l'évolution des fréquences propres d'un problème, le nombre d'itérations à faire entre deux configurations demeure nettement inférieur à un calcul « standard » éléments finis.

Enfin, nous avons terminé ce chapitre par certaines considérations à propos de la 𝑞𝑞-fonction. Dans un premier temps, nous avons choisi, parmi toutes les approximations possibles, d'utiliser des polynômes de Tchebychev d'ordre 5. En effet, ces polynômes sont les plus utilisés dans le cas d'interpolation et l'ordre du polynôme permet, dans nos cas, de pouvoir imposer non seulement des conditions sur les bords du domaine de la transformation pour la 𝑞𝑞 -fonction mais aussi d'imposer sur ces mêmes bords des valeurs nulles pour les dérivées premières et secondes de la 𝑞𝑞fonction. Nous avons vu aussi que l'estimation des valeurs propres n'est a priori pas dépendante du choix de cette 𝑞𝑞-fonction. Cette dernière ne doit être que suffisamment lisse pour rendre compte de la transformation.

CHAPTER 3: NUMERICAL VALIDATIONS FOR 2D EIGENVALUE PROBLEMS

Ce chapitre est consacré à la validation de la méthodologie proposée qui est basée sur le couplage des approches FEM ou X-FEM et des dérivées directionnelles (du premier ou du second ordre). Pour cela, nous nous proposons majoritairement d'étudier différents types de plaques rectangulaires ou carrées avec des trous circulaires ou elliptiques, centrés ou en bordure de plaque qui évoluent dans le temps. Ces cas, bien qu'académiques, peuvent représenter une partie des problématiques industrielles que l'on peut rencontrer. Nous nous attachons à montrer l'efficacité de l'approche que nous avons développée en comparant les solutions propres obtenues (fréquences ou modes) en regard de celles identifiées par une procédure classique (résolution itérative d'un problème aux valeurs propres sur chaque configuration). Nous étudions non seulement, l'impact du choix de dérivées directionnelles du premier ou second ordre, et ce notamment au travers des taux de convergence des solutions numériques, mais aussi les avantages à utiliser la méthode X-FEM dans la procédure générale développée. Dans une toute dernière partie, nous nous intéressons à une autre grande majorité de pièces industrielles que l'on peut rencontrer et qui sont axisymétriques. Nous proposons les modifications nécessaires à la prise en compte des conditions spécifiques d'axisymétrie et nous étudions un cylindre dont le rayon interne évolue au cours du temps. Les observations et les dépouillements des résultats sont effectués de la même façon que précédemment pour les plaques.

Introduction

This Chapter concerns the numerical validations of 2D or axially symmetric vibration problems based on the suggested methodology from Chapter 2. Even if the study cases we offer in this part look somewhat academic, they represent an overview of one part of problems that can be encountered in some industrial fields and for which our methodology could bring an alternative answer. We recall that this methodology combines the FEM or X-FEM with directional derivatives. As it was mentioned before, the benefits of introducing the Directional Derivatives is to reduce the number of iterations to track the evolution of eigensolutions in the case of a time-dependent structure. The accuracy of the eigensolutions between two configurations is, of course, linked to the quality of order of the introduced DD approximations. Moreover, we also have one additional benefit in this methodology due to the introduction of X-FEM: it can help to avoid to remesh the structure between several configurations, keeping only a unique initial mesh.

The first numerical study is the modal analysis of a clamped plate for which one of its dimension is changing. The main objective of this Subsection is to highlight the benefits of introducing the 1 stor 2 nd -order DD to follow the evolution of the eigensolutions during the structure change. To achieve this first goal, a comparison between the obtained solutions with those coming from standard FEM modal analyses are proposed for the natural frequencies as well as for the eigenvectors. The tests are done for two or several configurations including each time a convergence rate study for the natural modes and frequencies.

The three next validations cases correspond to the estimations of the eigensolutions on several cases dedicated to rectangular plates: a plate with a centred circular hole, a plate with a centred elliptical hole and a plate with a cut-off circular area at one of its corner. For these cases, a complete comparative analysis of eigenvalues and eigenvectors will be carried out using convergence rates

Comparisons of natural frequencies

The first step of the present analysis is to verify the approximation of natural frequencies using the basic formulae of the DD of eigenvalues 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] (2.61) and 𝐷𝐷 2 𝜆𝜆 𝑖𝑖 [𝑞𝑞] (2.93). The 𝑞𝑞-function is defined via a Chebyshev polynomial of 5 th -order. To identify its coefficients (3.1), the 𝑞𝑞-function is imposed to be 0 at the clamped side and to be 1 at the opposite. In addition, the 1 st -and 2 ndderivatives of 𝑞𝑞-function are also forced to be 0. The maximal regulating parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 (2.99) coming from this configuration change is equal to 0.34 𝑠𝑠. Since the length changes from 0.6 𝑚𝑚 to 0.65 𝑚𝑚 , the regulating parameter corresponds to 𝜏𝜏 = 0.05 ; regarding the maximal regulating parameter, it indicates that the transformation can be realised in a single go. Table 3.1 summarises the natural frequencies obtained:

𝑞𝑞(𝑋𝑋

• Using a standard modal analysis of the structure in the final configuration. In order to ensure a right comparison, the mesh, in this case, is built using the change of configuration that allows to define the new position of the nodes of the finite elements from their positions in the initial configuration.

