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RESUMÉ

Les architectures de cloud computing sont composées d’un grand nombre de
serveurs puissants connectés les uns aux autres et au reste de l’Internet avec liens
réseau à grande vitesse. La latence entre un utilisateur final et le centre de données
cloud le plus proche se situe dans une plage de 20 à 40 ms sur les réseaux filaires,
et jusqu’à 150 ms sur les réseaux mobiles 4G. Bien que cette latence soit acceptable
pour de nombreuses applications, elle crée de nombreux défis pour certains types
d’applications comme par exemple les applications sensibles à la latence telles que
les applications de réalité augmentée. Ces applications exigent une latence de bout
en bout, y compris le délai de traitement et de réseau, de moins de 10-20 ms. Un
autre exemple de telles applications est l’analyse de données IoT. Le nombre crois-
sant de dispositifs IoT produit chaque jour de grandes quantités de données. Les don-
nées collectées sont généralement envoyées au cloud pour analyse ultérieure, ce qui
consomme une grande quantité de trafic Internet mondial. Une solution possible pour
relever ces défis consiste à héberger les applications à proximité des utilisateurs fin-
aux. Les infrastructures de type Fog computing étendent donc les ressources du cloud
(calcul, stockage et réseau) en distribuant largement un grand nombre de nœuds à
proximité des utilisateurs finaux. Par conséquence, la capacité de calcul est toujours
disponible à proximité des utilisateurs.

Les architectures informatiques de Fog computing sont composées d’un grand
nombre de nœuds informatiques dispersés dans une zone géographique telle qu’une
ville, une région ou même un pays entier afin de maintenir la proximité avec un grand
nombre d’utilisateurs. En conséquence, les ressources Fog sont souvent organisées
en un grand nombre de points de présence (PoP), où chaque PoP est composé d’un
petit nombre de machines faibles, telles que des nano-ordinateurs connectés les uns
aux autres et au reste de l’Internet avec des réseaux hétérogènes. Un utilisateur fi-
nal accède toujours aux applications depuis le point de présence le plus proche pour
maintenir une latence minimale.

Nous prévoyons que les applications Fog seront déployées à plusieurs reprises
dans différents PoPs : pour maintenir une latence minimale entre les applications
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hébergées dans le Fog et leurs utilisateurs finaux, les applications peuvent avoir be-
soin de se déplacer fréquemment d’un PoP à un autre. La mobilité humaine est loin
d’être aléatoire, et il a été prouvé qu’elle est prévisible malgré des différences impor-
tantes entre les habitudes de déplacement individuelles. Les applications Fog telles
que l’assistance cognitive portable qui vise à servir un seul utilisateur avec une latence
ultra-faible peuvent donc être déployées de manière répétée dans le même PoP que
l’utilisateur visite souvent (à la maison, au travail, etc.). Dans un autre exemple, des
applications de calcul intensif telles que l’analyse de flux vidéo en direct peuvent avoir
besoin de déployer plusieurs instances identiques dans le même PoP afin de passer
horizontalement leur capacité de traitement à l’échelle. Dans ces scénarios, le proces-
sus de déploiement d’application ne peut pas être considéré comme une opération
unique qui n’affecte pas la qualité d’expérience de l’utilisateur final. Au contraire, il de-
vient une partie intégrante du chemin critique vers la fourniture du service attendu par
les utilisateurs.

Le déploiement lent d’applications est donc un problème difficile dans les infras-
tructures Fog. Tout retard dans le déploiement de l’application peut forcer l’utilisateur
à attendre que l’application ait été entièrement déployée et soit prête à servir ses util-
isateurs. Lorsque l’utilisateur passe d’un PoP à un autre, il peut être nécessaire de
redéployer l’application pour maintenir une faible latence d’accès et réduire le trafic
réseau longue distance. Dans ces cas, tout retard dans le déploiement de l’application
peut interrompre le service en cours d’exécution, conduisant à une dégradation de
la qualité d’expérience (QoE) de l’utilisateur. Dans les deux scénarios, un temps de
déploiement d’applications minimal est essentiel pour fournir des services cloud trans-
parents aux utilisateurs finaux. Cette thèse vise donc à réduire autant que possible le
temps de déploiement des applications des applications Fog.

Nous avons étudié les raisons de la lenteur de déploiement des conteneurs Docker
dans des environnements Fog distribués, et identifié trois opportunités susceptibles
de réduire le temps de déploiement des conteneurs: (1) améliorer le taux de réus-
site du cache Docker, ce qui réduit les chances d’avoir à instalelr une nouvelle image;
(2) accélérer l’opération d’installation d’une image; et (3) accélérer le processus de
démarrage après la création d’un conteneur. Nous avons donc proposé trois solutions
différentes pour optimiser le temps de déploiement global des applications. Chaque so-
lution vise à résoudre l’un des problèmes ci-dessus dans le processus de déploiement.
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Contribution 1: Améliorer le taux de réussite du cache Docker

La première contribution de la thèse est d’améliorer le temps de déploiement des
applications en réduisant la probabilité d’avoir à installer de nouvelles images lors d’une
demande de déploiement d’un conteneur. Les serveurs Docker téléchargent une im-
age depuis un registre distant chaque fois qu’ils constatent que le l’image requise n’est
pas disponible dans le cache local. Docker stocke toutes les images téléchargées dans
son cache local et ne les supprime jamais jusqu’à ce que soit explicitement demandé.
C’est une stratégie judicieuse pour les serveurs puissants car la même image de con-
teneur ne devra pas être téléchargée à nouveau lors d’un futur déploiement du même
conteneur. Cependant, ce scénario ne convient pas dans les environnements Fog, car
les serveurs Fog ont une capacité de stockage limitée. En conséquence, l’ensemble
de travail des images fréquemment utilisées peut dépasser la capacité de stockage to-
tale du serveur. Un autre problème est que les caches Docker des nœuds co-localisés
peuvent contenir des copies redondantes des mêmes images.

Nous proposons un nouveau système de partage d’images Docker qui regroupe
les caches des serveurs Fog co-localisés grâce à un système de fichiers partagé.
Le résultat final est un cache d’image Docker beaucoup plus volumineux qui peut donc
partager plus d’images, ce qui réduit la probabilité de déploiement d’un nouvelle image
lors du déploiement d’un conteneur. Notre évaluation de ce système basé sur des
traces réelles de registres Docker montre que le partage des images Docker peut
considérablement améliorer le taux de réussite du cache et, par conséquent, réduire
le temps de déploiement des conteneurs entre 37% et 78% selon le scénario.

Contribution 2: Amélioration du déploiement des images Docker

Le partage d’images Docker entre des serveurs co-localisés améliore le taux de
réussite du cache d’images Docker et réduit la probabilité que l’image doive être in-
stallée lors d’une demande de déploiement d’un conteneur. Cependant, Docker doit
encore déployer les images quand leur déploiement est demandé pour la première fois
dans un POP, ou lors d’un défaut du cache. Le déploiement d’images Docker peut être
très lent, dans l’ordre de plusieurs minutes dans des nœuds Fog aux ressources lim-
itées tels que les nano-ordinateurs Raspberry Pi. Nous avons étudié la raison de cette
lenteur de déploiement en analysant la consommation de ressources de Docker lors
d’un déploiement. Nous avons constaté que cette lenteur est en grande partie due au
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fait que Docker sous-utilise les ressources matérielles disponibles: Docker télécharge
d’abord les différentes couches d’image simultanément, ce qui est très gourmand
en ressources réseau. Docker lance ensuite un cycle de décompression de l’image,
qui est gourmande en ressources processeur. Enfin l’extraction de l’image est gour-
mande en ressources d’entrées/sorties disque. En d’autres termes, il y a peu ou pas
de chevauchement entre l’utilisation des différences ressources matérielles durant le
déploiement de l’image.

Nous avons proposé trois optimisations pour améliorer l’utilisation de ressources
lors du déploiement d’images: (1) télécharger les couches d’images séquentiellement
pour optimiser le temps de téléchargement; (2) décompression multi-thread pour ré-
duire le temps de décompression des couches; et (3) organiser le processus en
pipeline d’entrées/sorties pour commencer à décompresser les couches immédiate-
ment après le téléchargement des premiers octets. Docker-pi combine toutes ces solu-
tions et par conséquent parallélise l’utilisation des trois ressources matérielles (réseau,
processeur et disque), ce qui permet de réduire le temps de déploiement des images
de 25% à 75% dans des Raspberry Pis en fonction de la capacité du réseau et de la
taille de l’image.

Contribution 3: éviter la phase de démarrage du conteneur

Après avoir créé un conteneur, Docker lance la phase de démarrage en lançant le
processus initial de l’application. Le démarrage se termine lorsque le conteneur est
prêt à accepter les requêtes de l’utilisateur final. Cette phase peut avoir un impact
significatif dans des environnements Fog lorsque la même image de conteneur est
lancée à plusieurs reprises sur plusieurs serveurs d’un point d’accès. La phase de
démarrage des conteneurs reste cependant identique à chaque démarrage. On peut
donc sauvegarder l’état d’un conteneur après qu’il ait terminé sa phase de démarrage,
et redémarrer le conteneur à partir de l’état sauvegardé lors des déploiements suivants.

Nous avons proposé un nouveau concept de déploiement de conteneurs utilisant
DMTCP qui permet de déployer un conteneur à partir d’une image sauvegardée d’un
conteneur démarré, ce qui permet d’éviter la phase de démarrage du conteneur.
Ce système utilise Ceph afin the partager efficacement les images entre plusieurs
serveurs Fog d’un même PoP. Notre évaluation montre que cette technique améliore
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la durée de la phase de démarrage d’un conteneur jusqu’à 60x selon le type de con-
teneur. Les surcoûts d’exécution de ce système restent raisonnables.

9





ABSTRACT

Cloud computing architectures consist of large number of powerful servers con-
nected to each other and to the rest of the Internet with high-speed network links. The
latency between a typical end user and the closest cloud data center comes in the
range of 20-40 ms over wired networks, and up to 150 ms over 4G mobile networks.
Although this latency is acceptable for many applications, it creates many challenges
for certain types of applications: for example, latency-sensitive applications like aug-
mented reality games require an end-to-end latency including network and processing
delay under 10-20 ms. Another example of such applications is IoT data analysis. The
growing number of IoT devices produces large amounts of data every day. The col-
lected data is typically sent to the core-cloud for further analysis. which consumes
large amount of global Internet traffic. An obvious solution to address these challenges
is to host applications near the end users. Fog computing therefore extends the cloud
resources (compute, storage and network) by broadly distributing large numbers of
compute nodes near the end users. Therefore, computational capacity is always avail-
able in the vicinity of the users.

In contrast, Fog computing architectures consist of large number of computing
nodes dispersed across a geographical area such as a city, a region or even a country
to maintain proximity with a large number of users. As a consequence, fog resources
are often organized in a large number of Point-of-Presence (PoP), where each PoP is
composed of a small number of weak machines such as single-board computers con-
nected to each other and to the rest of the Internet using heterogeneous networks. An
end user always accesses the applications from the closest PoP to maintain minimal
latency.

We expect that fog applications will be repeatedly deployed in different PoPs: to
maintain minimum latency between the applications hosted in the fog and their end
users, applications may need to roam frequently from one PoP to another. Human
mobility remains far from being random, and it has been proven to be predictable de-
spite important differences between individual travel patterns. Fog applications such
as wearable cognitive assistance which aims at serving a single user with ultra-low
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latency may therefore be repeatedly deployed in the same PoP the user visits often
(home, work, etc.). In another example, compute-intensive applications such as live
video feed analysis may need to deploy multiple identical instances in the same PoP
in order to horizontally scale their processing capacity. In these scenarios, the appli-
cation deployment process cannot be considered as a one-time operation which does
not affect the end-user’s quality of experience. Rather, it becomes an integral part of
the critical path towards providing the expected service to its end users.

Slow application deployment is therefore a challenging issue in fog infrastructures.
Any delay in the application deployment may force the user to wait until the application
has been fully deployed and is ready to serve users. When the user moves from one
PoP to another, the application may have to be re-deployed to maintain proximity, low
latency, and reduce long-distance traffic. In such cases, any delay in the application
deployment may interrupt the already-running service, leading to a degradation of the
user’s Quality-of-Experience (QoE). In both scenarios, a minimal application deploy-
ment time is essential to provide seamless cloud services to the end-users. This thesis
therefore aims to reduce the application deployment time of fog applications as much
as possible.

We studied the reasons behind the slow deployment time of Docker containers in
distributed fog infrastructures, and identified three opportunities that are likely to speed
up the container deployment time: (1) Improving the hit ratio of the Docker cache,
which reduces the chances of having to pull a new image; (2) Speeding up the image
pull operation itself; and (3) Speeding up the boot process after a container has been
started. We therefore proposed three different solutions to optimize the overall appli-
cation deployment time. Each solution aims to address one of the above issues within
the deployment process.

Contribution 1: Improving the Docker cache hit ratio

The first contribution of the thesis is to improve the application deployment time by
reducing the probability of having to deploy new images upon container deployment
requests. Docker servers download an image from a registry whenever they find that
the required image is missing in the local cache. Docker stores all the downloaded
images in its local cache and never removes them until explicitly asked for. This is a
sensible strategy in powerful servers as the same container image will not need to be
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downloaded again in future deployment of the same container. However, this scenario
is not suitable in fog environments, as fog servers have limited storage capacity. As a
consequence, working set of images may grow larger than the total storage capacity of
the server. Another issue is that the image caches of the co-located nodes may contain
redundant copies of the same images.

We proposed a new Docker image sharing framework which aggregates the im-
age caches of co-located fog servers using a distributed file system. The end result
is a much larger Docker image cache that can share more images, which reduces
the probability of deploying a new image upon a container deployment request. Our
performance evaluation of the proposed framework using a real-world Docker registry
workload shows that sharing the Docker images can significantly improve the hit ratio
and, as a result, reduce container deployment time between 37% and 78% depending
on the scenario.

Contribution 2: Improving the Docker image deployment

Sharing Docker images among co-located servers enhances the Docker cache hit
ratio and reduces the probability of image pull upon a container deployment request.
However, Docker still needs to deploy an image when it is requested for the first time
in a PoP or upon a cache miss. Docker image deployment can be very slow, in the
order of a couple of minutes in resource-constrained fog nodes such as single-board
Raspberry Pi. We investigated the reason behind this slow deployment by analyzing
the resource consumption of Docker upon a image deployment. We found that this
slow deployment time is largely due to the fact that Docker under-utilizes the available
hardware resources during deployment: Docker first downloads the different image
layers simultaneously which is very network intensive, followed by a cycle of CPU-
intensive decompression and then disk-intensive extraction. In other words, there is
little or no overlapping among the usage of different hardware resources during the
image deployment.

We proposed three optimizations to improve the resource utilization of Docker dur-
ing image deployment: (1) Sequentially downloading the image layers to optimize layer
download time; (2) Multi-threaded decompression to reduce the decompression time
of layers; and (3) I/O pipelining to decompress the layers immediately after the first few
bytes have been downloaded. Docker-pi combines all these solutions and therefore
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parallelizes the usage of the three hardware resource (network, CPU and disk), result-
ing in reducing the image deployment time by 25% to 75% in Raspberry Pis depending
on the network capacity and the image size.

Contribution 3: Avoiding the container boot phase

After creating a container, Docker starts the boot phase by launching the starting
process of the application. Booting terminates when the container is ready to accept
end user requests. This phase may have a significant impact in fog environments when
the same container image is being repeatedly launched, created, and booted in multi-
ple servers of a PoP. The boot phase of containers however remains the same every
time. We can therefore save the state of a container after completing its boot phase and
then later restart the container from the saved state in the subsequent deployments.

We proposed a new container deployment design which uses DMTCP to deploy
the container from a booted checkpoint image, therefore skipping the container boot
phase. The design uses Ceph distributed storage to store container environments and
checkpoint images to efficiently share them across fog servers. Our evaluation shows
that this technique improves the container boot phase time up to 60x depending on
the type of container. The checkpointing overhead of the proposed system remains
reasonable.
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CHAPTER 1

INTRODUCTION

Cloud computing relies on large numbers of powerful computing nodes connected
to each other and to the rest of the Internet with reliable high-capacity networks. The
combination of flexibility, scalability and manageable cost of cloud infrastructures dic-
tated the immense popularity of this new computing paradigm. However, cloud re-
sources are concentrated in a small number of data centers, usually far from the end-
users they are serving. The latency between an end user and the closest available
cloud data center is typically in the range of 20-40 ms over wired networks, and up
to 150 ms over 4G mobile networks [44]. Although this is perfectly acceptable for a
wide range of useful applications, a number of latency-sensitive applications such as
augmented reality games require end-to-end latency including network and process-
ing delay under 10-20 ms [1, 30]. These constraints make it impossible to host such
latency-critical application backends in the cloud. In another use case, the growing
number of Internet of Things (IoT) devices produces a large volume of sensor data ev-
ery day [42]. Sending all the collected data to the core cloud using long-distance Wide
Area Networks (WAN) for further processing would consume enormous amount of net-
work resources [15]. An obvious solution to address these problems is to place cloud
server nodes extremely close to the users, within a couple of network hops. In fog com-
puting, computational nodes are broadly distributed in a large number of geographical
locations so computation capacity is always available in immediate proximity of any end
user. Fog computing promises to deliver low latency between the end users and their
application and to reduce the usage of long-distance networks. Some other examples
of using fog computing for different purposes include: privacy and security [159], ser-
vice management [135], computational offloading [139], service monitoring [126] and
content caching [133].

Fog computing architectures are fundamentally different from traditional cloud ar-
chitecture: to maintain proximity with a large number of users, fog resources must nec-
essarily be dispersed across a large geographical area such as a city, a region or even
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an entire country [32]. In contrast, clouds are typically organized with a handful of ex-
tremely powerful data centers connected to each other by dedicated ultra-high-speed
networks. As a consequence, fog resources are often organized in a large number of
Points-of-Presence (PoPs) dispersed across the covered area. Each PoP may be com-
posed not of datacenter-grade servers but rather of a small number of resource-limited
nodes such as single-board computers which are connected to each other and with the
rest of the Internet using heterogeneous commodity networks [75, 153]. Users usually
connect to the closest PoP in order to access the services offered by the fog platform.

Fog applications must often be repeatedly deployed in different fog servers: in par-
ticular, to maintain proximity between the applications deployed in the fog and their end
users, applications may need to roam frequently from one PoP to another, whereas
cloud applications are usually placed in one or more dedicated machines irrespective
of users’ mobility [28]. The mobility of human beings is far from being random, and it has
been shown that despite significant differences between individual travel patterns, user
mobility remains remarkably repetitive and predictable [25, 175]. A fog application such
as wearable cognitive assistance which aims at serving a single user with ultra-low la-
tency may therefore repeatedly deploy the application in the same server locations the
user visits often (home, work, etc.) [74] . In another case, compute-intensive applica-
tions such as live video feed analysis may need to deploy multiple identical instances
in the same PoP in order to horizontally scale its processing capacity [208]. In these
scenarios, the application deployment process cannot be considered as a one-time op-
eration which does not affect the end-user’s quality of experience. Rather, it becomes
an integral part of the critical path towards providing the expected service to its end
users.

Slow application deployment is therefore a challenging issue in fog infrastructures.
Any delay in the application deployment may force the user to wait until the application
is being fully deployed and ready to serve users. When the user moves, the applica-
tion may have to be re-deployed in multiple fog PoPs to maintain proximity, low latency,
and reduce long-distance traffic. In such cases, any delay in the application deploy-
ment may interrupt the already-running service, leading to a degradation of the user
Quality-of-Experience (QoE). In both scenarios, a minimal application deployment time
is essential to provide seamless cloud services to the end-users. This thesis there-
fore aims to reduce the application deployment time of fog applications as much as
possible. We define application deployment time as:

24



"The time elapsed after giving the application deployment instruction until the appli-
cation is ready to serve users."

Docker is by far the most popular application deployment tool in fog environment [7].
It is widely used to deploy containers, either directly or via the use of distributed con-
tainer orchestration frameworks such as Kubernetes [164]. Docker virtualizes hard-
ware resources such as compute, network, storage resources with the help of special
Linux kernel features [91]. The primary reasons for the increasing popularity of Docker
containers are their lightweight nature, and the ease of encapsulating, deploying, and
running applications. Instead of installing a full operating system inside a virtual ma-
chine, all Docker containers in a single host machine share the underlying Linux kernel
which makes container images much smaller and faster to deploy compared to virtual
machine images [170]. In fog, which is often made of weak machines such as Rasp-
berry Pis, resources have very limited processing, storage and I/O throughput [153]. In
such environment, containers are considered the best tool for cloud application deploy-
ment that give better performance over traditional virtual machines [123]. We therefore
choose to use Docker as our basis for studying the cloud application deployment in fog
computing environment.

Figure 1.1 shows a flowchart of the Docker application deployment process. Appli-
cation deployment starts by giving the container deployment instruction with the ap-
plication image name and tag and other container configuration. Docker maintains an
image cache in the local disk of the server where images and other configurations are
stored. Upon receiving the deployment command, Docker first checks whether the im-
age of the application is already present in the local cache. If the image is not cached,
Docker triggers the image pull command with the name and tag of the image. The de-
ployment starts by downloading all the layers of the image from a registry server and
finally building the image. Once the image is available in the local cache, Docker then
creates a container file system on top of the image and creates the container with the
given configuration. The application finally needs to start before being able to serve
its users. Some applications such as mysql require significant amount of time to boot
before being ready to server their end-users.

Within this application deployment process, we identify three opportunities that are
likely to speed up the application deployment: (a) Improving the hit ratio of the Docker
cache, which reduces the chances of having to pull a new image; (b) Speeding up
the image pull operation itself; (c) Speeding up the boot process of the container. We
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Figure 1.1 – Flowchart of Docker application deployment process.

therefore propose three different solutions to optimize the overall application deploy-
ment time. Each solution aims to address one the above issues within the deployment
process. We now discuss each proposed contribution of the thesis.

