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Résumé  

 

L’hématopoïèse est un processus très finement régulé qui mène à la formation de chaque 

cellule sanguine d’un organisme. Chez les mammifères il existe un nombre important de types 

cellulaires qui participent à l’établissement des mécanismes de défense du corps. Toutes ces cellules 

proviennent de la différenciation terminale d’une cellule unique appelée Cellule Souche 

Hématopoïétique (CSH) qui, par le biais de différenciations successives donnant naissance à des 

progéniteurs de plus en plus spécifiés, va permettre l’établissement normal de tous les types de 

cellules sanguines. Les CSH sont parmi les cellules les plus finement contrôlées de l’organisme, car 

en effet une dérégulation de leur fonctionnement normal (prolifération excessive, différentiation 

prématurée…) peut entrainer de graves conséquences, à savoir des maladies du sang appelées 

leucémies.  

De nombreux facteurs moléculaires sont impliqués dans la régulation des CSH, et certains 

d’entre eux sont les cibles de mutations ou réarrangements chromosomiques à l’origine de 

leucémies, tels que le facteur de transcription RUNX1 et la Lysine Acétyl-Transférase (KAT) 

Monocytic Leukemia Zinc-Finger (MOZ).  

Chez la Drosophile, les cellules sanguines sont apparentées au lignage myéloïde des 

mammifères, et les acteurs moléculaires contrôlant leur formation sont très conservés. Ainsi, les 

cellules à cristaux (CC), qui sont les homologues fonctionnels des mégakaryocytes, sont formées 

suite à l’action conjointe de l’homologue de RUNX1, Lozenge (Lz) et de GATA1, Serpent (Srp). Un 

crible pan génomique mené par mon équipe d’accueil visant à trouver des modulateurs de l’activité 

transcriptionelle de Lz et Srp, a permis de d’identifier le gène enoki mushroom (enok) comme étant 

un régulateur négatif de cette activité. Enok est l’homologue chez la Drosophile de MOZ, et une 

étude préliminaire de son rôle in vivo a pu mettre en évidence une fonction essentielle dans le 

développement des CC, qui disparaissent quasiment en totalité dans un contexte mutant pour enok.  

L’objectif de ma thèse a été de comprendre les mécanismes par lesquels Enok régule la 

formation des CC chez la larve de Drosophile.  

Les CC sont générées au stade larvaire à partir de la transdifférenciation de macrophages 

après activation par la voie Notch, et l’initiation de Lz. Au contraire de données publiées récemment 

par un autre groupe, j’ai démontré que Lz est requis et suffisant pour induire l’expression de 

l’effecteur de la voie Hippo Yorkie, et non l’inverse. De plus, grâce à des expériences de perte de 

fonction et de sauvetage phénotypique, j’ai montré qu’Enok est requis pour l’expression de Lz de 

façon autonome cellulaire dans les précurseurs de CC.  

Chez les mammifères, MOZ est connu pour faire partie d’une tétrade d’acétylation, et j’ai 

montré qu’ici seul un de ses partenaires est requis, le facteur de type BRPF Br140. Pour approfondir 

l’étude de la fonction d’Enok, j’ai généré grâce au système CRISPR/Cas9 un allèle catalytiquement 

inactif d’enok. J’ai ainsi montré que cette fonction n’est absolument pas requise durant la 

différenciation des CC.  

Enfin, j’ai montré qu’Enok permet la régulation de l’expression de Lz en se fixant sur un 

enhancer dans le troisième intron du gène. De façon intéressante, sa délétion provoque le même 

phénotype de perte de CC qu’une perte de fonction d’enok, montrant qu’il est requis pour 

l’expression de lz dans le système hématopoiétique.   

Ces résultats mettent en valeur un nouveau mode d’action d’Enok dans l’hématopoïèse chez 

la Drosophile. De façon intéressante, une étude récente propose qu’Enok et Br140 se fixent sur la 

chromatine pour réguler l’expression de gènes cibles. Mes résultats sur une fonction non-

catalytique d’Enok viennent enrichir ce modèle, qui montre un mode d’action peu exploré dans le 

domaine. Dans le futur, ce travail pourrait ouvrir des portes sur une meilleure compréhension des 

fonctions normales et pathologiques de MOZ chez les mammifères.  



 



Abstract 

 

Hematopoiesis is a very tightly regulated process leading to the normal production of 

every blood cells in an organism. In mammals there is a lot of cell types that participate to the 

establishment of the defense mechanisms of the body. All those cells come from the terminal 

differentiation of a single cell called Hematopoietic Stem Cell (HSC) which will differentiate to 

give rise to committed progenitors that will eventually differentiate all blood cell types. HSCs 

are among the most controlled cells in the organism. Indeed, deregulation of their normal 

function (excessive proliferation, premature differentiation, …) can be at the onset of severe 

blood pathologies called leukemias.  

 Several molecular factors are involved in HSC regulation, and some of them, like 

RUNX1 and the Monocytic Leukemia Zinc-Finger protein (MOZ), are targets of mutations or 

chromosomal rearrangements that lead to a leukemic transformation. 

 In Drosophila, blood cells share functional homology with the mammalian myeloid 

lineage, and the molecular actors controlling their formation are well conserved. Indeed, 

differentiation of crystal cells (CC), which have similar functions than megakaryocytes, occurs 

following the interaction of RUNX1 homolog, Lozenge (Lz) and GATA1 Serpent (Srp). With the 

aim at identifying regulators of Srp/Lz transcriptional activity, a genome-wide screen led by 

my team allowed the identification of enoki mushroom (enok) as a strong negative regulator 

of this activity. Enok is the homolog of MOZ in Drosophila, and a preliminary study in vivo 

showed that Enok is essential for CC development during the larval stage, as CC almost 

completely disappear in enok loss of function context.  

 The objective of my PhD was to understand the mechanisms by which Enok regulates 

CC formation in the Drosophila larvae.  

 During the larval stage, CC are generated by the transdifferentiation of macrophages, 

after their activation by the Notch signaling pathway and onset of Lz expression. In contrast 

to data published by another group, I demonstrated that Lz is required and sufficient to initiate 

the expression of the Hippo signaling pathway effector Yorkie, and not the contrary. 

Furthermore, using loss of function and rescue experiments, I showed that Enok is absolutely 

required cell autonomously in CC precursors for Lz expression but not for the proper Notch 

signaling which appears normal in an enok mutant context. 

  In mammals, MOZ is known to be a part of an acetylation complex, and I showed that 

only one of its members, the BRPF factor Br140, is required alongside with Enok during CC 

differentiation. To go further into the characterization of Enok mode of action, I generated a 

catalytically inactive enok mutant using the CRISPR/Cas9 system and demonstrated that this 

function is completely dispensable for CC differentiation in the larvae.  

 Finally, I show that Enok regulates the maintenance of lz expression by binding to an 

enhancer located in its third intron. Hence, deletion of this enhancer provokes the same loss 

of CC phenotype as what is observed after enok loss of function showing that this enhancer is 

required for lz expression in the hematopoietic system.  

 These results highlight a new mode of action of Enok during Drosophila hematopoiesis. 

Interestingly, a recent study proposed that Enok and Br140 bind chromatin together in order 

to regulate gene expression. Therefore, my results on a non-catalytic activity of the drosophila 

Enok brings new insights into this new model, which uncovers a mode of action not much 

explored in the field.  In the future, my work should open new avenues  and might allow a 

better understanding of MOZ normal functions in mammals and thus give rise to more 

efficient ways to treat MOZ-associated pathologies.  
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I. Preamble 

 

Hematopoiesis is the process that leads to the normal production of every mature blood 

cell type in an organism; by definition, maintenance of its homeostasis is crucial throughout 

development, as hematopoietic deregulation has dramatic consequences on the organism. 

Indeed, blood disorders are even nowadays among the deadliest pathologies. In order to 

maintain a normal blood content, the hematopoietic process is tightly regulated, and this 

regulation is extensively studied in biological research with the aim of understanding the 

molecular mechanisms that are deregulated in pathologies and of finding new efficient ways 

to cure them.  

All mammalian blood cells come from the differentiation of Hematopoietic Stem Cells 

(HSCs). These HSCs have the essential property of being able to self-renew indefinitely; it has 

been shown that they can regenerate the entire hematopoietic system of irradiated mouse 

recipients through several successive graft experiments (Jacobson et al. 1951a; Spangrude, 

Heimfeld, et Weissman 1988). HSCs differentiate asymmetrically and give rise to more and 

more committed progenitors that ultimately generate all blood cell types.  

HSC discovery led many groups to pursue the study of those cells during normal and 

pathologic hematopoiesis. Several models emerged over the years to study the tight 

regulation controlling the formation of every blood cell lineage, such as vertebrate models like 

mouse and zebrafish. However, the strong conservation of molecular factors controlling 

hematopoiesis across evolution shed light on the Drosophila model, which has been widely 

used for over fifteen years for the study of both normal and pathological hematopoiesis.  

I will describe in a first part how mammalian blood cells are formed under normal and 

pathological conditions and which molecular actors are involved during those processes. In a 

second part, I will summarize what is known about Drosophila blood cell formation and show 

why it has emerged as an invaluable model to study normal and pathologic hematopoiesis. 

Finally, I will describe the discovery of enoki mushroom and how it was linked to a function in 

hematopoiesis, which is the basis of my thesis work. 
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A. Normal Hematopoiesis in vertebrates and mammals 

 

1. Blood cell types and functions 

 

Mammalian hematopoiesis is characterized by a great number of cell types that are 

formed; ten different cell types and several subtypes are produced (reviewed in (Orkin et Zon 

2008; Weiskopf 2016); (Figure 1). These highly specialized cells of the myeloid and lymphoid 

lineages ensure a large panel of functions. 

 

a) Myeloid lineage 

 

Myeloid cells are responsible for innate immunity, which allows a rapid and direct defense 

of the organism against invading pathogens, wound healing and transport of gases. Cells 

involved in the innate immunity are found in many organisms, and innate immunity is the 

major defense system in insects and plants. 

• Granulocytes are distributed in three types: neutrophils, eosinophils and basophils that 

are categorized based on their ability to absorb neutral, acid or basic eosin-derived dyes. 

Neutrophils are phagocytes and can exocytose granules, thereby reducing inflammation. 

Eosinophils are responsible for the elimination of parasites, using cytotoxic granules, and 

basophils produce histamine during inflammatory and allergic reactions. 

• Macrophages arise from the terminal differentiation of monocytes and are responsible 

for phagocytosis. They eliminate apoptotic or necrotic cells, and also cancer cells that 

express specific membrane markers. They also have a defense function during innate 

immunity, as they phagocytize pathogens like bacteria. Macrophages are furthermore 

found as resident cells in several adult tissues where they self-maintain (Hashimoto et al. 

2013); in addition, they participate in maintaining the steady state of tissues. Indeed, 

macrophages are able to activate BMP signaling in enteric neurons in order to control 

gastrointestinal motility (Muller et al. 2014). It also has been shown that macrophages 



 

 

 

Figure 1: Representation of the mammalian hematopoietic tree 

At the top of the tree, hematopoietic stem cells are responsible for the formation of every type of 

blood cell. Asymetric divisions allow self-renewal and generate progenitors of the myeloid and 

lymphoid lineages. These progenitors further differentiate into more committed progenitors that will 

eventually give rise to all mature blood cells. The blue dashed line indicates the ability of B lymphocytes 

to transdifferentiate into macrophages.  (Adapted from Orkin and Zon, 2008)  

 

 

 

Adapted from Orkin and Zon, 2008 
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protect tissue against inflammatory response by inhibiting neutrophil recruitment 

(Uderhardt et al. 2019). 

• Megakaryocytes are responsible for the production of platelets that are released in 

circulation after megakaryocyte fragmentation and, upon injury, they aggregate to allow 

wound healing by promoting coagulation. 

• Erythrocytes are the most abundant blood cell type; they are enucleated cells mostly 

responsible for the transport of oxygen throughout the organism during embryonic and 

adult life. They have other functions such as regulating blood viscosity and maintaining 

the shear stress necessary for vascular development and remodeling (Baron 2013; Lucitti 

et al. 2007). 

 

b) Lymphoid lineage 

 

Lymphoid cells are responsible for adaptive immunity, a second, highly specific, wave of 

defense against invading pathogens. Adaptive immunity arose in gnathostomes, as all jawed 

vertebrates possess lymphocyte receptors.  

• B lymphocytes are key effectors of the adaptive response. They are activated by T 

lymphocytes (see below) at the onset of the response to initiate the production of 

antibodies specific to the pathogen. A subset of B lymphocytes subsequently becomes 

memory B cells and allows an efficient response, if the organism has to fight the same 

pathogen later in life.  

• T lymphocytes are classified in 3 main groups of cells: (i) T helper cells (positive for the 

CD4 marker) that are activated after the presentation of an antigen by Antigen Presenting 

Cells; the activated T cell then interacts with a B lymphocyte to trigger specific antibody 

production; (ii) cytotoxic T lymphocytes (positive for the CD8 marker) that directly 

eliminate the pathogen after their activation and (iii) memory T lymphocytes that have a 

long lifespan and participate in long-term immunity. 

• Natural Killer cells,  thanks to their cytotoxic granules, are responsible for direct 

destruction of cancer cells, viral-infected cells and foreign bodies. 
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Adult definitive blood cells all come from HSCs, localized in the bone marrow. This 

environment is a niche allowing HSCs to proliferate and differentiate normally (reviewed in 

(Asada, Takeishi, et Frenette 2017). However, these HSCs themselves emerge after successive 

events taking place during embryonic development that I will describe below. 

 

2. Blood cell formation 

 

Blood cell formation is a process that initiates during early embryonic stages. Indeed, 

during its development, the embryo has to be supplied in oxygen and may also have to be able 

to fight off some pathogens that would be a threat to its survival. In order to meet those needs, 

three successive hematopoietic waves take place during development (Figure 2). 

 

a) First hematopoietic wave and primitive hematopoiesis 

 

The first hematopoietic wave consists of a transient myelopoiesis that takes place inside 

blood islands of the yolk sac during early embryogenesis (reviewed in Lacaud et Kouskoff 

2017). Absence of primitive hematopoiesis in the mouse embryo, notably after loss of function 

of GATA-1, which is a major hematopoietic transcription factor, leads to early embryonic 

lethality presumably due to the absence of erythrocytes (Fujiwara et al. 1996); this phenotype 

underlines the importance of early hematopoiesis during development. 

This first embryonic wave gives rise to primitive myeloid cells (erythrocytes, 

megakaryocytes and macrophages) that will migrate to the embryo proper. Some studies 

suggested that endothelial cells and primitive blood cells in blood islands of the yolk sac arise 

from a common progenitor called hemangioblast, but although it seems to be conserved from 

fly to mouse (Mandal, Banerjee, et Hartenstein 2004; Vogeli et al. 2006; Huber et al. 2004), 

this has not yet been demonstrated in humans and is a matter of debate.  In mouse, primitive 

erythrocytes come from erythroblasts produced in the blood islands that enter the 

bloodstream, continue to divide (Bethlenfalvay et Block 1970) and finally differentiate into 

enucleated erythrocytes that express both embryonic and adult globins (Kingsley 2004, 2006; 



 

 

 

Figure 2: Embryonic waves of hematopoiesis in mammals 

A. During the first wave, primitive hematopoietic cells (in red) arise from cells inside blood islands (in 

blue) in the yolk sac. They migrate to the embryo proper, where they differentiate into primitive 

erythrocytes, macrophages and megakaryocytes. B. During the second wave, the first definitive blood 

cells arise. These cells are Erythromyeloid Myeloid Progenitors (EMPs, in yellow); they originate from 

the hemogenic endothelium (in green) of the yolk sac through the Endothelial to Hematopoietic 

Transition process and migrate to the fetal liver, where they proliferate and differentiate. C. The third 

wave gives rise to the hematopoietic stem cells (HSCs). They emerge from the hemogenic endothelium 

of major arteries in the embryo, and in particular in the dorsal aorta. The emerging pre-HSCs will then, 

like EMPs, migrate to the fetal liver to expand and differentiate. At the end of embryogenesis, newly 

formed hematopoietic cells will migrate again to colonize the bone marrow niche. (Adapted from 

Tavian et al, 2005 
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Qiu et al. 2008). It also has been shown that in the yolk sac, primitive megakaryocytes emerge 

from bipotent progenitors called megakaryocyte/erythroid progenitors (MEPs) that can give 

rise to both primitive lineages (Tober et al. 2007). These megakaryocytes participate in the 

formation of embryonic platelets that circulate in the embryo. Primitive macrophages in the 

yolk sac have two origins: a first population is composed of maternally-derived macrophages 

that do not express all adult macrophages markers, and a second population comes from 

monopotent progenitors that differentiate into macrophages exhibiting definitive adult 

features (Bertrand 2005). 

Hematopoietic cells formed during the first embryonic wave are transient and thus are 

replaced later on during embryogenesis by definitive cells with adult features. Consequently, 

they are not found in post-natal stages and are not involved in definitive hematopoiesis. 

However, it has recently been shown that primitive macrophages play an essential role in 

colonizing hematopoietic organs, notably by remodeling the extra cellular matrix (Travnickova 

et al. 2015). 

 

b) Second hematopoietic wave and emergence of the first definitive blood cells 

 

In addition, the second hematopoietic wave occurs in the extra embryonic yolk sac, with 

the emergence of a myeloid progenitor called the Erythromyeloid Progenitor (EMP; reviewed 

in (Frame, McGrath, et Palis 2013). EMPs emerge from the hemogenic endothelium of the yolk 

sac (Frame et al. 2016) through a process called Endothelium to Hematopoietic Transition 

(EHT). EMPs migrate rapidly through the new circulatory system to colonize the fetal liver 

(Palis 1999), where they proliferate and differentiate into mature macrophages, 

megakaryocytes and erythrocytes. These cells are considered part of definitive hematopoiesis, 

since they have the same characteristics as cells arising later on from the differentiation of 

HSCs (Bertrand 2005). The cells produced by the differentiation of EMPs are mostly transient, 

but some of them can be found in the adult organism, where some resident macrophages in 

the adult tissues derive from EMPs (Schulz et al. 2012; Gomez Perdiguero et al. 2015). 
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Although EMPs lack any lymphoid potential, it has been shown that lymphocytes are 

present in the yolk sac during early embryogenesis, anterior to the emergence of HSCs 

(Yoshimoto et al. 2011, 2012), and that they come from independent lymphoid progenitors.  

 

c) Third hematopoietic wave, HSC emergence and bone marrow niche 

 

The third and last embryonic wave gives rise to the HSCs. They were first shown to emerge 

in the aorta-gonad-mesonephros (AGM) region of the mouse embryo, through the process of 

EHT from hemogenic endothelium in the dorsal aorta (Medvinsky et Dzierzak 1996; de Bruijn 

2000; Tavian et Peault 2005). After this discovery it was shown that HSCs can arise from 

hemogenic endothelium in several regions of the embryo, including the yolk sac, the umbilical 

and vitelline arteries, and the placenta (de Bruijn 2000; Gekas et al. 2005; Chen et al. 2009). 

Then, newly formed hematopoietic cells called pre-HSCs delaminate from the endothelium 

and enter the circulation to colonize the fetal liver, probably via umbilical vessels. Once in the 

liver, they rapidly expand and mature to become fully competent (repopulating) HSCs 

(Kieusseian et al. 2012). They can then yield committed progenitors that in turn give rise to 

the complete hematopoietic system (Mikkola 2006). Finally, around the time of birth, HSCs 

colonize the bone marrow, where their proliferation and differentiation properties are tightly 

controlled by the microenvironment provided by the niche during adult life.  

The bone marrow compartment constitutes a very complex microenvironment (reviewed 

in Morrison et Scadden 2014; Asada, Takeishi, et Frenette 2017) to protect HSCs against 

pathological transformation. In this niche HSCs remain mostly quiescent, with a limited rate 

of self-renewal activity that ensures continuous production of new hematopoietic cells in 

normal proportions (Akunuru et Geiger 2016).  
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d) A particular case of blood cell formation: the transdifferentiation process  

 

Even though all cells come from the differentiation of HSCs, it has been shown that in 

vitro, B lymphocytes can be reprogrammed by a process called transdifferentiation (H. Xie et 

al. 2004); during this process committed B cells are induced to become another type of 

committed cell, macrophages, without passing through a progenitor step. They 

simultaneously dedifferentiate from their original identity and start to express macrophages 

markers, meaning that at some point these cells express genes of both lineages (Jopling, Boue, 

et Belmonte 2011; Cieślar-Pobuda et al. 2017). Although rarely observed, this phenomenon 

does happen in mammals, yet it has been more thoroughly characterized in Drosophila (see 

section C-2b). 

