
HAL Id: tel-02934428
https://theses.hal.science/tel-02934428v1

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prediction rule mining in an Ambient Intelligence
context

Benoit Vuillemin

To cite this version:
Benoit Vuillemin. Prediction rule mining in an Ambient Intelligence context. Artificial Intelligence
[cs.AI]. Université de Lyon, 2020. English. �NNT : 2020LYSE1120�. �tel-02934428�

https://theses.hal.science/tel-02934428v1
https://hal.archives-ouvertes.fr

N° d'ordre NNT : 2020LYSE120

THESE DE DOCTORAT DE L'UNIVERSITE DE LYON
opérée au sein de

l'Université Claude Bernard Lyon 1

Ph.D. THESIS

Recherche de règles de prédiction dans un
contexte d'Intelligence Ambiante

Prediction rule mining in an Ambient
Intelligence context

Soutenue publiquement le 08/07/2020, par
Benoit Vuillemin
Ecole Doctorale N° 512

Ecole Doctorale Informatique et Mathématiques

Spécialité de doctorat : Informatique

Devant le jury composé de :

Mme EL FALLAH SEGHROUCHNI, Amal Professeure, Sorbonne Université Présidente

M. FOURNIER-VIGER, Philippe Professeur, Harbin Institute of Technology Rapporteur
M. REIGNIER, Patrick Professeur des Universités, Grenoble INP Rapporteur
M. CHAMPIN, Pierre-Antoine Maître de Conférences, Université Lyon 1 Examinateur
M. NAPOLI, Amedeo Directeur de Recherche CNRS, Université de Lorraine Examinateur

Mme HASSAS, Salima Professeure des Universités, Université Lyon 1 Directrice de thèse
Mme NICOL, Rozenn Chercheure, Orange Labs Lannion Co-directrice de thèse
Mme MATIGNON, Laetitia Maître de Conférences, Université Lyon 1 Co-encadrante
M. DELPHIN-POULAT, Lionel Chercheur, Orange Labs Lannion Co-encadrant et invité

ii

Université Claude Bernard – LYON 1

Administrateur provisoire de l’Université M. Frédéric FLEURY
Président du Conseil Académique M. Hamda BEN HADID
VicePrésident du Conseil d’Administration M. Didier REVEL
VicePrésident du Conseil des Etudes et de la Vie
Universitaire

M. Philippe CHEVALLIER

VicePrésident de la Commission de Recherche M. JeanFrançois MORNEX
Directeur Général des Services M. Pierre ROLLAND

COMPOSANTES SANTE

Département de Formation et Centre de Recherche en
Biologie Humaine

Directrice : Mme AnneMarie
SCHOTT

Faculté d’Odontologie Doyenne : Mme Dominique SEUX
Faculté de Médecine et Maïeutique Lyon Sud Charles
Mérieux

Doyenne : Mme Carole BURILLON

Faculté de Médecine LyonEst Doyen : M. Gilles RODE
Institut des Sciences et Techniques de la Réadaptation
(ISTR)

Directeur : M. Xavier PERROT

Institut des Sciences Pharmaceutiques et Biologiques
(ISBP)

Directrice : Mme Christine
VINCIGUERRA

COMPOSANTES & DEPARTEMENTS DE SCIENCES & TECHNOLOGIE

Département Génie Electrique et des Procédés (GEP) Directrice : Mme Rosaria FERRIGNO
Département Informatique Directeur : M. Behzad SHARIAT
Département Mécanique Directeur M. Marc BUFFAT
Ecole Supérieure de Chimie, Physique, Electronique
(CPE Lyon)

Directeur : Gérard PIGNAULT

Institut de Science Financière et d’Assurances (ISFA) Directeur : M. Nicolas LEBOISNE
Institut National du Professorat et de l’Education Administrateur Provisoire : M. Pierre

CHAREYRON
Institut Universitaire de Technologie de Lyon 1 Directeur : M. Christophe VITON
Observatoire de Lyon Directrice : Mme Isabelle DANIEL
Polytechnique Lyon Directeur : Emmanuel PERRIN
UFR Biosciences Administratrice provisoire : Mme

Kathrin GIESELER
UFR des Sciences et Techniques des Activités Physiques
et Sportives (STAPS)

Directeur : M. Yannick VANPOULLE

UFR Faculté des Sciences Directeur : M. Bruno
ANDRIOLETTI

iii

iv

Résumé
Cette thèse traite du sujet de l’intelligence ambiante, fusion entre l’intelligence artificielle et
l’internet des objets. L’objectif de ce travail est d’extraire des règles de prédiction à partir
des données fournies par les objets connectés dans un environnement, afin de proposer aux
utilisateurs des automatisations. Notre principale motivation repose sur la confidentialité, les
interactions entre utilisateurs et l’explicabilité du fonctionnement du système. Dans ce con
texte, plusieurs contributions ont été apportées. La première est une architecture d’intelligence
ambiante qui fonctionne localement et traite les données provenant d’un seul environnement
connecté. La seconde est un processus de discrétisation sans a priori sur les données d’entrée,
permettant de prendre en compte les différentes données provenant de divers objets. La
troisième est un nouvel algorithme de recherche de règles sur une série temporelle, qui évite
les limitations des algorithmes de l’état de l’art. L’approche a été validée par des tests sur deux
bases de données réelles. Enfin, les perspectives de développement du système sont présentées.

v

vi

Abstract
This thesis deals with the subject of Ambient Intelligence, the fusion between Artificial Intel
ligence and the Internet of Things. The goal of this work is to extract prediction rules from
the data provided by connected objects in an environment, in order to propose automation
to users. Our main concern relies on privacy, user interactions, and the explainability of the
system’s operation. In this context, several contributions were made. The first is an ambient
intelligence architecture that operates locally, and processes data from a single connected en
vironment. The second is a discretization process without a priori on the input data, allowing
to take into account different kinds of data from various objects. The third is a new algo
rithm for searching rules over a time series, which avoids the limitations of stateoftheart
algorithms. The approach was validated by tests on two real databases. Finally, prospects for
future developments in the system are presented.

vii

viii

Remerciements

Aux encadrants et membres du jury

Je tiens tout d’abord à remercier Mme Salima HASSAS d’avoir accepté d’être ma directrice de
thèse. Merci pour ton encadrement, ton écoute, pour avoir trouvé le stage de fin d’études et
lancé, en coordination avec l’équipe IAM d’Orange, l’initiative de la thèse.

Un immense merci à Mme Rozenn NICOL, sans qui la thèse n’aurait pas pu se faire.
Merci pour ton encadrement exceptionnel, tes questions pertinentes, ta patience, et pour
m’avoir supporté durant ces trois ans.

Un énorme merci aussi à M. Lionel DELPHINPOULAT, qui a bien voulu m’encadrer
par pur intérêt scientifique. Merci pour ta perspicacité, ta bonne humeur, ton apport scien
tifique considérable et ta mémoire absolument phénoménale. Merci aussi pour tous ces débats
passionnés qui ont animé la thèse.

Merci à Mme Laetitia MATIGNON, qui a bien voulu encadrer la thèse. Merci pour ta
disponibilité, tes commentaires qui ont toujours visé juste, et ton apport scientifique tout au
long de la thèse.

Merci aux rapporteurs, M. Philippe FOURNIERVIGER et M. Patrick REIGNIER, dont
les échanges ont été particulièrement intéressants. Merci pour vos retours sur la thèse.

Enfin, merci aux autres membres du jury, Mme Amal EL FALLAH SEGHROUCHNI,
M. PierreAntoine CHAMPIN, et M. Amedeo NAPOLI. Merci pour vos questions perti
nentes et votre intérêt pour ce sujet.

ix

Aux collègues d'Orange et du LIRIS
J’ai un remerciement tout particulier à adresser à l’équipe IAM d’Orange Labs Lannion, chez
qui j’ai pu effectuer mon stage de fin d’études et cette thèse. Ce furent quatre années mag
nifiques passées à vos côtés. Merci pour toutes les opportunités que vous m’avez offertes, votre
bonne humeur, vos valeurs, votre expertise et surtout votre écoute.

Un merci particulier à Christian, Katell, Nicolas, Patrick, Loïc, Cédric, Dominique, Cyril,
Gildas, Julien, Régis, Joachim, Lénaïc, Lucie, Joseph, Théo, Alexandre, Georges, Thierry,
Clément, Yann, Vincent, et j’en oublie sûrement beaucoup trop. Vous me manquez déjà.

Merci à l’équipe SMA du laboratoire LIRIS, ainsi qu’aux autres doctorants de ce labora
toire, de m’avoir accueilli chaleureusement lors de mes séjours à Lyon.

A ma famille
A mes parents, merci infiniment pour votre éducation, pour m’avoir poussé à donner le max
imum dans ce que je fais, pour vos valeurs inculquées, et votre soutien sans faille. Moi aussi,
je vous dois tout.

A ma grande sœur Aurélie, un immense merci. Je peux enfin te répondre dans ma propre
thèse ! Merci de croire en moi. Tu vois, j’ai foncé ! Profite bien de la merveilleuse famille que
tu as pu bâtir avec Marc et Gaspard.

A mon beaufrère Marc, merci de m’avoir appris à lâcher prise et à toujours voir la vie du
bon côté.

Merci à tonton Serge de m’avoir transmis la passion de l’informatique, et merci à tonton
Gilles et tata Véronique de m’avoir soutenu durant toutes ces années.

Merci à mes grandsparents, du côté de mes deux parents, pour leur amour et leur aide
depuis de nombreuses années. Pépé, tu n’as malheureusement pas pu me voir docteur, mais
j’espère que tu reposes en paix.

Enfin, un énorme merci à ma compagne Insun, qui m’a soutenu et m’a aidé à y voir clair
dans ces périodes d’incertitudes. Maintenant que la thèse est terminée, il nous reste toute une
vie à bâtir !

A mes amis
Merci enfin à mes amis, pour avoir été là à chaque instant, pour les meilleurs moments comme
pour les pires. Dans le désordre, merci à Vincent, Alexandre, Guillaume, Camille, Jiseon,
Pierre, Corentin, Dimitri, Luc, Seunjae, Matthieu, JeanPierre, Giseok et Axel. J’ai hâte de
partager d’avantage de bons moments en votre compagnie !

x

List of Figures

1.1 Transposition of the devices invented at the Xerox Lab into today’s world . . 8
1.2 Illustration of a supervised learning algorithm 15
1.3 The different layers of AmI, inspired by [Olaru et al., 2013] 19
1.4 Screenshot of the Smart AR Home application, showcasing a connected bulb 23
1.5 Positioning of the thesis in the AmI domain 26

2.1 Abstract view of the AmI system. The first idea is to have a system that receives
the data from the connected objects and controls them 28

2.2 Representation of an AmI system operating in the cloud 31
2.3 Representation of an AmI system operating locally 32
2.4 Environment example . 36
2.5 Representation of a time series . 37
2.6 Example of quantitative events from a temperature sensor 39
2.7 Discretization of quantitative data with value ranges 41
2.8 Discretization of quantitative data with variations. Dashed variations are

considered similar, as are dotted ones. 41
2.9 Discretization of quantitative data with patterns. Dashed variations are con

sidered similar. 41
2.10 Abstract view of the system. The AmI system will need preprocessing algo

rithms to clean and take into account the different kinds of events sent by
the connected objects . 42

2.11 Example of a frequent sequence in a time series 43
2.12 Example of a frequent pattern in a time series 44

xi

List of Figures

2.13 Abstract view of the system. This diagram presents the functional architecture
of the AmI system, allowing to search for habits. 45

2.14 Abstract view of the system. This diagram outlines the architecture of the
AmI system, including the feedbacks. 46

3.1 Creation of an automation within the IoT Mashup interface 50
3.2 Architecture of the proposed AmI system 51
3.3 Example of merging two time series based on the time of arrival of events . . 53
3.4 Example of adding time indicators to a time series. Here, hour and weekday

indicators are added. 54
3.5 Mockup of a graphical presentation of a rule 56
3.6 Implementation of the AmI system. The system is not adaptive as it stands,

but the main components are present . 59

4.1 Architecture of the preprocessing part of the AmI system 62
4.2 Example of a time series of categorical events. It is possible to draw a curve

(dashed on the figure) on the basis that as long as there is no new event, the
selected category does not change . 63

4.3 Same time series as in figure 4.2, but with redundancies removed. Note that
the variations, and therefore the curve, of the time series have not changed . 63

4.4 Example of the preprocessing a time series of quantitative events 64
4.5 Sliding Window Algorithm Example. Here, the second point is removed,

but the macroscopic variations remain . 66
4.6 Result of the segmentation algorithm on quantitative data. Illustration with

events sent by two sensors registered on January 30, 2017, Orange4Home
database [Cumin et al., 2017a] . 68

4.7 Result of the segmentation on data from a sensor with high variations, where
the cleaning is not as effective as in figure 4.6. Data from the voltage sensor
monitoring the kitchen oven, January 30, 2017, Orange4Home database
[Cumin et al., 2017a]. 68

4.8 Representation of a dendrogram, result of the hierarchical clustering of the
segments shown in figure 4.6d . 72

4.9 Cutting of the dendrogram at 0.479, resulting in new groups of segments
that will form atoms . 72

4.10 Result of the choice of the distance value on the formed atoms and the sil
houette. Illustration with data from the kitchen temperature sensor taken on
January 30, 2017, Orange4Home database [Cumin et al., 2017a] 74