1.1 Contributions

The main contributions of this thesis are as follows:
— Contribution #1: Improving Docker’s cache hit ratio.

Docker was designed with the assumption it would mostly run in large-scale
powerful machines. Docker stores all the running container images in the Docker
cache of the local disk to avoid downloading the same image again in case the
same container is deployed in the future. Because disk space is not expected
to be an issue, Docker never removes the images from the cache unless explic-
itly asked to do so. This design choice however creates an important storage
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issue in fog infrastructures where the servers have limited storage capacity and
containers are frequently started and stopped. If the size of the working set of
container images is greater than the server’s storage capacity then the same im-
age may need to be repeatedly downloaded, utilized and deleted. Another effect
of keeping separate Docker cache in each node is that the caches of multiple
fog nodes in the same PoP may contain highly redundant content due to some
popular images being deployed multiple times in different machines.
We therefore propose a new Docker image sharing framework that allows multi-
ple fog nodes in the same PoP to share the content of their Docker images. In-
stead of keeping a separate local Docker cache in each node, we aggregate the
storage of co-located fog nodes in a PoP. The end result is a much larger cache
for each PoP that can store more images, significantly reducing the chances of
downloading the images from the long-distance network upon container deploy-
ment. Our evaluation based on a real-world Docker registry deployment trace
workload shows that sharing the images delivers significant cache hit ratio im-
provements, leading to a reduction of deployment time between 37% and 78%
depending on the scenario.

— Contribution #2: Speeding up the Docker image pull process.
Although sharing caches significantly improves the cache hit ratio, Docker still
needs to download the images when applications are deployed for the first
time in a PoP or upon a cache miss. Docker takes several minutes to deploy
an image in a resource-constrained fog server such as single-board Rasp-
berry Pi. This slow deployment however is not only due to the fact that these
resource-constrained machines have limited processing, storage, I/O and net-
work throughput. We show that Docker implementation inefficiencies creates
unnecessary delay. The standard image deployment process starts by down-
loading image layers from a registry server in parallel (with a default parallelism
degree of 3) and then goes through multiple decompression and disk write cy-
cles to extract the layers sequentially beginning from the first layer. The above
process leads to three important issues in the image deployment: (a) Down-
loading multiple layers in parallel delays the download process of the first layer
and therefore, postpones the moment its decompression and extraction phase
can start. Therefore, delaying the downloading of the first layer ultimately leads
to slowing down the extraction phase; (b) Docker image layers are shipped as
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compressed tar files. Upon downloading an image file, Docker decompresses it
using single-threaded decompression gzip which account only for ∼37% CPU
utilization of all the machine’s cores. A significant amount of deployment time is
spent in decompressing the layers; (c) Each image layer is sequentially down-
loaded, decompressed and extracted to disk. In other words, there is very little
overlapping between the three activities of the different hardware resources (i.e.
network, CPU and disk) while deploying the image.
To address the above issues, we propose three optimization solutions which ad-
dress these issues in the standard Docker image deployment process. We then
present Docker-pi which combines these optimizations together. We show that
Docker-pi reduces the image deployment time by a factor of up to 4 depending
on the size of the image and the available network bandwidth. Docker-pi also
reduces the image deployment time by 23–36% in powerful data-center grade
servers.

— Contribution #3: Reducing the container boot time.
Once an image is available in the local cache, Docker creates a container file
system on top of the image and then creates the container itself with the given
configuration. The application then needs to boot inside the container before
being ready for usage. We found that creating a Docker container takes a neg-
ligible amount of time (less than 1 s). However, the application boot process
may take significant time for some applications: for example, the popular mysql
database application takes about 10 s to boot the application before accepting
user’s commands [142]. The significant boot time leads to slow down the appli-
cation deployment.
To address the above issue, we propose a container deployment model that
uses process checkpoint/restart to launch the application inside the container.
The checkpoint/restart allows one to save the state of a running application by
storing the process information of the application such as memory pages, open
sockets and open files in a file or checkpoint image [129]. The application can
then be restarted from the checkpoint image file and continue its execution from
there on. We propose to use DMTCP to start the application upon creating the
container and checkpoint it after completing the boot phase [10]. The resulting
checkpoint image contains a full snapshot of the application after the boot phase.
In later deployments DMTCP is instructed to launch the application from the
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checkpoint image, and therefore, skip the application boot phase. The evaluation
of this proposed container deployment model based on Edge-sharelatex [182]
has shown that it can reduce the boot time upon deployment which results in the
improvement of container boot time by up to 60x times over the standard Docker
with reasonable checkpoint overhead.

1.2 Published papers related to the thesis

The following manuscripts are currently published or under review:
Journal articles

1. Docker-pi : Docker container deployment in Fog Computing Infrastructures, Arif
Ahmed and Guillaume Pierre, Inderscience International Journal of Cloud Com-
puting, In press.

Conference papers

1. Docker Container Deployment in Distributed Fog Infrastructures with Check-
point/Restart, Arif Ahmed, Apoorve Mohan, Gene Cooperman and Guillaume
Pierre, The 8th IEEE International Conference on Mobile Cloud (IEEE Mobile
Cloud), Apr 2020, Oxford, UK.

2. Docker Image Sharing in Distributed Fog Infrastructures, Arif Ahmed and Guil-
laume Pierre, The 11th IEEE International Conference on Cloud Computing
Technology and Science (IEEE CloudCom), Dec 2019, Sydney, Australia.

3. Docker Container Deployment in Fog Computing Infrastructures, Arif Ahmed
and Guillaume Pierre, IEEE International Conference on Edge Computing (IEEE
EDGE), Jul 2018, San Francisco, CA, United States.

Posters

1. Efficient Container Deployment in Edge Computing Platforms , Arif Ahmed and
Guillaume Pierre, RESCOM 2017 summer school – Le Croisic, France. Jun
2017.

1.3 Organization of the thesis

This thesis is organized in 7 chapters:
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Chapter 2 presents the technical background of the thesis. First, we present an
overview of cloud computing and identify some of its limitations. We then define fog
computing and explain how it addresses the limitations of cloud computing. Finally, we
present an overview of Docker, describe its important components, and how applica-
tions are deployed inside Docker containers.

Chapter 3 presents the state-of-the-art of the thesis. We first present the different
opportunities to improve deployment process within the Docker container deployment
processes. We then describe each of the proposed optimization solutions and also
shows how our contributions complement them. Finally, we conclude the chapter by
presenting a taxonomy of the state of the art of Docker container deployment optimiza-
tions.

Chapter 4 starts by demonstrating the potential benefits of sharing individual Docker
cache of fog servers in a PoP. We then identified different issues to build a shareable
Docker image cache in fog computing environments. We then show how the proposed
Docker image sharing framework addresses each issue. The chapter is concluded with
the performance evaluation of the image cache sharing framework with two bench-
marks: micro-benchmarks and macro-benchmarks in a fog environment testbed.

Chapter 5 illustrates the experimental study of Docker image deployment and then
presents an analysis of resource utilization of Docker while an image is being deployed.
We then show the incumbencies in Docker image deployment process which lead to
slow image deployment. We then present the three optimization solutions and their
performance improvement over the standard Docker. The chapter is concluded with an
interesting discussion of Docker-pi in various aspects.

Chapter 6 presents the scope of checkpoint/restart tools in particular DMTCP to
improve Docker container deployment. We then identify the different challenges while
integrating DMTCP with Docker for container deployment. We present the proposed
container deployment design. Finally the chapter is concluded by showing the perfor-
mance evaluation of the our design with a use case.

Chapter 7 presents the conclusion of the thesis. We briefly remind the importance of
application deployment time in distributed fog infrastructures. We then summarize the
different contributions of the thesis to improve the application deployment time. Finally,
we highlight the number of directions that we may study in the future to further reduce
the application deployment time in distributed fog infrastructures.
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CHAPTER 2

BACKGROUND

This chapter presents the technical background of the thesis. First, we present an
overview of cloud computing and identify some of its limitations. We then define fog
computing and explain how it addresses the limitations of cloud computing. Finally, we
present an overview of Docker, describe its important components, and how applica-
tions are deployed inside Docker containers.

2.1 Cloud computing

Cloud computing is an IT organization paradigm that aims to provide resources (in-
frastructure, platform, software) on-demand to customers [36, 72]. Traditionally, small
and medium-sized enterprises had to own IT infrastructures and hire software devel-
opers and system administrators to deploy services, which resulted in large costs of
ownership. Cloud computing offers to deliver virtual resources (both hardware and soft-
ware) that can be accessed from anywhere through Internet at a cost depending on the
usage of the resources. With the advent of cloud computing, enterprises no longer have
to own their IT infrastructures and other resources to deploy services, and may instead
exploit the resources provided by the cloud. Therefore, those enterprises may reduce
their infrastructure cost and instead invest solely on application-level innovation [62,
155]. The profit brought by the cloud computing attracts many companies to migrate
applications from on-premise to cloud infrastructures. As a result, it is estimated that in
2020, 83% of enterprise workloads will be running in the cloud [45].

2.1.1 Cloud computing architecture

Figure 2.1 presents a general architecture of cloud computing. Cloud computing
is based on a centralized architecture and is composed of many elements (servers,
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Figure 2.1 – Cloud computing architecture.

switches, firewalls etc.). They are loosely coupled with each other and with the Internet.
The architecture has two main parts [178]:

— Front-end: The front-end refers to the client part of services or applications de-
ployed in the cloud platform. It consists of application interfaces such as com-
mand lines or Graphical User Interfaces (GUI) that are required to access the
cloud computing platforms. The front-end part connects to the cloud services
through the Internet.

— Back-end: The back-end parts are mainly composed of resources i.e. compute,
storage, network as well as software. They are deployed in a handful of data-
centers which are connected to each other and to the rest of the Internet with
ultra high-speed backbone networks [67]. Some of the popular cloud service
providers are Amazon Web Services [84], Google cloud engine [106], and Mi-
crosoft Azure [110].

2.1.2 Limitations of cloud computing

The combination of flexibility, scalibility and manageable cost of cloud infrastruc-
tures dictated the immense popularity of this new computing paradigm. However, cloud
platforms also exhibit limitations. Cloud computing platforms are consist of a handful
of powerful datacenters which are connected with high speed networks. However, the
small number of datacenters implies that they are deployed very far away from end-
users. Users therefore usually use Wide-Area Networks (WAN) to access the services
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deployed in a cloud platform. This architecture leads to important issues which limit the
performance of some applications:

a) Latency-sensitive applications such as augmented-reality games require a max-
imum end-to-end latency in the order of 20 ms (including network and processing de-
lays) [44]. However, the latencies between an end user and their closest data cen-
ter come in the range of 20-40 ms (in wired networks) and 40-150 ms (in 4G mobile
networks) [1, 30]. Such network delays make it impossible to run the server side of
latency-sensitive applications in cloud datacenters [38].

b) A growing number of IoT devices produce large volume of sensor data every
day [42]. The server side of IoT data analysis applications is usually deployed in a
cloud data center in order to process and analyze the collected data. However, sending
such enormous amounts of data to the cloud over long-distance WAN consumes large
amount of unnecessary resources and energy [15].

2.2 Approaches to address cloud computing limita-

tions

A number of computing paradigms have been proposed in recent years to address
the limitations of cloud computing [136]. For examples, Edge Computing enables com-
putational capacity at the edge of the network through small data centers that are
placed close to end-users (within 1 or 2 hops away from the users) [111]. However,
due to the low processing capacity of small datacenters deployed in Edge computing,
the total end-to-end latency (including network and processing delay) may end up being
actually greater than using simple cloud computing [171]. A closely related paradigm
is Mobile-Edge Computing which focuses on delivering cloud services with minimum
latency by deploying computing resources in mobile phone base stations [64]. How-
ever, mobile edge computing mainly serves applications which are accessible from
mobile clients using cellular network therefore, typical applications are limited to use
cases such as content delivery network [66, 172], computational offloading [39], health
monitoring [37] etc.

Fog computing was then introduced with the aim of addressing the limitations of
both cloud and edge computing. It aims to extend cloud computing datacenters re-
sources by bringing additional compute, storage and networking resources in the close
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proximity of its end users [34, 53]. By deploying the server part of applications between
the cloud and its end user, fog computing promises to enhance performance of applica-
tions that need extremely low latency or that process data locally where it is produced,
while retaining large amounts of resources in the cloud for non-critical parts.

2.2.1 Fog computing definitions

Defining fog computing precisely is still an ongoing discussion topic, and many
slightly different definitions have been proposed. They however all share a common
characteristic: resources are available between the cloud and its end users in order
to minimize the end-to-end latency of the applications. We present these proposed
definitions and highlight the particularity in each individual definition:

1. In 2012, CISCO proposed the first concept of fog computing [32, 85]. IoT deploy-
ment requires mobility support, location awareness, geo-distribution and low la-
tency. The authors argue that fog computing can provide all these requirements
by extending datacenters with additional resources located close to end users.

“Fog computing is a highly virtualized platform that provides compute, storage,
and networking services between IoT devices and traditional cloud computing
data centers, typically, but not exclusively located at the edge of network.”

2. In 2014, Vaquero et al defined Fog computing as a computing paradigm that
can provide network functionality, service management, with a particular focus
on privacy [188]:

“A large amount of heterogeneous, ubiquitous, and decentralized devices that
can cooperate to form a network for storage and processing without third-party
intervention.”

3. In 2017, the OpenFog Consortium was established to standardize Fog architec-
ture and protocols to support cloud computing services in IoT devices and edge
ecosystem [149]. OpenFog emphases the “horizontal” aspect which means fog
infrastructure consist of a large number of fog nodes that are distributed across a
large geographical location. The same standard was later adopted by IEEE [14].

“A horizontal, system-level architecture that distributes computing, storage, con-
trol and networking functions closer to the users along a cloud-to-thing contin-
uum.”
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Figure 2.2 – Distributed fog computing architecture.

Since the OpenFog Consortium was established to standardize fog protocols and
their definition was accepted by IEEE, we expect this definition will be used in future
fog computing research. Therefore, we adopt the same definition given by OpenFog
Consortium in this work.

2.2.2 Fog computing architecture

Figure 2.2 presents a distributed fog computing architecture. The architecture con-
sists of 3 layers.

1. Edge Layer: The bottom layer is the edge layer which is closest to the end users
and their physical environment. It mainly consists of IoT sensors, mobile phones,
smart vehicles, wearable devices, street cameras etc. The devices belonging
to this layer collect data from their surroundings and send them to the upper
layers for further processing and storage. Depending on the applications, they
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may also receive results back from the fog that allows them to actuate their
environments. The edge devices usually use available access network (such as
cellular network, WiFi and LoRa) to connect to the upper layers.

2. PoP Layer: The intermediate layer between end devices and the cloud is the
PoP layer. A fog infrastructure aims to bring compute, storage and networking
resources in the immediate proximity of its end users. It is therefore composed
of widely distributed small groups of servers also known as Points of Presence
(PoP) placed in strategic locations such as shopping malls, bus stations, streets,
stadiums etc. across a potentially large geographical area. Each PoP contains
a small number of devices such as single-board computers [200], drones [141],
vehicles [208] etc. with limited compute and storage capacity. These devices
can be either static or mobile [137, 185]. The servers which belong to the same
PoP are collocated with each other which implies that they may easily be con-
nected to each other using a fast local-area network. The devices in a PoP layer
are equipped with IP networking and thus able to communicate with rest of the
Internet and the cloud generally using commodity networks. Fog applications
that need compute, storage and network resources close to the end users are
deployed in this layer.

3. Cloud layer: The top most layer is the cloud layer. It mainly consists of powerful
datacenters connected to each other and to the rest of the Internet with high-
speed networks. It contains powerful computing and storage capacity to support
applications which need extensive computational analysis and back end stor-
age, can support being deployed far from the end users.

As the architecture of fog computing is different from cloud computing, we present
a comparison of important characteristics of the two computing paradigms in Table 2.1.

2.2.3 Application deployment frameworks in fog computing

Many research efforts have been made for building a highly scalable, flexible, ef-
ficient fog application deployment framework that can support cloud-like workloads.
Bonomi et al. suggested that fog devices should be configured either as virtualized re-
sources as in traditional cloud, or offered as bare metal servers [31]. GigaSight uses
virtual machine (VM)-based cloudlets to deploy privacy-aware video analytic applica-
tions in three-tier architecture [167]. VM-based virtualization is considered well suited
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Table 2.1 – Different characteristics of fog computing and cloud computing.

Characteristics Fog computing Cloud computing
Latency from end user Low Highto the closest server

Distance from users Close Far
Architecture Distributed Centralized

Processing capacity Moderate High
Access networks LAN, WiFi, Cellular WAN
Storage capacity Moderate Large
Application types Latency sensitive, IoT analytic General applications

Table 2.2 – Fog application deployment frameworks

Reference Platform Application type Fog node Year
Mobile Fog [79] Not specified IoT Not specified 2013

Satyanarayanan et al [167] VM Analytic Clusters 2015
LEONORE [190] Docker IoT Clusters 2015
Claus [153, 154] Docker General RPI 2015

Foglets [169] Docker General Clusters 2016
Geelytics [40] Not specified Analytic RPI 2016

MEC-conpaas [123] LXC General RPI 2017
Foggy [166, 205] Docker IoT RPI 2017

Bellavista et al [24] Docker IoT RPI 2017
Fogernetes [202] Docker General RPI 2018

in cloudlet environments [168] but it performs poorly in resource-constraint fog devices
such as routers, gateways and single-board machines that have significantly low mem-
ory, bandwidth and processing capacity [78].

Another way to virtualize fog nodes is using containers [80]. Containers, and
particularly Docker containers have important advantages over VMs in fog environ-
ments: they are lightweight, portable and easy to deploy and orchestrate in resource-
constrained fog nodes. A number of IoT-based application deployment frameworks that
rely on Docker containers has been proposed for application deployment in resource-
constrained IoT gateways [27, 61, 166, 190, 202]. Kempen et al showed that single-
board machines have the potential to run real edge cloud applications [23, 123]. Even
extremely resource-constrained devices such as Raspberry PIs may be successfully
used to build IoT cloud gateways [24]. With proper configuration, these devices can
make up scalable fog platforms with minimal overhead.
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Table 2.2 presents a comparison of the different proposed fog application deploy-
ment frameworks. We observe that the majority of the frameworks, and in particular the
most recent ones, are using Docker containers [91] or Kubernetes [19] for application
deployment in single-board machines such as Raspberry Pis. This shows the potential
of such devices as fog nodes in the near future.

2.3 Docker

Containers are self-contained software packages that encapsulate everything as
a software needs to run: executable binaries, libraries, dependencies, settings etc.
They are different from software programs mainly because containers are isolated from
other software running in the same host machine and underlying operating system [9,
41, 153]. There are different containerization tools available such as Docker [91],
LXC [108], OpenVZ [189], and rtk [119]. Among them Docker is certainly the most pop-
ular [140]. Docker is portable, operable, lightweight, and its container images are easily
shareable [11]. Popular container orchestration tools such as Docker swarm [102], Ku-
bernetes [19], Mesos [109] heavily rely on Docker to create, deploy, and manage the
container life cycle [65]. Docker is implemented in Go language [18] and its source
code of the project is freely available online [89, 99].

Figure 2.3 shows a host running a set of Docker containers on top of the host oper-
ating system. Docker uses special Linux kernel features such as namespace [187] and
cgroups [186] to virtualize hardware resources such as compute, network and storage.
In the earlier versions of Docker, this was done with the help of LXC containers [108].
Since Docker version 0.9, the libcontainer library [97] is used to integrate low-level
Kernel namespace [187] and cgroups [186] features directly [90, 180]. Applications
running inside Docker containers are packaged in the form of images which contain a
part of the container file system with the required libraries, executables, configuration
files etc [87]. All the containers running in the same host share the underlying Linux
kernel of the host, which makes the size of the Docker images much smaller compared
to virtual machine images [170].

38



2.3 Docker

Figure 2.3 – Multiple Docker containers running in a same host machine (adapted
from [91]).

Figure 2.4 – Docker architecture (adapted from [93]).

2.3.1 Docker architecture

Figure 2.4 depicts the Docker architecture. It is composed of three main compo-
nents: the Docker client, the Docker server and the Docker registry. The architecture
utilizes a client-server model and a remote API to create and manage Docker contain-
ers [93]. The Docker client and daemon may be deployed on the same host. Alterna-
tively the Docker client can connect to Docker daemon running in a remote machine.
The Docker client and the daemon communicate using a REST API, or over UNIX
sockets or a network interface [93].
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— Docker server: The Docker server (also called the Docker daemon) is in charge
of the main functionalities of Docker such as creating containers, images, net-
works, and volumes.

— Docker client: The Docker client allows one to interact with Docker servers. The
command line is the primary way to interact with Docker server. Upon receiving
an instruction, the client sends the request to the selected Docker server us-
ing the communication interface. For example, the following command instructs
Docker to download, setup and start a containerized web server.

docker run nginx:latest
A full list of Docker client commands is provided in [104].

— Docker registry: A Docker registry server is a repository which stores Docker
images [94]. Docker registries can be of two types: public or and private. A public
registry is deployed in a secure environment and publicly accessible to upload or
download images. For instance, Docker Hub is the most popular public registry.
It hosts nearly 2 millions images and is still growing [56]. On the other hand, a
private registry allows only authorized users to upload or download images.

2.3.2 Docker images

Docker images are consist of multiple layers stacked upon one another: every layer
may add, remove, or overwrite files present in the layers below itself. This enables
developers to build new images very easily by specializing pre-existing images.

The same layering strategy is also used to store file system updates performed
by the applications after a container has started: upon every container deployment,
Docker creates an additional writable top-level layer which stores all file system up-
dates. The container’s image layers themselves remain read-only.

