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Summary

Many terrestrial bodies, including the Earth, are surrounded by a magnetic field pro-
tecting them from high energy stellar particles. It originates from the turbulent motion of
the liquid, conducting iron core of these planets and moons. The complex motion of liquid
iron in planetary cores is often thought to be driven by thermal and solutal convection insta-
bilities, but the presence of convection is sometimes hard to reconcile with the heat budget
of terrestrial planets, especially the smaller ones. To explain the existence of magnetic fields
surrounding small moons such as Ganymede and Io, mechanical forcing induced by tides has
been proposed as an alternative source of turbulence in planetary cores.

Tidal interaction between a terrestrial body and a companion results in a distortion of
the shape of the body, a deformation that remains mostly directed towards the companion and
which may rotate at a different rate compared to the planet or the moon spinning rate. This
is the case for instance of the Earth-Moon system: the Earth tidal bulge rotates at the Moon
orbiting rate (in approximately 27 days) whereas the Earth spinning rate is much larger (1
day). Another effect of tidal interaction is to force periodic variations of the length of the day,
an oscillation called libration.

These two effects (differential rotation and libration) have been shown to excite para-
metric resonance of inertial waves, the latter being spontaneous oscillations of rotating fluid
interiors induced by the restoring action of the Coriolis force. This resonance is called the
elliptical instability. The inertial waves grow exponentially and eventually collapse into turbu-
lence. Although the saturation of the instability is the most important state for dynamo action
and orbital evolution of planets, it remains poorly understood.

The work presented throughout this dissertation aims at better characterising the turbu-
lence resulting from the elliptical instability, in particular in regimes that are relevant to geo-
and astrophysics where both the tidal forcing amplitude and the viscous dissipation are weak.
The investigation of the non-linear saturation of this parametric resonance is carried out with
experiments and idealised numerical simulations.

In the experiment, we reveal that two regimes exist in the saturation of the instability.
The first one, which is typical of turbulence in rotating fluids, is dominated by strong vortices
invariant along the rotation axis, or geostrophic. We exhibit a new regime which is dominated
by inertial waves in non-linear resonant interaction, a state called inertial wave turbulence.
To extend our understanding of these two states and to fully characterise the inertial waves
interaction, we proceed to idealised numerical simulations in local cartesian model of tidal
flows. It allows producing the two regimes of saturation and exploring the weak forcing and
dissipation regime. With this ideal model, we show that the transition between the two regimes
mentioned earlier is caused by an instability that vanishes below a finite forcing amplitude.
We also explore the possibility for direct forcing of strong geostrophic motion by the resonant
waves directly, but our simulations suggest that they should not dominate in the geophysical
limit. We therefore conclude that the superposition of inertial waves type of saturation is the
relevant one for planetary cores.

We finally investigate the stability of stably stratified planetary cores undergoing tidal
distortion. Similarly to the elliptical instability, we exhibit a resonance of internal waves, which
are oscillations caused by the stable density stratification. We show with idealised numerical
simulations that the resonant waves give rise to internal wave turbulence in the non-linear
saturation of the instability.



Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Tidal forcing, inertial waves and the elliptical instability 15
1 Tidal forcing in planetary cores: the primary response to tides . . . . . . . . . . . 15
2 Parametric sub-harmonic resonance of a pendulum . . . . . . . . . . . . . . . . . . 22
3 Parametric excitation of inertial oscillations by mechanical forcing . . . . . . . . . 26

2 Introduction to the non-linear saturation of the elliptical instability 35
1 Simple scalings for the saturation flow . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2 Non-linear wave interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Waves, vortices and the elliptical instability . . . . . . . . . . . . . . . . . . . . . . . 45

3 Experiments on the non-linear saturation of the elliptical instability 53
1 Design of the experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2 The experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3 Base flow and frames of reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 The non-linear saturation at low forcing amplitude: waves in interaction . . . . . 64
5 Large forcing amplitudes: a geostrophic-dominated regime . . . . . . . . . . . . . 72
6 Discussion: the origin of the secondary transition . . . . . . . . . . . . . . . . . . . 79
7 Another forcing frequency, f = 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Finite wave amplitude instabilities 87
1 Introduction: the geostrophic problem . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2 Investigating a single wave instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3 Simulations of instabilities driven by an inertial wave . . . . . . . . . . . . . . . . . 91
4 The low wave amplitude case: direct forcing of geostrophic modes . . . . . . . . 93
5 The finite wave amplitude instability mechanism . . . . . . . . . . . . . . . . . . . . 96
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Direct forcing of geostrophic modes in the saturation of the elliptical instability 105
1 Deriving a low order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2 The upper bound on the wave-dominated regime . . . . . . . . . . . . . . . . . . . 114
3 Conclusion on the direct forcing of geostrophic modes by waves . . . . . . . . . . 121

6 A local model to investigate the saturation of the elliptical instability 125
1 The idealised local model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2 The geostrophic-dominated regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3 Attempts to observe a wave-dominated regime with the local model . . . . . . . . 136
4 A wave-dominated regime in the local model . . . . . . . . . . . . . . . . . . . . . . 139
5 Exploring the stability of wave turbulence . . . . . . . . . . . . . . . . . . . . . . . . 149
6 Conclusion: the contributions of the local model . . . . . . . . . . . . . . . . . . . . 155

7 Tidally driven parametric instability in stratified flows 157
1 The relevance of stratification to tides in planetary cores . . . . . . . . . . . . . . . 157
2 Local study of the equilibrium tidal base flow . . . . . . . . . . . . . . . . . . . . . . 161
3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7



4 Non-linear saturation of the instability . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Conclusion 189
1 The saturation of the elliptical instability in planetary cores . . . . . . . . . . . . . 189
2 Ideas and directions for future works . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



9

Introduction

In addition to the Earth, several terrestrial bodies of the Solar System are known to be
presently protected from solar radiation by an intense magnetic field, or present evidence of
a past one. For instance, flybys operated by probes equipped with magnetometers have re-
vealed the presence of a magnetic field surrounding Mercury as well as Ganymede and Io,
two of Jupiter’s largest moons (Ness et al., 1975; Kivelson et al., 1996a; Sarson et al., 1997;
Showman and Malhotra, 1999; Kivelson et al., 2002). Magnetised rock samples from Mars
and the Earth’s Moon have also revealed the existence of a past intense magnetic field (Steven-
son, 2001; Garrick-Bethell et al., 2009; Le Bars et al., 2011). A summary of what is presently
known about magnetic fields of terrestrial planets in the Solar System is given in figure 1.
Beyond the Solar System, magnetic fields are also expected in extra-solar planets, where they
constitute one of the key ingredients for habitability.

As first conjectured by Larmor (1919), the magnetic field of a planet originates in the
turbulent motion of its liquid conducting layers, presumably in most cases of the liquid iron
core (Olson, 2015). Following the seminal works of Roberts (1968) and Busse (1970), it has
been shown that buoyancy-driven flows such as thermal and solutal convection in cores pro-
voke turbulent stirring and dynamo action (Glatzmaiers and Roberts, 1995). This convective
motion is driven by the secular cooling of a planet, by radiogenic heating, and by latent heat
and potential energy release during its core solidification. While the energy budget to sustain
the present day magnetic field of the Earth is closed—even if still partly controversial, see e.g.
Labrosse (2015)—, the Earth early dynamo prior to the inner crystallisation and the dynamo
in smaller bodies remain largely unexplained.

As an illustration, let us assume that the main source for dynamo lies in the initial thermal
energy of the body acquired during its formation. This initial thermal energy can be estimated
assuming that it is roughly tantamount to the loss of gravitational potential energy from a
dispersed cloud to an aggregated body. Let us consider for instance the case of a proto-planet
with mass M and radius ρ (see figure 2) which is impacted by a body of mass dM coming from
afar. As the impactor is brought to the surface of the planet, it loses a gravitational potential
energy dEp such that:

dEp = −G
MdM
ρ

(1)

where G is the gravitational fundamental constant. Assuming the impactor and the proto-
planet have the same homogeneous density µ, the radius increase to ρ+dρ may be converted
into a potential energy loss as dM = 4πµρ2dρ so that:

dEp = −16π2

3
Gµρ4dρ . (2)

The increase of the radius of the proto-planet up to a body of radius R thus corresponds to a
gravitational potential energy loss proportional to R5. We assume that during the process of
planet formation, this potential energy loss is transformed into thermal energy by collisions.
This heat is then radiated away from the planet at a rate proportional to the surface, i.e. to R2.
We thus infer that a secular cooling time scale for the planet scales like R3. As a consequence,
the core of relatively small planetary bodies such as Ganymede, Mercury or the early Moon
cools down very quickly compared to the age of the Solar System, and should not be able to
sustain turbulent convective motion and long-term dynamo action. Even for larger planets
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Figure 1: A summary of the terrestrial bodies (in black) of the Solar System known for having a past
or present dynamo. The relative size of these planets and moons is respected (apart for Jupiter and
the Sun). Venus is given for comparison as it is not surrounded by a magnetic field although it is of
similar size to the Earth. It is not known whether Venus had a magnetic field in the past. We report the
estimated period of existence of these fields when it is known (see the indications in brackets), based
on Garrick-Bethell et al. (2009); Tarduno et al. (2010); Stevenson (2001).

such as the Earth, the initial temperature to maintain a dynamo all along their lifetime should
be extremely hot, in possible contradiction with the presence of a solid mantle at the beginning
of their existence (Andrault et al., 2016).

However, initial heat is not the only source of energy available to drive fluid motion. In
particular, a huge amount of mechanical energy is stored in the rotational dynamics of plan-
etary systems (Le Bars et al., 2015). If it is possible to convert this mechanical energy into
turbulent kinetic energy inside a planetary core, it provides an interesting alternative to con-
vective instabilities to drive planetary dynamos. In the ideal case of a perfectly spherical planet
with uniform rotation, this conversion cannot happen: the liquid core follows the terrestrial
planet in its solid-body rotation. However, tidal interactions between astrophysical bodies re-
sult in periodic alteration of their shape, of the direction of their rotation axis and of their
rotation rate, which can then force fluid motion inside their cores.

The idea that tidal interactions could force core turbulence was first introduced by Malkus
in three seminal articles (Malkus, 1963; Malkus, 1968; Malkus, 1989), but was largely dis-
missed by geophysicists for decades. As noted by Kerswell, this was mainly due to a misunder-
standing regarding the nature of the flow excited by tides (Kerswell, 1996; Kerswell, 2002).
Tidal interactions are of small amplitudes and their direct forcing only generates small depar-
tures from the solid-body rotation of the fluid core. Alone, these small perturbations are not
powerful enough to sustain any magnetic field. However, these periodic perturbations are able
to excite resonant instabilities which can then break down into bulk-filling turbulence.

While the flow directly created by tidal perturbations is purely laminar and of low ampli-
tude in the first place, the excited instabilities are responsible for converting the huge rotational
kinetic energy into turbulence, and possibly dynamo action. Flows driven by tidal instabilities
in a geophysical context have benefited from extensive investigation over the past two decades.
Theoretical and experimental studies have revealed that these instabilities, for the most part,
rely on the interplay between inertial waves (which exist in any rotating fluid because of the
restoring action of the Coriolis force) and the harmonic forcing. The underlying mechanism is
a sub-harmonic resonance called the elliptical instability (Kerswell, 1993b; Le Dizès, 20000;
Lacaze et al., 20050; Le Bars et al., 20070; Cébron et al., 20140; Grannan et al., 20140). This
research has clarified the conditions for such an instability to develop in terms of tidal forcing
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Figure 2: Schematic cartoon of the collision of a proto-planet with an impactor resulting in an increase
of mass and radius of the proto-planet.

versus viscous damping inside planetary cores (see for instance Cébron et al. (2012a)). Yet,
there is still much to understand about tidally-driven instabilities: the comprehension of their
saturation into bulk-filling turbulence remains a challenging problem although of crucial im-
portance to predict dynamo action. The turbulence driven by tidal instabilities is, indeed, very
different from classical, homogeneous and isotropic turbulence. The forcing amplitudes due
to tidal perturbations are weak, and yet, because of the massive size of astrophysical bodies,
dissipation is sufficiently small for turbulence to develop. In such regimes, the turbulence is
strongly influenced by planetary rotation. In addition, the weak forcing amplitude and dissi-
pation regimes relevant for geo- and astrophysics is difficult to study as it is far beyond the
reach of any numerical simulation or laboratory experiment; only extrapolations to planetary
cores may be carefully drawn from present knowledge.

Nevertheless, significant steps have been made over the past few years, one of the most
striking results being the evidence of a fully turbulent kinematic dynamo driven by tidal forcing
in a planetary-relevant ellipsoidal geometry (Reddy et al., 2018). Although it was previously
thought that the elliptical instability would lead to cycles of resonance, turbulent break-down
and relaminarisation of the flow (Malkus, 1989; Eloy et al., 2003; Barker and Lithwick, 2013),
Grannan et al. (2014), Favier et al. (2015) and Grannan et al. (2017) found that the resonance
process also leads to sustained turbulence. In such a persistent saturation flow, they identified
inertial waves in interaction, but also columnar vortices invariant along the rotation axis, called
geostrophic modes. However, all these experiments and simulations have been carried out
under relatively high dissipation and forcing amplitude, i.e. regimes that are far from with the
conditions encountered inside planetary cores or stellar interiors.

The work presented throughout this dissertation aims at exploring regimes that are closer
to geo- and astrophysical conditions. We explore with an experiment and a numerical idealised
model the nature of the turbulence excited by the elliptical instability in weak forcing ampli-
tude and weak dissipation regimes that have remained beyond the reach of any previous study.
Because of their key role in the saturation process, our study focuses more particularly on non-
linear processes involving inertial waves and geostrophic vortices. The main result overall is
identify two regimes in the saturation of the elliptical instability, one which is dominated by
inertial waves in weakly non-linear interaction and the other where strong geostrophic vortices
take over the flow. We characterise the boundary between these two regimes in terms of dis-
sipation and forcing amplitude, and strive to model theoretically the transition between them
in order to extrapolate the expected type of saturation to the extreme geo- and astrophysical
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regimes.

In addition, a significant part of the present work is targeted at the existence and the
saturation of the tidally driven parametric instability in stably-stratified planetary cores. We
show that very similarly to the elliptical instability, the tidal forcing excites resonance of inter-
nal gravity waves which are oscillations induced by a competition between inertia and gravity.
In the non-linear saturation, the turbulent flow excited by the resonance is always a superpo-
sition of internal waves in non-linear interaction in the regimes of weak to moderate forcing
amplitude and dissipation.

This dissertation is organised as follows.

• Chapter 1 is a general introduction on mechanical forcing in geo- and astrophysical
fluid interiors. We present the basic response of fluid bodies to tidal distortion, in partic-
ular the case where a planet is surrounded by an orbiting moon creating a rotating tidal
bulge, and the case where tidal interaction forces oscillations of the rotation rate called
librations. Prior to introducing the elliptical instability, a section is devoted to the fun-
damentals of parametric resonance illustrated in the case of a length-varying pendulum.
The elliptical instability is presented in close analogy with the pendulum resonance.

• Chapter 2 is a continuation of the introduction chapter where we introduce the main
non-linear processes occurring between inertial oscillations, i.e. three-waves resonance,
and between waves and geostrophic vortices. We present the challenges raised by the
non-linear saturation of the elliptical instability and the goals of the work presented in
this dissertation.

• Chapter 3 is an experimental study of the saturation of the elliptical instability car-
ried out in a librating ellipsoid, based on and extending the previous works of Noir et
al. (2012), Grannan et al. (2014) and Grannan et al. (2017). We find two regimes of
saturation. The first one occurs at low forcing amplitude and is dominated by inertial
waves in triadic resonant interaction. The second is dominated by persistent geostrophic
vortices emerging as the libration amplitude is increased. We focus on locating the sec-
ondary transition between the two regimes as a function of the libration amplitude and
viscous dissipation.

• Chapter 4 and chapter 5 are two studies focusing on non-linear mechanisms transfer-
ring energy from waves to vortices. We first investigate numerically and theoretically
the stability of a plane inertial wave. A finite amplitude instability leading to the expo-
nential growth of a geostrophic mode is found to be driven by the wave. We prove the
existence of a minimal wave amplitude below which the maintained wave transfers its
energy to other inertial waves only. In the next chapter, we examine the role of direct
forcing of geostrophic flows by non-linear self-interaction of inertial modes. Although
the latter vanishes in inviscid fluids, self-interactions in boundary layers may be respon-
sible for driving large amplitude geostrophic flow. We show with a numerical analysis of
inertial modes in a sphere based on Tilgner (2007b), Lagrange et al. (2011) and Vidal
and Schaeffer (2015) that this mechanism is unlikely to drive a geostrophic-dominated
saturation of the elliptical instability.

• Chapter 6 is an idealised numerical study of the saturation of the elliptical instability
building on the previous work of Barker and Lithwick (2013). We bring to more ex-
treme regimes the wave-dominated and the geostrophic-dominated regimes and further
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analyse the detail of their content. We confirm that the wave-dominated regime is a su-
perposition of inertial waves in non-linear resonant interaction, and give evidence that
it should lead to inertial wave turbulence in geo- and astrophysical conditions. We also
relate the transition between the two regimes to the finite Rossby number instability put
forward in chapter 4.

• Chapter 7 is a complementary investigation of the stability of stratified planetary interi-
ors such as liquid iron core or sub-surface oceans. We investigate the strongly stratified
limit where the effects of the Coriolis force are negligible compared to buoyancy. In close
analogy with the study of chapter 6, we build a local model of tidally distorted stably
stratified planetary layers and analyse its stability with Floquet analysis and numerical
simulations. We find that internal gravity waves undergo a parametric resonance very
similar to the elliptical instability in rotating fluids and closely related to the parametric
subharmonic instability of internal waves studied by Joubaud et al. (2012). We then pro-
ceed to a systematic analysis of the saturation of the instability which happens to drive
internal wave turbulence, a non-linear state that has been characterised for instance by
Brouzet et al. (2016) in the different but closely related case of the break-down of an
internal wave attractor. We characterise the spatio-temporal properties of this saturation
state and quantify the associated turbulent mixing.
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Chapter 1
Tidal forcing, inertial waves and the el-
liptical instability

1. Tidal forcing in planetary cores: the pri-
mary response to tides

The aim of this section is to review the basic effects of tides on planetary cores. We
introduce the principal perturbations to the rotational motion of planets induced by tides and
expose the method to infer the primary response of a fluid cavity to those perturbations.

1.1 The shape of a planet undergoing tidal distortion

The gravitational interaction between two astrophysical bodies results in a force field
distorting them called tides. For each body, it reflects the difference between the total gravita-
tional attraction which drives its motion and the local attraction. Considering a planet T and
a moon L separated by a distance d taken constant in first approximation (see figure 1.1), the
tidal potential writes at lowest order:

Utides =
GMT

R3
T

ML

MT

�
RT

d

�3 �
r2 − (eX · r )2
�

(1.1)

with r2 = (X 2 + Y 2 + Z2), r = XeX + Y eY + ZeZ and G the gravitational constant —the
remaining variables are defined in figure 1.1. The tidal force field is represented in figure 1.1
and bears two important symmetries: it is invariant by rotation around the planet-moon axis
(OX ) and by reflection relative to the (Y OZ) plane. The deformation induced by the tidal
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Figure 1.1: Schematic diagram of two astrophysical bodies such as the Earth and the Moon, assuming
that they are perfectly spherical and homogeneous. The tidal force field induced by the Moon is rep-
resented by the red arrows in the Earth. This field is invariant under rotation around the X axis. Note
that the Earth induces a similar field inside the Moon.

potential (1.1) can be analytically determined (Sridhar and Tremaine, 1992; Barker, 2016;
Barker et al., 2016). At the lowest order, it can be shown that the planet adopts an ellipsoidal
shape: the combination of the equatorial—or rotational— bulge, created by the centrifugal
force, and of the tidal bulge force the three axes of this ellipsoid to have different lengths.

In the following, we assume that the outer boundary of a planetary cores is ellipsoidal.
For simplicity’s sake, we do not take into account the possible presence of a solid inner core. In
a general context, as the mechanical properties and rigidities of a solid iron inner core and of
the rocky mantle are different, the liquid iron domain would be a shell confined between two
ellipsoids which are not necessarily homothetic. Such a geometry does not change the overall
dynamics but makes its analysis more difficult —see for instance Lemasquerier et al. (2017).
In addition, the case we consider is an actual situation encountered in young planets as solid
inner cores only crystallise later after their formation. For instance, the Earth is known to
have been surrounded by a magnetic field since at least 3.5 Gy although the inner core is only
around 1 Gy old or less (Labrosse, 2015).

1.2 Flow modelling in planetary cores

The liquid iron of the outer core is a Newtonian fluid with a kinematic viscosity ν similar
to water, ν∼ 10−6±2 m2.s−1. (Olson, 2015). Apart from the last chapter of this dissertation, we
discard any density variation in the fluid that may be induced by composition or pressure. The
behaviour of a liquid core is therefore modelled by the incompressible Navier-Stokes equation.

As shown in the next sections, the rotation of the core is an important component of its
dynamics. Unless it is specified, we study the velocity u in the core in the rotating frame. Let
us assume that the rotation rate vector is Ω= Ωez . The local acceleration of the fluid includes
inertial pseudo-forces among which the centrifugal force Ω× (Ω× r ), which is included in the
pressure gradient, and the Coriolis force 2Ωez × u. In the rotating frame, when Ω is constant
in time, the incompressible dynamics of the flow u writes:�

∂t u + u ·∇u + 2Ωez × u = −∇p+ ν∇2u
∇ · u = 0

(1.2)
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Moon

Figure 1.2: Schematic diagram of a moon orbiting around a planet. We define two systems of axes:
(OX Y Z) follows the revolution of the moon (hence of the ellipsoidal shape of the planet) and rotates
at rate nez; (Ox yz) tracks the rotation of the planet and rotates (i.e. its solid mantle) at rate Ωez . We
assume that the two rotation motions occur in the same plane for simplicity’s sake. The fluid envelop
is ellipsoidal: its axes have lengths a and b in the equatorial plane, and c along the axis of rotation.

where ν is the kinematic viscosity of liquid iron and p is a modified pressure divided by the—
constant—density and including the centrifugal acceleration. In the case where the rotation
vector varies over time, a Poincaré acceleration Ω̇× r must be included in the left hand side of
the first equation in (1.2). In what follows, we also refer to the Euler equation as the equation
obtained in the limit ν = 0 of (1.2). These governing equations will be used in the following
to determine the flows driven by tidal excitation.

1.3 Flow driven by differential spin and orbit

In a configuration similar to the Earth-Moon system, the spin of the Earth is not synchro-
nised with the orbit of the Moon. Because the Earth rotates every day, but the Moon’s orbit
is 27 days long, and because of the symmetry of the tidal field, the solid part of the Earth is
subject to slightly less than two tidal rises per day. Focusing on the core, while the liquid iron
rotates at the same rate as the Earth, its outer shape bears a tidal bulge which follows the
orbiting motion of the Moon.

Let us assume a simple case where those two rotations take place in the same plane, the
corresponding situation being depicted in figure 1.2. In such a configuration, the flow inside
the core is not a solid body rotation. We aim at determining the inviscid flow created by the
differential rotation of the planet and its moon; it must satisfy the Euler equation and the non-
penetration boundary conditions at the edge of the ellipsoidal container. We use the method
introduced by Hough (1895). First we note that the derivation is facilitated when carried out
in the frame of reference in which the boundary shape does not change over time, that is the
frame (OX Y Z) with axes aligned along the main axes of the ellipsoid with lengths a, b and
c (see figure 1.2). Then, we look for a uniform vorticity solution which directly satisfies the
boundary conditions. This is achieved by first using a rescaled system of coordinates X̃ =
(X̃ , Ỹ , Z̃) which transforms the ellipsoid into a sphere, the velocity U = (U , V, W ) being also
transformed accordingly: 

X̃ = X/a
Ỹ = Y /b
Z̃ = Z/c

and


Ũ = U/a
Ṽ = V/b

W̃ =W/c
(1.3)
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and then looking for a vector ω(t) such that:

Ũ =ω(t)× X̃ . (1.4)

With this ansatz, the transformed velocity field is at each time t a solid-body rotation which
necessarily satisfies the non-penetration boundary condition in the sphere. As a consequence,
the flow U transformed back into the original coordinates also satisfies the boundary condi-
tions. Such a flow is divergence-free and has a uniform vorticityϖ which writes:

ϖ=∇×U =



�
c
b
+

b
c

�
ωx� c

a
+

a
c

�
ωy�

a
b
+

b
a

�
ωz

 . (1.5)

We look for a steady solution in the frame orbiting with the Moon at a rate nez (see
figure 1.2). Taking into account the Coriolis acceleration due to the rotation of the frame of
reference, the stationary vorticity equation derived from the Euler equation reads:

(U ·∇)ϖ= ((ϖ+ 2nez) ·∇)U . (1.6)

Asϖ is space-independent, the left hand side of this equation vanishes. The equations on the
components of the vorticity are therefore:
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��
ωxωy = 0 .

(1.7)

The last equation prescribes eitherωx orωy to be equal to 0. Let us assumeωy = 0 (a similar
reasoning is possible for ωx = 0): the first equation is then directly satisfied. The second
equation either prescribes a ωz proportional to n for a non-zero ωx , or a zero ωx . However,
the former possibility does not account for the global rotation of the planet at rate Ω, which
must be part of the solution. The physical solution is therefore obtained for ωx = 0.1 To
constrain the value of ωz , we consider that the vorticity of the fluid must match the planetary
vorticity (Sridhar and Tremaine, 1992; Goodman, 1993; Barker, 2016):�

a
b
+

b
a

�
ωz = 2(Ω− n) ⇐⇒ωz =

2ab
a2 + b2

(Ω− n) (1.8)

which finally gives the following steady flow driven by tides:

UV
W

= 2ab
a2 + b2

(Ω− n)


− a

b
Y

b
a

X

0

 . (1.9)

1This condition is in any case the only one when we consider the viscous problem where the flow solution of
(1.7) must reconnect to the rotating solid mantle through a thin boundary layer, see for instance Tilgner (2007a).
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Figure 1.3: Tidal flow velocity field seen from the orbital frame rotating at rate n (left) and from the
planetary frame rotating at rate Ω (right). The arrows scale is not the same on the two figures. Ω−n is
positive: the fluid moves counter-clockwise in the orbital frame and the elliptical bulge moves clockwise
when seen from the planetary frame. Planetary frame highlights the strain field which perturbs the
solid-body rotation of the fluid.

Lastly, we can introduce the ellipticity of the deformation β = (a2 − b2)/(a2 + b2); the base
flow then writes into a simpler and more compact form:

U = (Ω− n)

 0 −1− β 0
1− β 0 0

0 0 0

XY
Z

 . (1.10)

Note that this last form is quite meaningful as it corresponds to the superposition of a circular
vortex and a strain, which is a configuration known to be unstable (Pierrehumbert, 1986;
Bayly, 1986; Waleffe, 1990). Moreover, in the frame rotating with the planet, the flow U ,
denoted UΩ, is:

UΩ = −βγ
sin(2γt) cos(2γt) 0

cos(2γt) − sin(2γt) 0
0 0 0

xy
z

 with: γ= Ω− n (1.11)

which can be retrieved from (1.10) via a rotation of coordinates and a velocity composition.
The two fields (1.10) and (1.11) are shown in figure 1.3. This last way of writing the tidal
flow is even more meaningful as it highlights the time periodicity of the tidal excitation: the
tidal frequency is twice the differential rotation between the planet and the moon, which
reflects the symmetry of the tidal bulge respective to the plane (OY Z). For n≪ Ω, an observer
bound to the rotating frame of reference undergoes two tidal rises a day as on the Earth
where n/Ω ∼ 1/27. Besides, the tidal flow amplitude is proportional to the ellipticity of the
deformation. Tidal excitation is a small perturbation to the planetary solid-body rotation, of
relative amplitude 10−7 on Earth for instance. Nevertheless, we show later in this chapter that
this repetitive excitation, although of small amplitude, is able to excite turbulent flows.

1.4 Perturbation of the rotation rate: libration

In the previous section, we have introduced the tidal potential and its consequences on
the shape of planetary cores. Tides not only induce distortion, they also alter the rotation of
planets. We introduce in this section perturbations of the rotation rate, called librations, and
combine them with the tidal distortion to derive the corresponding core flows.
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Figure 1.4: Schematic diagram of the excitation of libration on a moon with an eccentric orbit in
spin-orbit resonance. Its bulge is frozen and follows the rotation of the moon instead of staying aligned
towards the parent planet. The four snapshots separate the orbit and the rotation in four equal periods.
Rotation is anti-clockwise.

Libration of moons

Physical longitudinal libration, hereafter called libration, is the oscillation of the rotation
rate of an astrophysical body without change in its rotation axis. This kind of motion is ex-
cited by tidal interaction between the considered body’s tidal bulge and its parent planet or
star. One common situation where libration is observed is presented in figure 1.4: a moon is
synchronised in a spin-orbit resonance along an elliptical orbit, meaning that its orbital rate
matches its mean rotation rate (like our Moon, which always shows us the same side). This
is due to tidal dissipation inside the rocky mantle of such bodies which despins them from
any initial rotation rate into this particular equilibrium (Rambaux and Castillo-Rogez, 2013).
Moreover, because of the rigidity of the moon, its tidal bulge is in general not exactly aligned
with the parent body. The figure 1.4 presents the extreme situation where the bulge is frozen
and follows the rotation of the moon instead of staying aligned with the planet. This happens
for instance in the case of the Earth’s Moon which has a large fossil bulge which has not re-
laxed and is not induced by tidal interaction anymore but still persists. As depicted in figure
1.4, this misalignment and the difference of gravitational attraction between the two sides of
the bulge create a torque which tends to accelerate the rotation rate at 2 and to decelerate
the rotation rate at 4 . The rotation rate is therefore perturbed around a mean with the same
period as the orbit.

The situation shown in figure 1.4 is not the only one leading to libration oscillations. In
planetary systems with many satellites such as as the Jovian and Saturnian systems, a body
not only interacts with its parent planet but also with all the other moons. Some of them are in
what is called a Laplace resonance, which is a stable situation where the orbit rates of several
moons are multiples of one another (Rambaux and Castillo-Rogez, 2013). There also exists
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length-of-day variations in non-synchronised planets like the Earth, corresponding to variation
of their rotation rate

Libration-driven flows

We now seek to determine the flow driven by libration and assume for simplicity’s sake
a purely rigid tidal bulge. The total rotation rate including libration can be written as:

Ω= Ω0 (1+ ϵ sin( f Ω0 t))ez (1.12)

where ϵ is the relative variation of the rotation rate and f is the dimensionless libration fre-
quency. Observed from the frame rotating at rate Ω0, the moon and its bulge oscillate with
a frequency ωℓ ≡ f Ω0 and with an amplitude angle ϵΩ0/ωℓ. Although in the example of
spin-orbit synchronisation presented in figure 1.4 ωℓ = Ω0, the libration frequency can take
any value due to tidal interactions with many bodies as in the Jovian and Saturnian systems.
To determine the libration-driven flow, we use the same method as for the tidal base flow: we
look for a flow Ũ =ω(t )× X̃ — see definition (1.4)— in the frame where the boundary stands
still, i.e. the librating frame. We use the same notation as before: in the frame (OX Y Z) the
boundary is still —therefore it is the librating frame— and (Ox yz) is the mean rotation frame.
In the (OX Y Z) frame the equation for the vorticityϖ writes:

∂tϖ+ (u ·∇)ϖ= ((ϖ+ 2Ω) ·∇)u − 2
dΩ
dt

(1.13)

where we include the time dependence of the flow—oscillating at the libration frequency—
and a last term corresponding to the Poincaré’s acceleration. In its expanded form, the equation
(1.13) yields:
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Assuming ωx and ωy are zero, the last equation relates the temporal variation of ωz to the
Poincaré acceleration:�

a
b
+

b
a

�
ω̇z = −2Ω̇ ⇐⇒ ωz = − 2ab

a2 + b2
Ω0ϵ sin( f Ω0 t) + cst . (1.15)

Considering a synchronised body in the librating frame, the constant component of the vorticity
must be equal to zero. The resulting base flow can be written in the librating frame in terms
of the axes’ lengths or the ellipticity β defined earlier:

U = − 2ab
a2 + b2

Ω0ϵ sin( f Ω0 t)

 0 −a/b 0
b/a 0 0
0 0 0

XY
Z


= −Ω0ϵ sin( f Ω0 t)

 0 −1− β 0
1− β 0 0

0 0 0

XY
Z

 (1.16)
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The libration flow written in the mean rotation frame —which requires doing velocity compo-
sition and coordinates change— writes, at the lowest order in ϵ:

UΩ = Ω0ϵβ sin( f Ω0 t)

0 1 0
1 0 0
0 0 0

xy
z

 . (1.17)

Note that at t = π/(2 f Ω0) the structure of the flow (1.16) is exactly similar to (1.10): snap-
shots of the velocity in the libration case are the same as figure 1.3-left for the librating frame
and figure 1.3-right for the mean rotation frame. Generally, seen from the frame where the
bulge is stationary, a fluid particle rotates around elliptical streamlines in the tidal case and
oscillates along elliptical streamlines in the libration case. Seen from the mean rotation frame,
the strain field in the tidal case rotates with a constant amplitude, whereas the strain field in
the libration case has a stationary spatial structure but an oscillating amplitude.

2. Parametric sub-harmonic resonance of a
pendulum

Both tidally and libration-driven base flows are unstable and tend to force three-dimensio-
nal complex flows. In the next section, we show that the instability is a parametric, sub-
harmonic resonance of inertial oscillations that couples the effects of tidal perturbations with
rotation. Prior to delving into the stability analysis of these flows, we wish to introduce in the
present section a simple example of parametric resonance in the case of a pendulum. We will
later use analogies with the pendulum to present the stability of tidally perturbed planetary
and stellar interiors.

2.1 O Botafumeiro

One of the most striking example of parametric resonance that can be found around the
globe is probably O Botafumeiro in Santiago de Compostella’s Cathedral. It is a 54 kg thurible
(a metal censer) that hangs on the top of the cathedral’s dome. The length of the rope can
be changed over time around its mean length of 21.5 m by a group of holders. To spread
incense in the cathedral, the holders first let the thurible swing with a small angle. Each time
the censer goes up, i.e. twice per period, they slightly pull down the rope to shorten the swing
length, and let it increase again as the swing reaches its highest position. With this twice per
period excitation, they manage to swing the censer with very large amplitude in a short time,
up to a height of 20.6 m. The velocity at the lowest point of the oscillation reaches 68 km/h.

2.2 Mechanical study of the length-varying pendulum

As shown in figure 1.5, we model O Botafumeiro by a pendulum whose length ℓ varies
over time:

ℓ(t) = ℓ0(1+η sin(ωt)) (1.18)
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where η is a small parameter accounting for the small modulation of the relative length of the
swing. We study the motion of the point object M of mass m at the end of the rope of length
ℓ(t). We assume that the referential bound to O is Galilean and that the rope is mass-less. The
velocity v of M writes:

v = ℓθ̇eθ + ℓ̇er (1.19)

and the angular momentum Lz of M with respect to axis (O, ez) is:

Lz = mℓ2θ̇ . (1.20)

As gravity applies a torque −mℓg sinθ , the conservation of angular momentum yields:

θ̈ +
2ℓ̇
ℓ
θ̇ +

g
ℓ

sinθ = 0 . (1.21)

Introducing the ansatz (1.18) and ω2
0 = g/ℓ0 finally leads to:

θ̈ +η
2ω cos(ωt)

1+η sin(ωt)
θ̇ +

ω2
0

1+η sin(ωt)
sinθ = 0, (1.22)

where η and ω are two control parameters, the relative variation of the rope length and the
frequency of these variations.

We can already qualitatively predict at which frequency the length must be varied for op-
timal oscillations by looking at equation (1.21): indeed, comparing to the classical pendulum
equation where ℓ is constant, but still accounting for ℓ̇, the second term in (1.21) appears in
place of a viscous damping of type νθ̇ . Here however the sign of the viscosity ν depends on
the sign of ℓ̇. In particular, shortening the length of the rope—i.e. ℓ̇ < 0—corresponds to a
“negative viscosity”, which encourages the motion; ℓ̇ > 0 corresponds to a classical positive
damping. For the holders to input maximum energy into the system, the length must thus be
shortened when the angular velocity |θ̇ | is maximum, i.e. when the pendulum is at its lowest
position, and increased when θ̇ = 0, i.e. when it is at its highest position. Therefore, two
antagonistic moves must be operated during half the period of the pendulum: the frequency
of the excitation must be the double of the free oscillation. This will be formally proved in the
following.

Figure 1.5: Model for O Botafumeiro: a length varying pendulum. The function ℓ(t) is prescribed to
periodically vary around a mean length ℓ0 according to (1.18).
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2.3 Asymptotic analysis

To analytically study the length-varying pendulum described by (1.22) and get the main
physical properties of this system, we carry out an asymptotic study in the limit of small length
variations η≪ 1 and small angle θ ≪ 1. The equation (1.22) can then be expanded into:

θ̈ +ω2
0θ = η
�−2ω cos(ωt)θ̇ +ω2

0 sin(ωt)θ
�

(1.23)

where the length variation appears at order one as a forcing. The system has two typical time
scales. The first one is 1/ω0, the natural or free period of pendulum oscillation. This is the fast
timescale of the system. We further assume here that the forcing period 1/ω is of the same
order of magnitude as 1/ω0, because as seen just before, this is where interesting physics is
expected. Then because of the forcing, the system also evolves over a slow timescale 1/(ηω0).
We thus look for a first-order accurate- solution to (1.23) with respect to the small parameter
η, where these two timescales are included and decoupled, i.e. a function θ which depends
on τ= t and T = ηt such that:

θ (τ, T ) = ( f0(τ) +η f1(τ)) F(T ) . (1.24)

In this two-timing framework, the total time derivatives are expanded as partial deriva-
tives according to: 
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where we have kept only the terms up to order 1. Taking into account the ansatz (1.24) and
(1.25) yields to an order zero and an order one equations such that:
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(1.26)

The solution to the first equation is straightforward, and using complex solutions:

f0(τ) = Aeiω0τ + Be−iω0τ . (1.27)

We then input this solution in the right hand side (RHS) of the second equation in (1.26) and
expand it to find the following Fourier decomposition:

d2 f1
dτ2
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�
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�
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F
ω0

�
+ e−iω0τ

�
2iB

F ′
F
ω0

�
.

(1.28)
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The frequency of the two terms appearing in the last line is the same as the eigen frequency of
the harmonic oscillator in the left hand side (LHS) of (1.28) and should give rise to divergence
of f1. Those contributions to the LHS are called “secular terms” as they excite a long term
growth of the solution. However, the Taylor expansion in the ansatz (1.24) requires f1 to
remain bounded over time for the calculation to remain valid: secular terms must therefore
be cancelled.

In general, a first possibility is to impose F ′ = 0, but this cannot explain the amplitude
increase observed in the case of O Botafumeiro. A more interesting solution arises when the
excitation frequency ω is adequately chosen. When

ω= 2ω0

the second and third lines then also have a frequency of ±ω0 and give a more complex con-
dition for f1 to remain bounded. With this particular condition, cancelling the secular terms
leads to 

−3
2
ω0A+ 2

F ′
F

B = 0

−2
F ′
F

A+
3
2
ω0B = 0 .

(1.29)

In order to avoid the simple solution A= B = 0 which does not model the amplitude growth,
the determinant of the above system must be zero. Cancelling the determinant imposes:

F(T )∝ e± 3
4ω0T . (1.30)

Under these conditions, it is straightforward that for the exponentially growing branch A= B.
The total solution at lowest order, in terms of time t and only considering the growing solution
for a pendulum released at t = 0 from angle θ0 with no initial velocity, is therefore:

θ (t) = θ0 cos(ω0 t) exp
�

3
4
ηω0 t
�

. (1.31)

Such a resonance process is called “parametric sub-harmonic resonance" as it happens when
the excitation frequency is twice the free oscillation frequency. From a tiny perturbation, pro-
vided it is repetitive and has the adequate frequency, it leads to a drastic increase of the oscil-
lations’ amplitude. This solution is represented in figure 1.6 left and superimposed to the fully
nonlinear solution obtained via numerical resolution of equation (1.22) in figure 1.6 right.
The two solutions are in very good agreement at early time, but our linear approach does
not capture the collapse of the amplitude observed in the numerical solution. As we show in
the following paragraph, this is due to non-linear effects which are not accounted for in our
theoretical approach.

2.4 Saturation of the resonance

As noted in figure 1.6 right, the exponential growth computed in the preceding paragraph
must come to an end. Here, the non-linearity—the sinθ term in (1.21)—causes a collapse
of the oscillations. Indeed, the period of free pendulum oscillations then depends on the
amplitude: it increases as the amplitude increases. At second order in θ , the relation between
period P and amplitude θm is given by Borda’s formula:

P(θm) =
2π
ω0

�
1+
θ2

m

16

�
. (1.32)
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Figure 1.6: Left: linear solution corresponding to the expression (1.31) for η = 5 × 10−2, ω0 = 1,
ω= 2 and θ0 = 1× 10−3. Right: fully non-linear solution of equation (1.22) (in red) and comparison
with the linear solution (in grey).

At early times, when the amplitude of the oscillations remains small, the excitation frequency
ωmatches the resonance conditionω= 2ω0. As the amplitude increases, the frequency of the
pendulum decreases and the oscillator is detuned from the excitation. This reverses the energy
transfer from the parametric excitation to the pendulum. As the excitation and oscillation are
out of phase, energy is pumped back from the pendulum to the forcing —the negative viscosity
effect becomes a positive viscosity. The consequence is the global decrease of the amplitude.
Note lastly that in the case of O Botafumeiro, the holders can tune the excitation to the actual
period of the thurible, hence maintaining large amplitude oscillations over a long time.

3. Parametric excitation of inertial oscillations
by mechanical forcing

3.1 Oscillators in planetary cores: inertial waves

In the following, we draw an analogy between the length-varying pendulum and tidally-
driven mechanical forcings in planetary cores. We identify what can be regarded as a pendu-
lum inside planetary cores and what acts as a slight and repetitive perturbation.

The eigenmodes of rotating fluids are the so-called inertial waves. They are caused by
the restoring action of the Coriolis force. This section is a short reminder of how to derive
their governing equation and to infer their dispersion relation.

Let us derive a wave equation from the governing equations of incompressible rotating
fluids. We consider the linear limit of the Euler equation for the velocity u in the rotating
frame of reference:

∂t u + 2Ω× u = −∇p . (1.33)
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The equation governing the vorticityϖ=∇× u reads:

∂tϖ= 2 (Ω ·∇)u . (1.34)

We assume Ω = Ωez and take the curl the vorticity equation (1.34) to obtain an equation on
the velocity only:

∂t (∇× (∇× u)) = 2Ω∂zϖ . (1.35)

We differentiate this last equation over time and then substitute (1.34) into (1.35) which gives:

∂t t (∇× (∇× u)) = 4Ω2∂zzu . (1.36)

Taking into account the incompressibility condition ∇ · u = 0, we finally retrieve the Poincaré
equation of rotating flows (Poincaré, 1885):

∂t t∇2u + 4Ω2∂zzu = 0 . (1.37)

Considering the divergence of the Navier-Stokes equation, one can easily find a similar equa-
tion on the pressure field p.

In an hypothetical infinite medium which satisfies translational invariance, the Poincaré
equation admits plane waves solutions. Assuming that u takes the form of a plane wave of
vector k and frequency ω :

u(r , t) = u0ei(k·r−ωt), (1.38)

r being the position, the dispersion relation of inertial waves writes:

ω2 = 4Ω2 k2
z

k2 i.e. ω= ±2Ω cosθ (1.39)

where θ is the angle between the rotation axis and the wave vector. Note that this dispersion
relation is peculiar in the sense that wave frequency is not related to the wavelength but to the
direction of the wavevector only. Moreover, the frequency of the waves is bounded between
−2Ω and 2Ω.

In the case of bounded geometry such as spheres or ellipsoids, the translational invari-
ance is lost, but oscillatory solutions to the Poincaré equation can still be found. They are
called inertial modes and their derivation for the special case of the sphere can be found in
Greenspan (1968). Their frequencies remain bounded between−2Ω and 2Ω (Greenspan, 1968).
An example of inertial modes computed in an ellipsoidal container is given in figure 1.7. In
the case of periodic mechanical forcing of planets, these inertial modes play the role of the
excited oscillators.

3.2 Parametric excitation: the case of tidally-driven instabilities

In section 1.3, we derived the primary response of a fluid planetary interior to tidal
distortion — see for instance the expressions (1.10) and (1.11); nothing has been said yet
regarding the stability over time of this flow. This section shows that a tidal flow can excite a
parametric resonance of inertial waves. We give the conditions under which a resonance can
happen, and we later briefly present a few ideas on how to quantify its grow rate.
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Figure 1.7: Four example of the velocity amplitude of inviscid inertial modes computed in an ellipsoid
with axes a = 1, b = 0.86 and c = 0.57 performed by Vidal and Cébron (2017). It shows equatorial
and meridional cuts and the amplitude map at the surface of the ellipsoid. This figure is adapted from
Vidal and Cébron (2017) figure 6.

We investigate the time evolution of perturbations to the tidal base flow, an instability
being characterised by an exponential growth of these perturbations. In the frame rotating
with the planet —see paragraph 1.3—, we write the total flow as :

U = UΩ + u (1.40)

where UΩ is the tidal base flow (1.11) and u is a perturbation —which is not necessarily small.
As UΩ is a non-linear, viscous solution to the flow in the bulk of the fluid, the Navier-Stokes
equations (1.2) reduce to the following non-dimensional form:

∂t u +UΩ ·∇u + u ·∇UΩ + u ·∇u + 2ez × u = −∇p+ E∇2u (1.41)

∇ · u = 0 (1.42)

where lengths are scaled by the largest axis length a, time by 1/Ω, and where we have in-
troduced the Ekman number E = ν/(a2Ω) that compares the effects of viscous and Coriolis
forces.

According to (1.11), the tidal base flow is proportional to the ellipticity of the tidal de-
formation β , and may therefore be written as

UΩ = βA(t)x , (1.43)

where A(t) is a linear operator, harmonic in time with frequency 2γ, acting on the position x ,
representing the rotating strain field depicted in figure 1.3. We recall that γ is the difference
between the planet’s rotation rate and the moon’s orbital rate, or equivalently the rotation rate
of the tidal bulge in the rotating frame. In the linear, inviscid limit, the equation (1.41) can
be recast as

∂t u + 2ez × u +∇p = −β [A(t)u +A(t)x ·∇u] . (1.44)

This equation is very similar to the equation (1.23) governing the length-varying pendulum:
eigenmodes of the system (i.e. inertial waves here), represented by the left hand side, are ex-
cited by a forcing which is harmonic in time, and depends on the amplitude of the eigenmodes.
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From a qualitative point of view, the periodic stretching of waves by the tidal strain is able to
convey energy from tides to waves.

The situation compared to the length-varying pendulum is here slightly enriched by the
existence of an infinite number of oscillators: many pairs of inertial modes can cooperate and
resonate with the tidal base flow. Let us consider a mode of frequency ω1: its non-linear
interaction with the base flow corresponding to the RHS of (1.44) bears harmonic terms of
frequencies ±2γ+ω1 that can match a second mode oscillation, hence reinforcing it, provided
its frequency ω2 matches the following resonance condition:

|ω1 −ω2|= 2γ . (1.45)

Reciprocally, mode 2 then reinforces mode 1. There is therefore a coherent effect of the tidal
base flow and the two resonant waves in building the parametric resonance. Note that this
resonance condition includes the single mode resonance for ω1 = −ω2 = ±γ, which is rem-
iniscent of the length-varying pendulum sub-harmonic resonance. Due to the nature of the
base flow, this instability has been coined “elliptical instability”. Note also that the resonance
condition and the bounded domain of the inertial frequencies implies that the tidally-driven
resonance can be excited as long as |γ| ≤ 2|Ω|.

An illustration of the instability growth in given in figure 1.8. In both the experiment
and the numerical simulation, the orbital and the spin rate are opposed, that is, Ω= −n, such
that γ = 2Ω. The resonant modes are therefore at the limit of the inertial modes frequency
domain. These modes are composed of horizontal layers of alternating horizontal velocity.
They are reminiscent of plane waves in an unbounded domain as, at the frequency 2Ω, the
wave vector is purely vertical. Lastly, it is interesting to note that even if the ellipticity is quite
small in the experiment shown in figure 1.8 —β = 0.06—, the flow is fully turbulent at later
times, once the instability has reached saturation.

3.3 Quantifying the growth rate: a global approach

In this section, we detail a method to theoretically determine the growth rate of the
parametric instability excited by the tidal base flow. We look for the long term evolution of
the amplitude of the resonant modes, following the general process given in Tilgner (2007a).
The perturbation flow u can be written as a superposition of two eigenmodes with spatial
structures Ψ1(r ) and Ψ2(r ), that is:

u(r , t) = a1(t)e
iω1 tΨ1(r ) + a2(t)z

iω2 tΨ2(r ) , (1.46)

where the a j(t) are the amplitudes of the modes and the ω j their eigen frequencies. Noting
Π j the pressure field associated to the mode j, Ψ j and Π j satisfy the following equation:

2ez ×Ψ j +∇Π j = iω jΨ j , (1.47)

that is, Ψ j ,Π j are eigenmodes of the linearised, rotating Euler equation. Note that, in general,
two modes satisfy an orthogonality relation (Greenspan, 1968):


Ψ j

��Ψk

� ≡ 1
V
∫
V
Ψ∗j ·ΨkdV = δ jk, (1.48)

where V is the domain volume and δi j is the Kronecker symbol.
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Figure 1.8: Time evolution of the tidally-driven flow inside an ellipsoid shown in a meridional cross-
section. Top: experimental visualisation using flake-shaped particles materialising shear zones. Bot-
tom: numerical simulation showing the vertical velocity. These pictures are adapted from Grannan
et al. (2017), Figure 3.

Tidal distortion is always a small perturbation of the spherical shape of the container. The
modes inside the slightly distorted container are therefore approximated here by the inertial
modes of the sphere for simplicity (but see Vidal and Cébron (2017) for a more complete
approach). Then we introduce an azimuthal wavenumber m such that the spatial structure of
an inertial mode Ψ can be written as

Ψ(r ) = Φ(r, z)eimϕ

where (r, z,ϕ) are the cylindrical coordinates (Greenspan, 1968). Two structures with differ-
ent m are orthogonal, and the dot product between two modes can be specified as follows:


Ψ j

��Ψk

�
= δ(mk −m j)

2π
V
∫

r,z
Φ∗j ·Φk rdrdz = δ(mk −m j)

�
Φ j

��Φk

�
. (1.49)

where we have introduced a reduced dot product (·|·) that acts on the radial and vertical
structure of the modes.

