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Abstract

In this thesis I report on a series of experimental studies performed with ultracold ytterbium
gases driven in different optical transitions. Ytterbium belongs to the family of the so-called
alkaline-earth-like atoms, which feature a rich electronic structure, with an optical clock tran-
sition free of spontaneous emission and a narrow intercombination transition, making them
very appealing for metrological and quantum simulation proposals.

By performing spectroscopy on the clock transition, I prove on a first set of experiments in
deep optical lattices our ability to drive this transition coherently for long times. This coherent
control is then used for different studies. First, as tool to measure the scattering lengths of the
states involved in the clock transition. Then, to prepare a small open quantum system, where
dissipation arises in the form of two-body losses. By enabling the coupling adiabatically,
we observe a strong suppression of these losses, which is interpreted as a signature of the
quantum Zeno effect. I ultimately use the coherent driving to study the relaxation dynamics
of a dissipative bulk Bose-Einstein condensate.

Finally, I elaborate an investigation on a strongly-interacting open system. Dissipation is
artificially induced in the form of spontaneous emission using the intercombination transi-
tion. Here, I study in which manner spontaneous emission destroys the spatial coherence
of a superfluid in an optical lattice. These experiments reveal that the presence of strong
interactions partially protects a residual amount of coherence and makes decoherence develop
in a non-trivial manner, unveiling the emergence of a subdiffusive relaxation channel.

Résumé

Dans ce travail de thèse, je présente une série d’études expérimentales réalisées avec des gaz
d’ytterbium ultrafroids excités sur différentes transitions optiques. L’ytterbium appartient à
la famille des atomes dits alcalino-terreux. Ces atomes possèdent une structure électronique
riche, avec une transition d’horloge exempte d’émission spontanée et une transition étroite
d’intercombinaison, ce qui les rend très intéressants pour la métrologie et la simulation quan-
tique.

Avec des expériences de spectroscopie sur la transition d’horloge dans des réseaux optiques
profonds, je montre notre capacité à exciter cette transition de manière cohérente pendant de
longues périodes. Ce contrôle est ensuite utilisé dans un premier temps en tant qu’outil pour
mesurer les longueurs de diffusion des états impliqués dans la transition d’horloge et, ensuite,
pour préparer un petit système quantique ouvert où la dissipation prend la forme de pertes à
deux corps. En branchant ce couplage adiabatiquement, nous observons une forte suppression
de ces pertes, ce qui est interprété comme une signature de l’effet Zénon quantique. J’utilise
finalement ce transfert cohérent pour étudier la dynamique de relaxation d’un condensat de
Bose-Einstein.

Enfin, je développe une étude sur un système ouvert avec des interactions fortes. Ici, on
induit artificiellement de la dissipation sous la forme d’émission spontanée en utilisant la
transition d’intercombinaison, et j’étudie comment la cohérence spatiale d’un superfluide dans
un réseau optique est détruite. Ces expériences révèlent que la présence d’interactions fortes
protège partiellement une cohérence résiduelle et entraîne un développement non-triviale de
la décohérence, révélant ainsi l’émergence d’un canal de relaxation subdiffusif.
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Glossary

In this manuscript, I use the following acronyms:

1BZ First Brillouin zone,

AOM Acousto-optic modulator,

BEC Bose-Einstein condensate,

CDT Crossed dipole trap,

EP Exceptional point,

GP(E) Gross-Pitaevskii (equation),

EOM Electro-optic modulator,

MOT Magneto-optical trap,

OBE Optical Bloch equations

PDH Pound-Drever-Hall,

TOF Time-of-flight,

ULE Ultra-low expansion.
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Introduction

Quantum simulation

It is quite common in physics to encounter situations where it is not feasible to address
a problem without resorting to important assumptions and simplifications. A relevant
tool, useful through all subdomains of physics, is the mean-field approximation. Here,
a system of many interacting particles is reduced to the physics of a single particle
evolving in a self-consistent potential, accounting for the average effect of the rest of
particles. Sometimes, such an idealized description allows one to make useful (in some
cases, even accurate) predictions about the physical system of interest. However, in
other cases, the correlations neglected in the mean-field description are an essential
component and this idealization fails to describe the physics at hand.

Condensed matter physics offers many examples of both situations. On the one hand,
many materials are well described by band theory and the Landau quasiparticle de-
scription. On the other hand, ensembles of strongly interacting electrons under extreme
external conditions, such as low temperatures or strong magnetic fields, have led to a
plethora of rich phenomena, like high-temperature superconductivity (Bednorz et al.
1986) or the fractional quantum Hall effect (Tsui et al. 1982), where a complete theoret-
ical description is still lacking. Here, even the proposed minimal models of interacting
electrons (Basov et al. 2005; Stern 2008), such as the celebrated Hubbard models or
generalizations of it, are not analytically solvable beyond the one dimensional case.
Besides, quasi-exact numerical solutions are limited to very small number of particles,
and other numerical approaches are difficult to apply due to the large number of degrees
of freedom involved.

Here comes into play the idea put forward by Richard Feynman of building «a quantum
machine that could imitate any quantum system...»1 (Feynman 1982), i.e. a quantum
simulator: A model system, controlled by experimentalists, to mimic the model Hamil-
tonian of interest. Here, instead of looking for the spectrum of such Hamiltonian, the
experiment itself gives direct access, by measurement, to the observables themselves.
There are many experimental platforms today where implementations of this idea are
pursued, including systems of trapped ions, superconducting cavity quantum electro-
dynamics, photonic systems and, last but not least, quantum gases of ultracold atoms
in optical lattices (Georgescu et al. 2014).

1«...including the physical world.» (Feynman 1982).
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Ultracold quantum gases

Ultracold quantum gases constitute on their own a well-established field of physics
nowadays. The invention of the laser in the 1960s led to vertiginous advances in atomic
physics and, in turn, to a better understanding of the interaction between light with
matter, allowing full control of the internal and external degrees of freedom of atoms.
This gave birth (Hänsch et al. 1975) to the development of laser cooling in the 1980s
(Phillips 1998; Cohen-Tannoudji 1998; Chu 1998). This cooling mechanism and other
techniques, such as evaporative cooling (Hess 1986; Davis et al. 1995), were key in the
production of the first Bose-Einstein condensates (Anderson et al. 1995; Bradley et al.
1995) and, shortly after, the first degenerate Fermi gases (DeMarco et al. 1999).

Since then, a tremendous amount of work has been invested towards the comprehension
of these new states of matter (Dalfovo et al. 1999; Leggett 2001; Giorgini et al. 2008).
Among others, these researches brought to light the wave nature of ultracold matter,
with experiments displaying interferences and underscoring the presence of long-range
order in Bose-Einstein condensates (Andrews et al. 1997; Bloch et al. 2000).

Despite being very dilute entities, these systems are interacting and feature superfluid
behavior (Raman et al. 1999; Matthews et al. 1999; Sidorenkov et al. 2013). Besides,
thanks to mechanisms such as Feshbach resonances, quantum gases can be brought to
the strongly interacting regime (Bloch et al. 2008), showing for instance the universality
of Fermi gases at unitarity (Nascimbène et al. 2010; Cao et al. 2011; Ku et al. 2012).
The emergent use of gases with long-ranged dipolar interactions (Ferrier-Barbut et al.
2016; Tanzi et al. 2019; Böttcher et al. 2019) and the careful tailoring of short-ranged
interactions (Cabrera et al. 2018; Semeghini et al. 2018) has allowed experimentalists in
the past few years to bring these dilute systems towards new states of matter, some of
them featuring supersolidity, a phase predicted long ago, where superfluidity coexists
with a tendency to form spatially orderred structures, breaking translational symmetry
(Leggett 1970; Nozières 2004; Boninsegni et al. 2012).

Alternatively, the strongly interacting regime can be reached by confining particles
into standing waves of light, the so-called optical lattices. This was first shown in the
seminal experiment of Greiner et al. (2002), where the transition from a superfluid
to a strongly correlated Mott insulator was witnessed. Atoms in optical lattices are
described by Hubbard-type Hamiltonians (Jaksch et al. 1998; Tarruell et al. 2018) and
mimic the physics of electrons in a crystal, establishing a direct analogy with condensed
matter systems with strong correlations. In quantum gases, however, the dynamics take
place at much lower energy scales thanks to their diluteness. In addition, these systems
are much pure and tuneable, allowing for probing techniques which are beyond reach
in real solid state systems.

Thanks to all these properties, quantum gases have become one of the main pillars of
quantum simulation (Cirac et al. 2012; Lewenstein et al. 2012).

Alkaline-earth-like atoms as quantum simulators

Most of the physics concerning quantum gases was first studied with alkali atoms, but
slowly, other atomic species were brought to quantum degeneracy, as is the case of two-
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Introduction

electron atoms (Takasu et al. 2003). One of the main interest of alkaline-earth atoms,
including Sr, Ca, Mg and Yb (which is a lanthanide but has the same low-lying elec-
tronic structure as alkaline-earth atoms) lies in their electronic structure, featuring an
optical clock transition. This has made them very attractive in the realm of frequency
standards (Ludlow et al. 2015) and metrological applications (Katori 2011). Nowa-
days, the most accurate clocks drive these atoms in optical lattices, and can beat the
accuracy of standard fountain clocks by orders of magnitude, with performances well
below the 10−17 level, rising the question of a new definition of the second (Riehle 2015;
McGrew et al. 2019). In addition to the existence of an optical clock transition, other
characteristics of their atomic structure make these atoms interesting for light-matter
interaction studies (Bromley et al. 2016) and these species have also been proposed for
the quantum simulation of a great variety of systems (Cazalilla et al. 2009; Gorshkov
et al. 2010; Daley 2011; Daley et al. 2011; Olmos et al. 2013; Cazalilla et al. 2014).

A particular application, which motivated the choice of ytterbium in our experiment,
is the potential these atoms have for the simulation of artificial magnetism in optical
lattices (Jaksch et al. 2003; Gerbier et al. 2010), thanks to the existence of two long-
lived states. The interplay of interactions, magnetism and the discrete nature of an
optical lattice gives rise to a rich phase diagram, where strongly correlated states such
as (the bosonic version of) the paradigmatic Laughlin state, appearing widely in the
theory of the fractional quantum Hall effect, emerge (Sørensen et al. 2005; Umucalılar
et al. 2010). Experiments with alkaline-earth-like atoms have already exploited the
clock transition in this direction, mostly in one-dimensional fermionic systems where
the long-lived excited state plays the role of a synthetic dimension (Livi et al. 2016;
Kolkowitz et al. 2017; Bromley et al. 2018)2. So far, mainly the modification of the
single-particle band structure has been studied, but one hopes to access the rich physics
of interacting systems in external gauge potentials.

Open quantum systems

No system is truly isolated. Instead, entities are usually coupled to an environment,
eventually affecting its dynamics. In many cases, the environment is too large to
keep a detailed track of its evolution and one ends up disregarding the information
being transferred to it through the coupling. This leads to a phenomenon known as
decoherence (Zurek 2007). Here, the interferences between different components of a
system become suppressed3, destroying quantum superpositions.

Quantum gases samples are produced in clean systems, extremely well separated from
the environment, and the many everyday forms of decoherence are strongly inhibited
in these systems or, at least, play a minor role in the timescale of experiments4. This
makes of such systems a good experimental platform to study decoherence, by ar-
tificially inducing it. In the past years, this problem has been tackled both in the

2In parallel, a large number of experiments have also explored these physics with alkali atoms
both in weakly interacting bulk systems (Schweikhard et al. 2004; Lin et al. 2009) and optical lattices,
where spin-orbit coupling and artificial magnetism at the single-particle level has been observed [see
e.g. Dalibard et al. (2011); Goldman et al. (2014) or Aidelsburger (2018) for a review of these topics] .

3In more precise terms, the coherences of the reduced density matrix of the system ρij at two
different times, t > t0, obey ρij(t) < ρij(t0).

4Still, dissipative mechanisms inherent to atomic physics, such as processes leading to atom losses
or heating mechanisms, might be present and destroy the coherence of quantum gases.
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theoretical and experimental sides, studying how dissipation mechanisms, mostly in
the form of spontaneous emission or atom losses, impact the evolution of a system.

These studies have already revealed many fascinating, and even counter-intuitive, phe-
nomena such as the observation of the quantum Zeno effect (Syassen et al. 2008;
Barontini et al. 2013; Zhu et al. 2014), where strong enough losses would be acting
as a continuous measurement (Breuer et al. 2007; García-Ripoll et al. 2009) and in
Patil et al. (2015), where the act of continously measuring a system inhibited coherent
tunneling.

Other experiments studying dissipation have observed bistability regions in the phase
diagram of a driven-dissipative superfluid (Labouvie et al. 2016), where losses were
locally induced at a given site of an optical lattice. Here, superfluid and normal cur-
rents coexist at intermediate loss strengths, with the emergence of the one or the
other depending on the initial conditions. Also, the effect of dissipation in many-body
localisation has been studied in Lüschen et al. (2017).

However, there is still much to understand on the role played by interactions in dis-
sipative processes. In particular, whether these interactions will hasten or slow down
the decay towards steady, fully decohered states.

This thesis

The two main topics covered throughout this manuscript are the coherent control of
the degrees of freedom of a quantum gas, and the dissipation mechanisms competing
against this coherent driving. The interplay between driving, dissipation and also the
possibility to study it in the presence of weak and strong interactions, have led us to
witness and study a variety of rich and interesting phenomena, such as the observation
of quantum Zeno dynamics and subdiffusive processes.

This manuscript contains a series of studies that are organized from the investigation
of simple few body isolated systems, to open many-body quantum systems. We first
start by characterizing one of our main probing tools: a clock laser. We do this in
small isolated systems, where the external dynamics of the particles are frozen in deep
optical lattices. In these measurements, we show the capability of driving the internal
dynamics of these simpler systems for long times. This allows us then to study and
characterize more elaborated organizations, with two or many interacting particles,
where the relaxation dynamics occur in much shorter timescales. We have used the
clock transition to measure the scattering properties of the states involved in it and to
probe the dissipative dynamics of atom pairs and a weakly interacting Bose-Einstein
condensate. Finally, using a broader transition, we have induced dissipation in the form
of spontaneous emission in a strongly interacting system, and analyzed its dynamics
towards its steady-state.
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Introduction

More in detail, the discussion and exposition of the results obtained during this thesis
have been arranged as follows:

ß Part I describes the main theory elements and the experimental framework of
this thesis. First of all, in chapter 1 we recall the basic concepts of Bose-
Einstein condensation and those of single and interacting particles in optical
lattices. Then, in chapter 2 we present our experimental setup: Here, we detail
the production and probing techniques of Bose-Einstein condensates and their
subsequent loading in optical lattices.

ß Part II is devoted to the physics of one- and two-particle systems driven on the
clock transition.

First, in chapter 3 we present the laser systems and the techniques used to drive
the clock transition and image atoms in the metastable state. Then, we review
the key notions of atom-light interactions in an optical lattice. Finally, we show
a set of measurements corresponding to different kind of spectroscopic techniques
performed on single particles loaded in deep optical lattices. The analysis of these
experiments allows us then to estimate the coherence time of our coupling laser.

In chapter 4 we deal with interacting bosonic pairs isolated in deep latices.
First, we use the clock transition to probe this system and infer the scattering
properties of the clock states. Then, we investigate the role dissipation has when
coherently driving these atomic pairs. We observe in the weak-coupling regime a
strong suppression of the losses. This inhibition can be understood from a non-
Hermitian description of the system, which allows us to link our observations to
the quantum Zeno effect.

ß Part III focuses on the study of dissipative many-body systems.

In chapter 5 we study the relaxation mechanisms of a weakly interacting Bose-
Einstein condensate driven on the clock transition. Here, we identify three possi-
ble relaxation mechanisms: Doppler broadening, elastic interactions and inelastic
two-body losses. We develop then a series of heuristic models to determine the
strength of each mechanism and we also compare our measurements to coupled
two-component dissipative Gross Pitaevskii equations, which account well for the
observed dynamics.

In chapter 6 we study the loss of phase coherence in a gas of strongly interacting
bosons in optical lattices submitted to spontaneous emission. Here, we observe
that interactions compete with the dissipation and slow down the loss of coher-
ence. This competition drives the system into a non-equilibrium state displaying
anomalous momentum diffusion, a behavior well captured by a theoretical model
also addressed in this chapter.

ß A series of supplementary materials, comprised in appendices A-F, offer
finally some complementary or more developed discussions of certain aspects
addressed in the main text.
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CHAPTER 1

Theoretical background on bosonic quantum gases

In this first chapter I aim at presenting the essential concepts underlying the theoret-
ical description of interacting ultracold bosons confined in the two different kinds of
potentials used in this thesis: a harmonic trap and a periodic potential.

These configurations allow one to study the physics in two different regimes, one in
which inter-particle correlations are negligible (harmonic trap) and another in which
they become essential (periodic potential). Atoms confined in a harmonic trap belong
to the so-called weakly interacting or dilute regime. One of the main characteristics of
this regime is the simplicity of its description: atoms form a Bose-Einstein condensate
(BEC) and it is possible to use a single macroscopic wave function to describe the
ensemble, thus neglecting correlations between particles. However, by loading atoms
in an optical lattice, bosons become tightly confined in the minima of the periodic
potential. Then, if one is able to load one or more particles at each site, the role of
interactions becomes essential and it is possible to drive the system to the strongly
interacting regime. Here, a transition from a BEC to a phase of matter with strong
correlations among particles, called a Mott insulator, takes place.

The first part of this chapter concerns the dynamics of a BEC. I start by recalling the
definition of BEC both for an ideal and an interacting system, with a rapid discussion
on the concepts of long-range order and order parameter. After this, by assuming a very
simple form for the interaction between atoms, the contact interaction, I present the
Gross-Pitaevskii equation (GPE), which describes the physics of N weakly interacting
bosons at temperature T = 0. I conclude this section by discussing the spectrum of
the elementary excitations.

In the second part I focus on the physics of atoms trapped in a periodic potential. After
briefly discussing the non-interacting case, which allows to set the necessary conditions
to work in what is known as the tight-binding framework, I present the Bose-Hubbard
Hamiltonian and describe its phase diagram within the Gutzwiller approximation. I
finish the chapter with a discussion on the adiabaticity criteria that need to be satisfied
in order to transfer adiabatically a weakly interacting BEC created in a harmonic trap
into a periodic potential, thereby preparing the ground state of the Bose-Hubbard
Hamiltonian.

9



1.1. Bose-Einstein Condensation

1.1 Bose-Einstein Condensation

Here, we present the main theoretical tools to describe the physics concerning Bose-
Einstein condensates of dilute quantum gases. The concepts exposed in the following
sections are developed in more details in the following references: Dalfovo et al. (1999);
Leggett (2001); Pitaevskii et al. (2003); Leggett (2006) and Pethick et al. (2008).

1.1.1 Bose-Einstein condensation in an ideal system

We start by recalling the basic ideas linked to the concept of Bose-Einstein condensation
in an ideal system, namely the saturation of the excited states in thermal equilibrium
(Pethick et al. 2008). In particular, for an ensemble of N non-interacting bosons
described by a Hamiltonian Ĥ =

∑
j ĥj, the mean number of particles Nα in a given

eigenstate |φα〉 of ĥj with energy εα and at a temperature T is given by the Bose-
Einstein distribution (Pathria et al. 2011):

Nα =
1

exp[(εα − µ)/(kBT )]− 1
, (1.1)

with µ < min(εα) the chemical potential of the system and N =
∑

αNα. This con-
straint on the chemical potential sets the maximum number of particles that can be
accommodated in the excited states:

N ′ < N ′max(T ) =
∑
α 6=0

1

exp[(εα − ε0)/(kBT )]− 1
. (1.2)

At high temperatures we have Nα � 1 and µ� ε0, where we have labeled the lowest-
energy eigenstate of ĥj as ε0. However, as temperature decreases and µ approaches ε0,
a situation in which N > N ′max(T ) can be reached. When this happens the remaininig
N0 = N −N ′max(T ) bosons occupy necessarily the lowest-energy state |φ0〉 and we then
talk of Bose-Einstein condensation. At T = 0, all the bosons occupy |φ0〉, and the state
of the system is given by:

|Φ〉 =
(â†0)⊗N√

N !
|vac〉, (1.3)

where â†0 creates a particle in state |φ0〉.

1.1.2 Bose-Einstein condensation in an interacting system

When interactions between particles are included, the previous definition of BEC is
not appropriate anymore. The most commonly accepted definition of what is a BEC
was given by Penrose and Onsager (Penrose et al. 1956), and relies on the appearance
of a macroscopic eigenvalue of the one-body density matrix.

The Penrose-Onsager criterion

In their argument, Penrose and Onsager (Penrose et al. 1956) start by considering a
many-body system of N interacting bosons described by a density matrix ρ̂. Then,
they focus on the 1-body density matrix or first-order correlation function G1(r, r′) =
〈Ψ̂†(r)Ψ̂(r′)〉. Here Ψ̂(r) is the field operator annihilating a boson at a point r. The
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Chapter 1. Theoretical background on bosonic quantum gases

density of the system is found by setting r = r′, i.e. n(r) = 〈Ψ̂†(r)Ψ̂(r)〉. The
eigenvalues decomposition of G1 is:

G1(r, r′) =
∑
i

ρiφ
∗
i (r)φi(r

′), (1.4)

with the normalization condition
∑

i ρi = N . Penrose and Onsager argue that the
system exhibits Bose-Einstein condensation if one of the eigenvalues is of the order
of the total number of particles N , all the others being of order 1. From now on,
we label this state as φ0, which is called the wave function of the condensate. In the
thermodynamic limit, the occupation of this state remains finite while ρi 6=0/N → 0.

Long-range order and order parameter

Let us now split G1 as follows:

G1(r, r′) = N0φ
∗
0(r)φ0(r′) +

∑
i 6=0

ρiφ
∗
i (r)φi(r

′). (1.5)

If we now take the limit |r− r′| → ∞, the different φi 6=0 corresponding to ρi � N will
scramble, and the terms in the sum end up canceling themselves5. Then, one has:

lim
|r−r′|→∞

G1(r, r′) = N0φ
∗
0(r)φ0(r′). (1.7)

The G1 function characterizes phase coherence (Naraschewski et al. 1999), and then,
what the expression above states is that if a BEC is present, the system exhibits
off-diagonal long range order, or long-range phase coherence, which is also used as a
definition of a BEC (Pitaevskii et al. 2003). In the case of a non-homogeneous system,
the limit |r − r′| → ∞ has to be replaced by the effective size L of the system defined
by the trapping potential.

From equation (1.7), one can define an order parameter :

Φ0(r) =
√
N0φ0(r), (1.8)

normalized so that
´
|Φ(r)|2 d3r = N0. The condensed fraction is then given by fc =

N0/N .

1.1.3 Interacting dilute gases: Gross-Pitaevskii equation and
elementary excitations

Interactions in a dilute system

In a dilute gas, interactions between atoms are mainly due to two-body elastic collisions
described through a potential Uint. In the description of the collision between two

5This can be easily seen if one takes a uniform system with φki
(r) = exp(−iki · r)/

√
V . Since the

system is uniform, we can put u = r − r′ and we have:

G1(u) =
N0

V
+

1

V

∑
i 6=0

ρie
iki·u. (1.6)

The sum consists of many terms oscillating each at a different frequency and therefore, the contribution
of the non-condensed part will vanish as u→∞ leading to G1(u→∞) = N0/V 6= 0.

11



1.1. Bose-Einstein Condensation

atoms (Messiah 1999), the center of mass motion of the system decouples from the
relative motion, the latter being characterized by the scattering amplitude f(k,k′),
with k and k′ the incident and outgoing momentum, respectively. For low energies,
s-wave scattering is dominant. Then, the scattering amplitude f becomes isotropic in
momentum space and becomes independent of energy:

lim
k→0

f(k) = −a. (1.9)

Here a is the so-called scattering length. The exact details of the potential Uint are
no longer important and one typically uses an effective potential to describe interac-
tions between atoms. The most common choice is to employ Fermi’s contact potential
(Pethick et al. 2008):

Uint(r − r′) = gδ(r − r′), (1.10)

with g the coupling constant, related to the scattering length as g = 4π~2a/M , with
M the mass of the particle (Pethick et al. 2008).

Time-independent Gross-Pitaevskii equation

The Hamiltonian of N trapped bosons of mass M interacting through a two-body
contact potential is given by:

Ĥ =
N∑
j=1

(
p̂2
j

2M
+ Vtrap(r̂i)

)
+
g

2

∑
i 6=j

δ(r̂i − r̂j). (1.11)

In order to find the eigenfunctions Ψ(r1, . . . , rN) of this Hamiltonian, the most common
method is to assume that, if the system is dilute and interactions are weak enough (we
will give a criterion for this later), the many-body wave function retains the same
structure as an ideal gas and can be written as in equation (1.3) with â0 defined as:

â0 =

ˆ
φ0(r)Ψ̂(r) d3r, (1.12)

where φ0 is the wave function of the BEC. This is a mean-field or Hartree ansatz
and all spatial correlations between particles that might have been introduced by the
presence of the interactions are neglected. The wave function φ0 can be found in
the grand canonical formalism by minimizing the free-energy functional F [φ0(r)] =
〈Ψ|Ĥ − µN̂ |Ψ〉, with µ the chemical potential. This leads to the time-independent
Gross-Pitaevskii equation:

µΦ0(r) = − ~2

2M
∇2Φ0(r) + Vtrap(r)Φ0(r) + gn(r)Φ0(r), (1.13)

with Φ0 =
√
Nφ0 the stationary order parameter and n(r) = |Φ0(r)|2 the density.

Thomas-Fermi approximation in a harmonic trap

In the case of repulsive scattering lengths (g > 0), interactions tend to smoothen the
density profile. In this situation, for large N the kinetic energy term∇2Φ0, also known
as quantum pressure term becomes negligible and equation (1.13) leads to:

µ = Vtrap(r) + gn(r), (1.14)
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Chapter 1. Theoretical background on bosonic quantum gases

which is known as the Thomas-Fermi approximation (Dalfovo et al. 1999). In this case,
the shape of the BEC is mainly determined by the trapping potential:

n(r) = |Φ0(r)|2 = Θ

(
µ− Vtrap(r)

g

)
, (1.15)

with Θ(x) = xθ(x) and θ(x) the Heaviside step function.

In many experimental situations, the BEC is obtained in a harmonic trap. The density
of the cloud can then be written as:

n(r) = n0Θ

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (1.16)

which manifests the inverted parabola profile. In this expression n0 is the peak density
and Rj = [2µ/(mω2

j )]
1/2 is called the Thomas-Fermi radius in the j-direction, after

which the density is exactly zero. The chemical potential then reads:

µ =
~ω̄
2

(
15aN

aho

)2/5

, (1.17)

with ω̄ = (ωxωyωz)
1/3 the geometric mean of the trapping frequencies, N the total

atom number and aho = [~/(mω̄)]1/2 the associated harmonic oscillator length. The
peak density is in this case n0 = 15N/(8πRxRyRz).

An interesting property of BECs trapped in harmonic potentials is their evolution
under time-dependent trapping frequencies ωj(t). It has been shown that the density
of the BEC evolves keeping the form given by equation (1.16) with its radii dilated as
Rj(t) = λj(t)Rj, with λj(t) the dilation coefficient and Rj the Thomas-Fermi radii at
t = 0. The scaling factors satisfy the equations (Castin et al. 1996):

λ̈j(t) =
ω2
j (0)

λj(t)λ1(t)λ2(t)λ3(t)
− ω2

j (t)λj(t). (1.18)

In particular, this means that the shape of the BEC after time of flight (TOF), i.e., when
the traps are suddenly switched off [in other words, with ωj(0) = ωj and ωj(t > 0) = 0]
still reflects the in situ density distribution.

Gas and interaction strength parameters

The GP description previously introduced relies on the diluteness of the gas (i.e., no
correlations among particles and binary collisions). Moreover, within this framework,
the Thomas-Fermi approximation requires that interactions be strong enough to neglect
the quantum pressure term∇2Φ. These two conditions can be stated in a more precise
way by introducing the so-called gas parameter γ and the interaction strength χ.

For this, we can consider N particles confined in a 3D volume. In the non-interacting
case, each boson is completely delocalized in order to minimize its kinetic energy. All
of them can then be described by the same single particle wave function [see equation
(1.3)] and all the wave functions overlap. As interactions start increasing, particles
start repelling each other and the size of each particle’s wave function R shrinks.

13



1.1. Bose-Einstein Condensation

Figure 1.1 – (a): Weakly interacting regime. Here, interactions play a minor role
and particles minimize their kinetic energy by delocalizing and occupying the whole
volume. The system can still be described by a single wave function in this case. (b)
and (c): As interactions increase, it becomes more favorable to localize the particles
in order to minimize the interaction energy due to the overlap of the wave functions.

This translates into the creation of short-range correlations on the order of the inter-
particle distance d [see figure 1.1(a)]. As interactions increase, the repulsion becomes
more important and the short-range correlations can become on the order d ' R
[see figures 1.1(b)-(c)]. Therefore, the effect of interactions is to localize the particles,
leading to a correlated state. The kinetic energy ' p2/(2M) required to create these
correlations [i.e. to create a state such as the one shown in figure 1.1(c)] is then given
by εkin ∝ ~2/(2Md2) = ~2n2/3/(2M) with n = d−3. In turn, the interaction energy of
having all wave functions overlapped [such as 1.1(a)] is given by εint ∝ gn. The ratio
of the energies between these two limit cases allows us to define a diluteness criterion
through the gas parameter:

γ = na3, (1.19)

which quantifies the ratio εint/εkin ∝ γ1/3. The weakly interacting regime is then
characterized by γ � 1, or µ � ~2n2/3/(2M). This is satisfied for dilute Bose gases
with typical densities n ' 1014 at/cm3 and scattering lengths on the order of several
Bohr radius [e.g. for 174Yb the scattering length is a = 105 a0 ' 5.5 nm (Kitagawa et al.
2008)].

In the dilute regime, the criterion that needs to be satisfied in order to perform the
Thomas-Fermi approximation can be stated by comparing the ratio between the mean-
field kinetic and trapping energies 〈−~2∇2/(2M)+Vtrap〉 on the one hand, and interac-
tion energy 〈gn〉 on the other hand. In a harmonic trap, the parameter characterizing
this ratio is the so-called interaction strength parameter6 (Dalfovo et al. 1999):

χ =
Na

aho

, (1.20)

which can be made χ � 1 while still satisfying γ � 1. In other words, the energy
hierarchies are: ~ω̄ � µ� ~2n2/3/(2M).

6This can also be seen by writing the GPE in equation (1.13) in a dimensionless form:

µ̃ϕ =

[
−1

2
∇̃2

+
1

2
r̃2 + 4πχ|ϕ|2

]
ϕ,

where the parameter χ determines the strength of the nonlinear term due to the interactions with
respect to the trapping and kinetic energy contributions (Dalfovo et al. 1999).
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Chapter 1. Theoretical background on bosonic quantum gases

Broken symmetry approach

The bosonic field operator can be expanded as:

Ψ̂(r) = Ψ̂0(r) + δΨ̂(r) = φ0(r)â0 +
∑
i 6=0

φi(r)âi. (1.21)

We now make the so-called Bogoliubov approximation, which can be performed in the
weakly interacting or dilute regime when a condensate is present, i.e. when N0 ' N .
This approximation consists in remarking that, for large N0, the states with N0 and
N0±1 atoms are approximately equivalent in what concerns the dynamics of the BEC.
Then, one replaces the operators â†0 and â0 with a c-number a0 = a∗0 =

√
N0. With

this, the field operator can be written in terms of the order parameter as:

Ψ̂(r) = Φ0(r) + δΨ̂(r). (1.22)

In a dilute ultracold Bose gas (i.e., with γ � 1) the excited states can be neglected
to a first approximation and one usually sets δΨ̂(r) = 0, which corresponds to the
GP theory introduced earlier (Dalfovo et al. 1999). Under this approximation, the
field operator coincides exactly with the order parameter Ψ̂(r) = Φ0(r). In particular,
this implies that 〈Ψ̂〉 = Φ0, which is known in the literature as spontaneously broken
gauge symmetry (Anderson 1997). This amounts to consider that the condensate is in
a coherent state:

|Φ0〉 ' |α〉 = e−|α
2|/2
∑
N

αN√
N !
|N〉, (1.23)

with α =
√
N0. This approximation poses the conceptual problem that the number of

particles is no longer conserved (Leggett 2006). Actually the fluctuatons are of order√
N0 around the mean value N0 (which does not mean that the atom number fluctuates

in experiments, but rather that one needs to work in the grand canonical ensemble to
compute thermodynamic quantities, as if the system was in contact with a particle
reservoir). This description is commonly used in the literature and as we will see in
section 1.2.3, it proves particularly useful for a BEC in a periodic potential.

Time-dependent Gross-Pitaveskii equation

The broken symmetry approach allows us to derive the time-evolution of the order
parameter in a simple way. We first write the many-body Hamiltonian in equation
(1.11) in second quantization:

Ĥ =

ˆ
Ψ̂†(r)

[
−~2∇2

2M
+ Vtrap(r)

]
Ψ̂(r) d3r +

g

2

ˆ
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) d3r. (1.24)

Then, the evolution of the system, can be derived by computing the equation of motion
of the field operator in the Heisenberg picture, which reduces to an equation for the
evolution of the order parameter in the absence of quantum fluctuations by putting
〈Ψ̂(r, t)〉 = Φ0(r, t):

i~
∂Φ0(r, t)

∂t
= − ~2

2M
∇2Φ0(r, t) + Vtrap(r)Φ0(r, t) + g|Φ0(r, t)|2Φ0(r, t). (1.25)
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1.1. Bose-Einstein Condensation

This is the so-called time-dependent Gross-Pitaevskii equation (Dalfovo et al. 1999;
Leggett 2001; Pitaevskii et al. 2003). We then see that the evolution of stationary
states Φ0(r) obeying equation (1.13) is given by the chemical potential µ:

Φ(r, t) = Φ0(r) e−iµt/~. (1.26)

Elementary excitations

We end the section on BECs by discussing the spectrum of the elementary excitations
for weak perturbations. For this, one usually takes the stationary form of the order
parameter and adds a small perturbation δΦ0 (Pitaevskii et al. 2003):

Φ(r, t) = [Φ0(r) + δΦ0(r, t)]e−iµt/~, (1.27)

where δΦ0(r, t) consists of oscillations around the equilibrium value of the form:

δΦ0(r, t) =
∑
i

[
ui(r)e−iωit + v∗i (r)eiωit

]
. (1.28)

Then, the weakest excitations are obtained by linearising the GPE using equation
(1.27). An analytical solution can be found for a homogeneous BEC of density n
and chemical potential µ = gn. By considering in this situation a perturbation of
momentum p = ~q and putting uq(r) = uq exp(iq · r) and vq(r) = vq exp(iq · r),
one obtains the famous Bogoliubov dispersion law for the elementary excitations of the
system:

ε(q) = ~ω(q) =

√
~2q2

2M

(
~2q2

2M
+ 2gn

)
(1.29)

At low momenta the dispersion relation has a phonon-like branch of energy εph(q) '
~qcs, with cs =

√
gn/M the speed of sound in the BEC. In this situation, the collective

oscillations consist of many atoms with momenta q and −q. At high momenta, the
dispersion law approaches the dispersion relation εfp(q) = ~2q2/(2M) + gn of a free-
particle with a mean field term shift gn (Pitaevskii et al. 2003). The transition between
these two regimes occurs at momenta such that ~q/M ' cs (Pitaevskii et al. 2003).

In the case of a trapped BEC of size L and for excitations such that 1/q � L, one can
use a local form of the Bogoliubov dispersion relation ε(q) → ε(q, r) with n → n(r)
(Stenger et al. 1999; Stamper-Kurn et al. 1999; Zambelli et al. 2000). In a trap, the low-
energy excitations correspond to collective modes involving the whole BEC. In the case
of an isotropic harmonic trap of frequency ω0, the finite size of the system, given by the
Thomas-Fermi radii RTF ∝ 1/ω0, quantizes the possible momenta q ∝ 2π/RTF ∝ ω0

and the possible low-energy excitations εph(q) ' ~qcs are then proportional to the
trapping frequency ω0 (Jin et al. 1996). As an example, these excitations correspond
to center of mass oscillations at ω = ω0 or breathing oscillations with a compression
frequency ω =

√
5ω0 (Pitaevskii et al. 2003) or ω ' 2ω⊥ in the case of an elongated

trap with ω⊥ � ωz (Chevy et al. 2002). Both the center of mass oscillations and the
breathing mode are commonly used in experiments to calibrate the trapping frequencies
[see section 2.1.4].
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Figure 1.2 – Lowest energy bands E(n, q) in the 1BZ for lattice depths V0 =
2Er, 10Er, 20Er and 30Er. The blue shaded region represents the region of bands
whose energy is smaller than V0. As the lattice depth is increased, the bands become
flatter and the bandgap is larger [see figure 1.4(b)].

1.2 Quantum gases in optical lattices

By loading atoms in an optical lattice, the strongly interacting regime (where the
system can no longer be described by a macroscopic wave function) can be reached.
This is due to the fact that the ratio Eint/Ekin is determined on the one hand by the
tunneling amplitude a particle has for hoping from one site to another, J , and the
on-site interaction energy U on the other hand7. This ratio U/J increases drastically
with the lattice depth, mostly because the tunneling is suppressed in an exponential
manner, and a situation in which Eint/Ekin = U/J � 1 can be attained even if the gas
remains dilute with n ∝ d−1/3, where d is the lattice spacing, on the order of 0.1−1 µm
in typical experiments (Zwerger 2003).

1.2.1 Single particle considerations: tight-binding
Hamiltonian

In this section, we will quickly review the main ideas concerning the motion of a single
particle in a periodic potential of the form (Ashcroft et al. 1976):

V (r) = −V0 cos2(kLz). (1.30)

In the previous expression, V0 is the depth of the potential at the position of its minima,
usually called the lattice depth, z is the space coordinate and kL = 2π/λL.

Band structure in a 1D periodic potential

The evolution of the particle in a periodic potential is governed by the Hamiltonian
Ĥ = −~2∂2

z/(2m)− V0 cos2(kLz), which sets the following natural units: distances will
7An effective mass for a particle in an optical lattice can be computed through the band structre

dispersion relation (Ashcroft et al. 1976). This effective mass turns out to be M∗ ∝ 1/J . Thus, the
effective kinetic energy of the particle becomes Ekin ' ~2/(2M∗d2) ∝ J . The interaction energy gn is
determined by the width of the wave function σ in the lattice site, and we have Eint ∝ g/σ3 = U .
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Figure 1.3 – Wannier functions for (a) the fundamental band w0(z) and (b) the first
band w1(z) for different lattice depths. The dashed curves in (a) correspond to the
Wannier function displaced of one lattice site w0(z − d).

be given in units of the lattice spacing d = λL/2, the natural momentum is ~kL and
the natural measure of energy is the recoil energy Er = ~2k2

L/(2M), with M the mass
of the particle.

The translational invariance of the Hamiltonian allows us to use Bloch’s theorem to
diagonalise it. The eigenstates can then be written as Bloch waves (Ashcroft et al.
1976):

φn,q(z) = eiqzun,q(z), (1.31)

with un,q(z + d) = un,q(z) the Bloch functions. These wave functions are characterized
by the quasimomentum q and an integer n called the band index. Because of the
periodicity of Ĥ, changing the quasimomentum by a multiple of the reciprocal-lattice
vector Qm = 2mkL, with m ∈ Z, leaves the Bloch wave unchanged. This restricts the
dynamics to the so-called first Brillouin zone (1BZ), with q ∈ (−kL, kL]. The spectrum
of Ĥ can be numerically calculated and leads to the Bloch energy bands E(n, q), with
allowed regions labelled by the band index n separated by the band-gaps. We show
the lowest energy bands at different lattice depths in figure 1.2. In this basis, the
Hamiltonian is diagonal and, in second quantisation, reads:

Ĥ =
∑
n

ˆ kL

−kL

E(n, q) b̂†n,q b̂n,q dq, (1.32)

where b̂n,q destroys a particle in the Bloch wave φn,q(z).

Wannier functions

Bloch waves are delocalised over the whole lattice. However, as one starts increasing the
lattice depth, the particle gets more and more localized and an alternative description
becomes useful, specially when interactions are be present. For this, we first define the
Wannier wave functions (Wannier 1937):

wn(z − zj) =

√
d

2π

ˆ kL

−kL

φn,q(z) e−iqzj dq, (1.33)

where zj = jd is a point located at the jth minimum of the potential. These new states
are not eigenstates of the periodic Hamiltonian but they offer an intuitive description
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Figure 1.4 – Comparison of tunneling energies. (a): Tunneling energies to first (solid),
second (dashed) and third (dotted) nearest neighbor as a function of the lattice depth.
(b): Bandgap (dotted line) and bandwith (solid line) in the tight binding regime. The
bandwith is compared to the 1D prediction 4J0(1) (dashed line).

in the limit of large lattice depths. To see this, we can write the Hamiltonian from
equation (1.32) in the Wannier basis:

Ĥ = −
∑
n
i,j

Jn(zi − zj) â†n,iân,j, (1.34)

where ân,i destroys a particle in the Wannier state wn(z − zi). In this picture, the
Hamiltonian describes the hoping through quantum tunneling between sites i and j
of a particle in the band n. The strengths of these processes are given by the matrix
elements Jn(i − j), which can be related to the Fourier transform of the dispersion
relation:

Jn(i− j) =

ˆ
w∗n(z − zj)

[
~2

2M

∂2

∂z2
− V (z)

]
wn(z − zi) dz (1.35)

= − d

2π

ˆ kL

−kL

E(n, q) e−iq(zi−zj) dq. (1.36)

Tight-binding approximation

We now perform some approximations. First we note that as the lattice depth is
increased, the Wannier wave functions become more and more localized8 (see figure
1.3) and the strength of the tunneling parameter decreases exponentially. For lattice
depths V0 ≥ 6Er, tunneling to second or higher neighbors is strongly suppressed [figure
1.4(a)]9. Then, from now on we will just consider nearest-neighbor tunneling. The sec-
ond important approximation, valid at high lattice depths, is to restrain the dynamics
of the particle to the fundamental band n = 0. The single-band approximation is

8For a one-dimensional symmetric potential, a proper choice of the phases of the Bloch waves
allows us to define the Wannier wave functions so that for each band they are (i) real, (ii) with a
defined symmetry with respect to the origin and (iii) exponentially decaying with the distance. This
is achieved by imposing φn,q(z = 0) ∈ R+ for n even and ∂zφn,q(z = 0) ∈ R+ for n odd (Kohn 1959).

9As we will see in the following sections, at lattice depths V0 ≥ 6Er the interaction energy (which
dictates the dynamics in the fundamental band) is at least one order of magnitude smaller compared
to the bandgap [see figure 1.9] and thus, cannot induce transition to higher bands
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1.2. Quantum gases in optical lattices

usually fulfilled in quantum gases experiments, where one starts with a gas that is cold
enough to be loaded in the fundamental band of the lattice. Then, if the band-gap is
higher than the inverse timescale of the intrinsic dynamics in the fundamental band,
this is a valid approximation.

The single-band and nearest-neighbor hopping approximations allow us to define the
tight-binding hamiltonian:

ĤTB = −J
∑
i

â†i+1âi + h.c., (1.37)

with J ≡ J0(|i− j| = 0) and âi ≡ ân=0,i.

By inverting equation (1.36), we see that, under this approximation, the dispersion rela-
tion takes the simple form E(q) = −2J cos(qd), and the bandwidth of the fundamental
band is ∆E = 4J (Ashcroft et al. 1976).

The previous picture can be easily extended to 2D or 3D in the case of a square or
cubic lattice, by superimposing two or three standing waves in orthogonal directions
(Bloch et al. 2008). With a suitable choice of polarization and frequencies, beams
corresponding to different standing waves should not interfere with one another [see
discussion in section 2.2.1] and the total potential is obtained by the incoherent sum
of each potential:

V (r) = V0xcos2(kLx) + V0ycos2(kLy) + V0zcos2(kLz). (1.38)

The dispersion relation reads ε(q) = −zJ cos(qd), with z the number of nearest neigh-
bors. The bandwidth of the fundamental band is then 2zJ (see figure 1.4(b)).

External confinement

In usual experimental conditions [section 2.2.1], the periodic potential generated by
the lattice is spatially modulated by a Gaussian profile (Bloch et al. 2008). Taking this
into account, the full potential can be written as:

V (r) = −V0 cos2(kLz) e−2ρ2/w(z)2

. (1.39)

Here z is the propagation direction and ρ2 = x2 + y2. We have denoted by w(z) the
length scale above which the lattice modulation varies in a plane transverse to the
propagation direction. In general, close to the absolute minimum of equation (1.39),
w changes slowly with z and we can neglect the axial dependency, i.e., w(z) ' w0.
Typically, this length w0 is large compared to the atomic cloud dimension, R, and
the lattice spacing d. This allows us to treat the modulation as a perturbation of the
periodic potential by expanding it: exp(−2ρ2/w0) ' 1− 2ρ2/w0.

The zeroth order of the perturbation is nothing but the periodic potential discussed so
far. We now concentrate on the first order of the perturbation δVz = 2V0 cos2(kLz)ρ2/w2

0.
As several standing waves are involved, the main effect of this perturbation is to modify
the transverse confinement of the lattices generated by the orthogonal beams (e.g. at
first order, the effect of lattice in the z direction is to create a residual confinement in
the x − y plane). By treating this contribution perturbatively, it is possible to write
the potential in a separable form.
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Chapter 1. Theoretical background on bosonic quantum gases

Within the tight-binding approximation, the perturbation modifies the Hamiltonian in
equation (1.37) by adding a site-dependent energy shift. We can write it as:

δĤz =
2V0z

w2
0

∑
i

〈wzi |cos2(kLz)|wzi〉〈w⊥i |ρ2|w⊥i〉 â
†
i âi

' 2V0z

w2
0

∑
i

[
1− k2

L〈wz0|z2|wz0〉
]
〈w⊥i |ρ2|w⊥i〉 â

†
i âi, (1.40)

where from the first to the second line we have developed the cosine around the po-
tential absolute minimum at zi = 0, valid in the tight-binding limit where the wave
functions are strongly localized (figure 1.3). Denoting by σi the rms-width of the
Wannier function in the i−direction, the previous expression can be rewritten as:

δĤz =
2V0z

w2
0

∑
i

[
1− (kLσz)

2
]

[(σ2
x + x2

i ) + (σ2
y + y2

i )] â
†
i âi. (1.41)

We note that (kLσz)
2 � 1, and therefore we neglect this term in the following. Then,

up to a small offset ∼ σ2, the correction reads:

δĤz =
∑
i

1

2
Mω2

ext,z(x
2
i + y2

i ) â
†
i âi, (1.42)

where we have defined the external frequency as ωext,z = [4V0z/(Mw2
0)]1/2. With this,

the tight-banding Hamiltonian can be expressed as the sum of a periodic potential and
a harmonic confinement. For a cubic lattice, it reads:

ĤTB = −J
∑
〈i,j〉

(â†iâj + â†j âi) +
∑
i

1

2
M(Ω2

xx
2
i + Ω2

yy
2
i + Ω2

zz
2
i ) â

†
iâi, (1.43)

where 〈·〉 denotes nearest-neighbor and where Ω2
α = ω2

ext,β + ω2
ext,γ, with α ⊥ (β, γ).

1.2.2 Interactions in an optical lattice: Bose-Hubbard
Hamiltonian

We now turn to the description of an ensemble of identical bosons interacting in the
fundamental band of a cubic lattice (Jaksch et al. 1998). We will consider that atoms
interact via the short-range contact potential, characterized by the coupling parameter
g = 4π~2a/M , with a the s-wave scattering length.

The interaction Hamiltonian reads:

Ĥint =
g

2

ˆ
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) d3r =

1

2

∑
ijkl

Uijklâ
†
iâ
†
j âkâl, (1.44)

with Ψ̂ (r) =
∑
iw(r − ri)âi. Now we place ourselves again within the tight-binding

approximation, where the Wannier functions are strongly localized and therefore the
overlap between wave functions at different sites is strongly suppressed. In this case,
the matrix element is purely local (i = j = k = l) and we define the on-site interaction
strength as:

U = g

ˆ
|w(r)|4 d3r. (1.45)

21



1.2. Quantum gases in optical lattices

The combination of the single-particle and interaction Hamiltonians leads to the Bose-
Hubbard Hamiltonian (Fisher et al. 1989; Jaksch et al. 1998):

ĤBH = −J
∑
〈i,j〉

(â†iâj + â†j âi) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i, (1.46)

where n̂i = â†iâi is the number operator, counting the number of particles at site i
and εi contains the energy shift due to the Gaussian envelope in equation (1.43). The
ground state of this system results from the competition of two terms (Zwerger 2003):

1. The kinetic energy contribution, whose strength is given by J , which tends to
minimize the kinetic energy by delocalizing atoms along the lattice through quan-
tum tunneling.

2. The on-site energy contribution, of strength U , which will tend to minimize the
interactions by localizing particles in the lattice sites.

We will discuss this in the next section10.

1.2.3 Phase diagram of the homogeneous Bose-Hubbard
Hamiltonian

Gutzwiller ansatz

The Bose-Hubbard Hamiltonian from equation (1.46) is not analytically solvable for
finite J/U (Fisher et al. 1989). In this section, we use a variational mean-field technique
that uses a class of wave functions known as Gutzwiller ansatz (Rokhsar et al. 1991;
Sheshadri et al. 1993). This method captures the essential physics of the dynamics
governed by Bose-Hubbard Hamiltonian.

To simplify the notations, we will consider a 1D system with L sites and N bosons,
and we first focus on the homogeneous situation with εi = 0. The basic idea of this
approach is to use a many-body state |ΦG〉 that factorizes as a product of on-site states
|ψ〉j:

|ΦG〉 =
L⊗
j=1

|ψ〉j, with |ψ〉j =
∞∑
n=0

c(n)|n〉j, (1.48)

with |n〉j a Fock state with n atoms at site j and
∑

n |c(n)|2 = 1. Because of transla-
tional invariance, each state |ψ〉 is the same at each lattice site j. This kind of ansatz
is then a mean-field ansatz that neglects possible correlations among different sites.

