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Defended on the 25th of September 2019 in front of the committee:

Prof. Christophe Balland
Prof. Eli Ben-Häım Supervisor
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Chapter I
Introduction

The Standard Model (SM) of particle physics, developed in the early 1970s, is
the theory that currently best describes the fundamental interactions between
elementary particles. It unifies three out of the four known fundamental
interactions: the strong, weak and electromagnetic interactions. The strong
force is responsible for the formation of bound states of quarks called hadrons,
such as protons and neutrons, and allows for the existence of nuclei. The weak
interaction is capable of changing fermion flavour, and thus enables radioactive
decays in the nuclei. Finally, the electromagnetic interaction holds the electrons
and nuclei together, forming atoms. The incredible success of the SM comes
from the fact that many of its predictions have been confirmed experimentally,
leading to numerous discoveries, such as, for instance, the top quark [1] in 1995,
the tau neutrino [2] in 2000 and the Higgs boson [3,4] in 2012. However, the
SM is not the ultimate theory. For example, the gravitational force has not
been included yet due to the complexities arising from the quantisation of fields
of spin two. Moreover, cosmological models and astrophysical observations
show that baryonic matter is only a small portion of the matter present in the
universe and that we actually understand only a tiny part of the total energy
content of the universe.

Assuming that the Universe started from an initial state with equal amounts
of matter and antimatter, there must be a mechanism that generates an
asymmetry so that during the evolution of the universe matter prevailed over
antimatter, leading to today’s observations of baryon asymmetry. The physics
processes underlying baryogenesis must meet three criteria, called the Sakharov
conditions [5], to explain the matter/antimatter asymmetry: baryon number
violation, CP violation and a departure from thermal equilibrium. Different
mechanisms in the SM can generate CP violation, all implying particles with
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10 Introduction

non-zero masses. The first source of CP violation in the SM comes from the
weak sector. The quarks, providing that they have non-zero and non-degenerate
masses, can change flavour under certain conditions when undergoing a decay
through the weak interaction. This difference in the quark content between the
initial and final states can lead to CP violation and thus, to different behaviours
between matter and antimatter. A similar mechanism can occur in the neutrino
sector, due to the small, but non-zero, mass of the neutrinos. A priori, in
quantum chromodynamics, the theory of strong interaction, nothing prevents
strong CP violation from occurring. However, no experimental observations of
such violation have been found in strong decays: this is known as the strong
CP problem [6]. A further problem is that, although CP violation occurs
in the SM, the amount of CP violation is not large enough to explain the
matter-antimatter imbalance in the universe.

An important part of today’s research in high energy physics is to find
ways to discover what exists beyond the SM. From the experimental point of
view, it means either trying to detect new particles, aka “direct searches”, or
looking for discrepancies with the SM predictions by performing high-precision
measurements, aka “indirect searches”. The direct detection of new particles in
collider experiments depends on the energy of the collision in the centre-of-mass.
For pair production, the energy in the centre-of-mass must be at least twice
the mass of the new particle. Currently, the LHC is providing proton-proton
collisions at an energy of 13 TeV in the centre-of-mass. To probe for a higher
energy scale without having to increase the energy of the collision, the indirect
approach is adopted. The decay of a particle can proceed via intermediate,
“virtual”, particles. Theses virtual states, also called “off-shell” particles, cannot
be detected directly, but the presence of a new particle may affect the physical
observables. In that case, discrepancies with the theoretical prediction or with
other measurements of the same quantity may be observed. The direct and
indirect approaches are complementary; progress in particle physics over the
years has been done thanks to both.

On the theoretical side, different approaches are also possible. One can, in a
“top to bottom” approach, try finding the ultimate theory that describes the laws
of physics at all energy scales and verify that the established results still hold.
Conversely, in a “bottom to top” approach, the idea is to start from current
experimental and theoretical knowledge and propose models that explain the
tensions with the SM while being still consistent with past observations, and
to design methods to extract experimental observables that are sensitive to
new physics. This approach requires theorists and experimentalists to work
closely together to find methods that minimise the theoretical and experimental
uncertainty. The analysis described in chapter IV of this thesis is part of this
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context.
The work presented in this thesis is centred on precision measurements

in the flavour sector using three-body B meson decays to charmless final
states. Chapters II and III give the theoretical and experimental grounds for
understanding the analyses presented in the subsequent chapters. Chapter II
introduces the main concepts of the SM, with an particular emphasis on
the flavour sector and on CP violation. A deeper insight into the specifics of
charmless B meson decays is given in chapter III. This chapter also discusses the
framework of three-body decays and presents different methods of extraction of
the weak phase γ, an observable related to CP violation. A method to extract γ
with charmless three-body B meson decays, sensitive to new physics, is studied
in chapter IV. The second analysis presented in this thesis concerns the study
of the B0

(s) → K0
Sh
±h′∓ modes, which are decays of the B0 or B0

s mesons into

charmless final states containing a K0
S and two hadrons (h = π,K), and are

among the inputs relevant to the γ extraction discussed in chapter IV. The
decay mode B0

s → K0
SK

+K− is observed for the first time and its branching
fraction is measured using data collected by the LHCb detector in chapter VI.
The LHCb detector, described in chapter V, has been specifically designed for
the study of b- and c-hadrons, and is thus well suited for this analysis.
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Chapter II
General theoretical framework:
Standard Model and CP violation

II.1 Symmetries

Symmetries have always played an important role in physics. A system is
said to have a symmetry when the measurable quantities are left invariant
under a specific transformation. At the beginning of the XXth century, the
German mathematician Emmy Noether proved that each continuous, differ-
entiable symmetry is associated with a conservation law. For instance, if the
Lagrangian of a system is invariant under translations in space, the related
conserved quantity is the momentum. Similarly, invariance under rotations
in space is associated with angular momentum conservation and invariance
under translations in time is related to energy conservation. These ideas are at
the centre of modern-physics thinking and theory building, and in particular
in quantum field theory, where the theories that describe particles and their
interactions can be constructed from symmetry arguments.

This part describes the main concepts of symmetry in field theories. First,
the notion of gauge symmetry is presented in a general manner and illustrated
with examples taken from the Standard Model of particle physics (SM). Then,
discrete symmetries, such as C, P and T are addressed. The aim is not to
explain the construction of the SM from scratch or to give a mathematical
description of group theory but rather to show the link between the two through
the concept of symmetry. It is assumed that the reader has a basic knowledge
in group theory, quantum field theory and the SM.

13



14 Standard Model and CP violation

II.1.1 Gauge symmetries

A theory describing fundamental particles must agree with special relativity. In
other words, the Lagrangian of the theory must be invariant under space-time
transformations belonging to the Poincaré group1, P(1,3). In field theory, for
one time dimension and three space dimensions, this requirement leads to scalar,
vector, and tensor fields for bosons and spinor fields for fermions. Symmetries
that couple to the Poincaré group are called “external symmetries”.

A Lagrangian can also have internal symmetries that are independent of the
Poincaré group, which means that the generators of these symmetries commute
with the generators of P(1,3). These symmetries are related to transformations
of the fields; for example a global phase shift of a field φ such as φ → eiαφ
belongs to the symmetry group U(1). Mathematically, continuous symmetries
are described by Lie groups, which contain an infinite number of elements that
can be arbitrarily close to the identity. For instance, U(N) is the group of
N×N unitary matrices (UU † = 1) that satisfy |det(U)| = 1. A representation
of the group is U = eiθT , where T is a generator of the group. The number
of generators needed to describe a group corresponds to the dimension of the
group.

Symmetries provide a fundamental principle that determines the form of
the Lagrangian of a theory. They can be local (space-time dependent) or global
(space-time independent). Gauge symmetries are internal symmetries, so they
do not “see” P(1,3). In other words, at each point of the spacetime there is an
internal space that is independent of P(1,3). If the field φ is invariant under
this symmetry, then φ(x) is a vector of the internal space defined at point
x. This is the reason why the gauge symmetry needs to be local, so that the
symmetry is fulfilled in the internal space defined at each spacetime point.

In the simple case of an Abelian2 gauge group, U(1), a local transformation
of a field φ is of the form

φ(x)→ eiα(x)φ(x),

φ∗(x)→ e−iα(x)φ∗(x),
(II.1)

which corresponds to a phase rotation. It is straightforward to see that the
derivative of the field, ∂µφ, is not invariant under local gauge transformations.
Therefore, ∂µ is not the right quantity to use; instead, one must adopt the
covariant derivative, Dµ, which has the property to transform the same way as
the field:

Dµφ(x)→ eiα(x)Dµφ(x). (II.2)

1The Poincaré group is the Lorentz group with translations added.
2Also called commutative group: the generators of the group commute with each other.
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The covariant derivative can be seen as a generalisation of the derivative to
non-Euclidian spaces. In the specific case of an Abelian transformation, it can
be shown that

Dµφ(x) = (∂µ + ieAµ(x))φ(x), (II.3)

where e is a constant and Aµ is a vector field, satisfies Eq. (II.2). The field Aµ,
called a connection, ensures that the covariant derivative transforms like the
field φ. It connects the internal group at point x with its “copy” at point x+dx.
This term is a direct consequence of the invariance under local phase rotations
that was imposed on the field. From there we can deduce a systematic method
to construct locally invariant Lagrangians: any combination of φ and ∂µφ that
is invariant under a global phase rotation can be made locally invariant by
simply replacing the derivative by the covariant derivative.

We now need to find a kinematic term for Aµ. That is, a combination
of Aµ and its derivatives (exclusively) which is invariant under (II.1). This
can be achieved by using, again, the properties of the covariant derivative.
Inspecting (II.2), it is clear that the product of two covariant derivatives is
invariant under the local transformation and so is their commutator,

[Dµ, Dν ]φ(x)→ eiα(x)[Dµ, Dν ]φ(x). (II.4)

Using (II.3), the expression of the commutator as a function of Aµ is given by

[Dµ, Dν ] = ie(∂µAν − ∂νAµ) = ieFµν . (II.5)

The quantity Fµν and its derivatives are then locally invariant. We now have
the all the ingredients for the Lagrangian: φ, Dµφ, F µν , and ∂µF

µν .
Up to now, nothing was specified about the generic field φ. Let us take

the case of a Dirac fermion, ψ(x), for example, an electron. Using the “build-
ing blocks” described previously it is possible to construct the most general
Lagrangian including this field. This Lagrangian can, in principle, contain oper-
ators of any dimension. However, in the case of the electron in four space-time
dimensions, if only operators up to dimension four are included it is possible
to show that no divergences due to higher order corrections are present in
the Lagrangian. In this case the theory is said to be “renormalisable”3. If we
further require parity and time invariance symmetries4 we obtain the QED
Lagrangian

LQED = ψ(iγµDµ −M)ψ − 1

4
FµνF

µν , (II.6)

3Renormalisation theory will not be discussed in this document. The interested reader
can refer to [7].

4Discrete symmetries are discussed in the next section.
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where γµ are the Dirac matrices and ψ is the Dirac adjoint, defined as ψ ≡ ψ†γ0.
The connection Aν can be identified as the vector potential (i.e. the photon)
and Fµν is the familiar electromagnetic field tensor.

This example is an illustration of how fundamental is the notion of symmetry
in field theory and, especially, gauge symmetry. By requiring a field to be
locally invariant under a certain set of transformations a new vector field, Aµ,
which is required by the covariant derivative, is introduced. The kinetic energy
term related to this new field is then found by inspecting the commutator
of the two covariant derivatives, which gives the strength field tensor. This
method ensures that the quantities that are built obey to the symmetry laws
that were imposed on the field.

This approach can be generalised to non-Abelian gauge symmetries. In this
more general case, the generators, T a of the group do not commute, and thus
we have the relation

[T a, T b] = ifabc T c, (II.7)

where fabc are called structure constants. As an example, we can take the
commutator of two vectors in a three-dimensional Euclidian space, which
is nothing else than the cross product of these vectors. The corresponding
structure constants are then the three-dimensional Levi-Civita symbols5.

Since gauge symmetries groups are Lie groups, the commutation laws satisfy
a Lie algebra. Hence, the commutators must obey the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0, (II.8)

which leads to the following relation between the structure constants

fadef bcd + f bdef cad + f cdefabd = 0. (II.9)

A local, non-Abelian, gauge transformation of a field φ takes the from

φ(x)→ eiα
a(x)Laφ(x), (II.10)

where La are matrix representation of the generators. Equipped with the
commutation relations and the transformation, the next step is to compute the
covariant derivative, which is given by

Dµ = ∂µ − igAaµLa, (II.11)

5εijk is equal to 1 for even permutations of (i, j, k), -1 for odd permutations of (i, j, k),
and 0 if any index is repeated.
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where g is a constant and Aaµ are the connections. It is interesting to notice
that the number of vector fields (connections) that are needed for the covariant
derivative is the same as the number of independent generators of the gauge
group. For instance, in the familiar case of SU(2), there are three independent
generators, i.e. three Pauli matrices, therefore three vector fields Aaµ appear in
the covariant derivative.

Finally, the field strength tensors F a
µν are obtained by studying the commu-

tation relations of the covariant derivative,

[Dµ, Dν ] = −igF a
µν . (II.12)

After calculations, one obtains

F a
µν = ∂µAaν − ∂νAaµ + gfabcAbµAcν , (II.13)

where the first two terms are identical to the Abelian case and the last term
reflects the non-commutative nature of the gauge group.

A more concrete example of a non-Abelian gauge theory is the theory that
describes the strong interaction, namely quantum chromodynamics (QCD). To
explain the existence of particles such as the ∆++, which is composed of three
up-quarks with parallel spins, without violating Pauli exclusion principle, an
extra degree of freedom was postulated by Oscar W. Greenberg in 1964 [8]:
the colour charge. In addition of coming in different flavours, quarks come also
with different colours. Three colours (and three anti-colours) are necessary
to explain the light states in the SM. The particles observed in nature are
colourless: for example the three quarks of the ∆++ baryon must each have a
different colour, which obviously solves the problem of having three identical
quarks in the same state.

The gauge group of colour symmetry is SU(3) (which will be referred as
colour SU(3) or SU(3)C in order not to confuse it with flavour SU(3) that
will be discussed later). A field in the colour space has then three elements,
corresponding to the three colours,

ψ =

ψrψg
ψb

 . (II.14)

The general expressions for the local gauge transformation (II.10), the covariant
derivative (II.11), and the field strength tensors (II.13) can be directly used here.
There are eight independent generators of SU(3), which can be represented by
the “Gell-Mann matrices” (see, for example, Ref. [7]). This means that eight
vectors fields Aaµ are needed in the covariant derivative. These fields correspond
to the gluons that are the mediators of the strong force and the carriers of the
colour charge.
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II.1.2 Discrete symmetries

In addition to continuous symmetries, the Lagrangian can also be invariant
under discrete symmetries. In this part we will focus on parity, P , charge, C
and time reversal T symmetries. In order to avoid unnecessary complications,
we will use the Hamiltonian formalism instead of the Lagrangian one. The two
formalisms are equivalent and one can be deduced from the other by applying
some transformations. The only reason for using the Hamiltonian formalism is
that it gives a more direct grasp on the concepts that are discussed here.

Unlike the gauge transformations, which are described by groups with an
infinite number of elements, the symmetry groups of C, P and T contain
a finite number of elements: the identity I, and an element g that satisfies
g2 = I. Both P and T are symmetries of the spacetime while C is not. The
statement that the physical observables remain unchanged under g implies that
g can be represented by a unitary (or antiunitary) operator U(g) such that
[U,H] = 0, where H is the (Hermitian) Hamiltonian of the system. As a result,
the eigenvalues of these operators are ± 1.

Parity

A parity transformation reverses the direction in space. The parity unitary
operator, P , acts on a four-vector of the the Poincaré group, (t, ~x), by changing
the sign of the space coordinates: (t, ~x)→ (t,−~x). Applied to a particle, this
symmetry reverses the sign of the momentum while leaving the spin unchanged.
Eigenstates of P , such as hadrons, can be classified according to the how they
transform under parity,

scalar: S → S vector: V → V
pseudoscalar: P → −P pseudovector: A→ −A (II.15)

The parity of a fermion is the opposite of the parity of its antiparticle while
the parity of a boson is the same as the parity of its antiparticle. The parity of
a quark is taken to be positive (this is an arbitrary choice) and so the parity of
an antiquark is negative. Parity is a multiplicative quantum number, which
means that the parity of a composite state is the product of the parities of the
individual states. For systems that are not in their ground state the orbital
momentum between the different particles has to be taken into account. In the
case of a meson, which is a bound state of a quark and an antiquark, the parity
is then (+1)(−1)(−1)l = (−1)l+1, where l is the orbital momentum between
the two quarks.

Historically, parity symmetry was taken for granted and was assumed to be
conserved in all interactions. However, an unusual behaviour was observed in
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the weak decay of two particles, named θ and τ at the time. These two mesons
had the same mass and the same quantum numbers (same spin, same charge
etc.). Nevertheless, the preferred decay channel for the θ was into two pions
(P = +1) whereas the τ decayed into three pions (P = −1). Assuming parity
conservation, the two particles have opposite parities, and thus are different
particles. However, it is quite surprising to find two particles that are identical
in every aspect except parity. This was known as the θ − τ puzzle. A solution
to this puzzle was proposed by Lee and Yang in 1956 [9], by postulating that
these particles were actually the same particle, which is now called the K+,
and that parity is actually not conserved in one of the decays. This triggered a
whole era of theoretical and experimental searches for parity violation in weak
decays.

Charge conjugation

The charge conjugation unitary operator, C, changes the sign of all charges
— all internal quantum numbers — into their opposite. In other words, it
transforms a particle into its antiparticle. Several particles can form together a
C eigenstate, as for instance, a particle and its antiparticle. Like the parity
group, the charge-conjugation group has two elements, I and C, and C2 = I.
Thus the eigenvalues of C are ±1, and the transformation of a charge eigenstate
under C reads

C|p〉 = ±|p〉 = |p〉 (II.16)

where |p〉 is an eigenvector of C. In terms of physics, two states that only differ
by a global phase shift represent the same state. Applied to particles, it means
the eigenstates of C are particles that are their own antiparticles, which leads
to the fact that most particles are not C eigenstates.

Time reversal

Time reversal is another symmetry that applies to spacetime, reversing the
sign of the time component: (t, ~x)→ (−t, ~x). Unlike in the case of P and C,
the time reversal operator T is antiunitary. This ensures that this symmetry
changes the sign of t while keeping the energy positive. Applied to a particle,
this operator reverses its momentum and its spin projection.

CPT invariance

Experimentally, it was shown that C and P are violated in the weak interaction
while strong, electromagnetic and gravitational interactions seem to conserve
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C, P and T symmetries. The violation of the combined action of P and C,
known as CP violation6, is well established in K and B mesons, and was very
recently observed in D mesons [10]. However, the combination of the three
symmetries together is believed to be an exact symmetry. This is a consequence
of the CPT theorem [11,12] that states that it is not possible to construct a
Lorentz-invariant quantum field theory with a Hermitian Hamiltonian that
violates CPT . A violation of CPT symmetry would probably implies Lorentz-
symmetry breaking. Another important consequence of this theorem is that
CP violation must be compensated by a violation of T parity. Time-reversal
violation was observed experimentally by the BaBar collaboration in 2012,
using entangled states of B mesons [13].

II.1.3 Realisation of symmetries and spontaneous sym-
metry breaking

Formally, a symmetry of the Lagrangian can be realised in two modes: the
Wigner-Weyl and the Nambu-Goldstone modes, depending on the transforma-
tion of the vacuum state.

Wigner-Weyl mode

The Wigner-Weyl mode corresponds to the case where both the Lagrangian
and the vacuum state are invariant under a set of transformations. The relation
T a|0〉 = 0, where T a are the generators of the symmetry and |0〉 denotes the
vacuum state, implies that the spectrum is degenerate. For instance, rotations
in a three dimensional space are generated by three generators, Li (where
i = x, y, z), which commute with the Hamiltonian of the system. It can be
shown that the spectrum is composed of multiplets of angular momentum l with
2l+ 1 degenerate values. These values are labelled by the projection of ~L along
an arbitrary axis; the usual convention is lz = m and m = −l,−l+ 1, ..., l− 1, l.

A more instructive example is given by chiral symmetry. Consider the free
Dirac Lagrangian for quarks

L = ψ(i��∂ −M)ψ, (II.17)

where ��∂ = γµ∂µ. In this example, we neglect the colour symmetry so that ψ is

6The mechanism of CP violation will be discussed in details in the next sections.
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a vector in the flavour space

ψ =

ψuψd
...

 , (II.18)

where the components ψf of ψ are Dirac spinors that represent the various
quark flavours. The mass matrix M is diagonal in the flavour space. The
Lagrangian of Eq. (II.17) is invariant under vector transformations of the form

ψ → ei~α·
~Tψ. (II.19)

If only two flavours are included, the corresponding symmetry group is then
SU(2)V (where the subscript V stands for vector), and the generators of the

group, ~T , are proportional to the Pauli matrices7 ~σ, ~T = ~σ/2. From Noether
theorem, the conserved currents are given by

~JµV = ψγµ ~Tψ (II.20)

Since these currents are conserved, their derivative must be zero. It can be
shown, using Eq. (II.17), that

∂µ ~J
µ
V = iψ[M, ~T ]ψ. (II.21)

The requirement ∂µ ~J
µ
V implies that M and ~T commute. By working out the

commutator using the explicit forms of the matrices it appears that

[M, ~T ] = 0⇒ mu = md. (II.22)

It appears from this equations that the quark-mass states are degenerate, this
symmetry is then realised in the Wigner-Weyl mode. It turns out that this
SU(2)V symmetry, also known as isospin symmetry, is a pretty good symmetry
of QCD. Indeed, it is found that the masses of the proton and the neutron,
which are an isospin doublet, are very close together: mp = 938.23 MeV and
mn = 939.57 MeV. The same goes for pions, which form a triplet under isospin:
mπ± = 139.57 MeV and mπ0 = 134.98 MeV.

7The Pauli matrices are three 2× 2 unitary Hermitian matrices given by σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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The Dirac Lagrangian of Eq.(II.17) is also invariant under axial vector
(pseudovector) transformations

ψ → ei~α·
~Tγ5ψ, (II.23)

where γ5 = iγ0γ1γ2γ3. If we consider two flavours of quarks, the symmetry
group is then SU(2)A (where the subscript A stands for axial vector). The
generators of the group depend on the Pauli matrices and on γ5,

~Tγ5 =
~σγ5

2
. (II.24)

Following the same procedure as in the isospin case, we find that the Noether
currents are given by

~JµA = ψγµ ~Tγ5ψ. (II.25)

This time, this is the anti-commutator of M and ~T that appears in the derivative
of the current

∂µ ~J
µ
A = iψ{M, ~T}γ5ψ. (II.26)

The condition ∂µ ~J
µ
A = 0 is fulfilled only if the quarks have zero mass. The

combined vector and axial symmetry is called chiral symmetry. This symmetry
is a approximately true at energies large enough so that the quark masses can
be neglected.

Nambu-Goldstone mode

When the Lagrangian is invariant but not the vacuum state, T a|0〉 6= 0, the
symmetry is said to be realised in the Nambu-Goldstone mode. The generators
that satisfy T a|0〉 6= 0 are called “broken” generators. Not all the generators
have to break the invariance of the vacuum for the symmetry to be realised
in this mode. The consequences of the presence of such broken generators is
that the vacuum expectation value of the field is different from zero and that it
exists operators that can create particles from the vacuum. Those particles are
called Goldstone bosons. Using the fact that a symmetry is associated with the
conservation of Noether currents, it can be shown that the Goldstone bosons
must be massless [7].

To illustrate this, consider the Dirac Lagrangian used in the previous
example Eq. (II.17), in the case of massless fermions (M = 0). It can be
expressed in the Weyl basis, by projecting the state ψ on the left- and right-
handed states8. The Lagrangian then reads

L = ψLi��∂ψL + ψRi��∂ψR. (II.27)

8This is done by using the projectors PR/L = 1±γ5

2 , ψ = PRψ + PLψ.
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Expressed under this form, the Lagrangian has two disjoint parts, L and R,
which indicates a SU(2)R ⊗ SU(2)L symmetry in the case of two flavours. As
seen in the previous paragraph, this Lagrangian is invariant under both vector
and axial symmetries. After projection on the left- and right-handed states
the transformation takes the form

ψR/L → ei~αR/L·
~TR/LψR/L, (II.28)

where the generators are given by ~TR/L = 1
2
(1± γ5)~T . Parity transforms left

and right states into each other. If this symmetry is realised in the Wigner-Weyl
mode it entails a hadron spectrum composed of degenerated multiplets with
opposite parity, which is not what it is observed experimentally. Therefore, the
symmetry is spontaneously broken. According to observation, the conserved
symmetry is isospin, so that

SU(2)L ⊗ SU(2)R = SU(2)V ⊗ SU(2)A → SU(2)V . (II.29)

The ground state is not invariant under SU(2)A (which rotates differently ψR
and ψL fields), but it is invariant under isospin rotations (which are the same
for ψR and ψL). As explained before, we expect as many (massless) Goldstone
bosons as broken generators, three in the case of two flavours. Since the broken
symmetry is axial, these particles should be pseudoscalar particles. They can
be identified with the pions. Obviously, pions are not massless particles, so
this symmetry is not exact. Nevertheless, it explains the rather small masses
of these particles.

II.2 Weak interaction

In the previous section, we introduced the notion of symmetry and explored
some of its consequences. Considering gauge symmetries, it is possible to
construct invariant Lagrangians in a general and systematic way. Taking
into account renormalisation conditions and extra symmetries one can build
a theory that describes physical processes. We saw that gauge symmetries
engender vector fields, the gauge bosons, which are massless. To give mass to
gauge bosons another mechanism is needed: the so-called Brout-Englert-Higgs
(BEH) mechanism [14], which is based on spontaneous symmetry breaking.
By adding a scalar field to the Lagrangian, with a potential chosen so that
the field acquires a non-zero vacuum expectation value, the gauge invariance
can be spontaneously broken. This leads to massless Goldstone bosons, which
couple with the gauge bosons giving them non-zero masses. These Goldstone
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particles do not appear as physical states; it is possible to get rid of them by
making an appropriate choice of gauge. Nevertheless, they are important for
the conservation of the number of degrees of freedom. Indeed, a massless vector
boson has two polarisations while a massive one has three. The Goldstone
bosons are then said to be “eaten” by the gauge bosons. The BEH mechanism
will not be discussed in more detail in this work.

From there, it is rather straight forward to understand the construction
of the SM. We already introduced, in part II.1.1, SU(3)C and U(1): the
gauge groups of the strong interaction (mediated by massless gluons) and the
electromagnetic interaction (mediated by massless photons), respectively. The
remaining interaction to describe is the weak interaction, which is mediated
by three massive gauge bosons W± and Z0. A starting point is SU(2) gauge
symmetry, with the addition of a scalar field that breaks spontaneously the
symmetry. This theory leads to three massive gauge bosons with the same
mass, which is not what is observed; the measured masses of the W± and
Z0 are mW± = 80.385 ± 0.015 GeV and mZ0 = 91.1876 ± 0.0021 GeV [15].
A way to overcome this issue is to add a U(1) gauge symmetry and treat
weak and electromagnetic interactions together. This model is known as the
Glashow-Weinberg-Salam (GWS) theory [16–18].

The complete gauge group of the SM is then SU(3)C⊗SU(2)L⊗U(1)Y , where
the strong interaction described by SU(3)C and the electroweak interaction by
SU(2)L ⊗ U(1)Y . We will focus on the electroweak interaction in the following
paragraph. The SM Lagrangian corresponding to this symmetry group can be
split into three parts

LSM = Lkinetic + LHiggs + LYukawa, (II.30)

where Lkinetic contains the kinetic terms of the form 1
4
|Fµν |2 for gauge bosons

and ψi��Dψ for fermions.The Higgs potential is contained in LHiggs and LYukawa

describes the interactions between the Higgs field and the fermions. This last
term will be presented when discussing the mechanism of CP violation in
part II.3.

Glashow-Weinberg-Salam theory

As argued before, a possible way to describe the electroweak interaction is
by requiring a SU(2) ⊗ U(1) symmetry and adding a scalar field, φ, that
spontaneously breaks the gauge symmetry. This field is a SU(2) doublet and
has a non-zero expectation value 〈φ〉. Using local gauge invariance under SU(2)
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rotations, the expectation value can be expressed in the form

〈φ〉 =
1√
2

(
0
v

)
, (II.31)

where v is a real number. The transformation of the field φ is then given by

φ→ e
i
2
~α·~σe

i
2
βφ, (II.32)

where ~σ are the Pauli matrices and a charge 1
2

is assigned to φ under U(1).
By working out the matrices in the exponential, it is easy to see that the
choice α1 + α2 = 0 and α3 = β leave the ground state invariant. Therefore,
there is one unbroken generator so that the theory contains one massless gauge
boson and three massive bosons, corresponding to the three remaining broken
generators.

The covariant derivative related to the field φ follows naturally from
Eq. (II.32)

Dµφ =

(
∂µ −

i

2
gW a

µσ
a − i

2
g′Bµ

)
φ, (II.33)

where W a
µ are the gauge bosons of SU(2) and Bµ is the gauge boson of U(1),

and g and g′ are their respective coupling constants. The values for the masses
of the gauge bosons are found by evaluating |Dµφ|2 at the expectation value
given in Eq. (II.31). The physical gauge bosons, W±

µ , Z0
µ and Aµ, are obtained

by making linear combinations of W a
µ and Bµ:

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ),

Z0
µ =

1√
g2 + g′2

(gW 3
µ − g′Bµ),

Aµ =
1√

g2 + g′2
(gW 3

µ + g′Bµ),

(II.34)

where it appears that the Z0
µ and the Aµ fields are orthogonal to each other.

The corresponding masses are mW = gv/2 for the W±, mZ = (
√
g2 + g′2)v/2

for the Z0, and mA = 0 as expected for the photon.
It was mentioned before that parity is not a symmetry of the weak interac-

tion. Since this operation flips the handedness of a fermion, it is natural to
expect left-handed (LH) and right-handed (RH) fields to transform differently
under the gauge group. That is to say, LH and RH fields belong to different
representations of the gauge group. More concretely, it means that LH and RH
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fermions couple differently to the gauge bosons, so that the covariant derivative
takes the general from

Dµ = ∂µ − igW a
µT

a − ig′Y Bµ, (II.35)

with T a = σa/2 for LH fermions and T a = 0 for RH fermions, and the U(1)
charge Y , called hypercharge, differs in terms of the handedness of the fermion
fields. To understand the physics of these interactions, it is convenient to
rewrite Eq. (II.35) in terms of the mass eigenstates of the gauge fields (W±

µ , Z0
µ

and Aµ). This is achieved using “ladder operators”, T± = (T 1 ± iT 2). After
rewriting the couplings in terms of physical observables, Eq. (II.35) becomes

Dµ = ∂µ− ig
1

2
(W+

µ T
+ +W−

µ T
−)− i g

cosθw
Z0
µ(T 3−Q sin2 θw)− iQAµ, (II.36)

where Q is the electric charge and θw is the weak mixing angle. This quantities
are related to those appearing in Eq. (II.35) by

Q = T 3 + Y,

e =
gg′√
g2 + g′2

,

g =
e

sin θw
,

tan θw =
g′

g
,

(II.37)

where e is the electromagnetic coupling. This also leads to the fact that
the masses of the W± and the Z0 are not independent and are related by
mW = mZ cos θw.

It is known experimentally that the W± couples only to LH fermions. The

LH fermions can be arranged into SU(2) doublets, ψL =

(
u
d

)
L

,

(
e
νe

)
L

etc., and

the RH fermions into SU(2) singlets, ψR = uR, dR, eR etc. The corresponding
quantum numbers are then T = 1

2
with T 3 = ±1

2
for the doublet and T = 0

with T 3 = 0 for the singlet. The transformations of these fields under SU(2)
⊗U(1) are then

ψL → ei
~T ·~σeiY ψL,

ψR → eiY ψR.
(II.38)

The values for Y can be obtained using the first equation in (II.37). For example,
a RH electron, which has an electric charge Q = −1 has a hypercharge of
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Y = −1. A summary of the different charges of up-type quarks, down-type
quarks and leptons is given in Table I. As seen previously, when projecting
onto LH and RH states the kinetic terms in the fermion Lagrangian take the
form of Eq. (II.27). In the present case, the contents of the covariant derivative,
Eq. (II.36), differ for the LH and the RH part, according to values of the
quantum numbers T , T 3 and Q.

Table I: Quantum numbers of the electroweak interaction for quarks and leptons.
Notice that since there is no right-handed neutrino in the SM, it does not appear in
the table.

particle T T 3 Q Y

uL 1/2 1/2 2/3 1/3
dL 1/2 -1/2 -1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 -1/3 -2/3

νL 1/2 1/2 0 -1
eL 1/2 -1/2 -1 -1
eR 0 0 -1 -2

The LH and RH fields couple in the same way (parity is conserved) to
the Aµ (the photon) and the coupling is proportional to the electric charge.
The electromagnetic currents contain terms of the form ψγµQψ. Conversely,
only the LH fields couple to the W± bosons, and because of the presence of
the T± operators, the up- and down-type particles are mixed9, so that the
currents contain terms like uLγ

µdL. In the case of the Z0 boson, the current
does not mix flavours10, so it contains terms of the form uLγ

µCZuL, where the
coupling constant CZ , depends on the values of T 3, Q and the weak mixing
angle. The Lagrangian describing weak interactions between fermions of the
i-th generation takes the form

Li = − g√
2
ψiγ

µ (1− γ5)

2
(W+

µ T
+ +W−

µ T
−)ψi−

g

2 cos θw
ψiγ

µ(Ci
V −Ci

Aγ
5)ψiZµ,

(II.39)

9For example T+ψL =

(
0 1
0 0

)(
u
d

)
=

(
d
0

)
10This means that flavour-changing neutral current is forbidden at tree-level in the SM.

But it can still happen through loop processes.



28 Standard Model and CP violation

where
CV = T 3

i −Qi sin
2 θw,

CA = T 3
i .

(II.40)

As expected, the interaction terms related to the weak interaction violates
“maximally” parity and charge conjugation. However they conserve CP .

II.3 CP violation

As seen in the previous section, the weak interaction terms contained in the
Lagrangian, although they violate C and P separately, are CP conserving. The
violation of CP symmetry in the SM is accounted for by the Kobayashi-Maskawa
(KM) mechanism [19]. This mechanism is a generalisation to six quarks (three
generations11) of the Cabibbo matrix [20], which was introduced by Nicola
Cabibbo to preserve the universality of weak interaction in processes with s
quarks, d quarks and leptons. This section will present the KM mechanism,
the neutral-meson oscillations and the different types of CP violation. The
focus will be on the quarks sector; a similar mechanism can be derived for
neutrinos, leading to the PMNS matrix [21,22], but this will not be addressed
in this dissertation.

II.3.1 Kobayashi-Maskawa mechanism

In the theories described previously, the fermions remain massless. The mass
terms for the fermions come from their interactions with the Higgs field. Before
spontaneous symmetry breaking, the interaction terms of the quarks and the
Higgs field can be expressed as

LYukawa = −(Y d)ijψiLφ d
j
r − (Y u)ijε

abψiLaφ
†
bu
j
r + h.c., (II.41)

where ψiL is the SU(2) doublet corresponding to the i-th generation of quarks,
ur and dr are RH up-type and down-type singlets, respectively, φ is the Higgs
field and Y d/u are the Yukawa couplings. Given the fact that these interaction
terms do not result from a gauge symmetry, no assumption can be made a
priori on the the Yukawa couplings and they can be any N×N general complex
matrices (assuming N generations of quarks). One can see immediately that if
these matrices are real-valued the Lagrangian in Eq. (II.41) is CP conserving.
Under spontaneous symmetry breaking, the Higgs field acquires a non-zero

11The mechanism is valid for at least three generations.
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vacuum expectation value 〈Φ〉 = (0, v/
√

2), which yields to mass terms for the
quark fields of the form

M f
ij =

v√
2
Y f
ij , (II.42)

where f = u, d. Since the Yukawa matrices are general matrices, they are not
diagonal and neither is M f , which means that the flavour eigenstates do not
coincide with the mass eigenstates. The fermion masses are obtained then by
diagonalising the M f matrices, introducing four unitary matrices V f

L(R)

M f = (V f
L )†M f

diagVR, (II.43)

where the mass matrices M f
diag are diagonal and have real and positive eigen-

values. Similarly, the fermion fields themselves transform with the same V f
L(R)

matrices
UL(R) = V u

L,RU
′
L, DL(R) = V d

L,RD
′
L, (II.44)

where, for N generations of quarks, U (′) is a vector that contains N up-type
quarks, similarly D(′) contains N down-type quarks. The prime denotes
quantities that are expressed in the flavour basis whereas the absence of prime
relates to quantities in the mass basis. Finally, in the mass basis, the interaction
between W± and the quarks takes the form

LW = − g√
2
U
i

Lγ
µW+

µ (VCKM)ijD
j

L + h.c., (II.45)

where the matrix VCKM = (V u
L )†V d

L , called the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, is unitary. In this basis, the interaction with a W± allows for
flavour-changing transitions between up- and down-type quarks of different
generations and also inside a generation.

II.3.2 CKM matrix

As discussed in the previous section, the CKM matrix is complex and unitary.
The size of this matrix is directly related to the number of generations of quarks:
for N generations the size of the matrix is N ×N (similarly for leptons). In the
most general case, a N ×N complex matrix has 2N2 independent parameters.
The number of degrees of freedom is reduced to N2 after applying the unitarity
condition. The relative phases between the quarks can be absorbed into each
quark field, and thus, they are unphysical and can be rotated out. Finally, the
number of parameters is reduced to (N − 1)2. Among these, N(N − 1)/2 are
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Euler angles and (N − 1)(N − 2)/2 are phases describing CP violation12. From
there, it appears that at least three generations of quarks are needed to allow
for CP violation.

With three generations of quarks, the CKM matrix is then a 3×3 matrix

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (II.46)

where the CKM matrix elements Vij represent the couplings between up-type
quarks (u, c, t) and down-type quarks (d, s, b). This matrix can be parametrised
with 3 angles and one phase. Many parameterisations are possible; the most
common one was proposed by Chau and Keung [23]. It is obtained by the
product of three rotation matrices:

VCKM =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(II.47)

where sij ≡ sin θij and cij ≡ cos θij. The three angles θ12, θ13 and θ23 are
chosen so that the parameters cij and sij are positive. The parameter δ is the
CP violating phase; it ensures that VCKM 6= V ∗CKM, thus Vij 6= Vij, allowing for
CP violation. In the SM, considering massless neutrinos, this phase is the only
source of CP violation13.

It is observed experimentally [15] that s13 � s23 � s12 � 1. It is then
convenient to express VCKM in a form that exhibits this hierarchy. This can be
achieved by expanding VCKM in terms of λ ≈ |Vus| ≈ 0.23. This expansion is
called the Wolfenstein parametrisation [24] and is widely used. At order λ3 it
reads

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (II.48)

12For leptons, in the case of Dirac neutrinos, the number of parameters is the same as in
the CKM matrix. However, if the neutrinos are Majorana particles, i.e. if they are their own
antiparticles, the number of phases is N(N + 1)/2 because massive Majorana neutrino fields
cannot absorb phases. Then, for three generations of leptons, there are three CP violating
phases.

13In principle, a strong CP (and P ) violating term is allowed in the SM. However, its
value is constrained by the electric dipole moment of the neutron, which limits this strong
CP violating term to the order 10−10.
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where the the Wolfenstein parameters A, λ, ρ, and η are related to the sij and
cij by the following equations

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2, s13e

iδ = V ∗ub = Aλ3(ρ+ iη).

(II.49)
The hierarchy between the transitions is emphasised by the parametrisation
given in Eq. (II.48). For example, it is manifest that the transitions between
quarks of the same generation are favoured (Vus ≈ Vcs ≈ Vtb ∝ O(1)) whereas
the transitions between the first and the third generations are the most sup-
pressed (O(λ3)). There is no explanation for this specific hierarchy in the
SM.

The CKM parameters can be elegantly represented in terms of unitarity
triangles using the unitarity relations∑

i

VijV
∗
ik = δjk,

∑
j

VijV
∗
kj = δik. (II.50)

The six vanishing combinations can be represented as triangles in the complex
plane. All the unitarity triangles have the same area, which is half the Jarlskog
invariant [25], J , defined as

=(VijVklV
∗
ilV
∗
kj) = J

∑
m,n

εikmεjln, (II.51)

where εijk is the Levi-Civita tensor. A phase-convention independent measure
of CP violation is given by

= det([Mu(Mu)†,Md(Md)†]]) =2J(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)

(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d),
(II.52)

where M f are the mass terms for the quark fields defined in Eq. (II.42). From
this equation, it appears that J must be non-zero but also that the masses
of the up-type and down-type quarks must be non-degenerated to have CP
violation.

The most commonly used triangle for B0-meson decays, often referred to
as “the unitarity triangle”, is obtained by taking the scalar product between
the first and the third columns of the CKM matrix,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (II.53)

All the sides of this triangle are of the same order of magnitude, O(λ3). A
sketch of this triangle is shown on Fig. II.1. The coordinates of the vertices
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are obtained by dividing both sides of Eq. (II.53) by VcdV
∗
cb and using the

phase-convention-independent relation,

ρ+ iη ≡ −VudV
∗
ub

VcdV ∗cb
. (II.54)

With this rescaling, one side of the triangle is thus equal to unity whereas the
other two are given by

Ru =
VudV

∗
ub

VcdV ∗cb
=
√
ρ2 + η2,

Rt =
VtdV

∗
tb

VcdV ∗cb
=
√

(1− ρ)2 + η2.

(II.55)

Phase-convention-independent quantities, such as the moduli of CKM matrix
elements, |Vij|, and their quadri-product, VijVklV

∗
ilV
∗
kj, are particularly interest-

ing because they are physically meaningful. For this reason the quantity ρ+ iη
is preferred over ρ+ iη. The Jarlskog invariant can thus be directly related to
CP violation through

|=(VijVklV
∗
ilV
∗
kj)| = λ6A2η, (i 6= k, l 6= j). (II.56)

From Eq. (II.54) the expressions for the three angles can be expressed as
functions of the parameters ρ and η:

α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
= arg

(
−1− ρ− iη

ρ+ iη

)
, (II.57)

β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
= arg

(
1

1− ρ− iη

)
, (II.58)

γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
= arg (ρ+ iη) . (II.59)

In the case of the B0
s meson, another unitarity triangle is used. It involves

CKM matrix elements related to transitions with the s quark

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0. (II.60)

Unlike the unitarity triangle, the size of the sides of the B0
s triangle do not have

the same order of magnitude. The first term in Eq. (II.60) is of order O(λ4)
whereas the other two terms are of order O(λ2). This results in a “squashed”
triangle. An interesting parameter to extract is the CP -violating phase φs,
which is a mixing phase between B0

s and B0
s. It is defined as

φs ≡ −2βs = arg

(
−VtsV

∗
tb

VcsV ∗cb

)
. (II.61)
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Figure II.1: Sketch of the unitarity triangle [15].