We introduce L(t) the linear operator associated to the RHS of equation (1.44), i.e. the
linear operator which couples the modes with the tidal base flow. In general, for a field w ,

L(t)w = A(t)w +A(t)x ·∇w . (1.50)

With the orthogonality relation (1.48), the evolution of the amplitudes a j are inferred from
the ansatz (1.46) and the flow equation (1.44):¨

ȧ1 = β


Ψ1

��L(t)u� e−iω1 t

ȧ2 = β


Ψ2

��L(t)u� e−iω2 t .
(1.51)
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The RHS of (1.51) can be specified taking into account the temporal and spatial variations of
the modes contained in u and in the coupling operator L(t). The tidal base flow is transformed
into cylindrical coordinate as:

UΩ = −βγr
�
sin(2γt + 2ϕ)er + cos(2γt + 2ϕ)eϕ

�
(1.52)

showing that it contains the wave numbers m = 2 and m = −2. L is therefore decomposed
into:

L(t) = ei(2γt+2ϕ)L0 + e−i(2γt+2ϕ)L∗0 (1.53)

where L0 is independent of time and ϕ and L∗0 is the complex conjugate of L0. Using the
orthogonality relation, the RHS of (1.51) is expanded as follows:


Ψ1

��L(t)u� e−iω1 t =
�
Φ1

��L0Φ1

�
a1 δ(2+m1 −m1)e

i(ω1+2γ−ω1)t

+
�
Φ1

��L∗0Φ1

�
a1 δ(−2+m1 −m1)e

i(ω1−2γ−ω1)t

+
�
Φ1

��L0Φ2

�
a2 δ(2+m2 −m1)e

i(ω2+2γ−ω1)t

+
�
Φ1

��L∗0Φ2

�
a2 δ(−2+m2 −m1)e

i(ω2−2γ−ω1)t .

(1.54)

and similarly for


Ψ2

��L(t)u� e−iω2 t . When the resonance condition is satisfied, i.e. ω2−ω1 =
2γ, the coupling between the modes 1 and 2 is effective provided the following selection rule
applies:

m2 −m1 = 2 . (1.55)

All the other coupling terms, whose frequency does not match the resonance condition, then
vanish. A similar derivation for



Ψ2

��L(t)u� e−iω2 t allows to prove that the system (1.51) re-
duces to: ¨

ȧ1 = β
�
Φ1

��L∗0Φ2

�
a2

ȧ2 = β
�
Φ2

��L0Φ1

�
a1 .

(1.56)

The growth rate σ is therefore given by the overlap between the tidal base flow and the two
modes:

σ2 = β2
�
Φ1

��L∗0Φ2

� �
Φ2

��L0Φ1

�
. (1.57)

The amplitude of the modes grows provided the overlap integrals have the same sign; the
growth rate is then proportional to β . This is similar to the length-varying pendulum for
which the growth rate was found to be proportional to the amplitude of the perturbation η.

Computing the growth rate is in this case rather difficult as it requires computing the over-
lap integrals between the modes and the tidal forcing. This is in general non-trivial: although
the inertial modes in a sphere, or even a spheroid, are known, there is no analytical formula in
the generic case of tri-axial ellipsoids. Computation of the overlap integrals therefore requires
numerical solving of the eigenvalue problem of inertial modes, as done for instance in Vidal
and Cébron (2017).

Lastly, the amplitude equations (1.56) may be refined accounting for the viscous damping
of the modes. In the planetary limit of small Ekman number E, viscous dissipation is dominated
by friction inside Ekman boundary layers, and yields a correction O(

p
E); as shown by Le Bars

et al. (2010), the correction to the growth rate is then K
p

E with K a constant typically between
1 and 10 but see also Lemasquerier et al. (2017) for a discussion on the possible importance
of bulk dissipation for finite Ekman numbers.
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3.4 Quantifying the growth rate: short wavelength approximation

Although the derivation of the growth rate in the preceding paragraph is rather straight-
forward, it is quite difficult to extract quantitative information in complex geometries such as
tri-axial ellipsoids. This approach requires knowing a priori the spatial structure of the iner-
tial modes that must be computed numerically. Another approach that has proven efficient in
past studies to make quantitative prediction (see e.g. Kerswell (2002) and references therein)
consists in assuming a scale separation between short wavelength resonant modes and the
large-scale tidal flow.

This approach, known as the Wentzel-Kramers-Brillouin (WKB) analysis, assumes that
the perturbations take the form of a plane wave packet around a point that is advected by the
base flow. The wave packet is affected by tidal distortion as it moves along with the Lagrangian
point. This theoretical framework, which resembles the process to infer classical optics from
light wave propagation, was formally introduced in the context of hydrodynamic instabilities
by Lifschitz and Hameiri (1991). It is particularly suitable for the study of parametric instability
of waves interacting with a base flow.

It was applied to the present case of the tidally driven elliptical instability in rotating
flows by Le Dizès (2000). The WKB method allows to retrieve that the short wavelength grow-
ing perturbation corresponds to the superposition of two contrapropagating inertial waves of
frequency ±γ with an amplitude growth rate

σ =
βγ

16
(2+ γ)2 . (1.58)

Although this growth rate describes short wavelength perturbations under the form of inviscid
plane waves in an infinite domain, it accounts very well for the growth of inertial modes in
enclosed containers in the weak tidal distortion and low dissipation regime, i.e. the regime
that is relevant for geophysics (Le Bars et al., 2010). A small correction due to boundary
friction must then be considered, that is:

σv = σ− K
p

E (1.59)

with K between 1 and 10 typically, as explained in the preceding section.

3.5 The elliptical instability in planetary cores

The preceding theoretical results have been used in past studies to evaluate the actual
relevance of the tidally driven elliptical instability in natural systems, for instance by Cébron
et al. (2012a). In the case of the Earth, the tidal distortion of the Moon (which induces a
tidal bulge of ellipticity β ∼ 10−7) is close but a priori not sufficient to overcome the viscous
damping of resonant modes. Nevertheless, the study by Cébron et al. (2012a) also considered
the early history of the Earth at times where the Moon was closer to its parent planet. Assuming
the Earth-Moon distance is reduced by a factor 2, the core of the Earth becomes unstable to the
elliptical instability. Mechanical forcings therefore provide an interesting alternative to drive
magnetic field before the crystallisation of the inner core. Remember that the Earth is known
to be surrounded by a magnetic field since at least 3.5 Gy (Tarduno et al., 2010) while the
Earth’s core only started to form around 1 Gy ago (Labrosse, 2015).
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Following the same process as for the tidally-driven instability, librations have also been
shown to drive parametric sub-harmonic instability of inertial waves with an inviscid growth
rate proportional to βϵ, ϵ being the relative variation of the rotation rate (Kerswell and
Malkus, 1998; Cébron et al., 2012b; Cébron et al., 2014). Kerswell and Malkus (1998) have
in particular demonstrated that Io’s core in unstable, thus providing a possible explanation
to the magnetic field measured by the Galileo probe around the Jovian satellite (Kivelson et
al., 1996b). Cébron et al. (2012a) have extended the preceding study to show that Europa’s
core may also be unstable. Note that Ganymede’s core remains below the threshold of insta-
bility despite being surrounded by a magnetic field.
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Chapter 2
Introduction to the non-linear satura-
tion of the elliptical instability

The path from an initial tidal excitation to a fully turbulent flow is presented in figure 2.1.
In the preceding chapter, we have focused on the first stage of the instability, i.e. the resonance
mechanism where the differential rotation or the libration drives exponential growth of two
inertial waves. We now develop the fundamental processes expected to take place in the non-
linear saturation of the elliptical instability, building on previous studies devoted to rotating
turbulence, and which are presented in the bottom panel of figure 2.1. After introducing
simple scalings governing the saturation flow amplitude, we introduce the triadic resonant
interaction which transfers energy from an inertial wave to two daughter inertial waves. A
specific focus is made on geostrophic flows which are invariant and slowly evolving structures
in rotating fluids, and correspond to the non-propagative limit of inertial waves. Geostrophic
flows are ubiquitously observed in rotating turbulence; they are also observed in experiments
and numerical simulations of the elliptical instability, although there is no resonant—and thus
efficient—energy transfer from inertial waves to geostrophic flows, a theoretical result which is
recalled in the following. Lastly, in the light of the introduced non-linear processes, we review
the previous works that have been carried out on the non-linear saturation of the elliptical
instability and detail the main goals of the work presented in this dissertation.

1. Simple scalings for the saturation flow

This short section is a simple scaling analysis of the Navier-Stokes equations in order to
make simple predictions regarding the non-linear saturation of the elliptical instability. Con-
sider the dimensionless equations (1.41) governing the perturbation u to a tidal or libration



36

Field in 

Forcing base flowField in 

ParamParametric subharmonic 
resonance

Triadic 
resonance

??

INITIAL STATE

Forcing base flow
Resonant 

inertial waves

GROWTH PHASE

Forcing base flow
Resonant 

inertial waves

Inertial waves

Geostrophic 
modes

SATURATION

Frequency

Frequency

Frequency

Figure 2.1: Schematic cartoon of the expected time evolution of the elliptical instability from the
initial base flow driven by either differential rotation of the tidal bulge at frequency 2γ or libration at
frequency f . Energy is transferred first to resonant inertial waves through the mechanism detailed in
chapter 1 section 3.2. In the non-linear saturation of the instability, a host of new structures are excited
which include inertial waves excited by triadic resonant interaction and geostrophic flows. Although
the latter are ubiquitous in rotating flows, the path from the resonant inertial waves to them is not fully
elucidated.
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base flow U b :�
∂t u +U b ·∇u + u ·∇U b + u ·∇u + 2ez × u = −∇p+ E∇2u
∇ · u = 0

(2.1)

where time has been normalised by Ω and length by a. We can first compare the effects of
the base flow respective to the Coriolis force. The base flow is large scale, and its importance
in the dynamics is simply measured by what we call an input Rossby number Roi , which is
Roi = βγ in the case of differential rotation forcing (γ being the dimensionless differential
rotation rate, normalised by the rotation rate Ω), and Roi = βϵ in the case of libration. Roi
quantifies the forcing amplitude and is a small control parameter in geophysical regimes.

It is then possible to estimate the saturation amplitude of the perturbation flow u in
equation (2.1). Consider that at saturation non-linear transfers balance the forcing terms.
The typical length scale of the forcing base flow U b is the size of the planetary core (= 1 in the
dimensionless framework), whereas the resonant waves have a typical length scale ℓ f . The
linear forcing terms are u ·∇U b and U b ·∇u are both proportional to the perturbation flow.
Calling u∗ a typical perturbation velocity scale, the dimensionless forcing terms scale like:

|u ·∇U b| ∼ u∗Roi and |U b ·∇u| ∼ u∗
ℓ f

Roi . (2.2)

The non-linear self-interaction u scales likes:

|u ·∇u|= u∗2
ℓ f

. (2.3)

We therefore obtain either that u∗ ∼ Roi or u∗ ∼ ℓ f Roi , and Grannan et al. (2017) confirmed
at least that |u| ∝ Roi . As a conclusion, the input Rossby number Roi roughly quantifies the
expected amplitude of the saturation perturbation flow, and is therefore a quantification of the
Rossby number comparing the importance of the Coriolis force to non-linear transfers.

2. Non-linear wave interactions

In this section, we introduce triadic resonances which are fundamental non-linear inter-
actions between inertial waves. They are expected to play an important role in any non-linear
transfer involving an inertial wave, and thus in the saturation of the elliptical instability, as
summarised in the schematic of figure 2.1. We introduce the formalism of the triadic reso-
nance in the particular context of an unbounded rotating fluid. This simplifying assumption
allows explicitly computing the non-linear wave interaction terms, but does not alter the uni-
versal physics of three-modes interactions.

2.1 The helical modes

Prior to introducing the non-linear interaction between inertial waves, it is first required
to determine the spatial structure of the latter. We dwell on the case of unbounded rotating
fluids, and we look for plane wave solutions to the linearised rotating Euler equation. A first
general solution is deduced from the Poincaré equation (1.37), derived in chapter 1 from
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Figure 2.2: Schematic representation of the Craya-Herring basis (e1, e2, e3). The rotation axis is along
ez . k is the wave vector on which the basis is built.

the rotating, linearised Euler equation. This solution is specified using the incompressibility
condition and the Euler equation to show that it is in general a linear combination of so-called
“helical modes”.

Let us consider an unbounded rotating fluid. The dimensionless, rotating Euler equation
on the velocity and pressure field (u, p) writes:

∂t u + 2ez × u +∇p = u × (∇× u) (2.4)

which can be linearised into the following:

∂t u + 2ez × u +∇p = 0 . (2.5)

In an unbounded fluid, because of the invariance under spatial translation, the solutions to
the equation (2.5) are plane waves uk = u0(t)exp(ik · r ) where k is a wave vector and x is
the position vector. As explained in the preceding chapter (section 3.1), the linearised Euler
equation (2.5) yields the Poincaré equation (1.37)

∂t t∇2u + 4∂zzu = 0 .

The latter allows further specifying the function u0(t):

u0(t) = a+e−iωt + a−eiωt with ω= 2
kz

|k| . (2.6)

Because of the incompressibility condition, the vectors a+,− must be orthogonal to k. To
describe the structure of the mode, it is thus convenient to introduce an orthogonal basis
(e1, e2, e3) in which two vectors are orthogonal to the wave vector k. It is built as follows:

• the third vector e3 is given by the normalised wave vector itself, i.e. e3 = k/k;

• the first vector must be orthogonal to e3, it is also chosen to be orthogonal to the rotation
axis ez , that is: e1 = (e3 × ez)/|e3 × ez|;
• the second vector must be orthogonal to the two first: e2 = ez × e1; 1

• in the special case where k is parallel to ez , e1 = e x and e2 = e y .

1The vectors e2 and e3 are orthogonal, therefore |e2×e3|= 1 and no normalisation is required in the definition
of e2.
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This k-dependent basis is often called the “Craya-Herring basis” (Craya, 1957; Herring, 1974).
In the expression (2.6) of the function u0(t), the two vectors a+,− are decomposed as a linear
combination of the vectors e1,2 of the Craya-Herring basis. As a consequence, an inertial plane
wave solution uk may be written as follows:

uk(t) =
�
a+1 e1 + a+2 e2

�
ei(k·x−ωt) +
�
a−1 e1 + a−2 e2

�
ei(k·x+ωt) . (2.7)

It fulfils the incompressibility condition by construction of the Craya-Herring basis.

The solution (2.7) may be further simplified by finding relations between the coefficients
a+,−

1 and a+,−
2 . These relations are extracted from the linearised Euler equation (2.5). Plugging

the plane wave uk = u0(t)exp(ik · x ) into the Euler equation yields

du0

dt
+ 2ez × u0 + ikp0 = 0 (2.8)

where we have introduced p0 such that p0 exp(ik ·x ) is the pressure field corresponding to the
velocity u0 exp(ik · x ). The pressure is then eliminated from (2.8) by projecting this equation
onto the sub-space orthogonal to the wave vector, i.e. by applying to both sides of (2.8) the
linear operator

1− e3eT
3

where 1 is the identity matrix and eT
3 is the transposed of the vector e3. Using u0 · e3 = 0, the

result of projecting the linearised Euler equation on the plane orthogonal to k equation is:

du0

dt
+ 2
�
1− e3eT

3

�
(ez × u0) = 0 . (2.9)

In order to the derive relations between the coefficients a+,−
1 and a+,−

2 , the solution (2.7) to
the Poincaré equation is plugged into (2.9). After some algebra, it is found that:�

2
�
1− e3eT

3

�
(ez × e1) = 2 (ez · e3)e2 =ωe2

2
�
1− e3eT

3

�
(ez × e2) = −2 (ez · e3)e1 = −ωe1

(2.10)

where we have used that ω = 2kz/|k| = 2ez · e3. The linearised, rotating Euler equation thus
yields the following simple relations between the coefficients:�

a+2 = −ia+1
a−2 = ia−1 .

(2.11)

Finally, the plane wave solution (2.7) to the linearised Euler equation (2.5) simply writes as
follows:

uk(t) = a+1 (e1 − ie2) e
i(k·x−ωt) + a−1 (e1 + ie2) e

i(k·x+ωt) . (2.12)

To conclude, in an unbounded rotating fluid, the linearised Euler equation has harmonic
plane wave solutions which are the inertial waves introduced in the preceding chapter. From
the Euler equation, we have shown that, for a wave vector k, any plane wave solution is a
linear combination of the two following functions: 2

hs
k ei(k·x−ωs t) with hs

k ≡ 1p
2
(e1 − ise2) , ωs = s

2kz

|k| and s = ±1 . (2.13)

2Note that the definition here given of hs
k is consistent with the definition of Smith and Waleffe (1999), provided

that a factor is is applied to hs
k .



40

These two functions are in fact two orthogonal eigenmodes of the linear operator:

u 7→ 2
�
1− e3eT

3

�
(ez × u)

which describes the inviscid, rotating dynamics of a plane wave (see equation (2.9)). The
associated eigenvalues are the inertial modes frequencies ωs. The plane waves hs

k exp(ik · x )
are called helical modes, since the vorticity of these plane waves is parallel to hs

k . This can be
simply shown by first computing the vorticity associated to a helical mode:

∇× �hs
k eik·x �= ik × hs

k eik·x = −sk hs
k eik·x . (2.14)

The dot product of this expression with
�
hs

k eik·x �∗ gives the helicity of the plane wave which
is simply −sk, so that s is actually related to the sign of the wave helicity. Besides, the pressure
mode Πs

k corresponding to the helical mode hs
k is:

Πs
k = − 2

k2
sez · hs

k . (2.15)

Lastly, it is interesting to note that the helical vectors hs
k may be used as alternatives

to the vectors e1 and e2 of the Craya-Herring basis. For a given wave vector k, it is indeed
straightforward to show that:

e1 =
h1

k + h−1
kp

2
and e2 = i

h1
k − h−1

kp
2

. (2.16)

Besides, the helical vectors with opposite helicity signs are orthogonal:

h1∗
k · h−1

k =
1
2

�
e1 · e1 + i2e2 · e2

�
= 0. (2.17)

As a consequence, the basis (h1
k , h−1

k , e3) is an adequate alternative to the Craya-Herring basis
to describe incompressible plane waves.

2.2 Amplitude equations on the helical modes

In the present section, we aim at describing the dynamics of the rotating—non-linear—
Euler equation. The velocity field is decomposed into a superposition of plane waves with time-
varying amplitudes uk = uk0(t)exp(ik · x ). Since the flow is incompressible, and according to
the concluding remarks of the preceding section, the time-varying amplitude uk0(t) may be
projected onto the helical vectors basis hs

k with s = ±1. Following Smith and Waleffe (1999),
we propose to decompose the—real—flow u as follows:

u =
∑

q

∑
s=±1

bs
q (t)h

s
q ei(q ·x−ωs

q t) + c.c. (2.18)

with ωs
q = s2qz/|q |. The spatio-temporal evolution of the flow u is thus described via the

temporal variations of the amplitudes bs
q (t). The equations governing the helical modes am-

plitudes are derived in the following from the rotating Euler equation. Note that the temporal
variations of the amplitudes bs

q (t) are let unspecified at this stage, so that the decomposition
(2.18) is not restricted to inertial waves with frequencies between −2 and 2.
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To derive the helical modes amplitude equations, we first define a functional scalar prod-
uct 〈u1|u2〉 that acts on two complex flows u1 and u2 according to:

〈u1|u2〉 ≡
∫
R3

u∗1 · u2 dV. (2.19)

The helical modes are orthogonal with respect to the preceding scalar product, that is, for any
wave vectors q and p: ¬

hs1
q eiq ·x |hs2

p eip·x¶ = δ(q − p)δ(s1 − s2) . (2.20)

We use this dot product for projecting the equation (2.5) onto the helical modes to obtain the
time evolution of their amplitudes.

We base the derivation of the amplitude equations on the curl of the rotating Euler equa-
tion:

∂t∇× u − 2∂zu =∇× (u × (∇× u)) . (2.21)

Working with the latter equation avoids dealing with the pressure field. Since the pressure
is a non-linear function of the velocity field, it cannot be decomposed into the superposition
of the modes Πs

k (defined in equation (2.15)) corresponding to the decomposition (2.18). To
transcribe the space and time evolution of the flow in terms of amplitudes equations for the
helical modes, we inject the decomposition (2.18) in equation (2.21). We first note that:

∂t∇× bs
q hs

q ei(q ·x−ωs
q t) − 2∂z bs

q hs
q ei(q ·x−ωs

q t) = −sqhs
q ei(q ·x−ωs

q t) ḃs
q (2.22)

where we have used the properties of helical eigenmodes and the eigen frequency definition
sqωs

q = 2qz . The left hand side of equation (2.21) projected onto a helical spatial structure
hs

k exp(ik · x ) thus writes:

hs

k eik·x |∂t∇× u − 2∂zu
�
= −skḃs

k(t) e
−iωs

k t . (2.23)

With the helical modes decomposition, the non-linear term is expanded as (see Smith and
Waleffe (1999), Smith and Lee (2005) or Bellet et al. (2006)):

u × (∇× u) =
∑
q ,p

∑
s1,s2

�
bs1

q (t)h
s1
q ei(q ·x−ωs1

q t) + bs1
q (t)

∗ hs1∗
q e−i(q ·x−ωs1

q t)
�

× �−s2pbs2
p (t)h

s2
p ei(p·x−ωs2

p t) + s2pbs2
p (t)

∗ hs2∗
p e−i(p·x−ωs2

p t)
�

=
∑
q ,p

∑
s1,s2

�−s2 p bs1
q bs2

p (h
s1
q × hs2

p ) e
i((q+p)·x−(ωs1

q +ω
s2
p )t)

+ s2 p bs1
q b∗p (hs1

q × hs2∗
p ) e

−i((q−p)·x−(ωs1
q −ωs2

p )t)
�
+ c.c.

=
1
2

∑
q ,p

∑
s1,s2

�
bs1

q bs2
p (s1 q − s2 p) (hs1

q × hs2
p ) e

i((q+p)·x−(ωs1
q +ω

s2
p )t)

+ bs1
q bs2∗

p (s2 p − s1 q) (hs1
q × hs2∗

p ) e
−i((q−p)·x−(ωs1

q −ωs2
p )t)
�
+ c.c. (2.24)

where in the last line we have used reordering of q , p and the corresponding s1, s2 permutation
to symmetrise the expressions. This complicated non-linear term is reduced by the projection
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onto one single helical mode, that is:

hs

k eik·x |∇× (u × (∇× u))
�

=
1
2

∑
q+p+k=0

∑
s1,s2

bs1∗
q bs2∗

p (s2 p − s1 q)hs∗
k ·
�−i(p + q)× (hs1∗

q × hs2∗
p )
�

ei(ωs1
q +ω

s2
p )t

= −1
2

∑
q+p+k=0

∑
s1,s2

bs1∗
q bs2∗

p (s2 p − s1 q) (hs1∗
q × hs2∗

p ) ·
�
ik × hs∗

k

�
ei(ωs1

q +ω
s2
p )t

= −1
2

∑
q+p+k=0

∑
s1,s2

bs1∗
q bs2∗

p (s2 p − s1 q) (hs1∗
q × hs2∗

p ) ·
�−skhs∗

k

�
ei(ωs1

q +ω
s2
p )t (2.25)

where we have used the properties of the mixed product and the helical modes. The Euler
equation is equivalent to the following amplitude equations for all wave vectors k:

ḃs
k(t) =

1
2

∑
q+p+k=0

∑
s1,s2

bs1∗
q bs2∗

p (s2 p − s1 q)hs∗
k ·
�
hs1∗

q × hs2∗
p

�
ei(ωs

k+ω
s1
q +ω

s2
p )t . (2.26)

This equation may be shortened by defining a transfer coefficient:

C
sk sq sp

kq p ≡ 1
2
(sp p − sq q)hsk∗

k ·
�
h

sq∗
q × h

sp∗
p

�
. (2.27)

Note that to include viscous effects in the evolution equation, it is only required to introduce
in the left hand side of the amplitude equation (2.26) the term k2Ebs

k where E is the Ekman
number.

2.3 The mechanism of inertial wave triadic resonance

Building on the helical mode decomposition and the amplitude equations derived above,
this section aims at exhibiting the mechanism by which one inertial wave gives rise to new
waves with initially infinitesimal amplitudes. Consider three waves with wave vectors k, q
and p, the first one being kept at constant amplitude b0. The first necessary condition for
interaction is that the waves have matching spatial structures, that is k+p+q = 0. According
to the amplitude equations (2.26), the two waves q and p with amplitudes b

sq
q and b

sp
p have

the following time evolution equations: ḃ
sq
q = C

sq sk sp

qkp b∗0 b
sp∗
p e−i(ω

sk
k +ω

sq
q +ω

sp
p ) = C1 b∗0 b

sp∗
p ei∆ωt

ḃ
sp
p = C

sp sk sq

pkq b∗0 b
sq∗
q e−i(ω

sk
k +ω

sq
q +ω

sp
p ) = C2 b∗0 b

sq∗
q ei∆ωt ,

(2.28)

where we have introduced C1,2, to shorten the notation of the transfer coefficient, and the
eigen frequency mismatch

∆ω≡ωs
k +ω

s1
q +ω

s2
p .

From the set of equations (2.28), one may derive a single equation on either one of the two
amplitudes b

sq
q or b

sp
p . Deriving the first equation of (2.28) with respect to time gives the

following second order ordinary differential equation:

b̈
sq
q − i∆ωḃ

sq
q − |b0|2C1C∗2 b

sq
q = 0 . (2.29)
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Figure 2.3: Schematic cartoon of three waves in exactly resonant triadic interaction, the amplitude
of the wave k being maintained to a constant amplitude. This example of resonant triad is the one
reported by Embid and Majda (1998) and Smith and Waleffe (1999), that is, k = [4, 0, 8] (ωk ≃ 1.79),
q = [6, 0,−3] (ωk ≃ −0.89) and k = [−10, 0,−5] (ωk ≃ −0.89).

To further our analysis of the three wave interaction, we first notice that the product
C1C∗2 is real. This is rather straightforward as:

C1C∗2 =
1
4
(sp p − sk k)h

sq∗
q · (hsk∗

k × h
sp∗
p ) × (sq q − sk k)h

sp
p · (hsk

k × h
sq
q )

= −1
4
(sp p − sk k)(sq q − sk k)

���hsp
p · (hsk

k × h
sq
q )
���2

≡ −C0

4
(2.30)

where we have introduced C0 a real coupling coefficient. The second order ODE (2.28) has
exponential solutions of the form exp(σT t) where σT is a complex quantity solution of:

σ2
T − i∆ωσT − C0

4
|b0|2 = 0 . (2.31)

From this equation, it is straightforward to show that the daughter waves are exponentially
growing—i.e. Re(σ) > 0—only when the following condition on the detuning ∆ω and the
maintained wave amplitude b0 is satisfied:

∆ω2 =
���ωsk

k +ω
sq
q +ω

sp
p

���2 < C0|b0|2 . (2.32)

The triadic interaction thus leads to the growth of daughter waves when the coupling coeffi-
cient C0 is positive and the frequency detuning is sufficiently small compared to the dimen-
sionless wave amplitude. When these conditions are met, the quantityσT may be decomposed
into a real and imaginary part such that σT ≡ σr+ iσi and a straightforward calculation gives
(Vanneste, 2005):

σi =
∆ω

2
and σ2

r =
C0

4
|b0|2 − ∆ω

2

4
. (2.33)

The maximum growth rate of the two daughter waves is reached when the exact resonance
condition is satisfied:

ω
sk
k +ω

sq
q +ω

sp
p = 0 . (2.34)
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Near-resonances are allowed within a tolerance proportional to the amplitude of the wave or,
in other words, to the Rossby number associated to the wave. An example of exactly resonant
triad is depicted in figure 2.3.

The maximum frequency mismatch∆ω tolerance derived here for near-resonance is also
in agreement with the discussions of Smith and Lee (2005) regarding the importance of near-
resonant triads between waves in rotating turbulence. Significant energy transfer between
waves involved in quasi-resonant triads may occur over a non-linear time scale ℓ f /u

∗∝ Ro−1
i

(see section 1 of this chapter) provided the mismatch between the eigen frequencies does
not produce a significant phase change. In other words, significant energy transfer is ensured
under the condition that the term exp(i∆ωt) does not significantly vary over the growth phase
of the daughter waves. As discussed quantitatively in the close context of gravity wave resonant
interaction by Bonnefoy et al. (2016), the decoherence brought by the frequency mismatch
causes the non-linear transfer towards daughter waves to vanish over time scales larger than
1/∆ω.

2.4 The absence of growth of geostrophic modes under three-modes
interaction

Geostrophic flows play a particular role in the dynamics of rotating fluids. They are solu-
tions of the linearised, rotating Euler equation in the stationary limit and are thus associated
to a balance between the Coriolis force and pressure, that is:

2ez × u = −∇p . (2.35)

These modes are invariant along the rotation axis of the fluid, which is easily shown by taking
the curl of the preceding equation:

2∇× (ez × u) = 2∂zu = 0 . (2.36)

Geostrophic flows may also be considered as the non-propagative limit of inertial modes. In
unbounded fluids, because of the dispersion relation of inertial waves, their wave vector is
perpendicular to the rotation axis (kz = 0) since their frequency is null. These particular
structures are ubiquitous in rotating turbulence, but also in the saturation of the elliptical
instability.3 Turbulence excited by stochastic forcings tends to bi-dimensionalise and organise
the flow in a set of vortices invariant along the rotation axis (see Godeferd and Moisy (2015) for
a review). However, it is well-known that in the weakly non-linear and weakly dissipative limit
of rotating fluids, inertial waves are unable to efficiently transfer energy to geostrophic modes
with a three-modes resonance. This is a theorem proved by Greenspan (1969) in general, and
we recall its proof it in the special case of rotating unbounded fluids in the following.

Let us consider, as in the preceding section, a triad of waves k, q and p such that pz = 0.
The wave k is maintained to a constant amplitude and we seek the growth rate of the two
daughter waves. The eigen frequency of the two-dimensional mode isω

sp
p = 0. The interaction

condition on the wave vector k + q + p = 0 forces qz = −kz . The exact resonance condition
ω

sk
k +ω

sq
q +ω

sp
p = ω

sk
k +ω

sq
q = 0 together with the dispersion relation compel the additional

relation:
sk kz

k
+

sqqz

q
= kz

�
sk

k
− sq

q

�
= 0 . (2.37)

3A literature review of the role of geostrophic modes is given in section 3.1 and 3.2 of this chapter.
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Since |sk | = |sq | = 1 and q, k > 0, it is clear that the exact resonance condition leads to
q = k, and that the sign of the helicity of the waves k and q is the same. Then, the coupling
term (2.27) quantifying the energy transfer from k and q towards the geostrophic mode p is
proportional to

sq q − sq k = 0 .

To conclude, there is no triadic resonant interaction giving rise to geostrophic flows. Although
this result is derived in the case of inertial modes in an unbounded fluid, it is a more general
property of inertial waves and geostrophic modes that has been proved by Greenspan (1969).

3. Waves, vortices and the elliptical instability

This section is a review of the main results obtained in previous studies targeted at the
non-linear saturation of the elliptical instability. We focus on the particular role of inertial
waves and geostrophic vortices in the turbulent saturation of the parametric resonance and
we draw connections with the many studies of rotating turbulence. Along with this literature
review, we introduce the main goals of the work presented in this dissertation.

3.1 Stationary or cyclic saturation — A historical overview

The first experimental observations of the non-linear saturation of the elliptical instability
came with the seminal work of Malkus (1989). He implemented an experimental set-up com-
prising a rotating cylinder deformed by two fixed rollers imposing an elliptical deformation.
This set-up, therefore, produces inside the cylinder the tidal base flow (1.10) in the frame
of the laboratory or (1.11) in the frame of the cylinder, with orbital rate n = 0. The fluid
motion inside the cylinder is tracked with flake-shaped particles that tend to materialise the
areas with strong shear. Malkus (1989) first reported a violent non-linear break-down (or in
his own words an “explosion”) into small-scale turbulence of the growing resonant waves. He
observed that it was followed by relaminarisation of the flow before a new growth of the insta-
bility mechanism, thus leading to a cyclic behaviour. Malkus and Waleffe (1991) proposed a
qualitative explanation of the violent collapse into smaller scale relying on triadic resonances:
as each resonant wave grows, it becomes itself unstable to triadic resonance and excites a
host of daughter waves. The amplitudes of the latter grow super-exponentially—because the
mother wave growth exponentially—which explains the impression of the sudden “explosion”
of the flow. In addition, to explain the relaminarisation process, they proposed that the super-
position of resonant and daughter waves drives strong turbulence and shear which blurs the
background rotation and tidal strain sustaining the waves, thus leading to a decrease in their
amplitudes which shortly follows the non-linear collapse of the instability. Kerswell (1999)
and Mason and Kerswell (1999) proposed a different mechanism causing the short-lived non-
linear breakdown of the elliptical instability followed by relaminarisation based on geostrophic
vortices. They proved that inertial waves are unstable to a secondary instability giving rise to
exponentially growing geostrophic vortices. Their theory proposes that, as the elliptical insta-
bility saturates, strong geostrophic vortices emerge and alter the local rotation rate of the fluid
and thus disrupt the primary parametric resonance.

Eloy et al. (2003) furthered the experiments of Malkus (1989) with the use of particle-
image velocimetry (PIV), and focused in the cycles of resonance, collapse and relaminarisation.



46

The PIV measurements performed by Eloy et al. (2003) proved that the fluid inside the cylinder
remained close to solid-body rotation even in the sudden non-linear break-down, thus discard-
ing the hypothesis of Malkus and Waleffe (1991) based on strong turbulence and shear. They
also found evidence for the emergence of daughter waves right before the non-linear saturation
that they associated to triadic interaction involving the resonant waves. In large dissipation
regimes, they identified the emergence of geostrophic modes seemingly in agreement with the
theory of Mason and Kerswell (1999).

Later on, several studies were dedicated to the tidally driven elliptical instability in rotat-
ing, deformable ellipsoids with non-zero orbital rate (Lacaze et al., 2005; Le Bars et al., 2007;
Le Bars et al., 2010). It has also been proven numerically (Cébron et al., 2012a) and theoreti-
cally (Cébron et al., 2014) that libration also drives inertial wave resonance with the elliptical
instability. They all reported “explosive” behaviour as in the study of Malkus (1989).

To explore the details of the turbulent saturation of the elliptical instability, Barker and
Lithwick (2013) performed numerical simulations in a local Cartesian model instead of mod-
elling a full ellipsoid or cylinder.4 They also reported cycles of resonances and collapse, and
their idealised model allowed to identify the key role of geostrophic vortices in the satura-
tion. A typical output of their simulations is shown in figure 2.4. The cyclic resonances clearly
appear in the kinetic energy time series. Most interestingly, they reveal that the energy of
three-dimensional modes decreases quickly as the resonance saturates. In the relaminarisa-
tion phase, only persistent geostrophic modes remain, and decay over a viscous time until
the resonance takes place again. They proposed an alternative description of the relaminari-
sation phase to what Mason and Kerswell (1999) and Kerswell (1999) proposed. According
to Barker and Lithwick (2013), the instability mechanism is disrupted not because the waves
transfer their energy to geostrophic vortices, but because geostrophic vortices affect the fre-
quency of the waves by advection and Doppler shifting. As energy transfer from the base flow
is allowed at only one frequency, the interaction between tides and waves is interrupted by
geostrophic-driven detuning of the latter’s frequencies.

With the improvement of PIV techniques, experiments of the non-linear saturation of the
elliptical instability driven by tides and libration have been carried out in larger ellipsoids. This
is the work of Grannan et al. (2014) and Grannan et al. (2017) complemented by the numerical
simulations performed by Favier et al. (2015). They all revealed that both libration-driven and
tidally driven elliptical instability sometimes also lead to stationary non-linear saturation, as
illustrated in figure 2.5. The observation of cyclic or steady saturation depends on the control
parameters such as the amplitude of the tidal distortion or of the libration, and the differential
rotation rate of the bulge and the planet or the libration frequency.

Several questions remain despite the large number of studies preceding the present work.
First, although several explanations have been proposed for the cyclic type of saturation, it is
not clear why changing the control parameters such as the amplitude and the frequency of the
forcing leads to a sustained turbulent regime. In addition, all the experiments and numerical
simulations that have been carried out up to now are realisations of the elliptical instability in
regimes that are very far from the conditions encountered in planetary and stellar interiors. In
astro- and geophysical regimes, both the forcing amplitude and the dissipation are very small.
The Rossby number associated with libration or tidal base flow are all below 10−3 while the
Ekman number is at most 10−11 (Cébron et al., 2012a).

In the present work, we aim at exploring the weak dissipation and forcing regimes, and

4This idealised model is presented in details in chapter 6.
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Figure 2.4: Left: time series of the kinetic energy of the flow driven by tidal elliptical instability
simulated by Barker and Lithwick (2013) measured in the rotating frame of reference. The kinetic
energy of the tidal base flow is removed, it has a typical dimensionless kinetic energy of 10−2. The
flow is decomposed into two- and three-dimensional modes whose kinetic energy is also displayed for
comparison. Two dimensional modes are invariant along the rotation axis and correspond to the slowly
evolving geostrophic modes. Right: snapshot of the vertical vorticity of the perturbation flow simulated
by Barker and Lithwick (2013) where two-dimensional modes appear clearly. This figure is adapted
from Barker and Lithwick (2013).

Figure 2.5: Time series of the root mean square value of the velocity perturbation to the base flow
driven by the libration-driven elliptical instability. These experimental measurements have been per-
formed by Grannan et al. (2014). Each curve corresponds to a different experiment: the libration
frequency f and amplitude ϵ are given in the label of each curve (see section 1.4 and equation (1.12)).
This figure is adapted from Grannan et al. (2014).
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Figure 2.6: Left: time series of the total kinetic energy of the perturbation around the base flow in
numerical simulations of the libration-driven elliptical instability performed by Favier et al. (2015).
The libration frequency and amplitude are respectively f = 4 and ϵ = 0.8. The time series are shown
for decreasing Ekman number E. Right: corresponding temporal power spectra of the flow in the
saturation of the instability. The frequency is given in rotation units so that the forcing libration flow
appears at a frequency of 4. The resonant waves are at f /2. The inertial wave domain is materialised
by the shaded area. This figure is adapted from Favier et al. (2015).

clarifying the nature of the non-linear saturation as a function of the control parameters. Gain-
ing insight into the non-linear behaviour of the instability is necessary to fully understand
dynamo action and tidal dissipation in planetary cores undergoing mechanical forcing.

3.2 Waves and vortices in the non-linear saturation of the elliptical
instability

The recent improvement in experimental techniques and computing efficiency has al-
lowed to delve deeper into the fluid structures excited in the saturation of the elliptical in-
stability. This was already highlighted by the numerical work of Barker and Lithwick (2013)
mentioned in the previous section which put forward the role of geostrophic modes in the re-
laminarisation process. In their respective works, Grannan et al. (2014), Grannan et al. (2017)
and Favier et al. (2015) measured the spectral content of the flow in order to characterise the
presence of waves and geostrophic vortices in the saturation flow. This is illustrated in figure
2.6 where kinetic energy time series and the corresponding power spectra are shown for a
simulation of the libration-driven elliptical instability in a case where the saturation is sus-
tained. These simulations have clarified the evolution of the saturation flow as the Ekman
number is decreased. Slightly above the threshold of the instability (the orange curve in figure
2.6-right), the resonant mode at frequency ω = 2 gives rise to 4 daughter waves via triadic
resonant interaction. As the distance to the threshold is increased, the flow becomes more tur-
bulent, and only two large peaks in the inertial modes domain are noticeable. It is unknown
whether power spectra such as the blue ones in figure 2.6 are associated with a continuum
of inertial modes, or to other structures. As it may also be noticed from figure 2.7, increas-
ing the distance to the threshold of the instability (i.e. decreasing the Ekman number in this
study) is also associated to the formation of a strong geostrophic anticyclone at the centre of
the ellipsoid.
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Figure 2.7: Left: azimuthal component of the mean flow measured in the same conditions as in figure
2.6, as a function of the distance to the rotation axis. It is averaged along this axis and over all azimuthal
angles. The experimental curve corresponds to the work of Grannan et al. (2014). Right: a typical
view of the mean flow in the equatorial plane of the ellipsoid. This figure is adapted from Favier et
al. (2015).

Despite the clarification brought by these recent works and illustrated in the present sec-
tion by the results of Favier et al. (2015), several questions remain. A regime with several
inertial waves exists right above the threshold of the elliptical instability, but little is known
about how it evolves as the distance to the threshold is increased. One possibility is that an
increasing number of inertial modes is excited to form a continuum. However, larger distance
to the threshold also leads to stronger geostrophic flows that are known to detune the waves
(Barker and Lithwick, 2013) and thus to disrupt triadic resonant interaction. The work pre-
sented in this dissertation aims at clarifying the structures excited in the non-linear saturation
of the elliptical instability. In particular, we will strive to elucidate the cause of the emergence
of geostrophic vortices. It is already known that exact resonant triadic transfer from waves
to geostrophic flow is impossible (Greenspan, 1969). Kerswell (1999) and Smith and Wal-
effe (1999) proposed four modes interactions to transfer energy from waves to geostrophic
modes, but it is presently unknown whether such a mechanism is featured in the simulations
of Barker and Lithwick (2013) and Favier et al. (2015), or in the experiments of Grannan et
al. (2014); Grannan et al. (2017).

3.3 Waves and vortices in rotating turbulence

The turbulence excited by the parametric sub-harmonic resonance of inertial waves is
expected to be strongly affected by rotation. This is already clear in the numerical results of
Barker and Lithwick (2013) who observed the waves to give rise through non-linear processes
to several geostrophic vortices. It is also suggested by the results of Favier et al. (2015);
Grannan et al. (2014); Grannan et al. (2017) who observe triadic resonant interaction between
inertial waves.

The duality between inertial waves and geostrophic vortices is also a defining feature
of “classical” rotating turbulence, i.e. turbulence excited by random structures in rotating flu-
ids. Although geostrophic vortices are ubiquitously observed in experiments and simulations
(Godeferd and Moisy, 2015), inertial waves have also been detected in various set-ups using
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Figure 2.8: Left: A typical map of the kinetic energy of an experimental rotating turbulent flow (Yarom
and Sharon, 2014) projected onto the dispersion relation spectral subset (see the relation (1.39)). The
frequency ω is given in rotation units. The dotted lines materialise the dispersion relation of inertial
waves ω= ±2cosθ . The figure is adapted from Yarom and Sharon (2014).

sophisticated spectral techniques (Clark di Leoni et al., 2014; Yarom and Sharon, 2014; Yarom
et al., 2017; Oks et al., 2017) or spatio-temporal correlations (Favier et al., 2010; Campagne
et al., 2015). Several of these studies even quantify the detuning of the wave frequencies
induced by the geostrophic vortices advection.

The geostrophic issue

The reasons for the systematic emergence of strong geostrophic vortices and bi-dimensio-
nalisation in rotating turbulence are not fully elucidated. Waleffe (1993) has proposed a qual-
itative argument to explain preferential non-linear transfers towards two-dimensional modes
whose wave vector k is such that kz → 0, but it does not explain the final transfer towards
modes with kz = 0. Smith and Lee (2005) suggested with numerical simulations that near-
resonances of inertial waves (presented in section 2.3 of this chapter) involving geostrophic
modes could be responsible for this finite transfer, but they did not propose a definitive mech-
anism. As explained earlier, four-modes interactions have been proposed but their relevance
to rotating turbulence has not been tested.

Because the elliptical instability injects energy into waves only, we hope that such a spe-
cific forcing will shed light on interactions between waves and vortices in rotating turbulence.

Inertial wave turbulence

In the asymptotic regime of vanishing Rossby and Ekman numbers, the energy trans-
fers from three-dimensional modes towards geostrophic vortices should vanish, according to
Greenspan (1969). Contrary to experimental and numerical realisations of rotating turbulence
at moderate Rossby number, which systematically lead to bi-dimensionalisation and the forma-
tion of geostrophic vortices, one would therefore expect that the turbulence in the asymptotic
regime of weak dissipation and weak forcing amplitude should remain three-dimensional.
More precisely, in such a regime, the turbulence could be a superposition of linear inertial
waves in weak triadic resonant interaction, a state called wave turbulence (Galtier, 2003; Bel-
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let et al., 2006; Nazarenko, 2011).

Wave turbulence occurs in media in which dispersive waves propagate and exchange
energy through resonant interactions (Nazarenko, 2011). It has been reported for instance
in the case of surface capillary waves (Aubourg and Mordant, 2015), vibrating plates (Düring
et al., 2006; Miquel and Mordant, 2011) and internal waves in stratified fluids (Brouzet et
al., 2016). Yarom and Sharon (2014) claimed to find evidence of inertial wave turbulence
in an experimental set-up of rotating turbulence at moderate Rossby number. The flow was
excited with a series of alternating, random jets that input small-scale turbulence which then
structures under the influence of rotation. They projected the energy in the subset of the
spectral space associated with the dispersion relation of inertial waves, i.e. from a time series
of the three-dimensional flow, they computed its kinetic energy as a function ofω the frequency
and θ the angle between the wave vector and the axis of rotation. In this particular sub-space,
they observed focusing of the energy along lines that correspond to the dispersion relation of
inertial waves (see figure 2.8). However, Yarom and Sharon (2014) detected waves only at
smaller scales, and most of the energy is located in geostrophic modes. Although it is clear
that the flow they created features inertial waves, it is not clear whether they are generated
through non-linear resonant interaction or if they stem from the random forcing that emits a
continuum of waves. A convincing inertial wave turbulence in rotating fluid therefore remains
to be observed.

Non-universality of random forcing in rotating turbulence?

Experiments and numerical simulations of rotating turbulence are not adequate to fully
understand the saturation of the elliptical instability. Instead of exciting random structures,
the parametric resonance supplies energy to the fluid only through a small number of waves.
Although Bordes et al. (2012) showed experimentally that maintaining a single wave in a ro-
tating fluid gives rise to two daughter waves via triadic resonant interaction, as expected after
the theoretical development presented in section 2.3, the response of the fluid as the dissipa-
tion is decreased remains poorly known. Favier et al. (2015) and Barker and Lithwick (2013)
suggest that it could lead to other waves through a cascade of triadic resonances as well as
strong geostrophic flows. In any case, the elliptical instability is a completely different ap-
proach to probe turbulence and the non-linear fate of waves in rotating fluids compared to
standard stochastic forcing. In summary, it is another goal of the present work to explore how
rotating turbulence depends on the nature of the forcing, and to determine whether wave
excitation eventually leads to similar turbulent state as random forcing.

3.4 A summary of the thesis goals

To start with, the main goal of the work presented in this dissertation is to clarify the
regimes of non-linear saturation of the elliptical instability via a large exploration of the space
of control parameters. The control parameters comprise the forcing amplitude Roi as defined
in section 1, dissipation quantified by the Ekman number E defined in chapter 2 section 3.2,
but also the forcing frequencies, f in the case of libration and γ in the case of differential tidal
bulge rotation. This investigation will be carried out with experiments, in continuation of the
work of Grannan et al. (2014), and idealised numerical models, following the work of Barker
and Lithwick (2013). These two models will complement each other in determining the nature
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of the elliptical instability non-linear saturation. They will also be complemented with reduced
theoretical models in order to explain the different observed regimes. This investigation will
lead to extrapolated predictions for the expected type of turbulent saturation in weak forcing
and dissipation regimes that are relevant to mechanical excitation in planetary cores and stellar
interiors.

In characterising the different turbulent saturation states of the elliptical instability, we
will in particular focus on the role of inertial waves and geostrophic vortices. We indeed aim at
specifying their existence and origin with precise diagnostics, but also at quantifying non-linear
processes between inertial waves, or between inertial waves and geostrophic flow.

Because the elliptical instability drives a turbulent flow by supplying energy in a small
number of inertial waves (see figure 2.1), we also hope that this work will clarify some rather
fundamental issues in rotating turbulence. Among them, we mention the universality of ro-
tating turbulence with respect to the forcing: is the saturation state of the elliptical instability
similar to classical, randomly-forced rotating turbulence? We also hope to clarify the nature of
non-linear interactions leading to strong geostrophic flows. It is known from Greenspan (1969)
that triadic interaction between inertial waves are unable to drive geostrophic flows, but Barker
and Lithwick (2013) have shown that they may nevertheless take over the saturation of the el-
liptical instability. In identifying the origin of such strong vortices, we hope to shed light on the
systematic emergence of strong geostrophic flows in classical, i.e. randomly-forced, rotating
turbulence.

Lastly, although these two introduction chapters are focused on the interplay between
mechanical forcing and inertial waves, we also explore in the last chapter of this dissertation
the turbulence excited in a stably stratified planetary interior undergoing tidal distortion. As
it will be explained later, stratified fluids sustain spontaneous oscillations under the restoring
effect of buoyancy. They are called internal waves and bear properties similar to the inertial
waves detailed in chapter 1 section 3.1. A substantial part of the present thesis work focuses on
deriving an idealised model to study stratified planetary interiors undergoing tidal distortion,
and on exploring the stability of these interiors as well as the turbulence that may result from
instabilities.



Chapter 3
Experiments on the non-linear satu-
ration of the elliptical instability

We present in the following an experimental study of the turbulence forced by the libration-
driven elliptical instability. It builds on the experimental set-up of Noir et al. (2012) and is
designed to explore more extreme regimes of weak forcing amplitude and dissipation that are
relevant to the geo- and astrophysical contexts, but which have remained beyond the reach
of previous experiments (Grannan et al., 2014) and simulations (Favier et al., 2015). In our
set-up, a half-meter wide ellipsoid filled with water is brought to solid body rotation, and
then undergoes sustained harmonic modulation of its rotation rate. This triggers the expo-
nential growth of a pair of inertial waves that eventually collapse into turbulence. The flow is
measured with Particle Image Velocimetry (PIV) performed in the equatorial plane of the el-
lipsoid. Depending on the amplitude of the rotation rate modulation, two different saturation
states are observed. At large forcing amplitudes, the saturation flow main feature is a steady,
geostrophic anticyclone. Its amplitude vanishes as the forcing amplitude is decreased while
remaining above the threshold of the elliptical instability. Below this secondary transition, the
saturation flow is a superposition of inertial waves which are in weakly non-linear resonant
interaction, a state that could asymptotically lead to inertial wave turbulence. The transi-
tion between these two regimes and there relevance to geophysical applications are finally
discussed at the end of this chapter.