10One can also write the following approximate forms for the tunneling and the 3D on-site inter-
action strengths (Zwerger 2003):

J ' 4Er√
π

(
V0
Er

)3/4

exp

[
−2

√
V0
Er

]
, U ' Er

√
8

π
kLa

(
V0
Er

)3/4

=
g

(
√

2πaho)3
. (1.47)

We thus see that the ratio J/U ∝ exp(−2
√
V0/Er) can be scanned over several orders of magnitude

by ramping up the optical lattice depth to several tens of recoil energies.
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Chapter 1. Theoretical background on bosonic quantum gases

In the uniform case, the Gutwziller ansatz is exact in two cases (Zwerger 2003):

1. In the weakly interacting case, where J/U → ∞. In this situation the system
remains a BEC. The ground state is then just a product state in which all particles
occupy the lowest Bloch state |q = 0〉 and atoms are completely delocalized along
the lattice. For N particles and L sites, the state reads:

|Φ〉SF ∝ (b̂†q=0)⊗N |vac〉 ∝

(
L∑
j=1

â†j

)⊗N
|vac〉. (1.49)

For large N and L, the probability of having n atoms in a given site is close to a
Poissonian distribution and the state can be described as a product of coherent
states in each site, i.e.:

|Φ〉SF ∝
L⊗
j=0

|α〉j, with |α〉j = e−|αj |/2
∞∑
n=0

αnj√
n!
|n〉j, (1.50)

which corresponds to the discrete version of the broken symmetry approximation
introduced in section 1.1.3. The order parameter becomes in this case |〈â〉|2 =
|α|2 = n̄ with n̄ the mean occupation number of the site.

2. In the strongly interacting regime, with J/U → 0. This is the so-called atomic
limit and the lattice can be seen as an ensemble of wells of infinite depth. In this
case, the atoms are completely localized at each site and the system is described
by a product of Fock states. In the case of commensurate fillings (i.e. for N/L =
n0 ∈ N) the state reads:

|Φ〉MI ∝
L⊗
j=1

|n0〉j. (1.51)

The Gutwziller ansatz is able to describe the main aspects of the transition between
these two regimes as the lattice depth increases and the ratio J/U decreases. In partic-
ular, it accounts for the fact that the states in equations (1.50) and (1.51) are connected
by a quantum phase transition, where the system goes from a superfluid state, where
|ψ〉j is approximately a coherent state |α〉j, to a Mott insulating state with |ψ〉j a Fock
state |n0〉j.

Let us now focus in the intermediate values of J/U . In the grand canonical point of
view, the coefficients c(n) are found by minimizing the free-energy functional 〈F̂ 〉 =
〈ĤBH − µN̂〉, with µ the chemical potential. The function to minimize at each site is
then:

〈F̂ 〉
L

= −zJ |α|2 +
U

2

(
〈n̂2〉 − 〈n̂〉

)
− µ〈n̂〉, with

∑
n

|c(n)|2 = 1, (1.52)
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1.2. Quantum gases in optical lattices

Figure 1.5 – Gutzwiller analysis of the Bose-Hubbard Hamiltonian. (a): Variation
of the order parameter |α| as a function of the ratio U/(zJ) for different fixed n̄. (b):
Evolution of the density fluctuations ∆n. The Gutzwiller ansatz predicts a transition
from the superfluid to the Mott insulator phase at U/(zJ) = 5.8 for n̄ = 1 and at
U/(zJ) = 9.9 for n̄ = 2, where both the order parameter and the density fluctuations
vanish. The many-body state is then described by a product of Fock states at each
lattice site.

and where z = 2, 4, 6 is the number of nearest-neighbors for a 1D, 2D or 3D system,
respectively, and:

α = 〈ψ|â|ψ〉 =
∞∑
n=0

√
n+ 1c∗(n)c(n+ 1), (1.53)

〈n̂〉 =
∞∑
n=0

n|c(n)|2 (1.54)

are the expectation values of the matter wave field and the average density. Density
fluctuations are then given by: ∆n2 = 〈n̂2〉 − 〈n̂〉2 =

∑
n(n − 〈n̂〉)2|c(n)|. In the

Gutzwiller approximation, the first order correlation function g(i, j) becomes indepen-
dent of the distance between sites and reads:

g(i, j) = 〈â†i âj〉 =

∣∣∣∣∣
∞∑
n=0

√
n+ 1c∗(n)c(n+ 1)

∣∣∣∣∣
2

, (1.55)

which is just the order parameter |α|2. We then see that in the regime where J/U →∞,
we have g(i, j) = 〈â†i âj〉 = n̄ and, therefore, phase coherence extends over the whole
lattice, i.e., the system has off-diagonal long range order and there is a BEC according to
the Penrose and Onsager argument (Penrose et al. 1956) (see section 1.1.2). However, in
the atomic limit the order parameter vanishes and g(i, j) = n0δij, with δij the Kronecker
delta. Therefore, the condensate disappears and phase coherence is completely lost.

The condensed fraction is given by

fc =
1

N
〈b̂†q=0b̂q=0〉 =

1

NL

∑
i,j

〈â†i âj〉 =
|α|2

n̄
. (1.56)

As the order parameter, the density fluctuations and g(i, j), the condensed fraction also
vanishes in the insulating phase. Therefore, the Gutzwiller ansatz predicts a transition
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Chapter 1. Theoretical background on bosonic quantum gases

Figure 1.6 – Phase diagram of the Bose-Hubbard Hamiltonian at T = 0 predicted
by the Gutzwiller ansatz. (a): Variation of the mean atom number per site n̄ as a
function of the ratio zJ/U and the chemical potential µ/U . (b): Variation of the order
parameter |α|. The thick solid lines mark out the Mott insulator lobes, which occur at
integer values of n̄ (a) or the regions of vanishing order parameter (b), and the rest of
the diagram corresponds to the superfluid phase.

from the superfluid phase, with non-zero order parameter and density fluctuations, to
the insulating phase11 at values U/(zJ) ' 5.8 for n̄ = 1 and U/(zJ) ' 9.9 for n̄ = 2
(see figure 1.5 for the evolution of |α|2 and ∆n at fixed n̄ for different ratios of U/J).

We show in figure 1.6(a) the phase diagram12 n̄(µ, zJ/U) of the Bose-Hubbard Hamil-
tonian in the homogeneous case. The variation of the order parameter, characterizing
the phase transition at T = 0, is shown in figure 1.6(b).

From figure 1.6(a) we see that in the Mott insulator regime (i.e. for zJ/U small enough)
the atom number per site n̄ is constant in an interval of variation [µ−, µ+]/U [with
µ− = nU and µ+ = (n + 1)U for J = 0 and n̄ = n]. This is what characterizes the
Mott insulator phase: on the one hand, the cost to create an excitation (i.e. to add
particle at a site and a hole in another site) is ∝ U and, on the other hand, the phase
is incompressible κ ∝ ∂n̄/∂µ = 0 in the interval µ ∈ [µ−, µ+].

The first experimental evidence of the transition between a superfluid and a Mott
insulator was given in Greiner et al. (2002), and it consists in the reversible observation
of the loss of long-range phase coherence through images in TOF as the lattice depth
is increased. We will discuss this in details in section 2.2.3. The superfluid behavior
of the gas in the lattice and its disappearence when reaching the Mott transition was
shown in Mun et al. (2007) in relation with a previous theoretical study performed by
Altman et al. (2005).

11Monte-Carlo simulations predict a slightly different depth (and in closer agreement with the
experiments) for which this transition occurs. For a 2D lattice like the one described in chapter 2,
the transition takes place at U/J = 16.9 for n̄ = 1 and at U/J = 28.7 for n̄ = 2, corresponding to
V⊥ = 9.1Er and V⊥ = 10.9Er, respectively (Capogrosso-Sansone et al. 2008).

12The solid lines in the figure represent the boundaries between the superfluid phase and the Mott
insulator predicted by the Gutzwiller ansatz. They can be analytically calculated by truncating the
Fock basis to only three states c(n) and c(n± 1). The boundaries correspond to:

µ±/U =

(
n0 −

1

2

)
− zJ

2U
± 1

2

√
1− 2

zJ

U
(2n0 + 1) +

(
zJ

U

)2

.
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Figure 1.7 – Shell structure of a trapped Mott insulator. (a): Phase diagram of the
homogeneous Bose-Hubbard Hamiltonian. The horizontal dashed line corresponds to
the global chemical potential µ0. The trapped density profile is obtained by performing
a local density approximation µloc = µ0 − V , and corresponds to scan, at fixed zJ/U ,
the homogeneous phase diagram from µ0 to µ0 − V (R), with R the in-trap size of the
gas (solid arrows in the diagram). (b): Density profiles (solid lines) corresponding to
µ0 = 2.5U . Path (A) corresponds to the Mott regime for U/(zJ) = 0.05 and path (B)
to a superfluid where U/(zJ) = 0.2. The Mott insulator regions in the density profile
are characterized by vanishing density fluctuations (dashed lines).

1.2.4 Local density approximation in an optical lattice

We now turn to the inhomogeneous case, in which the lattice potential is modulated
by a harmonic trapping potential [εi 6= 0 in equation (1.46)] of frequency Ω. If the
residual confinement is smooth enough, the energy shift between two adjacent sites is
very small and one can define cells consisting of several sites before a significant energy
shift due to the confinement emerges. The change in the density within these cells is
also small and it is possible to use a local density approximation to describe the trapped
system where, for each cell, we define a local chemical potential:

µloc(r) = µ0 − V (r). (1.57)

Then, we can first compute the density for a homogeneous system nhom(µ0, zJ/U) and
the density of the trapped gas, ninh(r,Ω, µ, zJ/U) = nhom[µloc(r), zJ/U ] corresponds
to scan the phase diagram at fixed zJ/U from a value µloc(0) = µ0 to a final value
µloc(R) = µ0 −MΩ2R2/2 with r = R at the edge of the cloud.

In the atomic limit, a lobe with n̄ = p atoms per site is reached when µloc = pU . This
allows us to define a characteristic radius %:

% =

√
2U

MΩ2
(1.58)

so that at distances Rp = %
√
µ0/U − p a lobe with n̄ = p atoms per site would be

reached in the case of J = 0.

Crossing the phase diagram leads to a shell structure (see figure 1.7) with incompress-
ible Mott insulator phases with different occupancies separated by a superfluid layer
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Chapter 1. Theoretical background on bosonic quantum gases

Figure 1.8 – (a) Scheme of a Mott insulator to illustrate the suppression of tunneling
at the edges of the lattice in the presence of harmonic confinement (see text). The
vertical axis corresponds to the energy, which depends on the lattice site because of
the residual harmonic confinement (red dotted line). (b) Neighboring sites energy shift
due to the external confinement at different lattice sites: at the edge of the cloud (dotted
line), at R/2 (dashed line) and at R/6 (semi-dashed line). The solid line corresponds
to the tunneling energy. The calculation is performed for our typical experimental
parameters, where R ' 10 µm and Vz = 27Er [see section 2.2.2].

(the so-called wedding-cake structure). Experimental evidence of the shell structure
in the presence of an external confinement was seen through absorption imaging in
Fölling et al. (2006), or by fluorescence in a quantum gas microscope in Sherson et al.
(2010).

An important remark is that the site-dependent energy shift due to the Gaussian
envelope of the trap can lead to an effective suppression of tunneling at large lattice
depths. This suppression arrives earlier in the edges of the cloud. The energy shift [see
figure 1.8(a)] between two adjacent sites reads ∆E = ε(j+1)−ε(j) = MΩ2(1+2j)d2/2.
At the edges of the cloud this becomes approximately ∆E ' mΩ2Rd, with R =
jd. If this shift becomes much larger than the tunneling energy, tunneling will be
suppressed. When this happens, the local density approximation becomes no longer
completely valid and, furthermore, an adiabatic loading (see next section) will no longer
be practical, since the wells will be almost disconnected. In the most limiting case (i.e.,
in the edges of the cloud) to avoid this issue, one needs to keep

MΩ2Rd ≤ J. (1.59)

We show the depths at which this happens in figure 1.8(b) in three different regions of
the atomic cloud.

1.2.5 Adiabatic loading of an optical lattice

Adiabatic following

In this section we focus on the conditions that need to be satisfied in order to prepare
a system which is as close as possible to the ground state of the Bose-Hubbard Hamil-
tonian. In a real experiment, the atomic ensemble is usually at a finite, although low,
temperature. The loading needs to be performed in a finite amount of time during
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1.2. Quantum gases in optical lattices

which atom losses can occur, which could also be an additional heating source. Taking
all these effects into account to model the loading of the lattice is a complicated task,
and some simplifications are needed. In particular, we will assume that the system
is originally in the ground state and at T = 0, and that the lattice can be loaded
arbitrarily slow without any atom loss.

The method usually employed in order to prepare a BEC in a harmonic trap, evapora-
tive cooling, does not work well in a periodic potential13. Therefore, it is complicated
to cool atoms directly in an optical lattice and an alternative procedure needs to be
employed (Morsch et al. 2006).

The most common procedure to load an ultracold gas in the fundamental band of
an optical lattice relies on the transfer of a BEC, previously prepared in a regular
harmonic trap, into the lattice potential. Within the simplifications previously drawn,
if the lattice potential is slowly ramped while the harmonic trap is simultaneously
removed, the system remains ideally all time in the instantaneous ground state.

In this section, we examine the relevant energy scales so that the loading becomes as
close as possible to the adiabatic limit14. In general, if a system is prepared in an
eigenstate |i〉 of a time-dependent Hamiltonian Ĥ(t), the probability of remaining in
this eigenstate during the evolution is close to 1 provided that, at all times [see Messiah
(1999) or appendix E],

~

∣∣∣∣∣〈j|∂Ĥ∂t |i〉
∣∣∣∣∣� |Ei − Ej|2, (1.60)

for all states i 6= j, with Ei and Ej the instantaneous eigenenergies. In particular, this
criterion shows explicitly that adiabaticity is violated whenever a level crossing occurs.

Adiabaticity with respect to the band structure

At the single particle level, the adiabaticity criterion to satisfy is the following (Greiner
2003): During the loading, no transitions to excited bands should be induced. This
criterion is known as adiabaticity with respect to the band structure. To extract the
timescale required to avoid band transitions we consider the following argument: The
initial BEC can be treated as a wavepacket localized in momentum space |p ' 0〉. In
the Bloch basis, it reads |n, q〉 = |n = 0, q0〉 with q0 ' 0. As we increase the lattice
depth, quasimomentum remains unchanged (the periodicity of the lattice does not
change) but the lattice band can change. The adiabaticity condition is then:

~|V̇0| � |E(n, q ' 0)− E(0, q ' 0)|2, (1.61)

which sets the maximal speed at which the lattice depth can change. For exemple, for
a lattice at 760 nm and ytterbium atoms, this is satisfied for |V̇0|/Er � 32

√
2Er/~ '

13In an optical lattice, the evaporation rate is strongly suppressed because of the band structure,
which strongly reduces the density of states with energies close to the trap threshold (Blakie et al.
2004; Ho et al. 2009).

14The concept of adiabaticity in quantum mechanics is linked to the probability of following a
single eigenstate |i(t)〉 without population transfer to any of the other states |j(t)〉. The entropy of
the system is given by S =

∑
k pk log(pk), where pk is the population of each state. The entropy

will be constant in time, Ṡ = 0, provided ṗj = 0, which means that the process will be adiabatic in
thermodynamical sense if the process is adiabatic in the quantum mechanical sense.
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6× 105 s−1. The characteristic times are on the order of the tens of µs and the adia-
baticity criterion is fulfilled by performing ramps with a duration on the order of the
ms, or larger.

Adiabaticity in the presence of interactions

As soon as interactions are included in the picture, quasimomentum is no longer a good
quantum number. In this case, the previous argument is just a necessary condition but
not a sufficient one.

During the lattice ramp-up, we explore different regimes, each with its adiabaticity
criteria:

1. While the lattice is still shallow (V0 ≤ 5− 6Er), the Bose-Hubbard regime is not
valid and one needs to avoid transitions to excited bands [see figure 1.9(a)].

2. Once the Bose-Hubbard regime is reached (V0 ≥ 5 − 6Er), the single-band and
tight-binding approximations are valid and adiabaticity is set with respect to the
many-body excitations that can appear in the system (see below).

3. Once the system is in the Mott-insulator regime, excitations have a large gap
∝ U and adiabaticity is more easilly fulfilled (Greiner 2003).

4. As previously discussed, once the depth is high enough so that MΩ2Rd ≥ J ,
tunneling is suppressed at the borders of the system and neither adiabaticity nor
the local density approximation are valid anymore.

We will now detail the conditions to satisfy in the superfluid regime, once the Bose-
Hubbard formalism applies. Let us then focus on a framework where the depth of the
lattice is high enough so that we can work within the Bose-Hubbard approximation but
where interactions are weak enough so that there is still a BEC. In this situation, the
spatial density of the cloud can still be calculated using the Thomas-Fermi approxima-
tion (Pedri et al. 2001; Cataliotti et al. 2001) and the local chemical potential reads:

µj = εj + Un̄j, (1.62)

with εj = mΩ2(jd)2/2 and n̄j the occupation number of site j. As the lattice depth
is raised both the interaction energy U and the external frequencies Ω increase. Con-
sequently, the instantaneous density changes too. For the system to be in the ground
state at all times, the phases of the states in each lattice site need to evolve at the
same rate during the ramp. This requires the local chemical potentials to be all equal.
Otherwise, excitations will appear and this will lead to a heating of the sample. There-
fore, even if tunneling does not affect much the equilibrium profile, atoms still need
to redistribute fast enough to compensate via n̄j for the changes in U and Ω (Greiner
2003).

Adiabaticity depends thus on three energy scales: the interaction energy U ∝ V
3/4

0 ,
the external confinement Ω2 ∝ V0, both changing slowly with the lattice depth, and
the tunneling J ∝ V

3/4
0 exp(−2V

1/2
0 ), which drops exponentially with the lattice depth

[see figure 1.9]. Then, to derive an adiabaticity criterion we first need to compute
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1.2. Quantum gases in optical lattices

Figure 1.9 – Different energy scales as a function of the lattice depth. U represents
the on-site interaction energy, J is the tunneling amplitude, and ∆E corresponds to the
bandgap in the center (solid line) or the edge (dashed line) of the 1BZ. The calculations
are performed for 174Yb in the experimental conditions described in section 2.2.

the energy spectrum of the possible excitations of the system and then compare it to
the rate of change of the parameters of the Bose-Hubbard Hamiltonian. Again, we
perform some approximations to derive these criteria: In particular, we will first draw
some arguments for an infinite system, and after that, we will specialize for the case of a
uniform system but with a finite size. In order to compute the excitation spectrum, we
will work within the Bogoliubov framework. However, one should keep in mind that,
strictly speaking, the Bogoliubov approach is only valid for a small non-condensed
fraction, i.e., far from the transition to the Mott insulator regime (see figure 1.5).

Let us then start by considering an infinite homogeneous system. A quantitative adi-
abaticity criterion has been derived in Kajtoch et al. (2018) in the regime of weak
interactions, where the Bogoliubov theory applies, and we follow here their approach.
We start by writing the time-dependent Bose-Hubbard Hamiltonian in the Wannier
basis:

ĤBH(t) = −J(t)
∑
〈i,j〉

â†i(t)âj(t) +
U(t)

2

∑
i

n̂i(t)[n̂i(t)− 1]. (1.63)

In order to compute the spectrum of the excitations, Kajtoch et al. (2018) write the
Bose-Hubbard Hamiltonian in the Bloch basis and then work within the Bogoliubov
framework. Within this approach, it is assumed that the q = 0 mode alone is macro-
scopically populated. Then, to leading order in the non-condensed modes b̂q 6=0, the
Hamiltonian becomes quadratic and can be diagonalised by a Bogoliubov transforma-
tion, introducing the quasiparticle operator ĉq. In terms of the Bloch creation opera-
tors, this quasiparticle operator reads: ĉq(t) = uq(t)b̂q(t) − v∗−q(t)b̂

†
−q(t). With these

transformations, equation (1.63) becomes:

ĤBog(t) = H0(t) +
∑
q 6=0

~ω(q, t)

[
1

2
+ ĉ†q(t)ĉq(t)

]
. (1.64)

Here ~ω(q, t) is the Bogoliubov dispersion relation given in (1.29) and, in the case of
an optical lattice becomes:

~ω(q, t) =
√

∆ε(q, t) [∆ε(q, t) + 2U(t)n], (1.65)
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where:
∆ε(q, t) = zJ(t)[1− cos(qd)], (1.66)

is the single-particle dispersion relation in the tight-binding approximation (Ashcroft
et al. 1976), with z the number of nearest neighbors and d = λL/2.

Let us now take the time derivative of equation (1.64):

i~
d

dt
ĤBog = i~

d

dt
H0 + i~

∑
q 6=0

~
dω

dt

[
1

2
+ ĉ†q ĉq

]
+ i~

∑
q 6=0

~ω

[
dĉ†q
dt
ĉq + ĉ†q

dĉq
dt

]
. (1.67)

The first two terms are diagonal in the quasiparticle basis and thus do not create any
excitations. However, the last term involves the time derivative of the Bogoliubov
operator and reads (Kajtoch et al. 2018):

i~

[
dĉ†q
dt
ĉq + ĉ†q

dĉq
dt

]
= −i~Ω(q, t)[ĉ−q ĉq + ĉ†q ĉ

†
−q]. (1.68)

The term ~Ω(q, t) can be computed by using the coefficients of the Bogoliubov trans-
formation and reduces to (Kajtoch et al. 2018):

~Ω(q, t) =
~
2

d

dt

[
log

(
∆ε(q, t)

~ω(q, t)

)]
. (1.69)

The products of operators in equation (1.68) connect the Bogoliubov ground state, i.e.,
the vacuum of quasiparticles ĉq|vac〉 = 0, to an excited state with two quasiparticles
of opposite momenta:

〈1 : q, 1 : −q|ĉ†q ĉ
†
−q|vac〉 = 1, (1.70)

and therefore ~Ω(q, t) corresponds to the LHS of equation (1.60). The RHS is given
by the energy difference between |vac〉 and |1 : q, 1 : −q〉 which is 2~ω(q, t). The adi-
abaticity condition becomes then:

α(q, t) =
~|Ω(q, t)|
2~ω(q, t)

� 1. (1.71)

The criterion α(q, t) � 1 becomes much more difficult to fulfill in the phonon-like
regime of small quasimomenta. We show this in figure 1.10(a) where, for linear lattice
ramps, we plot the maximum value of α for each value of q for a ramp of 10ms. This
can also be understood by expanding the adiabaticity criterion in the limit of small
q: Here, the single-particle dispersion relation is approximately quadratic ∆ε(q, t) =
zJ(t)q2d2/2, and the Bogoliubov dispersion approximately linear:

~ωph(q, t) ' ~cs(t)q with cs(t) =
d

~
√
zJ(t)U(t)n, (1.72)

where cs(t) is the speed of sound of the collective excitations in the lattice. Then, at
low quasimomenta, the adiabaticity criterion becomes:

αph(q, t) =
1

8ωph(q, t)

∣∣∣∣∣ J̇(t)

J(t)
− U̇(t)

U(t)

∣∣∣∣∣� 1, (1.73)
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Figure 1.10 – (a): Evolution of the adiabaticity parameter as a function of q for a
linear ramp from V0 = 0 to Vf = 8Er in 10ms. The solid blue line corresponds to
equation (1.71) without the low-momenta approximation. The vertical dotted black
line indicates the minimum momentum allowed by the finite size of the system, which
in our experiment is qmind = 2πd/LTF ' 0.12 with LTF = 20 µm. (b): Rates of change
of the energies in equation (1.73). We have used our experimental parameters for which
the vertical lattice depth is fixed at Vz = 27Er, and we focus on the adiabatic loading
of the horizontal ones (see section 2.2.2 in chapter 2).

which diverges as 1/q. This shows in particular that, in an infinite system, where q
can take a continuum of values, adiabaticity cannot be fulfilled.

As discussed in the previous sections, in experiments, an external confinement is present
and this gives a finite size to the system. This size is given at small lattice depths by
the Thomas-Fermi radius15 LTF = 2RTF. If we consider a uniform system in a box of
size LTF, then, the allowed momenta are quantized. With this, the lowest excitation
has a quasimomentum qmin = 2π/LTF [black dotted line in 1.10(a)], and because of
it, from now on we will quantify the adiabaticity criterion at this fixed q = qmin [see
dotted line in figure 1.10(a)].

We now have all the ingredients to evaluate equation (1.73). To do this, we consider
linear ramps V0(t) = Vft/τramp for a lattice ramped up to 8Er. The evolution of the
terms J̇/J and U̇/U are shown in figure 1.10(b) as a function of the lattice depth. In
figures 1.11(a) we show the behavior of αph for two different ramp times. As expected,
the slower the ramp the smaller the adiabatic parameter. In order to choose a duration
for our experimental ramps, we look at the maximum value of α for each τramp once the
lattice depth V (t) is around 6Er. We plot these values as a function of the ramp time
in figure 1.11(b). We then see that in order to avoid excitations by having the adiabatic
parameter on the order of α ' 0.01 we need ramps with a duration τramp ' 100ms.

This estimation is in good agreement with our actual experimental ramp times [see
section 2.2.2]. As we go to deeper lattices, it will be tunneling the main limiting factor
(Gericke et al. 2007) and the adiabaticity criteria will be roughly given by |J̇/J | �

15The Thomas-Fermi radius is in principle time-dependent since it is related to the external fre-
quencies as 1/Ω(t). However, these time-dependence is weak because the trapping frequencies change
slowly with the lattice depth ∝ V 1/2. This change has even a smaller influence for the experimental
situation described in chapter 2, where the cloud is tightly confined in the vertical direction during
the stages in which the horizontal lattices are ramped up, and we simplify the discussion here by
considering the size of the system constant in time.
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Figure 1.11 – (a): Evolution of the adiabaticity parameter evaluated at q = qmin

[equation (1.73)] for a linear ramp from V0 = 0 to Vf = 8Er in 10ms (solid blue line)
and 150ms (red dashed line). (b): Adiabaticity parameter for different ramp times.
The maximum value is taken from the zone without shading in (a), which corresponds
to the regime in which the Bose-Hubard framework is not completely valid.

ω(qmin) ∝ Ωtrap, which also leads to time scales on the order of tens of ms for the
ramps. Moreover, as discussed in the previous sections, in a trapped system, a Mott
insulator coexists with intermediate superfluid regions. In real experiments, in the
edges of the system, these superfluid regions are prone to form a normal gas because of
finite temperature effects and the residual confinement. All these effects will also end
up limiting adiabaticity and have been ignored in the present discussion.
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CHAPTER 2

Loading 174Yb ultracold gases in optical lattices

The production of Bose-Einstein condensates and their subsequent loading into an
optical lattice have become nowadays standard experimental techniques (Metcalf et al.
1999; Ketterle et al. 1999; Bloch et al. 2008). Yet every atomic species has its own
subtleties and so does each experiment. In this chapter, I will present an overview of
the current status of our experimental setup and the techniques we employ.

This chapter consists of two parts. In the first one, I start by introducing the electronic
structure, among some other properties, of ytterbium. I then give an overview of the
experimental apparatus and expose the cooling steps that allow us to obtain a BEC. I
conclude this first section by giving some details on our implementation of absorption
imaging.

The second part is devoted to describing the loading of a BEC into a stack of inde-
pendent 2D optical lattices. The success of this loading is confirmed by observing the
signature of the quantum phase transition from a superfluid to a Mott insulator, namely
the reversible disappearance of phase coherence. Finally I also show how atoms in an
optical lattice can be used as a calibration tool for several useful experimental quan-
tities such as on-site interactions and the magnification and resolution of an optical
system.

2.1 Production and detection of an ytterbium
Bose-Einstein condensate

Reaching quantum degeneracy exploits basically two techniques: Laser cooling (Met-
calf et al. 1999) and evaporative cooling of trapped atoms (Ketterle et al. 1999). The
first one relies on light-matter interactions to slow down and trap the atoms. The
second one depends on two mechanisms: First, the removal of high-energy atoms out
of the ensemble by lowering the depth of the trap; second, the thermalization of the
sample at a lower temperature thanks to elastic collisions between atoms. For thermal-
ization to be efficient, a high rate of collisions is necessary, and therefore a high density
is desirable at the beginning of this second step. This sets the necessary performance
of the laser cooling stage, which needs to be able to produce a cold and dense cloud,
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usually achieved by loading atoms into a magneto-optical trap (MOT). Furthermore,
for magneto-optical trapping to work atoms need to be already slowed down. Con-
sequently, the realization of a slow atomic beam is the mandatory first step in our
experiments. The goal of this first section is to see how these essentials are met and to
briefly describe each stage in our experimental context.

2.1.1 Ytterbium essentials

Atomic properties

Ytterbium is a lanthanide atom with atomic number Z = 70. It can be found in nature
under the form of seven stable isotopes, five of which are bosons: 168Yb, 170Yb, 172Yb,
174Yb and 176Yb, with nuclear spin I = 0. The other two: 171Yb, with I = 1/2,
and 173Yb, with I = 5/2, are fermions. All the results shown in this thesis have been
obtained with the most abundant (32%) bosonic isotope: 174Yb.

Ytterbium is a so-called alkaline-earth-like atom. This nomenclature is used to desig-
nate all atoms such that: (i) Their internal shells are completely filled and (ii) their
valence shell is an s-shell filled with two electrons; which is also the case for noble gases
and group-II atoms.

The ground state configuration can be written as [Xe]4f 146s2. Similarly to helium, the
two electrons in the valence shell determine most of the atomic properties (Bethe et al.
1957). In particular, these two electrons can either pair to form a singlet (total spin
S = 0) or a triplet state (S = 1). The electronic orbital ground state is symmetric
(total orbital momentum L = 0), which imposes a singlet spin state for the ground
state. We denote this state as 1S0 following the 2S+1LJ notation. Here, J = L+S is the
total electronic angular momentum. Ytterbium has therefore no electronic magnetic
moment in the ground state. A last detail concerning the bosonic isotopes is that their
nuclear spin is I = 0. As a consequence, their ground state has no hyperfine structure
at all (F = I + J = 0). These properties mark a first important difference between
alkalies and alkaline-earth-like atoms: the ground state is not sensitive to magnetic
fields16.

The first excited states are obtained by promoting one of the electrons to a p shell:
[Xe]4f 146s6p. These first excitations either lead to a singlet 1P1 or a triplet 3PJ state.
We show the first energy levels together with the main transitions employed in this the-
sis in figure 2.1. From these, two are used for laser cooling: the 1S0→1P1 transition,
which we use for Zeeman slowing and also for absorption imaging and the 1S0→3P1

transition, used for magneto-optical trapping. We then have ytterbium’s clock transi-
tion 1S0→3P0 and finally the 3P0→3D1 transition, that we use to repump the atoms
in the metastable state 3P0 back to the ground state. These two last transitions will
be discussed in details in chapter 3.

16For fermionic ytterbium, having a hyperfine structure in the ground state (I 6= 0), the sensitivity
to magnetic fields is given by the nuclear magnetic moment µI, which is orders magnitude smaller than
the Bohr magneton µB. Therefore, techniques such as magnetic trapping or Stern-Gerlach separation
are not realistic for the fermionic ground state either (Scazza 2015).
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Figure 2.1 – Scheme of the lowest energy levels of ytterbium. The solid colored lines
indicate optical transitions we use in the experiment, together with the wavelength and
the associated linewidth. Dotted lines indicate possible decay channels. The branching
ratios concerning the possible decays from 3DJ to 3PJ are also indicated.

Laser cooling with ytterbium: main considerations

We now discuss the properties of the transitions used for laser cooling. We first recall
that the steady-state of the laser cooling process is reached once the cooling rate is equal
to the heating rate induced by the momentum diffusion imparted by spontaneosuly
emitted photons. The competition between these two mechanisms sets the lowest
achievable temperature, the Doppler temperature, given by (Metcalf et al. 1999):

TD =
~Γ

2kB

, (2.1)

with Γ the linewidth of the transition involved.

For ytterbium, the first excited states interesting for laser cooling correspond to the
following transitions:

1. 1S0→1P1 blue transition at λb = 398.9 nm. It is a broad transition (Γb = 2π ×
29MHz). The saturation intensity is Isat = 60mW/cm2. This transition is not
closed: atoms in 1P1 can leak into the 3DJ manifold (Honda et al. 1999). These
decay afterwards to the 1S0 state via the 3PJ states.

2. 1S0→3P1 green transition at λg = 555.8 nm. It is a narrow transition (Γg =
2π×182 kHz). The saturation intensity is Isat = 0.14mW/cm2. If we could ignore
spin-orbit coupling, this transition would be electric-dipole forbidden with ∆S =
1. However spin-orbit coupling is relatively large for ytterbium and the concerning
selection rule within this framework, ∆J = 1, is verified. The transition is
therefore weakly allowed. Electric dipole transitions not conserving the spin are
called intercombination transitions.

The limit temperature from equation (2.1) suggests using the narrow green transition
for magneto-optical trapping, which leads to a low Doppler temperature TD ' 4.4 µK.
However, this advantage comes at a price: the capture velocity (i.e. the limit velocity
above which atoms will not be trapped) is small. An upper bound for this velocity can
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be obtained by assuming a constant force on the atom F = ~kΓ (Metcalf et al. 1999).
Then, the maximum velocity is determined by requiring that the atom be stopped
within the volume defined by the size (i.e. the waist) w0 of the MOT beams. This
velocity is vc '

√
2~kΓw0/M , with M the mass of the atom and k = 2π/λ. For the

green transition and w0 ' 1.5 cm, this velocity is vc ' 10m/s.

As previously announced, this small capture velocity requires that an earlier cooling
mechanism be implemented. One option, carried out in some groups, is to load a first
MOT using the blue transition. However, since the 3P0, 2 shells are metastable (Barber
2007) the cooling cycle is stopped for atoms falling into these states . This results in
important atom losses unless additional transitions are used to repump these atoms
back to the ground state (Cho et al. 2012). Another possibility, which is the solution
employed in our group, is to address the blue transition in a Zeeman slower only and
load the MOT directly on the intercombination line.

2.1.2 Experimental apparatus

We now present an overview of our experimental setup, focusing mainly in the vacuum
system and on the lasers used for slowing down the atoms. Much more details on
these aspects can be found in the theses of the previous PhD students: Matthias Scholl
(Scholl 2014) and Alexandre Dareau (Dareau 2015).

Vacuum system

We show in figure 2.2 a scheme consisting of the main parts of the experiment: the
oven, the Zeeman slower and the MOT chamber [figure 2.2 (a)] and, finally, the science
chamber17 [figure 2.2(b)-(c)]. Each one of these parts is separated by a differential
pumping stage. Vacuum in the oven part is achieved thanks to two 20L/s ion pumps18.
At working temperature, the pressure in this zone is on the order of 10−8 mbar. Then,
after a first differential pumping stage another 20 L/s ion pump allows to reach a
pressure of 10−9 mbar in the Zeeman tube. Pumping in the MOT chamber is achieved
by means of a 40 L/s ion pump and a getter pump. With these, the pressure in the
MOT chamber is below 10−10 mbar. Finally, a tube connects the MOT chamber to
the science chamber, where we perform our experiments. In this chamber, we reach a
vacuum on the order of 10−11 mbar thanks to a pump19 combining a 2 L/s ion pump
and a non-evaporative getter pump. We then see that both the MOT chamber and
the science chamber are in the ultra-high vacuum regime, which reduces considerably
collisions with the background gas, resulting in longer lifetimes for our atomic samples.

As a side note, from the schematics shown in figure 2.2(a), we see that the viewport
through which the Zeeman beam passes is facing the oven and, therefore, the atomic
beam. After some time, we realised that Yb was getting deposited in this viewport, and
most part of the Zeeman beam was reflected and/or absorbed. We removed this coating
(Yamaguchi 2008) by focusing 3W of light at 532 nm to a waist of approximately
50 µm. The signature of desorption was the observation of a fast increase of our vacuum
pressure by about two orders of magnitude, which then quickly went back to its steady

17Spherical octagon UHV vacuum chamber. Kimball
18Medium VacIon Plus Pumps. Agilent.
19NEXTorr D 200-5. SAES Getters
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to science

Figure 2.2 – Experimental setup (a): Top view of the oven, the Zeeman slower
and the MOT chamber. An oven filled with ytterbium is connected to a Zeeman
slower, where atoms are slowed down thanks to the Zeeman beam. These atoms then
arrive to the MOT chamber where they are further cooled thanks to the MOT beams
and trapped by a quadrupole magnetic field. Atoms are then loaded in a first optical
dipole trap (DT1) which is used to transport them to the science chamber. (b): Top
view of the science chamber. Atoms arrive to the science chamber and DT1 is
crossed with another dipole trap DT2 where evaporation is performed to obtain a BEC.
The BEC is subsequently loaded in an optical lattice (HL: horizontal lattice beams and
VL: vertical lattice beams). Atoms can then be probed on the clock transition thanks
to the clock beam. (c): Front view of the science chamber. A repumper is
available to transfer atoms in the metastable state back to the ground state. The
different available imaging axis (IMG) are also shown.

value. We then scanned the whole surface thanks to a 2-axis piezoelectric actuator
installed in a mirror mount. After removing the Yb from the viewport, the loading
rate improved by a factor of about 10. We now repeat this procedure on a weekly basis
in order to maintain constant optimal parameters for the MOT loading.
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Lasers for cooling

In this paragraph, we present the main details concerning the frequency generation and
stabilization of the lasers we employ for cooling: a blue laser for the Zeeman slower
imaging and a green laser for magneto-optical trapping.

1. Blue laser: Light at 399 nm is obtained by frequency doubling of infrared light at
798 nm delivered by a commercial diode laser20. The 1.5W available are injected
into a doubling cavity with a non-linear crystal21 inside (Scholl 2014; Dareau
2015). With this, we obtain 330mW of blue light. The cavity error signal is
generated by modulating the laser current and the lock is performed thanks to
a piezoelectric actuator mounted on one of the cavity mirrors. The frequency of
this blue light is subsequently stabilized by correcting the laser current thanks
to a modulation transfer spectroscopy scheme (Bouganne 2018) performed in a
hollow cathode lamp with Yb inside.

2. Green laser: Light at 556 nm is also obtained by frequency doubling. In this case,
the seed is a narrow-line distributed feedback fiber laser22 at the near-infrared
wavelength 1112 nm. This light is then amplified thanks to a fiber amplifier23.
Subsequent frequency doubling in a cavity with a non-linear crystal24 inside allows
us to obtain around 1W of green light. The cavity error signal is obtained by
frequency modulation thanks to an EOM, and the lock is performed by acting
on a piezoelectric actuator mounted on one of the cavity mirrors. Frequency
stabilization is then performed by saturated absorption spectroscopy in a glass
cell containing iodine (Dareau 2015), which allows us to stabilize the frequency
by correcting the current of the seed laser.

2.1.3 Atomic beam and Zeeman slower

The first step in our experiments is the generation of an atomic beam. Our source
consists of an oven filled with solid ytterbium that we heat to a working temperature
of 450 ◦C. This produces a gas with enough vapor pressure and density. The atomic
beam is subsequently obtained by transverse collimation thanks to a tube of length
L = 10mm and diameter d = 4mm. This generates a stream with a divergence angle
θ ' d/(2L) = 11.5◦.

At this stage the beam enters the Zeeman slower. The average longitudinal velocity of
the atoms is v0 ' 300m/s and they need to be slowed down to vc ' 10m/s, so that
they can be trapped by the MOT. For this, we send a counterpropagating laser beam at
λb = 398.9 nm, resonant with the 1S0→1P1 transition. The beam is collimated and has
a power of 70mW. As atoms travel through the Zeeman tube, they are slowed down
and get out of resonance due to the Doppler effect. The principle of a Zeeman slower

20TA pro, Toptica.
21ppKTP (periodically poled potassium titanyl phosphate) crystal from Raicol crystals.
22Koheras Adjustik. NKT photonics
23Eylsa. Quantel laser.
24ppSLT (periodically poled stoichiometric lithium tanalate) crystal from Covesion.
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is to use a longitudinal magnetic field gradient to compensate for this shift. Then, the
atoms feel an approximately constant radiation pressure force (Dareau 2015).

2.1.4 Magneto-optical trap and crossed optical dipole trap

MOT: basic principles and figures of merit

After the Zeeman slower stage, the atomic beam reaches the MOT chamber. Atoms
slow enough to be captured experience a force F (r, ṙ) = −αṙ−κr. The first term cor-
responds to a friction force due to the radiation pressure of three counter-propagating,
circularly polarized, red-detuned beams resonant with the 1S0→3P1 transition. This
force is the responsible of slowing down the atoms. The second term is obtained by
applying a quadrupole magnetic field. In doing so, a spatial dependence is added to
the force. This promotes the absorption of those photons that push the atom towards
the center of the trap, defined by the zero of the magnetic field (and thus the spring-
like character of the force). The combined effect of these two forces produces a dense
and cold cloud confined at the center of the trap (Metcalf et al. 1999). The details
concerning our MOT functioning can be found in Scholl (2014).

As previously indicated, because of the narrow intercombination line, the capture ve-
locity is small. Then, in order to address enough velocity classes and increase the
loading rate, the transition needs to be artificially broadened: we do this by (i) power-
broadening the transition and (ii) using red-detuned sidebands. Moreover, due to the
small linewidth of the 3P1 state, one needs small magnetic field gradients on the order
of 1G/m (about one order of magnitude smaller compared to alkalis) to keep the atoms
on resonance inside the volume defined by the MOT beams. These aspects make the
MOT optimization somewhat sensitive.

We can model the loading of the MOT by the following equation Ṅ(t) = R − N/τ .
The two parameters R and τ design the rate of atoms coming from the Zeeman slower
successfully loaded in the MOT (which we assume constant) and the lifetime of atoms,
respectively. This lifetime is mainly determined by one-body collisions with the back-
ground gas. The atom number evolves then as:

N(t) = Rτ
(
1− e−t/τ

)
. (2.2)

We can apply this model to the data in figure 2.3(a), where we show the atom number
for different loading times. By doing so, we extract a loading rate R = 3.5× 107 s−1

and a lifetime τ = 50 s. The maximum achievable atom number is then given by
N∞ = Rτ = 1.75× 109 atoms. In our typical working conditions, we load the MOT in
6 s ending up with an atom number of 2× 108 atoms.

Another parameter interesting to extract is the cloud temperature, which can be in-
ferred by recording several TOF expansion images. The temperature is estimated by
fitting a Gaussian distribution to the data, by using the fact that the density distribu-
tion after TOF reflects the in situ momentum distribution. The width of the distribu-
tion is then related to the temperature of the ensemble and is given by (Ketterle et al.
1999):

σk(t) = σ0,k +
kBT

m
t2. (2.3)
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Figure 2.3 – Loading and characterization of the MOT (a): MOT loading curve: the
number of atoms captured in the MOT is shown for different loading times. By fitting
equation (2.2) to the data, we extract the loading rate: R = 3.5× 107 s−1 and the
lifetime τ = 50 s. (b): Mean size σ̄ = (σx + σy)/2 of atoms released from a MOT
for different TOFs. By using equation (2.3) we extract the temperature of the cloud:
T = 35 µK.

This can then be used to determine the temperature of the sample by recording several
images after TOF. We have used this method to extract the temperature of our atomic
clouds. The data is shown in figure 2.3(b) and the corresponding fit with equation (2.3)
leads to a temperature T ' 35 µK, several times higher than the Doppler temperature
associated to 3P1. Cooling further is possible (Scholl 2014; Dareau 2015) but results in a
subsequent smaller atom number loaded in the optical dipole trap, and the optimization
is therefore performed to maximize the atom number.

Optical dipole traps

Our dipole traps are generated by lasers. The spatial profile is very well described by
a symmetric Gaussian beam of intensity:

I(r) =
2P

πw2(z)
e−2ρ2/w2(z). (2.4)

Here z is the propagation axis and ρ2 = x2 + y2, P is the beam power and w(z) =
w0[1 + (z/zR)2]1/2 is the 1/e2 beam diameter, determined by the waist at the focus
position, w0, and the Rayleigh length zR = πw2

0/λ.

The dipole potential felt by the atom reads (Grimm et al. 2000):

V (r, λ) = − 1

2ε0c
Re[αj(λ)]I(r), (2.5)

where αj(λ) is the atomic polarizability. This polarizability (and therefore the dipole
potential) depends on the wavelength λ of the light employed to generate the trap and
on the atomic state j. Depending on the sign of α, atoms will either be attracted
towards the intensity maxima (red detuned trap) or repelled away from them (blue
detuned trap).

In most situations, the atomic cloud size σ̄ is small compared to the beam waist and
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Figure 2.4 – Loading and characterization of the infrared dipole trap (a): Atom
number in the dipole trap for different MOT loading times. A fit to the data by equation
(2.2) leads to R = 4.7× 106 s−1 and τ = 2.2 s. (b): Temperature measurement of
atoms in the dipole trap: the data show the evolution of the axial and radial sizes of
the cloud for different TOFs. This allows us to extract the temperature T = 40 µK by
fitting equation (2.8) to the data. We see that for the radial direction, the asymptotic
regime is soon reached, and its evolution becomes independent of the initial size.

the Rayleigh length. This allows to rewrite equation (2.5) as:

V (r) ' −V0 +
1

2
M(ω2

radr
2 + ωaxz

2). (2.6)

We call V0 = PRe[α(λ)]/(πε0cw
2
0) the trap depth. The axial and radial frequencies are

given by:

ωax =

√
8V0

k2Mw2
0

, ωrad =

√
4V0

Mw2
0

, (2.7)

with k = 2π/λ. We can also generate traps consisting of several beams. In particular,
for a crossed dipole trap (CDT) generated by two non-interfering orthogonal beams,
the total depth is given by V0 = V1 +V2 and the trapping frequencies in the axis defined
by the beams are ωj = (ω2

j,1 + ω2
j,2)1/2.

Loading and characterization of an optical dipole trap

The last cooling step in the MOT consists in compressing the atomic cloud by increasing
the magnetic field gradient and shifting its position to make it coincide with the focus
of an optical dipole trap, which is already switched on. After this, the power of the
MOT beams is decreased and its frequency is driven closer to resonance. Atoms start
then being cooled in the dipole trap, which we load in 200ms.

The dipole trap is generated by using a high-intensity infrared fiber laser25 of power P =
45W and wavelength λ = 1070 nm. The polarizability at this wavelength is αg(λ) '
164α0, with α0 ' 1.65× 10−41 C2m2/J the atomic unit of electric polarizability. We
focus this beam at w0 ' 40 µm. This creates a trap of depth V0/kB ' 660 µK, much
higher than the MOT temperature and therefore sufficient to trap the cloud.

25YLR-50-LP-AC-Y12.IPG Photonics.
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We show in figure 2.4(a) a loading curve for this trap as a function of the MOT loading
time. Before releasing the cloud and measuring the atom number after a TOF, a hold
time inside the dipole trap of 1 s is performed. Using equation (2.2) to fit the data, we
extract the following loading parameters: R = 4.7× 106 s−1 and τ = 2.2 s. After 4-5 s
of loading, the dipole trap loading is saturated. Working in these conditions ensures
that possible atom number fluctuations at the MOT stage are suppressed and do not
propagate to the latter stages of the experiment. In our experiments we typically work
with tload = 6 s, which provides an number N ' 1.5× 107 of atoms in the trap.

In order to extract the trapping frequencies defined in equation (2.7) we employ two
different methods. The axial frequency is measured by inducing center of mass oscil-
lations along the longitudinal axis of the trap. This is achieved by rapidly shifting the
focus of the dipole trap. Atoms undergo a kick and start oscillating in the harmonic
potential at the axial frequency ωax. In figure 2.5(a) we show the result of this mea-
surement, where the position of the center of the cloud is monitored in time after the
perturbation. The axial frequency is inferred by fitting a damped sinusoidal to the
data, from which we obtain ωax = 2π × 8.5Hz. The observed damping might be due
to the fact that during the oscillation, atoms start exploring regions of the trap where
the harmonic oscillator approximation no longer holds.

Radial frequencies are in the kHz range. Measuring center of mass oscillations at
these frequencies is experimentally challenging (indeed, because of the high trapping
frequencies, the movement of the center of mass takes place in a small region, which
is not easily resolved because of the finite image resolution) and another method is
usually employed. This method, known as parametric heating (Savard et al. 1997),
consists in modulating26 the laser power so that P (t) = P0[1 + η(t)], with η(t) =
η0 cos(2πfmodt). From equation (2.6), this is equivalent to applying a perturbation
Vη(t) = mωradη(t)r2/2. In a quantum picture, this perturbation induces transitions
between levels of the harmonic oscillator |n〉 with a matrix element proportional to
〈m|r2|n〉. The parity of Hermite polynomials imposes m = n+ 2k with k ∈ Z. Energy
conservation requires then fmod = 2kfrad. Once a resonance is reached, the energy of the
atom increases exponentially with time, until at some point its kinetic energy is higher
than the depth of the trap, and the atom is lost. Such a loss spectrum is shown in figure
2.5(b), where we record the remaining atom number at each modulation frequency. By
fitting a sum of two inverted Gaussians we extract ωrad = 2π × 1400Hz . We see that
another peak at fmod = frad appears. The nature of this peak could be explained by a
modulation of laser pointing according to Savard et al. (1997). This spatial modulation
could be due to thermal lensing induced by the power modulation . Both measurements
are in agreement with the estimated waist, independently calculated by Gaussian beam
propagation.

Once the trapping frequencies are known, it is possible to extract the temperature of the
cloud using the same experimental procedure employed to determine the temperature
of atoms in the MOT. For a thermal cloud, the sizes evolve during TOF as (Ketterle
et al. 1999):

σ2
k(t) = σ2

k,0[1 + (ωkt)
2], (2.8)

and become independent of the trapping frequencies σ2
k(t)→ 2kBTt

2/m for long times

26Experimentally, we apply the modulation during 200ms with an amplitude η0 = 10%.
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Figure 2.5 – Calibration of the frequencies of the dipole traps. (a): Axial frequency
of the infrared trap. By recording center of mass oscillations, we extract the frequency
ωax = 2π×8Hz. The data shows the center of mass position as a function of time after
the perturbation described in the main text. The solid line is a damped sinusoidal fit
to the data. (b): Radial frequency of the infrared trap by using the parametric heating
technique. We show the atom number for different modulation frequencies. The solid
line is a fit corresponding to the sum of two inverted Gaussians. This allows to extract
(see text) the radial frequency ωrad = 2π×1.4 kHz. (c): Radial frequency of the visible
dipole trap. By the parametric heating technique we infer ωrad = 2π × 1.1 kHz.

ωkt� 1. In figure 2.4(b) we show the rms-size of the cloud after TOF in the radial and
axial directions. The solid lines are fits to the data using equation (2.8), from which
we extract a temperature T = 40 µK, well below the trap depth and in good agreement
with the temperature of the MOT.

Transport and transfer into a crossed optical dipole trap

The slackness of the optical trap in the axial direction prevents from keeping the nec-
essary densities required for an efficient thermalization while evaporation takes place.
To improve this, we employ another optical dipole trap. By intersecting both lasers at
the position of each focus, we can obtain a tight confinement in all directions.