II.3.3 Neutral meson mixing

A consequence of the transitions between the different quark flavours is the pos-
sibility for a neutral meson to oscillate into its antiparticle14. This phenomenon
has been observed experimentally, first in the K0-K0 in 1956 [26], then in
the B0-B0 system in 1987 [27], in the B0

s -B
0
s system in 2006 [28] and finally

in the D0-D0 system in 2007 [29, 30] . In the SM, mixing happens through
box diagrams with the exchange of two W bosons. The diagrams describing
B-meson oscillations is given in Fig. II.3.

At t = 0, the state describing a neutral meson, which is different from its
own antiparticle, can be expressed as an admixture of flavour eigenstates M0

and M
0

|ψ(0)〉 = a(0)|M0〉+ b(0)|M0〉, (II.62)

At a time t > 0, the state evolves according to

|ψ(t)〉 = a(t)|M0〉+ b(t)|M0〉+
∑
i

ci(t)|fi〉, (II.63)

where the sum runs over all the possible final states accessible by the system at
time t. If t is very large compared to the strong interaction scale, Eq. (II.63)
can be approximated by a two-state system. The effect of the other states,
|fi〉, is then accounted for by introducing a non-Hermitian part in the effective
Hamiltonian describing the time evolution of the system. Since any matrix
can be written as a sum of a Hermitian and an anti-Hermitian term, the
Hamiltonian of the system, H, can be written in the form

H =M− i

2
Γ, (II.64)

14Note that neutral baryon oscillation is forbidden by baryon number conservation.
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whereM and Γ are 2×2 Hermitian matrices related to the mass and the decay
width of the state, respectively. The diagonal terms of these matrices are

related to flavour-conserving transitions (M0 →M0 and M
0 →M

0
) while the

off-diagonal terms are related to flavour-changing transitions (M0 →M
0

and

M
0 → M0). The matrix M is a dispersive term that describes transitions

through off-shell intermediate states whereas Γ is an absorptive term associated
with transitions through on-shell intermediate states. The Hamiltonian H is
not Hermitian. Indeed, if H had been a Hermitian matrix, the absorptive part
would have been zero and the state would have only oscillate with no possibility
to decay.

In the most general case, without assuming CPT invariance, the eigen-
vectors of H, |M0

L〉 (“light”) and |M0
H〉 (“heavy”) can be expressed as linear

combinations of |M0〉 and |M0〉

|M0
L〉 ∝ p

√
1− z|M0〉+ q

√
1 + z|M0〉,

|M0
H〉 ∝ p

√
1 + z|M0〉 − q

√
1− z|M0〉,

(II.65)

where p, q and z are complex numbers, and the normalisation condition is such
that |p|2 + |q|2 = 1 when z = 0. If CPT invariance is assumed then z = 0
and Eq. (II.65) simplifies. Other parametrisations of the mass eigenstates are
possible; the one presented here is the most commonly used for describing
B-meson decays. The diagonalisation of H yields(

q

p

)2

=
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

, z =
δm− i

2
δΓ

∆m− i
2
∆Γ

, (II.66)

where
∆m ≡ mH −mL, ∆Γ ≡ ΓH − ΓL,

δm ≡M11 −M22, δΓ ≡ Γ11 − Γ22.
(II.67)

The quantity ∆m is positive by definition and is related to the frequency
of the oscillations between the two states, whereas ∆Γ can be negative and, in
fact, it has been established that ∆Γ < 0 for K0 and B0

s mesons [15]. If CP or
T is conserved then

arg

(
Γ12

M12

)
= 0 ⇒

∣∣∣∣qp
∣∣∣∣ = 1. (II.68)

In addition, if CP is a symmetry then the mass eigenstates are orthogonal,
which leads to

〈M0
L|M0

R〉 = 0 ⇒ |p|2 − |q|2 = 0. (II.69)

Equations (II.68) and (II.69) are valid independently of CPT being conserved
or not. Moreover, Eq. (II.69) is independent of T conservation as well.
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Figure II.2: Dominant diagrams corresponding to B(s) oscillation.
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Figure II.3: Dominant diagrams corresponding to B0
(s) oscillation [15]. The contri-

bution form the top quark is dominant in the loop, but contributions from u and c
quarks are also possible.

Time evolution

According to quantum mechanics, an initial state evolves in time with the
time-evolution operator

|M0(t)〉 = e−iHt|M0(t = 0)〉, (II.70)

where H is the Hamiltonian of the system. The evolution in time of a state

that is a pure |M0〉 or |M0〉 at t = 0 is obtained by combining Eq. (II.70) and
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Eq. (II.65). An initial state, which is pure at t = 0, evolves into a mixed state
at t > 0 according to

|M0(t)〉 = (g+(t) + zg−(t))|M0〉 −
√

1− z2
q

p
g−(t)|M0〉,

|M0
(t)〉 = (g+(t)− zg−(t))|M0〉 −

√
1− z2

p

q
g−(t)|M0〉,

(II.71)

where the functions g±(t) can be expressed in terms of the eigenvalues of the
effective Hamiltonian defined in Eq. (II.64)

g±(t) ≡ 1

2

(
e−i(mH−

i
2

ΓH)t ± e−i(mL−
i
2

ΓL)t
)
. (II.72)

The time-dependent decay rate is proportional to the number of decays of

M0(t) (or its CP conjugate M
0
(t)) to a final state f (or f) within t and t+ dt.

It is given by
Γ(M0(t)→ f) = Nf |〈f |H|M0〉|2,

Γ(M
0
(t)→ f) = Nf |〈f |H|M

0〉|2,
(II.73)

where the time-independent normalisation factor Nf , common to M0(t) and

M
0
(t), is obtained by integrating over the phase space. The time convention

used hereafter is 0 < t <∞. A different convention is usually chosen for the
study of decays of mesons produced in a coherent way (for example through
Υ (4S) → B0B0 in B factories) leading to slightly different (but equivalent)
expressions for the decay rates. It is convenient to define phase-convention

independent decay amplitudes of M0 and M
0

Af = 〈f |H|M0〉, Af = 〈f |H|M0〉,

Af = 〈f |H|M0〉, Af = 〈f |H|M0〉.
(II.74)

Assuming CPT , z = 0, then Eq. (II.71) simplifies and the time-dependent
decay rates, expressed in terms combinations of phase-convention independent
quantities, are given by

dΓ(M0(t)→ f)

Nfe−Γtdt
=

(
|Af |2 + |

(
q

p

)
Af |2

)
cosh(

∆Γ

2
t) +

(
|Af |2 − |

(
q

p

)
Af |2

)
cos(∆mt)

+ 2<
((

q

p

)
A∗fAf

)
sinh(

∆Γ

2
t)− 2=

((
q

p

)
A∗fAf

)
sin(∆mt),

dΓ(M
0
(t)→ f)

Nfe−Γtdt
=

(
|
(
p

q

)
Af |2 + |Af |2

)
cosh(

∆Γ

2
t)−

(
|
(
p

q

)
Af |2 − |Af |2

)
cos(∆mt)

+ 2<
((

p

q

)
AfA

∗
f

)
sinh(

∆Γ

2
t)− 2=

((
p

q

)
AfA

∗
f

)
sin(∆mt).

(II.75)



II.3 CP violation 37

In these formulae, the terms containing |Af |2 and |Af |2 are related to the decay

of the meson without a net oscillation whereas terms proportional to |
(
q
p

)
Af |2

and |
(
q
p

)
Af |2 are related to decays that happen after net oscillation(s). The

terms containing sinh(∆Γ
2
t) and sin(∆mt) describe interference between the two.

In the case of a multi-body final state, the decay amplitudes are phase space
dependent, which means that the interference can vary between different phase-
space regions, and they are strongly influenced by the resonant substructures
of the decay. The expressions for the conjugate final states, dΓ(M0(t) → f)

and dΓ(M
0
(t)→ f) can be obtained by substituting f with f in Eqs. (II.73)

and (II.75).
The oscillation parameters for the neutral mesons differ significantly between

K0, B0, B0
s and D0, inducing different oscillation behaviours. The probabilities

for a pure M0 state, produced at time t = 0, to oscillate into M0 or M
0

are
related to the square modulus of Eq. (II.72):

P(M0 →M0) = |g+|2 =
1

4

(
e−ΓLt + e−ΓH t + 2e−Γt cos ∆mt

)
,

P(M0 →M
0
) =

∣∣∣∣qp
∣∣∣∣2 |g−|2 =

1

4

∣∣∣∣qp
∣∣∣∣2 (e−ΓLt + e−ΓH t − 2e−Γt cos ∆mt

)
,

(II.76)
where the average width Γ is given by Γ = (ΓL+ΓH)/2 = τ−1. An illustration of
time-dependent mixing for different neutral-meson systems is given in Fig. II.4.
This figure illustrates several properties: in the kaon system the width difference,
∆Γ, is very large compared to the averaged width and the mass difference,
∆m, which gives the oscillation frequency; in the D0-D0 system the mass and
width differences are both very small; finally, in the B0

s -B
0
s system, where

∆m/Γ = 26.79± 0.08 [15], the state initially produced as a B0
s oscillates many

times before decaying.

II.3.4 Classification of CP violating effects

The CP violating effects can be classified according to the presence or absence
of neutral-meson mixing. CP violation in the decay is characterised by a
difference in the decay rate of a state and the decay rate of its CP conjugate.
This is the only source of CP violation for non-mixing states such as baryons
and charged mesons. In neutral-meson decays more sources of CP violation
are available due to the mixing.
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CP violation in the decay

CP violation in the decay is defined by∣∣∣∣∣AfAf
∣∣∣∣∣ 6= 1. (II.77)

In the absence of mixing, the CP asymmetry is given by

ACP =
Γ(M → f)− Γ(M → f)

Γ(M → f) + Γ(M → f)
, (II.78)

and can be related to Eq (II.77) through

ACP =

∣∣Af/Af ∣∣2 − 1∣∣Af/Af ∣∣2 + 1
. (II.79)

Two sorts of phases enter in the decay amplitudes: “weak” phases, which
are CP odd and “strong” phases, which are CP even. In the SM, the weak
phases come from the couplings of the W± bosons. In contrast, the strong
phases are related to contributions from intermediate on-shell states to the
decay, such as M → f ′ → f . Most of the rescattering processes are long-
distance QCD effects. Consequently, the strong phases cannot be computed
using a pertubative approach and the interpretation of the result is model
dependent (except in specific cases where the strong phases can be measured
experimentally or ruled out by combining several decay modes). Nevertheless,
it is worth to emphasise that the CP conserving strong phases are necessary
to observe CP violation effects. In their absence Af = A∗f and thus the ratio
defined in Eq. (II.77) would always be equal to one. The decay amplitudes can
be expressed as a sum of contributions

Af =
∑
j

Aje
i(δj+φj), Af =

∑
j

Aje
i(δj−φj), (II.80)

where Aj, δj and φj are, respectively, the magnitude, and the strong and
weak phases of the contribution j. Note that δj and φj are phase-convention
dependent but quantities such as δj − δk and φj − φk with j 6= k are phase-
convention independent, and thus are physical observables. At least two
different contributions with non-zero strong- and weak-phase differences are
needed in order to be sensitive to CP violation. In that case, the CP asymmetry
can be written in terms of the magnitudes and the phases as

ACP =
2A1A2 sin(φ2 − φ1) sin(δ2 − δ1)

A2
1 + A2

2 + 2A1A2 cos(φ2 − φ1) cos(δ2 − δ1)
. (II.81)
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CP violation in the mixing

CP violation can occur in the mixing when the probability for a transition

M0 → M
0

is different from the probability of the CP conjugate transition,

M
0 →M0. As mentioned in section II.3.3, this happens if the mass eigenstates

are not equivalent to the CP eigenstates. In other words, if∣∣∣∣qp
∣∣∣∣ 6= 1. (II.82)

Experimentally, one can measure the corresponding CP asymmetry, denoted
ASL, in semileptonic decays of neutral mesons to final states of the form l±X,
where this asymmetry is the only source of CP violation

ASL =
dΓ
dt

(M
0
(t)→ l+X)− dΓ

dt
(M0(t)→ l−X)

dΓ
dt

(M
0
(t)→ l+X) + dΓ

dt
(M0(t)→ l−X)

=
1−

∣∣∣ qp ∣∣∣4
1 +

∣∣∣ qp ∣∣∣4 . (II.83)

The information on whether the decay occurred before or after meson oscillation
is encoded into the lepton charge. For instance, a b-quark decays semilepton-
ically to a negative lepton, b→ l−νX, whereas a b-quark undergoes a decay
to a positive lepton, b→ l+νX, so that the decay to the final state l−νX can
happen via B0 → l−νX or B0 → B0 → l−νX. All the decays that appear in
Eq. (II.83) are proceeding through oscillations. They are often referred to as
“wrong sign” decays. The standard model prediction for ASL is below 10−3 for

the B0 system and below 10−4 for the B0
s system. Thus,

∣∣∣ qp ∣∣∣ = 1 is a good

approximation for most of the experimental measurements of CP violation in
B0

(s) mesons.

Mixing-induced CP violation

This type of CP violation can occur when the final state is common to M0

and M
0
. In that case it can be reached with and without net oscillations

(M0 → M
0 → f and M0 → f), so that effects of CP violation in the decay

and in the mixing can interfere. The quantity of interest in that case is

λf ≡
q

p

Af
Af

. (II.84)

The final state f is not necessarily a CP eigenstate, for example B0
s → D−s K

+

and B0
s → D−s K

+ have the same final state, which it is not a CP eigenstate.
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In the most general case, if CP is not conserved, then

arg(λf ) + arg(λf ) 6= 0. (II.85)

In the case of a decay to a CP eigenstate, fCP = fCP , then |AfCP | = |AfCP | and
thus

=(λfCP ) 6= 0. (II.86)

The related time-dependent CP asymmetry is given by

Af (t) =
dΓ
dt

(M
0
(t)→ f)− dΓ

dt
(M0(t)→ f)

dΓ
dt

(M
0
(t)→ f) + dΓ

dt
(M0(t)→ f)

. (II.87)

In the B0
(s) mesons the deviation of |q/p| from unity are small and can be

neglected compared to the current experimental precision. Therefore, the
time-dependent CP asymmetry for the B0

s meson reads

AB
0
s

f (t) =
Sf sin(∆mt)− Cf cos(∆mt)

cosh(∆Γ
2
t)− A∆Γ

f sinh(∆Γ
2
t)
, (II.88)

with

Sf ≡
2=(λf )

1 + |λf |2
, Cf ≡

1− |λf |2

1 + |λf |2
, A∆Γ

f ≡ −
2<(λf )

1 + |λf |2
, (II.89)

where Sf is related to CP violation with and without the mixing and Cf to
CP violation in the decay. These observables are related to each other by
(Cf)

2 + (Sf)
2 + (A∆Γ

f )2 = 1. For certain final states, they can be related to
angles of the unitarity triangle. In the case of the B0 meson, this expression
can be further simplified by taking ∆Γ = 0:

ABf (t) = Sf sin(∆mt)− Cf cos(∆mt). (II.90)

If the B meson decays to a CP eigenstate then Cf = 0, due to the fact that
|AfCP | = |AfCP |. In that case, there is no CP violation in the decay, and
CP violation in the mixing is negligible (|q/p| ' 1), which means that the
only contribution to ABf (t) comes from interferences between decays with and
without mixing, ABf (t) = =(λfCP ) sin(∆mt).

Measurements of mixing-induced CP violation in B0 decays give access to
the angle β of the unitarity triangle. Neutral-meson mixing proceed, at first
order, via box diagrams as shown in Fig. II.3, with a dominant virtual top
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quark in the loop for B0 oscillations. Thus, neglecting contributions from other
virtual particles and long-range interactions we have

q

p
≈ V ∗tbVtd
VtbV ∗td

. (II.91)

In the Wolfenstein phase convention Vtb is real and Vtd = |Vtd|e−iβ, which leads
to

q

p
≈ V ∗tbVtd
VtbV ∗td

= e−i2β+O(λ4). (II.92)

The time-dependent CP asymmetry for the B0 meson decaying to a CP eigen-
state is given in Eq. (II.90). If there is one dominant process with a single
CKM phase, then |Af | = |Af |, there is no CP violation in the decay and thus

Cf = 0, Sf = sin(arg λf ) = ηf sin 2θ, (II.93)

where ηf is the CP eigenvalue of the final state f and 2θ is the phase difference
between the decays with and without net oscillations.

In processes of the form b → ccs, such as B0 → J/ψK0
S, the Cabbibo-

suppressed penguin diagrams can be neglected with respect to experimental
precision. Such processes are thus dominated by a single CKM phase. In that
case, λf can be expressed as

λf = −
(
q

p

)
B0

Af
Af

(
p

q

)
K0

, (II.94)

where the K0 mixing is taken into account by the term
(
p
q

)
K0

and
(
q
p

)
B0

is

given in Eq. (II.92). Expressing Eq. (II.94) in terms of CKM matrix elements,
it can be shown that

Sf = sin 2β. (II.95)

The modes B0 → J/ψK0
S have been extensively studied by the B factories [32,

33] and, more recently by LHCb [34]. It is possible to resolve a part of the
four-fold ambiguity on β for instance by adding information from the time-
dependent angular analysis of B0 → J/ψK∗ decays [35, 36], which gives access
to cos 2β.

II.3.5 Experimental constraints on the CKM matrix

The CKM parameters are fundamental parameters of the SM. It is thus very
important to measure them with the highest precision possible. The best
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precision is usually obtained by combining measurements coming from different
decay modes, and imposing SM constraints such as the unitarity of VCKM.

Another angle of approach is to perform independent precision measure-
ments of the parameters without imposing SM constraints. This way, it is
possible to test the validity of the SM and set limits on new physics. For
instance, the unitarity of the CKM matrix can be tested by measuring sep-
arately the matrix elements verifying if the unitarity relations hold. Recent
measurements [15] give

|Vud|2 + |Vus|2 + |Vub|2 = 0.9994± 0.0005,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.043± 0.034,

|Vud|2 + |Vcd|2 + |Vtd|2 = 0.9967± 0.0018.

(II.96)

The unitarity of the CKM matrix can also be tested by over-constraining
the parameters of the unitarity triangle such as the angles (unitarity implies
that α + β + γ = π), the sides, or the position of the apex. Many physical
observables can be used to set constraints on the unitarity triangle parameters.
For instance, the study of neutral-meson mixing gives access to observables
such as the kaon mixing parameter εK , and ∆md,s for B0

(s) mixing. The three
angles are determined using processes involving a b-quark, such as b → uud
for α, and b → ccs for β. The best precision on γ is achieved combining
many B → Dh decay modes. A deep understanding of B physics is therefore
crucial to perform and interpret these measurements. The current experimental
constraints on the unitarity triangle are shown in Fig. II.5 and the values of the
parameters are given in Table II. Note that the small experimental value of the
Jarlskog invariant is due to the strong hierarchy between the quark transitions,
cf. Eq. (II.52), and is in accordance with the small CP violation observed in
the SM.

The extraction of the CKM parameters is done by using a broad set of
processes. Global fits to the data coming from many processes are performed
to better constrain the observables. Some parameters, such as γ and |Vub|,
can be extracted from tree-dominated decays, whereas others are measured in
loop processes, which are, in general, less clean theoretically but potentially
sensitive to new-physics effects. This is very interesting because it means that
consistency checks between different classes of observables (tree level, loop-
induced, CP -conserving and CP -violating) can be used to better understand
the CP violation mechanism and to test for new physics.

So far, the results are consistent with the SM expectations within the
current experimental precision. However, there is still room for new physics
given the fact that some parameters are not yet known very accurately, such
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as, for example, the angles α and γ that are known at a precision of about five
degrees. Over the years, the precision on the CKM parameters improved greatly
due to an overall progress of the experimental techniques and an increase in
size of the datasets, which not only increases the precision but also gives access
to a broader variety of processes. The uncertainties on some parameters, such
as the three angles of the unitarity triangle, are still dominated by experimental
uncertainties and thus there is still room for improvement from the experimental
point of view. As explained before, in most CP violation measurements it is
not possible to completely disentangle the weak- and strong-interaction effects.
The hadronic effects are, in most cases, non-perturbative and thus they have
to be modelled theoretically. Therefore, improvements in the theory side are
as important as those in the experimental side, as they contribute to lowering
the uncertainties on the results. Progress in lattice QCD, for instance, lower
the systematic uncertainties associated with the extraction of non-perturbative
hadronic parameters, which are dominating in parameters associated with
neutral-meson mixing and matrix elements such as Vub and Vcb.

Table II: Current values for the parameters of the unitarity triangle, the Wolfenstein
parameters and the Jarlskog invariant [37]. Ru and Rt are the sides of the triangle,
defined in Eq. (II.55)

angle value [deg]

α 86.4+4.5
−4.3

β 22.14+0.69
−0.67

γ 72.1+5.4
−5.7

ρ 0.1577+0.0096
−0.0074

η 0.3493+0.0095
−0.0071

Ru 0.3832+0.0087
−0.0065

Rt 0.9128+0.0067
−0.0124

J 3.172+0.094
−0.098 × 10−5
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Figure II.4: Left: Mass and width differences of the mass-eigenstates of the different
neutral-meson systems. One eigenstate is denoted by a full red line and the other by
a dashed blue line. Right: Probabilities for an initially produced neutral meson to
be found after the time t as itself (full blue line) or as its anti-particle (dashed red
line) [31].
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Chapter III
Three-body charmless decays of B
mesons

III.1 Charmless decays of B-mesons

The physics of charmless B-meson decays is very rich and gives access to a vast
number of physical processes. The typical values of branching fractions of B-
meson decays into charmless hadronic final states are below 10−5, which means
that large data samples (high integrated luminosity) and specific experimental
techniques (regarding background rejection for instance) are needed in order
to study them. Many observables can be measured in these decays, such
as branching fractions, CP asymmetries, and CKM parameters, allowing to
probe the dynamics of both weak and strong interactions. In particular, some
B-meson decay modes are especially suited to measure precisely the angles of
the unitarity triangle.

The B0 and B± mesons were studied extensively at the B Factories, in
which the energy of the e+e− collisions was chosen to be at the Υ (4S) resonance
peak, leading to the production of a large amount of B+B− and B0B0 pairs in
a rather “clean” environment. Apart from a few runs at the Υ (5S) resonance
in the Belle experiment, giving access to a small sample of B0

s mesons, the
B0
s sector remained largely unexplored by the first-generation of B Factories.

Colliders running at a higher energy, such as LEP, Tevatron, and the LHC,
are (or were) able to produce, in addition to B0 and B± mesons, more massive
states such as B0

s mesons and b-baryons at the cost of a more complicated
environment. In particular, the LHCb experiment is well suited to study
charmless decays of both B0 and B0

s mesons.
The study of CP violation in B0

s -meson decays gives access to particular

47
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CKM parameters, such as the mixing-angle φs defined in Eq. (II.61). This
angle is directly related to the width difference ∆Γs through ∆Γs = Γ12 cosφs.
Parameters of B0 and B0

s oscillations are used to constrain the unitarity triangle.
For example, the oscillation frequencies (the width difference between the “light”
and “heavy” states), which are measured to be ∆md = 506.4± 1.9 ns−1 and
∆ms = 17.757± 0.021 ps−1 [38], provide strong constraints on the angle α.

Hadronic decays of B-mesons to charmless final states may receive rather
large contributions from loop processes. For example, the creation of s quarks
in the final state can only originate, in the SM, either from b→ sqq̄ penguin
diagrams (where q designates u, d or s) or b → u(ūs) tree diagrams. The
former involve the CKM matrix elements |Vtb| and |Vts| whereas the latter
involve |Vub| and |Vus|, and are thus suppressed due to the small value of |Vub|.
As a consequence, B0- (B0

s -)meson decays in which the final state contains
an odd (even) number of s quarks or kaons are favoured. Conversely to the
charmless case, penguin diagrams in B-meson decays to charmed final states
are suppressed as they imply the |Vcb| and |Vub| CKM matrix elements.

In light of the above, the measurement of CKM parameters in processes
implying B-meson decays to charmed final states is a powerful way to study
SM-dominated effects, while similar measurements in loop-dominated B-meson
decays open the possibility to probe new physics, as heavy virtual particles
can contribute to the loop diagrams. Both approaches are important and
complementary for a better understanding of the flavour sector. An interesting
example of this complementarity is the measurement of the angle γ that can
be obtained in both tree-dominated and loop-dominated decay modes. A short
review of the main tree-level based methods is given in part III.4.1, and the
method using decays containing an important contribution from loop-diagram
studied in this thesis is described in section III.4.2.

Weak decays of B mesons are affected by short- and long- distance QCD
effects. When studying weak-interaction processes, the contributions from
strong interaction are difficult to disentangle, and the interpretation of the
results in terms of weak observables only is arduous, and sometimes not possible.
Furthermore, due to their mass, a large phase space is accessible in B meson
decays, which encompasses different kinematic regimes. At low momentum
transfer, a perturbative-QCD approach is no longer valid, which complicates
the interpretation of the results as the strong parameters are less well known.

In three-body decays, the final state is no longer entirely determined by
the knowledge of the initial state. The internal dynamics of the decay can
be studied by means of an amplitude analysis. A common representation of
three-body decays of scalar or pseudoscalar particles is the Dalitz plane, which
gives a visual representation of the different sub-processes occurring in the
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decay.

III.2 Effective field theory

The idea behind effective field theory (EFT) [39] is somewhat common to most,
if not all, fields of physics, that is to identify the scale of interest and build
a theory so that the different scales of the problem decouple. Within this
approach, large and short scales are usually suppressed by the power ratio of
the different scales entering the problem. For example, the study of the motion
of a relatively “light” and “slow” body can usually be performed with classical
mechanics, and if a more precise result is needed, relativistic corrections can
be computed. Another example is the multipole expansion in electrodynamics
where a precise knowledge of the charge distribution is not needed to describe
the effects at large distance.

In quantum field theory the strategy is the same. After determining the
domain of interest, i.e., the specific energy scale of the problem, one identifies
the relevant symmetries and degrees of freedom, constructs the corresponding
Lagrangian, quantises the field, and simplifies the calculations (or make them
possible). This picture is complicated by the fact that in loop-diagrams the
integration over the momenta runs over all scales, which makes the decoupling
of the different energy scales a priori impossible. However, this apparent
complexity can be overcome by using regularisation techniques [40, 41] (for
example by placing a cutoff at a specific energy).

As mentioned previously, very distinct energy scales appear in the physics
of B-meson decays, mu,s,d � ΛQCD � mb � mW ; ΛQCD is the characteristic
scale of the strong interaction below which perturbative calculations are no
longer valid; its value is approximately 1 GeV. Weak interactions at a scale
below the mass of the W boson can be described by an effective Hamiltonian1

of the form

Heff =
GF√

2

∑
p=u,c

λ(D)
p

∑
i

Ci(µ)Qp
i (µ), (III.1)

where GF is the Fermi constant, and λ
(D)
p represent CKM matrix elements

defined as
λ(D)
p ≡ VpbV

∗
pD, with p = u, c and D = d, s. (III.2)

The remaining terms in Eq. (III.1) are the coefficients Ci, called Wilson coeffi-
cients [42], which are effective couplings that contain high-scale physics, that is

1The Hamiltonian given here assumes only SM contributions and that λ
(D)
u +λ

(D)
c +λ

(D)
t =

0.
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to say processes that take place at an energy scale higher than the typical scale,
µ, of the problem. Generally, µ is chosen so that it separates the perturbative
regime (high-scale) from the non-perturbative one. It is common to refer to the
physics at a scale larger than µ as “short-distance” physics, whereas physics
below µ is referred to as “long-distance” physics. The Wilson coefficients
depend on µ and can be computed perturbatively to orders of the strong inter-
action coupling, αs(µ) (as well as perturbatively in the EW coupling, where the
expansion parameter is � 1). The Qp

i operators are effective operators (tree,
gluonic and electroweak penguins, etc.) that also depend on µ and describe
long-distance effects. In perturbation theory, the quantity

∑
iCi(µ)Qp

i (µ) is µ
independent, and so is the effective Hamiltonian in Eq. (III.1). The inclusion
of NP in this picture is done by modifying the operators Qi and the values of
the Wilson coefficients.

To understand the different contributions to this effective Hamiltonian it is
useful to consider its expression at first order. For a B meson that is weakly
decaying into a charmless final state f it reads

A(B → f) = 〈f |Heff |B〉 = λ(D)
u Auf + λ(D)

c Acf , (III.3)

where the dependence on the Wilson coefficients and the effective operators is
contained into the partial amplitudes Au,cf and the CKM coefficients are factored
out. The decay amplitude depends on three factors: the CKM factors, the
Wilson coefficients and the hadronic matrix elements. Roughly speaking, the
size of the Wilson coefficients for tree diagrams is of order 1 whereas for penguin
diagrams it is around 0.1. For b → d transitions (i.e., D = d in Eq. (III.3)),

λ
(d)
u ≈ λ

(d)
c ≈ λ3, and the amplitude Acf , which corresponds to the penguin

transition, is suppressed with respect to the tree amplitude Auf by the Wilson
coefficients. In contrast, for b→ s transitions, despite the approximate factor
ten between the Wilson coefficients corresponding to the tree and the penguin
contributions, the CKM matrix elements related to the penguin diagram, λ

(s)
c ,

are of order λ2 whereas λ
(s)
u ≈ λ4. Therefore, the penguin amplitude dominates

for these transitions. Interferences between the favoured and the suppressed
amplitudes can be a source of (direct) CP violation, and depend on the phases
of the hadronic matrix elements 〈f |Qp

i |B〉. Here again, it appears that if there
is no strong phase difference between the two contributing amplitudes the
resulting CP asymmetry will be zero.

The main difficulty in obtaining theoretical predictions with this framework
is the computation of the hadronic matrix elements that depend on the energy
scale. The typical scale for the formation of hadronic bound states is around
µ ≈ 0.5 GeV, which is outside of the perturbative regime of QCD. Different
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complementary approaches exist to overcome this problem. The factorisation
approach is based on the identification of the different scales contributing to
〈f |Qp

i |B〉, such as ΛQCD,
√
mbΛQCD and mb. By doing so, it is then possible

to simplify the computation of matrix elements by remarking that only the
ΛQCD scale requires a non-perturbative treatment while the other scales can be
computed perturbatively. This reduces the complexity of obtaining 〈f |Qp

i |B〉 to
the computation of form factors, decay constants and distribution amplitudes.
The factorisation approach allows the calculation of matrix elements from
first principles, but its accuracy is limited by ΛQCD/mb corrections. Several
theoretical descriptions of hadronic B decays are based on this approach, the
most common are QCD factorisation [43–46] (QCDF), perturbative QCD [47–
51] (pQCD), and soft collinear effective theory [52–54] (SCET).

Another approach is to use flavour symmetries [55], such as flavour SU(3)
(U-spin), where the masses of the u, d and s (d and s) quarks are considered to
be equal. Under the flavour SU(3) assumption, for instance, the quark fields and
the weak interaction Hamiltonian are decomposed into SU(3) representations
and the matrix elements, 〈f |Qp

i |B〉, are expressed as reduced matrix elements
and SU(3) Clebsh-Gordan coefficients. In practice, it is more convenient to
use topological diagrams instead of the reduced matrix elements. Within
this framework, the computation of matrix elements from first principles is
no longer possible, but relations between different matrix elements, and thus
different decay modes, can be obtained, opening possibilities for a large panel
of searches. The values of the matrix elements are obtained from data and
thus their precision depends on the size of the dataset. The accuracy of this
approach depends on the size of the SU(3)-breaking corrections, which can be
complicated to evaluate because they depend on the process and cannot be
computed. These corrections are usually taken to be around 20-30%, based on
the ratio of the kaon and pion decay constants.

III.3 3-body decays

III.3.1 Three-body kinematics

The interactions between initial- and final-state particles are can be described
using the S-matrix, which is a n× n unitary matrix, where n is the number of
channels. The probability for an initial state |i〉 to decay to a final state |f〉 is
given by the matrix element

P(i→ f) ≈ |〈f |S|i〉|2. (III.4)
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In the absence of interactions, the S-matrix is simply the identity. It is thus
convenient to express it as

S ≡ 1 + iT, (III.5)

where the T -matrix describes the non-trivial interactions between the initial
and the final state. The four-momentum conservation is embedded into the S-
and T -matrices and can be factored out

〈f |iT |i〉 = a · iM(i→ f), (III.6)

where the factor a contains the four-momentum conservation; for an initial state
composed of two particles of four-momenta k1 and k2 and a final state containing

n particles of four-momenta pj this term is (2π)4δ(4)
(
k1 + k2 −

∑n
j=1 pj

)
. The

kinematics of the decay being factored out, the invariant matrix element M
contains only the dynamics of the process.

Thus, the differential decay rate of a decay to a n-body final state, denoting
the mass of the initial-state particle M and the energy and three-momentum of
the j-th final state particle Ej and pj, respectively, can be expressed in terms
of M as

dΓ =
(2π)4

2M
|M(P → {p1, ..., pn})|2dΦn(P ; p1, ..., pn), (III.7)

where Φn is the Lorentz invariant n-body phase space; it is given by

dΦn(P ; p1, ..., pn) = δ(4)(P −
n∑
j=1

pj)
n∏
j=1

d3pj
(2π)32Ej

. (III.8)

Dalitz plot formalism

In two-body decays the kinematics of the final state is totally fixed by the
knowledge of the initial state. This is not the case in three-body decays. For a
final state that contains three particles, the number of degrees of freedom (dof)
is twelve (each four-vector has four dof and there are three four-vectors). This
number is reduced by the fact that the masses of the final state particles are
known, which subtracts three dof. Applying energy-momentum conservation
reduces the number of dof by four. In the case of a scalar (or pseudo scalar)
particles decaying into three scalar (or pseudo scalar) particles there is no
angular dependence (isotropy of the decay), and thus further two dof can be
removed. Finally, the number of degrees of freedom is reduced to two. This can
also be understood by the fact that in the rest frame of the decaying particle,
P = (M, 0) and the momenta of the final state particles form a plane.
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A frequent choice of these free parameters is to take two of the three squared
invariant masses of the final state particles, defined by

m2
ij = p2

ij = (pi + pj)
2 = m2

i +m2
j + 2(EiEj − pi · pj). (III.9)

The three invariant masses are not independent but are related by

m2
12 +m2

23 +m2
13 = M2 +m2

1 +m2
2 +m2

3, (III.10)

where m1, m2 and m3 are the masses of the final-state particles and M is the
mass of the initial particle. The plane of two squared invariant masses is called
the Dalitz plane [56]. The knowledge of the of the final-state energies fixes the
relative three-momenta and only their orientations with respect to the initial
particle remain unknown. The partial decay rate can thus be expressed as

dΓ =
1

(2π)5

1

16M
|M|2 dE1 dE2 dα d(cos β) dγ, (III.11)

where E1, E2 are the energies of the particles 1 and 2 in the rest frame of the
initial particle and (α, β, γ) are the Euler angles, defining the orientation of
the final-state momenta with respect to the initial particle. After integration
over the Euler angles the partial decay rate becomes

dΓ =
1

(2π)3

1

32M3
|M|2dm2

23dm2
12. (III.12)

According to Eq. (III.9), the minimum value of m2
ij is reached when pi and

pj are colinear. In this configuration, pk points in the opposite direction to pi
and pj and, according to momentum conservation, receives the largest fraction
of the total momentum. Similarly, the maximum of m2

ij is reached when pi and
pj go in opposite directions and pk = 0. Hence the m2

ij is bounded according
to (mi +mj)

2 ≤ m2
ij ≤ (M −mk)

2. For a fixed value of m2
12, the minimum and

maximum achievable values for m2
23 are given by

(m2
23)min = (E∗2 + E∗3)−

(√
E∗2 −m2

2 +
√
E∗3 −m2

3

)
,

(m2
23)max = (E∗2 + E∗3)−

(√
E∗2 −m2

2 −
√
E∗3 −m2

3

)
,

(III.13)

where E∗2 and E∗3 are the energies of the particles 2 and 3 in the rest frame of
the system formed by 1 and 2. They are given by

E∗2 =
m2

12 −m2
1 +m2

2

2m12

, E∗3 =
M2 −m2

12 −m2
3

2m12

, (III.14)
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Figure III.1: Schematic view of a Dalitz plane with its kinematical boundaries [15].

The kinematic boundaries of the Dalitz plane can be visualised in Fig. III.1.
The corners of the Dalitz plane correspond to configurations where one of
the final state particles is at rest and the two others go in opposite direction.
Along the boundaries the particles are colinear, with one particle going in one
direction and the other two in the opposite direction. Inside the Dalitz plane,
the three particles are no longer colinear.

The Dalitz plane is very convenient for visualising the dynamics of the decay.
If there are no substructures present in the decay, then |M|2 is constant and the
events are uniformly distributed over the Dalitz plane. On the contrary, if the
decay Pi → P1P2P3 proceeds via intermediate states, for example Pi → RP3

where R is a resonance decaying to P1P2, then the events will be concentrated
in a strip around the square mass of the intermediate state m2

R = m2
12. The

width of the strip corresponds to the decay width of the intermediate state.
The distribution of the events within the band is generally not uniform and
depends on angular momentum. It is thus possible to “see” the spin of the
resonance by inspecting the repartition of the events on the Dalitz plane.

Square Dalitz plane

In general, the Dalitz-plane distributions of backgrounds are difficult to model
with parametric functions; they are usually described by histograms taken
from Monte Carlo simulation or from data sidebands. When the Dalitz-
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plane boundary does not coincide with the histogram bin boundaries this
may introduce biases. A common approach is to use a transformation that
results in a square distribution: the square Dalitz plane. In charmless B-meson
decays the events are clustered close to the boundaries of the large Dalitz plane.
Another advantage of the commonly used square Dalitz plane transformation
is that it gives a better resolution close to the boundaries.

The square Dalitz plane variables are defined, with a choice of two final
state particles i and j, as

m′ ≡ 1

π
arccos

(
2
mij −mmin

ij

mmax
ij −mmin

ij

− 1

)
,

θ′ ≡ 1

π
θij,

(III.15)

where mmin
ij = mi +mj and mmax

ij = M −mk. The angle θij is the helicity angle
corresponding to the angle between the momenta of the particles k and i in the
rest frame of the system formed by the particles i and j. According to these
definitions, the two variables m′ and θ′ are defined between 0 and 1 and are
dimensionless. The transformation of the dm2

ij elements is given by

dm2
ijdm

2
jk → | det J |dm′dθ′, (III.16)

where J is the Jacobian of the transformation, which satisfies

| det J | = 4|p∗i ||p∗k|
∂mij

∂m′
∂ cos θij
∂θ′

, (III.17)

where the momenta p∗ are defined in the rest frame of the corresponding
particles i and j. Notice that, in this reference frame |p∗i | = |p∗j |. Thus

|p∗i | =
√
E∗i −m2

i

|p∗k| =
√
E∗k −m2

k,

∂mij

∂m′
= −π

2
(mmax

ij −mmin
ij ) sin(πm′),

∂ cos θij
∂θ′

= −π sin(πθ′).

(III.18)

An illustration of the transformation can be found in Fig. III.3 and the Jacobian
is shown in Fig. III.2. As can be seen in Fig. III.3 (b), depending on its
orientation in the Dalitz plane the same resonance can have different shapes
in the square Dalitz plane, and if it does not decay to the particles i and j
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Figure III.2: Jacobian determinant of the transformation from the nominal Dalitz
plane to the square Dalitz plane. The figure is from Ref. [57].

chosen to define m′ it will not follow a straight line. Due to this feature the
interpretation “by eye” of the decay dynamics is not straightforward anymore.
The figure also illustrates the fact that, on the other hand, the events that are
concentrated near the kinematical boundaries of the Dalitz plane are spread out,
which is the reason why the square Dalitz plane representation is particularly
suitable for analyses in bins of the phase space where rapid variations in the
signal and background distributions are expected close to the Dalitz-plane
boundaries.

III.3.2 Dalitz-plane amplitude analysis

A Dalitz-plane amplitude analysis is a very powerful tool to study three-body
decays. It allows to establish the resonant structure of the decay and its
dynamics, to characterise intermediate resonances by measuring their masses,
widths, and spins. An amplitude analysis in the Dalitz plane also gives access
to a variety of CP violating observables, such as CP asymmetries. These CP
asymmetries can be measured in different regions of the CP or integrated
over the phase space. A full time-dependent Dalitz-plot analysis with tagging
information (i.e. information on the flavour of the decaying particle) can also
be performed if the dataset is large enough. This type of analysis provides
more information than a quasi-two-body analysis: the phases of the different
contributions can be directly determined, without trigonometric ambiguities.
Neutral-meson mixing can also be studied and the Dalitz-plot analysis of three-
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Figure III.3: Example of the transformation of a resonance in the Dalitz plane (a)
to its equivalent in the square Dalitz plane (b). In this toy model, the kinematic
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0
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0
S decay mode

and one resonance, f0(1710), is replicated along the three directions. The variables
mij and θij in Eq. (III.15) are taken to be m12 and θ12 in this example.

body B0 decays provides information on unitarity triangle parameters, such as
sin 2β.

The experimental study of three-body decays requires a careful modelling of
the amplitude across the Dalitz plane. In the following section we will present
the isobar model, which consists of a good approximation for describing decays
that proceed mainly via quasi-two-body states.