5.1 Example illustrating the problems of the notion of support on time series
defined in [Mannila et al., 1997] . 81

5.2 Example of conversion of a time series into transactions 83
5.3 Examples of time series . 84
5.4 Support calculation examples. Each column represents a stepbystep exam

ple of support calculation . 86
5.5 Examples of rules and time series . 88
5.6 ExpandCondition Search Area . 90
5.7 ExpandPrediction Search Area . 90
5.8 Number of rules and execution time, TSRuleGrowth on Orange4Home (O4H)

and ContextAct@A4H (A4H) . 92

xii

List of Figures

5.9 Histogram of the atoms grouped by their support in ContextAct@A4H . . . 93
5.10 Histogram of the atoms grouped by their support in Orange4Home 93
5.11 Evolution of the average interest of the rules found by TSRuleGrowth, ac

cording to the size of the window . 94
5.12 Number of rules for TRuleGrowth on Orange4Home (O4H) and Contex

tAct@A4H (A4H) . 96

6.1 Diversity of the objects from the Orange4Home database [Cumin et al., 2017a] 101
6.2 Planning of the first week of the Orange4Home database, excerpt from the

Orange4Home documentation [Cumin et al., 2017a] 104
6.3 Screenshot of the survey displaying automation proposals 112

xiii

xiv

List of Tables

1.1 Allen’s thirteen temporal relationships between events. Taken from [Allen,
1984]. 21

5.1 Database characteristics, and parameters applied to TSRuleGrowth 91

C.1 Mapping table between the objects present in the Orange4Home database
[Cumin et al., 2017a] and their manually defined functionality 127

xv

xvi

Nomenclature

Acronyms
AI Artificial Intelligence

AmI Ambient Intelligence

UbiComp Ubiquitous Computing

Symbols
δt Data observation period used in the preprocessing part of the AmI system

∆tr Duration used to divide a time series into limited subsets, which will become
transactions

θclu Threshold used in the clustering algorithm, present in the preprocessing part
of the AmI system

θseg Threshold used in the segmentation algorithm, present in the preprocessing
part of the AmI system

A Set of all atoms

a Atom: categorical data describing a variation coming from an object, built
after preprocessing of the events

Ac Multiset of atoms representing the condition of a rule

xvii

Nomenclature

Ao Set of all atoms sent by the object o

Ap Multiset of atoms representing the prediction of a rule

category Category of an object, i.e. a sensor, interface, or actuator

d Distance measure between two segments

datatype Type of data sent by an object, either quantitative or categorical

desc Set of descriptors of the value represented by an atom

duration Duration of a segment

E Set of all the events sent by all connected objects

e Event: primary and unprocessed data sent by an object

ei Event observed at timestamp ti

Eo Set of all events sent by the object o

end End timestamp for the sliding window, used in TSRuleGrowth

I Itemset: set of all events or atoms observed at a precise timestamp

int Interest of a rule, determining whether a rule is reliable or not

iter Iterator used for multiprocessing in TSRuleGrowth

mean Mean of a segment

minint Minimum interest for a rule to be reliable, used in TSRuleGrowth

minsup Minimum absolute support for a rule to be frequent, used in TSRuleGrowth

O Set of all objects in the environment

o Object present in the environment

r Prediction rule

relSup Relative support, determining whether a rule is frequent or not

s Segment

start Start timestamp for the sliding window, used in TSRuleGrowth

sup Absolute support, determining whether a rule is frequent or not

t Time stamp

ti Time stamp occurring at position i in the time series

TR Set of transactions

tr Transaction

xviii

Nomenclature

TS Time series of events

TSref Representative time series, result of the segmentation algorithm of the pre
processing part of the AmI system

TSsim Simplified time series, result of the segmentation algorithm of the preprocessing
part of the AmI system

TSa Time series of atoms

TSs Time series of segments

value Value of an event

variation Variation of a segment

window Time frame in which the rules must occur, used in TSRuleGrowth

xix

xx

Contents

Introduction 1

1 Context 5

1.1 Introduction . 5
1.2 Ubiquitous Computing (UbiComp) . 5

1.2.1 Mainframes: multiple users per machine (19401970) 6
1.2.2 Personal Computing: one user per machine (19702010) 6
1.2.3 Ubiquitous Computing: multiple machines per user (2010*) . . . 8
1.2.4 Problems . 9
1.2.5 Summary . 10

1.3 Artificial Intelligence (AI) . 11
1.3.1 History and definition . 11
1.3.2 Philosophical debates . 12
1.3.3 Techniques . 15
1.3.4 Summary . 18

1.4 Ambient Intelligence (AmI) . 18
1.4.1 Environment: test platforms . 19
1.4.2 Interactions . 20
1.4.3 Intelligence . 23

1.5 Conclusion . 26

2 Research questions 27

2.1 Introduction . 27

xxi

Contents

2.2 Users . 28
2.2.1 How to provide the automation? 28
2.2.2 In what physical form will the AmI system be? 30
2.2.3 Summary . 33

2.3 Environment . 33
2.3.1 Definitions . 34
2.3.2 Data . 35
2.3.3 Summary . 42

2.4 Automation . 43
2.4.1 Possible structures . 43
2.4.2 Summary . 45

2.5 Continuous improvement of the system 45
2.6 Conclusion . 46

3 Architecture 49
3.1 Introduction . 49
3.2 Architecture . 50

3.2.1 From events... 51
3.2.2 ... to atoms... 53
3.2.3 ... to prediction rules... 54
3.2.4 ... to userfriendly automation propositions... 55
3.2.5 ... to feedbacks... 56
3.2.6 ... to active automation . 57

3.3 Answers to the problems of the previous chapter 58
3.3.1 Adaptation . 58
3.3.2 Taking users into account . 58
3.3.3 Optimization of computation time 58

3.4 Current implementation . 59
3.5 Conclusion . 59

4 Pre-processing 61
4.1 Introduction . 61
4.2 Categorical events . 62
4.3 Quantitative events . 63

4.3.1 Segmentation . 65
4.3.2 Conversion into time series of segments 69
4.3.3 Clustering . 69

4.4 Conclusion . 75

5 Rule mining 77
5.1 Introduction . 77
5.2 Background . 78

5.2.1 Input: a time series of atoms . 78
5.2.2 Output: prediction rules . 78
5.2.3 Data structures in rule mining . 78
5.2.4 Validation of a rule . 79

5.3 State of the art . 80
5.3.1 Rule mining on time series . 80
5.3.2 Partiallyordered rule mining . 81

xxii

Contents

5.3.3 Scientific problems . 82
5.3.4 Adapting time series to TRuleGrowth 82

5.4 TSRuleGrowth . 83
5.4.1 Inputs, Outputs . 83
5.4.2 Metrics . 84
5.4.3 Recording of rule occurrences . 87
5.4.4 Principles . 87
5.4.5 Algorithm . 88

5.5 Experiments and results . 91
5.5.1 Results of TSRuleGrowth on two databases 91
5.5.2 Comparison between TRuleGrowth and TSRuleGrowth 95

5.6 Conclusion . 97

6 Evolutions 99
6.1 Introduction . 99
6.2 Databases for AmI activity discovery . 100

6.2.1 Relevant aspects of existing databases 100
6.2.2 Shortcomings of existing databases 101
6.2.3 Summary . 103

6.3 Preprocessing . 105
6.3.1 Categorical events . 105
6.3.2 Quantitative events . 105

6.4 Rule mining . 106
6.4.1 Estimation of the parameters . 106
6.4.2 Alternatives in the rule structure 106
6.4.3 Time indicators and other contextual information 107
6.4.4 Computational optimization . 108

6.5 Display of automation proposals . 108
6.5.1 Perspectives for the representation of automation proposals 108
6.5.2 Transcription of the rules . 109

6.6 Interactions and user feedback . 110
6.7 Conclusion . 113

Conclusion 115

A Pre-processing 117

B TSRuleGrowth 121

C Databases 127

D Survey 133

xxiii

xxiv

Introduction

The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from it.

Mark Weiser

Here is the basic premise that led to this thesis: the Internet of Things is a fundamental
trend that will change not only the world of computing, but also our society in the coming
decades. Since the 2010s, we have seen an explosion in the sale of connected objects, and in
their diversification [Bosche et al., 2018]. For example, many of us have a smartphone, a per
sonal device connected to several networks and whose possible uses are infinite. Computers,
previously beige towers with a screen on a desk, have also seen a profound mutation. The
towers still exist, but no longer represent the majority of sales. Indeed, new form factors have
appeared, such as touch tablets and ultrabooks, making these devices more portable, and di
versifying their uses. Everyday objects are also beginning to be connected, such as televisions,
watches, bulbs, switches, or locks. Finally, new categories of objects have emerged, whose
function depends on this connectivity specific to the Internet of Things, such as a tracker
to easily find keys, called a key finder. Today, manufacturers are trying to make all possible
objects connected. And, even if some examples are amusing regarding their interest [Wouk,
2019], this underlying trend may lead to uses that were not possible just a few years ago, such
as detecting breakdowns on cars or helping people in distress.

These connected objects are very diverse today, but they all provide services. We distin
guish two main categories of objects: sensors, which monitor the environment, and actuators,
which act on it. A quick example would be a door opening sensor, to see if a door is open
or not, and a connected bulb, acting on the brightness of a space. Let us take the following

1

Introduction

example: when a user comes home, he opens the door and then turns on the light in the living
room. This can therefore be observed by a door opening sensor and a connected bulb.

However, the main problem with connected objects as we know them today is that they are
managed independently of each other. There is often an application to control a specific type
of object, but there are few systems to operate these objects in synergy to enhance the services
offered. In the previous example, the user can turn the bulb on or off via an application on
his/her smartphone, and monitor the door via another application.

In this thesis, we take a first step to make these objects work in synergy, through a sys
tem that orchestrates the services proposed by the connected objects, whose goal is to offer
customized automations. In the previous example, the purpose is to automate the lighting
according to the data returned by the door opening sensor, so that the user no longer has to
do so. For these proposals to be adapted to the environment, and customized for users, it is
necessary for the system to analyze the data from the connected objects, to find habits that
can lead to automation.

Thus, the scientific problem of this thesis is defined in this manner: we have, in a physical
environment, one or several persons, and several connected objects, returning data over time,
without necessarily a fixed sampling frequency, and which can be quantitative or categorical.
How can we analyze these heterogeneous, timestamped data, coming from multiple sources,
and without a priori knowledge on these data, to observe regularities and identify predictions,
in order to find habits in this environment and to propose automation to users in a context
of service orchestration?

This is a very complex and difficult subject to tackle, combining several domains that
are explained in this thesis: ambient intelligence, artificial intelligence, data processing, er
gonomics, ubiquitous computing are only a few of them. This thesis not only raises scientific
issues, it also raises societal issues, by putting users at the heart of the system’s design.

The thesis subject being atypical, the outline of the thesis had to be as well: it guides the
reader, whether an expert in the field or a neophyte, from the definition of the context, to the
problems to be solved, then finally to the proposed system, its results, and its perspectives.

It is structured as follows:
In the first chapter, we take a step back by looking at a nonexhaustive history of com

puting. This shows that the Internet of Things is not a passing fad, but a fundamental trend,
theorized in the 1990s as ubiquitous computing. This history also identifies the main is
sues encountered by the Internet of Things as we know it today: communication between
objects, ease of use, personalization, confidentiality, security. To meet these challenges, we
focus on the field of ambient intelligence: the fusion of artificial intelligence and ubiquitous
computing. We conclude this chapter with the main purpose of the thesis: to propose a ser
vice orchestrator, i.e. a system that operates the different objects, providing automation in a
connected environment. This allows us to have more complex services, because they include
different connected objects.

In the second chapter, we identify the research questions addressed in the thesis, which
motivated some choices. For example, the issue of confidentiality leads us to consider a system
that operates locally, in an environment, and not in the cloud. In addition, current artificial
intelligence techniques and the dangerous situations they may cause on the environment are
leading us to let the control of this system to the users. The ambient intelligence only makes
automation proposals, which the user can activate at will. This raises a major challenge: the
understanding of these proposals, and therefore the semantics to be applied to them. We also
characterize the data that can be obtained from connected objects, and the possible forms of
automation proposals. Taking into account these heterogeneous data which can also be sent

2

temporally in an irregular way is also one of the main problems of the thesis.
Then in the third chapter, we detail the architecture of the desired ambient intelligence

system. This architecture is intended to address the issues raised in the previous chapters. In
this system, data of various types are preprocessed in order to unify them. Then, a search for
prediction rules is made on these preprocessed data, in order to discover habits, and therefore
automation proposals. These proposals are then sent to users who can accept them or not.
Then, the system improves based on user feedback, and applies the accepted automations.
In this thesis, the focus has been on data preprocessing and the search for prediction rules,
which are detailed in the following chapters.

The next two chapters describe the algorithms used in the implementation of the system.
Chapter four specifies the algorithms used in the preprocessing part of the data, allowing
the different types of data to be unified. Chapter five reveals the search for rules. This part
contains some of the major contributions of the thesis, such as a new algorithm for searching
rules that addresses several problems in the state of the art in this field.