Before doing so, we first transport the atoms from the MOT to the science chamber.
This chamber has a better vacuum level and higher optical access. Transport is per-
formed by moving the focus of the infrared dipole trap. We do this by means of a
corner cube mirror mounted on a translation stage27 (Scholl 2014), which allows us to
transport the atoms over a distance of 18 cm in 1.5 s, with an efficiency around 80%
mostly limited by the evaporation of the hottest atoms.

Once atoms reach the science chamber, we intersect the cloud with another optical trap
propagating at 90◦ in the horizontal plane. This second trap consists of a visible laser28

at a wavelength λ = 532 nm, for which αg(λ) ' 262.5α0. We set its power to P = 1W
and we focus it at w0 ' 16 µm. This generates a trap of depth V0/kB ' 100 µK.

27XMS160. Newport.
28Verdi V-6. Coherent.
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2.1. Production and detection of an ytterbium Bose-Einstein condensate

The radial frequency of this dipole trap is also measured by the parametric heating
technique previously described [see figure 2.5(c)].

2.1.5 Evaporative cooling and Bose-Einstein condensation

Experimental implementation

Experimentally, we perform evaporation by reducing the power of the dipole traps in
4 s. We first evaporate the infrared dipole trap until both traps are at the same depth.
After this, an important fraction of the atoms gathers in the crossing region. Further
evaporation is performed by lowering the depth of both dipole traps. Details on the
ramps employed for evaporation can be found in Scholl (2014) and Dareau (2015).

The shot-to-shot reproducibility of the evaporation ramps is essential for position and
atom number stability. This is achieved on the one hand by stabilizing the power of
the lasers. The power of the visible dipole trap is controlled by means of an AOM,
whose diffraction efficiency is controlled by a feedback loop. Control of the infrared
laser power is performed by a dual control. First, the power is lowered down to 10% of
its maximum value by changing the laser current itself. Below this point, lasing would
stop and another method is needed to achieve the extinction levels on the order of 1%
required for evaporation. We use for this a half-wave plate mounted in a motorized
rotation stage29 followed by a Glan-Taylor polarizer30 with an achievable extinction
level well below 1%. Combined with a feedback loop on the laser current, this step
allows us to stabilize the power seen by the atoms (Scholl 2014).

On the other hand, stability also requires minimizing drifts and pointing fluctuations of
the traps. We monitor the dipole trap positions by imaging each focus onto a position
detector. This detector, together with a motorized mirror installed in each optical
path is inside a feedback loop, which allows us to keep the crossing position stable31.
In practice, the position stabilization is not continuous, and we activate this feedback
a couple of times per day to correct possible drifts.

Characterization of the Bose-Einstein condensate

As evaporation is performed, the temperature of the gas decreases. Once this tem-
perature is low enough, the critical phase space density is reached and we observe the
phase transition from a thermal gas to a BEC (see 2.6). We see a bimodal distribution
appear, which is a clear experimental signature of Bose-Einstein condensation. By an-
alyzing these profiles, one can extract parameters such as the condensed fraction or the
temperature of the thermal part (Ketterle et al. 1999). For temperatures below 100 nK
the thermal fraction is too small to be detected. In our setup, the total experimental
sequence to produce a BEC lasts 12 s. After this, we obtain pure BECs (fc>80%) of
8× 104 atoms with a relative atom number fluctuation below 5%.

In the Thomas-Fermi approximation (see section 1.1.3) the density of the BEC in the
CDT is given by equation (1.16). The ground state scattering length of 174Yb has

29DRTM-40. OWIS
30GL15-C26. Thorlabs.
31Aligna 4D. TEM Messtechnik.
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Figure 2.6 – Absorption pictures and integrated density profiles after TOF at different
moments of the evaporation ramps. As the power of the dipole traps is lowered, the
temperature of the cloud decreases and, at the critical temperature, Bose-Einstein
condensation is reached, clearly seen in the absorption images by the appearance of a
bimodal structure. Solid blue lines are the integrated density profile of the absorption
images shown in the insets. The black dashed lines are a fit to the thermal part using
a Bose distribution, which allows us to extract the temperature shown in the axis.
The dotted red line allows us to extract the condensed fraction shown in the insets
and results from a bimodal fit taking into account the contribution of the thermal
distribution and the Thomas-Fermi profile of the condensed part.

been measured in Kitagawa et al. (2008) and in Borkowski et al. (2017). Its value is
a = 105a0, with a0 ' 5.3× 10−11 m the Bohr radius. At the end of evaporation the
trapping frequencies are (ωx, ωy, ωz) = 2π × (80, 240, 250)Hz. The BEC peak density
is n0 = 9× 1014 atoms/cm3 and the in-trap Thomas-Fermi radii are (Rx, Ry, Rz) =
(7.9, 2.7, 2.5) µm. Finally, the chemical potential µ = gn0 = h× 3600Hz� ~ωk, which
justifies the Thomas-Fermi approximation, as discussed in section 1.1.3.

2.1.6 Absorption imaging

This section briefly describes the method of absorption imaging that we employ to
extract information on the atoms. The line employed for imaging the ground state is
the 1S0→1P1 transition, with λb = 398.9 nm and Γb = 2π × 29MHz. The procedure
used to image atoms in the 3P0 state will be described later in chapter 3.

The idea behind absorption imaging is the following: A resonant pulse is sent to the
atomic cloud. Some of the photons will be absorbed and scattered in all directions,
thus not reaching the camera. The atomic signal then appears as a shadow on the
recorded image. This shadow allows one to extract information on the atomic column
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density through the Beer-Lambert law:

dI

dz
= −nσ(I)I, (2.9)

where σ(I) = σ0/(1 + I/Isat) is the effective cross section with the effect of saturation
taken into account and z is the direction in which the imaging beam propagates. The
bare resonant cross section is given by σ0 = 3λ2/(2π) and the saturation intensity by
Isat = ~Γω3

b/(12πc2) with ωb = 2πc/λb. Integration leads to the following expression
for the optical depth of the sample (OD):

OD(ρ) = σ0

ˆ
n(r) dz = − ln

(
I(ρ)

I0(ρ)

)
+
I(ρ)− I0(ρ)

Isat

, (2.10)

with ρ = (x, y). The first term in the right hand side corresponds to the optical density
∆(ρ). We see then, that for intensities well below Isat the optical depth coincides with
the optical density and we have I(ρ) = I0(ρ) exp[−OD(ρ)].

Experimentally, the intensities I and I0 are obtained by taking two successive images:
the first one in the presence of the atomic cloud, from which we extract I, and another
one, the reference image, recorded once the atoms have left the camera field of view,
which corresponds to I0. Once the images are recorded, the OD is determined from
equation (2.10). The column density n(ρk) and the total atom number N0 are obtained
as follows:

n(ρk) =
A
Mσ0

OD(ρk), N0 =
∑
ρk

n(ρk), (2.11)

where A is the pixel area andM the magnification of the optical setup. A method to
extract the magnification of an imaging setup is presented in section 2.2.5.

Detailed features in the density profiles are sensitive to interferences on the imaging
light (the so-called imaging fringes), which appear as a periodic modulation in the
pictures. Also, intensity fluctuations during the time between the two images I and I0

are taken can occur and are detrimental because they might blurr or hide real atomic
information. We remove these artifacts by employing a fringe-removal algorithm well-
known in image processing and adapted to ultracold atoms experiments by several
groups (Ockeloen et al. 2010). We will refer to this technique as best-reference picture
in the following. The basic idea is to take an ensemble of reference images (what we
called I0 in the previous paragraph) and then generate an ideal reference picture for
each image by performing a linear combination of all of them. The best reference image
is the one that is closer to the picture with atoms in a region with no atoms, i.e., the
one that minimizes the pixel difference between the generated reference picture and the
region with no atoms. More details on the algorithm and its performance concerning
our image treatement can be found in Bouganne (2018).

A last important detail to consider is the exposition time, i.e., for how long will the
atoms be exposed to the imaging beam. There are mainly two effects to take into
account:

1. Doppler effect: Each time an atom absorbs a photon, the atom recoils and ac-
quires a velocity vb = ~kb/M . Then, after absorbing many photons, the atom
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will be driven out of resonance and will not contribute to the OD anymore. In
order to avoid this, the Doppler shift ∆ω after the absorption of Nph photons,
∆ω = Nphkbvb should be smaller than the linewidth of the transition Γb, which
limits this to Nph ≤ 2000 photons/atom. The number of absorbed photons is on
the other hand given by Nph ' Γspτ , with Γsp ' Γb/4 (Metcalf et al. 1999) for
a saturation s ' 1 and τ the exposition time. The previous condition is then
satisfied for τ ≤ 200 µs.

2. Heating: Upon each absorption-spontaneous emission of a photon, the atom is
heated. The induced transverse heating (Grimm et al. 2000) after absorbing
Nph photons is E⊥ = NphEr/3, with Er = ~2k2

b/(2M). This is associated to
a transverse diffusion ∆p⊥ = ~kb

√
Nph/3. We make now a simplification and

assume ∆x ' ∆pτ/M . We then require that the displacement ∆x associated to
this diffusion be smaller than the pixel size ps during the time τ of exposition.
The condition is then τ 3/2 ≤

√
3Mps/(~kb

√
Γsp). For a pixel size ps = 4.65 µm

this leads to τ ≤ 35 µs.

The images shown and analyzed in this manuscript correspond to beam intensities on
the order or smaller than Isat, with exposition times of 10 − 35 µs (i.e. Nph ' 500 −
1500 photons/atom). The best-reference picture algorithm is applied whenever fine
details on the density profiles are needed (e.g. for extracting visibility of the interference
patterns generated by atoms released from an optical lattice).

2.2 Loading and characterization of an optical
lattice

As detailed in section 1.2.2, interacting bosons in an optical lattice are described by
the Bose-Hubbard Hamiltonian. In this section, we illustrate the experimental scheme
and the techniques used to produce and characterize a system governed by such a
Hamiltonian. In particular, the loading procedure we employ will allow us to prepare
a pile of independent 2D lattices, where the dynamics of each stack is given by the
following 2D single band Bose-Hubbard Hamiltonian:

ĤBH = −J
∑
〈i,j〉

(â†i âj + â†j âi) +
U

2

∑
i

n̂i(n̂i − 1) +
M

2

∑
i

(Ω2
xx

2
i + Ω2

yy
2
i )n̂i. (2.12)

In the following, we discuss in details how we calibrate the lattice depth V0, allowing
us to compute J and U , the external frequencies Ωi and how to prepare experimentally
the ground state of a system described by equation (2.12). This is done by means of a
scheme that relies on the adiabatic transfer of the BEC into the lattice potential. We
then report on the observation of the superfluid to Mott insulator transition and discuss
how its experimental signature can be related to a first order correlation function and
therefore to the degree of phase coherence present in the sample. We then calibrate the
on-site interaction energy by doing a collapse and revival experiment, and we perform
noise-correlations analysis from a set of images of Mott insulators recorded after TOF.
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2.2.1 Experimental considerations and calibrations

Generation of the optical lattice and characterization techniques

We generate optical lattices by retro-reflecting optical Gaussian beams. This produces
a standing wave modulated by the Gaussian envelope of the beams, that creates a
dipole potential of the form (Bloch et al. 2008):

V (r) = −V0 cos2(kLz) e−2ρ2/w2(z). (2.13)

Here, kL = 2π/λL, λL is the wavelength of the light employed to create the lattice and,
as before, V0 = 4PRe[α(λ)]/(πε0cw

2
0) is the trap depth (the factor of 4 with respect

to the single dipole trap is due to the constructive interference of the forward and
reflected optical waves). As discussed in section 1.2.1, this picture is extended to several
dimensions by intersecting several standing waves in different directions. If these waves
do not interfere with each other, the total potential is given by the incoherent sum of
each individual standing wave. For three orthogonal beams, we showed in section 1.2.1
that the physics in the lowest band could be described by an effective potential on
top of the lattice [see equation (1.38) and the corresponding discussion], where this
effective potential has the form of a harmonic confinement:

Veff(r) =
∑

µ=x,y,z

1

2
mΩ2

µµ
2. (2.14)

To characterize the optical lattice, we need to determine the depths V0,µ (which we will
use to compute J and U) and the external trapping frequencies Ωµ. In practice, the
external frequencies are on the order of several tens of Hz. We infer them experimentally
by measuring center of mass oscillations of the BEC in the potential generated by one
of the beams from the CDT and a lattice beam with the retro-reflection blocked. The
CDT trapping frequencies are known, which allows us to extract Ωµ.

In order to calibrate the lattice depth V0, several methods exist (Morsch et al. 2006).
The one we use is known as Kapitza-Dirac diffraction (Kapitza et al. 1933; Ovchinnikov
et al. 1999), which has the advantage of needing short interaction times with the
lattice (about 30 − 50 µs). It consists in pulsing the optical lattice onto the BEC,
which afterwards evolves freely in TOF. An absorption image is then recorded and
shows a series of peaks [see figure 2.7(a)]. An interpretation of this phenomenon is
the following: The BEC, initially prepared in a state of well-defined momentum p '
0, virtually absorbs photons from one of the lattice beams and then, by stimulated
emission, releases them into the other beam. Then, the atom acquires a net momentum
equal to 2~kL, which explains the observed equidistant density peaks. The population
of each one of the diffraction orders oscillates at rates that are proportional to the
lattice depth and therefore, this kind of measurements can be used to extract V0. In
more details, the evolution is computed as follows (Denschlag et al. 2002): Prior to the
lattice pulse, the BEC is well described by a plane wave |p = 0〉, which can be expressed
in the Bloch basis as a linear combination of states |n, q = 0〉. Then, once the lattice
is switched on, each one of the Bloch states picks up a phase ∼ exp[−iE(n, q = 0)t/~]
during the time t = tpulse the atoms interact with the lattice. Finally, the sudden
switch off of the lattice, projects the state back onto the plane-wave basis, where each

50



Chapter 2. Loading 174Yb ultracold gases in optical lattices

Figure 2.7 – Calibration of the lattice depth through Kapitza-Dirac diffraction. (a):
Absorption images after TOF of the atoms after having interacted with the lattice
during a time tpulse. We see diffraction peaks appearing at integer values of the lattice
reciprocal vectors. (b): As time evolves, the population of each diffraction order
changes, the oscillation rates are governed by the Bloch energies E(n, q), which depend
on the lattice depth V0. A fit to the data employing the procedure described in the
text can then be used to extract the lattice depth.

Bloch state can be decomposed as a linear combination of |p = 2m~kL〉, with m ∈ Z
the diffraction order. The evolution of each order m oscillates at a rate given by
E(n, q) = f(V0), numerically computed, and this is what we use to extract the lattice
depth. An example of a typical measurement and the fit using this procedure is shown
in figure 2.7(b).

Experimental aspects

Here, we give some information on the experimental lattice setup we use to generate
cubic lattices. All three optical lattice beams are derived from the same source: a 5W
laser32 at λL = 759 nm, (see chapter 3). The optical beam is split in three paths: one for
each axis of the lattice. To avoid crossed interferences between each axis of the lattice,
the frequency of each beam is then shifted by means of an AOM. Labeling the horizontal
axis x and y and the vertical one z, the shifts are (δx, δy, δz) = 2π×(80,−80, 110)MHz.
By doing so, the residual modulation is much faster than the external dynamics of

32Titanium-sapphire laser: SolsTiS. M Squared Lasers. The laser is pumped by a 16W laser at
532 nm (Finesse. Laser Quantum).
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the atoms and therefore, the interference between different beams can be neglected.
To clean the optical mode, each beam is subsequently coupled into a polarization-
maintaining optical fiber. Polarization fluctuations are minimized thanks to a half-
wave plate in front of each fiber. At the output of the fibers, a polarizing beamsplitter
is used to select the polarization . The polarizations of each lattice beam are linear and
oriented orthogonal to each other: εx = êz , εy = êx and εz = êy, reducing further the
possibility of crossed interferences. This beamsplitter also allows to convert possible
remaining polarization fluctuations into power fluctuations, easier to suppress with a
feedback system.

Each beam is then focused and aligned to match the atomic position. The waists are
(wx, wy, wz) = (115, 125, 150) µm. Around 600mW are available for the vertical arm
and 400mW for the horizontal ones. Retro-reflection is performed by a 0◦ mirror and
aligned by re-coupling the beam into the same optical fiber. Polarization changes during
propagation would result in a smaller interference term and, in some experiments, the
use of a quarter-waveplate is necessary to compensate for possible polarization changes
caused by the mirror (typically a dielectric one). So far, we have not noticed this to be
an issue in our experimental setup and the polarization of the retro-reflected beam is not
corrected. Power stabilization, essential for adiabatic loading and preventing heating
mechanisms, is assured by a feedback loop that, through a photodiode, monitors the
power and corrects possible deviations from the set-point by adjusting the diffraction
efficiency of the AOMs. Concerning the alignment of the lattice beams, the radial
position is controlled by means of a mirror mount with a piezoelectric actuator33. The
axial position is adjusted by means of a lens. Finally, to improve mechanical stability,
the retro-reflection mirrors mounts for the horizontal lattices are clamped on an Invar
block, which assures its stability against thermal fluctuations.

Finally, the trap depths are measured by the Kapitza-Dirac technique and the ex-
ternal frequencies by recording collective mode oscillations as described in the pre-
vious paragraph. As an example: For (Px, Py, Pz) = (0.4, 0.4, 0.6)W, we obtain
(V0,x, V0,y, V0,z) = Er × (24.0, 25.6, 27.0), with Er = ~2k2

L/(2M) ' h× 2 kHz, the recoil
energy at λL = 759 nm. The residual confinement is (Ωx,Ωy,Ωz) = 2π×(42, 38, 33)Hz.

2.2.2 Adiabatic loading of the optical lattice

Once the lattice is calibrated and aligned, we need to load the atoms in such a way that
we can prepare the ground state of the system, described by the Bose-Hubbard Hamil-
tonian in equation (2.12). As described in section 1.2.5, the most common method is to
transfer the BEC previously prepared in the CDT into the lattice by slowly increasing
the lattice depth.

We meet the criteria described in section 1.2.5 using the following experimental proce-
dure:

1. Exponential ramp-up of the vertical lattice: with the CDT still on, the vertical
lattice is ramped up in tz = 20ms to its maximum depth (Vz = 27Er). This is
necessary to freeze the vertical motion and hold atoms against gravity (ytterbium

33Picomotor Piezo Center Mount, Newport.
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Figure 2.8 – Characterization of the lattice loading. (a) and (b): Lifetime of the
visibility of the diffraction peaks. Each data set corresponds to a different extinction
speed of the CDT (a) or the rising up of the horizontal lattices (b). The solid lines
are Lorentzian fits to the data. The FWHM of each Lorentzian is associated to the
lifetime of the visibility.

can only be optically trapped). Adiabaticity with respect to the band structure
is then satisfied and the in-plane density is still mainly determined by the CDT.

2. Adiabatic extinction of the CDT: in order to reduce the density and mitigate
three-body losses at later stages, the CDT is smoothly decompressed in a time
tCDT. In this way, we create a stack of independent two dimensional BECs held
by the vertical lattice alone.

3. Adiabatic loading of the horizontal lattices: finally, the horizontal lattice arms
are slowly ramped to their final values V⊥ in a time t⊥.

With this loading scheme, we end up with a vertical collection of almost independent
2D horizontal lattices.

Experimentally, we optimize the decompression time tCDT of the CDT and the ramp
up time t⊥ of the horizontal lattices following the procedure described in Gericke et
al. (2007): We produce a superfluid at 6ER at a given ramp time and then measure
how the visibility of the diffraction peaks (see next section), which characterizes phase
coherence, evolves in the lattice by measuring it at different times thold. We then
increase the ramp times and repeat the procedure until the visibility lifetimes do not
change anymore [see figure 2.8]. We finally work at tCDT ' t⊥ ' 100ms.

We note that, although the adiabaticity criteria given in 1.2.5 do not apply in a strict
sense for the decompression stage of the CDT, the same timescales are needed (Band et
al. 2002) so that collective oscillations are not excited during the extinction of the trap.
These oscillations would lead to heating during the loading of the horizontal lattice and
reduce the visibility lifetime. Therefore, the optimization of the decompression speed
can also be performed by looking at the visibility of the diffraction peaks once the
whole lattice is loaded.

Finally, once adiabaticity is ensured, the remaining effects we need to take into account
are the following:
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1. Heating generated by spontaneous emission due to the lattice beams: This heat-
ing is given by Γheat = 2ΓscEr (Grimm et al. 2000) and it is negligible (on the
order of 0.04Er/s for P = 400mW).

2. Heating due to power fluctuations, which could explain the decay of the visibility
observed at long times in figure 2.8.

Model for the loading

We now detail the model that we use to numerically compute the equation of state of
the sample, prepared by performing the loading procedure previously presented. The
BEC, initially prepared in the CDT is well described in the Thomas-Fermi regime and
its density distribution nTF(r) takes the form of an inverted parabola [see equation
(1.16)]. In particular, the radius of the BEC in the vertical direction within this
framework reads:

Rz =

√
2µ

Mω2
z

, (2.15)

We model the loading of the vertical lattice by performing a sudden approximation in
which we project the BEC density in the periodic potential generated by the optical
lattice. The number of populated planes is Nplanes = 2Rz/d with d = λL/2. For a given
total atom number N , the atom number in each plane j is given by:

Nz(j) =

ˆ zj+d/2

zj−d/2

ˆ
nTF(r) d2ρ dz ' 15Nd

16Rz

[
1− (jd/Rz)

2
]2

for Rz � d. (2.16)

We show in figure 2.9 the atom number distribution in each plane for N = 8× 103 and
N = 8× 104 atoms.

After this, we need to describe the switching off of the CDT and the horizontal lattices
ramp up. We model this two steps as an adiabatic process, i.e., starting from distribu-
tion predicted by equation (2.16) we consider that (i) each plane is independent of the
rest and (ii) that after ramping up the horizontal lattices, the system is described by
the ground state of the Bose-Hubbard Hamiltonian. This ground state is calculated by
using the Gutzwiller ansatz presented in section 1.2.3. The presence of the trap, leading
to an inhomogeneous density profile, is introduced by making a local density approxi-
mation, i.e., we first find the equation of state n̄[µ, V⊥] and then interpolate to find the
equation of state in each plane j for the trapped system n̄tr(ρ, j) = n̄[µj − V (ρ), V⊥].
The chemical potential in each plane is found self-consistently by imposing

ˆ
n̄tr(ρ, j) d2ρ = Nz(j). (2.17)

Examples of the obtained density profiles are shown in figure 2.10 for different lattice
depths and different atom numbers.
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Figure 2.9 – Atom distribution in the vertical lattice for Vz = 27Er. (a) for N =
8× 103 atoms and (b) for N = 8× 104 atoms predicted by equation (2.16).

Figure 2.10 – Density distribution in each vertical plane using the numerical model
described in the text for V⊥ = 6Er (left column) and V⊥ = 14Er (right column). Figures
(a) and (b) show the density profiles for an initial atom number N = 8× 103 atoms
and (c) and (d) are the equivalent density distributions for N = 8× 104 atoms.

2.2.3 Observation of the superfluid to Mott insulator
transition

Experimental signature

In an ideal situation, the initial state produced after evaporation is a BEC with negli-
gible thermal fraction. Then, the adiabatic transfer realizes to a good approximation
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Figure 2.11 – Bose-Hubbard parameters as a function of the lattice depth (a): On-
site interaction energy. (b): Tunneling energy. (c): Ratio J/U . For all calculations
Vz = 27Er.

the ground state of the Bose-Hubbard Hamiltonian. The nature of this ground state
depends on whether the tunneling or the interactions dominate (see section 1.2.3), that
is, it depends on the ratio J/U . The tunneling amplitude, J , is related to the height
of the Wannier wave functions, and decreases exponentially with the lattice depth V⊥.
On-site interaction energies U , however, are related to the width of the Wannier func-
tions and increase slowly with V⊥. This allows us to tune the ratio J/U over several
orders of magnitudes by only changing the power of the lattice beams (see figure 2.11).

As pointed in section 1.2.3, a first experimental signature of this transition is the
disappearance of interference peaks as one increases the lattice depth (Greiner et al.
2002b). Indeed, the existence of diffraction peaks is linked to the presence of a signifi-
cant amount of atoms within a well-defined momentum class. The distribution in TOF
reflects the in situ momentum distribution [see Gerbier et al. (2008) or appendix A]:
N (k) = 〈n̂(k)〉 = 〈Φ̂†(k)Φ̂(k)〉, with Φ̂(k) the Fourier transform of the field operator.
In the lattice, it reads:

Φ̂(k) ∝
ˆ ( L∑

j=1

w⊥(ρ− ρj) âj

)
e−ik·ρ d2ρ = w̃⊥(k)

L∑
j=1

e−ik·ρj âj, (2.18)

with w̃⊥(k) the Fourier transform of the Wannier function. The in situ momentum
distribution can then be written as N (k) = W⊥(k)S(k), where W⊥(k) = |w̃⊥(k)|2 is
a smooth envelope function and S(k) the structure factor defined as:

S(k) =
L∑

i,j=1

eik·(ρi−ρj)〈â†i âj〉. (2.19)

Note that S(k) is just the Fourier transform of the first-order correlation function
g(i, j) = 〈â†i âj〉 (Naraschewski et al. 1999) introduced in section 1.2.3. The structure
factor determines then the shape of the interference pattern, which characterizes the
phase coherence along the lattice. The two equilibrium phases of the Bose-Hubbard
Hamiltonian, can then be distinguished using the interference pattern (Zwerger 2003;
Bloch et al. 2008):
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Figure 2.12 – (a): Experimental signature of the superfluid to Mott insulator tran-
sition. The data shows how the measured visibility decays as the lattice depth is
increased. This is seen in absorption pictures after TOF through the vanishing of
the interference peaks (insets). The blue shaded region shows the region in which the
Bose-Hubbard regime does not apply. The red dotted lines correspond to the depths at
which the transition to the insulating phase is expected for n̄ = 1 and for n̄ = 2 in a 2D
system. (b): Methodology to extract the visibility (see text): The maximum density is
measured performing a pixel-sum centered at the interference peak (red square). The
minimum density is extracted by a pixel sum along a diagonal at the same distance
(blue square).

1. In the deep superfluid regime, with J � U , we have g(i, j) = α∗iαj ' n̄. Phase
coherence extends then over the whole lattice and:

SSF(k) = n̄
L∑

i,j=1

eik·(ρi−ρj). (2.20)

All the terms of the sum are then added coherently, and the sum vanishes for
all k except in the privileged directions for which k · (ρi − ρj) = 2πm, with
m ∈ Z (i.e. when k is a reciprocal lattice vector 2kL), where sharp peaks appear.
These peaks are usually referred to as Bragg peaks in analogy to the diffraction
experiments performed in crystallography (Ashcroft et al. 1976).

2. Deep in the Mott insulator phase, with U � J , we have g(i, j) ' n0 δij, with δij
the Kronecker delta. Phase coherence is restricted to i = j, so:

SMI(k) =
L∑
i=1

n0 = Ln0 = N, (2.21)

which is featureless.

We have observed this transition experimentally, the result is shown in figure 2.12(a),
where we plot the visibility of the interference peaks as a function of the lattice depth.
Each measurement corresponds to the average of 3 independent images. The visibility
V is defined as proposed in Gerbier et al. (2005):

V =
N (k1)−N (k2)

N (k1) +N (k2)
, (2.22)
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where k1 = (0, 2kL) corresponds to the center of the second Brillouin zone (i.e. at the
diffraction peak position) and k2 = (

√
2kL,
√

2kL) is taken along a diagonal at the same
distance [see figure 2.12(b)]. By defining visibility in this way, only the interference
term S(k) matters in the calculation of the visibility, canceling out the contribution of
W⊥(k), assumed isotropic. In practice, we perform the pixel sum of each one of the
four possible positions and their corresponding diagonals and then average.

The finite width of the peaks shown in the absorption images of figure 2.12 is mainly
due to the finite TOF (21ms) under which these images are taken. In fact, the real
structure factor after a TOF is [see appendix A]:

S(k) =
∑
i,j

ei[k·(ri−rj)−M(r2
j−r2

i )/(2~t)], (2.23)

with k = Mr/(~t) and the expression given in equation (2.19) corresponds to a far
field approximation. Reaching the pure far field regime (which corresponds to neglect
the quadratic terms in the phase of S) requires long TOFs (Gerbier et al. 2008; Toth
et al. 2008) on the order of tFF � m`cR0/~ ' 300ms, with R0 ' `c ' 10 µm the
size of the cloud and the coherence length in the superfluid regime. Such long free fall
times are impracticable in almost all experimental setups and only recently have been
reached combined with single-particle detection in the far field regime (Nogrette et al.
2015; Cayla et al. 2018). Interaction effects during TOF can also broaden the peaks,
but their effect can be neglected. This is due to the fact that the lattice frequencies
ωlat ∝ (V0Er)

1/2 (around 10 kHz) are bigger than the on-site interaction energy U/h
(on the order of the kHz) and the ballistic regime is achieved in a few periods (see
appendix A).

An important remark is that the disappearance of the interference peaks is just a
signature of the superfluid to Mott insulator transition and not a direct proof. The
featureless structure factor in equation (2.21) would also appear for a high temperature
ensemble. Therefore, a key point is to check that the loss of coherence is not due to
heating, or to a non-adiabatic ramping of the lattice. We have verified that this is
not the case with the following experimental sequence: we prepare a system in the
deep insulating regime and then ramp down the power of the lattice beams driving the
system back to the superfluid regime in 10ms. After this, we have seen the diffraction
peaks reappear, which shows that the disappearance of coherence is a reversible effect.

2.2.4 Calibrating on-site energies: collapse and revival
experiments

The precision to which one can calculate the on-site energy U by using equation
(1.45) is limited by the uncertainties of the parameters involved in the overlap integral´
|w(r)|4 d3r, most of them obtained from single-particle arguments. An independent

method to extract the on-site interaction is therefore desirable. The collapse and revival
method (Greiner et al. 2002a), which only assumes that the system can be described
by the Bose-Hubbard Hamiltonian in equation (2.12), can be used to this end.

This method consists in the following: We prepare the system in the superfluid regime,
where each site is well described by a coherent state |α〉k. In this situation, the order
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parameter is 〈â〉 '
√
n̄, phase coherence extends along the whole lattice and sharp

peaks appear in TOF. The lattice is then quenched : we ramp up the depth of the
lattice fast enough (in 75 µs) so that tunneling does not have time to redistribute the
atoms to the new potential. Therefore, right after the quench, the order parameter
has not changed and long-range phase coherence is still present, and the system is still
described by a coherent state:

|α〉j = e−|αj |/2
∞∑
n=0

αnj√
n!
|n〉j. (2.24)

After the quench, the coherent state is no longer an eigenstate of the new Hamilto-
nian

∑
k Un̂k(n̂k − 1)/2. By quenching the lattice, one creates then a non-equilibrium

situation where each site evolves independently during a time t:

|α〉j(t) = e−|αj |/2
∞∑
n=0

αnj√
n!

eiUn(n−1)t/~|n〉j. (2.25)

The order parameter evolves in time as:

〈â〉(thold) =
√
n̄ exp

[
n̄
(
e−iUthold/~ − 1

)]
. (2.26)

For short times, the dephasing of Fock states with different atom numbers leads to a
vanishing order parameter in a time tcol = ~/(

√
n̄U). Within the Gutwiller approxi-

mation, the vanishing of the order parameter directly implies the disappearance of the
interference peaks observed in TOF [figure 2.13(a)], i.e., a clear signature that phase
coherence is lost. However, after a time trev = h/U , the phase shift acquired by each
Fock state is a multiple of 2π and the initial state is recovered up to a non-important
global phase. Consequently, global phase coherence is restored. This is seen in TOF
absorption images by the revival of the interference pattern (Greiner et al. 2002a). We
have performed this experiment by loading a superfluid in a lattice at V⊥ = 5Er and
Vz = 27Er. We then quench V⊥ to 26Er in 75 µs. We let the atoms interact with the
lattice for a time thold. Then, abruptly, we switch off the lattice beams and image the
atoms after TOF. The evolution of the visibility extracted from these images is plotted
in figure 2.13(b) for different interaction times. A model-free fit is performed by a sum
of equidistant Gaussians. This allows us to account for the observed damping, which is
a consequence of the residual confinement and does not modify the extracted value of
U (the error committed in assuming U uniform along the lattice is smaller than 1%).
The time at which the interference pattern reappears allows us to extract the on-site
interaction energy U = h× 1475(25)Hz.

2.2.5 Noise-correlation experiments

In this section we perform an analysis of density noise-correlations of Mott insulators
imaged after TOF. As predicted by Altman et al. (2004) and experimentally shown
in Fölling et al. (2005) the apparently featureless density distribution from equation
(2.21) still contains information that one can extract from noise analysis.

In the previous section, we argued that the TOF density distribution is related to the
in situ momentum distribution. Density correlations in time of flight will then be given
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Figure 2.13 – Collapse and revival experiment. Atoms are first prepared in the
superfluid regime with V⊥ ' 5Er and Vz ' 27Er. The horizontal lattice is then
quenched to V⊥ ' 26Er and the atoms are let to evolve. (a): Absorption images after
TOF of the atoms after having evolved for a time thold in the quenched lattice. (b):
Visibility of the interference peaks extracted from the absorption images for different
evolution times thold. The revival time of the visibility is associated to the on-site
interaction energy (see text). We fit a periodic sum of Gaussians to the data to extract
this time and we infer U = h × 1475(25)Hz. Figure adapted from Bouganne et al.
(2017).

by 〈n̂(ρ)n̂(ρ′)〉 ∝ 〈n̂(k)n̂(k′)〉. These correlations can be related to in situ second-order
correlations in momentum space34:

g2(k,k′) =
〈n̂(k)n̂(k′)〉
〈n̂(k)〉〈n̂(k′)〉

= 1 +
1

L2

L∑
i,j=1

e−i(k−k′)·(ρi−ρj). (2.27)

The previous expression predicts that sharp peaks will appear in g2(k,k′) whenever
(k − k′) · (ρi − ρj) = 2πm, with m ∈ Z (i.e., whenever k − k′ is equal to a reciprocal
lattice vector). This indicates that Mott insulator states have long-range order in
the second-order correlation function g2(k,k′). These kind of experiments have been
interpreted in terms of the Hanbury-Brown and Twiss effect (Brown et al. 1956), and
the observed peaks are sometimes referred to as bunching peaks in analogy.

We have performed this analysis following the procedure described in Fölling et al.
(2005) on a set of 50 independent absorption images of a Mott insulator after a free
expansion of 21ms. In figures 2.14(a)-(b) we show an example of a single absorption
image and a 1D cut through the center. As expected, the signal is apparently feature-
less. However, we see that density fluctuations are present. Through a noise-correlation
analysis of such images, we can generate figure 2.14(c), where we see the appearance of
several peaks at the positions predicted by equation (2.27). A strong peak is present

34see appendix A for a review of the derivation of this term.
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Figure 2.14 – Noise correlations in a Mott insulator (a): Single absorption picture
of a Mott insulator. (b): Cut through the center of the density profile where density
fluctuations can be seen. (c): Density-density correlation function obtained following
the procedure described in Fölling et al. (2005). (d): Cut through the center of the
spatial noise correlation function. The red dashed lines correspond to the position of
the peaks predicted by equation (2.27).

at r − r′ = 0, which corresponds to an autocorrelation term not shown in equation
(2.27) (see appendix A).

It is interesting to note that no far field approximation is needed to derive the phase
term in equation (2.27) (see appendix A). The observed peaks should in principle be
arbitrarily narrow and, as a consequence, the finite TOF cannot be responsible for the
broadening of the peaks, which is actually due to the finite resolution of the imaging
setup (Fölling et al. 2005). In the next section, we use these peaks to estimate the
resolution of our imaging system.

2.2.6 Characterizing an imaging system with an optical lattice

Using a superfluid to extract the magnification

We can use the recorded images of a superfluid released from an optical lattice to extract
the magnification of the optical system. Indeed, the density distribution observed in
TOF N (ρ) reflects, up to a factor, the in situ momentum distribution N (k) with the
substitution ρ = vrtTOF = ~ktTOF/M . In the superfluid regime, equation (2.20) shows
that a peak appears each time that k = 2kL, which, in TOF, corresponds to spatial
separations:

ρ− ρ′ = 2
h

λM
tTOF. (2.28)
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The density distribution after TOF is subsequently recorded on a CCD thanks to an
imaging setup that performs the transformation N (ρ) 7→ N (xi, yi). In particular, a
distance of (xi− xj) pixels on the CCD represents a distanceM× (x− x′) of the TOF
distribution, with M the magnification of the setup. Each pixel on the CCD has an
area A = d2, usually on the order of several µm2. Therefore, by locating the position
of the peaks in an image, one can easily extract the magnification:

M =
λMd(xi − xj)

2htTOF

. (2.29)

The uncertainties on the wavelength λ the mass M and the pixel-size ps are negligible,
the experimental uncertainty on the TOF is on the order of 10−3 ms, and the center of
the peaks can be pointed within a precision on the order of the pixel. All this combined
allows us to extract a magnification with at least two or three significant digits.

Using a Mott-insulator to extract the resolution

In an imaging system, the recorded distribution results from a convolution of the real
density distribution with the point spread function (PSF) of the system, which takes
into account the finite imaging resolution:

nCCD(x, y) =

ˆ
PSF(x)n(x− x′) d2x. (2.30)

Let us now focus on a 1D-cut through one of the peaks. The shape of the peak is given
by a Gaussian: npeak(x) = A exp [−x2/(2∆x2)], with ∆x the rms-width of the peak,
infinitely narrow in principle. We then approximate the PSF by a Gaussian: PSF(x) =
B exp [−x2/(2σ2

x)], with σ approximately the resolution of the imaging system. Because
of the convolution, the measured peak on the CCD will also be a Gaussian of width
Wx = [∆x2 + σ2

x]
1/2 ' σx. The width of the recorded peaks is therefore directly linked

to the resolution of the imaging setup.

Then, by using equation (2.29), and knowing the size of the pixel (6.45µm) we extract a
magnificationM = 5.30 by using figure 2.12(b). Finally, by analyzing one of the peaks
in the noise-correlation analysis we can estimate the resolution of the setup. From a
Gaussian fit performed on the cut through the center of one of such peaks allows us to
extract a resolution σx ' 4 µm.

2.3 Summary and perspectives

In this chapter I have presented our experimental setup together with the main steps
leading us to the reliable preparation of BECs and their subsequant adiabatic loading
into an optical lattice. All this combined, allows us to prepare in a systematic way the
ground state of the Bose-Hubbard Hamiltonian.

In the short term, we are planning several experimental upgrades. The first step we
plan to implement is the loading of only a single plane of the 2D-lattice, instead of
working with a pile of independent 2D-lattices. For this, we will first load the atoms
in an intermediate trap. This trap consists of an optical lattice generated by a pair
of beams at λ = 532 nm crossing with an angle, resulting in a lattice with a spacing
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d ' RTF/2 ' 4 µm. Thanks to this large spacing, we will vetically compress the BEC,
and then load a single vertical plane of the magic lattice.

We are also working to prepare a homogeneous system, i.e. to partially suppress the
residual confinement of the lattice beams. We plan to achieve this by means of an
auxiliary beam, properly tailored thanks to a spatial light modulator. We will use
this correcting beam on top of the lattice ones so that the sum of the two leads to an
approximately flat potential.

Finally, we will install a microscope objective. We have built a home-made objective
that we will incorporate in the vertical axis to perform in situ images of the single
plane. The tests performed so far with this microscope lead to a resolution on the
order of 500 nm with light at λb = 400 nm.

All of these future upgrades have been tested independently and are ready to be in-
stalled in the main experiment. Appart from this, we are considereng the possibility
to implement in the long-term a non-destructive imaging setup, enhanced by a high-
finesse cavity (Vallet et al. 2017). In a few words, the probe beam, largely detuned
(δL � Γ), acquires a phase shift after going through the atomic cloud, where all the
relevant information is stored. This signal can be arbitrarily amplified by means of
a high-finesse cavity. Then, the probe beam is compared to a stable reference, from
which the signal is read-out. Since these kind of measurements operate far from reso-
nance, the number of scattered photons is quite low and the method is non-destructive.
Moreover, these methods are supposed to drastically increase the signal-to-noise ratio.

63





Part II

Coherence and relaxation in few-body
systems
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CHAPTER 3

Single-particles in an optical lattice

Optical clock transitions constitute one of the main interest of alcaline-earth-like atoms.
These transitions are free of spontaneous emission and have become an essential tool in
many metrological applications, particularly in the community of frequency standards
(Ludlow et al. 2015). They also offer a realistic experimental platform for precision
measurement proposals, including schemes relying on clock interferometry to measure
relativistic effects in quantum mechanics (Zych et al. 2011; Margalit et al. 2015) or
as sensitive gravitational wave detectors (Graham et al. 2013). A few years ago, the
relativistic time dilation between two aluminum ions, where one of them was submited
to a harmonic velocity with an rms value on the order of 30 km/h, was measured by
comparing frequency shifts on the clock transition on the order of δf/f ' 10−15 (Chou
et al. 2010).

Atoms with optical clock transitions have also become interesting for the study of
many-body physics and as the main bricks for quantum simulation (Yi et al. 2008).
For example, the SU(N) symmetry obeyed by interacting atoms with N = 2I+1 inter-
nal components was observed in fermionic isotopes, for which the total spin I > 1/2,
by performing spectroscopy in the clock transition (Scazza et al. 2014). This symmetry
emerges because of the decoupling of the nuclear spin and the electronic orbital degrees
of freedom (Gorshkov et al. 2010; Cazalilla et al. 2014), and such systems are good can-
didates for the simulation of the Kondo effect (Foss-Feig et al. 2010). Atoms featuring
optical clock transitions are also well-suited for the emulation of artificial magnetism
in optical lattices (Gerbier et al. 2010; Livi et al. 2016) and as the elementary pillars
of quantum information protocols (Gorshkov et al. 2009; Daley 2011).

Many of these applications for quantum simulation rely on the coupling between the
internal and the external degrees of freedom, a coupling provided by the recoil of the
atom upon the absorption of a photon. When performing high precission spectroscopy
measurements, however, it is better to decouple the external dynamics and drive the
internal dynamics alone (Hu et al. 2017). This chapter and the following two are
devoted to the dynamics of ultracold bosons driven on the clock transition in different
experimental situations. In these chapters, I will present a study on the coherent
dynamics of an ultracold quantum gas of ytterbium driven in the clock transition in
different situations. These studies allowed us to identify some of the mechanisms, either
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technical or physical, that compete against this coherent driving.

In this first chapter, I will focus on the simple situation in which the atomic motion is
frozen in a deep lattice, and the dynamics is purely internal. I will first describe our
experimental setup to drive the clock transition and image the metastable state, and
then present a technique commonly used to enable the driving of such clock transitions,
known as magnetic mixing. After this, I will recall some key concepts on matter-light
interaction in a periodic potential. For deep enough lattices one reaches the so-called
Lamb-Dicke regime. A major interest of this framework is that the effect of the photon
recoil is suppressed. As we will see in chapter 4, this decoupling between motional
states and internal states is essential to reveal the spectroscopic signal of interacting
particles in a lattice that would otherwise hidden in the Doppler-broadened profile.
Finally, I will discuss the mechanisms that compete against this coherent control and
display a series of experiments that allow us to give an estimation on the coherence
time of our coupling laser.

3.1 The clock laser: Experimental setup and locking
technique

We now present the main details concerning the optical setup and the locking technique
that we use to generate a source that is narrow and stable enough to address the clock
transition. A thorough report on the characterization of the ultra-low expansion (ULE)
cavity and the performance of the frequency lock can be found in the PhD thesis of
Alexandre Dareau (Dareau 2015).

Experimental setup. A scheme of the setup is shown in figure 3.1. Light at λcl '
578 nm is generated by sum frequency generation. To this end, we use the light issued
from an amplified fiber laser35 at 1030 nm and a Nd:Yag36 laser at 1319 nm. These two
sources deliver about 5W and 200mW, respectively, and are focused to about 40 µm
inside a non-linear crystal37 after which 65mW of yellow light at λcl ' 578 nm are
available. This light is sent to a first AOM that will be used as fast actuator in the
frequency locking scheme. After this, part of the light is sent to an iodine spectroscopy
setup used to calibrate the absolute frequency of the cavity (Dareau 2015). The rest is
sent through an optical fiber to the experiment (see figure 3.1). Here, the optical beam
is split again: Part of it is sent to another AOM, which shifts the frequency before
sending the light to the science chamber. This is the frequency seen by the atoms
and we shall refer to this wavelength as λL on the following. The rest of the light is
used to lock the laser in frequency. We send the light through an optical fiber to an
ULE high finesse cavity38. This cavity is isolated from the environment through several
stages: (i) The cavity is placed inside a vacuum chamber with a vacuum level on the
order of 1× 10−8 mbar. (ii) This chamber is clamped on top of a an anti-vibration
platform39 which (iii) lies inside a home-made wooden box with acoustic foam in it.

35Koheras BoostiK Y10, NKT Photonics.
36Mephisto, Coherent.
37ppLN (periodically poled lithium niobate) crystal from Coherent.
38ATF-6301, Advanced Thin Films
39Nano-K 50 BM-10, Minus K Technology.
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Chapter 3. Single-particles in an optical lattice

Figure 3.1 – Schematics of the clock laser optical chain. Light at λcl = 578 nm is
generated by frequency sum in an optical crystal and then split in two parts: One
part is sent to an iodine spectroscopy setup, which is used to determine the absolute
frequency of the ULE cavity. The rest is sent to the experiment table where it is again
split in two paths. One is used to probe the atoms and the other is sent to an ULE
cavity to frequency lock the laser. Part of this beam is previously sent back to the
main optical table to correct for phase shifts in the optical fiber. Adapted from Dareau
(2015)

Finally, (iv) the whole is placed into a sound-proof isolation box40 (see figure 3.1). The
heat generated inside the box is extracted thanks to a stream of regulated water at
19 ◦C circulating inside a metallic plate.

Once the light coming from the optical table reaches this platform, a small part of it
is retro-reflected and sent back to the main optical table. Here it is used as the second
arm of a Michelson interferometer, that we use to perform a phase lock. This is done in
order to correct for phase changes inside the fiber mainly due to thermal or mechanical
perturbations. Part of the remaining light is used for intensity stabilization before the
ULE cavity and the rest is sent to the ULE cavity to perform the frequency lock.

ULE cavity The cavity consists of two high-reflectivity mirrors, a flat one and a
concave one forming a Fabry-Perot cavity. These mirrors are separated of L = 47.6 cm
by a spherical ULE material. The ULE material is hold by two supports into a thermal
shield, which is temperature regulated thanks to a Peltier element inside a feedback
loop41. The finesse of the cavity F ' 257000 has been deduced from the measurement
of the cavity ring-down time τrd ' 13 µs and the free spectral range ∆FSR = 2π ×
3 144 366(2) kHz (Dareau et al. 2015) in good agreement with the specifications. The
full width at half maximum of the cavity resonances is then δωcav = ∆FSR/F ' 2π ×
12 kHz.

40Built by the Keoda society
41LFI-3751. Wavelength Electronics
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Figure 3.2 – Determination of the zero-crossing point of the cavity. Two curves were
taken, one by increasing the temperature (red curve, arrows pointing to the right) and
one decreasing it (blue curve, arrows pointing to the left). The vertical line corresponds
to the zero-crossing temperature T0 = 4.13(2) ◦C and the shaded region indicates one
standard deviation.

The absolute frequency of the cavity is determined by comparing the free spectral
range to the saturated absorption spectrum of the iodine molecule [see figure 3.1].
Iodine displays a resonance at about 10GHz from the ytterbium clock transition. This
allows us to track down the clock transition within a range of 40 kHz, accurate enough
to subsequently locate in a reasonable amount of time the atomic 174Yb resonance by
performing spectroscopy on a cold atomic cloud(Dareau 2015).

Finally, one of the main interests of ULE materials is the presence of a temperature
for which a zero-crossing point in its dilation coefficient is reached. Here, temperature
fluctuations have a much smaller effect on the length of the cavity and thus, on the res-
onance frequency. We have found this temperature experimentally at T0 ' 4.13(2) ◦C
[see figure 3.2]. From the curvature κ ' −2π× 350 kHz/K2 we can infer the sensitivity
to temperature fluctuations of the resonance frequency Σ(T ) ' 2κ(T − T0) at a given
temperature. We have measured the temperature stability of the thermal shield with
an available probe outside of the temperature servo loop. This measurement shows
fluctuations on the order or below a miliKelvin. We can estimate the impact on the
frequency if we miss the zero-crossing by one standard deviation, i.e., if we set our tem-
perature at 0.02 ◦C from T0 [see shaded region in figure 3.2]. In this case Σ ' 14 kHz/K
and the measured temperature fluctuations translate into frequency variations with an
rms smaller than 15Hz. Nevertheless, despite the stability of the temperature of the
cavity, we observe a dependence of the resonance frequency on the ambient tempera-
ture of the laboratory. In a few words, there are two additional factors that influence
the resonance frequency: (i) The first one is the aging of the ULE material, which
slowly changes the length of the cavity and thus its resonance frequency, translating
into a slow drift which is constant from day to day if the surroundings of the cavity
do not undergo any temperature change. We observe that the slope of this slow drift
changes if the temperature of the surroundings of the cavity is modified, although with
some time lag [we show this in figure 3.3, where we show the resonance frequency of the
cavity during the last 6 years. From this we measure a drift of ' −2.35 kHz/day over
the last 3 years]. (ii) On top of this drift we also remark faster frequency deviations
during the day, with a much stronger dependence on temperature. Due to these last
fast drifts, we need to acquire several spectra per day in order to keep the cavity on
resonance with the clock transition. A phenomenological model taking these aspects
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Figure 3.3 – Drift of the ULE cavity with respect to 174Yb clock transition during the
last 6 years. The black empty dots correspond to the measurement of the resonance
of atoms in free space. The red dots are measurements using the iodine spectroscopy
setup. The dashed line is a linear fit to the data over the last 3 years, which yields a
slow drift of the resonance frequency of −2.35 kHz/day.

into account is presented in the PhD thesis of Raphaël Bouganne (Bouganne 2018).