III.3.3 Isobar model

The isobar model [58–60] is commonly used to describe the decay amplitude of
multibody decays2. It is thus an important tool in amplitude analyses. In this
context, the decay of a particle to a three-body final state is assumed to proceed
through a resonance decaying into two particles, while the third particle (called
the bachelor) remains unaffected; it is assumed to be energetic enough so it
leaves the interaction region before interacting with its environment. This
description is generally a good approximation for hadronic decays of B and

2This model is not limited to three particles in the final state and has been successfully
used with more final-state particles, see for example Ref. [61].
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D mesons that are expected to be dominated by two-body resonant processes.
In the isobar model, the total amplitude, A, of the decay is described as a
coherent sum of n individual resonant and non-resonant decay channels Aj.
The total amplitude at each point3 of the Dalitz plane is then given by

A(m2
12,m

2
23) =

n∑
j=1

Aj(m2
12,m

2
23). (III.19)

Each individual amplitude is further decomposed as

Aj(m2
12,m

2
23) = cjFj(m

2
12,m

2
23), (III.20)

where cj are complex numbers called the isobar coefficients, giving the rela-
tive magnitudes and phases of the different components j. These coefficients
are constant over the Dalitz plane. They describe the weak interaction and
the momentum-independent part of the strong interaction. They are usually
extracted from a fit to data. These parameters are potentially CP violat-
ing and CP asymmetries can be extracted directly form their values. The
momentum-dependent part of the strong dynamics is encoded into the func-
tions Fj(m

2
12,m

2
23). Since these terms contain only the strong dynamics they

are CP conserving. They can be expressed as products of invariant-mass and
angular distributions

Fj(m
2
12,m

2
23) = R(m)Bl(|p|rPBW)Bl(|q|rRBW)Zl(p, q), (III.21)

where:

• p is the momentum of one of the resonance decay products and q is the
momentum of the particle that does not originate from the resonance
(the bachelor), both evaluated in the rest frame of the resonance4.

• Ri(m) is the resonance mass term (also called lineshape), which depends
on the invariant mass, m, of the decay products of the resonance. The
most common lineshapes are described below.

• Zl(p, q) are the Zemach tensors [62, 63], which are angular distributions.
Their expression depend on the spin of the resonance and will be given
in the next section.

3In this part, we choose to express the Dalitz-plane coordinates as (m2
12,m

2
23). This

choice is of course arbitrary and any other couple of invariant masses can be used instead.
4In case of non-resonant components, the “resonance” in this description is simply replaced

by the system of the two corresponding final-state particles.
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• The Bl functions are the Blatt-Weiskopf factors [64]. Similarly to the
Zemach tensors, these factors depend on the spin of the resonance. The
parameters rPBW and rRBW are characteristic meson radii related to the
parent and the resonance, respectively. The explicit functions will be
given in the following.

Usually, the functions Fj are normalised in order to simplify the comparison
between the isobar parameters. One possible normalisation consists in choosing
the normalisation factor such that

∫∫
DP
|Fj(m2

12,m
2
23)|2 = 1.

Quantum mechanical description of a resonance

A resonance, R, decaying into two particles a and b, R→ ab, can be approxi-
mated by an unstable (and non-relativistic) quantum-mechanical system. This
description, inherited from nuclear physics, although not exact, is useful to
understand the terms in Eq. (III.21). The wave function of the system can
be written in spherical coordinates as a product between a radial term and
an angular term. For spinless final-state particles, the potential entering the
Hamiltonian of the system has a spherical symmetry and the wave function
can be expressed in terms of spherical harmonics

Ψ(E, r, θ, φ) =
∑
l,m

ρl(E, r)Ylm(θ, φ), (III.22)

where l is the orbital angular momentum and m its projection. Considering
that the system has an axial symmetry, the solution can be expressed in term
of Legendre polynomials, Pl(cos θ),

Ψ(E, r, θ, φ) =
∞∑
l=0

(2l + 1)ρl(E, r)Pl(cos θ). (III.23)

Note that in the case of a decay to particles with non-zero spins, the Legendre
polynomials no longer provide a valid description and they are replaced by
angular functions such as the Zemach tensors. The lineshapes and the Blatt-
Weiskopf factors mentioned previously come from the study of the radial part of
the wave function. More precisely, the lineshapes are obtained by studying the
system at a fixed energy around that of the resonance, and the Blatt-Weiskopf
factors arise when studying the system at a fixed r = rBW, where rBW is the
effective radius of the resonance.

The term ρl(E, r) must satisfy the radial Schrödinger equation. Under the
convention ~ = c = 1, it is written[

d2

dr2
+

2m

~2
(E − V (r))− l(l − 1)

r2

]
(rρl(E, r)) = 0, (III.24)
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where the reduced mass m is given by

m =
mamb

ma +mb

. (III.25)

In the form given in Eq. (III.24), it appears that the equation is equivalent to
the one-dimension Schrödinger equation for a particle of mass m in an effective
potential given by

Veff(r) = V (r) +
1

2m

l(l + 1)

r2
. (III.26)

The orbital-dependent term of the effective potential is called the centrifugal
(or kinematic) potential and describes the behaviour of the outgoing final state
particles, whereas the first term, the dynamical potential, is linked to the
properties of the resonance.

The potential entering the Hamiltonian of the system should reflect the
properties of the resonance. As already motioned, in the case of spinless
particles it should have a spherical symmetry. It should also describe the short-
range strong interactions between the daughter particles of the resonance within
its the effective radius. Furthermore, the barrier must be large enough to ensure
the existence of a quasi-steady state solution of the corresponding Schrödinger
equation. In the region r > rBW the interaction between the particles becomes
negligible and the potential should tend towards zero fast enough to ensure
asymptotic freedom of the daughter particles. These requirements can be
fulfilled by considering a potential that is modelled as a combination of a well
and an effective potential similar to Eq. (III.26), which can be written as

U(r) =

{
−U0(r) r ≤ rBW

V (r) + 1
2m

l(l+1)
r2

r > rBW

(III.27)

The crossing symmetry5 allows to describe particle decay and scattering
processes in a similar fashion. The asymptotical behaviour (r → ∞) of a
state corresponding to a particle scattered by a potential similar to that of
Eq. (III.27) is given by

ψ(k, r, θ) = eikr cos θ + f(k, θ)
eikr

r
+O(

1

r2
), (III.28)

where k is the wave number, k ≡
√

2mE and θ is the angle between the
incoming and the scattered particles. The first exponential term in this

5The crossing symmetry states that the S-matrix for a process involving an incoming
particle with momentum p is identical to the S-matrix for the same process with an outgoing
particle of momentum −p.
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equation corresponds to the propagation of a free particle in the direction
r cos θ. The second term describes a spherical wave propagating far away from
the potential. The function f(k, θ) is called the scattering amplitude and is, in
general, independent of r. It can be decomposed in terms of partial waves

f(k, θ) =
1

k

∞∑
l=0

(2l + 1)flPl(cos θ), (III.29)

where fl is the partial-wave amplitude with orbital momentum l. Its expression
is given by

fl =
(ηle

2iδl − 1)

2i
, (III.30)

where ηl is the elasticity parameter (also called inelasticity). It is defined
between zero and one, and is equal to one for purely elastic scattering. The
parameter δl corresponds to the phase shift of the lth partial wave. The
evolution of fl with the energy as a trajectory in an Argand plot is shown in
Fig. III.4. The differential cross section is then given by

dσ

dΩ
= |f(k, θ)|2, (III.31)

where dΩ represents the infinitesimal phase space element.
The scattering amplitude can be related to the Lorentz-invariant matrix

element M through
M = −8π

√
sf(k, θ). (III.32)

As stated before, the mass distributions are obtained by studying quasi-
stationary states of the Schrödinger equation. For a resonance R with an
average lifetime τ , the stationary condition, dψ/dt ≈ 0 for t� τ , leads to the
following solution

ψ(E, r, θ, φ, t) = ψ(E, r, θ, φ)e−iEt, (III.33)

where E is an eigenvalue of the Hamiltonian. Since the system can decay, E is
complex (the energy of a decaying system is not a physical observable), and it
can be written as

E = E0 − i
Γ

2
, (III.34)

where E0 is the energy of the resonance and Γ is the decay rate. By expanding
the partial wave amplitude around the resonance energy, E0, it can be shown
that

fl =
Γ/2

E0 − E − iΓ
2

, (III.35)
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Figure III.4: Trajectory of a partial-wave amplitude, noted fbb here, as a function
of the energy. The unitary circle represents the case where the scattering is purely
elastic (ηl = 1) [15]. The dashed line corresponds to inelastic scattering (ηl < 1). It
clearly appears in this diagram that at δb = π/2 the energy is real, which corresponds
to the pole mass of the resonance.

which is the (non relativistic) Breit-Wigner distribution (BW). From this
equation, it appears that the asymptotic value of the phase of fl at E � E0

(E � E0) is 0 (π), that the change of phase occurs around the energy of the
resonance and that the phase at E = E0 is π

2
. A sketch of the behaviour of the

BW distribution can be seen in Fig. III.5. In actual Dalitz-plot analyses, more
complex propagators that account for relativistic effects are used instead of
the simple BW, they are discussed in a dedicated paragraph below.

Blatt-Weiskopf factors

These factors are obtained by studying the system around the effective radius
rBW. They are related to the transmission coefficients T (k, k0; rBW,∞) which
describe the probability for the particle to be at rBW and to leave the system
with a wave vector k, relative to the probability to be at rBW and to leave with
a wave vector k0. In the case of a decay of a particle into three final-state
particles proceeding through a resonance, Pi → RP3 → P1P2P3, the amplitude
will contain two Blatt-Weiskopf factors: the first describes the probability that
the resonance R overcomes the centrifugal potential of RP3, and the second
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Figure III.5: Sketch of the magnitude (in purple) and phase (in green) of a BW
distribution for E0 = 10, Γ = 0.5 and an arbitrary normalisation. The change of
phase around E = E0 is clearly seen.

is related to the probability that the particle P1 overcomes the centrifugal
potential of P1P2.

The Blatt-Weiskopf [64] factors up to l = 3 are given by

Bl=0(z) = 1,

Bl=1(z) =

√
z2

0 + 1

z2 + 1
,

Bl=2(z) =

√
z4

0 + 3z2
0 + 9

z4 + 3z2 + 9
,

Bl=3(z) =

√
z6

0 + 6z4
0 + 45z2

0 + 225

z6 + 6z4 + 45z2 + 225
,

(III.36)

where z = |p|rPBW or z = |q|rRBW, and z0 is the value of z when m is equal
to the nominal mass of the resonance m0. The superscripts P and R refer,
respectively, to the radius corresponding to the parent particle and the radius
of the resonance6.

6Different conventions exist the the definition of Blatt-Weiskopf factors. With the
convention adopted here, the momentum of the bachelor particle is computed in the rest
frame of the resonance. An alternative, but not equivalent, parametrisation uses the
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Zemach tensors

The Zemach tensors [62,63] give the angular probability distribution according
to the orbital momentum, l, between the two daughters of the resonance. For
any integer orbital momentum, they are proportional to

Tl(p, q) ∝ (−2|p||q|)lPl(cos θ), (III.37)

where θ is the helicity angle, defined between p and q and Pl(cos θ) are Legendre
polynomials. In the case where the mother particle and its daughters have zero
spins, l is simply the spin of the resonance. The explicit formulae up to l = 3
are given by

Zl=0(p, q) = 1,

Zl=1(p, q) = −2p · q,

Zl=2(p, q) =
4

3

(
3(p · q)2 − (|p||q|)2

)
,

Zl=3(p, q) = −24

15

(
5(p · q)3 − 3(p · q)(|p||q|)2

)
.

(III.38)

For a resonance with a zero angular momentum, the probability distribution
is equal to unity, meaning that there is no preferred direction in space, as
expected in this case. It appears that these factors are not bound for large p,
which means that the amplitude could be made infinitely large. Fortunately,
this behaviour is counteracted by the Blatt-Weiskopf factors.

Alternatives to the Zemach tensor formalism exist, such as the helicity
framework [65]. For spinless particles, the two formalisms are equivalent. A
relativistic version of the Zemach formalism has also been derived [66].

Mass distributions

In the following, we will list the lineshapes used by in the BaBar analyses of the
charmless three-body decays used to extract γ in chapter IV. The expressions
that are given below are the actual lineshapes implemented in the Laura++
Dalitz-plot fitter [67], used in this work.

Relativistic Breit-Wigner

The Relativistic Breit-Wigner (RBW) is the most commonly used lineshape.
It is particularly suited to narrow, isolated, resonances. This distribution

momentum of the bachelor particle computed in the rest frame of the parent particle. A
covariant formulation is also available.
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corresponds to the relativistic version of Eq. (III.35), that is expressed in terms
of invariant masses instead of energies. It is given by

R(m) =
1

(m2
0 −m2)− im0Γ(m)

, (III.39)

where m0 is the nominal mass of the resonance. The decay rate depends on
the invariant mass and is given by

Γ(m) = Γ0

(
q

q0

)2l+1 (m0

m

)
B2
l (qr

R
BW), (III.40)

where Γ0 is the nominal width of the resonance and q0 is q(m = m0). The
dependency in mass of the width makes R(m) non-analytic. Close to the peak
of the resonance, the BW behaviour is recovered.

Flatté

The Flatté lineshape [68] is similar to the RBW but the width term is given by
the sum of the widths of two coupled channels. These distributions are suited
for resonances like the f0(980), a0(980), K∗0 (1430). For example, in the case of
the f0(980), which can decay in the KK or ππ channels, the mass-dependent
width is given by

Γ(m) = Γππ(m) + ΓKK(m), (III.41)

with

Γππ(m) = gπ

(
1

3

√
1− 4

m2
π0

m2
+

2

3

√
1− 4

m2
π±

m2

)
,

ΓKK(m) = gK

(
1

2

√
1− 4

m2
K0

m2
+

1

2

√
1− 4

m2
K±

m2

)
,

(III.42)

where gπ and gK are couplings constants and the fractional coefficients arise
from isospin conservation.

Gounaris-Sakurai

This Gounaris-Sakurai (GS) distribution [69] is an alternative to the RBW
for broad vector mesons decaying into two pions such as the ρ resonances. In
contrast to the RBW, the GS is an analytic function:

R(m) =
1 +D Γ0

m0

(m2
0 −m2) + f(m)− im0Γ(m)

, (III.43)
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where D is a constant given by

D =
3

π

m2
π

q2
0

ln

(
m0 + 2q0

2mπ

)
+

m0

2π q0

− m2
πm0

π q3
0

, (III.44)

and the function f(m) writes

f(m) = Γ0
m2

0

q3
0

[
q2 [h(m)− h(m0)] +

(
m2

0 −m2
)
q2

0

dh

ds

∣∣∣∣
m0

]
, (III.45)

with

h(m) =
2

π

q

m
ln

(
m+ 2q

2mπ

)
, (III.46)

and
dh

ds

∣∣∣∣
m0

= h(m0)
[
(8q2

0)−1 − (2m2
0)−1

]
+ (2πm2

0)−1. (III.47)

LASS

The LASS parametrisation [70] was developed to describe the (Kπ) S-wave
component. It is modelled as a K∗0(1430) interfering with a nonresonant
component:

R(m) =
m

q cot δB − iq
+ e2iδB

m0Γ0
m0

q0

(m2
0 −m2)− im0Γ0

q
m
m0

q0

, (III.48)

with cot δB =
1

aq
+

1

2
rq , (III.49)

where a is the scattering length and r is the effective range parameters.

Nonresonant terms

The nonresonant amplitude accounts for effects that cannot be described as
quasi two-body decays. In most analyses, this component is found empirically
by choosing the form that best describes the data. The most simple form
used is a constant complex number (magnitude and phase) over the whole
Dalitz plane. Another frequent choice consists of exponential form factors of
the form e−αm

2
, where the parameter α is determined from the data. However,

these models are generally not sufficient to describe final-state interactions
and other effects coming from non-perturbative QCD. Also, for some decay
modes these simple form factors are not sufficient to describe the data and
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some analyses use more complicated functions containing more free parameters,
such as, for example B → KKK [71], where the nonresonant term is composed
of two second-order invariant-mass polynomial lineshapes accounting for S-
and P -wave terms.

Dalitz-plot observables

A Dalitz-plot analysis of a given decay mode usually proceeds via steps of
increasing complexity. After the measurement of the branching fractions, the
first step is generally a time-integrated and flavour-averaged analysis. Then, in
the case of neutral mesons, if the data sample is large enough, a flavour-tagged
time-dependent analysis can be performed, with a description for |A(t)|2 based
on the formulae obtained in Eq (II.75).

A number of observables are easily accessible from the knowledge of the
isobar parameters cj and the hadronic functions Fj(m

2
12,m

2
23). The relative

rate of an isobar component j is given by the (flavour-averaged) fit fractions,
defined as

FFj ≡
∫∫

DP

(
|Aj(m2

12,m
2
23)|2 + |Aj(m2

12,m
2
23)|2

)
dm2

12dm2
23∫∫

DP

(
|A(m2

12,m
2
23)|2 + |A(m2

12,m
2
23)|2

)
dm2

12dm2
23

, (III.50)

where the integrals are over the whole Dalitz plane, the total amplitude A
is defined in Eq. (III.19) as a coherent sum of the components Aj, and A is
similarly obtained with and their CP conjugates Aj:

Aj(m2
12,m

2
23) = cjFj(m

2
12,m

2
23), Aj(m2

12,m
2
23) = cjF j(m

2
12,m

2
23). (III.51)

Interferences between two resonances j and k can be quantified by the corre-
sponding interference fit fractions, given by

FFjk ≡ 2<

∫∫
DP

(
A∗j(m2

12,m
2
23)Ak(m2

12,m
2
23) +A∗j(m2

12,m
2
23)Ak(m2

12,m
2
23)
)

dm2
12dm2

23∫∫
DP

(
|A(m2

12,m
2
23)|2 + |A(m2

12,m
2
23)|2

)
dm2

12dm2
23

.

(III.52)
If FFjk is positive the interference between the two resonances is constructive,
while in the case it is negative their interference is destructive. With the
definitions of Eqs. (III.50) and (III.52) we have∑

j

FFj +
∑
j<k

FFjk = 1. (III.53)

Note that Eqs. (III.50) and (III.52) are flavour-averaged. If the flavour of
the decaying meson is known, i.e. if the decay mode is flavour specific or if



68 Three-body charmless decays of B mesons

flavour-tagging is used, it is possible to differentiate between A and A and
thus flavour-specific fit fractions can be computed as well.

When A and A are distinguishable, for each intermediate state, a CP
asymmetry can be assessed as

ACPj ≡
∫∫

DP
(|Aj(m2

12,m
2
23)|2 − |Aj(m2

12,m
2
23)|2)ds1ds2∫∫

DP
(|A(m2

12,m
2
23)|2 + |A(m2

12,m
2
23)|2)ds1ds2

. (III.54)

This formula gives the CP asymmetry integrated over the whole Dalitz plane; it
is also possible to obtain localised CP asymmetries by integrating over regions
of the Dalitz plane. Since the functions Fj(m

2
12,m

2
23) are CP even (they contain

only the strong dynamics), they cancel out in Eq. (III.54) and thus the CP
asymmetry can be written in terms of the isobar coefficients only as

ACPj =
|cj|2 − |cj|2

|cj|2 + |cj|2
. (III.55)

Similarly, for a neutral particle decaying to a flavour eigenstate, mixing-induced
CP asymmetry writes

Sj =
2=(cjc

∗
j)

|cj|2 + |cj|2
. (III.56)

Note that, given the fact that the isobar coefficients contain a strong phase
then cj 6= c∗i . Since amplitude analyses give direct access to phases and to
the interferences between resonances, it is possible to use this information to
extract specific observables such as

δφ(j, k) = arg(cj, c
∗
k)− arg(cj, c

∗
k), (III.57)

which is a direct CP violation observable. Time-dependent mixing-induced CP
asymmetry can be quantified by the angle βeff

βeff,j =
1

2
arg(cj, c

∗
j). (III.58)

Usually the notation βeff is used for a measurement based on loop processes,
to distinguish it from β, which is measured with tree-level processes as, for
instance, using the “golden mode” B0 → J/ψK0

S. The difference between β
and βeff is due to SM QCD corrections and, potentially, the contributions from
new physics in the loops.
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III.3.4 Limitations and alternatives to the Isobar model

The isobar model is a convenient and powerful approximation. However, it is
not completely satisfactory. First of all, the description of the Dalitz plane in
terms of isobars is model dependent, and thus there is an irreducible, non-trivial,
uncertainty due to the modelling. This model is also unsatisfactory from the
theory point of view: indeed, the addition of more than one Breit-Wigner
propagator in a channel violates the unitarity of the S-matrix, resulting in the
non-conservation of the probability currents.

The accuracy of the model also depends on the knowledge of the hadronic
parameters that enter the functions describing the strong dynamics (cf. the
terms Fj(m

2
12,m

2
23) in Eq. (III.21)), which are not always well assessed by the

theory or accessible from the data. Furthermore, the description of resonances
is based on a quantum-mechanical approach, leading to barrier factors and
angular functions that are non-relativistic. This may prove to be insufficient
even if relativistic corrections of these terms exist.

As mentioned before, the Breit-Wigner-like propagators are well suited for
narrow resonances, so the P- and D-waves, which usually proceed via narrow
and isolated resonances, are in general rather well described by the isobar
model. On the other hand, the S-wave is often more intricate and contains
many overlapping broad states for which the Breit-Wigner approach does not
give a satisfactory description. In addition to this, the BW parameters, such
as the mass and the width, are usually reaction dependent and thus can vary
between different decay modes.

In principle, three-body decays do not exclusively proceed via quasi-two-
body decays, and long-distance effects, such as final-state interactions (e.g.
rescattering), are not (or hardly) taken into account by the isobar model. More-
over, unlike the case of charm decays, where the contribution from nonresonant
(NR) component is generally rather small, NR effects dominate in many decay
modes of the B meson. This can be explained by the rather large phase space
accessible to the B meson. For three-body charmless B decays the maximum
value for the invariant mass is of order 5 GeV whereas most of the resonances
are localised on the boundaries of the Dalitz plane, between 0.5 and 2 GeV,
which explains the large size of the NR component. Such a large phasespace
actually contains different kinematic regions that correspond to distinct QCD
regimes. This indicates that a unique description for the whole Dalitz plane
may not be sufficient.

To tackle some of these issues, several attempts have been made to improve
the model, such as the addition of relativistic corrections to the lineshapes
and to the angular distributions. In a recent LHCb analysis of the B± →
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π±K+K− decay mode [72], the use of a lineshape describing the ππ ↔ KK
rescattering [73], together with a NR form factor accounting for partonic
interaction in the final state [74], result in a good description of the data and
of the large CP asymmetry observed in the low invariant mass region.

Other approaches than the isobar model have been developed, such as
the K-matrix approximation [75, 76]. The K-matrix is hermitian, real and
symmetric. It is defined in terms of the T -matrix introduced in Eq. (III.5) as
K ≡ (T−1 + i1)−1. This formalism is still model dependent and is based on
approximations (the S-wave is supposed not to interact with the rest of the
final state particles) but it has the advantage of preserving unitarity. Since the
K-matrix approximation is more complex than the isobar model, it is generally
used to parameterise the S-wave only, especially when it contains many broad,
overlapping resonances; the other resonances being described using isobars.
The improvement of Dalitz-plot analysis techniques can only be achieved via
a joint effort between the theory and experimental communities. Previous
LHCb results showing a large CP violation at low invariant mass of B → hh′h′′

decays [77], which cannot be explained only by resonant effects, generated
a motivation for reaching a better understanding of the underlying physics.
Another interesting recent result is the Dalitz plane analysis of B+ → π+π+π−

performed by LHCb [78, 79], where different but complementary approaches to
describe the S-wave were compared: the isobar model, the K-matrix formalism,
and a quasi-model-independent approach based on a binning of the phase
space. The three methods proved to be consistent with each other showing the
robustness of the different descriptions.

III.4 Extraction of the CKM angle γ

The expression of the angle γ in terms of CKM matrix elements does not
involve the top quark, meaning that γ can be extracted from tree-level decays,
which are unlikely to be affected by new physics 7. Loop processes can also be
used, which yield, in general, a less precise value of γ. On the other hand, these
processes are more sensitive to new physics. It is then possible to compare
the measurements of γ from “tree-level” and “loop-level” processes as a probe
for new physics. It has to be noticed here that, in the case of new physics,
the “loop-level” values of γ are likely to be process-dependent and thus they
are expected to differ from one decay mode to another. In this part, we will

7This statement has to be mitigated: it was shown in Ref. [80] that new physics could
affect tree-level contributions to the Wilson coefficients c1 and c2 up to 10% without being
inconsistent with the current value of γ.
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Figure III.6: Feynman diagrams of the favoured B− → D0K− decay (left) and the
suppressed B− → D0K− decay (right).
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present the most common methods for the “tree-level” extraction and then
discuss “loop-level” methods.

III.4.1 Extraction of the CKM angle γ from tree decays

The golden modes for the extraction of γ with “tree-level” decays are

B± →
( )

D0 K±, with
( )

D0 decaying to a final state that is accessible by
both D0 and D0. The value of γ is then obtained by exploiting the interfer-
ences between b→ c and b→ u transitions. The decay of the B± to the D0,
which proceeds via a b→ c transition, is singly Cabibbo suppressed, and thus
it is favoured compared to the decay of the B± to the D0 that proceeds via a
b→ u transition and is suppressed both by colour and the CKM matrix element
Vub (see diagrams Fig. III.6). The ratio of the corresponding amplitudes is
related to γ by

Ab→u
Ab→c

= rBe
i(δB±γ), (III.59)

where rB is the ratio of magnitudes, δB the strong phase difference between Ab→u
and Ab→c, and the +(−) sign is associated with the decay of a meson containing
a b (b) quark. The sensitivity to the relative phase of the two interfering

amplitudes is governed by the magnitude of their ratio. For B± →
( )

D0K±

modes, rB is approximately given by

rB =

∣∣∣∣A(B− → D0K−)

A(B− → D0K−)

∣∣∣∣ ≈ 1

3

∣∣∣∣VcsV ∗ubVusV ∗cb

∣∣∣∣ ≈ 0.1, (III.60)

where the factor 1/3 is due to colour suppression. Other similar modes, such

as B± →
( )

D0π±, can be used to extract γ but with a reduced sensitivity to the
phases due to a smaller value of rB.

Recalling that that the D0 and D0 have access to the same final states fD

and f
D

, two different paths exist to reach the final state of the B meson. In the
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case of the B− →
( )

D0K− decay mode, these paths are B− → D0(→ fD)K−

and B− → D0(→ fD)K− (similarly for the CP -conjugate decays), so that the
amplitudes can be written as

A(B− → fDK−) = A(B− → D0K−)A(D0 → fD) +A(B− → D0K−)A(D0 → fD),

A(B+ → f
D
K+) = A(B+ → D0K+)A(D0 → f

D
) +A(B+ → D0K+)A(D0 → f

D
).

(III.61)
Similarly to Eq. (III.59), a ratio of magnitudes and a strong phase can be defined
for the D-meson decay: A(D0 → fD)/A(D0 → fD) = rDe

δD (neglecting CP
violation in the D sector). The decay rates can thus be obtained by expressing
the amplitudes in Eq. (III.61) in terms of γ and the hadronic parameters. They
write

Γ(B− → fDK−) ∝ r2
B + r2

D + 2rBrD cos(δB − γ − δD),

Γ(B+ → f
D
K+) ∝ r2

B + r2
D + 2rBrD cos(δB + γ − δD),

(III.62)

where the normalisation factors have been dropped given the fact that they
disappear when computing the ratios of amplitudes. The following asymmetry
can then be obtained:

A =
Γ(B− → fDK−)− Γ(B+ → f

D
K+)

Γ(B− → fDK−) + Γ(B+ → f
D
K+)

. (III.63)

Depending on the final state of the D-meson decay, different methods are
employed to extract the value of γ. The most commonly used are the Gronau-
London-Wyler (GLW) method [81, 82] and the Atwood-Dunietz-Soni (ADS)
method [83]. The GLW method uses D-meson decays to a CP eigenstate so

that fD = f
D

= fDCP. In the particular case of a decay to a CP eigenstate,
rD = 1. If fDCP is CP even (eg. K+K−) then δD = 0, and if fDCP is CP odd (eg.
K0

Sπ
0) then δD = π. Thus, no external knowledge of the charm parameters is

needed. Using the decay rates obtained in Eq. (III.62) the asymmetry writes

AGLW =
ηCP2rB sin δB sin γ

1 + r2
BηCP2 cos δB cos γ

, (III.64)

where ηCP is the CP eigenvalue. Along with AGLW another observable can be
obtained

RGLW = 1 + r2
BηCP2 cos δB cos γ. (III.65)

Thus there are two observables, AGLW and RGLW, and three theoretical param-
eters, rB, δB and γ, which means that multiple solutions are expected.
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Figure III.7: Example of final states that can be used in the ADS model. The doubly
Cabbibo-suppressed decay of D0 → K+π− (left) and the Cabbibo-allowed decay
D0 → K+π−.
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The ADS method considers decays of the D-meson to flavour specific final
states. Contrary to what happens in the GLW method, the hadronic parameters
coming from the D-meson decay do not cancel out and thus input from the
charm sector is needed. Like in the previous case, two observables can be
derived:

AADS =
2rBrD sin(δB + δD) sin γ

r2
B + r2

D + 2rBrD cos(δB + δD) cos γ
,

RADS = r2
B + r2

D + 2rBrD cos(δB + δD) cos γ.

(III.66)

Comparing to GLW, the ADS method has an apparent complication due to the
increase in the number of theoretical parameters. This difficulty is balanced
by the fact that the ADS method allows to chose a final state of the D-meson
decay that “compensates” the imbalance between the favoured and suppressed
B-meson decay amplitudes. For example, using the Kπ final state of the D-
meson (see diagrams on Fig. III.7), the favoured B− → D0K− is combined with
the doubly Cabbibo-suppressed D0 → K+π− and the suppressed B− → D0K−

is combined with the favoured D0 → K+π−, leading to a comparable size of
the two amplitudes, and thus to an enhancement of CP violation effects.

Theoretically, the hadronic parameters can be obtained from the data and
thus the value of γ can be completely determined from tree-level decays. On
top of that, the theoretical uncertainty is of the order δγ/γ ≈ 10−7 [84], which
is negligible compared to the current experimental precision. Given these
considerations, from the theory point of view γ can be known to a very high
precision.

However, on the experimental side, the measurement of γ is complicated
due to the small decay rates of the modes that enter in the measurement,
with typical branching fractions of the order 10−7. Moreover, the size of the
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interference effect is also small; the interference effects are expected to be
of about 10%, as shown in Eq. (III.60). The experimental strategy adopted
by LHCb is to measure γ in many decay modes8, even in channels where the
precision is not expected to be very good, and combine the results together. This
strategy is challenging: many of the decay modes included in this combination
contain neutral particles, such as K0

S and π0, which are very hard to reconstruct
in LHCb. Another challenge comes from the statistical treatment, that is to
say how to combine together, in a meaningful way, observables that come from
different decay modes. This combination of results not only allows to obtain a
very precise value for γ but also to extract the strong parameters like rB and δB.
The ADS and GLW methods described previously are not the only methods
used to obtain the individual values of γ combined by LHCb. In particular,
methods based on a binning of the Dalitz plane are also used, such as the
GGSZ method [85,86]. The value of γ is also extracted using time-dependent
decay rates [87–89]. The latest LHCb γ combination [90] uses a likelihood
function that is built from the product of probability density functions of 98
experimental observables, and 40 parameters are left free in the fit. The value
of γ is found to be γ = (74.0+5.0

−5.8)
◦
, which dominated the current world average.

III.4.2 Extraction of the CKM angle γ from loop decays

In this part we essentially describe the theoretical framework of the method
used to extract the CKM angle γ in chapter IV. At the end of the section other
methods of extraction of γ from loop decays will be shortly mentioned.

In the previous paragraph we gave the bases for the precise extraction of
γ with tree-level dominated decays. In the present approach, the aim is not
to get the most precise value of γ but rather to exploit several decay modes
that receive an important contribution from loop diagrams. The angle γ is
extracted from charmless three-body decays of B mesons to three pseudo scalar
particles, B → PPP , where P is a kaon or a pion. There are 32 possible final
states for these decays: 16 channels are available for b → d transitions and
16 for b→ s transitions. Thus there are many possibilities to combine these
channels into subsets to extract γ.

The amplitudes of the different decay modes can be expressed in terms of
diagrams using an effective Hamiltonian. These diagrams are defined so that
they absorb the CKM matrix elements. In the case of two-body decays there

8In principle, a very large number of decay modes are eligible: it is typically the number

of possible B → D0h decay modes times the number of
( )

D0 → X decay modes, where X is
a final state accessible by both D0 and D0.
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are nine diagrams: tree (T ), colour-suppressed tree (C), gluonic penguins (Puc,
Ptc), electroweak penguin (PEW), colour-suppressed electroweak penguin (PC

EW),
annihilation amplitude (A), exchange amplitude (E), penguin annihilation
amplitude (PA). The three annihilation-type diagrams, A, E and PA involve
the interaction with the spectator quark and are expected to be significantly
smaller than the others, and are thus neglected. A similar treatment can be
adopted for three-body decays. More diagrams have to be taken into account,
given the fact that there are two possibilities to pop a pair of quarks out from
the vacuum. The notation convention used here is the following: if the quark
pair is between two final-state quarks that do not include the spectator quark,
the diagram contains the subscript “1”, conversely, if the spectator quark is
involved, the diagram has the subscript “2”. Moreover, for b→ s transitions the
diagrams are written with a prime. As an illustration, the different diagrams
contributing to B → πππ are shown in Fig. III.8. Another noticeable difference
with the two-body case is that in three-body, only the total momentum of the
final state is constrained by momentum conservation, but not the momenta of
the individual particles, therefore, the diagrams are momentum dependent.

A further complication arises when dealing with three-body decays because
final states such as K0

Sπ
+π− are not CP eigenstates. Indeed, in the two-body

case, B0 → π+π−, the relative angular momentum between the two pions is
known: it is l = 0 so that the final state is CP even. In three-body decays
such as B0 → K0

Sπ
+π−, the angular momentum between the pions can be

either CP even or CP odd. A way to experimentally disentangle these CP
states is to use Dalitz-plot analyses and symmetrise the amplitude according
to the symmetry of the ππ final state. For example, B0 → K0

Sπ
+π− is CP

even if the π+π− pair is symmetric, so that the corresponding amplitude is
1√
2

(
A(sK0

Sπ
+ , sK0

Sπ
−) +A(sK0

Sπ
− , sK0

Sπ
+)
)

. Given all this, it is possible to write

the amplitudes of a specific class of decays — B → πππ, B → Kππ, B → KKπ,
B → KKK — in terms of common diagrams, by separating the cases where
the isospin state is odd or even. By doing so, the different amplitudes contain
a number of momentum-dependent strong parameters proportional to the
number of diagrams and one momentum-independent weak phase, which is
γ. The experimental observables are the branching fractions, and the direct
and indirect CP asymmetries. If the number of observables is larger than the
number of theoretical parameters, γ can be extracted by a fit without the need
of external parameters input.

It was shown in Ref. [91] that this condition can be fulfilled for some
classes of decays under the assumption of flavour SU(3) symmetry. Under
flavour SU(3), all the particles are identical and thus the amplitudes and
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the observables need to be symmetrised. With three final-state particles, the
symmetry group is S3 (permutation group), and then there are six possible
symmetrisations: fully-symmetric (FS) — the amplitude is fully-symmetric
under the exchange of two final state particles —, fully-antisymmetric — the
amplitude is fully-antisymmetric (AS) under the exchange of two final state
particles — and four mixed states. In the FS state, the CP odd and CP even
relations hold and, in addition, there are relations between the electroweak
penguin diagrams and the tree diagrams. This was first shown in two-body
decays [92,93] and then in three-body decays [94]. They write

P
′

EW1,2 = κT
′

1,2,

P ′CEW1,2 = κC
′

1,2,
(III.67)

where κ is a real coefficient that depends on CKM matrix elements (as defined
in Eq. (III.2)) and Wilson coefficients,

κ ≡ −3

2

|λ(s)
t |
|λ(s)
u |

c9 + c10

c1 + c2

. (III.68)

This relation depends on two assumptions: that flavour SU(3) symmetry holds
and that c1/c2 = c9/c10. In b̄ → s̄ decays, the electroweak penguin and tree
decays are suppressed with respect to P

′
tc, which is the dominant contribution.

Therefore the error relative to flavour SU(3) breaking is subdominant and
the theoretical error on κ is mainly due to the approximate ratios of Wilson
coefficients, which are supposed to hold to about 5%. Thanks to these relations,
the expressions of the amplitudes simplify and the number of theoretical
parameters is reduced, making the extraction of γ feasible. The computation
of the expressions for the 32 B → PPP amplitudes in the fully-symmetric
state, including rescattering effects to all orders in αs, has been carried out in
Ref. [95].

In principle, γ can be extracted using the B → Kππ decay modes [94].
There are six such modes: B+ → K+π+π−, B+ → K+π0π0, B0 → K+π0π−,
B0 → K0π+π+, and B0 → K0π0π0. The drawback of this method is that,
experimentally, it is complicated to reconstruct the π0 mesons, while two of the
six modes have two neutral pions in the final state. A way out is to combine
several classes of decays, and more particularly B → Kππ and B → KKK.
In B → KKK, the pair of quarks that is popped from the vacuum is an ss
pair, instead of uu or dd for B → Kππ, which means that the diagrams are, in
principle, different for the two cases. However, under flavour SU(3) symmetry,
they are basically the same and the relations between tree and electroweak
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penguin diagrams hold. It is then possible to combine together B → Kππ and
B → KKK decay modes and avoid the states involving two π0 mesons. The
amplitudes for the modes of interest, under flavour SU(3), are then given by

2A(B0 → K+π0π−)sym = T ′1e
iγ + C ′2e

iγ − κ (T ′2 + C ′1) ,

√
2A(B0 → K0π+π−)sym = −T ′1eiγ − C ′1eiγ − P̃ ′uceiγ + P̃ ′tc + κ

(
1

3
T ′1 +

2

3
C ′1 −

1

3
C ′2

)
,

√
2A(B+ → K+π+π−)sym = −T ′2eiγ − C ′1eiγ − P̃ ′uceiγ + P̃ ′tc + κ

(
1

3
T ′1 −

1

3
C ′1 +

2

3
C ′2

)
,

√
2A(B0 → K+K0K−)sym = −T ′2eiγ − C ′1eiγ − P̃ ′uceiγ + P̃ ′tc + κ

(
1

3
T ′1 −

1

3
C ′1 +

2

3
C ′2

)
,

A(B0 → K0K0K0)sym = P̃ ′uce
iγ − P̃ ′tc + κ

(
2

3
T ′1 +

1

3
C ′1 +

1

3
C ′2

)
,

(III.69)
where the subscript “sym” denotes that the isospin pair is symmetric under the
permutation of the two particles (CP even), P̃ = P1 +P2, and κ is the coefficient
that relates trees and electroweak penguin diagrams defined in Eq. (III.68).
Note here that A(B+ → K+π+π−)sym = A(B0 → K+K0K−)sym and thus
they are not independent. These equations can be further simplified by defining
effective diagrams

A ≡ −P̃ ′tc + κ

(
2

3
T ′1 +

1

3
C ′1 +

1

3
C ′2

)
,

B ≡ T ′1 + C ′2,

C ≡ T ′2 + C ′1,

D ≡ T ′1 + C ′1.

(III.70)

Hence, the amplitudes can be expressed in terms of five effective diagrams

2Afs(B
0 → K+π0π−) = Beiγ − κC,

√
2Afs(B

0 → K0π+π−) = −Deiγ − P̃ ′uce
iγ − A+ κD,

Afs(B
0 → K0K0K0) = P̃ ′uce

iγ + A,
√

2Afs(B
0 → K+K0K−) = −Ceiγ − P̃ ′uce

iγ − A+ κB,
√

2Afs(B
+ → K+π+π−) = −Ceiγ − P̃ ′uce

iγ − A+ κB.

(III.71)

There are then ten theoretical parameters: the five magnitudes and the four
relative phases of the effective diagrams, and γ. As mentioned before, there
are up to three observables per decay mode: the decay rates and direct CP
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asymmetries, that are accessible to all the modes (B+ → K+π+π− is not
included in the computation of the observables since it is not independent from
B0 → K0K0K0) and the indirect CP asymmetries that can be obtained only in
modes where the final state is the same for B0 and B0 (B0 → K0π+π−, B0 →
K0K0K0 and B0 → K+K0K−). The number of experimental observables
is thus eleven. With more observables that theoretical parameters γ can be
extracted from a fit.

There are three sources of flavour SU(3) breaking in this approach. Firstly
the SU(3) breaking related to the computation of the coefficient κ, defined in
Eq.(III.68). This source, as explained previously, is subdominant. Secondly,
there is an SU(3) breaking effect coming from the fact that the diagrams in
B → Kππ and B → KKK are considered to be the same while in reality
they differ: B → KKK decay modes have a ss pair in the final state, while
the B → Kππ modes have a uu or dd pair. Even if the breaking effect
may differ between a pair of quarks popped from the vacuum and a pair of
quarks produced via the decay of a virtual state, the difference is assumed
to be marginal. Therefore, to a good approximation, the SU(3) breaking is
considered to be the same for each diagram. Since there is room for one
more theoretical parameter, the SU(3) breaking related to the assumption of
identical diagrams can be taken into account by introducing an additional
factor, αSU(3), in the expressions for the amplitudes in Eq. (III.71). Finally, the
third source of flavour SU(3) breaking , which can also be included in αSU(3), is
the fact that kaons and pions are assumed to be the same particles while they
are obviously not. The different methods to evaluate systematic uncertainties
will be discussed in details in chapter IV. The expressions for the amplitudes
including αSU(3) are then given by

2Afs(B
0 → K+π0π−) = Beiγ − κC,

√
2Afs(B

0 → K0π+π−) = −Deiγ − P̃ ′uce
iγ − A+ κD,

Afs(B
0 → K0K0K0) = αSU(3)(P̃

′
uce

iγ + A),
√

2Afs(B
0 → K+K0K−) = αSU(3)(−Ceiγ − P̃ ′uce

iγ − A+ κB),
√

2Afs(B
+ → K+π+π−) = −Ceiγ − P̃ ′uce

iγ − A+ κB.

(III.72)

Note that now the B+ → K+π+π− and B0 → K+K0K− amplitudes differ.
The number of experimental observables is then 13 whereas the number of
theoretical parameters is 11 so that γ can still be extracted form a fit.

The method described in this section is particularly interesting given the fact
that it is potentially sensitive to new physics because of the large contribution
from loop-decays in charmless decay modes of the B-meson. The different
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parameters are extracted from the data, including the hadronic parameters,
which means that no external input (e.g. from QCDF) is needed, and thus the
result is model independent9. Furthermore, this data-driven approach implies
that the accuracy on the determination of the parameters depends on the size
of the datasets, which grows with time and allows for more precise results.
The experimental procedure to extract γ with this method is developed in
chapter IV and carried out using fully-symmetrised amplitudes.