Remark: of course, the reconstructed mesh to achieve the comparisons between both methodologies is good enough since the transformation is not extreme.

• Using the regulation parameter 𝜏𝜏 = 0.05 and the definition of 1 st -order directional derivatives,

• And using the regulation parameter 𝜏𝜏 = 0.05 and the definition of 2 nd -order directional derivatives. The obtained values for the first five natural frequencies are satisfactory for both DD, which have been involved in the numerical simulations. One can observe overall that the relative error in absolute value is less than 2.7%. It can be noticed that the use of 2 nd -order DD increases the accuracy of the estimation strongly because the maximal relative error is only 0.44%.

FEM modal analysis

Since the transformation must conserve the axisymmetric character of the structure, the 𝑞𝑞-function is chosen , such as: 𝑞𝑞 = 𝑞𝑞 𝑅𝑅 (𝑅𝑅, 𝑍𝑍)𝑑𝑑 ⃗ 𝑅𝑅 + 𝑞𝑞 𝑍𝑍 (𝑅𝑅, 𝑍𝑍)𝑑𝑑 ⃗ 𝑍𝑍 (3.10)

Gradient and divergence in cylindrical coordinates

The gradient of a vector 𝑋𝑋 in cylindrical coordinates is given by: where 𝑋𝑋 𝑅𝑅 , 𝑋𝑋 Θ and 𝑋𝑋 𝑍𝑍 represent the coordinates of the vector 𝑋𝑋 within the basis (𝑑𝑑 ⃗ 𝑅𝑅 , 𝑑𝑑 ⃗ Θ , 𝑑𝑑 ⃗ 𝑍𝑍 ) (Figure 3-28).

𝛻𝛻𝑋𝑋 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 𝜕𝜕𝑋𝑋 𝑅𝑅 𝜕𝜕𝑅𝑅 1 
The divergence of the same vector 𝑋𝑋 in cylindrical coordinates is given by:

𝑔𝑔𝑑𝑑𝑑𝑑 𝑋𝑋 = 1 𝑅𝑅 𝜕𝜕(𝑅𝑅𝑋𝑋 𝑅𝑅 ) 𝜕𝜕𝑅𝑅 + 1 𝑅𝑅 𝜕𝜕𝑋𝑋 𝛩𝛩 𝜕𝜕𝜕𝜕 + 𝜕𝜕𝑋𝑋 𝑍𝑍 𝜕𝜕𝑍𝑍 (3.12 
)

Integral and discrete forms of the Directional Derivatives

Due to the form of the 𝑞𝑞 -function in cylindrical coordinates (3.10), the gradient and the divergence of this 𝑞𝑞-function over the reference configuration are using (3.11) and (3.12): 

𝛻𝛻𝑞𝑞 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 𝜕𝜕𝑞𝑞 𝑅𝑅 𝜕𝜕𝑅𝑅 0 𝜕𝜕𝑞𝑞 𝑅𝑅 𝜕𝜕𝑍𝑍 0 𝑞𝑞 𝑅𝑅 𝑅𝑅 0 𝜕𝜕𝑞𝑞 𝑍𝑍 𝜕𝜕𝑅𝑅 0 𝜕𝜕𝑞𝑞 𝑍𝑍 𝜕𝜕𝑍𝑍 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ( 

Comparative analysis

As for the test #1 or #2, we presented before (3.2 and 3.3), a complete study about the evolution of the natural frequencies as well as the relative errors have been achieved this problem. This study was constituted of:

• comparisons for the calculations of 1 st -or 2 nd -order DD with the ones resulting from the application of Finite Difference ((3.6) and (3.7)),

• examinations of the convergence rate of the relative error between computed and estimated natural frequencies as a function of the regulating parameter,

• comparisons between the computed natural frequencies (i.e. resulting from a standard modal analysis done at one given configuration) and the estimated natural frequencies resulting from the calculations of 1 st -or 2 nd -order DD.