Locking technique. The technique we use to lock the cavity is the Pound-Drever-
Hall (PDH) technique (Drever et al. 1983). This technique relies on the measurement
of the intensity reflected from the cavity, which arises from the interference between
the part of the field directly reflected and the intra-cavity field transmitted by the in-
coupling mirror42. The reflected intensity vanishes in resonance for a perfect resonator.
In order to obtain an error signal, an EOM is located prior to the cavity. This EOM
generates sidebands at Ωsb = 2π × 4MHz. The frequency of these sidebands is much
larger than the cavity bandwidth, Ωsb � δωcav, and they are thus completely reflected.
A fast photodiode43 measures the beat between these sidebands and the reflected field
generated by the carrier. The signal is then sent to a commercial lockbox44 where it
is demodulated and an error signal with a slope on the order of 1mV/Hz subsequently
used to lock the cavity is generated. The locking signal is split in two parts: a fast
component sent to the driver45 of the AOM right after the doubling crystal (see figure
3.1) and a slow one that is integrated another time and sent to a piezoelectric actuator
located inside the Nd:Yag laser.

42In high finesse cavities, it is better to perform the lock on the reflection rather than on its
transmission. This is due to the fact that the transmission field consists only of the leaking of the
intracavity field. Thus, in order to observe the effect of a frequency variation, the intra-cavity field
needs a time on the order of the cavity ring-down to build up and the bandwith is limited to a
fraction of δωcav. However, the part of the field directly reflected from the cavity follows this change
instantaneously.

43PDA8A, Thorlabs
44D2-125, Vescent Photonics
45E4400B, Agilent Technologies.
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Figure 3.4 – (a): Schematics of the energy levels involved in the repumping of the
metastable state. The branching ratios are b0 = 0.6, b1 = 0.3, b2 = 0.1. Typical
spectrum of the repumping transition (blue dots) and the prediction by solving the
optical Bloch equations (solid blue line) for a system equivalent to the one shown in
(a) and the following parameters: P = 5mW, w0 = 500 µm and trep = 500 µs.

3.2 Imaging the metastable state

Method

Atoms in the metastable 3P0 state are not imaged directly. Instead, we repump them
to the ground state 1S0 and they are subsequently imaged through absorption imaginig
on the 1P1 transition. We achieve this by first transferring atoms in 3P0 to another
energy level at λrep = 1388.8 nm from the metastable state: 4f14 6s6 d − 3D1. This
state has a finite lifetime τrep ' 380 ns, i.e. Γrep = 2π × 419 kHz (Bowers et al. 1996)
and thus, atoms driven into this level decay back to the 3PJ manifold with branching
ratios [bi = γi/Γrep]: b0 = 0.6, b1 = 0.3 and b2 = 0.1 (Bowers et al. 1996). The
3P0 and 3P2 states are metastable and thus, atoms fallen into 3P2 exit the repumping
cycle and are not detected. However, atoms ending in 3P1 decay through spontaneous
emission on the ground state at a rate Γg [see figure 3.4(a)]. In figure 3.4(b) we show
the measured and expected line shape for our experimental parameters: We send to the
atoms approximately 5 − 6mW of light at 1389 nm focused to 500 µm for a duration
of trep = 500 µs. The expected line shape is computed by solving the optical Bloch
equations (OBE) for the system shown in figure 3.4(a). The OBE can be written as
follows: The populations obey

Ṗ0 = γ0Prep − Ωv, (3.1)

Ṗ1 = γ1Prep − ΓgP1, (3.2)

Ṗ2 = γ2Prep, (3.3)

Ṗrep = −ΓrepPrep + Ωv, (3.4)

Ṗg = ΓgP1, (3.5)

where P0, P1 and P2 are the populations of the 3PJ manifold, with J = 0, 1, 2, re-
spectively, whereas Pg and Prep are the populations of 1S0 and 3D1, respectively. The
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Figure 3.5 – (a): Frequency dependence of the repumping laser on temperature
(blue points). The fit (solid line) gives a temperature sensitivity of 33GHz/◦C. (b):
Frequency stability of the repumping laser in working conditions (see text).

coherences between 3P0 and 3D1 are included in v and u, which evolve as

v̇ = −δu− Γrep

2
v − Ω

2
(Prep − P0), (3.6)

u̇ = δv − Γrep

2
u. (3.7)

We noted Ω the Rabi frequency and δ the detuning between 3P0 and 3D1.

The comparison of the OBE to the data agrees well, and we extract from this a re-
pumping efficiency for the transfer of atoms in the metastable state to the ground state
on the order of ηrep ' 0.8. The resonance is broad and features a flat top on a frequency
span of 400MHz.

Experimental setup

An interesting feature of the spectra shown in figure 3.4(b) is its plateau on the order
of a several hundred MHz. This is of crucial importance for us because the repumping
laser is not easily frequency locked46. We thus need a source that is passively stable
enough, on the order of 100MHz per day. The light at λrep = 1389 nm is generated
by a laser diode47. The laser diode is installed into a butterfly mount48, and we use
a current and temperature driver with a stability on the order of a few miliKelvin49,
which should be good enough since the measured dependency of the output frequency
on temperature is on the order of 30GHz/◦C [see figure 3.5(a)]. Still, we remarked
that the small temperature fluctuations and thermal drifts (a fraction of a degree per
day) in the lab were leading to frequency variations with an amplitude on the order or
larger than 500MHz per day. To reduce this effect, we isolated the butterfly mount by
putting it inside an aluminum shield with a Peltier element that passively maintains

46For this, one should first be able to transfer a substantial amount of atoms to the metastable 3P0
state and then perform saturated absorption spectroscopy on the 3P0→3D1 transition.

47NLK1E5GAAA. NTT Electronics Corporation.
48LM14S2. Thorlabs.
49ITC510. Thorlabs.
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the container at 12 ◦C. With this, we measure frequency drifts below 100MHz per
day [see figure 3.5(b)] and, in practice, we do not have to perform scans to find the
resonance frequency for several months.

Once the laser wavelength is stable enough, we just need to adjust it to the atomic
resonance frequency with an accuracy on the order of the GHz, so that we can then find
the atomic line in a reasonable amount of time. This accuracy is usually within the
specifications of commercial wavelength meters. However, the repumper wavelength
is beyond the spectral bandwidth of our wavemeter50. We thus frequency double the
repumper in a single-pass crystal to obtain a few µW of light at 695 nm, which is within
the bandpass of the wavemeter. We then send this light into our wavelength meter,
and use this frequency doubled light as our frequency reference.

3.3 Driving the clock transition

In this section we present the methods that allow us to excite the clock transition
(1S0→3P0) from 174Yb . We first present the technique, known as magnetic mixing
(Taichenachev et al. 2006) and then our experimental setup.

Magnetic mixing

In principle, it is not possible to drive the 1S0→3P0 transition since it would violate
parity and spin conservation. This transition is thus strictly electric-dipole forbidden
for the bosonic isotopes [see section 2.1.1]. However, Taichenachev et al. (2006) pro-
posed a method to weakly enable the transition. The idea consists in using a static
magnetic field B to couple a small fraction of the 3P1 state to the 3P0 state. Since
the 1S0→3P1 line is weakly allowed, the perturbed state becomes accessible too. This
technique was demonstrated experimentally for 174Yb atoms in a lattice in Barber et al.
(2006).

Mixing 3P1 and 3P0. The action of a static magnetic field B = Buz is described
by the Hamiltonian ĤB = −µ̂ · B, with µ̂ the magnetic dipole operator. At first
order in perturbation theory, the ground state |1S0〉 is not modified but the |3P0〉 state
becomes:

|3P0
′〉 ' |3P0〉+

∑
j 6=3P0

〈φj|−µ̂ ·B|3P0〉
E3P0

− Ej
|φj〉 ' |3P0〉+

ΩB

∆
|3P1〉, (3.8)

with ∆ = ω3P1
− ω3P0

' 2π × 21THz. The fraction of 3P1 in the perturbed state
can be controlled via the magnetic field. The coupling strength, ~ΩB, is given by
(Taichenachev et al. 2006):

~ΩB = 〈3P0|ĤB|3P1〉 =

√
2

3
µBB, (3.9)

with µB ' 9.27 J/T the Bohr magneton.

50WS6, High Finesse.
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Figure 3.6 – Magnetic mixing technique. (a): The bare atomic states 3P0 and 3P1

are coupled by the action of a static magnetic field B, with a coupling strength ΩB.
Since the 3P1 state has a decay rate Γg, the new perturbed state, which consists mostly
of the 3P0 state, can be coupled to the ground state by a laser, with a coupling strength
ΩE. (b): Effective two-level system. The coupled system is equivalent to a two-level
atom in which the ground state 1S0≡ g is coupled to the metastable excited state
3P0

′ ≡ e with an effective strength Ωcl ∝ ΩBΩE. Because of the magnetic mixing, the
metastable state also acquires a finite width Γeff (negligible in practice).

Effective Rabi frequency and linewidth. We can now address the transition with
a laser Ecl resonant with the 3P0 transition. The coupling is given by:

Ωcl = 〈3P0
′|d̂ ·Ecl|1S0〉 =

ΩB

∆
〈3P1|d̂ ·Ecl|1S0〉. (3.10)

Here d̂ is the electric dipole operator for the 1S0→3P1 transition ΩE (Cohen-Tannoudji
et al. 1992), related to the Rabi frequency by:

ΩE =

√
6πΓgc2

~ω3
g

√
Icl. (3.11)

with ωg = 2πc/λg and Γg, the frequency and linewidth of the intercombination tran-
sition, respectively, and Icl the intensity of the electric field. Therefore, the clock
transition can be addressed with an effective Rabi frequency:

Ωcl =
ΩBΩE

∆
= αB

√
Icl, (3.12)

with:
α ' 2π × 18.7

mHz

G
√

mW/cm2
. (3.13)

On the remaining, we will usually refer to the ground state 1S0 as g and to the perturbed
metastable excited state 3P0

′ as e.

Note that the perturbed state also acquires a small effective linewidth, which leads to
an spontaneous emission rate:

Γeff ' Γg
Ω2

B

∆2
= γB2, (3.14)

with γ = 2π × 535 pHz/G2. This is usually completely negligible (see below).
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Differential light shift and quadratic Zeeman shift. The presence of the mag-
netic field and the laser also leads to a shift of the resonance (Taichenachev et al. 2006).
For the boson, the magnetic field causes a second order Zeeman shift which reads:

δB = −βB2, (3.15)

In addition, the probe itself induces a differential light shift given by:

δE = κIcl. (3.16)

The coefficients have been measured in atomic clocks and are β = 2π × 66mHz/G2

and κ = 2π × 15mHz/(mW/cm2) (Barber et al. 2006; Barber et al. 2008). As we will
see below, δB is spatially uniform but δE will depend on the shape of the beam driving
the transition.

Experimental parameters. In the experiments presented in this thesis, the mag-
netic field is fixed at B = 182G, which leads to a negligible spontaneous emission
rate Γeff/(2π) ' 18 µHz. The probe consists of a Gaussian beam of peak intensity
Icl = 2Pcl/(πw

2
cl). The beam is focused on the atoms with a size of wcl = 70 µm and

the maximum power of the probe beam is Pcl = 18mW. We summarize the rest of
parameters important for spectroscopy in table 3.1:

Magnitude Value

Ωcl/(2π) 1650Hz
δB/(2π) −2100Hz
δE/(2π) 3500Hz

Table 3.1: Maximum values for the Rabi frequency, the Zeeman shift and the differential
light shift for our experimental parameters: B = 182G, wcl = 70 µm and P = 18mW.

3.4 Atom-light coupling in a periodic potential

The interaction of an atom in the single particle state |Φ〉 = |Φint〉|Φext〉 with a laser
Ecl(r̂) = E0eikcl·r̂ couples the internal degrees of freedom of the atom |Φint〉 and the
external ones |Φext〉. If we consider a dipole interaction described by V̂AL = −d̂ ·Ecl(r̂),
the coupling strength between the states |Φ〉 and |Φ′〉 = |Φ′int〉|Φ′ext〉 is given by:

ΩL(r) = 〈Φ′int| − d̂ ·E0|Φint〉 · 〈Φ′ext|eikcl·r̂|Φext〉. (3.17)

The first term leads to the Rabi frequency Ωcl defined in equation (3.12) in the presence
of a static magnetic field B. The second term is a matrix element between motional
states that we will discuss in the following.

3.4.1 Atoms in free space

We can first see how the coupling between internal and external states works for a free
particle. The initial state is described by a plane wave |g;p = ~q〉. The absorption of
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Figure 3.7 – Coupling of the internal and external degrees of freedom. All images are
recorded after a TOF of 21ms and all situations correspond to π/2−pulses, i.e. half
of the atoms are in the ground state and half in the excited state (red circles). (a):
Atoms probed in free space. (b): Atoms released from an optical lattice at V⊥ ' 6.5Er

after being probed in situ by a laser propagating along one of the axis of the lattice.
(c): Atoms released from an optical lattice at V⊥ ' 6.5Er after being probed in situ
by a laser propagating at 45◦ from the axis defined by the lattice.

a photon involves the following matrix element:

〈Φ′ext|eikcl·r̂|Φext〉 = 〈q′|q + kcl〉 = δq+kcl−q′ , (3.18)

which expresses momentum conservation. The only relevant state is thus |Φ′〉 =
|e; q + kcl〉. The coupling strength in this case is the bare Rabi frequency ΩL = Ωcl.
Moreover, due to energy conservation, the absorption frequency is shifted with respect
to the bare frequency ω0 by the recoil frequency ωr = ~k2

cl/(2M) and a Doppler shift
contribution if q 6= 0:

~ωL = ~ω0 +
~2k2

cl

2M
+

~2kcl · q
M

. (3.19)

The coupling of internal and motional states can be seen experimentally by taking
an image in TOF: In figure 3.7(a) we show a picture of a BEC in which half of the
atoms have been transferred to the excited state. The pulse has been applied to an
ensemble of atoms in free space and we see that the position after a TOF of those
atoms transferred to the excited state is displaced by an amount r = ~kcltTOF/M . By
performing spectroscopy (see figure 3.9 below) we observe that the resonance frequency
is shifted by ωr, as expected.

3.4.2 Atoms in an optical lattice

The situation previously described is different when atoms are trapped in an optical
lattice. Here, the allowed motional states |Φm〉 are quantized and the coupling can
only induce transitions between these bound levels. In such a case, the matrix element

Vmn = 〈Φm|eikcl·r̂|Φn〉 =

ˆ
Φ∗m(r) eikcl·rΦn(r) d3r, (3.20)

gives the strength of the transition between a final bound state |Φm〉 and the initial
one |Φn〉 shifted in momentum space by ~kcl.
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Let us focus on a situation in which the particles obbey also a dispersion relation
E(n, q), given by the band structure of the lattice, which we suppose independent of
the internal state51. As discussed in section 1.2.1, the eigenstates of the system are
given by Bloch waves |n, q〉. We can decompose these states in the basis of plane waves
(Ashcroft et al. 1976):

|n, q〉 =
∑
G

Cn,q(G)|p = G+ q〉, (3.21)

where the sum runs over all vectors G of the reciprocal lattice. Absorbing a laser
photon changes the quasimomentum of the atom but can also induce transitions to
other Bloch bands: |g; q,n〉 → |e; q′,m〉. The matrix element of this process reads:

V q
′,q

m,n =
∑
G,G′

C∗m,q′(G
′)Cn,q(G)

ˆ
ei(kcl+q−q′)·r ei(G−G′)·r d3r (3.22)

=
∑
G,G′

C∗m,q′(G
′)Cn,q(G) δkcl+q+G,q′+G′ , (3.23)

which manifests the conservation of quasimomentum, modulo a vector G −G′ of the
reciprocal lattice. As in the case of a free particle, the momentum transfer and the
conservation of quasimomentum can be directly seen by recording an image in TOF,
i.e., by projecting back into the plane wave basis. We show this in figure 3.7 for a probe
beam propagating along an axis of the lattice, kcl = (kcl, 0, 0), in figure 3.7(b) and at
at θ = 45◦ with respect to the axis defined by the lattice, i.e. kcl = (kcl sin θ, kcl cos θ, 0)
in figure 3.7(c). Energy conservation leads to an energy shift with respect to the bare
frequency ω0 by a quantity that can be computed from the band structure:

~ωlatt(q, q
′,n,m) = E(q′,m)− E(q,n), (3.24)

and this can be measured by performing spectroscopy (see figure 3.9 below). The total
coupling strength is given by:

ΩL(q, q′,n,m) = V q
′,q

m,n Ωcl. (3.25)

Approximations for deep lattices: Lamb-Dicke regime

As the lattice becomes deeper, the energy bands become flatter and, as a consequence,
the change in quasimomentum upon the absorption of the photon has a smaller effect.
In such a situation, it is more convenient to express the Bloch functions in the Wannier
basis52:

|n, q〉 =

(
d

2π

)3/2∑
i

eiq·ri |wn,i〉, (3.26)

where the sum runs among all lattice sites. Let us then compute the strength of the
transition in this new basis:

V q
′,q

m,n =

(
d

2π

)3∑
i,j

ei(q·ri−q′·rj)
ˆ
w∗m(r − rj) eikcl·rwn(r − rj) d3r (3.27)

=
∑
%

e−iq·% δ(q + kcl − q′)
ˆ
w∗m(r + %) eikcl·rwn(r) d3r, (3.28)

51This is indeed the case when working at the magic wavelength λm.
52We invert equation (1.33) and use the 3D identity

∑
j eiq·rj = (2π/d)

3
δ(q), with rj = jd.
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Chapter 3. Single-particles in an optical lattice

where we have put % = ri − rj and where quasimomentum conservation becomes also
explicit. The interest of working in the Wannier basis arises when considering very
deep lattices. Here, the overlap integral only takes significant values when % = 0 and
we can approximate the matrix element as:

V q
′,q

m,n ' ηmn δ(q + kcl − q′), (3.29)

where we have defined the so-called Lamb-Dicke factor:

ηmn =

ˆ
w∗m(r) eikcl·rwn(r) d3r. (3.30)

As the lattice depth reaches a few recoils, the Wannier wave function becomes more and
more localized in space and thus its Fourier transform gets broader. As a consequence,
translating it by ~kcl is going to leave it nearly unchanged eikcl·r̂|w0〉 ' |w0〉. Then,
since Wannier functions corresponding to different bands are orthogonal, the overlap in
(3.30) for very deep lattices is maximum for the so-called carrier or zero-phonon line
m = n, a nomenclature that we adopt in the following, widely used in the ion comunity
where the motional states are vibrational levels of an ion string. This framework is
known as the Lamb-Dicke regime of light scattering, and occurs once the scatterer is
confined to a region of size σ � λL (Wineland et al. 1979; Leibfried et al. 2003; Ludlow
et al. 2015). In this limit, the effect of the recoil is completely suppressed for the carrier
and the resonance frequency is given by the bare atomic resonance ω0.

At intermediate depths, transitions to other bands are partially suppressed but ob-
servable. Already at a few recoils V0 ≥ 5Er, the different bands are well resolved (see
figure 3.9) and one can effectively suppress the recoil of the photon (thus decoupling
the internal dynamics from the external ones) by driving the zero-phonon lines. The
coupling strength in equation (3.17) takes the form:

ΩL(m,n) = ηmnΩcl. (3.31)

In our experiment we typically load the atoms on the fundamental band and drive
the zero-phonon line. If our laser was completely coherent, the spectra would be
in this case Fourier-limited. However, there remain some broadening sources such
as inhomogeneous coupling (due for instance to the spatial dependence of the Rabi
frequency over the atomic cloud) or fluctuations of the laser frequency, that prevent us
from observing arbitrarily narrow spectra. We will discuss this further below.

3.5 Spectroscopy of single particles in optical lattices

In the following sections, we are going to show a series of measurements in which
we drive the clock transition of a degenerate ensemble of atoms loaded in 2D optical
lattices. Here, we will be mostly concerned by single particle properties. For this, we
prepare an n̄ = 1 Mott insulator in a deep lattice. In such a situation, interactions
become irrelevant and the osberved dynamics correspond to those of single particles.
By using the loading model described in section 2.2.2, we find that the maximum atom
number to work in these conditions is N ≤ 8× 103 atoms. For all data shown in this
chapter, the vertical lattice depth is fixed at Vz = 27Er and on the following we only
indicate the depth of the horizontal ones V⊥.
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Figure 3.8 – Real part of the polarizability for the ground state 1S0 (solid blue line)
and the excited metastable state 3P0 (dashed red line). The magic wavelength for which
Re[αg(λm)] = Re[αe(λm)] corresponds to the vertical dotted line at λm ' 759.4 nm.

3.5.1 A state-independent optical lattice: The magic
wavelength

Let us then consider a single atom trapped in an optical lattice. As discussed in
chapter 2, the potential felt by the atom depends on the wavelength of the light and
the internal state of the atom. These two aspects [see equation (2.5)] are encoded in the
real part of the polarizability αj(λ) (Grimm et al. 2000). Although this offers interesting
possibilities for quantum simulation, this differential light shift is often unwanted when
performing precise measurements. Indeed, the different polarizabilities lead to different
light shifts for each atomic state, which can be detected when performing spectroscopy.
For instance, it leads to additional uncertainties to account for when carrying out
error budgets in optical lattice clocks (Ludlow et al. 2015), as it requires both a good
knowledge of the polarizability and the geometry of the trap. However, at certain
wavelengths, called magic wavelengths, the polarizability is the same for two given
states: Re[αg(λm)] = Re[αe(λm)]. For 174Yb clock states this wavelength corresponds
to λm ' 759.353 74(7) nm (Barber et al. 2008). We show this in figure 3.8, where we
plot the real part of the polarizability for the ground state and the metastable state.
In all the rest of this work we use the magic wavelength λm to trap the atoms whenever
we perform spectroscopy of the clock transition.

3.5.2 Spectroscopy in the Lamb-Dicke regime

Band resolved spectroscopy

At high lattice depths, the system is analog to an ensemble of harmonically trapped
particles. By driving the zero-phonon line, the recoil of the photon is suppressed and the
motion of the atoms is effectively decoupled from the internal dynamics. This dynamics
can be driven coherently by exciting the system at the bare resonance frequency ω0. It
is also possible to transfer atoms to the first blue excited band53 shifted by a frequency

53If all atoms are initially in the fundamental band, we expect no red sideband coupling an atom in
|g;n = 1〉 to |e;n = 0〉 at a frequency ω0−ωlatt. By blue and red we mean plus or minus one quantum
of vibration.
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Chapter 3. Single-particles in an optical lattice

Figure 3.9 – Band resolved spectroscopy in an optical lattice. Several spectra are
taken at different lattice depths: from bottom to top V⊥ = 0, 6.5, 14 and 28Er. Many
aspects discussed in the main text can be observed: when atoms are probed in free
space, the resonance frequency is blue shifted by ωr/(2π) ' 3.4 kHz with respect to
the bare resonance frequency, corresponding to δL = 0. When the atoms are in the
lattice we observe two peaks corresponding to the zero-phonon line (main transition at
δL = 0) and the first blue sideband, which is well resolved for all spectra shown here.
The solid line corresponds to a sum of two Gaussians fro which we extract the central
frequency and the relative transfer. The sidebands are found at ω1/(2π) ' 6.5 kHz,
ω2/(2π) ' 12 kHz, ω3/(2π) ' 18.5 kHz for V⊥ = 6.5, 14 and 28Er, respectively. The
pulse duration is T = 350 µs, the bare Rabi frequency is set to Ωcl/(2π) ' 1450Hz
and the transition strengths are η01 ' 0.42, 0.34 and 0.28 for V⊥ = 6.5, 14 and 28Er,
respectively. All spectra shown are Fourier limited and a vertical offset has been added
for clarity.

~ωlatt. Since these bands are well separated, the transition amplitude for each one is
given by the usual Rabi formula for a two-level system:

Pe(δ
′
L, t) =

Ω2
L

Ω2
L + δ′2L

sin2

(√
Ω2

L + δ′2L
2

t

)
, (3.32)

with δ′L = δL − ωlatt and ΩL = ηm0Ωcl given by equation (3.31). We have performed
this kind of spectroscopy in the following experimental conditions: Atoms are loaded
in the fundamental band of a two-dimensional lattice at q ' 0. The probe propagates
in the plane defined by the lattice with an angle of θ = 45◦ with respect to the lattice
arms [see figure 3.7(b)] and we record spectra at different depths V⊥.

We show the results in figure 3.9 at different depths (and also in the absence of lattice,
where the recoil shift appears). From these series of spectra, we extract (i) the resonance
frequency and (ii) the transition amplitude for the first blue sideband, corresponding to
the n = 0→ m = 1 transition. We do this by performing a model-free fit with the sum
of two Gaussians. We compare these values to the prediction from equations (3.24)
and (3.31) in figure 3.10(a)-(b). The computed values agree well with the extracted
parameters, validating our lattice and Rabi frequency calibrations.
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Figure 3.10 – Band spectroscopy analysis. (a): Transition amplitudes and (b):
frequency shifts computed by using equations (3.32) and (3.24), respectively. All curves
correspond to q = 0 and q′ = (kcl/

√
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√
2, 0) and the legends indicate the initial

and final band. The black dots correspond to the amplitudes and frequencies extracted
from a Gaussian fit to the sidebands shown in figure 3.9.

Driving the zero-phonon line: a first estimate of the laser linewidth

We have already discussed that the recorded spectra should in principle be Fourier
broadened and that, if this is not the case, this is due to dephasing mechanisms,
probably arising from the laser itself. In order to get a first evaluation of our laser
linewidth, we performed spectroscopy on the zero-phonon line, with the idea that
the narrowest observed spectrum should give a rough estimation of the linewidth of
the clock laser. These experiments were performed in a lattice at V⊥ = 24.5Er, for
which η00 ' 0.9. We show these spectra, taken at decreasing Rabi frequencies in
figures 3.11(a)-(i). The solid lines are fits using equation (3.32) with only the resonance
frequency as a free parameter. The data agrees well with the Fourier limited line shape
given by the Rabi formula for full widths at half maximum down to 2π × 150Hz.
However, we note that for driving strengths on the order or below ΩL/(2π) ' 100Hz,
important shot to shot fluctuations appear. Because of it, the spectra start being noisy
and distorted and maximum transfer to the excited state is not always achieved. The
next section is devoted to the discussion of the mechanisms that compete against the
coherent driving and broaden the observed spectra, namely inhomogeneous dephasing
and laser frequency fluctuations.

3.6 Characterization of the loss of coherence

Decoupling the internal dynamics from the motion of the atom by working in a very
deep optical lattice should allow for a long coherent driving of the former. However,
as we have seen in the previous section, we are not able to produce arbitrarily nar-
row spectra. In the absence of spontaneous emission, which is the case for the clock
transition, we identify at least two important damping mechanisms:

1. Inhomogeneity of the probe over the atomic cloud.
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Figure 3.11 – Examples of spectra recorded on the zero-phonon line at different Rabi
frequencies in a lattice at V⊥ ' 24.5Er. The pulse area is in all cases chosen such that
ΩLT = π. The red solid line is a fit using equation (3.32) with only the resonance
frequency left as a free parameter.

2. Frequency fluctuations of the probe.

In the next sections, we first present a discussion on these different dephasing mech-
anisms. Then, we characterize their importance experimentally by performing time-
domain Rabi and Ramsey spectroscopy.

3.6.1 Inhomogeneity of the probe over the atomic cloud

As seen in the previous sections, the strength of the coupling of the zero-phonon line is
given by ΩL(r) = η00Ωcl(r). Here, we make explicit the dependence on position of the
Rabi frequency. This spatial dependence arises from the Gaussian shape of the probe,
whose intensity profile is given by

Icl(ρ) = Iclf(ρ) = Icl exp
(
−2ρ2/w2

cl

)
, (3.33)

where Icl = 2Pcl/(πw
2
cl). As a consequence, atoms in different regions of the cloud will

feel different Rabi frequencies and thus oscillate at uneven rates. Appart from this, we
have seen that the presence of the probe induces a differential light shift δE(r) = κIcl(ρ)
[see section 3.3], resulting in an inhomogeneous detuning δ(r) = δL − δE(r) over the
sample, leading to another inhomogeneous broadening effect.

The recorded population in the excited state is thus given by the spatial average of
equation (3.32) over the atomic cloud. For N atoms, the average population is given
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by:

P̄e =
1

N

ˆ
Ω2

L(r)

Ω2
L(r) + δ2(r)

sin2

(√
Ω2

L(r) + δ2(r)

2
t

)
d3r (3.34)

For a deep lattice prepared in the Mott isulator state, the effect of inhomogeneous
broadening can be evaluated numerically by using the density profile calculated in
section 2.2.2.

Estimation of the inhomogeneities

An analytical estimation can also be carried on by performing a couple of approxima-
tions. First, since the extension of the atomic cloud is small compared to the size of the
probe, we perform a parabolic approximation of the beam: Icl(ρ) ' Icl(1 − 2ρ2/w2

cl).
Let us then estimate the order of magnitude of these effects for our experimental pa-
rameters:

∆Ω = |ΩL(0)− ΩL(R)| ' Ω0
R2

w2
cl

' 0.02 Ω0, (3.35)

∆δ = |δL(0)− δL(R)| ' Ω2
0

2κ

(η00αB)2

R2

w2
cl

' Ω2
0 × 1× 10−5 s. (3.36)

Here B is the strength of the static magnetic field and Ω0 = ΩL(0) is the Rabi frequency
at the trap center. The numerical parameters α, κ have been given in section 3.3, and
η00 ' 0.9. The previous estimations lead to ∆Ω/(2π) ' 30Hz and ∆δ/(2π) ' 130Hz,
respectively, for a Rabi frequency Ω0/(2π) = 1400Hz.

Estimation of the dephasing rate in Rabi oscillations

Generally, we are more interested in the contribution of the generalized Rabi frequency,
rather than ∆Ω or ∆δ itself. This contribution reads:

Ω2
L(r) + δ2(r) ' Ω2

0 + δ2
0 − 2Ω2

0

[
1− 2δ0κ

(η00αB)2

]
(ρ/wcl)

2 +O(ρ/wcl)
4, (3.37)

with δ0 = δL−δE(0) the detuning at the center of the trap. In resonance, δ0 = 0, and we
have Ω2

L(r) + δ2(r) ' Ω2
0[1− 2(ρ/wcl)

2]. We then see that atoms located at the center
of the trap oscillate as cos(Ω0t), and atoms at the edges do it as cos[Ω0t−Ω0(R/wcl)

2t],
with R the longitudinal radius of the sample. From this, we estimate a dephasing due
to the inhomogeneous profile of the clock beam at a rate proportional to this frequency
difference:

γinh
d ' aΩ0

R2

w2
cl

, (3.38)

with a a numerical factor. We thus see that this effect can be mitigated by working at
small Rabi frequencies and by reducing the atom number (thereby decreasing R). We
note that this estimate holds provided the beam is well centered, otherwise this effect
is amplified. However, since this would also entail a reduction of the measured Rabi
frequency, that we do not observe, we disregard the misalignment effect as a dephasing
source in our system.
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Chapter 3. Single-particles in an optical lattice

Figure 3.12 – Schematics of the different spectroscopy techniques used in this chapter.
(a): Rabi spectroscopy. A single pulse of varying area ΩLT is applied to the atoms.
(b): Ramsey spectroscopy. A first pulse of area π/2 and phase φ1 is applied to the
atoms. The light is then switched off during a time of free evolution TFE after which
another π/2−pulse with phase φ2 is applied. (c): Ramsey spectroscopy with echo.
The sequence is the same as for Ramsey spectroscopy, but with a π−pulse inserted in
the middle of the free evolution time.

Frequency fluctuations of the probe

Even in a situation in which the inhomogeneous dephasing mechanisms would not play
a significant role anymore, we would still be limited at some point by the possible
frequency fluctuations of the probe laser. Apart from the frequency amplitude of this
noise, it is important to identify the frequency spectrum of these fluctuations. In other
words, in order to estimate their effect, it is essential to know how fast these fluctuations
are with respect to, at least, the two following timescales: (i) the probing time within
an experimental sequence T (usually ranging from a few hundreds of µs up to a few
tens of ms) and (ii) the time in between two experimental sequences Tseq � T (on the
order of 15-20 s). We can picture the instantaneous laser frequency as a classical but
fluctuating quantity:

ωL(t) = ω̄L + ∆ωL(Ωnoise) = ω̄L +
∑

Ωnoise

δωL(Ωnoise) cos (Ωnoiset+ φnoise) . (3.39)

Here we have decomposed the noise as a sum of contributions at different frequencies,
but we do not try to give any details on the kind of noise. We can then distinguish the
following cases:

1. Fast fluctuations, where Ωnoise � T−1: Here, the laser frequency undergoes fast
changes during a pulse, which end up averaging out, in the sense that there is no
shift of the line but the phase is randomized. This leads to the damping of Rabi
oscillations. In such a framework maximum transfer of atoms to the excited state
cannot be achieved and this is equivalent to incoherent spectroscopy.

2. Slow fluctuations, where T−1
seq ' Ωnoise � T−1: In this case, maximum transfer

can be achieved but the center frequency is random from one shot to another, and
this leads to important shot-to-shot fluctuations and to a reduced contrast after
averaging over many repetitions. These fluctuations could be due, for instance,
to thermal drifts of the cavity environment.

We will now present a series of measurements using two different spectroscopy methods
(see figure 3.12) at lattice depths V⊥ ' 24.5Er. All experiments are performed at
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resonance δL ' 0. To ensure that the laser drifts are compensated, we systematically
record a spectrum before each run and correct the laser frequency accordingly.

3.6.2 Time-domain Rabi spectroscopy

We first present the results on time-domain Rabi spectroscopy. Here, the population
of atoms transferred to the excited state is measured as a function of the pulse time
T (or pulse area ΩLT ) [see figure 3.12(a)]. We have performed these experiments for
different Rabi frequencies and we show them in figure 3.13. The data is then fitted by
an heuristic function consiting of an exponentially damped sinusoidal from where we
extract a damping rate γd. A first observation from these curves is that the damping
rates decrease with decreasing Rabi frequency. From the previous discussion, this
points to damping due to the inhomogeneous dephasing, which could be caused by
the Gaussian profile of the probe. To extract more quantitative information from this
observation, we plot the extracted damping rates as a function of the Rabi frequency
in figure 3.15(a), and we observe a linear dependence as expected from equation (3.38).
We perform a linear fit γd = γ0 + aΩL(R/wcl)

2 from which we find a = 0.50(1). We
also see that, at vanishing Rabi frequency, the interception with the y−axis is not zero.
We interpret this as the dephasing set by the noise of the laser frequency alone. From
the linear fit we extract γ0 = 34(3) s−1.

3.6.3 Ramsey spectroscopy and echoes

The method

The method of Ramsey spectroscopy (Ramsey 1986) is based on the following idea [see
figure 3.12(b)]:

1. Preparation: A first pulse of area ΩLT = π/2 and phase φ1 is used to prepare a
coherent superposition of g and e [equator of the Bloch sphere].

2. Free evolution: The probe is then switched off during a variable time TFE.

3. Measurement: A second pulse of area ΩLT = π/2 and phase φ2 is then sent and
the g population is measured.

In the case in which the first pulse is exactly at resonance, the coherent superposition
remains with the same initial relative phase during the free evolution54 and if the
second pulse has φ2 = φ1 all atoms are sent to the excited state. As one scans φ2 all
the meridian of the Bloch sphere is sampled and the ground state population oscillates
with a 2π period with full contrast. This ideal picture is modified if (i) there are
inhomogeneous dephasing sources or (ii) there is a phase jump of the laser during TFE.
The effect of inhomogeneous dephasing can be understood as follows: atoms in different
positions of the cloud feel a different light shift during the excitation and thus dephase
at distinct rates during the free evolution stage [there is a spread in the equatorial

54In the case in which the first pulse is detuned, a relative phase between e and g equal to −δLTFE
is acquired during the free evolution.

86



Chapter 3. Single-particles in an optical lattice

0 2 4 6 8 10 120.0

0.5

1.0 ΩL/(2π) = 1324 Hz

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0

0.5

1.0

Po
pu

la
tio

n

ΩL/(2π) = 552 Hz

0 5 10 15 20 25 300.0

0.5

1.0 ΩL/(2π) = 361 Hz

0 5 10 15 20 25 30 35 40
T [ms]

0.0

0.5

1.0 ΩL/(2π) = 203 Hz

Figure 3.13 – Rabi oscillations driven on the zero-phonon line in a lattice at
V⊥ = 24.5Er. The solid lines are fits to an exponentially damped sinusoidal. From
largest to smallest Rabi frequency, the extracted damping rates from these fits are
γd = 120(10), 71(9), 60(10) and 40(10) s−1, respectively.

plane of the Bloch sphere]. As a consequence, the effect of the second π/2−pulse will
be different for each of atom and the contrast of the fringe gets reduced due to ensemble
averaging.

The echo

The interest of Ramsey spectroscopy is that one can get rid of the inhomogeneous
dephasing by performing an echo (Hahn 1950), which consists in applying a π−pulse
in the middle of the free evolution stage [see figure 3.12(c)]. The effect of adding a
π−pulse in the middle of the free evolution, is equivalent to a t → −t transformation
[180◦ rotation in the Bloch sphere] and thus, all inhomogeneous dephasing sources end
up canceled with this technique. Therefore, Ramsey spectroscopy with an echo is a
good technique to estimate the effect that frequency fluctuations alone have on the
coherent driving.
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Figure 3.14 – Ramsey fringes with echo for atoms driven on the zero-phonon line. We
show the data for three different free evolution times TFE = 2, 8 and 25ms correspond-
ing to blue dots, green squares and red diamonds, respectively. The Rabi frequency is
set to ΩL/(2π) ' 1.2 kHz and V⊥ = 24.5Er. The solid lines are a sinusoidal fit to the
data.

Experimental results

In figure 3.14 we show some Ramsey fringes recorded with the echo technique at differ-
ent free evolution times TFE for a Rabi frequency ΩL/(2π) ' 1200Hz. In figure 3.15(b)
we show the contrast of the fringes as a function of the free evolution time for a set
of data in which we have not performed an echo (red squares) and another one where
it has been applied (blue circles), and we can see that the difference is drastic. By
performing an exponential fit to the data, we find that the damping rate is reduced
by almost an order of magnitude, from γno−echo

d = 340(10) s−1 without the echo to
γecho

d = 39(7) s−1 with the echo.

This observation points to dephasing mechanisms occurring in between the two π/2−
pulses. This could be due on the one hand to the inhomogeneous detuning induced
by the probe, which leads to an inhomogeneous dephasing during the free evolution
time. On the other hand, this could also point to frequency fluctuations such that
Ωnoise ' T−1

seq . These fluctuations are indeed detrimental for the experiments performed
without an echo [if the detuning changes from one sequence to the other the phase
accumulated during the free evolution changes], but would be corrected by performing
it thanks to the π−pulse. Moreover, we see that the decay rate γecho

d agrees within the
error bars with the interpolation at zero Rabi frequency γ0 of the Rabi spectroscopy
experiments, from which we infer a coherence time of the laser of τcoh ' 30ms.

3.7 Conclusion

In this chapter I have presented one of our main experimental tools: a narrow laser
driving coherently an optical clock transition. I have first introduced the experimental
setup that we use to probe the clock transition and I also described the laser system
and procedure used to image the metastable state. Then, I reminded the technique
used to enable the clock transition and the basic concepts of atom-light interaction in
a periodic potential.
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Figure 3.15 – (a): Decay rates as a function of the Rabi frequency extracted from the
fits to the data shown in figure 3.13. The solid line is a linear fit: γd = γ0+aΩL(R/wcl)

2,
from which we extract the numerical factor a = 0.50(1) and γ0 = 34(3) s−1. (b):
Contrast of the fringes from a series of Ramsey spectroscopy measurements with (blue
dots) and without (red squares) echo. The solid lines are exponential fits to the data
from which we extract a decay rate of the contrast of γno−echo

d = 340(10) s−1 in the
absence of echo and γecho

d = 39(7) s−1 with the echo. The shaded regions represent the
1− σ confidence regions.

After this, I have presented a series of measurements performed in an optical lattice
with a small atom filling n̄ ' 1. Here, I have shown that we can use the clock transition
to further characterize the lattice potential. Thanks to the high momentum imparted
by the optical photons, we are able to transfer atoms to other zones of the first Brillouin
zone and to higher energy bands.

By increasing the lattice depth, these lattice bands become well resolved and the sit-
uation becomes conceptually plainer: The lattice can be thought of as an ensemble of
single particles in disconnected wells. I have shown that in this regime we can decouple
the external degrees of freedom from the internal ones, by driving the zero-phonon line.

In the regime of deep lattices, I have displayed a series of measurements using differ-
ent spectroscopy techniques, namely Rabi and Ramsey spectroscopy. We have taken
advantadge of these results to infer the dephasing mechanisms that are present in our
experiments. We have recognized inhomogeneous dephasing due to the spatial profile
of the probe and possibly slow frequency fluctuations of the laser as the main sources.
These experiments have allowed us to give an answer from atomic measurements to
the question «for how long can we drive the clock transition in a coherent manner?»:
on the order of ∆ω−1 ' 30ms, limiting our Rabi oscillations and Ramsey experiments
with echo. On top of this, the central frequency ω̄L slowly drifts in a scale much larger
than the probing time and on the order of the duration of a sequence (see figure 3.16),
which we think is the main dephasing source in the Ramse experiments without an
echo.

The next steps in orther to better characterize these sourecs require a careful character-
ization of the eventual slow drifts of the ULE cavity. With this and some assumptions
on the noise of the laser, one can then infer a quantitative relationship between the ob-
served dephasing rate and the frequency noise spectral density of the laser (Domenico

89



3.7. Conclusion

Figure 3.16 – Scheme of the processes determining the laser frequency: On the one
hand, fast fluctuations, occurring in the time scale the atoms are probed, give an
effective width ∆ω to the laser. On the other hand, slower drifts on the order of the
time of a whole experimental sequence, change the central frequency ω̄L from one shot
to another.

et al. 2010). This study is currently being performed in our team by Alexis Ghermaoui
and more details will be given in his PhD thesis.
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CHAPTER 4

Interacting pairs in an optical lattice

In this chapter, I will focus on the physics of interacting atom pairs coherently driven
on the clock transition. In the first section I will use spectroscopy to characterize the
elastic and inelastic interactions between particles, either in the same or in different
internal states. These measurements allowed us to infer the corresponding scattering
lengths, unknown at the time we performed the experiments (Bouganne et al. 2017).
Similar measurements were performed in parallel by the ytterbium team at LENS, in
Florence, finding results which are compatible with ours (Franchi et al. 2017).

From these analyses we extracted a large value for the inelastic loss rate between
two atoms in the excited state. Such processes are harmful for most experimental
purposes since, on top of the losses, which end up limiting the signal-to-noise ratio,
they constitute a potential source of entropy and decoherence. Therefore, finding an
experimental procedure preventing the excitation to such states is desirable. In the
second section of this chapter, I will show that the transfer to these lossy states can
actually be strongly suppressed in certain conditions due to the presence of the losses
itself, which is a manifestation of so-called quantum Zeno effect (Misra et al. 1977).

The quantum Zeno effect was initially proposed by Misra et al. (1977) in the context
of quantum measurements, where they predicted that repeatedly measuring the state
of a driven quantum system should freeze its coherent evolution. More than a decade
after this, their idea was first verified experimentally in a system of ions by Itano et al.
(1990). Since then, our understanding of the Zeno effect has been refined (Facchi et al.
2008) and many experiments taking advantage in some manner of the quantum Zeno
effect have been performed.

In the context of quantum information, the quantum Zeno effect is used to prepare
systems of qubits in the so-called decoherence-free subspaces (Beige et al. 2000). In
the ultracold atom community, quantum Zeno dynamics have been observed by using
a BEC in Streed et al. (2006). Also, the role of inelastic losses as an equivalent to
the effect of a measurement has been investigated. In Syassen et al. (2008); Yan et al.
(2013) and Zhu et al. (2014) an ensemble of molecules was loaded in an optical lattice
with unit filling. Tunneling could eventually generate sites with double occupancies.
In the occurrence of such events, molecules would undergo recombination processes
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4.1. Spectroscopy of interacting atom pairs

leading to strong inelastic losses. However, these experiments showed that coherent
tunneling was partially suppressed, and that the stronger the losses, the longer the
ensemble lived. The system was actually driven into a strongly correlated state in
which bosons behave as free fermions (García-Ripoll et al. 2009), showing that strong
inelastic losses play a similar role as elastic interactions, and can drive a 1D system into
a Tonks-Girardeau gas (Tonks 1936; Girardeau 1960). In an equivalent framework with
fermionic atoms, Sponselee et al. (2019) observed that inelastic losses led the system
into a highly-correlated state (Foss-Feig et al. 2012) where the atom loss perishes.
Losses have also been locally induced in a BEC. Here, the dynamics reach a regime in
which the number of lost atoms decreases as the strength of the dissipation is increased
(Barontini et al. 2013). Tomita et al. (2017) observed that, while driving a system from
the Mott insulator to the superfluid regime in an optical lattice, the growth of phase
coherence induced by tunneling was delayed in the presence of strong dissipation. This
delay was interpreted as a quantum Zeno suppression of coherent tunneling, preventing
the atoms to delocalize, thus minimizing the dissipation.

In the second part of this chapter, I will show how the presence of two-body losses
in our system freezes the coherent dynamics induced by the coupling. This second
section is organized as follows: After a brief reminder of the key concepts concerning
the evolution of an open quantum system and its connection to the quantum Zeno
effect, I present an effective non-Hermitian Hamiltonian that describes the dynamics
of atom pairs coupled by a laser and in the presence of losses. I will show that most
of the observed effects and the emergence of a reduced-loss subspace can be directly
linked to the spectrum of this non-Hermitian Hamiltonian, whose structure I compare
in the last part of the chapter to our experimental data.

4.1 Spectroscopy of interacting atom pairs

4.1.1 Framework and experimental setup

We now focus on the dynamics of bosonic pairs in disconnected wells of an optical
lattice. For this, we transfer into the optical lattice a BEC with N ' 8× 104 atoms,
which is enough to prepare a Mott insulator with doubly-occupied sites present [see
figure 4.1(a) and the discussion below]. The lattice is loaded following the procedure
described in section 2.2.2, so that we end up with a stack of 2D independent horizontal
lattices, with the atoms loaded in the fundamental bands, with different proportions of
singly- and doubly-occupied sites. The atoms are then probed on the clock transition
by a laser propagating in the plane defined by the lattices. The probe propagates at
45◦ with respect to the axis defined by the lattice beams [see figure 4.1(a)].

While driving these atoms on the clock transition, a first striking difference that we
observe [see figure 4.1(b), where Rabi oscillations are being performed] with respect to
the coherent dynamics of single particles shown in chapter 3 is the very strong decay
on the order of the first hundreds of µs. This reduction is then followed by long-lived
Rabi oscillations. We interpret the initial collapse of the atom number as a signature
of strong inelastic two-body losses, emptying all doubly-occupied sites. The dynamics
is then followed by the coherent evolution of the singly-occupied sites alone. The goal
of the following sections is to determine the rate of these inelastic collisions, γeg, γee,
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Chapter 4. Interacting pairs in an optical lattice

Figure 4.1 – (a) Sketch of the three-dimensional lattice geometry. The drawing also
illustrates the density profile of the Mott insulator and the level scheme of the ultra-
narrow clock transition connecting the ground state g and the metastable excited state
e. (b) Coherent driving on the clock transition in the deep Mott insulator regime. A
coupling laser resonant on the clock transition is switched on at time t = 0 with a
Rabi frequency ΩL/(2π) ' 1500Hz. Closed (respectively open) symbols represent the
remaining total atom number (resp. the population in the ground state g). Figure
reproduced from Bouganne et al. (2017).

as well as to characterize the intra- and inter-species scattering lengths aeg and aee
describing the elastic interactions between atom pairs.

The method

The method we employ is schematized in figure 4.2. It is based on the fact that, due
to interactions, doubly-occupied sites are energy shifted with respect to the singly-
occupied sites, and these shifts should emerge when performing spectroscopy. Since
we set the optical lattice at the magic wavelength, the Wannier functions in different
internal states are equal and the on-site energy shifts are given by:

Uij =
4π~2

M
aij

ˆ
|w(r)|4 d3r. (4.1)

Here, i, j = {e, g} and aij are the scattering lengths characterizing the elastic collisions
between an atom in state i and another in j.

The different interaction strengths translate into an energy shift with respect to a lattice
site with two atoms in g. For a lattice with one atom in g and one atom in e this shift
is ~δ1 = Ueg − Ugg. At the same time, this state is displaced by ~δ2 = Uee − Ueg with
respect to the situation in which the two atoms are in e. Besides these energy shifts,
atoms in such states are likely to decay via two-body inelastic processes. Two atoms
in g are stable, but the other two configurations will eventually lead to atom losses
at rates that we denote as γeg and γee, respectively. These decay rates are related to
the imaginary part of the scattering length through the two-body loss rate coefficient
βij = −(8π~/M)Im[aij] and we can write (see appendix B):

γij = βij

ˆ
|w(r)|4 d3r. (4.2)

Performing spectroscopy, thereby allows one to determine the elastic scattering lengths
thanks to the additional peaks that appear on top of the g → e single-particle resonance
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4.1. Spectroscopy of interacting atom pairs

Figure 4.2 – Schematics of the method to measure the interaction shifts by performing
spectroscopy. (a) Atoms in singly-occupied sites show a resonant peak at the bare
resonance frequency ω0. (b) Atoms in doubly occupied sites experience an interaction
energy shift Uij ∝ aij which depends on the internal state of the atom. These shifts
can then be measured by performing spectroscopy.

at δL = 0. These peaks correspond to the gg → eg transition (one-photon process)
and to the gg → ee transition (two-photon process), and are located at the following
detunings:

δL = δ1 =
Ueg − Ugg

~
, δL =

δ1 + δ2

2
=
Uee − Ugg

2~
, (4.3)

respectively. The decay rates γij can be inferred by transferring atoms either into the
eg or ee states and performing a lifetime measurement, i.e., by recording the remaining
population at different holding times.

Experimental setup and determination of the Mott shells

Experimental setup. All the measurements shown in this chapter are performed in
an optical lattice at the magic wavelength and at fixed lattice depths, measured by the
Kapitza Dirac technique described in section 2.2.1: The vertical lattice is at Vz = 27Er

and the horizontal ones are set at (Vx, Vy) ' (24, 25.4)Er, deep in the Mott insulator
regime. It is then safe to neglect tunneling, on the order of ~/J ' 70ms , compared to
the timescale of the experiments presented in this section, which are on the order of a
few ms. We can thus consider the lattice sites as independent. The on-site interaction
shift Ugg/h = 1475(25)Hz for two atoms in the ground state, has been measured by
the method of collapse and revival exposed in section 2.2.4. Atoms are then probed on
the zero-phonon line with the geometry shown in figure 4.1(a).