1. Design of the experimental set-up

1.1 The purpose of the experiments

The initial aim of the experimental part of the work presented throughout this disserta-
tion is to achieve weak forcing and weak dissipation regimes to study the non-linear saturation
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Figure 3.1: Schematic view (a) and photograph (b) of the experimental setup to carry out libration-
driven elliptical instability. The ellipsoid is mounted on a turntable with a constant rotation rateΩ0, and
an oscillating secondary motor to produce libration oscillations. The set-up to implement Particle Image
Velocimetry is also shown. It comprises (in a) a laser and a Powell lens to create an equatorial light sheet
illuminating particles that are observed with a camera. The ellipsoid is enclosed in a rectangular box
filled with water, which limits refraction and ensuing image distortion, not depicted in (a) for clarity
but visible in b.

of the instability in closer conditions to geo- and astrophysics, in a set-up of libration-driven
elliptical instability extending the work of Noir et al. (2012) and Grannan et al. (2014). The
overall design of the desired experiment, presented in figure 3.1, builds on the work of Noir
et al. (2009) and Noir et al. (2012), and is identical to Grannan et al. (2014). An ellipsoid is
mounted on a turntable rotating at a constant rate; the libration oscillation is imposed by a
secondary motor so that the total rotation rate of the ellipsoid writes:

Ω(t) = Ω0 (1+ ϵ sin ( f Ω0 t)) . (3.1)

In order to determine the size and typical rotation rate of the new experiment, we may
first examine the parameters that influence the typical dissipation rate, and the constraints that
are imposed on them. Dissipation rate is quantified by the Ekman number E which compares
the effects of viscosity to the Coriolis force and is defined as follows:

E =
ν

a2Ω0
(3.2)

where ν is the kinematic viscosity of water, a is the half-length of the largest ellipsoid axis, and
Ω0 is the averaged rotation rate (see equation (3.1)). The values of these parameters used in
Grannan et al. (2014) are recalled in table 3.1. To reach weaker dissipation regimes, it is clear
that we must increase a and Ω0 compared to this previous set-up.

In addition, to facilitate the comparison between our experimental study and the previous
one, we prefer to keep the same ellipticity β = (a2 − b2)/(a2 + b2) = 0.34 of the deformation
in the horizontal plane (see section 1.3 in chapter 1). The two axes lengths a and b therefore
remain in the same ratio as the experimental device is scaled up. The ratio of the third—
vertical—axis length c with a and b is changed compared to Grannan et al. (2014) where
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b = c. In order to increase the inviscid growth rate of inertial modes excited by the elliptical
instability, we chose c = (a+ b)/2 (Cébron et al., 2010); it lowers the viscous threshold of the
instability and allows reaching weaker forcing regimes. In the design of the new experimental
set-up, the only control parameter on the ellipsoid size is thus its largest—horizontal—axis
half-length a, and we aim at increasing it by a factor 2 to 4 compared to Grannan et al. (2014).

1.2 Constraints on the secondary motor and the size of the set-up

Increasing both the size of the ellipsoid and the rotation rate of the turntable bears some
consequences on the libration secondary motor, especially on the power it has to deliver. Let
us call J the moment of inertia of all the set-up that is carried by the secondary motor with
respect to its axis of rotation; the power P needed to impose the time-varying rotation rate
∆Ω≡ Ω0ϵ sin( f Ω0 t) writes:

P=
1
2

J
d∆Ω2

dt
=

1
2

JΩ3
0ϵ

2 f sin (2 f Ω0 t) . (3.3)

J ∼ ma2 where m is the on-board mass carried by the secondary motor; assuming that the
whole water-filled box is librating, m∝ a3, so that J ,P∝ a5. The energetic cost of increasing
the size of the ellipsoid is a priori very high.

Another limitation on the secondary engine is the maximal torque it can develop. The
instantaneous torque C is inferred from the power P as follows:

P= C(t)∆Ω(t) = C(t)Ω0ϵ sin( f Ω0 t) , (3.4)

so that:
C(t) = JΩ2

0ϵ f cos( f Ω0 t) . (3.5)

We observe, as expected, that the secondary motor torque is in phase quadrature with respect
to the rotation rate ∆Ω, the torque is maximal when the motor works against inertia to invert
the rotation direction.

In order to design the experiment, we must quantitatively evaluate the maximal power
and torque needed to impose a libration motion to an ellipsoid whose largest axis a remains
to be defined. To carry out the calculation of the moment of inertia J , we assume that the
water-filled box perfectly frames the ellipsoid, that is, the sizes of its sides are 2a, 2b and 2c.
The ellipsoid’s PMMA density difference with water is also neglected. The moment of inertia
writes:

J =
1
6
ρ(a2 + b2)× 8abc (3.6)

Rotation rate (RPM) E a (mm) b (mm) c (mm) max ϵ( f = 4)

30 2× 10−5 127 89 89 1.6

Table 3.1: Table of the principal parameters of the experiments of Noir et al. (2012) and Grannan
et al. (2014). a, b and c are the half-lengths of the ellipsoid’s axes. E is the Ekman number defined in
(3.2) and ϵ is the relative variation of the rotation rate induced by libration, defined in (3.1).
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Figure 3.2: Calculation of the maximal power (left) and torque (right) needed to force the libration
of an ellipsoid which has a major semi-axis increased by a factor 1, 2 and 4 compared to the one used
in Grannan et al. (2014), which is given in the legend in meters. The calculation is done at ϵ = 1.
The two horizontal lines materialise the maximal power produced by the motor used in the previous
experiment (Yaskawa SGMCS-10C3B11, see Noir et al. (2009)), and by the most powerful motor of the
same series (Yaskawa SGMCS-2ZN3A11).

where ρ is the density of water. This value of J is a priori over-estimated: the fluid inside
the container is not expected to librate at the same velocity as the secondary motor—apart
from the boundary layers—as it rather oscillates with a typical velocity reduced by a factor β
inside the ellipsoid (see section 1.4 in chapter 1). Nevertheless, we have neglected here heavy
equipment such as the aluminium structure supporting the ellipsoid, the camera and the laser
that are on board of the secondary motor. To estimate a safety factor on the maximum power
and torque, we rely on the experiment of Grannan et al. (2014). They used a Yaskawa ring-
style servo-motor (Yaskawa SGMCS-10C3B11) that is able to deliver a maximum power and
torque of 400 W and 30 N.m respectively. In their experiments, the maximum rotation rate was
limited to 30 RPM, and a relative rotation rate ε = 1.6 was reached at most for the libration
frequency f = 4 (see table 3.1). According to our crude estimates (3.3) and (3.5) based on
the moment of inertia (3.6), this maximum parameters correspond to a power of ∼ 10 W
and a torque ∼ 2 N.m, which is about an order of magnitude below the maximum values.
This discrepancy between the estimate and the experiment is likely due to the heavy on-board
equipment (laser, aluminium frame, etc.) and a factor 10 on both power and torque shall be
taken as a safety margin in the design of our experiment.

With the lengths ratios detailed in the preceding section, the estimates of the maximum
power (3.3) and torque (3.5) requested from the secondary motor is displayed in figure 3.2;
they include a factor 10 as a safety margin. We assume for the estimates an extreme case where
ϵ = 1 and f = 4. These values are compared to the specifications of two Yaskawa ring-style
servo-motors, the one used in the experiments of Grannan et al. (2014) and Noir et al. (2009),
and the most powerful one which is able to develop a maximum power and torque of∼ 3.6 kW
and 600 N.m respectively.

The diagrams of figure 3.2 clearly indicate that it is impossible to force librations of a four
times larger ellipsoid, even with the most powerful servo-motor (Yaskawa SGMCS-2ZN3A11).
However, the latter seems adapted to our needs since it provides a sufficient torque to drive
fast oscillations of a twice larger ellipsoid at a turntable rotation rate as high as ∼ 30 RPM,
including the factor 10 safety margin.
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Figure 3.3: Views of the ellipsoid and its interior dimension. The thickness of the PMMA is of 7 mm.
The rotation axis is materialised by the vector Ω.
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Figure 3.4: Computation of the Ekman number defined by the formula (3.2) for the ellipsoid of
Grannan et al. (2014) (a = 0.127 m) and the one chosen for our study (a = 0.254 m).

We thus chose the most powerful Yaskawa servo-motor (SGMCS-2ZN3A11), and an ellip-
soid with largest axis length a = 254 mm. The physical dimensions of this ellipsoid in all three
directions are shown in figure 3.3. At extreme libration amplitude and frequency (ϵ = 1 and
f = 4), it is expected that the turntable can be brought to 30 RPM, and higher rotation rates
may even be reached at lower forcing amplitudes. In addition, we provide in figure 3.4 the
Ekman number as a function of the rotation rate for the ellipsoid used by Grannan et al. (2014)
and the twice-larger ellipsoid chosen for our experiments. We notice that the Ekman number
is decreased to E ∼ 5 × 10−6 in our set-up, which is about one order of magnitude lower
than in previous experiments (Grannan et al., 2014) and recent numerical simulations Favier
et al. (2015), for which E > 2× 10−5.

1.3 Machining of the ellipsoid

In this section, we aim at specifying the needed manufacturing quality of the ellipsoid
via determining the maximum tolerance on defect thickness. We estimate that a defect must
not exceed the typical Ekman boundary layer size; beyond that point, defects might be able
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to induce significant perturbations of the flow. The typical Ekman layer thickness is δ = a
p

E
and taking E ∼ 3× 10−6 gives

δ ∼ 4× 10−4 m .

The maximum tolerance on the machining of the ellipsoid is therefore about 0.1 mm.

The ellipsoid used in the present experimental study with the dimensions specified in
figure 3.3 has been manufactured from two transparent, 22 cm-thick PMMA blocks. They
have been reduced to the half-ellipsoids —cut in the (xOz) plane with thickness 7 mm, with a
machining precision as low as 0.05 mm. The assembly of the two halves has been carried out
with UV glue, which avoids the use of screws and the associated stress that usually results in
cracks. The typical gluing line is about 0.1 to 0.2 mm thick, which is smaller than any dimen-
sion of the ellipsoid and smaller than the defect tolerance detailed above. Note however that
the assembly process induces local modifications of the optical properties of the PMMA close
to the gluing line, which may perturb the imaging quality. Access to the interior of the ellipsoid
is only provided by a 5 mm-wide hole, chosen as small as possible to avoid perturbation of the
shape of the container. This hole is located away from the rotation axis to avoid extra stress
on the gluing line; it is therefore not located at the highest point of the ellipsoid. Filling and
emptying thus require tilting of the container, which is however facilitated by the water-filled
box in which the ellipsoid floats and is easily movable.

2. The experimental set-up

2.1 Choice of the libration frequency

In the present chapter, apart from section 7, we focus on the excitation frequency f = 4.
At this frequency, the frequency of the resonant modes is ±2, at the high frequency end of the
dispersion relation. These modes comprise several horizontal layers of alternating velocity,
and are known to have the largest inviscid growth rate under the libration-driven elliptical
instability (Cébron et al., 2012a). In addition, as shown by Grannan et al. (2014) and Favier
et al. (2015), the expected number of layers is around 5 at an Ekman number E ∼ 10−5, and
is probably larger at lower values of E. It ensures a reasonable scale separation between the
size of the ellipsoidal container and the typical resonant wavelength. We thus choose to focus
on the specific forcing frequency f = 4 in order to facilitate the exploration of weaker forcing
amplitude and dissipation regimes while keeping mostly horizontal velocities that are more
easily measured with the equatorial laser plane (see figure 3.1). Note however that the last
part of this chapter is targeted at the forcing frequency f = 2.5 for completeness.

2.2 Rotation and libration

In the present experiment, the ellipsoid sits on a turntable whose rotation rate ranges
from 10 RPM to 40 RPM. The modulation of the rotation rate Ω is operated by a 3.1 kW
ring-style, direct-drive, servomotor (YASKAWA SGMCS-2ZN3A11). The sinusoidal motion is
controlled via a card (Servopack SGD7S) and is discretised on 2000 points per period. This
motor is able to produce oscillations of a system weighting around 100 kg with lateral extent
of 30 cm, with a rate ranging from 0 to 180 oscillations per minute. The typical amplitude of
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Rotation rate Ekman number Libration angle range ϵ range Roi × 102 range

10 RPM 1.5× 10−5 2.64◦–4.74◦ 0.185–0.331 6.31–11.2
20 RPM 7.4× 10−6 1.68◦–4.22◦ 0.118–0.294 4.02–10.0
30 RPM 5.0× 10−6 1.07◦–4.23◦ 0.0747–0.296 2.54–10.1
40 RPM 3.7× 10−6 1.41◦–1.74◦ 0.0986–0.122 3.36–4.16

Table 3.2: Summary of the different input parameters used in the experiment at a forcing frequency
f = 4 and the corresponding dimensionless parameters. The rotation rate is in rotations per minute
(RPM). The Ekman number is defined as ν/(a2Ω0), where ν is the viscosity of water, considered to be
1.0×10−6 m2.s−1 at room temperature. It compares the effects of viscosity to those of the Coriolis force.
Note that the typical relative error on the value of the libration angle is about 1.5 %. Lastly, the input
Rossby number quantifies the amplitude of the libration base flow measured in the rotating frame, that
is, Roi = βϵ.

Figure 3.5: Photographs taken with (right) and without (left) an orange filter of the laser sheet lighting
the fluorescent PIV particles. Using PIV particles absorbing the green light and emitting in red allows
filtering out the reflections of the sheet on the surface of the ellipsoid, thus improving the overall quality
of the images taken by the high-resolution camera. Note that there was no water in the outer box at
the time the picture was taken.

the oscillations used in this study ranges from 0◦ to 5◦ at f = 4, although larger amplitudes can
easily be reached at lower frequencies (the system has been tested up to 25◦ at one oscillation
every two seconds). Relative variations of the rotation rate of the primary turntable due to the
oscillations of the servo-motor do not exceed 0.4 %.

The typical libration amplitudes of the relative rotation rate variation ϵ and the associated
libration angle and input Rossby number Roi = βϵ (see sections 1 in chapter 2) are given in
table 3.2 for the case f = 4. We note that the typical values of ϵ are below the upper bound
ϵ = 1 used in the experimental set-up design calculations. This is mainly due to the fact that all
the interesting phenomena relevant to planetary cores and stellar interiors have been observed
at weak forcing amplitudes. Lastly, we emphasise that our set-up allows reaching values of the
Ekman number that are about an order of magnitude below those of Grannan et al. (2014).
This is made possible by the increase in the size of the ellipsoidal container and the use of the
most powerful servo-motor of its category.
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2.3 Imaging and velocity measurements

To measure the velocity of the flow, we use Particle Image Velocimetry (PIV). A green
laser beam is transformed into a 2 mm-thick homogeneous sheet with a Powell lens; the sheet
cuts the ellipsoid through the equatorial plane (see figure 3.1) and lights PIV particles with a
fluorescent coating (Cospheric UVPMS-BO-1.00, 53-63µm). The fluorescent coating is such
that it absorbs the green light to emit in orange; filtering out the green light allows capturing
only the particles getting rid of parasitic reflections of the sheet on the ellipsoid —see figure
3.5.

High resolution images (2560× 1600 pixels) of the laser plane are taken with a camera
(DANTEC SpeedSense 341) placed above the ellipsoid, the CCD sensor being at a distance
of 38.7 cm from the equatorial plane. It is mounted with a 28 mm Zeiss lens. The camera
is attached to a structure bound to the secondary motor, so that a fixed-shape ellipsoid is
seen through the camera, which limits periodic variations of the field of view due to optical
distortions. The framerate used in our experiments ranges from 20 Hz for the lowest rotation
rate, to 50 frame per second (fps) for the highest. Image acquisition is controlled by DANTEC’s
software DynamicStudio. The same software is used to process the images into velocity fields,
via an adaptive PIV algorithm. The PIV algorithm is performed on 78× 50 boxes of 64× 64
pixels size. Note that the number of PIV particles in the ellipsoid is such that there is always
about 3 to 5 particles inside these boxes. Lastly, both the camera and the servomotor are
controlled by a computer lying on the turntable, which is monitored remotely via WiFi.

2.4 Calibration of the field of view

As explained in section 1.3, the only access to the interior of the ellipsoid is a 5 mm-
diameter hole. There is no straightforward option to perform a calibration with the use of a
precise grid, as usual in PIV measurements. We have therefore implemented a non-invasive
method, which is less accurate, but still gives a satisfying estimate of the scaling factor between
the physical field and the camera images, plus a quantitative estimate of the optical distortion
on the plane.

The set-up used for the calibration process is presented in figure 3.6. A shaded pattern
(referenced as the “physical pattern”) is created in the Laser sheet with an opaque grid placed
on the wall of the water box. This grid is printed on a transparent slide and is made of black
and transparent stripes, all 10.0 ± 0.5 mm wide. The geometry of the physical pattern is
computed from ray path construction, knowing the geometry of all the interfaces and their
refractive indices; it is shown in figure 3.7a. The camera saves a “recorded pattern” of light
and shade revealed by the particles. We further enhance this pattern by taking 500 pictures as
the ellipsoid spins up from 0 to 10 RPM and averaging the light pattern over this set of images.
A typical result of this process is shown in figure 3.7b. The core of the calibration process is
to produce a “theoretical pattern”, which is the shaded pattern as it should be seen from the
camera location. It is computed from the “physical pattern” with ray path construction from
the camera to the equatorial plane of the ellipsoid. The recorded and theoretical patterns are
then related by a scaling factor.

The result of this process is shown in figure 3.7 where the physical and recorded patterns
are presented in panel a. and b. respectively. The refractive indices of water and PMMA taken
for the ray path construction are respectively n= 1.33 and n= 1.49 (Weber, 2018). The result
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Figure 3.6: Schematic of the set-up used to calibrate the pictures of the LASER sheet. An opaque grid
pattern placed on the wall of the water box is used to interrupt the Laser ray and create a shaded
pattern —the “physical pattern”— inside the ellipsoid. The geometry of this physical pattern can be
known by ray path construction. The camera records and “observed pattern” that is to be compared
with a “theoretical pattern”. The latter is the result of ray path construction from the physical pattern
to the camera.

of applying a scaling factor to the theoretical pattern to fit the recorded pattern is shown in
figure 3.7c. Additional effects such as camera lens distortion or PMMA defects are within the
error bar.

The theoretical mapping between the physical and theoretical patterns also reveals that
the optical distortion of the physical pattern by the water box and the ellipsoid is merely
isotropic, the relative discrepancy between the scaling in X and Y directions being below 2 %.
The fitted scaling factor between the theoretical pattern (in meters) and the recorded pattern
(in pixels) is 5.69 ± 0.08 × 103 pixels.m−1. The error bar accounts for the uncertainty on
the respective position of the laser sheet waist point and of the ellipsoid centre, the distance
between them being 42 ± 0.5 cm. In the processing of the PIV fields, we apply this scaling
factor to the displacement measured in pixels by the PIV algorithm, and to the position of the
points where the velocity is computed.

2.5 The experimental procedure

To study the non-linear saturation of the elliptical instability, we proceed as follows. We
first turn on the turntable and wait for the fluid inside the ellipsoid to reach solid-body rotation.
We then turn on the secondary motor which imposes oscillations at a dimensionless rate f
with a desired amplitude ∆φ = ϵ/ f (see section 1.4 in chapter 1). Between two experiments
carried out at the same rotation rate, the secondary motor is turned off and we wait for the
remaining flow inside the ellipsoid to dissipate before starting a new run.
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Figure 3.7: Panels a. and b. show respectively the shaded pattern created by the an opaque grid with a
10 mm step at the entrance of the water box. Panel c. shows the best fit between the detected edges (in
red) and the observed pattern computed theoretically; the only fitting parameter is the scaling factor
applied to the observe pattern to match the observed edges. In the computed shaded pattern depicted
in a., the PMMA containers, i.e. the ellipsoid and the outer box, are in grey, and all these containers
are filled with pure water. The observed pattern of picture b. has been obtained by shining the LASER

sheet to the particle-seeded ellipsoid while in a spin-up phase. It is the results of averaging 500 pictures
spanning over about 15 s. The red lines are the result of an automated contour detection and a fit of the
detected edges with lines. Note that averaging the light diffused by particles enhances the area where
the two parts of the ellipsoid are glued together, materialised by an intermediate contrast horizontal
line at mid-height. Heterogeneities in the diffused light caused by unavoidable parasitic reflections of
the LASER sheet on the walls are also noticeable.

3. Base flow and frames of reference

3.1 Measuring the libration flow

In order to characterise each experiment and to quantify the flows excited by the elliptical
instability, the amplitude and the phase of libration must be determined. This is done during
the early phase of each experiment when librations are imposed but the instability has not yet
significantly grown.

We recall from chapter 1 equation (1.16) that the libration base flow seen from the li-
brating frame Uℓb with axes (X , Y, Z) writes

Uℓb = − [U , V, 0] =
2ab

a2 + b2
Ω0ϵ sin(Ω0 f t)
�
−a

b
Y ,

b
a

X , 0
�

. (3.7)

In the rotating frame of reference with axes (x , y, z = Z), the libration base flow UΩb writes
(see equation (1.17)):

UΩb = −Ω0ϵβ sin(Ω0 f t) [y , x , 0] . (3.8)

We also recall that the camera is in the libration frame while the dynamics of interest is in the
rotating frame: an accurate determination of the libration amplitude is therefore needed to
transform the experimental flow into the rotating frame.

From measurements performed in the librating frame, we first define a transformed base
flow Ũℓb = (Ũ , Ṽ ) and a transformed position X̃ = (X̃ , Ỹ ) such that:

Ũ = U/a , Ṽ = V/b , X̃ = X/a , Ỹ = Y /b (3.9)
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Figure 3.8: Experimental measurement of the libration base flow Uℓb (left) and the transformed base

flow (Ũℓb)
2 (right) for an input Rossby number Roi = 6.01×10−2, an Ekman number E = 5.0×10−6 and

f = 4. Note that X and Y are normalised by a, and that the velocity is scaled by the typical libration
velocity RoiaΩ0.

where U and V are the x and y components of the base flow velocity. Applying this transfor-
mation to the flow (3.7) yields:

Ũℓb =
−2ab

a2 + b2
Ω0ϵ sin(Ω0 f t)
�−Ỹ , X̃ , 0
�
=
−2ab

a2 + b2
Ω0ϵ sin(Ω0 f t) r̃ ẽϕ = −Ω̃(t) r̃ ẽϕ (3.10)

which is an oscillating solid-body rotation with effective maximum vorticity Ω̃, and where we

have introduced r̃ =
p

X̃ 2 + Ỹ 2 and ẽϕ an orthoradial vector in the transformed coordinates.
Experimental PIV fields of the base flow and the transformed flow are shown in figure 3.8, and
are in good agreement with the theoretical expressions (3.7) and (3.10).

To determine the axis of rotation, the field (Ũℓb)
2 is fitted to an axisymmetric parabola

with adjustable central position; the location of the centre is then averaged over the whole set
of velocity fields. The same transformed field is used to determine ϵ: the position is sorted
in 30 rings centred on the axis of rotation, on which the orthoradial transformed velocity is
averaged. The result of this process is shown over half a libration period in the left panel of
figure 3.9. Fitting the averaged orthoradial velocity with a line gives the effective vorticity
Ω̃(t) which is represented in the right panel of figure 3.9. The time series of Ω̃ is fitted to
a sinusoidal function to measure the amplitude of libration ϵ and the phase. The agreement
between the experimental data and the sinusoidal function is within 1.5 % relative error.

3.2 Transformation from the libration to the rotating frame

Although the camera is in the librating frame of reference for experimental convenience,
the adequate frame to study the dynamics of the non-linear saturation of the elliptical in-
stability is the rotating frame in which inertial waves and the geostrophic modes are well
defined. The transformation of the PIV fields from one frame to another is performed in the
post-processing phase. The position in the rotating frame is deduced from the position in the
libration frame by a rotation of angle θℓ = −(ϵ/ f ) cos(Ω0 f t), with an adequate choice of the
initial time t = 0. The velocity at this rotating position is computed from interpolation of the
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Figure 3.9: Left: experimental measurement of Ũℓb · ẽϕ over half a period of libration, the time being
given in milliseconds. Right: experimental measurement of the effective vorticity Ω̃ defined in equation
(3.10) and best sinusoidal fit yielding ϵ = 0.190 ± 0.002 in this case. The fitting parameters are the
phase and the amplitude of the sine. The agreement between the fit and the experimental data is within
1.5 % . For both panels, the Ekman number is E = 5.0× 10−6 and the libration frequency is f = 4.

PIV field with 3rd order two-dimensional splines using the RectBivariateSpline function
of the PYTHON library SciPy (Jones et al., 2001). This transformation also includes a velocity
composition: a solid body rotation associated to the rotation of varying angle θ is removed
from the measured velocity. A snapshot of the base flow transformed into the rotating frame
is shown in figure 3.10. It is compared to the theoretical base flow at the same time and the
overall agreement between the two fields is satisfactory. Discrepancies may be noticed around
the line y = 0 that are due to the line where the two parts of the ellipsoid are glued together
and where the optical distortion is important. Other discrepancies may be noticed in the cen-
tre where the particles displacements are small and the direction of their motion is therefore
difficult to determine from the PIV algorithm. Nevertheless, the relative error between the
theoretical and the experimental base flow in the rotating frame computed with L2 norm is as
low as 3 %.

4. The non-linear saturation at low forcing
amplitude: waves in interaction

In the following, we focus on the non-linear saturation of the elliptical instability driven
by libration at low forcing amplitudes and f = 4. For a fixed rotation rate, or Ekman number E,
and libration frequency, the procedure described in paragraph 2.5 is repeated with increasing
libration amplitude or input Rossby number Roi . We start with amplitudes that are below the
threshold of the elliptical instability, which is approximately found at Roi ≃ 10

p
E (a similar

value to Favier et al. (2015)), and then explore the non-linear regimes.

We first present time series of the saturation flow which indicate that despite the libration
amplitudes being small, we observe a chaotic, if not turbulent, state. We then explore the
spectral content of the flow and identify inertial waves that are in triadic resonant interaction
with one another. What we mean by “low forcing amplitude” is let unspecified in this section,
the boundaries of the regime we detail here will be explored afterwards.
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Figure 3.10: Snapshot of the theoretical (left) and experimental (right) libration base flow UΩb trans-
formed into the rotating frame, for an input Rossby number Roi = 5.74 × 10−2, an Ekman number
E = 5.0×10−6 and a libration frequency f = 4. The theoretical base flow is given by formula (3.8). In
this frame, the libration base flow is a strain field standing in space and oscillating in time. The velocity
is normalised by a typical libration velocity RoiaΩ0 and the distances are normalised by a. The agree-
ment between the measured and theoretical base flows is overall satisfying, although some deviations
can be spotted around the y = 0 line and at the centre.

4.1 Kinetic energy time series

To describe in general the saturation of the libration-driven elliptical instability, we track
the evolution of the kinetic energy over time. In particular, we focus on the kinetic energy of
the fluctuations around the libration base flow. These fluctuations are measured directly in
the libration frame, i.e. there is no need to proceed to a change of frame of reference to carry
out this measurement. Let us call u the fluctuations, such that the total flow in the libration
frame of reference writes:

U(X) = Uℓb(X) + u(X) . (3.11)

The flow in the rotating frame is deduced from (3.11) by a coordinate rotation X 7→ x and a
velocity composition U rot such that:

U(x ) = Uℓb(x )−U rot(x ) + u(x ) = UΩb (x ) + u(x ) . (3.12)

It is therefore equivalent to measure the kinetic energy of the fluctuations in these two frames.
We therefore define a fluctuation kinetic energy E and a base flow kinetic energy Eb:

E = 1
2



u2
�

and Eb =
f Ω0

2π

∫ 2π
f Ω0

0

­
1
2
(UΩb )

2
·

dt (3.13)

where the operation 〈·〉 denotes a summation over all the locations in the PIV field.

The result of computing the ratio E/Eb is shown in figure 3.11 where we represent time
series of this quantity and its mean value for several experiments at an Ekman number E =
5.0× 10−6 —see table 3.2.

The quantity E undergoes fluctuations over time, be it at time scales as short as the rota-
tion period or at very long times scales, similar to the slow non-linear time scale 2π(RoiΩ)

−1

ranging from 60 to 200 rotation periods. In addition, the ratio E/Eb is of order 1, which
indicates that the amplitude of the fluctuations is of order Roi , as expected from the simple
scaling developed in chapter 2 section 1, and found in numerical simulations (Barker and
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Figure 3.11: Left: kinetic energy variation over a hundred of rotation times at E = 5.0×10−5, f = 4 and
Roi = 5.17±0.07×10−2. Centre: several measurements of the kinetic energy for the same experiment.
The typical separation between two recordings is set by the time needed to transfer the data from the
camera to the computer. This data set comprises long (5476 images) and short (500 images) recordings
at 30 Hz. For both panels, the time series are low-pass filtered by a sliding average over one rotation
period. Right: mean value of the kinetic energy in the saturation phase of the instability at 30 RPM and
f = 4 for all the experimented values of the input Rossby number Roi . The error bar corresponds to the
standard deviation of kinetic energy considering all recordings of each experiment. The vertical dashed
line materialises the approximate viscous threshold of the instability according to Le Bars et al. (2010)
and Favier et al. (2015), which is Roi,c ∼ 10

p
E, and below which the flow is experimentally observed

to be stable

Lithwick, 2013; Grannan et al., 2017). These features of the kinetic energy attest that the
saturation phase is dominated by non-linear transfers, and is potentially turbulent. Variations
around the simple scaling E/Eb = O(1) are noticeable in figure 3.11 but remain difficult to
explain since our set-up only allows measuring horizontal motions in a plane. In particular,
the vertical motions along the rotation axis and their dependence with Roi are not accessible.
Lastly, although the typical velocity U∗ scales like the forcing amplitude, the Reynolds number
Re ≡ aU∗/ν remains large. Given that U∗ ∼ RoiaΩ0, it is easily found that Re ∼ Roi/E ∼ 104.

In this section, we are interested in the saturation flow for forcing amplitudes that are
above the threshold of the instability but which remain relatively small —typically Roi < 6×
10−2 at E = 5.0× 10−6. The right panel of figure 3.11 proves that even close to the threshold
the kinetic energy of the perturbation flow u reaches significant values (E/Eb > 0.3) and
undergoes temporal variability.

4.2 Spectral content of the flow: inertial waves in resonant inter-
action

Temporal spectrum and triadic resonant interactions

To refine the analysis of the non-linear saturation flow we explore its spectral content in
the temporal domain. It is a natural analysis to perform because many features of the flow
have a specific frequency signature: the libration forcing appears at ω = f = 4, and inertial
waves are restrained to the domain [−2,2]—time being normalised by the rotation time scale
Ω−1

0 .

To determine the spectral content of the flow, we randomly select a set of 300 locations in
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Figure 3.12: Ensemble average of temporal spectra at a forcing amplitude Roi = 5.17×10−2, a libration
frequency f = 4 and an Ekman number E = 5.0 × 10−6. The frequency ω is given in rotation units,
so that ω = 1 corresponds to a frequency of Ω0. Two different power spectra are displayed, they
correspond to two different recordings around a time t indicated in rotation periods in order to enhance
robust features. Among the clear peaks are the base flow at ω = f = 4 peaking at Ê( f )/eb ∼ 1, and
the resonant mode at ω = f /2 = 2. The shaded area materialises the domain of existence of inertial
waves. The typical frequency resolution is about 1.1× 10−2.

the rotating frame of reference where the two components of the velocity are recorded. They
are then multiplied by a Hann windowing function 1 and Fourier transformed to compute their
power spectra. Lastly, we perform an ensemble average over the set of 300 power spectra,
yielding a quantity denoted as Ê(ω). These power spectra are scaled by a typical local energy
of the base flow eb that is defined as the total base flow kinetic energy Eb divided by the number
of PIV boxes composing the field of view.

A typical result of this process for an Ekman number of E = 5.0 × 10−6, a libration
frequency of f = 4 and an input Rossby number Roi = 5.17× 10−2 is shown in figure 3.12.
As anticipated, the peaks associated with the libration flow (ω = f = 4) and the resonant
modes (ω = f /2 = 2) appear clearly in the power spectra. In addition, superposing power
spectra for the same experiment but at different times reveals the overall reproducibility of
this measurement.

The large number of peaks, in particular in the inertial modes range, and the low back-
ground noise together with the kinetic energy time series (figure 3.11), indicate that the sat-
uration at low forcing is chaotic or weakly turbulent, and includes persistent inertial modes.
Furthermore, we notice in figure 3.13a that the peak positions are not random but persist at
different Ekman numbers provided the forcing remains small. Besides, the peaks can be paired
together so that their frequencies ω1 and ω2 satisfy:

ω1 +ω2 = 2 . (3.14)

This suggests that the paired structures are inertial waves in triadic resonant interactions with
the resonant mode, as explained in chapter 2 section 2.3 (see, in particular, relation (2.34)) 2.

1For a signal defined on the time interval [0, T], the Hann windowing function is defined as

t 7→ 1
2
− 1

2
cos
�

2π
T

t
�

.

2Note that the relation (2.34) derived in chapter 2 was rather ω1 +ω2 + 2 = 0 but since the field is real, all
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The existence of triadic resonant interactions can be further assessed by determining from
the local velocity measurements a bicoherence spectrum B(ω1,ω2), following in particular
Favier et al. (2015); Brouzet et al. (2016). This quantity is determined from the—complex—
temporal Fourier transform of the velocity local measurements ûi , the index i referring to the
index of the probe as well as the component. The bicoherence may be defined through the
following formula:

B(ω1,ω2) =

�� 
 ûi(ω1) ûi(ω2) û∗i (ω1 +ω2)
���2

〈 | ûi(ω1) ûi(ω2) |2〉

| û∗i (ω1 +ω2) |2

� (3.15)

where the operation 〈 · 〉 here denotes an ensemble average over all the ûi . The bicoherence
depends on the relative phase between the Fourier component of the signal contrary to the sec-
ond order power spectrum. It is maximal and reaches 1 when modes with frequenciesω1 and
ω2 are locked over long times and everywhere in space to a structure oscillating atω1+ω2. It
is, therefore, an adequate tool to look for the existence of triadic resonant interaction although
it requires a large number of samples to converge. An example of bicoherence spectrum as-
sociated with the spectra of figure 3.12 is shown in figure 3.14, confirming the existence of
triadic resonances involving the resonant modes, but also of some daughter modes.

Spatial analysis of the modes in interaction

To further support our claim that the temporal power spectra present evidence for triadic
resonant interactions, we extract from the PIV fields the structure at the peaked frequencies.
The structure oscillating at frequencyω, i.e. the Fourier component of the flow at this frequency
û(ω), is extracted using the following operation:

û(r ;ω) =
1

t1 − t0

∫ t1

t0

U(r , t)eiωt dt , (3.16)

where t0 and t1 are the start and end times of a PIV recording and U is the total velocity field
measured in the rotating frame. The result of such a process is shown for several frequencies in
figure 3.13. The spatial structures extracted at the peaked frequencies show a spatially periodic
organisation which is typical of inertial modes. Comparison with theoretical structures remains
nevertheless complicated because the viscous inertial modes of a tri-axial ellipsoid are not
known theoretically and require complicated numerical computation (Vidal and Cébron, 2017;
Vidal et al., 2017).

In addition, the ability of the paired modes to interact with the resonant one may be
assessed by examining their principal azimuthal wave numbers. The latter is determined for
a mode û(r ;ω) by transformation into polar coordinates (r,ϕ), and Fourier transform along
ϕ to obtain the following decomposition of the mode:

û(r,ϕ;ω) =
∑

m

ûm(r)e
imϕ . (3.17)

Because the fluid container is not axisymmetric such decomposition necessarily comprises
more than one wave number, but we can still identify the largest contributions to the az-
imuthal wave-number decomposition by computing the energy of the coefficients by radial

the frequencies ±ω1,2 and ±2 are present so that a relation of the type ω1 +ω2 =ω0 is also significant of triadic
interaction.
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Figure 3.13: a. Power spectra with labelled peaks. The spectrum at E = 5.0× 10−6 is the same as in
figure 3.12. The E = 7.4× 10−6 spectrum has been vertically shifted to facilitate the comparison. For
the larger value of the Ekman number, Roi = 5.17×10−2. Several pairs of triadic resonance relation can
be noticed, such as 0.27+1.73, 0.54+1.46, 0.61+1.39 and 0.66+1.34. b: azimuthal component of the
resonant wave in the horizontal plane accessible to PIV. c to g: pairs of structures û(r ;ω) satisfying the
triadic resonance condition on the frequency (relation (3.14)). For each frequency, including ω = 2,
we show the component which has the largest amplitude among the imaginary and real parts of the
radial and azimuthal velocity. Lastly, in all velocity maps, distance is normalised by a and velocity by
RoiaΩ0.



70

0.0 0.5 1.0 1.5 2.0
Frequency ω1

0

1

2

F
re
q
u
en
cy

ω
2

First
generation

Second generation

Roi = 5.17× 10−2, E = 5× 10−6

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3.14: Bicoherence spectrum computed from local measurements in the saturation of the insta-
bility at a forcing amplitude Roi = 5.17× 10−2, Ekman number E = 5.0× 10−6 and forcing frequency
f = 4. It is computed using the formula (3.15). The plain lines frame the frequencies of the modes
that are in resonant interaction with the unstable modes at ω= 2. Other significant three mode inter-
action may be noticed between daughter modes for instance at frequencies ω = 0.27, ω = 1.47 and
ω= 1.73 and are framed by dashed lines. Note that this map is symmetric under inversion of x and y
coordinates.

0 2 4 6 8
Azimuthal wavenumber m

0.0

0.5

1.0

E
n
er
gy

(a
.u
.)

ω

0.27

1.73

0 2 4 6 8
Azimuthal wavenumber m

ω

0.54

1.46

0 2 4 6 8
Azimuthal wavenumber m

ω

0.61

1.39

Figure 3.15: Computation of the azimuthal wavenumber decomposition —see formulae (3.17) and
(3.18)— of the paired structures shown in figure 3.13. The energy contained in the wave numbers is
shown in arbitrary units. Note that these maps are symmetric respective to m = 0, so that the energy
contained in the m and −m modes is the same. For these structures to significantly interact with the
resonant mode, the gap between the displayed principal wavenumbers numbers must be ±1 —see
relation (3.19)—, which is indeed observed for the first two pairs, but less obvious for the last one.
Note that in the computation of the energy, the radial integration has been restricted to radii below
0.25a although larger values do not change significantly the present decomposition.
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integration, that is: ∫
r<rmax

|ûm(r)|2rdr . (3.18)

where rmax is a maximum radius over which the integration is performed, here 0.25a, which
although larger values do not change significantly the mode decomposition. For instance, it
is clear from figure 3.13b that the main azimuthal wave numbers of the resonant modes is
mi = ±1, in agreement with the selection rule (1.55) found in chapter 1 section 3.3. In three-
modes interaction involving a mode with wave number mi with two daughter modes with
wave numbers m j,k, a necessary condition for significant non-linear interaction is:

m j +mk = mi (3.19)

which is very similar to the condition on frequency (2.34). In the present case, the mode i
is the resonant one, for which mi = ±1, so that the difference between absolute value of the
main wave numbers of paired modes should be ±1. The result of computing the azimuthal
wave number decomposition is shown in figure 3.15, and is, at least for two pairs of modes,
consistent with the relation (3.19).

Lastly, regardless of considerations on the azimuthal structures, it is striking in figure
3.13 that only modes with similar scales are observed to couple in triadic resonances. This is
coherent with the fact that, as the resonant mode atω= 2 has almost no horizontal variations,
the two daughter modes must have matching horizontal wave numbers to ensure a significant
overlap and efficient energy transfer.

Inertial wave turbulence?

To conclude, the spatio-temporal analysis of the flow at low forcing amplitudes provides
significant evidence that, in this regime, the non-linear saturation of the elliptical instability
is a superposition of daughter waves that are in triadic resonant interaction with the unsta-
ble wave. This state is robust as the Ekman number is changed, provided the forcing re-
mains small. It is reminiscent of the wave turbulence described in chapter 2 which occurs
in media sustaining dispersive waves and allowing non-linear transfers between one another.
Wave turbulence has been theoretically described for infinite, homogeneous media subject
to a large-scale stochastic forcing in the vanishing forcing amplitude and dissipation regimes
(Nazarenko, 2011). In this context, the forcing results in a continuum of waves in weakly non-
linear resonant interactions translating in a cascade of energy through temporal and spatial
scales.

One could argue that in the present set-up, some hypotheses of classical wave turbulence
theory (Nazarenko, 2011) are not fulfilled. First, the flow is not statistically homogeneous
in space, as we observe modes whose structures are influenced by boundaries. It is neither
statistically homogeneous in time because the system is by essence forced at a single frequency.
Lastly, as discussed above, dissipation is still too high and prevents energy cascade in a large
range of scales. Some of these limitations are inherent to the experimental approach used
here, but may be irrelevant in the asymptotic geophysical regime. The state we characterise
in this section could be seen as discrete inertial wave turbulence (Kartashova, 2009), which
may lead to inertial wave turbulence in the weak dissipation and forcing regime. Note also
that none of the previous numerical or experimental set-ups studying rotating turbulence have
yet reported a regime dominated by inertial waves only and without a dominant geostrophic
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Ê
(ω
)/
e b

Roi = 5.74× 10
−2

t = 104

t = 986

0 2 4
Frequency ω

Roi = 6.78× 10
−2

t = 231

t = 869

Figure 3.16: Temporal spectra of the saturation flow obtained at E = 5.0× 10−6 and f = 4 with the
same process as in figure 3.12, but with higher forcing amplitudes or Roi values. As earlier, the inertial
wave domain is highlighted in grey, and the base flow and resonant peaks are clearly identifiable at
ω= 4 and ω= 2 respectively.

component (see Godeferd and Moisy (2015) for a review) as we observe here. We thus argue
that this work is a first step towards reaching an inertial wave turbulence regime.

5. Large forcing amplitudes: a geostrophic-
dominated regime

In this section, we detail our experimental finding that the wave-dominated regime van-
ishes at larger forcing amplitude and f = 4. This secondary transition is caused by the emer-
gence of a strong geostrophic anticyclonic vortex that back-reacts on the structure of the waves.
Our experimental set-up allows locating the secondary transition in the forcing-dissipation
(Roi , E) plane and to find the existence domain of the wave-dominated regime. As earlier, our
analysis starts by exploring the spectral content of the saturation flow. We then detail its shape
and amplitude and how it affects the resonant modes.

5.1 Spectral content of the saturation flow at large forcing ampli-
tude

We reproduce the temporal analysis of the saturation flow detailed in paragraph 4.2,
now applied to the larger forcing experiments. Several striking changes appear in these power
spectra displayed in figure 3.16 compared to what is obtained at lower forcing (see figure
3.12). First, the number of peaks in the inertial wave domain is reduced, and the remaining
ones are wider. Moreover, the ratio between the background level and the forcing peak—at
ω = f = 4— increases with the forcing amplitude, thus suggesting that the flow becomes
more turbulent. Lastly, the gap between the mean flow—at ω = 0—and the resonant mode
reduces from two to less than one order of magnitude between low (figure 3.12) and large
forcing.
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Figure 3.17: Left: mean flow U extracted by averaging the saturation flow observed for f = 4 at an
Ekman number E = 5.0× 10−6 and an input Rossby number Roi = 6.78× 10−2. The colorscale of the
arrows gives the norm of the velocity, normalised by the base flow velocity RoiΩa. The rotation of the
turntable being clockwise, the observed vortex is an anticyclone. Lengths are normalised by a. Right:
zonal average of the mean flow orthoradial velocity at the same Ekman number; it is normalised by
aΩ0, independently of Roi , which enhances the dramatic change of mean flow.

It is thus clear that the saturation flow has transitioned towards another regime: the
many triadic resonances that clearly appeared in the inertial modes domain in figures 3.12
and 3.13 are no longer present.

5.2 The emergence of a strong geostrophic anticyclonic vortex

The key to the transition out of the wave-dominated regime is the rise of the geostrophic
mean flow amplitude, a feature noticed in figure 3.16. The aim of the present paragraph is to
explain the properties of this particular component of the saturation flow and to quantify its
evolution when the forcing amplitude, or equivalently Roi , is changed.

The geostrophic component of the flow is extracted by time averaging the velocity fields
over a sufficiently long time period. It is found that 5 rotation periods are sufficient to average
a representative mean flow, although we perform the averaging operation over the full length
of a recording, which typically ranges from tens to about a hundred rotation periods.

A typical view of the mean flow is given in the left panel of figure 3.17. Regardless
of the forcing amplitude and the rotation rate, the mean flow U always adopts the shape of
an anticyclonic zonal wind, i.e. a stationary flow with mostly azimuthal velocity and which
rotates counter-clockwise —while the rotation of the turntable is clockwise. To better quantify
the structure and the amplitude of the meanflow U , we consider its zonal average Uϕ(r),
defined as :

Uϕ(r) =
1

2π

∫ 2π
ϕ=0

U · eϕ dϕ . (3.20)

It is computed by dividing the PIV field in concentric rings of radius r and averaging the
quantity U · eϕ on each ring. This zonal average is pictured in figure 3.17 right. There exists a
clear transition from the lowest values of the input Rossby number Roi ≤ 5.28×10−3 with very
weak vortex amplitude to larger values where a strong mean flow develops. A similar strong
anticyclonic vortex was also observed by Favier et al. (2015) and Grannan et al. (2014) in the
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Figure 3.18: a: experimental measurements of the root mean square value U 2d
rms of the mean flow,

defined in equation (3.21), as a function of the input Rossby number Roi; it is normalised by aΩ0 instead
of RoiaΩ0 which is an independent of Roi quantity. The red symbols materialise the approximate critical
Rossby number of the elliptical instability 10

p
E at the Ekman number corresponding to the shape of

the symbol. b: experimental measurements of the central vorticity of the mean flow ωz(r = 0) —see
formula (3.22)— as a function of Roi . It is normalised by the rotation rate Ω0. Note the the mean flow
is an anticyclonic vortex and has therefore a vorticity in the opposite direction to the rotation rate’s.
For both panels, the error bars indicate the typical variability in the saturation phase by computing the
standard deviation of U 2d

rms and ωz(r = 0) when more than one data set was available.

turbulent saturation of the libration-driven elliptical instability, at Ekman numbers ranging
from 5× 10−5 to 10−4 and at a single input Rossby number Roi = 0.272.

To further quantify the existence of a transition, we introduce two diagnostic quantities.
The first one is the root mean square value of the mean flow U 2d

rms defined as:

(U 2d
rms)

2 =
¬
U

2¶
(3.21)

where the brackets stand for average over the PIV field. The second one is the central vorticity
of the mean flow to quantify the central rotation rate of the geostrophic vortex. The average
radial vorticity profile ωz(r) is computed as:

ωz(r) =
Uϕ
r
+

dUϕ
dr

. (3.22)

Close to the centre, it is computed via fitting a 3rd order polynomial to the zonal velocity
profile uϕ as those depicted in figure 3.17; ωz(r) is then twice the first order coefficient of the
polynomial fit.

The evolution of the mean flow rms and central vorticity is shown in figure 3.18. In
both panels, a clear transition from a negligible amplitude mean flow to a strong mean flow is
observed, with a critical Rossby number Roi,c depending on the Ekman number. It proves the
existence of a secondary transition of the geostrophic anticyclone that builds on the turbulent
saturation of the libration-driven elliptical instability.

Despite a regular increase below the secondary transition, after careful examination, the
variations of the central vorticity with Roi do not match any scaling ωz(r) ∝ Ro2

i that has
been proposed and measured for mean flows driven by the viscous libration base flow alone
(Busse, 2010; Sauret et al., 2010; Sauret and Le Dizès, 2013) or by non-linear self interaction
of a single inertial waves in the laminar regime (Tilgner, 2007b; Sauret et al., 20140; Morize
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et al., 20100). This shows the mean flow does not result from non-linear self -interaction in
the boundary layer of simple structures such as the base flow or a single inertial mode.

For input Rossby numbers above the secondary transition, the central vorticity reaches a
plateau at the value of ∼ −2Ω0, meaning that the core of the vortex cancels out on average
the rotation of the fluid. It is striking that the central vorticity saturates at this value for
which anticyclones are marginally stable according to the Rayleigh criterion for centrifugal
instability (Afanasyev and Peltier, 1998; Drazin and Reid, 2004). Such a saturation value
emerging out of a turbulent saturation may be reminiscent of self-organised criticality (Bak et
al., 1987), an idea that is for instance invoked in stratified turbulence where flows are thought
to be maintained close to marginal stability respective to shear instability —see for instance
Salehipour et al. (2018).

Beyond this plateau, a slight decrease of both the rms and the central vorticity of the mean
flow is observed at higher Roi , at least for Ekman numbers E = 5.0×10−6 and E = 7.4×10−6.
It is possibly linked to a transition from rotating to isotropic turbulence as the input Rossby
number draws closer to 1 (Yokoyama and Takaoka, 2017). As observed for instance by Barker
and Lithwick (2013), increasing the amplitude of the forcing leads to the destabilisation of the
strong vortices produced by the saturation of the elliptical instability. Nevertheless, in our set-
up, the transition from a purely two-dimensional vortex to three-dimensional structures with
possible vertical motion is difficult to further quantify and ultimately irrelevant for geophysical
applications.

5.3 Building a regime diagram of the saturation flow

As noted in figure 3.18, the secondary transition between a wave-dominated and a
geostrophic-dominated regimes is characterised by a sudden increase in the mean flow rms
and vorticity. The critical value of Roi at which this transition occurs varies with the Ekman
number. Our experiments therefore allow to propose a regime diagram of the saturation of
the instability based on the mean flow diagnostic quantities.