A Docker image can be build from a Dockerfile. A Dockerfile is a human-readable
file which contains list of instructions to build an image [88]. Docker provides a standard
docker build command which reads the supplied Dockerfile and creates image layers
sequentially starting from the first instruction [81].

Figure 2.5 shows a typical example of a Dockerfile for building a Python-based
Docker image. This Dockerfile contains four instructions, and which creates a new layer
in the image. The first instruction is the FROM statement which indicates the image is
built from a pre-built ubuntu:15.04 image. The COPY command adds files from the
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	FROM	ubuntu:15.04
	COPY	.	/app
	RUN	make	/app
	CMD	python	/app/app.py

Figure 2.5 – Dockerfile for creating “stream:1.0” Docker image.

Figure 2.6 – Structure of “stream:1.0” Docker image.

current working directory to the container file system. The third RUN instruction builds
the application using the make command. Finally, the last instruction specifies which
command to run when a container of the image is deployed. Figure 2.6 shows the
resulting image built from the above Dockerfile. A full list of instructions to build a Docker
image is given here [96].

Docker encourages layer reusability so it is frequent that different images would
share the same bottom-level layers and differ only by their top-level ones [76]. To im-
plement layer reusability Docker applies Copy-On-Write(CoW) strategy while creating
the image layers [197]. If a file or directory already exists in a lower layer of an image
and another layer needs to read the file or the directory, then Docker simply reads from
the lower layer. However, when the file or the directory is modified for the first time,
Docker copies the modified file or directory in the top layer.

Docker storage drivers

Docker stores each image layer separately in the local file system. It then exposes
a unified view of a set of layers to the running containers, thanks to a storage driver
whose main purpose is to handle the different layers (i.e., mutable and immutable lay-
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ers) in the container image [181]. A storage driver also handles details about the way
different layers interact with each other. Multiple storage drivers are available, includ-
ing AUFS [193], Overlay and Overlay2 [199], Devicemapper [198], Slacker [76] and
btrfs [194].

— AUFS: AUFS is a union filesystem [201]. The main principle of a union file sys-
tem is that it layers multiple directories or branches on a single Linux host and
presents them as unified single directory. The branches in AUFS drivers are
used to represent different Docker image layers. AUFS storage driver unifies all
the layers of the image and exposes them as a single file system. AUFS also
implements the Copy-on-Write (CoW) strategy in order to maximize storage ef-
ficiency (i.e., re-usability of image layers).

— OverlayFS: OverlayFS is a union file system similar to AUFS, but faster and
based on a simpler implementation [101]. It layers multiple directories on a single
Linux host and presents them as a single directory. OverlayFS refers to the lower
read-only directories as lowerdir and the upper read-write directory as upperdir.
The unified view is exposed through its own directory called merged which is
the containers’ mount point.

— Devicemapper: Unlike the previous drivers, Devicemapper works at the block
level rather than the file system level. It relies on Linux’s device-mapper subsys-
tem to create a set of thin-provisioned block devices. Firstly, Docker creates a
pool, which typically sits on top of two physical devices— one for user data and
one for device-mapper metadata (e.g., block mappings). Secondly, when Docker
creates a container, the Devicemapper driver allocates an individual volume for
the container from the pool. Devicemapper implements CoW by creating new
volumes from writable snapshots of previously created volumes.
However, Docker containers operate on file systems rather than a provided raw
block device. Therefore, a third step is to format the volumes with a configurable
file system (either Ext4 or XFS). The big advantage of Devicemapper over the
union file systems (AUFS or Overlay2) is that it can perform CoW at a block level
granularity (512kB by default) rather than a single file as in union file systems. On
the other hand, Devicemapper is completely file system-oblivious and therefore
cannot benefit from using any file system information during snapshot creation.

— Btrfs: Btrfs [194] is a CoW file system based on B-tree structure [165]. Com-
pared to unifon file systems, Btrfs natively supports CoW and does not require
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an underlying file system. Btrfs works with subvolumes which are directory trees,
represented in their own B-trees. Subvolumes can be snapshot by adding a new
root which points to the children of the existing root.
In terms of storage driver, Btrfs stores the base layer of an image as a separate
subvolume and consecutive images are snapshots of their parent layer. Similarly
to Devicemapper, Btrfs also performs CoW at the block-level granularity which
is more efficient in terms of performance and space utilization compared to file-
based CoW. However, Btrfs can experience higher fragmentation due to the
finer-grained CoW [181].

Docker originally used AUFS by default. However, in recent versions, the use of Over-
lay2 is encouraged for performance reasons [103, 193]. The performance of a storage
driver depends on the platform and type of application [60, 181]. A set of instructions for
selecting an appropriate storage driver is discussed in the Docker documentation [101].

Docker image metadata

Docker organizes the images as a set of layers that are stacked upon one another.
It also maintains metadata of the images and layers. The main purpose of the image
metadata is to simplify operations on the image layers. Docker image metadata con-
tains three stores:

— The reference store contains the manifests of all the images present in the
local image cache. Before creating a container, Docker inspects the contents of
the reference store to check if the image is already present in the local cache.

— The layer store contains all the locally-available layers, identified by their
sha256 ID as well as metadata such as the layer’s size, parent layer ID etc.

— The image store contains image configuration information such as the CPU
architecture it relies on, the default exposed ports, attached volumes, etc. It also
stores the image history, with a list of layers identified by their with sha256 ID.

Figure 2.7 shows how Docker stores the above information in persistent files in-
side the Docker storage directory. As these metadata are frequently accessed, Docker
keeps a copy in memory to speed-up container operations. When the Docker server
is initialized, it copies the metadata to cache in memory and relies on the in-memory
version from there on.
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Figure 2.7 – Docker storage directory.

Docker image sharing

The standard mechanism by which Docker supports image sharing between mul-
tiple servers is based on a centralized registry where the full set of available images
and layers is stored [56]. A Docker registry may be either public (e.g., the public Docker
Hub currently contains more than two million images) or private. In essence, a registry
supports two main operations: docker push and docker pull.

— docker push uploads a new set of image layers and their manifest file to the
registry server;

— docker pull downloads a container image from the registry to the docker server
where the pull command was issued. The Docker server first downloads the
manifest file which contains the list of required layers, then it downloads the
missing layers from the same repository. These layers are then kept in the local
cache for potential future reuse.

Docker image cache

Docker uses a single directory in the local file system (by default /var/lib/docker)
to store all cached data such as image layers, metadata and Docker server configura-
tions. Docker uses a "delete-nothing" policy, which means that the cached images are
never deleted from the storage directory unless explicitly asked for it [95]. This allows
one to avoid redeploying the same image if the application is deployed again in the
future. This may however create storage capacity issues in fog environment where the
servers have limited storage capacity. Also within a fog computing where each PoP
is composed of multiple servers, these cached images may be stored redundantly if

44



2.4 Application deployment inside Docker containers

Figure 2.8 – Multiple container images sharing the same underlying layers (adapted
from [87]).

the same image has been deployed in multiple servers. This shows that Docker’s de-
sign for image management was developed for servers that have nearly infinite storage
capacity, but it creates strong storage issues in resource-constrained servers.

2.4 Application deployment inside Docker containers

Application deployment in Docker containers starts when the container deployment
command docker run IMAGE:TAG [parameters] is issued with the name of the image,
its version tag, and container configuration. Docker first checks whether the container
image is already available in the Docker image cache. This is done by reading the
Reference store where all the cached images are listed. If the image is not present in
the cache then Docker postpones the container deployment process and triggers on
image deployment command docker pull IMAGE:TAG [parameters] with the name of
the image and its version tag.

Figure 2.9 depicts the flowchart of Docker image deployment in the case of cache
miss. Docker needs to deploy the image from a registry server before the actual con-
tainer deployment operation. The image deployment command involves a series of
communications between the Docker server and the registry server. Firstly, Docker lo-
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Figure 2.9 – Flowchart of the Docker docker pull image deployment process.
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cally checks if the image is already present in its cache by reading the content of the
Reference store. If the image is not present then Docker connects to the registry and
downloads the manifest list of the image [98]. This file contains a list of images ID with
the requested image name, and tags and platform architectures. The Docker server
selects the appropriate image ID and then requests its image manifest. This file con-
tains the list of layers present in the image with their corresponding layer ID. The server
checks the contents of this file against the Layer store of image metadata to identify
missing image layers in the local cache. It then creates multiple threads to download
the missing layers and image configuration. The missing layers are downloaded start-
ing from the first layer with a default parallelism degree of 3. Image layers are shipped
in the form of a compressed tar file. Every downloaded layer is then separately ex-
tracted in the local disk starting from the first layer to preserve the consistency of the
file systems. Successfully extracted image layers are then checked for the integrity and
registered in the image metadata of the Layer store. Once all the image layers are ex-
tracted to disk, Docker writes the image configuration in the Image store and updates
the Reference store accordingly.

Once the image is available in the local cache, Docker resumes the container de-
ployment process. It first creates a Read-write container layer on top of the image.
The writable top-level layer stores all file system updates performed by the applications
after a container has started. The same layering strategy is used to write any file up-
dates on the container layer following Copy-on-Write (CoW) policy. Once the container
is created, Docker boots the application by starting the init process of the application.
After the application has started, it becomes ready to fulfill its intended usage, and the
deployment process terminates.
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CHAPTER 3

STATE OF THE ART

This chapter presents the state-of-the-art of this thesis. We present different pro-
posed design approaches to improve the application deployment time in container-
based distributed fog environments. The approaches are broadly classified into: (1)
speeding up Docker image deployment upon a container creation request; (2) avoiding
Docker image deployment; (3) speeding up container creation time; and (4) speeding
up the container boot phase.

3.1 Introduction

Within the application deployment process, there are multiple opportunities to im-
prove the end-to-end container deployment time. Many optimizations have been pro-
posed to improve the container deployment time, addressing various limitations in the
deployment process. We broadly classify the proposed approaches in the following
categories:

1. Speeding up the image deployment: the first phase of application deployment
is to download the container image from a registry server. This process takes
a significant faction of the application deployment time. Reducing the image
deployment time can therefore considerably speed up the end-to-end container
deployment.

2. Avoiding the deployment of Docker images: Docker keeps the downloaded im-
ages in its local cache for subsequent deployments of the same application.
However, in resource-constrained fog servers cache space is limited, and it is
fragmented between multiple servers in the same PoP. Improving the hit rate re-
duces the chances of image deployment upon container creation and therefore
reduces the overall average application deployment time.
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3. Speeding up the container creation: Docker container creation involves creating
a container file system on top of the unified image layers and then isolating the
container resources. This process may be slow in scenarios where containers
are frequently created, deployed and deleted. Speeding up the container cre-
ation reduces the overall application deployment time.

4. Speeding up the container boot phase: The final phase of the deployment is to
boot the container by starting the init process of the application. The boot phase
may take significant amounts of time depending on the application’s set of in-
structions before it is ready to serve user requests. Reducing the boot phase
time or totally eliminating it eventually reduces the overall application deploy-
ment time.

3.2 Speeding up the Docker image deployment

Docker container deployment time is largely dictated by the image deployment op-
eration, especially on single-board computers: on average it is estimated that Docker
spends nearly 76% of container deployment time in pulling the images from a registry
server [76]. Docker image deployment involves a series of communications between
the Docker engine in the host machines and the remote registry server. The image
deployment time is mainly due to the fact that Docker must download the image layers
from the registry server, decompress them and extract them to disk. The performance
of image deployment can be improved with efficient design either at the server side or
at the client side [12]. A server-side approach involves re-designing the Docker registry
server, while a client-side approach requires redesigning the Docker engine itself.

3.2.1 Server-side approaches

Distributed registries

A number of efforts have been made to improve Docker image deployment by
changing the design of Docker registry [12, 122, 144, 179]. The registry is a centralized,
data-intensive component. As the number of stored images in a registry grows and the
number of concurrent image deployment requests from multiple clients increases, the
Docker registry may become an important performance bottleneck which impacts the
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performance of container deployment. To address this issue, CoMICon proposes using
a distributed Docker registry instead. It distributes the layers of an image among multi-
ple nodes to increase their availability and reduce the container provisioning time. The
distribution allows one to pull an image from multiple registries simultaneously, which
reduces the average layer’s download times [144]. A similar concept has been used in
the “Faster Image Distribution System” for Docker Platform (FID) [122]. FID uses the
standard Bit-torrent protocol to distribute image layers in a single data-center setup.
Similar approaches that rely on other peer-to-peer protocols have been proposed [21,
134]. Distributed downloading relies on the assumption that multiple powerful servers
are interconnected with a high-speed local-area network, and therefore the main per-
formance bottleneck is the long-distance network to a remote centralized repository.
However, in the case of fog computing platforms, servers will be geographically dis-
tributed to maximize proximity to the end users, and they will rarely be connected to
one another using high-capacity networks. This limits the efficiency of distributed down-
loading in such environments.

In order to address the issue above, Darrous et al study the role of image placement
across edge servers in situations where the network bandwidths between edge servers
are not homogeneous [52]. The authors propose two heuristic algorithms based on the
K-center optimization problem that place the image layers on a set of nodes such that
the maximum container image deployment time to any server is reduced. The first
algorithm is more generic and aims to place the image layers and replicas across the
nodes so that the distance from any node to the servers is minimized. The second
algorithm avoids placing multiple layers of an image in the same node since this will
degrade the advantage of image distribution. Extensive simulations of the proposed
algorithms with real-world registry workload shows that the proposed solutions improve
the overall image deployment time by 13% to 18% compare to standard Best-fit and
random placement techniques. This solution is designed for fog environments where
the nodes are static and network bandwidth among the servers is relatively stable.
On the contrary, in some systems the fog nodes are considered to be mobile, and
therefore the constantly changing bandwidth among different nodes needs to be taken
into account while placing the image layers.
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Redesigning individual registries

Another way to improve image deployment time is by improving the performance
of individual Docker registry servers. Anwar et al studied the workload of Docker reg-
istry servers in real-world conditions at IBM where images are frequently deployed to
support cloud-like workloads [12]. The analysis revealed that access to the images in
the registry is highly skewed: 90% of the pull requests account for only 10% of the
images. The second conclusion is that there is a strong correlation between the upload
of an image (i.e., push operation) and subsequent download requests (i.e., pull oper-
ation) for the manifest files and layers of the image. Based on the above conclusions,
the authors propose two registry design approaches. First, two-level caching focuses
on the most popular images, it stores the frequently-accessed image layers in fast ac-
cess storage such as main-memory and SSD. It therefore avoids fetching the image
layers from the back-end storage while deploying the images, and thereby significantly
reduces deployment time. The second design exploits the relationship between push
and subsequent pull requests. When a new image is pushed to the repository, its layers
are immediately pre-loaded into main-memory.

3.2.2 Client-side approaches

Image size optimization

The deployment time of Docker images largely depends on the image size and
the available network bandwidth. Certainly, a small image can download faster and
requires less disk space than a large one. The author of [55] suggests good practices
to build small size Docker images. In particular, a small base layer significantly reduces
the size of the image. The author also emphasizes the need for reducing the number
of image layers which mechanically reduces the overall size of the image as well. In
this proposal, the process however remains manual.

DockerSlim [158] is an open-source tool to reduce the size of Docker images. It
takes an input image and uses static and dynamic analysis to identify the files in the
image layers that are not used by the application. These files can thus be excluded
from the container image which significantly reduces original size of the image. The
main drawback of Dockerslim is that it also potentially removes important tools such as
debugging and profiling tools from the container file system.
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While creating a Docker image from a Dockerfile, it is not uncommon that tempo-
rary files such as application data are downloaded or generated, utilized and deleted.
However, due to the design of UnionFS, Docker creates a new layer for the Dockerfile
instructions that delete temporary files which increases the size of the image. Xu et al
study how to detect such temporary files which are deleted during the image develop-
ment process but removed logically [131, 204]. The authors propose dynamic analysis
of I/O operations which injects code in the Overlay file system kernel module to log
temporary file creation and deletion during the image build process. The logs are ana-
lyzed and then identified the temporary files which are never removed physically from
the image layers. The authors conclude that prior knowledge of such temporary files
may reduce the size of Docker images. However, injecting additional code in the kernel
to trace I/O operations impacts on performance of the whole system.

Docker engine redesign

Docker image deployment can be improved by optimizing the Docker image build
procedure. FastBuild speeds up the Docker image building phase upon a container
deployment request [81]. In DevOps environments, container images are frequently
changed, built and deployed during the application development and testing phase.
Therefore building new images is a frequent activity. FastBuild keeps a record of the
frequently accessed files from the Internet during the image build process, and buffers
them in the local file system. When building a new image, FastBuild intercepts the re-
quested files to download and supplies them from the buffer. Caching the frequently
accessed files avoids remote file access and reduces the image build time. FastBuild
targets scenarios where images are frequently modified, built and deployed. In con-
trast, our goal is to improve the deployment time of production images independently
from the way they were built.

Another way to reduce the deployment time is by improving the Docker image de-
ployment process itself. An interesting finding is that Docker needs only about 6% of
an image to start a new container [76]. However, upon a container image deployment,
Docker has to wait until the whole image has been fully downloaded from the registry
before starting the container, which significantly slows down the container deployment.
Slacker proposes to rely on an NFS file system to share the images between all the
nodes within a datacenter [76]. The proposed storage driver allows lazy pulling of the
accessed parts of the container image, which significantly reduces the overall container
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deployment time. However, the new storage driver expects that the container image is
already present in the local multi-server cluster environment. In contrast, a fog comput-
ing environment is made of large numbers of nodes located far from each other, and
the limited storage capacity of each node implies that few images can be stored locally
for future re-use. Besides, Slacker requires flattening the Docker images in a single
layer. This makes it easier to support snapshot and clone operations, but it deviates
from the standard Docker philosophy which promotes the layering system as a way to
simplify image creation and updates.

Civolani proposes to extends the lazy pulling and redesigns the Docker deployment
process so that it can start a container after downloading the image only partially [43].
To implement this, the new model restructures Docker images with a new layer added at
the bottom of the image which contains all the required files to start the container. Upon
a container deployment request, Docker first downloads and extracts the first layer and
creates dummy empty layers for the remaining layers. The container is then started
while the remaining image layers are being downloaded and filled asynchronously to
the dummy layers. This proposed deployment model however works only with the Over-
layFS storage driver. The lazy pulling of the image layers significantly improves the
container deployment time, however, creating the dummy layers does not allow one to
check the layers’ integrity which may leads to undetected image corruption.

In this thesis, we show that Docker does not utilize all the hardware resources of the
host machine while deploying the images. Fog nodes such as Raspberry Pis have very
limited resources such as processing, storage and network capacity. Any inefficient
usage of the available hardware resources therefore has in important impact on perfor-
mance. We analyze the resource consumption of the host machine while deploying an
image and propose optimization solutions to speed up the Docker image deployment.
This contribution is presented in Chapter 5.

3.3 Avoiding image deployment

The deployment time of Docker containers can be improved by reducing the proba-
bility that an image deployment operation must be carried on upon a container creation.
Many solutions have been proposed to avoid redundant deployment of an image in a
cluster by sharing Docker images across different servers [35, 57, 76, 206]. For exam-
ple, the Slacker storage driver was introduced the first to use a shared (NFS) server for
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sharing Docker images across multiple servers (see Section 3.2.2). Another solution is
to use a distributed file system to share Docker images.

Wharf proposes to share the caches of multiple Docker servers using a distributed
file system to reduce storage utilization and the number of redundant image re-
trievals [206]. It is designed for powerful server clusters where network bandwidth and
data storage are cheap. In consequence the authors mostly discuss container startup
times and do not address the issues related to limited cache size in fog computing
servers. Wharf also relies on the ability of Docker servers to download multiple image
layers simultaneously, which was shown to perform poorly in the context of single-board
fog servers [4].

Contrary to high-performance datacenters environments, fog servers have very lim-
ited storage, compute and networking resources. In this thesis, we study how to in-
crease the Docker image cache hit in fog infrastructures that are made of large num-
bers of resource-constrained nodes. Our propose Docker image sharing framework
addresses the different challenges to share Docker images across multiple fog servers.
This contribution is presented in Chapter 4.

3.4 Speeding up container creation

The next way to improve container deployment time is to speed up the container cre-
ation time. Oakes et al studied the slow container creation time in the OpenLambda [68]
serverless framework where Docker containers are frequently created, stopped and
deleted [147]. The authors find that the main bottleneck of Docker’s slow container cre-
ation time is that it uses expensive resource isolation techniques for creating separate
cgroups, unifying the image layers with a union file system, and creating a namespace
for each container. In order to address these issues, the authors propose the SOCK
serverless framework which is based on three optimizations: (1) SOCK relies on a set
of lean containers that use lightweight isolation; (2) instead of importing new python
packages, SOCK uses Zygot-provisioning to import pre-imported packages at run-
time [33]; and (3) three-tier caching creates multiple containers which avoids python
packaging and importing costs. The SOCK framework shows how one may reduce the
container creation time in a serverless framework where containers are frequently cre-
ated, deployed and deleted. However, it sacrifices many of Docker’s features such as
strict container isolation and re-usability of image layers.
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Container creation time can be reduced by reducing the necessary I/O operations
while loading the container image’s file system. Docker reads the essential part of the
images from the local disk. However, generic disks are often relatively slow [4]. YOLO
(You Only Load Once) uses caching techniques by pre-loading the essential part of the
image in main memory or fast disk storage like SSD [145]. To implement this, YOLO
creates a subset of the Docker image that contains the essential parts for container
deployment. It transparently loads this subset to fast access storage upon the first con-
tainer request. In subsequent deployments, Docker can then read the image subset
from fast-access storage instead of local disk, and thereby, improve container deploy-
ment up to 2 times depending on system load conditions. However, this subset image
requires on average about 5MB of main memory per container image. The proposed
solution therefore is suitable for high performance servers where the main memory ca-
pacity is not an issue. However, fog servers are typically limited in memory space. For
example, a RPI has in total only 1 GB of main memory. Caching image subsets for all
the running containers in the already over-loaded main memory may result in additional
swapping which will impact the run-time performance of the running containers.