In the following sections we will refer to experiments in which we either measure (i)
the total population of atoms in g, achieved by regular absorption imaging, (ii) the
total atom number e+g, which we obtain by repumping atoms in e back to the ground
state and then using absorption imaging and finally (iii) only atoms in e. For this last
one, we first send an intense beam, resonant with the 1S0→1P1 transition to remove
the population of g atoms (we call this the blasting procedure), and then we repump
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Figure 4.3 – Normalized population Fn̄=1 of the Mott shell with single occupancy as a
function of the total atom number Nat. Data points are extracted from the asymptotic
behavior of coherent oscillations such as the one shown in figure 4.1(b), for different
initial atom numbers. The dashed line is the prediction from our loading model assum-
ing adiabaticity and zero temperature (see section 2.2.2). The solid line numerically
accounts for three-body collisions: We consider that sites with triple occupancy are
quickly emptied by three-body events. Figure adapted form Bouganne et al. (2017)

the atoms in e back to g and image them.

Determination of the Mott shells. The long-time asymptote N∞ in the e+g curve
in figure 4.1(b) corresponds to the number of sites with only one atom. This kind of
measurements can thus be used to extract the initial fraction of singly-occupied sites
Fn̄=1. Assuming our lattice contains only singly- and doubly-occupied sites [see below],
the initial total atom number can be written as N0 = L(Fn̄=1+2Fn̄=2), with L the total
number of sites and Fn̄=2 the fraction of doubly occupied sites, so that Fn̄=1+Fn̄=2 = 1.
The asymptote corresponds to N∞ = LFn̄=1 since, at long times, all doubly-occupied
sites have decayed. Combining these two equations, the fraction of singly occupied
sites can be expressed as:

Fn̄=1 =
2N∞

N0 +N∞
. (4.4)

This offers a way to test the loading model presented in section 2.2.2, by comparing the
predicted density distribution to the one we infer experimentally. We do this by driving
Rabi oscillations at different initial atom numbers and we extract for each measurement
the fraction of singly-occupied sites, Fn̄=1, thanks to the asymptotic value. We show
the inferred fractions in figure 4.3. Here, the dashed line corresponds to the predicted
fraction of n̄ = 1 sites using our loading model described in section 2.2.2: For a small
atom number of N = 8× 103 atoms our model predicts only a plateau with Fn̄=1 = 1,
which agrees well with the data. However, for larger atom numbers our model predicts
several insulating plateaus (including filling fractions n̄ > 2) and the n̄ = 1 fraction
that we measure is actually underestimated by the model. As an example, for N =
8× 104 atoms we predict the following fractions: Fn̄={1,2,3} = (0.25, 0.39, 0.36). We
think this disagreement arises from three-body losses55 occurring during the loading of
the lattice. By taking the losses heuristically into account (basically, we suppose that at

55The three body loss rate K3 ' 7× 10−30 cm6/s (Kitagawa et al. 2008) leads to a loss rate
τ3 ' 100ms at 20Er, which is comparable to our loading times.
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the end of the loading all triply-occupied sites have disappeared, which corresponds to
the solid line in figure 4.3) we find a good agreement with our measurements. For N =
8× 104 atoms we obtain Fn̄={1,2,3} = (0.36, 0.64, 0). Therefore, from now on, we use
the loading model presented in section 2.2.2 together with the three-body suppression
whenever we need to determine our density distribution.

The content presented in sections 4.1.2-4.1.5, denoted by ∗, has been published in
Bouganne et al. (2017) and is exposed here without major modifications. Only a few no-
tations have been changed and some footnotes and references to within the manuscript
have been added.

4.1.2 Model (∗)

The dynamics of single particles in isolated wells driven in the clock transition consid-
ered in the previous chapter is well described by the Hamiltonian:

Ĥ(1) = ~

 0
ΩL

2
ΩL

2
−δL

 , (4.5)

with ΩL and δL = ωL − ω0 the Rabi frequency and the detuning, respectively.

We will now consider the dynamics of doubly-occupied sites driven by the coupling
laser, which differs from singly-occupied sites in several aspects. First, due to bosonic
enhancement, the coupling strength is

√
2 times higher for double than for single occu-

pancy. Second, the three possible symmetric states |gg〉, |eg〉 and |ee〉 have in general
different interaction energies, characterized by Hubbard parameters Ugg, Ueg and Uee,
the last two being unknown. Finally, the states |eg〉 and |ee〉 are prone to inelastic de-
cay via principal quantum number changing collisions. We model this inelastic process
by adding an imaginary term −i~γeα/2 to the Hamiltonian, with α = e, g. This results
in a dynamics captured by a non-Hermitian effective Hamiltonian [see the discussion
in section 4.2.1 below]:

Ĥ
(n=2)
eff =


0

~ΩL√
2

0

~ΩL√
2

Ueg − Ugg − i
~γeg

2
− ~δL

~ΩL√
2

0
~ΩL√

2
Uee − Ugg − i

~γee
2
− 2~δL

 (4.6)

in the {|gg〉, |eg〉, |ee〉} basis.

We numerically solve the generalized Schrödinger equation using the effective Hamilto-
nian in equation (4.6) with initial condition |Ψ(2)〉 = |gg〉. We also solve the Schrödinger
equation for singly-occupied sites using equation (4.5) with initial condition |Ψ(1)〉 =

|g〉. This gives transition probabilities denoted P
(2)
α = |〈α|Ψ(2)〉|2 with α = gg, eg, ee

and P
(1)
β = |〈β|Ψ(1)〉|2 with β = g, e. We then sum the contributions of doubly- and
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Figure 4.4 – (a) Lifetime measurement for a sample with only atoms in e. Doubly-
occupied sites quickly decay through inelastic collisions. The inset shows the plateau
of remaining singly-occupied sites for longer times. (b) Absence of inelastic collisions
involving g and e. The dashed line shows the asymptote expected for a complete decay
of e − g pairs. In (a) and (b), solid lines are exponential fits to the data, with the
shaded area reflecting the 68% confidence intervals. Figure reproduced from Bouganne
et al. (2017).

singly-occupied sites to obtain the average populations N g and N e. For example, we
have56

N e

Nat

= ηeFn=1P
(1)
e + ηeFn=2

(
P (2)
ee +

1

2
P (2)
eg

)
. (4.7)

We assume the repumping efficiency ηe to be independent from the filling factor for
simplicity.

4.1.3 Lifetime of doubly-occupied sites (∗)

In this section we measure the inelastic loss rates γee and γeg. We first investigate
the role of e − e inelastic collisions. After a coupling laser pulse of area ΩLT ' π
[ΩL/(2π) ' 1500Hz] in order to obtain a substantial population of |ee〉, we apply a
removal pulse (see section 4.1.1) to get rid of remaining atoms in state g. We are then
left with a collection of singly- and doubly-occupied sites where all atoms are in the
excited state e. We show in figure 4.4(a) the measured lifetime of this sample. We
detect a fast exponential decay at short times which we interpret as the consequence
of inelastic e − e collisions. For longer times, we observe a plateau corresponding to
the remaining e atoms in singly-occupied sites. The exponential decay rate is a direct
measurement of γee = 9300(100) s−1 [see appendix B].

A similar technique is used to investigate the role of e − g inelastic collisions. We
apply a coupling laser pulse of area ΩLT ' π/2 [ΩL/(2π) ' 1500Hz] in order to obtain
a substantial population of |eg〉. We measure the atom number in the ground state

56For atoms in the ground state, we have a similar relation:

Ng

Nat
= Fn=1P

(1)
g + Fn=2

(
P (2)
gg +

1

2
P (2)
eg

)
.
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g which is expected to decay as Ṅ g/Nat = −γegFn=2P
(2)
eg /2. Figure 4.4(b) shows a

typical measurement, where almost no losses occur even after one second. In order
to extract a damping rate, we fix the initial populations using the model in section
4.1.1. An exponential fit to the data, with a rate γ as the only free parameter, yields
γ = 0.5(1) s−1. The projected asymptote of the decay is represented with the dashed
line in figure 4.4(b). We measure a similar lifetime for atoms in g in the absence of the
coupling laser. Hence the measured damping rate γ is only an upper bound for γeg.

4.1.4 Spectroscopy of elastic interactions (∗)

We now turn to the determination of elastic interaction parameters Ueg and Uee. To this
end, we perform spectroscopic experiments probing doubly-occupied sites. The method
is illustrated in figure 4.5(a)-(b), and the measurements shown in figure 4.5(c)-(d).

The determination of Ueg is best performed in a perturbative limit, where the pulse area
and the population of |ee〉 remain small [figure 4.5(a)]. The time evolution of |Ψ(2)〉
then reduces to that of a two-level system resonant for ~δL = Ueg−Ugg. This resonance
is well-resolved provided that the Rabi frequency is much smaller than (Ueg − Ugg)/~.

In order to extract the interaction strength Uee, one could in principle use a two-photon
resonance directly linking |gg〉 and |ee〉. This requires a weak enough Rabi frequency
ΩL � ∆ and δ′L � ∆, where ~∆ = Ueg − (Uee + Ugg)/2 is an interaction shift and
where δ′L = δL − (Uee −Ugg)/(2~) is the two-photon detuning. Under these conditions,
the intermediate state |eg〉 can be adiabatically eliminated, and the dynamics reduces
to that of an effective two-level system. The difference (Uee − Ugg)/2 can therefore
be directly measured from the location of the two-photon resonance. Practically, this
idealized experiment is difficult to perform for weak coupling due to the strong loss
rate γee, which gives a substantial width to the two-photon resonance. In order to
circumvent this issue, we perform the experiment at a larger Rabi frequency, and make
use of the losses by measuring Ng + Ne after a clock pulse of area ΩLT = 2π [figure
4.5(b)]. The background signal from singly-occupied sites is minimized near resonance,
whereas doubly-occupied sites show a pronounced feature due to e − e losses located
at ~δL ' (Uee − Ugg)/2. Even for large Rabi frequencies, we find that the loss spectral
feature in the total signal is only weakly affected by the intermediate |eg〉 state [inset
of figure 4.5(b)].

The experimental results are presented in figures 4.5(c)-(d). Data is centered so that
δL = 0 corresponds to the single-atom resonance. The measurement of Ueg [figure
4.5(c)] is done with a weak Rabi frequency Ωweak

L /(2π) ' 150Hz and displays a shoul-
der near δL/(2π) ' −300Hz. This corresponds to the signal from doubly occupied
sites. On the other hand, the measurement of Uee [figure 4.5(d)], performed at strong
Rabi frequency Ωstrong

L /(2π) ' 1500Hz, shows a loss peak almost coincident with
δL/(2π) ' 0Hz, or equivalently Uee ' Ugg. To extract quantitative values, we fit
the prediction of the model from section 4.1.2 to the experimental spectra [solid and
dashed lines in figures 4.5(c)-(d)]. We fix the normalized populations Fn=1,2, the loss
rates γee, γeg and the initial atom number Nat to their measured values and leave the
Rabi frequencies Ωweak

L , Ωstrong
L , the interaction energies Uee, Ueg and the repumping

efficiency ηe as free parameters. The prediction of the model has been further con-
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Figure 4.5 – Determination of Ueg and Uee, (a-b) illustrate the methods, (c-d) show
the measurements. (a)Method for measuring Ueg. The number of atoms in g is plotted
with respect to detuning, with a pulse area ΩLT = π. Singly-occupied sites are excited
on the single-atom resonance near δL = 0, with δL the laser detuning. Interactions
shift the resonance for doubly-occupied sites to δL = (Ueg − Ugg)/~. This interaction
sideband can be resolved with sufficiently weak Rabi frequency ΩL � |Ueg − Ugg|/~.
For illustrative purposes, ΩL/(2π) = 70Hz and Ueg = 0.8Ugg in this plot. (b) Method
for measuring Uee. For strong Rabi frequencies and pulse area ΩLT = 2π, the total
population of doubly occupied sites has decreased due to inelastic collisions (black
solid line). This loss resonance is shifted with respect to the single-atom resonance
(dashed blue line, pulse area ΩLT = π) by (Uee − Ugg)/(2~), with weak dependence
on Ueg (see inset). For illustrative purposes, ΩL/(2π) = 1500Hz and Uee = 2.5Ugg in
this plot. (c) Experimental determination of Ueg with ΩLT ' π. The shoulder near
δL/(2π) ' −300Hz indicates the excitation of doubly occupied sites. (d) Experimental
determination of Uee. The open symbols show Ng for the reference measurement with
ΩLT ' π locating the single-atom resonance. The closed ones correspond to Ng+Ne for
the loss measurement with ΩLT ' 2π. The loss curve is almost centered on the single-
atom resonance. A common fit to all data sets in (c) and (d) (solid and dashed lines)
yields best fit parameters Uee = 0.97(23)Ugg and Ueg = 0.82(8)Ugg (see text). The
quoted error bars are statistical 68% confidence intervals obtained by the bootstrap
method. In all plots, zero detuning corresponds to the single-atom resonance. Figure
reproduced from Bouganne et al. (2017).

volved with a Gaussian function to account for frequency jitter of the clock laser, the
width σ being left as an extra free parameter. We obtain Ωweak

L /(2π) = 145(13)Hz,
Ωstrong

L /(2π) = 1470(70)Hz and ηe = 68(6)%, consistent with our calibrations. The
width of the convolving Gaussian σ = 100(40)Hz, is consistent with the narrow-
est spectrum we could observe, as discussed in section 3.5.2. Finally we extract
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(Uee − Ugg)/h = −40(340)Hz and (Ueg − Ugg)/h = −270(120)Hz, in agreement with
the qualitative discussion above. The error bars represent statistical 68% confidence
intervals on the optimal values of Ueg and Uee, obtained by the bootstrap method.

4.1.5 Determination of atomic parameters (∗)

The ratio of the elastic interaction parameters Ueg and Uee to Ugg is directly proportional
to the ratio of the respective scattering lengths. From our calibration of Ugg (see section
2.2.4) we get:

aeg − agg = −19(11) a0, (4.8)
aee − agg = −3(25) a0. (4.9)

The error bars do not account for possible systematic errors (for instance, in determin-
ing Ugg). Combining our measurements and the value agg = 105 a0 from Kitagawa et al.
(2008), we obtain the scattering lengths aeg = 86(11) a0, aee = 102(25) a0. We thus
find all scattering lengths involving the clock states of 174Yb equal within 20%. The
near-equality of the scattering lengths is somewhat surprising. These observations dif-
fer markedly from the fermionic 173Yb isotope, where the equivalent scattering lengths
have been found very different from one another (Cappellini et al. 2014; Scazza et al.
2014).

We also extract from the loss rate γee the two-body loss rate constant βee that enters
into the rate equation d〈Ψ̂†eΨ̂e〉/dt = −βee〈Ψ̂†eΨ̂†eΨ̂eΨ̂e〉 [the relation between the two
is ~γee/Ugg = Mβee/(4π~agg), see appendix B]. We find:

βee = 2.6(3)× 10−11 cm3/s. (4.10)

This value is in line with comparable measurements in strontium or fermionic ytterbium
(Scazza et al. 2014; Traverso et al. 2009; Ludlow et al. 2011). As noted in section 4.1.3,
we can only give an upper bound on the rate constant βeg ≤ 10−15 cm3/s. Low e − g
inelastic loss rates were also observed for fermionic 173Yb (Scazza et al. 2014) and 87Sr
(Bishof et al. 2011).

Similar experiments have been performed by the ytterbium team at LENS in Florence
(Franchi et al. 2017). Their results agree with ours within the uncertainties.

4.1.6 Summary and conclusion

In this section, I have shown a series of spectroscopic measurements performed on
bosonic pairs in an optical lattice. The strong initial decay observed during Rabi
oscillations experiments, which is a signature of strong inelastic two-body losses, has
allowed us to verify our lattice loading model thanks to the asymptotic values of these
decays. In order to reproduce our data, we have seen that three-body losses during the
loading stages need to be taken into account.

The two-body loss rates responsible for the initial decay while performing Rabi oscilla-
tions have been determined by performing lifetime experiments. Finally, by recording
spectra at both low and high Rabi frequencies we have measured the interaction spec-
troscopic shifts giving access to the intra- and inter-state scattering lengths. The ex-
tracted values are summarized in table 4.1 below. In the same table, we also show the
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values measured by the LENS team (Franchi et al. 2017). Their values for the scattering
lengths are more precise than ours and we use these in the rest of the manuscript.

Quantity LKB (Bouganne et al. 2017) LENS (Franchi et al. 2017)

aeg [a0] 86(11) 94.7(1.6)
aee [a0] 102(25) 126.7(2.3)

βeg [cm3/s] ≤ 1× 10−15 ≤ 1× 10−14

βee [cm3/s] 2.5(1)× 10−11 1.3(7)× 10−11

Table 4.1: Intra- and inter-state scattering lengths together with the two-body loss
rates measured in this work and comparison with te values reported in Franchi et al.
(2017). The ground state scattering length has been measured in Kitagawa et al. (2008)
and is agg ' 105 a0, with a0 the Bohr radius.

4.2 Quantum Zeno dynamics of «dressed» pairs in a
deep optical lattice

In the previous section, we have seen that all the measured interaction strengths, either
elastic (Ueg, Uee) or inelastic (~γee), are close to the on-site interaction strength Ugg.
This leads to very small frequency shifts for the transitions |gg〉 → |eg〉 and |gg〉 → |ee〉.
Moreover, due to inelastic losses and the broadening sources discussed in section 3.6
these transitions are not easily resolved, even at small Rabi frequencies. In particular,
this means that driving the transition |gg〉 → |eg〉 without populating the lossy |ee〉
state will be a challenging task.

In this section we show that, by performing adiabatic passages for weak coupling
strengths (ΩL � γee), the transfer to the lossy state |ee〉 is strongly suppressed. The
stronger the losses, the stronger the transfer rate is reduced, leading to a longer lifetime
of the samples. This is reminiscent to the observation of a quantum Zeno effect where,
the presence of strong losses in the |ee〉 state would act as a continuous measurement
preventing the coherent driving towards this state. This arises naturally when con-
sidering non-Hermitian Hamiltonians as the one in equation (4.6), as we show in the
following.

4.2.1 The quantum Zeno effect

Open quantum systems and the Lindblad equation

In quantum mechanics, one frequently faces the problem concerning the relaxation
dynamics of a small system S coupled to an environment or large reservoir R (an
open quantum system). In general, because of this coupling, the dynamics of S alone
are no longer unitary due to the correlations arising between S and R. Still, under
some approximations, even in this case, one can derive an effective equation of motion
for the small system ρ̂S by tracing over the many modes of the environment, i.e.
ρ̂S = trR[ρ̂S ⊗ ρ̂R].

It can be shown that the evolution of S can be cast as the sum of a unitary evolution
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given by the free Hamiltonian of S and a dissipator L[ρ̂S ], characterizing the relaxation
mechanisms of the small system. These dynamics are given by a master equation, which
in the so-called Lindblad form reads (Breuer et al. 2007; Haroche et al. 2013):

d

dt
ρ̂S(t) =

1

i~
[ĤS , ρ̂S(t)] + L[ρ̂S(t)] (4.11)

=
1

i~
[ĤS , ρ̂S(t)] +

∑
µ

γµ

[
L̂µ ρ̂S(t)L̂†µ −

1

2
L̂†µL̂µ ρ̂S(t)− 1

2
ρ̂S(t)L̂†µL̂µ

]
, (4.12)

describing the irreversible evolution of an open quantum system. Here L̂µ depends
on the nature of the dissipative process (i.e. the effect of the environment) and γµ
characterizes the strength of such events.

Generalized indirect frequent measurements and their connection to
dissipation

These same equations arise in the general theory of quantum measurements (Breuer
et al. 2007), where one wishes to extract information of an observable Â of a given
system S indirectly, by coupling it to a measuring device (a probe) previously prepared
in a given state. As in the previous description, correlations arise among the probe
and the system because of this coupling.

Then, one uses an apparatus which performs a projective measurement of an observable
of the probe, yielding an approximate measurement of Â, because of the correlations
built during its interactions with the probe. It can be shown [see e.g. Breuer et al.
(2007) for a detailed derivation] that, if the measurements are not read, the density
matrix of the system being measured ρ̂S follows an evolution given by equation (4.12).

In this case, the Lindblad operator L̂µ is given by the indirectly measured operator Â
and its strength γµ is proportional to the rate γ of the measurement of Â (Breuer et al.
2007). Therefore, indirect frequent measurements can have an irreversible effect on the
evolution of the original system, which establishes a link between measurements and
dissipative processes.

The quantum Zeno effect

A beautiful consequence of what has been discussed in the previous section is that the
coherent evolution of a system can actually be frozen by performing arbitrarily frequent
measurements.

To see this (Breuer et al. 2007), let us consider a two-level system consisting of discrete
states |a〉 and |b〉, coupled with a strength Ω/2, i.e. described by the free Hamiltonian
ĤS = Ωσ̂x/2 (which generates Rabi oscillations between the two levels). Imagine that
we now want to perform somehow an indirect measurement telling us if the atom is
either on state |a〉 or in state |b〉 (i.e. to measure Â = σ̂z). A possible measurement
protocol for such a measurement is schematized in figure 4.6(a). The master equation
reads:

d

dt
ρ̂S(t) =

Ω

2i
[σ̂x, ρ̂S(t)] +

1

τZ

[
σ̂z ρ̂S(t)σ̂†z −

1

2
σ̂†zσ̂z ρ̂S(t)− 1

2
ρ̂S(t)σ̂†zσ̂z

]
, (4.13)

102



Chapter 4. Interacting pairs in an optical lattice

Figure 4.6 – Quantum Zeno effect. (a) Schematics of the model proposed in the
main text to observe the quantum Zeno effect: two levels |a〉 and |b〉 are coherently
driven. The population in one of these states is measured at intervals given by 1/τZ

by coupling |a〉 to another state |c〉. The population in the ground state is shown for
different measurement rates 1/τZ, showing that increasing the rate of measurements in
a given interval slows down the dynamics.

where the inverse of the measurement rate has been denoted by τZ, the so-called Zeno
time. By mapping the 2-level system onto a pseudo-spin 1/2, we can write this evolution
in terms of the components of the spin vector s = (u, v, w), with:

u = 2Re[ρab], v = 2Im[ρba], w = ρaa − ρbb, (4.14)

which allows us to rewrite equation (4.13) as:

u̇ = − 2

τZ

u, v̇ = Ωw − 2

τZ

v, ẇ = Ωv. (4.15)

Let us now assume that the system is initially prepared in |a〉, i.e. w(0) = 1, and that
v(0) = u(0) = 0. The population difference evolves thus as:

w(t) =
1

λ− − λ+

(
λ−e−λ−t − λ+e−λ+t

)
, with λ± =

1

τZ

± Ω

√
1

(ΩτZ)2
− 1. (4.16)

The evolution of the ground state population is then given by pa(t) = [1 + w(t)]/2.
In the case ΩτZ � 1, these solutions correspond to damped Rabi oscillations with an
oscillation frequency ∼ Ω. However, for ΩτZ � 1, one finds pa(t) = [1 + e−γeff t]/2 with

γeff = Ω2τZ/2. (4.17)

This vanishes in the limit of τZ → 0, i.e. the population in the ground state is frozen
pa(t) ' 1∀t if the measurement rate is large enough. This can be seen figure 4.6(b)
where we show the solution of equations (4.13) for different values of τZ. This scaling
as Ω2τZ = Ω2/γ is usually recognized as a clear signature of the quantum Zeno effect
in a system.

These limits of large and small τZ can be easily understood in the case of projective
measurements. For large τZ � Ω−1, the system undergoes Rabi oscillations until
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the measurement is performed. Here, the system is found either in |a〉 or |b〉 with a
probability given by the usual Rabi formula and the wave function is then projected.
However, if the measurement is performed at times τZ � Ω−1, the probability of being
found in the ground state can be expanded as pa(τZ) ' 1 − Ω2τ 2

Z ' 1 if τZ → 0. The
system is then projected with high probability onto |a〉.

If we consider now n such measurements in a time interval t = nτZ, we find that the
probability of remaining in |a〉 is given by:

pa(t = nτZ) ' (1− Ω2t2/n2)n ' 1− Ω2t2/n→ 1 if n→∞. (4.18)

That is, we find again that the dynamics are slowed down and even effectively frozen
if the system is frequently measured at a rate faster than its internal dynamics. This
freezing under a frequent or continuous observation is usually referred to as the quan-
tum Zeno effect (Misra et al. 1977).

In the previous paragraph, we have established an analogy between quantum measure-
ments and dissipative processes. If we push this analogy further, we see that the role of
the measurement rate 1/τZ is equivalent to the strength of the dissipation parameters
L̂µ. Thus, by this reasoning, one expects strong losses to freeze the evolution of the
system too.

This inhibition of the coherent dynamics under frequent measurements was actually
shown for the first time by Itano et al. (1990) in an experiment with beryllium ions,
following an earlier proposal by Cook (1988). The principle of the experiment is shown
in figure 4.6(a): two long-lived hyperfine levels |a〉 and |b〉 are coupled by an RF field,
which induces Rabi oscillations between them. Then, one of these states, say |a〉, is
connected to an unstable state |c〉 via an allowed optical transition. Since this state is
unstable, photons are scattered at a rate proportional to its width Γ, which constitutes
a possible measurement for discerning if the atom was actually in |a〉 or not. Itano et
al. then sent n pulses resonant with the |a〉 → |c〉 line during the first RF π−pulse.
Their key observation was that the transfer to state |b〉 was arbitrarily reduced as the
number of pulses n increased, which constituted an experimental confirmation of the
quantum Zeno effect.

Effective Hamiltonian and quantum jumps

The master equation (4.12) can be rewritten in terms of the evolution under an effective
non-Hermitian Hamiltonian and a quantum jump57:

d

dt
ρ̂S(t) =

1

i~
[Ĥeff , ρ̂S(t)] + J [ρ̂S(t)], (4.19)

where we have defined:

Ĥeff = ĤS −
∑
µ

i
~γµ
2
L̂†µL̂µ and J [ρ̂S ] =

∑
µ

γµL̂µ ρ̂S(t)L̂†µ. (4.20)

It was shown in Dalibard et al. (1992); Dum et al. (1992) and (Carmichael 1993) that
the evolution in terms of the density matrix is equivalent to a description in terms of

57We use that if Â is a non-Hermitian operator, then [Â, ρ̂] = Âρ− ρÂ†.
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states |Φ〉 evolving under the non-Hermitian Hamiltonian Ĥeff . In a few words, the
evolution of the system in a small time interval δt is given by the following Schrödinger
equation:

i~
d

dt
|Φ(t)〉 = Ĥeff |Φ(t)〉, (4.21)

interrupted by a quantum jump with a probability given by

pµ = γµδt〈Φ(t)|L̂µL̂†µ|Φ(t)〉, (4.22)

which projects the state towards L̂µ|Φ(t)〉. Averaging this over many realizations (the
so-called quantum trajectories) is equivalent to solving the Lindblad master equation
(4.12). This techinique is known as the Monte-Carlo wave function approach (Dalibard
et al. 1992; Plenio et al. 1998).

The quantum jump term J [ρ̂S ] is usually also referred to as the feeding term. For
some kind of dissipative processes, e.g. atom losses, atoms are continuously fed into
smaller-number Fock states and eventually the vacuum state (the steady-state), which
does not participate into the dynamics anymore.

Let us specialize this to our experimental situation: We deal with the coherent coupling
of atom pairs enduring two-body losses. In each lattice site, the effective dynamics of
the reduced density matrix is projected onto a subspace where only the P̂0 = |0〉〈0|
and P̂2 = |2〉〈2| subspaces play a role. If we were only measuring a single lattice site
then, in the Monte Carlo wave function point of view, the state of the atomic pair
would evolve under Ĥeff and at some point there would be a quantum jump projecting
the state onto |0〉, stopping the dynamics. In the experiments, we have thousands of
lattice sites where these dynamics are taking place. Since we only measure atom pairs
that have not decayed, we can project onto the subspace concerning ρ̂S,2 alone.

In this case, the evolution on the subspace of doubly-occupied sites is completely gov-
erned by the non-Hermitian effective Hamiltonian and we can either use the master
equation or equation (4.21) directly [i.e. with no need to keep track of the feeding term
(or the quantum jumps)] to describe our observations, as we have done in section 4.1.

Let us then summarize the main ideas that have appeared in the previous discussion:

1. The frequent measurement of a system inhibits its coherent dynamics [see equa-
tion (4.18)].

2. The effect of dissipation is analogous to a measurement.

3. The evolution of a dissipative system can be fully described by an effective non-
Hermitian Hamiltonian if the subspace spanned by the quantum jump is not
measured and does not participate into the dynamics anymore [in such a case,
we can use equation (4.21) to compute the evolution of the system].
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4.2.2 Dressed states, exceptional points and reduced-loss
subspace at weak coupling

Non-Hermitian Hamiltonian

Let us now focus in our particular situation, i.e., atomic pairs in independent har-
monic wells, driven by the laser and where two particles in the excited state undergo
inelastic collisions and are lost. This is well described by the effective non-Hermitian
Hamiltonian in equation (4.6), that we rewrite here in a more compact form:

Ĥ(2) = ~


0

ΩL√
2

0

ΩL√
2

η − δL
ΩL√

2

0
ΩL√

2
χ− 2δL − i

Γ

2

 , (4.23)

where we have put γeg ' 0, Γ = γee ' 2π × 1500Hz and defined ~η = Ueg − Ugg '
−h × 140Hz and ~χ = Uee − Ugg ' 2h × 150Hz, which are determined by the lattice
depth and fixed in all this section. Now, instead of focusing on the evolution of the bare
states {|gg〉, |eg〉, |ee〉} as we did in the previous sections, we consider the eigenstates
and eigenvalues of Ĥ(2):

Ĥ(2)|λk〉 = ~λk|λk〉 with λk = ωk − i
γk
2
. (4.24)

These eigenvalues and eigenvectors depend on the given Rabi frequency and detuning,
λk = λk(ΩL, δL), but we do not explicit the dependency to alleviate the notation. We
note that, since Ĥ(2) is not an Hermitian operator, in principle one should compute the
right and left eigenvectors in order to write it in its diagonal form (see appendix E).
However, if the Hamiltonian is symmetric, it is sufficient to specify its right (or left)
eigenvectors (Moiseyev 2011) and, from now on, we keep our discussion referring only
to the right eigenvectors.

Another consequence of the non-Hermiticity of the Hamiltonian is that its eigenvalues
are complex: the real part ωk corresponds to the eigenfrequency of the eigenstate, and
the parameter γk in the imaginary part gives the lifetime of the eigenstate |λk〉. Let us
show this last statement: Under the action of Ĥ(2), the state of the system at a given
time t0 is given by a superposition of the eigenstates:

|ψ(t0)〉 =
∑
j

αk(t0)|λk〉. (4.25)

The evolution of the system expressed in the eigenbasis is given by:

|ψ(t)〉 =
∑
k

e(−iωk−γk/2)tαk(t0)|λk〉, (4.26)

and therefore, the population of each eigenstate at a time t > t0 reads:

Pk(t) = |〈λk|ψ(t)〉|2 = e−γktPk(t0), (4.27)
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i.e., because of the effective non-Hermitian description of the problem, probabilities are
not conserved. The imaginary part of each complex eigenvalue is proportional to the
population of |ee〉 in |λk〉 at the given ΩL and δL, i.e.

γk = γeeΠ
ee
k (ΩL, δL), (4.28)

with Pk = Π gg
k + Π eg

k + Π ee
k and where the Πj

k are the populations of the bare states in
each dressed state |λk〉. We are going to show next that, in the weak coupling regime,
this population Π ee

k is strongly reduced for some eigenstates with respect to what one
would expect by diagonalising Ĥ(2) in the absence of losses, that is: Π ee

k (Γ = γee) �
Π ee
k (Γ = 0). This effective inhibition of the transfer to the lossy state becomes more

drastic as Γ � ΩL, resulting in smaller loss rates γk as one increases the value of the
losses Γ, as opposed to what one would naively expect.

Dressed states

Let us compute the spectrum of Ĥ(2). We note that, for non-Hermitian Hamiltonians
there is no unique way of ordering the eigenstates (one can choose to label them accord-
ing to decreasing real or imaginary parts of the eigenvalues, for instance) (Ibáñez et al.
2014). We have chosen to label the eigenstates so that the eigenvectors and eigenvalues
are continuous functions of δL at a given ΩL. In the following we denote the eigenstates
as |λi〉 and we call |λ1〉 the eigenstate that at large negative detunings corresponds to
|gg〉 and |λ3〉 the one that corresponds to |gg〉 at large positive detunings.

We display the result of this diagonalisation in figures 4.7 and 4.8 in the strong and
weak coupling limits, for ΩL/(2π) ' 1500 and 150Hz respectively. We show the real
and imaginary parts of the eigenvalues on the top rows and the bare-state composition
of each dressed state on the bottom rows. From these diagonalisations we observe the
following features: in the strong coupling limit, the energy levels are well separated and
except for the non-zero imaginary parts, one obtains a spectrum which is very similar
to the one that would be obtained by setting Γ = 0, with the usual avoided crossings.
However, at weak coupling, and as it can be seen in figure 4.8(b), two interesting
features appear: on the one hand, there are level crossings in the real parts and, on
the other hand, regions where the losses are strongly reduced (γk � Γ) emerge.

Exceptional points: The boundary between the weak and strong coupling
regimes

An interesting feature of non-Hermitian Hamiltonians is that, for certain values of the
control parameters (ΩL and δL in our case), the real and imaginary parts of two or more
eigenvalues become equal and, in this point, the corresponding eigenstates coalesce and
become parallel. These points of the parameter space where the Hamiltonian cannot
be diagonalised are known as exceptional points (EP) (Heiss 2012). For our physical
parameters (i.e. Uij and γee) there is no physical situation for which the three eigenstates
coalesce (i.e. there is no third order EP). However, for some values of (ΩL, δL) it can
happen that two of them do. We show this in figure 4.9, where eigenstates |λ1〉 and |λ2〉
coalesce at (Ω1↔2

EP , δ1↔2
EP ) ' 2π × (450, 530) Hz. Another second order EP (not shown)

appears at (Ω2↔3
EP , δ2↔3

EP ) ' 2π × (610, 10) Hz, where |λ2〉 and |λ3〉 coalesce.

Systems featuring either losses or gain, i.e. systems that can be described by non-
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Figure 4.7 – Spectrum of Ĥ(2) in the strong coupling limit. (a): Real (left) and
imaginary parts (right) of the eigenvalues.(b): Bare state composition of each dressed
state.

Figure 4.8 – Spectrum of Ĥ(2) in the weak coupling limit. (a): Real (left) and
imaginary parts (right) of the eigenvalues. (b): Bare state composition of each dressed
state. In this case, we see the appearance of crossings in the real part spectrum and
the emergence of a subspace in which the loss rate is strongly reduced for all detunings.

Hermitian Hamiltonians, are well suited for the study of EPs. Encircling such points
leads to new and sometimes counter-intuitive phenomena (Heiss 2012). The question
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Figure 4.9 – Spectrum of Ĥ(2) at ΩL = Ω1↔2
EP . (a): Real (left) and imaginary parts

(right) of the eigenvalues. (b): Bare state composition of each dressed state. The
vertical dashed line is located at δL = δ1↔2

EP , where |λ1〉 and |λ2〉 coalesce.

of adiabaticity by performing a loop around an EP has been studied in Milburn et al.
(2015), and it has been shown to depend on the chirality of the loop around these
points (Doppler et al. 2016). Other effects such as unidirectional invisibility have been
observed (Lin et al. 2011b; Feng et al. 2013) and the role of EPs in enhanced sensing
schemes has also been proved (Chen et al. 2017). In the field of quantum simulation
of open quantum systems, the presence of EPs offers new frames to address quantum
phase transitions (Nakagawa et al. 2018).

Unfortunately, so far, we have not been able to observe experimentally any of these
features supposed to occur when encircling these points. A closed loop around an EP
inevitably goes through the strong coupling region, where atom losses are sizable, and
our signal-to-noise ratio is not sufficient. Still, these points mark the boundary between
what we are calling weak coupling and strong coupling regimes, since the reduced-loss
subspace emerges once the Rabi frequencies become ΩL < ΩEP.

Reduced-loss subspace

We are interested in preparing our system in one of the eigenstates whose imaginary
eigenvalues belong to this reduced-loss subspace. We achieve this by performing adi-
abatic passages. In our experiments we always start with all the atoms in the ground
state, and thus |Ψ(t0)〉 = |gg〉. Then, depending on whether we ramp our clock laser
starting from negative or positive enough detunings, we will be following approximately
the states that we have labeled as |λ1〉 or |λ3〉 [see figure 4.8(a)]. The question of adia-
baticity in the non-Hermitian case is more involved than the Hermitian one: In a few
words, adiabaticity can only be fulfilled in principle for the least dissipative eigenstate,

109



4.2. Quantum Zeno dynamics of «dressed» pairs in a deep optical lattice

−4 −2 0 2
δL/ΩL

0.0

0.5

1.0
Po

pu
la
tio

n
in
|ee
〉

(a) (b)|λ1〉 and ΩL � Ω1↔2
EP

Πee
1 (Γ = γee)

Πee
1 (Γ = 0)

−4 −2 0 2
δL/ΩL

0.0

0.2

0.4
|λ1〉 and ΩL � Ω1↔2

EP

Πee
1 (Γ = γee)

Πee
1 (Γ = 0)

Figure 4.10 – Suppression of the coherent transfer to the excited state during an
adiabatic passage. (a): In the strong coupling limit, the transfer to the excited state
population for Γ = γee is not modified with respect to the observed transfer in the
absence of losses (Γ = 0). (b): However, this transfer is strongly suppressed in the
weak-coupling limit.

and this, as usual, provided the rate of change of the Hamiltonian is slow compared
to the Bohr frequencies involved (Nenciu et al. 1992; Ibáñez et al. 2014). This notion,
known as quasi-adiabaticity is discussed in more details in appendix E. When quasi-
adiabaticity holds, there is a global loss of population, but the proportions of each bare
state in each dressed state are conserved.

We have already discussed that the imaginary part of the eigenvalues, giving the pop-
ulation loss rate of each eigenstate, is related to the contribution of the bare state |ee〉.
In figure 4.10 we show more explicitly that by following, for example, the state |λ1〉
in the weak coupling regime and in the presence of the losses it is indeed expected to
observe a suppression of the transfer to the excited state, and therefore a reduced loss
rate.

We are now going to derive an effective Hamiltonian for this reduced-loss subspace. To
do this, we can first split the Hamiltonian in (4.23) as Ĥ(2) = Ĥ0 + V̂ , with:

Ĥ0 = ~

0 0 0
0 η − δL 0

0 0 χ− 2δL − i
Γ

2

 , V̂ = ~


0

ΩL√
2

0

ΩL√
2

0
ΩL√

2

0
ΩL√

2
0

 . (4.29)

Here, we see that, due to the large imaginary part of Eee = Uee − i~γee/2 we have
|Eee| � |Egg, Eeg| and thus, this state is energetically far from the other two in Ĥ0.
The method of the effective Hamiltonian (Cohen-Tannoudji et al. 1992) is well suited
for such a situation. We can first split the Hilbert space into two complementary
subspaces H = HP ⊕HQ, with P̂ = |gg〉〈gg|+ |eg〉〈eg| and Q̂ = 1̂− P̂ = |ee〉〈ee|. The
method consists now in in finding a Hamiltonian Ĥeff sharing the same eigenvalues in
the subspace HP as the full Hamiltonian Ĥ in H. That is, we require that, for a given
state |ψ〉 ∈ HP : Ĥeff |ψ〉 = E|ψ〉 provided Ĥ|ϕ〉 = E|ϕ〉 for |ϕ〉 ∈ H.

In the weak coupling situation, we can perform a perturbative expansion to derive
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the effective Hamiltonian for the dynamics in HP . To second order in V̂ , it reads
(Cohen-Tannoudji et al. 1992):

P̂ ĤeffP̂ ' P̂ (Ĥ0 + V̂ )P̂ − P̂ V̂ Q̂ 1

Q̂Ĥ0Q̂
Q̂V̂ P̂ . (4.30)

We obtain the following effective Hamiltonian:

P̂ ĤeffP̂ = ~

 0
ΩL√

2
ΩL√

2
δeff − i

γeff

2

 , (4.31)

with an effective light-shift and a reduced loss rate γeff given by:

δeff = η − δL −
2Ω2

L

4(χ− 2δL)2 + Γ2
and γeff =

2Ω2
L

4(χ− 2δL)2 + Γ2
Γ. (4.32)

From this, we see that the presence of dissipation freezes the dynamics of the three-level
system by projecting it onto a subspace with only two states |gg〉 and |eg′〉 ' |eg〉, the
latter having a finite lifetime γeff � Γ.

For detunings δ ' χ/2 this effective loss rate becomes γeff ∝ Ω2/Γ, which is exactly the
same behavior observed in equation (4.17), and is a clear signature of the quantum Zeno
effect. This scaling explains the tendency observed in figure 4.10, where an increase of
the loss rate, actually reduces the transfer to the excited state, and thus the effective
loss rate. We also see that, in the weak-coupling limit, an increase of the loss rate
has an effect which is similar to increasing the detuning with respect to the transition
to the lossy state (or, equivalently, moving away the |gg〉 → |ee〉 resonance by setting
|Uee| � Ugg, Ueg).

4.2.3 Experimental results

Adiabatic following and lifetimes

Here we show the experimental results obtained by performing a lifetime experiment
after following either |λ1〉 or |λ3〉 with a Rabi frequency ΩL � ΩEP, and in the region
where each one has the smaller imaginary part, so that we can be quasi-adiabatic
during the passage [see appendix E]. Experimentally, we proceed as follows:

1. We first ramp up the Rabi frequency from 0 to 2π×150Hz at a rate of 10Hz/ms
with the detuning fixed at δL(0)/(2π) = ∓1.5 kHz [see figure 4.11(a)].

2. The detuning is then ramped from δL(0) to the final chosen value with a fixed
speed of 10Hz/ms [see figure 4.11](a).

3. Once the final detuning is reached, we let the coupling laser on at this value for
a variable hold time and measure the total population of the dressed states after
a TOF [see figure 4.11(a)-(b)].
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4.2. Quantum Zeno dynamics of «dressed» pairs in a deep optical lattice

Figure 4.11 – (a): Schematics of the ramps for the passages: First, the Rabi fre-
quency is ramped and then the detuning. Finally, a lifetime of the dressed states
(shaded area) is performed by letting the clock laser on at the final detunings and
Rabi frequencies. (b) Example of lifetime measurement. The data corresponds to an
experiment following |λ1〉 at the final detuning δL = 2π ×−650Hz. The solid line is a
fit to an exponential decay.

We then perform a fit to an exponential decay and we plot the extracted lifetimes in
figure 4.12. We compare these lifetimes to the ones extracted by diagonalising the
Hamiltonian in equation (4.23) with (Γ = γee) and also to the naive loss rate that
would be expected if the suppression was not present, i.e. γeeΠee(Γ = 0). As discussed,
our experiments confirm that the presence of losses strongly inhibits the transfer to the
lossy state.

Measuring the |eg〉 population

By performing lifetime experiments, it is also possible to infer the actual population of
the state |eg〉, Πeg in a given eigenstate at a given (δL,ΩL). As explained in section 4.1.1,
experimentally, we can only access either the total population, that we call Ne+g, or the
total atom number in g or e, that we call Ng or Ne, respectively. But when we record an
image we cannot distinguish which atoms belonged to doubly- or singly-occupied sites
(note that in the previous discussion we have ignored the singly-occupied sites, which
are of course present in our measurements but do not participate into the dissipative
dynamics). A method to infer Πeg is schematized in figure 4.13(a). It consists on
recording two lifetime measurements: (i) One measuring the total population Ne+g,
from which we extract A = N

(2)
gg + N

(2)
eg + N

(2)
ee + N

(1)
g + N

(1)
e at t = 0 and C =

N
(1)
g +N

(1)
e at long times, once all doubly occupied sites have decayed and (ii) another

one measuring just Ng: Here B = N
(1)
g + N

(2)
gg + N

(2)
eg /2 at t = 0 and D = N

(1)
g at

long times. Then, if we assume N (2)
ee ' 0 [which is indeed the case if the passage is

adiabatic, see figure 4.8(a)], the population of the |eg〉 state can be computed as:

Πeg =
2[(A−B)− (C −D)]

A− C
. (4.33)

We have performed these measurements following |λ1〉 and we show the results in figure
4.13(b). We see that we are able to prepare samples with a large population |eg〉, whose
lifetime are twice as large as would be expected in the absence of this suppression. By
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Chapter 4. Interacting pairs in an optical lattice

Figure 4.12 – (Top): Schematics of the passage. The shaded regions corresponds
to the region of explored detunings during the sweeps. (Bottom): Decay rates ex-
tracted from performing a lifetime experiment (see main text) after an adiabatic pas-
sage following either |λ1〉 [starting at δ/(2π) = −1.5 kHz] in (a) or |λ3〉 [starting at
δ/(2π) = +1.5 kHz] in (b). In both cases the final Rabi frequency is ΩL/(2π) = 150Hz
and the final detuning of the ramp is indicated in the x−axis. The red solid line
corresponds to the loss rate extracted by diagonalising equation (4.23) with Γ = γee.
The blue dashed line corresponds to a diagonalisation with Γ = 0. As discussed in
the main text, this measurements confirm that transfer to the excited state is strongly
suppressed in the presence of losses.

performing the same measurements following state |λ3〉 we should observe a similar
behavior, but with a stronger suppression.

4.2.4 Perspectives and conclusion

In this second section, I have given experimental evidence that the presence of a strongly
dissipative state can slow down the coherent transfer towards this state, and interpreted
this observation in terms of the quantum Zeno effect. I have shown this for a conceptu-
ally simple experimental situation: atomic pairs in independent harmonic wells. Here,
the dynamics governing the internal states is well-captured by a 3 × 3 non-Hermitian
Hamiltonian. By diagonalising this Hamiltonian in the weak coupling regime, one al-
ready sees the emergence of a slowly decaying manifold. I have then derived an effective
Hamiltonian describing the dynamics in this subspace, which shows the typical scaling
of the quantum Zeno suppression mechanism.

This has been verified experimentally, by performing an adiabatic following of such
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Figure 4.13 – (a): Method to measure the |eg〉 population by performing lifetime
measurements. (b): Measured |eg〉 population obtained by applying the method
shown in (a). The ramp is performed at ΩL/(2π) = 150Hz by following |λ1〉 from
δL(0)/(2π) = −1.5 kHz to the detuning indicated in the x-axis. The solid and dashed
lines correspond to the population obtained by diagonalising equation (4.23) for our
experimental parameters.

slowly decaying states. We have measured loss rates which are reduced by orders
of magnitude with respect to the ones that one would be naively expected if this
suppression was not present. Finally, I have also shown that this allows us to remain in
a dressed state in which we have coherently transferred a large part of the population
to the |eg〉 state while keeping the |ee〉 state depleted.

This suppression mechanism would work much better if we could increse the loss rate,
which can in principle be achieved by increasing the lattice depth58 or by reducing the
Rabi frequency. Here we face the problem that the times needed for the ramps become
long (> 1 s), and we start being limited by the dephasing mechanisms discussed in
section 3.6. Also, for such long ramps, the hypothesis of independent pairs would not
really hold anymore, since the ramps cover several tunneling cycles.

Inelastic two-body losses in the excited state are prone to be problematic in experiments
involving the two clock states. Such losses constitute a source of entropy and eventually
could prevent from reaching the ground state when preparing specific Hamiltonians
(Baur et al. 2010). Thus, mechanisms such as the one presented in this section could
prove useful for quantum simulation protocols when using alkaline-earth like atoms,
suffering in general from strong inelastic losses in the excited state.

58We note, however, that ~γee ' Ugg ∝ g
´
|w(r)|4d3r, and thus increases slowly (∝ V 3/4) with

the lattice depth.
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CHAPTER 5

Non-linear dynamics of a bulk Bose-Einstein
condensate

In chapter 4 I have shown a set of experiments in which, by performing spectroscopy
on the clock transition, we were able to extract the interaction strength between an
atom in the ground state and another in the excited state and between two atoms in
the excited state, leading to a measure of aeg and aee, respectively. These experiments
were performed in a deep optical lattice, where the Lamb-Dicke regime applies and the
motion of the atoms is frozen. In such a situation, I have shown in chapter 3 that we
are able to drive the internal dynamics in a coherent way for tens of ms, mostly limited
by the drifts of and the linewidth of the laser and its inhomogeneous profile over the
atomic sample.

In this chapter I present the experimental results and a study on the coherent driving
of a bulk BEC, trapped in a harmonic potential and driven on the clock transition.
I show in figure 5.1(b)-(c) an example of the two kind of experiments that will be
studied in this chapter: Spectroscopy in time domain [figure 5.1(b)] on the form of
Rabi oscillations and spectroscopy in frequency domain [figure 5.1(c)].

The high momentum imparted by the optical photon, ~kL, couples in this case the
internal dynamics to the external ones and the BEC, initially prepared in a narrow
wave packet of zero momentum, is transferred to the excited state, described by a
wave packet centered around ~kL. The absence of spontaneous emission allows us to
study the relaxation mechanisms competing against this coherent driving, from which
we identify Doppler broadening, mean-field interactions and strong inelastic losses as
the main ones. In the first introductory section, I present an overview of different
spectroscopic techniques used to probe quantum gases. These techniques share common
features with the single-photon clock transition, such as state dependent interaction
shifts and momentum transfer depending on the kind of spectroscopy.

The experimental results are subsequently presented in two different sections: First, I
discuss the spectroscopy in frequency domain in the irreversible weak coupling regime,
analyzing the expected shape of the spectra depending on whether interactions or
Doppler broadening prevails. This section follows closely the description of the two-
photon spectroscopy experiments performed on hydrogen (Killian 2000), or on Bragg
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5.1. Introduction

Figure 5.1 – (a) Schematics of the experiment. A BEC trapped in an elongated
harmonic trap with ωx � ωy,z is probed on the clock transition 1S0→3P0 by a laser
propagating in the x−y plane at 45◦ with respect to the weak axis. (b) Rabi oscillation
at strong coupling. (c) Spectroscopy in frequency domain. The blue solid lines in
figures (b) and (c) correspond to a GP simulation in the experimental conditions
described in the main text.

scattering experiments (Zambelli et al. 2000). I then present a study on the relaxation
dynamics of a BEC undergoing coherent Rabi oscillations. I present a minimal model
that allows us to understand the behavior observed in the limits of very strong and
very weak coupling. Throughout this chapter, in order to go beyond the empirical and
approximate models, the experimental data is systematically compared with the result
of numerical simulations based on a pair of coupled dissipative GPEs. The results
shown in this chapter were published in Bosch Aguilera et al. (2018).