Other methods to extract γ from three-body charmless decays have been
proposed, such as Ref. [96], which relies on isospin symmetry and for which a
time-integrated Dalitz-plot analysis of B0

s → K−π+π0 decay mode is needed.
More recently, a method based on U-spin symmetry [97], considering pairs of
B0 and B0

s decays was also designed. Even though these methods are promising,
the lack of the necessary experimental results in the B0

s -meson decay modes
prevent from using them at present.

9Here we need to mitigate this point. Indeed, the experimental results that are used so
far are model dependent (isobar model).
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Figure III.8: List of diagrams contributing to B → πππ decay mode. Annihilation-
type diagrams are neglected. [91].



Chapter IV
Extraction of the CKM phase γ using
charmless 3-body decays of B mesons

IV.1 Introduction

A powerful test of the Standard Model (SM) consists in measuring the param-
eters of the unitarity triangle using many methods and decay modes. Any
discrepancies from the SM expectations would suggest the presence of new
physics (NP). As explained in part III.4, the angle γ can be extracted using
processes dominated by tree-level transitions such as B → DP where B (D)
represents a neutral or charged B(s) (D(s)) meson and P is a pseudo scalar
hadron (typically a kaon or a pion). The theoretical uncertainties associated
with such methods are very small and thus it is possible to achieve high preci-
sion on the angle value. The world average value, γ = (73.5+4.2

−5.1)◦, is currently
dominated by LHCb.

The angle γ can also be measured in decay modes containing a large
contribution from loop diagrams. In this part we study a method to extract γ
from three-body charmless B → PPP decay modes proposed by Bhattacharya,
Imbeault and London [98]. The theoretical grounds for this method are
described in part III.4. Several B → Kππ and B → KKK̄ decay modes1 are
used to extract γ:

B0 → K0K0K0 B0 → K+π0π− B+ → K+π+π−

B0 → K0K+K− B0 → K0
Sπ

+π−.
(IV.1)

All these decay modes involve b→ s transitions and receive contributions from

1Charge conjugate modes are implicitly included this part unless stated otherwise.

81
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both tree and penguin diagrams. Since the dominant contribution to these
modes comes from penguin diagrams, this method is particularly sensitive to
new physics. The B → PPP modes given in (IV.1) are combined together
under flavour SU(3) symmetry using diagrammatic analysis [91].

The aim of the present study is to provide a complete proof of principle
of the method including fully-propagated experimental uncertainties. Full
Dalitz-plot amplitude analysis of the different modes is required to obtain the
observables. Since these results are not yet available in LHCb we used BaBar
analysis results instead. The full study was published in Ref. [99].

We start with a brief review of the method in part IV.2. Part IV.3 describes
the practical implementation along with the fitting procedure. Fit results for
the baseline model are given in part IV.4. The systematic uncertainties are
discussed in part IV.5. A key point of the method is to make sure that the
effect of SU(3) breaking on the analysis is controlled. For that purpose, two
different tests of SU(3)-breaking have been designed and are presented in part
IV.6. Finally, the results of the analysis are summarised in part IV.7. Part IV.8
presents some theoretical and experimental perspectives that could be worth
to explore in the future.

IV.2 Description of the method

As described in section III.4.2 the amplitudes of three-body charmless B →
PPP can be written in terms of momentum-dependent diagrams. One can fix
the symmetry of the final state in B → P1P2P3 by using its Dalitz plane [91].
To extract the value of γ with a fit, the number of theoretical parameters must
be less than the number of observables. This condition is automatically fulfilled
in the case of two-body decays. However, when using three-body decays, one
needs to make further assumptions to reduce the number of parameters. In
that order, flavour SU(3) symmetry is assumed.

We define the three Mandelstam variables si ≡ (pj + pk)
2, where pi is the

momentum of Pi, and ijk = 123, 231 or 312. These obey to s1 + s2 + s3 =
m2
B +m2

1 +m2
2 +m2

3. The decay amplitude A(s1, s2) of a 3-body decay varies
as a function of the position in the Dalitz plane and can be reconstructed
experimentally via different methods, cf. part III.3.2. Under flavour SU(3)
symmetry a kaon is the same as a pion and thus all the final state particles
are identical. It is therefore necessary to symmetrise the amplitude. For three
identical particles, six symmetrisation states are possible: one fully symmetric,
one anti symmetric and four mixed states. In this study we chose to use
amplitudes that are fully symmetric under permutations of the final-state
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particles. The fully-symmetric amplitude is then given by

Afs(s1, s2) =
1√
6

(A(s1, s2) +A(s2, s1) +A(s1, s3)

+A(s3, s1) +A(s3, s2) +A(s2, s3)).

(IV.2)

The effect of the symmetrisation on the Dalitz plane and choice of points will
be discussed later, in section IV.3.5. Under flavour SU(3) there are relations
between the electroweak penguin and tree diagrams for b→ s transitions [94].
For the fully-symmetric final state, these take the form

P ′EWi = κT ′i , P ′CEWi = κC ′i (i = 1, 2) ; κ ≡ −3

2

|λ(s)
t |
|λ(s)
u |

c9 + c10

c1 + c2

, (IV.3)

where the ci are Wilson coefficients and λ
(s)
p ≡ V ∗pbVps (the Vij are elements of

the CKM matrix). The amplitude T ′i are associated with colour-favoured tree
diagrams while the C ′i represent the contributions of colour-suppressed ones.
The proportionality coefficient κ is approximately equal to 0.5.

Obviously, flavour SU(3) is not an exact symmetry as, for example, the
quarks u, d and s have rather different masses. When extracting γ one has to
account for flavour SU(3)-breaking. This can be done by introducing SU(3)
breaking parameters into the expressions of the amplitudes. Ideally, we need
one SU(3) breaking parameter per diagram. However, this would result in a
number of parameters that is too large to perform a fit. Consequently, it is
assumed that the size of SU(3) breaking is the same for all diagrams and is
small. Then, one single parameter, referred as αSU(3) in the following, is enough
to account for flavour SU(3) breaking. This parameter relates B → Kππ
and B → KKK̄ decays and is equal to unity in the flavour SU(3) limit. As
mentioned previously, in the case of three-body decays, the diagrams are
momentum dependent and so is the parameter αSU(3). This means that the
effect of SU(3)-breaking can vary in different regions of the Dalitz plane. The
assumption that is made here is that the average of the variations on the Dalitz
plane is close to one. More precisely, variations from unity are expected in
localised regions of the Dalitz plane but they are supposed to compensate when
averaging on many points in Dalitz plane. This assumption is shown to be
valid in part IV.6.

This analysis makes use of the five B → PPP decays modes listed in
Eq. (IV.1) to extract γ. As explained in part III.4.2, the fully-symmetric
amplitudes of the five decay modes, Afs, can be expressed as linear combinations
of momentum-dependent effective diagrams, represented here by complex
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parameters A, B, C, D and P̃ ′uc:

2Afs(B
0 → K+π0π−) = Beiγ − κC,

√
2Afs(B

0 → K0π+π−) = −Deiγ − P̃ ′uce
iγ − A+ κD,

Afs(B
0 → K0K0K0) = αSU(3)(P̃

′
uce

iγ + A),
√

2Afs(B
0 → K+K0K−) = αSU(3)(−Ceiγ − P̃ ′uce

iγ − A+ κB),
√

2Afs(B
+ → K+π+π−) = −Ceiγ − P̃ ′uce

iγ − A+ κB.

(IV.4)

where γ, the CKM phase, is the parameter of interest, αSU(3) is the flavour
SU(3)-breaking parameter and κ is a constant defined in equation (IV.3). The
effective diagrams relate to the diagrams defined in [100] through the equations
given in (III.70).

As already mentioned in part III.4.2, if SU(3)-breaking is not taken into
account, i.e. αSU(3) = 1, then Afs(B

0 → K+K0K−) = Afs(B
+ → K+π+π−).

Hence B+ → K+π+π− decay mode can be dropped from the analysis. This
way of extracting γ with four modes will be used as the baseline for the analysis.
The reasons for this choice are related to stability and fit convergence.

From the amplitudes measured experimentally on the Dalitz plane, one can
form a set of three linearly-independent observables per decay mode:

X(s1, s2) = |Afs(s1, s2)|2 + |Afs(s1, s2)|2,
Y (s1, s2) = |Afs(s1, s2)|2 − |Afs(s1, s2)|2,
Z(s1, s2) = Im[A∗fs(s1, s2)Afs(s1, s2)],

(IV.5)

where Afs denotes the fully-symmetric amplitude of the conjugate mode and
A∗fs is the complex conjugate. The observables X, Y , and Z are related to the
effective CP -averaged branching fraction, the direct CP asymmetry, and the
indirect CP asymmetry, respectively. For a given decay mode, their values
depend on the position in the Dalitz plane. The observable Z has no physical
meaning for flavour-specific final states and for charged B-mesons since meson
mixing requires a neutral B-meson and the same final state for both B0 and

B
0
. Therefore, Z is not computed for B0 → K+π0π− and B0 → K0

Sπ
+π−.

Note that, to have access to indirect CP asymmetry experimentally, one needs
to perform a time-dependent flavour tagged Dalitz plot.

In this study, we take as experimental inputs the amplitude models
obtained by BaBar 2 in Refs. [71, 101–104]. The BaBar analysis of
B0 → K0

SK
0
SK

0
S [104] was time-integrated and CP -averaged. Since no dis-

tinction was made between B0 and B
0
, then A = A; the observables Y and

2Note that experimentally K0 is observed as K0
S
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Z vanish and only the observable X is accessible for this mode. As noted in
Ref. [98], this implies a simplification in the expression of amplitudes compared
with Eq. (IV.4). To be specific, the requirement that Y = Z = 0 implies that
P̃ ′uc = 0, so that Eq. (IV.4) becomes

2Afs(B
0 → K+π0π−) = Beiγ − κC,

√
2Afs(B

0 → K0π+π−) = −Deiγ − A+ κD,

Afs(B
0 → K0K0K0) = αSU(3)A,√

2Afs(B
0 → K+K0K−) = αSU(3)(−Ceiγ − A+ κB),

√
2Afs(B

+ → K+π+π−) = −Ceiγ − A+ κB.

(IV.6)

Since for each mode the observables X, Y, Z defined in Eq. (IV.5) depend upon
the fully-symmetric amplitude, and Afs is related to the theory parameters
by Eqs. (IV.6), the observables may be written as functions of the theoretical
parameters. Expressing them in terms of magnitudes and strong phases
(U = ueiφu for U = A,B,C,D), and setting φa = 0 without loss of generality,
the following relations are obtained,

X th
K+π+π−(s1, s2) = a2 + (κb)2 + c2 + 2ac cosφc cos γ − 2κab cosφb − 2κbc cos(φb − φc) cos γ ,

Y th
K+π+π−(s1, s2) = −2 (ac sinφc + κbc sin(φb − φc)) sin γ ,

X th
K0

SK
+K−(s1, s2) = (αSU(3))

2X th
K+π+π− ,

Y th
K0

SK
+K−(s1, s2) = (αSU(3))

2Y th
K+π+π− ,

Zth
K0

SK
+K−(s1, s2) = (αSU(3))

2
(
−c2 cos γ − ac cosφc + κbc cos(φb − φc)

)
sin γ ,

X th
K0

Sπ
+π−(s1, s2) = a2 + (κd)2 + d2 + 2ad cosφd cos γ − 2κad cosφd − 2κd2 cos γ ,

Y th
K0

Sπ
+π−(s1, s2) = −2ad sinφd sin γ ,

Zth
K0

Sπ
+π−(s1, s2) =

(
−d2 cos γ − ad cosφd + κd2

)
sin γ ,

X th
K+π+π0(s1, s2) =

1

2

(
b2 + κ2c2 − 2κbc cos γ cos(φb − φc)

)
,

Y th
K+π+π0(s1, s2) = κbc sin γ sin(φb − φc) ,
X th
K0

SK
0
SK

0
S
(s1, s2) = 2(αSU(3))

2a2 .

(IV.7)

This set of equations is used to perform a fit to the theoretical parameters
and extract γ. If γ is extracted at a single point (s1, s2) on the Dalitz plane,
there are nine real, unknown parameters: four magnitudes (a, b, c, d), three
strong phases (φb, φc, φd), γ, and αSU(3). From the experimental inputs, there
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are eleven observables: three (X, Y, Z) for each of the modes K0
SK

+K− and
K0

Sπ
+π−, two (X, Y ) for each of the modes K+π+π− and K+π+π0, and one

(X) for K0
SK

0
SK

0
S. If αSU(3) is fixed to unity, there are instead eight unknown

parameters and nine observables. In both cases, there are more observables
than theory parameters, and γ may be extracted with a fit. Instead of using
one point, it is possible, and preferable, to use several points. By doing so, the
number of observables and theoretical parameters is increased. For N points on
the Dalitz plane, one obtains 11N observables and 8N + 1 unknown theoretical
parameters when αSU(3) is allowed to vary. If αSU(3) is fixed to unity, there is
9N observables and 7N +1 unknowns. In both cases, for any (positive) number
of points on the Dalitz plane, the number observables exceeds the number of
unknowns, allowing for γ to be extracted.

IV.3 Practical implementation of the method

IV.3.1 Implementation of the decay modes

The BaBar analyses use the isobar formalism to parametrise the decay ampli-
tude at each point on the Dalitz plane as a coherent sum over n resonant and
non-resonant components

A(s1, s2) =
n∑
j=1

cjFj(s1, s2) (IV.8)

where the cj’s are the complex isobar coefficients, the Fj’s are the functions
that describe the strong interaction. A complete description of this formalism
is given in part III.3.3.

The isobar coefficients and the definitions of the lineshapes given in BaBar’s
papers are used to reconstruct the amplitude of each mode as a function of
the position in the Dalitz plane. This is achieved thanks to the Laura++

software package [67], which is a Dalitz plot fitter. With this package, it is
possible to obtain the variation of the amplitude over the Dalitz plane given a
model, in our case, the isobar models described in the papers. Due different
choices of conventions in the normalisation of the lineshapes between BaBar
analyses and Laura++ some adjustments have been made. The details of the
implementation and the cross-checks can be found in appendix A.1.

The total amplitude on the Dalitz plane is defined up to a global constant.
A global normalisation factor has to be introduced in order to be able to
compare the amplitudes of the different decay modes together. For 3 different
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particles the normalisation writes

N =

√
2

τB

B∫∫
(|A(s1, s2)|2 + |A(s1, s2)|2)ds1ds2

, (IV.9)

where B is the branching fraction of the considered mode and τB is the lifetime
of the B0 or B± meson. In the case of 3 identical particles (B0 → K0

SK
0
SK

0
S)

we have

N3Ks =

√
8

9τB0

B∫∫
|A(s1, s2)|2ds1ds2

. (IV.10)

IV.3.2 Error propagation

The errors on the isobar parameters, taken from BaBar’s papers are propagated
to the observables. For each mode the derivatives of the observables with
respect to the isobar parameters are computed analytically. It is then possible
to compute the matrix of these derivatives at any desired point on the Dalitz
plane:

G(s1, s2) =



∂Xmode 1
∂a1

(s1, s2) . . . ∂Xmode 1
∂an

(s1, s2)

∂Ymode 1
∂a1

(s1, s2) . . . ∂Ymode 1
∂an

(s1, s2)

∂Zmode 1
∂a1

(s1, s2) . . . ∂Zmode 1
∂an

(s1, s2)
...

. . .


. (IV.11)

From the covariance matrix of the isobar parameters provided by BaBar ,
Vaj , and the derivatives of the observables with respect to isobar parameters
(IV.11), we can compute the covariance matrix of the observables, VXY Z(s1, s2),
at any given point on the Dalitz plane:

VXY Z(s1, s2) = GT (s1, s2) Vaj G(s1, s2), (IV.12)

where GT is the transpose of the matrix of derivatives defined in Eq. (IV.11).
In the specific case of B0 → K0

SK
0
SK

0
S decay mode, no correlation matrix was

quoted in the BaBar paper, and therefore the correlations are neglected. No
correlations are expected between the different decay modes, so that VXY Z is a
block-diagonal matrix that contains the correlations between the observables
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within each mode. This computation can be generalised to a combination of
two points A and B as

VXY Z ((s1, s2)A; (s1, s2)B) = GT ((s1, s2)A; (s1, s2)B) Vaj G ((s1, s2)A; (s1, s2)B) .
(IV.13)

From this equation we see that the correlations between observables belonging
to the same decay mode and evaluated at different points on the Dalitz plane
are also taken into account. It is worth noticing here that the size of the
covariance matrix varies with the number of observables. The more Dalitz-plot
points are added, the larger the number of observables. Such that, for N points,
with αSU(3) fixed to unity, the covariance matrix sizes 9N × 9N and if αSU(3) is
released then the size is 11N × 11N .

IV.3.3 Fitting procedure

From the implementation described in the previous section, the observables
and their corresponding covariance matrix can be obtained at any point in
the Dalitz plane, and the corresponding observables can be computed using
Eq. (IV.5). It is therefore possible to compare the observables obtained from
experimental inputs to the ones obtained given a specific set of theoretical
parameters {a, b, c, d, φb, φc, φd, αSU(3)} by means of a χ2 function.

A scan in γ is then performed: γ is fixed to consecutive values (with a step
of 1◦), and for each fixed value of γ the other free parameters are evaluated
by minimising the χ2 function. Doing so, we obtain a profile of the χ2 as a
function of γ. In principle, for a global minimisation, the final values of the fit
parameters and the χ2 should not depend on the initial values of the parameters.
However, in the case of multidimensional fits, some dependency is observed due
to the presence of secondary local minima. To obtain a robust estimate of the
global minimum, the minimisation is repeated 500 times randomising the initial
value of the parameters. The smallest value of χ2 is retained for each fixed
value of γ. Then, the preferred value(s) for γ is (are) the minimum (minima)
of this profile. The asymmetric statistical uncertainty is then estimated as the
change in γ required to produce a change of one unit in χ2 from the minimum.

The minimisation is performed using MINUIT2 minimisation package [105,
106]. All the non converging fits are rejected as well as the fits for those the
internal correlation matrix of the minimiser has been forced to be positive
definite.

Examples of γ-scans can be seen on figure IV.1. They are obtained following
the procedure described here, using different random combinations of three
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points in the Dalitz plane. In this example, SU(3) is fixed to one so that
flavour SU(3)-breaking effects are not taken into account. Multiple solutions
from γ appear on these plots. This feature is not entirely surprising given
the trigonometric nature of Eq. (IV.6). It is also manifest that the scans
are different from each other while exhibiting common characteristics: there
are roughly two groups of three solutions separated by a ”forbidden region”
between 100◦ and 200◦.

IV.3.4 Algorithm to extract the minima from a scan

The χ2 functions obtained in the scans are not analytical so that a specific
algorithm has been developed to extract numerically the minima in the different
scans. This algorithm has been designed using an important number of scans
with specific characteristics. The different parameters as well as the fitting
function have been chosen in an empirical way by comparing the results of
different options between many scans. The final algorithm follows these main
steps:

1. Start at the first point.

2. Define the current window to be the range of γ spanned by the current
point plus the next 19 consecutive points. Fit those 20 points with a
3rd-order polynomial function.

3. Determine the minimum of the fitted polynomial (at x = γmin, y =
χ2(γmin))

4. Reject the minimum (γmin, χ
2(γmin)) if any of the following is true:

• The value of γmin is outside the window.

• χ2(γmin) > 7.

• The polynomial fit is of poor quality (its fit χ2 is greater than 5).

5. Move along one point, then go back to step 2 (unless the points have
been exhausted).

Usually, when a minimum is identified, since the consecutive windows overlap,
it will be present in several consecutive polynomial fits (steps 2–4). Due to
statistical fluctuations, the value of γmin will differ slightly between these; the
average value is taken.
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Figure IV.1: Examples of γ scans obtained taking random combinations of 3 points
on the DP using 4 modes and fixing αSU(3) to unity.

IV.3.5 Choice of points on the Dalitz plane

As stated in pat IV.2, fully-symmetric versions of the amplitudes are used
in this study. The fully-symmetric state is obtained by summing over the
permutations of the 4-momenta of the final-state particles. In our case, this is
achieved by permuting the invariant square masses of the final state particles.
For reading convenience we recall Eq. (IV.2) here,

Afs(s1, s2) =
1√
6

(A(s1, s2) +A(s2, s1) +A(s1, s3)

+A(s3, s1) +A(s3, s2) +A(s2, s3)).

(IV.14)

It is appears from this equation that the symmetrised amplitude Afs has a
sixfold symmetry in the Dalitz plane. In effect, the plane can be divided into
six regions along the lines of zero cosine helicity as illustrated on figure IV.2.
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The structure and information in each region is identical to the others3. It is
therefore sufficient to consider points in one sixth of the symmetrised Dalitz
plane.
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Figure IV.2: Symmetrisation example of K0
SK

0
SK

0
S Dalitz plane. The dots are the

symmetric points corresponding to point (10,3), there are 6 points in total because of
the 6 possible permutations of the masses. The blue lines correspond to cos θH = 0
where θH is the helicity angle, those lines divide the DP into 6 regions which are
symmetric. Each of these regions contains the same information as the others.

Considering the difference between the masses of kaons and pions it is
evident that the phase space of the disintegration for B → Kππ decay modes
is larger than for B → KKK̄ modes. Thus the boundaries of the five Dalitz
planes do not coincide, as illustrated on figure IV.3. The points used to extract
γ must be present in all the decay modes. We are thus limited to chose points
within the boundaries of the smallest Dalitz plane which is B0 → K0

SK
0
SK

0
S. A

consequence to this is that the information contained on the boundaries of the
B → Kππ modes cannot be used to extract γ.

In principle, it is possible to extract γ using only one point on the Dalitz

3Up to flavour SU(3)-breaking effects.
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Figure IV.3: Kinematic limits of the different modes. The difference of mass between
charged and neutral kaons is small so K0

SK
+K− and K0

SK
0
SK

0
S Dalitz plane are

almost the same size. The same applies for K0
Sπ

+π− and K+π+π0 Dalitz plane.

plane. Yet, the breaking of flavour SU(3) cannot be controlled when considering
single points on the Dalitz plane. However, as shown in part IV.6, the effects
of flavour SU(3)-breaking are small when averaging over a large number of
points. For that reason, as well as to use maximum amount of information
it is better to extract γ with the largest possible number of points. A priory,
an arbitrary large number of points can be used with this method since the
number of observables, which goes as 11N , is always larger than the number
of theoretical parameters, which goes as 8N + 1. This condition is also fulfilled
for αSU(3) = 1, in that case we have 9N > 7N + 1. In practice, some points
can be very highly correlated, especially if they receive a large contribution
coming from the same resonance. Those high correlations have an impact on
the covariance matrix with becomes approximately singular and not invertible.
This impose limitations to the choice of points: the number of points that can
be used simultaneously in a fit is finite and small and all the combinations
of points are not possible due to the correlations. Empirically, the maximum
number of points that can be simultaneously used is found to be three. In order
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to avoid experimenter’s bias in the choice of points, hundreds of combinations
of points are chosen randomly in the Dalitz plane with a requirement on the
maximum correlations allowed in the correlation matrix. For the baseline fit,
501 three-points combinations have been made and the maximum of accepted
correlations is set to 70%.

For each three-points set, a scan on γ is performed and the minima are
extracted as explained previously in section IV.3.3. The final result is obtained
by averaging on the central values and the statistical uncertainties extracted
from the individual scans. Note that, fluctuations aside, the average uncertainty
does not decrease as more scans are added.

IV.4 Baseline results

As mentioned before, the baseline result is obtained by fixing αSU(3) to one in
the fit, i.e. the flavour SU(3)-breaking effects are ignored. The SU(3)-breaking
effects are then taken into account as a systematic effect.

The results are obtained following the procedure described in the previous
section: a total of 501 sets of three points are chosen randomly in the Dalitz
plane with a requirement on the maximum allowed correlations of 70%. For
each combination, a scan on γ is performed and the minima are extracted along
with their asymmetric statistical uncertainties.

Since the points are randomly scattered across the Dalitz plane, each
combination of points contains different information. As a result the χ2 profiles
obtained with the different combinations are similar but not identical: the
central values and statistical uncertainties fluctuates, and, in some cases not
all of the six minima are present. The distribution of the central values is
shown in Figure IV.4 and the rates at which the minima are found are given in
Table I. It appears that all the minima have a rate greater than 91%, which
means that less than 10% of the scans exhibit missing minima.

In some instances, due to the shape of the χ2 scan, a minimum can be
identified but it is not is not deep enough to extract the statistical uncertainties,
it is then referred as “poorly resolved”. In practice, a minimum is considered
poorly resolved when at least one of the statistical uncertainty crosses with the
central value of the next minimum; i.e. for a given minimum i, (µi+σRi) > µi+1

or (µi−σLi) < µi−1 or both. Since no statistical uncertainties can be determined
for these minima they are not included in the average from where the overall
result is obtained. The potential bias on the result due to the exclusion of
these minima is taken into account as a systematic effect and is described in
section IV.5.
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Figure IV.4: The minima found with four decay modes (αSU(3) = 1). For each of the
501 sets of random combinations of three points in the Dalitz plot, a χ2 scan for γ is
performed and the minima γmin are found. The histogram shows the accumulation
of the minima across all 501 scans.

The averaged central value, µ, and asymmetric statistical uncertainties
(σL, σR) along with the χ2 are given in table II. Six distinct minima are
found and the third one is compatible with the world average value γ =
(73.5+4.2

−5.1)◦ [38]. The statistical uncertainties are between 4.3◦ and 10.9◦. These
results are compatible with the ones obtained in Ref. [98], where a preliminary
implementation of the method was carried out without taking into account
the correlations and systematic uncertainties. From the χ2 values reported
in Table II, the first minimum (12.9◦), and, to a less extent, the fourth one
(223.2◦) are disfavoured, while the fifth one (266.4◦) is favoured, which is as
well in agreement with Ref. [98].

IV.5 Systematic uncertainties

The experimental statistical and systematic uncertainties on the amplitude
models used as inputs are already included in the “statistical uncertainties”
given in Table II, through the use of the correlation matrices and uncertainties
provided in BaBar’s papers. Two additional systematic uncertainties coming
from the method are considered here. The first one is related to the poorly
resolved minima described in the previous section and the second one concerns
SU(3) breaking. The results are summarised in Table III.

As discussed previously, in some cases an extracted minimum is not well
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Table I: The rates at which the different minima are obtained with four decay modes
(αSU(3) = 1). A total of 501 scans are used.

Count Fraction (%)

Minimum 1 484 96.6
Minimum 2 474 94.6
Minimum 3 461 92.0
Minimum 4 499 99.6
Minimum 5 487 97.2
Minimum 6 488 97.4

Table II: The minima found with four decay modes (αSU(3) = 1). For each mini-
mum, the central value for γ is given (µ), along with the asymmetric experimental
uncertainty on the left- and right-hand sides (σL, σR) and the corresponding χ2.

µ σL σR χ2

Minimum 1 12.9◦ 4.3◦ 8.4◦ 3.61
Minimum 2 36.6◦ 6.1◦ 6.6◦ 1.99
Minimum 3 68.9◦ 8.6◦ 8.6◦ 2.07
Minimum 4 223.2◦ 7.5◦ 10.9◦ 2.15
Minimum 5 266.4◦ 10.8◦ 9.2◦ 1.40
Minimum 6 307.5◦ 8.1◦ 6.9◦ 1.74

separated from another nearby minimum. This means that the algorithm
described in section IV.3.4 is not able to compute the statistical uncertainty
on the corresponding central value. As explained in section IV.4, these poorly
resolved minima are excluded from the final average. Disregarding these minima
could bias the result. To estimate this effect, the central value is computed
again, this time including the poorly resolved minima in the average. The
systematic uncertainty is then obtained as

σpoorly resolved = |µ− µall|, (IV.15)

where µ is the central value obtained including only well-resolved minima in
the average, and µall is the central value obtained when both well-resolved and
not-well-resolved minima are included. The values obtained for each minimum
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are given in Table III and are below 1.5◦.
The baseline results are obtained using four out of the five modes by fixing

αSU(3) to one in the fit. Physically, this means that flavour SU(3) is assumed
to be exact and no breaking is taken into account. As explained in section IV.2
it is not possible to assess SU(3) breaking in a general way. Nevertheless,
the αSU(3) parameter can be used to get an idea of the scale of the breaking.
To that end, the analysis is repeated using the five modes and allowing for
αSU(3) to vary in the fit. The exact same procedure is followed to obtain the
results. The detailed results are given later in section IV.5.1. The systematic
uncertainty related to flavour SU(3)-breaking is then assessed as

σSU(3) = |µ− µ5 modes|. (IV.16)

where µ is the central value obtained with the baseline procedure and µ5 modes

is the central value obtained with the five-modes extraction. The results are
summarised in Table III and are below 3◦. More tests of the validity of flavour
SU(3) symmetry hypothesis are presented in section IV.6.

The dominant systematic uncertainty comes from flavour SU(3) but its value
is definitely smaller than the statistical uncertainties obtained in section IV.4,
which means that this analysis is dominated by the statistical error.

Table III: Summary of the systematic uncertainties.

Poorly resolved minima Flavour SU(3)-breaking

Minimum 1 0.8◦ 1.0◦

Minimum 2 0.3◦ 2.6◦

Minimum 3 0.2◦ 2.4◦

Minimum 4 0.7◦ 0.7◦

Minimum 5 1.4◦ 1.3◦

Minimum 6 0.7◦ 0.9◦

IV.5.1 Results allowing for SU(3) breaking

To assess the systematic effect related to the fixed value of αSU(3) in the baseline
fit, the analysis is repeated, this time using the five decay modes and allowing
for αSU(3) to vary in the fit. The sensible increase in size of the covariance
matrix — its size is now 33× 33 whereas in the baseline case it is 27× 27 —
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complicates the procedure for finding points that can be used simultaneously.
For this reason the rejection criterion on the correlations between sets of points
was relaxed from 70% to 80%, and the number of random sets of three points
was reduced from 501 to 401.

Compared to the baseline extraction, the fit behaviour is less stable with a
convergence rate of about 80% (versus 100% in the baseline). The frequency
with which the minima appear among the 401 scans is also reduced, especially
for the two first minima, as shown in Table IV. The reduced stability is taken
to be due to the increased number of free parameters, and the consequent
increase in the size of the covariance matrix. The histogram of the distribution
of the central values across the scans is shown in Figure IV.5.

The results averaged over the different scans and excluding the poorly
resolved minima, are given in Table V. This table includes the the central values
(µ), asymmetric experimental uncertainties (σL, σR), the χ2, the recomputed
systematic uncertainty due to poorly resolved minima (|µ − µall|), and the
systematic uncertainty associated to SU(3) breaking. The results for the
minima are compatible within the uncertainties with the ones obtained with
the baseline procedure. The χ2 values are globally larger than in the previous
case, which can be explained by the increase in the size of the parameter space,
but the ordering of the minima with respect to their χ2 value is the same.

Table IV: The rates at which the different minima are obtained with five decay
modes. A total of 401 scans are used.

Count Fraction (%)

minimum 1 306 76.3
minimum 2 329 82.0
minimum 3 372 92.3
minimum 4 383 95.5
minimum 5 378 94.3
minimum 6 391 97.5

IV.6 Studies of SU(3) breaking

In this approach, flavour SU(3) symmetry is assumed to hold when averaging
on large number of points of the Dalitz plane. Fluctuations are foreseen in
localised regions of the Dalitz plane — i.e. it is expected to observe flavour
SU(3)-breaking when considering single points in the Dalitz plane — but
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Table V: The minima found with five decay modes, allowing αSU(3) to vary in the fit.
For each minimum, the central value for γ is given (µ), along with the asymmetric
experimental uncertainty on the left- and right-hand sides (σL, σR) and the related
χ2. The quantities |µ− µall| and |µ4 modes − µ5 modes| are taken as estimates of the
systematic uncertainties due to poorly resolved minima and flavour SU(3) breaking,
respectively.

µ σL σR χ2 |µ− µall| |µ4 modes − µ5 modes|

Minimum 1 11.9◦ 5.8◦ 9.1◦ 3.53 1.3 1.0
Minimum 2 39.2◦ 6.3◦ 6.7◦ 2.50 1.2 2.6
Minimum 3 71.3◦ 9.5◦ 9.3◦ 2.58 0.4 2.4
Minimum 4 223.9◦ 7.4◦ 9.5◦ 2.92 0.1 0.7
Minimum 5 265.0◦ 11.0◦ 10.0◦ 2.19 1.2 1.3
Minimum 6 308.4◦ 8.8◦ 7.0◦ 2.49 0.6 0.9

Figure IV.5: The minima found with five decay modes, with αSU(3) free to vary in
the fit. For each of the 401 sets of random combinations of three points in the Dalitz
plot, a χ2 scan for γ is performed and the minima γmin are found. The histogram
shows the accumulation of the minima across all 401 scans.

these effects are assumed to partly cancel when averaging on many points. The
results obtained in part IV.5.1 show that this hypothesis seems to hold. In this
part, we present two further way to test this assumption and specifically to
check that αSU(3) averages to one when considering many points. The first test
is based on the theoretical expressions for the amplitudes given in Eq. (IV.4)
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and involves comparing the amplitudes of two modes related by flavour SU(3)
as a function of the position in the Dalitz plane. The second test consists in
extracting the value of αSU(3) over the Dalitz plane from fits.

IV.6.1 Comparison of the amplitudes of B0 →
KSK

+K− and B+ → K+π+π−

From inspection of the last two lines of Eq. (IV.4), there is a linear relationship
between the fully symmetric amplitudes for B0 → K0

SK
+K− and B+ →

K+π+π−:

Afs(B
0 → K+K0K−) = αSU(3)Afs(B

+ → K+π+π−) . (IV.17)

The value of the parameter αSU(3) can be inferred by comparing the values of
the amplitudes of these two modes at different points on the Dalitz plane [95].
To obtain an estimate of αSU(3) at one point on the Dalitz plane, we define the
following ratio:

R(s13, s23) =

∣∣∣∣ Afs(B
+ → K+π+π−; s13, s23) +Afs(B

− → K−π−π+; s13, s23)

Afs(B0 → K+K0
SK
−; s13, s23) +Afs(B0 → K−K0

SK
+; s13, s23)

∣∣∣∣ ,
(IV.18)

where Afs(X; s13, s23) is the symmetrised amplitude for the decay mode X
measured at point (s13, s23).

The ratio R(s13, s23) is computed at each point of a grid of more than 1M
points uniformly distributed on the Dalitz plane. The variation of R(s13, s23)
as a function of the position in the Dalitz plane is shown on Figure IV.6 (a).
Significant deviations from one are observed, especially in regions containing
resonant contributions, which is unsurprising, given that flavour SU(3) is broken
by the mass difference between s and u, d quarks. A histogram of the values of
R is shown in Fig. IV.6 (b). The distribution peaks near one, and the average
value is 1.028, rather close to unity. These two plots show that despite being
strongly violated locally, flavour SU(3) holds reasonably well when averaging
across the phase space.

IV.6.2 Fitted value of αSU(3) over the Dalitz Plane

Another manner to study flavour SU(3) breaking is by determining αSU(3) from
a fit. While it is difficult to interpret the values of αSU(3) extracted along
with γ from the procedure described in part IV.5.1 — because of the use of
combinations of three correlated points, it is not straight forward to understand
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(a) (b)

Figure IV.6: (a) Ratio of amplitudes R(s13, s23) over the whole fully symmetrised
DP. Note that the R(s13, s23) scale is truncated at 2.0. (b) Histogram of the different
values of the ratio of amplitudes R(s13, s23).

the correlations between the different values of αSU(3)— we can use a similar
strategy with single points on the Dalitz plane.

A uniform grid of 386 points chosen in one sixth of the Dalitz plane is
exploited. For each single point, a χ2 minimisation is carried out in a similar
fashion as the procedure described in section IV.3.3, repeating the fit 500 times
with random initial values of the parameters and allowing for αSU(3) to vary
in the fit. The value of αSU(3) not only depends on the position on the Dalitz
plane but also on γ.

Figure IV.7 shows the fitted values of αSU(3) at each point of the grid for
fixed values of γ that correspond approximately to the six minima given in
Table II. The mean value of αSU(3), 〈αSU(3)〉 is also given in each case. The
variation of αSU(3) between the six values of γ are negligible and the mean
values are very close together and to unity. The observed variation of αSU(3)

in Figure IV.7 is similar to the variation of R(s13, s23) in Figure IV.6 (a), the
same pattern of large flavour SU(3) breaking is seen near resonances. The
main conclusions form this test are the same as in the previous on and enforce
the hypothesis of flavour SU(3) symmetry nearly conserved when averaging on
many points on the Dalitz plane.
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(a) γ = 12◦, 〈αSU(3)〉 = 1.06 (b) γ = 37◦, 〈αSU(3)〉 = 1.06

(c) γ = 68◦, 〈αSU(3)〉 = 1.05 (d) γ = 223◦, 〈αSU(3)〉 = 1.06

(e) γ = 266◦, 〈αSU(3)〉 = 1.05 (f) γ = 307◦, 〈αSU(3)〉 = 1.05

Figure IV.7: Plot of the fitted values of αSU(3) across the DP for γ fixed to the values
of the 6 solutions obtained in part IV.4. For each plot, the average value 〈αSU(3)〉 is
also given.

IV.7 Summary and conclusion

The method of extracting the weak phase γ from three-body charmless decays
of the B meson developed by Bhattacharya, Imbeault and London [98] is
applied to amplitude models of five charmless three-body decays of B mesons
obtained by the BaBar collaboration [71, 101–104]. Six solutions for γ are
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found:

γ1 = [ 12.9 +8.4
−4.3 (stat)± 1.3 (syst)]◦,

γ2 = [ 36.6 +6.6
−6.1 (stat)± 2.6 (syst)]◦,

γ3 = [ 68.9 +8.6
−8.6 (stat)± 2.4 (syst)]◦,

γ4 = [223.2 +10.9
−7.5 (stat)± 1.0 (syst)]◦,

γ5 = [266.4 +9.2
−10.8 (stat)± 1.9 (syst)]◦,

γ6 = [307.5 +6.9
−8.1 (stat)± 1.1 (syst)]◦ .

The six values obtained are well separated, and one is compatible with the
Standard Model while the others are not. The presence of multiple solutions
may reflect trigonometric ambiguities. The central values and statistical
uncertainties are obtained assuming flavour SU(3) symmetry while the the
systematic uncertainties include SU(3)-breaking effect and the impact of poorly
resolved minima on the result. The dominant uncertainty is statistical and is
below 11◦, which is approximately twice the uncertainty on the world average.
It is obtained by propagating the statistical and systematic uncertainties on the
isobar parameters, determined by the BaBar analyses of the different modes,
to the observables of the method; so that all the correlations are included.

The hypothesis of flavour SU(3) symmetry has been tested to a large extent,
using different approaches. Besides extracting γ with an SU(3)-breaking
parameter left free in the fit, two more tests were performed in order to asses
the variation of the breaking across the Dalitz plane. As expected, strong
local variations are seen, especially near resonances, but, when considering the
average of the variations over the Dalitz plane they are found to be consistent
within the hypothesis of flavour SU(3) symmetry within a few percents.

IV.8 Perspectives

The present study shows that information on the weak phase γ can be extracted
from charmless three-body decays with a good precision. This was carried out
using results from the BaBar collaboration that used the isobar model as a
description of the amplitude variation across the Dalitz plane. Time-dependent
Dalitz plot analyses of the same modes using the data collected at LHCb during
the two runs of data taking are on their way and, given the increase of statistics,
should provide a better description of the Dalitz plot. Experimental results
from the Belle II experiment are also expected and will be complementary to
the LHCb ones. Indeed, the charged modes, e.g. B → KKK̄, are a priori more
suited to LHCb while the neutral ones, e.g. B0 → K0

SK
0
SK

0
S, are better adapted
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to Belle II. Given this, an interesting possibility would be a simultaneous fit
of the physics parameters to datasets of both experiments using a framework
such as JFIT [107]. It is worth stressing that, even if the isobar model was used
for this study, it is not required by the method itself. Other descriptions of the
amplitude can be used. As described in part III.3.4, other models are available
to parametrise the Dalitz plane and some Dalitz-plot analyses of charmless
B-decays in LHCb are investigating these alternative models [72,78,79].

As mentioned previously, since the kinematic boundaries of the Dalitz plot
of the different modes do not coincide, we are limited to chose the points within
the boundaries of B → K0

SK
0
SK

0
S and a part of the information contained in the

B → K0
Sππ is lost. Some tentatives of reparametrising the Dalitz plane of the

different modes in a way such as the kinematical boundaries coincide have been
made. An attempt using two cosines of the helicity angles, cos θH , as Dalitz-plot
variables instead of the invariant masses of the daughters particles has been
carried out. The key point is that by doing so, every Dalitz plane is contained
within a square between -1 and 1, and so, in principle, all the information
available in the different decay modes can be used. Changing the set of variables
is not as trivial as it seems. The amplitude symmetrisation has to be expressed
in terms of these new variables, and a definition of “coinciding points” between
the different modes has to be chosen. Indeed, when reparametrising the Dalitz
plane in terms of helicity angles, the resonances are not straight lines anymore
and their shapes change quite significantly with the masses of the daughters
particles; for example, χc0 → π+π− and χc0 → K+K− will have rather different
shapes, so that a point lying on the χc0 resonance in the B0 → K0

Sπ
+π− mode

may not be located on the χc0 resonance of B0 → K0
SK

+K− when using the
same coordinates. This is actually a flavour SU(3)-breaking effect that is already
present when using the standard Dalitz-plane coordinates but it becomes more
striking when working with the helicity angles. Other complications arise due
to the fact that, unlike the invariant square masses, the third value of the
cosine of helicity angle cannot be deduced from the knowledge of the other two
using a simple formula. Furthermore, the cos θH can be expressed as functions
of the invariant square masses but the inverse requires numerical computation.
The procedure that was used here, was to take B0 → K0

SK
0
SK

0
S, the only “real”

flavour SU(3)-symmetric mode, as a benchmark to try to workout a meaningful
symmetrisation. Unfortunately, the uncertainty on γ obtained with this method
was too large to resolve all the minima. More investigations in this direction
are needed and can result in alternative parametrisations that could be used
to replace the baseline model or to assess systematic uncertainties.