3.5 Speeding up the container boot phase

The last way to reduce the end-to-end container deployment time is by reducing
the time to boot the application. After a container has been created, some applications
takes significant time to boot. For example, the popular Mysql require about 10 s on a
fast server being available to serve end-user commands [142]. In the world of virtual
machines, a popular solution to reduce boot time of VMs is by using snapshot and
clone [73, 160]. Similarly, with the same goal, process checkpoint and restart with
DMTCP has been used to reduce VM boot time [71].

There have not been many studies on the use of process checkpoint/restart in con-
tainer deployment optimization. Nadgowda et al proposed a container auto-scaling
method which is based on CRIU [151] to checkpoint a running container and efficiently
replicate them in other nodes [142]. However, the proposed solution only aims at hor-
izontal scalability scenarios and does not aim to minimize the container initialization
latency in the standalone application deployment.

In this thesis, we use process checkpoint and restart techniques to eliminate the
container initialization phase upon an application deployment request. We particularly
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rely on DMTCP [10] to checkpoint and restore applications inside Docker container and
distribute the checkpoint image with distributed storage. This contribution is presented
in Chapter 6.

3.6 Conclusion

Figure 3.1 summarizes the proposed approaches that aim to reduce end-to-end
container deployment time. Most of these approaches were proposed in the context
of high performance servers. In consequence, they do not consider the performance
implication that are specifically present in resource-constrained fog environments. Al-
though the deployment time can be improved either at the server or the registry side,
in this thesis, we solely focus on the client side optimizations and consider that the fog
resources are limited.
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Figure 3.1 – Docker container deployment optimizations.
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CHAPTER 4

IMPROVING THE DOCKER CACHE HIT

RATIO

This chapter presents the first contribution of the thesis. The first opportunity to
reduce container deployment time is by improving the hit ratio of the Docker image
cache. The hit ratio of a local image cache present in every fog node may be low due
to the fact that the nodes have very limited storage capacity. We propose to aggregate
the image caches of multiple co-located fog nodes, so the end result is a large image
cache where the images are shared with a distributed file system.

4.1 Introduction

The users of fog applications are usually mobile, which implies that the applications
running in the fog may need to be frequently re-deployed in different PoPs to maintain
proximity, low latency, and reduce long-distance traffic [29]. However, software deploy-
ment in fog infrastructures can be painfully slow when the fog node needs to download
a full container image of the deployed application before starting the container itself [4].
Having their fog-hosted application freeze frequently while new containers get started
would clearly be a source of frustration for most end users. Reducing the probability of
such image cache misses, and the performance impact of their occurrence when they
cannot be avoided, is therefore of crucial importance for providing the end users with a
satisfactory quality of experience.

Docker, which is by far the most popular container deployment engine [164], was
originally designed for powerful server machines. It therefore keeps a copy of every
container image in each server’s local cache so it does not need to be downloaded
again in case the same image is deployed in the future. Docker also never removes
content from its caches unless explicitly requested by their user to do so [100]. Although
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this strategy makes perfect sense in powerful server machines where disk space is
rarely an issue, it creates important storage capacity problems in an environment com-
posed of many weak machines with limited storage space and where containers are
frequently started and stopped. If the working set of frequently-deployed images is
larger than the storage capacity of a fog computing node, then the same image may
need to be repeatedly downloaded, utilized and deleted, creating unnecessary delays
and network transfers when re-deploying a container after its image had to be removed
from the local node. Another effect of keeping separate image caches in each node is
that these caches are likely to contain highly redundant content due to the fact that the
same popular images may have been deployed multiple times in different nodes.

We propose to transform these issues in opportunities by allowing multiple fog
nodes within a PoP to share the content of their Docker image caches. Instead of using
the fog nodes’ storage capacity as a set of limited and isolated caches, we propose to
aggregate the storage capacity of clusters of co-located fog nodes using a distributed
file system. The end result is a single sizable Docker image cache per PoP where
large numbers of images can be stored, thereby significantly reducing the probabil-
ity that images need to be downloaded over a long-distance network upon container
deployment.

We analyze a large Docker registry workload and demonstrate the potential for
deployment time improvements of Docker image sharing. We survey distributed file
systems (which were typically designed for HPC environments) and discuss their suit-
ability in fog computing environments. We present the design of our Docker image
sharing framework which supports image cache sharing between multiple co-located
fog nodes. Our trace-based evaluations show that sharing caches between multiple
fog nodes delivers significant cache hit rate improvements, and leads to reductions
of the average container deployment times between 37% and 78% depending on the
scenario.

The chapter is organized as follow. Section 4.2 analyses the workload of large
docker registries and demonstrates the potential of image sharing in fog infrastruc-
tures. Then, Section 4.3 presents our cooperative Docker framework and Section 4.4
evaluates its performance. Finally Section 4.5 concludes.
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Table 4.1 – Registries used in the simulations.

Availability Zone # of pull Total image
(AZ) name requests (k) size (GB)
Frankfurt (fra) 149 86
Sydney (syd) 55 92
London (lon) 349 1719
Dallas (dal) 937 6789
Prestaging (prs) 43 213
Staging (stg) 301 1181
Development (dev) 22 283

4.2 Potential benefit of cache sharing

To evaluate the potential benefits of sharing Docker caches among fog servers, we
analyze the workload of actual Docker registry servers. In the absence of publicly-
available fog computing workloads, we instead analyzed a production workload of
Docker container deployments in a cloud computing context. As previously discussed,
we expect fog computing platforms to experience more frequent re-deployments of the
same images than in a normal cloud platform. The results presented here therefore
represent a worst-case analysis in terms of cache hit rates.

4.2.1 Simulation setup

We simulate the behavior of Docker image caches under a real registry work-
load composed of a collection of HTTP-logs generated from 36 IBM Docker registry
servers [12]. Each entry in this trace contains the signature of an HTTP request made
by a Docker server to the registry for operations such as docker pull and docker push.
The signature provides information about the request such as name of the image, the
type of request, and timestamp.

Table 4.1 shows how these registries are classified in 7 Availability Zones (AZ)
based on their geographical location and the type of workload they serve. Four AZs
(fra, syd, dal and lon) are dedicated to serve production workloads: fra and syd are
relatively new and have fairly small workloads whereas dal and lon serve a much larger
working set of images. Two AZs (prs and stg) are used for staging (pre-production)
purpose, and finally dev is dedicated for development purpose.
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(a) Small cache sizes. (b) Large cache sizes.

Figure 4.1 – Cache hit ratios of different AZs vs. shared cache size.

Note that every request present in this trace corresponds to a cache miss that was
incurred at one of the Docker servers, and that consequently triggered a docker pull
operation. The trace does not contain sufficient information to reliably detect container
deployments which resulted in a cache hit in the Docker servers. Due to the fact that
Docker never deletes cached image layers unless explicitly requested to do so, we can
see this trace as the residual cache miss traffic from a large set of isolated, infinite-
sized image caches. Any temporal locality found in this trace therefore highlights an
opportunity for cache sharing between multiple servers.

The trace also contains no indication about the containers’ lifetime after they are
started. However, this lifetime has no influence over the Docker image cache hit rate.
In our simulations we therefore assume that containers are stopped immediately after
having been started.

To study the benefit of Docker image sharing across fog computing servers, we
replay the container deployment logs in a simulator which reproduces the behavior
of a Docker image cache: when deploying a new container, the server first checks
if the image is available in the (shared or non-shared) cache storage and, if found,
immediately starts the container. Otherwise, if downloads the missing layer(s) in the
image cache before starting the container.
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4.2.2 Cache hit ratio analysis

Figure 4.1 depicts the cache hit ratio that a shared cache for each AZ would have
with different storage capacity. Unlike the standard Docker cache management policy,
in this study we assume that the shared cache can decide to delete unused cached
image layers to make space for new ones that are being requested. In our simulation
we use the well-known Least-Recently Used (LRU) policy to decide which layer should
be removed when the cache does not have sufficient available capacity to store a
newly-requested image.

We can see in Figure 4.1(a) that, even with very small shared cache sizes, several
AZs exhibit significant cache hit ratios. This is particularly true for the syd and fra AZs
which respectively exhibit 89% and 80% hit rates with a shared cache size of 32 GB.
This is hardly surprising: as shown in Table 4.1 these AZs handle a very small working
set of images which can fit even in a very small shared cache.

However, even AZs with a much larger image working set exhibit respectable per-
formance with a very small shared cache. For example stg has a hit rate in the order of
55%, and dal (the AZ with the largest working set in this trace) around 31%. This indi-
cates that a small number of highly popular container images is repeatedly deployed in
different servers from the same zone. For these scenarios, sharing even an extremely
small cache delivers significant performance improvement compared with no sharing.

On the other hand, prs and dev observe almost no cache hits with a very small
cache size. This is probably due to the fact that, during development and pre-staging
phases, each container image is deployed only a small number of times before either
being replaced with an updated version (in case a bug was detected) or being moved
to staging or production.

When looking at slightly larger shared cache sizes, we observe that shared cache
sizes in the order of a few hundred GBs are usually sufficient to exploit the temporal
locality and reach hit rates of 50-95%. Sharing image caches would clearly provide
important benefits for these AZs.

Figure 4.1(b) extends these curves until cache sizes of several TBs. We can ob-
serve that such cache sizes do not deliver additional benefits compared to much
smaller sizes. The only exception is dal here every cache size increase (up to the
size of its total working set) delivers performance improvement.

We conclude the cache sharing between multiple Docker servers would clearly de-
liver significant benefits in almost all considered scenarios, even with limited size for
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Figure 4.2 – Docker shared image cache architecture.

the shared caches. This is a good news for us considering that in a fog computing
platform each PoP would probably have limited storage capacity. The only exceptions
where the benefits of sharing caches are limited derive from scenarios where each
image is deployed only a couple of times (e.g., during the development phase) or the
overall image working set is extremely large.

4.3 System design

The general framework for image cache sharing among a group of Docker servers
is depicted in Figure 4.2. In this design, multiple Docker servers use a shared file
system to store the (immutable) image manifest and layer files. On the other hand, each
Docker server keeps in their local storage the containers’ read-write layers, plugins,
configuration files etc. However, realizing this design forces us to address a number of
difficult challenges.

1. Most distributed file systems designed to aggregate the storage capacity of mul-
tiple servers were designed in the context of powerful clusters, and tailored to the
needs of high-performance computing applications. However, a fog computing
PoP is composed of a small number of relatively weak machines. We there-
fore need to select a distributed file system which best fits our particular set of
constraints. We discuss the choice of a distributed file system in Section 4.3.1.

2. We need to reorganize the directories in which Docker stores its different files
such that the immutable image manifests and layers can be mounted from the
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distributed file system while the other files remain in a non-shared local storage.
We discuss this topic in Section 4.3.2.

3. Docker servers are implemented with the assumption that the image cache is
entirely controlled by a single server. Consequently, it maintains parts of its
meta-data in memory. When one Docker server modifies the content of the
shared image cache, it must therefore notify the other servers to maintain their
in-memory metadata consistent with the content of the shared store. We discuss
this topic in Section 4.3.3.

4. When multiple Docker servers are requested to deploy the same container im-
age concurrently, we must ensure that each container image is downloaded only
once by one of the servers while the others wait for the image to become glob-
ally available. We discuss the synchronization of multiple image downloads in
Section 4.3.4.

5. In a fog computing PoP we expect that the shared file system will have a rela-
tively limited capacity. We must therefore implement a cache replacement policy
so unused image layers can be evicted from the cache when the available stor-
age is not sufficient to hold new layers to be downloaded. We discuss the cache
replacement policy in Section 4.3.5.

4.3.1 Choice of distributed file system
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4.3 System design

A distributed file system (DFS) is defined as any file system that allows access to
files from multiple hosts sharing via a computer network [196]. We specifically focus
here on distributed file systems which aggregate the storage capacity of multiple ma-
chines to provide a single unified view of the shared file system to every server within
a PoP.

Distributed file systems were mostly designed for high-performance computing en-
vironments where the servers are computationally powerful and connected by a high-
speed network. In contrast, we aim to use them in severely resource-constrained fog
computing environments. Our choice of DFS is therefore largely guided by an analysis
of the resource requirements of different DFS.

Distributed file systems typically store file content in blocks that are located in one
or several object servers. They therefore need to separately maintain metadata such
as the location of these blocks within the distributed file system. This is the task of
the Metadata Server (MDS). Upon any file access within the DFS, client machines first
need to query metadata before accessing the file content itself.

The design of the MDS is an important differentiating factor between the many
available distributed file systems. Depending on the DFS implementations the DFS
may be centralized in a single machine or decentralized. In the centralized case, the
machine which holds the MDS may incur a significant extra load and potentially become
a performance bottleneck. A distributed MDS would share this load among the available
servers and arguably exhibit better scalability and fault-tolerance properties.

Distributed file systems also differ in the storage medium used to keep the metadata
during its operation. Some file systems load the metadata in memory (which promises
fast metadata access) while others keep them on disk. In a resource-limited environ-
ment such as a fog computing PoP, memory must be considered as a scarce resource.
Although keeping metadata in memory may remain affordable if the number of shared
files was small, any container image would contain a large number of (usually small)
files, and therefore require significant memory resources to maintain their metadata.

Table 4.2 presents a comparison of six popular file systems: HDFS [13],
CephFS [162], MooseFS [49], GlusterFS [115], iRods [47] and Lustre [150] based on
information found on the respective file systems’ web sites as well as a survey on dis-
tributed file systems [54]. Out of all studied file systems, CephFS and GlusterFS stand
out because they rely on a distributed metadata server.
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CephFS is a fully scalable distributed file system [191]. A CephFS cluster must
include one monitor (which maintains a master copy of the cluster map), one
manager daemon (in charge of monitoring the file system cluster), at least three
Object Storage Devices (OSD) and at least one metadata server (MDS). The
monitor and manager are lightweight processes which can easily run in a spe-
cific node from a fog computing PoP. the OSDs are in charge of storing all objects
from the file system. Finally, the metadata servers share the metadata workload
with one another. CephFS splits every file into one or multiple blocks and store
them as objects in the OSDs. The client can define so-called CRUSH rules to
determine the object placement across the different OSDs. By default ceph repli-
cates every object on two OSDs, which allows the system to survive the crash
of any single server within the cluster. Since CephFS stores metadata in disk
instead of main memory, it can easily be deployed in resource-constrained com-
pute nodes [113].

GlusterFS is a fully decentralized file system. Unlike the others in this list, it does
make use of any metadata server. Instead, it uses an Elastic Hash Algorithm to
deterministically choose in which location each file must be stored [105]. Glus-
terFS can also stripe files in multiple chunks distributed across all the cluster
nodes. This allows one to parallelize most I/O operations, and therefore improve
the I/O performance when reading or writing large files. Finally, GlusterFS sup-
ports RAID1 replication to tolerate node failures. Similar to CephFS, GlusterFS
is sufficiently lightweight (expecially thanks to its absence of metadata servers)
to be deployed in a fog computing PoP.

We therefore consider CephFS and GlusterFS as the best two contenders for be-
ing used in a fog computing scenario. We evaluate and compare their performance
experimentally in more details in Section 4.4.1.

4.3.2 Sharing Docker images

Docker uses a single local directory (e.g., /var/lib/docker/aufs) to keep all
cached data such as image manifests, layer metadata, and the layers themselves. To
implement image sharing between multiple docker servers it is important to distinguish
the cached content which should be shared from the one which should not.
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Shareable content: the shareable content consists of image layers data and the
metadata files. To allow multiple Docker servers to access the same layers we
mount the distributed file system over the directories which contain these files.

Non-shareable content: some other content such as server-specific configura-
tions and plugins should not be shared. Also, the read-write layers which are
dynamically created when starting every new container are meant to be used
by a single container, and can therefore be considered as non-shareable con-
tent. Although Docker stores these read-write layers in the same directory as
the read-only layers, we configured Docker to create the read-write layers in a
separate directory out of the mounted distributed file system.

Note that, although sharing the image and layer files across multiple Docker servers
is necessary for our approach, it is by no means sufficient. Docker keeps a copy of the
cache metadata in memory, and it does not systematically check the consistency of
the in-memory data with the persistent ones before using them. We therefore need to
design additional mechanisms to maintain these data consistent, as we discuss next.

4.3.3 Consistency maintenance of in-memory metadata

Sharing Docker images through a distributed file system is not sufficient to guaran-
tee the in-memory metadata of the image cache remains consistent with the shared
content over time. For instance, when a Docker server executes an image operation
such as adding an image in the shared image cache, the updates in the image cache
are reflected in the shared file system and the in-memory metadata present in the con-
cerned machine itself, but they are not propagated to the other Docker servers. As a
result, in case another Docker server wants to deploy the same image, it will not find it
and download it unnecessarily.

To maintain the consistency of the in-memory metadata across all servers within a
PoP, we use the popular Redis system and create a publish-subscribe channel to dis-
seminate any update to the in-memory metadata [127, 163]. Whenever one server in-
curs an update in its in-memory metadata after adding or removing an image, it sends
a message (in our case update in-memory metadata) in this dissemination channel.
When a server receives this message from the above channel, it discards its in-memory
metadata and re-reads the image metadata from the shared file system. With this sim-
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ple mechanism, the in-memory metadata remain consistent across all the servers of
PoP.

4.3.4 Preventing concurrent deployments of the same image

In a Docker cluster it is not unusual to start multiple instances of the same image
simultaneously, for instance in order to aggregate the processing capacity of multiple
servers. In our case, if multiple servers from the same PoP attempted to concurrently
deploy the same image, they may all notice that the image is not present in cache
and redundantly download the same image. It is therefore necessary to allow multiple
servers to coordinate with each other and download each image layer only once.

We propose to let a single Docker server download all the required layers. Other
servers simply block when they discover the image they want to deploy is being down-
loaded, and resume the normal deployment process after the image download has
completed. To allow each Docker server to reliably detect if an image is already being
downloaded by another server we store locks in the Redis key-value store: each image
is controlled by a separate lock identified by the sha256 ID of the image.

Figure 4.3 illustrates the updated workflow of the docker pull operation. When
pulling an image, the Docker server first checks in the Redis database whether a lock
for the same image has been created by another server. If the image is not already
being downloaded, the server creates a lock in the Redis database under the ID of the
image, then pulls the image normally. When the download is completed, it removes the
lock and sends a notification to a Redis channel with the same ID. The lock test and set
operations are executed within a transaction [128] to ensure atomicity and avoid race
conditions.

If a server discovers that the image it needs to pull is already being downloaded by
another server, it simply subscribes to the Redis channel (again within a transaction)
and waits until it receives a notification that the image download has completed. It can
then update its in-memory metadata as discussed in the previous section and terminate
the deployment normally.
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Figure 4.3 – Flowchart of the proposed docker pull command.
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Algorithm 1: Image replacement algorithm.
Input:
S = size of the new image,
{I} = list of unused images,
i = image to be deleted

1 while (available_space < S) do {
2 i = least_recently_used(I)
3 docker rmi i
4 Redis_Publish(Update_Metadata)
5 {I} = {I} - i
6 }

4.3.5 Cache replacement

In a resource-limited environment such as a fog computing PoP, it is important to
carefully manage resource scarcity. In particular, in a fog computing platform where
we expect a large variety of applications to be deployed over time, it is important to
ensure that only the most relevant container images are kept in cache, and that the less
frequently-deployed ones get discarded to save space. This significantly deviates from
the standard Docker policy of never removing any image automatically and of rather
relying on human administrators to remove unnecessary images manually [100].

To automatically handle the removal of unused container images, we implemented
a cache replacement mechanism within Docker [195]. This mechanism get triggered
when the available shared disk space is not sufficient to store a new image which is
being downloaded. While deploying an image, if the storage capacity is insufficient then
Docker pauses the deployment process and calls the Image Replacement Interface to
remove one or more unused images.

It would obviously be incorrect to remove an image from the cache while it is being
used by any of the PoP’s Docker servers. To inform other servers about the images
they are currently using, Docker servers register the image name and current number
of instances in the Redis database.

Algorithm 1 depicts the replacement mechanism. Whenever the available storage
capacity is insufficient to store a new image, the concerned Docker server first builds
a list of the currently unused images and the date they were last accessed. We use
the popular Least Recently Used policy which evicts the image that was unused for
the longest period of time. Once the image has been removed from the shared image
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cache, the in-memory metadata of all Docker servers is updated using the same mech-
anism as discussed in Section 4.3.3. This removal process is repeated until the system
has sufficient storage to store the newly downloaded image.

4.4 Evaluation

We evaluate our shared image cache design using a combination of micro- and
macro-benchmarks. Micro-benchmarks highlight the performance of a single con-
tainer deployment using various shared file system configurations, whereas macro-
benchmarks show the system’s performance under an actual scenario with multiple
deployments.

We perform all evaluations on a set of 10 virtual machines representing the nodes
of a fog computing point-of-presence. These VMs are created using KVM on a Dell
PowerEdge R430 server equipped with two Intel Xeon E5-2620 v4 processors running
at 2.10GHz, with 8 hyperthreaded cores each, and 64 GB of RAM. Each VM is con-
figured with 2 vCPUs, 1GB RAM and 32 GB disk and runs Ubuntu 18.04 server with
Linux kernel 4.15.0-47-generic. We based ourselves on Docker-pi 18.04, which already
contains a number of optimizations designed for Fog computing infrastructures [4]. To
avoid interferences from the long-distance network capacity or the Docker hub server,
we deployed a private Docker registry in a separate VM in the testbed.

4.4.1 Micro-benchmarks

We first evaluate the performance of our system with different distributed file system
configurations. Table 4.3 depicts the three experimental scenarios used in this study.
Scenarios 1 and 2 rely on CephFS (Ceph version 13.2.4) with either its user-level FUSE
client [124] of the kernel-based one. Conversely, Scenario 3 relies on Gluster (Glusterfs
4.0.2) with its native FUSE client (GlusterFS does not provide a kernel-level client).