5.1 Introduction

5.1.1 Spectroscopy of ultracold quantum gases

Spectroscopy has become a major tool to investigate and reveal many-body phenom-
ena in materials. Already more than half a century ago, inelastic neutron scattering
experiments confirmed the predictions of Landau (Landau 1941) and Feynman (Feyn-
man 1955) showing the existence of a roton minimum in superfluid 4He (Palevsky et al.
1958; Yarnell et al. 1959). In these experiments, neutrons act as a probe of density
fluctuations and the response of the system, provided interactions with the neutrons
are weak enough, is embodied in the so-called dynamic structure factor S(q, ω), di-
rectly linked to two-body correlations and the elementary excitations of the ensemble
(Nozières et al. 1999).

More recently, two-photon Bragg spectroscopy experiments59 have been performed on
ultracold quantum gases and share many analogies with neutron scattering. In weakly
interacting Bose gases, the spectrum of elementary excitations, given by the Bogoliubov

59In Bragg experiments, atoms are exposed to two beams of nearly resonant frequencies ω1 and ω2

and wave vectors k1 and k2, separated by an angle θ. Atoms can absorb photons from one beam and
emit it into the other, ending up in the same internal state but with an energy difference δω = ω1−ω2

that can create excitations in the gas and having acquired a net momentum ~δk = ~|k1 − k2| '
2~kL sin(θ/2).
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Chapter 5. Non-linear dynamics of a bulk Bose-Einstein condensate

Figure 5.2 – Different spectroscopic techniques discussed in the main text. (a):
Optical spectroscopy. (b): Bragg spectroscopy. (c): Raman and RF spectroscopy.
The states are labeled as |a,p〉, where a denotes the internal state and p the motional
state. In (a) the transition occurs between two different electronic states g, e. In (b)
and (c) the transitions occur between hyperfine states, denoted as g1 and g2, within
the ground-state manifold. The detuning with respect to the excited state has been
denoted by δ and the width of the excited state by Γ.

dispersion relation, was successfully measured with this technique at low (Stamper-
Kurn et al. 1999; Vogels et al. 2002) and high momenta (Stenger et al. 1999; Steinhauer
et al. 2002). These experiments were performed using condensates trapped in harmonic
potentials, and showed that the confinement had a strong influence on the measured
structure factor (Zambelli et al. 2000). More recently, Bragg spectroscopy has been
applied in a periodic potential (Clément et al. 2009; Ernst et al. 2010) and also in homo-
geneous systems (Gotlibovych et al. 2014), observing a Heisenberg-limited momentum
response. Moreover, it has been used to probe quantum gases in the strongly interact-
ing regime, measuring deviations with respect to the Bogoliubov spectrum (Papp et al.
2008; Lopes et al. 2017) and, not long ago, a signature of the roton mode has been
witnessed with this technique in a dipolar quantum gas (Petter et al. 2019). Bragg
spectroscopy has also been applied to probe fermionic systems where, for instance, the
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structure factor was measured in a Fermi gas during the BEC-BCS crossover (Veeravalli
et al. 2008).

Quantum gases experiments use many other kinds of spectroscopy techniques. For
example, the existence of a cold collision shift in bosonic systems (Harber et al. 2002;
Görlitz et al. 2003) and its absence in fermionic ones (Gupta et al. 2003; Zwierlein
et al. 2003) was demonstrated by using microwave and RF spectroscopy, where atoms
are transferred between two different ground-state hyperfine levels without momentum
transfer [see figure 5.2(c)]. A review of how these different spectroscopic techniques
have been employed in fermionic systems can be found in Törmä (2014); Tarruell (2014)
and Törmä (2016).

This chapter is devoted to the spectroscopy of a bulk BEC driven on an optical clock
transition. In such a situation, the absorption of the photon changes (i) the internal
state and (ii) the motional state of the atom because of the high momentum imparted.
Two-photon optical spectroscopy was essential to reveal Bose-Einstein condensation of
spin-polarized hydrogen (Fried et al. 1998; Killian et al. 1998) through the mean-field
collisional shift with respect to a thermal gas. Such a shift has also been observed
by using ultra-narrow transitions. For instance, in Ytterbium (Yamaguchi et al. 2010)
and metastable Helium (Rooij et al. 2011), where it has also been used to measure
inter-state scattering lengths (Notermans et al. 2016) and the difference between the
spectrum of a BEC and a degenerate Fermi gas. These experiments were all performed
in an irreversible, weak-coupling regime.

We summarize the main effect of these different spectroscopic techniques in table 5.1:

Technique State Momentum transfer Resonance shift

RF/Microwave g1 → g2 δk = 0 (g21 − g11)ng
Bragg g1 → g1 δk = k1 − k2 ~ω(δk)
Raman g1 → g2 δk = k1 − k2 (g21 − g11)ng + ~ω(δk)
Optical g → e δk = k1 (geg − ggg)ng

Table 5.1: Characteristics of the different spectroscopic techniques of common use
in BEC experiments, in the weak coupling regime. Here gαβ denotes the mean-field
interaction strength between atoms in states α and β and ~ω(δk) corresponds to the
particular dispersion relation of the excitations.

5.1.2 Resonance shifts and broadening sources

Let us focus on optical spectroscopy. In the present description, we will only con-
sider weak excitations so that the population in the excited state can be neglected at
all times. The optical spectrum of a bulk BEC in a magic harmonic trap is mainly
determined by:

1. The inhomogeneous mean-field interactions ∝ gn(r).

2. The finite momentum width ∆p ' ~/R of the BEC.
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Chapter 5. Non-linear dynamics of a bulk Bose-Einstein condensate

We can already see the importance of interactions and the Doppler effect from a semi-
classical argument. A ground state atom with momentum p at position r has an energy
Ei = Eg +p2/(2M) +Vtr(r) +gggng(r), with Eg the internal energy of the atom, Vtr(r)
the trap potential, and gggn(r) the interaction in the mean-field approximation. The
absorption of a photon from the laser promotes the atom to the excited state, changing
its atomic momentum to p′ = p+ ~kL and its energy energy to Ef = Ee +p′2/(2M) +
Vtr(r) + gegng(r). Thus, the resonance condition becomes:

~ωL = Ef − Ei = ~ω′0 + vr · p+ (geg − ggg)ng(r), (5.1)

with vr = ~kL/M the recoil velocity. Three contributions appear here: The first term
is the bare resonance frequency ω0 = Ee−Eg, which is corrected by the recoil frequency
ωr = ~k2

L/(2M), with ω′0 = ω0 +ωr. The second term indicates that the line is Doppler-
sensitive, i.e., the resonance is shifted by a quantity proportional to the momentum
with respect to an atom at rest. The third term corresponds to the collisional shift due
to the different mean-field interactions. Because of the inhomogeneous density profile,
the resonance condition becomes position-dependent:

δ′L(r) = ωL − ω′0 =
1

~
vr · p+

1

~
χgggng(r), (5.2)

where we have put
χ = (geg/ggg − 1). (5.3)

Besides, due to the confinement within a finite size Ri, the trapped BEC acquires a
momentum width ∆pi ' ~/Ri, with Ri the Thomas-Fermi radius in direction i. We
can now estimate the contribution of each of the two broadening sources:

(i) Doppler broadening: δD ∝
1

~
vr ·∆p ∝

vr sin θ

Ry

. (5.4)

(ii) Mean-field broadening: δint ∝
1

~
χggg[n(0)− n(R)] =

χµ

~
. (5.5)

with θ the angle between the probe and the most confining axis of the trap, the y−axis
in our experimental situation and µ = gggn(0) in the Thomas-Fermi regime. In table
5.1 we give the expected shift in the weak coupling regime for the different kinds of
spectroscopies previously discussed.

5.1.3 Spin-orbit coupled systems

It is interesting to note that the system under study, i.e., a bulk BEC driven on an
optical transition, represents a form of spin-orbit coupled (SOC) system (Goldman et
al. 2014). We can show that this is indeed the case already in a simplified situation:
We consider a 2-level atom moving in 1D being driven by a laser of frequency ωL and
wave vector kL = kLux. In order to change its internal state, atoms need to exchange
energy and momentum with the laser field. The Hamiltonian describing the interaction
of the atom with the laser can be written as:

Ĥ(t) =
p̂x

2M
+

~ω0

2

(
1̂ + σ̂z

)
+ ~ΩL cos(ωLt− kLx̂) σ̂x (5.6)

In a frame rotating at the laser frequency ωL and under the RWA, the Hamiltonian
becomes time-independent:

Ĥ ′ =
p̂2
x

2M
− ~δL

2
σ̂z +

~ΩL

2

(
e−ikLx̂σ̂+ + eikLx̂σ̂−

)
(5.7)
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By performing a gauge transformation Λ̂ = exp(ikLx̂σ̂z), the Hamiltonian can be
brought into the usual form of a SOC system:

ĤSOC =
1

2M
(p̂x − Â)2 +

~δL

2
σ̂z +

~ΩL

2
σ̂x, (5.8)

with Â = ~kLσ̂z. Spin-orbit coupling with ultracold atoms has been previously achieved
by using two-photon Raman transitions with alkali atoms (Lin et al. 2011a). The tech-
nique is similar to Bragg scattering, but the frequency difference of the beams is enough
to promote atoms into an excited hyperfine state within the ground state manifold [see
figure 5.2(c)]. Although the Raman transition was largely detuned from the excited
state, these experiments were mostly limited by the induced spontaneous emission. The
same technique has been used to generate spin-orbit coupling in fermionic ytterbium in
an optical lattice, using the internal hyperfine degree of freedom as both a pseudo-spin
and a synthetic spatial dimension (Mancini et al. 2015). Also with fermionic ytter-
bium, spin-orbit coupling using the clock transition has been observed in an optical
lattice (Livi et al. 2016). The relaxation mechanisms identified in the following give
some perspective on the detrimental effects limiting the stability of spin-orbit coupled
bulk systems with bosonic alkaline-earth like atoms.

5.2 Experimental setup

The experiments that will be shown in this chapter are performed with a BEC trapped
in an CDT at the magic wavelength λm ' 759.4 nm. Previously, the BEC has been
prepared in the CDT described in chapter 2 and then adiabatically transferred into
this other trap at λm.

The λm-CDT consists of a vertical beam, focused at a waist wv ' 100 µm and with
a power Pv = 800mW. The horizontal beam has a waist wh ' 11 µm and we set its
power among one of the following three values Ph = 10, 20 or 30mW. For each power
we have measured the following trapping frequencies through center of mass oscilla-
tions: (ωx, ωy, ωz)10 = 2π × (20, 264, 275) Hz, (ωx, ωy, ωz)20 = 2π × (22, 450, 450) Hz
and (ωx, ωy, ωz)30 = 2π× (23, 570, 580) Hz, respectively. For the typical atom numbers
employed in this chapter, N0 ' 104, this corresponds to interaction strengths on the
interval µ/h ' 1− 2 kHz.

The atoms are then probed by a laser resonant with the 1S0→3P0 transition for a
duration t. The coupling laser propagates in the x − y plane with a wave vector kL

making an angle θ = π/4 with the weak axis (x-axis) of the trap [see figure 5.1(a)]. The
magic CDT is switched off immediately after the pulse. The cloud then expands in TOF
for 12ms and we record an image of the remaining atoms in g by using the 1S0→1P1

transition. For the remaining of the chapter we focus on the atomic population Pg,
i.e., the total atomic number normalized to 1.
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5.3 Theoretical description of the driving

5.3.1 Framework

The trapped BEC, coherently driven in the clock transition, can be described in second
quantisation via the following many-body Hamiltonian:

Ĥ = Ĥsp + Ĥint + V̂AL. (5.9)

The single-particle contribution is given by:

Ĥsp =
∑
α=g,e

ˆ [
− ~2

2M
Ψ̂†α(r)∇2Ψ̂α(r) + Vtr(r)Ψ̂†α(r)Ψ̂α(r) + EαΨ̂†α(r)Ψ̂α(r)

]
d3r.

(5.10)
where Vtr(r) is the trapping potential and Ψ̂α(r) destroys an atom in state α at a
point r. We consider that atoms interact through mean-field collisions described by a
contact potential:

Ĥint =
1

2

∑
α,β

ˆ
gαβ Ψ̂†α(r)Ψ̂†β(r)Ψ̂α(r)Ψ̂β(r) d3r. (5.11)

Here, gαβ = 4π~2aαβ/M is the interaction strength between an atom in a state α and
another in β. Finally, the coupling between the g and e states induced by the laser is
described through the coupling with a classical field of frequency ωL and wave vector
kL. Under the rotating-wave approximation, the coupling potential V̂AL reads:

V̂AL =
~ΩL

2

ˆ [
Ψ̂†e(r)Ψ̂g(r) ei(kL·r−ωLt) + h.c

]
d3r, (5.12)

From now on, we set Eg = 0 and Ee = ~ω0 with ω0 = 2πc/λ0 the bare frequency of
the atomic transition. The time-dependency in the Hamiltonian can be removed by
changing to a frame rotating at ωL, which transforms the field operator in the excited
state as Ψ̂e → Ψ̂e exp (−iωLt). This leads to Ĥ → Ĥ − ~ωL. We can absorb this term
in Ĥsp and write Ee = −~δL with δL = ωL − ω0 the detuning.

As we have seen in chapter 4, atoms in the excited state undergo two-body inelastic
collisions leading to atom losses. In order to take this into account, we describe the
dynamics of the system with a Lindblad master equation for the density matrix ρ̂
(Haroche et al. 2013):

dρ̂

dt
=

1

i~
[Ĥ , ρ̂ ] + L[ρ̂ ], (5.13)

where L[ρ̂ ] is the Lindblad operator defined as:

L[ρ̂ ] =
βee
2

ˆ [
Ĉ (r)ρ̂ Ĉ†(r)− 1

2
Ĉ†(r)Ĉ (r)ρ̂ − 1

2
ρ̂ Ĉ†(r)Ĉ (r)

]
d3r, (5.14)

with Ĉ (r) = Ψ̂2
e(r).
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5.3.2 GPE simulations

Derivation of the lossy GPE

A set of GPEs taking into account the inelastic losses can be derived from the previous
master equation (5.13). A convenient way to perform this derivation is to compute
the evolution of the expectation value of the field operator 〈Ψ̂α(r)〉 and perform at the
end the symmetry breaking approximation 〈Ψ̂α(r)〉 = Φα(r, t), with Φα(r, t) the order
parameter (Pitaevskii et al. 2003) [see section 1.1.3]. This leads to:

∂〈Ψ̂g(r)〉(t)
∂t

=
1

i~
tr
(

Ψ̂g(r)[Ĥ , ρ̂ ]
)
, (5.15)

∂〈Ψ̂e(r)〉(t)
∂t

=
1

i~
tr
(

Ψ̂e(r)[Ĥ , ρ̂ ]
)

+ tr
(

Ψ̂e(r)L[ρ̂ ]
)
. (5.16)

The first term in the RHS of the two previous equations is equal to −i〈[Ψ̂α(r)Ĥ]〉/~
and leads to the usual time-dependent GPE equations (Pitaevskii et al. 2003) with a
coupling term:

i~
∂Φg

∂t
=
[
ĥ + ggg|Φg|2 + gge|Φ̃e|2

]
Φg +

~ΩL

2
Φ̃e, (5.17)

i~
∂Φ̃e

∂t
=
[
ĥ + vr · p̂− ~δ′L + gge|Φg|2 + gee|Φ̃e|2

]
Φ̃e +

~ΩL

2
Φg. (5.18)

where we have put Φ̃e(r, t) = Φe(r, t) exp(−ikL · r), δ′L = δL − Er and defined the
single-particle Hamiltonian ĥ = p̂2/(2M) + Vtr with p̂ = −i~∇.

The second term in equation (5.16) does not conserve the atom number and leads to:

tr
(

Ψ̂e(r)L[ρ̂ ]
)

= −βee
2
|Φe(r, t)|2Φe(r, t). (5.19)

The contribution of the losses can be absorbed in the GPE equations by making the
substitution:

gee → g′ee =
4π~2

M
aee − i

~βee
2
. (5.20)

These mean-field equations, describe a non-Hermitian evolution taking into account all
the effects discussed so far: coherent driving, inter- and intra-state interactions, atomic
motion and inelastic losses60.

We note that the βee coefficient appearing in this equations corresponds to the param-
eter used in the inelastic loss rate equation ∂〈Ψ̂†eΨ̂e〉/∂t = −βee〈Ψ̂†eΨ̂†eΨ̂eΨ̂e〉. For a
BEC, this equation reduces to ṅe = −βeen2

e, with ne = 〈Ψ̂†eΨ̂e〉 the mean density in e
(Kagan et al. 1985) [see appendix B].

In the following, the data is sistematically compared to the solution of these GPE
equations. The equations are solved by first writing them in a dimensionless form,

60For the simulations, we use the most accurate parameters for the scattering terms, namely aeg '
0.9 agg, aee ' 1.2 agg and βee ' 2.6× 10−11 cm3/s [see chapter 3 or Bouganne et al. (2017); Franchi
et al. (2017)]
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using harmonic oscillator units with respect to the smallest trapping frequency ωx. We
use a Cartesian grid of size 40 × 40 × 40, and the size of the grid in each direction
corresponds to 4Ri with Ri (i = x, y, z) the initial Thomas-Fermi radius of the con-
densate. The time-step for the evolution is set according to ∆tk = 1/(100ωy), with ωy
the highest trapping frequency. The lossy GPEs are finally evolved using a split-step
Fourier method (Javanainen et al. 2006) where the kinetic energy and the local terms
are propagated separately and locally in momentum and position spaces, respectively.
Finally, the term coupling g and e is implemented exactly by performing explicitly
a SU(2) rotation whose parameters are determined by the local position-dependent
detuning and the Rabi frequency.

5.4 Spectroscopy of a trapped BEC

In this section, we discuss the frequency domain spectroscopy experiments we have
perfomed on a trapped BEC. We consider an atomic BEC prepared in the electronic
ground state in various conditions, apply a pulse of length t to transfer part of the
atoms to the excited state, and record the number of remaining ground state atoms
as we vary the laser detuning for a fixed pulse length. An example of such a spectum
together with the prediction of a dissipative two-component GP model is shown in
figure 5.1(c).

In the next sections we discuss the main physical effects determining the shape, the
center and the width of the spectra, namely inhomogeneous interactions and Doppler
broadening. We consider in all case pulses long enough so that Fourier broadening can
be neglected. We have also tested in our GP numerical simulations that the effect of
the Gaussian shape of the clock beam does not lead to a significant broadening61 for
the experiments presented in this chapter.

5.4.1 Analysis of the broadening sources

In order to compute the number of atoms transferred to the excited state (or, equiv-
alently, remaining in the ground state) we now turn to a quantum description of the
excitation process. If we consider long and weak excitations, the shape of the spectrum
(i.e. the number of excited atoms at a given detuning and momentum transfer) can be
computed in terms of Fermi’s golden rule (Cohen-Tannoudji et al. 1992):

A(q, ωL) ∝
∑
j

ηjδ(~ωL − Ej + E0), (5.21)

with q = ~kL the momentum imparted by the probe and ηj = |〈j|ΩLeikL·r|0〉|2 the
overlap factor among motional states. Here, Φ0(r) = 〈r|0〉 is the initial wave function
of the BEC and φj(r) = 〈r|j〉 are the possible excited motional states from Ĥsp + Ĥint

in equation (5.9). Computing A(q, ω) is in general a complicated task (we usually do
not know how to compute the spectrum of excited states). However, there are two limit
situations in which a calculation is feasible and we present them in the next paragraphs,
following closely the discussion in Killian (2000).

61As discussed in chapter 3, the inhomogeneous profile leads to a non-uniform Rabi frequency ΩL

over the cloud. Moreover, this also induces a position-dependent differential light shift and, therefore,
an inhomogeneous detuning and both effects broaden the resonance.
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Doppler broadening

We start by neglecting mean-field interactions between g and e atoms, i.e., we put
χ = 0. In this situation the φj are just harmonic oscillator wave functions. However,
because the momentum imparted to the particles is substantial (' ~kL), the excited
state atoms behave nearly as free particles and one can approximate the φj by plane
waves. Then, the shape of the spectrum is given by:

AD(q, ωL) =

ˆ
N (p) δ

(
~ωL −

(p− q)2

2M
+
p2

2M

)
d3p, (5.22)

with N (p) the momentum density distribution of the trapped BEC. We can specialize
this to our experimental situation in which q = ~kL(cos θ, sin θ, 0). Then, p · q '
qxpx + qypy and since px ' ~R−1

x � py ' ~R−1
y we can write p · q ' py~kL sin θ and:

AD(q, δ′L) ' M

~kL sin θ

ˆ
N
(
px,

Mδ′L
kL sin θ

, pz

)
dpx dpz. (5.23)

The peak of the spectrum coincides with δ′L ' 0 (Zambelli et al. 2000). In order to
extract useful information such as the broadening of the spectrum, one can evaluate
numerically equation 5.23, with N given by the Fourier transform of the Thomas-Fermi
profile. However, a simple estimate is obtained by performing a Gaussian expansion
around δ′L = 0. The rms-width ∆D of this Gaussian is (Zambelli et al. 2000):

∆D =

√
8

3
δD ' 1.63

vr sin θ

Ry

. (5.24)

Interaction broadening

The other limiting case consists in neglecting the Doppler effect. In the weak coupling
situation, atoms transferred to the excited state can be treated in the Hartree-Fock
approximation (Goldman et al. 1981), and we can look for the single-particle wave
functions under the following effective potential:

Veff(r) = Vtr(r) + gegng(r) = µ+ χgggng(r). (5.25)

It has been shown in Killian (2000) that the line-shape is given by:

Aint(q, δ
′
L) ∝

ˆ
n(r)δ

(
δ′L −

Veff(r)− µ
~

)
d3r ∝ ~δ′L

χµ

√
1− ~δ′L

χµ
. (5.26)

In order to estimate the spectral broadening due to interactions, we can calculate the
rms-frequency width of the previous expression, which reads:

∆int =

√
8

147
δint ' 0.23

χµ

~
. (5.27)

126



Chapter 5. Non-linear dynamics of a bulk Bose-Einstein condensate

Figure 5.3 – Example of spectra generated by using the GP model (see text below).
(a) In the Doppler broadening regime with χ = 0. (b) In the interaction broaden-
ing regime, by neglecting ∇2Φ0 in the GPE simulation. In both cases we have put
βee = 0. The red dashed lines correspond to a fit using the simplified models presented
in the text: (a) A Gaussian expansion around δ′L ' 0 of equation (5.23) and (b) using
equation (5.26). The rms-width of the fitted Gaussian σ for the Doppler broadened
situation in (a) coincides with ∆D in equation (5.24) and the rms-width of the pro-
file shown in (b) coincides with ∆int in equation (5.27). The simulation parameters
are ΩL = 2π × 25Hz, the pulse length is t = 3.5ms and the trapping frequencies
(ωx, ωy, ωz) = 2π × (10, 100, 100) Hz, with a chemical potential µ/h ' 2 kHz.

GPE simulations

We can test the validity of these two limit situations by generating some data using the
dissipative GPEs (see above). In particular, we consider a situation at weak coupling
strength ΩL ' 2π × 25Hz with pulses of t = 3.5ms, i.e., shorter than a quarter
of the period of the confining potential used in the simulation, (ωx, ωy, ωz) = 2π ×
(10, 100, 100) Hz, so that the motion of the atoms is essentially the same as in free
space, but long enough to neglect Fourier broadening [on the order of 1/(2πt) ' 50Hz].
The chosen chemical potential is µ/h = 2 kHz. The result of these simulations is shown
for χ = 0 (i.e. in the Doppler broadening regime) in figure 5.3(a). A Gaussian fit to
the simulated data leads to an rms width ∆/(2π) ' 236Hz which agrees well with
the weak-coupling prediction in equation (5.24): ∆D/(2π) ' 250Hz. In order to test
the interaction broadening regime prediction, we generate data by using χ = 0.5 and
neglecting the term in ∇2Φ0 in the GPE evolution. We show this in figure 5.3(b). By
fitting the data with equation (5.26) we obtain an rms-width ∆ ' ∆int = 2π× 240Hz.

Heuristic formula for the effect of both contributions

In an actual experiment, both effects need to be in principle taken into account. For
this, in analogy with the previous work on Bragg spectroscopy (Zambelli et al. 2000),
we model the experimental spectra by a Gaussian of rms-width σ which we take to be
given by:

σ =
√

∆2
D + ∆2

int. (5.28)

For our typical experimental values we have µ/h ' 1.0 − 2.5 kHz, Ry ' 0.7 − 1.4 µm
and θ = π/4. As shown in chapter 3, for 174Yb the intra-species interaction strength is
geg = 0.9 ggg, i.e., χ = 0.1. Using equations (5.24) and (5.27) we see that the interaction
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Figure 5.4 – Spectrum width as a function of the inverse of the Thomas-Fermi radius
Ry in the y−direction. (a): Simulation - Black dashed and dotted lines correspond to
the interaction and Doppler widths in equations (5.24) and (5.27), respectively. The red
solid line is the quadratic average of both contributions. The points correspond to the
rms of a Gaussian fit to spectra simulated via the GP equations. The parameters for the
simulation are: ΩL = 2π × 25Hz, t = 3.5ms, (ωx, ωy, ωz) = 2π × (10, 100, 100) Hz and
χ is set to χ = 0.2. The Thomas-Fermi radius is varied by changing the atom number
from N = 2× 104 atoms to N = 5× 106 atoms. (b) Experiment and simulation - The
black dashed line corresponds to the width predicted by equation (5.24). Empty points
correspond to the rms width of a Gaussian fitted to the experimental data. Filled points
correspond to the rms of a Gaussian fit to spectra simulated via the GP equations in
the same experimental conditions. The experimental parameters are ΩL = 2π×150Hz
and the pulse length t = 20 − 30ms. The Thomas-Fermi radius is varied by using
different trapping frequencies and atom numbers. Figure adapted from Bosch Aguilera
et al. (2018).

broadening ∆int/(2π) ' 25 − 60Hz is negligible compared to the Doppler broadening
∆D/(2π) ' 500 − 1000Hz, which is the main source of broadening and dephasing in
our experiments.

To test the validity of this Gaussian approximation we compute spectra using the
GPE, again considering weak excitations. For these simulations, we have chosen a trap
confinement and probe pulse length accordingly to the reasons exposed in the previous
paragraph. The results are shown in figure 5.4(a), and we find a good agreement
between the GPE simulation and the heuristic model in equation (5.28).

5.4.2 Comparison with the experiments

We now investigate to which extent the previous models can be used to describe our
experimental data. We have recorded several spectra in different conditions by changing
either the confining potential depth or the atom number. By doing so, we are able to
explore a regime of interactions on the range µ/h ' 1 − 2 kHz. Still, as previously
stated, because of the small difference between the strengths ggg and geg, the shape
of the spectra is mainly determined by Doppler broadening. The recorded spectra are
thus fitted with a Gaussian, from which we extract an rms-width σexp. An example of
these spectra is given in figure 5.1(c). In figure 5.4(b) we show the extracted widths
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σexp and compare them to the expected Doppler width. The calculated width ∆D

underestimates by approximately a factor 2 experimental widths. We attribute this
mismatch to the following reasons:

1. Although working at relatively small Rabi frequencies (ΩL = 2π × 150Hz), the
pulses are long and the depletion of the ground state becomes important (on
the range of 40 − 60%). In this case, we cannot consider that we are in the
perturbative regime and both the losses in the excited state and the interactions
need to be accounted for, which lacks in the previous models.

2. The duration of the pulse is much larger than the period of the trap along the
most confined axis. The in-trap dynamics are not included in the previous models
either and therefore, the movement of the atoms in the trap, which can also lead
to a broadening of the resonance due to the Doppler effect, is not accounted for.

In order to gain some insight into this mismatch, we have produced a series of spectra
in the same experimental conditions using the GPE, which accounts for all these ef-
fects. We have extracted an rms-width σGP from each generated curve by performing a
Gaussian fit to the data, which we also show in figure 5.4(b). The width extracted from
these simulations agrees well with σexp at small interaction strengths (i.e. small 1/Ry).
A possible first reason to explain the small mismatch between σexp and σGP are the fast
frequency fluctuations of the probe laser [see section 3.6], which can have significant
effect at these Rabi frequencies considering the long times employed [20-30ms]. How-
ever, as interactions increase, the experimental width is systematically about a 30%
larger compared to the simulations. We will address this inconsistency appearing at
large interactions in section 5.5.3.

5.5 Non-linear Rabi oscillations and relaxation of a
bulk BEC

We now turn to the time-domain spectroscopy of a trapped BEC. For this, we perform
Rabi oscillations, i.e., we fix the laser detuning62 δ′L and record the remaining ground
state atoms for different pulse durations t. In this section, we do not limit to weak
excitations and we explore the physics between the strong coupling regime, where the
Rabi frequency is the largest energy scale in the experiment, to the weak coupling
regime, where the broadening sources become larger than the Rabi frequency. Thus,
the coherent driving, which transfers the BEC into a superposition of states of differ-
ent internal and external quantum numbers, competes against a series of relaxation
processes: Doppler broadening and inhomogeneous elastic and inelastic mean-field in-
teractions. An example of this is shown in figure 5.5 where we can observe a crossover
with decreasing driving strength ΩL from a coherent regime with underdamped oscil-
lations 5.5(a)-(c), to an incoherent one where relaxation takes over 5.5(d)-(f).

62Before recording Rabi oscillations, a spectrum is acquired in order to determine the resonance
frequency δ′L and correct for eventual cavity drifts.
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Figure 5.5 – Population dynamics as a function of the pulse duration t for varying
Rabi frequencies: ΩL/(2π) ' 2.1 kHz (a), 1.8 kHz (b), 1.1 kHz (c), 750Hz (d), 540Hz
(e), 185Hz (f). Blue circles show the measured population in g normalized to the total
atom number, noted Pg. The solid blue lines show fits to the lossy GPE model (see text
below), with only the driving strength ΩL, the initial atom number and the detuning
δ′L as free parameters. The green dashed lines show the evolution of the total atom
number extracted from the GPEs, normalized to the initial one, noted Pe+g. The insets
in (a)-(e) show the same data in double-logarithmic scale. For the inset in (f) only the
vertical axis is in logarithmic scale. The red dashed line in (f) shows an exponential
fit to the data with a 1/e decay rate of ' 150 s−1 in good agreement with Ω2

L/(2∆D),
where ∆D/(2π) ' 600Hz. For all data shown in this figure, the trap frequencies are
(ωx, ωy, ωz) ' 2π × (20, 264, 275) Hz and the BEC chemical potential is µ/h ' 1 kHz.
Figure adapted from Bosch Aguilera et al. (2018).
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5.5.1 Phenomenological analysis

This observation is reminiscent of the textbook quantum optics situation of a driven
two-level system undergoing relaxation at a rate Γ. Here, one expects a crossover from
exponentially underdamped oscillations when Ω > Γ towards a purely exponential
decay at a rate ∝ Ω2/Γ for Ω < Γ, analogous to the Wigner-Weisskopf decay expected
when a discrete level is coupled to a continuum of spectral width Γ (Cohen-Tannoudji et
al. 1992) [see appendix C]. This picture also holds in a similar fashion for an ensemble
of Doppler-broadened non-interacting particles: In a uniform system, the coherent
driving would only couple two single states: |g,0〉 and |e,kL〉 of momenta 0 and ~kL,
respectively. The presence of the trap in our experimental situation couples instead
two wave packets of width ∼ ~/R centered around these same momenta. As we have
seen, this leads to a Doppler broadening ∆D which plays the role of the spectral width
Γ. Therefore, averaging over the atomic cloud, induces a decay of the g− e coherences
because of ensemble dephasing. The contrast of the oscillations gets reduced during
the evolution with an asymptote at 1/2 of the total initial population.

Such an exponential decay is only observed for the weakest coupling employed in our
experiments [inset of figure 5.5(f)]. Indeed, for larger driving strengths we find a much
slower algebraic decay [see insets in log-log scale in figures 5.5(a)-(e)], which means that
the picture of an ensemble of two-level Doppler-broadened independent BECs cannot
explain our data.

Before going into a more quantitative analysis and in order to gain some intuition, we
start by describing the crossover between the two regimes by fitting our data with the
following heuristic function:

Pg(t) =
A(t)

1 + C

[
1 + C cos(ΩLt) e−t/τ2

]
, (5.29)

where A(t) = (1 + t/τ1)−1 is a smooth envelope describing the global decay of the
population in g, τ2 corresponds to the damping time of the oscillations and C is the
contrast of these oscillations.

We show in figure 5.6 the best parameters as a function of the calculated Rabi fre-
quency that result from fitting this empirical model to the experimental data using
equation (3.10). The data corresponds to the oscillations shown in figure 5.5 and other
oscillations taken in similar experimental conditions, i.e., with µ/h ' 1 kHz and where
∆D/(2π) ' 600Hz. The measured frequency of the oscillations agrees well with the cal-
culated one [solid line in figure 5.6(a)] and, as expected, the contrast of the oscillations
decreases with decreasing Rabi frequency [figure 5.6(b)]. We have enforced C = 0 in
the fits for all Rabi frequencies ΩL ≤ ∆D where no oscillation is visible (shaded regions
in figure 5.6). This absence of oscillations is coherent with what one would expect in
the weak coupling regime [see appendix C]. We also show the inverse decay times for
the populations [5.6(c)] and the coherences [5.6(d)]. It is interesting to note that, at
weak coupling, the decay rate follows the trend Ω2

L/(2∆D) [solid line in 5.6(c)] predicted
for an ensemble of Doppler-broadened non-interacting two-level systems.

In the next section, we show on the one hand that this non-linear relaxation can be
attributed to the strong inelastic losses that atoms in the excited state undergo. On the
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Figure 5.6 – Results of the empirical fits using equation (5.29). (a) Measured
oscillation frequency ΩL, (b) contrast of the oscillations C (c) amplitude damp-
ing rate 1/τ1 and (d) coherence damping rate 1/τ2 as a function of the calculated
rabi frequency Ωcalc. The solid line in (a) shows the expected oscillation frequency
for vanishing detuning. The solid line in (c) shows the predicted decay rate for
weak driving Ω2/(2∆D). We have enforced C = 0 in the fitting procedure for
Ωcalc ≤ ∆D ' 2π × 600Hz (shaded regions) where no oscillation is visible. All fit
parameters are extracted from Rabi oscillations performed in a BEC whose trap fre-
quencies are (ωx, ωy, ωz) ' 2π × (20, 264, 275) Hz and the BEC chemical potential is
µ/h ' 1 kHz. Figure adapted from Bosch Aguilera et al. (2018).

other hand, we also show that for very weak couplings one expects indeed to recover
the exponential decay.

5.5.2 Dephasing and damping sources: a toy model

To go beyond the phenomenological model shown in the previous paragraph and point
the mechanisms that are responsible for the observed dephasing on the one hand, and
the shape of the decay in the data shown in figure 5.5 on the other hand, we present
here a minimal model solvable in the regimes of strong and weak driving.

Evolution of the 1-body density matrix in the mean-field approximation

Let us focus on the evolution of the one-body density matrix

ραβ(r, r′) = 〈Ψ̂†α(r)Ψ̂β(r′)〉. (5.30)

We will only consider internal correlations at the same position r = r′. Moreover, we
will systematically perform a mean-field approximation to reduce expectation values
involving four field operators to:

〈Ψ̂†α(r)Ψ̂†β(r)Ψ̂γ(r)Ψ̂δ(r)〉 ' 〈Ψ̂†α(r)Ψ̂γ(r)〉〈Ψ̂†β(r)Ψ̂δ(r)〉 = ραγρβδ. (5.31)
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With this, the evolution of the one-body density matrix under the master equation
(5.13) becomes (we omit the spatial dependence in the notation):

ρ̇gg = ρ̇gg|kin + i
ΩL

2
(ρeg − ρge), (5.32)

ρ̇eg = ρ̇eg|kin + i
ΩL

2
(ρgg − ρee)− iδLρeg −

βee
2
ρeeρeg +

i

~
[∆1ρgg −∆2ρee]ρeg, (5.33)

ρ̇ee = ρ̇ee|kin − i
ΩL

2
(ρeg − ρge)− βeeρ2

ee. (5.34)

In the previous set of equations, we have put ∆1 = geg − ggg and ∆2 = gee − geg. The
terms ρ̇αβ|kin contain the motional evolution of the one-body density matrix due to
Ĥsp. This term is not local and, because of it, these equations are hard to solve (even
numerically) and some approximations are needed.

Weak coupling regime

First of all, we consider the case in which ~ΩL is the smallest energy scale. We will
treat the motional evolution approximately, under the following two assumptions:

1. We are in the weak coupling regime and the population of e atoms is small.
We can therefore neglect their motion and also their effect through mean-field
collisions on g atoms. With this:

ρ̇gg|kin = ρ̇ee|kin = 0. (5.35)

2. The main effect of the motion is to shift the resonance frequency due to the
recoil and to damp the coherences between g and e atoms. In order to obtain
an analytical solution, we treat this effect in a similar fashion as a driven atom
undergoing background collisions with a residual gas (Cohen-Tannoudji et al.
1992), and we write:

ρ̇eg|kin '
(
− 1

i~
Er −∆D

)
ρeg. (5.36)

With these simplifications, the equations are now local and are just a non-linear version
of the standard optical Bloch equations. Working in the weak coupling limit allows
for further approximations. In particular, except for the decay term −βeeρ2

ee, we can
neglect all terms involving ρee. In such a situation, ρgg changes at a much slower pace
compared to ρeg which evolves at a rate ∝ ∆−1

D . The coherences reach their stationary
state much faster and follow the slow variable ρgg. We can thus perform an adiabatic
elimination of the coherences (Cohen-Tannoudji et al. 1992) and their steady state
value reads:

ρ(ss)
eg =

iΩL

∆D + iδ′L − i∆1ρgg/~
ρgg, (5.37)

where δ′L = δL − Er. The population of the ground state evolves under:

ρ̇gg ' −
Ω2

L∆D

2 [∆2
D + (δ′L −∆1ρgg/~)2]

ρgg (5.38)
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As previously discussed, the term ∆1 = geg − ggg is small compared to the Doppler
broadening ∆D and we also neglect it for this discussion. For δ′L = 0, the population
in the ground state follows the simple equation ρ̇gg ' −Ω2

Lρgg/(2∆D), so that:

ρgg(t) = ρ0 e−t/τ2 , (5.39)

with 1/τ2 = Ω2
L/(2∆D), i.e., the population in the ground state decays exponentially

due to the broadening introduced by the movement of the atoms, and there is no
oscillation; which is indeed what we observe at the smallest drivings [see solid line in
figure 5.6(c)].

Strong coupling regime

We now turn to the opposite limiting situation in which ~ΩL and ~βeen0 are the largest
energy scales, with ΩL > βeen0. In this case the dephasing mechanisms play a minor
role at short times and the system undergoes Rabi oscillations with a slowly decaying
envelope %(t) due to the losses in the excited state: %̇(t) = −βee%(t)2. We can thus
write ρgg ' %(t) cos2(ΩLt/2) and ρee ' %(t) sin2(ΩLt/2). Averaging over a period we
find that the envelope function decays as:

%̇(t) ' −3

4
βee%(t)2. (5.40)

In the particular case of a uniform system, we can write % = N/L, and the averaged
population P̄g evolves as:

P̄g(t) =
1

1 + t/τ1

, (5.41)

with 1/τ1 = 3βee%(0)/4. Therefore, the expected dynamics at strong coupling corre-
spond to underdamped Rabi oscillations around an average value decaying algebraically
as ∼ 1/t. This is indeed what we observe experimentally for strong driving [see figures
5.5(a)-(e)].

Therefore, we conclude that in the weak coupling limit, due to the Doppler relaxation,
∆D, the decay of the ground state population should be exponential with no oscillations.
This decay is due to the damping of the coherences. However, for strong couplings, this
single-particle picture no longer holds and the population decays algebraically because
of the inelastic two-body collisions.

GPE analysis

To go beyond this analysis, we have solved the lossy GPE equations (5.17) and (5.18)
numerically and fitted the numerical solution to the experimental data with only the
following free parameters: the initial atom number N0, the coupling strength ΩL and
the detuning δ′L. The GPE fit corresponds to the solid lines shown in figure 5.5. For all
this data, which corresponds to a value of the interactions µ/h ' 1 kHz, we find a good
agreement between the GPEs and the observed dynamics. The fitted Rabi frequencies
agree within 10% with the calculated ones and the extracted detunings (on the order
of |δL|/(2π) ≤ 300Hz) are compatible with our accuracy in finding the resonance.
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5.5.3 Beyond GPE: other possible sources of dephasing

Until now, we have seen that the main sources of decoherence are Doppler broadening
and strong inelastic losses. Although elastic mean-field collisions are present, they have
not been essential to describe the data.

However, this is no longer the case once we drive oscillations in tighter traps: For
this, we performed a set of experiments at chemical potentials up to µ/h ' 2 kHz,
an example of which can be seen in figure 5.7(a). We have used the empirical model
in equation (5.29), and we show the result of the extracted contrasts in 5.7(b), which
drop as interactions increase. At this stage, there is no evident way of telling if this
reduction of the contrast is due to Doppler broadening or the stronger interactions. As
before, we try to gain some insight by fitting the experimental data with the dissipative
coupled GP model. As we can see in 5.7(a), the long-time decay of the population is
well reproduced but the damping of the oscillations is underestimated. In figure 5.7(c)
we show that this effect is systematic by quantifying the agreement between the GP
model and the observations by a reduced χ2 factor:

χ2
ν =

1

M

M∑
i=1

[f(ti)− Pg(ti)]2

σ2
g,i

, (5.42)

i.e., the sum of the fit residuals f(ti)− Pg(ti) weighted by the standard deviation σg,i
and normalized to the numberM of data points. We find that the reduced χ2 increases
regularly with the initial chemical potential [see figure 5.7(c)]. This observation goes
accordingly with the mismatch noticed in section 5.4.2, where the broadening of the
experimental spectra for strong interactions is larger than the one predicted by the GPE
[see figure 5.4(b)], and thus, a stronger damping of the oscillations is not surprising
in this sense. A possible indication of this is that the mean-field description becomes
insufficient. A first attempt to go beyond the previous model, although still under a
mean-field description, is to heuristically include in the GPE other processes such as
momentum relaxation collisions of the type

|g,0〉+ |e,kL〉 → |g, q〉+ |e,kL − q〉. (5.43)

It is possible to derive a rate γcoll for such a process in the case of a uniform gas of
density n. The rate in this case is [see appendix D]:

γcoll ' nσgevr, (5.44)

with σge = 4πa2
eg the collisional cross-section. A numerical application for our typical

densities n ' 5×1014 at/cm3 of the experiments in figure 5.7 leads to γcoll/(2π) ' 100Hz
which is too small with respect to the other damping contributions to have a significant
effect [see red dotted line in figure 5.7(a)].

We note however, that this simple estimate does not account for any correlations
between the particles. Additional effects such as thermal population of quasiparticles
in the initial state, which could have been generated by excitations during the transfer
from the initial CDT to the magic trap, are not included in the GP description and
could also contribute to the relaxation of coherence. A similar argument was drawn in
Gardiner et al. (2001) in order to try to explain the lack of understanding of two-photon
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Figure 5.7 – (a): Population dynamics for µ/h ' 2 kHz. The solid blue line cor-
responds to a fit to the dissipative GP model, showing a faster relaxation of the ex-
perimental points compared to the prediction. The dotted red line corresponds to
a GPE simulation taking diffusive collisions into account. The trap frequencies are
(ωx, ωy, ωz) ' 2π × (23, 570, 580)Hz for this measurement. (b): Contrast of the oscil-
lations C versus initial chemical potential µ. All curves correspond to oscillations with
ΩL/(2π) ' 2 kHz, and δ′L ' 0. (c): Reduced χ2 of a fit to the two-component lossy
GP model versus µ. Figure adapted from Bosch Aguilera et al. (2018).

spectroscopy of atomic hydrogen (Fried et al. 1998; Killian et al. 1998). We have not
investigated this issue further because of the complexity of a theoretical description in
terms of quasiparticle dynamics.

5.6 Conclusion

In this chapter, I have presented a study on the relaxation dynamics of a driven BEC
trapped in an harmonic potential at the magic wavelength. For our experimental
parameters and due to the nature of 174Yb, the most important damping sources are
Doppler broadening and inelastic losses between excited state atoms.

In a first part, I have studied a series of frequency spectroscopy experiments. Here, I
have compared our experimental data to two theoretical models obtained in the weak
coupling, irreversible regime (Killian 2000; Zambelli et al. 2000). I have shown that
these predictions do not reproduce properly the experimental data, and this has been
attributed mainly to two factors (i) the depletion of the condensate in our experiments
is important and (ii) the movement of the atoms in the trap, which also needs to be ac-
counted for. The data has then been compared to a pair of coupled, dissipative GPEs,
which take these effects into account. The agreement between the simulations and the
experimental data is good for small interactions. However, the result of these simu-
lations underestimates some unidentified sources of decoherence in our experimental
data as interactions are increased.

In the second part, I have investigated and identified some of the phenomena leading to
the rich relaxation dynamics observed during the coherent driving of Rabi oscillations.
In particular, instead of the exponential decay one would expect for an ensemble of
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non-interacting particles, I have shown with a simple analytical model that the presence
of inelastic losses modifies this to a slower algebraic decay. Doppler broadening also
contributes to the dephasing of the oscillations and the non-interacting prediction is
recovered at small driving strengths. Here, I have also compared our observations to
the GP prediction, which reproduces well the data at small values of the interactions.
Again, a disagreement between the GP prediction and the experimental data at strong
interactions has been identified.

The driven BEC presented in this chapter can be seen as a quenched spin-orbit coupled
BEC (Goldman et al. 2014), with the spin corresponding to the internal states g, e. Due
to their absence of spontaneous emission, alkaline-earth-like atoms, such as ytterbium,
are attractive candidates to be used in the generation of artificial gauge fields. How-
ever, the relaxation sources presented in this chapter, and notably the strong inelastic
losses, are of course detrimental for these kinds of experiments. For instance, if one
were to prepare the ground state of a BEC dressed by the coupling say, by an adiabatic
ramp of the Rabi frequency, the stability and the ability to follow the ground state of
the system will be strongly limited by these relaxation mechanisms. This effects can
be substantially reduced working in larger traps such as the state-of-the-art uniform
potentials (Gaunt et al. 2013), with sizes of several tens of microns. This would reduce
the Doppler broadening and eliminate all broadening contributions due to spatial de-
pendent terms. Moreover, it would considerably slow-down the inelastic losses thanks
to the smaller densities.
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CHAPTER 6

Anomalous momentum diffusion in a dissipative
many-body system

In this chapter, I focus on the interplay between interactions and decoherence in the
form of spontaneous emission for an ensemble of atoms loaded in an optical lattice.
Here, dissipation is artificially induced in a controlled manner by a continuous driving
of the intercombination transition 1S0→3P1, which leads to a series of absorption-
spontaneous emission events. As is well known (Holland et al. 1996; Pichler et al. 2010)
spontaneous emission is a source of dissipation which erases the coherences between the
internal states. Besides, due to the recoil of the atom in a random direction after the
spontaneous emission of a photon, it also destroys coherences between external states.
More in detail, after spontaneously emitting a photon, the motional atomic degrees of
freedom become entangled with the continuum of modes of the emitted photon. By
tracing over these modes (i.e., erasing the information) an initially pure atomic state
with well-defined momentum turns into a statistical mixture of momentum states.
There is a spread in momentum space which entails the localization of the spatial
coherence of the atom. These coherences vanish on a scale given by the wavelength of
the spontaneously emitted photon, as experimentally shown in Pfau et al. (1994).

As we have already discussed in section 2.2.3 (see also appendix A) spatial phase
coherence (i.e. the first order correlation function) and the momentum distribution
are Fourier transforms of each other. Thus, a broadening of the one, causes a re-
duction of the other. In an optical lattice, spatial coherence is characterized by the
visibility of Bragg peaks, which gets reduced as long-range order is lost. Yanay et al.
(2014) showed that for non-interacting particles in a lattice, the effect of continuous
absorption-spontaneous emission cycles was the exponential suppression of the spatial
coherence. This exponential decay is associated to a random walk in momentum space,
with a momentum width growing in a diffusive manner as ∆p ∝

√
t. This evolution,

ends up driving the system to a uniform distribution of quasimomenta.

In this chapter we show that, in the presence of strong interactions, the evolution dy-
namics towards the steady state develops in a non-trivial manner, drastically different
from the exponential decay predicted for ideal systems. After an initial exponential
loss of the coherence, a slow algebraic regime with residual coherence emerges. This
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regime, which features a subdifusive behavior (∆p ∝ t1/4), was predicted in Poletti et
al. (2012) and Poletti et al. (2013) and steams from the competition between dissipa-
tion, trying to localize atoms in Fock space, coherent tunneling, trying to delocalize the
atoms and interactions, promoting low occupation numbers by inhibiting transitions
between states with different occupations and thus, different energies. The presence of
interaction then disfavors reaching the steady state, thus partially allowing the remain-
ing coherence to decay in a much slower way. Poletti et al. showed that this algebraic
subdiffusive stage can be linked to the dynamics taking place in configuration space
(Fock space). As it will be shown, the evolution of spatial coherence is locked to the
evolution of the populations and thus follows the same algebraic dynamics.

The emergence of slow algebraic relaxations in the presence of interactions have also
been predicted in dissipative many-body spin systems (Cai et al. 2013) and in a model
of optical optical lattice clocks with dipole-dipole interactions (Henriet et al. 2019).

In a more general framework, understanding the interplay between dissipation and
interactions is a key issue of open quantum systems (Müller et al. 2012), and the
results shown in this chapter constitute an experimental evidence of the non-trivial
role of interactions in dissipative systems.

This chapter is organized as follows: In the first section, the experimental results
are shown and two different analyses are presented and discussed. Then, the model
presented in Poletti et al. (2012) and Poletti et al. (2013) is depicted. Finally, an
extension to this model which describes closer our experimental framework by taking
into account atom losses and the inhomogeneous density profile is presented.

A more detailed exposition of the theory elements invoked in this chapter and on the
eventual role of excited energy bands and collective effects can be found in the PhD
thesis of Raphaël Bouganne (Bouganne 2018).

The content presented in sections 6.1-6.4 and in appendix F, denoted by ∗∗, has been
published in Bouganne et al. (2019) and is exposed here without major modifications.
Only a few sections and paragraphs have been rearranged and others moved to appendix
F. Some references to within the manuscript have been added.

6.1 Main results and discussion (∗∗)

6.1.1 Framework and experimental setup

In our experiments, we create degenerate quantum gases of bosonic 174Yb atoms
trapped in a stack of independent, two-dimensional optical lattices [figure 6.1(a)]
(see section 2.2). For this, the vertical confinement along gravity Vz ' 27Er is
much stronger than the horizontal one, essentially freezing motion along z and re-
alizing a stack of independent two-dimensional quantum gases [see figure 6.1(a)]. Here,
λlatt = 2π/klatt ' 760 nm is the wavelength of the lattice lasers, Er = h2/(2Mλ2

latt) '
h× 1980Hz the recoil energy, and M the atomic mass. We calibrate the lattice depths
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Chapter 6. Anomalous momentum diffusion in a dissipative many-body system

along each axis independently using Kapitza-Dirac diffraction (Denschlag et al. 2002)
[see section 2.2.1].