Only fully-symmetric states have been used so far. A consequence of
this symmetrisation is that, by construction, the vector resonances disappear.
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The exploration of the other symmetrisations (fully-antisymmetric and mixed
states) would add information and probably reduce the statistical uncertain-
ties. Combining different symmetrisations together may resolve a part of the
trigonometrical ambiguities (or maybe all of them), and therefore determine
if the value of γ obtained from this method agrees or not with the tree-level
value. The use of other symmetrisations implies considering a different set of
decay modes. For example, the amplitude of B0 → K0

SK
0
SK

0
S vanishes when

fully-antisymmetrised due to the fact that the resonances of spin 0 and 2 disap-
pear when antisymmetrising. Moreover, since it cannot be assessed in a general
way, the hypothesis of flavour SU(3) has to be tested for each set of modes and
each symmetrisation. Unlike the fully-symmetric case, for antisymmetric and
mixed amplitudes, flavour SU(3) breaking cannot be determined from a simple
ratio of amplitudes. A more sophisticated treatment is then required.



Chapter V
The LHCb experiment

Elementary particles can be detected through their interaction with matter.
A particle physics detector is made of several subdetectors that are dedicated
to measure the properties, for instance momentum, position, energy etc.,
of different types of particles—for example, some subdetectors are designed
to detect charged particles, while others can also detect neutral ones. The
information provided by each subdetector is then combined to reconstruct the
whole event.

The analysis presented in chapter VI uses data collected with the LHCb
experiment at the Large Hadron Collider (LHC). The first section of this
chapter describes the LHC accelerator complex and the second part gives an
overview of the LHCb detector.

V.1 The LHC

The LHC [108] is a 27 km-circumference proton-proton1 collider, part of the
CERN accelerator complex. It was installed in the same tunnel as the former
LEP machine, situated 45 m to 170 m underground, below the Franco-Swiss
border. A part of the LEP injection chain is also re-used for the LHC. A
schematic of the CERN accelerator complex is shown in Fig V.1. The LHC
accelerates two proton beams in opposite direction using 8 radio-frequency
(RF) cavities per beam. The beam is bent by superconducting dipole magnets
that provide an 8.3 T magnetic field. In addition, quadrupole magnets are used
to focus the beam and prevent it from deviating from its trajectory. There are

1Most of the time, the LHC accelerates and collides two proton beams, but special runs
with proton-ion, ion-proton and ion-ion configurations are also performed.
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a total of 9,593 magnets in the LHC.
Before reaching the LHC, the proton beams are accelerated through a series

of smaller accelerators. The protons are obtained from a source of ionised
hydrogen gas, and accelerated at first by a linear accelerator, LINAC2, to
an energy of 50 MeV. They are then injected into the Proton Synchrotron
Booster (PSB), a 157 m-circumference quadrupole ring, that splits the beam
into bunches of about 1011 protons and accelerates them up to 1.4 GeV. Next,
the proton bunches enter the Proton Synchrotron (PS) and are accelerated
up to 25 GeV. The beam is also further separated to achieve the required
structure to enter the LHC, consisting of a separation between the bunches,
“bunch spacing”, of about 25 ns. The last acceleration stage before the LHC is
performed by the Super Proton Synchrotron (SPS) where the protons reach
450 GeV before being injected into the LHC storage ring where the beams are
subsequently accelerated to the requested energy.

The energy of the beams in the LHC was increased over the years. During
run I, collisions occurred at a centre-of-mass energy of 7 TeV in 2011 and 8 TeV
in 2012. The beam energy was further increased during run II, providing
collisions at a centre-of-mass energy of 13 TeV. Less than 5 minutes are
necessary to fill each LHC beam, and it takes about 20 minutes to reach the
run II energy (6.5 TeV per beam).

The collisions of the two beams happen at four interaction points where
detectors are located. Two general purpose experiments, ATLAS [109] and
CMS [110] are located on opposite sides of the LHC ring, at Point 1 and Point
5 respectively. The ALICE [111] detector, situated at Point 2, is dedicated
mainly to the study of heavy-ion collisions and quark-gluon plasma. The
LHCb [112] spectrometer is located at Point 8 and is specially designed for the
study of flavour physics.

V.2 The LHCb detector

The LHCb detector is a single-arm forward spectrometer designed for precision
measurements of beauty and charm hadrons and CP violation. Thanks to the
large beauty and charm cross-sections at the LHC, the LHCb detector collected
approximately 1012 heavy flavour decays in run I, which corresponds to the
data taken during 2011 and 2012 at centre-of-mass energies of 7 TeV (in 2011)
and 8 TeV (in 2012). At these energies, the beauty cross section is about two
hundred times smaller than the total cross-section, and the charm cross-section
about ten times smaller than the total, which implies that the decay modes of
interest are buried under a large amount of background. The signals originating



V.2 The LHCb detector 107

Figure V.1: Scheme of the CERN accelerator complex and the four collision points
situated along the LHC ring [113].

from beauty and charm decays are generally characterised by a secondary decay
vertex that is displaced from the proton-proton interaction point (the primary
vertex), and a high transverse momentum. At high energies, the b and b-
hadrons are very correlated and are mainly produced in the same forward (or
backward) cone around the beam. The LHCb detector is specially designed to
recognise this typical signature and to provide the necessary information to
make precision measurements of b- and c-hadron decays. The data collected by
the LHCb detector thus far consist of two separate runs. The run I data, taken
in 2011 and 2012 at centre-of-mass energies of 7 TeV and 8 TeV, respectively,
correspond to an integrated luminosity of 3 fb−1. The second run of data taking
(2015–2018) consists of nearly 6 fb−1 of pp collisions collected at a centre-of-mass
energy of 13 TeV.

The layout of the LHCb detector is shown on Fig. V.2. The detector covers
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a pseudorapidity range of approximately 2 < η < 5 in the forward direction.
A right-handed Cartesian coordinate system, with the z axis defined along
the beam axis, the y axis in the vertical direction and the x in the horizontal
plane is used. Alternatively, cylindrical polar coordinates (r, θ, z) are also used
when needed. Positive values of z correspond to the forward (downstream)
region, and negative values of z to the backward (upstream) region. The
LHCb detector has excellent vertex resolution thanks to the vertex locator
(see Sec. V.3.1), which is crucial for precise measurements of the displaced
vertices from beauty and charm decays. The resulting decay time resolution
is good enough to resolve the fast oscillations of the neutral B0

s meson. In
addition to this, the good momentum and invariant mass resolution of the
detector (Sec. V.3) as well as the charge particle identification (Sec. V.4) help
to suppress the combinatorial background and to distinguish between heavy-
flavour decays with similar topologies, such as the B0

(s) → K0
Sh

+h′− decay
modes that are studied in Chapter VI. The possibility to detect photons thanks
to the calorimeters allows radiative decays to be reconstructed, as well as decays
containing π0 and η particles in the final state. The different subdetectors will
be described in the following sections.

The operating conditions of the detector are also adapted to the study of
heavy-flavour particles. As the lifetime of b- and c-hadrons is rather long, the
typical distance travelled by a B0 in the detector before decaying is around
7 mm, such that the decay vertex is significantly displaced with respect to
primary vertex (PV). The algorithms to associate tracks and particles to their
primary or secondary vertex of origin are more efficient with a low number of
PVs per bunch-crossing. The pile-up, defined as the average number of visible
interactions per bunch-crossing [114], is thus a critical parameter for detector
performance. The instantaneous luminosity delivered by the LHC from 2012
on exceeds the original design luminosity of the LHCb detector by a factor of
two, as illustrated on Fig V.3. Nevertheless it was proven that the detector is
still efficient at this higher luminosity. Since 2011, a levelling procedure of the
luminosity at the LHCb interaction point is in use. This levelling is performed
by adjusting the transverse overlap of the beams so as to keep the luminosity
approximately constant during a fill. This is particularly convenient because it
allows to keep the running conditions and trigger configuration during a fill,
and reduces the systematic uncertainties related to changes in the detector
occupancy. Figure V.4 demonstrates the effects of the levelling by comparing
the evolution of the luminosity for LHCb with ATLAS and CMS detectors
during one fill in 2012. The levelling procedure has since been adopted by the
general-purpose detectors as well.

Thanks to the versatility and performance of the detector, the LHCb physics



V.3 Track reconstruction 109

program has grown beyond the original idea of studying b- and c-hadron decays
and now also includes, for instance, electroweak, heavy-ion, and soft-QCD
physics analyses. The LHCb spectrometer also takes data during from special
runs with proton-lead or lead-lead collisions. The capability to inject gas in the
vertex locator, initially intended for measuring the beam size and luminosity, is
now also used to study fixed-target collisions. The design of the detector is such
that it is possible to collect fixed-target data and collision data simultaneously.

Figure V.2: Side view of the LHCb detector [115].

V.3 Track reconstruction

Reconstruction of the trajectories of charged particles is performed by the
tracking system which consists of the vertex locator (VELO), which is situated
around the interaction point, and the tracking stations that are placed on
both sides of a dipole magnet with a bending power of 4 Tm in the x direction.
The three tracking stations situated downstream of the magnet are referred
as T-stations. Charged particles may interact with the sensors of the different
tracking detectors. The positions of the hits are then used to reconstruct
the trajectories of the charged particles. When passing through the magnet
they are deflected by the magnetic field, which enables a measurement of the
momentum of the track.
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Figure V.3: The upper plot shows the pile-up, µ, at the LHCb interaction point over
run I. The lower plot shows the instantaneous luminosity for the same period. The
dotted lines show the design values [116].

Figure V.4: Instantaneous luminosity at the LHCb, ATLAS and CMS detectors as
a function of the time, during a specific fill from May 2012. It can be seen that
LHCb was able to maintain a stable luminosity (within 5%) over 15 hours; after
15 hours the beams are colliding head-on at the maximum available luminosity (lower
at LHCb than ATLAS and CMS due to the difference in the final focusing at the
collision points [116]).
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V.3.1 The vertex locator

The VELO [117] is a silicon detector composed of 21 stations placed along the
beam, surrounding the interaction region, as shown in Fig. V.5. Each VELO
station is composed of two semi-circular modules that contain R and Φ sensors.
The R sensors that measure the r coordinate of the track (radial distance
from the z axis), are composed of strips that are arranged in four segments of
approximately 45

◦
. The Φ sensors, that measure the φ coordinate of the track

(azimutal angle), are divided into two regions, with inner and outer strips. A
schematic view of the sensors is given in Fig. V.6. The design of the VELO is
such that all the tracks inside the LHCb acceptance cross at least three VELO
stations, which corresponds to the minimum number of hits required for a track
to be labelled as “reconstructible”. Tracks without momentum information
in the forward and backward directions are also reconstructed to improve the
quality of the PV reconstruction. The sensors are operated in a vacuum and
cooled using a bi-phase CO2 cooling system that maintains a temperature of
(−7± 2)

◦
C, and the readout is performed through routine lines that transport

electrical signals to the edge of the sensor. Due to its proximity to the beam,
the VELO detector is exposed to a high amount of radiation. To reduce the
risk of serious damage from the beam impacting the sensors directly, the VELO
modules are retractable: when not operating or during beam injection (i.e.
outside STABLE BEAMS), the two halves of the detector are opened. During
data taking, the sensors are moved inward to a distance of 7 mm from the
beam, with a small overlap between the two halves to help with the alignment.

The PV position resolution is 13µm in the transverse plane and 71µm
along the beam axis for vertices with 25 tracks. For particles with a transverse
momentum greater than 1 GeV, the impact parameter (IP) resolution is below
35µm.

Figure V.5: View of the VELO senors in xz plane at y = 0 in the closed position [117].
The R sensors are represented with a with solid blue lines and the Φ sensors are
shown by dashed red lines.
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Figure V.6: Schematic representation of the R and Φ sensors of the VELO [117].

V.3.2 The Tracker Turicensis

The Tracker Turicensis (TT) is a silicon detector situated upstream of the
magnet that covers the full acceptance of the LHCb detector. It is made of
four layers of silicon microstrip sensors which are 9.64 cm wide, 9.44 cm long,
and 500µm thick. The layers are arranged to measure the so-called “stereo”
coordinates in an x-u-v-x configuration: the two x layers have vertical strips
while the u and v stations have their strips rotated by angles of −5◦ and +5◦

with respect to the x-layers. The TT detector is particularly important in the
reconstruction of long-lived particles such as K0

S and Λ hadrons that may fly
a significant distance and decay after or near the end of the VELO (leaving
fewer than three hits). The TT also improves the quality of the reconstruction
of low-momentum tracks.
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V.3.3 The Dipole Magnet

The magnet [118], located between the TT and the T-stations, is a warm dipole
that provides an integrated magnetic field of about 4 Tm, mainly oriented along
the y direction. A view of the magnet is shown on Fig. V.7. It consists of two
trapezoidal coils of 25 tons each, inclined at 45◦ on the two transverse sides,
arranged inside a 1450-ton iron yoke. The evolution of the y component of
the magnetic field as a function of the z position is shown on Fig. V.8. It can
be observed that the field is concentrated between TT and T1, with a field
strength that is low in the tracking stations themselves and minimal inside the
VELO.

The charged particles passing through the magnet are deflected in the
x direction by the magnetic field, which allows for a measurement of their
momentum with a relative precision of about 0.5% for tracks with momenta
in the range 2 GeV to 100 GeV. Depending on their charge, the particles are
deflected in opposite directions; if the detector efficiency is not exactly the same
on both sides, charges asymmetries will be observed between conjugates modes.
These left-right asymmetries, like any other asymmetries in the detection, are
particularly problematic for CP violation measurements. To cope with this
effect, the magnet has been designed in such a way that its polarity can be
reversed, and data is taken with both up and down magnet polarities. If the
amount of data taken with both polarities is similar and the detector conditions
do not vary significantly over time, the asymmetry will approximately cancel
when averaging results over the polarities.

For charged track reconstruction, a precise mapping of the magnetic field
across the detector is essential. This was initially done in 2005 by measuring
the field at about 500 000 points in the detector in steps of 4 cm in the x-y plane
and 10 cm along the z axis. Corrections to this map were the provided in 2011,
due to the influence of the magnetic field on the position of the subdetectors.

V.3.4 The Inner Tracker

The three T-stations situated downstream of the magnet are each composed
of an Inner Tracker (IT) [119] and an Outer Tracker (see below). The IT is
located around the beam pipe, in a region of high detector occupancy. The IT
subdetector of each T-station includes a light-tight box, cooled to a temperature
below 5◦C, containing four layers of silicon-strip detectors organised in a stereo
arrangement similar to the TT. The efficiency and the hit resolution of the
IT are also similar to that of the TT. However, unlike the TT, the power and
cooling systems, as well as the readout boards of the IT are inside the LHCb
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LHCb Magnet: Technical Design Report CERN/LHCC/2000-007

2. Dipole Design

2.1 Overview

Various coil shapes and yoke geometries have been studied, including simple
race-track designs [2-1], leading finally to the design sketched in Fig. 2.1.1, as viewed
from the larger aperture side of the magnet. A photo of a 1:25 model is shown on the
cover page.

Fig. 2.1.1: Perspective view (EUCLID), without shims

The magnet consists of two trapezoidal coils bent at 45° on the two transverse
sides, arranged inside an iron yoke of window-frame configuration. The magnet gap is
wedge shaped in both vertical and horizontal planes, following the detector acceptance.
In order to provide space for the frames of the tracking chambers positioned inside the
magnet, the planes of the pole faces lie 100 mm outside the ± 250 mrad vertical
acceptance and the shims on the sides of the pole faces 100 mm outside the ± 300 mrad
horizontal acceptance. The horizontal upstream and downstream parts of the coils  are
mounted such that their clamps and supports do not penetrate into the clearance cone
defined above for the frames of the tracking chambers.

Figure V.7: Schematic of the LHCb dipole magnet [118].

acceptance, creating asymmetries in the reconstruction of the charged tracks.

V.3.5 The Outer Tracker

The Outer Tracker (OT) [120, 121] is a gaseous detector covering an area of
approximately 5×6 m2. Each of the three stations is made of four double layers
of straw tubes, arranged in the same stereo setup as the IT and the TT. The
drift tubes have a 4.9 mm inner diameter and are filled with a gas mixture of
Ar (70%), CO2 (28.5%) and O2 (1.2%), which ensures a drift time below 50 ns
and a drift coordinate resolution of 200µm. Charged particles passing through
the tubes ionise the gas mixture, creating ions that drift toward the anode
wires that are maintained at a voltage of +1550V. The drift time of the ions
provide a measurement of the position of the ionising particles.
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Figure V.8: The magnetic field component in the y direction (By) as a function of
the z position. An illustration of the tracking system is shown for comparison [116].

V.3.6 Track and vertex reconstruction

Track reconstruction

The track reconstruction [122] is performed by combining the individual mea-
surements provided by the tracking detectors into a particle trajectory. The
design of the LHCb detector is such that the magnetic field in most of the
tracking detectors is negligible, so that the track segments upstream and
downstream to the magnet can be approximated by straight lines. Tracks
are classified into different types according to which subdetectors contain hits.
Figure V.9 gives an overview of the different track types. The analysis presented
in chapter VI uses principally Long tracks, which go through the full tracking
system and have hits in (at minimum) the VELO and the T-stations, and
Downstream tracks that have hits in the TT and the T-stations but not in the
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VELO. The Downstream tracks are useful to reconstruct long-lived particles
that decay outside the VELO, such as K0

S and Λ hadrons. Other types of
tracks exists, such as VELO tracks that only have hits in the VELO and are
principally useful for primary vertex reconstruction, and upstream tracks that
have hits in the VELO and the TT, and T-tracks that only have hits in the
T-stations downstream of the magnet. The latter are mainly used to improve
the performance of the RICH detectors’ particle identification algorithms.

The reconstruction of Long tracks starts by identifying VELO track segments
that are straight lines with at least three hits in the VELO stations. Then,
these segments are combined with information coming from the T-stations.
Two algorithms are used to combine the VELO tracks with the hits in the T-
stations. In the forward tracking algorithm [123], a VELO segment is combined
with a single hit in a T-station to obtain a measurement of the trajectory
and of the particle momentum. The search is then extended to further hits
in the T-stations along the trajectory to improve the track quality. The track
matching algorithm [124,125] combines VELO track segments with T-tracks,
which are required to have at least one hit in the x layers and one hit in the
stereo layers of each T-station. Finally, the candidates produced by the two
algorithms are combined to from Long tracks, and hits in the TT compatible
with their trajectories are added to improve the momentum determination. The
Downstream track reconstruction proceeds in the opposite direction: T-tracks
from the T stations are extrapolated through the magnetic field and a search
for compatible hits is performed in the TT.

The average reconstruction efficiency for Long tracks is above 96% in the
momentum range 5 GeV< p < 200 GeV in the angular acceptance of LHCb [116].
The efficiency is slightly degraded for high-multiplicity events.

Primary vertex resolution

The PV resolution is measured by randomly splitting the set of tracks in an
event in two and reconstructing the PVs with each subsample. The resolution is
then obtained from the width of the distribution of the difference of the vertex
positions. The resolution is strongly correlated with the track multiplicity.
The x and y PV resolution as a function of the track multiplicity is shown in
Fig. V.10.

Impact parameter resolution

The impact parameter is widely used in analyses to separate secondary tracks
from those produced in the primary interaction. It is defined as the distance
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Figure V.9: Illustration of the track types in LHCb [126].
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Figure V.10: Primary vertex resolution as a function of the track multiplicity,
obtained with data collected in 2012. The resolution in the x coordinate is shown in
red and the resolution in the y direction in blue [116].
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between the point of closest approach of a particle to the PV and the PV itself.
A good IP resolution is crucial for the identification of B and D mesons, taking
advantage of the fact that they tend to fly a significant distance before decaying.
The IP resolution mainly depends on the hit resolution in the tracking system,
the distance a track must be extrapolated between its first measured hit and
the vertex, and the amount of multiple scattering that the particle undergoes
after interacting with the material in the detector. The VELO detector has
been specifically designed to minimise theses factors. The IP resolution has
a linear dependency on the inverse of the transverse momentum of the track,
which is observed in both x and y directions. At asymptotically high pT, the
resolution is about 12µm. The IP resolution as a function of the momentum
and the transverse momentum is shown in Fig. V.11.
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Figure V.11: (Left) IP resolution in the x and y directions as a function of the
momentum, obtained from data collected in 2012. (Right) Comparison between data
and simulation of the IP resolution in the x direction as a function of 1/pT. [117].

K0
S and Λ reconstruction

V 0 particles such as K0
S and Λ are reconstructed from two tracks of opposite

charge (K0
S → π+ π− and Λ → p π−). Due to the their lifetime, the decay of

these particles can happen either inside the VELO, in which case the daughter
particles are reconstructed as Long tracks, or outside (or at the very end of)
the VELO, in which case the daughter tracks are then classified as Downstream
tracks. Thanks to information from the VELO, the precision on the direction
of Long tracks is better than that for Downstream tracks, which in turn leads
to a significantly better mass resolution for V 0 candidates reconstructed with
Long tracks. The typical mass resolution of a K0

S reconstructed with Long
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tracks is 3.5 MeV, and with Downstream tracks it is 7 MeV. Invariant mass
spectra of K0

S reconstructed with both types of tracks are shown in Fig. V.12.
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Figure V.12: Invariant mass of K0
S → π+ π− candidates reconstructed from Long

tracks (left) and Downstream tracks (right) [116].

V.4 Particle identification

The identification of particles is performed by the two Ring-Imaging Cherenkov
(RICH) detectors, the hadronic (HCAL) and electromagnetic (ECAL) calorime-
ters, and the muon detector.

V.4.1 The Ring-Imaging Cherenkov detectors

The main purpose of the RICH system [127] is to provide identification capa-
bilities for charged hadrons (pions, kaons and protons) that are used in the
software trigger and at the analysis level. Information from the RICH detectors
also contributes to charged lepton identification, together with the calorimeters
and the muon detector.

Charged particles in a medium that propagate faster than the speed of
light in that medium emit photons at a specific angle, θ, that depends on the
velocity of the particle, βc, and the refractive index of the medium, n:

cos θ =
1

nβ
. (V.1)
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The RICH detectors use several types of medium, called radiators, to measure
the angle of emission of the Cherenkov photons and identify the particles.

The two RICH detectors, RICH1 and RICH2, are situated upstream and
downstream of the magnet, respectively. This choice of location is justified
by the strong correlation between the polar angle and the momentum of
the particles; usually, to high-momentum particles correspond to low polar
angles. Consequently, RICH1, covers the low and intermediate momentum
region, from 2 GeV to 40 GeV, over the full angular acceptance of the LHCb
detector (25–500 mrad), and RICH2 covers the high-momentum region, from
15 GeV to 100 GeV, over a reduced angular range of 15–120 mrad. The optical
system, similar for both detectors, is composed of a spherical focusing primary
mirror and a secondary flat mirror, which reflect the photons outside of the
spectrometer acceptance. This allows the photodetectors and electronics to be
installed outside the acceptance, reducing the amount of material that particles
in the acceptance must cross. Fluorocarbon gases are used as radiators: C4F10

with a refractive index of n = 1.0014 is used in RICH1, and CF4 with n = 1.0005
is used in RICH2. The Cherenkov photons are reflected by the mirrors situated
into the radiators and focused into ring images on plane of hybrid photon
detectors (HPDs). Figure V.13 shows the reconstructed Cherenkov angle as a
function of the momentum for isolated tracks. Depending on the mass of the
particle, the events populate distinct bands. The hadrons form three clearly
visible and well separated bands, and contributions from muons and electrons
are also visible.
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Figure V.13: Reconstructed Cherenkov angle as a function of the track momentum
in the C4F10 radiator for isolated tracks [127].
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V.4.2 The calorimeters

The calorimeters are principally used to identify electrons, photons and neutral
pions and to provide a measurement of their energy and position. They are
also used by the hardware trigger to select candidates with high transverse
energy.

Particles interacting with the dense material contained in the calorimeters
producing particle showers, and the energy deposited is subsequently measured
by scintillator planes. The ECAL is designed to absorb and measure almost all
of the energy of an electron or photon shower, with minimal leakage into the
HCAL except at the highest energies.

The calorimeter system [128] is composed of a Scintillating Pad Detector
(SPD), whose purpose is to improve the separation of electrons and photons, a
preshower (PS) detector that is used to reduce the background from charged
pions, an ECAL, and an HCAL. The ECAL, situated after the PS, is composed
of 66 layers of 2 mm lead planes alternating with planes of scintillator pads of
4 mm, oriented perpendicular to the beam direction. Its energy resolution is
(10/
√
E ⊕ 1.5)% for E in units of GeV [128]. The energy deposits made by

hadrons are measured in the HCAL, which consists of 26 modules of alternating
layers of iron and scintillator planes perpendicular to the beam axis. The
HCAL energy resolution is of (80/

√
E ⊕ 10)%, again for E in GeV [128].

V.4.3 The muon stations

The muon system [129, 130] is composed of five stations, one placed before
the calorimeters (M1) and four placed after (M2–M5). They provide muon
identification and contribute to the L0 trigger. Most of the particles that arrive
in M2–M5 are muons; the other particles either decay before or are absorbed
by the calorimeters. This is not true for M1; it is needed to improve the muon
pT measurement in the L0 trigger rather than for offline muon identification.

The muon detector is huge: it is composed of 1380 chambers and covers a
total area of 435 m2. The five rectangular stations use principally Multi-Wire
proportional chambers (MWPCs), except in the highest-rate region of M1 that
uses Gas Electron Multipliers (GEMs), which are more robust against radiation
damage. The stations M2–M5 are interleaved with 80 cm thick iron absorbers
to stop any remaining hadrons. They also absorb low-momentum muons; muon
candidates must have momentum of at least 6 GeV to traverse the five muon
stations.
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V.4.4 Particle identification methods

The RICH, calorimeters and muon systems provide independent PID informa-
tion. The separation between charged pions, kaons and protons is done by the
RICH. Electrons and photons are identified using energy deposits (clusters) in
the ECAL. Photons, being neutral particles, are identified from clusters not
associated with any track nor signals in the SPD and PS. Neutral pions are
reconstructed from two photons, which can be either two separate clusters in
the ECAL (resolved π0) or one large cluster, caused by two photons emitted
with little angular separation (merged π0).

For charged particles, the information provided by these particle identifica-
tion systems is combined into sets of related variables. Two sets of variables are
constructed. In the first approach, the individual log-likelihoods provided by
each subdetector are added linearly to form a combined log-likelihood difference
of the form

∆ logLcomb(X − π), (V.2)

where X corresponds to an electron, muon, kaon or proton hypothesis. These
variables are called DLL variables. Another approach, developed later, is based
on a multivariate technique (using a neural network), and takes into account
the correlations between the subdetectors as well as additional information.
The variables built in this way are denoted ProbNN, and are the ones used in
the analysis presented in chapter VI.

V.5 Trigger

Because of the luminosity and the high collision rate of the LHC, an enormous
quantity of data is produced and the resources to process and store all these
data do not exist. The main purpose of the trigger system is to reduce the
amount of data stored on disk by selecting events that are potentially interesting
for physics analyses while rejecting the others.

The LHCb trigger consists of hardware and software levels. The hardware
trigger, L0, is synchronised with the LHC clock. It reduces the event rate
from 40 MHz to a little below 1 MHz, which is the maximum sustained rate
at which the whole detector can be read out. The L0 trigger needs to take
fast decisions, and for this purpose only partial information coming from the
detector is used. There are four main L0 trigger lines: L0Hadron, L0Electron,
L0Photon, and L0Muon. The hadron, electron and photon trigger decisions are
based on an estimate of the transverse energy obtained from measurements of
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energy deposits in the calorimeters, while the muon trigger decision is taken
by estimating the transverse momentum using the muon detector.

The higher level trigger is implemented in software and divided into two
sub-levels, HLT1 and HLT2. This division is performed for reasons of timing.
Unlike L0 which uses information coming from individual subdetectors, the HLT
performs an online event reconstruction. HLT1 performs a partial reconstruction
using information from the VELO and the T-stations to reduce the rate of the
data processed by HLT2. This trigger selects candidate-based quantities such
as the pT, p, the distance to the PV and the track quality. HLT2 performs a
full event reconstruction on the events that passed HLT1 reducing the event
rate to about 3–5 kHz in run I and 12.5 kHz in run II. Many trigger selections
(“trigger lines”) are available at this level depending on the purpose of the
analysis. In the analysis presented in chapter VI, we use exclusively the so-
called inclusive topological HLT lines [131], which makes decisions based on
topological requirements on the final state. These lines are specifically designed
to select generic n-body b-hadron decays. Their original design was based on a
cut-based approach that was abandoned at the end of 2011 for a method using
multivariate analysis with better performance. Another type of HLT2 line that
is not used in the analysis presented in this thesis consists of exclusive lines
that are designed to select specific final states. Diagrams representing the data
processing by the different trigger levels are shown in Fig. V.14 for the 2012
and 2015 years of data taking, highlighting the differences between run I and
run II.

The collection of tracks (or other detector activity) that causes a positive
trigger decision is referred as a “trigger object”. Trigger decisions are classified
into three categories depending on which par of the event is responsible for the
positive decision:

• Trigger On Signal (TOS): the trigger is fired by signal tracks indepen-
dently of the rest of the event (i.e. the signal tracks alone are sufficient to
fire the trigger). For the TOS criterion to be fulfilled, at least one trigger
object must have all of its tracks overlapping with the signal. Two tracks
are said to overlap if they share more than 70% of their hits (60% in case
of muon tracks).

• Trigger Independent of Signal (TIS): the trigger is fired by “the
rest of the event” independently of the presence of signal (i.e. the trigger
would still have fired in the absence of the signal tracks). An event is TIS
if at least one trigger object has no overlap with the signal. In the case
of the TIS classification, two tracks are said to overlap if they share more
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than 1% of their hits. Since tracks in LHCb have at most around 60 hits,
in practice this criterion means that the tracks do not share any hit.

• Trigger On Both (TOB): events for which neither the signal alone
nor the rest of the event is sufficient to fire the trigger, meaning that
both are necessary. These events are neither TIS nor TOS.

Note that these categories are not mutually exclusive, so that an event can be
TIS and TOS at the same time.
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Figure V.14: Schematic diagram of the LHCb trigger during run I (left) and run II
(right).

V.6 Simulation

Simulated data, also called Monte-Carlo (MC) data, are used extensively in
most analyses at LHCb. In this work, MC samples are used to assess the
efficiency of the selection, and in the training of the multivariate selection that
reduces the background.
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The simulation is performed in two main steps. The first step, the “generator
phase”, consists of simulating the pp collisions and the decays of the particles
produced in those collisions. This is done using the Pythia generator. The
version used here is Pythia 8 [132], which provides a standalone generator,
with a specific LHCb configuration [133]. The hard process of the collision2 is
simulated by using parton distribution functions that describe the composition
of the incoming protons as a function of transverse momentum, and generates
the outgoing partons. The simulation of the showers generated by these partons,
the hadronisation and the multiple interactions are also generated by Pythia.
The decays of hadronic particles are described with EvtGen [134], with final-
state radiation handled by the Photos generator [135]. The second step, called
the “simulation phase”, consists of simulating the interactions of the particles
in the detector and the detector response. The Geant4 toolkit [136, 137]
implemented as described in Ref. [138] is used to simulate the LHCb detector.

2Note that Pythia is not specific to only pp collisions, e.g. pp, e+e− and µ+µ− collisions
can also be handled by this generator.
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Chapter VI
Update of the branching fraction
measurements of B0

(s)
→ K0

Sh
±h′∓

modes

As explained in chapter III, charmless B-meson decays give access to a wide
range of physics observables, such as CKM parameters, CP violation etc. The
non-negligible contribution from loop diagrams in B0

(s) → K0
Sh
±h′∓ decay

modes makes them an interesting playground for new physics searches. As
a first step towards performing amplitudes analyses of each mode, and to
quantify the potential sensitivity of such analyses with the upgraded detector,
the branching fractions have to be determined as precisely as possible.

The decays B0
(s) → K0

Sh
±h′∓ represent six decay modes1B0

(s) → K0
Sπ

+π−,

B0
(s) → K0

SK
+K−, B0

(s) → K0
SK

+π− and their conjugates. These six modes
have similar topologies, such that misidentified decays from one mode will
appear as structures in other final states; to take these cross-feeds into account, a
simultaneous fit to all of the modes is used to measure their branching fractions.
A previous LHCb analysis of these modes with 3 fb−1 of run I data [139] was
able to measure the branching fractions of five out of the six modes, while the
sixth mode B0

s → K0
SK

+K− remains unobserved: its statistical significance in
the published analysis was 2.4σ. The work described in this chapter focuses on
the observation of the missing B0

s → K0
SK

+K− decay mode, and represents
progress towards an update of the measurement of the branching fractions of
the six decay modes with run I and run II data.

1 In principle there are eight, since e.g. B0 → KSK
+π− and B0 → KSK

−π+ are distinct,
but they cannot be distinguished at LHCb without flavour tagging.
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The first two sections of this chapter give an overview of the analysis
strategy (Sec. VI.1), and of the analysis tools (Sec. VI.2). The dataset and the
reconstruction are described in section VI.3. The selection of the candidates
is detailed in section VI.4 and the efficiencies corresponding to the different
selection steps are given in section VI.5. The fit model and the fit results are
discussed in sections VI.6 and VI.7. The systematic uncertainties are presented
in section VI.8, the combination of the results is detailed in section VI.9 and
the final result and the conclusion are given in section VI.10.

VI.1 Analysis strategy

The decay modes are reconstructed in four final states, namely K0
Sπ

+π−,
K0

SK
+K−, K0

SK
+π− and K0

Sπ
+K− (with the latter two being essentially equiv-

alent in the limit of zero production and detection asymmetries). In each final
state, correctly reconstructed contributions from both B0

d and B0
s decays are

expected, with one of the two favoured with respect to the other: in K0
Sπ

+π−

and K0
SK

+K− the B0
d decay dominates, whereas in K0

SK
+π− and K0

Sπ
+K− the

dominant contribution is from the B0
s . The branching fractions are measured

with respect to a normalisation channel, B0 → K0
Sπ

+π−, which is the most
abundant of the six modes. The master formula for computing the ratio of
branching fractions is given by

B(B0
(s) → K0

Sh
±h′∓)

B(B0 → K0
Sπ

+π−)
=

εTot
B0→K0

Sπ
+π−

εTot
B0

(s)
→K0

Sh
±h′∓

NB0
(s)
→K0

Sh
±h′∓

NB0→K0
Sπ

+π−

fd
fd,s

, (VI.1)

where fd,s are the hadronisation fractions of the B0
d,s mesons. The ratio fs/fd

has been measured by LHCb [140,141], and its value is found to be 0.259±0.015
at
√
s = 7 TeV; a similar value is found for

√
s = 13 TeV [142]. The signal yields,

N , are extracted from a fit and the selection efficiency, εTot, is obtained from
MC simulation (after data-driven corrections). The efficiency term corresponds
to that of the overall selection, within which various effects have to be taken
into account: acceptance, trigger, reconstruction and selection efficiencies. The
total efficiency can be expressed as a product of the different contributions

εTot = εAcc × εTrigger|Acc × εReco|Trigger × εSel|Reco, (VI.2)

with each term (other than εAcc) computed with respect to the previous
requirement. An interesting point of Eq. VI.1 is that, since the decay modes
have similar topologies and kinematic properties, most of the systematic effects
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related to the computation of the efficiencies (other than the hadron ID
requirements) are expected to cancel to first order in the ratio.

Different types of background are present in the B0
(s) → K0

Sh
+h′− decay

modes. They can be classified into four categories depending on their origin:

• Combinatorial background that comes from random combinations of
unrelated tracks of opposite charge is the largest source of background.
Because of its nature, it does not appear as a peak in the invariant mass
of the B meson, but it is rather present throughout and varies smoothly.
The strategy to reduce this background is to use a multivariate classifier
to differentiate between this background and the signal. The remaining
combinatorial background present after the selection is included as a
component in the final fit.

• Crossfeed backgrounds come from B0
(s) → K0

Sh
+h′− decays with a misiden-

tified particle. For example, events coming from B0
s → K0

SK
+π− with

the kaon misidentified as a pion can be present in the B0 → K0
Sπ

+π−

spectrum. This type of background is particularly dangerous because
it creates peaking structures that are partly underneath to the signal
peak. The crossfeeds are partially suppressed by the PID selection and
the remaining contributions are modelled in the fit.

• Decays with an intermediate charm or charmonia particle (e.g. B0 →
J/ψKS with J/ψ → h+h−, B0 → D−π+ with D− → KSπ

−) form
peaking structures that are visible in the invariant mass spectra of two-
body particles. These contributions are vetoed. Such decays with a single
misidentified particle are also taken into account, but those with double
misidentification are neglected.

• Partially-reconstructed backgrounds arise from four-body (or more) final
states with at least one particle that is not included in the reconstructed
B candidate. This kind of background is predominant in the left-hand
sideband of the mass spectrum and has to be modelled in the fit with
a dedicated function based on the expected lineshapes of the main con-
tributing decay modes (see Sec. VI.6).

The data sample used in this analysis consists of the data taken by the
LHCb detector during run I and 2016, which corresponds to an integrated
luminosity of 4.67 fb−1. (The comparatively small 2015 sample is not used.)
The data is divided into different categories according to the data-taking period
and the K0

S reconstruction class (Long or Downstream; see Sec. V.3.6). A
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simultaneous unbinned extended maximum likelihood fit to all the samples is
then performed to extract the signal yields in each category.

VI.2 Analysis tools

The tools used in this analysis are presented here with a focus on the way they
are used in this particular case. The maximum likelihood estimator used in
the fit is explained in Sec. VI.2.1, and the general principles of multivariate
analysis are discussed in Sec. VI.2.2. The sPlot method, used for background
subtraction, is presented in Sec. VI.2.3 and the TISTOS method, used to evaluate
the trigger efficiency, is discussed in Sec. VI.2.4. Apart from the TISTOS method,
which is specific to LHCb, the other tools are commonly employed in high
energy physics as well as in other fields of science.

VI.2.1 Maximum likelihood estimator

The goal of a physics analysis is to extract information on the parameters of
interest from the distribution of events in the data. To do so, a model that
describes the expected distribution of the observables given a set of parameters
is built. Then, the parameters of the model are inferred using the distribution
of the observables in the data sample. Different methods exist to estimate the
best values for the parameters, such as the method based on a χ2 function used
to extract a value of the angle γ described in the chapter IV. In this analysis,
we use another approach, the maximum likelihood estimator (MLE), which is
widely used in particle physics. The main interest of such estimators is that
they are unbiased and efficient on large data samples.

The distributions of observables are modelled with a probability density
function (PDF), f(x;θ), where x is the observable (or a set of observables)
and θ are the parameters of interest. The PDFs are positive-definite and are
normalised to unity over the range of x. In practice, in order to properly
describe the relation between the observables and the parameters of interest,
it is often necessary to incorporate additional parameters in the PDF that
are extracted along with the parameters of interest. These so-called nuisance
parameters are implied here in the definition of θ. For several statistically
independent data points xi, the total likelihood is the product of the individual
PDFs evaluated at the different points xi (with an additional factor for the
overall normalisation to make it an extended likelihood, as discussed below).
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For N data points, the unbinned likelihood2 reads

L(θ) =
N∏
i=1

f(xi;θ). (VI.3)

The maximum likelihood estimator θ̂ is defined as the value of θ for which the
likelihood is maximal. It is often more convenient, for numerical evaluation,
to work with the logarithm of L. The negative log-likelihood (NLL) is then
defined as

− lnL(θ) = −
N∑
i=1

ln f(xi;θ). (VI.4)

The maximum likelihood estimator is then obtained by minimising the NLL, in
other words by solving the likelihood equations simultaneously for the different
parameters, θ = {θ1, ..., θm},

∂ lnL
∂θi

= 0, i = 1, ...,m. (VI.5)

For cases where the number of events is not fixed, but rather depends
on θ, the normalisation to unity of the PDFs is no longer valid and one
has to include the number of events into the definition of the likelihood. For
repeated experiments, the observed number of events, n, is assumed to fluctuate
according to a Poisson distribution around a mean value, µ, which corresponds
to the expected number of events. Under these circumstances, Eq. VI.3 becomes

L(θ) =
µn

n!
e−µ

n∏
i=1

f(xi;θ). (VI.6)

This is often called the extended maximum likelihood (EML).
This formalism can be generalised to models that contain more than one

species. For example, for a model with two species, signal and background, the
total PDF can be written as

f(x;θ) =
NS

NS +NB

fS(x;θ) +
NB

NS +NB

fB(x;θ), (VI.7)

where NS and NB are the signal and background yields. Substituting the PDF
given in Eq. VI.7 into the EML defined in Eq. VI.6, and taking µ = NS +NB,

2Depending on the specifics of the analysis, it can more efficient to use a binned likelihood
in which case the product runs over bins rather than data points. This approach is not the
one chosen for this analysis and thus is not discussed further here.
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one is able to extract the yields NS and NB from a fit to the data. This
procedure can be easily generalised to an arbitrary number of species. For Np

species and N events in total, the negative log-likelihood is given by

− lnL(θ) =

Np∑
i=1

Ni −
N∑
e=1

ln

(
Np∑
i=1

Nifi(xi;θ)

)
. (VI.8)

The robustness of the fit can be improved by using external information on
some parameters. One possibility to include such information into the fitting
framework is to simply fix the relevant fit parameters to their estimated values.
However, this procedure does not take into account the uncertainties on the
fixed parameters. An alternative to fixing these parameters is to use constraints.
They are implemented as “penalties” to the likelihood, Lc(θ), of the form

Lc(θ) = L(θ)× C(θ), (VI.9)

where C(θ) is the PDF of the constraint. Multiple constraints can be included
in the likelihood by taking the product of their PDFs. A common choice for
C(θ) is to use a Gaussian distribution with mean equal to the expected value
of the parameter and the width corresponding to the uncertainty on this value.

VI.2.2 Multivariate Analysis

Multivariate analysis (MVA) techniques are commonly used in many fields
of research involving a large amount of data. They have a broad range of
applications in high energy physics, for instance for calibration, particle iden-
tification, event reconstruction, etc. In the present analysis a multivariate
approach is used to separate signal-like events from combinatorial-background-
like ones (denoted simply background hereafter). Combinatorial background
arises from random combinations of unrelated tracks and is the primary source
of background in the decay modes studied here. It is first suppressed by loose
preselection cuts, and then further reduced by a multivariate selection. A set
of judiciously chosen variables are given as inputs to the MVA algorithm that
combines them into a single output variable. A cut on this output variable
can be used to separate background and signal. In the next paragraphs we
address the choice of variables, the methods to evaluate the performance of
the classifier and the technique used to obtain the best cut value.