The fine equilibrium between proliferation and differentiation of HSCs can sometimes be 

unbalanced (notably by the mutation of key molecular actors such as transcription factors of 

epigenetic regulators), and this deregulation leads to the development of severe pathologies 

such as leukemia, which I will describe below. 

 

B. Pathological hematopoiesis and its major actors 

 

1. Leukemias: multifaceted malignant blood disorders 

 

There are four major classified types of leukemia, depending on which cell lineage is 

affected and on the invasiveness of the disease: chronic, acute myeloid or lymphoid leukemia. 

Chronic leukemia impacts 1 out of 100 000 persons per year in France, and this condition 

can persist for several years. In this disease, progenitor cells are not affected but do not 

produce mature cells able to fight off infections efficiently. With time, immature cells replace 

normal cells in the bone marrow niche, which is deleterious for the organism, because it 

completely impairs the ability of the immune system to respond to infection.  

Acute leukemia has an incidence of 4 out of 100 000 cases per year in France and has a 

much poorer prognosis, as it is very invasive. Contrary to chronic leukemia, acute leukemia 
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affects progenitor cells: it is characterized by the induction of immature blood cells and 

abnormal proliferation that rapidly inhibits production of differentiated cells in the niche. 

Classically, leukemias appear as the consequence of somatic mutations accumulated 

during life. Those mutations have been classified into two categories (De Kouchkovsky et 

Abdul-Hay 2016). Class I mutations affect genes implicated in proliferative pathways (such as 

c-Kit and STAT3; The Cancer Genome Atlas Research Network 2013; Yamada et Kawauchi 

2013), and class II mutations affect genes implicated in normal blood cell formation (such as 

NMP1 and CEBPA; The Cancer Genome Atlas Research Network 2013); according to the 

classical double hit model of leukemogenesis, class I and II mutations have to occur 

concomitantly to trigger the pathology. However, over the past few years, a third type of 

mutation has emerged, which corresponds to mutations targeting epigenetic regulators (such 

as DNMT3A and TET2; Patel et al. 2012) involved both in proliferation and differentiation. This 

double hit model is based on punctual mutations, but it does not take into account bigger 

genomic instabilities such as chromosomal rearrangements (translocations, duplications…), 

which in some cases can be sufficient to initiate a leukemic state.   

Chromosomal rearrangements can affect many genes, but among them some events are 

more represented. This is the case for rearrangements affecting the locus encoding the major 

hematopoietic factor RUNX1/AML1 (Miyoshi et Ohki 1991), or loci encoding the MOZ and 

MORF epigenetic enzymes of the MYST family (Borrow et al. 1996). I will describe their 

functions in both normal and pathological hematopoiesis in the following sections. 

 

2. The highly conserved family of RUNX transcription factors and its links to 

leukemia 

 

The RUNX family is composed of Core Binding Factor (CBF) transcription factors strongly 

conserved across evolution of bilaterian metazoans (Rennert et al. 2003). Its founding 

member, the product of the runt gene, was described for the first time in Drosophila 

melanogaster in 1980 and was shown later on to be essential for embryonic segmentation 

(Gergen et Wieschaus 1986). In Drosophila, there are four RUNX genes: runt, RUNXA, RUNXB 

and lozenge (lz), and in mammals only three: RUNX1, RUNX2, RUNX3 (Figure 3). These 



 

 

 

Figure 3: RUNX transcription factors 

A. Schematic representation of the three human RUNX proteins, along with the Drosophila Runt and 

Lozenge RUNX factors. Runt is the founding member of the RUNX family; Lozenge is a RUNX gene 

ortholog, and the only identified RUNX protein involved Drosophila hematopoiesis. All RUNXs possess 

a highly conserved Runt domain responsible for DNA binding and a VWRPY motif involved in 

interactions with co-repressors. B. Schematic representation of the leucemogenic fusion protein 

RUNX1-ETO: the full-length Runt domain of RUNX1 is fused to the ETO protein, which contains four 

Nervy Homology Region (NRH) domains that are mostly known to allow interaction with repressors. 

(Adapted from Ito et al, 2015) 
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transcription factors are involved in many processes like hematopoiesis, neurogenesis and 

bone development (Ito 2008), as well as in various diseases (Chuang, Ito, et Ito 2013; C.-C. Sun 

et al. 2019). They all contain a highly conserved runt domain, which allows both DNA binding 

on a specific TGYGGTY recognition motif and heterodimerization with their partner CBFb 

(Adya, Castilla, et Liu 2000; Ito, Bae, et Chuang 2015). Furthermore, they possess a C-terminal 

VWRPY motif responsible for the interaction with co-repressors, such as the Groucho/TLE 

family (Aronson et al. 1997; Levanon et al. 1998).   

In human, RUNX1 was first identified as the target of chromosomal translocations 

associated to the development of acute myeloid leukemia (AML; Miyoshi et Ohki 1991; 

Erickson et Gao 1992). It is one of the most frequently mutated loci, as RUNX1 is altered in 26% 

of AML cases, either by a single point mutation or by chromosomal rearrangements (Haferlach 

et al. 2014). A RUNX1 mutation in AML is almost always linked with poor prognosis. This 

association of RUNX1 mutations with the development of severe pathologies is indicative of a 

prominent role of RUNX1 during normal hematopoiesis (see below). The second mammalian 

RUNX transcription factor, RUNX2, was identified on the basis of its sequence homology with 

RUNX1 (Kamachi et al. 1990) and is notably involved in the ossification process (Takarada et 

al. 2016). Finally, RUNX3 was identified in 1994 (Levanon et al. 1994) and has been shown to 

be a tumor suppressor gene involved in many cancers (notably colorectal cancer; Bae et Choi 

2004). Furthermore, it has been shown that in human gastric carcinoma cells, RUNX3 is 

responsible for the expression of miR-182, which in turn inhibits cancer growth (Yu et al. 2017). 

Together, RUNX1 and RUNX3 are involved in breast cancer, where they have a protective 

effect against epithelial to mesenchyme transition (Kulkarni et al. 2018). RUNX3 not only has 

roles in pathologies, but is also involved in normal neural development (Appel et al. 2016) and 

in hematopoiesis, where it cooperates with RUNX1 for the differentiation of several subtypes 

of T lymphocytes (Woolf et al. 2003, 3; Li et al. 2012, 3). Furthermore, RUNX3 has a role of its 

own; it modifies the chromatin landscape during Cytotoxic T lymphocyte formation (D. Wang 

et al. 2018).  

It thus appears that RUNX genes are key regulators of normal and pathological 

development, and that their regulation is essential to maintain homeostasis of several tissues, 

including the hematopoietic tissue, where RUNX1 plays a crucial role in the development of 

AML. 
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a) RUNX1 in Acute Myeloid Leukemia 

 

• RUNX1-ETO at the onset of AML  

RUNX1 is the target of several chromosomal rearrangements that lead to the induction 

of AML, among which the most common is the t(8;21) translocation that fuses RUNX1 with 

the Eight Twenty-One gene (ETO) (Erickson et Gao 1992; S. C. Bae et al. 1993). Little is known 

about ETO function, but it is mostly involved in gene repression, since it can recruit several co-

repressors (Salat et al. 2008; Issay Kitabayashi et al. 1998) through its nervy homology (NRH) 

domains (Y. Liu et al. 2006). This translocation is the most common in de novo AML (Grimwade 

et al. 2010) and affects mostly elder people. It provokes an inhibition of wild-type RUNX1 and 

leads to a block in myeloid differentiation, associated with a high and abnormal self-renewal 

rate of progenitors (Okuda et al. 1998), which gives the AML phenotype. It was shown recently 

that the RUNX1-ETO (also called RUNX1-RUNX1T1) fusion protein interacts with several 

factors such as Lmo2 and the ETS factor PU.1, to inhibit the expression of differentiation genes 

and activate the expression of stem cell genes (Ptasinska et al. 2014; X.-J. Sun et al. 2013). 

Furthermore, RUNX1-ETO drives changes in the chromatin landscape that modify the 

epigenome and facilitate leukemic functions (Loke et al. 2017). However, it has been proposed 

that the t(8;21) translocation is not able to trigger leukemogenesis on its own, and that it has 

to be combined with a secondary mutation (Grisolano et al. 2003; Kelly et Gilliland 2002). In 

about 20-40 % of cases, a mutation in the c-KIT gene (a crucial factor in HSC development) was 

concomitantly identified (W. Xie et al. 2019; Y.-Y. Wang et al. 2005).  

 

• Other leukemogenic mutations of RUNX1 

Another translocation affecting RUNX1 is the t(3;21) leading to the RUNX1-EVI1 fusion 

gene (Nucifora et al. 1994; Mitani et al. 1994). This translocation is mostly found as a 

secondary hit in already established blood pathologies, like chronic myeloid leukemia (Nukina 

et al. 2014). It leads to the same phenotype as RUNX1-ETO, even if the molecular targets are 

not the same (Loke et al. 2017). In addition to chromosomal rearrangements, several point 

mutations in the RUNX1 gene were identified, all involved in the initiation of AML (Gaidzik et 

al. 2011).  
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Therefore, RUNX1 appears to be a major target in pathologies affecting hematopoiesis, 

and its function during the malignant process is extensively studied. But the fact that its 

deregulation leads to severe disorders, is an indication pointing towards its important role 

during normal hematopoiesis. 

 

b) RUNX1 during normal hematopoiesis 

 

RUNX1 is expressed in the progenitors of the two definitive embryonic waves (second and 

third waves), as well as in some primitive macrophages (T. North et al. 1999) and in adult HSCs 

(Ng et al. 2010; Nottingham et al. 2007). It is a major regulator of both embryonic and adult 

hematopoiesis; indeed, RUNX1 is crucial for EMP and HSC emergence during EHT (Chen et al. 

2009, 1; T. E. North et al. 2002; Yzaguirre et al. 2018; Liakhovitskaia et al. 2014, 41). RUNX1 

mutant mouse embryos are very pale and lack any fetal liver hematopoiesis (Okuda et al. 1996, 

1), phenotypes that lead to early lethality due to severe hemorrhages. This evidence 

underlines its importance during the establishment of hematopoietic cells, and in particular 

for HSC development and fetal liver colonization. Consistently, primitive hematopoiesis of the 

first embryonic wave does not seem to be affected in the RUNX1 mutant, showing that this 

wave is RUNX1 independent. It is not clear in the literature if RUNX1 is involved in HSC 

maintenance, but several studies show that it is expressed in the bone marrow compartment 

(Ng et al. 2010; Nottingham et al. 2007). Finally, it is known that during adult hematopoiesis, 

RUNX1 is involved in myeloid differentiation and in particular for megakaryocytes formation 

(Draper et al. 2016). RUNX1 is also responsible for B and T lymphoid development (Chi et al. 

2018; Woolf et al. 2003, 3; Li et al. 2012, 3; Taniuchi et al. 2002). 

RUNX1 expression and function are regulated and mediated by several factors that play 

a role upstream, downstream, or in collaboration with RUNX1, in order to generate every 

blood cell not only in the embryo but also in the adult. Here I describe RUNX1’s main partners. 
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c) RUNX1 partners and regulators during normal hematopoiesis 

 

• Notch is a major regulator of RUNX1 expression 

The Notch pathway is crucial during development and can be involved in several 

processes, like proliferation, asymmetrical cell division (and thus differentiation), or even cell 

death. Notch is a membrane receptor composed of two parts: an intracellular domain (NICD) 

responsible for the transcriptional activity of the pathway and an extracellular domain (NECD) 

responsible for the interaction with its ligands Delta/Serrate/Jagged (DSL). Once the 

ligand/receptor interaction occurs, the Notch receptor is cleaved multiple times, a first time 

(S2 cleavage) by the ADAM metalloproteinase and a second time (S3 cleavage) by the g-

secretase complex. This separates NECD from NICD, and the released intracellular part will 

then relocalize to the nucleus. There, it interacts with a complex composed of the Notch 

pathway transcription effector called CSL (CBF1/RBPJ, Supressor of Hairless(Su(H)), Lag-1), 

Mastermind (Mam) and other coactivators to regulate their target genes (Figure 4; reviewed 

in Bray 2006; Kovall et al. 2017). In mammals, there are four Notch receptors: Notch1-4.  

As described above, HSCs arise from the hemogenic endothelium of the major embryonic 

arteries, and in particular in the dorsal aorta. Its hemogenic potential is controlled and 

maintained by Notch signaling from the interaction between the ligand Jag1 and the receptor 

Notch1 (Kumano et al. 2003, 2; À. Robert-Moreno et al. 2008, 1; Clarke et al. 2013).  

Notch1 directly regulates the expression of GATA2, a marker of hematopoietic cells within 

the hemogenic endothelium required for HSC development (A. Robert-Moreno 2005; de Pater 

et al. 2013, 2), and is at the origin of the onset of RUNX1 expression in hematopoietic cells 

(Nakagawa et al. 2006). Then, Notch expression is downregulated in the cells undergoing EHT 

(Richard et al. 2013). Although Notch1 is required during the process of HSC formation, it has 

been shown that RUNX1 allows the emergence of EMPs from the yolk sac hemogenic 

endothelium independently of Notch1 (Hadland 2004; Bertrand et al. 2010).  

 

• GATA transcription factors are known RUNX interactors 

The GATA family is composed of transcription factors conserved across evolution. They 

are characterized by the presence of one or two zinc finger domains that allow DNA binding 



 

 

Figure 4: Overview of the Notch signaling pathway.  

A. When the pathway is inactive, the CSL transcription factor is bound by co-repressors and Notch 

target genes are repressed. B. Notch pathway is activated by the interaction between one Delta 

Serrate Ligand (DSL) and the Notch ExtraCellular Domain (NECD) of the receptor. Upon interaction, the 

receptor undergoes a series of cleavages (S2 and S3) that lead to the translocation of the Notch 

IntraCellular Domain (NICD) into the nucleus. There, it interacts with its CBF1/RBPJ, Supressor of 

Hairless (Su(H)), Lag-1 (CSL, blue) partner and with Mastermind (Mam, green) to replace co-

repressors and activate transcription of target genes. (Adapted from Bray 2006)  
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or interaction with their cofactors Friend Of GATA (FOG). In mammals there are six GATA 

factors (GATA1-6), but only three of them (GATA1-3) are required during the hematopoietic 

process. GATA1 is a major actor of the hematopoietic development, as it is required for 

erythrocyte formation (described above, Fujiwara et al. 1996, 1) and megakaryocyte 

differentiation (Chang et al. 2002; Iwasaki et al. 2003, 1). GATA2 is absolutely required for HSC 

emergence and survival in the embryo (de Pater et al. 2013, 2; Ling et al. 2004, 2; Tsai et al. 

1994). Initially, GATA3 was only shown to be required for the differentiation of T-helper-type-

2 cells (G. R. Lee, Fields, et Flavell 2001; Ho, Tai, et Pai 2009, 3). However, it has been shown 

that GATA3 is expressed in lymphoid progenitors, where it is crucial for the formation of the 

T cell lineage (Rothenberg 2013), and some recent findings suggested that it also plays a role 

during HSC emergence in the embryo (Zaidan et Ottersbach 2018).  

RUNX1 is required for megakaryocyte differentiation during definitive myelopoiesis 

(Draper et al. 2016), and it has been shown that GATA1 cooperates with RUNX1 in this process 

(Elagib 2003; Goldfarb 2009; Pencovich et al. 2011; Tijssen et al. 2011). It is interesting to note 

that Elagib et al show that the fusion protein RUNX1-ETO inhibits GATA1 during 

megakaryocytic differentiation in cell culture, which they propose to be a mechanism involved 

in the blocking of myeloid differentiation during AML development. 

Furthermore, RUNX1 and GATA2 are both present in HSCs in the bone marrow but have 

never been shown to interact with each other. However, they cooperate during HSC 

emergence in the embryo (Wilson et al. 2010), and it has recently been shown that they are 

involved in a complex regulating the expression of the SET gene (which is a potent Inhibitor of 

Protein Phosphatase 2A) in two AML cell lines (HL-60 and HEL cells; Pippa et al. 2017). 

 

• CBFb, RUNX heterodimerization partner 

CBFb, a RUNX1 heterodimerization partner seems to be involved during the 

hematopoietic process, because a loss of function of this gene in the mouse embryo leads to 

the same phenotypes as a RUNX1 mutant (Niki et al. 1997). It is likely that all the roles played 

by RUNX factors during hematopoiesis are dependent on CBFb. Indeed, its loss of function 

specifically in the adult, has broader phenotypes than the ones of RUNX1 alone, indicating 

that CBFb interacts with other partners, which may be RUNX factors during this process. 
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• Monocytic Leukemia Zinc-Finger protein (MOZ) 

MOZ is a Lysine Acetyltransferase (KAT) involved during hematopoiesis at several levels, 

that I will develop later in more detail. It was shown that in cultured myeloid mouse cells, MOZ 

was part of the RUNX1 complex and required for its transcriptional activity, therefore 

participating in myeloid differentiation (I. Kitabayashi 2001, 1; Yoshida et Kitabayashi 2008, 1). 

The authors propose that MOZ acts independently of its catalytic activity in this process, but 

this hypothesis has never been developed further. They also demonstrate that MOZ is able to 

acetylate RUNX1 in vitro, but this modification was never identified in vivo. Another study 

showed that MOZ and RUNX1 cooperate for the transcription of the Macrophage 

Inflammatory Protein 1a (MIP-1a) gene in human Jurkat T-cells (Bristow 2003), providing a 

new example of MOZ/RUNX1 interaction during hematopoiesis. 

The epigenetic regulator MOZ and its paralog MOZ-Related Factor (MORF) are themselves 

common targets of chromosomal rearrangements leading to the induction of AML, and I will 

describe their role in normal and pathological hematopoiesis in the next part. 

 

3. MOZ/MORF and the MYST family of Lysine Acetyl-Transferases 

 

The MYST family is named after its founding members: MOZ, Yfb2, Sas2 and Tip60, and is 

a very conserved family from yeast to human (Figure 5). In mammals there are five members, 

MOZ/MORF, Tip60, Male absent of the First (MOF) and Human acetylase Binding to ORC1 

(HBO1, reviewed in (Yang 2004; X.-J. Sun et al. 2015). KATs of the MYST family were first shown 

to acetylate histone tails, and by doing so, to participate in the remodeling of the chromatin 

landscape (Grant 2001; Goll 2002). However, studies over these last years yielded increasing 

evidence that they have a much broader range of substrates than just histones (reviewed in 

Sapountzi et Côté 2011). KATs of the MYST family are involved in a variety of pathologies, but 

I will focus here on the role of MOZ and its paralog MORF in hematopoietic disorders.  

 

 



 

 

 

 

Figure 5: MYST family of acetyl transferases 

A. Schematic representation of human and Drosophila MYST proteins. All of them possess a conserved 

MYST domain with catalytic activity. B. Schematic representation of MOZ and the main fusion proteins 

involved in leukemia. In the MOZ-CBP fusion, the N-terminal part of MOZ comprises a functional MYST 

domain fused to the C-terminal part of CBP. In the MOZ-TIF2 fusion, the same breakpoint in MOZ is 

fused to the CBP Interacting Domain (CID) domain of TIF2, which is responsible for CBP binding. 

(Adapted from Yang 2004 ; Yoshida and Kitabayashi 2008)  
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a) MOZ and MORF in AML  

 

The name MOZ comes from Monocytic leukemia Zinc-finger protein, because it was first 

identified as a target of chromosomal translocations responsible for the development of AML. 

These rearrangements involve in particular the CREB-binding Protein (CBP) (Borrow et al. 1996; 

Chaffanet et al. 2000; Crowley et al. 2005) and TIF-2 (inv(8)(p11q13); Figure 5; Carapeti et al. 