A (quasi-)condensate (Bloch et al. 2008) forms then in each plane for small lattice
depth V⊥. When V⊥ is roughly above 6Er, the quantum gases are well described by a
single-band Bose-Hubbard Hamiltonian (Bloch et al. 2008) [see section 1.2.2],

ĤBH = −J
∑
〈i,j〉

â†i âj +
∑
i

[
U

2
n̂i(n̂i − 1) + Vi n̂i

]
. (6.1)

Here, J is the tunneling energy between nearest neighbors, U is the repulsive on-site
interaction strength, Vi is a harmonic potential arising from the Gaussian envelope of
the lattice lasers (Zwerger 2003; Bloch et al. 2008), and âi and n̂i = â†i âi are the annihi-
lation and number operators for lattice site i. A superfluid to Mott-insulator transition
occurs as V⊥ and the ratio U/J increase (Bloch et al. 2008). The Mott insulator phase,
where the atomic density is pinned at integer values, appears around 10Er for a filling
of n̄ = 1 atom per site. In this work, we explore a regime of lattice depths ranging
from zero to 13Er. The harmonic potential Vi leads to an inhomogeneous spatial dis-
tribution with a maximum filling n̄ ' 2.5 atoms per site (Bouganne et al. 2017) [see
section 2.2.2].

We expose the atomic cloud to dissipation by shining a near-resonant laser beam for a
given duration t. The dissipation laser operates near the intercombination transition
1S0 − 3P1, of frequency ω0 = 2π/λ0 and wavelength λ0 ' 556nm. The dissipation
laser has wavevector kL and frequency ωL = ckL, propagates vertically and is detuned
by δL = ωL − ω0 = +15Γ0 from resonance, with Γ0 = 2π × 180 kHz the excited state
linewidth. The laser polarization εL is parallel to the uniform bias magnetic field
|B| ' 1G [see figure 6.1(a)]. The saturation parameter is s ' Ω2

L/(2δ
2
L) ' 10−3, with

ΩL the Rabi frequency. The rate of spontaneous emission for a single atom in free
space is then well-approximated by γsp ' sΓ0/2, we calibrated its value using Rabi
oscillations (see figure F.1 in appendix F.1).

Our main observable is the momentum distribution after a 20ms time-of-flight ex-
pansion. In the absence of dissipation, the momentum distribution corresponds to a
multiple wave interference pattern, with sharp peaks at the Bragg positions where the
matter waves interfere constructively (Bloch et al. 2008) [see section 2.2.3]. As shown in
figure 6.1(b), the Bragg peaks vanish rapidly (on a time-scale around 0.4ms ∼ 0.2 γ−1

sp )
when dissipation is enabled. However, a residual structure in the momentum distribu-
tion persists for much longer times up to a few milliseconds. Besides the relaxation of
coherence, we also observe atom losses that we attribute to two-body, light-assisted in-
elastic collisions (Weiner et al. 1999). We focus first on the evolution of coherence, and
discuss the role of losses later below. In the remainder, we normalize the momentum
distribution to the instantaneous atom number N(t).

6.1.2 Heuristic analysis of the diffusion process

In order to characterize the momentum diffusion and the associated decay of spatial
coherence, we follow first a heuristic approach. We plot in figure 6.1(c) the amplitude
of the central Bragg peak versus time. After an initial linear decay, the peak amplitude
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Figure 6.1 – Observation of anomalous diffusion in momentum space. (a): An ultra-
cold gas of 174Yb atoms is trapped in a stack of two-dimensional square optical lattices
and exposed to dissipation by spontaneous emission. A laser close to an atomic reso-
nance (green arrow) induces fluorescence cycles at a rate γsp ' 520 s−1. Random recoil
of the atom destroys the initial spatial coherence. (b): Absorption pictures showing
the vertically integrated optical density (OD) after time of flight, revealing the mo-
mentum distribution N (k), for several dissipation times. (c): Time evolution of the
peak amplitude of the momentum distribution. The dashed line shows the exponential
decay expected for non-interacting atoms [see equation (6.3)]. The solid line is a fit
to A/(1 + γit/κ)κ. (d): Time evolution of the momentum width ∆k. The observed
saturation results from the finite size of the integration area. The short-time evolution
follows a power-law (solid line) whose exponent σ varies with lattice depth (inset). The
dashed line indicates normal diffusion with σ = 1/2. In (c) and (d) the in-plane lattice
depth is V⊥ ' 7.3Er. Each point corresponds to the mean over 3 realizations of the
experiment. Error bars are standard deviations of the mean. Adapted from Bouganne
et al. (2019).

settles to a power-law (algebraic) decay at long times. We show in figure 6.2(a) that
this observation is valid for all lattice depths V⊥ ≥ 5Er.

The peak amplitude in figures 6.1(c) and 6.2(a) is estimated from npeak ≡ Npeak/N ,
where the total atom number N (respectively, population Npeak of the central peak)
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is evaluated by counting the signal in a 480µm-wide square region around the atomic
cloud (resp., 25µm-wide square in the centre of the image). For each V⊥, we perform
a fit using the phenomenological function

npeak =
A

(1 + γit/κ)κ
, (6.2)

with A the initial amplitude, γi the initial decay rate and κ a decay exponent character-
izing the long-time dynamics [solid lines in figures 6.1(c) and 6.2(a)]. The fit function
decreases linearly at short times γit� 1 and as a power law at long times γit� 1. The
crossover time between the two regimes ∼ κ/γi, typically ∼ 0.1− 0.2 γ−1

sp , is related to
the disappearance of long-ranged spatial coherence.

For non-interacting atoms (id), one would expect that the quasimomentum distribution
N (id) relaxes exponentially to a uniform distribution equal to the mean number of atoms
per site n̄ (Pichler et al. 2010; Yanay et al. 2014),

N (id)(k, t) ' N (id)(k, 0) e−γspt + n̄
(
1− e−γspt

)
. (6.3)

Equation (6.3) predicts a faster decay at long times than experimentally observed, and
cannot explain the power-law.

Following the same heuristic approach, we plot in figure 6.1(d) the momentum growth
∆k =

√
∆k2

t −∆k2
t=0, where the root-mean-square momentum width

∆k2
t =

ˆ
1BZ

k2
xN (k, t) d2k, (6.4)

is computed in the first Brillouin zone (1BZ). The exponential decay in equation (6.3)
would lead to ∆k ∝

√
t at short times, close to what we observe for small lattice depths

[inset of figure 6.1(d)]. However, in the Bose-Hubbard regime V⊥ ≥ 6Er, we observe
subdiffusion with a power-law behavior ∆k ∝ tσ with an exponent σ ' 1/4 [inset of
figure 6.1(d)].

From the heuristic analysis, we conclude that the momentum distribtuion broadens
more slowly than would be expected for non-interacting particles (equivalently, spa-
tial coherence decays more slowly than expected). However, we also observe that the
initially empty excited Bloch bands become gradually populated by spontaneous emis-
sion (Pichler et al. 2010), on a time scale roughly one order of magnitude longer than
the decay of coherence in the fundamental band. The quantities studied in the heuris-
tic analysis are averaged over all bands, which complicates their interpretation. In
order to extract quantities related to the fundamental band of primary interest, we
have implemented a more elaborate analysis where we fit a model distribution to the
experimental momentum profiles.

6.1.3 Extracting the coherence from the momentum profiles

Analysis of the momentum profiles

Our model builds on the observed characteristics of the momentum distribution. In
the algebraic regime observed in figure 6.2(a), the momentum distribution is indeed
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Figure 6.2 – Decay of peak momentum amplitude and atom losses. (a): Time evolu-
tion of the peak amplitude of the momentum distribution. The solid lines are fits as in
figure 6.1. The dashed line shows the exponential decay expected for non-interacting
atoms [see equation (6.3)]. (b): Time evolution of the rescaled atom number N/N0 ver-
sus rescaled time x = γ2Bt. We extract the initial atom number N0 and the two-body
light-induced loss rate γ2B (see inset) for each value of V⊥ from a fit to N0/[1+xβ], with
β close to 1/2 for all lattice depths (see figure F.6 in appendix F.4). The solid line is
1/(1 +

√
x). Each point corresponds to the mean over 3 realizations of the experiment.

Error bars are standard deviations of the mean. Adapted from Bouganne et al. (2019).

characterized by a residual modulation on the scale of the first Brillouin zone, or equiv-
alently by short-range spatial coherences before time of flight. Neglecting coherences
beyond nearest neighbors, the lowest-band momentum distribution is approximately
given by

N (k) ' W(k)

1 +
∑

d=±ex/y

Cnn cos(k · d)

 . (6.5)

Here, the Wannier envelope W(k) –the form factor– reflects the on-site confinement,
and the term between brackets –the structure factor– is the residual interference pattern
[see section 2.2.3 or appendix A]. The quantity

Cnn = 1/N
∑
ri

〈â†ri+δâri〉, (6.6)

is a spatially-averaged correlation function of the bosonic field between two nearest-
neighbor sites at positions ri and ri + δ, with δ = ex/y the basis vectors of the square
lattice.

We use a multi-band expansion analogous to equation (6.5) to fit the measured mo-
mentum distributions and extract the fundamental band nearest-neighbor coherence
Cnn. In such a case the momentum distribution reads [see equation (F.11) in appendix
F.3]

N (k) =
∑

bandsν

Sν(k)Wν(k). (6.7)

Here, the envelope function Wν(k) is related to the Fourier transform of the Wannier
function for each energy band labeled by ν. The normalized structure factor Sν for
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Figure 6.3 – Decay of nearest-neighbour coherence. (a): One-dimensional momentum
profiles N (k) for k = (kx, 0) versus dissipation time for a lattice depth V⊥ ' 7.3Er.
The dissipation time t increases from bottom to top. Solid lines are fits to a multi-band
function from which we obtain the nearest-neighbor coherence Cnn. (b) to (g) Time
evolution of Cnn for various lattice depths V⊥. Solid lines are a fit to a power-law decay
with exponent α, extracted in a chosen time window (see main text). The dots show an
extrapolation of the fit outside this window. The dashed lines show the prediction of
the model described in the main text, including dissipation due to spontaneous emission
and two-body light-induced losses. Imaging noise limits the level of coherence that we
are able to detect to Cnn & 0.015. The plateaux reached at long times in (d)-(g) are
compatible with this noise floor. Error bars are 1-sigma confidence intervals derived
from a χ2 fitting procedure. Adapted from Bouganne et al. (2019).

band ν is related to the correlation function 〈â†ν,iâν,j〉,

Sν(k) =
1

N

∑
i,j

eik·(ri−rj)〈â†ν,iâν,j〉. (6.8)

We truncate this expansion to the lowest band and the first few excited bands to model
our experimental signal (see appendix F.3 for a more detailed account). We verified
that including more terms in the expansion leads to negligible corrections. For the
fundamental band, we write the structure factor as the sum of a coherent component
S0,BEC(k) describing the condensate, and of an incoherent component S0(k) with only
short-ranged coherence modelled by equation (F.11). For the excited bands, which can
be gradually populated by light scattering, we neglect coherence and take Sν 6=0(k) = 1.

Evolution of the coherences

Once we have extracted the coherences Cnn from the momentum profiles, in order to
extract a reliable exponent from the evolution of Cnn, we perform a power-law fit in
a specific time window [t1, t2]. The initial time t1 is taken to be t1 = κ/γi, i.e. the
start of the algebraic decay found from the fits to the peak amplitude (see above).
The final time is t2 = 2 γ−1

sp . In this way, we exclude from the fit the data points
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Figure 6.4 – Decay exponent α of the nearest-neighbor coherence Cnn. Exponents
are extracted from fits Cnn ∝ 1/tα, as shown in figure 6.3(b)-(g), and error bars are
1-sigma confidence interval derived from statistical analysis of the fits. We observe a
plateau with α ' 1/2 for V⊥ ≥ 6Er. Adapted from Bouganne et al. (2019).

clearly departing from the algebraic decay (for small V⊥) or limited by imaging noise
(mostly for high V⊥). For the highest lattice depth [figure 6.3(g)], the algebraic decay
starts almost immediately as there is very little coherence in the initial state, already
in the Mott insulator regime. This also means that the signal reaches the imaging noise
limit quickly, leaving only a few points for the fit. We still present the corresponding
exponent in figure 6.4 to show that the decay is compatible with the expected 1/

√
t

law.

Figure 6.3(a) shows typical momentum profiles and the corresponding fits (see also
figure F.4 in appendix F.3). For lattice depths V⊥ ≥ 7Er, we find that the nearest-
neighbor coherence Cnn decays algebraically ∝ 1/tα [see figure 6.3(b)-(g)]. For lower
lattice depths a departure from the power-law is observed at long times. The fitted
exponent α shown in figure 6.4 settles to a value α ' 1/2 as interactions increase. In the
whole region where the Bose-Hubbard model is valid, V⊥ ≥ 6Er, the exponent follows
the plateau α ' 1/2. We thus reach the same conclusions as in the heuristic approach,
namely the emergence of algebraic time relaxation and anomalous momentum diffusion
for a dissipative Bose-Hubbard system.

6.1.4 Interpretation of the results

The emergence of slowly-relaxing states is already seen in the simplest possible case
with two atoms and two lattice sites [see appendix F.2]. A basis of the Hilbert space
for two atoms is given by {|S〉, |I〉, |A〉}, with the two symmetric and antisymmetric
combinations

|S/A〉 =
|2, 0〉 ± |0, 2〉√

2
and |I〉 = |1, 1〉. (6.9)

Here |n,m〉 denotes a Fock state with n atoms in the first well and m in the second.
Without dissipation, the ground state of this minimal model is |G〉 ∝ |I〉 − (2J/U)|S〉
to first order in J/U � 1.

Dissipation is conveniently treated in the quantum trajectory approach (Plenio et al.
1998; Daley 2014), where the dissipative dynamics is described as non-unitary evolution
generated by an effective Hamiltonian interrupted at random times by quantum jumps.
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In our case, the effective Hamiltonian Ĥeff = ĤBH−(i~γsp/4)∆̂2 and the jump operator
(γsp/2)∆̂ρ̂∆̂ are determined by the number difference operator ∆̂ = n̂1 − n̂2. The
imaginary part of the eigenvalues of Ĥeff determine the rate of quantum jumps (Plenio
et al. 1998). In the limit of decoupled wells (J → 0), the quantum state after a jump
switches between |S〉 and |A〉, thereby randomizing the relative phase.

Treating tunneling as a small perturbation, the lowest energy eigenstate of Ĥeff is

|G′〉 ∝ |I〉 − 2J

U − i~γsp

|S〉, (6.10)

with corresponding eigenvalueEG′ ' −4J2/(U−i~γsp). The rate of jumps−2Im(EG′) '
γspε

2 is much smaller than the natural dissipation rate γsp. Physically, the interaction
energy mismatch ∼ U between states with different occupation numbers shifts the dissi-
pative processes out of resonance and strongly suppresses the relaxation, a phenomenon
termed interaction-impeding of decoherence in Poletti et al. (2013). In contrast, other
eigenstates are mostly superpositions of |S〉 and |A〉 and decay at the natural rate γsp

(see the discussion in appendix F.2).

Poletti et al. have shown that this interaction-impeding of decoherence persists with
many atoms and many sites. However, a crucial difference with the minimal model
is that a large number of slowly-relaxing states participate in the long-time dynamics
when ~γsp � U . This leads to an algebraic regime with power-law decay for many
observables. In particular, one can show that Cnn obeys the universal law (see section
6.3)

Cnn '
η

√
zγspt

, (6.11)

with η ' 0.478 a numerical factor and z = 4 the number of nearest neighbors. The
time evolution ∝ 1/t1/2 in equation (6.11) agrees well with our observations in figure
6.4, even though the system is inhomogeneous due to the auxiliary trapping potential.
A numerical calculation using Gutzwiller theory and the local density approximation
also confirms the survival of the Cnn ∝ 1/t1/2 behavior in a trapped gas for high enough
lattice depths (see section 6.4).

6.1.5 Adding losses to the model

We finally discuss the role of atom losses in more details. In figure 6.2(b), we show the
time evolution of the normalized atom number N(t)/N(0) for different lattice depths.
We find that the data collapse onto the same curve 1/(1 + xβ) with a scaling variable
x = γ2Bt [inset of figure 6.2(b)] and an exponent β close to 1/2. This asymptotic scaling
reflects the behavior of the two-body correlation function 〈n̂(n̂ − 1)〉/n̄2 ∝ 1/tβ (see
appendix F.4). At long times, we expect that inelastic losses generate a gas of hardcore
bosons with 〈n̂(n̂− 1)〉 = 0, consistent with our measurements and reminiscent of the
inhibition of losses in a 1D gas of molecules (Syassen et al. 2008).

We have extended phenomenologically the theory of Poletti et al. (2013) by adding a
two-body loss term to the master equation for p(n) (see section 6.4). The characteristic
two-body loss rate γ2B is a free parameter adjusted to best match the atom number
decay (see appendix F.4). We find a fair agreement with our data for the correlation
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function Cnn (figure 6.3, black dashed lines) and for the atom number decay up to
γ−1

sp . We conclude that the lossy dynamics preserves the anomalous slowing down, only
suppressing it when the fraction of lost atoms becomes large (Sciolla et al. 2015). At
long times, the model fails to capture the observed dynamics. This could be explained
by additional effects neglected in the theory, such as inter-band transitions, the dynam-
ical creation of correlations between different sites or collective effects in light-matter
interaction. For lattice depths V⊥ ≥ 10Er, the model also overestimates the initial
coherence, which could be due to a finite temperature of the sample.

6.2 Theoretical background: description of light
scattering (∗∗)

Master equation for the ground state density matrix

We now turn to the theoretical description of our results. A first-principle description of
the many-boson problem interacting with the quantized electromagnetic field is a diffi-
cult problem (Pichler et al. 2010), and solving it without approximations a formidable
task. Poletti et al. have discussed a minimal single-band model where spontaneous
light scattering is treated as a continuous, strictly local density measurement.

For non-interacting atoms, the model reduces to the exponential relaxation described
by equation (6.3). Strong interactions drastically modify this relaxation process. The
essence of the phenomenon can be traced back to the existence of states with low
coherence but also low relaxation rates that dominate the long-times dynamics. In
this section we give a simplified derivation of the model from Poletti et al. and explore
its consequences for the on-site number distribution, the single-particle correlation
function, and the momentum distribution.

We consider a quantum gas of ultracold atoms with two internal states g and e. The
g− e transition is driven by an off-resonant laser. In general, the dynamics of the laser
driven atomic ensemble is described by a quantum master equation for the atomic
density matrix (Dalibard et al. 1985; Cohen-Tannoudji et al. 1992; Ellinger et al.
1994; Pichler et al. 2010). We consider here the experimentally relevant limit of large
detunings and weak saturation of the excited state. In this limit, the population in e is
negligible at all times, and the excited state can be eliminated adiabatically (Dalibard
et al. 1985; Cohen-Tannoudji et al. 1992; Ellinger et al. 1994). The evolution of the
spatial coherences in the ground state is then governed by a master equation for the
reduced ground state density matrix ρ̂,

dρ̂

dt
' 1

i~

[
Ĥ0 + V̂dd, ρ̂

]
+ L[ρ̂]. (6.12)

This describes the effect that off-resonant scattering of laser photons has on the quan-
tized motional state of the gas.

The structure of equation (6.12) is that of a Lindblad master equation describing
Markovian open systems (Haroche et al. 2013). The commutator describing the unitary
evolution involves the Hamiltonian Ĥ0 in the absence of laser light (including atom-
atom interactions). In the presence of laser light, a dipole-dipole interaction term
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Vdd(r − r′) ∝ 1/|r − r′|3 also appears. Finally, the so-called Lindblad superoperator
L describes relaxation of the atomic motional degrees of freedom due to spontaneous
emission and collective effects. The dipole-dipole interaction V̂dd and the Lindblad
dissipator are related to each other [see Pichler et al. (2010) and references therein].
Explicit expressions for these operators are given in Pichler et al. (2010), and their
origin discussed in detail.

Bose-Hubbard master equation

The Bose-Hubbard Hamiltonian in equation (6.1) is derived from a more general many-
body Hamiltonian under the single-band and tight-binding assumptions (Bloch et al.
2008). Applying these assumptions to the ground state master equation (6.12) (Pichler
et al. 2010), one finds a discretized version with the Hamiltonian Ĥ0 → ĤBH, and a
Lindblad dissipator

L[ρ̂] =
γsp

2

∑
i,j

Λij

(
2n̂iρ̂n̂j − n̂in̂j ρ̂− ρ̂n̂in̂j

)
, (6.13)

where ρ̂ now denotes the projection on the fundamental band of the density matrix.
The rates Λij are determined by the overlap integrals,

Λij =

ˆ
F (r − r′)|w(r − ri)|2|w(r′ − rj)|2 d3r d3r′. (6.14)

The kernel involves the Fourier tranform

F (r − r′) =

ˆ
D(u) ei∆k·(r−r′) d2u, (6.15)

of the directional factor D(u) describing the radiation pattern of the atomic dipole.
This factor reads

D(u) =
3

8π
× [1− (u · εL)2], (6.16)

for our choice of π-polarization (see figure 6.1). In equation (6.15), the quantity ∆k =
kL−k0u describes a momentum kick after absorbing a laser photon of momentum ~kL

and spontaneously emitting a photon of momentum ~k0u, with k0 = 2π/λ0 and u a
random unit vector corresponding to the direction of propagation.

Absorption-spontaneous emission cycles can be interpreted as weak, continuous mea-
surements of the atoms’ position at a rate γsp (Marte et al. 1993). The motional
degrees of freedom of the gas become entangled with the electro-magnetic field when
they interact, and erasing the information about the electro-magnetic field projects the
atomic state into a state of ill-defined momentum, and therefore well-defined position
by Heisenberg’s principle. The function F quantifies the resolution of this measure-
ment: F falls to zero for distances � 1/k0, which is nothing but the diffraction limit
associated with the optical detection of the atomic position.

Zero-range model

The optical lattice spacing d = λlatt/2 and the range of F are both on the order
of an optical wavelength. In the Bose-Hubbard regime, the Wannier functions are
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localized on a much smaller scale. When calculating the on-site decay rate Λii, one can
approximate F (r − r′) ' F (0) = 1 and Λii ' F (0). Moreover, F is maximal at the
origin and the localization of Wannier functions near their respective centres implies
that |Λi,j 6=i| � |Λii|. This allows us to perform a so-called zero-range approximation in
the following, where we retain only the on-site decay terms and neglect off-sites terms
with i 6= j: Λij ' δij. Such an approximation becomes exact in the limiting case
where the Wannier functions become infinitely localized, similar to the Lamb-Dicke
limit where inter-band transitions are supressed [see section 3.4]. In the same limit,
dipole-dipole interactions are no longer relevant: off-site terms are negligible and the
on-site term can be absorbed in the on-site interaction energy U of the Bose-Hubbard
Hamiltonian.

6.3 Analysis of a continuous measurement model
(∗∗)

6.3.1 Single-band zero-range model

We now turn to the analysis of the many-body model defined by the Bose-Hubbard
master equation. The Hamiltonian part Ĥ0 is the Bose-Hubbard model [equation
(6.1)] and the dissipation superoperator is, combining the single-band and zero-range
approximations,

L
[
ρ̂
]

=
γsp

2

∑
i

2n̂iρ̂n̂i − n̂2
i ρ̂− ρ̂n̂2

i . (6.17)

This model was studied in detail by Poletti et al. We recall that collective effects (super
or subradiance, light-induced dipole-dipole interactions) and inter-band transitions are
neglected (Pichler et al. 2010). As a result, the model of Poletti et al. should be
viewed as the minimal description of a dissipative Bose-Hubbard system submitted
to continuous measurement by light scattering. Yet, as we argue in section 6.1 and
below, the model captures the essential features of the non-trivial momentum diffusion
observed in our experiments.

The density matrix can be represented in the Fock basis as

ρ̂ =
∑
n,m

ρnm|n〉〈m|, (6.18)

where n = (n1, · · · , nNs) identifies a particular configuration of Fock states on the Ns

sites. Statistical mixtures of Fock states are not affected by dissipation due to the
particular structure of L, and for finite tunneling there exists a unique asymptotic
steady-state ρnm ∝ δm,n, a fully mixed state where all Fock state configurations are
equally likely (Poletti et al. 2013).

A key observation of Poletti et al. is that the relaxation to the steady-state proceeds
via three stages:

1. an initial stage governed by the time scale γ−1
sp , where the number distribution

broadens and the long-range coherence potentially present in the initial state
decays exponentially (Cohen-Tannoudji et al. 1992),
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2. an intermediate stage, where relaxation slows down dramatically and an algebraic
regime emerges. This regime corresponds to a state which essentially belongs to
a decoherence-free subspace and does not decay. Finite tunneling amplitude
partially restores coherence in this mixture of Fock states (quantum fluctua-
tions around the decoherence free subspace) and allows relaxation to persist in
a strongly modified manner,

3. a final stage where the system thermalizes towards the asymptotic steady-state.

The first regime where long-range coherence disappears can not be precisely described
by the formalism of Poletti et al. (2012) and Poletti et al. (2013), and we did not
attempt to do it theoretically. However, we provide an empirical discussion of the
experimentally observed behavior in appendix F.3.2.

6.3.2 Anomalous diffusion in the algebraic regime

Master equation for populations

In the second stage of the decay, coherence is already short-ranged. The density matrix
is mainly diagonal with a weak contribution of the off-diagonal coherences ρn+ei,j

n be-
tween configurations differing by one tunneling event with i, j nearest-neighbors. The
vector ei,j with components (ei,j)k = +1 if k = i, −1 if k = j, and 0 otherwise in-
dicates that we consider a process where one atom moved from site j to site i. We
neglect other off-diagonal matrix elements between configurations differing by two or
more tunneling events.

Because of the large mismatch between interaction energy and damping rate, the
rapidly-oscillating coherence can be expressed as a slave variable depending on the
slowly-evolving populations. Following Poletti et al. (Poletti et al. 2013), the steady-
state coherences are given by

ρn+ei,j
n '

J
√
nj(ni + 1)

U(ni − nj + 1) + i~γsp

(
ρnn − ρ

n+ei,j
n+ei,j

)
. (6.19)

Adiabatic elimination of the coherences leads to a set of closed equations of motion for
the populations ρnn alone, valid in the limit U, ~γsp � J where the populations relax
much more slowly than the coherences [equation 3S in the Supplementary Material of
Poletti et al. (2013)].

An additional simplification comes from assuming a factorization ansatz for the domi-
nant diagonal part of the density matrix,

ρ̂ '
∏
i

(
∞∑
ni=0

pni |ni〉i i〈ni|

)
. (6.20)

With this additional assumption, the complicated evolution equation for the diago-
nal matrix elements reduces to a difference equation obeyed by the on-site number
distribution pn (Poletti et al. 2013),

dpn
dτ

= Wn+1(pn+1 − pn)−Wn−1(pn − pn−1). (6.21)
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Here we introduced the rescaled time τ = t/t∗, with the characteristic interaction-
enhanced time

t∗ =
1

2zγsp

(
Un̄

J

)2

� γ−1
sp , (6.22)

and with n̄ the average filling and z the number of nearest neighbors. The master
equation (6.21) is governed by the non-linear transition rates

Wn+1 = n̄2
∑
m

g(n+ 1,m)pm−1, (6.23)

Wn−1 = n̄2
∑
m

g(n,m+ 1)pm+1, (6.24)

where the function g is defined as

g(x, y) =
xy

(x− y)2 + (~γsp/U)2
. (6.25)

The characteristic time t∗ allows us to identify the three regimes described earlier: (i)
t . γ−1

sp : initial relaxation of coherences, (ii) γ−1
sp . t � t∗: algebraic regime, (iii)

t & t∗: final relaxation to the steady-state.

Scaling regime

Poletti et al. (Poletti et al. 2013) solved the master equation numerically using an array
of Fock states as initial condition. They pointed out that the number distribution obeys
scale invariance for specific conditions, namely in a scaling window γ−1

sp . t� t∗ such
that ∆n(t)� n̄.

This scale invariance characterizes the algebraic regime and can be justified in the limit
of large fillings n̄ � 1 and weak dissipation ~γsp/U → 0. This allows one to make a
continuum approximation where the discrete variable n is replaced by a continuous one
x = n/n̄ ∈ [0,∞). The discrete occupation number distribution becomes continuous,
pn −→ p(x)/n̄, and the master equation maps to a Fokker-Planck equation with a
non-linear diffusion term (Poletti et al. 2012; Poletti et al. 2013). With an initial Fock
state pn = δn,n̄ [p(x) ∝ δ(x− 1)] and for weak dissipation, there exists a solution which
exhibits scale invariance,

p(x) ' 1

τβ
f

(
u =

x− 1

τβ

)
, (6.26)

with a normalized time τ and a scaling exponent β (Poletti et al. 2013). The scaling
function is

f(u) =
1

4Γ(5/4)
e−u

4/16, (6.27)

where Γ denotes the Gamma function and where the scaling exponent is β = 1/4
(Poletti et al. 2013).

This scaling solution is only exact in the limit defined by ~γsp/U � 1 and n̄ � 1.
However, it remains relevant outside the high-filling limit provided two conditions are
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met. First, the average filling n̄ must not be too small, and second, the number distri-
bution must be peaked around n̄ with small dispersion ∆n� n̄. With these conditions
fulfilled, the numerical solutions of the master equation (6.21) approximately obey the
scaling form until the second condition gets violated for times t ' t∗ (Poletti et al.
2013). This defines a scaling window in the time evolution, roughly determined by
γ−1

sp . t � t∗. The width of these windows shrinks with decreasing filling or increas-
ing initial number fluctuations, until γspt

∗ ' 1 and the scaling behavior essentially
disappears. For a system described by the Bose-Hubbard model, number squeezing
occurs even in the superfluid regime where ∆n ' 1 as soon as U & J . As a result,
the scaling behavior starts being observable for fillings as low as n̄ & 1.5. We discuss
in the following section that this behavior, first noticed in Poletti et al. (2013) for the
evolution of pn, is also visible in the evolution of the spatial coherence.

6.3.3 Nearest-neighbor coherence

General formula in the algebraic regime

We now evaluate how phase coherence evolves in the algebraic regime. Initially, the
gas could possess long-range correlations that decay in the first stage of the evolution.
In the algebraic stage, correlations are short-ranged and dominated by the nearest-
neighbor correlation function C±1 = 〈â†i±1âi〉. One can relate this correlation function
to the density matrix elements,

C±1 =
∑
n

√
ni(ni±1 + 1)ρn+ei±1,i

n . (6.28)

Using the nearest-neighbor coherences in equation (6.19) and the factorization ansatz
in equation (6.20), we find

C±1 =
J

U

+∞∑
m,n=0

(n−m)g(m+ 1, n+ 1)[pnpm+1 − pn+1pm], (6.29)

the form we use for numerical calculations.

In figure 6.5 we show the solution of equation (6.29) for various initial occupation
probability distributions. A true scaling regime, reaching the universal limit of equation
(6.32), appears already for n̄ > 1 but only when ∆n� n̄.

Universal power-law decay for weak dissipation

We can derive an analytical prediction in the limit of high fillings (n̄ � 1) and weak
dissipation (γsp/U → 0). By taking the continuum limit in equation (6.29), we find
that the nearest-neighbor coherence factors C±1 take the following form in the scaling
regime:

C±1 '
Jη0

Uτα
. (6.30)

The nearest-neighbor coherence therefore inherits the scaling properties of the number
distribution function p but with a scaling exponent α = 2β = 1/2 twice as large. The
numerical factor η0 ' 0.676 is

η0 =

ˆ
f(u)f ′(v)− f ′(u)f(v)

u− v
du dv =

2Γ(3/4)

Γ(1/4)
, (6.31)
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Figure 6.5 – Emergence of a scaling regime in the dissipative Bose-Hubbard model.
(a)-(f): Calculated time evolution of the nearest-neighbor coherence Cnn from equation
(6.29) (solid line), for n̄ = 1, 2 and 3. The dotted line is the universal form of equation
(6.32) valid for large fillings. The vertical dashed line shows the time t∗ from equation
(6.22). The Bose-Hubbard parameters are calculated for V⊥ = 10Er. The initial
distribution corresponds to a Fock state in (a)-(c) and to a coherent state in (d)-(f).
Adapted from Bouganne et al. (2019).

where Γ denotes the Gamma function. The coherence factor can be rewritten in the
universal form quoted in section 6.1,

Cnn =
C±1

n̄
' 0.478
√
zγspt

, (6.32)

which is independent of the microscopic parameters U , J or n̄.

6.4 Extended model: External confinement and
losses (∗∗)

In the experiment, the density distribution is inhomogeneous due to the auxiliary
trapping potential provided by the lattice beams envelopes. Moreover the total atom
number decreases with time, because of light-assisted inelastic losses [see appendix F.4].
For a faithful simulation of the actual dissipative dynamics, we take these two aspects
into account.

6.4.1 Inhomogeneous density distribution

The model studied in Poletti et al. (2013) focuses on uniform systems prepared in a
Mott insulator state with integer filling n̄, whereas our experimental situation is more
complex because of an additional harmonic potential created by the lattice beams
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[see section 1.2.1]. This leads to an inhomogeneous spatial distribution of n̄ with a
maximum value around 2.5 in the center of the cloud [see section 2.2.2]. Morever, we
probe a many-body ground state which is not a Mott insulator state. We thus extend
the model by taking into account the inhomogeneity and the initial ground state.

We use a similar approach as in Bouganne et al. (2017) to predict the initial equilibrium
density distribution of atoms in the optical lattice [see section 2.2.2].

For each site, we solve the model from equation (6.21) using its initial occupation
probability distribution. We then compute Cnn by averaging equation (6.29) over the
spatial density profile. The final results are qualitatively the same as in the homo-
geneous case studied previously: The scaling regime and the associated universal law
Cnn ∝ 1/

√
t appear for a narrow enough occupation number distribution ∆n� n̄ and

for a sufficiently high filling n̄ & 1.5. To explain the survival of the scaling behavior of
Cnn upon spatial averaging, we notice that (i) the less dense parts of the cloud where
the scaling regime is never reached decay exponentially and their contribution to the
correlation function quickly becomes negligible, and that (ii) the denser parts do obey
scaling and follow equation (6.32) which is independent of the density.

6.4.2 Including atom losses

While the model of Poletti et al. (2013) captures the power-law behavior and the
exponent observed experimentally, it also predicts a much slower decay than in the
experiments. The timescale t∗ ∝ (U/J)2 governing the duration of the scaling window
with algebraic decay changes by several orders of magnitude when V⊥ varies from 3
to 13Er. In the experiments, we observe instead that the correlation function decays
on a timescale ∼ γ−1

sp for all lattice depths (up to a numerical factor). We resolve this
discrepancy by considering the effect of inelastic losses on the decay of coherence.

To include the observed two-body losses in the theory, we add another Lindblad su-
peroperator

L2B[ρ̂] =
γ2B

2

∑
i

2â2
i ρ̂â
†2
i − â

†2
i â

2
i ρ̂− ρ̂â

†2
i â

2
i (6.33)

to the master equation (6.12), with a two-body loss rate γ2B ∝ U . L2B couples con-
figurations with different atom numbers (unlike L), making a direct extension of the
theory not trivial. If γ2B is smaller than the spontaneous emission rate, the coherences
evolve essentially as in the lossless case, with a small correction due to inelastic decay.
If we neglect this correction and apply the same procedure as without losses, we obtain
a master equation for populations with an additional two-body loss term in the master
equation (6.21),

dpn
dt

∣∣∣
losses

= −γ2Bn(n− 1)pn + γ2B(n+ 2)(n+ 1)pn+2. (6.34)

We extended the model of section 6.3 using equation (6.34), even though the condition
for such a treatment is not fully met for our experimental conditions (γ2B ' γsp). A
more complete analysis including both dephasing and losses from first principles is
beyond the scope of this work, and of the theory developed in Poletti et al. (2013). We
determined the two-body loss rate γ2B directly from the experimental data, minimizing
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the χ2 between the model predictions and the measured atom number. Here γ2B is the
only free parameter, and its best-fit value for each horizontal lattice depth V⊥ is shown
in figure F.6(b) from appendix F.4.

6.5 Conclusion

In this chapter, I have shown that the evolution of spatial coherence in a strongly in-
teracting system shows a non-trivial dynamics consisting of an algebraic subdiffusive
decay, as was predicted by Poletti et al. Our experimental data confirms their claim.
We observe indeed that after a strong and fast decay of the coherence, a residual mod-
ulation in the momentum distribution persists. As we show, this modulation is as a
signature that nearest-neighbor coherence is still present, and our measurements show
that it survives for long times. This phenomenon has been called interaction-impeded
decoherence and is sometimes referred to as an interaction-induced Zeno effect (as op-
posed to the normal quantum Zeno effect, as the one discussed in chapter 4), signaling
the robustness, furnished by the interactions, of certain states against decoherence.

I have also presented an extended version of the model of Poletti et al. Here, we take
into account two-body inelastic losses and the inhomogeneous density profile induced
by the residual Gaussian confinement of the lattice beams. It has been shown that
the subdiffusive regime still emerges provided the initial atom number distribution is
narrow and the filling is large enough. The theory presented agrees well with the
experimental data.

The measurements shown in this chapter confirm that the presence of strong interac-
tions can protect the coherence of the system, allowing a residual coherence to remain
for long times in a slowly decaying subspace. In other words, strong interactions delay
reaching the completely decohered steady-state, allowing a short-range order to persist
for much longer compared to the non-interacting case.
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Outlook

Summary and conclusions

In this manuscript I have presented a series of experimental studies concerning the
optical excitation of a quantum gas of bosonic ytterbium atoms. In all cases, the physics
is rich due to the interplay between coherent quantum dynamics, dissipation (either
from two-body losses or from spontaneous emission) and inter-atomic interactions.

In the first part of this work (I), I have introduced and characterized the experimental
setup in which these experiments are performed. I have also discussed the main the-
oretical concepts appearing repeatedly in the remaining of the thesis. In particular,
I have presented a detailed account of the validity of the adiabatic approximation for
interacting particles, invariably used when one thinks of preparing a quantum gas in
an optical lattice. Although the question is simple at first sight, the answer is in gen-
eral not easy to find, especially when taking the auxiliary harmonic trap potential into
account. I have presented a series of pragmatic criteria that allow one to give at least
a minimal estimate, in good agreement with the times found experimentally.

In the second part (II), I have detailed the experimental techniques that we use to probe
the clock transition. I have then shown a study performed on ensembles of independent
systems with few (one or two) particles. These ensembles correspond to particles in
deep optical lattices, where tunneling is negligible over the course of the experiment,
allowing one to treat each lattice site independently of the others. Studying single
atoms or atom pairs driven on the clock transition has allowed us to determine certain
properties of the band structure of the optical lattice. Then, by probing the internal
degrees of freedom in the zero-phonon line, we have been able to test and characterize
the clock laser linewidth and to extract the elastic and inelastic collisional properties
of the ground and metastable states of 174Yb.

From these measurements, we have inferred the existence of strong inelastic two-body
losses between atoms in the metastable state. This has enabled us to study the dis-
sipative preparation of a small open quantum system, where both interactions and
dissipation, induced by the losses, are present. In such a situation, I have shown that
by driving the system in the weak-coupling regime, the losses itself force the dynamics
to take place in a slowly-decaying subspace. This has been interpreted as a manifesta-
tion of the quantum Zeno effect.

I have then presented in the third part (III) two different experimental studies in which
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dissipation takes place in a many-body framework. Firstly, in the weakly interacting
regime, with a BEC in a harmonic trap, well described in the mean-field framework.
Secondly, in the strongly interacting regime, with a quantum gas in an optical lattice.

In the weakly interacting regime, I have analyzed the mechanisms that lead to the
relaxation of a driven bulk BEC. I have shown that, except for very weak couplings,
where Doppler broadening dominates the damping of the internal coherences, the pres-
ence of inelastic two-body losses governs the total dynamics, leading to a non-linear
decay of the overall signal. In the presence of stronger interactions, we have observed
an additional source of relaxation, which could not be accounted for by a mean-field
approach.

Finally, in an optical lattice, I have shown a series of measurements in which we drive
the intercombination transition. In this case, the dissipation caused by spontaneous
emission affects not only the internal dynamics but also the external ones. In partic-
ular, it destroys spatial coherences. Here, I have shown that the presence of strong
enough interactions (basically, once the system reaches the Bose-Hubbard regime)
helps to maintain a residual amount of short-range order, decaying in a much slower
fashion compared to what is expected for non-interacting particles. In particular, we
have proven with these experiments the emergence of anomalous momentum diffusion,
caused by the interplay between interactions and dissipation.

Outlook

I. Dynamics in one-dimensional tubes

ßTwo-body decay of fermionized bosons in an optical lattice: More (but
different) Zeno dynamics

In the atomic limit (J = 0), an optical lattice with unit filling where all particles are in
the excited metastable state is expected to be stable. As tunneling is present, however,
events in which two particles meet at the same site and are lost can occur. In the case
in which interactions and dissipation are strong compared to the tunneling, the actual
loss rate γeff becomes much smaller than both the tunneling and the bare loss rate γee,
and is given by

γeff ∝
J2

4U2
ee + ~2γ2

ee

γee. (O.1)

Syassen et al. (2008) and García-Ripoll et al. (2009) interpreted this in terms of the
quantum Zeno effect, where both elastic and inelastic interactions would act as a con-
tinuous measurement, thus preventing tunneling events towards the lossy configuration.
The dynamics of the gas confined to the lossless subspace is then equivalent to a sys-
tem of hardcore bosons, also known as a Tonks-Girardeau gas (Tonks 1936; Girardeau
1960). In such systems, peculiar to one dimension, strong interactions make bosons
similar to fermions by preventing double occupancies and thereby mimicking the Pauli
principle.

We have performed these kind of measurements in a system of 1D Mott insulators for
different lattice depths, and a preliminary result is shown in figure O.1. Comparing
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Outlook

our data to the expected decay rate (dotted line) we see that the loss dynamics we
observe is much slower and follows a different law at longer times.
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t [h̄2γee/(4J2)]

10−1

100
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Uee/J ' 20
Uee/J ' 35
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Figure O.1 – Loss dynamics at different lattice depths of an ensemble of 1D Mott
insulators where all particles are in the excited metastable state. The red dotted line
is the expected decay according to the theory developed in García-Ripoll et al. (2009).
The observed decay is much slower, which could be a hint of strong correlations arising
in the system.

The theory developed by García-Ripoll et al. (2009) maps the bosonic system to a
gas of hardcore bosons with a residual decay strongly suppressed by the Zeno effect.
Experiments so far (Syassen et al. 2008; Yan et al. 2013; Zhu et al. 2014) have been
compatible with a simplified version of their theory, which neglects all correlations and
also assumes an initially flat density profile with one atom per site (a good approxima-
tion in the initial state when preparing the system in the MI regime). The markedly
slower decay in our case points to the importance of possible initial deffects and corre-
lations between neighboring sites, beyond the model presented in García-Ripoll et al.
(2009). This could also point to dynamical correlations building up in time, effectively
slowing down the decay.

We have started a collaboration with Leonardo Mazza (Université Paris-Sud) and Da-
vide Rossini (University of Pisa) in order to develop a theory framework to explain
these observations.

ß Spin dynamics in the Mott insulator regime

A system of two-level atoms in an optical lattice is well suited for the study of spin
dynamics, where both tunneling and interactions are present (Altman et al. 2003).
Using the clock transition, by applying a π/2 pulse to a Mott insulator at unit filling,
we can prepare a system where each site is described by a superposition

|ψ(kcl)〉i =
1√
2

[
|g〉+ eiφi(r)|e〉

]
, (O.2)

with a spatially dependent phase φi(r) = kcl · ri. Such a system can be mapped
onto a Heisenberg Hamiltonian. A similar configuration has been studied in Hild et
al. (2014). Here, using local observables (the density-density correlation function),
Hild et al. observe spin-diffusion within a time scale given by the super-exchange,
~/Jse = ~U/J2. Still, within a similar experimental framework, but measuring directly
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the total magnetization with Ramsey spectroscopy, we observe dynamics occurring in
much faster timescales, on the order of ~/J . A complete description of the system
should then resemble to a bosonic version of the so-called t − J model, where in this
context t 7→ J is the tunneling matrix element and J 7→ Jse is the super-exchange
constant. In a perfectly ordered Mott insulator, the tunneling term should have very
little effect, but as soon as a few defects (holes or doublons) are present due to the
trap, imperfect preparation of the system, or finite temperature effects, the motion of
this hole will be governed by the tunneling term and is susceptible to scramble the
spin ordering by creating large scale entanglement in the system as it moves around
in space. Moreover, the presence of interactions and inelastic losses could also modify
this picture, and we are currently investigating these points.

II. Towards artificial gauge fields

The next step in our experiment is the implementation of the protocol described in
Gerbier et al. (2010) in order to generate an artificial gauge field using the clock states.
In a few words, in this scheme atoms are trapped in a state-dependent lattice in one
direction (e.g. atoms in g are trapped on its nodes and atoms in e in its anti-nodes)1
and in a magic lattice in the other direction. If the lattice is deep enough, tunneling
in the state-dependent direction is only feasible provided the atom changes its internal
state. This can be achieved by sending a photon resonant with the clock transition, a
process known as laser-assisted tunneling.

Upon this tunneling, the atom also changes its internal state and its full atomic state
acquires a phase due to the recoil imparted by the photon. Tunneling in the magic
direction occurs via regular tunneling and thus no phase is acquired. After a closed
loop in the lattice, the particle has acquired a non-zero phase (see figure O.2). This is
analogous to the Aharonov–Bohm effect, where a particle in the presence of a vector
potential ends up with a non-zero phase after a closed loop (Aharonov et al. 1959).
This protocol thus provides a way to engineer an artificial gauge field in a lattice, well
described by a Harper-Hofstadter Hamiltonian (Harper 1955; Hofstadter 1976).

The previous protocol is intended at the single-particle level and could be verified by
working at fillings n̄ ≤ 1. However, artificial magnetism in the presence of interactions
is supposed to give rise to new and richer regions in the phase-diagram, where nar-
row, incompressible quantum Hall phases are supposed to appear on top of the usual
superfluid and Mott insulator ones (Sørensen et al. 2005; Umucalılar et al. 2010).

The interest of using a clock transition is the absence of spontaneous emission, which
is the main limitation in many of the experiments having implemented these spin-orbit
coupling protocols so far. This heating prevents the observation of phenomena beyond

1For this, we are going to use a lattice at the so-called anti-magic wavelength. For the yttebrium
clock states, this wavelength corresponds to λam ' 612 nm (see figure 3.8 in chapter 3). The protocol
proposed by Gerbier et al. (2010) also relies on the use of a superlattice, necessary to create a uniform
flux along the optical lattice. We actually generate the light at λam by frequency doubling a source at
λsl = 1024 nm, and thus, both the anti-magic and the super-lattice are issued from the same source.
Moreover, due to the high powers needed, we have implemented a doubly-resonant cavity in which
these lattices will be generated, achieving the needed depths thanks to the cavity build-up (Scholl
2014).
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Outlook

Figure O.2 – Schematics of the protocol proposed in (Gerbier et al. 2010) for the
simulation of artificial gauge fields. The lattice in the y-direction is at the magic
wavelength and is state-dependent in the x−direction. Hopping in the state-dependent
direction entails the absorption of a photon, which imprints a phase on the atomic state.
Upon a closed loop, the atomic state has picked up a non-zero phase ϕ.

mean-field, needing much longer thermalisation scales [see e.g. Lin et al. (2009)]. In
a similar fashion, inelastic two-body losses in the excited metastable state are prone
to be problematic in such a situation, strongly limitting the signal-to-noise ratio and
introducing entropy in the system, thus potentially preventing the observation of these
(Baur et al. 2010). Hence, mechanisms such as the Zeno suppression observed in
chapter 4 and the one described in the previous paragraphs [see equation (O.1)] could
prove useful in the investigation of these strongly correlated phases with alkaline-earth
like atoms, suffering from strong inelastic losses in the metastable state.

III. Switching to fermions

With our experimental setup we can easily address the fermionic isotopes with minor
modifications of our laser system. A first advantage of fermions is Pauli exclusion’s
principle: Two-fermions in the same state cannot interact via s-wave scattering. This
implies that a polarized sample of fermions in the metastable state will not suffer from
inelastic two-body losses. Then, this should allow us to test the protocol previously
described to simulate magnetic fields (Gerbier et al. 2010) at the single-particle level,
without the limitations inherent to inelastic losses that bosons have.

Another interest of fermions is their large nuclear spin (e.g. 173Yb has I = 5/2). The
nuclear spin is decoupled from the electronic angular momentum degrees of freedom,
which leads to two-orbital interactions independent of the internal state, obeying the
so-called SU(N = 2I + 1) symmetry. These systems are well suited for the simulation
of quantum magnetism and impurity Hamiltonians (Gorshkov et al. 2010).

The fermionic isotopes also feature a narrow orbital Feshbach resonance among the
clock states, allowing to prepare long-lived strongly interacting gases (Zhang et al.
2015; Pagano et al. 2015; Höfer et al. 2015). In an optical lattice, these orbital reso-
nances can be used to induce periodically modulated interactions which, combined with
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laser-assisted tunneling can lead to an effect known as density-dependent light-assisted
tunneling (Edmonds et al. 2013; Greschner et al. 2014; Greschner et al. 2015). In a
more general perspective, this mechanism has been shown to be key in the simulation of
the so-called dynamical gauge fields, of wide interest in condensed matter and particle
physics (Levin et al. 2005; Kogut 1983).
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APPENDIX A

Correlations in a gas released from an optical lattice

A.1 Expansion of a gas released from an optical
lattice

The role of interactions

In the case of a BEC in a dipole trap, interactions are usually on the order of µ/h
(typically a few kHz) and are large compared to the trapping frequencies ω (usually a
few hundred Hz). In this case, interactions notably modify the expansion of the gas once
it is released from the trap (Castin et al. 1996). However, in an optical lattice, on-site
interactions, on the order of a kHz, need to be compared to the lattice frequencies at the
bottom of each well ωlat ∝ (V0Er)

1/2 which reach values above 10 kHz already at depths
corresponding to a few recoil energies. The trapping frequencies dictate the speed at
which the wave functions at each site expand vexp = (2~ωlat/M)1/2. We then see that
wave functions from different sites will start overlapping at a time tov ' [~/(Erωlat)]

1/2.
At this point, the density of the gas will have been reduced by a factor (ωlattov)3 � 1,
and interactions can be safely neglected (Gerbier et al. 2008). Therefore, we consider
a purely ballistic expansion in the following discussion.