There are two main steps in a MVA. First, the algorithm has to “learn”
how to recognise the characteristics of the signal and the background from
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a training stage. The approach used here is a classification method with
supervised statistical learning. In other words, the training (and, later, test)
samples provided to the MVA are identified as signal and background, so that
the true result is known by the algorithm, which uses this information during the
learning process. The choice of the training samples is very important since they
must have similar properties to the signal and background we want to separate.
Here, we use simulated events to describe the signal. The combinatorial
background is expected to vary smoothly and so the right-hand sideband of
the data is used. The classifier algorithm combines a set of judiciously chosen
variables into a single output by analysing their behaviour in the background
and signal training samples. To evaluate the performance of the training, it is
applied to the test samples that are statistically independent from, but similar
in origin to, the training ones. Many different classification algorithms are
available, from simple linear cuts (e.g Fisher) to more sophisticated methods,
such as neural networks. The method used in this analysis is based on a
Boosted Decision Tree algorithm (BDT), and will be described in the following
section.

Once the training is finished and validated, it is applied to the sample
of interest. In that step, the MVA uses the classifier that was built during
the training and applies it to each event in the data sample, generating the
corresponding output variable. Events with an output value above a pre-defined
threshold are retained. The best cut point is determined by optimising a figure
of merit (FoM).

Boosted Decision Tree classifier

The choice of the classification algorithm has to be adapted to the problem. In
this analysis, we use a boosted decision tree (BDT) classifier with a gradient
boosting (BDTG). This type of classifier uses binary decision trees, with two
possible outputs (yes/no decisions). A sketch of an individual tree is shown
on Fig. VI.1. The training starts from a node called “root node”, then splits
the events into two subsets according to a cut on a specific variable (one single
variable at a time). The usual splitting criterion is found by maximising the
signal/background separation, but alternatives are also available such as the
Gini index which is based on the signal purity3. The procedure is repeated
until the whole tree is built, i.e. until a stop criterion is fulfilled. Each cut
depends on the outcome of the previous one, and the phase space is divided
into regions that are classified as signal or background. This classification is

3The Gini index is defined as p(1 − p) where p is the signal purity. The criterion for
splitting is then by Gini(initial node)− [Gini(left node) + Gini(right node)]
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done according to the fraction of events of each type that end up in a particular
final node (a “leaf node”).

The strong point of decision tree methods is that monotonic transformations
of the variables do not affect the decision trees, so that it is possible to use
certain functions of the variables. For example it can be useful to work with the
logarithm of a variable rather than with the variable itself. Another advantage
is that they are not prone to the “curse of dimensionality”, which arises in
some methods when the dimension of the phase space is large compared to
the available data points. The performance of decision tree classifiers is not
degraded by the addition of more input variables. Indeed, the use of variables
by the algorithm depends on their separation power, such that one variable
may be used at several nodes while others might not be used at all, so that
“weak variables” are simply ignored by the algorithm and do not contribute.

However, an important drawback of methods based on BDTs is that they are
very sensitive to the training samples and thus to overtraining. Overtraining
happens when the classifier learns features from the training sample that
are specific to that sample and are not general characteristics of the signal
and background, for instance being statistical fluctuations. This results in a
deterioration of the generic performance of the algorithm. Various options to
overcome this problem exist, such as boosting, which is used in BDT algorithms.
In this approach, the algorithm is performed multiple times on reweighted
versions of the training samples. Then, a weighted average of the individual
trees is takem to combine them into a single classifier. The reweighting of the
training events is done in a way such that the events that were misclassified in
a tree are given a higher weight in the next tree4. This procedure stabilises
the output and is less prone to overtraining. Other techniques to address the
problem of overtraining include the use of bootstrap or random samples.

Discriminating variables

The input variables should be chosen according to their separation power
between signal and background. Good variables have usually a different
behaviour (a different distribution) in the signal and background samples.
Depending on the algorithm used by the classifier, the correlations between the
variables can also be used in the learning process. Depending on the analysis,
there may be additional requirements that the variables chosen should fulfil.
For instance, variables showing correlations with the mass of the B0

(s) meson
should not be used, since this could bias the results by sculpting the mass

4An overall normalisation is applied so that the sum of weights remains constant.
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Figure VI.1: Schematic view of a decision tree [143]. In this example the procedure
starts at the root node and the discriminating variable, xi, that gives the best
separation between signal and background is used to split the sample. This method
is repeated, each time using the best variable, until a stop criterion is fulfilled. The
final nodes (“leaves”) are then classified as signal, S, or background, B, depending
on the number of events from the signal and background training samples that are
contained in the node.

spectrum5. In the same vein, when performing Dalitz plot analyses, variables
that are correlated with the Dalitz plot and square Dalitz plane variables might
also pose problems.

Practical aspects of MVA choice and training

There is no general, foolproof method to choose and implement an MVA.
The choice of the algorithm and of the different variables has to be adapted
to each situation. Usually, one proceeds by testing and evaluating different
configurations. A way to compare different implementations is to construct
their ROC curves (Receiver Operating Characteristic) when applied to the same
test samples. The ROC curve describes the ability of the classifier to separate
signal from background. The ROC curve can be constructed in several ways;
usually, in high energy physics, one plots the background rejection as a function

5Not only linear but also non-linear correlations have to be properly checked.
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of the signal efficiency. By construction, the signal efficiency decreases as the
background rejection increases, and so a trade-off has to be made according
to the ultimate goals of the analysis. (See Sec. VI.4.3 for the optimisation
procedure used in this case.)

As mentioned previously, BDT algorithms are especially sensitive to over-
training. A way to check for potential overtraining is to superimpose the
output variable distributions obtained with the training and test samples. Any
significant disagreement between the curves (beyond statistical fluctuations) is
a hint for overtraining. Overtraining can result in sub-optimal performance of
the classifier when applied to data other than the training sample; the training
signal sample will also give an overestimate of the efficiency.

VI.2.3 The sPlot method

As described in Sec. VI.1, many of the events in the data samples are not
signal but originate from one of the various sources of background. The

sPlot technique [144] is a tool to unfold the different contributions in a data
sample. It allows distributions of so-called control variables to be reconstructed
independently for each species without the need for prior knowledge of these
variables. This unfolding is done via the use of discriminating variables, which
are variables for which the distributions of all the sources are known (and
different). Given a mixed sample of events that contains contributions from
all species, these discriminating variables are used to infer the distributions
of each individual species in the control variables on a statistical level. For
this approach to be valid, the control and discriminating variables must not be
correlated.

Let’s consider a single discriminating variable y, whose behaviour is known
for all the species N , and a control variable x, uncorrelated with y, and for
which the individual distributions of the sources are unknown. For the present
analysis, the discriminating variable is the invariant mass of the B meson
candidate, obtained from the combination of its three daughters. A maximum
likelihood fit is performed to extract the different components of the spectrum:
to each species i is associated a PDF fi and a yield Ni. From there it is possible,
for each event e and species n, to compute a weight, referred to as an sWeight,
that is defined as

sPn(ye) =

∑N
j=1 Vnjfj(ye)∑N
k=1Nkfk(ye)

, (VI.10)

where Vnj is the covariance matrix of the yields extracted from the likelihood
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fit to the discriminating variable, defined as

V −1
nj =

∂2(− lnL)

∂Nn∂Nj

, (VI.11)

where L is the likelihood function. defined in Eq. (VI.8).
The binned distribution of the control variable x, M̃n(x̄), is then given by

NnM̃n(x̄)δx ≡
∑
e∈δx

sPn(ye), (VI.12)

where the x-bins are of width δx and are centred on x̄, so that the sum runs
over the events contained in each bin.

VI.2.4 The TISTOS method

The TISTOS method [145] is a method that allows the trigger efficiency to
be determined from the data. In the introduction to this chapter, eq. (VI.2)
gives the overall efficiency as a product of the efficiencies corresponding to the
different steps of the selection. It is also possible to change the order of the
terms and compute the trigger efficiency at the end, after all the selection steps
are applied,

εTot = εAcc × εReco|Acc × εSel|Reco × εTrig|Sel. (VI.13)

Note that this equation gives exactly the same result as Eq. (VI.2) (since events
must still pass every step to be selected); the different ordering of the terms is
just a matter of convenience for the computation of the relative efficiencies.

The relative trigger efficiency is then computed as the ratio of the number
of particles passing the trigger requirements, NTrig|Sel, with respect to number
of particles passing the whole selection other than the trigger, NSel. Thus,

εTrig|Sel =
NTrig|Sel

NSel

. (VI.14)

The difficulty here is that only the data events that passed the hardware trigger
are kept, so the number of events that entered the LHCb acceptance but were
not retained by the trigger is unknown, and therefore we do not have access to
NSel. The TISTOS method offers a way to estimate of NSel and εTrig|Sel under
some assumptions.

As described in Sec. V.5, events selected by the trigger may be classified
into several categories that are not mutually exclusive. In the TISTOS method,
only the TOS (Trigger On Signal) and TIS (Trigger Independent of Signal)
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categories are used. Events are classified as TOS if a positive trigger decision
is generated by signal objects, and as TIS if the trigger is fired by objects from
the rest of the event. An event may be both TIS and TOS6. Assuming that the
TIS and TOS trigger decisions are not correlated—in other words, assuming
that the signal candidates are uncorrelated with the rest of the event—the TIS
efficiency of the subsample of the triggered events is the same as that of the
whole sample. Under this hypothesis, the TIS efficiency on the whole sample of
selected events is the same as the TIS efficiency measured on the TOS sample.
That is to say,

εTIS|Sel =
NTISTOS|Sel

NTOS|Sel
, (VI.15)

where NTISTOS is the number of events that have both TIS and TOS positive
decisions. The TOS efficiency can be determined in the same way, replacing
the denominator of Eq. VI.15 by NTIS|Sel. The trigger efficiency can then be
expressed in terms of quantities that can be obtained from data:

εTrig|Sel = NTrig|Sel ×
NTISTOS|Sel

NTOS|Sel ×NTIS|Sel
. (VI.16)

Uncertainty on the trigger efficiency obtained with the TISTOS

method

The quantities involved in Eq. (VI.16) are not statistically independent from
each other—for instance, NTOS|Sel and NTIS|Sel share a subset of the events.
Comparing Eq. (VI.14) and (VI.16), we obtain

NSel =
NTOS|Sel ×NTIS|Sel

NTISTOS|Sel
. (VI.17)

This equation can be rewritten by separating the different terms into indepen-
dent quantities,

NSel =
(b+ d)(c+ d)

d
, (VI.18)

where d = NTISTOS|Sel, b = NTIS|Sel −NTISTOS|Sel, the non-overlapping part
of NTIS|Sel and similarly c = NTOS|Sel −NTISTOS|Sel. The uncertainty on NSel

6It is possible for events to be neither TIS nor TOS yet still fire the trigger. This is
uncommon and usually associated with misreconstruction in the trigger. Such events will be
discarded in the trigger selection (Sec. VI.3.1) and are not considered further here.
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can then be computed from

σ2
NSel

=

(
∂NSel

∂b

)2

σ2
b +

(
∂NSel

∂c

)2

σ2
c +

(
∂NSel

∂d

)2

σ2
d

=

(
c+ d

d

)2

b+

(
b+ d

d

)2

c+

(
1− bc

d2

)2

d.

(VI.19)

Similarly, we can express NSel into two independent contributions, as the
sum of the events that passed the trigger, p with the events that did not, n,
NSel = p+ n, and p = NTrig|Sel. The trigger efficiency is then

εTrig|Sel =
p

p+ n
. (VI.20)

The error on εTrig|Sel is therefore given by

σ2
εTrig|Sel

=

(
n

(p+ n)2

)2

p+

(
p

(p+ n)2

)2 (
σ2
NSel
− p
)

(VI.21)

This method relies heavily on the assumption that the TIS efficiency and the
TOS efficiency are uncorrelated. In fact, this is not quite true since the b-quarks
are usually produced in bb pairs, and the kinematics of the two b-hadrons are
correlated (such that, for example, a high-pT B with a better-than-average
TOS efficiency is more likely to be accompanied by a high-pT B so that the B
also has a better-than-average TIS efficiency). This effect can be taken into
account by measuring the trigger efficiency in kinematic bins. However, in
this analysis the systematic effect related to this correlation will be neglected
because it applies to both the signal and normalisation modes and therefore
approximately cancels in the ratio of branching fractions.

VI.3 Dataset, Montecarlo samples, and recon-

struction

The dataset used in this analysis consists of a data sample recorded by the
LHCb experiment in 2011 and 2012, referred in the following as run I data,
and a sample from 2016, referred to as run II data. Together, the data used
correspond to an integrated luminosity of 4.67 fb−1. As described in Sec. V, the
data-taking conditions evolved over the years and the centre-of-mass energy of
the collision increased from 7 TeV in 2011 to 8 TeV in 2012 and 13 TeV for the
whole of run II (2015 to 2018).
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Each of the modes considered here contains a neutral K0
S, which is recon-

structed from two tracks of opposite charge identified as pions. As explained in
part V.3.6, different types of tracks are used in the reconstruction. The tracks
used here for K0

S reconstruction are Downstream tracks (not using any hits in
the VELO) and the Long tracks (hits in the VELO and in the T-stations).
The K0

S is then reconstructed either from two Downstream pion tracks (DD
category) or from two Long pion tracks (LL). The K0

S candidates reconstructed
in the LL category benefit from the information of the VELO and have better
mass, momentum, and vertex resolutions than the ones reconstructed in the
DD category. However, there are approximately twice as many candidates in
the DD category, which motivates its inclusion.

The Monte Carlo (MC) samples are generated with conditions as similar as
possible to the data-taking conditions. Different samples were generated for
each combination of decay mode, year and magnet polarity. When generating
three-body events, it is necessary to assume a model for their distribution in
the phase space. For each sample used here, the events are generated with
a uniform distribution in the square Dalitz plane. The samples consist of
approximately 2 million events generated per year and per mode for run I and
4 million events per year and per mode for run II (summing the two magnet
polarities).

The trigger configuration (TCK) often changes during data-taking. Gener-
ally, the MC samples are simulated using a single trigger configuration that
is representative of conditions in the corresponding data-taking year—but
an exception is made for 2012. Before mid-2012, the inclusive topological
HLT2 lines used in this analysis (see next section) were not able to include
K0

S with Downstream daughters in the trigger decision. During the technical
stop at the end of June 2012, major changes were made to these lines. Among
other improvements, this allowed them to include the DD category for K0

S

and Λ candidates, resulting in an large increase in efficiency for the present
analysis. Consequently, the 2012 data taking year is split here into two periods,
2012a and 2012b, corresponding to the data taken before and after this change.
Accordingly, two different sets of MC samples were generated with trigger
conditions corresponding to 2012a and 2012b data taking periods.

VI.3.1 Trigger selection

At the hardware trigger (L0) level, the event either is required to be fired by a
hadron belonging to the signal (trigger on signal, TOS) or that any L0 physics
trigger line has a positive decision triggered by any other track in the event
(trigger independent of signal, TIS). The physics TIS triggers include decisions
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on particles such as muons, electrons, photons and hadrons. The exact list of
triggers and their configuration varies with the data taking conditions and the
year. The complete list of trigger lines is given in appendix B.1.

At the software level, the HLT1 lines select all the events that passed the
L0 trigger, with some additional requirements to retain only high transverse
momentum tracks, well displaced from the primary vertices and with a good
fit quality. At HLT2 stage, the full event reconstruction is performed in order
to refine the selection. To this end, inclusive topological trigger lines are
employed [146]. These lines are designed to trigger on partially reconstructed
b-hadron decays with, at least, two charged daughters. Since the selection
must remain generic (i.e. we don’t want to select a specific decay but rather
all possible B decays), cuts on variables such as the mass of the candidate or
its impact parameter with respect to the primary vertex must remain very
loose. The selection is performed in two steps, first a list of two-body “proto-
candidates” is made from input particles that have the same “best” primary
vertex (PV) — the PV for which the impact parameter (IP) is the smallest —,
a distance of closest approach (DOCA) smaller than 2 mm, and whose vertex is
downstream its best PV. In addition, very loose cuts on the invariant mass (less
than 7 GeV) and the flight-distance χ2 (larger than 100) are required. From
there, n-body topological lines are constructed by further filtering the two-body
proto-candidates. To select the candidates, the HLT2 topological lines use a
multivariate classifier — called a bonsai boosted decision tree (BBDT) [147] —
based on discretised kinematic and topological input variables. In this analysis,
the HLT2 topological lines selecting two, three and four candidates are used.
In 2011, similar lines using a simple cut-based selection were also available and
were then abandoned in the following years. These lines are also included in
the 2011 selection, along with the BBDT ones.

VI.3.2 Stripping selection

On top of the trigger, another filtering step, called stripping, is applied centrally
in order to further reduce the amount of data written on disc. Similarly to the
trigger step, the stripping is organised in different lines, that are specific to a
decay, or a class of decays. The lines used in this analysis select candidates that
are compatible with the B0

(s) → K0
Sh

+h′− hypothesis. These lines have a similar
structure for run I and run II although the details of the cuts differ between
the two runs. The B candidates are formed by combining a K0

S candidate along
with two oppositely charged tracks, denoted h1 and h2 (or h±) in the following.
Prior to any processing, some sanity cuts are applied to reject events that are
not of interest and save CPU time. The selected events are required to have
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less than 250 Long tracks and, at least one primary vertex (PV). In a first
step, all the charged tracks are assumed to be pions and they are subsequently
refitted with different mass hypotheses.

The daughter particles are drawn from so-called “containers”, which are
lists of candidates that passed a certain set of cuts. The K0

S candidate is
formed by combining two oppositely charged tracks: the daughters of the DD
K0

S are taken from a StdNoPIDsDownPions, which contains a list of candidates
compatible with Downstream pions, whereas for the LL case the candidates are
taken from StdLoosePions, which lists Long tracks compatible with pions.

One of the most important difference in the stripping selection between the
two runs is that, for run I the h± candidates are taken from StdLoosePions

list whereas in run II StdAllNoPIDsPions is used. The container used in run I
requires the tracks to have a transverse momentum greater than 250 MeV
(pT(h±) > 250 MeV) and a minimum impact parameter χ2 with respect to the
PV bigger than four (minχ2

IP (h±)> 4), whereas the run II container does not
have these requirements. The motivation for this change is that the candidates
with a low pT are situated at the corners of the Dalitz plane: by increasing
the number of such candidates we expect an improvement in the resolution on
the edges of the Dalitz plane. While these events are particularly relevant for
Dalitz plots analysis, they represent a tiny fraction of the total signal events
and are not crucial for the branching fraction measurements. Another impact
of the loosening of the stripping cuts in run II is an increase in the amount of
background selected along with the signal. To reduce a part of this background,
cuts on the HLT1 and HLT2 trigger decisions have been added.

In order to save CPU time the stripping cuts are applied in different steps.
Before the mother candidates are formed, loose kinematical and topological
“daughter cuts” are applied to the tracks. Then the mother candidates are
formed simply by four-momentum addition. At this point, “combination cuts”
are applied to the three daughters to reduce the number of candidates prior
to the full vertex fit. Finally, “mother cuts” further refine the quality of the
candidates after the fit. To avoid biasing the Dalitz plane distribution most of
the cuts use topological variables such as the χ2 of the vertex fit, χ2

vtx, the flight
distance χ2 (χ2 distance from the PV), χ2

FD, the minimum impact parameter
χ2 of a track with respect to the related PV, minχ2

IP, the distance of closest
approach, DOCA, and the cosine of the direction angle (DIRA). The list of
the stripping cuts applied in run II for both DD and LL categories are given
in Table III, and the corresponding table for run I is given in appendix B.1.

After the stripping cuts are applied, the selected charged candidates initially
considered as pions are re-fitted using the Decay Tree Fitter (DTF) package [148].
This algorithm, based on a Kalman filter, allows to change the mass hypothesis
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of the candidate and re-fit the whole decay chain. During this procedure,
the quantities related to the lifetimes of the particles, the vertex coordinates
and vertex fit quality are recalculated. This package is also used to re-fit the
candidates using constraints, such as fixing some of the particle masses to
their nominal value or forcing the B candidate to originate from the best PV.
Usually, for Dalitz plot analysis, the invariant mass variables that are used are
obtained by fixing all their masses (the daughters as well as the mother particle
masses), this ensures that all the events are inside the kinematic boundaries.
In this analysis the B mass is obviously not constrained, but constraints on the
PV and on the K0

S mass are used in order to improve the B mass resolution.
The DTF package is also used to re-fit the MC samples with different mass
hypotheses in order to study the crossfeed background.

Table I: Stripping requirements for run II. As the stripping is applied in different
steps, the same cut can appear multiple times. When this happens, only the last
occurrence of the cut, the tightest version, is listed in this table.

Cut step Candidate(s) StrippingB2KShh DD Run2 OS Line StrippingB2KShh LL Run2 OS Line

TriggerCuts
HLT1

Hlt1TrackMVADecision idem
Hlt1TwoTrackMVADecision idem
Hlt1IncPhiDecision(Hlt1PhiIncPhiDecision) idem

HLT2
Hlt2Topo{2,3,4}BodyDecision idem
Hlt2IncPhiDecision(Hlt2PhiIncPhiDecision) idem

DaughterCuts

K0
S

p(K0
S) > 6000.0 MeV -

|mπ+π− −mPDG
K0

S
| < 30.0 MeV |mπ+π− −mPDG

K0
S
| < 20.0 MeV

χ2
vtx(K0

S) < 12.0 idem
χ2

FD(K0
S) > 50.0 χ2

FD(K0
S) > 80.0

K0
S daughters

p(π±) > 2.0 GeV idem
minχ2

IP (π±)> 4 minχ2
IP (π±)> 9

- pT(π±) > 250 MeV
DOCA χ2 of K0

S daughters< 25 idem
track χ2/ndf < 4.0 idem
- track ghost probability < 0.5

h1,2
track χ2/ndf < 4.0 idem
track ghost probability < 0.5 idem

CombinationCut

pT(B) > 1000.0 MeV idem
pT(K0

S) + pT(h+) + pT(h−) > 4200.0 MeV pT(K0
S) + pT(h+) + pT(h−) > 3000.0 MeV

at least 2 daughters with pT > 800 MeV idem
(4000 < mK0

Sh
+h′− < 6200) MeV idem

DOCA χ2 between pairs of daughters < 25 idem

MotherCut

pT(B) > 1500.0 MeV idem
χ2

vtx(B) < 12.0 idem
DIRA(B)> 0.999 idem
χ2

FD(B) > 5 idem
Zvtx(K0

S)− Zvtx(B) > 15.0 mm idem
χ2

IP (π±)< 6.0 -
sum of the χ2

IP of the daughters w.r.t their PV > 50.0 idem
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VI.4 Selection

VI.4.1 Preselection

To reduce an important fraction of the the background prior to the multivariate
analysis, high-signal efficiency cuts are applied on top of the stripping. To
keep the variation of the efficiency over the Dalitz plane as flat as possible,
most of the preselection is based on topological variables and loose cuts on the
momenta of the B-meson daughters. A clearly isolated B vertex is required by
comparing the χ2 of the vertex formed with the signal candidate tracks and the
χ2 of the vertex formed by adding, in turn, each other Long track in the event
(B STRIP VTXISOCHI2ONETRACK). To remove the K0

S candidates reconstructed
upstream to the B vertex, a separation between the two vertices larger than
30 mm is required in the direction of the beam. Tracks compatible with a muon
are removed. Fiducial cuts are applied by constraining the momentum of the
h± tracks to be in a range where the PID information obtained form the RICH
detectors is reliable. As mentioned in before, in section VI.3.2, some of the
cuts present in the run I stripping lines have loosen in the run II stripping
lines. This resulted in a important increase in the volume of data after the
stripping. The computing resources and the disc space needed to produce and
save the nTuples being very large, it was decided to put back some of these
cuts so that the nTuples have a manageable size. The cuts on the transverse
momentum of the tracks of the charged daughters and on the minχ2

IP have
then been reintroduced. However, it is important to stress that, in the case
one would like to use a similar selection to perform a Dalitz plot analysis, it
may be worth to reconsider loosening these cuts. The preselection cuts are
summarised in table II, and their acceptance rate, computed on MC, are given
in table III.

Table II: Preselection cuts applied on top of the stripping.

Preselection cut Description
χ2

IsoVtx(B) > 4 B vertex isolation variable
Zvtx(K0

S)− Zvtx(B) > 30 K0
S vertex separation w.r.t. the B vertex

h{1,2} isMuon == 0 Reject h± candidates compatible with the muon hypothesis
3000 ≤ p (h±) ≤ 100000 Fiducial cut
minχ2

IP (h±)> 4 Minimum IP χ2 of the charged daughters with respect to the related PV
pT(h±) > 250 MeV Minimum transverse momentum of the charged daughters.
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Table III: Percentage of number of events selected by each preselection cut, computed
as the ratio between the number of events after the given cut and the number of
events before the cut (i.e after trigger and stripping selections). This table is a
comparison of the rates obtained in 2011 and 2016 B0 → K0

Sπ
+π− MC samples.

Since the cuts on minχ2
IP and pT (h±) are included in the run I stripping, the rates

for 2016 are computed with respect to the number of events after applying these
cuts, so that the 2011 and 2016 selections shown here contain similar cuts.

Preselection cut
2011 2016

LL [%] DD [%] LL [%] DD [%]
χ2

IsoVtx(B) > 4 90.2 93.0 86.5 87.99
Zvtx(K0

S)− Zvtx(B) > 30 84.8 100 92.6 100
h{1,2} isMuon == 0 92.3 95.6 90.0 91.55
3000 ≤ p (h±) ≤ 100000 86.6 87.1 85.8 86.55
TOTAL 60.7 77.4 61.3 69.4

VI.4.2 Peaking backgrounds

The different K0
Sh

+h′− final states can be reached via intermediate states
containing charmed particles, such as B0 → D+π− with D+ → π+K0

S. These
states have a long lifetime compared to the other structures in the decay, they
thus do not interfere and are considered as background. These intermediate
decays appear in the two-body invariant mass spectra of pairs of final state
particles as peaking structures and are vetoed. Decays with one misidentified
particle are also taken into account, as for instance Λ+

c → pK0
S with the

proton misidentified as a pion or a kaon. The different intermediate states are
reconstructed with the corresponding mass hypothesis using the DTF package
and vetoed using |mreco − mPDG| < 30 MeV/c for D±, D0, D±s and Λ+

c and
|mreco −mPDG| < 48 MeV/c for the charmonium states, χc0 and J/ψ . The list
of all the considered vetoed contributions is:

• D± → π±K0
S, K

±K0
S

• D±s → π±K0
S, K

±K0
S

• D0 → π+π−, K+K−, K±π∓

• Λ+
c → pK0

S, Λ−c → pK0
S

• J/ψ → K+K−, π+π−, µ+µ−

• χc0 → K+K−, π+π−, µ+µ−
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Notice that, the probability to actually have muons at this stage of the selection
is greatly reduced by the cut on the isMuon variable in the preselection step.
Decays with two misidentified particles are not taken into account, so that,
for example, the veto on J/ψ → K+K− is not considered in the K0

Sπ
+π−

spectrum.
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S
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(a) (b)

Figure VI.2: Example of vetoed peaking background in B0 → K0
Sπ

+π− DD sample
2016, after trigger, stripping and preselection cuts. (a) The shaded region corresponds
to the veto applied on D+ → π+K0

S in the π+K0
S invariant mass. (b) The shaded

region corresponds to the veto applied on Λ+
c → pK0

S in the π+K0
S invariant mass

with the proton misreconstructed as a pion.

VI.4.3 Multivariate Analysis

A multivariate analysis is performed after the preselection to further reduce
the amount of combinatorial background. It is implemented using the Root
TMVA package [143, 149], which provides a framework for the training and
application phases and contains various classifiers that can be customised to
improve the performances.

Training and test samples

The signal, training and test samples, consist in MC truth-matched events and
the background is taken from the right-hand side band of the data (mK0

Sπ
+π− >

5425 MeV), which is assumed to be dominated by combinatorial background.
The left-hand side band (LHSB) of the data is not used because of the important
contribution from partially reconstructed backgrounds in this region.
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The same selection is applied to both signal and background samples.
This selection consists in trigger, stripping, preselection cuts, and the vetoes
described in sections VI.3 and VI.4, and PID cuts taken from the previous
analysis. To remove peaking backgrounds that can mislead the classifier, vetoes
on Λ0

b → p K0
S π are also applied.

To ensure that there is no bias in the training, the signal and data samples
are randomly split into two sub-samples with approximately the same number
of events. One sample is used for the training phase and the other one for the
validation. Two separated MVAs are then performed, using each sample, in turn,
for the training and the testing phase. For the analysis to be reproducible, the
samples are split according to a pseudo-random number (r ∈ [0, 1]) computed
for each event the following way,

r = ((134× eventNumber + runNumber)%531241)/531241, (VI.22)

where runNumber is an number proper to each run and eventNumber identifies
each event within a given run. The events with r > 0.5 are used to train the
first MVA (MVA1) while the other half of the sample (events with r ≤ 0.5) is
used for the validation. Reciprocally, the second MVA (MVA2) is trained with
events with r ≤ 0.5 and events with r > 0.5 are used for the testing.

Since the six K0
Sh

+h′− decay modes have rather similar topological prop-
erties, it has been decided to use exclusively B0 → K0

Sπ
+π− decay mode for

the training and apply the same training to all the decay modes. A different
training is performed for each K0

S reconstruction category and year of data
taking. The size of the samples in each category is given in Table IV.

Table IV: Number of events used in the signal and background samples to train
(test) and validate MVA1. The yields for MVA2 are exactly the same after swapping
training and test samples.

Year
DD LL

Sig Bkg Sig Bkg
2011 6169 (6101) 2230 (2174) 2905 (2819) 876 (852)
2012a 7480 (7361) 1692 (1643) 2530 (2449) 979 (950)
2012b 5314 (5365) 6722 (6570) 2549 (2533) 1501 (1513)
2016 29154 (29219) 114582 (114061) 11710 (11910) 50742 (50262)
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Discriminating variables

The choice of variables in the current analysis is based on the previous one.
For the reasons exposed in section VI.2, the input variables should not be
correlated with the B mass or the Dalitz plot variables. In this context, when
associated to a final state particle, only topological variables are considered,
such as criteria on the separation and the quality of the vertices, the direction
angle (DIRA) and the flight distance of the B and K0

S mesons with respect to
the primary vertex (PV). The impact parameters of the B daughters are known
to be correlated with the Dalitz plot variables when considered separately,
however, their sum does not show such correlations. Kinematic variables
related to the transverse momentum an the pseudo rapidity of the B meson
are also added. Because simulated events are used to describe the signal, only
MC variables that are in good agreement with the data are considered. A
first model containing the same variables as in the previous model was first
tested, and is referred as “baseline model” here. Then, the addition of new
variables was also considered, especially the so-called “cone” variables that are
obtained by computing the asymmetry between the variable associated to the
desired track and the value of this variable summing over all the tracks that
are contained in a cone around the particle in question. For example, the pT

asymmetry of the B-candidate is defined as

pasym
T =

pT(B)− pT(cone)

pT(B) + pT(cone)
(VI.23)

where pT(cone) refers to the transverse component of the sum of the momenta
of all the particles inside a cone around the B-candidate in the η − φ plane.
The radius of this cone is taken to be 1.5 rad. Cone variables of both B and
K0

S candidates are uses. A complete list of the variables included in the MVA
is presented in Table V. The distributions for signal and background variables
are shown in Fig VI.3 for 2016 LL sample, similar tendencies are seen in the
DD sample and the other data taking years. From these plots it appears that
variables such as the direction angle (logBDIRA), the sum over the χ2

IP of the
daughters (log

∑
χ2

IP) and the flight distance χ2 of the B (logχ2
FD(B)) have a

good separating power. In contrast, the cone variables seem to have a rather
poor separating power. However, as can be seen in the correlation matrices
shown in Fig. VI.5, these variables are very correlated. It was observed that
the addition of the cone variables one at a time in the MVA does not improve
the performance, it is rather the correlations between them that are used by
the BDT to learn the specificities of the signal and the background. These
matrices represent the linear correlations only, other type of correlations that
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are not represented here may play a role in the learning process. The model
with all the variables included is referred as “final model”. The list of variables
differs slightly between the LL and DD samples: the LL sample uses one more
variable, the flight distance of the K0

S which is not included in the DD sample.
Similarly the sum over the χ2

IP of the daughters includes the K0
S in the LL case

whereas it is not included in DD case.
The ROC curves for the baseline model and the final one are given in

Fig. VI.6. It appears on these curves that the addition of the cone variables
improve significantly the classifier performance, and so the final model is chosen
as the definitive model.

Table V: MVA input variables. The baseline model corresponds to the variables used
in the previous analysis. In the current study, seven additional variables are also
included.

Variable name Description Sample

Baseline model

pT (B) B transverse momentum DD and LL
η(B) B pseudorapidity DD and LL
χ2

IP (B) IP χ2 of the B w.r.t its PV DD and LL
χ2

FD (B) flight distance χ2 of the B DD and LL
B DIRA cosine of the B direction angle DD and LL
χ2

vtx (B) χ2
vtx of the B DD and LL

χ2
IsoVtx(B) B vertex isolation variable DD and LL

pasym
T (B)

pT asymmetry for a cone of radius 1.5 rad
around the B-candidate in the η-φ plane

DD and LL

χ2
IP (h+)+χ2

IP (h−) sum of the χ2
IP of h± w.r.t their PV DD

χ2
FD (K0

S) χ2
FD of K0

S (LL sample only) LL

Additional variables

χ2
IP (h+)+χ2

IP (h−)+χ2
IP (K0

S) sum of the χ2
IP of the daughters w.r.t their PV LL

pasym
T (K0

S) cone pT asymmetry for the K0
S candidate DD and LL

pasym(B) cone p asymmetry for the B candidate DD and LL
pasym(K0

S) cone p asymmetry for the K0
S candidate DD and LL

∆ηasym(B) cone ∆η asymmetry for the B candidate DD and LL
∆ηasym(K0

S) cone ∆η asymmetry for the K0
S candidate DD and LL

∆φasym(B) cone ∆φ asymmetry for the B candidate DD and LL
∆φasym(K0

S) cone ∆φ asymmetry for the K0
S candidate DD and LL

Optimisation of the BDT cut

Once the classifier is trained it is applied to both the data and MC samples.
The optimal cut point on the BTDG output is obtained by maximising a figure
of merit (FoM). The choice of FoM is guided by the goals of the analysis and
the observables of interest. For the branching fraction measurements of the
observed modes, we chose to use a FoM that maximises the significance of the
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Figure VI.3: Distributions for the input signal (blue) and background (red) MVA
variables for 2016 DD (left column) and LL (right column) samples.

signal with respect to the background

S√
S +B

, (VI.24)

where the number of signal events S is obtained by the product of the ex-
pected number of signal events S0 and the efficiency of the BDT cut on MC,
S = S0 × εMVA

MC . The number of expected signal events S0 is estimated from
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Figure VI.4: Overtraining tests for 2016 with the corresponding Kolmogorov-Smirnov
test. The first row, (a) and (b), corresponds to the LL sample and the second row,
(c) and (d), to the DD sample.

known branching fractions of the modes

S0(B0
(s) → K0

Sh
+h′−) = 2×L×σ(bb̄)×B(B0

(s) → K0
Sh

+h′−)×B(K0
S → π+π−)×fd/s×εMC,

(VI.25)
where L is the integrated luminosity of the corresponding data taking period,
σ(bb̄) is the bb-cross section7 measured by LHCb in [150], fd/s corresponds

7The factor two in this formula comes from the fact that we are interested in the cross
section of one b quark.
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Figure VI.5: Linear correlations between the MVA input variables for signal and
background training samples. (a) and (b) correspond to the 2016 LL samples and
(c) and (d) correspond to the 2016 DD samples.
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Figure VI.6: Comparison of the ROC curves obtained with the baseline and the
final models for 2016. The final model that includes the cones variables has a better
performance in both DD and LL samples.

to the hadronisation fraction of the B0
(s) meson, and εMC is the efficiency

of the selection applied before the MVA stage evaluated on simulated data.
The number of background events in the signal region, B, is taken from an
exponential fit to the RHSB of the data, extrapolated to the signal region.

The figure of merit described previously is used for all the modes except
for the yet unobserved B0

s → K0
SK

+K− for which we use a Punzi FoM

εsig
a
2

+
√
B
, (VI.26)

where assumptions on the expected number of signal are not required. The
parameter a is generally adjusted according to the desired significance (in units
of Gaussian standard deviations). It was noticed in this analysis that the value
of a has a very little impact on the shape of the Punzi FoM and on the value
of the cut point. It has then be decided to fix this parameter to five.

The figures of merit for B0 → K0
Sπ

+π−, B0 → K0
SK

+K− and B0
s →

K0
SK

+K− for 2016 are given in Fig. VI.7. Note that the maximum of the FoM
merit gives an idea of the optimal cut point but remains an approximation,
different maxima can be obtained using other FoMs or different values for S and
B. This means that, in the final decision on the choice of the cut point, more
parameters have to be considered than just the maximum value. In this analysis
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we want to take advantage of the fact that the systematic errors associated to
the MVA selection cancel at first order in the ratio of Eq. (VI.1) when using
the same value for the cut in both the numerator and the denominator modes.
The choice of the final value for the cut is then made by comparing the FoMs
of all the modes and choosing a common cut point. For robustness reasons,
the chosen cut is generally looser than the optimal one. Another point is that
the number of training events in the 2011 and 2012a LL sample is rather low,
cf. Table IV, and overtraining is thus present and especially for high values of
the cut. In order to not be affected by overtraining, the cut for these years is
chosen to be zero. The summary of the chosen cuts for all the years is given in
Table VI and the their performance on signal and combinatorial background
are given in Table VII for B0

s → K0
SK

+K− and B0 → K0
Sπ

+π−.
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Figure VI.7: Figures of merit for the optimisation of 2016 MVA for the DD (first
row) and LL samples (second row).

VI.4.4 Particle identification

The identification of the charged hadrons in LHCb is principally done by the two
RICH detectors. Two types of variables are used for the particle identification
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Table VI: Cut values for the MVA selection for each data taking period and each K0
S

reconstruction.

year 2011 2012a 2012b 2016
DD 0.0 0.4 0.5 0.8
LL 0.0 0.0 0.5 0.8

Table VII: Percentage of events passing the MVA requirements with respect to
the previous steps of the selection. Only B0

s → K0
SK

+K− and B0 → K0
Sπ

+π−

modes are shown here but the results are similar for all the final states and the B
and B0

s mesons within the same category (same year and same K0
S reconstruction).

The signal sample is taken from MC and the combinatorial background sample
corresponds to the right-hand side band of the data.

Year Decay mode
DD LL

signal comb. signal comb.

2011
B0
s → K0

SK
+K− 89.7 18.7 91.9 21.0

B0 → K0
Sπ

+π− 88.9 10.5 91.2 9.0

2012a
B0
s → K0

SK
+K− 81.9 12.9 93.9 14.2

B0 → K0
Sπ

+π− 80.6 6.0 94.1 7.1

2012b
B0
s → K0

SK
+K− 81.5 9.1 85.9 13.7

B0 → K0
Sπ

+π− 80.1 3.9 86.2 4.1

2016
B0
s → K0

SK
+K− 72.0 2.8 83.1 2.7

B0 → K0
Sπ

+π− 71.0 1.4 82.6 1.1

(PID): the DLL, which are based on differences of log likelihood between of a
particular mass hypothesis and the pion hypothesis, and the ProbNN that are
based on a Bayesian neural network. In this analysis the latter variables are
used. The details of the particle identification in LHCb are given in part V.4.

Decays with one (or more) misidentified candidate contribute to the cross-
feed background and create peaking structures in the mass spectrum. For
B0

(s) → K0
Sh

+h′− decay modes, pions misidentified as kaons (or vice versa) are
particularly dangerous because their peak is situated very close to the mass
peak. The main purpose of the PID selection is to reduce as much as possible
the probability of misidenfication, reducing the amount of crossfeeds. The PID
requirements also decrease the quantity of combinatorial background.



156 B0
(s) → K0

Sh
±h′∓ branching fraction measurements

PID variables in simulated data

The PID variables in the MC are known to badly reproduce the corresponding
variables in the data. In order to design PID cuts using MC information and
to evaluate the efficiency of these cuts, it is necessary to correct the MC PID
variables. Among the techniques usually used to apply these corrections, one
is to completely replace the simulated PID variables by new ones that are
randomly generated from calibration PDFs. The main drawback of this method
is that the correlations among the PID variables are not preserved. In this
analysis, we use a different method, called PIDcorr [151], which transforms
the MC variables so that their distribution is similar to the data. This is
done in an unbinned approach, using calibration PDFs that are described by a
kernel density estimation procedure [152]. These PDFs are four dimensional
and contain, in addition to the PID variables, kinematic variables such as
the transverse momentum and the pseudo-rapidity of the tracks, and event
multiplicity information. This method has the advantage to preserve the
correlations between the PID variables, so that they can potentially be used
into a MVA selection.

PID selection

Since the main concern comes from the π ↔ K misidentification we use the
ProbNN variables related to these particles, ProbNNK and ProbNNπ, in addition
with ProbNNp to suppress the misidentification of one of the charge candidates
with a proton. Since the values of the ProbNN variables range between zero and
one they can be interpreted as the probabilities of the different mass hypothesis.
An illustration of the shapes of these variables for the B0 → K0

SK
+K− decay

mode can be found in Fig VI.8. As can be see on the plot, the distributions
are very flat with a sharp peak close to zero or one.

To design the cuts, we compare the behaviour of these variables in samples
that represent the different species of signal and background considered:

• signal: simulated data.

• crossfeed background: simulated data of the mode with the misiden-
tified particle reconstructed as the signal mode. For instance, in the case
of K0

SK
+K− signal we use simulation of K0

SK
+π− events refitted with

the K0
SK

+K− hypothesis using the DTF package.