We show in figure 3.19 the location of all the experiments that have been carried out at
a forcing frequency of f = 4 with different input Rossby numbers Roi and at different rotation
rates or Ekman numbers —see table 3.2. The experiments below and above the secondary
transition are discriminated by setting a threshold onU 2d

rms to 15 % of the maximal value over
all the experiments performed at the same rotation rate. This regime diagram reveals that the
critical value of the input Rossby number for the secondary transition Roi,c follows a power
law respective to the Ekman number, that is:

Roi,c∝ E1/2 (3.23)

although a definitive power law would require a larger range of Ekman numbers. We also re-
port for comparison in figure 3.19 the location of the control parameters explored by Grannan
et al. (2014) and Favier et al. (2015) and the points at which they observed either a strong
or weak vorticity mean flow. The location of the secondary transition they report is consistent
with ours. Note however that the state they observed below the secondary transition could
not convincingly be described as an inertial wave turbulence due to the larger values of the
Ekman number and input Rossby number they explored: they barely saw one or two couples
of daughter inertial waves; however, they definitely see a sharp transition in the amplitude of
the mean flow.
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Figure 3.19: Experimental determination of the position of the secondary transition of the geostrophic
vortex as a function of the Ekman number E and the input Rossby number Roi . The empty symbols
stand for the control parameters of Favier et al. (2015) and Grannan et al. (2014) for which a central
anticyclone similar to what is observed here is obtained in the non-linear saturation. As it can be noticed
in the data of Favier et al. (2015) figure 5, there exists a sharp increase in the central vorticity; points
below this transition are black and points above are red. To determine the location of the transition
in our experiments, we consider that the threshold is reached when the energy of the mean flow is
larger than 15 % of its largest value over a whole set of experiments carried out at the same Ekman
number but different input Rossby numbers. Varying this threshold, say from 5% to 20 %, may change
the nature of the points around the dashed line, but does not affect the overall trend for the separation
between the two regimes.

5.4 Back-reaction of the geostrophic vortex on the resonant modes

As it may be noticed from the previous results, one of the striking consequences of the
emergence of a strong geostrophic anticyclone is the loss of the numerous and well-defined
triadic resonances detailed in the previous paragraph. The blurring of triadic resonances by
geostrophic vortices is a well known feature of randomly-forced rotating turbulence: advection
of inertial waves by these slowly evolving modes Doppler-shifts their frequencies and forces
them out of resonant interaction (Campagne et al., 2015; Oks et al., 2017). Nevertheless, the
present case is different from usual rotating turbulence since energy is only supplied to the
system through a pair of inertial modes via the elliptical instability resonance. Besides, the
vortex is persistent and drastically changes the local rotation rate of the fluid at the centre of
the ellipsoid.

To better quantify the reaction of the waves to the existence of the strong anticyclone, we
first consider the total vorticity 2Ω0+ωz(r), which is shown in figure 3.20, and whereωz is de-
termined with equation (3.22). There exists a radius below which the global vorticity remains
significantly below 2Ω0, at the core of the anticyclonic vortex. Once the secondary transition
develops, the core of the anticyclone cannot sustain the resonant mode at ω = 2 since the
maximal frequency cannot exceed the total vorticity. As a consequence, the radial structure
of the resonant mode, which is constantly excited by the elliptical instability, changes as the
secondary transition develops. This is illustrated in figures 3.20 and 3.21, where it appears
clearly that the central amplitude of the resonant mode drops as the anticyclone emerges.
Moreover, the spatial area affected by the drop in amplitude corresponds to the typical size of
the vortex.
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the formula (3.15). The line materialises the frequencies of the modes that are in resonant interaction
with the unstable modes at ω= 2.

To conclude, the emergence of the secondary transition alters the spatial structure of the
resonant modes. The strong anticyclone that emerges significantly alters the global vorticity,
and hence the structure of inertial modes. If they still exist, triadic resonances cannot be
the same as in the low forcing case since the structure of the modes has to account for the
differential rotation introduced by the geostrophic flow. It is also interesting to note that
despite the presence of the strong anticyclone, its localisation at the center of the ellipsoid
ensures that the resonant mode persists outside the core of the vortex. As a consequence, the
interaction between the libration base flow and the perturbation flow is maintained over time.
For this reason, we do not observe cycles of growths and non-linear breakdowns provoked by
the geostrophic flow detuning, as observed by Barker and Lithwick (2013) and discussed in
chapter 2 section 3.1.

5.5 Triadic resonant interaction in the geostrophic saturation

The geostrophic anticyclonic vortex strongly affects the background rotation. Inertial
modes with specific frequencies may still exist, but as proved in the previous section, their
spatial structure must account for the presence of the strong mean flow. Non-linear three
modes interactions could very well happen between these distorted modes, and we wish to
investigate their existence using the bicoherence spectrum defined in relation (3.15). We show
in figure 3.22 an example of bicoherence spectrum computed from local measurements in a
typical experiment where geostrophic saturation is observed. Strong three modes interactions
at lower frequencies are clearly revealed by this diagnostic quantity. The maxima of the bico-
herence spectrum are rather widespread compared to the case of low forcing amplitudes (see
figure 3.14). This larger spread of the interacting mode frequencies is not surprising: increas-
ing the amplitude of the forcing and thus the amplitude of the modes leads to a larger number
of near-resonant interactions, as it can be seen from the resonance condition (2.32) derived
in chapter 2 section 2.3. We therefore show that the presence of the strong geostrophic flow
does not disrupt the usual non-linear processes between modes, even though the structure of
the modes has to account for the global modified rotation rate.
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6. Discussion: the origin of the secondary
transition

The spontaneous excitation of geostrophic structures by waves is a long standing is-
sue in rotating fluid studies. As noted by Kerswell (1999), geostrophic vortices are always
observed to emerge from non-linear interaction of waves in spite of the theorem proved by
Greenspan (1969) stating that two inertial modes cannot transfer energy to vortices, at least
in the asymptotic regime of low Rossby number. Direct and non-resonant excitation of strong
zonal flows by non-linear self-interaction of inertial modes in the boundary layer have been
characterised in simulations and experiments (Tilgner, 2007b; Sauret et al., 20140; Morize
et al., 20100), but cannot be responsible for a sharp secondary transition, as the amplitude
of the mean flow should be merely proportional to Ro2

i . To explain the observation of strong
geostrophic modes in rotating fluids, Kerswell (1999) and Smith and Waleffe (1999) proposed
four-modes resonant instabilities. The inviscid growth rate of such instabilities is proportional
to Ro2 where Ro is a Rossby number referring to the amplitude of the waves. As damping in
a closed container is proportional to

p
E, the threshold Rossby number of the instability Roc

follows a power law (Kerswell, 1999):

Roc∝ E1/4 . (3.24)

Assuming that the saturated amplitude of the waves scales linearly with Roi in the non-linear
regime of the elliptical instability, the threshold we observe in figure 3.19 for the secondary
transition is inconsistent with the scaling (3.24). One possibility is that the dissipation of the
mode in the range we explore is in E —i.e. volumic— instead of E1/2 —parietal—, a situation
that has been reported for instance by Lemasquerier et al. (2017) but at slightly higher Ekman
numbers and in the presence of a solid inner core. The scaling (3.24) would still apply in the
planetary limit.

Another plausible way to explain the observed scaling may be that the secondary transi-
tion we detail in the present chapter is caused by finite Rossby effects. In particular, a helical
wave structure under an insufficient rotation rate could be unstable to shear-driven instabil-
ities since they contain inflection points (Drazin and Reid, 2004). The growth rate of such
a secondary instability would then be proportional to the amplitude of the wave, i.e. to the
Rossby number. Additional theoretical studies are needed to conclude on that matter, and will
be carried out in the next chapters.

7. Another forcing frequency, f = 2.5

We wish to compare the results obtained in the previous sections at f = 4, and in par-
ticular to probe the existence of a secondary transition, at other forcing frequencies. It is,
in general, a difficult task to find a frequency for which we observe a resonance of a mode
with mostly horizontal velocities and which is not a large-scale mode. f = 4 has all these
characteristics, and although the horizontal structure of the resonant modes is large scale, it
comprise ∼ 5 horizontal layers of alternating velocities in the vertical direction. Interesting
behaviours were for instance observed at f = 1.53 but because of large vertical velocities, the
flow measured via the PIV algorithm in the equatorial plane was of unsatisfying quality. In this
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Figure 3.23: Ensemble average of temporal power spectra for a set of experiments at different Roi for
a libration frequency f = 2.5 and an Ekman number E = 5.0 × 10−6. The frequency ω is given in
rotation units. The construction and normalisation of these power spectra are identical to those used
in figure 3.12. The principle peaks are ω = f = 2.5 corresponding to the forcing flow and the peaks
aroundω= 1.25 which correspond to resonant waves. Note that the precise frequency of the resonant
waves at Roi = 8.86× 10−2 are specified in figures 3.24 and 3.25.

chapter we focus on the saturation observed at f = 2.5 and an Ekman number E = 5.0×10−6

which meets at least the horizontal velocity requirement.

7.1 Spatial and temporal analysis of the flow

Temporal content of the saturation flow and variations with Roi

In order to draw comparisons with what has been obtained in the previous case f = 4,
we first introduce the ensemble averaged temporal power spectra that are computed at three
different input Rossby numbers; they are shown in figure 3.23. Sharp peaks corresponding to
the forcing frequency ω = f = 2.5 and the resonant modes ω ∼ 1.25 clearly appear in these
power spectra. Nevertheless, several differences can be spotted compared to the case f = 4.
First, apart from the peaks, the background noise level does not increase with the Rossby
number as it has been previously observed. This means that turbulence and the associated
creation of smaller scales does not develop as the input Rossby number Roi is increased. The
second difference is that the spectra enrich in sharp peaks when Roi is increased, which is a
reversed evolution compared to the case f = 4.

Spatial structure of the resonant modes

To improve our understanding of the saturation flow, we extract in the case Roi = 8.86×
10−2 the different structures associated with a sharp peak in the inertial modes range, i.e. the
temporal Fourier components û(r ;ω) of the velocity field at these specific frequencies. The
result of such a process is shown in figure 3.24. Two main pairs of resonant modes are identi-
fied:

- ω= ±1.25 such that 2ω= f ;

- ω1 = 1.18 and ω2 = 1.31 such that ω1 +ω2 = 2.49.
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d. Re [ûφ] ω = 1.31,

−0.5 0.0 0.5
x

−0.5

0.0

0.5

y
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base flow. For the particular case where only the frequency 1.25 is given, the resonant structure (a
superposition of m = 0 and m = 2 modes) interacts with itself and the m = 2 libration flow. The two
right panels are focused on daughter modes triadic interactions. We find that frequency combination
1.50 − 0.25 = 1.25 is consistent with wave number combination −1 + 3 = 2; similarly frequency
combination 1.31−1.07= 0.25 is consistent with wave number combination 0−1= −1 or 0−3= −3.

Computing their azimuthal wave number decomposition further supports that they are indeed
in interaction with the libration flow with wave number m = 2 (see figure 3.25). These pri-
mary modes are themselves involved in triadic resonant interaction with modes at frequencies
ω = 0.25, 1.07 and 1.50, which is also confirmed by their azimuthal wave number decom-
position (see figure 3.25). We also note that all the extracted modes have large scale spatial
structures, in particular the resonant modes. To explain the absence of turbulence attested in
the temporal spectra (figure 3.23), one possibility is that the typical scale at which the energy is
injected is too large to drive shear instability producing smaller scales. We observe instead the
emergence of an increasing number of daughter modes via triadic resonances with increasing
non-linearity, or equivalently Roi .

7.2 The mean flow

Using the same methods as in the preceding f = 4 case, we compute the mean flow, its
rms velocity and its central vorticity. The vector fields extracted for the three values of the
input Rossby number are shown in figure 3.26. Although the core of the mean flow is again
an anticyclonic vortex, its overall structure appears to be more complex than what has been
observed at f = 4. It comprises bands of alternating velocity, the most striking example being
the mean flow measured at Roi = 8.86× 10−2.

To further quantify the properties of the mean flow as Roi is varied, we show in figure
3.27 its rms value and central vorticity. Despite the low number of points, the evolution of both
quantities with Roi is no match with the f = 4 case: the mean flow does not exhibit any insta-
bility type of behaviour. The rms velocity of the base flow always has significant values whose
order of magnitude is similar to what has been observed at f = 4 when the secondary transi-
tion has fully developed. Despite these quite large rms amplitudes, the dimensionless central
vorticity never reaches the critical value −2. Unfortunately, lower forcing amplitudes where
not explored and it is not possible to conclude whether a secondary transition is observed at
lower Roi .
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Figure 3.26: Vector field of the mean flow at f = 2.5 and an Ekman number E = 5.0 × 10−6, for
an increasing input Rossby number Roi . The colour scale of the arrows gives the norm of the velocity
scaled by RoiaΩ0.
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Figure 3.27: a: experimental measurement of the root mean square value of the mean flow, based on
the measurement of the total kinetic energy of the mean flow. It is compared to the typical rotation
velocity aΩ0, as in figure 3.18. b: experimental measurements of the central vorticity of the mean flow,
normalised by the rotation rate Ω0. As in the case f = 4, the central vortex is always anticyclonic so
that ωz(r = 0) and Ω0 are of opposite signs.
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Even if the mean flow does not emerge from an instability, its origin is also difficult to
conciliate with direct forcing mechanisms (Tilgner, 2007b; Morize et al., 20100; Sauret et
al., 20140). If the geostrophic mean flow was only driven by non-linear self-interaction of a
particular mode, its shape would not change with the Rossby number, and the central vorticity
should follow a quadratic trend with Roi . None of these features are observed in figures 3.26
and 3.27. One possibility is that each mode drives a geostrophic flow through non-linear
interactions in the boundary layer, and the total mean flow results from the superposition of
the ones driven by each mode, provided it does not alter too much the local rotation rate.
As a result, when Roi is increased to 8.86× 10−2, the many different modes force a resulting
mean flow with a more complex structure. Nevertheless, further experiments or numerical
simulations are needed to clarify the origin of the mean flow.

7.3 The saturation scenario at f = 2.5

This forcing frequency is rather complicated to link with the study at f = 4. On one
hand, the observation of triadic resonant interactions associated to narrow peaks in the tem-
poral spectra of the flow suggests that the non-linear saturation of the instability is below the
secondary transition observed in the f = 4 case. On the other hand, the geostrophic flow has a
significant amplitude and vorticity which is similar to those observed above the secondary tran-
sition in the f = 4 case. We may thus formulate three hypotheses for the saturation scenario
in the case f = 2.5. The first one, supported by the rather large amplitude of the geostrophic
flow, is that the secondary transition occurs below the forcing amplitudes here considered. It
is then difficult to conciliate our experimental result with the idea that shear instability drives
the secondary transition since, conversely to the case f = 4, all the extracted modes are large
scale. As a consequence, the secondary transition should be located at higher forcing ampli-
tude compared to the f = 4 threshold Roi ∼ 6 × 10−2. The second hypothesis is that the
transition occurs above the Roi range featured in the present section, which is supported by
the increased number of daughter wave generation by triadic resonance as Roi is increased.
The driving mechanism for the mean flow could be direct forcing by the waves via interaction
in the viscous boundary layer (Tilgner, 2007b; Morize et al., 20100; Sauret et al., 20140). It
is, however, difficult to confirm this hypothesis: the structure of the mean flow varies with the
forcing amplitude and there is no simple scaling between Roi and the rms of the mean flow.
The last hypothesis that should also be considered is that there is no secondary transition in
the case f = 2.5. The universality of the secondary transition and its origin will be questioned
in the next chapters. In any case, more experiments are needed to confirm which of these
three hypotheses is adequate.

8. Conclusion

Throughout this chapter, we have explored the non-linear fate of the libration-driven
elliptical instability in low dissipation and low forcing regimes. Despite it being mostly fo-
cused at one particular forcing frequency, f = 4, we believe it brings some clarifications re-
garding the dichotomy between wave-dominated and vortex-dominated types of saturation
and their conditions of existence. The main result of our work is to prove the existence of
a regime dominated by inertial waves in triadic resonance interactions at low forcing am-
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Figure 3.28: Schematic regime diagram of the saturation of the elliptical instability proposed after
the present experimental study, depending on the Ekman number E and the input Rossby number Roi ,
building on figure 3.19. In particular, we place the geophysically relevant regime at low E and Roi . The
elliptical instability threshold shown here is associated to a viscous damping rate dominated by wall
boundary layer friction corresponding to a Ro∝ E−1/2 line. We report the possible behaviour of the
limit between the geostrophic-dominated and the wave-dominated regimes at low E and Roi with the
dotted lines: the case where the secondary transition would be a finite Rossby number effect (E0 line),
the case where the four mode interaction causes the transition (E−1/4 line) and lastly the continuation
of what is observed here (E−1/2 line). We also draw thin dashed lines for which the Reynolds number
Re = Roi/E is constant, and the direction in which it increases.

plitude, i.e. a—discrete—inertial wave turbulence regime. Such a regime vanishes with in-
creasing forcing amplitudes due to a secondary transition causing the emergence of a strong
geostrophic anticyclone altering the inertial modes’ structure. This transition sets the limits of
the wave-dominated regime: it allows drawing a regime diagram of its existence depending
on the dissipation and the forcing amplitude. We hence find that the wave-dominated regime,
which is a precursor of inertial wave turbulence, is the relevant one for geo- and astrophysi-
cal applications, as planets subject to the elliptical instability are usually close to the primary
instability threshold (Cébron et al., 2012a). It is the first time that a wave-dominated and a
geostrophic-dominated regimes are observed within a single experimental set-up by changing
one control parameter only. Note that transition from two-dimensional to three-dimensional
rotating turbulence has been observed at high forcing amplitude, close to the point where
non-linear effects and the Coriolis force are of similar importance (Barker and Lithwick, 2013;
Alexakis, 2015; Yokoyama and Takaoka, 2017). We cannot propose a complete description of
secondary transition with the presently available data. Investigation of secondary instability
of inertial modes is carried out in chapter 4.

We propose a general non-linear saturation regime diagram in figure 3.28 based on our
experimental study, and in particular on the results of figure 3.19. In the case where the
geostrophic instability is caused by finite Rossby number effects, there should exist a critical
input Rossby number below which only the wave-dominated regime is observed. If due to
four-modes interaction (Kerswell, 1999; Smith and Waleffe, 1999), in the asymptotic regime
of low dissipation, the secondary transition should follow a Roi,c ∝ E1/4. We also report in
this diagram that drawing closer to the geophysical regimes is also associated with an increase
of the input Reynolds number Roi/E. The saturation of the elliptical instability in planetary
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cores and in stellar interiors should therefore be more turbulent than what is observed here. In
particular, instead of the few secondary modes generated by triadic resonance that we report
in this chapter, it is expected that a very large number of them should be excited in the form
of inertial wave turbulence. This will be further explored with numerical modelling in chapter
6.



Chapter 4
Finite wave amplitude instabilities

1. Introduction: the geostrophic problem

In the preceding experimental study, we found a secondary instability of a geostrophic an-
ticyclone which grows during the turbulent saturation of the elliptical instability. As explained
in the introduction, according to the theorem of Greenspan (1969), geostrophic modes can-
not be involved in resonant triads and should not undergo instability growing on time scale
of order Rossby. Nevertheless, geostrophic modes are often observed to take over flows in
which energy is supplied through waves (Kerswell, 1999), and our experiments are further
evidence supporting this observation. To resolve this paradox, Kerswell (1999) and Smith
and Waleffe (1999) have proposed four-modes interaction mechanisms to explain geostrophic
instabilities. Noting Ro the dimensionless amplitude of waves (Ro is the Rossby number asso-
ciated to the waves), the inviscid growth rate of the quartet instability is proportional to Ro2.
Instead of four-modes interaction, Smith and Lee (2005) have proposed that near-resonant tri-
adic interactions are responsible for significant energy transfers towards geostrophic modes.

In this chapter, we propose to re-evaluate the wave-vortex interaction in the light of
our experiments. We have indeed revealed in chapter 3 a secondary transition associated
to the emergence of a strong geostrophic anticyclonic vortex, possibly due to an instability.
According to the regime diagram displayed in figure 3.19, the input Rossby number threshold
Roi,c of this instability follows a power law Roi,c∝ E1/2. Assuming that the viscous damping
of the resonant modes follows a

p
E law, this result indicates that the inviscid growth rate

of the instability is proportional to the Rossby number of the saturation flow ∼ Roi . In the
present chapter, we explore with an idealised model the existence of instabilities driven by
inertial waves and involving a geostrophic mode growing with a rate proportional to the wave
amplitude. If such instabilities exist, they should however vanish when the amplitude of the
waves is decreased to 0, and must therefore occur only at finite wave amplitude.
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2. Investigating a single wave instability

2.1 Hypotheses and equations

The aim of this study is to investigate the stability of a single plane inertial wave Uw with
eigen frequency ω0 which writes:

Uw = hk ei(k·x−ω0 t) (4.1)

where hk is a helical mode with s = 1 (see chapter 2 section 2.1). We remind that Uw satisfies
the linearised Euler equation including the Coriolis force:

∂tUw + 2Ω×Uw = −∇pw , (4.2)

and is even a non-linear solution since Uw ·∇Uw = i(k · Uw)Uw = 0 and k · hk = 0 for an
incompressible plane wave. ω and k are related by the dispersion relation of inertial waves:

ω0 = 2Ω
kz

k
. (4.3)

We investigate the stability of this inertial wave via solving the time evolution of perturbations
u to the wave Uw. The total flow writes Uw + u, and as Uw is solution of the Euler equation,
the dimensionless equations driving the dynamics of the perturbations are:�

∂t u + Ro (Uw ·∇u + u ·∇Uw) + u ·∇u + 2ez × u = −∇p+ E∇2u
∇ · u = 0

(4.4)

where time is scaled by Ω−1 and length by a typical domain size L. We have introduced the
Ekman number E which compares viscosity and Coriolis force, and an input Rossby number
Ro which quantifies the dimensionless amplitude of the plane wave. To derive the equations
(4.4), we have taken into account the fact that Uw is a solution of the Euler equation, and
we have assumed that its dissipation is compensated by a suitable body force to facilitate the
study of its stability.

We choose to work mostly with a wave with k = 2π [4,0,8]. This particular wave has
been introduced by Embid and Majda (1998) and used by Smith and Waleffe (1999) as an
adequate mode to study waves non-linear interactions as it is involved in an exact triadic
resonance with the modes 2π [−6,0,3] and 2π [10, 0,5]. Note that in the present problem
four modes interactions cannot be observed since only one wave is maintained (Smith and
Waleffe, 1999).

2.2 The SNOOPY code

To solve this equation, we use the code SNOOPY developed by Lesur and Longaretti (2005).
It is a pseudo-spectral code which solves to full Navier-Stokes equation including rotation in
a box with periodic boundary conditions.

The velocity and pressure fields {u, p} are decomposed into plane waves such that:

{u, p} = ∑
q

�
ûq , Π̂q

	
eiq ·x . (4.5)
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Calling Lx ,y,z the size of the box in the x , y, z directions, the vectors q are such that:

q = 2π

�
nx

Lx
,

ny

L y
,

nz

Lz

�
(4.6)

where nx ,y,z are integers ranging from 0 to Nx ,y,z the resolution of the simulation in each
direction. The Navier-Stokes equation is then solved as a dynamical system comprising of
Nx × Ny × Nz coupled modes. For all q , the equations on the mode

�
ûq , Π̂q

	
write:

dûq

dt
= − 2ez × ûq − Ek2ûq − iqΠ̂q − ÓNLq (4.7)

q · ûq = 0 . (4.8)

whereÓNLq stands for the non-linear terms computed in the real space and then Fourier trans-

formed to extract its q component. To solve the problem (4.4),ÓNLq includes u ·∇u and the
interaction terms between u and Uw. Although the Uw/u interaction is linear, including it
in the non-linear term turned out to be the most straightforward implementation building on
the original SNOOPY code. Taking Uw as an initial condition was also used for comparison to
ensure that the coding of the augmented non-linear term has been properly done.

Lastly, the SNOOPY code solves in fact implicitly the viscosity term −Eq2ûq , that is, it
solves the dynamics of modified modes

ûq exp(−q2Et) .

The time evolution of these modified modes is determined with a 4th order Runge-Kutta
method.

For the present chapter, all simulations are carried out with a resolution of 96 modes
in each direction with Lx ,y,z = L = 1. Increasing the resolution proves unnecessary as the
present work only focuses on the growth of the instability and not on its saturation; there is
no cascade towards smaller scales.

2.3 Geostrophic modes and inertial waves in the spectral space

Prior to delving into the stability of inertial waves, we first introduce how the spectral
space is useful to track the respective time evolution of inertial waves and geostrophic mode.

Diagnostic kinetic energy

Geostrophic modes are easily identified in the spectral space because one of their defining
properties is their z invariance: their wave vectors q are in the (xO y) plane, qz = 0. We thus
introduce two diagnostic kinetic energies to track the existence of geostrophic instabilities, the
kinetic energy of two-dimensional modes Eg—which includes slow geostrophic modes—and
the kinetic energy of three-dimensional modes E3d defined as follows:

Eg =
1
2

∑
q/qz=0

|ûq |2 and E3d =
1
2

∑
q/qz ̸=0

|ûq |2 . (4.9)



90

Rotation axis

Figure 4.1: Schematic cartoon of a wave vector q with its spherical angles ϕ and θ . The modes with
the same frequency as q have the same angle θ with respect to the rotation axis and thus lie on a cone.

Spatio-temporal energy spectrum projected onto the dispersion relation

The excitation of inertial waves may also be diagnosed with the use of spectral analysis:
the energy spectrum of the flow is projected onto the space (θ ,ω)where θ is the angle between
the rotation axis and the wave vector, and ω is the temporal frequency. Such a projection
is easily carried out from the spectral decomposition of the flow. A wave vector q may be
decomposed in spherical coordinates (q,θ ,ϕ), where ϕ is the azimuthal angle of the wave
vector and θ is the angle with the rotation axis (see figure 4.1). We first integrate the real part
of the modes complex amplitudes ûq (t) over the azimuthal angles and wave numbers, i.e. we
define the following quantity:

û(θ , t) =

∫ qm

q=0

∫ 2π
ϕ=0

ûq (t)q
2 sinθdqdϕ (4.10)

where qm is the maximal wave number set by the resolution. The quantity û(θ , t) is then
applied a Fourier transform in time to compute û(θ ,ω), from which the energy map E (θ ,ω)
is computed as

E (θ ,ω) = |û(θ ,ω)|2.

In this energy map, waves and geostrophic modes all align along the dispersion relation ω =
±2cosθ (see equation (4.3)).

Inertial waves are already known to be unstable via the triadic resonance mechanism
described in chapter 2 section 2.3. Such an instability may be easily identified once the energy
is projected in the (θ ,ω) subspace, as the growing waves must be lying along the dispersion
relation, and their frequencies ω1 and ω2 satisfy the resonance condition

ω1 +ω2 ±ω0 = 0 .

In addition, geostrophic modes are clearly identified at θ = π/2 and ω ≪ 1 as geostrophic
modes evolve slowly compared to the rotation time.

2.4 Outline

In the following, the stability of an inertial waves is explored via idealised numerical
simulations. We first carry out simulations initiated with a low amplitude initial noise. In the
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Figure 4.2: Left: time series of the kinetic energy contributions of the two- and three-dimensional
modes Eg and E2d (see definition (4.9)) at Ro = 2.8× 10−3. The measured growth rates for the am-
plitude of the three- and two-dimensional modes are reported along the curves. Right: map of the
spatio-temporal kinetic energy spectrum projected onto the dispersion relation sub-space E (θ ,ω) (see
definition in section 2.3). The horizontal dashed line materialises the frequency of the forcing wave,
and the plain line corresponds to the dispersion relation of inertial waves. Note that this map is sym-
metric with respect to the x axis since it is computed from the real part of the modes amplitudes only.

low wave amplitude regime, we retrieve the triadic resonant instability discussed in chapter
2 section 2.3. An exponential growth of two-dimensional modes is observed but appears to
be slaved to the daughter waves. At higher wave amplitude, the simulations feature a more
complex behaviour where three-dimensional modes and geostrophic flows grow together at
the same rate. To understand the various mechanisms driving the growth of two-dimensional
geostrophic modes, we proceed to idealised numerical simulations in well-controlled condi-
tions. We first exhibit the mechanism driving the geostrophic growth at low wave amplitude:
it is direct, non-linear forcing by the exponentially growing waves. Then, we proceed to nu-
merical simulations of the inertial wave stability with an initial condition comprising only one
geostrophic mode. We find that the latter is unstable provided the amplitude of the wave is
larger that a threshold that is independent of viscosity. To conclude, we show that this finite
amplitude instability is relevant to explain the experimental results, in particular the regime
diagram in figure 3.19 in chapter 3.

3. Simulations of instabilities driven by an in-
ertial wave

3.1 The low wave amplitude number limit: triadic resonances

To start with, we examine a simulation carried out at small wave amplitude Ro = 2.8×
10−3 with an Ekman number E = 10−6. The initial condition is a random noise restrained to
wave vectors q such that |q |< 20π. We track the energy of modes invariant along the rotation
axis Eg and the rest of the flow E3d to investigate the existence of instabilities characterised by
exponential growth. We also map the energy spectrum projected onto the dispersion relation
sub-space in order to characterise the nature of the growing modes. These diagnostic quantities
are shown in figure 4.2.
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Figure 4.3: Left: time series of the kinetic energy contributions of the two- and three-dimensional
modes Eg and E3d (see definition (4.9)) at Ro = 2.8× 10−2. The measured growth rates are reported
along the curves. Right: map of the kinetic energy projected in the dispersion relation sub-space
E (θ ,ω) (see definition in section 2.3). The horizontal dashed line materialises the frequency of the
forcing wave, and the plain line corresponds to the dispersion relation of inertial waves.

After the initial noise has relaxed, we observe an exponential growth of three-dimensional
modes with an O(Ro) growth rate. The growth of the two-dimensional modes is delayed and
is associated to a rate about twice larger than the three-dimensional modes. The energy map
E (θ ,ω) reveals that the unstable structures are inertial waves since their energy is located
along the dispersion relation. Moreover, the energy is focused on two spots whose frequencies
are symmetrical with respect toω0/2. It proves that the instability we observe is due to triadic
resonant interaction: the frequencies of daughter waves ω1 and ω2 is related to the forcing
wave frequency ω0 by the relation ω1 +ω2 = ω0

1. Although the kinetic energy time series
indicate that two-dimensional modes grow exponentially, the delayed growth and the twice
larger rate rather indicates that their amplitude is slaved to the growing waves. Among the
unstable waves, the non-linear interaction of one or more pairs of them directly forces two-
dimensional modes. This non-linear direct interaction deserves a section of its own and will
be detailed later in section 4 of this chapter.

The growth ends with a saturation of the amplitude of the waves and the two-dimensional
modes, which is due to the non-linearity.

3.2 The case of larger wave amplitude

We present in this section the results of a simulation of inertial wave stability at a larger
wave amplitude Ro = 2.8× 10−2 while keeping the Ekman number to E = 10−6. The initial
conditions are the same as in the preceding section. The diagnostic kinetic energies time series
and the diagnostic dispersion relation energy map are shown in 4.3.

We notice in the present simulation the exponential growth of geostrophic modes si-
multaneously with the growth of three-dimensional modes and at the same rate. This is dif-
ferent from the lower wave amplitude case where the growth of two-dimensional modes is
delayed and has a rate twice as large as the three-dimensional perturbations. The computa-

1Note that the relation (2.34) derived in chapter 2 was rather ω1 +ω2 +ω0 = 0 but since the field is real,
both frequencies ±ω0,1,2 are present so that a relation of the type ω1 +ω2 = ω0 is also characteristic of triadic
interaction.
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Total field z-averaged field

Figure 4.4: Snapshot of the z-component of the vorticity of the total perturbation velocityωz = (∇×u)z
(left) and its average along the rotation axis z (right). The snapshots are taken during the growth phase
for Ro = 2.8× 10−2. The principal observed geostrophic mode is k g = 2π [±1, 5, 0]. The scale of the
vorticity amplitude is arbitrary and different on both panels to highlight their structures.

tion of E (θ ,ω) confirms that the qz = 0 modes indeed have a slow evolution time scale since
their frequency is concentrated towards ω = 0. This geostrophic growth goes along with the
emergence of a wealth of other three-dimensional structures that are close to the dispersion
relation of inertial waves (see figures 4.3 and 4.4), and reminiscent of the triadic resonant
interactions observed in figure 4.2. We show in figure 4.4 right a snapshot of the vorticity of
the growing perturbation flow u, and its vertical average showing the growing geostrophic
mode at Ro = 2.8× 10−2. We identify from the averaged snapshot the principal wave vector
k g = 2π [±1,5,0].

The geostrophic exponential growth measured in figure 4.3 is a specific feature of the
moderate inertial wave amplitude. Its vanishing at Ro = 2.8× 10−3 is not a consequence of
viscous damping: the reduction of the growth rate due to bulk dissipation dissipation amounts
to q2E ∼ 4× 10−3 for q/(2π) ∼ 10; if the growth rate of the geostrophic mode is ∼ 9.5Ro at
Ro = 2.8× 10−2, it should still be positive at Ro = 2.8× 10−3. We therefore conclude that the
inertial wave instability at higher amplitude is note solely driven by triadic interaction as in
the low amplitude case. A more complex behaviour involving geostrophic modes is observed
and remains to be characterised.

4. The low wave amplitude case: direct forc-
ing of geostrophic modes

We have proposed that in the low amplitude case presented in figure 4.2, the growth of
geostrophic modes is not due to an instability but to direct forcing where two growing modes
interact non-linearly with each other to supply energy to a third mode. This mechanism is
different from a resonance where two daughter inertial modes grow exponentially when a
third one is maintained. In this section, we briefly introduce a mathematical description of
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Figure 4.5: Schematic cartoon of the direct forcing of a two-dimensional mode p g which is excited at
a very low frequency and is therefore geostrophic.

direct forcing in the context of the low wave amplitude simulation (section 3.1) and propose
a proof-of-concept simulation.

4.1 A mathematical description of direct forcing

Consider two modes with wave vectors q0 and q1 that are excited at their eigen frequen-
cies ω0 and ω1. In what follows, we assume that the amplitudes b0,1 of the helical modes
h0,1 corresponding to these two waves has a prescribed temporal evolution. Following what is
observed in the low wave amplitude simulation (see section 3.1), the modes q0,1 could be, for
instance, daughter modes of a triadic resonance with the imposed wave k. Their amplitudes
b0,1 are exponentially growing functions over a long timescale O(Ro−1). Among the collection
of growing daughter waves, let us assume that q0,1 are such that their non-linear interaction
excite a two-dimensional mode p g such that q0 + q1 + p g = 0 and pg,z = 0, as depicted in
figure 4.5. The temporal evolution of the amplitude bg of the p g helical mode hg is related to
the prescribed amplitudes b0,1 according to (see chapter 2 relation (2.26)):

ḃ2(t) =
1
2

b0(t)
∗ b1(t)

∗ (s1 q1 − s0 q0)h
∗
g · (h∗0 × h∗1) ei∆ωt (4.11)

where the viscous damping has been dismissed for clarity, and where we have introduced s0
and s1 the sign of the helicity of waves q0 and q1, and ∆ω = ω0 +ω1. Note that if b0,1 are
slowly varying functions, the frequency of the two-dimensional mode is∆ω; in configurations
such as the schematic cartoon of figure 4.5, ∆ω≪ 1 so that the two-dimensional mode is low
frequency, and thus geostrophic. Direct forcing is also a triadic interaction, but it differs from
triadic resonance as two waves are maintained instead of one, and thus the amplitude of the
third wave is slaved to the amplitudes of the two maintained waves.

Let us consider two waves q0 and q1 growing exponentially at the same rate σ, that is:

b0,1(t)∝ eσt .

The equation on the amplitude b2 is recast into the following simplified form:

ḃ2(t) = I e(2σ+i∆ω)t . (4.12)
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Figure 4.6: Time series of the kinetic energy of the imposed waves (not simulated but given for ref-
erence) and the two-dimensional modes (Eg). The imposed inertial waves’ amplitudes grow at a rate
σ = 0.1, and their energy grows at rate 2σ. The expected growth rate of the two-dimensional modes’
energy is 4σ (see equation (4.14)), which clearly fits the data from the simulations.

Assuming that initially b2 = 0, the preceding equation is simply solved by:

b2(t) =
I

2σ+ i∆ω

�
e(2σ+i∆ω)t − 1
�

(4.13)

If b2 is a two-dimensional mode, i.e. k2z = 0, the energy in the two-dimensional modes E2d
writes:

E2d =
1
2

b∗2 b2 =
|I |2

2(4σ2 +∆ω2)

�
e4σt − e(2σ+i∆ω)t − e(2σ−i∆ω)t + 1

�
. (4.14)

The fastest growing term in the two-dimensional modes energy is exp(4σt). As a consequence,
the energy of two-dimensional modes excited by direct forcing grows twice as fast as the grow-
ing modes k0,1 (whose energy growth rate is 2σ) as observed in figure 4.2. Note that the
frequency of the two-dimensional modes is∆ω ̸= 0 according to (4.13): the two-dimensional
modes are not necessarily slowly varying when they are directly forced.

4.2 Numerical simulation of direct forcing

We propose a proof-of-concept simulation of exponential growth of two-dimensional
modes. Let us consider the two waves k0 = 2π [5,5,8] and k1 = 2π [5,4,−8] with the
same helicity signs s0 an s1. Their eigen frequencies are ω0 ≃ 1.498 and ω1 = −1.561 so
that |∆ω| = |ω0 +ω1| ∼ 6.3 × 10−2. As a consequence, the two-dimensional mode excited
through direct interaction k2 = 2π [−10,−9,0] is nearly geostrophic as its frequency ∆ω is
small compared to the rotation rate.

We aim at showing with a simulation that the exponential growth of the two inertial
waves k0,1 drives the growth of the near-geostrophic mode k2 with a rate twice as large via
direct interaction. Exponentially growing amplitudes are imposed on the two inertial waves,
that is:

b0,1 = 1× 10−5eσt



96

0.0 0.5 1.0
Ro ×10−1

0.0

0.5

1.0

G
ro
w
th

ra
te

σ

ky = 5

ky = 3

ky = 1

0 π/4 π/2
Angle θ

0

1

2

F
re
q
u
en
cy

ω

Ro = 2.3× 10−2

10−11

10−10

E(ω, θ)

Figure 4.7: Left: Growth rate σ of the geostrophic modes as a function of the Rossby number Ro
for a single two-dimensional mode initial condition k g = 2π

�
0, ky , 0
�

with ky ∈ {5, 3, 1}. For large
values of Ro and ky = 5, the growth rate σ is very well approximated by a law σ = 13.3(Ro − Roc)
with Roc ≃ 6.2× 10−3. Note that Roc is large compared to the critical Rossby number expected from
viscous dissipation which is of order ∼ 10−5. Right: Energy map in the dispersion relation sub-space
E (ω,θ ) for an idealised simulation of the growth of the instability with Ro = 2.3× 10−2 and ky = 5.
The spectrum is integrated over the growth phase. The vertical dashed line marks the value of θ for
the modes k + k g and k − k g , which in this case are symmetrical with respect to the (xOz) plane and
thus have the same angle θ .

with σ = 0.1. As in sections 2.1 and 2.2, we solve the perturbation u to the imposed waves,
and the interaction between u and the waves is coded in the non-linear term.

We present in figure 4.6 the kinetic energy time series obtained from simulation the
perturbation flow u. The Ekman number is set to E = 10−8 to discard any effect of viscosity,
and the initial condition is u = 0. In addition, the spatial resolution is set to 963. The kinetic
energy time series of the imposed waves (which are not simulated, but given for reference)
and the two-dimensional modes are shown in figure 4.6. We indeed observe an exponential
growth of the near-geostrophic mode k2 with the expected rate. This simulation supports that
direct forcing by the growing inertial waves is responsible for the growth of two-dimensional
modes in the low wave amplitude simulation first presented in this chapter (see figure 4.2).

5. The finite wave amplitude instability mech-
anism

5.1 Determining the properties of the geostrophic instability

The simulations of sections 3.1 and 3.2 suggest the existence at moderate Rossby number
Ro of a finite wave amplitude instability involving geostrophic modes, i.e. an instability that
vanishes below a finite value of Ro that is independent of the viscous dissipation. To precisely
quantify the growth rate of a geostrophic mode alone in the moderate Rossby case, we proceed
to simulations where the initial condition comprises only the mode k g = 2π

�
0,±ky , 0
�

with
ky ∈ {1,2, 5}. The Ekman number is set to 10−8 in order to discard any effect of the viscosity
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Rossby number base on the forcing wave number Ro f = Ro K/(2π) is used instead of a Ro.

in the instability.

These idealised simulations confirm the observations made in sections 3.1 and 3.2 with a
noise as an initial condition. The growth rate of the geostrophic instability, shown in figure 4.7
is O(Ro) at sufficiently large values of Ro, but decreases to 0 around Ro ≃ 10−2. It is well above
any viscous threshold since the typical viscous damping for a wave vector q is |q |2E ∼ 3×10−5

for q/(2π)∼ 10.

In order to gain further insight in the instability mechanism, the power spectrum pro-
jected in the dispersion relation sub-space E (θ ,ω) is displayed in figure 4.7 for Ro = 2.3×10−2

and ky = 5. For this Rossby number, the growth rate is small which enables to integrate the
spectral content of the flow over long time periods. We again observe the focusing of energy
in two particular locations. The first location is associated to geostrophic modes. The other
location corresponds in terms of angle θ to the modes closing the triads formed by k and k g ,
that is k ± k g . These latter modes are excited outside their eigen frequencies since their en-
ergy location is off the dispersion relation. They are instead excited at the same frequency as
the forcing mode ω0. We thus confirm that the instability mechanism does not correspond to
exact resonant triads.

In order to understand what sets the critical Rossby number at which the instability van-
ishes, we vary the wave number of the forcing wave, i.e. we consider a forcing wave vector
K = 2k, k and 0.5k as forcing waves while keeping k g = 2π

�
0,±kg y , 0
�

as an initial condi-
tion with kg y = 10, 5 and 3 (in the order of |K |). We observe that larger wave numbers lead
to an increase in the growth rate along with a decrease of the critical Rossby number (see fig-
ure 4.7). This result shows that the Rossby number based on the domain size is not adequate
to describe the wave instability. The only relevant length in the problem is the maintained
mode’s wavelengths, which leads us to introduce an effective Rossby number Ro f based on
the wave length of the forcing wave, that is Ro f = Ro K/(2π). As it can be noticed in figure
4.8, using the Ro f instead of Ro compels all the growth rates at different forcing wave num-
bers to fall on the same master curve, which proves it is the relevant parameter to describe
the geostrophic instability. Moreover, the critical value of the Rossby number beyond which
the instability ceases to exist is very well described by the effective critical Rossby number
Ro f ,c ≃ 0.10− 0.15.
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Figure 4.9: Schematic cartoon of a near resonance involving an imposed wave k and a geostrophic
mode p g . The three modes are such that the sum of the eigen frequencies ∆ω = ωk +ωq +ωp g

=
ωk +ωq does not satisfy the exact resonance condition, that is, ∆ω ̸= 0. Note however that ∆ω≪ 1
is a priori required to ensure significant energy transfer, according to chapter 2 relation (2.32).

5.2 An instability based on near-resonance?

In chapter 2 section 2.3 we have developed the triadic resonance and near-resonance
mechanisms that transfer energy between three inertial waves. We have also shown in section
2.4 that exact resonance involving a geostrophic mode has exactly zero transfer coefficients.
The existence and implications of near-resonance for the growth of geostrophic modes have
not been yet examined, and we propose in this section a theoretical development to explore
their relevance to the present finite Rossby number instability.

With the helical modes formalism, we aim at estimating the growth rate of quasi-reso-
nances involving a two-dimensional mode. We consider three modes with wave vectors k, q
and p g , the last one being two-dimensional, i.e. pgz = 0. Let us assume that this triad is near
resonant, that is, there exists two wave vectors k0 and q0 that are close to k and q respectively
and such that their wave vectors and eigen frequencies satisfy:�

k0 + q0 + p g = 0
ωk0
+ωq0

+ωp g
=ωk0

+ωq0
= 0 . (4.15)

We also define wave vector perturbations δk and δq :�
k = k0 +δk
q = q0 +δq .

(4.16)

We assume that the wave amplitude Ro is sufficiently small so that |δk| ≪ k and |δq | ≪ q;
we also assume that the sign of the helicity s of the perturbed wave vectors is the same as
the modes involved in the exact resonance. As in chapter 2 section 2.4, the exact resonance
conditions (4.15) give:

k0 = q0 , sk = sq and
sk kz0

k0
+

sqqz0

q0
=ωk0

+ωq0
= 0 . (4.17)

Besides, the necessary condition for interaction k +q + p g = 0 imposes the following relation
on the perturbations to the wave vectors:

δk +δq = 0 . (4.18)
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According to relation (2.33), two quantities are important for the growth rate of near
resonances: the frequency mismatch ∆ω = ωk +ωq +ωp g

and the coupling coefficient C0.

The near resonance exists when
p

C0Ro > ∆ω where Ro is the amplitude of the maintained
wave. To derive a more explicit condition for the growth rate of near-resonance to exist and be
positive, we first evaluate the frequency mismatch and relate it to the wave vector perturba-
tions. Using Taylor expansion and relations (4.17, 4.18), we evaluate the frequency mismatch
as a function of the wave vector perturbation:

∆ω

2
= sk

kz

k
+ sq

qz

q
+ sp g

pgz

p

= sk
kz0 +δkz

|k0 +δk| + sq
qz0 +δqz

|q0 +δq |
= ωk0

+ωq0
+ sk

δkz

k0
+ sq

δqz

q0
− ωk0

2
δk · k0

k2
0

− ωq0

2
δq · q0

q2
0

= −ωk0

2
δk · k0

k2
0

+
ωk0

2
−δk · q0

k2
0

=
ωk0

2

δk · p g

k2
0

. (4.19)

Note that without the assumption that the sk,q are the same for the perturbed waves and the
modes involved in the exact resonance, the frequency mismatch would have been of the same
order as ωk0,q0

instead of being a first order, and no near-resonance would be possible. Let us
now compute the coupling coefficient C0 involved in the growth rate of the mode k g when a
wave q is imposed. k g and p are the two daughter modes and the coefficient C0 writes:

C0

4
= (sp g

pg − sk k)(sq q − sk k)
���hsp g

p g
· (hsk

k × h
sq
q )
���2 . (4.20)

In general:

(sp g
pg − sk0

k0)
���hsp g

p g
· (hsk

k × h
sq
q )
���2 ̸= 0 (4.21)

which can be proved by taking the particular case k0 = [kx , 0, kz], q0 = [kx , 0,−kz] and k g =
[−2kx , 0, 0] for which the term (4.21) does not cancel out. At exact resonance, sk k0− sq q0 = 0
implies that C0 is at least a first order with respect to the vector perturbation. A straightforward
calculation gives:

sk k − sq q =
sk

k0
δk · p g = sk k0

∆ω

ωk0

(4.22)

so that the coupling coefficient C0 writes:

C0 = k0
∆ω

4
c0 (4.23)

where we have introduced a coefficient c0 = O(1). The near-resonance condition (2.32) on
the wave amplitude Ro therefore translates as follows:

k0c0∆ωRo2 −∆ω2 > 0 i.e. |∆ω|< k0 q0 Ro2 . (4.24)

According to the preceding relation, the frequency mismatch to observe a near resonance
involving a geostrophic mode must be smaller than O(Ro2). The growth rate is proportional
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to
Æ

k0c0∆ωRo2 −∆ω2 (see relation (2.32)). The maximum growth rate is given by the
maximum of the function ∆ω 7→ k0c0∆ωRo2 −∆ω2 which is reached at

∆ωmax =
k0c0

2
Ro2.

The growth rate reached for this maximum mismatch is

σmax =
k0c0

4
Ro2 . (4.25)

The maximum growth rate of the near resonance is then also O(Ro2). To conclude, the above
calculation suggests that a near-resonance involving a geostrophic mode cannot be responsible
for the exponential growth cannot be responsible for the exponential growth of geostrophic
modes over a time O(Ro), and that other mechanisms must be investigated.

The fact that the adequate parameter to describe the instability is Ro k (see figure 4.8)
leads to consider that shear, and not amplitude alone, plays a role in the instability mechanism.
It is possible that what we observe is in fact the instability of the plane wave structure itself.

To investigate the stability of the wave structure itself, it is necessary to return to a more
general perturbative approach of stability instead of using the helical mode decomposition
and the corresponding amplitude equations. Consider the problem (4.4) on the perturbation
velocity u in the following linearised, inviscid form:�

∂t u + 2ez × u +∇p = Ro (u × (∇×Uw) +Uw × (∇× u))
∇ · u = 0 .

(4.26)

It is a general linear stability analysis of the wave Uw of the form ∂t u = Ls(t)u where Ls is a
linear operator with harmonic coefficients. This more general stability analysis may be carried
out using Floquet analysis (Vanneste, 2005; Jouve and Ogilvie, 2014), and remains to be done.
Although it should yield the triadic resonance at low Rossby number, it may also include at
moderate Rossby number other instabilities.

6. Conclusions

6.1 Three-modes interactions and geostrophic flows

In the present chapter, we have explored with idealised numerical simulations the stabil-
ity of a single inertial wave. At low wave amplitude, we have found that the primary inertial
wave gives rise to daughter inertial waves via triadic resonant instability. This three-waves in-
teraction is schematically described in figure 4.10-a, and has been further discussed in chapter
2. As the daughter waves grow, two-dimensional geostrophic modes grow with a twice larger
rate, which is characteristic of non-linear direct forcing. This latter mechanism has been de-
scribed in details in section 4, and the mode interaction at play is summarised in figure 4.10-b.

Most importantly, we have also identified and characterised an instability of geostrophic
vortices driven by the maintained waves. The latter instability occurs when the wave ampli-
tude is above a finite threshold that is independent of viscous dissipation. According to the
calculation of section 5.2, near-resonant triadic interaction involving a geostrophic mode (see
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Figure 4.10: A schematic summarising the three different types of interaction between three modes
that have been explored throughout the present chapter. The first one (a) is triadic resonant interaction
which has been evidenced in the first simulation presented in figure 4.2. It is detailed at length in
chapter 2 section 2.3. The second is direct resonant interaction (b) between exponentially growing
inertial waves giving rise to a geostrophic mode. It has been found in the low amplitude simulation
(see section 3.1) and formally explained in section 4. The last three mode interaction considered in
this chapter is near-resonance involving a geostrophic mode (c). It has been proposed as a plausible
mechanism to explain the finite wave amplitude instability but is possibly dismissed for not accounting
for the law governing the growth rate of the instability.

figure 4.10-c) seems unable to explain the O(Ro) growth rate—Ro being the amplitude of the
wave. Our results rather suggest that the finite wave amplitude instability is intrinsic to the
wave spatial structure and may be driven by shear (see section 5.1). The most significant re-
sult pointing towards shear is the collapse on a master curve of the growth rate as a function
of the local Rossby number Ro f = Ro k/(2π), as shown in figure (4.8).