The summary of the observations is identical to the ones provided for the test case #1 or #2: the comparison with the Finite Difference method and the conclusion about the comparison against the standard modal analysis, lead to say that DD are a satisfactory method to estimate the natural frequencies well. Table 3.6 demonstrates that the maximal relative error is of 0.54 %, and in the case of a 2 nd -order DD, the relative error falls to 0.04%. It also has been observed a convergence rate of 2 for the 1 st -order DD and about 2 for the 2 ndorder DD.

X-FEM modal analysis

Dealing with the natural shapes, a first study concerning the number of the eigenvectors required to compute the DD of eigenvectors has been achieved. As shown in Table 3.7 and Figure 3-33, one can see that with 160 eigenvectors for the truncated modal basis, a good trade-off between the computational time and the obtained precision is achieved. So, a reasonable number of basis eigenvectors can be chosen to be equal to 160. In this case, we have less than 1% of all eigenvectors. 

Number

Conclusion

Dans ce chapitre, nous avons présenté quelques exemples d'application (en deux dimensions) de la méthodologie que nous avons développée afin d'estimer et de suivre les fréquences et modes propres d'une structure à l'aide de dérivées directionnelles. Cette méthodologie peut être utilisée à la fois avec la méthode des éléments finis classique (FEM) mais aussi avec la méthode des éléments finis étendus (X-FEM). En effet, l'atout majeur de la dernière méthode est de pouvoir conserver un maillage unique pendant toute la durée des simulations numériques, pour peu, bien entendu, que ce dernier soit suffisamment adapté à bien représenter l'évolution de la discontinuité considérée.

Le premier cas d'une plaque dont la longueur s'accroit au cours du temps, nous a permis de démontrer que l'utilisation des dérivées directionnelles du premier ou du second ordre retranscrit correctement l'évolution, à la fois, des fréquences et des modes propres. Les erreurs relatives commises par rapport aux solutions identifiées par des analyses modales classiques demeurent très satisfaisantes. L'étude de ces erreurs montrent aussi que l'emploi des dérivées directionnelles d'ordre deux induit, de façon significative, une meilleure description de l'évolution des solutions propres. L'outil laisse donc la liberté en fonction de la qualité d'estimation que l'on souhaite faire ainsi que du temps que l'on souhaite allouer aux études de choisir l'estimation la plus adaptée : en effet, pour des structures dont les surfaces libres varient fortement l'utilisation des dérivées directionnelles d'ordre deux est une bonne précaution pour suivre l'évolution du contenu modal. Cependant, si l'on désire décroitre les temps de calcul, l'utilisation des dérivées directionnelles du premier ordre est préférable du fait du faible nombre d'évaluation de matrices (2.58), (2.90). Bien entendu, cela implique, pour une meilleure qualité d'estimation d'avoir, quand même, un nombre d'itérations plus important.

Le second cas proposé, nous a permis de valider l'utilisation de l'approche X-FEM dans notre méthodologie. En effet, les résultats proposés ont permis de montrer que quelle que soit la méthode employée (FEM ou X-FEM) les estimations faites sont de bonne qualité en regard des résultats standards d'analyse modale. Lorsque la méthodologie imposera une série d'itérations à effectuer pour passer d'une structure initiale à une structure avec la forme désirée, si l'on produit un maillage qui permet de suivre de manière satisfaisante la discontinuité, alors dans ce processus itératif, plus aucun remaillage de structure n'est plus nécessaire lorsqu'on utilise la méthode X-FEM. Cela implique, par conséquent, un gain de temps appréciable.

Le troisième cas et le quatrième cas ont permis d'appliquer uniquement la méthodologie dans laquelle les dérivées directionnelles sont couplées à la méthode X-FEM. Contrairement aux deux autres cas précédents, où les tailles de maille étaient volontairement de petites dimensions afin de pouvoir bien mettre en exergue les avantages de notre méthode, ici nous nous sommes proposés d'utiliser des maillages plus « conventionnels ». Le maillage utilisé a été réalisé avec une taille de maille suffisante permettant le suivi de l'évolution des axes de l'ellipse entre les deux configurations. Les résultats ont encore une fois montré l'intérêt de la méthodologie proposée et notamment que l'utilisation d'un maillage unique initial était tout à fait possible. Cependant, à cette étape, il aurait fallu proposer une étude complète sur les temps CPU de notre méthode avec une méthode classique d'analyse modale. Dans ce cas particulier, nous avons créé sur Abaqus une macro qui permettait de modifier le rayon du trou au cours du temps, de mettre en données le problème, de réaliser un maillage et de lancer les calculs d'analyse modale pour chaque itération

CONCLUSION AND OUTLOOK

«Outcome is not in your control. What's in your control is your effort and your intentions» Amit Sood 1Vibrations in the mechanical engineering field are of great interest. It is mostly because modal characteristics (natural frequencies and/or natural shapes) of structures must be understood since they can lead to crucial consequences. We can cite the example of the aeronautics field where the determination of the eigensolutions during the aeroplane design is mandatory as well as during the lifespan of some of its structural parts that can be subjected to cracks propagation. In the machining field, knowing the evolution of modal characteristics of a workpiece can help to control its final geometrical and dimensional tolerances better. If we restrict to this kind of problems, there is a need to know exhaustive information about the evolution of both natural frequencies and shapes of a structure whose shapes change or whose contours depend on time.