All configurations are using three nodes and a replication degree of 1, in order to
maximize file system write performance while downloading a new image.
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Table 4.3 – Distributed file system configurations.

File Number of Replication
Scenario system Client nodes degree

1 CephFS Kernel 3 1
2 CephFS FUSE 3 1
3 GlusterFS FUSE 3 1

Table 4.4 – Deployment times of an ubuntu:latest container.

File system configuration
No cache Ceph Ceph Gluster
sharing kernel FUSE FUSE

Cache miss 5.2 s 7.01 s 27.01 s 32.1 s
Cache hit 0.99 s 1.23 s 2.43 s 2.54 s

Deployment time

In this experiment, we deploy the popular Ubuntu:latest image using either regular
Docker with no shared image cache, or one of the three shared cache scenarios listed
in Table 4.3. All machines are kept otherwise idle while deploying the image.

Table 4.4 compares the container’s deployment time with shared and non-shared
storage, measured from the time the docker run command is issued to the moment the
container has started. In the case of a cache miss we observe that the configuration
with no cache sharing requires 5.2 s to deploy the image, whereas in the distributed
file system cases deployment times range from 7 s to 32 s. It is not surprising that
shared file system scenarios are slower than regular Docker, as writing the image on
a distributed file system creates additional tasks for the Docker server compared to
simply writing it on the local drive. We however notice large performance variations
depending on the client being used to access the distributed file system: although
the kernel-based Ceph driver delivers similar performance to a native local drive, the
FUSE-based clients suffer from considerable overhead.

In the case of a cache hit, results are similar although the difference between kernel-
based and FUSE clients is less important. This is probably due to the fact that it is not
necessary to read the entire image content to start a container so the impact of file
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system performance is lower compared to the other operations that must be conveyed
upon container creation.

Resource utilization

To better understand the relative performance of different distributed file system
configurations we monitored the utilization of critical resources while containers are
being deployed. We instrumented the testbed machines to trace the overall deployment
time as well as the node’s resource consumption:

1. Memory usage: the memory consumption of the client machine is monitored
using the standard free -m Linux command.

2. CPU usage: the CPU consumption (in %) is traced using the top Linux com-
mand.

3. Network throughput: we measure the upload and download network throughput
using the nethogs utility [63].

Figures 4.4(a) and 4.4(b) respectively depict the download and upload bandwidth of
the Docker server machine while the container image is being deployed upon a cache
miss. For obvious reasons the native Docker server does not upload any significant
amount of data during the image pull operation, whereas the distributed file systems
scenarios see both download (from the image registry to the Docker server) and up-
load (from the Docker server to the other nodes which participate in the distributed
file system). We can also see that the Ceph+kernel configuration can upload data to
the distributed file server at a similar rate as the image is being fetched from the reg-
istry, whereas the FUSE-based Ceph and Gluster configurations achieve a much lower
transfer rate. This is probably due to the fact that FUSE works in user space, which
generate large numbers of context switches upon any I/O operation.

Figures 4.4(c) presents the CPU utilization and memory footprint of the Docker
server upon a cache miss. The CPU utilization is very comparable in all cases, ex-
cept that it logically returns sooner to very low values when the container deployment
operation is quick (native Docker and Ceph+kernel) compared to the FUSE-based con-
figurations.

Finally, the memory consumption during a cache miss is shown in Figure 4.4(d).
We can see that the distributed file systems impose an additional memory overhead
compared to the native Docker. Ceph requires more memory than Gluster, which can
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(a) Download speed (kB/s). (b) Upload speed (kB/s).

(c) CPU usage (%). (d) Memory usage (MB).

Figure 4.4 – Resource utilization upon a cache miss.

(a) Download speed (kB/s). (b) Upload speed (kB/s).

(c) CPU usage (%). (d) Memory usage (MB).

Figure 4.5 – Resource utilization upon a cache hit.
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possibly be explained by the fact that Gluster does not need any metadata servers.
Interestingly, Ceph’s memory footprint decreases to very low values after the container
deployment is finished whereas Gluster keeps the same memory footprint during and
after the deployment.

Figure 4.5 shows the resource utilization of the Docker server while a container is
being deployed from an already cached image. The upload speed is negligible because
no content needs to be written to disk. We however observe some download traffic
which corresponds to the read operation from the distributed file system. We observe
the same phenomenon as in the cache miss scenario, where Ceph+kernel is the only
configuration capable of reaching significant throughput in this operation. Here as well,
the memory footprint of Ceph is greater than that of Gluster, but it remains only during
the container deployment operation.

We conclude that the Ceph+kernel configuration is the only one which can deliver
deployment performance similar to that of the native Docker, both in the cache hit and
cache miss scenarios. It requires slightly more memory than Gluster but only during
the deployment operation. Based on these findings, in the next sections we focus on
the CephFS+kernel configuration only.

4.4.2 Simultaneous Application Deployment

In any cloud-like system, it is frequent that multiple identical VMs or containers get
deployed at the same time, for instance to execute a horizontally-scalable application
over a significant number of resources. Without cache sharing, each physical server
involved in this operation simply deploys a subset of these containers independently
from the other servers. When sharing the Docker image cache, all servers read the
same image content in the shared file system at the same time. To evaluate whether
this operation may constitute a performance bottleneck, we deployed multiple instances
of the same ubuntu:latest container image in a PoP composed of 10 machines. The
image was previously downloaded in the cache, so all deployments result in a cache
hit.

Figure 4.6 depicts the average deployment time when varying the number of con-
tainers being simultaneously deployed. When deploying a single container the deploy-
ment time is 1.2 s. This deployment time grows until 1.5 s when deploying 10 containers
simultaneously (one on each PoP node). The overhead of simultaneous container de-
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Figure 4.6 – Overhead of simultaneous container deployments.

ployments is therefore real, but sufficiently limited to retain all the other benefits of
shared image caches.

4.4.3 Macro-benchmarks

The purpose of sharing Docker image caches is to allow multiple resource-limited
PoP servers to increase their cache hit rate by gaining access to a large image cache
with a good probability that an image is already present at the time it must be deployed.
We therefore evaluate the respective performance of non-shared and shared caches
under the same container deployment workload as discussed in Section 4.2.

We created a PoP composed of 5 machines with the same configuration as in the
previous sections. When using the shared cache configuration, every machine from
the PoP dedicates 10 GB of its disk space to the Ceph distributed file system, and
keeps the rest for its local usage. Ceph reserves 1.5 GB space of each disk to store
the underlying file system journal, so the total shared storage capacity is 43 GB.

We replayed two traces of container deployments:
— The fra availability zone has a total working set of 31 GB. This means it is too

large to fit in a single PoP node’s local cache but it can entirely fit in the shared
cache whose aggregate capacity is 43 GB.

— The dal availability zone has a total working set of 54 GB. In this case, even the
shared image cache is too small to store all downloaded images. It therefore
applies the cache replacement mechanisms described in Section 4.3.5 to keep
only the most recently used images. As discussed in Section 4.2.2, this workload
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Figure 4.7 – Hit ratio of shared vs. non-shared image caches under a workload of 4000
container deployments.

has limited temporal locality properties and is expected to deliver modest cache
hit rates.

Image deployments are issued to the different nodes of the PoP following a round-
robin policy. Since we are only interested in the container deployment times, we stop
every container immediately after the end of its deployment.

Figure 4.7 depicts the evolution of the cache hit ratio during the execution of the
two traces, with and without shared cache, binned by groups of 50 consecutive deploy-
ments. For both workloads, the shared cache clearly delivers a much greater cache
hit rate than the non-shared caches. More precisely, during the first few hundred de-
ployments, the shared cache hit rate grows much faster that the non-shared caches.
This can be explained by the fact that the most popular images need to be downloaded
only once in the case of a shared cache whereas in the non-shared case the same
image must be downloaded separately by multiple fog nodes. In the end of the curve
we observe the effect of a increasing the cache size available to any of the Docker
servers: the cache hit rate of the fra zone stabilizes around 82% using the shared
cache whereas the non-shared caches deliver only 52% hit rate. In the case of the dal
zone the cache hit rates are more modest (as expected from the study in Section 4.2.2)
but there as well the shared cache delivers a significant cache hit rate improvement
compared to non-shared caches.

Figure 4.8 compares the average and standard deviation of deployment times dur-
ing the same experiment. After deploying the first dozen deployments, in the fra trace
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the average shared-cache deployment time is approximately 4 s whereas the non-
shared cache observes deployment times close to 6 s. This difference persists through
the entire workload: the mean deployment time of shared caches stabilizes to a value
78% lower than non-shared caches. In the case of the dal trace we observe a simi-
lar behavior. The lower cache hit rates of this difficult workload imply that the average
deployment times remain above 2 s. However, here as well the shared cache delivers
significantly lower deployment times than the non-shared scenario (37% reduction of
the stabilized mean response time). We also observe smaller standard deviations of
the deployment times in the shared-cache scenarios, which indicates that deployment
times are more predictable than in the case of non-shared caches.

These significant differences in container deployment times may significantly im-
pact the perception that fog applications’ end users have about the performance of the
overall system.

4.5 Conclusion

Docker was implemented with the assumption that every server’s local cache would
be large enough to store all the relevant container images after they are first down-
loaded. This assumption is however not true in fog computing environment where the
compute resources are split between a large number of relatively weak machines. In
such environments we extended Docker with a cache replacement policy which evicts
unused images and maintains an acceptable image cache size. Splitting the avail-
able cache size also negatively impacts the cache hit rates because the same pop-
ular images must be downloaded and stored separately in multiple disjoint caches.
We therefore proposed sharing caches between multiple co-located fog nodes. Our
trace-based evaluations show that the proposed design achieves significant cache hit
improvements, leading to reductions of average container deployment times between
37% and 78% depending on the scenarios. In fog computing environments container
deployment must be assumed to be a frequent operation. Reducing container deploy-
ment times will therefore directly benefit the end users and help provide them with agile
and responsive applications and services.
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(a) Fra availability zone.

(b) Dal availability zone.

Figure 4.8 – Deployment time of shared vs. non-shared image caches under a work-
load of 4000 container deployments.





CHAPTER 5

SPEEDING UP THE DOCKER IMAGE

DEPLOYMENT

This chapter presents the second contribution of the thesis. The second opportu-
nity to reduce container deployment time is by improving the Docker image deployment
process itself. Docker image deployment in resource-constrained fog nodes such as
Raspberry Pis can be painfully slow: deploying one image before starting the container
may take multiple minutes. We show that this slow deployment time is not only due
to the resource-constrained nodes but also to Docker’s inefficient usage of the hard-
ware resources while deploying an image. We therefore propose Docker-pi which is an
amalgamation of three optimization solutions which together reduce image deployment
times significantly.

5.1 Introduction

Sharing Docker image cache improves cache hit ratio and reduce container de-
ployment time between 37% and 78% depending on the scenarios, however, Docker
still needs to download the container image while the container deployment request
is launched for the first time. Deploying container images can be painfully slow, in the
order of multiple minutes depending on the container’s image size and network condi-
tion. However, such delays are unacceptable in scenarios such as a fog-assisted aug-
mented reality application where the end users are mobile and new containers must be
dynamically created when a user enters a new geographical area. Reducing deploy-
ment times as much as possible is therefore instrumental in providing a satisfactory
user experience.

We show that this poor performance is not only due to hardware limitations. In fact
it largely results from the way Docker implements the container’s image download op-
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eration: Docker exploits different hardware subsystems (network bandwidth, CPU, disk
I/O) sequentially rather than simultaneously. We therefore propose three optimization
techniques which aim to improve the level of parallelism of the deployment process.
Each technique reduces deployment times by 10-50% depending on the content and
structure of the container’s image and the available network bandwidth. When com-
bined together, the resulting “Docker-pi” implementation makes container deployment
up to 4 times faster than the vanilla Docker implementation, while remaining totally
compatible with unmodified Docker images.

Interestingly, although we designed Docker-pi in the context of single-board com-
puters, it also provides 23–36% performance improvements on high-end servers as
well, depending on the image size and organization.

The chapter is organized as follows. Section 5.2 analyzes the deployment process
and points out its inefficiencies. Section 5.3 proposes and evaluates three optimiza-
tions. Finally, Section 5.4 discusses practicalities, and Section 5.5 concludes.

5.2 Understanding the Docker container deployment

process

To understand the Docker container deployment process in full details we analyzed
the hardware resource usage during the download, installation and deployment of a
number of Docker images on a Raspberry PI-based infrastructure. The limited hard-
ware capabilities were instrumental in highlighting the inefficiencies of this process,
which would be more difficult to pinpoint using faster server machines.

5.2.1 Experimental setup

We monitored the Docker deployment process on a testbed which consists of three
Raspberry Pi 3 machines connected to each other and to the rest of the Internet
with 10 Gbps Ethernet [183]. The testbed was installed with the latest Docker version
(17.06) This setup also allowed us to emulate slower network connections — which are
arguably representative of real fog computing scenarios — by throttling network traffic
at the network interface level. We used the tc (Traffic Control) command to run experi-
ments either with unlimited bandwidth, or with limits of 1 Mbps, 512 kbps or 256 kbps.
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Figure 5.1 – Structure of the “Mubuntu” container image.

Table 5.1 – Structure of the Docker images.

Ubuntu Mubuntu Biglayers
image image image

6th layer – 51 MB -
5th layer <1 MB <1 MB -
4th layer <1 MB <1 MB 62 MB
3rd layer <1 MB <1 MB 54 MB
2nd layer <1 MB <1 MB 64 MB
1st layer 46 MB 46 MB 52 MB
Total size 50 MB 101 MB 232 MB

Table 5.1 depicts the three Docker images we used for this study. The first im-
age simply conveys a standard Ubuntu operating system: it is composed of one layer
containing most of the content, and four small additional layers which contain various
updates of the base layer. The second is the Mubuntu image already presented in
Figure 5.1. Finally, as the name suggests, the BigLayers image is composed of four
big layers which allow us to highlight the effect of the layering system on container
deployment performance.

We instrumented the testbed nodes to monitor the overall deployment time as well
as the utilization of important resources during the container deployment process:
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— Deployment time: We measured the deployment time from the moment the
deployment command is issued, until the time when Docker reports that the
container is started.

— Network activities: Network activities include incoming data and outgoing data
during deployment. We used the nethogs tool to monitor the network activities
during the whole deployment processes at a 1-second granularity[63]. The script
traces the specific network activity of the Docker daemon, and therefore does
not take other sources of background traffic into account.

— Disk throughput: We monitored the disk activity with the iostat Linux command
which monitors the number of bytes written to or read from disk at a 1-second
granularity.

— CPU usage: We monitored CPU utilization by watching the /proc/stat file at a
1-second granularity.

Unless otherwise stated, every container deployment experiment was issued on an idle
node, and with an empty image cache.

5.2.2 Monitoring the Docker container deployment process

Figure 5.2 depicts the results when deploying the three images using regular
Docker. Figure 5.2(a) shows the deployment time of our three images in different net-
work conditions: deploying the Ubuntu, Mubuntu and Biglayers images with unlimited
network bandwidth respectively takes 240, 333 and 615 seconds. Clearly, the over-
all container deployment time is roughly proportional to the size of the image. When
throttling the network capacity, deployment times grow steadily as the network capac-
ity is reduced to 1 Mbps, 512 kbps, and 256 kbps. For instance, deploying the Ubuntu
container takes 6 minutes when the network capacity is reduced to 512 kbps. This
is considerable with regards to the deployment efficiency one would expect from a
container-based infrastructure. However, the interesting information for us is the rea-
son why deployment takes so long, as we discuss next.

Figure 5.2(b) depicts the utilization of different hardware resources from the host
machine during the deployment of the standard Ubuntu image. The red line shows in-
coming network bandwidth utilization, while the blue curve represents the number of
bytes written to the disk and the black line shows the CPU utilization. The first phase
after the container creation command is issued involves intensive network activities,
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(b) Ubuntu image with a 1 Mbps network cap.
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(c) Mubuntu image with a 1 Mbps network cap.
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Figure 5.2 – Deployment times and resource usage using standard Docker.
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which indicates that Docker is downloading the image layers from the remote image
registry. By default Docker downloads up to three image layers in parallel. The duration
of downloads clearly depend on the image size and the available network capacity:
between 55 s and 200 s for the Ubuntu and Mubuntu images. During this phase, we
observe no significant disk activity in the host machine, which indicates that the down-
loaded file is kept in main memory.

After the download phase, Docker extracts the downloaded image layers to the disk
before building the final image of the application. The extraction of a layer involves
two operations: decompression (which is CPU-intensive) and writing to the disk (which
is disk-intensive). We observe that the resource utilization alternates between periods
during which the CPU is busy (∼40% utilization) while few disk activities are performed,
and periods during which disk writes are the only notable activity of the system. We
conclude that, after the image layers have been downloaded, Docker sequentially de-
compresses the image and writes the decompressed data to disk. When the image
data is big, Docker alternates between partial decompressions and disk writes, while
maintaining the same sequential behavior.

We see a very similar phenomenon in Figures 5.2(c) and 5.2(d). However, in here
the downloading of the first layer terminates before the other layers have finished down-
loading. The extraction of the first layer can therefore start before the end of the down-
load phase, creating a small overlap between the downloading and extraction phases.

5.2.3 Critical observations

From the previous experiments we derive a few important observations.

Overall deployment time

The overall deployment of a new container mainly involves three operations: search-
ing for the cached image, pulling the image from the registry and starting the container.
Our work assumes that the image is not cached on the machine, so every container de-
ployment involves pulling the image from the registry. As we have seen, Docker takes
a significant amount of time for pulling the image from the registry while the other two
operations take a negligible amount of time. In this paper, we therefore mainly focus on
optimizing the Docker image pull operation.
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Pulling image layers in parallel

By default, Docker downloads image layers in parallel with a maximum parallelism
level of three. These layers are then decompressed and extracted to disk sequentially
starting from the first layer. However, when the available network bandwidth is limited,
downloading multiple layers in parallel will delay the download completion of the first
layer, and therefore will postpone the moment when the decompression and extraction
process can start. Therefore, delaying the downloading of the first layer ultimately leads
to slowing down the extraction phase.

Single-threaded decompression

Docker always ships the image layers in compressed form, usually implemented
as a gzipped tar file. This reduces the transmission cost of the image layers but it
increases the CPU demand on the server node to decompress the images before ex-
tracting the image to disk. Docker decompresses the images via a call to the standard
gunzip.go function, which happens to be single-threaded. However, even very limited
machines usually have several CPU cores available (4 cores in the case of a Raspberry
Pi 3). The whole process is therefore bottlenecked by the single-threaded decompres-
sion. As a result the CPU utilization never grows beyond ∼40% of the four cores of the
machine, wasting precious computation resources which may be exploited to speed up
image decompression.

Resource under-utilization

The standard Docker container deployment process under-utilizes the available
hardware resources. Essentially, deploying a container begins with a network-intensive
phase during which the CPU and disk are mostly idle. It then alternates between CPU-
intensive decompression operations (during which the network and disk are mostly
idle) and I/O-intensive image extraction operations (during which the network and CPU
are mostly idle). The only case where these operations slightly overlap are images
such as Mubuntu and BigLayers when the decompress and extraction process of the
first layer can start while the last images are still being downloaded.

This resource under-utilization is one of the main reason for the poor performance
of the overall container deployment process. The main contribution of this paper is to
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show how one may reorganize the Docker deployment process to maximize resource
utilization during deployment.

5.3 Optimizing the container deployment process

To address the inefficiencies presented in the previous section we propose and eval-
uate three optimization techniques to speed up the container provisioning time. Each
optimization addresses a different issue in the standard Docker container deployment.
We can therefore combine them all together, which brings significant performance im-
provement.

5.3.1 Sequential image layer downloading

As previously discussed, Docker parallelizes image downloads from the central
repository to the local node, with a default concurrency degree of 3. This is a classical
technique to maximize the overall network throughput. However, in the specific case of
Docker image downloads this strategy has a negative effect because the next phases
of the container deployment, namely the decompress and extraction phases, must take
place sequentially to preserve the Copy-on-Write policy of Docker storage drivers. The
decompress & extract phase can start only after the first layer has been downloaded.
Downloading multiple image layers in parallel will delay the download completion time
of the first layer because this download must share network resources with other less-
urgent image downloads, and will therefore also delay the moment when the first layer
can start its decompress & extract phase.

The only cases where the decompression and extraction of one layer overlaps with
the download of another image can be seen in Figure 5.2(c) and 5.2(d). They result
from the fact that the download concurrency degree delays the downloading of the last
images. We therefore propose to extend this phenomenon, and to reduce the download
concurrency degree to one, essentially reverting to a sequential download of the image
layers one after another.

Figure 5.3 illustrates the effect of downloading multiple layers sequentially rather
than in parallel, in an example with an image made of three layers. In both cases, three
threads are created to handle the three image layers. However, in the first option the
downloads take place in parallel whereas the only required inter-thread synchroniza-
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(a) Standard Docker pull with parallel layer download.

(b) Docker pull with sequential layer download.

Figure 5.3 – Standard and sequential layer pull operations.

tion requires that the decompression and extraction of layer n can start only after the
decompression and extraction of layer n − 1 has completed. In sequential download-
ing, the second layer starts downloading only when the first download has completed,
which means that it takes place while the first layer is being decompressed and ex-
tracted to disk. This allows the first-layer extraction to start sooner and it also increases
resource utilization because the download and the decompress & extract operations
make intensive use of different part of the machine’s hardware.

Implementing sequential image downloading requires additional inter-thread syn-
chronization: in this new model the downloading of layer n can start only after the end
of the layer n − 1 download, whereas the decompress & extract of layer n can start only
after layer n has been downloaded and the layer n − 1 has finished its extraction. A
simple way to implement this is to set the “max-concurrent-downloads” parameter to 1
in the /etc/docker/daemon.json configuration file.