6.2 A regime diagram for the elliptical instability

Reproducing the experimental regime diagram

In this chapter, we have found that inertial waves drive geostrophic flows via direct forc-
ing and finite amplitude instability. Both mechanisms are relevant to the turbulent saturation
of the elliptical instability. The unstable waves drive geostrophic flows via direct forcing over
the whole course of the elliptical instability, from the growth to the saturation. However, if
the wave saturate to an amplitude ∼ Roi , direct forcing should drive geostrophic flows with
an amplitude ∼ Ro2

i . Such an evolution of the amplitude does not account for the sudden in-
crease observed in figure 3.18 in chapter 3, and we therefore dismissed direct forcing to explain
the experimental results. Nevertheless, the ability of this mechanism to drive a geostrophic-
dominated saturation is discussed in chapter 5.

In the present section, we aim at showing that the finite wave amplitude instability dis-
cussed throughout the present chapter can explain the experimental regime diagram (dis-
played in figure 3.19) and the transition from inertial wave turbulence to geostrophic turbu-
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Figure 4.11: Schematic diagram of the different regimes expected for the saturation of the elliptical
instability, built from the study presented throughout this chapter, based on the approximate laws (4.28)
and (4.29) for D = 15, D′ = 10, α= 0.1 and Roc = 0.3 for illustration. We assume that the wavelength
of the modes driven by the elliptical instability is λ = 2π/k = 1/5, the length being normalised by the
ellipsoid largest axis a. Note that D′ is chosen to match the threshold of the elliptical instability used
in chapter 3. The thick black line is the threshold of the elliptical instability, and the dashed line is the
threshold of the geostrophic secondary instability.

lence. The growth rate σg of this instability has the following approximate expression:

σg = α
�

Ro
k

2π
− Roc

�
(4.27)

where Ro is the amplitude of the inertial wave and k is its wave vector. The critical Rossby Roc
is independent of viscous dissipation. These results may be transposed to the saturation of the
elliptical instability. We already know, from an analysis presented in chapter 2 section 1, and
from the results of numerical simulations (Grannan et al., 2017), that the velocity amplitude
saturates like the typical amplitude of the tidal base flow, be it driven by differential rotation
or libration. The input parameter Ro used in this idealised study is, therefore, a proxy for the
amplitude of the base flow, and is equivalent to the input Rossby number used in the previous
chapters. Let us assume the dissipation rate is mostly driven by friction at the boundaries, the
inviscid growth rate is then reduced by a factor D

p
E. On one hand, the geostrophic instability

growth rate writes α(Ro (k/2π)− Roc)− D
p

E which is positive provided that:

Ro ≥ 2π
k

�
Roc +

D
α

p
E
�

. (4.28)

On the other hand, the elliptical instability grows when:

Ro ≥ D′
p

E (4.29)

where D′ is a geometrical factor.

With the two approximate laws describing the threshold of the elliptical instability (4.29)
and the geostrophic instability (4.28), we can draw schematic regime diagrams as the one dis-
played in figure 4.11. The geostrophic instability critical line delimits two areas in the param-
eter space, one which should be dominated by strong geostrophic vortices and another where
energy should be transferred to waves only. Regime diagrams very similar to the one obtained
in the experimental study (see figure 3.19 in chapter 3) can be drawn with the appropriate set
of values for D, D′, α, k and Roc . This is the case in figure 4.11 were reasonable values for
these parameters are used:
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Figure 4.12: Schematic regime diagram of the elliptical instability with the same graphical code as in
figure 4.11. The values of D, D′, α and Roc are the same as in figure 4.11. The resonant wave number
k is varied from 2π×10 to 2π×1000. Note that geophysical regimes typically correspond to Ro < 10−4

and E < 10−10.

• D′ = 10 to match the threshold of the elliptical instability found in the experiment;

• k = 2π/5, which means that the wavelength of the resonant inertial mode is five times
smaller that the ellipsoid’s largest axis a;

• D = 15, which is of the same order of magnitude as D;

• α= 0.1, which is smaller than what has been found in the present chapter for the mode
2π [4,0, 8], but could be consistent with a lower energy transfer from horizontal modes
at ω= ±2—excited in the experiment—and vertically invariant flows;

• Roc = 0.05, which is only a factor 2 smaller than the value found in the previous study.

With this choice of parameters, we roughly reproduce the experimental regime diagram shown
in figure 3.19. At intermediate Ekman numbers such as those considered in the experimen-
tal study (E ∼ 10−6 − 10−5), the line separating the wave-dominated from the geostrophic-
dominated regimes is parallel to the viscous threshold of the elliptical instability. Interestingly,
the viscosity-independent threshold on the Rossby number for the geostrophic secondary in-
stability translates into a minimal value of Ro = 2πRoc/k below which the saturation regime is
dominated by inertial waves. If the finite wave amplitude instability is indeed responsible for
the secondary transition observed in the experimental study, the determination of the minimal
Rossby number remains, nevertheless, beyond the reach of our set-up.

Influence of the wave number on the minimal input Rossby number

This minimal value of the wave amplitude or input Rossby number, however, depends on
the wave vector of the resonant mode, and therefore on the mode selection by the elliptical
instability. In the very low dissipation and forcing amplitude regimes, which is relevant for
planetary cores, nothing prevents the resonant wavelength to be very small compared to the
size of the core, thus pushing the minimal input Rossby number to very low values. In figure
4.12, we build a regime diagram with the same values as in figure 4.11 apart from the wave
number k which is increased from 2π×10 to 2π×1000. Even when the ratio between the size
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of the core and the resonant wavelength reaches 1/1000, the minimum input Rossby number
is sufficiently high so that a wave dominated regime is still relevant to geophysical regimes.

Geostrophic instabilities below the minimal input Rossby number

Lastly, when the forcing amplitude and the dissipation are such that elliptical instabil-
ity saturation flow is stable to finite wave amplitude instability, other mechanism may drive
exponential growth of geostrophic modes. The remaining processes transferring energy from
inertial waves are four-waves interactions (Smith and Waleffe, 1999; Kerswell, 1999) and
near-resonant three-waves interactions (Smith and Lee, 2005), that all lead to aO(Ro2) growth
rate of geostrophic flow. These mechanisms remain difficult to probe with the idealised model
used in the present chapter since they settle over very long time scales. Nevertheless, simple
predictions may be drawn. The viscous threshold of these instabilities follows a Ro ∝ E1/4

power law, which is shallower than the Ro∝ E1/2 threshold of the elliptical instability. Even
with these mechanisms exciting geostrophic flows, there exists a regime at low dissipation and
low forcing amplitude where waves dominate the saturation flow.



Chapter 5
Direct forcing of geostrophic modes in
the saturation of the elliptical insta-
bility

To complete our determination of the boundary between the wave-dominated and the
geostrophic-dominated regimes, we explore theoretically the role of direct forcing by inertial
waves instead of instabilities. As it is reminded in the previous chapter, the theoretical result
of Greenspan (1969) stating that non-linear interaction of waves does not transfer energy to
geostrophic modes is only valid in the asymptotic limit of vanishing viscosity and wave am-
plitude. In the preceding chapter, we have given a first evidence that outside this asymptotic
framework, three-dimensional structures are able to transfer energy to geostrophic flows via
finite wave amplitude instability. This transfer is however cancelled when the wave amplitude
is sufficiently small, below a threshold that is independent of viscosity. When the forcing ampli-
tude is below this threshold, the saturation of the elliptical instability should be dominated by
inertial waves in resonant interaction, unless other mechanisms significantly transfer energy
to geostrophic flows. We have already mentioned among the possible mechanisms the four-
mode interaction described by Kerswell (1999). In this chapter, we explore the role played by
direct forcing of geostrophic flows by non-linear self-interaction of an inertial mode in viscous
boundary layers, which is also out of the asymptotic framework of Greenspan (1969).

It has been proved in numerical and experimental works that self-interaction of the vis-
cous inertial modes in the boundary layers leads to significant geostrophic axisymmetric flows,
also called “zonal winds” (Tilgner, 2007b; Sauret et al., 20100; Morize et al., 20100; Sauret
et al., 20140). This mechanism is a direct forcing from waves to geostrophic flows, similarly
to the direct forcing considered in the preceding chapter, section 4. Unlike the direct forcing
in a Cartesian box, however, the mechanism here examined entirely relies on viscosity and
confinement. The aim of this chapter is to explore whether such direct forcing may lead to
a geostrophic-dominated saturation, especially in regimes of low dissipation and low forcing
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where finite amplitude instabilities, detailed in the previous chapter, vanish.

We first introduce a reduced model of the elliptical instability which builds on the work
of Lagrange et al. (2011). It features two resonant modes and a zonal wind which is directly
forced via non-linear self-interaction in the boundary layer, and includes the non-linear back-
reaction of the zonal wind on the resonant modes. It leads to an upper bound on the forcing
base flow amplitude below which the geostrophic component of the saturation flow should be
sub-dominant. This upper bound is a non-trivial function of the dissipation or Ekman number
and requires proper quantification. Based on the study of Tilgner (2007b) and Vidal and
Schaeffer (2015), we implement a numerical method to determine this upper bound in the
special case of the sphere. Our results suggest that at vanishing Ekman number, the upper
bound tends to saturate and become independent of the Ekman number.

1. Deriving a low order model

In order to examine the ability of direct forcing via boundary layers to drive a geostrophic
type saturation of the elliptical instability, we derive a low order model involving the resonant
waves and an axisymmetric zonal wind. This simple model keeps the essential interactions
between the inertial modes and the geostrophic flow in order to determine the hierarchy of
amplitudes between these two components in the saturation of the elliptical instability. Despite
its simplicity, the model is derived from an analysis of the rotating Navier-Stokes equations
and the spatial structure of inertial modes. A similar development can be found in the related
context of precession-driven instabilities in cylinders studied by Lagrange et al. (2011).

1.1 The amplitude equations

To derive a low order model on a reduced number of modes, we first transcribe the
rotating Navier-Stokes equation into a set of mode amplitude equations, as derived in chapter
2 to determine the coupling between the modes and the tidal flow (see section 3.3), or in the
case of plane helical modes interaction (see section 2). We consider a flow U resulting from
the superposition of the base flow U b due to either libration or tides, and a perturbation u.
The equation governing the perturbation u are :

∂t u +U b ·∇u + u ·∇U b + 2ez × u + u ·∇u = −∇p+ E∇2u (5.1)

∇ · u = 0 (5.2)

where E is the Ekman number. As done in chapter 1 section 3.3, the interaction between u
and the base flow U b can be written as a linear operation Roi L(t)u where Roi is the amplitude
of the base flow. We also introduce the following linear operator associated to the Coriolis
force and dissipation such that:

LΩ [u, p] = −2ez × u −∇p+ E∇2u . (5.3)

The non-linear term u ·∇u is shortened into a bi-linear symmetric operator NL(·, ·) defined as
follows:

NL(u1, u2) ≡ 1
2
[u1 × (∇× u2) + u2 × (∇× u1)] . (5.4)
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The equation of evolution of the velocity perturbation u (5.1) is therefore written into the
following compact form:

∂t u = LΩ [u, p] + RoiL(t)u +NL(u, u) . (5.5)

The flow u may be decomposed into a superposition of eigenmodes of the linear operator
LΩ, noted Ψ i , that is:

[u, p] =
∑

i

aie
iωi t [Ψ i , Pi] (5.6)

where the ai are time dependent amplitudes and ωi is the eigen frequency of the eigenmodes
[Ψ i , Pi]. Note that we have discarded a non-linear contribution in the pressure field. It does
not play a role in the dynamics apart from ensuring the non-linear interaction of modes is
divergence-free. Discarding this term will not affect the following discussion since we are
rather interested in the nature (complex or real) and sign of non-linear interactions. As in
chapter 2 section 2, a rigorous derivation would start from the vorticity equation, but would
here complicate the derivation of the local model.

In the eigenvalue problem LΩu [u, p] = λ [u, p], the eigenvalues λi include a negative
real part Di which is a dissipation coefficient depending on the Ekman number, and an imagi-
nary part ωi accounting for the inertial oscillation of the eigenmode due to the Coriolis force.
The steps to derive the amplitude equations are the same as in the theoretical derivation of
the growth rate of the elliptical instability (see chapter 1 section 3.3), except that we keep the
non-linear term. The obtained mode amplitude equations are then:

ȧi + Diai =

Roi

∑
j

a j



Ψ i | L(t)Ψ j

�
ei(ω j−ωi)t +
∑

j,k,s j ,sk

a j,s j
ak,sk

¬
Ψ i | NL(Ψs j

j ,Ψsk
k )
¶

ei(s jω j+skωk−ωi)t (5.7)

where the coefficients s j and sk take their value in {−1,1} and where we have introduced the
notations a j,1 = a j and a j,−1 = a∗j to shorten the sum.

1.2 Hypotheses on the structure of inertial modes

An equation similar to (5.7) has already been derived in the case of an unbounded ro-
tating fluid for which eigenmodes were helical plane waves. In the following development,
we rather dwell on confined geometries for which energy is also transferred from waves to
vortices via boundary layers. Instead of considering the inertial modes of an ellipsoid, we
consider that the modes of a sphere are sufficient to derive a low order model.

To give an explicit form to the inertial modes, we first consider the inviscid Poincaré
equation on the pressure p (Poincaré, 1885):

∂t t∇2p+ 4∂zz p = 0 . (5.8)

Because of the invariance of this equation by rotation around the z axis, the pressure eigen-
modes Pj of this equation take the following form in cylindrical coordinates (ρ,ϕ, z) :

Pj(ρ,ϕ, z, t) = p j(ρ, z)ei(m jϕ+ω j t) . (5.9)
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where we have introduced the azimuthal wave number m j , and a function p j describing the
structure of the mode in (ρ, z) (see Kerswell (1993b) and Rieutord (2014) for further details).
As in chapter 1 section 3.3, the structure of a mode Ψ j may be expanded as the product of
a structure function Φ j(ρ, z) and the azimuthal variation exp(im jϕ). In the mode amplitude
equation (5.7), the dot product 〈 · | · 〉 acting on the three spherical coordinates can be reduced
to a dot product acting the variables (ρ, z) and the structure Φ only and which is noted ( · | · ).
The non-linear term in the amplitude equations (5.7) is then simplified as follows:∑

j,k,s j ,sk

a j,s j
ak,sk

¬
Ψ i | NL(Ψs j

j ,Ψsk
k )
¶

ei(s jω j+skωk−ωi)t

=
∑

j,k,s j ,sk

a j,s j
ak,sk

�
Φi | NL(Φs j

j ,Φsk
k )
�
δ(s jm j + skmk −mi)e

i(s jω j+skωk−ωi)t . (5.10)

In the bulk of the sphere, we assume that the viscous mode matches the corresponding
inviscid mode.1 This allows writing an explicit expression of the spatial structure Φ j as a
function of m j , ω j and p j . The mathematical expression of the inviscid modes deduced from
(5.9) and the linear, rotating Euler equation is then (Kerswell, 1993b):

Φ j =



−i
4−ω2

j

�
2m j

ρ
p j +ω j∂ρp j

�
1

4−ω2
j

�
2ω jm j

ρ
p j + 2∂ρp j

�
i
ω j
∂z p j

 . (5.11)

This expression will prove particularly useful to compute non-linear feedback of zonal flows
on the resonant modes.

1.3 Direct forcing of geostrophic zonal flows

As it is known from the theoretical result of Greenspan (1969), the inviscid eigenmodes
cannot transfer energy to geostrophic flows via non-linear interaction. It is not the case, how-
ever, for the viscous modes, whose non-linear self-interaction has been shown experimentally
(Sauret et al., 2010; Morize et al., 2010; Sauret et al., 2014) and numerically (Tilgner, 2007b)
to generate significant zonal winds, i.e. axisymmetric mean flows.

It appears clearly from the non-linear term (5.10) that a geostrophic mode i with ω= 0
and mi = 0 can receive energy from a single mode j = k provided that s j = −sk. The non-linear
transfer is then shortened into:

a ja
∗
j

�
Φi | NL(Φs j

j ,Φ
−s j

j )
�≡ a ja

∗
j F(E) . (5.12)

Again, the dot product acting on the spatial structure of the modes in the preceding expression
would strictly cancel out for inviscid eigenmodes, and the relevant contributions come here
from viscous corrections. The interaction term F is, therefore, a function of the Ekman number
E, but also of the inertial mode.

1Note that this assumption is not true in the case of spherical shells for which modes are confined on thin
attractors whose thickness depends on the viscosity.
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1.4 Back-reaction of the zonal flow on the resonant waves.

Consider an inertial wave mode Φw =
�
Φρ,Φϕ ,Φz

�
with wave number m. As inferred

from the amplitude equations (5.7) and (5.10), this mode may interact with a zonal flow, that
is, a z-invariant, axisymmetric flow Φg with mg = 0. According to 5.11, Φg inferred from its
pressure function pg(ρ) writes:

Φg =
1
2

∂ pg

∂ ρ
eϕ . (5.13)

The dot product quantifying the non-linear interaction (see equation (5.10)) has the following
explicit expression:

�
Φw | NL(Φw,Φg)

�
= −1

2

∫
r,z

�
Φ∗w ·
�
Φg ×∇×Φw

�
+Φ∗w ·
�
Φw ×∇×Φg

��
dr dz . (5.14)

With the equations (5.11) and (5.13), taking into account that the pressure function pg is real,
the integrands are simplified as:

Φ∗w ·
�
Φg ×∇×Φw

�
=

m2

2ρ
∂ρpg

�
Φ∗rΦz −ΦrΦ

∗
z

�
(5.15)

Φ∗w ·
�
Φw ×∇×Φg

�
=

1
2ρ
∂ρ
�
ρ∂ρpg

��
Φ∗ρΦϕ −Φ∗ϕΦρ
�

(5.16)

which are both imaginary scalars. To conclude, the back-reaction term of the geostrophic
modes (with amplitude ag) on the waves (with amplitude aw) simply writes:�

Φw|NL(Φg ,Φw)
�

ag aw = iµawag (5.17)

where µ is a real coefficient. This back-reaction occurs in the bulk of the fluid: it corresponds
to the advection and deformation of a bulk-filling inertial mode by a bulk-filling zonal wind,
contrary to the wave interaction giving rise to the geostrophic zonal flow which is concentrated
in the viscous boundary layer.

1.5 The reduced model

Building on the preceding sections, we can now propose a simple reduced model in-
volving a geostrophic zonal flow and the inertial waves undergoing parametric resonance.
Consider a1, a2 and ag the amplitudes of the resonant modes and the geostrophic mode re-
spectively, the most simple model one can write is:

ȧ1 = Roi I1a2 + iµ1a1ag − D1a1

ȧ2 = Roi I2a1 + iµ2a2ag − D2a2

ȧg = F(E)(|a1|2 + |a2|2)− Dg ag

(5.18)

where all the coefficients I1,2, µ1,2, D1,2,g , F(E) are real, and that the interaction term F is the
same for both modes. The first terms in the two resonant waves amplitude equations simply
correspond to the calculation of section 3.3 in chapter 1, which has thus not been repeated.
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Figure 5.1: Typical time evolution of the energy of the wave modes a1 and a2 and the geostrophic mode
ag according to the reduced model (5.18) of the non-linear behaviour of the elliptical instability. The
control parameters are Roi = 5×10−2 , I1,2 = 1, µ1 = −µ2 = 5, D1,2,g = 1×10−3 and F = 5×10−3. Time
is normalised by a non-linear time scale Ro−1

i . The horizontal red line materialises the energy associated
to the fixed point value of ag given by (5.25), or equivalently the critical amplitude ag above which
the growth rate of inertial modes is zero according to (5.23). The horizontal dashed line materialises
the energy associated to the fixed point values of a1 and a2 given by relation (5.27). It may be noticed
that the resonant modes energy decays when the amplitude of the geostrophic modes crosses the fixed
point value materialised by the red line, as expected from the discussion in section 1.5.

Saturation by detuning

We can carry out a simple analysis of the amplitude equations by assuming that ag is
constant and analysing the behaviour of the system. To facilitate the discussion, we can also
assume the dissipation to be negligible compared to the interaction with the base flow. The
reduced model then writes: ¨

ȧ1 = Roi I1a2 + iµ1a1aG

ȧ2 = Roi I2a1 + iµ2a2aG .
(5.19)

Let us first ignore the elliptical instability by assuming that Roi = 0. The linear system (5.19)
is then solved by

a1∝ exp
�
iµ1ag t
�

and a2∝ exp
�
iµ2ag t
�

. (5.20)

In presence of a geostrophic mode, the inertial modes eigen frequencies ω1,2 are modified
according to:

ω′1 =ω1 +µ1ag and ω′2 =ω2 +µ2ag . (5.21)

As explained in chapter 1 section 3.2 the two resonant modes frequencies must satisfy the
resonance condition, that is, |ω1 −ω2| must be equal to the forcing frequency (2γ for tides
and f for librations). In presence of a geostrophic zonal flow, and if µ1 ̸= µ2, the resonance
condition cannot be fulfilled anymore. As a consequence, the elliptical instability is disrupted
by frequency detuning induced by the zonal wind.

This qualitative understanding may be formally validated by a mathematical analysis of
the system of ordinary differential equations (5.19). This system has two eigenvalues that are
complex conjugate. When the geostrophic amplitude is sufficiently small, more precisely when�µ1 −µ2

2

�2
a2

g < Ro2
i I1 I2 , (5.22)
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the eigenvalue λp yielding a positive growth rate of the inertial waves is:

λp =

√√
Ro2

i I1 I2 −
�µ1 −µ2

2

�2
a2

g + i
µ1 +µ2

2
ag . (5.23)

At larger geostrophic amplitudes, both eigenvalues—notedλ±—are imaginary quantities when
µ1 ̸= µ2:

λ± = i

√√�µ1 −µ2

2

�2
a2

g − Ro2
i I1 I2 ± i

µ1 +µ2

2
ag . (5.24)

We retrieve the result of the qualitative analysis: the growth rate of the elliptical instability
decreases to 0 as the amplitude of the zonal wind increases, provided that µ1 ̸= µ2. In short,
the rate of energy transfer from the base flow to the waves is decreased by non-linear detuning
induced by the zonal wind.

A typical time evolution of the reduced model (5.18) is given in figure 5.1. The process
at early times is the following: as the resonant waves grow in amplitude, they directly force
the geostrophic mode, whose amplitude increases with a rate twice larger than the resonant
waves. The latter induces a frequency detuning of the resonant waves and disrupt the interac-
tion with the forcing flow when the geostrophic amplitude becomes too large, typically when
the resonance condition (5.22), materialised by a red line in figure 5.1, is no more satisfied.
The waves and the geostrophic mode then undergo viscous dissipation, until the detuning
is small enough to let the resonant waves resonate again. Although this model is very sim-
ple, it does capture, at least at early times, the dynamics reported for instance by Barker and
Lithwick (2013) of cyclic resonance and collapse of the elliptical instability and which will
be detailed in the next chapter. Later on, with the present model, the geostrophic amplitude
reaches a steady state. The growth rate of the resonant modes is null, which means that�µ1 −µ2

2

�2
a2

g ≳ Ro2
i I1 I2 .

As a consequence, at this stage, the resonant modes amplitudes oscillate at a slow rate given
by the eigenvalues λ± (see relation (5.24)).

1.6 Saturation amplitudes of the modes

The reduced model (5.18) has a non-trivial fixed point. It is found by stating that the
two-first equations which are linear respective to a1 and a2 must have a non-zero solution. It
compels the following relation on the amplitude ag :

a2
g = −

Ro2
i I1 I2

µ1µ2 + i(µ1D1 +µ2D2)
. (5.25)

This relation is simplified in the small dissipation limit, i.e. assuming that D1,2 ≪ 1. We also
assume that µ1 = −µ2 and D1 = D2 so that ag is real, although it does not change the absolute
value of this amplitude. With these hypotheses, we find for the geostrophic mode amplitude:

a2
g = Ro2

i
I1 I2

µ2
1

. (5.26)
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The saturation amplitudes of the resonant modes are deduced from the last equation of
the reduced model (5.18):

|a1|2 = |a2|2 = Dg

2F(E)
ag = Roi

Dg

2F(E)

p
I1 I2

µ1
. (5.27)

We will assume for what follows that the amplitude of this fixed point gives a proxy for the
respective saturation amplitudes of the resonant waves and the geostrophic modes. Note that
in the numerical resolution of the system (5.18), the long time values of the energy contained
in the waves and geostrophic modes is consistent with the fixed points derived in equations
(5.25) and (5.27), as indicated in figure 5.1. In addition, the amplitude of the geostrophic
flow is slightly higher than the fixed point value, which is coherent with the fact the resonant
modes have a null growth rate.

1.7 Conditions for additional triadic resonances

Let us assume that the resonant waves and geostrophic modes have amplitudes given
by what has been derived in the preceding paragraph. We now explore the conditions under
which a triadic resonance involving a resonant mode and two daughter waves may be excited.
We assume for simplicity that the resonant wave 1 is maintained to the fixed point amplitude
a1, and that the daughter modes undergo detuning with the same coefficients ±µ1 as the
resonant waves. We also simplify the derivation by assuming that the triadic resonance is
inviscid. The growth rate σt of the daughter waves then writes:

σt =
Ç

C2|a1|2 −µ2
1a2

g (5.28)

where C is a coupling coefficient. This growth rate is real and positive provided that:

C2|a1|2 > µ2
1a2

g . (5.29)

Using the results of the preceding subsection, the condition on the input Rossby number for
triadic resonances to grow is therefore:

Roi <
C2

2
p

I1 I2

Dg(E)

2F(E)
. (5.30)

We therefore have found an upper bound on the forcing amplitude below which the satura-
tion of the elliptical instability should be dominated by non-linear transfers towards waves.
Although the mechanism explored in the present chapter is different, this result is consistent
with the experimental results and the finite Rossby number instability analysis carried out in
the previous chapter. This upper bound is a priori a non-trivial function of the Ekman number,
and the variety of boundary layers that may be encountered in rotating flows (Roberts and
Stewartson, 1963; Tilgner, 2007a; Sauret and Le Dizès, 2013).

1.8 Universality of the upper bound

According to the derivation of the preceding paragraph, the resonant inertial modes reach
a saturation amplitude proportional to Ro1/2

i (see relation (5.27)), which is in contradiction
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Figure 5.2: Schematic cartoon of the expected regime diagrams in terms of Ekman number and forcing
amplitude depending on the value of the exponent of the power law of the Ekman number of the
function Dg(E)/F(E). The geophysical limit is located at low E and low Roi . The thick line materialises
the threshold of the elliptical instability Roi∝ E1/2. We show that a wave-dominated regime is expected
in planetary cores only if the exponent of the upper bound is below 1/2.

with the qualitative scaling in Roi of section 1 in chapter 2, and also with the numerical results
presented in Grannan et al. (2017), which also indicate a∝ Roi amplitude saturation. The
Ro1/2

i scaling has been found by assuming that the saturation is entirely due to the dissipation
of the geostrophic modes whereas it could rather come from a non-linear cascade of energy
towards other modes that was not included in the model.

Nevertheless, the relation (5.30) may be more general than a consequence of a simple
low order model. To prove that, let us consider that the saturation of the resonant modes
is entirely driven by non-linear processes, so that their amplitudes reach a saturation value
a1,2 ∼ Roi . The direct forcing results in a zonal wind with amplitude ug that we consider, as
earlier, to be determined by a balance between forcing and dissipation. The last equation of
the system (5.18) thus yields:

ug∝ Ro2
i

F(E)
Dg(E)

. (5.31)

We infer that the amplitude ratio between the three-dimensional wave modes and the zonal
wind is:

u3d

ug
∝ 1

Roi

Dg(E)

F(E)
. (5.32)

We retrieve that three-dimensional wave modes dominate provided that the forcing amplitude
Roi is smaller than the upper bound function, that is:

Roi ≲
Dg(E)

F(E)
. (5.33)

1.9 Conclusion: the condition for a wave-dominated regime in
geophysics

To conclude, the upper bound on the wave-dominated regime Roi ∝ Dg(E)/F(E) must
be compared to the threshold of the instability Roi ∝ E1/2. Let us assume that Dg(E)/F(E)
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eventually follows a —positive— power law of the Ekman number as E→ 0. Two very different
situations may be considered, they are shown in figure 5.2. A wave-dominated regime in the
geophysical limit Roi , E→ 0 is possible only if the exponent of the upper bound power law is
lower than 1/2. To predict the saturation of the elliptical instability in planetary cores or stellar
interiors, it is therefore important to quantify the upper bound function in the asymptotic limit
of small forcing and dissipation.

2. The upper bound on the wave-dominated
regime

The present section focuses on quantifying the upper bound function Dg(E)/F(E) and
its dependence with the Ekman number. We first recall that this upper bound has in fact been
determined in previous numerical and experimental studies, but for certain inertial waves only
(Tilgner, 2007b; Sauret et al., 20100; Morize et al., 20100; Sauret et al., 20140). We then
introduce a numerical procedure to systematically determine the upper bound function.

2.1 Predictions based on previous works

To determine the upper bound ratio, one simple experiment is to maintain a wave to a
constant amplitude a0, the amplitude of the forced zonal wind ag in steady state is then:

ag =
F(E)
Dg(E)

|a1|2 . (5.34)

The quantification of this non-linear transfer by the method of imposing a mode has been
done numerically by Tilgner (2007b) but also experimentally by Morize et al. (2010) and
Sauret et al. (2014). All these studies show that the upper bound function Dg(E)/F(E) tends
to be a positive power law of the Ekman number, that is, the amplitude of the zonal wind
increases as E is lowered. Nevertheless, the exponent of the power law depends on the excited
mode. Morize et al. (2010) measured Dg(E)/F(E)∝ E0.3 for a mode with eigen frequency
ω = 0.38. In addition, Sauret et al. (2014) measured Dg(E)/F(E)∝ E0.64 at ω = 0.384 and
Dg(E)/F(E)∝ E2.1 at ω= 0.178. Our aim is therefore to carry out a systematic study to find
scalings of the zonal wind forcing with the Ekman number. We then propose regime diagrams
of the elliptical instability and clarify its dependence with the forcing frequency.

2.2 The process to determine zonal wind forcing

In order to determine the upper bound function Dg(E)/F(E) for the inertial eigenmodes
of the sphere, we use the method of Tilgner (2007b) which has been implemented to study
zonal winds forced in spherical shells by attractor modes. It proceeds in two steps, and the first
one is to determine the viscous inertial eigenmodes of a sphere including the no-slip boundary
layers, the latter being crucial to the zonal wind forcing. We therefore solve the eigenvalue
problem corresponding to the linearised, rotating Navier-Stokes equation:

λu + 2ez × u +∇p− E∇2u = 0 (5.35)
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or equivalently the vorticity equation:

λ∇× u + 2ez ·∇u − E∇2∇× u = 0 , (5.36)

with all three components of the velocity vanishing at the boundaries.

The second step is to compute the zonal wind u g forced by the non-linear self-interaction
of an eigenmode Ψ, i.e. to solve the following linear equation:

2ez × u g +∇pg − E∇2uG =

∫ 2π
ϕ=0

Ψ × (∇×Ψ) = Φ× (∇×Φ) =F (5.37)

or the corresponding vorticity equation. The azimuthal average ensures the geostrophic mode
is ϕ invariant, and the absence of time dependence in this equation should ensure that it is
geostrophic. The solution to equation (5.37) should thus be mostly invariant along the rotation
axis. The upper bound function F(E)/Dg(E) is simply determined by:

F(E)
Dg(E)

=
Ç�

u g |u g

�
. (5.38)

where u g is the solution to equation (5.37). The method to determine the upper bound thus
requires solving two linear problems.

2.3 Numerical method

We briefly describe hereafter the numerical method implemented to proceed to the two
steps mentioned in the preceding section. It is based on the work of Tilgner (2007b) and Vidal
and Schaeffer (2015).

Solving the eigenvalue problem

To solve the eigenvalue problem (5.35) in a sphere or a spherical shell, we use the open-
source code SINGE which has been implemented by Vidal and Schaeffer (2015). It builds on an
efficient PYTHON library performing fast spherical harmonics decomposition (Schaeffer, 2013).
The flow u is decomposed onto the basis of vector spherical harmonics (Rieutord, 1987; Rieu-
tord and Valdettaro, 1997) in spherical coordinates (r,θ ,ϕ):

u(r,θ ,ϕ) =
∑
lm

[ulm(r)Rlm(θ ,ϕ) + vlm(r)Slm(θ ,ϕ) +wlm(r)T lm(θ ,ϕ)] (5.39)

where the vector fields Rlm, Slm and T lm are defined using the spherical harmonics Ylm as:

Rlm = Ylmer , Slm =∇Ylm and T lm =∇×Rlm . (5.40)

The indices l and m are the number of zeros of the function Ylm when θ is varied in [0,π]
and ϕ is varied in [0,2π] respectively. Because the field u is divergence-free, the coefficients
ulm(r) and vlm(r) are both related to a single set of coefficients Vlm such that:

ulm(r) =
l(l + 1)

r
Vlm(r) and vlm(r) =

1
r
∂ rVlm

∂ r
. (5.41)
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The coefficients Vlm and wlm are in fact the decomposition in spherical harmonics of the
poloidal and toroidal scalars which can also be used to describe the field u (Vidal and Schaef-
fer, 2015; Rieutord and Valdettaro, 1997):

u =
∑
lm

[∇× (∇× (r VlmYlm)) +∇× (r wlmYlm)] , (5.42)

r being the position vector.

Substituting the decomposition (5.39) into the vorticity equation (5.36) gives for each
(l, m) a pair of second order differential equations with the radius r as a variable. They both
couple the ulm and wlm coefficients together and with the coefficients ul ′m′ and wl ′m′ of other
(l ′, m′) pairs. From equation (5.36), The SINGE code computes the eigenmodes of a sphere
at a given azimuthal wave number m. The radius r is discretised over Nr grid points and
the derivatives are computed with second order accurate finite differences. The grid can be
chosen to be irregular to account for sharper variations close to the boundaries. The spherical
harmonics decomposition is truncated to Nl modes ranging from l = m to l = m + Nl . The
coupled ordinary differential equations on the coefficients Vlm and wlm transcribing the vor-
ticity equation (5.36) therefore reduce to a set of ∼ 2× (Nl/2)×Nr linear equations.2 Calling
X a vector containing all the discretised coefficients ulm[ri] and wlm[ri], the system of linear
equations takes the form of a generalised eigenvalue problem:

LiX = λLeX (5.43)

where Li and Le are two sparse matrices (see Vidal and Schaeffer (2015) for further details).
These matrices also include the boundary conditions, i.e. here the cancellation of all coeffi-
cients at solid boundaries.

The generalised eigenvalue problem (5.43) is solved with the parallelised routines of the
PETSc and SLEPc libraries to find the eigenvalues λ and the corresponding eigenvectors. To
find a mode oscillating at frequencyω, we look for specific eigenvalue λwhose imaginary part
is in a close neighbourhood of ω; the code then returns the modes with the smallest real part,
i.e. the modes with the lowest dissipation rate. The spatial structure of the eigenmodes and
the corresponding eigenvalues are saved into a file that can be used for further computations.

Computing the structure of the zonal flow

From the the spatial structure of an eigenmode u e associated with a wave number fre-
quency ωe, we can compute ∇ × u with spectral accuracy using the spherical harmonic de-
composition of the mode. By azimuthal averaging, it is then straightforward to compute the
non-linear forcing term F (see equation (5.37)). With the spatial discretisation described in
the previous paragraph, solving the curl of the equation (5.37) is then tantamount to inverting
the linear system:

LiY = F (5.44)

where Y is the vector describing the spatial structure of the geostrophic mode to be computed.
The operator Li is the same as in the generalised eigenvalue problem (5.43), and F is a vector
transcribing the spatial structure of∇×F decomposed into spherical harmonics and discretised
along the radius. As earlier, this sparse matrix inversion is carried out using the PETSc and
SLEPc libraries.

2For symmetry reasons, half the coefficients of both Vlm and wlm are null when l is varied.
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Figure 5.3: Eigenmodes in a spherical shell in the reference case ωe = 0.88 of Tilgner (2007b), m= 2
and ri = 0.2 at decreasing Ekman numbers. We show a meridional cut of the azimuthal velocity. Note
that the field is symmetric respective to the horizontal axis, and that this structure is modulated by a
sin(2ϕ) around the z axis.

Figure 5.4: Superposition of the azimuthal component of the non-linear forcing field (left) and the
geostrophic flow (right), obtained with the present method (colour map) and by Tilgner (2007b) (con-
tours, dashed is negative and plain is positive).

2.4 Testing the numerical process

The process described above follows the work of Tilgner (2007b). The latter uses stress-
free boundary conditions, which could not be implemented in the present code. Nevertheless,
we use this previous study as a reference in the implementation of the mean flow computation.

We compare the methods in the case of a spherical shell of outer radius ro = 1 and
inner radius ri = 0.2. The frequency of the eigenmode on which the comparison is based
is ωe = 0.88 and it has an azimuthal wave number m = 2. Meridional cuts of the computed
eigenmodes determined with the SINGE code are displayed in figure 5.3. At this frequency and
for this geometry, the inertial mode of the spherical shell is an attractor, the energy of the flow
being focused along lines at vanishing Ekman number. The typical thickness of the attractor
increases with the Ekman number (see the theoretical development of Ogilvie (2005); Jouve
and Ogilvie (2014)).

We also show in figure 5.4 the forcing field Fϕ and the resulting geostrophic zonal flow
ugϕ; we superpose both our calculations and the results presented in Tilgner (2007b) to en-
hance the comparison. We first notice that, as expected, the steady zonal wind is mostly
invariant with the height z. The location of the largest forcing and the sign changes in this
quantity are overall in agreement between the two realisations of the method described in
sections 2.2 and 2.3. Some discrepancies are noticeable between the two processes, especially
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Figure 5.5: Determination of the zonal flow energy (u g |u g) (left) and the corresponding upper bound
function Dg(E)/F(E) in the test case of a spherical shell with an eigenmode at ωe = 0.88 and m = 2
(right).

in the zonal flow, possibly owing to the different boundary conditions; such inconsistency
caused by boundary conditions is indeed a known feature that has been reported for instance
by Livermore et al. (2016) and is thus not surprising.

Lastly, we show in figure 5.5 the evolution of the energy of the zonal flow
�
u g |u g

�
deter-

mined with our method, and the upper bound function dependence with the Ekman number,
the latter following a ∼ −0.6 power law. The increase of the zonal energy as the Ekman num-
ber is decreased is steeper in the calculation of Tilgner (2007b), although the present values
are within a factor two compared to the preceding study at E < 10−5. This is, again, likely
to be a consequence of the boundary condition used here which induces an additional forcing
in the boundary layer, especially at large Ekman numbers. Despite these discrepancies, the
comparison between the results of Tilgner (2007b) and ours is rather convincing.

2.5 Application to the full sphere

Determination of the upper bound

Now that the method of Tilgner (2007b) is implemented and tested, we use it in the
case of the full sphere to determine the upper bound function Dg(E)/F(E), as explained in
2.2. We thus explore the amplitude of geostrophic zonal winds driven in the full sphere by
inertial modes whose frequency ω ranges from 0.221 to 1.98. The result of computing the
eigenmodes, the forcing field and the subsequent zonal wind is shown in figure 5.6 for the
case ω = 0.880 and m = 2, which is the same as in the test apart from the presence of an
inner core. In the present case, the modes are no longer attractors, which were specific to
the case of the spherical shell. We manage to follow the same global mode structure as the
Ekman number is decreased, even though smaller scale variations appear. The typical scale
of the forcing field is observed to decrease, and the largest forcing values are focused close to
the critical latitude, i.e. the points of the solid boundary at latitude θ such that 2 cosθ = ω.
It corresponds to the point where an inertial wave beam is reflected on itself, and where the
boundary layer is thicker than the usual E1/2 scaling and reaches a typical E1/5 thickness over
a E2/5 width (Roberts and Stewartson, 1963; Noir et al., 2001; Tilgner, 2007a).

The upper bound on the wave domain as a function of the Ekman number E is shown in
figure 5.7 where it is compared to a typical threshold law of the elliptical instability, i.e. Roi =
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Figure 5.6: Top: vertical cut of the azimuthal component of the eigenmodes at ω = 0.880 for m = 2
for decreasing Ekman numbers. Centre: vertical cut of the radial component of the forcing field. It
is normalised by the spatial rms value of F. The black dot highlights the critical latitude θ such that
2cosθ =ω= 0.88. Bottom: vertical cut of the zonal wind, normalised by its spatial rms value.
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elliptical instability Roi =
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E. For each plot, the frequency of the eigenmodes and its chosen wave

number m are given in the title.

p
E. The Ekman number has been made as low as possible; however, because the number of

eigenmodes increases when E is decreased, it is sometimes difficult to track a mode down to
the low dissipation regimes without switching to another one with a close frequency and a
quite different spatial structure.

Despite the variety of behaviours of the wave regime upper bound function Dg(E)/F(E)
at high Ekman number E, we observe a tendency to a saturation towards a constant at low
E for many different frequencies. In other words, the amplitude of the zonal wind forced by
the self-interaction of an inertial mode saturates at low Ekman number, so that direct forcing
via viscous boundary layers is unable to drive a geostrophic-dominated flow below a certain
forcing amplitude. This observation has already been made by Tilgner (2007b), but with
stress-free boundary conditions and only at one frequency. Sauret et al. (2014) also found a
saturation of the amplitude of the zonal wind at low Ekman number but it was rather due to
centrifugal and shear instabilities undergone by the large amplitude zonal wind driving bulk
turbulence. In the few cases where the saturation is not observed, possibly because sufficiently
low values of the Ekman number could not be reached, the upper bound is shallower than the
threshold of the elliptical instability so that a wave-dominated regime is preferred anyway. To
conclude, our results suggest that in weak forcing amplitude and dissipation regimes, direct
forcing via viscous boundary layers is unable to drive strong geostrophic modes in planetary
interiors, at least when there is no solid inner core.
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Figure 5.8: Computation of the injection scale ℓ f for two frequencies where the saturation of the upper
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Understanding the upper bound saturation?

To understand the origin of the saturation of the upper bound function reported in figure
5.7, we follow again the ideas of Tilgner (2007b) to compute a typical forcing scale ℓ f based
on a mode self-interaction. It is computed from the spatial average of the forcing term as
follows:

ℓ f =

�∫
ρ,θ

|Φ×∇×Φ|2
�−1/2

(5.45)

where the integration is performed over the cylindrical coordinates (ρ,θ ) to compute a volume
average of an axisymmetric quantity. In addition, Φ is an inertial mode structure normalised
such that (Φ|Φ) = 1. The injection scale ℓ f is shown in figure 5.8 as a function of the Ekman
number E number for two cases where the saturation of the upper bound function is striking
(see figure 5.7). It reveals that ℓ f (E) follows power laws with a striking change of exponents
where the upper bound function saturates. At high Ekman number, the power law is close to
ℓ f ∝ E−1/2 which suggests that the wave forcing is controlled by the Ekman boundary layer.
At low Ekman number, the exponent switches to about 0.3.

As observed in figure 5.6, this power law change may be due to a forcing concentrated at
the critical latitudes. However, according to Roberts and Stewartson (1963), the thickness of
the boundary layer scales like E1/5 and it extends on the surface of the sphere over a band of
typical width E2/5. Neither of these power laws matches the scaling observed in figure 5.8. We
have presently no simple explanation for the saturation of the upper bound function relying
on typical boundary layer thickness.

3. Conclusion on the direct forcing of geostro-
phic modes by waves

In this chapter, we have investigated direct forcing of geostrophic flows by non-linear
self-interaction of inertial modes via boundary layer in order to examine its ability to drive
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Figure 5.9: A schematic regime diagram of the saturation of the elliptical instability based on the
results of chapters 4 and 5. This diagram features the different mechanisms transferring energy from
waves to geostrophic flows that have been discussed so far. We include the finite wave amplitude—or
Roi—instability discussed in chapter 4 and the threshold of four-modes and near-resonant instabilities.
We also indicate where direct forcing via boundary layers is expected to drive strong zonal winds.
The white and hatched areas materialise control parameters for which a geostrophic type of saturation
is expected. Above the elliptical instability threshold, the light grey area materialises the values of
the control parameters for which we expect a wave turbulence regime, as found in the experimental
study presented in chapter 3. We notice that this regime is expected in the low forcing amplitude and
dissipation regimes.

a geostrophic-dominated regime in planetary cores. We have first introduced a reduced dy-
namical system describing the interaction of two inertial waves in resonant interaction with
a tidal or libration base flow. In this reduced model, mode self-interaction—via boundary
layers—forces geostrophic, axisymmetric zonal winds. The latter back-reacts on the modes
by detuning their frequency, which is formally proved by analytical computation of the wave-
vortex interaction. From the analysis of this model, we have derived an upper bound on the
forcing amplitude Roi below which we expect a wave-dominated regime of saturation for the
elliptical instability. This upper bound is a function of the Ekman number, and it has been
investigated with a numerical model based on Tilgner (2007b).

We have noted that because of its simplicity, the reduced model may not capture the non-
linear fate of the elliptical instability as the saturation amplitude of the modes is related to the
viscous damping of geostrophic flows. Nevertheless, we have shown that if the resonant mode
amplitude is directly imposed by non-linear processes and is proportional to Roi , as anticipated
in chapter 2 section 1, the same upper bound function applies.

Despite the important simplifications, this chapter brings useful information and results.
We recall with a mathematical analysis that the wave-vortex interaction translates into a de-
tuning of the wave frequency which is proportional to the amplitude of the vortex. We have
also found that a simple model based on vortex direct forcing and detuning back-reaction
partly reproduces cycles of growth and collapse of the elliptical instability, as discussed in 3.1
in chapter 2.

Lastly, we have shown numerically that the upper bound on the wave-dominated regime
tends to saturate as the Ekman number is decreased (see figure 5.7). This result has important
consequences: there should exist for all frequencies a minimum forcing amplitude below which
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direct forcing is unable to drive a geostrophic-dominated saturation of the elliptical instability.

So far, we have proved in the preceding chapter that inertial waves drive geostrophic
flows via a finite amplitude instability, but we have also proved that it is unable to drive a
geostrophic-dominated saturation below a certain forcing amplitude that is independent of
viscous dissipation. In the present chapter, we have shown that direct forcing via viscous
boundary layer drives strong geostrophic flows, but is also unable to produce a saturation of
the elliptical instability dominated by geostrophic flows below a finite forcing amplitude. In
the asymptotic regimes of weak forcing amplitude and dissipation that are relevant for plane-
tary cores, the only remaining mechanisms that could be responsible for a geostrophic satura-
tion are four-mode interaction or near-resonance, discussed in the conclusion of the previous
chapter. As shown in figure 5.9, the transition from the wave-dominated to the geostrophic-
dominated regimes due to these two mechanisms is shallower than the threshold of the ellip-
tical instability. As a consequence, taking into account all the mechanisms transferring energy
from waves to geostrophic flows, we conclude that there should exist a domain at low forcing
amplitude and dissipation where the elliptical instability saturates into an inertial wave tur-
bulence, as found in m the experimental study (see figure 5.9). Therefore, we conclude that
the inertial wave turbulence regime is relevant to the saturation of the elliptical instability in
geo- and astrophysical contexts.
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Chapter 6
A local model to investigate the satu-
ration of the elliptical instability

The experimental study has revealed the existence of two regimes in the saturation of the
elliptical instability, one dominated by strong geostrophic vortices and the other dominated by
inertial modes in non-linear resonant interaction. Nevertheless, the set-up presented in chapter
3 has not allowed exploring a wide range of parameters, in particular to determine how the
wave-dominated regime evolves as both the forcing amplitude and dissipation are decreased
and the Reynolds number increases.

In the following, we present an idealised numerical model that simulates the tidally
driven instability in a cubic box with periodic boundary conditions. It has been first proposed
by Barker and Lithwick (2013) to quantify bulk dissipation driven by mechanical forcing in
planets and stars. Instead of simulating the flow in an ellipsoid, the local model solves the
dynamics in a cube with periodic boundary conditions and a background tidal base flow us-
ing the shearing box model (Rogallo, 1981). Because there is no boundary layer to resolve,
this numerical method is able to reach low forcing and low dissipation regimes. It uses in
addition efficient pseudo-spectral methods, which are particularly well-suited to investigate
the presence of waves in the saturation of the elliptical instability. Although the experiment
has already shown strong evidence of a saturation dominated by waves, we aim at further
supporting this finding with such a numerical tool, and at exploring this regime in the low
dissipation and low forcing limit.

The work presented hereafter also builds on the idealised simulations of wave stability
carried out in chapter 4. We have indeed proved that below a minimum Rossby number, or forc-
ing amplitude, geostrophic modes are stable and should remain sub-dominant independently
of the Ekman number. At moderate forcing amplitude (the input Rossby number ranging typ-
ically from 0.05 to 0.1), Barker and Lithwick (2013) observed only turbulent saturation with
strong geostrophic vortices. With the exploration of low forcing regimes, we hope to clarify
the role of finite Rossby instabilities in the saturation of the parametric wave resonance.
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1. The idealised local model

1.1 Tidal base flow

In this chapter, we switch to the study of tidally driven elliptical instability, conversely
to the experiment which focused on the libration-driven instability. Although the base flows
are different, they drive the same kind of parametric subharmonic instability of inertial waves
detailed in chapter 1. We consider a planet rotating at rate Ωez undergoing tidal deformation
due to a moon orbiting at rate nez as pictured in figure 1.1 in chapter 1. As earlier, we suppose
the tidal deformation to be elliptical and uniform in the whole fluid planetary interior. We
recall that in the frame of reference following the rotation of the planet, the base flow UΩb has
the following analytical expression:

U b = −γβ
 sin(2γt) cos(2γt) 0

cos(2γt) − sin(2γt) 0
0 0 0

 xy
z

= γβA(t)X (6.1)

with β the ellipticity and γ = Ω − n the differential rotation rate between the body and its
tidal bulge. This base flow is a solution of the full incompressible Navier-Stokes equations,
apart from the boundary layers. As mentioned in the introduction, another natural frame of
reference is the “orbital” frame locked to the moon’s orbit and for which the base flow is sta-
tionary. Carrying out simulations in the planetary frame is however more suited to characterise
structures related to rotation including inertial waves and geostrophic modes.

1.2 The local approach to the dynamics

We aim at studying the incompressible perturbations to the basic flow U b defined in (6.1).
Instead of modelling the whole planetary fluid layer, we develop a local model to study this
perturbation flow in the neighbourhood of a Lagrangian point M at position x 0(t) following
the elliptical streamlines such that ẋ 0 = U b(x 0(t), t). Although it has been developed by
Barker and Lithwick (2013) we propose here a detailed derivation of the local model equations,
in first place for the reader to fully understand how it is built, but also to provide a reliable
base to include buoyancy effects in the last chapter.