Even if performing experiments constitutes one possibility to answer the previous problematic, numerical modelling is often used because of its greater flexibility for the required resources and its offering of comprehensive analyses of the industrial problem. Modal vibration analysis is a powerful technique to understand structures behaviour, design process and maintenance. However, in the case of structures that possess moving external or internal surfaces, some practical difficulties can appear and even be tedious: using standard modal analysis and FEM, the tracking of changes of the structure imposes to define different configurations corresponding to the evolution of the structure. It leads to mesh each of these configurations and then to solve each corresponding eigenvalue problem. Depending on the number of configurations and their associated number of degrees of freedom, it can be computationally expensive. These are some of the reasons to develop a new approach to solve such kind of problems.

To overcome the previous issues, the research presented in this PhD thesis is based on two main ideas:

• the first one is to release the constraints due to the meshing of structures. To achieve this goal, X-FEM is the right solution. Initially developed to consider cracks influence within structures, it has been widely extended in many application fields to different problems that involve any discontinuities. They are considered through Level Set functions that help to enrich the initial FEM approximation. In the particular case of free-surfaces, the additional degrees of freedom are not mandatory because a direct integration over the material part of cut finite elements is sufficient. Besides, if lumped mass matrix is preferred to consistent one, its computation can be fast in the case of finite elements of constant strain because the elementary stiffness and mass matrices can be directly deduced from the standard ones, just knowing the material ratio of considered finite element. The use of X-FEM allows us to provide one unique initial mesh that eliminates any remeshing process and that fixes, once and for all, the number of degrees of freedom of the structure even if it is subjected to shape changes. Of course, it is essential when creating this initial mesh, to be sure that it is sufficiently refined to catch the influence of the shape change accurately. However, it is less limiting than managing and creating meshes for each studied configurations.

• the second one is to predict the eigensolutions over a given configuration knowing them from a different configuration. It allows to reduce iterations to be done to track both natural frequencies and shapes between a starting configuration to a final one. To achieve this point, we suggested to introduce the Directional Derivatives concept. Once the transformation between two domains is mathematically described by a specific function (that we named 𝑞𝑞 -function), the theoretical developments done in the Chapter 2 enabled us to express the 1 st -order and 2 nd -order DD for eigensolutions. The choice to identify both orders of eigensolutions DD lies in offering a better approximation in the case of 2 nd -order DD if the eigensolutions evolution between two different configurations is no more linear. Concerning the q-function for which we used 5 th -order Chebyshev polynomial, we remind that it must be smooth enough and that it imposes a maximal regulating parameter τ. In other words, even if the q-function describes a transformation between two different configurations, the transformation may be not achieved in one single step because its bijectivity must be ensured. To consider this possible occurrence as well as to be able to deal with significant change of configurations, we also proposed an automated procedure based on dichotomy method. A special attention was paid to the definition of several criteria related to the value of maximal regulating parameter, to the assurance that the estimated eigensolutions are well satisfying an eigenvalue problem and to the mesh quality.

To illustrate the possibilities and the advantages of the methodology and to validate it, we developed several numerical studies that have been exposed in Chapter 3. They have been achieved using an in-house program written within Matlab® software. This program contains the FEM and X-FEM methods dedicated to triangular finite elements for 2D and axially symmetric problems as well as the determination of 1 st -order and 2 nd -order DD and the automated procedure with criteria. We gradually demonstrated that the estimations and the tracking of the eigensolutions we did for plates or cylinder using the 1 st -order and 2 nd -order DD are satisfactory concerning the results coming from standard iterative modal analyses. We confirmed that X-FEM can be used and provides similar results to FEM. Even if most of the time the transformation of different studied case remains "small", the suggested procedure proved satisfactory for the tracking of the eigensolutions in the case of a plate with a hole for which its radius has increased by 40%. Finally, we presented that the application of the procedure we developed, enables to save CPU time in comparison to the traditional way of resolution. As the first conclusion, the results obtained via our methodology are satisfactory and promising. However, to thoroughly highlight the advantages and the potentials of our methodology, the first outlooks must concern structures for which external or internal boundaries are actively moving and which possess a significant number of degrees of freedom. In this way, a study of the CPU time spent to achieve each remeshing and modal analyses in the case of a standard iterative procedure and each calculation of the DD estimations of eigensolutions in the case of our procedure would bring additional information about the benefits and the consequences of using 1 st -or 2 nd -order DD. The studied structures could be 2D and axially symmetric problems.