Finally, in the sixth and final chapter, we discuss the prospects for the proposed system.
These perspectives extend well beyond the simple scientific framework, and aims to provide
advice on the development of future ambient intelligence systems, regarding interactions with
users, intelligibility, respect for their privacy, system improvement from user feedback, and also
technical aspects, such as the structure of the prediction rules or the preprocessing of data.

To sum up, this is a vast and very varied subject, raising several problems. So let us get
started by taking an overview of the history of computing, to get a clearer idea of where the
Internet of Things is heading and what remains to be done to get there.

3

4

Chapter 1

Context

1.1 Introduction
This thesis presents a system looking for predictions in data from connected objects scattered
in an environment. To clarify the motivations that led to this topic, we define in this chapter its
context and the main objectives. We first focus on a short history of computing, with a focus
on Ubiquitous Computing (UbiComp) to argue that the Internet of Things is a fundamental
trend, and to identify the major issues of the Internet of Things as we know it today. We also
present the major scientific domains related to the thesis, with a description of some of the
subdomains related to the thesis: Artificial Intelligence (AI) and Ambient Intelligence (AmI).

1.2 Ubiquitous Computing (UbiComp)
As stated in the introduction, we want to propose a system that orchestrates the services pro
vided by the connected objects. The fact that we are in an environment populated by con
nected objects of all kinds is no coincidence. In the 1980s and 1990s, Mark Weiser [Weiser,
1996], Chief Scientist at the Palo Alto Research Center, theorized this type of environment,
where computers remain in the background to help the user, as Ubiquitous Computing.

It is interesting to analyze the history of computer science under the prism of this theory,

5

Chapter 1. Context

because it makes it possible to identify the major problems that still remain, some of which the
thesis attempts to solve. According to Mark Weiser, there are three major eras of computing:
Mainframes, Personal Computers, and UbiComp, which will be detailed in the following.

1.2.1 Mainframes: multiple users per machine (1940-1970)
In the 1940s, the first electronic computers appeared. They took up a lot of space, took years
to develop, produce and install, and used a tremendous amount of electricity. However, they
allowed automated calculations, which made them extremely useful despite their shortcom
ings. Thus, several users were working on a single powerful machine.

During the Second World War, computers such as the Zuse Z3 in Germany provided
statistical analysis. The Bombe, made in part by Alan Turing, and the Colossus series in the
United Kingdom made it possible to break the secret codes used by the enemy. Thus, from
the dawn of computer science, computers were not only used to do calculations. They were
also used to make a series of logical actions.

The physical elements for making logical actions were first electromechanical machines,
then became vacuum tubes. Although fundamental for the computers of the time, they were
also their main limitation. Indeed, they could very easily break, making the device unreliable
[Randall 5th, 2006]. The invention of the Transistor, a replacement of the vacuum tube in the
late 1940s solved those problems. As a result, computers became more and more common in
the decades that came after, because they were cheaper to manufacture and more reliable.

Computers came into companies in the form of mainframes: an entire room was used
to store the machine, and programs could be executed, among others, with perforated paper
tapes. Computers were becoming more and more powerful, thanks to the miniaturization of
components. The fields of application of these machines have expanded, from the guidance
of spaceships in the NASA, to Sketchpad, a realtime and interactive drawing system.

Mainframes are still used today, for applications with a high need for computing power.
However, from the late 1970s onwards, they were competing with computers that were cer
tainly less powerful, but much smaller in size.

1.2.2 Personal Computing: one user per machine (1970-2010)
1.2.2.1 Democratization of computers

The increase in power and miniaturization led to the invention of the microprocessor by
Intel in 1971. The microprocessor is based on the principles of the processor, the central
component of the computer that allows logical actions, with less power but in a much smaller
size. With this component, anyone with good electrical and electronic skills could build their
own computer. This innovation led to the creation of the first operating systems, like CP/M,
by Gary Kildall [Computer Chronicles, 1995], and some handbuilt computers could be sold
to the public, like the Apple I in 1976.

However, the democratization began in the late 1970s and 1980s with the mass produc
tion of personal computers: the Apple II, in 1977, was one of the first personal computers
sold in millions of units. Computers entered homes and offices because the applications of
these machines were multiple, in the form of programs that could be purchased in stores.
Thus, two computers of the same model could be distinguished by the programs installed and
the data recorded on them. The computer became personal to the users.

The introduction of the IBM PC in 1981 contributed to this democratization. This ma
chine was sold with an operating system, Microsoft MSDOS, which could be installed on

6

1.2. Ubiquitous Computing (UbiComp)

other machines called “PC Clones”. The operating system served as an intermediate layer
between the physical computer and the programs. Thus, a program was no longer created
for a single computer model, but for an operating system, which itself was compatible with a
set of computers that could be different. The democratization of PC Clones and the fact that
there was only one main operating system at the time led to the diversification of applications.
The introduction of the graphical user interface and mouse has made computers easier to use,
facilitating the entry of computers into the home. These two advances, from the Xerox Re
search Center, were brought to the general public by the Macintosh in 1984, and Windows
in the following years.

This led to a period of mutual attractiveness between program developers and the general
public: developers were attracted to the now called software market, because they could create
programs that millions of computers could run, for millions of people. In addition, people
were attracted to computers because they could do useful things for them: business applica
tions like spreadsheets or word processing, entertainment like games and creative tools like
music sampling.

The need for miniaturization, for internal components and the machines themselves, has
continued. People wanted more power in their computers, as well as more portability. Thus,
laptops appeared in the 1980s and then became thinner, lighter, and more efficient over time.
Meanwhile, other categories of computers have begun to emerge, such as game consoles,
cell phones, MP3 players or Personal Digital Assistants. With the increase in power over
time, more and more advanced applications were available to the public, such as multimedia,
picture, and video editing.

The original vision of Microsoft’s founders in the 1970s became a reality: “A computer
on every desk and in every home” [Beaumont, 2008], but the democratization of computers
became really important with the introduction of the Internet.

1.2.2.2 Internet

The need to connect existing machines has increased as the machines themselves have become
more common. The potential for information transmission between machines was enormous,
and research on connections and protocol communication was carried out between the 1960s
and the late 1980s, mainly in the military [Hauben, 2007] or in large research organizations,
such as CERN [BernersLee, 1989].

The Internet, essentially a computer network, became publicly accessible worldwide in
the late 1990s. At the beginning of its public access, it was possible to browse web pages
composed of text and images, send emails and exchange files. Before the Internet, some
networks of interconnected machines were accessible to the public, such as the Minitel in
France, but they consisted only of consuming content [Computer Chronicles, 1990]. On the
Internet, anyone can host a web page or exchange data with others.

Just like personal computing, the democratization of the Internet has led to a multiplica
tion and diversification of its applications: music and video streaming, social media, online
shopping... With these services, the Internet has become the main reason to buy a computer.

As mentioned earlier, more and more different devices were beginning to appear, increas
ing the number of computers per person. However, one product category accelerated this
transition in the late 2000s: the smartphone.

7

Chapter 1. Context

Smartphones

Digital tablets

Interactive boards

Figure 1.1: Transposition of the devices invented at the Xerox Lab into today’s world1

1.2.3 Ubiquitous Computing: multiple machines per user (2010-*)

1.2.3.1 The original vision

The main idea of UbiComp, according to Mark Weiser, was that computers would act as a
background for the users’ environment. According to him, in the era of the Personal Com
puter, machines were a focus of attention for users. It was on these computers that programs
were executed, movies were played, music listened to, Internet consumed, etc. In UbiComp,
machines would assist the user, help him to do actions, and would no longer represent a cen
ter of attention. The environment would become populated by multiple machines, usable by
anyone.

With this in mind, Mark Weiser’s team of researchers had developed several product cate
gories. Among the best known are the “tabs”, inchscale machines in the spirit of the Postit.
A personal badge has been developed in this category. It was used to unlock doors, automate
the forwarding of telephone calls, and included a touch screen to display the calendar and send
messages. Then come the “pads” [Want et al., 1995], digital tablets in the spirit of a sheet of
paper, with a screen and a stylus, that can be used by anyone. Finally, “boards”, large screens
used to display content during meetings, as seen in figure 1.1.

To reach this era, technical advances have been identified: hardware, with efficient and
inexpensive computers, network, one shortrange and one longrange, and software for ap
plications in the ubiquitous environment. But a main danger had already been identified by
researchers at the time, the possible lack of privacy: “hundreds of computers in every room,
all capable of sensing people near them and linked by highspeed networks, have the poten
tial to make totalitarianism up to now seem like sheerest anarchy. Just as a workstation on a
localarea network can be programmed to intercept messages meant for others, a single rogue
tab in a room could potentially record everything that happened there.” [Weiser, 1991].

1Permission given by Bill Schilit for the top left photo and Matthew Mulbry for the center photo. Thanks
to Robert S Mulbry for kindly putting me in contact with Matthew Mulbry.

8

1.2. Ubiquitous Computing (UbiComp)

1.2.3.2 The reality

In the early 2000s, the services offered by the Internet made it possible for it to be widespread
in homes and offices. Several technical advances made it possible to make the Internet accessi
ble from anywhere: a shortrange network called WiFi, and the new generations of longrange
mobile networks. This allowed mobile phones to evolve into a new category of devices: smart
phones. They integrated all mobile phone services, Personal Digital Assistants, and Internet
access. But, despite this, they were difficult for the general public to use, due to their user
interface and complex inputs.

The introduction of the iPhone in 2007 led to a simplification of the smartphone category.
Indeed, both the user interface and the input method have become simpler, mainly based on
a touch screen. The introduction of these new smartphones has led to an intensification of
research on embedded terminals. As a result, in parallel with smartphones, other forms of
computers have evolved and become more widespread: digital tablets, used at home and in
the office, and interactive boards, used in meetings or to teach a course.

Thus, the objects invented and theorized at the Palo Alto Research Center have finally
found their successors. The “tabs” have become smartphones, the “pads” digital tablets, and
the “boards” interactive boards. And, with different short and longrange networks, all these
devices were able to communicate with each other.

Furthermore, with these smartphones, hardware manufacturers could create new types of
devices, which were connected to the phone via an application. This led to the emergence of
the Internet of Things (IoT). Today, we tend to connect all the objects in the house. From the
car to the refrigerator, everything can be connected to the Internet, share data from onboard
sensors, and take action on the environment.

Mark Weiser’s vision is beginning to come true: connected objects, small energy efficient
computers, are integrated into the environment in the background, helping the user to do
actions. Connected objects assist users, no longer represent a focus of attention, and do not
necessarily have an owner. They are connected by different networks, longrange like mobile
networks, and shortrange like Bluetooth or WiFi. The era of UbiComp has begun.

1.2.4 Problems
This short history explains how UbiComp was born and exists today. It highlights several
dynamics that have existed since the beginning of computing:

• The constant miniaturization of components and machines, in line with their increasing
power.

• The diversification of these machines and their uses.

• The need to simplify their use, to be accepted by the general public; through the exam
ples of the graphical interface and smartphones.

• The need to make the machines work together, either by unifying their characteristics
or by connecting them in a single network.

Mark Weiser’s theory became a reality: we are in the era of UbiComp. Today, any object
can be connected, such as door opening sensors, bulbs, televisions, object locators, cameras,
shutters, electrical outlets, speakers, alarm clocks, watches, switches... Many categories of
connected objects exist, allowing to monitor the environment and make remote actions. Few

9

Chapter 1. Context

houses are equipped with connected objects at the moment, but this proportion is constantly
increasing [Griffith, 2019].

However, at the moment, objects still communicate little together. Indeed, several com
peting networks exist for these objects: Bluetooth, WiFi, Sigfox, Zigbee, LoRA are only
examples. These networks are not compatible with each other. Some objects may be con
nected to others within the same ecosystem, but several ecosystems coexist. Unless adhering
to a single ecosystem, it is necessary to use several different applications to act on these objects.

The aim in the coming years is to make these different objects work together, with a
common goal. A connected object being a set of services, the idea of having all these different
objects interact is part of the domain of service orchestration.

A service orchestrator is a program that chooses the order of invocation of the ser
vices to which it is connected. Thus, in a connected environment, this can solve the non
interoperability of objects, by making them work together for a common purpose, through
a single program. It also makes it possible to provide more complex services. Also, such sys
tem must make sense of its multimodal data retrieved from the different connected objects.
Service orchestrators already exist, but the interactions they allow are basic. They allow to act
manually on objects within the same interface such as “Apple Homekit”, or to make basic
rules, as proposed by IFTTT (“If This Then That” [Betters, 2018]). At present, connected
objects have no easy way to work together to achieve the primary vision of UbiComp.

Service orchestrators are currently interfaces used to make complex scenarios manually.
Thus, it remains difficult to use these tools, as any composite service must be designed by
the user. So necessarily, the system provided is highly customized, because it is the user who
feeds it, but it is still difficult to imagine all the scenarios to automate. One solution to this
problem would be for the system to provide automation on its own, based on the habits
observed among users. This system would still be customized but easier to use.