1999). MOZ protein contains several important domains that have been characterized and 

linked to specific functions. The MYST domain bears the acetylation catalytic activity and 

contains a C2HC zinc-finger involved in DNA binding (Holbert et al. 2007). This conserved MYST 

domain is also required for the interaction with MOZ partners Bromodomain-PHD finger 

proteins (BRPF) 1 2 and 3 (Ullah et al. 2008). The C-terminal domain of MOZ is called SM for 

Serine/Methionine-rich domain and is involved in transcription activation. This domain is also 

involved in the interaction with p53 (Susumu Rokudai et al. 2009; S. Rokudai et al. 2013; Tham 

et al. 2015), which is  a transcription factor involved in cell cycle regulation, autophagy and 

apoptosis (Sabapathy et Lane 2019). Finally the N-terminal part of MOZ, is composed of the 

NEMM domain (for N-terminal of Enok MOZ/MORF; these proteins are the only members of 

the MYST family that contain this N-terminal part) and a double PHD (Plant Homeodomain) 

finger, which contains a recognition domain for histones and is involved in transcription 

inhibition (Dreveny et al. 2014; Xiong et al. 2016). 

MOZ and CBP are both important factors for HSC maintenance and quiescence 

(Katsumoto 2006; Thomas 2006; Rebel et al. 2002; Bilal N. Sheikh et al. 2017), and TIF2 

(Transcriptional Intermediary Factor 2) is a direct partner of CBP (Demarest et al. 2002). 

The leukemogenic MOZ-CBP fusion protein contains the N-terminal part of MOZ with its 

intact MYST domain, and almost the entire CBP protein (Chan et al. 2007). As a result, the 

recognition repertoire of CBP is aberrantly acetylated by MOZ and leads to the proliferation 

of leukemic progenitors and to the AML phenotype. Similarly, MOZ-TIF2 has been shown to 

recruit CBP via the CID interaction domain of TIF-2, which results in CBP inhibition and leads 

to leukemic development (Deguchi et al. 2003; Kindle et al. 2005). It also has been shown that 

MOZ-TIF2 represses senescence in AML stem cells and thus leads to their expansion (Largeot 

et al. 2016). It is noteworthy that MORF, a paralog of MOZ, is also involved in a chromosomal 
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translocation t(10;16) with CBP, associated to the development of AML (Panagopoulos 2001), 

suggesting  that MORF could play a role during normal blood cell formation. 

In addition to its involvement in leukemia, MOZ has also been linked to the development 

of other pathologies, such as intellectual disability (Tham et al. 2015) and esophageal 

adenocarcinoma (Dulak et al. 2013),  and its transcriptional deregulation leads to metastasis 

of medulloblastoma and colorectal cancer (Wu et al. 2012; Mohammadi et al. 2018). It is 

interesting to note that in a recent study, Baell et al identified a new inhibitor of MOZ that is 

sufficient to stop cancer growth in a model of mouse lymphoma, by inducing senescence in 

cancer cells (Baell et al. 2018). 

As for RUNX1, MOZ is an important target of leukemogenic mutations and 

rearrangements, which prompted many research groups to study its role during normal 

hematopoietic development.  

 

b) MOZ during normal hematopoiesis 

 

MOZ was first shown to display a KAT activity on histone tails (N. Champagne, Pelletier, 

et Yang 2001) and has since been studied mainly considering this property. Indeed, in a murine 

model carrying a point mutation in the catalytic site of MOZ, Perez-campo et al showed that 

MOZ-mediated acetylation is required for proliferation and expansion of hematopoietic 

progenitors (F. M. Perez-Campo et al. 2009). Later, the same group showed that MOZ catalytic 

activity is required to prevent HSCs from entering into replicative senescence, thus promoting 

their self-renewal capacity (Flor M. Perez-Campo et al. 2014). MOZ is also required in for their 

maintenance, since its loss of function in the embryo leads to the absence of hematopoietic 

progenitors and adult-repopulating cells in the fetal liver (Katsumoto 2006; Thomas 2006). 

Furthermore, specific MOZ loss of function in the adult bone marrow compartment leads to a 

rapid loss of HSCs (B. N. Sheikh et al. 2016), as measured by their loss of ability to reconstitute 

the hematopoietic system in an irradiated mouse recipient. Finally, it was shown that MOZ 

acts in collaboration with the polycomb group protein BMI1 to maintain HSCs in a quiescent 

state (Bilal N. Sheikh et al. 2017), ensuring their maintenance over time.  
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In addition to its function in HSCs, MOZ is required for myeloid lineage and lymphoid B-

cells formation: it is a coactivator of RUNX1, in particular for MIP-1a expression, and is 

required for normal macrophage and B-cell development (Jiang et al. 2019; Katsumoto 2006; 

Good-Jacobson et al. 2014 ).  

As I previously mentioned, MOZ acts as a transcriptional coactivator of RUNX1, in a KAT-

independent manner (I. Kitabayashi 2001). There are consistent differences between the 

phenotypes of mice completely deprived of any MOZ activity (Katsumoto 2006) (embryonic 

lethality and strong depletion of the hematopoietic system) and phenotypes of mice 

specifically deprived of its catalytic function (F. M. Perez-Campo et al. 2009) (viable with 

reduced progenitor proliferation, but no effect on differentiation). These observations 

strongly support the hypothesis that MOZ has other non-catalytic functions during both 

development and hematopoiesis. 

It has been shown that MOZ has broad functions during development, in addition to its 

roles in hematopoiesis. Indeed, it is an important player during embryonic development, as it 

regulates histone acetylation of HOX genes during mouse body segmentation (Voss et al. 2009; 

Bilal N. Sheikh et al. 2015).  

 

c) MOZ and the ING5 acetylation complex 

 

KATs of the MYST family generally act as members of acetylation complexes (reviewed in 

Lee et Workman 2007). It has been shown that MOZ is a part of such an acetylation complex, 

working within the ING5 complex, along with Esa1-Associated-Factor 6 (EAF6), Inhibitor of 

Growth 5 (ING5) and BRPF1 2 or 3 (Figure 6; Ullah et al. 2008) to specifically modify histone 

H3. In this complex, MOZ interacts directly with BRPF factors via its MYST domain, and BRPF 

itself interacts directly with EAF6 and ING5 (Ullah et al. 2008). BRPF proteins are epigenetic 

readers that recognize specific histone modifications in order to bind chromatin and allow 

proper modification of the chromatin landscape. BRPF1 has been shown to recognize in 

particular H3K14ac, therefore directing MOZ to its substrates (Poplawski et al. 2014). In 

addition, BRPF1 shares common functions with MOZ; indeed, BRPF1 participates in the 

expression of HOX genes during development in zebrafish (Hibiya et al. 2009), and it is also 



 

 

Figure 6: The ING5 acetylation complexes  

MOZ, which is the catalytic subunit of the complex, directly interacts with the BRPF factors. The other 

members, EAF6 and ING5, also specifically interact with BRPF but not directly with MOZ. Together, the 

complex is able to recognize precise chromatin motifs that allow acetylation of a specific repertoire. 

The BRPF factor recognizes the histone H3 tail via its PHD fingers, ING5 recognizes trimethylation of 

H3K4, and MOZ recognizes acetylated H3K9 and H3K14. In turn, MOZ will acetylate another H3 tail on 

lysine 9 or 14. (Adapted from Ali et al 2012) 
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essential for the normal establishment of fetal liver HSC (You et al. 2016). ING5 is a Tip60 

cofactor (N. Liu et al. 2013) and is important for cell proliferation in human cultured cells 

(Linzen et al. 2015). Furthermore, it has been shown to recognize histone H3 modification 

H3K4me3 via its PHD domains (K. S. Champagne et al. 2008, 3; Ormaza et al. 2019, 4). The 

function of EAF6 has not been described so far.   

In summary, the ING5 complex provides an environment that enables a specific 

recruitment of MOZ on its target repertoire, allowing MOZ to specifically acetylate its 

substrates (Ali et al. 2012).   

 

Mammalian hematopoiesis is a very complex system. Indeed, the need to produce 

numerous cell types in physiological proportions requires a high level of regulation and 

therefore a lot of molecular interplay. Moreover, the classical model for hematopoiesis in 

mammals is the mouse model, which is complicated to manipulate. Mice possess 20 

chromosomes and achieve puberty at 2 months of age, which makes it a poor genetic model. 

However, the hematopoietic process is strongly conserved in vertebrates, both at the 

developmental and genetic levels. All the molecular factors described above (Notch, RUNX, 

GATA, MOZ…) are highly conserved across evolution, and in addition to vertebrate models, 

Drosophila melanogaster has proven these last fifteen years to be a very powerful model to 

study the molecular mechanisms controlling the development of innate immunity.  

 

C. Drosophila as a model to study hematopoiesis 

 

1. Generalities on the model 

 

Drosophila, which means “who likes dew”, also called the fruit fly, is an animal model used 

in many research fields, and in particular in genetic and developmental studies. In labs, the 

subfamily melanogaster (“black belly”) is widely used.  

Thomas Hunt Morgan, a zoologist, was the first to use this model in his lab (later called 

the Fly Room) in 1910 and received the Nobel Prize for his discovery concerning the role of 
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chromosomes during the process of heredity. He and his group identified many genes, which 

are still used today as genetic markers for experiments, like the white gene that is responsible 

for the red color of the eye.  

This animal model is particularly easy to use in genetic studies, because it only has four 

pairs of chromosomes, three pairs of autosomes and one pair of sexual chromosomes. In 

addition, meiotic recombination does not occur in males, which is of particular interest when 

doing genetic experiments. Moreover, Drosophila generation time is quite short, around 10 

days at 25°C, which makes it easy to design in vivo experiments.  

Finally, it is a highly relevant model concerning medical research, because it has been 

shown that 75  % of disease-related genes have a sequence similarity in the fly, and that 50 % 

of fly proteins have mammalian homologs (Reiter 2001). 

The fruit fly has a life cycle with four stages: embryo, larva, pupa and adult (Figure 8A). 

The embryonic stage lasts for twenty-four hours, ending with the emergence of the larva. This 

larval stage is itself composed of three stages called L1, L2 and L3 and lasts for five days. Then, 

the larva produces an ecdysone (a steroid hormone) signal that leads to a “wandering” 

behavior and finally to pupariation. The pupal stage also lasts for five days, and during this 

stage the individual undergoes the metamorphosis process, in which tissues are remodeled 

and give rise to the adult morphology. Finally, the adult fly emerges from the pupa and begins 

to mate eight to twelve hours thereafter.  

Many developmental processes are conserved throughout evolution like neurogenesis, 

organ formation, stem cell biology, and of course hematopoiesis. Drosophila is an ideal model 

to study these processes and many discoveries in Drosophila participated in our 

understanding of mammalian (and particularly human) development. Here, I will describe the 

process of hematopoiesis in flies and how it can be used as a model for this process in normal 

and pathological situations. 
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2. Drosophila hematopoiesis 

 

Drosophila is an organism that possesses an open circulatory system in which circulates a 

liquid called the hemolymph. In larvae, the dorsal vessel (or aorta), which is positioned 

dorsally in the antero-posterior axis, ends with the “heart” in the posterior part. This heart 

beats to generate a flow of hemolymph that circulates in all the tissues and enables blood 

cells to migrate. In Drosophila, blood cells share functional similarities with the mammalian 

myeloid lineage. In 1957, Rizki characterized three cell types: the plasmatocytes, the crystal 

cells and the lamellocytes (Figure 7; M. T. M. Rizki 1957) which are called hemocytes. 

 

a) Drosophila blood cell types  

 

• Plasmatocytes 

Plasmatocytes are the most abundant cells, as they represent about 95 % of all blood cells 

in Drosophila. They are phagocytes with functional homology to macrophages. They are 

crucial players of innate immunity in Drosophila, since they are responsible for the elimination 

of bacteria (Charroux et Royet 2009; Defaye et al. 2009; Nehme et al. 2011) or virally-infected 

cells (Nainu et al. 2015). Plasmatocytes are also partly responsible for the production of 

antimicrobial peptides after bacterial infection (Irving et al. 2005).   

Moreover, they play an essential role during development, as they phagocytose apoptotic 

bodies both in the embryo and in the pupa, particularly after tissue remodeling during 

metamorphosis (Defaye et al. 2009; Wood et Martin 2017; Lanot et al. 2001; Regan et al. 2013). 

Furthermore, plasmatocytes are responsible for the secretion of extra-cellular matrix during 

development, in particular around the ventral nervous system and Malpighian tubules 

(Olofsson et Page 2005; Bunt et al. 2010). 

 

• Crystal cells 

Crystal cells represent around 5 % of the total circulating cells. They were first identified 

because of the crystalline inclusions they have in their cytoplasm (M. T. M. Rizki 1957); these 



 

 

Figure 7: Drosophila blood cells 

Schematic representation of blood cell types in Drosophila. Progenitors, or prohemocytes, give rise to 

plasmatocytes, which are macrophages, and to crystal cells, which have crystalline inclusions and are 

functional homologs of the mammalian megakaryocytes. Upon an immune challenge like wasp 

infestation, prohemocytes in the larva are able to differentiate into lamellocytes; these are big cells 

able to encapsulate the wasp egg. It also has been shown that plasmatocytes in the larval stages are 

able to transdifferentiate into crystal cells or upon infestation into lamellocytes. (Adapted from Rizki 

1957) 
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inclusions are in fact accumulation of prophenol-oxydases (PPOs) involved in the arthropod-

specific melanization reaction (Dudzic et al. 2015). Melanization reactions are responsible for 

wound healing by promoting coagulation; this makes crystal cells the functional homologs of 

mammalian megakaryocytes. These PPOs are processed into active phenoloxydases by a 

proteolytic cascade (Nam et al. 2012), when they are released in circulation after crystal cell 

rupture (Bidla, Dushay, et Theopold 2007). This activation has also been shown to contribute 

to survival after bacterial infection (Binggeli et al. 2014). I will describe later, in more detail, 

how crystal cells are formed, in particular during the larval stage. 

 

• Lamellocytes 

Lamellocytes are the third and last blood cell type in Drosophila. They are large cells 

produced specifically when parasitoid wasps lay eggs inside the larval cuticle (M. T. M. Rizki 

1957; T. M. Rizki et Rizki 1992; Crozatier et al. 2004). Lamellocytes can be formed in circulation 

by the transdifferentiation of plasmatocytes (Avet-Rochex et al. 2010; Stofanko, Kwon, et 

Badenhorst 2010; Anderl et al. 2016), and also directly from progenitors in a specialized organ 

called the lymph gland (Oyallon et al. 2016). Their function is to encapsulate objects too big 

to be phagocytized. It has been shown that in a wasp infestation condition, lamellocytes arise 

from the pool of intermediate progenitors in the lymph gland, and that this process occurs at 

the expense of crystal cell formation, suggesting that the choice between the two cell types is 

mutually exclusive (Krzemien et al. 2010). Although lamellocytes are produced in response to 

an immune stress, they can also be generated both in the lymph gland and in circulation, in 

some genetic conditions (Avet-Rochex et al. 2010).  

 

b) Drosophila blood cell formation 

 

As for mammals, blood cells in Drosophila are formed during successive waves of 

hematopoiesis: an embryonic wave that gives rise to all circulating hemocytes in the larva, 

and a larval wave that generates the pool of hemocytes required during metamorphosis and 

later on, during adult life.  
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c) Embryonic wave of hematopoiesis 

 

Blood cells in the embryo first originate from the procephalic mesoderm as bipotent 

progenitors (they can differentiate into both plasmatocytes and crystal cells; Tepass et al. 

1994; Holz 2003). These progenitors called prohemocytes, emerge, and differentiate into the 

two embryonic blood cell types. Plasmatocytes then migrate throughout the embryo (Tepass 

et al. 1994; Wood, Faria, et Jacinto 2006), while crystal cell lineages stay in a cluster next to 

the proventriculus (Lebestky 2000; Bataillé et al. 2005). At the end of embryogenesis, about 

700 plasmatocytes and 30 crystal cells are generated. It is important to note that since 

lamellocytes are produced after an immune stress like parasitism, they only appear at the 

larval stage and are completely absent from the embryo (Figure 8A).   

Hemocytes formed after this first hematopoietic wave during embryogenesis will persist 

in all stages of life. Indeed, during the larval stages, plasmatocytes will aggregate in 

stereotyped clusters along the cuticle that will become new hematopoietic sites called 

hematopoietic pockets (HPs; Figure 8B). These HPs provide a microenvironment in which 

plasmatocytes proliferate (K. Makhijani et al. 2011; Leitão et Sucena 2015) and give rise to the 

pool of larval circulating hemocytes. Interestingly, these clusters of self-renewing 

plasmatocytes have been shown to share functional similarities with resident macrophages in 

mammals (reviewed in Gold et Brückner 2015). Plasmatocytes are attracted to HPs, because 

of chemotaxis signals produced by peripheral neurons (Kalpana Makhijani et al. 2017), and 

when stimulated by appropriate signals, they can differentiate into either crystal cells (Leitão 

et Sucena 2015) or lamellocytes (Honti et al. 2009).  It also has been shown recently that 

plasmatocytes located near pericardial cells of the dorsal vessel, are also able to 

transdifferentiate into crystal cells, seemingly after Notch induction (Cevik et al. 2019). All the 

cells produced during this wave subsequently persist until adulthood. 

 

d) Larval wave of hematopoiesis  

 

The second wave of hematopoiesis, which takes place during the larval stage in a 

specialized organ called the lymph gland (Figure 8C; reviewed in Banerjee et al. 2019), has its 



 

Figure 8: Drosophila life cycle and hematopoiesis 

A. During embryonic development, cells of the procephalic mesoderm and cardiogenic mesoderm (in 

green) develop to give rise to both circulating hemocytes (blue and purple) and to the lymh gland 

(green), apposed on the cardiac tube (orange). The embryo develops into a larva, then a pupa and 

finally an adult, where hematopoiesis occurs within Hematopoietic Hubs (HB). B. Representation of 

larval hematopoietic pockets during the third larval stage. In this microenvironment, plasmatocytes 

(brown) are in contact with neurons (green) that emit signals to promote plasmatocyte homing and 

proliferation. Within this microenvironment, plasmatocytes can give rise to larval crystal cells by 

transdifferentiating. C. Schematic representation of the lymph gland during the third larval stage. In 

the medullary zone of the anterior pair of lobes (MZ, blue), progenitors are mostly quiescent with a 

low rate of proliferation. They give rise to differentiated cells (plasmatocytes, red, and crystal cells, 

purple) located in the cortical zone (CZ). During wasp infestation, progenitors in the MZ are instructed 

by the Posterior Signaling Center (PSC) to become lamellocytes. The posterior lobes (also blue) along 

the cardiac tube will in the adult stage become parts of the HB. (Adapted from Letourneau et al 2016; 

Gold and Brückner 2014). 
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origins in the embryo. Indeed, lymph gland progenitors emerge in the dorsal mesoderm and 

then migrate along the dorsal vessel. It has been shown that these precursors have a common 

origin with endothelial cells, both arising from hemangioblastic cells (Mandal, Banerjee, et 

Hartenstein 2004); this is a common feature with mammals, where hemogenic endothelium 

generates all blood precursors during embryonic development.  

The lymph gland is a regionalized organ, with two primary lobes apposed on the cardiac 

tube and multiple pairs of secondary lobes along the dorsal vessel (reviewed in Letourneau et 

al. 2016). Primary lobes are themselves regionalized in two regions: one medullary zone in 

which progenitors proliferate during the first larval stages and where they remain in a mostly 

quiescent state in later stages, and one cortical zone where differentiated cells (plasmatocytes 

and crystal cells) accumulate. One should note that a third zone is visible, the intermediary 

zone, where differentiating progenitors are found (Oyallon et al. 2016). Another compartment 

of interest, the Posterior Signaling Center, defines a microenvironment responsible for 

massive lamellocyte production after an immune stress (Benmimoun et al. 2015; Oyallon et 

al. 2016). In this case, the lymph gland is prematurely disrupted and releases all its content 

into circulation, in order to encapsulate the wasp egg and prevent its development, which 

would otherwise be lethal for the fly. 

In the absence of parasitism, at the end of the L3 stage, the lymph gland contains only 

differentiated cells, which are released in the hemolymph at the onset of pupariation. 

 

e) Hematopoiesis in the adult fly 

 

Along with cells generated during the first hematopoietic wave, cells produced by the 

lymph gland will persist during the adult stage. In addition, it has been shown that there is a 

slight hematopoietic activity during adult life, in clusters located along the abdominal part 

(Saikat Ghosh et al. 2015).  

Blood cells from lymph gland secondary lobes migrate in these clusters called 

Hematopoietic Hubs (HBs) to become progenitors of the new hematopoietic wave. 

Progenitors in HBs display proliferation abilities and give rise to both plasmatocytes and 
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crystal cell lineages (S Ghosh, Mandal, et Mandal 2018), which actively participate in 

protecting against infection.  