Let us call U i the total velocity field in the planetary frame and Uc the total velocity field
in the frame bound to x 0. U i satisfies the following Navier-Stokes equation:

∂τU
i +U i ·∇x U i + 2Ωez ×U i = − 1

ρ
∇P i + ν∇2

x U i (6.2)

where τ stands for time,∇x for the gradient in the x = (x , y, z) coordinates, P i is the pressure
and ρ is the density of the fluid. U i is the total velocity and includes the base flow U b(x ) and
velocity perturbations u i so that U i = U b(x ) + u i. To transform this equation into the frame
in translation bound to x 0, we process to the following coordinate change:�

x̃ = x − x 0(t)
t = τ .

(6.3)
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Figure 6.1: Trajectory of an initially square patch of fluid for an ellipticity β = 0.5 represented in the
orbital frame (left) in which the bulge has a stationary shape, and in the planetary frame (right). The
four configurations correspond to the same instants. The solid black line materialises the trajectory of
the center of the patch. This picture highlights the periodic stretching and shearing undergone by the
lagrangian parcel.

The corresponding change in derivatives is ∇x =∇x̃ =∇ and ∂τ = ∂t −U b ·∇x̃ . The velocity
measured in the frame bound to x 0 is Uc = U i −U b(x 0, t). Transforming the equation (6.2)
into this frame yields:

∂tU
c+∂tU b(x 0)+Uc ·∇Uc+2Ωez×Uc+2Ωez×U b(x 0) = − 1

ρ
∇P i(x 0+ x̃ )+ν∇2Uc . (6.4)

The homogeneous acceleration terms ∂tU b(x 0) and 2Ωez ×U b(x 0) are regarded as homoge-
neous volume forces. In the frame bound to x 0 the Navier-Stokes equation reads:

∂tU
c +Uc ·∇Uc + 2Ωez ×Uc = − 1

ρ
∇P c − ∂tU b(x 0)− 2Ωez ×U b(x 0) + ν∇2Uc (6.5)

where we have introduced P c(x̃ ) = P i(x 0+ x̃ ). As U c = U i−U b(x 0), it is straightforward that
U c = A(t)x̃ +u c with u c = u i = u. In the neighbourhood of x 0, the perturbed flow u satisfies
the following equation:

∂t u +A(t)x̃ ·∇u +A(t)u + u ·∇u + 2Ωez × u = − 1
ρ
∇Π+ ν∇2u (6.6)

along with the incompressibility condition ∇ · u = 0. The modified pressure includes the
homogeneous volume force terms, that is Π≡ P c +ρ (∂tU b(x 0) + 2Ωez ×U b(x 0)) · x̃ .

1.3 Lagrangian effects of the base flow

This paragraph aims at exhibiting the Lagrangian trajectory of the point M at x 0 to pro-
vide a better understanding of the model derived in the preceding paragraphs. The Lagrangian
equation ẋ 0 = U b(x 0) can be solved analytically and the position of M at any time can be re-
lated to the initial position (x0i , y0i , z0i) following:

x 0 = Rot(−γt)

 cos(ω̃t) −Λ sin(ω̃t) 0
1
Λ

sin(ω̃t) cos(ω̃t) 0

0 0 1


 x0i

y0i
z0i

 (6.7)
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where Rot(−γt) is a rotation matrix of angle −γt around the z axis. ω̃ and Λ are defined as
follows:

ω̃= γ
Æ

1− β2 and Λ=

√√1+ β
1− β . (6.8)

The corresponding trajectories are plotted in figure 6.1 for β = 0.5, γ = 1 and an initial
condition (1,0, 0). The equivalent trajectory in the orbital frame (consistently aligned with
the moon) is also indicated for comparison. In the small β limit, it can be shown that, in the
planetary frame, the Lagrangian particle rotates around the z axis at rate −γβ2/2. Around
this slow mean rotation, the particle also accomplished epicycles at a much higher rate γ/2
with a displacement of order βℓ and velocity βγℓ, where ℓ is the average distance from the
centre of the planetary body. Lastly, the slow mean rotation corresponds to a Stokes drift with
velocity ∼ γβ2ℓ .

To materialise the local effects of the base flow, we also plot in figure 6.1 the trajectories
of four points forming an initially square pattern around the tracked point. It can be noticed
that this pattern is stretched and sheared during an epicycle and rotates as the particle moves
around the z axis. Note that the slow mean rotation around the z axis is exaggerated in figure
6.1 because of the very high ellipticity.

1.4 Direct numerical simulations in a shearing box

The dynamics of the perturbations u to the equilibrium state can be simulated via a
decomposition of {u,Π} into plane waves such that:

{u,Π} = ∑
k

�
ûk(t), Π̂k(t)
	

eik(t)·x . (6.9)

Evolving the wave vectors k through time accounts for the periodic shearing induced by the
base flow U b. To proceed to numerical simulation of the perturbation flow u, the Kelvin wave
expansion is discretised and truncated so that the simulated domain is a cube of size L with
periodic boundary conditions. The initial wave vectors k0 take the following form:

k0 =
2π
L

�
nx , ny , nz

�
(6.10)

where nx ,y,z are integers ranging from −N to N , 2/N giving an order of magnitude of the ratio
between the smallest resolved scale and the size of the cube.

The numerical simulation is equivalent to solving a set of ordinary differential equations.
For all k, plugging the decomposition (6.9) in the equation (6.6) yields the following ordinary
differential equations:

dk
dt

= − γβAT (t) k = − γβA(t) k

dûk

dt
= −γβA(t)ûk − 2ez × ûk − ikΠ̂k − k2Eûk −Û(u ·∇u)k

(6.11)

which is closed by the incompressibility condition k ·ûk = 0. Time is normalised by the rotation
rate Ω and lengths by the size of the domain L. In the preceding equations, the differential
rotation rate γ is in rotation rate units, and we have introduced the Ekman number E =
ν/(L2Ω). The contribution of the non-linear term to each differential equation is computed
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Figure 6.2: Plot of the typical time evolution of the horizontal component of the wave-vector k(t).
The ellipticity has been set to β = 0.5. As in the case of the Lagrangian trajectory, the trajectory of k is
a combination of a slow, counter-clockwise rotation and fast epicycles.

in two steps: the set of coefficients ûk is Fourier transformed from the spectral space into the
real space to compute u ·∇u, this real field is Fourier transformed back to the spectral space.
The numerical method implemented here is thus called “pseudo-spectral”.

Compared to standard pseudo-spectral models, the important feature of the present
method is the inclusion of the periodic tidal shear via the time evolution of the wave vector
k(t). This “shearing box” development allows to simulate the perturbations to the base flow
while keeping the efficient pseudo-spectral methods, as originally devised by Rogallo (1981).
The shearing box method has been implemented in the SNOOPY code by Lesur and Lon-
garetti (2005) and adapted to the case of tidal forcing by Barker and Lithwick (2013).

In the code, the time evolution of the vector k is determined analytically:

k(t) = Rot(−γt)

 cos(ω̃t) − 1
Λ

sin(ω̃t) 0

Λ sin(ω̃t) cos(ω̃t) 0
0 0 1


 kx0

ky0
kz0

= Rot(−γt)R̂(t)k0 (6.12)

where we have used the same expression as in the previous sections. This time evolution
is very similar to the trajectory of the Lagrangian particle presented earlier, and is shown in
figure 6.2. Lastly, the code solves the velocity Fourier coefficient ODEs (6.11) with a fourth
order Runge-Kutta method and applying a 2/3-rule for dealiasing the non-linear terms.

1.5 Control parameters and resolution

For all the following simulations, we chose to work with a fixed forcing frequency γ= 1.5.
We could not choose γ = 2, which is analogous to the f = 4 case in the libration experiment,
because of the degeneracy of the selected modes: all the modes with kx = ky = 0 are resonant,
and large-scale waves emerge out of the elliptical instability. At γ = 1.5, there is no exactly
resonant mode due to the discretisation of wave vectors. As in the case of triadic resonance
(see chapter 2 section 2.3), near-resonances are authorised for the elliptical instability within
a O(Roi) tolerance on the difference between γ and the resonant mode’s frequency. The use of
γ = 1.5 thus allows selecting quasi-resonant modes—whose exact frequency will be specified
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Figure 6.3: Times series of the kinetic energy of the perturbation flow u and of its two- and three-
dimensional components (see definitions (6.13)), for Roi = 7.5×10−2 and E = 10−5. Time is normalised
by a non-linear time scale Ro−1

i . The plain line materialises the theoretical growth rate (1.58) including
a viscous correction −k2

resE, and the dotted line indicates twice this theoretical growth rate. The time
periods a, b and c correspond to three different phases of the instability, the first one being the initial
growth of unstable inertial waves, and the two others being part of the saturation. Typical snapshots
of the vertical vorticity for each are shown in figure 6.4. Lastly, the dashed line materialises the viscous
decay of a geostrophic mode with wave number 2π [1, 1, 0] as observed in the snapshot of phase c.

hereafter—with fast growth along with a reasonable scale separation between the resonant
wavelength and the size of the box.

We therefore control two dimensionless parameters, the Ekman number E and the input
Rossby number Roi = βγ which accounts for the typical amplitude of the tidal flow respective
to solid body rotation, but also for the typical saturation velocity (see section 1 in chapter 2).
Throughout this chapter, Roi typically ranges from 7.5 × 10−3 to 7.5 × 10−2 and the Ekman
number from 10−7 to 10−5. The total number of simulated Fourier modes is either 2563 or
5123 depending on the spatial resolution needed. Control parameters and resolutions are
recalled in tables throughout this chapter.

2. The geostrophic-dominated regime

2.1 A typical simulation

In this paragraph, we present the results of numerical simulations carried out at β =
5×10−2, E = 10−5 and with a differential rotation rate of the planet and the bulge of γ= 1.5.
The input Rossby number is therefore Roi = 7.5 × 10−2. This simulation of the elliptical
instability is initiated by an infinitesimal amplitude white noise restricted to wave numbers up
to k/(2π) = 20.

To determine the type of saturation (wave-dominated or geostrophic-dominated), in ad-
dition to the total kinetic energy E of the perturbation flow, we compute the energy E2d
contained in two-dimensional modes with kz = 0 and the energy E3d contained in three-
dimensional modes for which kz ̸= 0. The kinetic energy of the different parts of the flow is
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Figure 6.4: Typical snapshots of the vertical vorticity ωz in the three different phases of the instability
highlighted in figure 6.3 for Roi = 7.5× 10−2 and E = 10−5. The rotation axis is along the z axis, and
the local vorticity of the perturbation flow is normalised by the planetary vorticity 2Ω= 2.

computed directly in the spectral space according to the following formulae:

E = 1
2

∑
k

|ûk |2 , E2d =
1
2

∑
k/kz=0

|ûk |2 and E3d =
1
2

∑
k/kz ̸=0

|ûk |2 . (6.13)

The evolution of these three quantities is displayed in figure 6.3.

Three different phases can be identified from the kinetic energy time series, for which
typical snapshots of the vertical vorticity of the perturbation flowωz = (∇×u)·ez are displayed
in figure 6.4. The first one is the growth of the elliptical instability, that is, the exponential
amplification of a pair of inertial modes that can be identified in figure 6.4.a. These inertial
waves has a wave vector kres = ±2π [3,2,6] 1 whose eigen frequency is ωres = 1.48 such that
|γ −ωres| = 2 × 10−2 = O(Roi). It can be noticed in figure 6.3 that two-dimensional modes
grow with the unstable inertial waves, with a growth rate that is exactly twice the growth rate
of the growing waves. This is indicative of direct forcing of the two-dimensional modes by
non-linear and non-resonant interaction between the growing waves which has been formally
discussed in chapter 4 section 4.

The growth is followed by a first saturation phase (b) where both two- and three-dimensio-
nal components of the flow take a similar share of the saturation kinetic energy. In the snapshot
b in figure 6.4, several geostrophic vortices are clearly identifiable by their columnar structure
parallel to the rotation axis. Then, they undergo an inverse cascade process which leads to the
progressive condensation of the several vortices down to two vortices with opposite rotation
directions in the phase c. The end of the condensation process coincides with the transition
from phase b to c. The non-linear process of the inverse cascade acting on the geostrophic
modes is a rather standard observation that has been reported first in two-dimensional tur-
bulence (Boffetta and Ecke, 2012) and in several set-ups of rotating turbulence forced for
instance by random structures (Campagne et al., 2014; Herbert et al., 2016), or by small-scale
convection (Favier et al., 2014; Stellmach et al., 2014). As the condensate forms, a sudden rise
of the two dimensional kinetic energy E2d is followed by the decrease of the three-dimensional
component of the flow: the two strong vortices observed in figure 6.4 completely dominate the
flow. Interestingly, a slight decay of the geostrophic kinetic energy is noticeable in figure 6.3
where it is shown to match the viscous decay of a large-scale mode similar to what is observed
in the snapshot of figure 6.4. In the last phase displayed in figure 6.3, there is no transfer
of energy to geostrophic modes with the resonant wave as an intermediate. As observed by

1The ± sign is dropped hereafter since opposite wave vectors must always be paired to ensure the flow u is real.
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Figure 6.5: Maps of the kinetic energy spectrum projected in the sub-space of the dispersion relation
E (θ ,ω) (see chapter 4 section 2.3) for the different phases of the tidally driven elliptical instability
at Roi = 7.5× 10−2 and E = 10−5. The labels a, b and c correspond to the phases labelled in figures
6.3 and 6.4. The temporal Fourier transforms are performed over time periods indicated by the solid,
thick black lines of figure 6.3. The solid black line materialises the dispersion relation of inertial waves
ω= 2cosθ , and the dashed line highlights the expected resonant frequency of 1.5.

Barker and Lithwick (2013), the geostrophic vortices are dissipated until the instability may
grow again (see figure 2.4 in chapter 2). It should also be noted that the condensation of
the vortices ends when the condensate reaches the size of the simulated domain, which has
no physical meaning since we have assumed the homogeneity of the planetary interior to in-
troduce the local model. Increasing the horizontal size of the box yields a larger condensate,
whereas Barker and Lithwick (2013) has proved that coherent vortices are unstable in taller
boxes. The saturation flow observed in phase c is thus probably artificial.

We therefore observe saturation which is completely dominated by strong geostrophic
vortices. Although the presence of a strong geostrophic flow is similar to what has been ob-
served in the experiments, many differences can be noted. First, although it takes a significant
share of the energy, the geostrophic anticyclone characterised in the experiment has never
been observed to take over the flow to the point it carries the energy of the entire flow as it is
the case in figure 6.4.c. In addition, there is no evidence of an inverse cascade and condensa-
tion of several vortices down to the anticyclone in the experiment; the anticyclone may rather
be the product of small-scale turbulence organising directly into a coherent vortex, probably
due to confinement by the geometry and wall topography. Lastly, in the present simulations,
there is no preferential emergence of a cyclone or an anticyclone as both can be noticed in
figure 6.4.

2.2 Inertial waves in the geostrophic regime

Although the geostrophic saturation observed in the local model should be interpreted
with care in regard of the experiments, the local model remains nevertheless a very useful
tool to explore the interaction between waves and vortices in the saturation phase. As in
the experimental study of Yarom and Sharon (2014), we propose to explore the presence
of inertial waves and their interaction with geostrophic vortices by projecting the energy of
the flow in the sub-space of the dispersion relation. Computing such a quantity is made rather
straightforward by the use of pseudo-spectral methods in our numerical model. As explained in
chapter 4, section 2.3, from the amplitude of the velocity sorted by wave-vectors in the spectral
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space ûk , we extract by summation and temporal Fourier transform the kinetic energy of the
flow as a function of θ = arccos(kz/k) the angle between the wave-vector and the rotation
axis, and ω the temporal frequency, a quantity denoted as E (θ ,ω). The result of computing
the energy map E (θ ,ω) is shown in figure 6.5 for the different phases of the instability—a,
b and c. The location of the kinetic energy is to be compared to the line materialising the
dispersion relation of inertial waves ω= 2 cosθ .

In the energy maps E (θ ,ω), it appears clearly that the resonant structures in the growth
of the instability are along the dispersion relation and at the resonant frequency, which con-
firms the standard elliptical instability mechanism. In the first phase of the saturation (b), we
notice an accumulation of energy at (ω,θ ) → (0,π/2), which corresponds to slowly evolv-
ing geostrophic modes—invariant along the z axis. In the meantime, the energy of three-
dimensional modes does not follow the dispersion relation of inertial waves. Instead, it re-
mains somewhat localised around the resonant frequency. To explain this result, we propose
that energy is still supplied to the perturbation flow via the elliptical instability. The resonant
structures are not plane waves anymore but a combination of modes to account for the pres-
ence of geostrophic vortices that locally change the local rotation rate of the fluid. The total
vertical vorticity of the fluid writes 2 +ωg

z where ωg
z is the vertical vorticity of geostrophic

flows. We may qualitatively estimate the angles θ of the superposition of plane waves that
resonate with the base flow. In the core of a vortex with vorticity ωg

z that is assumed to vary
slowly in space, plane waves have a modified eigen frequency (2+ωg

z ) cosθ . Resonant waves
inside the vortex are such that the angle θ satisfies the following relation:

cosθ =
γ

2+ωg
z

. (6.14)

For positive vorticity in the vortex, the angle θ of the resonant wave vectors is such that cosθ
is decreased, which means that θ is increased. In the real flow, the local vorticity varies con-
tinuously, hence the signature of the resonant structures in the (ω,θ ) plane: they resonate
around the frequency γ, and display a continuous spectrum towards increasing θ .

The final stage of the saturation (c) of the instability is rather complicated as energy is
neither located around the dispersion relation nor around the resonance frequency γ. Some
symmetric structures around the ω = γ line may be noticed, and may be interpreted as reso-
nant structures distorted by the strong geostrophic vortices and verifying the resonance con-
dition (1.45) ω1 +ω2 =ωres.

2

2.3 Temporal and spatial spectra of the geostrophic saturation

In this section, we present the temporal and spatial spectra of the saturation flow. The
former is used for comparison with the experimental results of chapter 3. The spatial spec-
trum is computed for comparison with classical results of rotating turbulence (Godeferd and
Moisy, 2015).

The spectral density of kinetic energy T (k) is computed directly in the spectral space
according to the following formula:

T (k) =
∑

|k|∈[k,k+∆k]

1
2
|ûk |2 (6.15)

2Note that the relation (2.34) derived in chapter 2 was rather ω1 +ω2 +ωres = 0 but since the field is real, all
frequencies±ω0,1,res are present so that a relation of the typeω1+ω2 =ωres is also significant of triadic interaction.
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Figure 6.6: Spatial (left) and temporal (right) spectra of the flow resulting from the elliptical instability
computed during the three different phases of the instability highlighted in figure 6.3. The spatial
spectra in the saturation phases are compared to a k−3 power law. In the temporal spectra, the vertical
black line marks the upper limit of the inertial waves domain ω = 2. In the growth phase (a), the
resonant waves appear in a narrow band of wavenumbers, at a frequency of 1.5 which is half the
forcing frequency 2γ= 3.

where ∆k is set by the discretisation of the spectral grid, and in the present study ∆k = 2π.
The quantity T (k) is displayed in figure 6.6-left for the three phases of the instability. In
the growth phase, the reduced number of growing modes translates into a narrow band of
wavenumbers bearing a significant amount of energy. During the saturation of the instability,
the spectral density of kinetic energy is very close to a k−3 power law, which is a usual feature
of geostrophic rotating turbulence (see for instance the work of Sen et al. (2012)). Three-
dimensional spatial spectra are significant outcome of the local model to complement the
experiment for which this quantity is difficult to determine since it requires a large resolution,
a low signal to noise ratio and a three-dimensional velocity field. In addition, the experiment
is intrinsically inhomogeneous and scale analysis based on spatial Fourier transform may be
irrelevant.

The temporal power spectra are computed from data in the physical space. Similarly to
what has been down in the experimental study (see Chapter 3), the temporal spectra are deter-
mined from local recordings of the three components of the velocity. The result of the process,
which involves Fourier transform of the time series and ensemble average, is shown in figure
6.6-right. In the growth phase (phase a), the unstable inertial wave clearly appears at half
the frequency, that is at ω = γ. In the first saturation phase, the energy concentrates around
the resonant frequency with a significant spreading. This spreading could be interpreted as
a consequence of the detuning of the resonant structures by advection-induced Doppler shift.
Consider the resonant waves with wave vector kres = 2π [3,2, 6], for which kres ≃ 2π× 6.2,
and a geostrophic flow with typical rms amplitude ug ∼ 10−2. The resulting Doppler shift of
the frequency is of order (kres/(2π))× ug ≃ 6× 10−2. The full width at half maximum of the
ωres = 1.5 peak is 6× 10−2 which is in good agreement with the qualitative evaluation of the
detuning by Doppler-shifting.

Later, in the final saturation phase (phase c), many rather sharp peaks appear, some being
located outside the inertial wave domain. The presence of the large-scale vortices makes the
interpretation of these peaks difficult. They could very well be associated with inertial modes
that exist in the core of the vortex, and that would be eigenmodes of the rotating vortex. As
explained in the preceding section, the clear symmetry around ωres could be explained by
resonances of pairs of inertial waves verifying the resonance condition (1.45).
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Figure 6.7: Bicoherence spectra computed in the phases b and c of the geostrophic saturation. The
thick black line materialises the limit of the inertial wave domain and the thin lines frame the location
of the triadic interaction involving the resonant mode at ω= γ= 1.5 and Roi = 7.5× 10−2.

2.4 Non-linear triadic interactions in the geostrophic saturation

In the experimental study presented in chapter 3, we have shown in figure 3.22 that
even though the saturation is dominated by a strong geostrophic anticyclone, the bicoherence
spectrum showed that triadic resonant interactions are still occurring between modified modes
that must account for the altered background rotation. In the present section, we aim at
investigating the presence of non-linear processes such as triadic resonances in the saturation
of the tidally driven instability dominated by geostrophic vortices. We use the bicoherence
spectra diagnostic, as in chapter 3, and we recall for clarity how it is computed. It is determined
from the temporal Fourier transform of the velocity local measurements ûi , the index i referring
to the index of the velocity measurement (for N probes, 3N measurements are carried out since
the three component of the velocity are recorded). The bicoherence may be defined by the
following formula:

B(ω1,ω2) =

�� 
 ûi(ω1) ûi(ω2) û∗i (ω1 +ω2)
���2

〈| ûi(ω1) ûi(ω2) |2〉

| û∗i (ω1 +ω2) |2

� (6.16)

where the operation 〈·〉 here denotes an ensemble average over all the ûi . This diagnostic
quantity is such that it peaks when two structures at frequencies ω1, ω2 significantly interact
with a structure at ω1 +ω2.

The bicoherence spectra in the two phases of the saturation (b and c) are shown in
figure 6.7. Significant three-mode interactions exist, and most of them are outside the inertial
wave domain. This is possibly due to the strong distorsion of waves in the core of geostrophic
vortices in both phases of the saturation which locally strongly alters their frequency. Note
that this frequency shift is different from the detuning by Doppler shift mentioned earlier in
section 2.3 which rather affect waves outside the core of the vortices. The triadic interactions
remain nevertheless difficult to interpret since the inertial modes are no longer plane waves
and the geostrophic modes are unsteady.
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Figure 6.8: Diagram of the different regimes expected for the saturation of the elliptical instability
for wave vectors k = 2π [4, 0, 8] (the wave studied in the previous chapter) and k = 2π [5, 5, 8] (the
resonant mode at Roi = 7.5× 10−2 and E = 10−6.5). The control parameters are the Ekman number
and the Rossby number Roi . The plain line materialises the threshold of the elliptical instability and the
dashed line the threshold of the secondary instability. On the latter, the black dots materialise the Roi
values at which the inviscid growth rate has been determined numerically. The dashed line separates the
parameters space in a wave-dominated and a geostrophic-dominated area. The diamonds materialise
the locations of the two simulations introduced in section 3.2 and summarised in table 6.1.

3. Attempts to observe a wave-dominated regime
with the local model

The preceding section was targeted at the geostrophic-dominated regime in the numer-
ical local model that bears some similarities with the regime observed in the experiments.
Similarly to what has been detailed in the first chapter, we should be able to observe a wave-
dominated regime. The present section builds on the study of finite Rossby instabilities to look
for a wave-dominated regime.

3.1 Predicting the saturation regime with finite Rossby instabilities

We carry out a short study to build a predictive regime diagram of the saturation of the
elliptical instability based on the idealised study presented in chapter 4. As explained in the in-
troduction, the saturation amplitude of the resonant wave should scale like Roi . Let us assume
that Roi is a sufficient proxy for the saturation amplitude, and that studying the stability of the
resonant wave respective to secondary geostrophic instability exactly corresponds to the anal-
ysis of the previous chapter. The goal of this short investigation is to find the minimal Rossby
number below which the saturation should always be dominated by waves in interaction.

We focus on the case where the frequency of the resonant modes ωres = γ = 1.5. As
recalled in the introduction, the growth rate of the instability is an increasing function of
the differential rotation rate γ; choosing γ = 1.5 produces rapid turbulent saturation and
ensures sufficient scale separation between the size of the simulated domain and the reso-
nant wavelength. Different resonant modes can be excited as the input Rossby number Roi
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is lowered. At Roi = βγ = 7.5 × 10−2, the resonant mode is 2π [3,2, 4] (see figure 6.4) of
frequency ωres ≃ 1.485, that is, |ωres − γ| ∼ Roi/5. When Roi is decreased by an order of
magnitude to 7.5× 10−3, the resonant mode switches to 2π [5,5,8] for which ωres = 1.4985
and |ωres−γ| ∼ Roi/5. Although it is closer to the exact resonance condition, this mode is not
the most unstable one at Roi = 7.5×10−2. This is due to viscous damping which is about four
times larger—at the same Ekman number—for the mode 2π [5,5,8] compared to 2π [3,2,4]
so that the latter has a larger viscous growth rate. At Roi = 7.5×10−3, 2π [3,2, 4] is out of the
near-resonance tolerance, and 2π [5,5, 8] becomes the most unstable mode. Note that select-
ing a specific forcing frequency γ to match the frequency of a mode does not solve the shift in
mode selection at moderate input Rossby number. For instance, even if we choose γ= 1.4985,
which is the eigen frequency of the mode 2π [5,5,8], at Roi = 7.5× 10−2, the near-resonant
mode 2π [3,2, 5] remains the most unstable.

Building on the idealised study, we wish to predict what is the input Rossby number
Roi = βγ below which finite Rossby number instabilities should vanish. For k/2π ∼ 10, this
yields a critical input Rossby number of Roi,c = 1×10−2. To obtain a precise regime diagram of
the secondary instability, we therefore investigate the stability of the wave kres = 2π [5,5,8]
respective to finite Rossby instabilities with the method presented in chapter 4.

For a very low Ekman number, we find the inviscid growth rate σ2,i of this secondary
instability as a function of the Rossby number Roi . In the triply periodic cubic box, the damping
rate of waves is set only by bulk dissipation, the viscous growth rate σ2(Roi) is therefore
deduced from σ2,i(Roi) by:

σ2(Roi) = σ2,i(Roi)− k2
resE . (6.17)

To determine the critical line separating the wave-dominated from the geostrophic dominated
regimes in the (E, Roi) space, we compute the corresponding critical Ekman number Ecrit ac-
cording to:

Ecrit =
σ2,i(Roi)

k2
res

. (6.18)

This secondary instability line is to be compared with the elliptical instability critical line given
by the equation:

Roi

16
(2+ γ)2 − k2

resE = 0 . (6.19)

based on the instability growth rate presented in the chapter 1 equation (1.58).

The result of such a process is shown in figure 6.8 for two different wave numbers,
2π [4,0,8] which is the one used for the study of chapter 4, and kres. As found previously,
the fact that this instability occurs only at finite Rossby translates into a horizontal line below
which geostrophic modes should never grow out of the saturation of the instability. Never-
theless, the respective growth rates of the primary and secondary instabilities in the present
idealised and homogeneous set-up is such that the secondary instability always develops above
the horizontal line Roi = Roi,c . This feature is different from what is observed in the experi-
ments where there exists for intermediate Ekman numbers a band between the primary and
secondary critical lines above Roi,c , as found in figures 3.19 and 4.11.
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Figure 6.9: Temporal series of the kinetic energy of the flow driven by the elliptical instability for the
two experiments located in figure 6.8. As in figure 6.3, the total kinetic energy is decomposed into
two- and three-dimensional contributions (E2d and E3d). The two dotted lines in the left panel give
the viscous growth rate of the tidally driven elliptical instability and twice its value. Note that time is
normalised by a non-linear time Ro−1

i .

Resolution E Roi urms

2563 10−6.5 7.5× 10−3 2.5× 10−3

2563 10−6.0 1.5× 10−2 5.1× 10−3

Table 6.1: Table of the input control parameters for the simulations presented here, and the output
measurements comprising the root mean square (rms) value of the velocity.

3.2 The systematic emergence of geostrophic vortices

According to the regime diagram presented in figure 6.8, and assuming that Roi = βγ is
an adequate proxy for the saturation amplitude of the resonant wave, choosing parameters

Roi = 1.5× 10−2 and Roi = 7.5× 10−3

should lead to two different saturation regimes. For the lowest value of Roi , the saturation
amplitude of the mode is expected to be below the critical amplitude giving rise to finite Rossby
number instability of the geostrophic mode. We therefore expect the saturation at lower Roi
to be dominated by inertial waves.

Simulations of the tidally driven elliptical instability have been carried out for the two
sets of control parameters shown in figure 6.8 and presented in table 6.1. The kinetic energy
of the flow in both cases is shown in figure 6.9; it is decomposed into its two- and three-
dimensional components as in the previous section. For both simulations, the kinetic energy
of the geostrophic flow is of similar amplitude as the rest of flow, whereas it was expected
that for Roi = 7.5× 10−3, it should remain sub-dominant. This is all the more surprising that
the rms velocity, determined from the kinetic energy temporal average E by urms = (2E )1/2, is
lower than the minimal Rossby number below which the finite amplitude instability does not
develop, which is ∼ 1× 10−2 (see figure 6.8) by more than a factor 2 (see table 6.1).
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3.3 Understanding the emergence of geostrophic modes with di-
rect forcing

Evidence for direct forcing

We presently aim at understanding the origin of the systematic geostrophic saturation
that does not match the predictions based on finite Rossby instabilities. As it may be noticed
from figure 6.9, geostrophic vortices take a significant share of the flow as soon as the pri-
mary instability saturates. In both the simulations of figure 6.9 and in the previous section,
two-dimensional modes with non-zero horizontal velocities emerge during the growth of the
unstable waves. It is found that they also grow exponentially with a growth rate twice as large
as the waves’ in the early stages of the instability. It is clear that in this phase of the instability,
the emergence of geostrophic modes is not driven by an instability, otherwise their growth
would have been super-exponential.

The latter observation rather points towards a direct forcing of two-dimensional modes
by the resonant waves. It has been noted for instance from the spatial spectrum in the growth
phase of the instability in figure 6.6 (phase a) that more than one wave resonate with the tidal
forcing. It is, therefore, a patch of modes that resonates with the tidal base flow; it interacts
with itself and excites many structures as it grows. Note also that because of the axial symmetry
of the tidal flows, if a mode at a particular wave vector is excited, the symmetric wave vector
respective to the rotation axis is also resonant. As all these waves grow, they directly feed a
cascade of structures through non-linear, non-resonant interaction.

Direct forcing has been formally described in chapter 4 section 4. We have proved for
instance that two exponentially-growing inertial waves, whose wave vectors are nearly sym-
metrical waves with respect to the kz = 0 plane, 2π [5,5, 8] and 2π [5,4,−8], drive the growth
mode 2π [−10,−9,0].

Direct forcing in the saturation

At the end of the exponential growth, a superposition of structures with very different
scales is excited and collapses into turbulence via direct non-linear forcing and triadic reso-
nances. It corresponds to the non-linear overshoot of the instability which is systematically
observed (see figures 6.3 and 6.9). Slowly evolving geostrophic modes are part of the flow
excited at this particular moment and then undergo viscous decay until another secondary
growth of the elliptical instability directly excites geostrophic structures. This scenario is
supported by figure 6.9 where it appears clearly that geostrophic modes are mainly excited
during short-lived non-linear overshoots of the three-dimensional energy, whereas they decay
viscously between the overshoots.

4. A wave-dominated regime in the local model

The preceding section suggests that it is difficult to observe a wave-dominated regime,
even below the threshold of finite amplitude instability, possibly because of the non-linear
direct forcing of geostrophic flows by resonant forcing. At very small Roi , this direct forcing
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should remain sub-dominant, but this regime remains hardly accessible. Nevertheless, we
would like to extend our understanding of the wave-dominated regime with the local model,
in order to complement the experimental study, without performing simulations at extremely
low input Rossby numbers and Ekman numbers. This is done in the following by adding a
friction specific to the geostrophic modes which turns out to be sufficient to switch to a wave-
dominated regime.

4.1 A specific friction applied to geostrophic modes

To retrieve the wave-dominated type of saturation that has been observed in experiments,
we propose to apply an artificial specific friction to the geostrophic modes only. Let us consider
the following decomposition of the perturbation flow u in the triply periodic box.

u = u2d + u3d where u2d =
∑

k/kz=0

ûk e−ik·x and u3d =
∑

k/kz ̸=0

ûk e−ik·x (6.20)

or equivalently:

u2d =
1
L

∫ L

0

udz and u3d = u − u2d . (6.21)

The evolution equation of the two-dimensional modes u2d is therefore inferred from Navier-
Stokes equation by vertical averaging, that is:

∂t u2d+2Ω×u2d+∇p2d+LTu2d−E∇2u2d =
1
L

∫ L

z=0

(u3d ·∇u3d)dz+u2d ·∇u2d− fr u2d (6.22)

where LT is the linear operator of the —non-resonant— interaction with the tidal base flow.
The last term of equation (6.22) is an additional friction specific to two-dimensional modes.
The parameter fr controls the typical damping time of these modes and affects in the same
way small and large scales. Similar terms that affect large scales, in particular, have been used
for instance in two-dimensionnal turbulence or quasi-geostrophic models (see for instance the
review article by Boffetta and Ecke (2012)) to prevent the anomalous accumulation of energy
at scales as large as the size of the simulated domain under the action of an inverse cascade.
In the present set-up, the specific geostrophic friction could model wall friction and Ekman
pumping undergone by the geostrophic modes: since the latter are z-invariant, they must
indeed reconnect to the solid boundaries of the container in which the local cartesian model
is enclosed. The implementation of this specific friction is made particularly easy here by the
use of pseudo-spectral methods as it is added in the evolution equations of modes with kz = 0.

4.2 Saturation with friction: a wave-dominated regime

A three-dimensional saturation flow

In this section, we focus on simulations carried out at the same input Rossby number
Roi as in section 2, and we include the specific friction on geostrophic modes with amplitude
fr = 10−2 and fr = 1. The Ekman number is here decreased down to 10−6; such a low
dissipation could not be achieved in the geostrophic type of saturation, even with a 5123

resolution. In the preceding simulations at Roi = 7.5×10−2 the intense shear driven between
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Figure 6.10: Kinetic energy time series for two simulations of the elliptical instability at Roi = 7.5×10−2

and E = 10−5.5, that is, at the same control parameters as in figure 6.3, but with the additional specific
friction added on the two-dimensional modes —see equation (6.22).

Resolution E Roi fr

2563 10−5.0 7.5× 10−2 1.0
2563 10−5.0 7.5× 10−2 1.0
5123 10−5.5 7.5× 10−2 1.0× 10−2

5123 10−5.5 7.5× 10−2 1.0
5123 10−6.0 7.5× 10−2 1.0

Table 6.2: Table of the input control parameters for the simulations presented in section 4.2, including
the friction amplitude fr —see equation (6.22) .
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Figure 6.11: A typical snapshot of the saturation flow’s vertical vorticity, at Roi = 7.5 × 10−2 and
E = 10−6 with a friction fr = 1. The vorticity is normalised by the planetary vorticity 2Ω= 2.

the geostrophic vortices lead to small scales that could not be resolved with the currently
available computing power. Such large shear zones do not exist in the present case where the
strong geostrophic modes are over-damped by the specific friction. The simulations presented
throughout this section and the associated control parameters are summarised in table 6.2.

As it can be noticed in figure 6.10, the friction does not only force the two-dimensional
modes to be sub-dominant, it also drastically changes the nature of the saturation. Instead of
observing several phases in the evolution of the saturation flow, the latter reaches a statistically
steady state with dominant three-dimensional modes. A typical snapshot of the saturation
flow’s vorticity is given in figure 6.11 where three-dimensional as well as small-scale structures
can be noticed.

The energy of the flow in the dispersion relation subspace

To determine the type of structures excited in this new regime of the saturation of the
elliptical instability, and in particular to quantify the presence of waves, we project the energy
of the flow onto the dispersion relation subpsace (ω,θ ). We use the process detailed in para-
graph 2.2 to compute the energy E (θ ,ω). The result of this process is shown in figure 6.12
which clearly reveals that the energy focuses along the dispersion relation of inertial waves
as the friction increases while keeping any other parameter constant. Such a result is con-
sistent with the outcomes of the experimental investigation presented in chapter 3: provided
the geostrophic flow is sub-dominant (regardless of the cause), the non-linear break-down of
the resonant inertial waves gives rise to daughter inertial waves at different frequencies. Note
also that other structures can be spotted in the energy maps of figure 6.12 which have a sym-
metric signature to inertial waves respective to the line ω= γ. They are excited by non-linear
and non-resonant interaction between the waves at frequencies ±2cosθ and the base flow at
frequency 2γ giving rise to structures such that ω= 2γ− 2cosθ .
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Figure 6.12: Spatiotemporal spectra E (θ ,ω) of the saturation flow onto the relation dispersion. The
simulations are carried out at an input Rossby number Roi = 7.5 × 10−2 and an Ekman number
E = 10−5.5 for two values of the friction parameter, fr = 10−2 (left) and fr = 1 (right). The solid
black line materialises the dispersion relation ω = 2cosθ . The dashed line highlights the resonance
frequency ωres = γ= 1.5. The dashed-dotted line corresponds to the non-linear, non-resonant interac-
tion between the inertial waves and the tidal base flow at frequency 2γ− 2cosθ .
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Figure 6.13: Left: spectral density of kinetic energy as a function of the wavenumber k at Roi =
7.5 × 10−2 with a friction fr = 1. A k−2 power law is given for reference. Right: temporal power
spectra of the saturation flow at Roi = 7.5× 10−2, E = 10−6 and fr = 1. The vertical lines materialise
the resonant frequency ω = γ (dotted) and the upper limit of the inertial waves domain at ω = 2
(plain).
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Figure 6.14: Bicoherence B(ω1,ω2) of the saturation flow at Roi = 7.5× 10−7, E = 10−6 and fr = 1.
The thick black line materialises the limit of the inertial wave domain ω1 +ω2 = 2. The thin dashed
lines frame all the triadic resonances involving the resonant wave, i.e. for which either ω1, ω2 or
ω1 +ω2 = γ = 1.5. All the other significant interactions involve daughter waves only. The domain
ω1 < 0 is shown in this figure to include the interaction between waves with opposite sign frequencies,
in particular around ω1 = −0.36 and ω2 = 1.87.

Triadic resonances

As in the experiment, the presence of triadic resonances is further assessed by the anal-
ysis of the temporal spectral content of the saturation flow shown in figure 6.13 right. It is
determined as in paragraph 2.3 with local measurements of the three components of the ve-
locity. The spectra displays several peaks with principal frequencies verifying the following
triadic resonance conditions,3 for instance:

1.87− 0.36= 1.51

1.14+ 0.36= 1.50

0.78+ 0.36= 1.14 .

To provide a more quantitative account of the presence of triadic resonant interaction, we
propose to compute bicoherence spectra B(ω1,ω2) as done previously. An example of bico-
herence is given in figure 6.14 where we confirm the triadic resonant interactions guessed
from the temporal spectra. We can notice in this bicoherence spectrum triadic resonances in-
volving the unstable waves (along the thin lines), but also the existence of second generation
of daughter waves. Note however that the peaks remain narrow: as in the experimental study,
the turbulent saturation is in this regime a discrete inertial wave turbulence.

3Note that the relation (2.34) derived in chapter 2 was rather ω1 +ω2 +ω0 = 0 but since the field is real, all
frequencies ±ω0,1,2 are present so that a relation of the type ω1 +ω2 =ω0 is an equivalent formulation of triadic
interaction.
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Figure 6.15: Plots of the anisotropic spatial spectra T⊥(k⊥) and T∥(k∥). They are compensated by the
expected theoretical power laws (6.27) and (6.29) to facilitate the comparison between theory and
simulations.

Isotropic spatial spectra

The excitation of many inertial waves in the saturation of the instability is also associated
with the excitation of a continuum of scales, as shown in the spatial spectra presented in figure
6.13. Our simulations show that in the asymptotic regime of small dissipation or small Ekman
number, the spectral density of kinetic energy follows a k−2 power law with the wave vector k,
which contrasts with the geostrophic type of saturation where a k−3 power is measured (see
figure 6.6). This observation is consistent with the phenomenology of rotating turbulence
introduced by Zeman (1994) and Zhou (1995) who both predict such a power law with a
phenomenology relying on a time scale balance between turnover and fast inertial oscillations,
which is consistent with the inertial wave saturation we observe here. However, their theories
do not take into account the spatial anisotropy due to rotation.

Anisotropic spatial spectra

To extend our analysis of spatial spectra, we propose to compare our simulations to
theoretical predictions derived by Galtier (2003) from the kinetic equations of inertial wave
turbulence, the latter being the kinetic energy equivalent of the amplitude equations derived in
chapter 2 section 2. Instead of dealing with the isotropic spectrum discussed in the preceding
section, the prediction made by Galtier (2003) on the kinetic energy repartition through scale
is a function of the two components of the wavector k⊥ and k∥ defined such that:�

k∥ = k · ez = k cosθ
k⊥ = k sinθ

(6.23)

where θ is the angle between the wave vector and the rotation axis. Galtier (2003) predicts
that T (k∥, k⊥), the kinetic energy sum over the modes whose wave vectors have vertical and
horizontal components close to k∥ and k⊥ respectively, follows the following two-component
power law:

T (k∥, k⊥)∝ k−1/2
∥ k−5/2

⊥ (6.24)

but only in the limit k⊥≫ k∥.

To test this theoretical prediction, we compute from the present simulations the quantity
T (k∥, k⊥). Such a process bears some similarities with the computation of the kinetic energy
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map in the dispersion relation sub-space. In the spectral space, we compute the kinetic energy
T (k,θ ) as a function of the wave vector k and the angle θ by azimuthal summation of the
kinetic energy of the modes:

T (k,θ ) =

∫
ϕ

1
2
|uk |2k2 sinθdϕ (6.25)

where ϕ is the azimuthal angle of k around the rotation axis. It is then straightforward to
transform T (k,θ ) into T (k⊥, k∥) using relations (6.23).

To provide a quantitative test of the theory of Galtier (2003), we propose to examine two
one-dimensional quantities extracted from T (k∥, k⊥) in the limit k⊥ ≫ k∥. We first define T⊥
as:

T⊥(k⊥)≡
∫ 5×2π

k∥=0

T (k∥, k⊥)dk∥ (6.26)

which is a summation of T (k∥, k⊥) over small k∥ to ensure the condition of validity k⊥ ≫ k∥
for the theory of Galtier (2003) is fulfilled. According to Galtier (2003), we expect:

T⊥(k⊥)∝ k−5/2
⊥ . (6.27)

Similarly, we also define a function T∥ as a summation of T (k∥, k⊥) over large values of k⊥ that
are yet in the inertial range of the turbulence (see figure 6.13) in order to fulfill the condition
of validity k⊥≫ k∥ for the theory of Galtier (2003) :

T∥(k∥)≡
∫ 60×2π

k⊥=50×2π

T (k∥, k⊥)dk⊥ . (6.28)

It should follow a power law:
T∥(k∥)∝ k−1/2

∥ (6.29)

at small k∥.

The anisotropic spatial spectra T∥ and T⊥ are shown in figure 6.15; they are compensated
by the expected power laws (6.27) and (6.29) to facilitate the comparison between theory
and simulations. Figure 6.15 indicates that T⊥ follows the theoretical prediction. The power
law followed by T∥ is close to k−1/2

∥ but on quite a small range of scales. Although promis-
ing, a larger inertial range may be required to fully confirm that we observe the theoretical
anisotropic spectra of inertial wave turbulence.

4.3 Towards extreme regimes: the low dissipation and low forcing
limit

Inertial wave turbulence

In the preceding sections, the local cartesian model has led to the confirmation that a state
reminiscent of inertial wave turbulence is obtained in the saturation of the elliptical instability
when the geostrophic component is sub-dominant. This numerical model is also useful to
explore regimes that are beyond the reach of any experiment and global numerical simulations,
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Figure 6.16: Energy map in the dispersion relation subspace (ω,θ ) (a) and ensemble average of
temporal spectra (b) for control parameters Roi = 7.5× 10−3 and E = 10−7 with a geostrophic friction
of fr = 1.

Figure 6.17: Bicoherence spectrum B(ω1,ω2) of the saturation flow at Roi = 7.5 × 10−3, E = 10−7

and fr = 1. The thick black line materialises the limit of the inertial wave domain ω1 +ω2 = 2. The
thin dashed lines frame all the triadic resonances involving the resonant wave, i.e. for which either ω1,
ω2 or ω1 +ω2 = γ= 1.5. All the other significant interactions involve daughter waves only.
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Figure 6.18: Computation of the energy dispersion DE along the dispersion relation, for the two set
of parameters (Roi = 7.5× 10−2, E = 10−6) and (Roi = 7.5× 10−3, E = 10−7); the friction coefficient is
set to fr = 1 for both cases. The computation is carried out according to the formula (6.30) and the
frequency discrepancy δω is normalised by Roi to emphasize that the focus of the energy is O(Roi).

and allows to draw closer to geophysical regimes where both the forcing amplitude and the
dissipation are small. In the following, we keep the friction parameter to fr = 1 and we
explore the saturation state obtained at Roi = 7.5 × 10−3 and E = 10−7. We show in figure
6.16 the map of the saturation flow energy in the dispersion relation sub-space E (θ ,ω) and
the ensemble average of local measurements of the velocity. We observe that the energy of the
saturation flow is sharply focused along the dispersion relation of inertial waves. In addition,
the temporal spectrum Ê(ω) comprises a very large number of sharp peaks in the inertial
waves range and a significant energy cut-off beyond the maximum frequency of inertial waves
ω= 2 and towards geostrophic modes at ω= 0.

The bicoherence spectrum for this simulation is displayed in figure 6.17 where, as earlier
at higher Roi , we observe triadic interaction of daughters inertial waves with the resonant
modes, but also further generation of daughter waves. The number of peaks in the bicoherence
spectrum is increased, and their typical width is thinner. One would therefore expect that in
the asymptotic limit of small forcing amplitude and small dissipation, an increased number of
daughter waves are excited, and possibly turn into a continuum.

Increase of the spreading of the wave frequency with Roi

It appears clearly from the energy maps at Roi = 7.5 × 10−2 (figure 6.12) and Roi =
7.5 × 10−3 (figure 6.17) that the spreading of the energy of the saturation flow along the
dispersion relation increases with Roi . As shown in chapter 2 section 2.3, near-resonance
are allowed within a tolerance O(Roi) on the frequency mismatch ∆ω between the eigen
frequencies of the three modes involved. To confirm that the typical spreading is roughly
proportional to Roi , we compute a mean energy dispersion around the dispersion relation in
order to confirm quantitatively that the energy is focused with a tolerance O(Roi) along the
line ω = 2cosθ . This energy dispersion DE is computed as a function of the distance to the
dispersion relation δω=ω− 2cosθ with the following formula:

DE(δω) =

∫ π/2
θ=0

E (θ , 2 cosθ +δω)
maxδω (E (θ , 2 cosθ +δω))

dθ . (6.30)
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In other words, it is a summation of the energy spectrum carried out over all angles as a
function of a shifted frequency so that at every angle the frequency reference is the given by
the dispersion relation. Note that the max

δω
(E (θ , 2 cosθ +δω)) is reached close to δω = 0,

i.e. close to the dispersion relation. The result of this process is displayed in figure 6.18, where
we clearly confirm that the spreading of the energy along the dispersion relation is proportional
to Roi . This confirms the result of the simple calculation carried out in chapter 2 section 2.3.

Conclusion: the asymptotic regime of the saturation of the elliptical
instability

The use of the local model has allowed us throughout this paragraph to explore the wave-
dominated regime that has been exhibited in our experiment at low dissipation and low forcing
amplitude. We show that the non-linear saturation flow comprises an increasing number of
daughter inertial wave generations that are all excited by triadic resonances. In addition, our
result clearly indicates that in this asymptotic regime, all the structures excited have spatial
and temporal variations that exactly match the dispersion relation. This particular state also
tends to excite a continuum of scales, and the energy density varies with the wave number k
according to power law k−2. The anisotropic repartition of kinetic energy in the spectral space
tends to follow inertial waves turbulence theoretical predictions made by Galtier (2003).

We believe that the cartesian model simulations allow to state that in the asymptotic
regime of low dissipation and low forcing amplitude (Roi , E→ 0), which is relevant for plan-
etary and stellar interiors, the elliptical instability tends to excite an inertial wave turbulence
provided that the geostrophic flow remains subdominant. Yet, the observation in the local
cartesian model at moderate input Rossby number of a wave-dominated regime was made
possible with the use of a specific friction applied to the geostrophic modes.

5. Exploring the stability of wave turbulence

5.1 The case against friction

The preceding study, despite its interest for our understanding of the wave-dominated
regime that has been observed in our experiments, may be criticised in particular for the intro-
duction of an artificial and selective damping of the geostrophic modes. One may argue that
this friction is a consequence of the invariance of the geostrophic vortices along the z axis: they
must reconnect to the solid boundaries of the container in which the local cartesian model is
enclosed and undergo wall friction. Nevertheless, the local model is built on the assumption
that the planetary core is homogeneous, that is, the cartesian box could be placed anywhere
in the liquid interior. As a consequence, the Ekman pumping is not specific to the geostrophic
vortices: if geostrophic modes are connected to boundaries and undergo friction, then all the
modes should, although the amplitude of the friction would depend on the direction of propa-
gation of the modes. A derivation of the wall friction for plane waves in the case of a rotating
channel has been carried out by Scott (2014) who finds that the mode damping rate by wall
friction follows a law Fr(kz/k)

p
E where Fr is a continuous function, reaching a maximum

at 0. Although the damping rate is larger for kz = 0, the friction undergone by most of the
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modes is of the same order of magnitude. The physical argument based on wall boundary
layer to support the use of a friction specific to geostrophic modes is therefore questionable.
The geostrophic-specific friction is nevertheless a useful tool to retrieve a regime dominated by
three-dimensional flows as it has been observed in our experiments. Such a specific damping
could also take place naturally in presence of an imposed background magnetic field. Barker
and Lithwick (2014) indeed showed with the same local cartesian model that we use here
that a weak background magnetic field prevents the emergence of the z-invariant geostrophic
vortices, and the saturation is then fully three-dimensional.