Density distribution in TOF

Let us start by considering the field operator of a particle prior to its release from an
optical lattice with L sites, which is given by:

Ψ̂(r) =
L∑
i=1

w(r − ri)âi, (A.1)

with âi the operator destroying a particle at a site i. In the Schrödinger picture,
to evaluate the evolution of the field operator during TOF, Ψ̂(r, t), we first need to
calculate the evolution of the Wannier functions w(r− ri, t). For this, let’s write each
Wannier function in the momentum basis:

w(r − ri) =
1

(2π)3/2

ˆ
w̃(k)eik·(r−ri) d3k. (A.2)
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A.1. Expansion of a gas released from an optical lattice

At a time t, the wave function w(r−ri, t) has evolved under a free-particle Hamiltonian
and reads:

w(r − ri, t) =
1

(2π)3/2

ˆ
w̃(k)ei[k·(r−ri)−~k2t/(2M)] d3k (A.3)

'
(
M

~t

)3/2

w̃

(
k =

M(r − ri)
~t

)
eiM(r−ri)2/(2~t), (A.4)

where we have considered times long enough ωlatt � 1 to perform a stationary phase
approximation. The density distribution after TOF is then N (r, t) = 〈n̂(r, t)〉 =
〈Ψ̂†(r, t)Ψ̂(r, t)〉 and reads (Gerbier et al. 2008):

N (r, t) =

(
M

~t

)3 ∣∣∣∣w̃(Mr~t
)∣∣∣∣2 L∑

i,j=1

eiM [(r−rj)2−(r−ri)2]/(2~t)〈â†i âj〉, (A.5)

where we have used that w̃(r) is a smooth function and therefore w̃(r − ri) ' w̃(r −
rj) ≡ w̃(r). We can write the density distribution as the product of two factors
N (r, t) =W(r, t)S(r, t). The first one is a smooth envelope function:

W(r, t) =

(
M

~t

)3 ∣∣∣∣w̃(Mr~t
)∣∣∣∣2 , (A.6)

and the second one is the structure factor:

S(r, t) =
L∑

i,j=1

eiM [2r·(ri−rj)−(r2
j−r2

i )]/(2~t)g(i, j), (A.7)

where we have defined the first-order correlation function (Naraschewski et al. 1999)
as g(i, j) = 〈â†i âj〉 . This function gives an idea of the extension of phase coherence in
the system, and allows one to define a coherence length `c, after which phase coherence
vanishes. For example, in the superfluid regime in the limit J � U , phase coherence
extends over the whole lattice, and `c ' R, with R the size of the system. However, in
the Mott insulating regime, g(i, j) is limited to a single or a few sites and `c ' d. With
this in mind, we can evaluate the importance of the quadratic term ∝ r2

j − r2
i in the

phase of the structure factor. Considering sites distant of `c, this term takes different
values depending if the sites are close to the center of the cloud or on the edges:

M

2~t
(r2

j − r2
i ) '

M`2
c

2~t
for ri, rj � R, (A.8)

M

2~t
(r2

j − r2
i ) '

M`cR

~t
for ri, rj ' R (A.9)

We then see that, in the most restrictive case, this quadratic term will be negligible
for times:

tFF �
M`cR

~
(A.10)

In the experimental conditions described in chapter 2 this time corresponds to tFF '
10ms in the Mott regime and to tFF ' 300ms in the superfluid regime. For times
t ≥ tFF, and in analogy to the Fraunhofer approximation in optical diffraction, the
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Appendix A. Correlations in a gas released from an optical lattice

quadratic term in the phase can be neglected and the structure factor in TOF is
directly linked to the in situ structure factor:

S(k) =
L∑

i,j=1

eik·(ri−rj)g(i, j), (A.11)

just by making the substitution k = Mr/(~t).

A.2 Density correlations in a Mott insulator

Here, we expose the concepts behind the experimental results presented in section
2.2.5 and used to derive equation (2.27). In these experiments, we looked for density
correlations in time of flight. For this, we need to evaluate the following correlation
function (Fölling et al. 2005):

〈n̂(k)n̂(k′)〉 =W(k)W(k′)×∑
ijkl

ei[k·(ri−rj)−M(r2
j−r2

i )/(2~t)]ei[k′·(rk−rl)−M(r2
l−r

2
k)/(2~t)]〈â†i âj â

†
kâl〉, (A.12)

where we have used k = Mr/(~t). The expectation value in the sum can be rewritten
as the sum of two terms: First, an autocorrelation contribution, 〈â†i âl〉δkj, that leads to
a strong peak at k = k′ (i.e. r = r′ in TOF) and we omit it in the following discussion.
The second term is a normal ordered second-order correlation function 〈â†i â

†
kâj âl〉 and,

in a Mott insulator state with n0 atoms per site, where 〈â†i âj〉 = n0δij, it can be
rewritten as:

〈â†i â
†
kâj âl〉 = n2

0δijδkl + n2
0δilδjk + n0(n0 − 1)δikδijδil. (A.13)

We then have:

〈n(k)n(k′)〉 =W(k)W(k′)

[
n2

0L
2 + n2

0

L∑
i,j=1

ei(k−k′)·(ri−rj) + Ln0(n0 − 1)

]
. (A.14)

An interesting feature is that the terms in r2
α − r2

β have canceled out exactly, and
therefore, no far-field approximation is needed. The last term in the previous expression
vanishes for n0 = 1 and acts as a small offset otherwise, and therefore we neglect it in
the following. Finally, in order to get rid of the terms already present in the average
density profile N (k) = n0LW(k) [see equation (2.21)] we can normalize and obtain
the reduced second order correlation function:

g2(k,k′) =
〈n̂(k)n̂(k′)〉
N (k)N (k′)

= 1 +
1

L2

∑
ei(k−k′)·(ri−rj), (A.15)

or, equivalently:

g2(r, r′) = 1 +
1

L2

∑
eiM(r−r′)·(ri−rj)/(~t). (A.16)
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APPENDIX B

Inelastic two-body losses equations

B.1 Correlation functions

Two-body processes are related to the probability of finding two particles at the same
position r. In order to derive an equation for the loss rate, it is useful to define first
the one-body and two-body correlation functions (Naraschewski et al. 1999):

G1(r, r′) = 〈Ψ̂†(r′)Ψ̂ (r)〉, (B.1)

G2(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂ (r)Ψ̂ (r′)〉. (B.2)

The one-body correlation function reduces to the density at a given point when eval-
uated at r = r′, i.e. G1(r, r) = n(r). The second order correlation function is related
to the probability to find one particle at r and another one at r′. Here, we will be
concerned of two particles meeting at a same point, i.e., we want to evaluate the joint
detection probability, which can be written in terms of the normalized second order
correlation function as:

g2(r) =
G2(r, r)

n(r)2
. (B.3)

B.2 Equation for the losses

Let us now consider the following Hamiltonian (Dürr et al. 2009):

Ĥ =

ˆ
Ψ̂†(r)Ĥsp(r)Ψ̂ (r) d3r +

Re(g)

2

ˆ
Ψ̂†(r)2Ψ̂ (r)2 d3r, (B.4)

where Ĥsp = −~2∇2/(2m)+Vtr(r) is the single particle Hamiltonian and g = 4π~2a/m
the interaction strength with a the complex scattering length. Let us also consider the
dissipation operator responsible for the two-body losses:

L[ρ̂] = −Im(g)

ˆ [
Ĉ(r)ρ̂ Ĉ†(r)− 1

2
Ĉ†(r)Ĉ(r)ρ̂− 1

2
ρ̂ Ĉ†(r)Ĉ(r)

]
d3r, (B.5)

with Ĉ(r) = Ψ̂2(r).

169



B.2. Equation for the losses

The evolution of the system is then given by a Lindblad master equation for the density
matrix ρ̂:

∂ρ̂

∂t
=

1

i~
[Ĥ, ρ̂] +

1

~
L[ρ̂]. (B.6)

With this, we can now obtain the equation of motion for the density n(r) = 〈Ψ̂+(r)Ψ̂(r)〉:

∂n(r, t)

∂t
=

1

i~
tr
(
n(r, t)[Ĥ, ρ̂]

)
+

1

~
tr (n(r, t)L[ρ̂]) , (B.7)

where tr(·) denotes the trace. The first term conserves the total particle number.
However, for the second term we have:

∂n(r, t)

∂t
=

2

~
Im(g)G2(r, r, t) = −βG2(r, r, t), (B.8)

with β = −2Im(g)/~. The previous expression can be rewritten as:

∂n(r, t)

∂t
= −βn(r, t)2g2(r, t). (B.9)

B.2.1 Loss equation for a BEC

For a BEC we can perform a mean-field approximation 〈Ψ̂(r)〉 = ϕ0(r). With this, we
have G2(r) = n(r)2 and thus g2(r) = 1; therefore:

∂n(r, t)

∂t
= −βn(r, t)2. (B.10)

By integrating over the spatial coordinates, one obtains the evolution for the total atom
number.

B.2.2 Loss equation for a deep optical lattice

In an optical lattice, we can develop the field operator in the Wannier basis:

Ψ̂(r) =
∑
n,k

wn(r − rk)ân,k. (B.11)

Restricting ourselves to one single band, we can drop the n-index. Moreover, if we
consider deep lattices, the overlap between Wannier functions is negligible and we can
perform the following approximations:

n(r) = 〈Ψ̂†(r)Ψ̂(r)〉 =
∑
i,j

〈â†i âj〉
ˆ
w(r − ri)∗w(r − rj) d3r '

∑
i

〈n̂i〉, (B.12)

G2(r, r) '
∑
i

〈â†i â
†
i âiâi〉

ˆ
|w(r − ri)|4 d3r =W

∑
i

〈n̂i(n̂i − 1)〉, (B.13)

where we have put W =
´
|w(r)|4 d3r. We see that, by doing this, the pair correlation

function g2 = 〈n̂i(n̂i− 1)〉/〈n̂i〉2 becomes independent of the lattice site. If we now put
γ = βW we can write for each lattice site:

d〈n̂i〉
dt

= −γ〈n̂i(n̂i − 1)〉. (B.14)
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Appendix B. Inelastic two-body losses equations

If we consider a Mott insulator in the atomic limit with an initial filling n̄ = 2, we
can write the initial state as ρ̂ = |2〉〈2|, which connects through losses to ρ̂(t) =
p0(t)|0〉〈0| + p2(t)|2〉〈2|, with p0(0) = 0 and p2(0) = 1. Thus, the evolution of p2(t)
is found by projecting equation (B.14) onto |2〉. With this, we have 〈n̂i〉 = 2p2 and
〈n̂i(n̂i− 1)〉 = 2p2, which leads to ṗ2 = −γp2 or, summing through all the lattice sites:

dN2(t)

dt
= −γN2(t). (B.15)

171





APPENDIX C

Evolution of a discrete state coupled to a continuum

C.1 Optical Bloch equations

In chapter 4 we have dealt with a situation in which atomic pairs in the ground state
could be coupled to a state undergoing strong two-body losses, and thus, the coupling
slowly empties the ground state in an irreversible manner. A similar effect has been
observed for very weak coupling strengths in chapter 5, where atoms in the ground
state are coupled to a state which was broadened due to the inhomogeneities induced
by the trapping.

The problem of a discrete state |a〉, coupled to another discrete excited level |b〉 which
is itself coupled to a continuum, for instance, the vacuum state |vac〉, is a well-known
problem in quantum optics (Cohen-Tannoudji et al. 1992) [see figure C.1(a)]. The
evolution of the density matrix of such a system can be written as follows:

ρ̇vac = Γρbb, (C.1)

ρ̇aa = i
Ω

2
(ρab − ρba), (C.2)

ρ̇bb = i
Ω

2
(ρba − ρab)− Γρbb, (C.3)

ρ̇ba = −(iδ + Γ)(ρba − ρab) + i
Ω

2
(ρbb − ρaa) = ρ̇∗ab. (C.4)

Here, Ω is the strength of the coupling between the discrete and state |b〉, δ is the
detuning and Γ is the decay rate from state |b〉 towards |vac〉.

C.2 Effective Hamiltonian

If we are only interested in the population of the ground state |a〉, this situation can
be mapped into an effective two-level system [see figure C.1(b)] where the interaction
couples the discrete state |a〉 into a continuum of states |bk〉 of width Γ. We can thus
describe the processes studied in chapters 4 and 5 through the following non-Hermitian
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C.2. Effective Hamiltonian

Figure C.1 – (a): Two discrete states |a〉 and |b〉 are coupled with a strength given by
Ω. The excited state is itself coupled into a continuum of modes |vac〉 at a rate given
by Γ. (b): Effective two level system where a discrete ground state |a〉 is coupled into
a continuum of width Γ with a strength given by Ω.

Hamiltonian (Cohen-Tannoudji et al. 1992):

Ĥeff = ~
(

0 Ω/2
Ω/2 −δ − iΓ/2

)
, (C.5)

plus a stochastic quantum jump term that we ignore in the following. Here, Γ represents
now the effective width of the continuum, which is given by the two-body inelastic loss-
rate in the case of atom pairs, and by the effective broadening ∆ in the case of the
driven bulk BEC.

We can now compute the eigenvalues of this effective Hamiltonian:

λ± = −δ
2
− iΓ

4
± 1

2

√
Ω2 + δ2 − Γ2

4
+ iΓδ (C.6)

Let us now put δ = 0 and evaluate the following two limits:

• The strong coupling regime, with Ω� Γ/2: In this situation the eigenvalues read
λ± = −iΓ/4±Ω/2, which leads to Rabi oscillations between |a〉 and |b〉 at a rate
Ω with an exponentially decaying probability at a rate Γ/2 of being found in the
ground state:

Pg(t) = e−Γt/2 cos2

(
Ωt

2

)
. (C.7)

• The weak coupling regime, with Ω� Γ/2: In this case, both eigenvalues are com-
plex. In particular, the one with the smaller imaginary part reads λ+ = iΩ2/(2Γ)
and is purely imaginary, leading to an exponential decay of the population in the
ground state at a rate γeff = Ω2/(2Γ), as would be predicted by Fermi’s golden
rule for a discrete state coupled to a continuum with a density of states 1/Γ, with
Γ the width of the continuum:

Pg(t) = exp

(
−Ω2

2Γ
t

)
, (C.8)
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Appendix C. Evolution of a discrete state coupled to a continuum

which is also analogous to the Wigner-Weisskopf decay.

Thus, one expects a crossover from an exponentially damped oscillation, to a pure
decay at a rate Ω2/(2Γ). We show this in figure C.2, where we compare the prediction
of the OBEs to the approximations in equations (C.7) and (C.8) of the non-Hermitian
effective Hamiltonian Ĥeff
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Figure C.2 – Evolution of the population in the ground state for the system described
in the main text. We show the prediction using the optical Bloch equations (red lines)
or the decay predicted by equations (C.7) and (C.8) (dashed blue lines), for the strong
coupling regime (a), where damped oscillations appear, and the and weak coupling (b)
regime, where an irreversible decay analogous to the Wigner-Weisskopf decay appears.
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APPENDIX D

Derivation of the momentum relaxation collision rate

D.1 Framework

In this section we describe the effect of momentum relaxation in a homogeneous BEC
in the form of diffusive collisions. We denote the state of the BEC as |m,k〉, with
m = a, b describing the internal ground state and excited state, respectively, and ~k
the momentum.

Due to this relaxation, the BEC, considered as a small system S occupying the modes
{|a,k = 0〉} and {|b,k = kL〉}, is coupled to a big reservoir R of modes {|a, q〉 ⊗
|b,kL − q〉}, initially in the vacuum state |vac〉R. To simplify, we assume a homoge-
neous system of volume V = L3.

In a frame rotating at the laser frequency and under the rotating wave approximation,
the total Hamiltonian taking into account these collisions can be described as:

Ĥ = Ĥ0 + V̂AL + Ĥcoll. (D.1)

The first terms are the equivalent of equations (5.10), and (5.12) for a uniform system:

Ĥ0 =
∑
q

εqâ
†
qâq + (εq − ~δL)b̂†q b̂q, (D.2)

V̂AL '
∑
q

~ΩL

2
b̂†kL−qâq + h.c.. (D.3)

Here, εq = ~2q2/(2M) and âq (b̂q) anihilates an atom in the ground (excited) state
with momentum q. The Hamiltonian describing the diffusive collisions reads:

Ĥcoll '
gab
V

∑
q

â†q b̂
†
kL−qâ0b̂kL

+ h.c., (D.4)

and describes the processes linking the BEC to the reservoir. Before trying to derive
a master equation for S, it is convenient to write Ĥcoll in the interaction point of view
with respect to Ĥ0:

Ĥcoll =
gab
V

∑
q

D̂†qŜ eiαqt + h.c., (D.5)
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where we have defined two new operators: D̂†q = â†q b̂
†
kL−k and Ŝ = â0b̂kL

and we have
put αq = ~q(q − kL cos θ)/M , where θ is the angle between the laser wave vector kL

and the momentum of the scattered particle q.

D.2 Master equation for the BEC and collisional
rate

We assume that the whole system can be described by a density matrix ρ̂, which can
be factorized as ρ̂ = ρ̂S ⊗ ρ̂R with ρ̂(t = 0) = ρ̂S ⊗ |vac〉R〈vac|. The evolution of the
density matrix under the action of Ĥcoll is given by (Cohen-Tannoudji et al. 1992):

d

dt
ρ̂(t) = − 1

~2

ˆ t

0

[
Ĥcoll(t), [Ĥcoll(t

′), ρ̂(t′)]
]

dt′. (D.6)

However, we are not interested in the dynamics of the whole system, but only in the
effect that relaxation has on the BEC. With this in mind, we can trace over the reservoir
and derive an equation of motion for the density matrix of the BEC alone:

d

dt
ρ̂S(t) = − 1

~2

ˆ t

0

trR

[
Ĥcoll(t), [Ĥcoll(t

′), ρ̂(t′)]
]

dt′. (D.7)

After some algebra and the usual assumption of short-memory of the reservoir (Cohen-
Tannoudji et al. 1992), the only non-vanishing terms lead to the following coarse-
grained master equation:

d

dt
ρ̂S(t) ' C(ω)

[
2Ŝ ρ̂S(t)Ŝ† − Ŝ†Ŝ ρ̂S(t)− ρ̂S(t)Ŝ†Ŝ

]
(D.8)

Here, we have defined

C(ω) =
1

~2

g2
ab

V 2

ˆ ∑
q

e−iαqτ dτ =
Γ

2
− i∆, (D.9)

where we have introduced ∆, the collisional shift due to the reservoir and Γ, the
collisional relaxation rate2

∆ =
1

~2

g2
ab

V 2

∑
q

p.v.

(
1

αq

)
and Γ =

2π

~2

g2
ab

V 2

∑
q

δ(αq), (D.10)

where p.v. stands for the Cauchy principal value. The relaxation rate can be computed
by taking the continuum limit

∑
q → V/(2π)3

´
d3q and reads:

Γ =
σabvr

V
, (D.11)

where σab = 4πa2
ab is the inter-species scattering cross section, with aab the inter-species

scattering length and with vr = ~kL/M the recoil velocity.

Introducing this into equation (D.8), we have that the diffusive collisions lead to a
master equation that can be written in the Lindblad form:

d

dt
ρ̂S(t) = − 1

i~

[
~∆Ŝ†Ŝ , ρ̂S(t)

]
+ Γ

[
Ŝ ρ̂S(t)Ŝ† − 1

2
Ŝ†Ŝ ρ̂S(t)− 1

2
ρ̂S(t)Ŝ†Ŝ

]
, (D.12)

where the collisional shift can be subsequently absorbed in the definition of the detuning
when considering the contributions of Ĥsp and V̂AL in the total evolution.

2We use the identity
´∞
0

exp(iωt) dt = ip.v.(1/ω) + πδ(ω).
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Appendix D. Derivation of the momentum relaxation collision rate

D.3 Collisional contribution to the optical Bloch
equations

We are now interested in the contribution that diffusive collisions have in the evolution
of the expectation values of the coherences 〈b̂†kL

â0〉. The coherences obey the following
exact equations of motion:

d

dt
〈b̂†kL

â0〉(t) = −Γ

2
〈b̂†kL

â0N̂b(kL) + N̂a(0)b̂†kL
â0〉(t), (D.13)

where we have put N̂a(0) = â†0â0 and N̂b(kL) = b̂†kL
b̂kL

. To add this term into the lossy
GP model presented in section 5.3.2, we can now perform a mean-field approximation
and put 〈N̂ib̂

†
kL
â0〉 ' 〈N̂i〉〈b̂†kL

â0〉, leading to:

d

dt
〈b̂†kL

â0〉(t) = −σabvr

(
na + nb

2

)
〈b̂†kL

â0〉(t), (D.14)

where ni = Ni/V for a uniform system. Therefore, the momentum relaxation through
diffusive collisions can be accounted for by introducing a damping term ∝ σabvrn into
the mean-field equations (5.17) and (5.18).
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APPENDIX E

Adiabatic approximations

In this appendix, we discuss the criterion that needs to be satisfied to perform an
adiabatic evolution both for an Hermitian and a non-Hermitian Hamiltonian.

E.1 Hermitian Hamiltonians

Let us consider a system described by a parameter-dependent Hamiltonian Ĥ(ξ), de-
pending on the variable ξ(t). In its diagonal form, the Hamiltonian reads:

Ĥ(ξ)|ψn(ξ)〉 = En(ξ)|ψn(ξ)〉. (E.1)

Let us now consider a given state |Φ〉. We can express this state into the eigenbasis
defined by Ĥ(ξ):

|Φ(t)〉 =
∑
n

cn(t)|ψn[ξ(t)]〉, (E.2)

The dynamics of such a state can be cast in terms of the evolution of the amplitudes
cn(t) by projecting the previous equation onto an eigenstate |ψj〉:

i~ċn(t) = En(t)cn(t)− i~ξ̇
∑
j

〈ψn|∂ξψj〉cj(t), (E.3)

where we have put:

ξ̇ =
dξ(t)

dt
and |∂ξψj〉 =

d

dξ
|ψj〉. (E.4)

Let us now write:

c̄n(t) = exp

[
i

~

ˆ t

0

En(t′) dt′
]
cn(t). (E.5)

With this, the evolution of the c̄n(t) coefficients reads:

˙̄cn(t) = i
∑
j

exp

[
i

ˆ t

0

ωnj(t
′) dt′

]
αnj(t)c̄j(t), (E.6)

where we have defined the Bohr frequency ωnj = (En − Ej)/~ and

αnj(t) = iξ̇〈ψn(ξ)|∂ξψj(ξ)〉. (E.7)
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E.2. Non-Hermitian Hamiltonians

We now write equation (E.6) by separating the terms n = j from n 6= j:

˙̄cn(t) = −iϕn(t)c̄n(t) + i
∑
j 6=n

exp

[
i

ˆ t

0

ωnj(t
′) dt′

]
αnj(t)c̄j(t), (E.8)

where we have defined the term:

ϕn(t) = −iξ̇〈ψn|∂ξψn〉 ∈ R, (E.9)

leading to the so-called Berry phase (Berry 1984). For the second term in equation
(E.8) we note first that, since 〈ψn|ψj〉 = δnj one has ∂t〈ψn|ψj〉 = 0, i.e. 〈ψ̇n|ψj〉 =
−〈ψn|ψ̇j〉 and we can write the following:

d

dt
〈ψn|Ĥ(t)|ψj〉 = 〈ψ̇n|Ĥ(t)|ψj〉+ 〈ψn|∂tĤ(t)|ψj〉+ 〈ψ̇n|Ĥ(t)|ψj〉 (E.10)

= [En(t)− Ej(t)]〈ψn|ψ̇j〉+ 〈ψn|∂tĤ(t)|ψj〉 (E.11)
= 0, (E.12)

which allows us to write:

iαnj(t) = 〈ψn|ψ̇j〉 =
〈ψn|∂tĤ(t)|ψj〉
Ej(t)− En(t)

. (E.13)

And the evolution reads:

˙̄cn(t) = −iϕn(t)c̄n(t)−
∑
j 6=n

exp

[
i

ˆ t

0

ωnj(t
′) dt′

]
〈ψn|∂tĤ(t)|ψj〉
Ej(t)− En(t)

c̄j(t). (E.14)

At first order time-dependent perturbation theory, a given state prepared initially in an
eigenstate |Φ(0)〉 = |ψm(0)〉 remains in this instantaneous eigenstate |Φ(t)〉 = |Ψm(t)〉
provided (Messiah 1999):

~|〈ψn|∂tĤ(t)|ψj〉|
|Ej(t)− En(t)|2

� 1 ∀t, (E.15)

i.e., the rate of change of the Hamiltonian needs to be small compared to the Bohr
frequencies of the system, which is known as the adiabatic approximation. In particular,
if a level-crossing occurs, adiabaticity cannot be fulfilled.

E.2 Non-Hermitian Hamiltonians

Let us now consider a situation in which Ĥ(t) 6= Ĥ†(t). In this case, to express the
Hamiltonian in its diagonal form, we need both its left and right eigenvectors (Moiseyev
2011) (a biorthogonal basis):

Ĥ =
∑
k

~λk|ψR
k 〉〈ψL

k |, (E.16)

Here, the eigenvalues are complex ~λk = ~(ωk − iγk/2). And:

Ĥ|ψR
k 〉 = ~λk|ψR

k 〉,
〈ψL

k |Ĥ = ~λk〈ψL
k | ⇒ Ĥ†|ψL

k 〉 = ~λ∗k|ψL
k 〉.
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with the normalization condition 〈ψL
m|ψR

n 〉 = δmn. A given state of the system can be
expressed in term of the left and right eigenstates as:

|Φ(t)〉 =
∑
k

ck(t)|ψR
k (t)〉 =

∑
k

〈ψL
k |Φ(t)〉|ψR

k (t)〉. (E.17)

Keeping this in mind, we can derive the equivalent of the evolution equation (E.14) for
a non-Hermitian Hamiltonian depending on a parameter ξ(t):

˙̄cn(t) = −〈ψL
n |∂tψR

n 〉c̄n(t)−
∑
j 6=n

exp

[
i

ˆ t

0

[λn(t′)− λj(t′)] dt′
] 〈ψL

n |∂tĤ(t)|ψR
j 〉

~[λj(t)− λn(t)]
c̄j(t).

(E.18)
The adiabaticity condition in the non-Hermitian case can be stated as (Nenciu et al.
1992; Ibáñez et al. 2014):

|〈ψL
n |∂tĤ(t)|ψR

j 〉|
~|λj(t)− λn(t)|2

exp

[
−
ˆ t

0

Im[λn(t′)− λj(t′)] dt′
]
� 1 ∀t. (E.19)

This is known as the quasi-adiabatic condition. Here, there will be a global loss of pop-
ulation due to the non-zero imaginary parts, but the composition of a given eigenstate
will reimain the same, renormalized to the instantaneous total population.

There are several special situations arising in the non-Hermitian case that are worth
commenting. First, near the so-called exceptional points, where both the real part and
imaginary part of two eigenvalues become equal [see section 4.2.2 and Heiss (2012)].
Here, adiabaticity can never be fulfilled since the denominator vanishes and there is
inevitably strong mixing between the two crossing states (as in a regular level crossing
in an Hermitian Hamiltonian). Second, the λk are complex magnitudes, and thus,
the exponential term in equation (E.19) contains exponentially growing or decaying
terms. For the least dissipative eigenstate, so that Im[λn − λj] < 0∀j, all terms are
decaying: adiabaticity can then be fulfilled (but note that it is not guaranteed by the
decay alone). For the other states, at least one term in the sum grows exponentially.
Thus in the former case, dissipation actually helps to enforce adiabaticity while in the
latter makes it more difficult to achieve.
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APPENDIX F

Complementary information for chapter 6

F.1 Calibration of the spontaneous emission rate
(∗∗)

The on-resonance Rabi frequency ΩL characterizing the strength of laser excitation
is proportional to the square root of the laser power, ΩL = a

√
PL. The coefficient

a = Γ0/(wL

√
πIsat) is given by the laser waist (1/e2 radius) wL, the saturation intensity

Isat ' 0.14mW/cm2 and Γ0. We set ΩL to weakly saturate the optical transition such
that the excited state population is small. The rate of spontaneous emission for a single
atom in free space is well approximated by γsp ' sΓ0/2 = 520 s−1.

We observe Rabi oscillations on the intercombination transition induced by the dissi-
pation laser, and use the measured oscillation frequency to calibrate the coefficient a.
More precisely, we shine the dissipation laser on a BEC. For experimental convenience,
we fix the pulse duration T and vary the laser power PL. We record absorption images
after a time of flight long compared to Γ−1

0 , so that all excited atoms have decayed
back to the ground state when the image is taken. The width of the measured mo-
mentum distribution reflects the internal state of the atoms before decay due to the
recoil of excited atoms when a photon is spontaneously emitted. As shown in figure
F.1(a), the momentum width displays oscillations, and can be taken as a proxy of the
population transferred to the excited state. We infer the oscillation period aT from
such curves taken at resonance (δL = 0) by fitting a sinusoidal function to the data,
and obtained a ' 2π × 2.88MHz/mW1/2. We independently calibrated the waist of
the excitation laser using Gaussian optics propagation and found wL ' 1mm, leading
to a ' 2π × 2.76MHz/mW1/2, in excellent agreement with the measured value.

F.2 Two atoms and two wells (∗∗)
We illustrate the influence of interactions on the dissipative model in the simplest
case with two atoms and two lattice sites. The bosonic Hilbert space is spanned by
only three states, that can be taken to be {|S〉, |I〉, |A〉}, with the two symmetric and
antisymmetric combinations |S/A〉 = (|2, 0〉± |0, 2〉)/

√
2 and |I〉 = |1, 1〉, with |n,m〉 a

Fock state with n atoms in the left (L) well and m in the right (R) one. In this basis,
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F.2. Two atoms and two wells (∗∗)
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Figure F.1 – Calibration of Rabi frequency. (a): Rabi oscillations on the 1S0 − 3P1

transition with chosen pulse time T and varying laser power PL. The cloud size is
normalized arbitrarily and curves are vertically shifted for clarity. (b): Inferred (data
points) and calculated (solid line) oscillation period aT = ΩLT/

√
PL. Adapted from

Bouganne et al. (2019).

the Bose-Hubbard Hamiltonian reads

Ĥ = U (|S〉〈S|+ |A〉〈A|)− 2J (|I〉〈S|+ |S〉〈I|) . (F.1)

We now consider the dissipative evolution described by equation (6.12). The dynamics
can be analyzed conveniently using the formalism of quantum Monte-Carlo trajectories
(Haroche et al. 2013; Daley 2014) [see the discussion in section 4.2.1]. To this end we
rewrite the master equation as

d

dt
ρ̂ =

1

i~
[
Ĥ, ρ̂

]
+
γsp

2

(
∆̂ρ̂∆̂− 1

2
∆̂2ρ̂− 1

2
ρ̂∆̂2

)
, (F.2)

=
1

i~
(
Ĥeff ρ̂− ρ̂Ĥ†eff

)
+ J

[
ρ̂
]
, (F.3)

with the number difference operator ∆̂ = n̂L − n̂R. We introduced an effective Hamil-
tonian

Ĥeff = Ĥ − i~γsp

4
∆̂2, (F.4)

and a jump operator
J
[
ρ̂
]

=
γsp

2
∆̂ρ̂∆̂. (F.5)

In the Monte-Carlo picture, the dissipative evolution in an infinitesimal time interval
[t, t + δt] is stochastic. The system either stays in the state |Ψ(t)〉 evolved under
the effective Hamiltonian, or undergoes a quantum jump to the (unnormalized) state
∆̂|Ψ(t)〉 with probability δp = γspδt〈Ψ(t)|∆̂2|Ψ(t)〉/2.

In the limit J → 0, quantum jumps change the symmetric to the antisymmetric state
and reciprocally (thereby randomizing the relative phase), but do not occur for the Fock
state |I〉. When J 6= 0, the antisymmetric state |A〉 remains an eigenstate of Ĥeff with
eigenvalue U − i~γsp. The other two eigenstates are superpositions |±〉 = a±|I〉+ b±|S〉
of |I〉 and |S〉 with eigenvalues

E± =
U − i~γsp

2
± 1

2

√
U2 − (~γsp)2 + 16J2 − 2iU~γsp. (F.6)
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In the limit U → +∞, the eigenvalues become

E+ ' U − i~γsp +
4J2

U
, E− ' −

4J2

U
− i

4J2~γsp

U2
, (F.7)

where we restricted the expansions of the real and imaginary parts to leading orders
in J, γsp. We thus find that the lowest energy state |−〉 (|G′〉 in section 6.1.4) relaxes
with a rate ∼ γsp(2J/U)2, much slower than γsp due to the strong on-site interaction.
In contrast, the two other states |A〉 and |+〉 relax with a rate ∼ γsp.

F.3 Analysis of the momentum distributions (∗∗)
The main observable in our experiments is the measured atomic distribution after a
time-of-flight expansion of ttof = 20ms. In this section, we give the relevant details of
the direct analysis (figures 6.1 and 6.2) and of the fitting model (figures 6.3 and 6.4).

F.3.1 Direct analysis

Peak amplitude In figures 6.1 and 6.2, we show the time evolution of the central
k = 0 peak amplitude of the measured momentum distributions for varying lattice
depths V⊥. Generally, the evolution of the peak amplitude shows a dramatic change
between a fast decay for early times and an algebraic decay for longer times. For each
V⊥, we perform a fit using the phenomenological function presented in section 6.1.2:

npeak =
A

(1 + γit/κ)κ
, (F.8)

which interpolates between the two behaviors. We show the best-fit parameters in
figure F.2. The starting time of the algebraic regime is related to the disappearance
of long-ranged spatial coherence and narrow peaks in the momentum distribution, as
discussed further in section F.3.2.

Momentum width In figure 6.1, we show the time evolution of the root-mean-square
(RMS) size of the momentum distribution

∆kt =

ˆ
BZ1

k2
xN (k, t) d2k, (F.9)

where the integration is restricted to the first Brillouin zone BZ1. This restriction is
set in order to focus on the fundamental band dynamics, as well as including only the
central Bragg peak. The observed saturation at long times is consistent with a uniform
BZ1 of width 2klatt and RMS size klatt/

√
3 ' 0.29× 2klatt. Generalizing equation (6.3),

we use the following form to fit the growth of momentum width ∆k =
√

∆k2
t −∆k2

t=0:

∆k =
√

(∆k2
∞ −∆k2

t=0)[1− e−(γf t)2σ ]. (F.10)

Here ∆k∞ is the asymptotic size for long times, σ the exponent characterizing the short-
time power-law expansion and γf a rate related to the amplitude of the power-law. We
show the best-fit parameters in figure F.3. At short times, equation (F.10) reduces to
∝ tσ, and the case of normal diffusion is σ = 1/2. In figure 6.1(d) , we only show the
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Figure F.2 – Best-fit parameters on N (k = 0, t). (a)-(c): Best-fit parameters using
equation (F.8) versus horizontal lattice depth. A is the initial central peak amplitude
in the momentum distribution, κ is the exponent characterizing its long-time algebraic
decay and γi is its initial decay rate. Error bars are 1-sigma confidence intervals derived
from a χ2 fitting procedure. The shaded areas show the region where the Bose-Hubbard
model is not a valid description. Adapted from Bouganne et al. (2019).
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Figure F.3 – Best-fit parameters on ∆k. (a)-(c): Best-fit parameters using equation
(F.10) versus horizontal lattice depth. ∆k∞ is the final root-mean-square size, σ is the
exponent characterizing its short-time algebraic growth and γf is its rate. Error bars
are 1-sigma confidence intervals derived from a χ2 fitting procedure. The shaded areas
show the region where the Bose-Hubbard model is not a valid description. Adapted
from Bouganne et al. (2019).

short-time tσ behavior inferred from such a fit. Note that the algebraic behavior of
∆k is similar to the algebraic behavior of Cnn [figure 6.1(d) and 6.4]. However, inter-
band transitions and the initial structure factor of the gas makes this link non-trivial.
In other words, there is no simple connection between the phenomenological equation
F.10 and equation F.13.

F.3.2 Extraction of coherence from the momentum profiles

Band structure and notations

We consider a lattice with negligible tunneling along the vertical z direction. We
denote by ri = (xi, yi) a lattice site position, by w(r− ri) the Wannier function in the
fundamental Bloch band centered at ri, by âi the corresponding annihilation operator,
and by n̂i = â†i âi the number operator counting the occupation of site i.

In a cubic lattice, energy bands are labeled by a triplet of band indices {ν = (νx, νy, νz)}.
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Figure F.4 – Fitting the momentum profiles. (a): Momentum profiles N (kx, ky = 0)
along the x axis of the optical lattice for several dissipation times increasing from
bottom to top. The profiles correspond to times in the algebraic regime t ≥ κ/γi, and
in-plane lattice depth V⊥ = 7.3Er. The solid lines show a fit to the model in equation
(F.14). (b): Residuals of the fit. (c): Cnn contribution in the fits, where we show the
residual modulation provided by the part involving Cnn. The profiles are averages over
3 realizations of the experiment. Adapted from Bouganne et al. (2019).

Whenever it is relevant, we use similar notations as for the fundamental band: For
instance, Wannier functions in the band ν are noted wν and the annihilation op-
erators âν,i. If only the fundamental band is relevant, we omit the band index to
alleviate the notations. We gather all degenerate bands into energy levels indexed
by an integer ν. We neglect excited bands with νz 6= 0 and group the first rele-
vant bands according to ν = 0 ≡ {ν = (0, 0, 0)}, ν = 1 ≡ {ν = (1, 0, 0), (0, 1, 0)},
ν = 2 ≡ {ν = (1, 1, 0), (2, 0, 0), (0, 2, 0)}, etc. Note that we assume a perfect symmetry
between the two horizontal lattice arms, which is verified in the experiment up to about
5%.

Momentum distribution and time of flight

Under the assumption that interactions and finite time-of-flight effects can be neglected
(Pedri et al. 2001; Gerbier et al. 2008) [see appendix A], the time-of-flight distribution
mirrors the initial momentum distribution N (k) evaluated for k = Mr/(~ttof), with r
the observation point. Using the basis of Wannier functions wν(r−ri), the normalized
momentum distribution is given without further approximation by

N (k) =
∑

bandsν

Sν(k)Wν(k). (F.11)
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Here, Wν(k) = |w̃ν(k)|2 is a smooth envelope function with w̃ν the Fourier transform
of wν , and Sν is a normalized structure factor for band ν,

Sν(k) =
1

N

∑
i,j

eik·(ri−rj)〈â†ν,iâν,j〉, (F.12)

i.e. a discrete Fourier transform of the correlation function 〈â†ν,iâν,j〉.

Fitting model

The parametrization of the momentum distribution in equation (F.11) is very general,
but also too complicated to be of practical use. We truncate the sum in equation
(F.11) to make a fit to the experimental data tractable, and argue why this truncation
is justified in the algebraic regime which is the focus of the article.

Systems with short-range coherence We first consider a system characterized
by short-range coherence. The spatial correlation functions 〈â†ν,iâν,j〉 fall off quickly
with the separation R = ri − rj, in such a way that the physical properties are well
captured by the first two dominant terms with R = 0 and R = ±ex/y, where ex/y are
the basis vector of the square lattice corresponding to nearest-neighbors. This regime
corresponds in particular to the algebraic stage of the decay of spatial coherences that
we report in section 6.1, and corresponds to a structure factor in the fundamental band

S0(k) ' P0 +
∑

R=±ex/y

Cnn cos (k ·R) . (F.13)

Although atoms initially populate only the fundamental band, we expect that inter-
band transitions gradually populate the lowest excited bands. Since this inter-band
transfer is driven by incoherent spontaneous processes, it is reasonable to neglect co-
herence in these excited bands, corresponding to structure factors in the excited bands
Sν 6=0(k) = Pν . Here Pν = 1/N

∑
i〈â
†
ν,iâν,i〉 is the normalized population of the band

ν.

These assumptions result in the following model for the momentum distribution of a
system with short-range coherence,

N (k) ' S0(k)W0(k) +
∑

ν=1,··· ,3

PνWν(k), (F.14)

where the free parameters are the populations Pν and the nearest-neighbor coherence
Cnn in the fundamental band. The Wannier envelopes are calculated from the band
structure (Bloch et al. 2008) using the experimentally determined lattice depths.

Non-zero condensed fraction The preceding discussion assumes explicitly that
there is no condensate with long-range phase coherence. Initially, a condensate is
generally present (except for lattice depths high enough that the whole system is in
the Mott insulator regime). In a broken-symmetry approach (Pitaevskii et al. 2003), the
presence of a condensate translates in a non-vanishing expectation value of the bosonic
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field αri = 〈âν=0,i〉 6= 0 [see section 1.1.3]. We account for a non-zero condensed
fraction by assuming that the structure factor of the fundamental band can be written
as the sum of a coherent component and of a short-ranged one,

S ′0(k) = S0,BEC(k) + S0(k). (F.15)

The coherent component S0,BEC(k) describes the condensate as in the standard Gross-
Pitaevskii theory (Pedri et al. 2001). For simplicity, we model it as the sum of Gaussian
functions at the main reciprocal lattice vectors

S0,BEC(k) = A0GBEC(k) + A1

∑
K=±2klattex/y

GBEC(k −K). (F.16)

The first term corresponds to the central Bragg spot centered in the first Brillouin
zone (BZ), of amplitude A0, and the other terms to the lateral spots centered in all
copies of the second BZ, of amplitude A1. The function GBEC(k) is a normalized
Gaussian function of fixed width. We calculate the width accounting for near field
effects (Gerbier et al. 2008). Using the expressions given in (Gerbier et al. 2008) and
assuming a Thomas-Fermi profile, we obtain a near-Gaussian distribution of root-mean-
square width σBEC ' 0.13×klatt for the expansion time of 20ms used in our experiments.
The short-ranged component S0(k) is treated as discussed before in equation (F.13).

Fit results We fit equation (F.14) in combination with equation (F.15) to the mea-
sured momentum profiles. The free parameters are the amplitudes of the condensate
peaks A0, A1 in equation (F.16), the populations Pν and the nearest-neighbor coherence
Cnn in equation (F.14). We minimize the reduced

χ2 =
1

Ndof

ˆ
[nobs(k)− nfit(k)]2

σ2
obs

d2k, (F.17)

with nobs the observed distribution, nfit the fitting model in equation (F.15), σobs the
typical noise on the images and Ndof the number of degrees of freedom, i.e. the number
of data points minus the number of fit parameters.

Figure F.4 shows cuts through the 2D profiles along one lattice axis for V⊥ = 7.3Er,
together with the fits (solid lines), residuals of the fits and Cnn contribution in the
fits. The duration of the dissipation laser pulse increases from bottom to top. We
find a good agreement between the observed profiles and the data. The residuals are
comparable or lower than the imaging noise (corresponding to optical densities ∼ 0.02
and dominated by photonic shot noise and residual imperfections of the fringe reduction
algorithm). The reduced χ2 is roughly equal to 1 for all dissipation times. The Cnn

contribution in the fits corresponds to the quantity [S0(k) − P0]W0(k). We tried to
include second nearest-neighbor coherences in the fundamental band, or coherences in
the excited bands. We found that it does not improve the quality of the fits. We also
attempted to force coherence in the first excited band instead of the ground band, and
systematically found a markedly higher χ2 value.

Because of a finite noise in the images (coming mostly from photon shot noise), the
resolution in the determination of Cnn is also finite, and we estimate it around 0.01 to
0.02. Such a limitation explains the apparent long-times saturation of the signal for
the highest lattice depths V⊥ ≥ 9Er.
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Evolution of condensed fraction

At the start of the algebraic regime for t & κ/γi, the condensed fraction is almost
zero, and its contribution vanishes quickly. We are interested here in how it decays
for earlier times. We first note from figure F.2(c) that the initial decay rate γi is
substantially higher than γsp. Second, as shown in figure F.5(a), with the example value
of V⊥ ' 7.3Er, the diffraction peaks in the momentum distribution decay exponentially.
We fit a decay rate γBEC from such a decay and compare it to the initial decay rate γi

determined from the phenomenological analysis in equation (F.8) and shown in figure
F.5(b). The two analyses give decay rates in very good agreement. This suggests that
our interpretation that the initial decay of the coherence is dominated by the loss of
long-ranged coherence, captured by a condensed fraction in the cloud, is correct. The
results are only shown for V⊥ ≤ 8Er, for which the initial state is a superfluid. Above
this limit the initial condensed fraction is small and barely discernible from noise. This
arises from the vicinity of the Mott transition where strong interactions deplete the
condensate.

Figure F.5 – Initial coherence decay rates. (a): Decay of the fitted condensed fraction
peak amplitudes A0 and A1 [see equation (F.16)]. The in-plane lattice depth is V⊥ '
7.3Er. The solid lines are exponential fits of A0 and A1 with an identical rate γBEC '
7.1 γsp. (b): Comparison between both determinations of the initial decay rates: γi

extracted from equation (F.8) and γBEC extracted from fits as shown in (a). For
comparison, we also show the quantity 0.85U/~ as a solid line. Adapted from Bouganne
et al. (2019).

Interestingly, we observe that the trend is similar to the evolution of the interaction
strength [solid black line in figure F.5(b)], which indicates a probable role played by
the interactions in the initial decay of the coherence. A similar enhancement of the
decay rate compared to non-interacting systems was also observed in the numerical
calculations presented in Pichler et al. (2010).

F.4 Scaling behavior in the loss dynamics (∗∗)
We fit the atom number decay using an ad hoc function that reproduces well the
observed behavior,

N =
N0

1 + (γ2Bt)β
. (F.18)
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We show the best-fit parameters in figure F.6 (black circles). The fitted exponent β
approaches a constant value ∼ 1/2 [figure F.6(a)] for lattice depths V⊥ & 5Er.

In figure F.6(b), we show that the ratio ~γ2B/U between the fitted two-body loss rate
and the on-site interaction energy U saturates to a constant value ' 0.1 for lattice
depths above 5Er. In the Bose-Hubbard regime, the atom number decay is governed
by a strictly local rate equation of the form

dn̄i
dt

= −γ2B〈n̂i(n̂i − 1)〉, (F.19)

with n̄i = 〈n̂i〉 the mean density and

γ2B = K2

ˆ
|w(r)|4 d3r =

MK2

4π~2a
U. (F.20)

HereK2 is a two-body inelastic rate constant, and we emphasized that the ratio ~γ2B/U
is independent of the horizontal lattice depth V⊥. This matches our observations for
V⊥ ≥ 5Er, where the Bose-Hubbard description is justified. For lower lattice depths,
the assumption of strictly local losses underlying the Bose-Hubbard description starts
to break down: Additional terms not included in equation (F.19) (for instance, in-
volving nearest-neighbor density correlations ∝ 〈n̂in̂j〉, or density-induced tunneling
∝ 〈â†i n̂iâj〉) start playing a role in the decay. These additional processes are effectively
taken into account in the fitted loss rates. This explains the apparent increase of γ2B for
V⊥ ≤ 5Er, which should rather be taken as an artifact of the Bose-Hubbard description
for low lattice depths.

2 4 6 8 10 12 14
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0.0

0.5

1.0

β

(a)

2 4 6 8 10 12 14
Horizontal lattice depth V⊥(Er)
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γ

2B
/U

(b)

ad hoc
function

extended
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Figure F.6 – Analysis of atom losses. (a): Fitted exponent for the atom number time
evolution using equation (F.18) versus horizontal lattice depth. The exponent converges
to β = 1/2 for horizontal lattice depths V⊥ & 6Er. (b): Two-body loss rate determined
using the ad hoc function in equation F.18 (empty circles) or our extended model
presented in section 6.4 (filled squares) versus horizontal lattice depth. The shaded
areas shows the region where the Bose-Hubbard model is not a valid description. Error
bars are 1-sigma confidence intervals derived from a χ2 fitting procedure. Adapted
from Bouganne et al. (2019).

We present in section 6.4 an extended model including inhomogeneities and losses.
Using γ2B as a free parameter in this extended model provides an independent de-
termination [squares in figure F.6(b)]. Both sets of fitted values based either on the
empirical equation (F.18) or on the extended model are consistent with each other in
the Bose-Hubbard regime.
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F.4. Scaling behavior in the loss dynamics (∗∗)

Interpretation of the loss dynamics

Let us focus on the regime where the Bose-Hubbard description holds, and also assume
that the two-body correlation function entering equation (F.19) is of the form 〈n̂i(n̂i−
1)〉 = n̄2

ih(t), where h depends on time but not on the density n̄. Integration of equation
(F.19) is straightforward for a uniform system, giving the decay law

n̄i(t) =
n̄i,0

1 + γ2Bn̄i,0H(t)
, (F.21)

with H(t) =
´ t

0
h(t′) dt′ a primitive of h.

We now consider a two-dimensional system in a harmonic trap, as in our experiment,
where the local density approximation applies. The initial density then obeys a law of
the form n̄i,0 = n0(xi) with a reduced variable xi = (µ −MΩ2

⊥d
2r2

i /2)/U . Here µ is
the chemical potential, Ω⊥ the trap frequency and ri the position of site i in units of
d. Taking a continuum limit, the atom number N(t) =

∑
i n̄i obeys

N(t) =
2πU

MΩ2
⊥d

2

ˆ x0

0

n0(x)

1 + γ2Bn0(x)H(t)
dx, (F.22)

with x0 = µ/U . When t→∞, we find that the atom number decays according to the
asymptotic law

N(t)→ 2π
U

γ2B

x0

MΩ2
⊥d

2

1

H(t)
. (F.23)

The asymptotic decay depends weakly on the lattice depth: U/γ2B depends only on
atomic properties (see previous paragraph), and x0/MΩ2

⊥d
2 ' 2000/Er typically varies

very little with the lattice depth.

We discuss in section 6.1 that we observe a decay law empirically captured by equation
(F.18). From the previous discussion, we infer that this decay law would correspond
to a two-body correlation function 〈n̂i(n̂i− 1)〉 ∝ 1/

√
t. Asymptotically, the two-body

correlation function 〈n̂i(n̂i − 1)〉 vanishes. A system of hardcore bosons where only
empty or singly-occupied sites are allowed is an asymptotic state compatible with this
behavior: Since n̄i = p1 = 1−p0 and 〈n̂2

i 〉 = p1 for hardcore bosons, one necessarily has
〈n̂i(n̂i − 1)〉 = 0. A possible interpretation is thus that the system is driven to such a
hardcore bosons state by inelastic losses. This scenario is reminiscent of an experiment
performed on molecules in a one-dimensional optical lattice (Syassen et al. 2008).
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