 

3.  Molecular actors during Drosophila hematopoiesis 

 

It has been shown in the last fifteen years that there is a strong conservation from 

Drosophila to mammals of the molecular actors regulating hematopoiesis. Indeed, key 

hematopoietic regulators belonging to the GATA and RUNX family of transcription factors are 

crucial actors during Drosophila hematopoiesis, as well as the Notch signaling pathway. I will 

describe below how they interact and participate in the establishment of blood cell lineages 

in Drosophila. 

 

a) GATA transcription factors 

 

In Drosophila there are five GATA factors: Serpent (Srp), Pannier (Pnr), GATAe, GATAd and 

Grain. They are major regulators of development, but only Srp and Pnr have been identified 

so far as playing a role during hematopoiesis (Rehorn et al. 1996; Lucas Waltzer et al. 2010; 

Minakhina, Tan, et Steward 2011).  

Srp is absolutely required for prohemocyte emergence, as Srp mutant embryos are 

completely deprived of blood cells (Rehorn et al. 1996). At the cellularization stage, srp is 

expressed in the procephalic mesoderm, in the prohemocyte cluster (Spahn et al. 2014). Later 

in embryonic and larval development, srp expression is maintained in every blood cell lineage, 

which makes it a “panhemocyte” marker. Its interaction with its cofactor FOG U-shaped (Ush) 

is required for plasmatocyte differentiation, and its interaction with the RUNX factor Lz is 

required for crystal cell differentiation (Fossett et al. 2003; L. Waltzer 2002; 2003a; Bataillé et 

al. 2005). 

Srp has also been shown to be involved during lymph gland hematopoiesis. It has been 

proposed that the interaction with its cofactor Ush is required for the normal expression of E-

cadherin in the progenitor compartment to maintain their undifferentiated state.  
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In summary, Srp seems to share functional similarities with GATA1 and 2 in mammals, as 

it is required both for the emergence of prohemocytes and later on for their proper 

differentiation.  

 

b) RUNX transcription factors  

 

In Drosophila, the RUNX ortholog Lozenge (Lz) is a crucial transcription factor during the 

hematopoietic process. I will, in this part, give more details concerning its history and 

functions during Drosophila development. Lz was first identified by the group of Thomas 

Morgan in the early twentieth century (Morgan, Bridges, et Sturtevant 1925), and its name 

comes from the eye phenotype displayed by mutant flies.  

Lz was initially cloned by the group of Uptal Banerjee, who showed its involvement in cell 

fate choice in the eye imaginal disc (Daga et al. 1996). In this study, the authors generated a 

series of mutant alleles, and one of them, the lzR1 allele, is the one I used in experiments I will 

describe in Results. Lz was linked to other processes like fertility (Anderson 1945), as well as 

in the regulation of phenol-oxydase activity (Peeples et al. 1969; Warner, Grell, et Jacobson 

1974). Indeed, Lz was shown to be a suppressor of the black cells phenotype, which is caused 

by a mutation in the PPO1 gene (T. M. Rizki et Rizki 1981). PPOs are produced by crystal cells 

during embryonic and larval hematopoiesis, and it has been demonstrated that Lz is a crucial 

transcription factor controlling crystal cell formation (L. Waltzer 2003a).  

Similarly to RUNX1, Lz can interact with several factors during the hematopoietic process. 

Moreover, since RUNX1 expression is initiated in Notch activated cells in the AGM, lz 

expression in larval crystal cells depends on Notch signaling, and I will describe below these 

interactions.  

 

• Interaction between Lz and Srp is crucial for crystal cell differentiation 

In the embryo, it has been shown that Lz physically interacts with the GATA factor Srp to 

promote crystal cell differentiation and transcription of target genes such as PPO1 and 2 (L. 
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Waltzer 2003a; Ferjoux et al. 2007). This interaction is required to produce crystal cells, but it 

is also sufficient to induce PPO transcription ectopically in the embryo.  

 

• CBFb factors in Drosophila, Brother (Bro) and Big brother (Bgb) 

The CBFb factors are heterodimerization partners for RUNX transcription factors. Indeed, 

it has been shown that Bro and Bgb are involved during eye development in collaboration with 

Lz (Ling-Hui et Gergen 1999; Kaminker et al. 2001), and also in collaboration with Runt during 

segmentation (Kaminker et al. 2001). No function, however, of either Bro or Bgb in 

hematopoiesis has been reported yet. 

 

• Notch signaling pathway  

During larval hematopoiesis, crystal cell formation has been shown to be initiated and 

dependent on Notch signaling (Duvic et al. 2002), both in the lymph gland and in 

Hematopoietic Pockets (HPs). In the lymph gland, some cells in the cortical zone have been 

found to express the Notch ligand Serrate (Ser), and are involved in the cell-cell contact 

required for Notch activation; if these cells are absent of the lymph gland, there is no crystal 

cell differentiation (Lebestky 2003). These Ser expressing cells are called Lineage Specifying 

Cells (LSCs, Ferguson et Martinez-Agosto 2014). In the HP, the Notch signaling pathway is also 

required, as Ser expressing cells induce plasmatocyte transdifferentiation into crystal cell 

precursors (Leitão et Sucena 2015). The Notch ligand Delta is not involved during this process, 

as its depletion does not impact crystal cell formation (Duvic et al. 2002; Lebestky 2003). 

Activation of the pathway specifies crystal cell lineage most likely via initiation of lz 

transcription. In turn, Lz switches on the specific crystal cell transcriptional program and 

maintains its expression by an autoregulatory loop (Ferjoux et al. 2007).  

It has been shown that in addition to its requirement for the induction of lz transcription, 

Notch functionally interacts with Lz itself for the transcriptional activation of crystal cell 

specific target genes like klumpfuss and pebbled (Terriente-Felix et al. 2013; Skalska et al. 2015) 

thereby contributing to their differentiation. In addition to these two roles (specification and 

differentiation), the Notch pathway is also required for crystal cell survival. Indeed, the 
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pathway is maintained activated in mature crystal cells, until its Lz-mediated downregulation 

provokes crystal cell rupture (Mukherjee et al. 2011; Miller et al. 2017). 

But Notch is not the only pathway involved in crystal cell differentiation; the Hippo 

pathway is also required for this process.  

 

• Hippo signaling pathway 

The Hippo signaling pathway is mostly known for its function during organ growth, as it is 

required to tightly control organ size (Moeller et al. 2017). It is also involved in cell 

proliferation and is sensitive to cell contact signals (Ota et Sasaki 2008).  

The Hippo signaling pathway relies on a phosphorylation cascade, and most of its 

members are kinases. Extrinsic signals are sensed by the Tao kinase, which phosphorylates 

Hippo that subsequently phosphorylates Warts. Finally Warts phosphorylates Yorkie (Yki), the 

pathway effector, which as a consequence is sequestrated in the cytoplasm (reviewed in Meng, 

Moroishi, et Guan 2016) where it remains inactive. When the pathway is inactive, Yki is 

present in the nucleus and interacts with molecular partners that are transcription factors; its 

principal partner is the TEAD factor Scalloped (Sd), and together they activate transcription of 

target genes like DIAP-1, which promotes cell survival (Figure 9). A recent study showed that 

Sd is required to regulate maintenance and proliferation of lymph gland progenitors, but it is 

not clear whether Yki is involved in this process or not (Ferguson et Martinez-Agosto 2017). 

The same group reported that Yki is required downstream of Notch activation in the 

lymph gland to initiate lz expression and thus allow crystal cell differentiation (Figure 10; 

Ferguson et Martinez-Agosto 2014). It also has been demonstrated, in cell culture with a 

luciferase reporter assay, that Yki is able to bind directly some enhancers in the lz gene (Milton 

et al. 2014). This was therefore proposed to be the mechanism for the direct transcriptional 

activation of lz by a Yki/Sd complex during crystal cell differentiation in the lymph gland.  

It is noteworthy that, depending on the context, the interactions between the Notch and 

Hippo signaling pathways can be very different. For instance, it has been shown in the 

Drosophila wing disc that Notch signaling is able to promote Yki activity in a non cell-

autonomous manner (Graves et al. 2012) to promote cell survival. However, in the wing pouch, 



 

 

Figure 9: Overview of the Hippo signaling pathway in Drosophila 

When the Hippo pathway is inactive, its effector Yorkie competes in the nucleus with Tondu domain-

containing growth inhibitor (Tgi) for interaction with Scalloped (Sd) and activates transcription of 

target genes. The pathway is activated by the Tao kinase, which induces the phosphorylation cascade 

by phosphorylating Hippo. In turn Hippo phosphorylates Warts, which phosphorylates Yorkie. Yorkie 

is then sequestrated in the cytoplasm by the interaction with 14-3-3, and Tgi interacts with Sd and 

represses Yorkie target genes. (Adapted from Meng et al 2016) 
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Figure 10: Differentiation of crystal cells in the lymph gland 

In the model proposed for crystal cell differentiation in the lymh gland, an inducer cell expressing the 

Notch ligand Serrate (Ser) activates the pathway in a contacting cell, which will then become a crystal 

cell precursor. The activation of the pathway leads to the activation of Yorkie, which with Sd is 

responsible for initiating lozenge (lz) expression. Finally, Lz induces the expression of its target genes 

in cooperation with Notch and/or Srp, thus promoting the cell’s maturation. (Adapted from Ferguson 

and Martinez-Agosto 2014) 
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Notch activation induces the expression of Vestigial, which is a Sd partner; this consequence 

inhibits Yki/Sd transcriptional activity and downregulates expression of Hippo pathway target 

genes (Djiane et al. 2014).  

 

4. Drosophila as a model for pathological hematopoiesis 

 

Molecular actors of the hematopoietic process are highly conserved, and in particular 

partners of the RUNX transcription factors. This allows molecular and mechanistic studies of 

their functions in vivo, which is quite complicated in a mammalian model. 

In addition to its relevance to studying the process of normal hematopoiesis and 

homeostasis of blood cell production, Drosophila is used as a model for pathological situations, 

as hematopoietic deregulation can be induced in vivo. This makes Drosophila an excellent tool 

to study the molecular mechanisms of leukemic transformation, and in the next part I will 

describe some of these models.  

 

a) RUNX1-ETO as a model for human leukemic transformation 

 

As previously mentioned, RUNX1 is a major target of single mutations or chromosomal 

rearrangements that lead to the development of AML. In order to gain a better understanding 

of the molecular mode of action by which the RUNX1-ETO fusion protein induces a leukemic 

transformation, two Drosophila models were developed. 

In a first study aiming at the identification of suppressors of RUNX1-ETO activity (Osman 

et al. 2009), the authors overexpressed the RUNX1-ETO construct using the Gal4/UAS system 

in hemocytes. RUNX1-ETO overexpression impairs crystal cell differentiation in the embryo 

mostly due to the competition with Lz transcriptional activity on its target genes. When 

overexpressed during the larval stages with the Lz-Gal4 driver, RUNX1-ETO blocks crystal cell 

differentiation both in circulation and in the lymph gland, without affecting Lz expression itself. 

This overexpression also induces a pupal lethality that was used by the authors to identify 

genes required downstream of RUNX1-ETO in a genetic screen. The suppressors of lethality 
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were tested for their ability to suppress crystal cell differentiation defects. They identified 

calpainB as required for RUNX1-ETO induced blood disorders and showed that calpain 

inhibition affects RUNX1-ETO protein levels in the human leukemic Kasumi-1 cell line. This 

study in Drosophila, therefore, yields new insights into the seemingly conserved molecular 

mechanism at work during RUNX1-ETO dependent leukemic transformation.  

The second model relied on overexpression of RUNX1-ETO in all larval hemocytes 

(Sinenko et al. 2010). This induces a dramatic increase of hematopoietic precursors and high 

levels of ROS in circulation, which necessitates an interaction between RUNX1-ETO and one 

CBFb factor.  Indeed, overexpression of a mutated version of RUNX1-ETO that is unable to 

bind CBFb, is not sufficient to induce the overproliferation of progenitors. This requirement 

for CBFb binding during RUNX1-ETO leukemic transformation, is a conserved mechanism in 

mammals (Roudaia et al. 2009). This increased proliferation of Drosophila hemocytes is 

reminiscent of what is observed in AML cases, because in the pathology there is proliferation 

of myeloid progenitors that inhibits production of normal cells. This second model allowed 

the identification of RUNX1-ETO activity suppressors that are involved in the antioxidant 

pathway in Drosophila, and this could be relevant to human RUNX1-ETO related AML cases. 

In both studies, the authors showed that expressing the human fusion protein RUNX1-

ETO in Drosophila was sufficient to recapitulate the major phenotypes displayed in human 

AML: an increased proliferation of immature progenitors on the one hand, and an inhibition 

of Lz/RUNX normal activity on the other hand. 

 

b) Myeloid Leukemia Factor  

 

The Drosophila Myeloid leukemia factor (Mlf) belongs to a family conserved across 

evolution and its mammalian homologs are involved in the development of leukemia 

(reviewed in Gobert, Haenlin, et Waltzer 2012). It has been shown that Mlf is required for the 

stability of the Lz protein (Bras et al. 2012), especially by forming a chaperone complex along 

with DNAJ-1 that protects Lz from degradation and ensures its accumulation in crystal cells 

(Dyer et al. 2017; Miller et al. 2017). By doing so, Mlf participates in the control of crystal cell 

differentiation, and its loss of function is accompanied by dysplastic morphology of Lz 
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expressing cells. In addition, Dyer et al. show that Mlf binds chromatin, and their findings 

suggest that MLF mediates the repression of genes associated with development and 

differentiation, while promoting those associated with cell proliferation (Dyer et al. 2017). 

Finally it also has been shown that Mlf is required for the leukemic activity of RUNX1-ETO in 

Drosophila and in the human leukemia-derived Kasumi-1 cell line (Bras et al. 2012), illustrating 

once again the existing molecular conservation from Drosophila to human.  

In conclusion, over the last 15 years, Drosophila has proven to be a valuable model system 

to study hematopoiesis, whether normal or pathologic. It also appears that although the cell 

types and functions may be very different between mammals and insects, the crystal cell 

lineage represents a particularly suitable context to study the conserved basis of RUNX1-

related blood cell formation.  

 

5. Identification of enoki mushroom as a novel actor of Drosophila 

hematopoiesis 

 

As described above, MOZ is a known co-activator of RUNX1 in mammalian hematopoiesis, 

and its deregulation leads to the development of severe blood disorders. enoki mushroom 

(enok) is the Drosophila homolog of MOZ, and they share a high homology, in particular in 

their N-terminal part, containing the NEMM domain, the tandem PHD fingers and the MYST 

domain. Given this high level of conservation, Drosophila seemed like an ideal model to 

decipher the molecular functions of this epigenetic factor.  

 

• Identification of Enok in Drosophila 

Enok was first identified in 2001 as a lucky side product of an Ethyl Methane Sulfonate 

(EMS) mutagenesis screen aiming at identifying mutations that fail to complement lethality of 

the Df(2)gekD23 deficiency (Scott, Lee, et Luo 2001). Two enok point mutation alleles were 

isolated: enok1 and enok2. The first allele leads to the change of a Tryptophan into a Stop 

codon in the MYST domain, and the second allele leads to the replacement of a Cystein in the 

Zinc-finger motif. Both alleles are homozygous lethal, and individuals display a developmental 
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delay and die at the beginning of the pupal stage. In this study, Scott et al showed that enok 

loss of function impairs proliferation of neuroblasts in the mushroom bodies. However, the 

authors hypothesized that the lethality observed in enok mutants is not due to the sole defect 

in mushroom body development. In addition, they identified a requirement for Enok in 

germline cells, suggesting that Enok function may affect proliferation in several tissues.   

 

• Enok function during establishment of the female germline   

In 2013, a second study led by Xin et al further demonstrated that enok is involved in 

female germline development (Xin et al. 2013). By inducing enok mutant clones specifically in 

germ stem cells, the authors showed that Enok function is required cell autonomously in those 

cells to promote their maintenance, in part by repressing bruno expression and thus inhibiting 

premature differentiation. In addition, the authors showed that Enok is required in the niche 

cells (called cap cells) for their maintenance via Notch signaling, thereby participating in the 

maintenance of germ stem cells in a second non-cell-autonomous manner.  

 

• Enok is able to acetylate histone H3, in collaboration with the ING5 complex 

A recent study from Jerry Workman’s group showed that Enok is able in vitro to acetylate 

histone H3 on Lysine 23 (H3K23ac). In addition, they demonstrated that after induction of 

enok mutant clones in eye imaginal discs, the H3K23ac staining is almost completely lost in 

vivo; this demonstrates for the first time that Enok is responsible for histone modification. 

Here, the authors show that the H3K23ac mark is correlated with Enok-dependent expression 

of spir and mael genes, finally responsible for oocyte polarization.  

Interestingly, a recent study reported that MOZ is able to acetylate H3 on Lysine 23 in 

Glioblastoma cell lines (Lv et al. 2017). In addition, BRPF1 is required for H3K23 acetylation in 

vivo in mouse (You et al. 2016). These findings suggest that H3K23 acetylation by the ING5 

complex might be a conserved feature in gene regulation.  

In a second study in 2016, Huang et al demonstrated that Enok catalytic activity is 

dependent on the entire ING5 acetylation complex (Huang et al. 2016). The complex is 

composed of Enok, Br140, Eaf6 and Ing5, the respective homologs of MOZ, BRPF1/2/3, EAF6 
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and ING5 in mammals. The authors showed in cultured S2 cells with western blot analysis that 

the H3K23ac levels decreased after depletion of each member of the complex. In addition, 

Huang et al showed that Enok interacts physically with Elg1 in S2 cells. Elg1 has been shown 

to be responsible for Proliferating Cell Nuclear Antigen (PCNA) unloading during DNA 

replication (Kubota et al. 2013, 1). The authors demonstrated that Enok is required to 

downregulate the PCNA unloading function of Elg1, in order to promote the G1/S transition, 

and thus prevent cell cycle arrest. Some in vivo experiments suggested that this interaction 

between Enok and Elg1 might be conserved in the female germ line, providing a new insight 

into Enok function in this tissue.  

 

• Enok and Br140 are bound on Bivalent promoters 

A recent study revealed that Br140, a member of the ING5 complex, binds a repertoire 

that largely overlaps that of the chromatin silencer Polycomb (Pc) (Kang et al. 2017). Pc is the 

founding member of the Polycomb group of proteins and is a part of the Polycomb Repressive 

Complex 1 (PRC1). PRC1 has DNA binding properties and when bound on chromatin, it can 

recruit Polycomb Repressor Complex 2 (PRC2), which in turn trimethylates histone H3 on 

lysine 27 (H3K27me3) through the activity of its catalytic subunit Enhancer of Zeste (E(z)). This 

histone modification is linked to gene repression and is essential for all developmental 

processes across evolution (reviewed in Papp 2006). 

The concomitant binding of Br140 and PRC1 has been suggested as contributing to the 

maintenance of the bivalent state of promoters of many developmentally regulated genes in 

the embryo (Kang et al. 2017). Indeed, the presence of Br140 and Pc correlates with H3K4me3 

and H3K27me3 chromatin marks, respectively marks of active and repressed chromatin. This 

chromatin landscape in mammals has been described as a specific feature of bivalent 

promoters (reviewed in Harikumar et Meshorer 2015). Furthermore, the authors purified the 

PRC1 complex and after a proteomic analysis, they observed that Enok is a partner of Pc as 

well as Br140, suggesting that they all form a complex to maintain chromatin in this bivalent 

state. In this study, the authors propose that Enok/Br140 along with PRC1 bind bivalent 

promoters of developmental genes. As differentiation occurs, activating or repressing factors 
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interact with them and allow the resolution of bivalency in favor of transcription activation or 

repression.  

This novel and interesting model for Enok/Br140 function during development seems to 

be conserved across evolution, as BRPF2 and RING1B, respectively the Br140 homolog and the 

member of human PRC1 complex, are similarly co-bound on bivalent promoters in human 

embryonic stem cells (Kang et al. 2017).  

 

In summary, the KAT Enok is involved in many developmental processes, and its main 

molecular partners are conserved from Drosophila to mammals. However, there is so far no 

evidence in the literature that Enok participates in Drosophila hematopoiesis, and our group 

is the first to establish a link between Enok and the regulation of Srp/Lz-dependent 

transcriptional activation (Gobert et al. 2010a). 