Another issue raised by Mark Weiser is privacy. With objects communicating in an envi
ronment, it is technically possible to monitor everything that happens in it. Another problem
is related to the previous one, that of security. Hacking into these connected objects can lead
to a gold mine of information about the environment, and its users, and can lead to control
of the involved environment. Thus, access to and control of these objects must be controlled
to avoid these risks.

The customization of a connected environment, and therefore of the service orchestrator,
must also be taken into account, to make it suitable for users, in other words, useful.

1.2.5 Summary
In this section, we have identified the main needs in the field of the Internet of Things: inter
operability between objects, ease of use, personalization, privacy and security.

To address some of these issues, our target system is an automatic service orchestrator. It
aims to make these objects work together, to provide more complex services. It must therefore
observe, collect, and process multimodal data, as it comes from different connected objects.
It offers automation based on the habits observed among its users, which makes it more per
sonalized and easier to use. The principles of confidentiality and personalization will be at
the heart of the thesis. However, the security aspect is not covered here, but work on it may
complement the presented work.

Searching for user habits from raw data of connected objects is a difficult task. It requires
extensive data analysis that can adapt and modify its results as changes are perceived in the
environment and among users. The thesis therefore falls within the scope of the field of AI,

10

1.3. Artificial Intelligence (AI)

seeking to integrate a notion of intelligence into computer programs. We will detail this area
and then focus on a related research area called AmI, which is the fusion of UbiComp and AI.

1.3 Artificial Intelligence (AI)
Since the beginning of computers, scientists have tried to create programs that simulate the
cognitive functions of living beings, especially human beings. This field, AI, is extremely vast,
and extends even more from year to year. AI is very often mentioned in the media and within
companies. It is also used and imagined in the artistic field with examples such as HAL 9000
in 2001: A Space Odyssey [Kubrick, 1968], Jarvis in the Iron Man series [Favreau, 2008] or
Cortana in the video game franchise Halo [Jones, 2001], as well as Isaac Asimov’s “Robots”
series, which started with the book “I, Robot” [Asimov, 1950].

But what does this field really mean, and where are we now? To do this, we will also
observe a short history of AI to understand its definition, and make a nonexhaustive state of
the art to observe what can and cannot be done.

1.3.1 History and definition
AI has a history that goes back to the very beginnings of computer science. Alan Turing,
quoted in section 1.2.1, had asked the question “Can machines think?” in [Turing, 1950].
He proposed a test to evaluate this type of machine, later called the Turing test. It consists in
putting a human being, called an interrogator, in a blind verbal confrontation with a computer
and another human being. If the interrogator is not able to say which of his interlocutors is
the computer, the computer has passed the test.

The Dartmouth workshop in 1956 is considered to be the founding event of the AI field. It
was proposed by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon,
who are considered to be the inventors of this field. In this workshop, the term “AI” and its
global definition were defined.

According to John McCarthy, Artificial Intelligence is “the science and engineering of
making intelligent machines, especially intelligent computer programs”, where intelligence is
defined by “the computational part of the ability to achieve goals in the world. Varying kinds
and degrees of intelligence occur in people, many animals and some machines” [McCarthy,
2007]. AI has a fuzzy definition, since the notion of intelligence itself is also fuzzy. This
explains why nowadays, almost a century after the beginning of computer science, it is a
gigantic field of research that is highly valued by researchers.

The field of AI was launched internationally and by the late 1950s, more and more work
were being integrated into it. For example, the Perceptron, invented in 1957 by Frank Rosen
blatt, was an image recognition algorithm, and formed the first artificial neural network
[Rosenblatt, 1958]. Then, with the rise in power and the democratization of computers, several
fields developed. Among them, Machine Learning, aimed to enable computers to learn from
data, or developmental learning, aimed at simulating the mechanisms that enable the learn
ing of new skills and knowledge in living beings, or robotics, also taking into account social
issues. More recently, Deep Learning, a field that develops much denser neural networks, has
allowed computers to perform more complex tasks than before with a high degree of accuracy,
especially in image recognition [LeCun et al., 2015]. A deep reinforcement learning algorithm,
for example, could play basic Atari 2600 video games at a level comparable to that of a human
player [Mnih et al., 2015].

11

Chapter 1. Context

Several achievements have been attributed to the AI domain, particularly in the field of
gaming. Chess [FengHsiung Hsu, 1999], Jeopardy [Ferrucci et al., 2010], and more recently the
game of Go [Yan, 2016] have seen an AI beat the best players in the field.

Overall, AI tools are in a widespread use in today’s world. It is possible, at this very
moment, to recognize people on pictures, to transcribe voice into text, or to know people’s
buying or consuming habits. Today, AI is a term that is widely used and known, in full
expansion and far from being fully explored. Work is going in all directions, and because of
its vague definition, there have been several lively debates since the beginning of the field.

1.3.2 Philosophical debates
AI is such a vast field that it brings together several disciplines. Among these is philosophy,
which discusses AI and its technologies at a higher level.

1.3.2.1 Strong/Weak AI

The greatest philosophical debate is found in the distinction between strong and weak AI. To
simplify, AI is strong if it is a “machine intelligence with the full range of human intelligence”
[Kurzweil, 2006], where it was not built for a specific task. Any AI that does not meet this
definition is considered weak. A weak AI is programmed to do specific tasks, and cannot be
used to do tasks other than what it has been programmed to do.

A good example of the distinction between strong and weak AI is the “Chinese room”
[Searle, 1980]. In this scenario, we imagine locking someone in a room. This person, who is
referred to as an operator, has no knowledge of the Chinese language. Then, a set of rules,
perfectly clear to this person, is made available to him or her to answer questions written
in Chinese. The operator receives questions in Chinese from an interrogator who knows
this language. The operator can therefore answer the questions, by writing other sentences in
Chinese, thanks to the available rules. Thus, for the interrogator, the operator has an advanced
knowledge of Chinese, because he or she can answer the questions. But the operator does
not understand the received questions nor the produced answers. The operator only follows
predefined rules.

This experience shows that complex problems can be solved with the tools we are given,
without understanding the meaning of the problem. If we get a new problem that is not very
different from what was given before, we can solve it with the tools used previously, but if
we get something radically different from usual, but still within the scope of the problem, we
could not answer this new problem, because the tools given do not allow us to, and we did
not understand the deep meaning of what we were doing.

The AI developed today are considered weak. This is put into perspective by Hans Moravec:
“it is comparatively easy to make computers exhibit adult level performance on intelligence
tests or playing checkers, and difficult or impossible to give them the skills of a oneyearold
when it comes to perception and mobility.” [Moravec, 1990]. It is possible to make intelli
gences that beat the best players in the world in chess [Barden and Leonard, 2011], or Go [Silver
et al., 2018] but not to build an intelligent system for a robot, which learns to walk alone on
any surface, simply by observing the environment [Kuipers et al., 2006]. Why? It depends, in
part, on the environment in which the intelligence is located. If the environment is defined
a priori, or easily determined, AI can easily evolve to achieve the objective set, thanks to the
tools given to it. In a complex environment with uncertainties, such as the real world, this
is very difficult if not impossible. Also, human intelligence, and especially its functioning, is
far from being defined, and several competing theories attempt to describe it. According to

12

1.3. Artificial Intelligence (AI)

psychologists, there are even several forms of human intelligence. For example, Howard Gard
ner’s theory states that there are several forms of intelligence, including linguistic intelligence,
which allows us to communicate orally and in writing, but also spatial intelligence, logical
intelligence, interpersonal intelligence for knowing others, and intrapersonal intelligence for
knowing oneself [Gardner, 1983; Gardner, 1993]. Thus, according to Gardner’s theory, an AI
must be strong by being multiple, containing specialized intelligences in specific fields.

Strong AI is still only a concept today, but work is underway in this direction [Silver et al.,
2017; Tuyls et al., 2018]. Deep learning aims to recreate levels of generalization between input
data and results, in order to be able to respond better when it encounters unknown data.

1.3.2.2 Top-Down Approach

Two approaches, already identified by Alan Turing in the 1940s [Turing, 1950], are possible in
AI. In topdown AI, problems are dealt with at a high level. The problem would be described
as much as possible to achieve a model that provides a solution. The types of AI that fall into
this category are called “Symbolic AI”, because the problem is described as much as possible
via symbols, to obtain a simpler representation on which the intelligence can reason.

Let us take an example: a system playing chess. Here, we can code the rules of a chess
game, like the types of pieces, the moves that each type can make, the times when the system
can make a move, and the winning conditions. Those are the pregiven symbols. With that
said, and by looking at a lot of matches, or by generating matches, the system can perfect itself
and learn to have the best behavior to win the game every time, against anyone.

Several attempts to achieve strong AI have been made using this approach, like Soar [Laird
et al., 1987], Epic [Kieras and Meyer, 1997], or ICARUS [Langley et al., 1991], and a theory
has been made by Allen Newell and Herbert Simon in 1976: “The Physical Symbol System
Hypothesis. A physical symbol system has the necessary and sufficient means for general
intelligent action” [Newell and Simon, 1976].

“Symbolic AI” represented the dominant paradigm in AI until the 1990s [Vernon et al.,
2007], because it is easy for some problems to be expressed by a mathematical representation.
Also, in this topdown approach, there is no need for the system to learn by itself the lowlevel
knowledge relative to the problem, as it would take much more time to develop and study.

However, symbolic AI systems have three main problems, according to [Christensen et al.,
2004]:

• The Symbol Grounding Problem [Harnad, 1990]: in a symbolic system, symbols can
refer to characteristics, or objects, in the environment. How are these symbols related
to those objects? To understand this question, we can make the analogy with the words
we use. How do these words have a meaning, and what is the meaning of a word? This
problem is related to the problem of the “Chinese room”, explained in section 1.3.2.1.
An operator can answer questions in Chinese, even without knowing this language, in
the same way that a symbolic system can solve a problem, without understanding the
meaning of what is being done. Thus, this problem is also related to the problem of
consciousness, and its definition [Harnad, 2007].

• The Combinatorial Explosion Problem: to get knowledge, the system can consider any
possible relation between data. However, this can lead to a huge amount of compu
tation needs. The number of combinations to find a solution can grow exponentially,
leading to prohibitively long computing times. Therefore, the problem is to find valu
able knowledge while avoiding the exponential growth of needed combinations.

13

Chapter 1. Context

• The Frame Problem [McCarthy and Hayes, 1969]: How do we model the effect of an
action in the environment? Also, how do we model the things that have not been
modified by an action in the environment? It is possible to consider all the changes
in the environment, but this leads to the previous problem, namely the combinatorial
explosion. In addition, some aspects of the environment may have been modified by a
factor other than the action being analyzed.

These problems can explain why Symbolic AI systems have difficulties making robust sensori
motor interactions in other than still, restrained, noiseless environments [Vernon et al., 2007].

1.3.2.3 Bottom-up Approach

Bottomup AI researchers take the opposite approach of topdown and simulate cognitive
structures or functions in humans or animals, in an attempt to obtain more powerful tools for
problem solving. Recently, the expansion of deep learning, larger neural networks requiring
high computing power, and the development of robotics have refocused AI on a bottom
up approach. There are several adherent movements in this approach, among them neural
networks, detailed above, and constructivism.

Constructivism is a philosophical theory born during the 19th and 20th century [Hawkins,
2012]. One of the first publications introducing the constructivist theory for learning was
written by Jean Piaget, a Swiss psychologist, during the early 20th century [Piaget, 1936]. Its
original paper [Piaget and Cook, 1952] defines three main process in learning: Assimilation,
Accommodation and Organization:

• Assimilation is the process where new information is transcribed into the internal knowl
edge structure.

• When the new information differs radically from the internal knowledge representa
tion, the process of Accommodation makes the changes in the structure to integrate
it.

• In parallel to the two previous processes, the structure is organizing itself to maintain
its viability: this is Organization.

In simple terms, Constructivism stipulates that every act of learning consists of:

• Transforming the new information into its own framework: Assimilation,

• Transforming old knowledge into new knowledge, renew old knowledge: Accommo
dation,

• Organizing the knowledge to maintain its structure: Organization [Masciotra, 2007].

Some researchers expanded the definition of Constructivism, by introducing radical con
structivism. This theory stipulates that the environment cannot be known as is, but only with
the interactions we have with it. Therefore, we can never know what the environment really
is: “Radical constructivism, thus, is radical because it breaks with convention and develops
a theory of knowledge in which knowledge does not reflect an “objective” ontological real
ity, but exclusively an ordering and organization of a world constituted by our experience.”
[Von Glasersfeld, 1984].

14

1.3. Artificial Intelligence (AI)

AI
system

Bird

Giraffe

Bird

......

Input Label

Label?

AI
system

Figure 1.2: Illustration of a supervised learning algorithm

1.3.3 Techniques
In this section, we will detail some of the techniques used in AI. As a reminder, AI is a gigantic
domain, so it is very difficult, if not impossible, to have a precise, delimited, and complete
mapping that is accepted by all researchers in the field. Also, this section is not intended to
be exhaustive, and will only detail some techniques.

1.3.3.1 Supervised learning

Supervised learning is an area of AI where an algorithm learns, from input data, to find a result
that corresponds to the expectations of the algorithm designer. The term “supervised” refers
to the fact that, during its learning phase, the result that the algorithm must obtain is given
explicitly, or via an indication.