Figure 5.4 depicts the host machine’s resource usage when using sequential down-
loading of our reference images, and compares the overall deployment times with var-
ious network bandwidth limitations. Figure 5.4(a) shows the resource usage when de-
ploying the Ubuntu image with sequential downloading and a 1 Mbps network capacity.
The figure is not much different from Figure 5.2(a) where the image downloads were
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(a) Ubuntu image with a 1 Mbps network cap.
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(b) Mubuntu image with a 1 Mbps network cap.

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 100  200  300  400  500  600  700

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t 

(K
B

/s
)

D
is

k
 I

/O
 (

K
B

/s
)

Time(s)

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

(c) BigLayers image with a 1 Mbps network cap.
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Figure 5.4 – Resource usage and deployment time with sequential layers downloading.
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done in parallel. The reason is that the Ubuntu image contains only one layer with a
significant size, so the downloading and extraction of layers 2–5 is very short compared
to layer 1. However, in Figures 5.4(b) and 5.4(c), we observe that after the download-
ing of layer 1 has completed, the utilization of hardware resources is much greater,
with in particular a clear overlap between periods of intensive network, CPU and I/O
resources. Also we can observe that the decompression of the first layer (visible as the
first spike of CPU utilization) takes place sooner than in Figure 5.2.

Figure 5.4(d) compares the overall container deployment times with parallel and
sequential downloads in various network conditions. When the network capacity is un-
limited the performance gains in the deployment of the Ubuntu, Mubuntu and BigLayers
images are 3%, 4.2% and 6% respectively.

However, the performance gains grow steadily as the available network bandwidth
gets reduced. With a bandwidth cap of 256 kbps, sequential downloading brings im-
provements of 6% for the Ubuntu image, 10% for Mubuntu and 12% for BigLayers.
This is due to the fact that slower network capacities exacerbate the duration of the
download phases and increases the delaying effect of parallel layer downloading.

Sequential downloading therefore provides modest yet non-negligible performance
gains. This technique works best when the deployed image contains multiple large
layers, and when the network capacity is very limited. These conditions happen to
match the properties of a container deployment in fog computing environments where
non-trivial applications will be deployed in extremely distributed infrastructures which
necessarily rely on limited commodity networks.

5.3.2 Multi-threaded layer decompression

Docker image layers are stored and downloaded in the form of a gzipped tar file.
After downloading the files from the registry, the compute node therefore needs to
decompress every layer before building the image on disk. In our experiments based
on Raspberry PI and an unlimited network capacity, the duration of the decompres-
sion phase is greater than that of the image download. Increasing the speed of file
decompression therefore has the potential to significantly reduce the overall container
deployment time.

By default, Docker compresses image layers using gzip. Decompression is imple-
mented entirely in the Go language using the standard gunzip.go library [16]. However,
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Figure 5.5 – Impact of the number of pgzip threads on the deployment time.

this function is single-threaded which means that it is unable to exploit multiple cores to
speed up decompression. As a result, the CPU utilization during decompression never
exceeds 40% of the four available cores in the Raspberry Pi machine.

We therefore propose to replace the single-threaded gunzip.go library with a multi-
threaded implementation so that all the available CPU resources may be used to speed
up this part of the container deployment process. We use pgzip, which is a multi-
threaded implementation of the standard gzip/gunzip functions [157]. Its functionalities
are exactly the same as those of the standard gzip, however it splits the work between
multiple independent threads. When applied to large files of at least 1 MB, this can
significantly speed up decompression.

To determine the appropriate number of threads we should allow pgzip to use, we
deployed a custom container image while varying the available number of threads. We
used a very simple image which consists of a single layer of 20 MB in compressed form.
This allows us to better isolate the performance gains of the parallel decompression
from other effects such as the possible overlap of the decompression with the download
of other layers. The results are depicted in Figure 5.5.

When pgzip uses a single thread, the performance and CPU utilization during de-
compression are very similar to the standard gunzip implementation. However, when
we increase the number of threads from 1 to 12, the overall container deployment time
decreases from 154 s to 136 s. At the same time, the CPU utilization during decom-
pression steadily increases from 40% to 71% of the four available CPU cores. If we
push beyond 12 threads, no additional gains are observed. We clearly see that the
parallel decompression does not scale linearly, as it is not able to exploit the full ca-
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(a) Ubuntu image with multi-threaded decom-
pression.
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(b) Mubuntu image with multi-threaded decom-
pression.
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(c) BigLayers image with multi-threaded de-
compression.
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Figure 5.6 – Resource usage and deployment time with multi-threaded image layer
decompression.
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pacity of the overall CPU: this is due to the fact that gzip decompression must process
data blocks of variable size so the decompression operation itself is inherently single-
threaded [173]. The benefit of multi-threading decompression is that other necessary
operations during decompression (essentially data buffering and CRC verification) can
be delegated to other threads and moved out of the critical path.

Figure 5.6 shows the effect of using parallel decompression when deploying our
three standard container images with 12 threads. We observe in Figures 5.6(a), 5.6(b)
and 5.6(c) that the CPU utilization is greater during the decompression phases than
with standard Docker, in the order of 70% utilization instead of 40%. Also, the decom-
pression phase is notably shorter. The same phenomenon is visible in all three images.

We also notice that the parallel image download phase is fairly CPU-intensive: in
the examples of the Mubuntu and the BigLayers images which both have several large
layers to decompress, the CPU utilization during downloading grows up to 70% for
Mubuntu and even 90% for BigLayers. This clearly indicates that it would be pointless to
attempt parallel image layer decompression while simultaneously downloading multiple
image layers.

Finally, Figure 5.6(d) compares the overall container deployment times with parallel
decompression against that of the standard Docker. The network performance does
not influence the decompression time so we conducted the evaluation only with an
unlimited network capacity. The performance gain from multi-threaded decompression
is similar for all three images, in the order of 17% of the overall deployment time.

The standard single-threaded gzip implementation creates an unnecessary perfor-
mance bottleneck because it under-utilizes the CPU resources during the decompres-
sion of the image layer. Although parallelizing data decompression is very hard and
it cannot offer linear speedup, parallel decompression allows one to move the tasks
not directly related to decompression to helper threads, which still provides interesting
performance benefits. Multi-threading decompression increases the CPU usage, and
reduces the overall Docker container deployment times.

5.3.3 I/O pipelining

Despite the sequential downloading and the multi-threaded decompression tech-
niques, the container deployment process still under-utilizes the hardware resources.
The reason is due to the sequential nature of the workflow which is applied to each
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Figure 5.7 – Docker pull operation with I/O pipelining.

individual layer. Each layer is first downloaded in its entirety, then it is decompressed
entirely, then it is extracted to disk. This requires Docker to keep the entire decom-
pressed layer in memory, which can be significant considering that a Raspberry Pi 3
has only 1 GB of main memory [50]. Also, it means that the first significant disk activity
can start only after the first layer has been fully downloaded and decompressed. Sim-
ilarly, Docker necessarily decompresses and extracts the last layer to disk while the
networking device is mostly inactive.

However, there is no strict requirement for the download, decompress and extrac-
tion of a single layer to take place sequentially. For example, decompression may start
right after the first bytes of the compressed layer have been downloaded. Similarly,
extracting the layer may start immediately after the beginning of the layer image has
been decompressed.

We therefore reorganize the download, decompression and extraction of a sin-
gle layer in three separate threads where each thread pipelines data to the next as
soon as some data is available. In Unix shell syntax this essentially replaces the se-
quential “download; decompress; crc-check; extract” command with the concur-
rent “download | decompress | crc-check | extract” command. Figure 5.7 illus-
trates this technique with four threads responsible for downloading and decompression
a Docker image layer. The thread TD1 downloads the image layer while TR1 performs
the decompression, TC1 calculates the CRC, and finally TW1 writes the decompressed
data to the disk. Since we stream the incoming downloaded data without buffering the
entire layer, the thread TW1 can start writing content to disk long before the download
process has completed.

We implemented pipelining using the io.pipe() GO API, which creates a synchro-
nized in-memory pipe between an Input(writer) and an Output(reader) [17]. However,
we must be careful about synchronizing this process between multiple image layers:
for example, if we created an independent pipeline for each layer separately, the result
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(b) Resource utilization with stan-
dard Docker.
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(c) Resource utilization with I/O
pipelining.

Figure 5.8 – Deployment time and resource usage with I/O pipelining.

would violate the Docker policy that layers must be extracted to disk sequentially, as
one layer may overwrite a file which is present in a lower layer. If we extracted mul-
tiple layers simultaneously we could end up with the wrong version of the file being
given to the container. Rather than building complex synchronization mechanisms, we
instead decided to rely on Docker’s sequential downloading feature already discussed
in Section 5.3.1. When a multi-layer image is deployed, this imposes that layers are
downloaded and extracted one after the other, while using the I/O pipelining technique
within each layer.

We now evaluate the I/O pipelining technique using a single-layer image only. In
the next section we combine all three optimization techniques and therefore show the
combined effect of the sequential download and the I/O pipelining. A single-layered
image can be created using a so-called “flatten” operation which creates a single tar
file out of a deployed image. Since the flattened version contains a single copy of every
file (even though it may have been overwritten multiple times by different layers), the
flattened image is usually slightly smaller than the sum of all the initial layers’ sizes.

Figure 5.8 compares the deployment of a flattened image between standard Docker
and the I/O pipelining technique. We can see in Figure 5.8(a) that the pipelined ver-
sion is roughly 50% faster than its standard counterpart. The reason can be found in
Figures 5.8(b) and 5.8(c). In the standard deployment, resources are used one after
the other: first network-intensive download, then CPU-intensive decompression, then
finally disk-intensive image creation. In the pipelined version all operations take place
simultaneously, which better utilizes the available hardware and significantly reduces
the container deployment time.
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5.3 Optimizing the container deployment process

5.3.4 Docker-pi

The three techniques presented here address different issues. Sequential down-
loading of the image layers speeds up the downloading of the first layer in slow net-
work environments. Multi-threaded decompression speeds up the layer decompression
by utilizing multiple CPU cores. Finally, I/O pipelining speeds up the deployment of
each layer by conducting the download, decompress and extraction processes simul-
taneously, while avoiding having to keep large amounts of data in memory during the
deployment process. We therefore propose Docker-pi, an optimized version of Docker
which combines the three techniques to optimize container deployment on single-board
machines such as Raspberry PIs. The implementation of Docker-pi is available online
in the gitlab repository [3].

Deployment Time

Figure 5.9 depicts the resource usage and deployment time of our three standard
images using Docker-pi. We can clearly see in Figures 5.9(a), 5.9(b) and 5.9(c) that the
networking, CPU and disk resources are used simultaneously and have a much greater
utilization than with the standard Docker implementation. In particular, the CPU and
disk activities start very early after the first few bytes of data have been downloaded.

Finally, Figure 5.9(d) highlights significant speedups compared to vanilla Docker:
with no network cap, Docker-pi is 73% faster than Docker for the Ubuntu image, 65%
faster for Mubuntu and 58% faster for BigLayer. When we impose bandwidth caps
the overall deployment time becomes constraint by the download times, while the de-
compression and extraction operations take place while the download is taking place.
In such bandwidth-limited environments the deployment time therefore cannot be re-
duced any further other than by pre-fetching images before the container deployment
command is issued.

The reason why the gains are lower for the Mubuntu and BigLayers images is that
the default download concurrency degree of 3 in vanilla Docker already makes them
benefit from some of the improvements that we generalized in Docker-pi. If we increase
the concurrency degree of vanilla Docker to 4, the BigLayers image deploys in 644 s
whereas Docker-pi needs only 207 s, which represents 68% improvement.

99



Chapter 5 – Speeding Up the Docker Image Deployment
 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 50  100  150  200  250
 0

 2
00

0
 4

00
0

 6
00

0
 8

00
0

 1
00

00

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t 

(K
B

/s
)

D
is

k
 I

/O
 (

K
B

/s
)

Time(s)

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

(a) Ubuntu image with a 1 Mbps network cap.
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(b) Mubuntu image with a 1 Mbps network cap.

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 100  200  300  400  500  600  700

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t 

(K
B

/s
)

D
is

k
 I

/O
 (

K
B

/s
)

Time(s)

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

(c) BigLayers image with a 1 Mbps network cap.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Unlimited 1Mbps 512Kbps 256Kbps

2
4

0
7

0
3

3
3

1
4

0
6

1
5

2
6

1

2
7

2
8

7
4

7
2

2
0

0
7

5
0

3
4

2

3
1

7
1

3
8

5
2

0
2

8
9

8
8

9
5

5
0

4
4

5
2

6
2

7
4

7
5

6
5

1
3

7
8

1
1

5
0

D
ep

lo
y
m

en
t 

ti
m

e 
(s

)

Network Condition

In Standard : Ubuntu
In Proposed : Ubuntu

In Standard : Mubuntu
In Proposed : Mubuntu
In Standard : Biglayers
In Proposed : Biglayers
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Figure 5.9 – Resource usage and deployment time with Docker-pi.

Memory usage

We now evaluate the memory footprint of Docker and Docker-pi during the deploy-
ment process. For simplicity, we deployed a single layer image and extracted memory
usage of the node by watching /proc/meminfo file at a 1-second granularity. Figure 5.10
clearly shows the effect of pipelining on the memory footprint. Docker-pi starts extract-
ing the layer to local disk immediately after the first few blocks of the layer are down-
loaded, therefore, memory footprint never exceeds 10 MB while deploying the image. In
contrast, standard docker’s memory usage is nearly 70 MB. The reason is that it keeps
the complete compressed layer in memory, decompresses it entirely in memory again,
before writing to disk and releasing both files from memory.

The memory footprint of standard Docker may vary depending on the image size
and concurrency degree of parallel download. In a memory-constrained device like
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Figure 5.10 – Memory footprint of Docker and Docker-pi during container deployment.

Raspberry PI which has only 1GB of RAM, this may create significant bottlenecks. On
the other hand, Docker-pi uses less memory and has a fairly constant footprint during
the image pull operation irrespective of image structure, which makes it a better choice
in environments such as memory-constraint fog computing devices.

Performance interference with already-running containers

In all experiments presented so far, container deployment took place in an other-
wise idle machine. However, this scenario is unlikely in a busy fog computing environ-
ment where numerous independent applications share a limited number of physical
resources. We therefore now evaluate the impact that container deployment has on
already-running containers in the same machine.

We use an Apache Web server container [69] as the already-running container so
we can observe its performance while another container with the single-layer image is
being deployed. The Apache server serves a constant request workload produced by
the http_load HTTP benchmarking tool [125]. We configured it to generate a constant
load of 300 requests/second which fetch a single 5kB file. We monitor the Web server’s
network throughput using nethogs before, during and after the single-layer container is
being deployed.

Figure 5.11 compares the upload throughput of the Web server while standard
Docker or Docker-pi are deploying a new container image. We observe that in both
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Figure 5.11 – Upload throughput of the Apache web server.

cases the Web server performance is affected by the simultaneous container deploy-
ment taking place in the same machine. This is largely due to the fact that the web
server and the container deployment processes need to compete for limited resources
such as available network bandwidth. Interestingly, both versions of Docker impose
a similar performance reduction to the web server during the time of container de-
ployment. However, Docker-pi deploys the new container faster so the duration of the
interference it creates is shorter than using regular Docker. The fact that Docker-pi gen-
erates high resource utilization during container deployment does not seem to affect
other containers in greater proportions than regular Docker.

5.4 Discussion

5.4.1 Should we flatten all Docker images?

Flattening all Docker images may arguably provide performance improvement in the
deployment process. Indeed, multiple image layers may contain successive versions of
the same file whereas a flattened image contains only the final version of every file. A
flattened image is therefore always a little smaller than its multi-layered counterpart.
Systems like Slacker actually rely on the fact that images have been flattened [76]. On
the other hand, Docker-pi supports both flattened images and unmodified multi-layer
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images. We however do not believe that flattening all images would bring significant
benefits.

Docker does not provide any standard tool to flatten images. This operation must
be done manually by first exporting an image with all its layers, then re-importing the
result as a single layer while re-introducing the startup commands from all the initial
layers. The operation must be redone every time any update is made in any of the
layers. Although this process could be integrated in a standard image build workflow, it
contradicts the Docker philosophy which promotes incremental development based on
image layer reusability.

In a system where many applications execute concurrently, one may reasonably ex-
pect many images to share at least the same base layers (e.g., Ubuntu) which produce
a standard execution environment. If all images were flattened this would create large
amounts of redundancy between different images, creating the need for sophisticated
de-duplication techniques [76]. On the other hand, we believe that the layering system
can be seen as a domain-specific form of de-duplication which naturally integrates in a
developer’s devops workflow. We therefore prefer keeping docker images unmodified,
and demonstrated that container deployment can be made extremely efficient without
the need for flattening images.

5.4.2 Does Docker-pi work also for powerful server machines?

Although we designed Docker-pi for single-board machines, the inefficiencies of
vanilla Docker also exist in powerful server environments. We therefore evaluate the
respective performance of Docker and Docker-pi in the Grid’5000 testbed which is
commonly used for research on parallel and distributed computing including Cloud,
HPC and Big Data [22]. We specifically use a Dell PowerEdge C6220 server equipped
with two 10-core Intel Xeon E5-2660v2 processors running at 2.2GHz, 128 GB of main
memory and two 10 Gbps network connections, and do not cap the network bandwidth.

Figure 5.12 compares the deployment times of Docker and Docker-pi with our three
standard images. Obviously container deployment is much faster in this environment
than in Raspberry PIs. However, here as well Docker-pi provides respectable perfor-
mance improvement in the order of 23% (Ubuntu), 29% (Mubuntu) and 36% (BigLay-
ers). In this powerful server the network and CPU resources cannot be considered
as bottlenecks so the sequential layer downloading and multi-threaded decompression
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Figure 5.12 – Deployment time of Docker and Docker-pi in Grid’5000.

techniques bring almost no improvement compared to the standard Docker. On the
other hand, the sequential nature of the download/decompress/extract process is still
present regardless of the hardware architecture, so the I/O pipelining technique brings
similar performance gains as with the Raspberry PI.

5.5 Conclusion

The transition from virtual machine-based infrastructures to container-based ones
brings the promise of swift and efficient software deployment in large-scale comput-
ing infrastructures. However, this promise is not being held in fog computing platforms
which are often made of very small computers such as Raspberry PIs. In such envi-
ronments, deploying even a very simple Docker container may take multiple minutes.

We studied the Docker container deployment process in details and identified three
sources of inefficiency: (1) Docker downloads multiple layers in parallel; (2) it uses
single-threaded decompression; and (3) it sequentially downloads, decompresses and
extracts any given image layer. We proposed three optimization techniques which, once
combined together, speed up container deployment roughly by a factor 4. Last but
not least, we demonstrated that these optimizations also bring significant benefits in
regular server environments.

This work eliminates the unnecessary delays that take place during container de-
ployment. Depending on the hardware, deployment time is now basically dictated only
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5.5 Conclusion

by the slowest of the three main resources: network bandwidth, CPU, or disk I/O. As
hardware will evolve in the next years the bottleneck may shift from one to the other.
But, regardless of the specificities of any particular machine, Docker-pi will exploit the
available hardware to its fullest extent.
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CHAPTER 6

AVOIDING THE CONTAINER BOOT PHASE

This chapter presents the third contribution of the thesis. The final opportunity to
improve container deployment is to optimize the boot phase of a container. The boot
phase starts when creating the first process of the application and terminates when
the application is ready to serve user requests. Some applications take a significant
amount of time to boot the container. We propose to refactor the container boot phase
using process checkpoint/restart, which allows one to deploy containers from a check-
point image of an already started-container. This skips the container boot phase and
significantly reduces the overall deployment time.

6.1 Introduction

Upon a container deployment request, Docker first creates the container with the
given configuration. It then starts the application inside the container, which is also
known as the container’s boot phase. The boot phase starts by launching the main
process of the application and terminates when the application is ready to accept user
requests. This phase may take significant amount of time depending on the set of of in-
structions that the application must execute before being ready to serve user requests.
For example, booting the popular mysql database requires reading configuration data
as well as internal tables from disk, then warming up the data in memory, and finally
carrying out initialization steps. Booting mysql requires about 10 s on a fast server be-
fore being available to serve end-user commands. This delay is significant compared
to the container creation time which less than 1 s on the same machine [142].

As previously discussed, we expect that fog applications will need to be launched
frequently in the same Point-of-Presence of fog infrastructures. Every time the appli-
cation is launched in the fog servers, the same boot phase must be performed. In

107



Chapter 6 – Avoiding the Container Boot Phase

this work, we aim to avoid repeating this boot phase when a container is repeatedly
deployed in a PoP, which may in turn reduce the average container deployment time.

One way to avoid the container boot phase during the Docker container deployment
process is to save the state of the application at the end of its boot phase. Since many
applications always follow the same boot sequence during their deployment, we can
save the state of a booted application and later re-start the container from this state in
subsequent deployments. We propose to use checkpoint/restart techniques to create
a snapshot of an application during container deployment, such that it can be used to
restart the application in the later deployments.

Process checkpoint/restart is a technique where the state of a running application
is saved for later reuse. It mainly involves two operations: the first one is checkpoint,
where the state of a running process is captured, including the CPU registers, memory
pages, open sockets, open files etc. The captured data are stored in a persistent file
also known as checkpoint image [174]. The second operation is restart, where the
process is restarted from the checkpoint state by reading the contents of the checkpoint
image.

Process checkpoint/restart assumes that the application will be restarted in the
same environment where it was checkpointed, so it does not save the full environ-
ment of a running application during checkpoint. An application environment contains
the application’s executable, shared libraries and data files, which are stored on disk.
During restart of the application from the checkpoint image, the system expects exactly
the same environment to be present in the system to smoothly restart the application.
Hence, in order to enable checkpoint/restart in container systems, capturing the whole
container environment is necessary during the checkpoint operation. During restora-
tion, the container environment and checkpoint image must be present in the new
system.