 

• Enok regulates the transcriptional activity of the Srp/Lz complex  

As I described earlier, the GATA and RUNX factors Srp and Lz act as a complex of 

transcription factors, both necessary and sufficient for expression of target genes such as the 

PPOs, and therefore for crystal cell differentiation in the embryo (L. Waltzer 2003b; Ferjoux et 

al. 2007). A genome-wide screen in cell culture led to the identification of modulators of the 

GATA/RUNX complex transcriptional activity, including enok. (Gobert et al. 2010). 
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III. Objectives of my PhD work 

 

The genome wide screen led by our group identified the Lysine Acetyltransferase Enok as 

being potentially a part of the hematopoietic process. Preliminary results showed that in vivo, 

enok loss of function leads to a dramatic loss of crystal cells during the larval stage, establishing 

its involvement during blood cell formation. My project was to understand how enok 

participated in the production of crystal cells, by studying the molecular mechanisms involved 

in this process.  

 

We can recapitulate the research project in three main questions:  

• Is the KAT activity of Enok involved during the hematopoietic process in Drosophila? 

• Which are Enok partners during crystal cell development? 

• Does Enok regulate directly or indirectly crystal cell differentiation?  
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1. Abstract 

 

 

The human KAT6 lysine acetyltransferase MOZ has been shown to be an essential 

player in the field of normal and malignant hematopoiesis. It belongs to a highly conserved 

family of epigenetic factors and remodels chromatin by acetylating histone tails in association 

with its partners of the ING5 complex. Here, we report that its Drosophila counterpart Enok is 

required during larval hematopoiesis to control the Notch-dependent process of plasmatocyte 

transdifferentiation into crystal cells. In particular enok is essential to allow expression of the 

RUNX factor Lozenge (Lz) that controls the crystal cell specific transcriptional program. We 

demonstrate that this function involves neither the Eaf6 and Ing5 subunits of the Drosophila 

ING5 complex, nor its own acetyltransferase activity. We provide evidence that Enok binds a 

new lz enhancer specifically required for its expression in Notch-activated crystal cell 

precursors. We propose that DNA-binding properties of KAT6 proteins might represent an 

alternative mechanism to support catalytic-independent activities in hematopoiesis. 
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2. Introduction 

 

Hematopoiesis, the highly dynamic process of all blood cell production, is tightly 

regulated by key transcription and epigenetic factors (Menegatti et al, 2019; Fujiwara, 2017; 

Hu & Shilatifard, 2016). Many of these regulators have been identified through the 

pathologies induced by their deregulation/mutation. In particular, genetic aberrations such as 

chromosomal rearrangements have been instrumental, since they allowed immediate 

identification of the targeted loci. As an example, characterization of the leukemogenic 

translocation t(8;21) led to the discovery of the transcription factor RUNX1 that was further 

shown to be essential for multiple steps of mammalian hematopoiesis (Lam & Zhang, 2012). 

Similarly, the gene encoding Monocytic Leukemia Zinc finger protein (MOZ, also known as 

KAT6A) was originally identified as the target of myeloid leukemia associated rearrangements, 

which fuse it to Lysine Acetyltransferases (KAT) such as CREB-binding protein (CBP) or p300, 

or to the coactivator TIF2 (reviewed in (Katsumoto et al, 2008)).  

MOZ/KAT6A belongs to a family of KATs conserved from yeast to human, the MYST 

family (named after its founding members MOZ/Ybf2/Sas2/Tip60), and is mainly known for its 

ability to acetylate histone H3 on lysine-9, lysine-14 and lysine-23 residues (Voss et al, 2009; 

Qiu et al, 2012; Dreveny et al, 2014; Lv et al, 2017). It is therefore proposed to control 

transcriptional events by participating in chromatin remodeling via the modification of 

epigenetic marks. MOZ exerts its acetylation activity in a tetrameric ING5 complex also 

containing the bromodomain PHD finger protein 1 (BRPF1), the human Esa1-associated factor 

6 homolog (hEAF6), and the inhibitor of growth 5 (ING5) subunits (Doyon et al, 2006; Ullah et 

al, 2008). The analysis of a MOZ mutant murine model specifically deprived of its catalytic 

activity (Perez-Campo et al, 2009) reveals a drastic reduction in hematopoietic stem cells 

(HSCs) and committed precursor populations, directly resulting from their reduced 

proliferation capacities. These results highlight the essential role of MOZ-driven acetylation in 

HSCs. However, the phenotypic differences existing between this catalytically inactive MOZ 

mutant and a loss of the entire MOZ protein (Katsumoto et al, 2006) suggest that MOZ may 

also ensure non-acetyltransferase functions in vivo, consistent with previous observations 

that MOZ interaction with RUNX1 promotes transcription independently of its catalytic 

domain in murine cultured cells (Kitabayashi et al, 2001). 
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Enoki mushroom (Enok), Drosophila melanogaster MOZ homolog, was first identified 

for its role in neuroblast proliferation (Scott et al, 2001). Its loss-of-function results in 

atrophied mushroom bodies in the fly brain, earning the gene its name, as well as a 

developmental delay and lethality at the early pupal stage. enok was later shown to be 

required for visual system wiring (Berger et al, 2008) and for germline stem cell maintenance, 

a process during which it ensures both cell autonomous and non-autonomous functions (Xin 

et al, 2013). The first insights into the molecular mechanisms underlying its different roles 

came from a study that demonstrated Enok’s ability to acetylate histone H3 on its lysine-23 

(H3K23) (Huang et al, 2014); in addition, it showed that enok is required for the expression of 

oocyte-polarizing genes and proposed that H3K23 acetylation of its targets accounts for the 

contribution of enok to transcriptional activation. Finally, a second study by the same group, 

demonstrated that Drosophila homologs of the mammalian ING5 complex Br140, Eaf6 and 

Ing5 interact physically and functionally with Enok for H3K23 acetylation, and identified a new 

role for Enok in cell cycle regulation (Huang et al, 2016). Of note, no function for Enok in 

hematopoiesis has ever been reported. 

Drosophila is a well-established model to study both normal and pathologic 

hematopoiesis, since its much simpler hematopoietic system displays a high degree of 

conservation, whether at the functional or at the molecular level (for an exhaustive review, 

see (Banerjee et al, 2019)). Reminiscent of mammalian hematopoiesis, the fly blood cells 

(called hemocytes) are formed in two temporally distinct waves. The embryonic wave gives 

rises to two differentiated cell types: plasmatocytes that mainly ensure phagocytic functions, 

and crystal cells that are responsible for melanization reactions and therefore contribute to 

wound healing and immune response. During larval life, a second wave of hematopoiesis in 

the lymph gland yields a reservoir of plasmatocytes and crystal cells that remain separated 

from the circulation until they are released at the onset of metamorphosis (under normal 

conditions) or mobilized in response to a parasitic infestation (Letourneau et al, 2016). Cells 

formed during the embryonic wave persist in circulation throughout larval stages until 

adulthood (Holz et al, 2003). During larval life, a massive expansion of the plasmatocyte 

population occurs in segmentally dispatched clusters beneath the epidermis, called 

hematopoietic pockets (Makhijani & Brückner, 2012). In addition, recent live-imaging of 

sessile hemocytes within these hematopoietic pockets shows that upon Notch signaling 
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pathway activation, plasmatocytes transdifferentiate into crystal cells (Leitão & Sucena, 2015) 

as they start to express the crystal cell lineage-specific RUNX transcription factor Lozenge (Lz), 

thus ensuring de novo larval crystal cell formation. 

Here we provide the first evidence that like its mammalian counterpart, Enok 

participates in hematopoiesis, since we show that the transdifferentiation of plasmatocytes 

into larval circulating crystal cells is hindered in enok mutants. In particular, we demonstrate 

that the expression of Lz is dependent on a cell-autonomous function of Enok in Notch-

activated crystal cell precursors. Unexpectedly, we establish that Enok is required 

independently of its KAT activity and of the ING5 acetylation complex and provide the prime 

example of a catalytic-independent function for a MOZ protein in vivo. Finally, we find that 

Enok binds a previously unidentified hematopoietic enhancer that controls expression of lz in 

crystal cell precursors, and we propose that the Enok non-catalytic mode of action relies on 

its binding to DNA. 
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3. Results 

 

enok is essential for larval crystal cell formation. 

In order to assess a possible function of enok during Drosophila hematopoiesis, we 

examined blood cell formation during embryonic and larval life in enok loss-of-function 

mutants. The three different alleles tested (enok1, enok2 and enokQ253), placed either in 

hemizygote conditions (combined to the Df(2R)BSC155 deficiency that uncovers enok locus) 

or in allelic combination (enok1/enokQ253), exhibited a dramatic loss of circulating crystal cells 

at the larval stage. Functional crystal cells in hematopoietic pockets of third instar larvae can 

be easily visualized, as heat exposition triggers melanization reactions within the cells, which 

then appear as little black dots. We observed almost no melanized crystal cells in the four 

enok mutant contexts tested as compared to control situations (Fig. 1A), indicating a defect in 

lineage specification or in precursor cell differentiation. As circulating hemocytes continuously 

enter and exit hematopoietic pockets during larval life, we examined enok mutant hemolymph 

cell content. To visualize the crystal cell lineage, we used a Notch Response Element reporter 

construct (NRE-GFP), whose expression is detected in crystal cell precursors and persists until 

their terminal differentiation (Leitão & Sucena, 2015; Miller et al, 2017), and an antibody 

raised against Prophenoloxidase1 (PPO1), a crystal cell terminal differentiation marker. Our 

results show that Notch-activated hemocytes (NRE-GFP+ cells) have lost PPO1 expression in 

enok loss-of-function contexts (Fig. 1B), confirming the absence of mature crystal cells in the 

sessile/circulating compartment of enok loss-of-function larvae. 

 

enok is required for transdifferentiation of plasmatocytes into larval crystal cells. 

Since the expression of PPO1 depends on the RUNX transcription factor Lz (Waltzer et 

al, 2003; Gajewski et al, 2007), we assessed Lz expression in circulating cells and observed that 

only a small fraction NRE-GFP+ cells retain the ability to express Lz in enok loss-of-function 

mutants as compared to control larvae (Fig. 1C,D). Moreover, an increased proportion of 

Notch-activated hemocytes displays expression of the plasmatocyte specific marker P1 (Fig. 

1E), in agreement with a previous study reporting that together with Notch, Lz controls the 

expression of klumpfuss, a repressor of plasmatocyte identity (Terriente-Felix et al, 2013). 



Figure 1. enok is required for plasmatocyte transdifferentiation into larval crystal cells. (A) 

Melanization assay on larvae from different enok mutant contexts. Posterior side of larvae is 

to the right. Melanized crystal cells appear as black dots. (B-C) Immunofluorescent staining on 

circulating cells from larvae of the indicated genotypes (Df-B155: abbreviation for 

Df(2R)BSC155); cells were stained with DAPI and either a-PPO1 (B) or a-Lz (C) antibody. (D) 

Quantification of the proportions of NRE-GFP+ cells expressing Lz as revealed by an 

immunofluorescent staining. Each dot represents the proportion observed in an individual 

larva. Complete genotypes: NRE-GFP/+ (control) and enok1,NRE-GFP/Df(2R)BSC155 

(enok1/Df-B155). (E) Quantification of the proportions of NRE-GFP+ cells expressing the 

plasmatocyte specific marker P1 as revealed by an immunofluorescent staining. (B-E) 

Hemocytes were collected on larvae carrying a NRE-GFP transgene. (D,E) Statistics: **** 

indicate a p-value≤0.0001.  
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While we detected a minimal increase in the number of NRE-GFP+ cells in enok mutants as 

compared to control larvae, it was not the case with two other Notch pathway reporter 

constructs, rendering unlikely that the loss of Lz expression results from a generic problem in 

Notch signaling interpretation (Supplemental Fig. S1A-C). Altogether our results show that 

enok is required downstream of Notch signaling for Lz expression during the 

transdifferentiation of plasmatocytes into crystal cells. 

 

enok regulates Lz expression in crystal cell precursors in a cell-autonomous fashion. 

We next sought to determine in which cells enok is required to promote crystal cell 

production. Directing expression of a UAS-3HA-enok transgene in enok mutant larvae, either 

ubiquitously with the tubulin-Gal4 driver or with the NotchGMR30A01-Gal4 driver, which allows 

specific expression in Notch-activated crystal cell precursors (Supplemental Fig. S2A,B), 

restores normal crystal cell maturation in hematopoietic pockets (Fig 2A), further 

demonstrating that the loss of crystal cell linage is due to the loss of enok function. In addition, 

our result indicates that enok ensures a cell-autonomous function in the Notch-activated 

precursors. Furthermore, thorough quantification of the proportion of Lz-expressing cells in 

circulation confirms that re-expressing enok specifically in crystal cell precursors of enok 

mutant larvae is sufficient to restore Lz expression completely (Fig. 2B). We thus conclude that 

enok controls the transdifferentiation of plasmatocytes into crystal cells through a cell-

autonomous regulation of Lz expression in Notch-activated precursors. 

 

The catalytic activity of Enok and the ING5 complex are dispensable for crystal cell 

formation. 

Since Enok is known to cooperate with its partners in the Drosophila ING5 complex to 

acetylate H3K23 (Huang et al, 2014, 2016), we surmised that Enok and the whole ING5 

complex might control lz expression in Notch-activated hemocytes via histone acetylation. 

While a Br140S781 loss-of-function allele already existed, no mutation for Eaf6 or Ing5 was 

available. We thus used the CRISPR/Cas9 genome-editing system to excise most of the coding 

region of these two genes and recovered the Eaf6M26 and Ing5ex1 alleles (methods). Likewise, 

we introduced in the coding sequence of enok a single amino acid substitution that specifically 



Figure 2. NotchGMR30A01-Gal4-driven expression UAS-3HA-enok transgene in enok mutants 

restores normal crystal cell differentiation. (A) Melanization assay on larvae of the indicated 

genotypes. Complete genotypes: w1118 (control), enok1/Df(2R)BSC155 (enok1/Df-B155), 

enok1/Df(2R)BSC155; tubulin-Gal4/UAS-3HA-enok (rescue tub-Gal4) and enok1/Df(2R)BSC155; 

NotchGMR30A01-Gal4/UAS-3HA-enok (rescue NotchGMR30A01-Gal4). (B) Quantification of the 

proportions of total hemocytes expressing Lz as revealed by immunofluorescent staining. Each 

dot represents the proportion of Lz+ cells in an individual larva. Statistics: NotchGMR30A01-Gal4/+ 

genotype was used as a reference sample; **** indicate a p-value≤0.0001, ns: not significantly 

different from reference sample.  
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abrogates its lysine acetyltransferase function (enokKAT allele, see methods). As expected, the 

level of H3K23 acetylation in circulating cells is strongly reduced in enok1 and Br140S781 

hemizygote contexts and more mildly in Eaf6M26 hemizygote or Ing5ex1 homozygote mutants 

(Supplemental Fig. S3); of note, the enokKAT mutation reduces the level of H3K23 acetylation 

to that observed with the enok null mutant context (enok1/Df(2R)BSC155) (SuppFig. 3), 

suggesting that the enokKAT allele is a genetically null allele for the acetyltransferase function. 

We then observed in melanization assays that, while Br140 loss-of-function results in the same 

hematopoietic phenotype as enok loss-of-function, gene excision of Eaf6 or Ing5 did not affect 

larval crystal cell formation (Fig. 3A). More strikingly, enokKAT mutant larvae exhibited 

seemingly normal crystal cell differentiation in hematopoietic pockets (Fig. 3A). Additional 

quantification of the proportion of NRE-GFP+ cells expressing Lz confirms that both Br140S781 

and enok1 mutations prevent Notch-activated precursors from differentiating further, while 

enokKAT mutation has no effect on this lineage (Fig. 3B). Thus, our results demonstrate that 

Enok and Br140 regulate Lz through to a non-canonic mode of action that is independent of 

the KAT activity of Enok, and of the ING5 complex. 

 

Lz expression precedes that of Yorkie during plasmatocyte to crystal cell transition. 

During de novo hematopoiesis in the lymph gland, the onset of lozenge expression was 

reported to be under the control of the Hippo signaling pathway effector, Yorkie (Yki), 

following Notch signaling activation (Milton et al, 2014; Ferguson & Martinez-Agosto, 2014b, 

2014a). We postulated that the same mechanism could be at work during larval plasmatocyte 

transdifferentiation in the sessile/circulating compartment. We thus performed double 

immunostainings to reveal both Yki and Lz expression in circulating cells of NRE-GFP third 

instar larvae. This should reveal three cell populations: (i) those expressing only NRE-GFP 

(precursors before they initiate differentiation), (ii) cells expressing both NRE-GFP and Yki 

(before they initiate Lz expression) and (iii) cells expressing the three markers NREGFP, Yki and 

Lz (in which Lz expression has been initiated by Yki). Our results show that most Notch-

activated circulating cells indeed express Yki in a control genetic context and that this 

expression is lost in enok mutant conditions (Fig. 4A,B), indicating that enok is also required 

for Yki expression. Surprisingly however, in control larvae the vast majority of cells expressing 



Figure 3. enok and Br140 are required independently of the ING5 complex for crystal cell 

differentiation. (A) Melanization assay on larvae of the indicated genotypes (Df-B263: 

abbreviation for Df(2R)BSC263, Df-B387: abbreviation for Df(3L)BSC387). (B) Quantification of 

the proportions of NRE-GFP+ cells expressing Lz as revealed by immunofluorescent staining. 

Each dot represents the proportion of Lz+ cells in an individual larva. Complete genotypes: 

NRE-GFP/+ (control), enok1, NRE-GFP/Df(2R)BSC155 (enok1/Df-B155), Br140 S781, NRE-

GFP/Df(2R)BSC263 (Br140 S781/Df-B263) and enokKAT, NRE-GFP/Df(2R)BSC155 (enokKAT/Df- 

B155). Statistics: control genotype was used as a reference sample; **** indicate a p- 

value≤0.0001, ns: not significantly different from reference sample.  

 





Figure 4. Lz precedes Yki expression during plasmatocyte transdifferentiation into crystal cells. 

(A) Immunofluorescent staining on circulating cells from larvae of the indicated genotypes; 

cells were stained with DAPI and a-Yki. (B) Quantification of the proportions of NRE-GFP+ cells 

expressing Yki as revealed by immunofluorescent staining. Complete genotypes: NRE-GFP/+ 

(control) and enok1,NRE-GFP/Df(2R)BSC155 (enok1/Df-B155). (C) Relative fluorescence 

intensity of the NRE-GFP transgene plotted against the relative fluorescence intensity of Yki 

staining in total hemocytes of control larvae; blue dots are cells negative for Lz expression and 

red dots are cells positive for Lz expression. The vertical dashed line represents the threshold 

for NRE-GFP positive cells (upper part) and the horizontal dashed line represents the threshold 

for Yki positive cells (right part). (D) Relative fluorescence intensity of the NRE-GFP transgene 

plotted against the relative fluorescence intensity of Lz staining in total hemocytes of control 

larvae; blue dots are cells negative for Yki expression and red dots are cells positive for Yki 

expression. The vertical dashed line represents the threshold for NRE-GFP positive cells (upper 

part) and the horizontal dashed line represents the threshold for Lz positive cells (right part). 

The dashed ellipse encloses an unexpected population of cells that express both the NRE-GFP 

reporter and Lz, but that do not express Yki. (E) Fluorescence intensity of Yki staining in NRE-

GFP+ cells (relative to the mean Yki intensity measured in all NRE-GFP+ cells of control larvae) 

in larvae of the following genotypes: w1118/Y; NRE-GFP/+ (control) and lzR1/Y; NRE-GFP/+ (lzR1). 

(F) Overexpression of UAS-lz, UAS- yki or UAS-yki* using the hmlD-Gal4 driver. Left panel: 

proportions of total circulating hemocytes expressing Lz. Right panel: proportions of total 

circulating hemocytes expressing Yki. Complete genotypes are as follows: w/w; hmlD-Gal4/+ 

(control), w/UAS-lz; hmlD-Gal4/+ (UAS-lz), w/w; hmlD-Gal4/UAS-yki-GFP (UAS-yki) and w/w; 

hmlD-Gal4/+; UAS-ykiS168A-GFP/+ (UAS-yki*). (B,F) Each dot represents the proportion 

observed in an individual larva. (C,D,E) Each dot represents the values attributed to a single 

cell. (B,E,F) Statistics: control genotype was used as a reference sample; **** indicate a p-

value≤0.0001; *** indicate a p- value≤0.0010, ns: not significantly different from reference 

sample.  
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both NRE-GFP and Yki also express Lz (Fig. 4C), whereas a subset of cells that co-express NRE-

GFP and Lz appear negative for Yki staining (Fig. 4D, population in the dotted ellipse). The 

existence of this subpopulation does not fit the model developed for de novo crystal cell 

differentiation in the lymph gland and raises the possibility that the transcriptional cascade 

controlling plasmatocyte transdifferentiation into crystal cells might be different, which 

prompted us to investigate it further. Quantification of Yki expression intensity in lzR1 null 

mutant larvae shows that crystal cell precursors deprived of lz do not express Yki, as compared 

to a control situation (Fig. 4E), indicating that lz is required for Yki expression in these cells. 