In simple terms, a supervised learning algorithm has two main components: inputs and
outputs, also called labels. The aim of this kind of learning is to find relations between inputs
and outputs, in order to predict correct outputs for given inputs. To make those relations,
we give to the system a set of labeled inputs, meaning that those inputs already have the
correct outputs embedded. This set is called the training set. In fact, it can be symbolized
by a mathematical function, such as f(x) = y, where x is the input data, f the function
with parameters to be determined, and y the output data [Murphy, 2012]. Training the system
consists in determining those parameters.

A simple example would be an algorithm capable of classifying animal images according
to species (figure 1.2). If we send it an image of a magpie, it could send as an answer that this
is a bird. So, in the previous formalization, x is a picture of the animal, y its related species
in the form of a word, and f the function to transform x into y.

There are two types of outputs for supervised learning [Murphy, 2012]:

• Classification, where the output belongs to a class; the system must predict the correct

15

Chapter 1. Context

category of a given input. A good example of classification is the one about animal
images mentioned above.

• Regression, where the output does not represent a class, but is rather a continuous data,
a quantifiable number. An example of such a system could be to predict the brightness
in an environment according to weather conditions (such as cloud density, season, etc.).

Reinforcement Learning Reinforced learning is a specific subdomain of supervised learn
ing where the results to be expected are not given explicitly, but rather an indication, in the
form of a reward proportional to the quality of the response provided by the algorithm. In
a sense, the system must control its actions in order to get the best reward. As [Sutton and
Barto, 1998] explains, “Reinforcement learning is learning what to dohow to map situations
to actionsso as to maximize a numerical reward signal. The learner is not told which actions
to take, as in most forms of machine learning, but instead must discover which actions yield
the most reward by trying them”.

A good example of reinforcement learning is a simulated leg control system that must
learn to walk as quickly as possible on a flat surface. For this to work, the system can simulate
a movement. A monitoring program can calculate the distance traveled by the leg using this
movement, and give a reward proportional to it. The learning system then influences the
search for an optimal movement in order to obtain the maximum possible reward, and after
some time, knows the correct movement to walk quickly by itself on a flat surface.

A wellknown paradigm in this field is that of exploration/exploitation. Indeed, in the
previous example, a system can find a good solution to move fast. In this case, there can be
two choices of evolution:

• He can exploit this movement set, by refining it, but he may miss the optimal solution.
This is called a local optimum.

• He can explore completely new movement sets, to try to find another series of move
ments that may be even better than the previous one. However, he may not find a
movement set as effective as the previous one.

Reinforcement algorithms, as well as other algorithms in AI, must take this dilemma into
account. Several methods deal with this subject, including the multiarmed bandit [Katehakis
and Veinott, 1987] and bioinspired algorithms [Yang and Karamanoglu, 2013; Pazhaniraja et al.,
2017].

Artificial Neural Networks Artificial neural networks are a central domain in AI. The
objective is to take inspiration from brain structures from living beings, to perform tasks that
are still too complex to do using conventional programming [LeCun et al., 2015]. Neural
network techniques are most often supervised, hence its inclusion in this section. Let us
take again the example of the animal image classification program. Defining a handwritten
program to describe an animal’s species from a photo is extremely difficult, if not impossible,
due to its complexity. Yet we, as human beings, are able to know which animal it is just from
the images sent by our eyes.

It is to address this type of problem that neural networks have been studied by computer
scientists. One of the first examples of artificial neural networks was the Perceptron [Rosen
blatt, 1958], which allowed letters to be recognized from an image. To simplify, a brain is
composed of interconnected neurons, which can be activated electrically. An artificial neural

16

1.3. Artificial Intelligence (AI)

network is inspired by its biological counterpart, with a structure of interconnected neurons.
An introduction to the functioning of artificial neural networks can be found in [Zou et al.,
2008].

Neural networks can achieve very good results in a problem where supervised learning
can be applied, such as our algorithm for classifying animal images by species. The field of
neural networks is constantly evolving. In recent years, deep learning has made great progress,
making it possible to respond to even more complex problems.

However, they may require a lot of data to produce convincing results, and there is a risk
of overfitting, i.e. obtaining a system that is too specialized in the data it has been given, but
does not have the necessary generalization to respond correctly to unknown data. Moreover,
it is still very difficult to understand why, on the basis of what features, a neural network has
chosen one particular result over another. The explainability of neural networks is therefore
an emerging field today [Vaughan et al., 2018; Yang et al., 2019].

1.3.3.2 Unsupervised Learning

By definition, Unsupervised Learning is a type of learning that is not supervised by anything
but the learning system: “the machine simply receives inputs [...] but obtains neither super
vised target outputs, nor rewards from its environment.” [Ghahramani, 2004]. Here, we do
not give results at all, just input data. The goal of such system is to find regularities, or cre
ate a representation of the data given in input: “discover ‘interesting structure’ in the data”
[Murphy, 2012], “find regularities in the input” [Alpaydin, 2014]. There are some main types
in unsupervised learning:

• Clustering: “data clustering is to group a set of data (without a predefined class at
tribute), based on the conceptual clustering principle: maximizing the intraclass simi
larity and minimizing the interclass similarity” [Chen et al., 1996]. In this example, we
give data that we must put into separate and distinct groups, called clusters.

• Dimensionality reduction: this is used when the dimensionality of input data is high,
i.e. it has a lot of features, which can be difficult for a human being to analyze [Murphy,
2012].

• Matrix completion: this can help filling missing input data inside a matrix, or a table of
data. A notable example of this application is image inpainting: “The goal is to “fill in”
holes (e.g., due to scratches or occlusions) in an image with realistic texture.” [Murphy,
2012]. It is also possible to do matrix completion and image inpainting with supervised
learning, especially with deep learning [Yang et al., 2017; Yu et al., 2018].

• Pattern/Rule Mining: this can help building a structure representing relations inside
input data. There are two main goals: discover new knowledge, and find correlations
to make predictions [Murphy, 2012].

1.3.3.3 Online/Offline Learning

In AI, in parallel to the supervised and the unsupervised, there are traditionally two main
learning methods: online and offline learning.

• In Online Learning, “the sequence of instances is chosen by an adversary and the in
stances are presented to the learner onebyone.” [BenDavid et al., 1997].

17

Chapter 1. Context

• In Offline Learning, “the learner knows the sequence of elements in advance.” [Ben
David et al., 1997].

In other words:

• In the life of an Offline Learning system, there are only two phases: training and appli
cation. First, we train the system with a single batch of data. Then the system is applied
to new data in order to find the expected result. Here, the system does not evolve.

• In Online Learning, the system progressively evolves as the data arrive. The system
matures over time.

Naturally, hybrid systems exist, which can be updated in batches of data, for example. In
this way, they can relearn about the new data, and therefore evolve, but only in a piecemeal
way.

1.3.4 Summary
In this section, we have provided a brief summary of the field of AI, and demonstrated that
many issues are present, both technically and philosophically. Other techniques than those
presented above are possible, in particular techniques based on statistics, which we will detail
later in the thesis. Let us now look at some applications of AI, especially in the context of
UbiComp, with AmI.

1.4 Ambient Intelligence (AmI)
AmI is a relatively recent concept, dating back to 1998 at Philips [Aarts and Encarnação, 2006].
It can be defined as follows: “A digital environment that proactively, but sensibly, supports
people in their daily lives” [Augusto and McCullagh, 2007]. This definition is very similar to
that of UbiComp, in the sense that we are no longer talking about a personal machine, but
an environment populated by machines in the background. The difference with UbiComp
lies in the proactive aspect of this environment, which requires intelligence.

Indeed, Mark Weiser’s various publications did not deal with intelligence, but focused on
the technical aspect of UbiComp, such as the chips to create and which interface to bring to
the user. AmI can thus be interpreted as the fusion of UbiComp and AI, whose purpose is to
recreate cognitive and perceptual aspects of the brains in machines.

This thesis is fully in the field of AmI. Indeed, creating a personalized recommendation
system requires learning, to know the users’ habits and predict their actions. To illustrate the
field of AmI, we will detail some of its research approaches.

The concept of AmI is a broad one, which can be distinguished in several layers described
in figure 1.3, and inspired by [Olaru et al., 2013]. First is the physical environment, populated
by connected objects, then the network that allows these objects to communicate with each
other or with distant machines. Then there is the intelligence layer, which can be centralized,
i.e. all the data is processed by the same machine, or it can be distributed, i.e. processed by
several machines. The last level of AmI is the interaction with users, because of the main
purpose of AmI, which is to help its users.

Thus, building an AmI system requires work in AI, but also on the machines present in
the environment, on the communication networks, and also on the interactions that this AmI

18

1.4. Ambient Intelligence (AmI)

Ambient Intelligence

Environment

Network

Intelligence

Interactions

Figure 1.3: The different layers of AmI, inspired by [Olaru et al., 2013]

system has with its user. Work can also be done on the social implications of such an environ
ment. Scientists are therefore trying to address this subject through several complementary
approaches.

This thesis focuses on the intelligence layer of AmI, although it also asks questions about
the interactions the AmI system has with its users. Here, we detail work on the AmI lay
ers, including the environment, with the developed test platforms and their purpose, user
interactions, whether explicit or not, and intelligence, the central area of the thesis. Work on
networks that allow the environment to communicate, such as Bluetooth, WiFi or 5G, is not
treated here, as it is too far from the thesis problem. This state of the art was inspired in part
by [Cook et al., 2009], [Nakashima et al., 2010] and by [Acampora et al., 2013] which specializes
in healthcare.

1.4.1 Environment: test platforms
Working on AmI inevitably involves working with environments. Thus, several test platforms
have been created since the emergence of the field. We will see that some platforms are devel
oped for a specific purpose, such as helping the elderly or workers, and others are developed
to provide generic test environments that can be used by several research projects. However,
whatever the purpose, these platforms all represent a specific environment, which shows that
research on AmI focuses on specific contexts. AmI aims to develop these contexts into in
telligent environments that meet users’ expectations. In this field of research, the adjective
“smart” is therefore often used. Those locations are referred to as “smart” homes, hospitals,
schools, transport, or even workplaces.

One of the first platforms that can be integrated in the field of AmI is called AwareHome
[Georgia Institute of Technology, 1998]. It is a home that aims to help older people in their daily
lives. We are here in a subdomain of AmI, called Ambient Assisted Living. In this platform,
two issues are addressed: the interactions between the inhabitants and their environment, and
the development of tools to monitor the activities of the inhabitants, in order to help them.
In these interactions, there is for example the display of information helping the user to do
his daily tasks, questions stimulating the memory, or sending information to the inhabitants’
family to inform them of their activities, and thus reassure them. Through this last point, the
aim is clearly to help a person of advanced age to stay at home, and the family to be informed
and reassured to avoid putting this person in a specialized institution. Cameras are placed in

19

Chapter 1. Context

different rooms of the house in order to analyze the activity of the inhabitants.

Some platforms focus on specific issues. ALADIN [Nakashima et al., 2010], for example,
aims to observe the psychological effects of light in order, among other things, to improve
sleep cycles in the elderly. Here, the main aspect of AmI, that of helping people in everyday
life, takes on its full meaning and offers services that connected objects cannot provide on
their own.

Platforms are mostly focused on the home, but are not limited to it, they can also be
made for education, to control the classroom [Ramadan et al., 2010] or for students to attend
a remote learning course [Shi et al., 2003]. We can also cite workplaces, with the emergence of
Ambient Assisted Working [Bühler, 2009], which focuses on workplace adaptation for elderly
and people with disabilities, as well as wellbeing and health care for all workers [Pancardo
et al., 2018].

Other platforms focus instead on energy savings. One of the oldest and best known,
MavHome [Cook et al., 2003], aims to maximize the comfort of residents while minimizing
costs. In 2003, connected objects such as connected roller shutters did not yet exist, so objects
had to be made by hand to make up for this lack. Thus, stepper motors from 5 1/4” floppy
drives were diverted from their original use to control shutters. The goal was to predict user
actions, using Markov models combined with a frequent event discovery algorithm, which
are sets of actions that the user does every day or every week for example.

There are also test platforms that are not environments per se, but can be integrated into
a physical environment. CASAS [Cook et al., 2013], for example, consists of a box containing
various sensors, for temperature or door opening among others, and a computer processing
the data from these sensors. The different objects in this box must be placed in predefined
rooms. The aim is to make the recognition of predefined activities, where the goal is to find
the activity that a user performs in the environment among a choice of activities defined in
advance. Predefined activity recognition is an important subdomain of learning in an AmI
context, and is explained in section 1.4.3.2.

More recently, “Intelligence of Home” [Gomes et al., 2019] is a platform offering several
services, including counting people in the environment or automating light and room tem
perature to reduce energy consumption. Through a web interface, the user can define his
preferences in terms of temperature and brightness. The system will have to control the shut
ters, the brightness of the TV or the light bulbs in the environment to meet these preferences,
while reducing electricity consumption. So these are basic interactions, but a starting point
in the field of AmI.

Finally, other test platforms are available to host experiments in an AmI context. This is
the case of Amiqual4Home [Inria, 2013], located in Grenoble, France, in which two databases
were built for the recognition of predefined activities: Orange4Home [Cumin et al., 2017a]
and ContextAct@A4H [Lago et al., 2017].