• combinatorial background: data taken from the righ-hand side band
of the mass spectrum.
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The distributions of the PID variables in the different species described above
for 2011 and 2016 data taking periods for the DD K0

S reconstruction category,
can be found respectively in Fig VI.9 and Fig VI.10 for B0 → K0

Sπ
+π− and

B0 → K0
SK

+K− decay modes. A similar behaviour is found between DD and
LL and between B and B0

s modes. The distributions corresponding to 2012
samples are comparable to 2011.

Several sets of cuts have been tested and, in each case, the relative effi-
ciencies have been computed for all the different species in order to assess
the performance of the cuts on the backgrounds and on the signal. Another
requirement of this analysis is that the samples corresponding to the different
final states must be independent, leading to the fact that a loose cut on a
variable in one sample may imply a tight cut in another sample. Considering
all this, the optimisation focuses on the mode of interest, B0

s → K0
SK

+K−, and
the control mode B0 → K0

Sπ
+π− while the cuts for the other final states are

deduced from these. The cuts that are retained for the baseline model are the
ones that best suppress the crossfeeds in the K0

SK
+K− spectrum while keeping

as much signal as possible. Given the similarities of the ProbNNK and ProbNNπ
distributions between the different data taking periods and K0

S reconstructions,
the same cuts are used for all the categories. For the K0

SK
+K− final state, a

cut on ProbNNK larger than 0.5 for both charged hadrons is applied. For the
K0

Sπ
+π− final state we require ProbNNπ greater than 0.5 and ProbNNK smaller

than 0.5 for both charged daughters. Finally, for the K0
SK

+π− final states, for
the pion candidate, the requirements are ProbNNπ > 0.5 and ProbNNK < 0.5
and for the kaon candidate ProbNNπ < 0.5 and ProbNNK > 0.5. Very mild cuts
are also applied on the ProbNNp variable. As can be seen on Figs. VI.9 and
VI.10, the behaviour of this variable differs between run I and run II, different
cuts are thus applied for both runs. For run I, the charged candidates are
required to have a ProbNNp value that is less than 0.8, in order to remove
potential misidentified protons. For run II, in the case of the kaon candidate,
a “bump” can be seen in the distribution around 0.9. This feature is produced
by tracks with a momentum smaller than 10 GeV, which corresponds to the
Cherenkov threshold below which the RICH detectors cannot differentiate
between a kaon and a proton. In this case, the ProbNNp cut is chosen to be
below 0.9 for kaon candidates with a momentum smaller than 10 GeV and
below 0.8 in the other cases. The relative efficiencies of the PID cuts on the
signal, crossfeeds and combinatorial background for 2011 and 2016 are given in
Table VIII.
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Figure VI.8: Distributions of the three ProbNN variables considered in the PID
selection. The variables are taken from the simulation 2016 DD sample of B0 →
K0

SK
+K− decay mode and have been corrected to reproduce the data with the

PIDcorr method, they correspond to the h1 candidate, here the K+.
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Figure VI.9: Distributions of ProbNNK, ProbNNπ and ProbNNK variables for B0 →
K0

SK
+K− (first row) and B0 → K0

Sπ
+π− (second row) 2011 DD samples, shown in

log scale. The red curve corresponds to signal MC, the dashed blue curve to crossfeed
coming from B0 → K0

SK
+π− and B0 → K0

Sπ
+K− with the π misidentified as a K,

the green curve represents crossfeed form B0
s → K0

SK
+π− and B0

s → K0
Sπ

+K−, and
the black curve is the combinatorial background, taken from the data.
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Figure VI.10: Distributions of ProbNNK, ProbNNπ and ProbNNK variables for B0 →
K0

SK
+K− (first row) and B0 → K0

Sπ
+π− (second row) 2016 DD samples, shown in

log scale. The red curve corresponds to signal MC, the dashed blue curve to crossfeed
coming from B0 → K0

SK
+π− and B0 → K0

Sπ
+K− with the π misidentified as a K,

the green curve represents crossfeed form B0
s → K0

SK
+π− and B0

s → K0
Sπ

+K−, and
the black curve is the combinatorial background, taken from the data. In order to
properly see the variations of the distributions are plotted in log scale.

VI.5 Efficiencies

In order to obtain the relative branching fractions of the K0
Sh

+h′− decay modes,
the yields extracted from the fit need to be corrected for efficiency. This section
describes the different terms entering the computation of the efficiencies. These
are summarised in Tables X, XI, XI, XII, and XIII (for B0 → K0

Sπ
+π− DD

and LL, and for B0
s → K0

SK
+K− DD and LL).

The efficiencies are obtained from simulated signal samples and computed
separately for each data taking period and K0

S reconstruction class. As men-
tioned previously, the total efficiency can be expressed in a factorised form,

εTot = εGen εReco|Gen εL0|Reco εHLT|L0 εPreselection+Vetoes+MVA|HLT εPID|MVA.
(VI.27)

The terms that enter into this equation are the following:

• εGen: Generator-level efficiency. When generating MC samples, the
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Table VIII: Percentage of events passing the PID requirements with respect to the
MVA step measured on the samples corresponding to the different species described
in part VI.4.4. Only the DD K0

S reconstruction is shown here, the results for the
LL K0

S reconstruction are similar, with variations of a few percent. Likewise for
the MVA step, the results for B and B0

s differ by less than 1%. The results for
2012a and 2012b are similar to 2011. Two crossfeeds are considered per decay mode:
for B0 → K0

Sπ
+π− and B0

s → K0
SK

+K− CF1 corresponds to K0
SK

+π− and CF2
to K0

Sπ
+K−, and for B0 → K0

SK
+π− CF1 corresponds to K0

Sπ
+π− and CF2 to

K0
SK

+K−.

Year Decay mode Sig CF1 CF2 comb.

2011
B0
s → K0

SK
+K− 62.0 3.2 3.5 2.1

B0 → K0
Sπ

+π− 65.0 10.3 10.7 40.1
B0 → K0

SK
+π− 51.7 2.1 7.6 5.5

2016
B0
s → K0

SK
+K− 81.8 2.3 2.0 2.6

B0 → K0
Sπ

+π− 89.5 6.4 5.5 36.0
B0 → K0

SK
+π− 75.7 1.1 5.1 7.7

most CPU-consuming step is the detector simulation. In order to save
computational resources and speed up the production of simulated data,
some cuts are introduced at generator level to ensure that the detector
simulation is run on meaningful events, i.e. on events that fall into the
LHCb acceptance.

• εReco|Gen: Reconstruction efficiency. This contains the efficiency of the
reconstruction algorithm that identifies and reconstructs the the signal
candidates from information coming from the subdetectors. The stripping
efficiency is also included in this step.

• εL0|Reco: L0 trigger efficiency. Although the data/MC agreement for HLT1
and HLT2 triggers is good, this is not the case for the L0, especially for
the hadronic L0 trigger line which is used in this analysis, a systematic
uncertainty is assigned to take into account discrepancies between MC
and data.

• εHLT|L0: Efficiency of the HLT triggers (HLT1 and HLT2). The HLT
response is well modelled in the MC and can be directly computed from
the simulation samples.
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• εPreselection+Vetoes+MVA|Reco: This step concerns the efficiency of the MVA
cut together with the preselection cuts and vetoes that were applied prior
to the MVA selection.

• εPID|MVA: PID efficiency. As explained in section VI.4.4, the MC PID
variables do not reproduce the data well. A resampling technique was
used so that the variables follow the same distribution as they would in
data.

Because the MC simulation emulates the trigger decisions without discarding
events that fail them, it offers more flexibility in the ordering of the terms
in the factorisation. In this section, the efficiencies are presented following
a similar sequence as in data, except for the stripping requirement, which is
actually applied before the trigger in the MC. (Depending on the analysis this
order may be varied; the trigger efficiency is sometimes computed last in order
to simplify the evaluation of systematic uncertainties.)

MC truth matching

A small amount of background is present in the MC samples, mainly originating
from misreconstructed events and combinatorial background. To determine
the pure signal yield in the signal MC sample, various techniques are available.
One can, for example, perform a maximum likelihood fit or use side band
subtraction. Another approach, which is chosen here, is to use the information
contained at “truth” level. At LHCb, each MC sample includes information on
the true nature of reconstructed particles (i.e. whether they are matched to a
generated particle) and the true values of their properties, that is to say the
value of a variable at the generation of the particle, as well as the reconstructed
values. The two usually differ because of resolution effects, hit inefficiencies,
and small mistakes in the pattern recognition. An algorithm is used to match
reconstructed candidate with the corresponding true particles. By imposing
requirements on this truth matching, it is possible to select only reconstructed
particles that correspond to the generated B0

(s) → K0
Sh

+h′− signal.

VI.5.1 Generator level cuts

Some very loose cuts have been set at generator level to speed up MC generation.
These cuts are looser that the stripping cuts and basically make sure that the
daughter particles are inside the acceptance of the LHCb detector, for instance
requiring their pseudorapidity to be between 2 and 5. The same requirements
have been applied to all the decay modes. The complete list of the cuts can
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be found in Table IX. The generator level cut efficiencies are similar for the
B0 and B0

s mesons, and they are also rather consistent between the different
data taking periods. Depending on the final state, they vary between 5.9% and
7.2% with a higher value for modes containing charged kaons.

Table IX: Cuts applied at MC generator level.

Cut Description
B candidate

pT(B) > 1500 MeV Transverse momentum of the B candidate
h± candidates

0.010 < θ(h±) < 0.400 Charged daughters of the B within detector acceptance.
1.8 < η(h±) < 5.0 Pseudo-rapidity of h± candidates.
3.0GeV < p(h±) < 150GeV Total momentum.

K0
S candidate

2 < η(K0
S) < 5 Pseudo-rapidity of K0

S candidate.
ksTT = GVEV & ( GFAEVX ( GVZ , 1.e+10 ) < 240 * centimeter ) K0

S must decay less than 240 cm downstream of interaction point
K0

S daughters
1.6 < η(π±) < 5.2 Pseudo-rapidity of h± candidates.
2.0GeV < p(π±) < 150GeV Total momentum.
bothPI = 2 == GNINTREE ( ( ’pi+’ == GABSID ) ) K0

S must decay to two charged pions

VI.5.2 Reconstruction and stripping efficiencies

The reconstruction and stripping efficiencies are evaluated from signal MC
samples using the same reconstruction algorithm and the same stripping
version as in the data. The typical reconstruction efficiency with respect to
the generator-level cut step for the DD samples is of about 7.5% in run I and
for 4% in run II for all the modes. For the LL samples, the typical efficiency is
of about 3% in run I and for 2% in run II for all the modes. The differences
between run I and run II are mainly due to changes in the run II stripping
lines and are compensated by changes in the relative trigger efficiency (see
below).

VI.5.3 Trigger efficiency

Several possibilities exist to evaluate the L0 trigger efficiency. The baseline for
the computation of the trigger efficiencies chosen here is the use of simulated
samples. Since this method can be biased by the imperfect modelling of the
trigger response in the MC, a systematic uncertainty related to this particular
choice is assigned and is discussed in section VI.8.

The L0 efficiency relative to the previous step (stripping) is rather similar
between the decay modes and between DD and LL samples. The values are
about 50–55% for run I and about 97% for run II. The difference between
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the two runs is explained by the presence of cuts on the trigger decisions
in the run II stripping lines. Specifically, in run II the stripping requires a
positive software trigger decision, and the software trigger in turn requires that
the event fired at least one L0 trigger line. This explains why the stripping
efficiency is lower and the relative trigger efficiency is higher in run II: the
product remains approximately constant between run I and run II. Since our
L0 selection accepts most events that fire a physics trigger (it accepts events
that are TOS on L0Hadron or TIS on most L0 physics lines), it is not surprising
to obtain a value for the efficiency in run II close to 100%. A similar pattern
is observed for the HLT efficiency, and the same explanation applies.

VI.5.4 Preselection, vetoes and MVA efficiencies

The preselection cuts, the vetoes and the MVA optimisation are described in
section VI.4. The efficiency of the preselection cuts is comparable between the
decay modes and data taking periods. It is about 60% in the LL sample and
75% in the DD sample in run I and 60% and 70% in the LL and DD sample in
run II, respectively. The signal efficiency of the vetoes is very similar between
the different data taking periods and K0

S reconstruction, ranging between 80%
and 90% with the highest values seen for the K0

SK
±π∓ final state and the

smallest for K0
Sπ

+π−. On the other hand, the MVA cut efficiency does vary
between the different categories, which is explained by differences in the training
and the chosen cut points; the efficiencies are similar between the modes within
the same final state.

VI.5.5 PID efficiency

The PID efficiency is calculated using variables that are resampled using the
PIDcorr package [151] to match the distributions in control samples of data,
as explained in Sec. VI.4.4. A consistent set of cuts are applied for all run I
samples, but the cut values are changed for run II (specifically, the ProbNNp
cut differs). Partly as a result, the PID efficiencies are higher for 2016 than for
run I. For the four final states K0

Sπ
+π− and K0

SK
+K−, the relative efficiency

is typically 60–70% for run I and 80–90% for runII; somewhat smaller values
are found for K0

SK
±π∓.

VI.5.6 Summary of the efficiencies

Summary tables of the efficiencies describes previously can be found in Tables X
and XI for B0 → K0

Sπ
+π− and in Tables XII and XIII for B0

s → K0
SK

+K−.
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The variation of the total efficiency as a function of the position on the square
Dalitz plane is shown in Fig. VI.11 for the 2016 data taking period. Clear
structures (regions of low efficiency) can be observed; these are related to the
vetoes that are applied to the samples. For illustration, the same plots but
with the vetoes excluded are shown in Fig. VI.12.

Table X: Summary of the efficiencies for B0 → K0
Sπ

+π− for the DD K0
S reconstruction

sample. All values are in percent (including the final row). The uncertainties are
related to the limited size of the MC sample.

2011 2012a 2012b 2016
εGen 5.889 ± 0.019 6.011 ± 0.016 6.005 ± 0.017 6.299 ± 0.021
εReco|Gen 8.034 ± 0.018 7.295 ± 0.017 7.350 ± 0.018 4.010 ± 0.010
εL0|Reco 55.950 ± 0.119 51.212 ± 0.120 54.511 ± 0.130 96.840 ± 0.044
εHLT|L0 37.227 ± 0.155 46.281 ± 0.167 37.158 ± 0.170 96.027 ± 0.050
εPresel|HLT 77.700 ± 0.218 75.654 ± 0.212 76.236 ± 0.246 68.779 ± 0.120
εVetoes|Presel 80.028 ± 0.238 80.896 ± 0.223 79.820 ± 0.266 81.135 ± 0.122
εMVA|Vetoes 88.895 ± 0.209 80.645 ± 0.249 80.109 ± 0.296 70.996 ± 0.157
εPID|MVA 65.038 ± 0.337 72.663 ± 0.313 71.335 ± 0.375 89.458 ± 0.126

εTot 0.0354± (3.296× 10−4) 0.0373± (3.217× 10−4) 0.0311± (3.166× 10−4) 0.0832± (4.542× 10−4)

Table XI: Summary of the efficiencies for B0 → K0
Sπ

+π− for the LL K0
S reconstruction

sample. All values are in percent (including the final row). The uncertainties are
related to the limited size of the MC sample.

2011 2012a 2012b 2016
εGen 5.889 ± 0.019 6.011 ± 0.016 6.005 ± 0.017 6.299 ± 0.021
εReco|Gen 3.048 ± 0.012 2.542 ± 0.010 2.541 ± 0.011 1.807 ± 0.007
εL0|Reco 55.459 ± 0.193 50.624 ± 0.203 54.304 ± 0.220 96.735 ± 0.066
εHLT|L0 54.696 ± 0.260 54.231 ± 0.285 60.374 ± 0.294 97.360 ± 0.061
εPresel|HLT 61.391 ± 0.344 58.828 ± 0.382 59.658 ± 0.379 59.360 ± 0.188
εVetoes|Presel 81.250 ± 0.352 80.854 ± 0.398 80.771 ± 0.394 81.242 ± 0.194
εMVA|Vetoes 91.269 ± 0.282 94.071 ± 0.266 86.175 ± 0.384 82.613 ± 0.209
εPID|MVA 72.723 ± 0.466 77.037 ± 0.488 77.885 ± 0.498 91.329 ± 0.171

εTot 0.0180± (2.283× 10−4) 0.0145± (1.948× 10−4) 0.0162± (2.244× 10−4) 0.0390± (2.791× 10−4)
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Table XII: Summary of the efficiencies for B0
s → K0

SK
+K− for the DD K0

S reconstruc-
tion sample. All values are in percent (including the final row). The uncertainties
are related to the limited size of the MC sample.

2011 2012a 2012b 2016
εGen 6.692 ± 0.016 6.806 ± 0.018 6.808 ± 0.019 7.104 ± 0.025
εReco|Gen 7.847 ± 0.018 7.198 ± 0.017 7.219 ± 0.018 3.860 ± 0.010
εL0|Reco 53.849 ± 0.117 48.930 ± 0.120 52.074 ± 0.130 96.658 ± 0.046
εHLT|L0 40.188 ± 0.157 49.103 ± 0.172 39.838 ± 0.177 95.934 ± 0.051
εPresel|HLT 76.995 ± 0.212 75.248 ± 0.212 76.159 ± 0.244 69.269 ± 0.122
εVetoes|Presel 83.967 ± 0.211 85.354 ± 0.200 84.788 ± 0.236 85.396 ± 0.112
εMVA|Vetoes 89.656 ± 0.191 81.930 ± 0.236 81.544 ± 0.277 72.009 ± 0.154
εPID|MVA 61.986 ± 0.322 63.840 ± 0.326 62.950 ± 0.382 81.778 ± 0.156

εTot 0.0409± (3.567× 10−4) 0.0395± (3.504× 10−4) 0.0338± (3.521× 10−4) 0.0892± (4.557× 10−4)

Table XIII: Summary of the efficiencies for B0
s → K0

SK
+K− for the LL K0

S reconstruc-
tion sample. All values are in percent (including the final row). The uncertainties
are related to the limited size of the MC sample.

2011 2012a 2012b 2016
εGen 6.692 ± 0.016 6.806 ± 0.018 6.808 ± 0.019 7.104 ± 0.025
εReco|Gen 2.915 ± 0.011 2.463 ± 0.010 2.457 ± 0.011 1.709 ± 0.006
εL0|Reco 52.790 ± 0.192 47.777 ± 0.206 51.325 ± 0.224 96.651 ± 0.069
εHLT|L0 56.790 ± 0.263 55.719 ± 0.296 61.780 ± 0.304 97.460 ± 0.061
εPresel|HLT 61.394 ± 0.343 57.493 ± 0.395 59.665 ± 0.390 59.377 ± 0.193
εVetoes|Presel 85.223 ± 0.319 84.521 ± 0.381 85.651 ± 0.361 85.323 ± 0.181
εMVA|Vetoes 91.946 ± 0.265 93.869 ± 0.275 85.907 ± 0.387 83.083 ± 0.207
εPID|MVA 60.401 ± 0.496 60.909 ± 0.577 61.429 ± 0.584 80.500 ± 0.240
εTot 0.0170± (2.255× 10−4) 0.0124± (1.905× 10−4) 0.0143± (2.235× 10−4) 0.0390± (2.810× 10−4)
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Figure VI.11: Variation of the selection efficiency across the square Dalitz plane for
B0 → K0

Sπ
+π− and B0

s → K0
SK

+K− modes, obtained from 2016 MC samples. The
generator level cuts efficiencies are not included here.
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Figure VI.12: Variation of the selection efficiency across the square Dalitz plane for
B0 → K0

Sπ
+π− and B0

s → K0
SK

+K− modes, obtained from 2016 MC samples. The
generator level cuts efficiencies are not included here nor are the vetoes.
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VI.6 Fit model

This section describes the different components included in the mass fit and
how they are modelled. An unbinned extended maximum likelihood fit is
performed on all of the data, separated by final state (K0

Sπ
+π−, K0

SK
+K−,

K0
SK

+π−, K0
Sπ

+K−), data taking period (2011, 2012a, 2012b, 2016) and
K0

S reconstruction category (DD, LL), representing a total of 32 subsamples.
All the subsamples are fitted simultaneously and the corresponding signal
yields are extracted from the fit. The total PDF is a combination of signal
and background PDFs. Three kinds of background are included in the fit:
combinatorial, crossfeed, and partially reconstructed backgrounds; they will be
described in the following sections. The stability and internal consistency of
the fitting framework has been tested with pseudoexperiments, and no bias
was found.

Given the potential number of parameters describing each of the spectra,
a direct fit to the data with all parameters free is not feasible. Instead,
many of the parameters governing the shapes of the different components
are determined with fits to MC simulation and then fixed when fitting the
data. Other constraints are also used (e.g. on the relative normalisation of
components between modes; see below).

Signal model

The B0
(s) → K0

Sh
+h′− signal modes are modelled using a double Crystal-Ball

(CB) function, which consists of the sum of two single CBs [153] that share
common mean and width parameters. A CB distribution has a Gaussian core
with a power-law tail and is defined as

fCB(t;n, α, σ) = N ·

{
e−t

2/2σ2
if t/σ > −α(

n
|α|

)n (
n−α2

|α| −
t
σ

)−n
e−α

2/2 if t/σ ≤ −α
, (VI.28)

where N is a normalisation factor, σ is the resolution of the Gaussian, and
t = m− µ is the difference between the reconstructed mass m and the mean
value µ of the Gaussian. The parameter n governs the power law tail and the
sign of α determines the location of the tail, right-handed or left-handed, with
respect to the mean value of the Gaussian. A double CB has two independent
tails. The left tail is dominated by the radiative effects coming from the
emission of photons by the final state particles that smears out the mass peak,
along with stochastic effects related to the detector. The right tail accounts
for non-Gaussian detector resolution effects.



VI.6 Fit model 169

The positions of the signal peaks, corresponding approximately to the B0

and B0
s masses, are free to vary in the fit to data since the momentum scale

calibration may be imperfect (and may differ between samples). The values of
the parameters governing the tails of the CBs as well are their relative fraction
are extracted from simulated samples and fixed in the fit to data. An example
of the results such fits is shown in Fig. VI.13. The parameters related to the
left tail, αL and nL, are free to vary in the MC fit between all the modes and
categories, whereas the right tail parameters, αR and nR, are constrained to be
identical between the modes.
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Figure VI.13: Examples of fits to the invariant mass of simulated data, corresponding
to B0

s → K0
SK

+K− (left) and B0 → K0
Sπ

+π− (right) signal modes. The samples
were obtained with running conditions analogous to 2012b data taking period and
the K0

S is reconstructed in the LL category. The x-axis shows the reconstructed
candidate mass in MeV.

Combinatorial background model

The combinatorial background is described by a Chebychev polynomial of the
first kind, of order one (i.e. a linear function). The single slope parameter is
allowed to vary between the different data taking periods and K0

S reconstruction
classes.
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Crossfeed model

The crossfeed contributions are modelled by sum of two CBs. The CB pa-
rameters are determined by fitting simulated data that has been deliberately
reconstructed under the wrong mass hypothesis (e.g. K0

Sπ
+π− reconstructed

as K0
SK

+π−) using the DecayTreeFitter package described in section VI.3.2.
Crossfeed backgrounds are considered only if they have a single misidentified
pion or kaon and produce a peak within the relevant mass range. Other po-
tential misidentified decays are expected to be small and are thus neglected.
Consequently, four crossfeed contributions are included in each spectra:

• In the K0
SK

+K− and K0
Sπ

+π− spectra, crossfeeds from the B0 →
K0

SK
+π−, B0 → K0

Sπ
+K−, B0

s → K0
SK

+π−, and B0
s → K0

Sπ
+K− decay

modes reconstructed and selected as K0
SK

+K− or K0
Sπ

+π− are included
in the model. The contribution from the B0

s mesons are expected to be
larger than the ones from the B0 given that the B0

s decay is favoured in
the K0

SK
±π± spectra.

• In the K0
SK

+π− and K0
Sπ

+K− spectra, crossfeeds from the B0 →
K0

Sπ
+π−, B0 → K0

SK
+K−, B0

s → K0
Sπ

+π−, and B0
s → K0

SK
+K− decay

modes reconstructed and selected as K0
SK

+π− or K0
Sπ

+K− are included
in the model. Unlike the former case, the favoured mode in the spectra
with two pions or two kaons is the B0 so that we expect more evens in
the crossfeed coming from these modes.

All the parameters governing the shapes are taken from a fit to simulated data
reconstructed with the corresponding mass hypothesis and are fixed in the fit
to the data. Since the yields of these component is small, it cannot be totally
free in the fit. Instead, Gaussian constraints are used. The ratio of the yields
of the mis-identified decay (A reconstructed as B) and the true mode (A) can
be expressed as a ratio of efficiencies

N(A reconstructed as B)

N(A)
=
εsel

A-as-B × ε
MVA

A-as-B × ε
PID

A-as-B
εsel

A × ε
MVA

A × εPID

A
. (VI.29)

Using this relation, it is possible to obtain the number of crossfeed events from
the yield of the correctly reconstructed mode. Since by design the reconstruction
and selection are very similar between different final states in this analysis, and
in particular the same MVA selector and cut is used for all the modes (for a
given data-taking period and K0

S reconstruction class), Eq. (VI.29) reduces to
the ratio of PID efficiencies:

N(A reconstructed as B)

N(A)
=
εPID

A-as-B
εPID

A
. (VI.30)
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The efficiencies are obtained from MC simulation using PID variables resampled
with PIDcorr. The mean value of the Gaussian constraint is thus the ratio of
efficiencies while its width is obtained from the statistical uncertainties on the
ratio.

The MC we use is generated with a flat distribution in the square Dalitz
plane. As discussed at many points in this thesis, the data are not expected to
be uniformly distributed. While a distribution uniform in the square Dalitz
plane is not a bad first approximation—it produces more events close to the
kinematic boundaries of the classic Dalitz plane, as is observed empirically in
charmless B decays—it is clearly not correct. To take into account the lack of
knowledge of the distribution of the data in the Dalitz plane, the widths of the
Gaussian constraints have been multiplied by a factor of 2.

To obtain a better description of the efficiencies, one could reweight the
simulated data using Dalitz plot analysis results. At present, Dalitz plot
analyses have not been performed for all of the modes and some assumptions
would be needed for the unknown ones. Because the crossfeed contributions
are relatively small (due to the good PID performance of the LHCb detector),
this level of precision is not needed yet.
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Figure VI.14: Examples of fits to simulated data for the crossfeeds coming from
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S

reconstruction category. The x-axis shows the reconstructed candidate mass in MeV.
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Partially reconstructed backgrounds models

Backgrounds coming from partially reconstructed (PR) decays, with one or
more missing particles, appear in the left-hand sideband of the mass spectrum.
These backgrounds are modelled with an ARGUS distribution, parametrised
as follows

fARGUS(m) = Nm

(
1−

(
m

mt

)2
)p

e
− 1

2
c2
(

1−
(
m
mt

)2
)
, (VI.31)

where N is a normalisation factor, mt is a cutoff value, p controls the slope
of the curve and c defines its curvature. This distribution is then convoluted
with a Gaussian to take into account the detector resolution. The width of
this Gaussian is constrained to the resolution of the signal decay mode. All
the other parameters except mt are extracted from fits to simulated data. The
mass threshold is fixed to a physical value, which is computed as the mass
difference between the B0

(s) meson and the missing particle.
A large number of decay modes can contribute to the PR backgrounds.

In order to limit the number of components in the fit, we restrict them
to two generic categories: decays with a missing meson — such as
B0 → K∗0 (→ K0

Sπ
0) ρ0 (→ π+π−) and B+ → D0 (→ K0

Sπ
+π−) K+, where

a pion or a kaon is not reconstructed — and radiative decays in which a
photon is not reconstructed such as, for example, B0 → η′(→ ρ0γ)K0

S and
B0 → K0

Sπ
+π−γ.

Due to the lack of fully simulated samples corresponding to all the decay
modes considered and all the data-taking periods, MC samples were obtained
with a fast simulation method, called RapidSim [154], that can generate phase-
space decays of B and D hadrons. Using this simplified framework, it is not
possible to apply all the selection cuts to the samples (e.g. the vertex fit χ2

cannot be estimated). Thus, the shape parameters were obtained from these
MC samples without applying any cut. Examples of fits to simulated PRs are
shown in Fig. VI.15.

In the fit to the data, the yields of different modes belonging to the same
category are Gaussian-constrained using the known branching fractions of the
different modes, under the assumption that their efficiencies are the same.

VI.7 Fit results

The results of the simultaneous fit to the data are shown on Fig. VI.16 and VI.17
for 2016 DD and LL samples. The fits corresponding to the run I data taking
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Figure VI.15: Examples of fits to simulated data for partially reconstructed back-
grounds. The left plot corresponds to B0 → η′(→ ρ0γ)K0

S decay mode where the γ is
missing in the reconstruction. The right plot is B0 → K∗0 (→ K0

Sπ
0) ρ0 (→ π+π−)

with the π0 not reconstructed. Both samples were generated with the RapidSim

framework. The x-axis shows m(K0
Sπ

+π−) in MeV.

periods are shown in Appendix B.2. For each spectrum, the χ2 probability
indicates good fit quality. The extracted yields for each category are reported
in Tables XIV and XV for the DD and LL samples, respectively. In total,
206 B0

s → K0
SK

+K− and 12276 B0 → K0
Sπ

+π− decays are observed. The
total yields for the other final states are: 5162 B0

s → K0
SK
±π∓ decays, 1361

B0 → K0
SK
±π∓ decays, 1248 B0

s → K0
Sπ

+π− decays and 5438 B0 → K0
SK

+K−

decays. Considering only the statistical uncertainties, and propagating the
errors taking into account the correlations between the yields, the significance
for B0

s → K0
SK

+K− is above 7.5σ.
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Figure VI.16: Simultaneous fit to the data in the 2016 DD samples, shown on
linear (left) and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−,

K0
SK

+π− and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total
PDF is shown in solid blue and the individual components are shown as dashed
lines: the B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in
green and those from B0

s in purple, the combinatorial background in grey, and the
partially reconstructed backgrounds in grey to the left.
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Figure VI.17: Simultaneous fit to the data in the 2016 LL samples, shown on
linear (left) and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−,

K0
SK

+π− and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total
PDF is shown in solid blue and the individual components are shown as dashed
lines: the B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in
green and those from B0

s in purple, the combinatorial background in grey, and the
partially reconstructed backgrounds in grey to the left.
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Table XIV: Signal yields extracted from the simultaneous fit to the data for the DD
sample, with statistical uncertainties only.

2011 2012a 2012b 2016
B0 → K0

Sπ
+π− 902 ± 37 567 ± 28 1559 ± 46 5292 ± 93

B0 → K0
SK

+K− 286 ± 18 171 ± 14 564 ± 24 2613 ± 56
B0
s → K0

SK
+π− 169 ± 15 89 ± 11 306 ± 20 1221 ± 44

B0
s → K0

Sπ
+K− 146 ± 15 110 ± 13 292 ± 20 1234 ± 45

B0 → K0
SK

+π− 48 ± 11 38 ± 9 79 ± 13 334 ± 31
B0 → K0

Sπ
+K− 66 ± 12 19 ± 7 69 ± 12 305 ± 31

B0
s → K0

Sπ
+π− 80 ± 22 35 ± 13 180 ± 24 586 ± 56

B0
s → K0

SK
+K− 18 ± 7 5 ± 5 5 ± 7 132 ± 21

Table XV: Signal yields extracted from the simultaneous fit to the data for the LL
sample, with statistical uncertainties only.

2011 2012a 2012b 2016
B0 → K0

Sπ
+π− 482 ± 26 344 ± 22 651 ± 29 2 479 ± 60

B0 → K0
SK

+K− 175 ± 13 96 ± 10 273 ± 16 1261 ± 38
B0
s → K0

SK
+π− 86 ± 11 52 ± 9 93 ± 11 498 ± 28

B0
s → K0

Sπ
+K− 93 ± 11 52 ± 9 121 ± 12 601 ± 30

B0 → K0
SK

+π− 26 ± 7 22 ± 7 17 ± 7 108 ± 18
B0 → K0

Sπ
+K− 22 ± 7 10 ± 6 37 ± 8 159 ± 10

B0
s → K0

Sπ
+π− 45 ± 13 35 ± 11 67 ± 13 220 ± 31

B0
s → K0

SK
+K− 8 ± 4 5 ± 3 7 ± 4 27 ± 11
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VI.8 Systematic uncertainties

The value of the B0
s → K0

SK
+K− branching fraction is computed relative to

the normalisation channel, B0 → K0
Sπ

+π−. As mentioned before, taking the
ratio with respect to another decay mode that is kinematically and topologically
similar implies that a great part of the systematic uncertainties cancel or are
reduced (though some do not, notably the PID efficiency). The remaining
systematic effects are taken into account and are mainly related to the fitting
procedure and to differences between data and MC that can affect the efficiency
estimates.

VI.8.1 Selection

Most of the efficiencies are directly computed from simulated data, as detailed
in Sec. VI.5. Since the MC samples have a finite size, there is an uncertainty
related to the size of the sample, which corresponds to the statistical uncertainty
on the determination of the efficiencies.

VI.8.2 Tracking

It is known that the simulation of the tracking is not perfectly accurate and
should be corrected. However, given the similarities in the topologies and the
kinematics of the modes studied here, we expect the systematic error related
to the tracking to largely cancel in the ratios of efficiencies. This is confirmed
by the very small uncertainty, below 0.3%, associated to the tracking in the
previous LHCb analysis [139].

VI.8.3 PID

A systematic uncertainty on the PID selection is evaluated by tightening and
loosening the PID cuts. The tight PID selection is obtained by changing the
value of the ProbNNπ cut for pion candidates (ProbNNK for kaon candidates)
from 0.5 to 0.4, and the loose one corresponds to a change in the same variables
from 0.5 to 0.6. For each PID optimisation the whole fit procedure is performed
again and the yields are extracted. The efficiency corrected yields — i.e. the
yield divided by the corresponding efficiency — are then obtained for each PID
optimisation (baseline, loose and tight). The small yields for B0

s → K0
SK

+K−

do not allow to compute a systematic effect, indeed, the fluctuations of the
yields between the different optimisations are dominated by the statistical
uncertainty. The same argument applies to the yields of B0 → K0

Sπ
+π− yields
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in run I. To evaluate the systematic effect on the PID for kaons and pions it
has been decided to use 2016 DD sample, assuming that the effect is similar
in the other categories. The decay mode used to obtain the uncertainty on
the pion identification is then B0 → K0

Sπ
+π− and for the uncertainty on the

kaon PID we use B0 → K0
SK

+K−, which are the most abundant channels.
Table XVI give the yields and efficiencies for each of the PID optimisations.
The tight optimisation gives an uncertainty of 2.8% for the pion and 7.8% for
the kaon. For the loose optimisation we obtain 5% for the pion and 2% for the
kaon. A naive average between the loose and tight uncertainties reads 3.9%
for the pion and 4.9% for the kaon. Assuming that there is no correlations
between the kaon and pion PIDs, the total uncertainty on the PID selection is
then of about 6%.

Table XVI: Summary of the yields and efficiencies corresponding to the different
PID optimisations considered to assess a systematic uncertainty on the PID. The
yields are taken from a simultaneous fit to all the categories, and the efficiencies are
obtained from MC. The numbers presented here correspond to the 2016 DD sample.

PID cut B0 → K0
Sπ

+π− B0 → K0
SK

+K−

Yield Efficiency [×10−4] Yield Efficiency [×10−4]
baseline 5292 8.32398 2613 8.38667
loose 5297 8.57154 2619 9.11769
tight 4702 7.79315 2403 7.56077

VI.8.4 L0 trigger

To assess the bias caused by the discrepancies between the hardware trigger
and its MC modelling, a specific procedure, the TISTOS method, is used to
assess the trigger efficiency from data; it is detailed in Sec. VI.2.4. Three
approaches have been used to compute the L0 trigger efficiency:

• Standard MC procedure: the first method consists of obtaining the
efficiency by simply counting the events that passed or failed the L0
trigger cuts.

• TISTOS on MC: a value for the efficiency is obtained by applying the
TISTOS method to the MC signal samples.
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• TISTOS on data: a third value of the efficiency is obtained by applying
the TISTOS method to the data samples.

It was found that the results obtained by applying the TISTOS method to the
simulated samples and to the data agree within their uncertainties. However,
given the limited signal statistics in the data, the procedure could only be
carried out for the favoured modes. Moreover, the size of the error obtained
from the data is too large to be directly exploited, especially for the 2011
and 2012a data taking periods. The results from data are thus used as a
cross-check with the values obtained from the simulated samples. Different
values are obtained with the standard MC method compared to the TISTOS.
Nonetheless, the ratios of efficiencies are in good agreement. A systematic
uncertainty is therefore assigned by taking the difference between the ratio
obtained with the standard MC procedure and the MC TISTOS method. The
estimated systematic error on the ratio of B0

s → K0
SK

+K− and B0 → K0
Sπ

+π−

L0 trigger efficiencies varies between subsamples but is typically about 2%.
Another option to address the L0 efficiency issue would be to use correc-

tion maps that are obtained from calibration data samples of D∗+ → D0(→
π+K−)π+ decays data, analogous to the PID efficiency correction. Unfortu-
nately, these corrections are not available for the run II.

VI.8.5 B transverse momentum and pseudo-rapidity:
agreement between data and MC

The kinematic distribution of the B mesons, as a function of pT and η, may
not be perfectly simulated in the MC. The efficiencies in general depend on
the B kinematics, and in particular some kinematic variables (including these)
are used in the MVA selection. The L0 efficiency, for example, depends on the
transverse momentum of the B meson and is less efficient at low pT(B) than
at high pT(B).

The sPlot technique described in part VI.2.3, is used to extract the signal
weights and compare the sWeighted distributions of the variables in the data
with the MC ones. Comparative plots of B0 → K0

Sπ
+π− for 2016 and 2011

data taking periods are shown in Fig. VI.18. Good agreement is seen between
the η(B) and pT (B) between the data and the simulation in all the categories.
Thus, no corrections to these variables are needed.
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Figure VI.18: Comparison between the distributions of the pT (left) and η (right) of
the B meson in signal MC and sWeighted data for the B0 → K0

Sπ
+π− decay mode

in 2011 (upper) and 2016 (lower) DD samples. The blue markers correspond to

sWeighted data and the red curve to MC signal. Good agreement in seen between
the two.

VI.8.6 Fit model

The values of the extracted yields can be influenced by two main types of
systematic effects that are induced by the fit model. One is related to the
parameters that are obtained from MC samples and are later fixed in the
data fit, and the other is comes from the choice of the shapes of the PDFs
used to model the different components. The uncertainty arising from the
fixed parameters can be assessed by performing multiple fits to the data in
which the values of the fixed parameters are varied according to the correlation
matrix of the fit to MC. Since the simulated samples are large, this systematic
effect is expected to be subdominant and the uncertainty due to the choice
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of lineshapes is expected to dominate. (For the crossfeeds, the yields after
selection in the MC are smaller due to the rejection of misidentified candidates,
but the yields in data are similarly reduced so the relative effect remains small
and is neglected here.)

To estimate the uncertainty due to the choice of lineshapes, the fit is
performed again after changing, in turn, the signal, crossfeed and combinatorial
background shapes. The alternative model for the signal and the crossfeeds is
a single CB, and for the combinatorial background an exponential distribution
is used.

Table XVII summarises the systematic effects associated with the fit shapes.
The uncertainty arising from each lineshape is obtained by computing the
difference between the mean value of the yields obtained with the baseline
model and those obtained with the modified shape. (Part of the estimated
uncertainty will be of statistical origin.) The dominant uncertainty comes from
choice of the signal shape. In samples where the signal yield is small (especially
the B0

s → K0
SK

+K− 2012b DD sample), the relative uncertainty can be large.
However, these statistical fluctuations become less important when propagating
the uncertainties to the final result and accounting for correlations between
the yields.

Table XVII: Summary of the systematic effects due to the fit model. The difference
in number of events with respect to the baseline model is shown for each alternative
shape. The total uncertainty on a year obtained by summing in quadrature the
different effects. This number is given for reference but is not used in the final
propagation of the uncertainties (the errors are propagated individually). Note that
only the last column is in % and that all the others show yields or changes in yield.

Year Yield Sig shape Comb shape CF shape Total fit model relative error [%]

B0 → K0
Sπ

+π− DD

2011 902.39 9.92 14.58 3.45 18.0 2.0
2012a 567.3 11.03 10.11 2.95 15.3 2.7
2012b 1558.5 27.4 7.4 7.8 29.4 5.2
2016 5292.1 128 53.1 12.2 139.1 2.6

B0
s → K0

SK
+K− DD

2011 17.555 0.819 0.053 1.037 1.3 7.5
2012a 4.799 0.2775 0.2067 1.0245 1.1 22.5
2012b 5.4045 1.1754 0.3603 4.3609 4.5 83.8
2016 131.65 4.45 2.06 8.59 9.9 7.5

B0 → K0
Sπ

+π− LL

2011 481.56 7.42 9.48 1.67 12.2 2.5
2012a 344.34 7.0 3.35 0.37 7.8 2.6
2012b 650.67 13.41 14.28 1.75 19.7 3.0
2016 2479.2 61.2 55.2 5.3 82.6 3.3

B0
s → K0

SK
+K− LL

2011 8.4136 0.1092 0.2162 0.8215 0.9 10.2
2012a 4.6596 0.0549 0.2623 0.9005 0.9 20.2
2012b 6.9345 0.5339 0.1255 0.577 0.8 11.5
2016 26.814 1.329 0.0 0.64 1.5 5.5
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VI.9 Combination of the results and extrac-

tion of the relative branching fraction of

B0
s → K0

SK
+K−

The branching fraction of B0
s → K0

SK
+K− relative to that of B0 → K0

Sπ
+π−

is obtained using the master formula given at the beginning of this chapter,
eq. (VI.1). The uncertainties on the yields are propagated taking into account
their correlations (the correlation matrix is obtained in the fit procedure).
The errors on the efficiencies—i.e. the systematic uncertainties due to the
finite size of the MC samples, the L0 trigger and the PID—are considered
uncorrelated and are propagated accordingly. Table XVIII shows the central
value and uncertainties for the combination of all data-taking periods. This is
shown separately for the two K0

S reconstruction classes, and finally for their
combination.

Table XVIII: Measured value of B(B0
s → K0

SK
+K−)/B(B0 → K0

Sπ
+π−), along with

the details of the different statistical and systematic effects. The results for the K0
S

reconstruction classes (DD and LL) are shown separately and then combined taking
correlations into account. The relative error is computed with respect to the central
value obtained by combining DD and LL samples together.