Furthermore, ectopically expressing lz in all larval circulating hemocytes with the hemolectin-

gal4 driver is sufficient to induce a significant increase of the Yki expressing cell population 

(Fig. 4F). In contrast, ectopic expression of Yki or activated-Yki (Yki*) does not trigger Lz 

expression in circulating cells (Fig. 4F). Altogether our results suggest that following Notch 

signaling pathway activation in plasmatocytes, lz expression precedes that of yki, and is 

initiated independently of the latter. We subsequently focused on the control of Lz expression 

by enok. 

 

Enok directly binds an intronic region of lozenge, which is required for its expression in 

crystal cell progenitors. 

As it was reported that in addition to bearing the KAT-activity the MYST domain of 

MOZ has the ability to bind DNA (Holbert et al, 2007), we hypothesized that Enok could control 

lz expression by directly binding its regulatory regions. We selected a set of transgenic lines 

containing potential regulatory regions placed upstream of the Gal4 coding sequence and 

tested them for their ability to recapitulate lz expression in the NRE-GFP expressing cells 

(Table 1). It appears that the regulatory region covered by the Vienna Tile VT059215, either 

placed upstream of the Gal4 coding sequence (lzVT059215-Gal4, Fig. 5A) or directly fused to the 

RedStinger reporter gene (lzVT059215-RedStinger, Fig. 5B) is able to drive transcription in a large 

fraction of the NRE-GFP expressing cells, which overlaps importantly but not exclusively with 

endogenous Lz expression (Fig. 5A,B). This potential regulatory region is embedded in the 

third intron of the lz gene. In order to further establish the role played by this regulatory region, 

we decided to delete lz third intron using the CRISPR/Cas genome editing technique (lzint3 



Figure 5. Enok binds a hematopoietic enhancer in lz third intron. (A) Immunofluorescent 

staining on circulating cells from NRE-GFP/+; lzVT059215-Gal4,UAS-RedStinger/+ larvae; cells 

were stained with DAPI and a-Lz antibody. (B) Proportions of the different categories of NRE- 

GFP+ cells quantified in NRE-GFP/+; lzVT059215-RedStinger/+ larvae. Each dot represents the 

proportion of the indicated cell type observed in an individual larva. (C) Immunofluorescent 

staining on circulating cells from larvae of the indicated genotype; cells were stained with DAPI 

and a-Lz antibody. (D) Quantification of the proportion of NRE-GFP+ cells expressing Lz in lzint3 

and control male larvae, as revealed by immunofluorescent staining. Each dot represents the 

proportion of Lz+ cells in an individual larva. (E) Melanization assay on larvae of the indicated 

genotypes. (F) Quantification of the proportion of total hemocytes expressing Lz as revealed 

by immunofluorescent staining. Each dot represents the proportion of Lz+ cells in an individual 

larva. Statistics: w/Y; lzVT059215-Gal4/+ genotype was used as a reference sample. (G) Top: 

schematic representation the lz locus (not to scale); in purple are represented the amplicons 

used in Chromatin Immunoprecipitation (ChIP). Bottom: results of ChIP experiments 

performed on tub-Gal4/UAS-3HA (3HA, orange histograms) and tub-Gal4/UAS-3HA-enok 

whole embryos (3HA-Enok, blue histograms) using an a-HA antibody. (D,F,G) Statistics: *** 

indicate a p-value≤0.0001, * indicate a p-value≤0.0500, ns: not significantly different from 

reference sample.  
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allele, see methods). Despite the critical roles of lz during eye development (Daga et al, 1996), 

the excision of lz third intron yields individuals with normal eyes, indicating that in these 

mutants, lz expression in the eye imaginal disc is not affected and that the Lz protein is 

functional. However, like enok loss-of-function, lzint3 mutation abolishes Lz expression in most 

Notch-activated hemocytes (Fig. 5C,D), indicating that lz third intron contributes to its 

expression in circulating crystal cell precursors. In addition, the lzVT059215-Gal4 driven re-

expression of lz in a lzR1 mutant background is sufficient to restore a wild-type proportion of 

Lz expressing cells in the NRE-GFP domain (Fig. 5E), as well as crystal cell maturation in the 

hematopoietic pockets (Fig. 5F). Altogether, these results show that lz third intron contains an 

hematopoietic enhancer both necessary and sufficient for its expression in most crystal cell 

precursors. We then speculated that Enok might occupy this region to regulate Lz expression 

in Notch-activated hemocytes. Chromatin immunoprecipitation performed in tub-Gal4/UAS-

3HA-Enok embryos revealed a conspicuous enrichment in HA-Enok binding across regions of 

lz third intron, corresponding to the identified VT059215 regulatory element (Fig. 5G), and a 

modest (yet statistically significant) binding of HA-Enok in lz first exon, which was recently 

reported to be bound by Br140 (Kang et al, 2017), suggesting potential co-occupancy of this 

region by the Enok/Br140 complex. No obvious enrichment was detected in the upstream 

intergenic region previously reported to contain some lz regulatory elements (Bataillé et al, 

2005; Ferjoux et al, 2007). Overall, our results point to the VT059215 region as a major site of 

Enok binding in the lz gene, and we propose that Enok regulates lz expression by directly 

binding a hematopoietic enhancer located within its third intronic region. 
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4. Discussion 

 

In the present study, we characterized the hematopoietic defects induced by the loss 

of enok function and demonstrated that it is required in a cell-autonomous manner in Notch-

activated hemocytes during the transdifferentiation of plasmatocytes into crystal cells that 

occurs in the hematopoietic pockets. In particular, we presented evidence that enok acts 

downstream of Notch signaling pathway to ensure expression of the crystal cell fate 

determinant Lz in crystal cell precursors (summarized in Fig. 6). In addition, we showed that 

this function of Enok relies on a KAT-independent mechanism, presumably by binding the new 

hematopoietic enhancer we identified within the third intron of lz.  

One remarkable feature of this enhancer is that it does not allow faithful recapitulation 

of the Lz expression pattern in Notch-activated crystal cell precursors. Indeed, only a fraction 

(about 65%) of the NREGFP+/LzVT059215-RedStinger+ cells express endogenous Lz, and a large 

proportion (almost 30%) of the NREGFP+/Lz+ cells do not express the lzVT059215-RedStinger 

reporter construct. One explanation for this behavior is that the lzVT059215 enhancer might be 

incomplete; as a matter of fact, it corresponds to a sequence of only 2 kb in the third intron, 

whose size reaches 5 kb in total. However, our analysis of the lzGMR26G10-Gal4 and lzGMR25H03-

Gal4 transgenic lines, which contain regulatory regions overlapping with the lzVT059215 

sequence and allow coverage of the full intron length, did not reveal any additional 

transcription-promoting elements. Another possibility is that the hematopoietic enhancer 

located in the third intron of lz and bound by Enok is not the sole regulatory region controlling 

its expression in crystal cell precursors. This hypothesis is further supported by the fact that 

lzint3 mutation leads only to a partial defect in larval crystal cell formation, since approximately 

20% of the NRE-GFP+ circulating cells express Lz normally, despite the excision of the whole 

intron. A second regulatory region would therefore be responsible for the expression of Lz in 

the 20% of cells that are still able to differentiate properly following Notch signaling activation 

in lzint3 mutant individuals. Importantly, loss of enok function shares exactly the same partial 

phenotype as excision of the third intron of lz. One would therefore expect the postulated 

second regulatory region not to be under the influence of enok. One very obvious candidate 

for this additional regulatory element role is the 1.5 kb long lz-upstream region, which was 

shown to recapitulate Lz hematopoietic expression during embryogenesis (Bataillé et al, 2005; 



Figure 6. Model of stepwise plasmatocyte to crystal cell transdifferentiation in larval 

Hematopoietic Pockets. We hypothesize that in the sessile microenvironment, similar to what 

has been described in the lymph gland, a Serrate-expressing inducer cell activates the Notch 

signaling pathway in a neighboring plasmatocyte. This activated plasmatocyte (crystal cell 

precursor) responds by expressing the NRE-GFP reporter gene. Notch pathway activation then 

results in the expression of the crystal cell fate determinant Lz, which in turn ensures 

downregulation of the plasmatocyte specific marker P1 and promotes expression of yki as well 

as that of the PPO1 and PPO2 terminal differentiation markers.  
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Ferjoux et al, 2007) and appears not to be bound by Enok in our chromatin 

immunoprecipitation. With the discovery of a novel enhancer contributing specifically to Lz 

expression in the circulating crystal cell precursors, possibly with the help of another 

regulatory region, the control of lozenge expression appears even more complex than 

previously thought. 

Finally, perhaps our most striking result is that the control of Lz expression relies on a 

catalytic-independent mode of action of Enok likely involving its interactor Br140, but for 

which Eaf6 and Ing5 appear to be dispensable. Catalytic-independent functions of 

MOZ/KAT6A, the mammalian homolog of Enok, have been speculated based on the 

phenotypic differences observed between mice either totally deprived of MOZ, or in which its 

catalytic activity has been obliterated by a single amino acid substitution. However, there is 

so far no documented study of such KAT-independent functions of MOZ in vivo. Indeed, 

although it has been shown that MOZ potentiates RUNX1-dependent transcription 

independently of its catalytic domain ex vivo, this transcriptional co-activator role of MOZ has 

not yet been reported to occur during any developmental process. During Drosophila 

transdifferentiation of plasmatocytes into crystal cells, we propose that the non-canonic 

mode of action of Enok relies on its ability to bind DNA. Since Lz is the homolog of mammalian 

RUNX1 and is known to participate in an autoregulatory loop during embryogenesis (Ferjoux 

et al, 2007), a simple mechanistic hypothesis would be that an Enok/Lz interaction potentiates 

transcriptional autoregulation of lz independently of the catalytic activity of Enok. 

Alternatively, since MOZ has been shown to interact with a plethora of transcription factors 

(RUNX1, PU.1, c-JUN, P53, TEL, NF-kB, NRF2, reviewed in (Perez-Campo et al, 2013)) to control 

expression of various target genes, Enok could also interact with one of their Drosophila 

counterparts, but no such interaction has been reported yet. 

More interestingly, it was shown that in Drosophila embryos Enok and Br140 interact 

with Polycomb (Pc), a major epigenetic silencer (Strübbe et al, 2011). This was further 

confirmed in a recent work highlighting the substantial overlap existing between chromatin 

occupancies by Br140 and by the Polycomb Repressive Complex 1, PRC1 (Kang et al, 2017) on 

developmentally regulated bivalent genes primed for both transcriptional activation and 

silencing (with activating H3K4me3 and silencing H3K27me3 methylation marks). One of the 

genomic regions occupied by Br140 and PRC1 is the lz locus, and even more strikingly, co-



51 

 

binding by the BRPF factor BRD1 and the PRC1 member RING1B on the RUNX1-encoding locus 

was also detected in HUES64 human ES cells. It is noteworthy that the authors did not observe 

any enrichment in the Enok-dependent H3K23ac mark on their set of bivalent genes, as is it 

compatible with a non-catalytic mode of action of Enok. The binding of the Enok/Br140 pair, 

which is rich in epigenetic reader domains, could allow recruitment of other chromatin 

modifying factors, such as the PRC1 complex, and thereby influence the choice between 

transcriptional activation or repression in response to a variety of developmental cues. 

In conclusion, we have shown that Enok is a major actor of the plasmatocyte to crystal 

cell transdifferentiation during Drosophila hematopoiesis. In addition, this study provides the 

first example of a transcriptional regulation that relies on a non-catalytic mode of action of a 

KAT6 protein in an integrated model. The regulation of lz expression by an Enok/Br140 

complex provides an original paradigm that can be used to address mechanistic questions on 

a well-defined regulatory element, in a genetically amenable and simple model. Given the 

large degree of evolutionary conservation of all the identified players, we believe that further 

elucidation of the non-catalytic mode of action of Enok during Drosophila hematopoiesis could 

be of high relevance to the molecular mechanisms presiding MOZ function in mammalian 

hematopoietic development, whether normal or malignant. 
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Supplemental Figure S1. Notch signaling pathway is not globally impaired in an enok 

mutant context. (A) Quantification of the proportions of total circulating hemocytes 

expressing the NRE-GFP reporter gene in larvae of the following genotypes: NRE-GFP/+ 

(control) and enok1, NRE-GFP/Df(2R)BSC155 (enok1/Df-B155).  (B) Quantification of the 

proportion of total circulating hemocytes expressing the UAS-GFP construct under the control 

of the Su(H)-GBE-Gal4 driver. Complete genotypes: UAS-GFP/+; Su(H)-GBE-Gal4/+ (control) 

and UAS-GFP/+; enok1/Su(H)-GBE-Gal4, Df(2R)BSC155 (enok1/Df-B155). (C) 

Immunofluorescent staining on circulating cells from larvae of the indicated genotypes; cells 

were stained with DAPI and a-Lz antibody. Complete genotypes: E(spl)mb-GFP/+ (control) and 

E(spl)mb-GFP,enok1/Df(2R)BSC155 (enok1/Df-B155). (A,B) Each dot represents the proportion 

observed in an individual larva. Statistics: ** indicate a p-value≤0.0100; ns: not significantly 

different from reference sample. 

 

Supplemental Figure S2. NotchGMR30A01-Gal4 directs expression in the crystal cell lineage. 

(A) Proportion of NRE-GFP+ cells expressing the NotchGMR30A01-Gal4 construct or not, in NRE-

GFP/+; NotchGMR30A01-Gal4, UAS-RedStinger individuals. Each dot represents the proportion 

observed in an individual larva. (B) Lineage-tracing of the NotchGMR30A01-Gal4 driver. 

Circulating cells were stained with DAPI and α-Lz antibody. Proportions of the indicated cell 

categories were quantified in a UAS-RedStinger, UAS-FLP, Ubi-

p63E(FRT.STOP)Stinger/NotchGMR30A01-Gal4 genetic context. (RT+Lin): cells positive for either 

Stinger (lineage-traced, lin) or RedStinger (Real Time expression, RT). NotchGMR30A01-unrelated 

cells have never expressed the driver construct. 

 

Supplemental Figure S3. H3K23 acetylation in circulating hemocytes is dependent on the 

ING5 complex and on the catalytic activity of Enok. Mean fluorescence intensity in larval 

circulating hemocytes (relative to the mean intensity measured in total hemocytes of control 

larvae), as revealed by an a-acetylated-H3K23 immunostaining. Complete genotypes: w1118/+ 

(control), enok1/Df(2R)BSC155 (enok1/Df-B155), Br140S781/Df(2R)BSC263 (Br140S781/Df-B263), 

Eaf6M26/Df(3L)BSC387 (Eaf6M26/Df-B387), Ing5ex1/Ing5ex1 (Ing5ex1) and enokKAT/Df(2R)BSC155 
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(enokKAT/Df-B155). Each dot represents the value attributed to a single cell. Statistics: control 

genotype was used as a reference sample; *** indicate a p-value≤0.0010. 

 

Table 1: Expression pattern of lz-related Vienna Tile and Janelia lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 





 





 



 

Table 1: Expression pattern of lz-related Vienna Tile and Janelia lines 

 

Vienna Tile Ref. VDRC stock numbeRed-Stinger expressed in NRE-GFP+ cells ?

VT059212 v208100 no

VT059213 v205984 no

VT059215 v214287 expressed in a subset of NRE-GFP+ cells

VT059219 v207032 no

VT059220 v206996 expressed in a large fraction of circulating cells, independently of the NRE-GFP reporter gene

VT059221 v213815 no

VT059222 v215022 no

VT059223 v203230 no

VT059224 v201848 no

VT059225 v203363 no

VT059226 v205681 no

VT059228 v201301 no

VT059229 v202842 no

GMR26G10 BL48067 no

GMR25H03 BL49143 no

GMR25F01 BL49127 no

GMR26A07 BL46172 no
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B. Complementary results 

 

1. Complements on the study of Enok function during crystal cell formation 

 

As previously stated, during larval life, the catalytic activity of Enok is not required in 

circulating hemocytes for plasmatocyte to crystal cell differentiation. In order to gain further 

mechanistic insights about its function during this process, I initiated a structure-function 

study of Enok using the CRISPR/Cas9-based genome editing method.  

 

Engineering alleles mutant for the DNA binding properties of the MYST domain 

 

It has been shown in vitro that MOZ is able to directly bind chromatin and thus has a 

DNA binding function (Holbert et al. 2007). In this study the authors show that the I727E 

mutation drastically affects the DNA-binding ability of MOZ, without affecting its capacity to 

acetylate histones. A comparison of MOZ and Enok amino acid sequences reveals that the 

residues involved in this binding are conserved in Enok (Figure 11A), and thus I decided to 

mimic the I727E mutation in Drosophila. Using the CRISPR/Cas9 technique, I successfully 

introduced the I931E desired mutation (Figure 11A), but a melanization assay on enokI931E 

mutant larvae showed no obvious defect in the ability to generate larval crystal cells. 

Furthermore, the mutation did not affect fly viability. These preliminary observations suggest 

that the mutation does not affect Enok’s DNA binding ability, or that DNA-binding is not 

mandatory for crystal cell differentiation. I obtained this mutant fly strain late during my 

doctoral training and thus didn’t have time to study it in depth; in order to draw a conclusion, 

this mutant allele has to be further characterized. In particular, it would be interesting to test 

its ability to bind the enhancer located in the third intron of lz, but this would require  

generating additional tools; one could mutate the UAS-3HA-enok construct I used previously 

for Chromatin Immunoprecipitation, (see section IV.A.3 ), or one could directly tag the 

endogenous enokI931E protein to realize the same kind of experiment. 

 



 



 

Figure 11. Structure function study of the Enok protein 

A. In the lower panel is represented the result for the I931E mutation which aims at disabling DNA 

binding ability of Enok. The sequenced individual was heterozygous, which results in double peaks at 

the site of interest corresponding to the modified and wild type alleles. Additional silent mutations 

were introduced for screening purposes. B. Top: schematic representation of the Enok protein. Here 

are represented at scale the N-terminal part of Enok MOZ MORF (NEMM), the tandem Plant 

Homeodomains (PHD), the MYST and Neurofilament-like domains. Red arrows represent the location 

of the sgRNA used for the directed excision. Bottom: representation of all mutant alleles recovered 

during the screen. Left: allele names / Right: result on translated proteins. In frame deletions are 

represented in red, and new stop codons by red crosses.  
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Engineering mutants carrying an excision of the Neurofilament domain 

 

In addition to the MYST domain, there are a few identified domains in Enok, and the 

largest one is called the Neurofilament-like domain. Its function is not described in the 

literature and thus, using CRISPR/Cas9-mediated deletions, I undertook to excise the 

Neurofilament-like domain and look at its requirement for larval crystal cell formation (Figure 

11B). Two of these deletions will be described below. In order to assess the role of the 

Neurofilament-like domain, I needed to generate a precise in-frame deletion and recovered 

the enokF61.8 allele, whose sequence corresponds to the desired modification. I also included 

the enokM31.1 allele in my analysis, because this deletion generates a stop codon after the 

MYST domain and removes the entire C-terminal part of the protein. Analysis of the 

established stocks showed that the enokF61.8 allele is homozygous viable, whereas the 

enokM31.1 allele is lethal, as is the case for all other enok alleles (Scott, Lee, et Luo 2001; Berger 

et al. 2008). Quantification of the H3K23 acetylation levels in these two new mutant contexts 

showed that neither excision of the Neurofilament-like domain, nor truncation of the C-

terminus of Enok, affects its catalytic activity, since circulating hemocytes exhibit a wild-type 

level of acetylated H3K23 (Figure 12A). I then quantified the proportion of Lz-expressing cells 

in circulating crystal cell precursors. I observed that enokF61.8 and enokM31.1 alleles displayed a 

wild-type proportion of differentiating crystal cells (Figure 12B). Altogether these results 

indicate that the Neurofilament-like domain is not required for Drosophila viability, for the 

catalytic activity of Enok, or for crystal cell development during the larval stages. 