1.4.2 Interactions

When we look at work in terms of user interactions in AmI, we can distinguish two forms
of interactions: explicit interactions, where the user communicates with the environment via
a dedicated interface, and gives instructions, and implicit interactions, also called “context
awareness”, where the environment constantly observes the user, and, depending on his be
havior, responds to his needs.

20

1.4. Ambient Intelligence (AmI)

Relation Symbol Symbol for inverse Pictoral example

X before Y < > XXX Y Y Y

X equal Y = =
XXX

Y Y Y

X meets Y m mi XXXY Y Y

X overlaps Y o oi
XXX

Y Y Y

X during Y d di
XXX

Y Y Y Y Y Y

X starts Y s si
XXX

Y Y Y Y Y

X finishes Y f fi
XXX

Y Y Y Y Y

Table 1.1: Allen’s thirteen temporal relationships between events. Taken from [Allen, 1984].

1.4.2.1 Context awareness

The purpose of context awareness in AmI is to define contexts from the data of the connected
objects. Here, the context can be defined as “any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and applications
themselves.” [Abowd et al., 1999]. Once defined, the actions of the AmI will be done according
to the recognized context.

This area is closely related to the intelligence layer of the AmI, as the system must under
stand user actions from the environment data in order to respond to them in return. Here,
therefore, several works in this area are detailed.

First, work has been done to characterize the context, and more specifically the notions
of time and space. Formalisms have been designed, such as Allen’s temporal formalism [Allen,
1984], representing the temporal relationships of events in an environment. Table 1.1 de
scribes this formalism detailing all the possible temporal relations between two events, X and
Y . This formalism can be used to represent a complex situation composed of events occurring
over time, such as user actions, or data from connected objects. [Randell et al., 1992] proposed
a measure called Region Connection Calculus for estimating the proximity between two spa
tial regions. More and more research is integrating these notions into the reasoning aspect of
these intelligent environments [Augusto and Nugent, 2004; Gottfried et al., 2006].

One of the most widespread application areas for context awareness in AmI is Ambient
Assisted Living. Here, the environment must be able to provide assistance to the occupants
in dangerous situations.

To illustrate, let us take the example of the system proposed by [Keshavarz et al., 2006],
which can detect falls for elderly people. These falls are detected through several objects scat
tered in the environment, such as accelerometers and cameras. With scene analysis tools, a
person’s falls can therefore be automatically detected. In this case, a direct line to the emer
gency services is set up with a badge worn by the elderly person, thus enabling rapid action
to be taken in these dangerous situations. In this way, the environment, without explicit
user interaction, can provide assistance depending on the context, interpreted from data of
connected objects.

Still in the field of Ambient Assisted Living for the elderly, [Blasco et al., 2014] offers a per

21

Chapter 1. Context

sonal assistance system. The machine, named “eservant”, is linked to the connected objects,
and proposes one interface among several, chosen according to the computer skills of the in
dividual. Without the user having to control this machine, it can give useful information to
the user, such as the time remaining for a washing machine, or warn him/her of dangers, such
as the presence of smoke in a room.

[Tang et al., 2016] proposes a system that helps people with Autism Spectrum Disorder
to do predefined daily tasks, such as cleaning or cooking. To help these people, the AmI
system relies on location sensors, placed at strategic points in the room, such as the fridge.
This makes it possible to see how long the person stayed in front of these places. Also, a
smartphone interface can be used to display the tasks required to perform a complex action,
such as cleaning, and sends reminders if the system infers that the user is having trouble doing
the task. Unlike the previous examples, this system can also be monitored and controlled by
an external person in charge of the person with autism.

Finally, other, more general systems are placed in the context of awareness. [Meurer et al.,
2018] proposes a system defining contexts, and controlling the environment from these con
texts, and taking into account user preferences. This system relies on a neural network to
control the environment automatically. As mentioned in this paper, neural networks must be
trained before operating, and they do not have a lot of data to process, because only the data
from one environment are taken into account in this experiment. Thus, expert knowledge is
put at the input of the system to reduce the training time of the neural network. An example
of this a priori knowledge can be in the form of a rule, such as turning on the light in a room
if a user is there. This network then trains in a supervised way, by predicting the actions to
be taken on the connected objects, and comparing these predictions with the actions taken
by the users. A conclusive experiment has been done to switch on the lights automatically
according to the context defined by the objects’ data.

Although promising, this last approach raises several issues regarding the use of neural
networks for context awareness. First, how to reduce the learning time of the neural network
to a minimum? Indeed, the learning period of the experiment presented is two weeks, and only
to be able to control lights in an automatic way. Second, can we make such system without
expert knowledge? After all, the system works with expert knowledge during its initialization.
Furthermore, the architecture is based on assumptions, such as the one that the user will
be absent most of the time from the environment. How can the neural network control
several devices at the same time, based on highdimensional data? How can the network
adapt to changes in objects in the environment? But above all, how can we understand the
reason why this system made a particular decision, such as turning on the light? Indeed,
the neural network being a black box, the contexts established in this structure will not be
understandable by the users. This kind of information can help control this AmI system.
Thus, even if these systems can be efficient to learn contexts and answer some problems, they
are not yet completely adapted to the AmI domain.

1.4.2.2 Explicit interactions

To control an AmI system, several choices are possible. [Gomes et al., 2019], mentioned above,
uses a web interface. Also, the preferred means of controlling connected objects are through
mobile applications. They often make it possible to control connected objects of the same
brand. Examples of applications are “Philips Hue” for light bulbs [Philips, 2019], or “Somfy
MYLINK” for shutters [Somfy, 2019].

However, work on new modes of interaction is ongoing. [Nazari Shirehjini and Semsar,
2017] is exploring the idea of recreating the physical environment virtually in 3D, in order to

22

1.4. Ambient Intelligence (AmI)

Figure 1.4: Screenshot of the Smart AR Home application, showcasing a connected bulb

more easily identify and control the connected objects present. It is also possible to use newer
forms of interaction. For example, “Smart AR Home” is an application for Android based on
augmented reality [Melnick, 2018]. Augmented reality allows to integrate 3D objects in real
time in a real environment, for example through the camera of a phone. Here, there is no
need to recreate the whole environment in 3D. To add a connected object, simply point the
phone camera at the object in question. It will then be displayed in 3D, and show its settings
(figure 1.4). It is thus possible to browse the environment, and to control objects through the
application.

Finally, an additional mode of interaction is developing more and more, and could be
integrated in the field of AmI: robots. This has been addressed by [La Tona et al., 2018], which
proposes a robot in the framework of Ambient Assisted Living. The user can interact with
the robot in three ways: voice via microphones, gestures via a camera, and touch, via a tablet
contained in the robot. At the user’s request, the robot can thus control the objects in the
environment, but it can also help the occupant in case of a problem by calling for help.

Interaction with robots is a field in itself, which is in full development. Work is being
done, for example, to make these robots more expressive [Balit et al., 2018], to avoid them
hindering the user’s path [Paulin et al., 2018], or to learn behaviors based on interactions with
their users [Galdeano et al., 2018]. The idea is to make these robots more social, which can
bring a more natural interaction. In this way, they could thus personify the AmI system, and
represent the primary means of communication.

1.4.3 Intelligence
The intelligence dimension is the heart of AmI. It is this layer that will define the purpose of an
AmI system, whether it is to help people in need with Ambient Assisted Living, to recognize
activities or discover new ones, to secure the environment or to save energy. We previously
talked about the subdomain of context awareness, in section 1.4.2.1. Here, we showcase

23

Chapter 1. Context

some subdomains, first detailing areas that are not very or not related to the thesis, and then
explaining the subdomain in which the thesis is positioned: activity discovery.

1.4.3.1 Anomaly detection

The detection of anomalies is an important security issue for AmI, even if relatively few works
have been done yet on this matter in ambient environments [Acampora et al., 2013]. This
can be done via algorithms which profile the signals of the connected objects. They then
group these profiles together in order to have a typical profile of the environment, and thus
detect changes that may be anomalous [Jakkula and Cook, 2008]. This can also be done by
more specific algorithms, such as creating a system that detects unusual noises, like broken
windows, to identify intrusions [Duman et al., 2019]. Also, specific use cases have been made
for elderly people in the context of Ambient Assisted Living in addition to fall detection, such
as [Tran et al., 2010].

We see that this type of research can be useful for the average person, but even more so for
the elderly, the disabled, or those who can no longer be autonomous. This makes it possible
to assist these people when they need it most, when they are the most vulnerable.

1.4.3.2 Activity recognition

Activity recognition is a central domain in AmI. The goal here is to know what predefined
activities users are doing in the environment. Thus, it falls within the range of supervised
learning. Recognizing activities can have several use cases. For example, it is possible to
define whether a person is available to receive a call based on his/her activity, as in [Cumin,
2018].

Two approaches are possible for the recognition of activities: knowledgebased and data
driven approaches [Chen et al., 2012a]:

• Knowledgebased approaches are based on ontologies to describe the situations to be
recognized. Activities are described with properties related to constraints on data re
trieved by connected objects. The sensor data are then compared with these descriptions
to find the corresponding activity. Several studies have been done on this subject. For
example, [Gu et al., 2004] proposes a formal context model used for, among others,
semantic context representation and context reasoning. On top of that, it proposes a
software to build services upon this model. [Chen et al., 2012b] also proposes an explicit
modeling of the context and the activities in the environment, for activity recognition,
with a 94.44% accurate recognition of certain activities. [Ye et al., 2015] enhances the
previous concept with “Knowledgedriven approach for Concurrent Activity Recogni
tion” (KCAR), a model for recognizing several activities that can take place at the same
time in an environment, with a 91% accuracy. In these cases, they are therefore sym
bolic systems, explained in section 1.3.2.2. Thus, even if these systems perform well
for activity recognition, the problems mentioned in section 1.3.2.2 still remain, and
activity recognition is still limited by the representation of the context. Moreover, if
such systems are to be used by users, each context will have to be modeled by hand,
which makes the installation of the system cumbersome.

• Datadriven approaches fall into the field of supervised learning, where the algorithm
must learn a prediction function from annotated examples. In this case, it is a history
of the data of the connected objects, accompanied by the names of the activities that
the users were doing. This approach is the most widely used in the field of activity

24

1.4. Ambient Intelligence (AmI)

recognition, with a lot of work on this subject. Several AI techniques have been used
to do this, such as classification techniques [Stikic and Schiele, 2009], Hidden Markov
Models [van Kasteren et al., 2011], or more recently neural networks, with [Singh et al.,
2017].

More original research projects are attempting to integrate several existing techniques into
a more complex system in order to improve performance. For example, [Cumin et al., 2017b]
proposes a system composed of several parts. The first one is an activity recognition model per
room, allowing to make an estimate of the activity that the user would be doing in this room,
accompanied by a measure of certainty for each room. The second one is a system gathering all
these results, then determining the most plausible activity with regard to the certainty values.

In our case, we want to discover the regular situations of users in order to offer them
automation, which does not really fit with the definition of activity recognition. We do not
want to identify preestablished situations, we want to discover the custom user situations, in
order to offer truly personalized automation. That is why this thesis does not apply to this
field.

1.4.3.3 Optimization problems

A lot of work in AmI can be considered as optimization problems. For example, we have
already mentioned systems made to save energy, in section 1.4.1: [Cook et al., 2003; Gomes
et al., 2019]. To this we add [GilQuijano and Sabouret, 2010], which uses a reinforcement
algorithm to predict the activities the user will perform. This is a derivative of the recognition
of predefined activities: all the activities are defined by hand, and the system tries to predict
the possible activities of the users, in order to optimize the heating in order to reduce the
overall consumption, while maintaining comfort.

Other objectives can be formalized as optimization problems, particularly in the field of
Ambient Assisted Living, which sometimes requires quick reactions to help occupants. For
example, fall detection for the elderly [Keshavarz et al., 2006], or the optimization of lights to
improve sleep cycles.

1.4.3.4 Activity discovery

The discovery of activities, complementary to the detection of activities, is the other central
domain of AmI. The aim here is to discover regularities in the environment, through the data
reported by the connected objects. Unsupervised learning tools are most often applied here
because the regularities to be sought are not known in advance. Several studies have attempted
to develop systems to predict the actions of people in the environment. It is thus a question
of discovering patterns or prediction rules from the data reported by the connected objects.
Since 1995, learning systems have been created using neural networks, trained to find the
next action of the user, according to its history. The best known are [Cook et al., 2003], using
data compression and Markov Models algorithms, and its evolution [Jakkula and Cook, 2007],
taking up Allen’s temporal relationships [Allen, 1984].

During his thesis, Sébastien Mazac built a sensorimotor learning system in a context of
AmI [Mazac, 2015]. To do this, he was inspired by the constructivist paradigm, which has
been detailed above. He created a multiagent system, i.e. a system with several processes
interacting in parallel with each other for a common purpose. Several agents that cut, compare
and associate pieces of signals allow the system to learn some of the consequences of value
changes reported by connected objects. This system is therefore in the bottomup paradigm

25

Chapter 1. Context

Ambient Intelligence

Ubiquitous
Computing

Personal

Computers
Mainframes

Artificial
Intelligence

Environment

Network

Intelligence

Interactions

Anomaly

detection

Activity

recognition

Activity
discovery

Optimization

problems

Figure 1.5: Positioning of the thesis in the AmI domain

of AI. Through its inspiration and architecture, the system learned basic relationships between
connected objects, and could adapt over time. Even if activity detection is a higher level
concept than sensorimotor learning, Sébastien Mazac’s work is part of this approach.