We propose to incorporate process checkpoint/restart in Docker container deploy-
ment. During the first deployment of a container in the PoP, after completing the boot
phase and when the application is ready to accept user requests, we use the DMTCP
tool to checkpoint the application, and we save the checkpoint image and the container
environment [121]. In every subsequent deployment of the application, Docker creates
the container but instead of bootstrapping the application normally, it calls DMTCP to
restart application from the checkpoint image. Therefore, the container skips the boot
phase which may reduce the container deployment time.
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Integrating process checkpoint/restart in the Docker container deployment process
requires one to address a number of issues: (1) Docker does not provide any stan-
dard API to checkpoint/restart containers; (2) As we intend to checkpoint a container
in one system and restart in another to deploy new containers, the complete container
environment needs to be preserved during checkpoint; and (3) Docker containers are
expected to deploy frequently in different fog servers of a PoP, so an efficient mech-
anism is necessary to share the checkpoint images and the application environments
across the servers of a PoP.

In this chapter, we present a Docker container deployment design that integrates
process checkpoint/restart. The system design has two main components: (1) A thin
DMTCP container that enables Docker to checkpoint applications running inside the
containers and to capture their container environment. It can also restart an applica-
tion inside a container from its checkpoint image and container environment; and (2)
a mechanism which leverages Ceph RADOS block devices to share the container en-
vironments and checkpoint images across servers of a PoP [112]. The performance
evaluation of the proposed design shows that it can deploy containers and skip the
boot phase which results in 1.0x up to 60.0x times improvement in the container boot
phase time depending on the type of the container.

This chapter is structured as follows: Section 6.2 presents the state of the art of
checkpoint/restart. Section 6.3 discusses the different issues in developing container
deployment with DMTCP; Section 6.4 presents the proposed Docker container de-
ployment using DMTCP. Finally the performance evaluation of the proposed container
deployment is presented in Section 6.5 and Section 6.6 concludes the chapter.

6.2 State of the art

Checkpoint/restart is a technique to save the current state of a single process
for later restart [174]. It is primarily used to achieve fault-tolerance of an application
where the application can be restored to a previous stable state after a crash [83]. It
is also useful for many other purposes such as application debugging [82], process
migration [176], application scaling [77], and virtual machine deployment [71]. Check-
point/restart can be implemented at different levels of the software stack.
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Operating System level checkpointing: The operating system level implementa-
tion of checkpoint/restart saves the state of all the running processes of the
OS at periodic intervals and allows the operating system to restart from the
last checkpoint state [48]. A popular example is virtual machine snapshot and
clone [146]. However, in a large scale system that runs several applications in
parallel, this type of checkpoint/restart requires large space to store the check-
point images.

Application-level checkpointing: The implementation of checkpoint/restart is
done in the application code. It therefore only checkpoints a single target ap-
plication instead of saving the state of all the applications running in the system.
Developers may insert checkpoint/restart in the application source code to trig-
ger a snapshot of the application state periodically [177]. This process reduces
the size of the checkpoint image as it targets only one specific application and
not the whole OS. However, application-level checkpoint/restart creates addi-
tional complexity for the developers as the same checkpoint/restart code must
be updated in every new release of the application source code. It is also not
transparent to users and applications [130].

System-level checkpointing: system-level checkpointing addresses the trans-
parency issue from application-level checkpointing [10]. Similar to application-
level checkpointing, it only checkpoints a single target application, however
checkpoint/restart is implemented in a separate library. This makes checkpoint-
ing completely transparent to the application. It also allows one to trigger the
checkpoint process at any arbitrary time or upon any specific event. Another
advantage of using system-level checkpoint is that it does not need to modify
the application source code. For these reasons, in this work we will adopt the
system-level approach to checkpoint/restart containers.

System-level checkpointing can be implemented in many ways, and many tools are
available [20]. Some notable ones are BLCR (Berkley Lab’s Checkpoint/Restart) [59],
CRIU (Checkpoint and Restart In User-space ) [151] and DMTCP (Distributed Multi-
Threaded CheckPointing) [10]. All these tools allow one to save and restore a running
application; however they differ in many ways: for example how the state of a process is
preserved, which information about a process state is preserved in the checkpoint im-
age, how the preserved process information is stored (compressed or uncompressed),
APIs, and command-line interfaces.
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BLCR is the most used library to checkpoint and restart a process [59]. TODAY,
CRIU is the most used for single-host checkpointing. BLCR is now very poorly
maintained, (and so not used very much at all any more). See, for example, the
frequency of maintenance release updates on its web site. It captures the state
of a process such as its context and allocated memory regions, and saves the
checkpoint data in a file. To implement checkpoint/restart, BLCR modifies the
Linux kernel (as a patch or a loadable module). As a result it needs to update its
kernel module frequently to support new kernel versions. Another shortcoming
of BLCR is that it does not checkpoint open files and communication channels
(i.e., open sockets) which are an essential part of many fog applications. And in
addition, it doesn’t handle SysV shared memory. SysV shared memory among
processes is become very common, for the sake of efficiency. The alternative,
BSD shared memory, relies purely on parent-child relationships.

CRIU employs a hybrid approach which combines kernel-space and user-space to
checkpoint and restart applications [151]. It is primarily used to support check-
point and restart of Linux containers. It started with checkpointing of servers out-
side any container. During the checkpoint operation, CRIU copies the contents
of memory pages, open sockets, open files etc. of a process in a file. Although
Docker in its experimental mode supports CRIU-based container checkpoint-
ing, it has a number of limitations. In particular, restoration of network connec-
tions (both TCP and UDP) is currently not functional [2]. Also, although Docker
supports many storage drivers for container file system management, container
restoration with CRIU is only possible using AUFS or OverlayFS [152].

DMTCP is a user-level checkpointing tool which requires no system privileges and
does not require to modify the library or user source code or any kernel mod-
ule [10, 121]. When checkpointing an application, DMTCP relies on the /proc
Linux file system to capture a map of memory pages, open file descriptors, open
sockets etc. of each process of the application. While restoring the application,
DMTCP reads the checkpoint image and forks all the processes which are im-
mediately restored to their previous state.

Multiple checkpoint approaches rely on customizing kernel modules (BLCR) and ex-
porting kernel internals to the proc interface (CRIU). This type of implementation limits
the checkpointing features since the system may restore applications only in machines
with exactly the same kernel version (for BLCR) and with a compatible kernel version
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(for CRIU) [207]. Another disadvantage of such type of checkpointing techniques is that
any change in the kernel may require updating the checkpointing system as well. Be-
cause of these reasons most of the kernel-based checkpoint/restart approaches do not
work with recent kernel versions (for example BLCR was not updated since 2013) [58].
Moreover, CRIU and BLCR, cannot fully checkpoint network communications. Check-
pointing network communications is also vital in modern applications. Therefore, in our
work, we choose to adopt DMTCP which works entirely in user space and can check-
point and restart network sockets. In the next section, we discuss different challenges
which arise when integrating DMTCP with Docker containers.

6.3 Design issues

The goal in this chapter is to enable Docker: (1) to checkpoint a running container
after completing its boot phase; and (2) to deploy containers from an already check-
pointed image. This may remove the container boot phase while deploying the con-
tainer. However, to successfully implement above goals, we need to address three
challenges which are illustrated in the next section.

6.3.1 Integration of DMTCP with Docker

When deploying a container, Docker pulls the container image if necessary, then
creates the container with the given configuration and immediately starts the boot
phase. This is done by launching the first process of the application. The boot phase
terminates when the application is ready to serve user requests. Our proposed design
rather intends to start application inside the container from a checkpoint image. First,
the system should enable Docker to use DMTCP to checkpoint an application inside
the container in the first deployment. Second, while deploying containers in subsequent
deployments, Docker should restart the application from the checkpoint image instead
of starting the boot phase normally. We discuss how Docker and DMTCP are integrated
to implement these two operations in Section 6.4.1.
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Figure 6.1 – Contents of a container environment and a DMTCP checkpoint image

6.3.2 Sharing container environments

The components of a container include all the binaries, packages, libraries and
essential data of the application running inside the container. Figure 6.1 depicts these
components. The read-only Docker image layers contain all the necessary files to start
the application such as binaries, packages and shared libraries. All the modified files
from the image layers, including application data, are stored in the container read/write
layer. During checkpoint, DMTCP captures the memory pages, file descriptors and
open sockets of the application, which are essential to save the state of the application.

During restart, DMTCP reads the checkpoint image and restarts the application
from the checkpoint state. It is usual that at run time an application may access the
application data, and shared libraries which are stored in the container environment.
Therefore, the container environment captured during the checkpoint must be recre-
ated before the application is restored. We discuss in Section 6.4.2 how container
environments (Docker image layers and container R/W layers) are captured during
checkpoint and shared among the servers of a PoP.

6.3.3 Sharing the checkpoint images

Fog applications are expected to deploy frequently across several servers of a PoP.
It is likely that a checkpoint image and its associated container environment will be
accessed in several servers when the same container is being deployed repeatedly.
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Figure 6.2 – Proposed container deployment with DMTCP

Therefore, an efficient mechanism is required to share the checkpoint images and con-
tainer environments across the servers of a PoP. We discuss how we address this issue
in Section 6.4.3.

6.4 Proposed container deployment design

Figure 6.2 illustrates the proposed Docker container deployment with DMTCP
checkpoint and restart. In this design, Docker can use DMTCP to checkpoint an ap-
plication after the container boot phase. Later it can deploy any number of containers
from the checkpoint image, which skips the boot phase. To implement this, the pro-
posed design has two main components:

— A DMTCP lightweight container which is deployed in all the servers of a PoP. It is
responsible for checkpointing and restarting applications inside the containers.

— Ceph Rados Block Devices (RBD) use the Ceph distributed storage to share
container environments and checkpoint images across the servers of a PoP.
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6.4.1 DMTCP lightweight containers

Docker implements many APIs which handle various functionalities of a container
life cycle. For example, docker ps shows all the containers currently running in the host
machine. However, Docker does not provide any API to integrate external tools such
as DMTCP which can checkpoint/restart applications running inside containers.

We therefore create a lightweight container image which contains the binaries of
DMTCP and all the required libraries to perform checkpoint and restart. This allows us
to avoid having to modify the Docker source code. Another advantage of the lightweight
container is that the same DMTCP container can be used multiple times to checkpoint
and restore different applications. Finally, the lightweight container is easy to maintain
and distribute across the servers of a PoP with the help of a registry server.

The two fundamental purposes of the DMTCP lightweight container are: (1) to
checkpoint application which is running inside a container and (2) to restore application
from a checkpoint image. Although this lightweight container can perform these oper-
ations, it does not contain the application environments in the container file systems.
We discuss how application environments are stored, managed and made available to
the lightweight container’s file system in the next section.

6.4.2 Ceph block devices

Snapshotting container environments

When checkpointing a container with DMTCP, Docker needs to save the container’s
read/write layer to capture its environment. This can be implemented using the stan-
dard docker commit command which creates a new image by adding the container’s
read/write layer on the top of the image [92]. The resulting image thus contains the
container environment and can be shared across multiple servers through the registry.
Although this simple mechanism can preserve and share a container’s environment,
it also presents number of challenges: Firstly, during docker commit, Docker momen-
tarily pauses the container which generates application down-time [26]; Secondly, this
operation is not transparent to the application, as the commit operation has to be per-
formed externally; Thirdly, in order to distribute the container’s environment, the image
has to be pushed first to a registry server and then pulled multiple times in different
nodes. Both operations take significant network resources and require one to store the
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container environment redundantly into multiple servers. Due to the drawbacks listed
above, we propose to store the container environment in the Ceph distributed storage
system [162]. We discuss how Docker image layers and container read/write layers are
organized, stored, snapshot and shared across the servers of a PoP in the following
sections.

Ceph distributed storage

Ceph is a highly scalable distributed storage system, and it is considered suitable for
distributed fog infrastructures (as discussed in Section 4.3.1). It can provision storage
using different models: object storage [46], block storage [112] and POSIX-compatible
Ceph file systems [161]. Ceph RADOS Block Devices store fixed-size blocks of data
(for example 1 MB blocks). The block devices are thin-provisioned and resizable, and
the stored data can be striped over multiple object storage drives (OSD). Ceph pro-
vides a kernel module and the librbd library to create, manage and control the block
devices [107, 116].

Ceph provides many features to manipulate block devices such as snapshot and
clone [120], persistent cache (for caching) [118], and RBD Mirroring (for replica-
tion) [117]. The snapshot and clone feature allows users to create multiple children of
a block device using Copy-on-Write (CoW). Once a block device has been snapshot, it
becomes read-only. Multiple block devices can then be cloned from the snapshot. All
further updates are written in the cloned block devices following Copy-on-Write (CoW).
Ceph implements Copy-on-Write (CoW) at block-level granularity.

Ceph RBD to store container environment

We propose to store the full container environment in the Ceph distributed storage
system. A container environment contains the Docker image’s read-only layers and
the container read/write layer. Instead of keeping the Docker images and the container
read/write layers in the local file systems which is the standard option, we propose to
store the environment in the shared Ceph RADOS Block Devices (RBD). To implement
this, a pool of RBDs is created and a RBD is assigned to each container environment.

Storing container environments in Ceph distributed storage brings many advan-
tages: (1) multiple Docker servers running in different nodes can share the same envi-
ronment, which gives storage efficiency; (2) the container environment can be shared
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without the use of a registry server; (3) the system can efficiently snapshot a container
environment and share across servers of a PoP; and (4) Ceph performs CoW at block-
level granularity which is more efficient in terms of performance and space utilization
compared to file-based CoW [181].

This simple mechanism allows us to share container environments across many co-
located servers. However, we also need to make it available to the DMTCP lightweight
container. We therefore need to configure the system such that the Ceph block storage
is accessible to the DMTCP lightweight containers.

Container environment layering with snaphshot and cloning

Ceph supports a feature to save the state of a block device using snapshotting [120].
The outcome of a snapshot operation is that the block device becomes read-only. Ceph
can then create multiple cloned block devices from any snapshot. All further modifica-
tions over the snapshot are performed in the cloned devices following copy-on-write
(CoW). The obvious advantage of snaphshot and clone is that it can re-use the snap-
shot block devices for multiple purposes. Figure 6.3 illustrates the working principle of
snapshot and clone of a Ceph RBD. The left-side RBD becomes read-only once the
snapshot is done, and it is generally referred to as the parent. The right-side RBD is
created with a clone operation from the parent and it is referred to as the child. Now all
the modifications in the snapshot are done in the child RBD.

We use the Ceph snapshot and clone feature to implement container environment
layering. The container environment layers are read-only except the top layer which
is read/write layer. This is similar to Docker image layering which allows one to re-
use image layers, where all the layers remains remain read-only except the top layer
where the file system updates are performed. To implement the layering, we assign a
snapshot ID to each new snapshot created from a RBD. This snapshot ID is used to
create multiple cloned RBDs where the modification of the snapshot can be performed.
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Figure 6.4 – Container environment layering with snapshot and clone

Figure 6.4 shows how the container environment layering works in the proposed
system using Ceph RBDs with a Dockerfile which contains three instructions. The first
instruction creates a Ceph RBD, copies the contents of Ubuntu:15.04 in the Ceph RBD,
and takes a snapshot. With the second instruction, first a clone RBD is created from
the parent snapshot, and then the current directory is copied to the clone block device.
The third instruction compiles the content of a specific directory. Finally, a snapshot ID
is generated for each container environment which can be used for further modification
in the environment.

How is a container environment available to the DMTCP lightweight container?

Our design stores the container environments in Ceph RBDs which helps to share
the environments across co-located servers of a PoP. However, in order to enable
DMTCP to checkpoint/restart an application, the DMTCP lightweight container must
access the container environment. Figure 6.5 illustrates the set of instructions that the
system must perform on the block devices to make the container environment fully
available in the DMTCP lightweight container’s file system.

1. Creating a container read/write layer: we use the snapshot ID of the container
environment to create a clone RBD. The clone RBD is therefore a read/write
layer where any update in the container environment will be performed.

2. Mapping the RBD: This operation registers the clone RBD to the local kernel
block device. With this operation, the kernel assigns a block device identifier
such as /dev/rbd* to the RBD. The map operation (e.g., rbd map) is implemented
in the librbd Ceph kernel module.
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2. Mounting the RBD to the container file system: When creating a container
with docker run, the system needs to assign two flags in the container con-
figuration: the –device to enable the device inside the container and the
–privileged flags to mount the block device inside the container file system.
The container now can access the block device locally. It then mounts the block
device in the local directory of the file system using the standard mount com-
mand.

6.4.3 Container deployment with checkpoint/restart

Figure 6.6 shows the container deployment design flowchart. Our system relies on
two Ceph RBDs to store the container environment and the checkpoint image respec-
tively. The system first creates the two RBDs by cloning from their respective snap-
shots: (1) the container RBD is created from the snapshot of the container environ-
ment. This RBD is used to store the changes in the container environment; and (2) the
checkpoint RBD is cloned from the snapshot of the checkpoint RBD.

Docker then uses the DMTCP lightweight image to deploy the container. When
creating the container, the system follows the procedure described in 6.4.2 to mount
the two cloned RBDs in the local container file system. Once the container is created,
the system then launches the application based on the type of deployment:

— Creating a checkpoint image: This type of deployment is done to create snap-
shot of the checkpoint image and the container environment. The system uses
DMTCP to launch the application and boot the container. When the boot phase
is completed, DMTCP checkpoints the application and stops the container. The
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resulting DMTCP checkpoint image is saved in the checkpoint RBD. Finally, the
checkpoint RBD and container RBD are snapshot. The two snapshot RBDs can
be shared across co-located servers of a PoP. In the subsequent deployment,
those two RBDs are used to deploy the container.

— Deploying from a checkpoint image: in this case, the system deploys the ap-
plication from a checkpoint image. The cloned checkpoint RBD and container
RBD already have booted the checkpoint image and the container environment
respectively. Therefore, the system uses DMTCP to restart the application from
the checkpoint image.

6.5 Evaluation

We evaluate the performance of our container deployment design in a distributed
fog environment. The experimental testbed is composed of five virtual machines rep-
resenting the servers of a fog point-of-presence. These VMs are created using KVM
on a Dell PowerEdge R430 server with two Intel Xeon E5-2620 v4 processors running
at 2.10GHz, with 8 hyperthreaded cores each, and 64 GB of RAM. Each VM has 2 vC-
PUs, 1 GB RAM and 32 GB disk, and runs Ubuntu 18.04 server with 4.15.0-47-generic
Linux kernel.

Building a Ceph cluster requires at least three Object Storage Daemons (OSD)
where the objects are stored, plus one monitor and manager which are responsible
for controlling, monitoring and managing the cluster. We set up the Ceph cluster using
Ceph version 12.0.4 over the 5 servers of the testbed. The cluster has one monitor
running in one machine, and five OSDs running in separate fog node. We also deploy
the Ceph client in every machine.

We use Docker version 18.04 to deploy containers throughout the experiments. Fi-
nally, we build DMTCP Docker image based on DMTCP version 2.5.2 [121]. While de-
ploying the containers, we make sure all the systems are idle to avoid any interference
from other applications.

6.5.1 A use-case: Edge-sharelatex

We carried out the performance evaluation by deploying the Edge-sharelatex ap-
plication [182]. Edge-sharelatex is a web-based application that allows users to edit
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Table 6.1 – Name of the services and their purpose.

Service Purpose Service Purpose

web user-interface clsi latex compiler
filestore store binary files docstore store texfile

tags manage tags notifications notify users
contacts manage contacts spelling check spelling

chat manage chats tracker manage changes
real-time state synchronization updater update document
Mongo mongo database redis redis database

latex projects collaboratively, compile them and generate output. It is composed of 14
micro-services dedicated to different tasks. Table 6.1 shows the list of micro-services
and their purposes. This gives us a set of 14 independent applications with different
characteristics to evaluate our system.

Before the experimentation, we configure the Ceph RBDs with the container en-
vironment and checkpoint the image of each micro-service. When running the exper-
iment, we deploy all the services in a single fog server to simplify the experiments.
Furthermore, we make sure that each micro-service is running in a separate container.
During the deployment, the system is kept idle to avoid any interference from other
applications.

6.5.2 Checkpointing overhead

Our system checkpoints containers the first time they are deployed in a PoP. When
checkpointing, the system momentarily stops the container and the resulting check-
point image is stored in the Ceph distributed storage. In this section, we analyze the
system overhead while checkpointing the Edge-sharelarex services. We particularly
trace the checkpointing time and the size of the checkpoint image for each service.

Figure 6.7(a) depicts the checkpoint image size of the Edge-sharelatex services.
The size of the checkpoint images varies from 5 MB to 42 MB depending on the service.
We can clearly differentiate the services based on their checkpoint image size: for
example, lightweight services such as redis, real-time, updater their have image size
in the range from 5 MB to 11 MB. The checkpoint image size of the Mongo container
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(a) Checkpoint image size (MB). (b) Checkpointing time (s).

Figure 6.7 – Checkpoint image size and checkpointing time of the services.

is 25 MB. For the other containers which run a script inside the container and Mongo
database, the checkpoint image size varies from 33 MB to 42 MB.

Figure 6.7(b) shows the checkpointing time of the services. The checkpointing time
varies from 0.3 s to 2.0 s depending on the service. We observe that the checkpointing
time is largely proportional to the size of the checkpoint image.