 

The enokM31.1 allele does not impact the ability of the protein to acetylate its substrates, 

and homozygous individuals display pupal lethality; together with my previous observations 

that the catalytic activity of Enok is dispensable for viability, these results suggest that a 

domain located in the most C-terminal part of Enok is essential for viability. I therefore 

examined more in detail the sequences corresponding to the C-terminal parts of MOZ and 

Enok, seeking a domain whose loss would be responsible for the lethality of enokM31.1 in 

mutant pupae. I identified some sequence homology between the C-terminal part of Enok and 

the Proline-rich domains of MOZ (Figure 5), which contain p53 interaction domains that are 



 

 

 

Figure 12. The C-terminal half of Enok is not involved in crystal cell formation 

A. Quantification of fluorescence intensity after a H3K23ac immunostaining, in various enok 

mutant conditions. enok1 and enokKAT mutants display a drastic loss of H3K23ac staining, 

whereas enokF61.8 and enokM31.1 mutants do not display any difference with the control 

condition B. Quantification of Notch-activated crystal cell precursors expressing Lz in various 

enok mutant conditions. The enok1 mutant shows a strong reduction in Lz-expressing cells 

proportion, whereas enokKAT, enokF61.8 and enokM31.1 do not differe from the control condition. 

Complete genotypes are: w1118 (control), enok1,NRE-GFP/Df(2R)BSC155 (enok1/Df-B155), 

enokKAT,NRE-GFP/Df(2R)BSC155 (enokKAT/Df-B155), enokM31.1 ,NRE-GFP/Df(2R)BSC155 

(enokM31.1/Df-B155), enokF61.8,NRE-GFP /Df(2R)BSC155 (enokF61.8/Df-B155).  

 



65 

 

essential for cell cycle regulation and are involved in tumorigenesis (Susumu Rokudai et al. 

2009, 53; S. Rokudai et al. 2013, 53). Furthermore, human mutations introducing a stop codon 

after the MYST domain lead to microcephaly and overall developmental delay (Tham et al. 

2015). In this study the authors linked the developmental disorders to a missing interaction 

between MOZ and p53, as they saw differential regulation of p53 target genes in these 

individuals. Interestingly, it has been shown that BRPF1 mutants in human also display 

intellectual disability (Yan et al. 2017), which would raise the question of its interaction with 

MOZ and p53 during development. All this evidence led me to postulate the conservation of 

the interaction between Enok and p53, and that enokM31.1 mutant allele I had generated could 

misregulate potentially conserved Enok/p53 target genes, which would in part explain the 

lethality in the flies.  

This hypothesis has to be investigated from the start, because it has never been shown 

in Drosophila that Enok and p53 interact; furthermore, it would be interesting to study the 

mechanisms underlying enokM31.1-related lethality, as the molecular mechanisms involved in 

this phenotype may be conserved in humans. The conservation of the MOZ/BRPF interaction 

in Drosophila makes it a relevant model with which to study this potential catalytic 

independent function of MOZ during mammalian development.  

 

2. Complements on the study of the regulatory regions controlling lz 

expression in the crystal cell precursors 

 

Engineering mutants carrying an excision of the lz-upstream region 

 

 As discussed in section IV.A.4, the deletion of lz third intron is not sufficient to 

completely abrogate its expression in circulating cells. Indeed, in lzint3 mutant larvae, around 

20% of NRE-GFP positive cells still have the ability to normally initiate lz expression, and this 

phenotype is shared by enok loss of function. This observation suggests that there is another 

regulatory region responsible for lz initiation independent of enok during plasmatocyte 

transdifferentiation. The region located upstream of the lz gene was shown to recapitulate lz 

hematopoietic expression in the embryo (Bataillé et al. 2005; Ferjoux et al. 2007), and it was 
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not bound by Enok (see section IV.A.3). I therefore generated a CRISPR-Cas9 mediated 

excision of this region, the lz2AB allele, in order to assess its requirement during crystal cell 

formation and started to characterize its mutant phenotypes. As for the lzint3 allele, there was 

no eye phenotype in the adult fly, indicating that this region was not necessary for the control 

of lz expression in the eye imaginal disc. I observed that Lz expression is lost in circulating 

crystal cell precursors (Figure 13), which suggests that the lz2AB region is responsible, at least 

partially, for lz expression during plasmatocyte to crystal cell transdifferentation. 

 

To resume, we identified two enhancers that direct normal expression of lz in Notch-

activated hemocytes. It would be interesting to assess the consequences of the simultaneous 

excision of both regulatory regions. Since the two regulatory regions seem to be partially 

involved in lz expression, deletion of both at the same time might completely abrogate lz 

expression in NRE-GFP+ cells. Likewise, it would be interesting to coexpress the lzVT059215-

RedStinger (which is not expressed in all of the NRE-GFP positive cells) with the lz-LacZ 

reporter gene and compare their additive pattern to endogenous Lz expression, in order to 

see if the combination of the two regions is sufficient for the complete expression domain of 

lz in NRE-GFP expressing cells.  

These experiments should give more insights into the mechanisms underlying lz 

regulation in the Hematopoietic Pockets, which is for now not characterized.  

  



 



Figure 13. The lz2AB enhancer is crucial for lz expression in circulating crystal cell precursors. 

(A) Immunofluorescent staining on circulating cells from larvae of the indicated genotype; 

cells were stained with DAPI and a-Lz antibody. 
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V. Material and methods 
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Drosophila stocks, genetics and melanization assays. 

Stocks and crosses were maintained at 25°C on standard yeast-agar-cornmeal 

medium. The complete list of stocks used in this study is provided as supplemental material 

(Table 2). Larvae collected for phenotypic analysis were raised in controlled density 

conditions: in brief, for each cross, 10 females were fertilized by 4 males and left to lay eggs 

for 16 hours at 25°C. Third instar wandering larvae of the appropriate genotypes were 

collected 5 days after egg laying. Female larvae were used, unless otherwise specified. For 

melanization assays, two batches of six larvae were collected in two 1.5 mL eppendorf tubes 

containing 200 uL of Phosphate Buffered Saline (PBS) each, incubated in a 65°C waterbath for 

30 minutes, stored on ice for 30 minutes and imaged on a SMZ18 stereomicroscope (Nikon). 

Each experiment was reproduced at least three times (minimum of total larvae observed for 

each phenotype, n=36). 

 

Immunofluorescent staining and Operetta quantifications on circulating cells. 

Four female third instar larvae were bled in 1ml of PBS in 24-well-plate containing a 

glass coverslip. Hemocytes were centrifuged for 2 min at 900 g, fixed for 20 minutes with 4% 

paraformaldehyde in PBS and washed twice in PBS. Cells were then permeabilized in PBS-0.3% 

Triton (PBST), blocked in PBST-1% Bovine Serum Albumin (BSA) and incubated with primary 

antibodies at 4°C over night in PBST-BSA. The complete list of primary antibodies used in this 

study is provided as supplemental material (Table 3). Next, cells were washed in PBST, 

incubated for 2 hours at room temperature with corresponding Alexa Fluor-labeled secondary 

antibodies (Molecular Probes), washed in PBST and mounted in Vectashield medium (Eurobio-

Vector) following incubation with DAPI. Imaging was performed on a Leica SP8 confocal 

microscope. For fluorescence quantification, single female larvae were bled individually in 96-

well-plate and samples were processed as described above; imaging was performed on an 

Operetta microscope (Perkin-Elmer); for each well 30 fields were captured at 20X 

magnification. Statistical analyses were performed with GraphPad Prism (GraphPad Software, 

Inc.); two-tailed Student t-Test were used for comparisons of two samples and one-way 

ANOVA followed by Dunnett test for comparisons of more than two samples. 
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Generation of UAS-3HA-Enok and lzVT059215-Red-Stinger fly strains. 

- cloning of UAS-3HA-Enok: a three HA-tags encoding sequence was directionally 

inserted in the pUAStAttB vector (Addgene) polylinker using EcoRI and NotI restriction 

enzymes, yielding a pUAStAttb-3HA plasmid. A p-BlueScript containing the full-length enok 

cDNA (kind gift from Takashi Suzuki) was then used as a template to PCR-amplify the enok 

coding sequence (Phusion high-fidelity polymerase, Thermofisher scientific). The amplified 

fragment was cloned in frame with the 3HA sequence, between the NotI and KpnI restriction 

sites of the pUAStAttB-3HA vector, using the In-fusion HD cloning kit (Clontech) according to 

supplier’s instructions. 

- cloning of lzVT059215-Red-Stinger: this cloning was performed in two steps. We first 

generated a phiC31-based transformation vector containing a red fluorescent reporter gene 

compatible with golden gate cloning. Briefly, the pAttB vector (Bischof et al, 2013)(kind gift of 

K Basler) was modified to remove the existing BsaI restriction sites and we then inserted a 

polylinker containing BsaI restriction sites on each sides of a lacZ gene from the pCambia2200 

vector (kind gift of Jean-Philippe Combier), the hsp70 promoter and the DsRed. T4-NLS coding 

sequence from the pRed-H-Stinger vector (Barolo et al, 2004)(DGRC). In a second step, we 

cloned the VT059215 sequence into the pAttB-Red-H-Stinger vector with BsaI restriction 

enzyme following a golden gate cloning protocol. 

All constructs were checked by sequencing for polymorphisms/mutations prior to 

injection for phiC31-mediated insertion in an AttP2 platform containing fly line. All plasmid 

sequences and detailed cloning procedures are available on request. 

 

Chromatin Immunoprecipitation on embryos. 

Four independent chromatin immunoprecipitation experiments were performed as 

follows: embryos were collected twice a day for 2-3 days, washed, frozen dry and kept at -

80°C. They were then processed as described in (Loubiere et al, 2017). The 

immunoprecipitated chromatin was subsequently used in RealTimePCR using the SsoFast 

Evagreen chemistry (Biorad) in a CFX96 thermocycler (Biorad). 100 mg of embryos were used 

for each replicate. The complete list of primers used in this study is provided as supplemental 

material (Table 4). 
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Generation of mutant fly lines by CRISPR/Cas9-mediated genome editing 

 Single guide RNA (sgRNA)-compatible sequences were identified in the regions of 

interest with the Geneious software (Biomatters Ltd); selected sequences had null off-target 

scores. Oligonucleotides for sgRNA cloning in the pCFD3 expression vector (Port et al, 2014) 

were synthetized by Integrated DNA Technologies and processed according to: 

http://www.crisprflydesign.org/wp-content/uploads/2014/05/Cloning-with-pCFD3.pdf. 

Constructs were checked by sequencing prior to injection in vasa-Cas9 transgenic fly strains 

(Port et al, 2014). Three different editing strategies were used depending on the type of 

mutant to generate. 

- Eaf6 and Ing5 genes excisions (Non Homologous Ends Joining): we took advantage of 

the presence of P-elements inserted in the vicinity of the 5’UTR of the genes and used a mini-

white marker reversion-based screening strategy. Briefly, the d06605 transposon (Eaf6) or the 

EY13664 transposon (Ing5) was brought in a vasa-Cas9 genetic background using standard 

Drosophila genetics. The resulting fly strains were used for injection of two sgRNA-containing 

pCFD3 vectors targeting each side of the inserted P-element. sgRNA expression vectors were 

injected at a concentration of 250 ng/uL each. Injected F0 individuals were crossed, then their 

F1 progeny was screened for the reversion of the mini-white marker and positive F1 individuals 

were used to establish stocks. Gene excisions were confirmed by PCR on genomic DNA 

extracted from F2 flies. 

- enokKAT allele engineering (single amino acid substitution, Homology Directed Repair): 

the K807R mutation introduced in the MYST domain of enok affects a Lysine that is highly 

conserved across evolution and critical for the KAT activity of yeast and human MYST proteins 

(Yuan et al, 2012; Yang et al, 2012). A repair DNA template called single stranded 

oligonucleotide donor (ssODN) was injected along with the sgRNA expression vector so as to 

direct the reparation (ssODN: 100 ng/uL and sgRNA: 250 ng/uL). The ssODN sequence 

contained the mutation of interest, as well as a sabotage mutation of the Protospacer 

Adjacent Motif to avoid re-cleaving of an edited chromosome. In addition, the nucleotide 

sequence immediately surrounding the desired site of modification was degenerated by 

introduction of silent mutations, in order to allow the design of a discriminant screening 

primer. 10-15 F1 males were crossed individually for each F0 founder; after 4-5 days in the 

crossing vials, each F1 male was retrieved for single fly DNA extraction. The PCR-based screen 
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of F1 individuals relied on a triple primer PCR: two external primers amplify DNA in both 

positive and negative editing events, while an internal primer specifically amplifies DNA if the 

desired mutation is present. 

- lz third intron excision (Non Homologous Ends Joining): two sgRNA expression vectors 

targeting each extremity of lz third intron were injected at a concentration of 250 ng/uL each; 

10-15 F1 males were crossed individually for each F0 founder and after 4-5 days in the crossing 

vials, they were retrieved and tested for their ability to generate shorter amplicons in PCR 

reactions.  

- enokI931E allele engineering (single amino acid substitution): the mutation was 

designed to target a conserved aminoacid crucial for MOZ binding to nucleosomes in vitro 

(Holbert et al. 2007). The same injection and screen protocol was used for the generation of 

the enokKAT allele. 

- Neurofilament-like domain excision (Non Homologous Ends Joining): two rounds of 

injections were performed, each using a different pair of sgRNA expression vectors targeting 

each extremity the domain. The injection concentration was of 250 ng/uL each; F1 individuals 

were tested for their ability to generate shorter amplicons in PCR reactions. 

- lz upstream regulatory region excision (Non Homologous Ends Joining): two sgRNA 

expression vectors targeting each extremity of lz third intron were injected at a concentration 

of 250 ng/uL each; 10-15 F1 males were crossed individually for each F0 founder and after 4-5 

days in the crossing vials, they were retrieved and tested for their ability to generate shorter 

amplicons in PCR reactions.  

 

 

 

 

 

 

 

 



Table 2: Fly stocks list 
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Table 3 : Antibody stock list 

antibody 

raised against
type source use reference

PPO1 rabbit, polyclonal kind gift of Dr Erjun Ling immunofluorescent staining Li et al., 2012

Lz mouse, monoclonal Developmental Studies Hybridoma Bank immunofluorescent staining Lebestky et al., 2000

P1 mouse, monoclonal kind gift of Dr istvan Ando immunofluorescent staining Kurucz et al., 2007

H3K23ac rabbit, polyclonal Merck Millipore (07-355) immunofluorescent staining Suka et al., 2001

Yki rabbit, polyclonal kind gift of Dr Matthew Gibson immunofluorescent staining Ikmi et al., 2014

HA mouse, monoclonal Biolegend chromatin immunoprecipitations -



 

Table 4 : Primer and CRISPR reagent list 

3xHANotI-Enok GCTGCTCATGCGGCCGCTATGAGGGAATCGGCGCATGATATCAAC

KpnI-STOP-Enok AAAGATCCTCTAGAGGTACCCGCATCTATTATCTGCGAATAGAACCGTTGAG

VT059215 RedStinger F CCCGGTCTCCAAATGCACTGACCTTTTGGCCG

VT059215 RedStinger R CCCGGTCTCCCGTAACTCAATCCCGAAATGTCTTCA 

A1 F GCTGACGTTCTTCTCACGCT

A1 R TCCGACTTATCACATCGAAGGG

A2 F TTCGACCACAAACCAAGGCT

A2 R AGCGAAGGAAAGGCGTGATA

A3 F AACAGCACTGCGTGGAATGG

A3 R GCTCTTCTGTAAATGCATGGCC

A4 F AGTAAACAAAAAGCGCGCCA

A4 R AGTTGGTGACGAAATTCGAGTT

A5 F GACTTAGTGGTCGCATGGGC

A5 R TTCCGTGGAAAACTGCCTGT

A6 F GGATGCTCCACATTTTGCGG

A6 R ATAGGCCTGGCTCCTTTTCG

guide K807R CGTCGTAGTAGAGTGTTTTG

guide ING5 5' CTGTAAAGTAATCGATAACT

guide ING5 3' ATCCACGCGTGCCAAATCCG

guide EAF6 5' ACTGGCTTCAAAATGCAAAG

guide EAF6 3' AGTGCGACAGCGAAGAAAAG

guide lzint3 3' AGCGGCACGTCATTAGAGAG

guide neuro 1 5' CATCGGCACCCATTCCCATT

guide neuro 1 3' GTCCAGCCAAGGAAATAACT

guide neuro 2 5' AGTTGGATCTTGTCCCGAAT

guide neuro 2 3' TCCCTAGTTATTTCCTTGGC

guide I931E AGTTCAATAACTCGAAGGCC

guide lzint3 5' GTGCTGTCCGAACGGTCACT

ssODN K807R
ATTTATTGCCAGAACCTGTGCCTGCTGGCCAAGTTCTTTCTCGACCACAGGACGTTATACTACGACGTAGAACCCTTTCTGTTCTATATTCTCACTAAGAATGAT

CAAAGCGGGTGTCATTTGGTTGGCTACTTCTCAAAGGAGAAGCACTGCACCCAAAAGTACAATGTGTCCGCTATCCTGACGATGCCGCAGTAC

ssODN I931E
GTCGTGTTGGAGTATTTGTACAAGCATCGCAACTACACAAAGATCACCTTCAAGGACATCGCCATTAAAACAGGTCTGGCTATTTCCGACGAGGCTTTAGCCT

TCGAGTTATTGAACTTCATCAAGCTAAGAAAGAACGATGGCGACATTAGGTATCAGATTAATGTGAAAATTGAGTGGAAAAAGGTTTTGGCCCAC

Geno Ing5 F TGCCCAATTGTTTTGGGTTA

Geno Ing5 R TCCGAATTAAAGGGCATTGA

Geno Eaf6 F TGACGCGATGCTGAAAGTAG

Geno Eaf6 R CCACGGGGAGATCATTAGAA

Geno lzint3 F CGCAACTTCACCACCCAGAT

Geno lzint3 R TGATGGCTTTGGCGTAGGTT

Geno enok F GGATGGCAATGTCAACAAGA

Geno enok R TCCAACACGACTGATTTCCA

K807R F TTCTCGACCACAGGACGTTA

geno I931E F GCTTCCTGATCGACTTCAGC

geno I931E R TGGTTGCTCAAATATTCACGAT

I931E F GCTATTTCCGACGAGGCTTTA

geno ΔNeuro F TCCGAGGAGCCTCAGTTCA

geno ΔNeuro R TGCGTCCAGGTGAGAGAGA

Chromatin Immunoprecipitation primers

Cloning primers

CRISPR guide RNA

ssODN sequence

CRISPR genotyping primers
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VI. Discussion 
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A. General conclusions  

 

During my PhD work I described for the first time that Enok, the Drosophila counterpart 

of MOZ, also plays a critical role during Drosophila larval hematopoiesis. Enok is indeed 

required for the formation of one of the three blood cell lineages, the crystal cell lineage. It 

controls the expression of lz, which encodes a RUNX transcription factor specific of the crystal 

cell lineage. In addition, I showed that Enok plays its role in a cell-autonomous manner in 

crystal cell precursors that are plasmatocytes activated by the Notch signaling pathway. Also, 

I demonstrated that, Enok acts independently of its catalytic activity together with only one 

of its canonic partners, Br140, to control lz expression. Furthermore, I showed that Enok is 

able to bind specifically the third intron of lz, on a genomic region that drives expression in 

the crystal cell progenitors and, more importantly, which is able to rescue lz loss of function 

phenotype by overexpressing lz itself. In addition, excision of this third intron leads to a 

hematopoietic specific loss of lz function, since mutant larvae are deprived of crystal cells in 

circulation.  

In the last part of my training, I generated specific deletions in the enok gene using the 

CRISPR/Cas9 system. While the Neurofilament-like domain of Enok appears dispensable for 

its functions, deletion of the C-terminus of enok induces lethality without affecting 

hematopoiesis or its ability to acetylate H3K23. This phenotype indicates an essential role of 

Enok for survival, which relies on its C-terminal part.  

Altogether, my results unveil a new mode of action for Enok in a process in which it 

has never been implicated before. The mode of action that we uncovered may bring new 

insights into MOZ functions in mammalian development, during which it has been mostly 

studied considering its catalytic activity. More particularly, my work could lead to a better 

understanding of MOZ mode of action in both normal and pathological hematopoiesis. 