DD [×10−3] LL [×10−3] Total [×10−3] Relative error [%]
Central value 54.4 51.3 52.8
Stat 9.3 13.6 8.3 15.7
Sig shape 1.7 1.4 1.1 2.1
Comb shape 0.7 0.9 0.6 1.1
CF shape 4.1 2.5 2.4 4.5
PID 3.3 3.1 3.2 6.1
Trigger 1.1 1.0 1.1 2.1
MC size 0.3 0.4 0.3 0.6

VI.10 Summary and conclusion

The branching fraction of the decay mode B0
s → K0

SK
+K− is measured relative

to that of B0 → K0
Sπ

+π− by analysing the LHCb data collected during run I
and 2016, corresponding to an integrate luminosity of 4.67 fb−1. The result
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is obtained by performing a simultaneous unbinned extended likelihood fit to
the four invariant mass spectra that contain the decay modes B0

(s) → K0
Sh
±h′∓.

The fit returns the B0 and B0
s signal yields in each of the four final states, four

data taking periods, and two K0
S reconstruction categories, for a total of 32

samples fitted simultaneously. The result of the final combination is

B(B0
s → K0

SK
+K−)

B(B0 → K0
Sπ

+π−)
= 0.053± 0.008(Stat)± 0.004(Syst)± 0.003(fs/fd)

(VI.32)
The previous LHCb analysis [139], made with the run I data only, found a
90% confidence interval of 0.008–0.051; this new result is at the upper end
of this range but compatible at the 2σ level and more precise. The yield of
the B0

s → K0
SK

+K− decay mode has a statistical significance of 7.5 standard
deviations with stat. errors only, and of almost 7σ when taking the fit shape
systematic uncertainties into account as well. The ratio of branching fraction
given in Eq. (VI.32) is more than 5σ from zero. This is thus the first observation
of this channel.

The result above may be combined with the world-average value [15]
B(B0 → K0

Sπ
+π−) = (49.4± 1.8)× 10−6 to obtain:

B(B0
s → K0

SK
+K−) = (2.6± 0.5)× 10−6. (VI.33)
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Chapter VII
Conclusion

During the three years of my PhD, I focused my research on the flavour sector,
and more specifically on charmless B meson decays into three particles. My
work is divided into two main parts. The first was a feasibility study of a method
of extracting the weak phase γ based on flavour-SU(3) symmetry, potentially
sensitive to new physics [98]. I presented a complete proof of principle, including
fully-propagated experimental uncertainties. Using BaBar Dalitz-plot analysis
results of B0 → K+π0π−, B0 → K0

SK
0
SK

0
S, B+ → K+π+π−, B0 → K0

SK
+K−

and B0 → K0
Sπ

+π−, I showed that this method is promising: six values of γ
are obtained:

γ1 = [ 12.9 +8.4
−4.3 (stat)± 1.3 (syst)]◦,

γ2 = [ 36.6 +6.6
−6.1 (stat)± 2.6 (syst)]◦,

γ3 = [ 68.9 +8.6
−8.6 (stat)± 2.4 (syst)]◦,

γ4 = [223.2 +10.9
−7.5 (stat)± 1.0 (syst)]◦,

γ5 = [266.4 +9.2
−10.8 (stat)± 1.9 (syst)]◦,

γ6 = [307.5 +6.9
−8.1 (stat)± 1.1 (syst)]◦ ,

one of which is compatible with the world average, γ = (73.5+4.2
−5.1)◦, while the

others are not. The uncertainties on γ are below 11◦, which is about twice
the world-average uncertainty. I also studied the effect of SU(3) breaking on
the result and showed that the SU(3)-breaking effects largely cancel when
averaging on many points in the Dalitz plane. This result is very promising and
shows that it is possible to extract γ from charmless three-body decays with
an acceptable uncertainty. In the coming years, time-dependent Dalitz-plot
analyses of these modes with LHCb and Belle II data will be available and an
extraction of γ using these results, or directly from the data, will be possible.
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This study, largely documented in chapter IV of this thesis, was also published
in PRD [99].

The second part of my work is dedicated to the study of the decay modes
B0

(s) → K0
Sh
±h′∓ with the LHCb detector using a dataset collected during run I

(2011, 2012) and 2016, corresponding to an integrated luminosity of 4.67 fb−1.
I obtained a measurement of the branching fraction of B0

s → K0
SK

+K− decay
mode relative to B0 → K0

Sπ
+π−:

B(B0
s → K0

SK
+K−)

B(B0 → K0
Sπ

+π−)
= 0.053± 0.008(Stat)± 0.004(Syst)± 0.003(fs/fd).

This work follows on from a previous LHCb analysis [139] that was performed
on run I data, in which all of the B0

(s) → K0
Sh
±h′∓ modes were observed except

for B0
s → K0

SK
+K−. After redesigning parts of the selection and adding

significantly more data (2016), the B0
s → K0

SK
+K− decay mode was observed

here for the first time, with a significance of almost 7 standard deviations (after
including systematic uncertainties related to the fit model). The result was
obtained by performing a simultaneous fit to the different K0

Sh
±h′∓ spectra

(K0
Sπ

+π−, K0
SK

+K−, and K0
SK
±π∓) so as to take cross-feeds into account

correctly. A total of 32 samples were fitted simultaneously and the yields of the
B0 and the B0

s mesons were extracted in each of the samples. As well as being
of interest in its own right, this analysis prepares the ground for measurements
of the branching ratios of all of the B0

(s) → K0
Sh
±h′∓ decay modes with the full

run I and run II LHCb dataset, corresponding to an integrated luminosity of
9 fb−1. The very encouraging results obtained with run I and 2016 (4.67 fb−1)
data, notably the increase in yield of the normalisation channel B0 → K0

Sπ
+π−

by a factor of 2.75 after adding 2016 compared to 2011–2012 alone, suggest
that the precision of the measurement with the whole dataset will probably be
excellent.

The next step after measuring the branching fractions is to perform
Dalitz-plot analyses. Some time-integrated amplitude analyses have al-
ready been completed with run I data leading to interesting results, such
as B0 → K0

Sπ
+π− [155], B0

s → K0
SK

+π− [156], B+ → π+π−π+ [78, 79]
and B± → K+K−π± [157]. The addition of the run II data will allow for
more advanced analyses, for instance a time-dependent amplitude analysis of
B0 → K0

Sπ
+π−, or for time-integrated analyses of less abundant modes such as

B0
s → K0

Sπ
+π−. A time-integrated analysis of the decay B0 → K0

SK
+K− was

attempted with run I data, see Ref. [158], but was inconclusive due to a large
number of possible solutions for the isobar parameters (17 solutions were found).
During my PhD, I dedicated a part of my time to trying to improve this result
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by modifying the resonant model, by adding and/or removing resonant compo-
nents with the aim of improving the fit quality and breaking the degeneracy.
The addition of a a0(980) lineshape was tested, which appeared to decrease the
number of solutions. However, due to a large destructive interference with the
f0(980), the corresponding fit fractions became very high, and thus unphysical.
The impact of adding information from flavour tagging was also assessed as
well as the addition of more data. The main conclusion of this study was that
the addition of the run II data will be critical, since the larger sample will both
improve the discrimination and allow the model to be refined.

The second run of data-taking finished in late 2018 and analyses with the
full run II dataset are ongoing. At the same time, the LHCb detector is being
dismantled and will be replaced by an almost completely new detector [159]
that will operate from 2021 at an expected instantaneous luminosity of 2 ×
1033 cm−2s−1. The new design of the detector will allow it to be read at the
full LHC bunch-crossing frequency of 40 MHz, a major improvement over the
current data bandwidth limit of 1 MHz (which is mainly due to the readout
and the hardware trigger). A total dataset corresponding to an integrated
luminosity of 50 fb−1 (and with a substantially improved trigger efficiency after
run II) is expected to be collected by the end of run IV, allowing for very
precise measurements of many key observables, searching for small deviations
from the SM predictions or looking for new phenomena.
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Appendix A
Supplementary material for the
extraction of γ from three-body
charmless decays of the B meson

A.1 Practical implementation of the differ-

ent decay modes into Laura++ and cross

checks

A.1.1 Introduction

In this appendix we give a detailed description of the implementation of the dif-
ferent amplitude models taken from BaBar analysis results into Laura++ [67].
Checks of the accuracy of the implementation are done comparing the values
of the observables (fit fractions and CP asymmetries) extracted within our
framework with the available results quoted in BaBar papers.

A.1.2 Normalisation factors

Most of the BaBar results quoted in the papers [71, 101–104], were not
extracted using the Laura++ framework and use different conventions for the
normalisation of the F (s1, s2) distribution1. To account for this, we need to
introduce normalisation factors which apply to each of the resonances of the
different modes.

1Only the B+ → K+π+π− analysis was performed using Laura++ software.
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Ni =

√
FFi

FF0

a2
i + a2

i

, (A.1)

where FFi are the fit fractions as defined in part III.3.3, and ai and ai are
the magnitudes of the isobar parameters quoted in the BaBar analyses cited
earlier.

A.1.3 Computation of Q2B parameters within our
framework

In order to check our implementation of the BaBar model we compare the
quasi-two-body parameters (Q2B) we obtain in our framework with the ones
quoted in the paper. The fit fraction for a intermediate state is defined as

FFj ≡
∫∫

DP
(|Aj(s1, s2)|2 + |Āj(s1, s2)|2)ds1ds2∫∫

DP
(|A(s1, s2)|2 + |Ā(s1, s2)|2)ds1ds2

. (A.2)

The interference fit fractions quantify the interferences between different
states. They are given by

FFjk ≡ 2Re

∫∫
DP

(Aj(s1, s2)A∗k(s1, s2) + Āj(s1, s2)Ā∗k(s1, s2))ds1ds2∫∫
DP

(|A(s1, s2)|2 + |Ā(s1, s2)|2)ds1ds2

. (A.3)

With this definition, ∑
j

FFj +
∑
j<k

FFjk = 1. (A.4)

The direct CP asymetry, ACP (j), for a given intermediate state writes

ACP (j) ≡
∫∫

DP
(|Āj(s1, s2)|2 − |Aj(s1, s2)|2)ds1ds2∫∫

DP
(|A(s1, s2)|2 + |Ā(s1, s2)|2)ds1ds2

. (A.5)

Since the lineshape terms F (s1, s2) contain only the strong dynamics, we
have ∫∫

DP

|F (s1, s2)|2ds1ds2 =

∫∫
DP

|F(s1, s2)|2ds1ds2, (A.6)
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we can thus express the direct CP asymmetry as a function of the isobar
parameters

ACP (j) =
|cj|2 − |cj|2

|cj|2 + |cj|2
. (A.7)

As we will show in the following section, the results we obtained are
consistent with the papers within the rounding errors.

B+ → K+π+π−

From the five analyses, K+π+π− is the only one that was done using Laura++

framework. This makes the implementation quite straightforward. The ampli-
tude on the Dalitz plane is modelled using a Cartesian representation of the
isobar parameters, given by{

A =
∑

j[(xj + ∆xj) + i(yj + ∆yj)]Fj,

Ā =
∑

j[(xj −∆xj) + i(yj −∆yj)]F̄j.
(A.8)

The fitted values for the isobar parameters is given in table I
To check the validity of our implementation we compared the fit fractions

and the ACP (j) we obtained with the ones in the paper. The results are
consistent with the paper [101] and are summarised in tables II, III, IV and
V. The ∆x and ∆y parameters for the non resonant and the ω(782) are fixed
to zero in the fit, the value of their ACP parameter is thus zero (cf. equation
(A.7) and table V).

Table I: Results of fits to data for B+ → K+π+π− decay mode , with statistical,
systematic, and model-dependent uncertainties. [101]

Resonance x y ∆x ∆y

K∗0(892)π+ 1.0 fixed 0.0 fixed −0.017±0.029±0.005 +0.004
−0.006 −0.238±0.228±0.062 +0.144

−0.018

(Kπ)∗00 π
+ 1.718±0.084±0.064 +0.350

−0.055 −0.727±0.108±0.080 +0.331
−0.111 −0.154±0.131±0.030 +0.095

−0.010 −0.285±0.337±0.091 +0.221
−0.019

ρ0(770)K+ 0.683±0.075±0.045 +0.015
−0.073 −0.025±0.135±0.071 +0.015

−0.073 −0.160±0.049±0.024 +0.094
−0.013 0.169±0.096±0.057 +0.133

−0.027

f0(980)K+ −0.220±0.200±0.203 +0.500
−0.095 1.203±0.085±0.052 +0.113

−0.045 −0.109±0.143±0.087 +0.037
−0.103 0.047±0.045±0.012 +0.046

−0.018

χc0K
+ −0.263±0.044±0.016 +0.030

−0.014 0.180±0.052±0.034 +0.225
−0.022 −0.033±0.049±0.012 +0.017

−0.012 −0.007±0.057±0.019 +0.006
−0.111

Nonresonant −0.594±0.070±0.170 +0.112
−0.035 0.068±0.132±0.154 +0.112

−0.099 0.0 fixed 0.0 fixed

K∗02 (1430)π+ −0.301±0.060±0.030 +0.012
−0.134 0.424±0.060±0.045 +0.012

−0.134 0.032±0.078±0.024 +0.057
−0.050 0.007±0.086±0.017 +0.025

−0.034

ω(782)K+ −0.058±0.067±0.018 +0.053
−0.011 0.100±0.051±0.010 +0.033

−0.032 0.0 fixed 0.0 fixed

f2(1270)K+ −0.193±0.043±0.022 +0.026
−0.033 0.110±0.050±0.034 +0.078

−0.073 −0.089±0.046±0.019 +0.034
−0.014 0.125±0.058±0.021 +0.034

−0.025

fX(1300)K+ −0.290±0.047±0.064 +0.047
−0.031 −0.136±0.085±0.098 +0.102

−0.031 0.024±0.040±0.019 +0.023
−0.018 0.056±0.087±0.044 +0.010

−0.036
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Table II: K+π+π− : Fit fractions as quoted in the paper [101] (%).

K∗0(892) (Kπ)∗00 ρ0(770) f0(980) χc0 NR K∗02 (1430) ω(782) f2(1270) fX(1300)

K∗0(892) 13.252 0.001 0.287 -0.116 -0.099 -0.000 0.000 -0.005 0.088 0.131
(Kπ)∗00 - 44.948 -0.068 -1.049 -0.115 1.468 -0.000 0.027 -0.501 -0.153
ρ0(770) - - 6.543 0.000 -0.000 0.000 0.118 -0.371 0.000 0.000
f0(980) - - - 18.932 0.059 2.927 0.370 0.000 0.000 2.057
χc0 - - - - 1.289 0.302 -0.054 -0.000 0.000 -0.038
NR - - - - - 4.476 0.000 -0.000 0.000 -0.718

K∗02 (1430) - - - - - - 3.399 -0.012 0.150 0.063
ω(782) - - - - - - - 0.168 -0.000 -0.000
f2(1270) - - - - - - - - 0.912 0.000
fX(1300) - - - - - - - - - 1.333

Table III: K+π+π−: Fit fractions obtained in our framework (%).

K∗0(892) (Kπ)∗00 ρ0(770) f0(980) χc0 NR K∗02 (1430) ω(782) f2(1270) fX(1300)

K∗0(892) 13.248 0.004 0.286 -0.114 -0.099 -0.001 -0.001 -0.004 0.088 0.131
(Kπ)∗00 - 44.936 -0.065 -1.049 -0.114 1.483 0.000 0.026 -0.501 -0.154
ρ0(770) - - 6.534 0.000 -0.000 -0.000 0.117 -0.367 -0.000 -0.000
f0(980) - - - 18.923 0.059 2.925 0.372 0.000 -0.000 2.060
χc0 - - - - 1.287 0.301 -0.054 0.000 0.000 -0.038
NR - - - - - 4.481 -0.000 0.000 0.000 -0.718

K∗02 (1430) - - - - - - 3.402 -0.012 0.151 0.063
ω(782) - - - - - - - 0.168 0.000 0.000
f2(1270) - - - - - - - - 0.914 -0.000
fX(1300) - - - - - - - - - 1.333
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Table IV: K+π+π−: (FF us − FF paper)× 102.

K∗0(892) (Kπ)∗00 ρ0(770) f0(980) χc0 NR K∗02 (1430) ω(782) f2(1270) fX(1300)

K∗0(892) -0.004 0.003 -0.001 0.002 -0.000 -0.001 -0.001 0.001 -0.000 -0.000
(Kπ)∗00 - -0.012 0.003 -0.000 0.001 0.015 0.000 -0.001 0.000 -0.001
ρ0(770) - - -0.009 0.000 -0.000 -0.000 -0.001 0.004 -0.000 -0.000
f0(980) - - - -0.009 -0.000 -0.002 0.002 0.000 -0.000 0.003
χc0 - - - - -0.002 -0.001 0.000 0.000 0.000 -0.000
NR - - - - - 0.005 -0.000 0.000 0.000 -0.000

K∗02 (1430) - - - - - - 0.003 -0.000 0.001 0.000
ω(782) - - - - - - - -0.000 0.000 0.000
f2(1270) - - - - - - - - 0.002 -0.000
fX(1300) - - - - - - - - - -0.000

Table V: K+π+π−: ACP (%).

K∗0(892) (Kπ)∗00 ρ0(770) f0(980) χc0 NR K∗02 (1430) ω(782) f2(1270) fX(1300)

Us 3.22 3.20 43.55 -10.67 -14.45 - 4.91 - -84.85 27.42
Paper 3.2 3.2 44 -10.6 -14 - 5 - -85 28

Residuals 0.02 0.00 0.45 -0.07 -0.45 - 0.09 - 0.15 0.58
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B0 → K0
Sπ

+π−

In this mode the amplitude is modelled the following way{
A =

∑
j aje

iθjFj
Ā =

∑
j āje

iθ̄j F̄j.
(A.9)

The interference fit fractions are not quoted in BaBar paper. The results
we obtained for the fit fractions and the ACP are quoted table VII table VIII.
They are consistent with the paper [102].

Table VI: Results of fit to data for the isobar amplitudes with statistical uncertainties.
Both solutions are shown. [102]

Solution I
Isobar Amplitude Magnitude Phase (◦)

cf0(980)K0
S

4.0 0.0

c̄f0(980)K0
S

3.7± 0.4 −73.9± 19.6

cρ(770)K0
S

0.10± 0.02 35.6± 14.9

c̄ρ(770)K0
S

0.11± 0.02 15.3± 20.0

cK∗+(892)π− 0.154± 0.016 −138.7± 25.7
c̄K∗−(892)π+ 0.125± 0.015 163.1± 23.0

c(Kπ)∗+0 π− 6.9± 0.6 −151.7± 19.7

c̄(Kπ)∗−0 π+ 7.6± 0.6 136.2± 19.8

cf2(1270)K0
S

0.014± 0.002 5.8± 19.2

c̄f2(1270)K0
S

0.011± 0.003 −24.0± 28.0

cfX(1300)K0
S

1.41± 0.23 43.2± 22.0

c̄fX(1300)K0
S

1.24± 0.27 31.6± 23.0

cNR 2.6± 0.5 35.3± 16.4
c̄NR 2.7± 0.6 36.1± 18.3

cχc0K0
S

0.33± 0.15 61.4± 44.5

c̄χc0K0
S

0.44± 0.09 15.1± 30.0
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Table VII: K0
Sπ

+π−: FFj (%).

f0(980) ρ0(770) K∗+(892) (Kπ)∗+0 f2(1270) fX(1300) NR χc0

Us 13.71 8.54 10.93 44.91 2.29 3.58 11.43 1.03
Paper 13.8 8.6 11.0 45.2 2.3 3.6 11.5 1.04

Residuals -0.09 -0.06 -0.07 -0.29 -0.01 -0.02 -0.07 -0.01

Table VIII: K0
Sπ

+π−: ACP .

f0(980) ρ0(770) K∗+(892) (Kπ)∗+0 f2(1270) fX(1300) NR χc0

Us -0.08 0.10 -0.21 0.10 -0.24 -0.13 0.04 0.28
Paper -0.08 0.05 -0.21 0.09 -0.28 -0.13 -0.01 -0.29

Residuals 0.00 0.05 0.00 0.01 0.04 0.00 0.05 -0.01

B0 → K+π−π0

In this mode the amplitude is given by

{
A =

∑
j aje

iθjFj,

Ā =
∑

j āje
iθ̄j F̄j.

(A.10)

The results we obtained on the fit fractions are summarised in tables IX,
X and XI whereas the ACP (j) are given in table XII. They are all consistent
with the paper [103].

Table IX: K+π−π0: Fit fractions quoted in the paper (%)

ρ(770)− ρ(1450)− ρ(1700)− K∗(892)+ (Kπ)∗+0 K∗(892)0 (Kπ)∗00 NR

ρ(770)− 17.61 7.22 0.88 0.47 -1.49 0.50 -0.78 0.00
ρ(1450)− - 6.34 -1.71 0.60 0.65 0.42 0.97 0.00
ρ(1700)− - - 1.68 0.22 -0.72 0.23 -0.28 0.00
K∗(892)+ - - - 7.05 0.00 -0.05 -0.10 0.00
(Kπ)∗+0 - - - - 30.30 -0.08 0.34 -0.08
K∗(892)0 - - - - - 5.87 0.00 0.00
(Kπ)∗00 - - - - - - 15.29 1.16
NR - - - - - - - 7.49
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Table X: K+π−π0: Fit fractions obtained in our framework (%).

ρ(770)− ρ(1450)− ρ(1700)− K∗(892)+ (Kpi)∗+0 K∗(892)0 (Kpi)∗00 NR

ρ(770)− 17.695 7.207 0.888 0.478 -1.498 0.506 -0.780 -0.000
ρ(1450)− - 6.299 -1.703 0.599 0.628 0.425 0.948 0.000
ρ(1700)− - - 1.712 0.228 -0.733 0.238 -0.286 0.000
K∗(892)+ - - - 7.149 -0.000 -0.046 -0.102 0.000
(Kpi)∗+0 - - - - 30.261 -0.077 0.331 -0.060
K∗(892)0 - - - - - 5.978 -0.002 0.000
(Kpi)∗00 - - - - - - 15.199 1.134
NR - - - - - - - 7.385

Table XI: K+π−π0: (FF us − FF paper)× 102.

ρ(770)− ρ(1450)− ρ(1700)− K∗(892)+ (Kpi)∗+0 K∗(892)0 (Kpi)∗00 NR

ρ(770)− 0.085 -0.013 0.008 0.008 -0.008 0.006 0.000 -0.000
ρ(1450)− - -0.041 0.007 -0.001 -0.022 0.005 -0.022 0.000
ρ(1700)− - - 0.032 0.008 -0.013 0.008 -0.006 0.000
K∗(892)+ - - - 0.099 -0.000 0.004 -0.002 0.000
(Kpi)∗+0 - - - - -0.039 0.003 -0.009 0.020
K∗(892)0 - - - - - 0.108 -0.002 0.000
(Kpi)∗00 - - - - - - -0.091 -0.026
NR - - - - - - - -0.105

Table XII: K+π−π0 : ACP (j).

ρ(770)− ρ(1450)− ρ(1700)− K∗(892)+ (Kπ)∗+0 K∗(892)0 (Kπ)∗00 NR

Us 0.196 -0.092 -0.346 -0.289 0.075 -0.150 -0.153 0.101
Paper 0.2 -0.1 -0.36 -0.29 0.07 -0.15 -0.15 0.1

Residuals -0.004 0.008 0.014 0.001 0.005 -0.000 -0.003 0.001

B0 → K0
SK

+K−

In this mode the amplitude is modelled the following way
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{
A =

∑
j cj(1 + bj)e

i(φj+δj)Fj,

Ā =
∑

j cj(1− bj)ei(φj−δj)F̄j.
(A.11)

The results we obtained on the fit fractions are summarised in tables XV,
XVI and XVII whereas the ACP (j) are given in table XVIII. All the results
are consistent with the paper [71].

Table XIII: CP -conserving isobar parameters for B0 → K0
SK

+K−, for the global
minimum. The NR coefficients are defined in . Phases are given in degrees. Only
statistical uncertainties are given. [71]

Parameter Value

φ(1020)K0
S c 0.039± 0.005

φ 20± 19

f0(980)K0
S c 2.2± 0.5

φ 40± 16

f0(1500)K0
S c 0.22± 0.05

φ 17± 16

f ′2(1525)K0
S c 0.00080± 0.00028

φ 53± 23

f0(1710)K0
S c 0.72± 0.11

φ 110± 11

χc0K
0
S c 0.144± 0.023

φ −17± 29
NR
aS0 c 1.0 (fixed)

φ 0 (fixed)
aS1 c 1.25± 0.25

φ −149± 9
aS2 c 0.58± 0.22

φ 56± 15
aP0 c 1.22± 0.22

φ 65± 13
aP1 c 0.28± 0.18

φ −68± 28
aP2 c 0.42± 0.16

φ −131± 25
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Table XIV: CP -violating parameters βeff , ACP , and S for B0 → K0
SK

+K−. Central
values correspond to the global minimum. Statistical uncertainties for βeff and ACP
are determined from likelihood scans. [71]

Component βeff (deg) ACP (= −C)(%) S

φ(1020)IK0
S 21± 6± 2 −5± 18± 5 0.66± 0.17± 0.07

f0(980)K0
S 18± 6± 4 −28± 24± 9 0.55± 0.18± 0.12

Other 20.3± 4.3± 1.2 −2± 9± 3 0.65± 0.12± 0.03

Table XV: K0
SK

+K−: Fit fractions as quoted in the paper (%).

φ(1020) f0(980) f0(1500) f ′2(1525) f0(1710) χc0 NR (S) NR (P)

φ(1020) 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2
f0(980) - 26.3 0.1 -0.0 14.4 -0.7 -81.2 0.0
f0(1500) - - 2.1 -0.0 5.3 -0.1 -0.7 0.0
f ′2(1525) - - - 0.5 -0.0 0.0 0.0 0.0
f0(1710) - - - - 16.7 -0.2 -27.0 0.0
χc0 - - - - - 3.4 1.6 0.0

NR (S) - - - - - - 114.5 0.0
NR (P) - - - - - - - 11.7

Table XVI: K0
SK

+K−: Fit fractions obtained in our framework (%).

φ(1020) f0(980) f0(1500) f ′2(1525) f0(1710) χc0 NR (S) NR (P)

φ(1020) 13.23 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.03
f0(980) - 26.56 -0.04 -0.00 14.31 -0.74 -81.74 0.00
f0(1500) - - 2.12 0.00 5.26 -0.10 -0.95 -0.00
f ′2(1525) - - - 0.50 0.00 0.00 0.00 -0.00
f0(1710) - - - - 16.87 -0.16 -27.66 -0.00
χc0 - - - - - 3.43 1.60 0.00

NR (S) - - - - - - 115.65 0.00
NR (P) - - - - - - - 11.82
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Table XVII: K0
SK

+K−: (FF us − FF paper)× 102.

φ(1020) f0(980) f0(1500) f ′2(1525) f0(1710) χc0 NR (S) NR (P)

φ(1020) 0.130 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.168
f0(980) - 0.260 -0.137 -0.000 -0.087 -0.045 -0.536 0.000
f0(1500) - - 0.021 0.000 -0.037 0.002 -0.253 -0.000
f ′2(1525) - - - 0.005 0.000 0.000 0.000 -0.000
f0(1710) - - - - 0.165 0.041 -0.659 -0.000
χc0 - - - - - 0.034 -0.003 0.000

NR (S) - - - - - - 1.150 0.000
NR (P) - - - - - - - 0.117

Table XVIII: K0
SK

+K−: ACP (j) (%).

φ(1020) f0(980) f0(1500) f ′2(1525) f0(1710) χc0 NR (S) NR (P)

Us -6.0 -27.5 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
Paper -5 -28 -2 -2 -2 -2 -2 -2

Residuals -1.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0



202 Extraction of γ: implementation of the modes into Laura++

B0 → K0
SK

0
SK

0
S

In this mode the amplitude is modelled the following way

A =
∑
j

aje
iθjFj. (A.12)

The results we obtained on the fit fractions are summarised in tables XX,
XXI and XXII. Due to a different choice of conventions, there is a factor of
2 between FFjk formula in the paper and our formula, the fit fractions we
quoted in this note are in accordance with formula (A.3). In this analysis no
difference was made between B0 and B̄0, there is thus no ACP (j).

The results are in agreement with the paper [104].
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Table XIX: Summary of measurements of the quasi-two-body parameters. The
quoted uncertainties are statistical only. The change in the log-likelihood (−2∆ lnL)
corresponds to the case where the magnitude of the amplitude of the resonance is
set to 0. This number is used for the estimation of the statistical significance of each
resonance. [104]

Mode Parameter Solution 1 Solution 2

f0(980)K0
S FF 0.44 +0.20

−0.19 1.03 +0.22
−0.17

Phase [rad] 0.09± 0.16 1.26± 0.17

−2∆ lnL 11.7 -

Significance [σ] 3.0 -

f0(1710)K0
S FF 0.07 +0.07

−0.03 0.09 +0.05
−0.02

Phase [rad] 1.11± 0.23 0.36± 0.20

−2∆ lnL 14.2 -

Significance [σ] 3.3 -

f2(2010)K0
S FF 0.09 +0.03

−0.03 0.10± 0.02

Phase [rad] 2.50± 0.20 1.58± 0.22

−2∆ lnL 14.0 -

Significance [σ] 3.3 -

NR FF 2.16 +0.36
−0.37 1.37 +0.26

−0.21

Phase [rad] 0.0 0.0

−2∆ lnL 68.1 -

Significance [σ] 8.0 -

χc0K
0
S FF 0.07 +0.04

−0.02 0.07± 0.02

Phase [rad] 0.63± 0.47 −0.24± 0.52

−2∆ lnL 18.5 -

Significance [σ] 3.9 -

Total FF 2.84 +0.71
−0.66 2.66 +0.35

−0.27
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Table XX: K0
SK

0
SK

0
S: Fit fractions as quoted in the paper (using our conventions).

f0(980) f0(1710) f2(2010) NR χc0

f0(980) 0.44 0.14 -0.04 -1.6 0.02
f0(1710) - 0.07 -0.02 -0.34 -0.0006
f2(2010) - - 0.09 -0.04 0.0004

NR - - - 2.16 -0.04
χc0 - - - - 0.07

Table XXI: K0
SK

0
SK

0
S: Fit fractions obtained in our framework.

f0(980) f0(1710) f2(2010) NR χc0

f0(980) 0.4579 0.1432 -0.0185 -1.6744 0.0182
f0(1710) - 0.0729 -0.0046 -0.3617 -0.0010
f2(2010) - - 0.0937 -0.0241 0.0008

NR - - - 2.2480 -0.0230
χc0 - - - - 0.0729

Table XXII: K0
SK

0
SK

0
S: FF us − FF paper.

f0(980) f0(1710) f2(2010) NR χc0

f0(980) 0.0179 0.0032 0.0215 -0.0744 -0.0018
f0(1710) - 0.0029 0.0154 -0.0217 -0.0004
f2(2010) - - 0.0037 -0.0641 0.0004

NR - - - 0.0880 0.0170
χc0 - - - - 0.0029



Appendix B
Supplementary material for the
branching fraction measurements of
B0
(s)
→ K0

Sh
±h′∓ modes

B.1 Trigger and stripping lines included in the

selection

The list of the various trigger and stripping lines included in the analysis
presented in chapter VI are shown in this section for completeness.
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206 B0
(s) → K0

Sh
±h′∓: trigger and stripping cuts

Table I: Trigger lines included in the selection. For a given year, a logical OR is
implied between the different lines of the same trigger level, that is to say L0, HLT1
and HLT2, and a logical AND is implied between the different levels.

Year Trigger requirements HLT1 trigger requirements HLT2 trigger requirements
2011 B L0HadronDecision TOS B Hlt1TrackAllL0Decision TOS B Hlt2Topo2BodyBBDTDecision TOS

B L0DiMuonDecision TIS B Hlt2Topo3BodyBBDTDecision TOS

B L0MuonDecision TIS B Hlt2Topo4BodyBBDTDecision TOS

B L0ElectronDecision TIS B Hlt2Topo2BodySimpleDecision TOS

B L0PhotonDecision TIS B Hlt2Topo3BodySimpleDecision TOS

B L0HadronDecision TIS B Hlt2Topo4BodySimpleDecision TOS

2012 idem 2011 idem 2011 B Hlt2Topo2BodyBBDTDecision TOS

B Hlt2Topo3BodyBBDTDecision TOS

B Hlt2Topo4BodyBBDTDecision TOS

2016 B L0HadronDecision TOS B Hlt1TrackMVADecision TOS B Hlt2Topo2BodyDecision TOS

B L0DiMuonDecision TIS B Hlt1TwoTrackMVADecision TOS B Hlt2Topo3BodyDecision TOS

B L0MuonDecision TIS B Hlt2Topo4BodyDecision TOS

B L0ElectronDecision TIS

B L0PhotonDecision TIS

B L0HadronDecision TIS

B L0MuonEWDecision TIS

B L0JetElDecision TIS

B L0JetPhDecision TIS
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Table II: Stripping lines included in the run I selection. Different lines are used for
the two K0

S reconstruction categories. A hyphen in the table means that this cut is
not included in the line and “idem” means that the cut is the same for both DD and
LL lines. DOCA is the distance of closest approach and DIRA corresponds to the
cosine of the direction angle.

Cut step Candidate(s) StrippingB2KShhDDLine StrippingB2KShhLLLine

DaughterCuts

K0
S

p(K0
S) > 6000.0 MeV -

|mπ+π− −mPDG
K0

S
| < 30.0 MeV |mπ+π− −mPDG

K0
S
| < 20.0

χ2
vtx(K0

S) < 12.0 idem
χ2

FD(K0
S) > 50.0 χ2

FD(K0
S) > 80.0

K0
S daughters

p(π±) > 2.0 GeV idem
minχ2

IP (π±)> 4 minχ2
IP (π±)> 9

- pT(π±) > 250 MeV
DOCA χ2 of K0

S daughters< 25 idem
- track χ2/ndf < 4.0
- track ghost probability < 0.5

h±

track χ2/ndf < 4.0 idem
track ghost probability < 0.5 idem
pT(h±) > 250 MeV idem
minχ2

IP (h±)> 4 idem

CombinationCut B, K0
S, h±

pT(B) > 1000.0 MeV idem
pT(K0

S) + pT(h+) + pT(h−) > 4200.0 MeV pT(K0
S) + pT(h+) + pT(h−) > 3000.0 MeV

at least 2 daughters with pT > 800 MeV idem
(4000 < mK0

Sh
+h′− < 6200) MeV idem

AVAL_MAX(MIPDV(PRIMARY),PT)>0.05 idem
DOCA χ2 of any pair of daughters< 5 idem

MotherCut B, K0
S, h±

pT(B) > 1500.0 MeV idem
χ2

vtx(B) < 12.0 idem
DIRA(B)> 0.999 DIRA> 0.9999
minχ2

IP (B)< 6.0 minχ2
IP (B)< 8.0

B flight distance w.r.t. any PV > 1.7 mm B flight distance > 1.0 mm
χ2

FD(B) > 50 idem
χ2

IP (h+) + χ2
IP (h−)> 50 -
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Sh
±h′∓: trigger and stripping cuts

Table III: Stripping lines included in the run II selection. Different lines are used for
the two K0

S reconstruction categories. A hyphen in the table means that this cut is
not included in the line and “idem” means that the cut is the same for both DD and
LL lines. DOCA is the distance of closest approach and DIRA corresponds to the
cosine of the direction angle.

Cut step Candidate(s) StrippingB2KShh DD Run2 OS Line StrippingB2KShh LL Run2 OS Line

TriggerCuts
HLT1

Hlt1TrackMVADecision idem
Hlt1TwoTrackMVADecision idem
Hlt1IncPhiDecision(Hlt1PhiIncPhiDecision) idem

HLT2
Hlt2Topo{2,3,4}BodyDecision idem
Hlt2IncPhiDecision(Hlt2PhiIncPhiDecision) idem

DaughterCuts

K0
S

p(K0
S) > 6000.0 MeV -

|mπ+π− −mPDG
K0

S
| < 30.0 MeV |mπ+π− −mPDG

K0
S
| < 20.0 MeV

χ2
vtx(K0

S) < 12.0 idem
χ2

FD(K0
S) > 50.0 χ2

FD(K0
S) > 80.0

K0
S daughters

p(π±) > 2.0 GeV idem
minχ2

IP (π±)> 4 minχ2
IP (π±)> 9

- pT(π±) > 250 MeV
DOCA χ2 of K0

S daughters< 25 idem
track χ2/ndf < 4.0 idem
- track ghost probability < 0.5

h1,2
track χ2/ndf < 4.0 idem
track ghost probability < 0.5 idem

CombinationCut

pT(B) > 1000.0 MeV idem
pT(K0

S) + pT(h+) + pT(h−) > 4200.0 MeV pT(K0
S) + pT(h+) + pT(h−) > 3000.0 MeV

at least 2 daughters with pT > 800 MeV idem
(4000 < mK0

Sh
+h′− < 6200) MeV idem

DOCA χ2 between pairs of daughters < 25 idem

MotherCut

pT(B) > 1500.0 MeV idem
χ2

vtx(B) < 12.0 idem
DIRA(B)> 0.999 idem
χ2

FD(B) > 5 idem
Zvtx(K0

S)− Zvtx(B) > 15.0 mm idem
χ2

IP (π±)< 6.0 -
sum of the χ2

IP of the daughters w.r.t their PV > 50.0 idem
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B.2 Results of the simultaneous fit to the

run I data sample

The plots corresponding to the result of the fit to the run I data are shown
here for all the categories, in linear and logarithmic scale.
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Figure B.1: Simultaneous fit to the data in the 2012b DD samples, shown on
linear (left) and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−,

K0
SK

+π− and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total
PDF is shown in solid blue and the individual components are shown as dashed
lines: the B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in
green and those from B0

s in purple, the combinatorial background in grey, and the
partially reconstructed backgrounds in grey to the left.
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Figure B.2: Simultaneous fit to the data in the 2012b LL samples, shown on
linear (left) and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−,

K0
SK

+π− and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total
PDF is shown in solid blue and the individual components are shown as dashed
lines: the B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in
green and those from B0

s in purple, the combinatorial background in grey, and the
partially reconstructed backgrounds in grey to the left.
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Figure B.3: Simultaneous fit to the data in the 2012a DD samples, shown on
linear (left) and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−,

K0
SK

+π− and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total
PDF is shown in solid blue and the individual components are shown as dashed
lines: the B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in
green and those from B0

s in purple, the combinatorial background in grey, and the
partially reconstructed backgrounds in grey to the left.
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Figure B.4: Simultaneous fit to the data in the 2012a LL samples, shown on linear
(left) and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−, K0

SK
+π−

and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total PDF is
shown in solid blue and the individual components are shown as dashed lines: the
B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in green and
those from B0

s in purple, the combinatorial background in grey, and the partially
reconstructed backgrounds in grey to the left.
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Figure B.5: Simultaneous fit to the data in the 2011 DD samples, shown on linear (left)
and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−, K0

SK
+π−

and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total PDF is
shown in solid blue and the individual components are shown as dashed lines: the
B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in green and
those from B0

s in purple, the combinatorial background in grey, and the partially
reconstructed backgrounds in grey to the left.
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Figure B.6: Simultaneous fit to the data in the 2011 LL samples, shown on linear (left)
and logarithmic (right) scales. The four spectra, K0

SK
+K−, K0

Sπ
+π−, K0

SK
+π−

and K0
Sπ

+K−, are displayed from top to bottom. On each plot, the total PDF is
shown in solid blue and the individual components are shown as dashed lines: the
B0 signal in pink, the B0

s signal in light blue, the crossfeeds from B0 in green and
those from B0

s in purple, the combinatorial background in grey, and the partially
reconstructed backgrounds in grey to the left.
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[51] C.-D. Lü and M.-Z. Yang, “B → πρ, πω decays in perturbative
QCD approach,” The European Physical Journal C - Particles and
Fields 23 no. 2, (Mar, 2002) 275–287.

[52] C. W. Bauer, S. Fleming, and M. Luke, “Summing sudakov log-
arithms in B → Xsγ in effective field theory,” Phys. Rev. D 63
(Dec, 2000) 014006.

[53] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, “An effective
field theory for collinear and soft gluons: Heavy to light decays,”
Phys. Rev. D 63 (May, 2001) 114020.

http://dx.doi.org/https://doi.org/10.1016/S0550-3213(00)00559-9
http://dx.doi.org/https://doi.org/10.1016/S0550-3213(00)00559-9
http://dx.doi.org/10.1103/PhysRevLett.83.1914
http://dx.doi.org/https://doi.org/10.1016/S0550-3213(01)00251-6
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2003.09.026
http://dx.doi.org/https://doi.org/10.1016/S0370-2693(01)00247-7
http://dx.doi.org/https://doi.org/10.1016/S0370-2693(01)00247-7
http://dx.doi.org/10.1103/PhysRevD.63.054008
http://dx.doi.org/10.1103/PhysRevD.63.054008
http://dx.doi.org/10.1103/PhysRevD.63.074006
http://dx.doi.org/10.1103/PhysRevD.63.074006
http://dx.doi.org/10.1103/PhysRevD.63.074009
http://dx.doi.org/10.1007/s100520100878
http://dx.doi.org/10.1007/s100520100878
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.114020


222 Bibliography

[54] C. W. Bauer and I. W. Stewart, “Invariant operators in collinear
effective theory,” Physics Letters B 516 no. 1, (2001) 134 – 142.

[55] D. Zeppenfeld, “SU(3) relations for B-meson decays,” Zeitschrift
für Physik C Particles and Fields 8 no. 1, (Mar, 1981) 77–84.

[56] R. H. Dalitz and S. F. Tuan, “The phenomenological description of
K-nucleon reaction processes,” Annals Phys. 10 (1960) 307–351.

[57] BaBar Collaboration, J. P. Lees et al., “Measurement of CP-
violating asymmetries in B0 → (ρπ)0 decays using a time-dependent
Dalitz plot analysis,” Phys. Rev. D88 no. 1, (2013) 012003,
arXiv:1304.3503 [hep-ex].

[58] G. N. Fleming, “Recoupling effects in the isobar model. i. general
formalism for three-pion scattering,” Phys. Rev. 135 (Jul, 1964)
B551–B560.

[59] D. Morgan, “Phenomenological analysis of i = 1
2

single-pion pro-
duction processes in the energy range 500 to 700 mev,” Phys. Rev.
166 (Feb, 1968) 1731–1759.
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