Besides, to reinforce the potential of the methodology based on Directional Derivatives to treat problems of tracking eigensolutions, it is possible to envisage the next short-term outlooks:

• To include in the automated procedure, a criterion to automatically determine the size of the truncated basis used to calculate the Directional Derivatives of eigenvectors. For now, the choice is made at the beginning of calculations running. It is based on some verifications we have done concerning all the studied cases we exposed. However, to be independent of the problem to deal with and to decrease the CPU time eventually, a criterion will be helpful. Another way to improve the estimations of natural shapes would be to introduce residual terms as it is done in some modal condensation methods. That could prevent to use a large basis of natural shapes defined on the reference configuration.

• To couple octree mesh method with X-FEM. As we previously mentioned, X-FEM allows to use one unique initial mesh which has to be sufficiently refined to accurately track the evolution of the Level Set and its influence within the mesh. Already used in some others applications of X-FEM, octree meshes allows to reduce the number of degrees of freedom in the parts of the structure far from the discontinuity and increase them in parts of the structure containing the Level Set, suiting a desired accuracy. Also, the mesh generation for octree mesh is fast, and this method is suitable for parallel computing. In conclusion, using this type of mesh instead of classical one can allow to save CPU time as well as to overcome the problematic of sufficiently refined mesh. Another way that could also be investigated to accurately consider the discontinuity while decreasing the number of finite elements corresponds to increase the order of the finite elements. Given that, 6 nodes triangular finite elements instead of 3 nodes finite triangular elements could be implemented. An evaluation of the performance of these finite elements in comparison to the spent CPU time will be to be envisaged in order to identify the best way of modelling among standard finite elements, octree meshes or high order finite elements.

• To investigate the optimal form for the 𝑞𝑞 -function, which describes the transformation between two configurations. Even if the 5 th -order Chebyshev polynomial provides satisfactory results, it leads to a "certain" maximal regulating parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 because it is linked to the gradient of the chosen function. Slower variation of the 𝑞𝑞-function could lead to more significant maximal regulating parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 even if it can influence the calculations of the terms of additional matrices ([𝐾𝐾 * ], [𝑀𝑀 * ], [𝐵𝐵 ′ ]…). A good compromise between the maximal regulating parameter 𝜏𝜏 𝑚𝑚𝑎𝑎𝑚𝑚 and the CPU time calculations could be found increasing the advantages of our methodology.

• Moreover, finally to evaluate, once again, all induced CPU time by the new investigations. To achieve this goal, a structure with a sophisticated evolution of its external or internal free-surfaces can be considered as a numerical example of study within Matlab® software. On the one hand, an iterative modal analysis for several intermediate configurations can be done, estimating the CPU time spent during the mesh generation, the assembly of stiffness and mass matrices, the application of boundary conditions and the solution of the eigenvalue problem. On the other hand, our new methodology can be used and an estimation of the spent CPU times can also be done during the assembly of stiffness and mass matrices, the updating of the Level Set, the application of boundary conditions and the calculation of the 1 st -order DD 2 nd -order DD. All results about these different spent CPU times will highlight the advantages of our methodology and as well as the points to improve.
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We also can envisage other long-term outlooks such as:

• The application of our methodology for bending problems which are also of great interest in Vibrations,

• The extension of our methodology for 3D problems in Vibrations which will allow to cover the large panel of industrial situations that can be encountered,

• The application of our methodology for a real industrial case which is enough complex to deal with when using standard tools,

• The application of our methodology to track the eigensolutions of a structure with a crack that is propagating inside. In this case, some recent researches using Thick Level Set method and X-FEM provide excellent results to estimate the initiation and the propagation of a crack inside a structure. The use of our methodology coupled with this TLS method could bring some interesting results about the influence of the crack propagation on the modal characteristics of the structure,
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  [15]-[20]. Nevertheless, the main restriction is the required update of the full model every time the dynamic structural characteristics change [21]. It means that large-scale eigenvalue domain (the orange one, for example, Figure 0-1 (b)) to a current one (the yellow one, for instance, in Figure 0-1 (b)).