 

 To conclude this manuscript, I will discuss several points that have raised my interest 

during my PhD work. I showed that lz expression in Hematopoietic Pockets is not induced by 

Yki. Since Yki expression is detected in NRE-GFP positive cells, I will first discuss about a 

potential role of Yki during crystal cell differentiation. Then, I will discuss about the catalytic 
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independent roles and mode of action of Enok throughout development and more particularly 

during hematopoiesis. Finally, I will discuss the possibility that Drosophila could be a valuable 

model to study the molecular mechanisms involved during MOZ-related diseases in mammals.  

 

B. A possible role for Yki in Hematopoietic Pockets 

 

 I demonstrated that the regulation of lz expression in circulating Notch-activated 

hemocytes is not the same as what has been shown by Ferguson et al in the lymph gland 

(Ferguson et Martinez-Agosto 2014). Indeed, the Hippo pathway effector Yorkie is not 

initiating lz expression in circulating crystal cell precursors, since in this compartment lz 

expression precedes that of yki. There are major differences between the sessile/circulating 

and lymph gland compartments, and thus crystal cell differentiation is likely to rely on 

different mechanisms depending on the cellular context. Indeed, it is reported that in the 

lymph gland crystal cells are formed directly from the de novo differentiation of naïve 

progenitors, whereas in Hematopoietic Pockets crystal cells are generated by the 

transdifferentiation of mature, fully differentiated plasmatocytes (Leitão et Sucena 2015). 

What I show in my work may therefore be a specific mechanism involved only in the 

transdifferentiation process that takes place in Hematopoietic Pockets.  

 In a recent study, Jang et al showed that when YAP, the mammalian homolog of Yki, is 

phosphorylated and sequestrated in the cytoplasm, a fraction of phosphorylated YAP remains 

in the nucleus and can interact with RUNX1 and/or RUNX3 (Jang et al. 2017). It is noteworthy 

that, while YAP interaction with its canonic partner TEAD promotes proliferation (Hippo 

pathway off), the interaction between phosphorylated YAP and RUNX3 occurs during cell cycle 

arrest (Hippo pathway on). Furthermore, the authors showed that lz overexpression is able to 

rescue the eye overgrowth phenotype induced by YkiS168A (the activated form of Yki) 

overexpression. This experiment showed that Lz is able to antagonize Yki activity; this 

antagonism might rely on a conserved interaction between RUNX factors and YAP. This study 

suggests that in Drosophila Lz could interact with Yki to inhibit its proliferative effects. 

Interestingly, in the hematopoietic pockets plasmatocytes are able to proliferate, which is in 

agreement with the absence of Hippo pathway activation. In these cells, Yki could interact 
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with Sd in the nucleus to promote proliferative genes expression. After their 

transdifferentiation into crystal cells, which have never been shown to have any dividing 

capacities, the Hippo pathway would be turned on. This model fits the observation that Yki is 

mostly localized in the cytoplasm of crystal cells. Considering that phosphorylated YAP is able 

to interact with RUNX factors, it is possible to hypothesize that Lz may form a complex with 

phosphorylated Yki in the crystal cell nucleus to promote the expression of their target genes. 

It is further interesting to note that Milton et al showed that Yki is able to bind directly lz third 

intron (Milton et al. 2014); among all the possible binding regions of a hypothetic Lz/Yki 

complex, this third intron itself is a good candidate, as it could be required for the 

maintenance of lz expression in differentiating crystal cells.  

YAP interacting domain on RUNX1 has been identified, thus if the amino acid sequence 

homology is sufficient between RUNX1 and Lz, it would be possible to mutate the identified 

Yki-interacting domain in Lz, and see if Lz/Yki interaction is required for correct lz expression 

during crystal cell differentiation in vivo.  

 

C. Study of Enok catalytic-independant activity during Drosophila 

development 

 

1. enok KAT activity during embryogenesis 

 

Catalytically inactive enok mutants are viable and I observed that homozygous adult 

females are sterile. This may be due to a requirement of this KAT activity in the germline, as it 

has been shown that Enok plays an essential role both in the maintenance of germline stem 

cells (Xin et al. 2013) and oocyte polarization (Huang et al. 2014) in females. Since catalytically 

inactive mutant females do not display any obvious defect in egg-laying, the sterility is likely 

due to an embryonic development failure. Huang et al demonstrated that enok mutant 

germline clone embryos (lacking maternal contribution) die during embryonic development 

due to a segmentation defect (Huang et al. 2014). It could be interesting to look at the early 

stages of development in enokKAT mutant embryos to determine if the arrest in embryonic 

development is caused by the same segmentation defect.  
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 Thanks to the strong enok maternal contribution, mutant phenotypes only appear in 

the larval stages, thus preventing us from characterizing easily a potential function of enok in 

embryonic hematopoiesis. However, enok mutant germline clone embryos develop until at 

least embryonic stage 12. Since srp expression is detected in prohemocytes at stage 5, and 

crystal cells specific markers PPO1 and PPO2 are expressed at stage 11, enok mutant germline 

clone embryos can be used to address the question of enok function in embryonic 

hematopoiesis. If hematopoietic defects are observed in germline clone embryos, the 

comparison with embryos laid by enokKAT mutant females should establish whether they 

depend on the catalytic activity of Enok or not. Alternatively, it could be possible to investigate 

enok function during embryonic hematopoiesis by using targeted RNA interference. In such 

experiments it would be possible to investigate specifically enok involvement at different 

steps of the hematopoietic process, such as prohemocyte emergence or differentiation.  

 

2. Conservation of Enok/MOZ roles in cell cycle regulation and progenitor 

proliferation 

 

Several studies showed that MOZ is required to regulate cell cycle progression, notably 

for the G1/S transition (Sheikh et al. 2017; Flor M. Perez-Campo et al. 2014) in hematopoietic 

and neural stem cells, and in particular to maintain them in a quiescent state. Furthermore, 

MOZ catalytic activity has been shown to be required for the proliferation of hematopoietic 

progenitors (F. M. Perez-Campo et al. 2009), but not for their ability to generate all blood cell 

types. These molecular functions are conserved in Enok, as it is required to control the G1/S 

transition by controlling the PCNA unloading properties of Elg1 in S2 cells (Huang et al. 2016), 

and for the proliferation of neuroblasts during mushroom bodies development (Scott, Lee, et 

Luo 2001). However, we don’t know whether Enok is also required for cell cycle control and 

progenitor proliferation during hematopoiesis. 

 I showed during my PhD training that the catalytic activity of Enok is not required for 

crystal cell differentiation; however, we did not assess the effect of the catalytic loss of 

function of Enok on the proliferative capacities of plasmatocytes, are responsible for the 

expansion of the circulating pool of hemocytes (Makhijani et al. 2011; Leitão et Sucena 2015). 
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Although we did not observe any reduction in circulating hemocyte number in enok mutants, 

it would be necessary to study properly plasmatocyte proliferative abilities in an enokKAT 

mutant context by using specific markers, such as phospho-Histone H3. Finally, it may be also 

interesting to analyze the effect of enokKAT mutation on progenitors of the lymph gland in the 

medullary zone and the posterior lobes.  

 

3. Mechanistic hypotheses accounting for catalytic-independent regulation of 

lz expression by Enok in larval Hematopoietic Pockets 

  

 A recent study showed that during development, Enok and its partner Br140, along 

with Polycomb complexes, are detected on bivalent promoters of developmentally regulated 

genes (Kang et al. 2017). Bivalency is achieved on promoters with specific histone marks: the 

first one is trimethylation of histone H3 on lysine 27 (H3K27me3), which promotes 

transcriptional repression, and the second is trimethylation of histone H3 on lysine 4 

(H3K4me3), which promotes transcriptional activation. The authors propose a model where, 

in response to developmental cues, this bivalency is resolved, and the corresponding gene is 

either transcribed or repressed. My work demonstrated that both Enok and Br140 participate 

in the same process that is the control of lz expression during crystal cell differentiation. In 

addition, I showed that Enok is able to directly bind the lz gene in a region that is essential for 

its expression in circulating crystal cell precursors. Interestingly, in the Drosophila S2 cell line, 

data from MODencode project reveal that the lz locus lies in a H3K27me3 chromatin domain 

(Kharchenko et al. 2011) and a previous study by Kang et al show that it is heavily bound by 

Polycomb. According to the model proposed by Kang et al, it is then possible that, in response 

to Notch activation in plasmatocytes, Enok/Br140 would allow the recruitment of activating 

factors triggering a switch in chromatin state at the lz locus from a repressed to an active state, 

thereby promoting lz expression. 

 

In addition to this possible scenario, some evidences in the literature led me to build 

another hypothesis explaining the Enok-dependent lz regulation. It has been shown in human 

intestinal cells that the polyadenylation factor Symplekin is required for the direct 
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transcriptional inhibition of RUNX1 thus preventing intestinal goblet cell differentiation 

(Buchert et al. 2009). In addition, Symplekin is directly recruited on HOXA9 promoter in KG1 

AMLO immature hematopoietic cells to prevent recruitment of MOZ and MLL, therefore 

regulating HOXA9 expression (Largeot et al. 2013). These mechanisms might be conserved on 

lz regulatory regions in Drosophila, which possesses a Symplekin homolog. It is therefore 

possible that the mechanism of lz regulation relies on a binding competition between 

Symplekin and Enok for the regulatory regions of lz . 

 

Finally, a third mechanistic hypothesis can be elaborated based on the observation 

that, in hematopoietic derived M1 and Jurkat T cells, MOZ has been shown to potentiate 

RUNX1-mediated transcription through a direct interaction (Kitabayashi 2001; Bristow 2003). 

This interaction is mediated by MOZ N-terminal and C-terminal parts, and has been 

demonstrated to be independent of MOZ catalytic activity (Kitabayashi 2001). Thus, 

conservation of this catalytic-independent MOZ/RUNX1 interaction across evolution would 

provide a simple mechanistic explanation for the non-catalytic mode of action of Enok in the 

control of lz expression during plasmatocyte to crystal cell transdifferentiation. Although the 

enokM31.1 mutant allele revealed that the C-terminus of Enok is not required for larval crystal 

cell formation in the hematopoietic pockets, it is still possible that its conserved N-terminal 

part might be involved in an interaction with Lz itself. Interestingly, while the cis-elements 

required to ensure lz autoregulation during embryogenesis are located in the lz-upstream 

region (Ferjoux et al. 2007), I identified RUNX binding sites in the lzVT059215 region, raising the 

possibility that this region might also be the target of an autoregulatory loop. An interaction 

between Enok and Lz would therefore explain how Enok controls lz expression via the third 

intron enhancer. This hypothesis implies that Enok and Lz have the capacity to interact 

physically, which can be tested in co-immunoprecipitation experiments. Should this 

hypothesis be proven, subsequent ChIP-on-ChIP experiments could be used to assess if this 

interaction occurs on the third intron enhancer. In addition, mutagenesis of the RUNX binding 

site in the lzVT059215-RedStinger reporter and/or endogenous lz intron could provide additional 

elements allowing us to rule out / to establish a possible role for a conserved MOZ/RUNX 

interaction during Enok-dependent control of lz expression in crystal cell precursors. 
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4. Mechanistic hypothesis accounting for Enok-dependent negative 

regulation of Srp/Lz-transactivation in cultured cells 

 

It has been reported previously that, in Drosophila cultured Kc167 cells, Enok acts as a 

negative regulator of Srp/Lz-mediated transcription (Gobert et al. 2010). This repressor 

activity might also find its source in an interaction between Enok and Lz, which would 

antagonize Srp/Lz-dependent transcription. Indeed Srp and Enok could compete for 

interaction with Lz; alternatively, the formation of a ternary Srp/Lz/Enok complex might 

induce conformational changes that render the complex less efficient to promote 

transcription of the PPO1 and PPO2 target genes.  

 

5. A possible conservation of KAT independent functions in the MYST family  

 

The novel idea that there are catalytic independent functions of Enok and seemingly MOZ 

during development raises an interrogation: is this differential requirement for catalytic and 

non-catalytic functions specific of Enok/MOZ ? The high level of conservation of the MYST 

domains allows us to introduce the same mutation that I used to abrogate the catalytic activity 

of Enok in other Drosophila MYST proteins in vivo. Systematic comparison of the phenotypes 

induced by complete loss of function and specific catalytic abrogation should allow us to 

establish whether non-catalytic functions are a common feature of all Drosophila MYST 

proteins or not. Given the versatility of CRISPR/Cas9 techniques, similar approaches could be 

conducted in vertebrate models like Zebrafish, in order to establish whether all MYSTs lysine 

acetyltransferases display this dual mode of action. 

 

D. Drosophila as a model to study MOZ-related diseases 

 

 It is well established that in mammals MOZ is a crucial player during hematopoietic 

development and this work demonstrated that Enok also plays an essential role during 
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Drosophila hematopoiesis. Since fusion proteins involving MOZ are associated with malignant 

hematopoiesis and Drosophila has been largely used to model human diseases, it would be 

interesting to express human leukemogenic MOZ versions (MOZ-CBP, MOZ-p300, MOZ-TIF2 

and/or MOZ-NCoA3) in Drosophila hematopoietic compartments, in order to decipher the 

molecular mechanisms at work during those leukemic transformations. 
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L’hématopoïèse est un processus très finement régulé qui mène à la formation de chaque cellule sanguine d’un organisme. Chez 

les mammifères il existe un nombre important de types cellulaires qui participent à l’établissement des mécanismes de défense du corps. 

Toutes ces cellules proviennent de la différenciation terminale d’une cellule unique appelée Cellule Souche Hématopoïétique (CSH) qui, par 

le biais de différenciations successives donnant naissance à des progéniteurs de plus en plus spécifiés, va permettre l’établissement normal 

de tous les types de cellules sanguines. Les CSH sont parmi les cellules les plus finement contrôlées de l’organisme, car en effet une 

dérégulation de leur fonctionnement normal (prolifération excessive, différentiation prématurée…) peut entrainer de graves conséquences, 

à savoir des maladies du sang appelées leucémies.  

De nombreux facteurs moléculaires sont impliqués dans la régulation des CSH, et certains d’entre eux sont les cibles de mutations 

ou réarrangements chromosomiques à l’origine de leucémies, tels que le facteur de transcription RUNX1 et la Lysine Acétyl-Transférase (KAT) 

Monocytic Leukemia Zinc-Finger (MOZ).  

Chez la Drosophile, les cellules sanguines sont apparentées au lignage myéloïde des mammifères, et les acteurs moléculaires 

contrôlant leur formation sont très conservés. Ainsi, les cellules à cristaux (CC), qui sont les homologues fonctionnels des mégakaryocytes, 

sont formées suite à l’action conjointe de l’homologue de RUNX1, Lozenge (Lz) et de GATA1, Serpent (Srp). Un crible pan génomique mené 

par mon équipe d’accueil visant à trouver des modulateurs de l’activité transcriptionelle de Lz et Srp, a permis de d’identifier le gène enoki 

mushroom (enok) comme étant un régulateur négatif de cette activité. Enok est l’homologue chez la Drosophile de MOZ, et une étude 

préliminaire de son rôle in vivo a pu mettre en évidence une fonction essentielle dans le développement des CC, qui disparaissent quasiment 

en totalité dans un contexte mutant pour enok.  

L’objectif de ma thèse a été de comprendre les mécanismes par lesquels Enok régule la formation des CC chez la larve de Drosophile.  

Les CC sont générées au stade larvaire à partir de la transdifférenciation de macrophages après activation par la voie Notch, et 

l’initiation de Lz. Au contraire de données publiées récemment par un autre groupe, j’ai démontré que Lz est requis et suffisant pour induire 

l’expression de l’effecteur de la voie Hippo Yorkie, et non l’inverse. De plus, grâce à des expériences de perte de fonction et de sauvetage 

phénotypique, j’ai montré qu’Enok est requis pour l’expression de Lz de façon autonome cellulaire dans les précurseurs de CC.  

Chez les mammifères, MOZ est connu pour faire partie d’une tétrade d’acétylation, et j’ai montré qu’ici seul un de ses partenaires 

est requis, le facteur de type BRPF Br140. Pour approfondir l’étude de la fonction d’Enok, j’ai généré grâce au système CRISPR/Cas9 un allèle 

catalytiquement inactif d’enok. J’ai ainsi montré que cette fonction n’est absolument pas requise durant la différenciation des CC.  

Enfin, j’ai montré qu’Enok permet la régulation de l’expression de Lz en se fixant sur un enhancer dans le troisième intron du gène. 

De façon intéressante, sa délétion provoque le même phénotype de perte de CC qu’une perte de fonction d’enok, montrant qu’il est requis 

pour l’expression de lz dans le système hématopoiétique.   

Ces résultats mettent en valeur un nouveau mode d’action d’Enok dans l’hématopoïèse chez la Drosophile. De façon intéressante, 

une étude récente propose qu’Enok et Br140 se fixent sur la chromatine pour réguler l’expression de gènes cibles. Mes résultats sur une 

fonction non-catalytique d’Enok viennent enrichir ce modèle, qui montre un mode d’action peu exploré dans le domaine. Dans le futur, ce 

travail pourrait ouvrir des portes sur une meilleure compréhension des fonctions normales et pathologiques de MOZ chez les mammifères.  

 
Hematopoiesis is a very tightly regulated process leading to the normal production of every blood cells in an organism. In mammals 

there is a lot of cell types that participate to the establishment of the defense mechanisms of the body. All those cells come from the terminal 

differentiation of a single cell called Hematopoietic Stem Cell (HSC) which will differentiate to give rise to committed progenitors that will 

eventually differentiate all blood cell types. HSCs are among the most controlled cells in the organism. Indeed, deregulation of their normal 

function (excessive proliferation, premature differentiation, …) can be at the onset of severe blood pathologies called leukemias.  

 Several molecular factors are involved in HSC regulation, and some of them, like RUNX1 and the Monocytic Leukemia Zinc-Finger 

protein (MOZ), are targets of mutations or chromosomal rearrangements that lead to a leukemic transformation. 

 In Drosophila, blood cells share functional homology with the mammalian myeloid lineage, and the molecular actors controlling 

their formation are well conserved. Indeed, differentiation of crystal cells (CC), which have similar functions than megakaryocytes, occurs 

following the interaction of RUNX1 homolog, Lozenge (Lz) and GATA1 Serpent (Srp). With the aim at identifying regulators of Srp/Lz 

transcriptional activity, a genome-wide screen led by my team allowed the identification of enoki mushroom (enok) as a strong negative 

regulator of this activity. Enok is the homolog of MOZ in Drosophila, and a preliminary study in vivo showed that Enok is essential for CC 

development during the larval stage, as CC almost completely disappear in enok loss of function context.  

 The objective of my PhD was to understand the mechanisms by which Enok regulates CC formation in the Drosophila larvae.  

 During the larval stage, CC are generated by the transdifferentiation of macrophages, after their activation by the Notch signaling 

pathway and onset of Lz expression. In contrast to data published by another group, I demonstrated that Lz is required and sufficient to 

initiate the expression of the Hippo signaling pathway effector Yorkie, and not the contrary. Furthermore, using loss of function and rescue 

experiments, I showed that Enok is absolutely required cell autonomously in CC precursors for Lz expression but not for the proper Notch 

signaling which appears normal in an enok mutant context. 

  In mammals, MOZ is known to be a part of an acetylation complex, and I showed that only one of its members, the BRPF factor 

Br140, is required alongside with Enok during CC differentiation. To go further into the characterization of Enok mode of action, I generated 

a catalytically inactive enok mutant using the CRISPR/Cas9 system and demonstrated that this function is completely dispensable for CC 

differentiation in the larvae.  

 Finally, I show that Enok regulates the maintenance of lz expression by binding to an enhancer located in its third intron. Hence, 

deletion of this enhancer provokes the same loss of CC phenotype as what is observed after enok loss of function showing that this enhancer 

is required for lz expression in the hematopoietic system.  

 These results highlight a new mode of action of Enok during Drosophila hematopoiesis. Interestingly, a recent study proposed 

that Enok and Br140 bind chromatin together in order to regulate gene expression. Therefore, my results on a non-catalytic activity of the 

drosophila Enok brings new insights into this new model, which uncovers a mode of action not much explored in the field.  In the future, 

my work should open new avenues  and might allow a better understanding of MOZ normal functions in mammals and thus give rise to 

more efficient ways to treat MOZ-associated pathologies. 