One would thus wonder whether the turbulent state we observe is representative of iner-
tial wave turbulence. It is indeed well known in rotating turbulence that triadic transfers tend
to focus the energy towards smaller kz modes and therefore towards the geostrophic subset
(Waleffe, 1993; Smith and Waleffe, 1999). We observe this particular feature in the study of
the saturation with friction, for instance in the temporal spectra displayed in figures 6.13 and
6.16 where it is clear that low frequency modes are of larger amplitudes. In the preceding
study, the use of friction prevents efficient transfers towards kz = 0 modes, but not to modes
for which kz/k≪ 1. Although it is clear that we observe waves in non-linear resonant interac-
tions, the state we create with the specific friction could very well be a blocked intermediate
step towards bi-dimensionalisation of the turbulent flow. It would then be particularly interest-
ing for the study of the elliptical instability to find a way to create a mostly three-dimensional,
friction-free saturation flow, and to compare it with the previous results.

5.2 Sub-criticality in the emergence of geostrophic modes

The present section aims at exploring the stability of inertial wave turbulence against
the growth of geostrophic flows. We use different initial conditions to show that wave tur-
bulence persists over long time periods provided the forcing amplitude is sufficiently low. As
geostrophic-dominated states were reported earlier for the same range of parameters (see sec-
tion 3.2) we conclude that there exists a sub-critical instability of geostrophic modes.

The use of friction at the early stages of the saturation

Motivated by the investigation of inertial wave turbulence stability, we first create such
a state via the use of the specific friction on the geostrophic modes which is removed once the
instability has reached saturation. To carry out this study, we use the same input parameters
(Roi , E) as in the two simulations of section 3 which were used to look for inertial wave tur-
bulence relying on the secondary instability detailed in chapter 2, and which are reminded in
table 6.1, and for which the kinetic energy time series are displated in figure 6.9. The kinetic
energy time series for these new simulations with friction at early stages is presented in fig-
ure 6.19. They reveal that at larger forcing (Roi = 1.5× 10−2), the inertial wave turbulence
is unstable: geostrophic modes grow exponentially once the friction is released and eventu-
ally dominate the flow. The situation is completely changed when the forcing amplitude is
decreased to Roi = 7.5× 10−3: although a slow exponential growth of geostrophic modes is
observed once the friction is released, their energy saturates and they remain sub-dominant.
As shown in figure 6.20, the saturation of the instability in the case where the inertial wave
turbulence remains stable bears very similar properties to what has been found throughout
section 4.2, including larger wave amplitudes at lower ω.
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Figure 6.19: Temporal series of the kinetic energy of the flow driven by the elliptical instability, with
a specific friction fr = 1 applied on the geostrophic modes at the early times of the simulations, ma-
terialised by the shaded area. When the friction is relaxed, the evolution of two-dimensional modes
is relaxed. We observe slow exponential growth over time periods of order Ro2

i . This figure must be
compared to the corresponding frictionless simulations of figure 6.9. Exponential growth are noticeable
after the friction released; the associated rates are studied in section 5.3 and reported in figure 6.22.
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Figure 6.20: Energy spectrum E (θ ,ω) projected onto the dispersion relation sub-space (left) and
temporal spectrum of the saturation flow in the case of stable inertial wave turbulence at Roi = 7.5×
10−3 and E = 10−6.5. On both panels the dotted line materialises the excitation frequency. The plain
vertical line is the upper limit of the inertial wave domain.
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Figure 6.21: Kinetic energy time series of a simulations carried out at Roi = 7.5×10−3 and E = 10−6.5

using a strong large-scale noise (k/(2π) ∈ [2, 20]) with a rms amplitude set to 3×10−3 instead of 10−4

—used in other simulations.

The latter result is particularly interesting: using either a random noise or a geostrophic-
free inertial wave turbulence as an initial condition leads to two completely different final
states, one being dominated by three-dimensional inertial waves and the other by two-dimensio-
nal geostrophic vortices. This happens, however, provided that the forcing amplitude Roi is
small enough.

Large amplitude noise initiation

To further investigate the bifurcation towards a wave-dominated regime, we propose
here to examine simulations initiated with a broad-band noise (as done earlier k/(2π) ∈
[2,20]) with a strong rms amplitude, larger than the expected saturation velocity rms. The ini-
tial noise is purely three-dimensional and does not contain any geostrophic structure to avoid
starting the simulations with strong vortices. We run a simulation with this special initial con-
dition in the case where we have reported previously stable inertial wave turbulence, that is
Roi = 7.5× 10−2 and E = 10−6.5. The initial velocity rms is set to 3× 10−3.

The kinetic energy time series for this simulation are displayed in figure 6.21. Although
a rapid growth of geostrophic modes is observed, probably through direct forcing, their ampli-
tude remains below three-dimensional structures over the whole course of the simulation. In
addition, it is clear from the energy map projected in the sub-space of the dispersion relation,
also shown in figure 6.21, that the three-dimensional state is also an inertial wave turbulence.

Conclusion: multi-stability in the saturation of the elliptical instability

With the previous numerical results, we conclude that the saturation of the elliptical
instability simulated with the local model features multi-stability. At the lowest forcing am-
plitude reached with the present model, depending on the initial state, the saturation of the
elliptical instability is either a stable inertial wave turbulence, or a geostrophic turbulence.
The transition from stable to unstable inertial wave turbulence is related to the finite Rossby
number instability developed throughout chapter 4. It remains to be seen whether the wave
turbulence saturation remains stable even at very low forcing amplitude and dissipation. It
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Figure 6.22: Left: reproduction of the stability diagram of figure 6.8 of the wave 2π [5, 5, 8] under
the elliptical instability (solid line) and the finite wave amplitude instability (dashed line). We locate
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already included in figure 6.8. Right: geostrophic growth rate measured once the friction is released
in the set of simulations whose control parameters are indicated in the left panel. The growth rate is
compensated by a viscous correction +k2E with E the Ekman number and k the wave number. Two
extremal wave numbers are taken for this compensation 2π× 9 (σmin

g ) and 2π× 15 (σmax
g ).

would require extreme simulations over very long time, which could not be achieved over the
course of this work.

5.3 The growth of geostrophic modes out of wave turbulence

In the preceding section, we have used the geostrophic-specific friction to force the non-
linear saturation into an inertial wave turbulence. Releasing the friction has allowed finding
that at sufficiently small input Rossby number Roi , the saturation amplitude of free geostrophic
modes remains sub-dominant. In figure 6.19-right, we have observed that when the inertial
wave turbulence is unstable, the energy of geostrophic modes grows exponentially. Yet, in the
smaller forcing amplitude case Roi = 7.5×10−3 where waves are dominant, a slow exponential
growth occurs until the geostrophic energy reaches a low saturation value. This indicates that
despite the low value of Roi , geostrophic modes are still unstable.

To further quantify the stability of geostrophic modes, we propose to repeat the simu-
lations presented in figure 6.19, but at higher and smaller values of Roi and to measure the
growth rate of geostrophic modes. The input Rossby numbers and the Ekman numbers for the
set of simulations that we analyse here are displayed in figure 6.22-left. The spatial resolution
is kept to 2563 for the two new simulations.

The input Rossby number has been decreased down to Roi = 3 × 10−3 and the Ekman
number to E = 10−7. At such a weak forcing amplitude, no growth of the geostrophic en-
ergy is reported once the friction is released. For the three other cases—including the two
shown in figure 6.19—the growth rate is measured via a linear fit on the logarithm of the
geostrophic energy at the early stages following the friction release. To estimate an inviscid
growth rate, the viscous growth rate is corrected by an approximate viscous correction +k2E
with E the Ekman number and k the wave number. Yet, several geostrophic modes are ob-
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Figure 6.23: Plot of the wavelength-based Rossby number Ro f (k) = k(kT (k))1/2/(2π) as a function of
the wave number k. It is compared to the threshold of finite Rossby number instability of geostrophic
modes found in chapter 2, which was Ro f ≃ 0.1. The two considered cases are associated with the
kinetic energy time series shown in figure 6.19. The kinetic energy spectra T (k) are averaged around
the time where the friction is removed over a few non-linear time scales. The black dot materialises
the resonant wave number, it does not necessarily coincides with the largest Ro f (k).

served to grow at the same time, and they sometimes differ from one value of Roi to another.
Analysis of the snapshots suggests that the wave number of the growing geostrophic modes
typically ranges from 2π × 9 to 2π × 15. Since the growing wave numbers are unclear and
sometimes change from one simulation to another, we give the extremal values σmin

g and σmax
g

of the inviscid growth rates estimated with the extremal wave numbers. The extremal values
of the geostrophic growth rate σmin

g and σmax
g are shown in figure 6.22-right.

Since the unstable geostrophic modes comprise several wave vectors that change from
one set of control parameters to another, it remains difficult to definitely state upon the nature
of the geostrophic instability. However, we provide below a few hints pointing towards the
finite wave amplitude instability detailed in chapter 4. First, we notice that the estimate of
the inviscid growth rate is of the same order of magnitude as the input Rossby number, thus
suggesting that the four-modes interaction or near-resonances are irrelevant to the observed
instability since their growth rate is rather O(Ro2

i ). In addition, we recall that we found in
chapter 4 that finite Rossby instabilities grow when the Rossby number based on the wave
amplitude uw and scale λ, Ro f ≡ uw/λ is larger than ∼ 0.1. Such a scale-dependent Rossby
number can be evaluated from the spectral density of kinetic energy T (k). The typical velocity
at scale λ= 2π/k is (kT (k))1/2 so that:

Ro f (k) =
k

2π
(kT (k))1/2 . (6.31)

The quantity Ro f (k) is shown in figure 6.23 for the two simulations whose kinetic energy time
series are displayed in figure 6.19. It is compared to the typical finite Rossby number instability
threshold. Ro f (k) is averaged over a few non-linear time scales before and after the instant
when the friction is released in order to determine whether the initial three-dimensional flow is
able to drive finite wave amplitude instability. We find that Ro f (k) peaks for both simulations
close to the critical value 0.1 found in chapter 4. This result is consistent with the existence
of a geostrophic growth for the two simulations shown in figure 6.10. In addition, a shift
towards higher wave numbers of the maximum value of Ro f (k) is noticeable when the forcing
amplitude is decreased.

These results highlight the difficulty of predicting exactly the stability of the inertial wave
turbulence based on the resonant wave only, for two main reasons:
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1. the inertial wave turbulence excites a range of wave numbers around the resonant one,
some of them are above the threshold of the finite wave amplitude instability, as observed
for instance in figure 6.23; these new wave numbers are not taken into account in the
simple analysis of section 3;

2. even if a geostrophic stability criterion can be deduced from finite wave amplitude in-
stability, the saturation amplitude of geostrophic modes cannot be predicted from this
criterion.

The first reason may explain why a slow growth is still observed at Roi = 7.5 × 10−3 (see
figure 6.19). The stability analysis is based on the resonant mode only, and the highest Ro f (k)
is reached at a slightly larger wave number (see figure 6.23-left). However, despite their
growth, geostrophic modes reach a low saturation amplitude in the case Roi = 7.5× 10−3 so
that the inertial wave turbulence remains stable.

More systematic simulations in better controlled conditions are still needed to fully char-
acterise the stability of inertial wave turbulence and its relation to the finite wave amplitude
instability. Nevertheless, finding stable wave turbulence in the low forcing amplitude regime is
a promising result pointing towards the relevance of this regime for geo- and astropysical ap-
plications. Yet, simulations reaching a wave-dominated saturation from any initial condition,
if possible, remains to be carried out.

6. Conclusion: the contributions of the local
model

The use of a local model of the elliptical instability has allowed us exploring the details of
the non-linear turbulent saturation of the inertial wave resonance. The two saturation regimes
revealed in the experiments are both reproduced in the simulations presented throughout this
chapter. Using a local model proves particularly useful to investigate the properties of the wave
saturation in extreme regimes of low forcing amplitude and dissipation. We confirm that the
wave-dominated regime is an inertial wave turbulence, which is strikingly illustrated by the
kinetic energy focusing along the dispersion relation of inertial waves.

Nevertheless, additional physics were necessary to produce in the numerical set-up a
turbulent saturation that is not dominated by strong geostrophic vortices. This systematic ob-
servation of geostrophic saturation, even at low forcing amplitude, is related to direct forcing
in the non-linear overshoot, a phenomenon which does not seem to play an important role in
the experimental realisation of the elliptical instability. A wave-dominated regime has there-
fore been produced first by applying a specific friction to geostrophic modes to force them
to be sub-dominant. Releasing this friction has allowed investigating the stability of the wave
turbulence created via the use of a specific friction restrained to the growth phase and the early
stages the elliptical instability saturation. We have thus shown that the inertial wave turbu-
lence is stable provided the forcing amplitude Roi is sufficiently small, and that the threshold
of the wave turbulence instability may be related to the finite Rossby instabilities explored
in chapter 4. The existence of multi-stability in the non-linear saturation of the elliptical in-
stability found at Roi = 7.5× 10−3 and E = 10−6.5 suggests that the instability of geostrophic
modes is sub-critical. More extreme simulations at even lower forcing amplitudes are required
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to determine if wave turbulence can be found in the saturation of the instability without the
use of friction at all and with any random, small amplitude initial condition. Although the
secondary transition from two regimes of saturation is not as straightforward as in the exper-
iments, this numerical investigation draws a correspondence between the experimental study
and the theoretical investigation of inertial wave stability.



Chapter 7
Tidally driven parametric instability in
stratified flows

1. The relevance of stratification to tides in
planetary cores

1.1 Stable stratification and internal oscillations

Stable stratification refers to a physical situation in a fluid with a density gradient aligned
with gravity, and for which a fluid particle moved adiabatically upward is denser that the am-
bient fluid (see figure 7.1). Any local, vertical displacement of fluid results in a restoring
buoyancy force leading it back towards its initial, static configuration. When dissipation is
sufficiently small, inertia causes oscillations, which can be qualitatively found with a simple
Lagrangian model. Consider a fluid particle with static stable height z0, and an adiabatic ver-
tical displacement ζ so that the total height reads z = z0+ζ. We assume a linear stratification
profile (∂ ρ/∂ z = cst< 0) such that for any ζ:

ρ(ζ) = ρ0 +
∂ ρ

∂ z
ζ . (7.1)

An adiabatic vertical displacement of the particle with neutral density ρ0 results in a density
contrast ∆ρ between the particle and the ambient writing:

∆ρ = −∂ ρ
∂ z
ζ . (7.2)

To compute the buoyancy force resulting from the density contrast, we assume that the
volume variation associated with the adiabatic displacement is negligible, which is a valid
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Figure 7.1: Schematic cartoon of a stable density stratification in a fluid, where we have indicated the
gravity vector g . The stable density may result, for instance, from a gradient in solute concentration or
temperature. The right stratified fluid column illustrates a fluid particle moved upward and undergoing
a restoring buoyancy force b pointing downward.

approximation in the Earth’s ocean for instance. This approximation does not hold, however,
in the Earth’s atmosphere or in stellar interiors where the compressibility of the fluid is large,
or in the Earth’s core where the size of the fluid medium is so large that compressibility effects
must be taken into account. Including compressibility effects would not affect the present
reasoning but leads to some complications that might obscure the discussion and which are
therefore discarded. We call dV the —constant— volume of the fluid particle; calling g = −gez
the gravitational acceleration, the buoyancy force b induced by the density contrast is:

b =∆ρ dV g = g
∂ ρ

∂ z
ζdVez . (7.3)

According to Newton’s second law, the differential equation governing the position of the fluid
particle is the following:

d2ζ

dt2
− g
ρ0

∂ ρ

∂ z
ζ= 0 . (7.4)

Because ∂ ρ/∂ z < 0, the equation (7.4) shows that the particle displacement results in internal
oscillations at a typical frequency N such that:

N2 = − g
ρ0

∂ ρ

∂ z
> 0 (7.5)

N is called the Brunt-Väisälä frequency, N−1 is a typical oscillation time in stratified fluids.

Two dissipative mechanisms may prevent internal oscillations to occur in stratified fluids.
The first one is viscous friction which damps the inertial dynamics. The second is molecular
diffusion of the stratifying agent, be it solute or temperature. When the fluid particle undergoes
vertical motion, molecular diffusion tends to homogenise its density with the ambient thus
suppressing the density contrast and reducing the buoyancy force.

1.2 Internal waves

The discussion in this section aims at showing that waves caused by the interplay between
stable stratification and inertia, called “internal waves”, exist in stratified fluids. Instead of
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using a qualitative Lagrangian method, we use the linearised Euler and advection equation.

We consider here an unbounded stably stratified medium. We assume for instance that
density variations are imposed by a temperature gradient, and we call α the thermal expansion
of the fluid. The thermal gradient is in z and is aligned with gravity. The temperature field
writes T = T0 + Sz, T0 being a reference temperature, so that the density of the fluid ρ is
expanded as follows:

ρ = ρ0 (1−α(T − T0)) = ρ0 (1−αSz) (7.6)

where ρ0 is the density of the fluid at the reference temperature.

We aim at deriving the equations governing the spatial and temporal variations of a
velocity and temperature perturbation (U ,Θ) to this stable base state. Under the Boussinesq
approximation, the Euler equation along with the incompressibility condition writes:

∂tU +U ·∇U = −∇p+αgΘez +∇2U (7.7)

∇ ·U = 0 , (7.8)

where Uz is the vertical component of the velocity. The diffusionless advection of the temper-
ature field is modelled by the following equation:

∂tΘ+U ·∇Θ = −SUz . (7.9)

A wave equation very similar to the Poincaré equation (see chapter 1 section 3.1) can be
derived from (7.7–7.9) in the linear limit. The process yielding the wave equation is similar to
what is done in chapter 1 and the advection equation (7.9) is used for substitution to finally
obtain an equation on the velocity field only:

∂t t∇2U = −N2
�−∂zzUzez +∇2U

�
with N2 = αgS = − g

ρ0

dρ
dz

. (7.10)

The vertical velocity Uz satisfies the following equation:

∂t t∇2Uz + N2
�
∂x x + ∂y y

�
Uz = 0 (7.11)

and the temperature fluctuation Θ follows the same equation.

To find oscillating solutions to the equation (7.11), we look for plane waves with wave
vector k and frequency ω yielding the following dispersion relation:

ω2 = N2
k2

x + k2
y

|k|2 = N2 sin2 ξ (7.12)

with ξ the angle between the density gradient (or gravity) and the wave vector. As in
the case of inertial waves, the frequency of these “internal waves” is always below N , the
Brunt-Väisälä frequency which is related to gravity and the strength of the density gradient, as
indicated in equation (7.10).

1.3 Stratification of fluid planetary interiors

Many planetary cores are thought to be at least partly stably-stratified, including the
Earth. There is indeed seismic evidence for the existence of a stratified layer at the bottom
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and the top of the Earth core (Hirose et al., 2013), and evidence provided by the analysis of
periodic fluctuations of the magnetic field supporting the existence of a top stratified layer
(Buffett, 2014). Besides, the experimental and numerical evidence for high values of liquid
iron thermal conductivity also points towards the existence of a stratified layer at the top of the
core (see Labrosse (2015) and references therein). In addition to the Earth, other terrestrial
bodies are thought to be at least stably-stratified according to interior models, although they
are known for maintaining a large-scale magnetic field (see Stanley and Mohammadi (2008)
for a review).

Stable stratification of terrestrial bodies’ liquid core may also be a consequence of their
formation process. The later stage of planetary accretion is dominated by large impacts be-
tween partially differentiated proto-planets, i.e. terrestrial bodies with a growing iron core at
its centre. Proto-planets’ iron cores bear light elements such as carbon, sulfur, oxygen, etc.
whose proportions vary from one body to another. Landeau et al. (2016) have shown that af-
ter an impact, iron migration through a partially molten silicate mantle and a molten iron core
results in very little chemical mixing of light elements. At the end of the migration process,
the iron reaches a neutral height in the core which depends on light element composition.
The resulting iron core should therefore be stratified in density via solute (i.e. light elements)
concentration.

To conclude, several reasons exist for a stable stratification in a planetary core, and it
seems not to prevent the emergence of a magnetic field (Stanley and Mohammadi, 2008). As
in the case of rotation, internal oscillations sustained by the stable stratification could very well
be excited by mechanical forcing. The aim of this chapter is to investigate this hypothesis.

Note also that terrestrial planets’ iron cores are not the only internal fluid layers that are
stratified. It could also be the case of icy satellites’ sub-surface oceans, such as in Enceladus,
Dione and Europa, which are large, salted oceans lying underneath their ice crusts. Inves-
tigating how mechanical forcing may drive significant compositional mixing in such internal
oceans is also one of the goals of the present chapter.

1.4 A parametric instability of internal waves driven by tides?

Similarly to the tidally driven elliptical instability, the large scale tidal flow could also
couple with internal gravity waves in the case where these planetary interiors are stratified.
Several routes exist for the excitation of three-dimensional turbulent motion within a stably-
stratified layer by tides or other mechanisms. It is a common issue in physical oceanography
where the interaction of the large-scale tidal flow with ground topography is known for exciting
(St. Laurent and Garrett, 2002), focusing (Maas and Lam, 1995; Bajars et al., 2013) and
scattering (Bühler and Holmes-Cerfon, 2011) internal waves which break down into small-
scale turbulence via triadic resonant interactions (MacKinnon and Winters, 2005; Bourget
et al., 2013; Scolan et al., 2013; Brouzet et al., 2016; Brouzet et al., 2017). In addition,
several studies have striven to examine the resonant excitation of global internal modes by a
homogeneous tidal flow without relying on any small-scale topography. This has been done for
instance by Miyazaki and Fukumoto (1992); Kerswell (1993a); Miyazaki (1993); McWilliams
and Yavneh (1998); Aspden and Vanneste (2009); Guimbard et al. (2010) with either radial or
vertical stratification compared to deformation, but always in the situation where the Coriolis
force is of greater or similar influence compared to buoyancy effects. Whether these resonant
instabilities can drive three-dimensional turbulence in the bulk of a stratified core or subsurface
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ocean when stratification dominates over rotation (i.e. when N ≫ Ω) remains to be seen.

In this chapter, we derive a local model of fluid planetary interiors, be it a liquid core or
a subsurface ocean, which allows to study the idealised limit where stratification completely
dominates over rotation, with the stratification axis pointing in any direction relative to that
of the tidal deformation. We show in particular that tides excite a parametric subharmonic
resonance of internal waves. Moreover, such an idealised local model allows to thoroughly
analyse the turbulent saturation of this tidally driven resonance, and we show that tidal forcing
drives bulk internal wave turbulence.

Note that parametric resonances of internal waves driven by large-scale homogeneous
forcing have already been investigated in particular experimental setups. McEwan and Robin-
son (1975) designed a setup to examine how large-scale internal waves spontaneously gener-
ate smaller scale oscillations in a stratified tank designed to mimic the advection by large scales.
In close analogy, Benielli and Sommeria (1996); Benielli and Sommeria (1998) showed that
vertically shaking a stratified fluid leads to a parametric resonance of internal waves (similarly
to the classical Faraday instability) whose growth saturates into turbulence. The originality
of our study resides in the investigation of the stability of a more realistic homogeneous tidal
flow. We also provide a detailed spatio-temporal analysis of the non-linear break-down into
turbulence from the primary resonance.

This chapter is organised as follows. The first part is devoted to introducing the tidal base
flow and developing a local approach to study its stability following the work of Barker and
Lithwick (2013). We carefully introduce buoyancy effects under the Boussinesq approxima-
tion. With this model, we then investigate the resonance of internal waves via direct numerical
simulations and Wentzel-Kramers-Brillouin (WKB) analysis of the local model (Lifschitz and
Hameiri, 1991). We then thoroughly explore the turbulence resulting from the non-linear sat-
uration of the instability. We show that it is best described as a wave turbulence and study the
subsequent mixing and dissipation rates.

2. Local study of the equilibrium tidal base
flow

2.1 Tidal base flow

We consider a non-rotating planet undergoing tidal deformation due to a moon orbiting
at rate nez as pictured in figure 7.2. We suppose the tidal deformation to be ellipsoidal and
uniform in the whole fluid planetary interior; this assumption corresponds to planetary cores
or oceans in between two boundaries whose response to tidal force is the same as that of the
fluid’s. The other limit, which won’t be considered here, is an ocean on top of a non-deformable
solid core or inside a non-deformable solid shell for which the ellipticity of the deformation can
no longer be considered uniform. Any planetary fluid layer stands between these two limits.

In the reference frame following the tidal deformation, we recall that the base flow Ubulge
b
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Moon

Figure 7.2: Schematic representation of a companion orbiting a planet at rate n. Tidal interactions
induce an ellipsoidal deformation of the whole planet, which is supposed uniform: this corresponds to
the behaviour of a fully deformable planet.

can be approximated to the following analytical solution (see chapter 1 section 1.3):

Ubulge
b = γ

 0 −1− β 0
1− β 0 0

0 0 0

 XY
Z

= BX b, (7.13)

where we have introduced γ = −n, the rotation rate of the fluid in the orbital frame, by
analogy with previous chapters, and β the ellipticity of the tidal deformation defined as β =
(a2 − b2)/(a2 + b2) (where a and b are the semi-major and semi-minor axes respectively,
see figure 7.2). X b is the position vector whose coordinates are written in the orbital frame
rotating with the tidal bulge. In the planetary frame of reference, after coordinate change and
velocity transformation, the base flow U b translates into (see chapter 1 section 1.3):

U b = −γβ
 sin(2γt) cos(2γt) 0

cos(2γt) − sin(2γt) 0
0 0 0

 xy
z

= A(t)X . (7.14)

Note that this base flow is also a solution of the Navier-Stokes equations in the presence of
stable stratification in the Boussinesq approximation. Assuming an equilibrium state for which
isopycnals are also the surfaces with constant gravitational potential ϕ, including centrifugal
force and tides, the density can be written as a continuous and monotonic function f of ϕ so
that ρg = − f (ϕ)∇ϕ = −∇F(ϕ) with dF/dϕ = f . The equilibrium buoyancy term can then
be absorbed in the pressure gradient so that this basic situation is purely barotropic. Such a
barotropic assumption is valid when the isopycnals can move sufficiently fast to keep track
of the orbital motion of the moon and the rotating tidal potential; it is valid for high Brunt-
Väisälä frequency compared to the differential rotation frequency γ (see Ogilvie (2014) for
further discussion). In the opposite regime where the stratification is weaker, the slow motion
of the isopycnals should lead to baroclinicity and excite large scale flow consistently trying to
restore the alignment between isopycnal and isopotential. This chapter is rather focused on
small scale instabilities in the regime where the Brunt-Väisälä frequency is larger than γ. We
therefore discard any baroclinic situation to keep only the global tidal distortion as a source
of instability. Tidally-driven baroclinicity should deserve a study of its own.

In the following, we introduce buoyancy effects under the Boussinesq approximation.
We study the tidal instability problem developing a local approach inspired by Barker and
Lithwick (2013) and which is developed in chapter 7. We use the planetary frame of reference,
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which is considered to be non-rotating. Introducing rotation of this frame at rate Ωez in the
model developed hereafter would only require the addition of a Coriolis force in the planetary
frame. The base flow would not be modified apart from the fluid rotation rate in the orbital
reference frame γ which would then write γ= Ω− n (Barker and Lithwick, 2013).

2.2 The local approach to the dynamics

We aim at studying the incompressible perturbations to the base flow U b defined in
(7.14). Instead of modelling the whole planetary fluid layer, we develop a local model to
study this perturbation flow in the neighbourhood of a Lagrangian point M at position X0(t)
following the elliptical streamlines such that Ẋ0 = U b. This local model will prove particu-
larly convenient to include buoyancy effects as the stratification can be assumed to be locally
uniform and linear around the tracked point. We reproduce here its derivation to carefully
introduce buoyancy effects.

Let us call U i the total velocity field in the frame bound to the planet and Uc the total
velocity field in the frame bound to X0. U i satisfies the following Navier-Stokes equation:

∂τU
i +U i ·∇XU i = − 1

ρ
∇P i + ν∇2

XU i (7.15)

where τ stands for time,∇X for the gradient in the X = (x , y, z) coordinates, P i is the pressure
and ρ is the density of the fluid. U i is the total velocity and includes the base flow U b(X) and
velocity perturbations u i so that U i = U b(X) + u i. To transform this equation into the frame
in translation bound to X0, we process the following coordinate change:�

x = X − X0(t)
t = τ . (7.16)

The corresponding change in derivatives is ∇X =∇x =∇ and ∂τ = ∂t −U b ·∇x . The velocity
measured in the frame bound to X0 is Uc = U i−U b(X0, t). Transforming the equation (7.15)
into this frame yields:

∂tU
c + ∂tU b(X0) +Uc ·∇Uc = − 1

ρ
∇P i(X0 + x ) + ν∇2Uc . (7.17)

The acceleration term ∂tU b(X0) is regarded as a volume force. In the frame bound to X0 the
Navier-Stokes equation reads:

∂tU
c +Uc ·∇Uc = − 1

ρ
∇P c − ∂tU b(X0) + ν∇2Uc (7.18)

where we have introduced P c(x ) = P i(X0+x ). As U c = U i−U b(X0), it is straightforward that
U c = Ax + u c with u c = u i = u. In the neighbourhood of X0, the perturbed flow satisfies the
following equation:

∂t u +A(t)x ·∇u +A(t)u + u ·∇u = − 1
ρ
∇P c − ∂tU b(X0) + ν∇2u (7.19)

along with the incompressibility condition ∇ · u = 0.
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2.3 Introducing buoyancy in the local Navier-Stokes equation

The local model introduced above is particularly useful when introducing buoyancy ef-
fects, be it due to temperature or solute concentration. In a sufficiently small patch, the back-
ground stratification can be assumed to be uniform, while being mostly radial in global plan-
etary layers. Let us call S(t) the background active scalar gradient such that the total scalar
field T can be written as:

T = T0 + S(t) · x + ϑ (7.20)

where ϑ is the scalar fluctuation around the background stratification. As it will be pointed
out later, it is required to include a temporal dependence in the stratification to account for
periodic stretching induced by the background base flow defined in (7.14) and illustrated in
figure 6.1.

The buoyancy effects are first introduced in equation (7.19), in the Boussinesq approx-
imation, via the volume effective gravitational force ρ0(g − ∂tU b(X0))(1−α(T − T0)) where
α is an isobaric thermal expansion coefficient. As we assume the base state to be barotropic,
the term ρ0(g − ∂tU b(X0))(1− αS · x ) can be absorbed in a modified pressure Π. Including
buoyancy effects, the equations (7.19) now reads:

∂t u +A(t)x ·∇u +A(t)u + u ·∇u = −∇Π−α [ g − ∂tU b(X0) ]ϑ+ ν∇2u . (7.21)

Note that the field u also satisfies the incompressibility condition ∇ · u = 0.

Two possible instability sources are worth considering. In the RHS of (7.21), the La-
grangian advection of the studied patch translates into an effective gravity with varying in-
tensity. Such a forcing has already been shown to parametrically excite internal waves with
a growth rate proportional to the oscillating acceleration amplitude (McEwan and Robin-
son, 1975; Benielli and Sommeria, 1998). The base flow is also coupled in the left hand
side to the velocity perturbation; in the analogue context of rotating flows, the induced tidal
stretching and shearing is well known for triggering parametric excitation of a pair of inertial
waves. This instability mechanism has also been studied in the context of strained vortices
with a stratification aligned with the background vorticity (Miyazaki and Fukumoto, 1992;
Miyazaki, 1993; Kerswell, 1993a; McWilliams and Yavneh, 1998; Aspden and Vanneste, 2009;
Guimbard et al., 2010). Whether a similar stirring mechanism occurs in purely stratified fluids,
i.e. with no background vorticity, has never been investigated to the best of our knowledge.
In the present study, we propose to drop the gravity-driven parametric excitation to focus on
tidal stretching and shearing effects.

To support this approximation, we suggest to compare the order of magnitude of the
expected growth rate of both instabilities. In the case of excitation by gravity variations, the
amplitude of the forcing is proportional to the acceleration of a Lagrangian particle during an
epicycle: βℓγ2. Following Benielli and Sommeria (1998), the corresponding growth rate σg

should scale like σg ∼ γ(βℓγ2)/g where g is the mean intensity of gravity. On the other hand,
if the coupling between the base flow and the velocity perturbation acts as in the elliptical
instability in rotating fluids, the growth rate σe should then scale like σe ∼ βγ (see eq. (4) in
Barker and Lithwick (2013)). As a consequence, σe/σg ∼ g/(ℓγ2). As γ is at most comparable
to the spin rate of the considered planetary body, this ratio equivalently compares the self-
gravity of the body to the centrifugal acceleration. It should then always be large to ensure
self-cohesion. For instance, for the Moon-Earth system, γ = 2π/(1day); at the Core-Mantle
boundary ℓ ∼ 3× 103 km and g ∼ 10 m.s−2. The ratio σe/σg is about 3× 102 at the Core-
Mantle boundary and 1.5×102 at the surface of the Earth, which justifies dropping the varying
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gravity forcing term. Note however that in the case of a confined layer above a non-deformable
core, the elliptical base flow, which is then no longer described by (7.14), would create large-
amplitude lateral flows whose contribution to the effective gravity would not necessarily be
negligible. Although of interest for instance for the Earth’s oceans, we do not consider the
latter case here to focus on a fully deformable object.

2.4 The buoyancy equation and time dependence of stratification

The Navier-Stokes equation (7.21) is coupled to the advection-diffusion equation for the
scalar T :

∂t T + (A(t)x + u) ·∇T = κ∇2T (7.22)

where κ is a diffusivity coefficient assumed to be constant. Plugging the assumption (7.20) in
(7.22) leads to the following modified advection-diffusion equation:

dS
dt
· x + ∂ ϑ

∂ t
+A(t)x · S+A(t)x ·∇ϑ+ S · u + u ·∇ϑ = κ∇2ϑ . (7.23)

Assuming that in the equilibrium state there is no perturbation, i.e. (u,ϑ) = (0, 0), compels
the time evolution of the stratification vector S(t) to follow:

dS
dt
= −AT (t)S (7.24)

where AT stands for the transpose of A given in equation (7.14). The periodic stretching and
shearing induced by the base flow, as represented in figure 6.1, impacts the local background
density profile. It has the same temporal variation as the wave vectors described by equation
6.12.

A typical time evolution of S(t) is pictured in figure 7.3. The initial stratification can
arbitrarily be set in the (x Mz) plane. It is then fully parameterised by the angle s such that
S0 = S0(sin s, 0, cos s) = S0 s̃0; it represents the mean latitude at which the tracked patch is
located.

Note that to avoid the spontaneous appearance of baroclinic instability, the gravity has to
change its direction to stay aligned with the buoyancy gradient. This is consistent with the fact
that the point X0 is following an elliptical streamline included in an equipotential surface of
the total gravitational field including tidal force and self-gravitation of the unperturbed state;
the gravitational field must remain perpendicular to streamlines. We arbitrarily choose to keep
the gravitational field amplitude constant throughout time. Calling g the gravity intensity, the
final set of local equations is, in addition to (7.24):

∂ u
∂ t
+A(t)x ·∇u +A(t)u + u ·∇u = −∇Π+αg

S
∥S∥ϑ+ ν∇

2u (7.25)

∂ ϑ

∂ t
+A(t)x ·∇ϑ+ u ·∇ϑ = −S(t) · u + κ∇2ϑ . (7.26)

2.5 Conclusion on the equations and the local model

We will consider hereafter a patch of typical size L. Typical time and velocity scales
are then given by 1/γ and Lγ. The initial stratification amplitude S0 can be used to build a
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Figure 7.3: Left: schematic picture linking stratification seen from a global and a local view. The angle
s between stratification and (OZ) is then a proxy for the latitude at which the patch is located. Note
that the local axes (M x yz) are in translation around the Z axis. Right: time evolution of the x and y
components of the stratification. Note that the slow rotation of S is due to the translating motion of
the Lagrangian particle around Z .

buoyancy scale LS0. With those definitions, the dimensionless velocity-temperature dynamics
satisfies:

∂ u
∂ t
+A(t)x ·∇u +A(t)u + u ·∇u = −∇Π+ N2ϑes +

1
Re
∇2u (7.27)

∂ ϑ

∂ t
+A(t)x ·∇ϑ+ u ·∇ϑ = −S̃(t) · u + 1

Pr Re
∇2ϑ (7.28)

∇ · u = 0 (7.29)

where we have introduced the dimensionless Brunt-Väisälä frequency N such that N2 = αgS0/γ
2.

Re is the Reynolds number L2γ/ν and Pr is the Prandtl number ν/κ. S̃(t) and es are defined
as follows:

S̃(t) = Rot(−γt)R̂(t)S0/S0 = Rot(−γt)R̂(t)s̃0 and es = S̃(t) / ∥ S̃(t) ∥ (7.30)

where we have used the same notations as in chapter 6 equation (6.12).

This set of equations is particularly convenient as it reduces a global problem with a non-
trivial ellipsoidal geometry to a local one in Cartesian coordinates with uniform stratification.
It retains all the key ingredients to understand the homogeneous dynamics of tidally-forced
flows in stratified layers while avoiding to account for boundary layers.

2.6 The local model in the orbital frame

The same analysis can be performed in the orbital frame tracking the elliptical deforma-
tion rotation at rate nez . The set of equations obtained is very similar to (7.27) except that A(t)
must be replaced by the matrix B defined in (7.13) and a Coriolis acceleration 2nez × u must
be added to the left hand side of the momentum conservation. In addition, the time evolution
of the stratification vector reads S̃(t) = R̂(t)s̃0 where R̂ has been introduced in (6.12). The
two frames of reference are equivalent; nevertheless we prefer the planetary frame as it allows
to introduce planetary rotation with the mere intuitive addition of a Coriolis acceleration. In
the non stratified case, this frame allows to clearly identify the inertial waves frequencies (see
chapter 6). We have therefore considered the model in this frame to facilitate future works
concerned with the interplay between rotation and stratification.
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2.7 Direct numerical simulations in a shearing box

The dynamics of the perturbations u to the equilibrium state can be simulated via a
decomposition of {u,Π,ϑ} into Kelvin modes such that:

{u,Π,ϑ} = ∑
k

�
ûk(t), Π̂k(t), ϑ̂k(t)

	
eik(t).x . (7.31)

In close analogy to the model developed in section 2.4 where stratification is found to be time
dependent, evolving the wave vectors k accounts for the periodic shearing induced by the base
flow U b. For all k, the equations (7.27) are equivalent to:

dk
dt

= − AT (t) k = − A(t) k

dûk

dt
= −A(t)ûk − ikΠ̂k + N2ϑ̂kes − k2

Re
ûk −Û(u ·∇u)k

dϑ̂k

dt
= −S̃(t) · ûk − k2

Re Pr
ûk −Û(u ·∇ϑ)k

. (7.32)

A similar derivation was first carried out by Barker and Lithwick (2013) and presented in
chapter 6 to study the tidally-driven elliptical instability in rotating non-stratified fluids. Note
that the time evolution of k(t) is the same as in (6.12). These equations are solved with the
SNOOPY code with exactly the same method as detailed in section 2.7 in chapter 6.

3. Stability analysis

3.1 Direct Numerical Simulations

We first investigate the stability of the elliptical base flow by performing direct numerical
simulations of the full problem, including viscosity and non-linearities. This is done with
the SNOOPY code mentioned in section 2.7 which solves the equations (7.32). The Reynolds
number Re is usually set between 106 and 107 while the Prandtl number Pr is kept constant
at 1. The resolution used is up to 96 modes in each direction in a square box of size L which is
used as a length scale. The simulations are initiated by a broad-band noise with k/(2π) ranging
from 4 to 20. The time evolution of the volume-averaged kinetic energy of the fluctuations is
tracked until an exponential phase is reached from which a growth rate is derived.

3.2 WKB and Floquet analysis

Along with solving the full problem, we examine the linear inviscid limit of equations
(7.27) via a Wentzel-Kramers-Brillouin analysis (Lifschitz and Hameiri, 1991). It is easier
to perform the stability analysis in the orbital frame, following the rotation of the elliptical
deformation, where the base flow matrix B does not depend on time (see paragraph 2.6 for
the corresponding change in equations (7.27)) .
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We then assume that the velocity, pressure and buoyancy fluctuations around the equi-
librium state may be written as follows:

{u,Π,ϑ}= {a, p,Θ} ei
ϕ(x , t)
η (7.33)

where η is a small parameter accounting for the quick wave-like spatial variations of the phase
ϕ compared to the secular evolution of amplitudes a, p and Θ.

Plugging the assumption (7.33) into (7.27) in the linear inviscid limit and performing a
series expansion in η lead to the following set of equations (Lifschitz and Hameiri, 1991):

K = ∇ϕ
dK
dt

= − BT K
da
dt

=

�
2
KK T

K 2 − I
�

Ba− 2

�KK T

K 2 − I
�
(ez × a)− N2

�KK T

K 2 − I
�
Θes

dΘ
dt

= −S̃(t) · a

. (7.34)

The equation on K can be solved analytically: it follows the same time evolution as S̃(t),
K = R̂(t)K 0 where R̂(t) has been defined in the time evolution of stratification (6.12) and
K 0 is an initial condition vector.

At the lowest order (β = 0), the linear operators B and ez×· are equal. Since the shearing
and stretching effects are entirely due to the ellipticity of streamlines, the stratification S̃ and
wave-vector K have a purely rotating motion at rate γ. Taking the time derivative of the last
equation in (7.34) gives a second order differential equation:

d2Θ

dt2
− N2

�
(s̃0 ·K 0)2

K 2
0

− 1

�
Θ = 0 (7.35)

where s̃0 is the unit vector defining the initial stratification direction, as defined in (7.30). It
is then convenient to introduce ξ, the angle between the initial stratification and wave-vector
as represented in figure 7.4. Θ, and consequently the velocity component sensitive to the
stratification a · S̃, oscillate at a frequency λ= ±N sinξ. At the lowest order, the internal wave
dispersion relation is retrieved.

To further analyse the linear growth of the instability and to obtain quantitative growth
rates, we perform the Floquet analysis of the system (7.34) (Bender and Orszag, 1978). This
can be done since the vectors K , S̃ and es all oscillate at the same frequency ϖ, defined in
(6.8). The linear operator RHS of (7.34) therefore oscillates with a period 2π/ϖ. Knowing
the time evolution of K , we solve the differential equations over the vector (a,θ ) from t = 0
to t = T = 2π/ϖ. The initial condition is the identity matrix I. The final value (a(T ),θ (T ))
for each initial condition corresponds to a monodromy matrix ˘ and the growth rate σ of the
instability is then related to its eigenvalues µi such that (Bender and Orszag, 1978; Cébron
et al., 2014):

σ =
ϖ

2π
max {lnµi} or σ̃ =ϖmax {lnµi} (7.36)

where ·̃ refers to a growth computed per tidal cycles. As the resonant wave-vector is a priori
unknown, the Floquet analysis is performed for different K 0. This initial wave vector is pa-
rameterised by its norm K0 (which does not play any role in the inviscid limit), the angles s,
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Figure 7.4: Schematic diagram defining the relevant angles to describe the relative position between
initial stratification s̃0 and wave-vector K 0. The angle between s̃0 and the axis z is s defined in figure
7.3.

ξ and α represented in figure 7.4, such that:

K 0 =K0

 sinξ cosα cos s + sin s cosξ
sinξ sinα

− sinξ cosα sin s + cos s cosξ

 . (7.37)

Such a parameterisation merely comes from the expression ofK 0 in the spherical coordinates
(α,ξ) with a polar axis (M , s̃0) (see figure 7.4). With s used as a control parameter, resonance
is found exploring the values of σ̃ in the (ξ,α) space.

The range of angles ξ to explore is non-trivial. We show in figure 7.5 the maximum
(respectively to α) growth rate computed with the Floquet theory as a function of ξ and β .
The non-zero growth rate area delimits Floquet tongues which stretch towards N sinξ= γ= 1
as β goes to 0. The resonant waves are therefore parametrically excited close to half the
frequency of the forcing flow. Note however that the Floquet tongues are not symmetric around
N sinξ = 1: the areas with maximum growth rates are always slightly above this line. As a
consequence, to compute the theoretical maximum growth rate, we explore a range of angle
ξ around arcsin(1/N) with a tolerance of order β .

Note that the theoretical growth rate could also have been analytically computed via a
multi-scale analysis where β t is the slow time. This would have given the asymptotic resonant
values of α for β → 0. However, the complexity of the first order operator respective to β is
such that the problem might be intractable. This might be due to the low degree of symmetry
as the angle between the orbital plane and the stratification axis is arbitrary.

3.3 Comparison between DNS and linear stability analysis

We perform direct numerical simulations setting β = 0.05, N = 1.5, s = 90◦ with a
Reynolds number Re = 106.5. A first try was initiated from a broadband white noise with
k/(2π) ∈ [4,20]. The kinetic energy displays an exponential growth but snapshots reveal
several entangled growing modes. To better quantify the growth rate and modes selection,
we then restrict the broad-band noise to three intervals 1:[5,10], 2:[10,14] and 3:[14,20]
which allows to isolate growing modes with approximately the same wavelength. The kinetic
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Figure 7.5: Map of the growth rate computed via the Floquet theory σ̃ f as a function of the ellipticity
β and the angle ξ defined in figure 7.4 and equation (7.37) for left: N = 1.5 and s = 90◦ and right:
N = 4 and s = 90◦. As it will be shown hereafter, the growth rate is linearly growing with the ellip-
ticity. We therefore normalise the growth rate by β which allows to identify the limits of the Floquet
resonance tongue. The latter converges towards N sinξ= γ= 1 for β → 0 showing that the resonance
is subharmonic. Note that the higher growth rate area is always above the dashed line N sinξ= 1.

Figure 7.6: Growth of the instability for β = 5 × 10−2, N = 1.5 and s = 90◦ initiated from broad-
band white noise with k/(2π) in three different intervals 1:[5, 10], 2:[10, 14] and 3:[14, 20]. The
viscous growth rate is obtained by a linear fitting in log-lin coordinates (shown as dashed-dotted lines).
The corresponding snapshot of the buoyancy perturbation field is given for each experiment with an
indication of the stratification direction. It is used to determine the growing mode.

energy corresponding to these three initial conditions is shown in figure 7.6 with snapshots
of the buoyancy perturbation field ϑ during the exponential growth phase. In each case, the
kinetic energy is exponentially growing and the buoyancy field bears a plane wave structure,
confirming that the instability mechanism is based on wave resonance. These DNS results
allow to calculate the viscous growth rate σ̃v in tidal units. The inviscid growth rate σ̃th
(expressed in tidal cycles) is then obtained by subtracting the viscous damping of the growing
mode, i.e. σ̃th = σ̃v +2πk2Re−1 with k the wave number of the mode (as σ̃th is in tidal units,
a 2π factor must be added to the damping rate).

These results are then compared to the theoretical inviscid growth rate σ̃ f given by the
Floquet analysis of equations (7.34). The map of σ f (α,ξ) is displayed in figure 7.7 where
the location of the growing mode for each DNS is highlighted by a black dot associated to
the corresponding σ̃ f . We first note that, both in DNS and theory, the angle ξ satisfies the
condition N sinξ = 1 with a tolerance smaller than β , as it was expected from qualitative



171

10−3 10−2 10−1

Ellipticity β

10−2

10−1

G
ro
w
th

ra
te

σ̃

σ̃ = 1.65β

Floquet analysis

DNS results

0 π 2π
α

0.00

0.25

0.50

0.75

(N
si
n
ξ
−

1)
/β

3. σ̃f = 1.61β2. σ̃f = 1.63β

1. σ̃f = 1.46β

σ̃f(α, ξ)/β β = 5× 10−2

1.00

1.07

1.15

1.22

1.29

1.37

1.44

1.51

1.59

1.66

Figure 7.7: Left: map of the growth rate σ̃ f computed with the Floquet analysis as a function of the
angles ξ and α. The black dots correspond to the location of the growing modes observed in figure
7.6 for which the theoretical σ̃ f growth rate is given. The dashed black lines highlight the marginal
stability. Right: comparison between systematic calculation of the maximum growth rate from the
Floquet analysis and DNS results. The growth rates σ̃ f computed with Floquet theory are all aligned
on σ̃ f = 1.65β .

arguments developed in the preceding paragraph. In addition, the theoretical growth rate
σ̃ f is close to the growth rate σ̃th measured in DNS with a relative difference less than 2% .
With this very good agreement between DNS and the linear theory, we can now analyse the
dependence of the growth rate on the control parameters using rapid linear theory only.

3.4 Linearity with the ellipticity β

The amplitude of the periodic stretching and shearing responsible for the parametric
excitation of internal waves is proportional to the ellipticity β . Another way to validate the
DNS and the linear stability analysis is to examine the consequent expected linearity in β of the
growth rate as in the case of tidally-driven elliptical instability (Le Dizès, 2000; Kerswell, 2002;
Grannan et al., 2017). As shown in figure 7.7 (right panel), the theoretical maximal growth
rate σ̃ f inferred from Floquet theory is very well described by a linear function over several
orders of magnitude, in the case with N = 1.5 and s = 90◦. The growth rate computed from
DNS is in addition very close to this theoretical line.

3.5 Dependence on the stratification angle s

To illustrate the dependence on the latitude or equivalently the stratification angle s
(see figures 7.3 and 7.4), we show in figure 7.8 the maximum theoretical growth rate of the
instability for fixed N = 1.5. The main conclusion is that this instability can be triggered at
any latitude in a planetary fluid layer. For this Brunt-Väisälä frequency, the growth is optimal
between roughly 50◦ and 60◦. The mode selection of the parametric instability changes with
latitude. Unlike the mode selected in the case N = 1.5 and s = 90◦ where α≃ π/2 (see figure
7.7), the mode selected at s = 60◦ lies in the plane (x Mz), i.e. α≃ π (see figure 7.4).
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3.6 Dependence on the Brunt-Väisälä frequency N

The growth rate of the instability is also a function of the Brunt-Väisälä frequency. As
shown in figure 7.9, it tends to a limit value when N ≫ 1. The consequence is that the
instability can be triggered at any Brunt-Väisälä frequency provided that it is larger than 1
in tidal units. Note that for large N , the selected modes’ wave vectors draw closer to the
stratification direction as sinξ∼ 1/N .