[ 73 ]

 73 . Time-domain based methods involve the following methods: • initial value time-domain methods [66]-[67], • boundary condition time domain-based methods [74]-[76], • Gamma-distribution based expansion [74], • semi-discretization [77]-[79], • full discretization [80]-[81], • collocation method [76], [82], • time domain finite elements [83]-[84], • Galerkin method [85]-[86]. Frequency methods involve approaches based on an FRF representation of the machining process. They are semi-analytical frequency domain based methods [58], [68], [87]-[88] or numerical multi-frequencies methods [70], [89]. FRFs describing the machining processes depend on the configuration of machine tools and vary in the workspace [90]. Variations of these FRFs are more significant if the workpiece dynamic behaviour is dominant compared to the machine tool dynamics (for example, beam or thin plate-type workpiece). An analytical solution of chatter stability in a linear discrete-time domain is presented in [77], [91]. In [92]-[93], the authors determine the structural dynamics of different machine tool components using analytical and experimental methods by coupling analytical expressions for tool FRFs with holder/spindle experimental FRFs. The influence of the variation of the FRF on both stability and surface errors of the machining process are demonstrated in [90]. The authors in [94]

• [ 148 ]-[ 152 ]

 148152 using FEA, • [153]-[154] using the finite-difference formulation, • [155]-[161] applying the Rayleigh-Ritz method, • [162]-[165] through the point-matching method. Several research works devoted to plate with multiple holes have also been written, such as [151], [154], [159], [166]-[168].

•

  modal superposition [17], [177], • load-dependent Ritz vectors [175], [178]-[180], • component Mode Synthesis [181]-[182],
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Modal Analysis of time-dependent structures using Directional Derivatives

  