Other works use tools to mine patterns or prediction rules, which will be detailed in the
following chapter as we precise the research questions of our AmI system.

1.5 Conclusion
In this chapter, we were able to clearly express the stakes of the thesis. By focusing on Ubi
Comp, we have demonstrated that the advent of the Internet of Things is no coincidence,
and we have listed the challenges that remain to be addressed: interoperability, ease of use,
personalization, privacy and security. To address some of these challenges, we propose to
create a service orchestrator, which observes users’ habits to provide them with customized
automation. Knowing how to recognize habits requires intelligence, so we became interested
in the field of AI, which is gigantic, very diffuse, and includes many issues. It also includes
many data processing techniques on which the thesis will be based.

We finally saw a field that merged the two previous ones, namely UbiComp and AI:
AmI. AmI aims to help people in their everyday life in a proactive and reasonable way, and
comprises several dimensions, which can be put together in layers: the environment populated
by connected objects, the network to exchange information, the intelligence to act proactively,
and the interactions with users. This thesis is positioned in the intelligence layer of AmI, and
more precisely in the subdomain of activity discovery. To illustrate what has just been stated,
figure 1.5 shows the overall positioning of this thesis.

We therefore want to create a system, which, from various connected objects, analyses the
data from these objects to find habits and thus provide automation, in order to make these
objects work in synergy. Now that this major issue has been defined, we can focus on the
problems that arise from the design of such a system, which is the core of chapter 2.

26

Chapter 2

Research questions

2.1 Introduction
In the previous chapter, we have set the context for the thesis, and we have listed the main
issues to be solved in the Internet of Things: interoperability, ease of use, customization,
privacy and security. To address these challenges, we concluded with the idea of a service
orchestrator providing automation based on user habits. For example, the AmI system can
automatically turn lights on or off, depending on the presence in the rooms, or turn on a
specific radio channel based on the situation and habits of users. The first basic view of this
system is shown in figure 2.1, where we imagine an AmI system receiving data from connected
objects. Then, based on this data, the AmI system decides to send actions on these objects to
act on the environment.

The objective of this chapter is to raise the issues to be addressed to develop such a system.
This allows us to clarify the vision we have of our AmI system. Indeed, a system offering
automation to users brings together several different domains, such as ergonomics or AI. The
problems of this system are therefore at the crossroads of these fields, and can therefore be
complex and numerous.

It will lead us to the scientific problem of this thesis, mentioned in the introduction:
we have, in a physical environment, one or several persons, and several connected objects,
returning data over time, without necessarily a fixed sampling frequency, and which can be

27

Chapter 2. Research questions

AmI system

Events

Actions

Connected objects

Figure 2.1: Abstract view of the AmI system. The first idea is to have a system that receives
the data from the connected objects and controls them

quantitative or categorical. How can we analyze these heterogeneous, timestamped data,
coming from multiple sources, and without a priori on these data, to observe regularities and
predictions, in order to find habits in this environment and to propose automation to users
in a context of service orchestration?

Thus, to simplify the understanding of this chapter, the issues are structured in three
subdomains: the users of the system, the place on which the system acts, i.e. the environment,
and finally the purpose of the system, i.e. the automation to be provided.

2.2 Users
The AmI algorithms developed in this thesis have the sole and only purpose of serving users.
This problem alone will impose constraints on the rest of this thesis. In addition, the risk
of losing control of the environment and the one of losing privacy is part of people’s fears
about AmI [Ben Allouch et al., 2009]. In general, for this system to be able to provide custom
automation, it must:

• Be useful

• Be easy to use

• Be personalized

• Respect the privacy of its users

Let us first ask ourselves a simple question: how does the AmI system provide this au
tomation?

2.2.1 How to provide the automation?
If we refer to the original vision of UbiComp, cited in section 1.2.3.1, we can imagine a system
that controls the environment in a completely automatic way. It operates without interaction
with users and without informing them, and it decides what actions to take to help users in
their daily lives. However, it is quite easy to imagine the dangers that this algorithm represents:
imagine it leaving the fridge open for hours, turning the heating on all the time or leaving the
gas on when there is no pan on it. Add to that an infant and you have a disaster. To avoid
these terrifying scenarios, three ways are possible:

• Completely model the environment a priori, and define all the dangers to be avoided,
which can take a long time to do on all environments.

28

2.2. Users

• Give control of the system to the users.

• Have a strong AI (section 1.3.2.1) deducing from itself the dangers to be avoided.
Current AI tools do not allow this second possibility at this time, but we can imagine
that this may be the case in the future.

In addition, some habits that can be found in an environment are not necessarily accept
able as automations. Let us take the example of a child who watches television programs after
school. The AmI system can thus observe this frequent scenario, which is a verified and there
fore relevant habit. However, his parents, who are the main users of this system, would not
find it useful to automate this, since they would rather see their child do his homework than
watch television shows. This notion of usefulness in automation, not to be confused with the
relevance of the found habits, must therefore be materialized by learning the goals that users
have for the AmI system. In addition, interactions with users should not be too numerous, to
avoid a feeling of irritation from users, resulting from a lack of interest in using this system.
This can be accomplished by this notion of usefulness, among others.

Finally, since the users of the AmI system are not machines, their actions, and therefore
their habits, will change over time. The AmI system must therefore adapt to these changes,
identifying these new habits and dropping those that are obsolete.

To sum up, several major problems are already arising:

• Take into account the desires of users

• Avoid dangerous situations

• Adapt to change in user habits

• Reduce interactions with users, to avoid their lack of interest

In this thesis, we will not consider the a priori modeling of the environment. Indeed, this
representation is by nature limited, and therefore less flexible to adapt to potential changes,
which is incompatible with the prerequisites of the system, i.e. adaptation to change. In
addition, it can be laborious to implement. We prefer to imagine a system that can adapt to
any environment, without knowing it in the first place. With this in mind, we identify three
levels of complexity for an AmI system:

• Stay at a basic level of control for the AmI system and leave the hand to the users. To
do this, the AmI system makes automation proposals to them.

This can be painful for users, as they have to accept or reject these proposals, which
requires a lot of interaction. However, it also helps to avoid dangerous situations, as it
is the user who has his hand on it. The system remains intelligent in that it can describe
habits from connected objects data. It is also possible to optimize the search for habits
by estimating the notion of usefulness among users as they interact with the system.

• Personify the AmI system with a conversational agent, like a butler.

Interactions would thus be reduced, the concepts of danger and usefulness could be
integrated a priori into the AmI system or built through communication with users.
In the same way as a real person, the butler can decide on his own to automate certain
actions, if he considers them useful for users, and if they do not represent a danger.
Also, it can keep users informed of the automations put in place, with the possibility
for them to deactivate them. This requires algorithms that are more oriented towards

29

Chapter 2. Research questions

strong AI, to allow communication with users to understand their wishes and adapt its
behavior according to them, which is not possible with current conversational agents.

• Have an AmI system completely melted into the environment.

The AmI system is not personified, and acts as a background. It has general knowledge,
which allows it to provide assistance to users through connected objects. It can be
adapted to the goals of users according to its internal representation, through the rare
interactions it has with them. For example, if the AmI system closes a door and a user
opens it immediately after, the AmI system concludes that its action was unwanted,
searches for the cause, and changes its behavior accordingly. In this last conception of
the system, we return to Mark Weiser’s original vision of AmI, where computing acts
in the background (section 1.2.3.1).

In this thesis, we will take the first step, because the last two require further progress in
the field of AI. This approach obviously has its share of problems.

• It is crucial to display the automation proposals in a way that is intelligible to users.

• Users must be able to control the system through interactions, to validate proposals,
to make the AmI system easier and more pleasant to use, and to set limits to ensure
privacy.

• It is important to try to understand the goals of the users for the AmI system. This
optimizes the search to avoid showing them too many rules they consider unnecessary,
and thus reduce the lack of interest they may have using this system.

Regarding user interactions, it would be interesting to design a user interface. This is
outside the scope of this thesis, but it is possible to imagine one easily. To do this, simply take
the interface of an existing orchestrator, such as IFTTT, that allows the manual creation of
automations, and then have a section below it containing the automation proposals, in the
form of suggestions, in the same way that an online sales site would. Further interactions with
users will be detailed in the following chapters.

2.2.2 In what physical form will the AmI system be?
It is important to ask the question of the physical form of the AmI system. Indeed, it will
set constraints to be respected for the rest of the thesis. This problem is strongly linked to
the issues of security and confidentiality. Indeed, it is easy to imagine improper uses of an
algorithm that scrutinizes an environment and acts on it: spying, sabotage, user profiling...

First, the connections that can be made on these objects, i.e. receiving their values and
sending them actions, must be secured. This avoids unwanted monitoring and action on the
environment. To do this, the objects themselves must be secure, and so must their commu
nications. Even if this problem does not fall within the scope of the thesis, it is possible to
imagine a solution to this problem: the AmI system acts as a firewall, controlling all com
munications of the objects to which it is attached. To do this, the AmI system must also be
secure.

In addition, it is also necessary to secure the data of the AmI system, i.e. users’ habits.
They represent private knowledge about them, and this issue of privacy has been a growing
issue in recent years [Cadwalladr and GrahamHarrison, 2018; Ng, 2019]. For example, it is for
this reason that the European Union has adopted the General Data Protection Regulation

30

2.2. Users

Figure 2.2: Representation of an AmI system operating in the cloud

(GDPR), which requires IT companies to give users more control over their personal data
[European Parliament, 2016].

So, considering that, how can we imagine the AmI system? The main trend today is
to build applications for “the cloud”, i.e. running on remote computers connected to the
Internet. Many cloud applications exist that allow to store files, like Google Cloud, OneDrive
or Dropbox, work on office suites with Office 365 or Google Docs, etc.

2.2.2.1 Cloud processing

How can we imagine an AmI system in the context of the cloud? We can initially take in
spiration from online sales site. The system has access to the data of all users at all times.
From this data, the AmI system forms groups of users who are similar in their habits and
makes automation proposals to them. Users can thus accept certain proposals, which will al
low the AmI system to act remotely on connected objects in their environment. This process
is illustrated in figure 2.2.

Making such a system would be complex, as it will be very difficult to crossreference data
from several environments, due to the diversity of connected objects, their location, and the
environments themselves. Let us consider, however, in our case, that this is possible.

On the other hand, it is also possible to process only data from a single environment in
the cloud. Thus, each AmI system would be made for a single environment, there would be
no user groups considered similar in their habits.

What does it bring? Since the AmI system is available on the Internet, users can act on it
outside the environment. It is possible to display new automations for users, because they do
not come from their data, but from those of the group. Also, the AmI system would be fast,
because it would run on computers with enormous computing power, even more powerful
than those usually found in homes.

What are the disadvantages? If the Internet no longer works in the environment, the
AmI system can no longer act on the environment, and therefore becomes inoperative. Also,
the energy cost of a design in the cloud can be high [Elegant, 2019].

31

Chapter 2. Research questions

Environment

Connected objects

Data

Actions

Automation proposals

AmI system

Local processing

Users

Interactions

Figure 2.3: Representation of an AmI system operating locally

What is the main danger? The lack of privacy. Companies offering this type of service
can use the data to their advantage, to better offer advertising [Cuofano, 2018; Rushe, 2020],
at worst to do mass surveillance [Mazzetti et al., 2019]. The purpose of the AmI system would
therefore no longer be to help users in their daily lives, but to guide them towards something
else, such as new products to buy.

It is also possible that these companies, in good faith, prove that they do not have access to
the data, by not grouping people and by treating each user independently of others. However,
the data of all users would remain concentrated in the same place, thus becoming a single point
of attack for hackers.

2.2.2.2 Local processing

The alternative to remote treatment is to make a local AmI system, i.e. running on a computer
integrated in an environment, as shown in the figure 2.3. As the data processed are sensitive,
we can consider that the AmI system only processes the data from the environment in which it
is present. It is also possible to picture an evolution of this concept in the form of a distributed
processing between the connected objects present in the environment. Thus, data would no
longer be processed by a central computer, but rather by the objects in the environment.

What does it bring? First of all, the AmI system is resistant to internet outages. If the
Internet no longer works, the AmI system still works. Then, the habits found by the AmI
system will really be adapted to the users of the environment, because they will be the result
of their data alone. Finally, a priori, the main strength of this proposal remains the respect
for privacy. Indeed, the data is stored and processed on a machine in the environment, and
not on remote computers. Thus, it is possible for a company to offer an AmI service, i.e. the
algorithms and why not the machines on which they will run, without the need to access the
users’ data.

What are the disadvantages? The computer in the environment must have sufficient
computing power to run the AmI algorithms. It is therefore necessary to have efficient al
gorithms, and more powerful machines. This must be combined with the need to be energy
efficient, as these computers would be constantly running. Secondly, there will be, at least for
the time being, no automation proposals coming from other users’ data, unlike processing in
the cloud. Sharing of data and habits remains possible, with the agreement of users, to extend
learning to a neighborhood for example. Finally, in principle, users can only interact with the
AmI system if they are physically in the environment. However, it is quite possible to provide
a remote interface via the Internet, so that the user can act on the AmI system from anywhere.