3.7 Conclusion

The linear stability analysis examined theoretically via WKB analysis and Floquet theory
is quantitatively consistent with the results of direct numerical simulations. This first study has
two consequences. It allows to assert that provided the dissipation is low enough, a parametric
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excitation of internal waves can be excited in a planetary fluid layer undergoing homogeneous
tidal deformations. This instability can be triggered at any latitude. However, the mode se-
lection seems difficult to predict as it depends on latitude. At least it is confirmed that the
growing waves are selected because their frequencies are close to half the forcing frequency
2γ. In addition, this first linear study validates the use of local direct numerical simulations
under a shearing box approximation with time-varying wave-vectors, as this method is in ex-
cellent agreement with the linear WKB-Floquet theory.

4. Non-linear saturation of the instability

To further analyse this tidally-driven instability of internal waves, we now focus on its
non-linear saturation. This regime is the most relevant to the understanding of natural sys-
tems, in particular to comprehend the dissipation rate of the input tidal energy and the tur-
bulent mixing in the oceans, or to study the possible existence of dynamo action in stably
stratified planetary cores. Although we cannot address here all those issues, we strive to ex-
hibit the key features of the non-linear saturation of this tidally-driven instability as a basis for
future works.

We performed many simulations, all with an ellipticity β = 5 × 10−2, to explore the
influence of the Reynolds number Re, the Brunt-Väisälä frequency N , and the latitude or strat-
ification angle s in the low forcing intensity and low dissipation regime relevant to geophysics.
The Prandtl (or Schmidt) number Pr is kept constant at Pr = 1. These simulations are all
summed up in table 7.1 where the input parameters are referenced along with the main out-
put statistical quantities.

4.1 Sustained instability and turbulence

As in the linear stability analysis, the non-linear fate of the instability is mainly tracked
via the time evolution of the total kinetic energy in the Lagrangian box. Figure 7.10 shows that
once the instability has reached saturation, the kinetic energy is maintained throughout time
for the considered parameters. As indicated by figure 7.10, changing the Reynolds number
from 106 to 107 does not influence the time-averaged value of the kinetic energy provided that
N and s are kept constant. We note though that the variations around the mean energy level are
larger for the lowest values of the Reynolds number. This is reminiscent of cyclic resonance and
turbulence breakdown often occurring in systems close to the instability threshold. It has been
observed for instance for the elliptical instability in rotating fluids (Grannan et al., 2014; Favier
et al., 2015) or in the case of parametrically excited internal waves in a Faraday instability setup
(Benielli and Sommeria, 1998).

To examine whether the saturation flow is influenced by stratification, we compute the
Froude number based on the resonant wavelength and the rms velocity. The resonant wave-
length λres = 2π/kres is an output parameter resulting from the mode selection during the
growth phase (see table 7.1), and the rms value of the velocity in the saturated phase is com-

puted from the saturation time-average of the kinetic energy Ek such that urms =
q

2Ek. The
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Input variables Output variables

Resolution N log(Re) s kres/(2π) urms (×10−3) F r ϵk (×10−8) Reo R
2563 1.5 6.0 45◦ 12.0 4± 1 0.032 5± 3 332 0.35
2563 1.5 6.5 45◦ 12.0 4.8± 0.4 0.039 3± 1 1279 2.0
2563 1.5 6.75 45◦ 12.0 4.4± 0.4 0.035 2.1± 0.7 2049 2.6
5123 1.5 7.0 45◦ 12.0 4.4± 0.3 0.035 1.8± 0.1 3673 4.7
2563 1.5 6.5 0◦ 5.4 3.7± 0.7 0.030 1.3± 0.6 980 0.9
2563 1.5 6.5 90◦ 11.2 5.9± 0.6 0.047 4± 1 1550 3.6
2563 2.0 6.5 90◦ 5.8 5.4± 0.5 0.016 3± 1 2950 0.74
2563 4.0 6.5 90◦ 14.6 2.3± 0.9 0.008 1 500 0.03
2563 4.0 7.0 90◦ 14.6 3.3± 0.5 0.012 1.5± 0.2 720 0.10

Table 7.1: Input parameters and measured statistical properties of the flow for each simulation. kres
is the principal wave number of the resonant modes emerging during the growth phase. urms is the
rms velocity computed from the mean of the kinetic energy. The Froude number F r is computed as
urms/(Nλres). ϵk is the saturation dissipation rate defined as −Re−1
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equations (7.40) and (7.41). When errorbars are given, they correspond to the variance of the quantity
over the total duration of the saturation phase. Note that N = 4 and Re = 106.5 is intermittently
turbulent and the Reynolds number had to be pushed up to 107 to observe a sustained turbulence.
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Froude number F r is therefore defined as

F r =
urms

λresN
. (7.38)

The values of urms and F r are all referenced in table 7.1. As F r = O (10−2) for all the simu-
lated configurations, we conclude that the background stable stratification strongly affects the
saturated flow.

In addition, the saturation of the instability is associated with the spontaneous creation
of small scales. The isotropic power spectrum of both velocity (E(k)) and buoyancy (Eθ (k))
are shown in figures 7.10 and 7.11. They are computed as:

E(k) =
∑

k≤|k|<k+1

|ûk |2 and Eθ (k) =
∑

k≤|k|<k+1

|ϑ̂k |2 . (7.39)

In the high Reynolds number limit, they converge towards a k−3 power spectrum, indepen-
dently of N and s. A similar velocity power spectrum has been observed by Brouzet (2016)
in the close context of turbulence driven by a forced internal wave attractor. It has also been
measured at low Froude number by Rorai et al. (2015) in a stratified turbulence randomly
forced at large scale. From the excitation of a few unstable internal waves, this instability
mechanism manages to create sustained stratified turbulence and smaller scales. In addition,
the apparent equipartition between velocity and buoyancy power spectra points towards a
dynamics dominated by internal waves.

To better characterise the turbulent flow resulting from the saturation of the instability,
we introduce two dimensionless parameters. We compute an output Reynolds number Reo
based on the rms velocity and the resonant wavelength such that:

Reo = Re urms λres. (7.40)
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Figure 7.12: Mean value of the dissipation rate ϵk as a function of the Reynolds number for N = 1.5
and s = 45◦. The errorbars account for the standard deviation of ϵk during the saturation phase.

With this output Reynolds number, we can also compute the buoyancy Reynolds number R
defined as (Brethouwer et al., 2007):

R = Reo F r2. (7.41)

It compares a scale ℓb beyond which buoyancy effects are negligible and a scale ℓv beyond
which viscosity affects the flow (Godoy-Diana et al., 2004; Brethouwer et al., 2007). For
instance, in the context of classical stratified turbulence, it compares the so-called Ozmidov
and the Kolmogorov length scales (Brethouwer et al., 2007). The output Reynolds number
is a O (100− 1000) but because the Froude number is small, the buoyancy Reynolds number
is at most O (1) (see table 7.1). This means that although the flow is turbulent, there is no
significant range of scales where inertia dominates over buoyancy: all the non-dissipative
scales are affected by the background stratification. This is drastically different from recent
studies on forced stratified turbulence, which are mostly focused on theR ≫ 1 regime (see for
instance Brethouwer et al. (2007); Bartello and Tobias (2013); Maffioli et al. (2016); Maffioli
and Davidson (2016)). Lastly, the instantaneous dissipation rate associated with this type of
turbulence is shown in figure 7.10 and its mean saturation value is given in table 7.1. They
are computed in our dimensionless units as ϵk = −Re−1



∂iu j∂iu j

�
> 0 where 〈 · 〉 is a volume

averaging operator. Figure 7.12 sums up the evolution of this dissipation with the Reynolds
number at constant N and s. The dissipation rate ϵk is a decreasing function of the Reynolds
number in the considered range of parameters and this decay is shallower than a Re−1 decrease.
This is an additional signature of the development of turbulence as it indicates that the velocity
gradients become steeper as the input Reynolds number is decreased. However, in the present
range of parameters accessible with reasonable computing time, no saturation of ϵk at high Re
is reached.

As a conclusion, at large Reynolds number, the flow resulting from the saturation of
this tidally-driven instability is developing over a wide range of spatial scales from an initial
resonance dominated by a most unstable wavelength. At a given Brunt-Väisälä frequency, this
turbulence develops at any latitude. Typical snapshots of this turbulent state can be found in
figure 7.13.
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Figure 7.13: Typical snapshots of the buoyancy field (a. and c.) and the y component of the vorticity
(b. and d.) in the saturated phase for a., b.: N = 1.5, s = 45◦ and Re = 107; c., d.: N = 4, s = 90◦ and
Re = 107.
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Figure 7.14: Map of the kinetic energy as a function of the frequency of the modes and the angle ξ
between the stratification and the wave vector of a mode for Re = 106, 106.5 and 107 at N = 1.5 and
s = 45◦ kept constant. The Fourier transforms are performed for σ̃t ∈ [200, 400] and the energy is
normalised by its maximum value. The range of wave number k over which the transform is processed
goes from k = 3 to k = 100; changing these boundaries does not affect the map provided the most
energetic scales (k ≲ 20) are included. The horizontal line represents the frequency of the first excited
modes, the plain line gives the dispersion relation of the internal waves ω = N sinξ and the dashed
line locates the modes due to non-resonant non-linear interactions between the tidal base flow and the
internal waves resulting in frequencies 2− N sinξ. The SNOOPY code computes the time evolution of
half the spectral space as the fields are real, the angle ξ is therefore between 0 and π−π/4= 3π/4.

4.2 Internal wave turbulence

In this paragraph, we aim at thoroughly characterising the structures generated by the
non-linear saturation of the initially unstable waves. In simulations and experiments of strati-
fied turbulence, the emergence of layerwise structures in which the flow is quasi-two-dimensional
is frequently observed. These so-called “pancakes modes" correspond to the quasi-static limit of
the internal waves dynamics (i.e. ξ→ 0 andω→ 0); three-dimensional motion comes through
shear instability between those layers (see e.g. Billant and Chomaz (2001); Brethouwer et
al. (2007)). Conversely, the turbulence excited by internal wave attractors leads to a dif-
ferent situation where the turbulence is a cascade of triadic resonances between the excited
waves and a swarm of daughter waves. It results in an internal wave turbulence (Brouzet
et al., 2016).

To determine which scenario is relevant here, we propose to map the energy in the same
representation as in chapter 6 section 2.2, i.e. to project the energy in the spectral space along
the temporal frequency ω and the angle ξ between the stratification direction S̃ and the wave
vector of a mode. This allows to determine where the energy is located around the dispersion
relation of internal waves. This energy map is in the present case straightforward to draw
thanks to the spectral nature of our simulations. The flow is indeed known through the velocity
in spectral space ûk(t). They can be sorted by their angles ξ to obtain the quantity û(ξ, t)
defined as:

û(ξ0, t) =
∑

k,α,ξ̃∈[ξ0,ξ0+∆ξ]

ûk(t) with k = k

 sinξ cosα cos s + sin s cosξ
sinξ sinα

− sinξ cosα sin s + cos s cosξ

 , (7.42)

where α is an azimuthal angle, ξ is a polar angle respective to the stratification axis as defined
in figure 7.4 and k is the norm of the wave vector k. ∆ξ is a given tolerance to assume the
angle ξ of a mode is equal to ξ0. A time Fourier transform is applied to û(ξ, t) to finally get
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Figure 7.15: Map of the kinetic energy as a function of the frequency of the modes and the angle ξ for
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to Re = 107 to observe sustained turbulence. The Fourier transforms are performed for σ̃t ∈ [150, 400]
and the energy is normalised by the maximum value. Again, secondary and mirroring locations of the
energy corresponding to non-resonant and nonlinear interaction of the waves and the base flow can be
noticed.

10−2 10−1 100 101

Frequency ω

10−11

10−9

10−7

E
n
er
g
y

N

Excitation

10−2 10−1 100 101

Frequency ω

10−14

10−11

10−8

E
n
er
g
y

-2
N

Excitation

10−1 100

Energy × ω
2

Figure 7.16: Temporal spectrum resulting from the acquisition of 1024 local velocity signals of all three
components. The plain line marks the upper boundary of internal waves and the dashed line highlights
the excitation frequency. Left: temporal spectrum for N = 1.5, s = 45◦ and Re = 107. Right: temporal
spectrum for N = 4, s = 90◦ and Re = 107. The insert shows the same amplitude compensated by ω2

with ω the frequency to highlight a ω−2 power law consistent with the high-frequency branch of the
Garrett and Munk spectrum (Garrett and Munk, 1979).
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û(ξ,ω). With these definitions, we remind at this point that the dispersion relation of internal
waves at a given k(k,ξ,α) is ω2 = N2 sin2 ξ.

The result of such a process is shown in figures 7.14 and 7.15. The most striking feature
is the coincidence between the main energy locations and the dispersion relation of internal
waves, similarly to the rotating fluid case (chapter 6), but also to Brouzet et al. (2016) in
stratified fluids. It confirms that, in the saturation phase, the non-linear interactions between
the growing modes give rise to a cascade of daughter internal waves. In figure 7.14, it can be
noticed at low Reynolds number that only a few modes emerge in the non-linear saturation.
Increasing the Reynolds number leads to filling continuously the dispersion relation. Note that
as energy is injected into the resonant modes only and as the Froude number is always small,
the only way to create new waves is via a cascade of triadic resonances.

Secondary locations of the energy mirroring the dispersion relation of internal waves
can be noticed in figures 7.14 and 7.15. Their frequencies match the relation ω = 2− N sinξ
and are therefore associated to non-linear and non-resonant interactions between the waves
of frequency ±N sinξ and the base flow of frequency ±2.

The filling of the dispersion relation depends though on the Brunt-Väisälä frequency (fig-
ure 7.15). When N is increased, modes with frequency around or below γ seem to be more
excited via nonlinear interactions than modes with frequency between γ and N , at least for
the Reynolds numbers considered here (see N = 4 in figure 7.15).

In order to quantify more precisely how frequencies are excited, we propose to focus on
temporal spectra obtained via the local acquisition of the three components of the velocity at
several points. As shown in figure 7.16, and as expected theoretically for an internal wave
turbulence, there are no significant fluctuations beyond the Brunt-Väisälä frequency N . Below
this frequency the excited modes are homogeneously distributed down to frequencies which
are an order of magnitude smaller than both N and γ (see figure 7.16 left). These frequencies
correspond to the lower branch (i.e. small ξ ) of the dispersion relation observed in figures
7.14 and 7.15. When N is increased, i.e. when a scale separation appears between the forcing
frequency γ and N , the energy contained in the higher frequencies (N sinξ > 1) follows aω−2

power law. Such a trend is reminiscent of oceanographic measurements of the velocity which
display a similar ω−2 power law in the range of frequencies above the tidal forcing and which
is interpreted as a signature of internal wave turbulence (Garrett and Munk, 1972; Garrett
and Munk, 1975; Garrett and Munk, 1979; Levine, 2002). To provide a definitive comparison,
it would be necessary to increase N while keeping a turbulent saturation, which requires large
computational time as the Reynolds number must also be increased.

As a conclusion, the tidally-driven parametric instability of internal waves saturates in
a state reminiscent of “internal wave turbulence". The sustained, broadband frequency and
small-scale saturation flow is composed of non-linearly interacting internal waves, although
the non-linearity is weak compared to the effects of the background stratification.

4.3 Anisotropy and decoupling

Stratified turbulence has often been studied in the perspective of the emergence of lay-
erwise, low-frequency structures, leading to a strong anisotropy and decoupling between hor-
izontal and vertical variations. This paragraph aims at comparing the internal wave turbu-
lence previously identified to the classical theories of stratified turbulence in the high buoy-
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ancy Reynolds number regime developed in particular by Billant and Chomaz (2001), Lind-
borg (2006) and Brethouwer et al. (2007).

First, figures 7.14 and 7.15 do not indicate any energy accumulation in the layerwise
structures around ξ = 0 and ω = 0. To support this assertion, we show in figure 7.17 the
kinetic energy spectrum for the layerwise modes at ξ = 0 and for the rest of the flow. As in
the two cases the stratification is along the x axis, the layerwise modes are easily identified in
the spectral space as their wave number k is such that kz , ky = 0. As it can be noticed, at all
scales, the slow modes are subdominant. This could be confusing as layers perpendicular to
the stratification can be noticed in figure 7.13, they however do not correspond to slow modes
since they are not exactly invariant along the axes perpendicular to the stratification.

Although layerwise structures are ubiquitous in stratified turbulence excited by a random
forcing or by large scale vortices, forcing waves leads to a completely different state with low
energy transfers towards those particular modes. The present picture is reversed in the close
context of rotating turbulence excited by inertial waves: geostrophic vortices happen to grow
up to taking over the whole dynamics in absence of specific dissipative process and to strongly
back-react on wave propagation (see chapter 6. This could be linked to the fundamental
mathematical difference between layerwise modes in stratified turbulence and geostrophic
vortices in rotating turbulence (Cambon, 2001), which leads in particular to the absence of
inverse cascade in the purely stratified case (Marino et al., 2013; Herbert et al., 2016).

This result regarding slow modes has strong implications in the anisotropy of the tur-
bulent flow. In the classical theory of stratified turbulence, the velocity power spectrum is
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an anisotropic function of k⊥ = k sinξ and k∥ = k cosξ. The velocity power spectrum inte-
grated over k∥, i.e. along the stratification axis, E(k⊥), follows a Kolmogorov-like power law

k−5/3
⊥ , while conversely E(k∥) ∝ k−3∥ (Lindborg, 2006; Brethouwer et al., 2007). However,

in the case of the internal wave turbulence presented above, both spectra E(k⊥) and E(k∥)
follow the same power law close to k−3∥,⊥, as it can be seen in figure 7.18. The situation is even
reversed as E(k⊥) is slightly below E(k∥) at large k while it is expected to be dominant in
classical stratified turbulence. This result shows that there is no decoupling between the hor-
izontal and vertical variations, as observed in the frequently studied high buoyancy Reynolds
number regime, which is coherent with the fact that the turbulent state considered here is a
superposition of many internal waves propagating in multiple directions in a quasi-isotropic
manner.

The spectra displayed in figure 7.18 suggest that the gradients in the direction perpendic-
ular to the stratification are less steep than they should be if the turbulence was due to shear
instability between layerwise modes. To investigate whether shear instabilities are possible in
the saturated flow, we compute the local Richardson number defined as:

Ri(x , t) =
N2
�

1+
dϑ
dzs
(x )
�2

�
dU⊥
dzs
(x )
�2 . (7.43)

where zs is a linear coordinate along the stratification axis and U⊥ is the velocity component
perpendicular to the stratification direction. It compares the local Brunt-Väisälä frequency, in-
cluding buoyancy fluctuations, with the shearing rate along the stratification direction. Linear
stability analysis indicates that a sheared stratified flow is unstable when Ri < Ric = 1/4. Fol-
lowing Brethouwer et al. (2007), we compute for several Reynolds numbers, at N = 1.5 and
s = 45◦, the PDFs of the local Richardson number. As shown in figure 7.19, for the two lower
input Reynolds numbers, there is no event likely to create shear instabilities. The buoyancy
Reynolds numberR being smaller than one, this is coherent with the remark of Brethouwer et
al. (2007) that in the low buoyancy Reynolds number regime, there should be no disturbances
of Kelvin-Helmholtz type in the flow. The picture seems to change at the highest Reynolds
number (107), which corresponds to our most extreme simulation where rare events with
Ri < 1/4 are observed. The appearance of rare unstable events could be reminiscent of a
transition towards a high buoyancy Reynolds number regime, which is further discussed in
the concluding section of the present chapter. Still we conclude that in the regime we explore
here, the internal wave turbulence is mostly stable to shear instabilities and is unable to drive
strong overturning events.

4.4 Mixing

At this stage, we know that tides are able to amplify buoyancy perturbations over a back-
ground stratification, and that this amplification saturates into an internal wave turbulence.
We would like to quantify then how this turbulent state mixes the buoyancy perturbations, i.e.
how it irreversibly converts potential energy perturbations into background potential energy
(Peltier and Caulfield, 2003). Following the work of Lindborg and Brethouwer (2008), Sale-
hipour and Peltier (2015) and Maffioli et al. (2016), we propose to quantify the mixing via a
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. PDFs are computed from snapshots of the buoyancy and velocity fields, the

result presented here is the ensemble average of all the PDFs computed in the saturation phase. The
number of samples is usually between 10 and 20.
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coefficient Γ defined as:

Γ =
ϵp

ϵk
(7.44)

where ϵp = −N2(Re Pr)−1


(∇ϑ)2� quantifies the diffusion of the buoyancy perturbations

and ϵk is the kinetic energy dissipation defined earlier. This coefficient Γ was originally in-
troduced to evaluate how turbulence induces an effective diapycnal diffusivity K = Γϵk/N

2

(Osborn, 1980; Salehipour et al., 2016). The expression given for ϵp can be retrieved by con-
sidering that it is a potential energy dissipation (Lindborg and Brethouwer, 2008). In the
derivation of the energy equations from (7.27), the buoyancy equation must be multiplied by
N2ϑ to obtain the same energy transfer from velocity to buoyancy, which finally yields to the
definition given earlier to ϵp.

In their study, Maffioli et al. (2016) found that, forcing a turbulence in a stratified fluid
with vortices aligned with stratification, at low Froude and high buoyancy Reynolds numbers
the mixing coefficient Γ converges towards 0.33. In figure 7.20 (left), we display the mixing
coefficient Γ at N = 1.5 as a function of the input Reynolds number Re with the limit value
found by Maffioli et al. (2016) given as a reference. Despite Re is increased from 106 up to
107 we do not observe any variation of the mixing coefficient. Instead, Γ remains constant
around 1, well above the limit reference value. The evolution of the mixing coefficient Γ with
the Brunt-Väisälä frequency N is also computed for s = 90◦. As it can be noticed in figure 7.20
(right), again, Γ remains constant and around 1.

This result can be inferred from a very simple model assuming the flow is only a super-
position of low amplitude internal waves with weak non-linear interactions. A single wave
of frequency ω and wave vector k, {u,ϑ,Π} = {uk0,ϑk0,Πk0} ei(k·x−ωt) with ω2 = N2 sinξ,
must obey the following linear inviscid set of equations:�

∂t u = −∇Π+ N2ϑes
∂tϑ = −es · u ⇒

� −iω uk0 = −kΠk0 + N2ϑk0 es−iω ϑk0 = −es · uk0
(7.45)

where es is the stratification direction unit vector. We wish then to compute the volume aver-
aged dissipation associated with the wave field, which is merely the sum of each single wave
dissipation. For one wave only,



u∗ ·∇2u
�
= −k2 |uk0|2 and



ϑ∗∇2ϑ
�
= −k2 |ϑk0|2. To com-

pute Γ , we need to relate |uk0|2 to |ϑk0|2 which can be done for instance applying k × (k × ·)
to the velocity equation in (7.45). We then obtain the exact balance |uk0|2 = N2|ϑk0|2 (which
does not apply at ω = 0). Thus we find with the following simple scaling for the mixing
coefficient:

Γ =
1
Pr

(7.46)

where Pr is the Prandtl or Schmidt number. We retrieve for our simulations at Pr = 1 that
Γ = 1. The numerical result Γ = 1 should therefore be regarded as an additional signature of
internal wave turbulence.

To conclude, internal wave turbulence offers a picture completely different from the clas-
sical stratified turbulence at high buoyancy Reynolds number. The flow being a superposition
of low to moderate amplitude waves, the mixing coefficient is different compared to a sit-
uation where the most energetic structures are the non-propagative layerwise modes. Note
that although the mixing coefficient is increased, the consequent turbulent diapycnal diffusiv-
ity should still be lower than what is measured in high buoyancy Reynolds number regime,
essentially because the forcing introduced here and the associated dissipation rates are small.
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5. Conclusion

Throughout this chapter, we have shown with an idealised local Lagrangian model that
tidal flows are able to drive bulk turbulence in stratified planetary fluid layers. This turbulence
is driven by the parametric subharmonic resonance of unstable internal waves. The latter
continuously feeds a cascade of daughter waves to create a flow which bears signatures of
internal wave turbulence, in particular the focusing of the energy along the dispersion relation
of internal waves. Such a turbulent flow has already been characterised in an experimental
setup designed to mimic the effects of tides on a particular topography (Brouzet et al., 2016).
We claim from our results that internal wave turbulence can take place homogeneously in
a whole fluid layer undergoing tidal distortion, provided that the latter’s amplitude is large
enough to overcome dissipation and that the Brunt-Väisälä frequency N is larger than the tidal
frequency γ.

In addition, our local approach provides an efficient way to numerically investigate the
detailed and possibly universal properties of weakly forced internal wave turbulence in low dis-
sipation regimes. Despite recent experimental (Brouzet et al., 2016) and theoretical (Gamba
et al., 2017) advances, this particular state of stratified turbulence remains challenging and
difficult to be compared to the classical theory of wave turbulence (Zakharov et al., 2012;
Nazarenko, 2011). As in rotating turbulence, this is essentially due to the anisotropy of the
dispersion relation (see for instance the discussion in Brouzet (2016)), the role played by
near-resonant interactions and the non-linear interaction with non-propagative modes (Cam-
bon, 2001; Galtier, 2003; Smith and Lee, 2005; Bellet et al., 2006; Scott, 2014; Gelash et
al., 2017; Gamba et al., 2017). Although our model is introduced in a targeted geophysical
context, it could be used to test universal internal wave turbulence models or closure.

Future work will strive to introduce rotation, which is also a key ingredient to planetary
fluid dynamics. In particular, in the limit where buoyancy effects still dominate over the Cori-
olis force, it should be interesting to study the consequence of its introduction on the filling of
the dispersion relation and the subsequent low-frequency cut-off. As it can be noticed in figure
7.16, for N = 4, there is an energy accumulation at frequencies ω ∈ [0.1,1]. If the rotation
rate were to be in this range, would the energy accumulate in the lowest frequency modes,
i.e. the layerwise structures which were never observed to develop in our simulations? If so,
tidal flows would convey energy into modes which could then undergo shear instabilities and
therefore drive more intense turbulence with enhanced dissipation rate and mixing. Whether
this turbulence is sustained or lead to the temporary inhibition of the instability which feeds
it remains to be seen.

Moreover, it would be interesting to investigate the persistence of the results found here
in the regime of high or low Prandtl (or Schmidt) number, which are both relevant to geophys-
ical fluid dynamics. Note though that it is already known from the experiments of Brouzet et
al. (2016) that internal wave turbulence can be excited in salted water, i.e. at high Schmidt
number. As linear internal waves are characterised by energy equipartition (see paragraph
4.4), we should expect that the resonant energy transfer towards small scale is inhibited as
soon as either viscosity or diffusion balances non-linear advective transfer. What happens to
the non-dissipated quantity and how it interacts with the larger scale waves beyond this cut-off
remains an open question. The Prandtl (or Schmidt) number should not play any significant
role in the large scale behaviour of the flow.
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Figure 7.21: Schematic relative distribution of the low and high buoyancy Reynolds numberR regimes
as a function of the input Reynolds number Re and the ellipticity of the deformation β . The area covered
by geophysical regimes and our simulations is indicated in particular to highlight the fact that the low
R regime is also relevant to planetary layers in the case of bulk wave turbulence excited by tides.

Lastly, the type of turbulence resulting from the saturation of the tidally-driven instability
occurs in a regime of high Reynolds, low Froude and low buoyancy Reynolds (R) numbers,
which leads to a completely different picture compared to the highR regime frequently studied
and branded as the regime relevant to geophysical flows. In particular, the mixing coefficient
is increased in the regime we describe, and is coherent with the scaling Γ = 1/Pr that we
have derived theoretically assuming the flow is a superposition of linear internal waves only.
This result is an additional signature of wave turbulence. However, this enhanced mixing
coefficient may not result in an increase in the turbulent diapycnal diffusivity as the forcing
and the dissipation are small.

A regime of high buoyancy Reynolds number turbulence excited by the parametric in-
stability introduced here is possible in the very high Reynolds number limit, but could not be
investigated because it is highly demanding in resolution and computational time, or it requires
an increase of the ellipticity β to unrealistic values. As seen earlier, events with Richardson
number under 1/4 are measured in the most extreme simulation where the dissipation is so
small that the buoyancy Reynolds number reaches ∼ 5. It would be interesting to see whether
at high R wave turbulence can drive strong over-turning events or not, and how it would
impact the mixing coefficient and the turbulent diapycnal viscosity. Still we claim that both
regimes should be considered as relevant to geophysical applications due to the specificity of
our forcing mechanism favouring weak wave interactions. Indeed, the buoyancy Reynolds
number R can be expanded as

R = u3
rmsRe

λresN2
. (7.47)

Assuming that the saturation results from the balance between the forcing term A(t)u ∼ βurms
and the non-linear term u ·∇u ∼ u2

rms/λres leads to urms ∼ βλres. As a result, the buoyancy
Reynolds number goes like:

R ∼ β3Re
�
λres

N

�2
. (7.48)

The area with high R lies above a line β ∝ Re−1/3 (N/λres)
2/3. In addition, the instability

grows when the forcing overcomes the volume viscous dissipation, i.e. for β ≳ (λ2
resRe)−1.

As a result, in the (β , Re) plane, both regimes are worth considering in the geophysical limit



187

where usually β is smaller than 10−3 and Re is large, as indicated in figure 7.21. Note that
this discussion is unchanged if we consider the dissipation to be due to solid wall friction, for
which the unstable zone lies above the line β∝ Re−1/2. Moreover, as indicated in figure 7.21,
the area of small R is extended as N is increased. In future work, it would be interesting to
delimit more precisely those two regimes. Note that a possible transition could be approached
in our most extreme simulation for which R ∼ 5. Exploring the internal wave turbulence
driven at high buoyancy Reynolds number would therefore require increasing the ellipticity
and thus the forcing intensity. This, we believe, deserves a study of its own.

Lastly, we believe the results presented here should not change as the ellipticity is lowered
provided that R < 1 and the flow is unstable. In addition, when three waves of frequencies
(ω1,ω2,ω3) exchange energy via triadic resonance, the resonance condition on frequency
must be satisfied with a tolerance O (F r) i.e ω1 ±ω2 ±ω3 = O (F r) due to detuning by larger
scales advection (see relation (2.32) in chapter 2 for a discussion in the analogue context
of inertial waves in rotating flows). As urms scales like βλres, decreasing β corresponds to
decreasing F r and therefore to more exact resonances. The only significant change, we believe,
is a thinner focusing of the energy along the dispersion relation of internal waves.
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Conclusion

1. The saturation of the elliptical instability in
planetary cores

1.1 Wave-dominated versus geostrophic dominated regimes

In this study targeted at the non-linear fate of the elliptical instability, we have shown
the existence of two very different types of saturation with an experiment and an idealised,
Cartesian local model. The first regime is dominated by strong geostrophic vortices, it had
already been identified by Barker and Lithwick (2013), Grannan et al. (2014) and Favier et
al. (2015). This regime bears some similarities with rotating turbulence excited by stochas-
tic forcing: the flow is mostly two-dimensional and the energy accumulates in large-scale
condensates. Although the formation of vortices in the local Cartesian model is observed to
temporarily inhibit the instability, geometric confinement of vortices in the ellipsoid leads to
a quasi-steady state. In this latter case, the spatial structure of resonant modes is modified to
account for the persistent vortex.

Because the ellipsoid we have used in our experiment is larger than in any previous set-
up, we could draw closer to geophysical regimes of weak dissipation and forcing amplitude.
The exploration of these regimes has allowed us to find a second saturation regime which is
dominated by a sustained cascade of inertial waves in triadic, resonant interaction, reminiscent
of inertial wave turbulence.

Our experiments indicate that the transition between the two types of saturation as a
function of the forcing amplitude (or input Rossby number) Roi and dissipation (or Ekman
number) E follows a power law Roi∝ E1/2. This secondary transition could be explained by
the existence of a finite Rossby number instability of inertial waves, possibly related to shear
instability, giving rise to geostrophic flows. As shown in chapter 4, at high forcing amplitude,
the inviscid growth rate of this instability is proportional to the wave amplitude; because in the
saturation, the wave amplitude scales like Roi (Grannan et al., 2017), the viscous threshold
of the finite Rossby number instability follows a power law Roi ∝ E1/2. However, we have
found that independently of the viscous damping rate, there exists a minimal wave amplitude
below which the flow remains stable. Therefore, the secondary threshold Roi∝ E1/2 does not
hold as Roi and E are decrease: there is a minimal Rossby number below which the secondary
instability leading to a geostrophic saturation never develops.
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Figure 7.22: Schematic regime diagram of the saturation of the elliptical instability as a summary of all
the outcomes of the presented work. The two control parameters are the forcing amplitude Roi and the
Ekman number E. We include several line materialising the threshold of the elliptical instability and of
three instabilities featuring geostrophic modes: the four-mode interaction (Kerswell, 1999; Smith and
Waleffe, 1999), the near-resonances and the finite wave amplitude instability (“finite Roi instability”).
The light shaded area corresponds to the regimes of control parameters where our research indicates
that the saturation flow should be dominated by inertial waves in triadic resonant interaction, or inertial
wave turbulence. The blank area is where a geostrophic-dominated type of non-linear saturation is
expected. We also include the regimes of forcing amplitude and dissipation corresponding to planetary
cores, according to Cébron et al. (2012a).

In addition to increasing our understanding of the wave-dominated regime, the idealised
simulations of the elliptical instability saturation suggest that the finite wave amplitude sec-
ondary instability indeed plays a role in setting the transition between the two regimes, al-
though simulations reaching more extreme regimes in terms of forcing amplitude and dissi-
pation are still needed to confirm it. We have also shown the existence of the two types of
saturation for the same values of the control parameters by creating an inertial wave turbu-
lence with a geostrophic-specific friction and then releasing it. Our study thus sheds a new
light on rotating turbulence by demonstrating the non-universality of the widely-used stochas-
tic forcing, which systematically leads to bi-dimensionalisation of the flow and to geostrophic
vortices dominating the dynamics (see Godeferd and Moisy (2015) for a review). Our results
clearly indicate that, in the case of weak forcing and dissipation, a realistic geophysical forc-
ing leads to an inertial wave turbulence free of geostrophic component, a state that had been
investigated theoretically and in idealised simulations only (Galtier, 2003; Bellet et al., 2006;
Scott, 2014).

1.2 A regime diagram to predict the saturation in planetary cores

To conclude, we summarise the outcome of the present work in a schematic regime di-
agram of the saturation of the elliptical instability shown in figure 7.22. The secondary tran-
sition between the wave-dominated regime and the geostrophic-dominated regime is set by
instabilities of geostrophic flows building on inertial waves with typical amplitude given by the
forcing Roi . We have shown in chapters 4 and 6 the importance of finite wave amplitude insta-
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bilities, in agreement with the experimental study presented throughout chapter 3. According
to our results, there is a minimal forcing amplitude below which this instability disappears,
which is materialised by a horizontal threshold line in the (Roi , E) regime diagram of figure
7.22. Note that direct forcing via viscous boundary layers also drives strong geostrophic flows.
We have found in chapter 5 that this mechanism leads to dominant geostrophic modes in the
saturation of the elliptical instability only above a finite forcing amplitude, as in the case of
finite wave amplitude instability.

Below the threshold of the finite amplitude instability, the remaining instabilities giving
rise to geostrophic modes are four-modes interaction and near-resonance. As shown by Ker-
swell (1999), the inviscid growth rate of the four-mode resonant interaction is proportional
to the square of the forcing wave amplitude, here Ro2

i . The same Ro2
i inviscid growth rate has

been theoretically derived in chapter 4 section 5.2 for near-resonances involving geostrophic
modes. The viscous threshold of these two instabilities is such that Ro2

i ∝ E1/2 where the
E1/2 corresponds to viscous damping in boundary layers. As a consequence, in figure 7.22,
these two secondary instabilities have a Roi ∝ E1/4 threshold, which is shallower than the
elliptical instability threshold Roi ∝ E1/2. Below the minimal input Rossby number below
which the finite wave amplitude instability vanishes, the transition from the wave-dominated
to the geostrophic-dominated regimes is entirely controlled by four-modes or near-resonant
interactions.

Note that a last mechanism is missing in figure 7.22 for the formation of geostrophic
flows: direct forcing via viscous boundary layers. The latter is not related to an instability and
appears without any threshold. Our guess from the study of chapter 5 is that at low Roi and E,
the geostrophic flow driven by direct forcing is of too low amplitude to prevent the emergence
of an inertial wave turbulence out of the saturation of the elliptical instability.

We conclude from our work that the wave-dominated saturation regime is relevant to
planetary cores unstable to tidal forcing.

1.3 Parametric instability in stably-stratified planetary interiors

In addition to exploring the turbulent saturation of the elliptical instability, we have also
been interested in the stability of a stably-stratified planetary interior, such as a core or a
subsurface ocean, undergoing tidal distortion. We have shown the existence of a parametric
subharmonic instability of internal waves, which is very similar to the elliptical instability in
rotating fluids.

With an idealised, Cartesian model, we have investigated the turbulent saturation of this
parametric instability. We have revealed with spectral methods that it is an internal wave
turbulence, a state that had previously been observed in the case of the non-linear collapse
of an internal wave attractor (Brouzet et al., 2016; Brouzet et al., 2017). Interestingly, the
temporal spectrum of local velocity measurements follows a ω−2 power law as a function of
the frequency ω in the range between the resonant wave frequency and the Brunt-Väisälä
frequency. Such a power law is sometimes observed in oceanic turbulence in the range of
frequency between the tidal forcing and the Brunt-Väisälä frequency and it is interpreted as a
signature of internal waves (Garrett and Munk, 1972; Garrett and Munk, 1975; Garrett and
Munk, 1979; Levine, 2002). Using pseudo-spectral methods to simulate these flows, we have
measured the energy spectrum of the internal wave turbulence and showed how different it
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is from a common type of stratified turbulence mostly driven by shear instability (Brethouwer
et al., 2007) and which is thought to take place in the Earth’s oceans for instance. Moreover,
we have quantified the turbulent mixing driven by the internal wave turbulence. Despite the
emergence of smaller scale, the mixing efficiency of the overall flow is similar to the mixing
efficiency of a single linear internal wave. Therefore, the internal wave turbulence induces
almost no enhancement of mixing compared to diffusion.

In the context of planetary cores, our study shows that complex flows arise from tidal
excitation of internal waves, which may drive dynamo action despite the stable stratification.
It is interesting to note that since very little mixing is induced by the internal wave turbulence,
the tidally driven flows should not a priori alter the solute stratification of planetary cores that
may result from their formation (Landeau et al., 2016).

2. Ideas and directions for future works

2.1 Dynamo action

The first extension of the present work is to study the consequence of the existence of the
two regimes on dynamo action in planetary cores. Reddy et al. (2018) has shown recently that
the turbulent flow arising from tidal instabilities drives kinematic dynamo, but their numerical
simulations were restrained to moderate forcing amplitude and dissipation. Dynamo action
in the wave-dominated regime has remained unexplored but is currently under investigation.
Moffatt (1970) has shown theoretically that a random superposition of inertial waves is able to
drive a large-scale magnetic field, provided that the wave field is not invariant under reflection,
i.e. that there is a net global helicity associated to the wave superposition. It remains to be
seen whether the inertial wave turbulence forced by the elliptical instability is able to drive a
large-scale α dynamo, that is, a large-scale magnetic field generated from the collective effects
of the flow’s smaller scales.

Besides, Barker and Lithwick (2014) have shown via numerical simulations that applying
a weak background magnetic field to a medium undergoing tidal forcing prevents the emer-
gence of columnar geostrophic vortices in the saturation of the elliptical instability. In the light
of the results presented in chapters 4 and 6, the study of Barker and Lithwick (2014) suggests
that the threshold of the secondary finite wave amplitude instability is altered, and possibly
increased, by the presence of a magnetic field. The influence of a magnetic field, be it self-
induced by the saturation flow or in the background, over the existence of the two regimes of
non-linear saturation of the elliptical instability remains to be investigated.

2.2 Fundamental aspects of wave-vortex interaction

Throughout the study developed in this dissertation, we have touched upon issues re-
lated to the interaction between an inertial wave and a vortex, a subject that remains widely
unexplored. In the geostrophic-dominated saturation, we revealed with the analysis of bico-
herence spectra that although inertial waves are distorted by the strong vortices, persistent
triadic interactions between unidentified structures are still occurring. These structures must
be inertial modes entangled with the vortex, as the modified resonant modes measured in
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chapter 3 figure 3.21. This modified wave shows that in anticyclones, waves with frequencies
larger than the local vorticity cannot propagate. It implies that the wave either reflects on the
anticyclone or transfers its momentum to the vortex, or both at the same time.

A fundamental investigation of how an inertial wave couples with a vortex, be it a cyclone
or an anticyclone, could be an interesting extension of the work presented here. The medium
in which the inertial wave propagates is no longer homogeneous, and the amount of energy
transferred from the wave to the geostrophic flow is unknown. Such a wave-vortex interaction
is yet an ubiquitous and fundamental interaction occurring in rotating turbulence. Carrying
out an extensive study of this phenomenon could yield interesting results regarding rotating
turbulence and the systematic bi-dimensionalisation observed in the case of stochastic forcing.
In addition, despite its importance, the interaction between the inertial waves and the slow
geostrophic modes is always neglected in the theories of inertial wave turbulence (Bellet et
al., 2006; Scott, 2014).

The investigation of the wave-vortex interaction could be carried out both numerically
and experimentally. The experimental set-up could be analogous to the one used by Humbert
et al. (2017) to study surface wave interaction with a vortex maintained by a magnetic field
and electric currents in a conducting fluid, or to the one used by Afanasyev and Peltier (1998)
to study the stability of anticyclones created by a rotating cylinder in a rotating tank. To carry
out the numerical study, the SNOOPY code might not adapted since the imposed geostrophic
vortex is a strong inhomogeneity in the system, but the NEK5000 code, used for instance by
Favier et al. (2015) and adapted to complex geometries, may be suitable. Diagnostics of the
wave-vortex interaction include the incident, reflected and transmitted wave energies and
frequencies. These quantities would allow measuring energy exchange as well as detuning
induced by the interaction.

2.3 Tidal mixing in layered planetary cores

A layered liquid outer core?

Among the several extensions of the present work that may be envisioned, the one that
may demand the largest amount of work is to fully understand the different processes at stake
in tidal mixing of a stably stratified liquid core. We have proposed throughout chapter 7 a
short analysis of this issue with a very idealised model, with many necessary approximations,
in particular the continuous density variation and the strong stratification limit. We believe
that, in regard of the recent results of Landeau et al. (2016), a global study of layered planetary
core mixing under tidal action is needed.

Landeau et al. (2016) have indeed shown that layering of light elements concentration in
the iron core is a natural consequence of its formation process. As mentioned earlier in chap-
ter 7, the formation of a terrestrial planet is an accretion and differentiation process: smaller
bodies collide, aggregate and at the same time the metal and silicate phases separate from one
another under the action of gravity. In the later stage of planetary formation, the accretion
process is dominated by large impacts of partially differentiated bodies on the partially differ-
entiated proto-planets of larger size. The cores of these two bodies do not necessarily have
the same light elements (silicon, oxygen, carbon, sulfur, etc.) composition and proportions.
After the collision, the iron core of the impactor merges with the core of the proto-planet. As
shown by the experiments of Landeau et al. (2016), the merging process does not result in
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Gravitational field

Figure 7.23: Picture of a two-layer ellipsoidal core and the gravitational field resulting from the pertur-
bation of the sphere self-gravity by a tidal potential. The densities of the layers are ρ0 and ρ0+∆ρ. We
consider the limit where the density contrast ∆ρ is small compared to ρ0 so that the two layer sphere
gravity field is approximated by the homogeneous sphere gravity field. The shape of the ellipsoid and
the relative strength of the tidal field are related by equation (9) in Barker et al. (2016).

overall homogenisation of the light element composition of the resulting body’s core, although
some mixing occurs. The impactor’s iron rather migrates (with some significant entrainment
though) to form a stable superposition of layers with different light elements composition and
density. In addition to the evidence presented by Landeau et al. (2016) in their analogue lab-
oratory experiments, seismic and geomagnetic data show that a stable, lighter layer may still
persist today, about 4.5 Gy after the last large impact that led to the Earth and Moon formation.

We have shown throughout chapter 7 that tidal forcing couples with waves in a stratified
core to drive weak turbulence, but under many approximations that may not be valid. First,
we have assumed that the interior of the planet is constantly in barotropic equilibrium, i.e. that
without instability, the isopycnal surfaces correspond to the equipotential of the gravitational
field including the tidal potential. Whether such an assumption still holds in a layered core
with small density contrasts is unknown. In addition, we have assumed the stratification to
be linear but the analogue experiments of Landeau et al. (2016) rather suggest layering with
a sharp density contrast at the interface.

The extension of this work we propose hereafter is a general study of the behaviour of a
layered iron core undergoing unsteady tidal distortion. The aim is to find the basic equilibrium
of such a configuration, to determine the existence of instabilities at the interface between
layers and to quantify the associated mixing, or light element exchanges, between the two
miscible layers. It comprises three parts involving global and local simulations, as well as an
experimental study.

Barotropic equilibrium and internal tide

To begin this research project, we first propose to carry out global simulations in order to
examine the stability of the two layer configuration presented in figure 7.23. These simulations
would feature two layers enclosed in an ellipsoid with a gravitational field that includes both
the self-gravity of the unperturbed, spherical fluid body and the tidal field. Theses simulations
may allow studying the excitation of global modes of the interface and probing the stability
of the barotropic equilibrium. They would be carried out with the NEK5000 code used for
instance in Favier et al. (2015) and Barker et al. (2016).
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It is indeed likely that tidal excitation drives perturbation of the shape of the layer sep-
aration. To support this assertion, we propose to determine the typical frequency of a gravity
wave propagating at the interface between fluids with densities ρ0 and ρ0 +∆ρ. Let us call
h the lower layer height and g the gravitational field intensity at the interface A typical fre-
quency ωg built upon these quantities and related to the density contrast may be defined as
follows:

ωg =
∆ρ

ρ0

s
g
h

(7.49)

where we have used a shallow layer height approximation. To evaluateωg we follow the study
of Landeau et al. (2016) who propose that a Moon-forming impact gives rise to a ∼ 300 km
layer with a density contrast ∆ρ/ρ0 ∼ 10−2. As a consequence, ωg ∼ 10−4 rad.s−1 whereas
the differential rotation rate between the Earth’s rotation and the Moon’s orbit γ is about
7× 10−5 rad.s−1, all the more considering that in the past, orbit and spin rotation rates were
larger. We therefore conclude that the typical oscillation frequency of the layer interface is
similar to the tidal excitation frequency. This mechanical forcing in a layered core could lead
to the propagation of interfacial gravity waves possibly excited by parametric resonance, as
well as inertial wave propagation in the bulk of the fluid. These interfacial motions may result
in light element mixing as well as dynamo action.

Local study of the two-layers core under tidal excitation

Although the preceding global study is useful in examining the stability of the two-layers
core, it might be limited when it comes to quantifying turbulent mixing driven by the interface
instability because of the existence of boundary layers. To study this problem in the regimes
of small tidal forcing and small density contrast, the SNOOPY code might be adequate.

Compared to the stably stratified case, it is probably not realistic to maintain a back-
ground density profile, since the displacement and blurring of the density interface is an
important feature in the dynamics. Instead, it may be useful to follow the numerical work
of Horne Iribarne et al. (2017) who study the evolution of an initial stratification undergo-
ing turbulent mixing. A similar approach could be implemented in the present case with an
initial—smoothed—density step in a Cartesian box with a background tidal distortion. Note
that a two-layers density profile cannot be directly implemented in a Cartesian model with
triply periodic boundary conditions. The density profile must be periodic, which can be done
without impacting the dynamics by penalisation of the flow over the domain where an artificial
density variation is imposed.

With such a model, it may be possible to quantify the mixing produced by the super-
position of the classical elliptical instability that should develop in each layer because of the
coupling between the tidal forcing and rotation, and the interface gravity waves.

An analogue laboratory experiment

Implementing tidal distortion with radial stratification and gravity is difficult in the labo-
ratory. In order to study an instability—possibly parametric—of surface waves in a two-layers
system, we propose to follow the work of Benielli and Sommeria (1998) and implement a
Faraday instability type of set-up. The instability of the interface would be driven by vertical
oscillations or, equivalently, harmonic gravity intensity modulation.



196

Mixing across an interface driven by a Faraday-like instability has been the subject of sev-
eral studies since the seminal work of Benielli and Sommeria (1998). Zoueshtiagh et al. (2009)
and Amiroudine et al. (2012) have carried out experiments of this instability in the regime of
very large forcing, so large that the gravity in the referential of the oscillated tank periodi-
cally reverses. Gréa and Ebo Adou (2018) and Briard et al. (2019) have simulated the three-
dimensional instability of an oscillated two layers system also in the regime of strong forcing.
These two numerical studies have focused on the irreversible mixing induced by the strong
turbulent flow at the interface.

In the case of small amplitude forcing, which is, again, the relevant limit of geophysical
forcing, it is not clear how mixing could be enhanced by the instability. Nevertheless, in the
case of weak forcing and dissipation, the non-linear saturation may result in interfacial wave
turbulence that could significantly increase the contact surface between the two fluids and
thus enhance interfacial mixing.

Mounting this experiment on a turntable could also result in interesting dynamics that
could be relevant to interfacial mixing in planetary cores. The density in each layer being con-
stant, they can both sustain inertial waves that are insensitive to the vertical oscillations of the
tank, but will depend on the oscillations of the interface. Interaction between the interfacial
dynamics and inertial waves could be an interesting feature of the two-layers core dynamics.
Note however that rotation induces complications such as inhomogeneous gravity field and
bending of the interface into a parabolic shape. These additional features will probably con-
volute the theoretical analysis, as in the case of the rotating Rayleigh-Taylor instability where
the curvature of the interface is an important complication in the stability analysis of the set-up
(see for instance the work of Scase et al. (2017)).

Since the seminal work of Malkus (1968), our knowledge of the tidal instabilities and
of their relevance to planetary cores has made significant progress. Our conclusion is that
indeed, they should lead to specific regimes in planetary cores, involving inertial and internal
wave turbulence. These specific regimes could explain the variety of behaviours observed in
planets in the solar system and probably in extrasolar ones, beyond the classical Earth model.
There still remains a large amount of work to quantify their signature in available data.
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