	𝛼𝛼	GLOSSARY : fraction of material of an X-FEM finite element
	L	: length
	3.7. Conclusionne-Dimensional Problem 2D : Two-Dimensional Problem 3D : Three-Dimensional Problem CAD : Computer-Aided Design CC : Continuum-Continuum CD : Continuum-Discrete CPU : Central Processing Unit DSA : Design Sensitivity Analysis DD : Directional Derivatives FD : Finite Difference FDM : Finite Difference Method FE : Finite Element FEA : Finite Element Analysis FEM : Finite Element Method FRF : Frequency Response Function IPW : In-Process Workpiece LS : Level-Set MAC : Modal Assurance Criterion PoU : Partition of Unity SDSA : Shape Design Sensitivity Analysis SLD : Stability Lobe Diagrams X-FEM : eXtended Finite Element Method E : Young's modulus Element notations • 0 : subscript 0 indicates that the considered quantity is referring to the initial or reference configuration • 𝜏𝜏 : FEM displacement field 𝑢𝑢 𝐹𝐹𝐹𝐹𝐹𝐹 : X-FEM displacement field 𝑢𝑢 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁 : FEM shape functions : subscript 𝜏𝜏 indicates that the considered quantity is referring to the current or new 𝜙𝜙 : Level Set function configuration : X-FEM enrichment function 𝐹𝐹 • � : second-order tensor • � � : fourth-order tensor |•| : absolute value [•] : matrix ‖•‖ : norm {•} : vector •′ : X-FEM additional degrees of freedom 𝑔𝑔 𝐹𝐹𝐹𝐹𝐹𝐹 ] : FEM elementary stiffness matrix [𝐾𝐾 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 ] : FEM elementary mass matrix [𝑀𝑀 𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹 � : FEM elementary lumped mass matrix �𝑀𝑀 � 𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 ] : X-FEM elementary stiffness matrix [𝐾𝐾 𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 ] : X-FEM elementary mass matrix [𝑀𝑀 𝑒𝑒 �𝑀𝑀 � 𝑒𝑒 𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹 � : X-FEM elementary lumped mass matrix : first derivative with respect to a unique variable (position in one-dimensional case) •′′ : second derivative with respect to a unique variable •̈ 𝛺𝛺 𝛼𝛼 domain of a continuous medium (𝛼𝛼 = 0 for reference configuration and 𝛼𝛼 = 𝜏𝜏 for : the current configuration) : second derivative with respect to time D• : directional derivative Operators 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(•) : gradient over the current configuration 𝛻𝛻(•) : gradient over the reference configuration 𝑔𝑔𝑑𝑑𝑑𝑑(•) : divergence over the reference configuration • ⋅ • : single contraction • ∶ • 𝜕𝜕𝛺𝛺 𝛼𝛼 : boundary of the domain 𝛺𝛺 𝛼𝛼 𝜕𝜕𝛺𝛺 𝛼𝛼 𝑢𝑢 : part of 𝜕𝜕𝛺𝛺 𝛼𝛼 where the displacements are known : part of 𝜕𝜕𝛺𝛺 𝛼𝛼 where the stresses are known 𝜕𝜕𝛺𝛺 𝛼𝛼 𝜎𝜎 : position of a point in the initial or reference configuration 𝑋𝑋 0 : position of a point in the current or new configuration 𝑥𝑥 𝜏𝜏 : function describing the transformation/mapping 𝜑𝜑 or 𝜑𝜑 𝜏𝜏 𝜏𝜏 : scalar parameter regulating the transformation : double contraction 𝑔𝑔𝑑𝑑𝑑𝑑(•) : determinant • -1 : inverse : displacement or velocity field defining the configuration change 𝑞𝑞 : transformation gradient tensor 𝐹𝐹 � 𝑈𝑈 * : displacement field
	• 𝑇𝑇 𝑛𝑛	: transpose : normal of a surface
	Elements ℝ 𝒰𝒰 𝑎𝑎𝑎𝑎 𝑊𝑊 � 𝐻𝐻 1 𝜆𝜆 (or 𝜇𝜇) 𝐻𝐻 2 𝑈𝑈 𝜆𝜆 (or 𝑈𝑈 𝜇𝜇 ) : eigenshape associated to the eigenvalue 𝜆𝜆 (or 𝜇𝜇) : set of admissible functions : admissible function : set of real numbers : eigenvalue : Sobolev space of order 1 : Sobolev space of order 2 𝑃𝑃(𝑛𝑛, 𝑥𝑥) 𝐷𝐷𝜆𝜆 𝑖𝑖 [𝑞𝑞] : directional derivative of eigenvalue in the direction of 𝑞𝑞 : Standard polynomial of n th -order 𝐻𝐻(𝑛𝑛, 𝑥𝑥) Du i [q] : directional derivative of eigenshape in the direction of 𝑞𝑞 : Hermite polynomial of n th -order 𝑇𝑇(𝑛𝑛, 𝑥𝑥) [𝐾𝐾] : stiffness matrix : Chebyshev polynomial of n th -order 𝜌𝜌 [𝑀𝑀] : mass matrix : density [𝐷𝐷] : matrix associated with the elasticity tensor 𝐸𝐸 � � : elasticity tensor {𝑍𝑍} : eigenvector
	𝜀𝜀̿ 𝜎𝜎 � 𝑑𝑑 𝑓𝑓 𝑖𝑖 0 𝓃𝓃	: infinitesimal strain tensor : stress tensor : time : natural frequency i : order of the dimension of a problem
	S	: cross section
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  𝑜𝑜𝑓𝑓 𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑𝑢𝑢𝑙𝑙𝑔𝑔𝑔𝑔 𝑝𝑝𝑑𝑑𝑔𝑔𝑚𝑚𝑢𝑢𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑑𝑑𝑛𝑛𝑔𝑔𝑑𝑑𝑥𝑥𝑑𝑑𝑠𝑠 𝑑𝑑, 𝑗𝑗, 𝑘𝑘 -1 𝑑𝑑𝑛𝑛 𝑑𝑑𝑔𝑔𝑠𝑠𝑑𝑑 𝑜𝑜𝑓𝑓 𝑛𝑛𝑜𝑜𝑛𝑛 𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑𝑢𝑢𝑙𝑙𝑔𝑔𝑔𝑔 𝑝𝑝𝑑𝑑𝑔𝑔𝑚𝑚𝑢𝑢𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑑𝑑𝑛𝑛𝑔𝑔𝑑𝑑𝑥𝑥𝑑𝑑𝑠𝑠 𝑑𝑑, 𝑗𝑗, 𝑘𝑘 0 𝑑𝑑𝑓𝑓 𝑑𝑑ℎ𝑑𝑑𝑔𝑔𝑑𝑑 𝑑𝑑𝑠𝑠 𝑔𝑔𝑑𝑑 𝑙𝑙𝑑𝑑𝑔𝑔𝑠𝑠𝑑𝑑 𝑑𝑑𝑤𝑤𝑜𝑜 𝑑𝑑𝑔𝑔𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑙𝑙 𝑑𝑑𝑛𝑛𝑔𝑔𝑑𝑑𝑥𝑥𝑑𝑑𝑠𝑠 Developing the determinant, we have: 𝑔𝑔𝑑𝑑𝑑𝑑 𝐹𝐹 � = 𝜖𝜖 𝑖𝑖𝑖𝑖𝑖𝑖 �𝛿𝛿 𝑖𝑖1 𝛿𝛿 𝑖𝑖2 𝛿𝛿 𝑖𝑖3 + 𝛿𝛿 𝑖𝑖1 𝛿𝛿 𝑖𝑖2 𝜏𝜏𝑞𝑞 𝑖𝑖,3 + 𝛿𝛿 𝑖𝑖1 𝛿𝛿 𝑖𝑖3 𝜏𝜏𝑞𝑞 𝑖𝑖,2 + 𝛿𝛿 𝑖𝑖1 𝜏𝜏 2 𝑞𝑞 𝑖𝑖,2 𝑞𝑞 𝑖𝑖,3 + 𝜏𝜏 3 𝑞𝑞 𝑖𝑖,2 𝑞𝑞 𝑖𝑖,3 𝑞𝑞 𝑖𝑖,1 +𝛿𝛿 𝑖𝑖2 𝛿𝛿 𝑖𝑖3 𝜏𝜏𝑞𝑞 𝑖𝑖,1 + 𝛿𝛿 𝑖𝑖2 𝜏𝜏 2 𝑞𝑞 𝑖𝑖,3 𝑞𝑞 𝑖𝑖,1 + 𝛿𝛿 𝑖𝑖3 𝜏𝜏 2 𝑞𝑞 𝑖𝑖,2 𝑞𝑞 𝑖𝑖,1 + 𝜏𝜏 3 𝑞𝑞 𝑖𝑖,2 𝑞𝑞 𝑖𝑖,3 𝑞𝑞 𝑖𝑖,1 �
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2.75), (2.76), (2.77), (2.78) and (2.79), the relation (2.74) associated to the matrix definition (2.80) becomes (2.81), relation