6.5.3 Boot phase time

Table 6.2 compares the boot phase time of the Edge-sharelatex services while de-
ploying with standard Docker and with container restart. We observe that the service
boot time with standard Docker varies from 0.1 s to 109.0 s, whereas with the proposed
model, this range is from 0.1 s to 1.8 s. The gains of eliminating the boot phase in the
proposed model however depend on the type of the containers and the complexity of
their boot phase. We also observe similarities among the services: for example, the
lightweight services such as redis, real-time, updater take negligible amount of time
(less than 1 s) to boot. Deploying such containers with DMTCP takes almost the same
amount of time. However, other services such as notifications, chats and filestore takes
significant time to boot, between 5 and 20 s. The significant boot time delay of such
services is due to the fact that they deploy a Mongo database inside the container in
addition to their other software. Deploying such services with the proposed model takes
only about 1 s, which brings a speedup in the range of 5x to 8x. Finally, the web service
takes nearly 109 s to boot its container. This is mainly due to the fact that it compiles
some of its scripts before becoming ready to serve end users. In this case, our system
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Chapter 6 – Avoiding the Container Boot Phase

Table 6.2 – Boot phase time of the services with standard Docker and the proposed
model.

Service Boot phase time Snapshot
Docker Proposed Gains size

redis 0.1 0.1 1x 5
real-time 0.4 0.4 1x 9
updater 0.6 0.5 1.05x 11
notifications 5.2 0.8 7x 35
chats 5.2 0.9 6x 37
filestore 5.3 0.9 6x 33
spelling 5.7 1.0 6x 38
docstore 6.6 0.9 7x 33
tags 6.9 0.8 9x 34
contacts 7.3 1.0 7x 33
tracker 8.3 1.1 8x 39
Mongo 12.1 1.5 8x 25
clsi 20.2 1.5 13x 42
web 109.0 1.8 60x 35

delivers 60x improvement. We can conclude from this experiment that the gain brought
by the proposed model is largely proportional to the time the container takes to boot.
The deployment time from a container snapshot depends on the size of its data rather
than the procedure to boot it.

6.5.4 Communication within the Ceph cluster

Our system stores the container environments and checkpoint images in Ceph
block devices. The system’s various Ceph components such as OSDs, monitor and
manager running on different nodes constantly communicate with each other to keep
the cluster working. To evaluate the impact of transferred data between the Ceph com-
ponents, we trace the download and upload network throughput of the cluster nodes.

We use nethogs utility to capture the network throughput for duration of 60 s in
1 s granularity [63]. We capture the network throughput of the machine hosting the
monitor+manager, and one which is running an OSD. We did the experiment in three
scenarios: first, when the system is in idle condition; and second, when DMTCP is
checkpointing the redis container; and third, when DMTCP is restarting a container.
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6.5 Evaluation

(a) System is idle. (b) System is checkpointing (with large scale Y-
axis).

(c) System is restarting (with large scale Y-axis).

Figure 6.8 – Network throughput of the nodes when the system is: (a) idle; (b) check-
pointing and (c) restarting.

125



Chapter 6 – Avoiding the Container Boot Phase

Figure 6.8(a) shows the network throughput of the target machines when the sys-
tem is in idle state. We observe that both machines (monitor+manager and OSD) ex-
hibit constant low-bandwidth network activities throughout the trace. This may be due
to the fact that the monitor+manager periodically communicates with its OSDs to con-
trol and monitor the cluster state. The upload throughput of the monitor+manager node
is negligible, whereas the download throughput reaches 24 kB/s. The OSD node ex-
hibits both download and upload activities, though the download throughput is always
lower than the upload throughput. The reason for this is that each OSD sends own
information and about the stored objects to other OSDs and to the monitor+manager.

Figure 6.8(b) represents the network throughput of the target machines when the
system is checkpointing a container. We observe the same phenomenon except at the
time when the system checkpoints the container. During the checkpoint (at t = 6 s), we
observe an intense network activity, in particular with the download throughput of the
OSD. The download throughput of the OSD goes nearly up to 2900 kB/s. This is due to
the fact during the checkpoint, the system writes large chunks of the checkpoint image
in that OSD.

Figure 6.8(c) represents the network throughput of the target machines when the
system is restarting a container from the checkpoint image. During the restart (at t =
15 s), we observe an intense upload throughout in the OSD node. This reflects the
system reads the checkpoint image from the Ceph OSD while restarting the container.

Finally, we can conclude from this study that Ceph cluster components (i.e., moni-
tor+manager and OSDs) perform very little network activities to keep the cluster alive.
But we observe intense network activity in the OSD nodes when the system check-
points (to write the checkpoint image) and restarting a container(to read the checkpoint
image).

6.5.5 Interference with other applications

Sharing container environments in the Ceph distributed storage clearly has many
advantages. However, Docker needs to fetch the application files remotely from the
distributed storage, which may in turn impact the performance of other running appli-
cations. We therefore study the runtime performance of the applications when they are
deployed with the standard Docker and the proposed system.
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6.6 Conclusion

Table 6.3 – Throughput of the HTTP service in the standard Docker and proposed
system.

Concurrency level 10 50 100 200 300 400 500 1000
Standard (req/s) 3668 3703 3834 3905 3973 4057 4117 4234
Proposed (req/s) 3537 3569 3685 3743 3791 3856 3891 3954

Overhead (%) 3.6 3.7 3.8 4.1 4.6 5.0 5.5 6.7

We deploy an Apache HTTP server in one cluster node [69]. The server hosts a
web page of 5 kB. We then generate an artificial HTTP load from one of the cluster
node using the standard ab benchmarking tool with varying concurrency requests [70].
The load generates intense I/O activities in the server (as no file system cache was
employed). At the end of each experiment, we measure the throughput of the HTTP
server i.e., number of requests served per second. Table 6.3 compares the throughput
of the HTTP server in both scenarios with different concurrency levels. We observe a
small overhead of 3.6% with a concurrency level 10. This is expected due to the fact
the HTTP load generates intensive I/O operations and as a result the proposed sys-
tem may need to fetch the files from the distributed storage. When we increase the
concurrency level, the overhead due to remote access grows gradually. Finally, at con-
currency level 1000, this overhead reaches 6.7%. This shows that the communication
between Docker and Ceph clusters creates small overhead in the application runtime.
We can conclude from this study that the proposed system may exhibit an improved
boot phase time with lower overhead. This is due to the distributed storage used to
store the container environments.

6.6 Conclusion

Booting a Docker container after it has been started requires significant time during
the container deployment process. This delay may have important impact in fog com-
puting environments, since the same container may be repeatedly launched, created,
booted. The boot sequence of most containers however always remain the same. This
gives us an opportunity to eliminate the boot phase by saving the state of a fully-booted
container. In subsequent deployments, the container can be restarted from the saved
state, which wholly skips the boot phase in the deployment process.
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We proposed a Docker container deployment system that uses DMTCP check-
point/restart to deploy containers from a checkpoint image. The design also stores
the container environments and checkpoint images in Ceph distributed storage to effi-
ciently share them across the servers of a PoP. The performance evaluation shows it
can bring up to 60x speedup in the container boot phase time depending on the type of
the container. The overhead of creating checkpoints and storing them across the PoP
remain reasonable.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter presents the conclusion of the thesis. We briefly remind the importance
of application deployment time in distributed fog infrastructures. We then summarize
the different contributions of the thesis to improve the application deployment time.
Finally, we highlight the number of directions that we may study in the future to further
reduce the application deployment time in distributed fog infrastructures.

7.1 Conclusion

Cloud computing architectures consist of large number of powerful servers con-
nected to each other and to the rest of the Internet with high-speed network links. The
latency between a typical end user and the closest cloud data center comes in the
range of 20-40 ms over wired networks, and up to 150 ms over 4G mobile networks.
Although this latency is acceptable for many applications, it creates many challenges
for certain types of applications: for example, latency-sensitive applications like aug-
mented reality games require an end-to-end latency including network and processing
delay under 10-20 ms. Another example of such applications is IoT data analysis. The
growing number of IoT devices produce large amounts of data every day. The col-
lected data is typically sent to the core cloud for further analysis, which consumes
large amount of global Internet traffic. An obvious solution to address these challenges
is to host applications closer to the end users. Fog computing therefore extends the
cloud resources (compute, storage and network) by broadly distributing large numbers
of compute nodes near the end users. Therefore, computational capacity is always
available in the vicinity of the users.

Fog computing architectures consist of large number of computing nodes dispersed
across a geographical area such as a city, a region or even a country to maintain prox-
imity with a large number of users. As a consequence, fog resources are often orga-
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nized in a large number of Point-of-Presence (PoPs), where each PoP is composed of
a small number of weak machines such as single-board computers connected to each
other and to the rest of the Internet using heterogeneous networks. An end user always
accesses the applications from the closest PoP to maintain minimal latency.

We expect that fog applications will be repeatedly deployed in different PoPs: to
maintain minimum latency between the applications hosted in the fog and their end
users, applications may need to roam frequently from one PoP to another. Human mo-
bility remains far from being random, and it has been proven to be predictable despite
important differences between individual travel patterns. Fog applications that aims at
serving a single user with ultra-low latency, such as wearable cognitive assistance,
may therefore be repeatedly deployed in the same PoP the user visits often (home,
work, etc.). In another example, compute-intensive applications such as live video feed
analysis may need to deploy multiple identical instances in the same PoP in order to
horizontally scale their processing capacity. In these scenarios, the application deploy-
ment process cannot be considered as a one-time operation that does not affect the
end-user’s quality of experience. Rather, it becomes an integral part of the critical path
towards providing the expected service to its end users.

Slow application deployment is therefore a challenging issue in fog infrastructures.
Any delay in the application deployment may force the user to wait until the application
has been fully deployed and is ready to serve users. When the user moves from one
PoP to another, the application may have to be re-deployed to maintain proximity, low
latency, and reduce long-distance traffic. In such cases, any delay in the application
deployment may interrupt the already-running service, leading to a degradation of the
user’s Quality-of-Experience (QoE). In both scenarios, a minimal application deploy-
ment time is essential to provide seamless cloud services to the end-users. This thesis
therefore aims to reduce the application deployment time of fog applications as much
as possible.

We studied the reasons behind the slow deployment time of Docker containers in
distributed fog infrastructures, and identified three opportunities that are likely to speed
up the container deployment time: (1) improving the hit ratio of the Docker cache, which
reduces the chances of having to pull a new image; (2) speeding up the image pull op-
eration itself; and (3) speeding up the boot process after a container has been started.
We therefore proposed three different solutions to optimize the overall application de-
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ployment time. Each solution aims to address one of the above issues within the de-
ployment process.

7.1.1 Contribution 1: Improving the Docker cache hit ratio

The first contribution of the thesis is to improve the application deployment time by
reducing the probability of having to deploy new images upon container deployment
requests. Docker servers download an image from a registry whenever they find that
the required image is missing in the local cache. Docker stores all the downloaded im-
ages in its local cache and never removes them until explicitly asked to do so. This is a
sensible strategy in powerful servers as the same container image will not need to be
downloaded again in future deployment of the same container. However, this scenario
is not suitable in fog environments, as fog servers have limited storage capacity. As a
consequence, the working set of images may grow larger than the total storage capac-
ity of the server. Another issue is that the image caches of the co-located nodes may
contain redundant copies of the same image.

We proposed a new Docker image-sharing framework which aggregates the im-
age caches of co-located fog servers using a distributed file system. The end result is
a much larger Docker image cache that can share more images, which reduces the
probability of deploying a new image upon a new container deployment request. Our
performance evaluation of the proposed framework using a real-world Docker registry
workload shows that sharing the Docker images can significantly improve the hit ratio
and, as a result, reduce container deployment time between 37% and 78% depending
on the scenario.

7.1.2 Contribution 2: Improving the Docker image deployment

Sharing Docker images among co-located servers enhances the Docker cache hit
ratio and reduces the probability of pulling an image upon a container deployment re-
quest. However, Docker still needs to deploy an image when it is requested for the first
time in a PoP or upon a cache miss. Docker image deployment can be very slow, on the
order of a couple of minutes in resource-constrained fog nodes such as single-board
Raspberry Pi. We investigated the reason behind this slow deployment by analyzing
the resource consumption of Docker upon image deployment. We found that this slow
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deployment time is largely due to the fact that Docker under-utilizes the available hard-
ware resources during deployment: Docker first downloads the different image layers
simultaneously which is very network-intensive, followed by a cycle of CPU-intensive
decompression and then disk-intensive extraction. In other words, there is little or no
overlapping among the usage of different hardware resources during the image de-
ployment.

We proposed three optimizations to improve the resource utilization of Docker dur-
ing image deployment: (1) sequentially downloading the image layers to optimize layer
download time; (2) multi-threaded decompression to reduce the decompression time
of layers; and (3) I/O pipelining to decompress the layers immediately after the first few
bytes have been downloaded. Docker-pi combines all these solutions and therefore
parallelizes the usage of the three hardware resource (network, CPU and disk), result-
ing in reducing the image deployment time by 25% to 75% in Raspberry Pis depending
on the network capacity and the image size.

7.1.3 Contribution 3: Avoiding the container boot phase

After creating a container, Docker starts the boot phase by launching the starting
process of the application. Booting terminates when the container is ready to accept
end user requests. This phase may have a significant impact in fog environments when
the same container image is being repeatedly launched, created, and booted in multi-
ple servers of a PoP. The boot phase of containers however remains the same every
time. We can therefore save the state of a container after completing its boot phase and
then later restart the container from the saved state in the subsequent deployments.

We proposed a new container deployment design which uses DMTCP to deploy
the container from a booted checkpoint image, therefore skipping the container boot
phase. The design uses Ceph distributed storage to store container environments and
checkpoint images to efficiently share them across fog servers. Our evaluation shows
that this technique improves the container boot phase time up to 60x depending on
the type of container. The checkpointing overhead of the proposed system remains
reasonable.
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7.2 Future directions

We presented several optimization solutions to address optimization opportunities
in the Docker container deployment in distributed fog infrastructures. Our solutions
create further opportunities that can help to reduce the container deployment time.
In this section, we discuss several potential research directions brought forth by this
thesis.

7.2.1 Finding a better cache replacement algorithm

The proposed Docker image sharing framework incorporates an image replacement
algorithm to remove unused Docker images when the size of the working set images
is larger than the storage capacity. In our contribution, we used the well-known least
recently used (LRU) algorithm which replaces the least recently used image from the
working set of images [195]. However LRU relies on the assumption that all cached
objects have the same size (and therefore generates the same storage costs), and
that all objects incur the same download delay in case of a cache miss. These two hy-
potheses are clearly not necessarily correct in the context of Docker images. We may
therefore study how the choice of a better cache replacement algorithm may further re-
duce the average container deployment times. The field of Web caching has produced
numerous such algorithms which may be used as a starting point [156].

7.2.2 Image layer placement in the distributed file system

The proposed Docker image sharing framework uses CephFS to store the image
layers and metadata. While deploying an image, CephFS stores the image layers and
metadata in the available OSDs. Like most other systems, Ceph distributes the ob-
jects and workload in its different OSDs to efficiently utilize all the available resources,
while facilitating the system scale and managing hardware failures. In particular, Ceph
uses a user-defined algorithm or CRUSH to distribute its objects and replication into
multiple OSDs [192]. The write throughput of Ceph is however determined by how
the CRUSH algorithm is configured. In fog environment, it is very likely that computa-
tion and communication capacity of the servers are heterogeneous. Therefore, a new
CRUSH algorithm may need to adapt the fog characteristics, i.e., incorporate the loca-
tion of the servers and their communication so that the write throughput of the objects
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is maximized [203]. This may eventually improve the overall disk write throughput of
the Ceph cluster, and as a consequence, speed up Docker image deployment.

7.2.3 Pre-fetching Docker images

Fog users are often mobile, and their mobility pattern are far from being random.
They are often repetitive and might be predictable as most people often visit the same
place every day [25, 175]. For example, researchers often take the same route while
coming to the office every day. Similarly, users in fog environments are expected to
move from one fog PoP to another, while accessing their favorite fog application. There-
fore, the applications deployment would be repetitive and predictable.

Docker container deployment time could be improved if we can predict the user
mobility. We may use machine learning and stochastic process to predict a human
behavior and in particular the mobility pattern of the fog users [138, 184]. If we can
predict the probability of approaching a fog user in a PoP, then the container image can
be pre-fetched before the user even launches the application in the PoP. This will avoid
pulling the image from the registry after its container deployment request.
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[184] J. Tkačík and P. Kordík, « Neural Turing Machine for Sequential Learning of
Human Mobility Patterns », in: Proc. IEEE IJCNN, 2016.

[185] K. Toczé and S. Nadjm-Tehrani, « ORCH: Distributed Orchestration Framework
using Mobile Edge Devices », in: Proc. IEEE ICFEC, 2019.

[186] man7.org Training and Consulting, Cgroups(7) - Linux manual page, http://
man7.org/linux/man-pages/man7/cgroups.7.html, 2019.

147

https://computer.howstuffworks.com/cloud-computing/cloud-computing1.htm
https://computer.howstuffworks.com/cloud-computing/cloud-computing1.htm
https://netapp.github.io/blog/2015/12/15/building-a-distributed-docker-registry-at-scale/
https://netapp.github.io/blog/2015/12/15/building-a-distributed-docker-registry-at-scale/
https://www.infoq.com/news/2014/03/docker-0-9/
https://www.infoq.com/news/2014/03/docker-0-9/
https://www.youtube.com/watch?v=7uLkLitiSPo
https://www.youtube.com/watch?v=7uLkLitiSPo
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html


[187] man7.org Training and Consulting, Namespaces(7) - Linux manual page, http:
//man7.org/linux/man-pages/man7/namespaces.7.html, 2019.

[188] L. Vaquero, « Finding Your Way in the Fog: Towards a Comprehensive Definition
of Fog Computing », in: ACM Computer Communication Review 44.5 (2014).

[189] Virtuozzo and OpenVZ Community, OpenVZ, https://openvz.org/, 2019.

[190] M. Vögler et al., « LEONORE–Large-scale Provisioning of Resource-
constrained IoT Deployments », in: Proc. IEEE SOSE, 2015.

[191] S. A. Weil et al., « Ceph: A Scalable, High-performance Distributed File Sys-
tem », in: Proc. Usenix, 2016.

[192] S. A. Weil et al., « CRUSH: Controlled, scalable, decentralized placement of
replicated data », in: Proc. ACM/IEEE SC, 2006.

[193] Wikipedia, aufs, https://en.wikipedia.org/wiki/aufs, 2019.

[194] Wikipedia, Btrfs, https://en.wikipedia.org/wiki/Btrfs, 2019.

[195] Wikipedia, Cache Replacement Policies, https://en.wikipedia.org/wiki/
Cache_replacement_policies, 2019.

[196] Wikipedia, Comparison of Distributed File Systems, https://en.wikipedia.
org/wiki/Comparison_of_distributed_file_systems, 2019.

[197] Wikipedia, Copy-on-Write, https://en.wikipedia.org/wiki/Copy-on-write,
2019.

[198] Wikipedia, Device Mapper, https://en.wikipedia.org/wiki/Device_mapper,
2019.

[199] Wikipedia, OverlayFS, https://en.wikipedia.org/wiki/overlayfs, 2019.

[200] Wikipedia, Single Board Computers, https : / / en . wikipedia . org / wiki /
Single-board_computer, 2019.

[201] Wikipedia, UnionFS - Wikipedia, https://en.wikipedia.org/wiki/UnionFS,
2019.

[202] C. Wöbker et al., « Fogernetes: Deployment and Management of Fog Comput-
ing Applications », in: Proc. IEEE NOMS, 2018.

[203] Ch. Wu et al., « File Placement Mechanisms for Improving Write Throughputs
of Cloud Storage Services Based on Ceph and HDFS », in: Proc. IEEE ICASI,
2017.

148

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://openvz.org/
https://en.wikipedia.org/wiki/aufs
https://en.wikipedia.org/wiki/Btrfs
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems
https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems
https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Device_mapper
https://en.wikipedia.org/wiki/overlayfs
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/UnionFS


[204] J. Xu et al., « Dockerfile TF Smell Detection Based on Dynamic and Static Anal-
ysis Methods », in: Proc. IEEE COMPSAC, 2019.

[205] E. Yigitoglu et al., « Foggy: A Framework for Continuous Automated IoT Appli-
cation Deployment in Fog Computing », in: Proc. IEEE AIMS, 2017.

[206] C. Zheng et al., « Wharf: Sharing Docker Images in a Distributed File System »,
in: Proc. ACM SOCC, 2018.

[207] H. Zhong and J. Nieh, CRAK: Linux Checkpoint/restart as a Kernel Module,
tech. rep. CUCS-014-01, Department of Computer Science, Columbia Univer-
sity, 2001.

[208] C. Zhu et al., « Vehicular Fog Computing for Video Crowdsourcing: Applications,
Feasibility, and Challenges », in: IEEE Communications Magazine, vol. 56, 10,
2018.

149





Titre: Déploiement efficace d’applications cloud dans

les infrastructures fog distribuées
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Resumé : Les architectures Fog comput-
ing sont composées d’un grand nombre
de machines dispersées dans une zone
géographique telle qu’une ville ou une ré-
gion. Dans ce contexte il est important de
permettre un démarrage rapide des appli-
cations déployées sous forme de contain-
ers Docker. Cette thèse étudie les raisons

de la lenteur de déploiement, et identi-
fie trois opportunités susceptibles de ré-
duire le temps de déploiement des con-
teneurs: (1) améliorer le taux de réussite
du cache Docker; (2) accélérer l’opération
d’installation d’une image; et (3) accélérer
le processus de démarrage après la créa-
tion d’un conteneur.

Title: Efficient Cloud Application Deployment in Dis-
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Abstract : Fog computing architectures
are composed of a large number of ma-
chines distributed across a geographical
area such as a city or a region. In this
context it is important to support a quick
startup of applications deployed in the for
of docker containers. This thesis explores

the reasons for slow deployment and iden-
tifies three improvement opportunities: (1)
improving the Docker cache hit rate; (2)
speed-up the image installation operation;
and (3) accelerate the application boot
phase after the creation of a container.
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