  that must satisfy the directional derivatives at 2 nd -order of the solutions of an eigenvalue problem.

𝛻𝛻𝑞𝑞 (2.79)

Finally, considering all relations (

Table 2 .1: dependence of directional derivatives values on the q-function choice.

 2 

Using 1 st -DD Using 2 nd -DD

  

	𝒇𝒇 𝟏𝟏 𝟎𝟎 (𝑯𝑯𝑯𝑯)	639	622 (-2.62%)	641 (+0.44%)
	𝒇𝒇 𝟐𝟐 𝟎𝟎 (𝑯𝑯𝑯𝑯)	2005	1983 (-1.11%)	2008 (+0.13%)
	𝒇𝒇 𝟑𝟑 𝟎𝟎 (𝑯𝑯𝑯𝑯)	2194	2168 (-1.21%)	2198 (+0.15%)
	𝒇𝒇 𝟒𝟒 𝟎𝟎 (𝑯𝑯𝑯𝑯)	4435	4422 (-0.30%)	4437 (+0.04%)
	𝒇𝒇 𝟓𝟓 𝟎𝟎 (𝑯𝑯𝑯𝑯)	5246	5175 (-1.34%)	5255 (+0.18%)

Table 3 .1: natural frequencies coming from FEM and estimations with DD for the plate.

 3 

3.13)

  

	𝑔𝑔𝑑𝑑𝑑𝑑 𝑞𝑞 =	𝑞𝑞 𝑅𝑅 𝑅𝑅	+	𝜕𝜕𝑞𝑞 𝑅𝑅 𝜕𝜕𝑅𝑅	+	𝜕𝜕𝑞𝑞 𝑍𝑍 𝜕𝜕𝑍𝑍	(3.14)
	Remark: since we are dealing with structures that possess an axis of revolution and due to the chosen
	form of the 𝑞𝑞-function (3.10), there is no dependency on the angle Θ.	
	In regard of the theoretical developments done in Chapter 2 (2.3.5 and 2.4.2), the relations
	(2.48), (2.49), (2.52) for the 1 st -order DD of eigensolutions and (2.84), (2.85) and (2.87) for the
	2						

nd -order DD of eigensolutions remain valid for the integral form, except that both divergence and gradient of 𝑞𝑞-function should be calculated, respectively, with (3.13) and (3.14).

It also holds valid for the discrete forms of the DD of eigensolutions (2.64), (2.65) (for the 1 storder DD), (

2.96), (2.97)

  (for the 2 nd -order DD) but adapting to the cylindrical coordinates systems the matrices resulting from (

2.57), (2.58), (2.59), (2.90) and (2.91).

  

Using 1 st -DD Using 2 nd -DD

  

	𝒇𝒇 𝟏𝟏 𝟎𝟎 (𝑯𝑯𝑯𝑯)	3310	3292 (-0.54%)	3309 (-0.03%)
	𝒇𝒇 𝟐𝟐 𝟎𝟎 (𝑯𝑯𝑯𝑯)	4045	4031 (-0.33%)	4045 (-0.01%)
	𝒇𝒇 𝟑𝟑 𝟎𝟎 (𝑯𝑯𝑯𝑯)	5901	5886 (-0.25%)	5902 (+0.01%)
	𝒇𝒇 𝟒𝟒 𝟎𝟎 (𝑯𝑯𝑯𝑯)	6808	6782 (-0.38%)	6805 (-0.04%)

Table 3 .6: natural frequencies coming from X-FEM and estimations with DD for the hollowed cylinder.

 3 

Table 3 .7: time spent on the solution of the eigenvalue problem.

 3 
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In case when ‖⋅‖ is a norm on X, the expression (𝑋𝑋, ‖⋅‖) is called a normed vector space and denoted by ‖⋅‖ 𝑋𝑋
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