32

2.3. Environment

What is the main danger? Security. In the same way as for the cloud, it is imperative
to secure the computer on which the AmI system is installed, the connected objects, as well
as the connections between them. In addition, a constant update system must be put in place
to protect machines from future attacks.

2.2.2.3 The choice retained in this thesis

Each solution, whether in the cloud or locally, has its advantages and disadvantages. However,
the issue of confidentiality must be taken into account when developing such a system. More
and more companies are positioning themselves on this subject, such as Apple, which favors
local data processing on their machines when possible [Apple, 2017]. This issue is so great that
it is necessary to explore the view of local treatment in the field of AmI. The combination of
this issue with the other advantages of local processing, like running without the need for the
Internet, has therefore pushed us in this direction. Providing a local and secure AmI system,
rather than a remote system, that can be considered obscure to users, seems to be the best
solution.

To summarize, the AmI system of this thesis is intended to be local, processing only user
data. It must therefore be able to operate with relatively little data, and be efficient.

2.2.3 Summary
In this thesis, we seek to make an orchestrator of services bringing automation through ob
served habits. This section has allowed us to further clarify how the AmI system works.

To avoid dangerous situations that can be generated by a fully automated AmI system, we
give control of the system to the users. The algorithm provides automation proposals, which
the user may accept, or not. This involves several issues, including the need to be efficient, to
make the found habits intelligible, to allow system control through interactions with users,
and to understand users’ objectives for this AmI system, in order to minimize their lack of
interest.

In addition, to respect the privacy of users, we propose local data processing, not in the
cloud, which means that the AmI system will have to process little data. Changes in user
habits must also be taken into account. Thus, the system must adapt to it over time.

The overall functioning of the AmI system is fixed (figure 2.3), let us now talk about the
environment in which it must evolve.

2.3 Environment
The environment, i.e. the physical place on which the system operates, is the central element
of an AmI system. It is in this one, monitored and modified by the connected objects, that the
algorithm evolves and searches for habits. In this section, we will therefore formalize the data
we can collect, in order to explain our choices regarding the architecture of the AmI system
detailed in the next chapter.

The previous section indicated the need for an efficient system, due to local processing,
and the need to express habits in a way that is understandable to users. Thus, four global goals
are identified in the consideration of the environment:

• Take into account all possible data from the environment to characterize habits

33

Chapter 2. Research questions

• Adapt to changes in the environment, i.e. additions, deletions, and failures of connected
objects

• Be efficient in data processing

• Express habits in an understandable way

2.3.1 Definitions
First of all, what is an environment? It is a delimited physical place. It can have objects or
living beings. It is defined by properties, like the temperature, force of the wind, luminosity,
the state of a door (closed or opened), or the radio that is playing. In an environment, we
can measure, hence monitor, those properties as variables. Not only can we monitor the
environment, but we can also act on it. One can change the radio, close or open the door, or
change the temperature via heating or air conditioning. Thus, an action in the environment
can have an impact on the variables observed in it.

So how can we observe the environment and act on it? We can do it directly through
our body, or use objects. There are an infinite number of objects: windows, hammers, video
recorders, Minitels, washing machines, speakers, smoke detectors, plates... And all can either
measure the environment, act on it, or both. In the scientific literature [Aztiria et al., 2010;
SanchezPicot et al., 2016; Frey, 2013; Warneke et al., 2001], two categories of objects are defined:
sensors and actuators. A sensor monitors a variable in the environment, and an actuator acts
on the environment.

A connected object is an object that can communicate, i.e. send or receive data, with other
objects. Note that a connected object is not necessarily directly connected to the Internet
network. We can take the example of a watch that can only be connected to a phone via
Bluetooth. In this case, it is not directly connected to the Internet, it is the phone that can
share its information on the Internet. The term Internet of Things therefore refers to the
network formed by all these communicating objects, and not to the Internet as we know it
today.

A connected object shares all the properties mentioned above, except that in this context,
we distinguish a particular type of actuators as interfaces. An interface acts on another con
nected object, while an actuator acts directly on the environment. So, for a switch acting on
a lamp, the switch is an interface, and the lamp is an actuator. This distinction between in
terfaces and actuators is inspired by the notion of “actions” from [González García et al., 2017].
This will be useful for the rest of the thesis, as it avoids redundancies between the actions of
the interface and those of the object it controls.

To summarize, in an environment, we have the following types of connected objects:

• A sensor monitors a variable in the environment, e.g.: a temperature sensor.

• An interface acts on another connected object in the environment, e.g.: a switch acting
on a light.

• An actuator acts directly on the environment, e.g.: A light or a heater.

An object can be either elementary, i.e. with only one sensor, interface, or actuator, or compos
ite, i.e. composed of several sensors, interfaces and/or actuators. A smartphone, for example,
has a multitude of sensors, and can affect the environment by sending sound or images.

Regarding the variables that can be monitored, we distinguish two of them: quantitative
and categorical.

34

2.3. Environment

• A quantitative variable has values that represent a quantifiable property of the envi
ronment, such as temperature (in degrees Celsius) or brightness (in lumens).

• A categorical variable has values that are not quantifiable, and represent distinct cat
egories. It may be difficult to estimate a measure of distance between these categories
without prior knowledge. For example, the status of a door (closed or open), or the
radio channel being played.

• There are also connected objects that return more complex data, such as connected
cameras that return a video signal, in other words vector data. The processing of this
data is a field of research in itself, belonging to picture analysis. In addition, this is
highly sensitive data from a privacy perspective. Thus, they will not be taken into
account in this thesis.

As with the variables, we can identify two types of actions:

• A quantitative action sends an order in the form of a quantifiable value, such as the
desired temperature for a heater, or an electrical current for a motor. In this case, the
values are necessarily numeric.

• A categorical action sends an order from a list of completely separate possibilities.
Here again, the distance between two categorical actions cannot be easily determined.
For example, choosing a radio channel, or switching on a lamp.

It should be noted that quantitative action will not necessarily have an observable quantifiable
impact on the environment, and vice versa. For example, we can increase the current intensity
of a door closing motor. It is a quantitative action because it influences a quantifiable value,
which can be transcribed by a categorical observation: a closed door.

It is also worth noting that it is possible to obtain environmental data not directly from
connected objects. Indeed, data such as weather or traffic information can be provided by
Internet services. In this thesis, we can consider that they also belong to the category of
connected objects, because nothing distinguishes these services from objects, at data level.

2.3.2 Data
Before we look at the issues and the different areas that deal with data, let us make an inventory
of the data that can be obtained.

2.3.2.1 Context

By definition, connected objects communicate, so they can send and receive data. For ex
ample, a temperature sensor may return the measured temperature at a given time, a door
opening sensor may return the status of the related door, etc. Also, a radio can be turned on
by data sent by another object, such as a switch. Here, we define these primary and unpro
cessed data as events. All the events sent by all the objects are gathered in a set noted E. For
each event received, the system knows its source, i.e. the object that sent it.

Connected objects can share two types of events: monitored variables if they are sensors,
and actions taken if they are actuators or interfaces.

Let us take the example of a room containing two connected objects, as seen on figure 2.4:
a presence sensor, used to define whether a person is in the room or not, and a radio.

35

Chapter 2. Research questions

Radio

Presence sensor Sensor

Actuators Events

Power

status

Stations

Volume

Detection of

a user in the

room

Radio on, Radio off

Music, News, Talk

0, 1, 2, …, 99, 100

Present, Absent

Figure 2.4: Environment example

• The presence sensor just detects if someone is present in a room, and cannot deter
mine the number of people present. Thus, it can detect the following: “Present” and
“Absent”.

• The radio has three actuators:

– Its power status can be: “Radio on” or “Radio off”.

– It can select one of the following stations: “Music”, “News”, “Talk”.

– It can change its broadcast volume between 0 and 100.

Therefore, the set of all events is E = {Present, Absent, Radio on, Radio off, Music, News,
Talk, Volume}, with Volume ∈ [0, 100].

All those events are returned by the objects over time. We can therefore set an occurrence
time for each sending of an event by an object. We can even put all the event submissions of
an object on a timeline, to have a history of the events sent.

This data representation is called a time series (see figure 2.5). It is noted TS=⟨(t1, I1), ...,
(tn, In)⟩, I1, ..., In ⊆ E, where:

• ti is a time stamp. It defines the time coordinates of the occurrence.

• Ii ⊆ E is called an itemset. It is the set of individual events of E which are observed
at time stamp ti.

The figure 2.5 is an example of a time series which represents activities of a user in the
environment. Its mathematical representation is:

TS = ⟨(10:00 am, {Present}), (10:44 am, {Radio on, Music}), (11:36am, {Radio off}),
(1:57 pm, {Radio on, News}), (2:25 pm, {Music}), (3:41 pm, {Volume = 40}), (5:14 pm,
{Radio off}), (6:05 pm, {Absent})⟩.

As seen above, the connected objects return events of different kinds: temperature, radio
volume, presence of someone in a room, etc. We have seen that there are two possible types

36

2.3. Environment

9:30 AM 6:30 PM

10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

{Present}

{Radio on, Music}

{Radio off}

{Radio on, News}

{Music}

{Volume=40}

{Radio off}

{Absent}

Figure 2.5: Representation of a time series

of events: quantitative and categorical. The structures of these formats are fundamentally
different: there is no notion of distance between categorical events, as opposed to quantitative
events. It is possible to have an order or a notion of distance between the different categories,
with expert knowledge, but we assume in this thesis that we do not have any.

New algorithms, based on Deep Learning for example, are trying to learn features over data
of different kinds [Ngiam et al., 2011]. However, they require a lot of data, and the operation
of these neural networks is not intelligible (section 1.3.3.1), which makes it inapplicable in
our case. We must therefore assume that we do not have a tool powerful enough to adapt
to all possible data. Thus, the AmI system must process quantitative events differently from
categorical ones.

2.3.2.2 Categorical data

How can these data be taken into account? There are two complementary ways to
take this data into account when searching for habits:

• Observe the changes in this data, i.e. the transition from one event to another that is
different from the previous one. Let us take the example of a change from an event a
to an event b, which can be formalized as a→ b. Several pieces of information can be
taken into account in a change, in particular:

– Only the end value, b

– Only the start value, a

– The complete change, i.e. the transition from a to b

Those information pieces are complementary, and can be used to describe habits. Such
an example would be: if the light turns blue, then turn on the heater.

• Take into account the stationary states of these data. A usual example would be: if
the door opens and the heating is on, then close the window.

The first category, i.e. taking into account changes in data, and more precisely the information
concerning the final value, are fundamental for our subject. Indeed, automation implies at
least one change of state at the input and output. For example, if the user opens the door,
turn on the light; if the fridge opens, then turn on the light in the fridge, etc.

The second category is complementary to the first, as it provides contextual information,
making it possible to specify the conditions under which habits take place. However, it may
involve a very high density of data to be taken into account. This can significantly increase
the time required to operate the system in question. Indeed, if we take a snapshot of the
environment at a given time, we can observe some changes in the connected objects, and
many stationary states in all the others. Therefore, for each snapshot of the environment, it is
necessary to take into account the data of all objects, instead of only those which change.

37

Chapter 2. Research questions

Taking into account the notion of negation It is also possible to take into account the
categories that are not selected, in other words, to take into account the notion of negation.
After all, if one category has been selected, the others are not. This only makes sense if at least
three categories are possible among the events sent by the connected object. Otherwise, with
one category acting as a mirror of the other, taking into account negation would simply be
redundant.

This provides more ways to characterize habits to look for. Let us take the example of a
connected window, which can have three states: open, ajar, and closed. We can imagine that,
from the moment the window opens or becomes ajar, the room temperature drops. Thus, we
can imagine the following rules stipulating that if the window opens, the temperature drops,
and if it becomes halfopened, the temperature drops too. But a more interesting rule would
be the following: if the window is no longer closed, then the temperature drops. Such rules
could be found through a hierarchical description of the data. Thus, we would have two
categories, such as “closed window” and “open window”, with two subcategories: “window
ajar” and “window fully open”. However, this description must be made a priori, with expert
knowledge of the data.

This can simplify the number of rules that the system finds, and therefore displays to the
user, which is in line with intelligibility. Taking into account negation would certainly be
beneficial for the search for rules but it would lead to either a priori on the data, or too dense
data to be processed, because it would be necessary to constantly take the status of all possible
categories. Thus, these data are not essential to make a functional AmI system, but will be
very useful for its evolution.

Redundancies In general, it will be necessary to remove redundancies in categorical data.
As a reminder, a connected object gives the state of an environment at a given time. They
send notifications of environmental states, not changes. It is the difference between an event
and the previous event that indicates a change, or not. Thus, if we take the example of a door
opening sensor, if the sensor returns the event “door open” 5 times in a row, it does not mean
that the door has been opened 5 times. This would require an alternation of “closed door”
and “open door”. Thus, to avoid misleading the system, it is useful to remove redundancies
in the events returned by the objects.

For some objects, each data sent can be considered important. For example, a smartphone
can send as data the fact that a new message is received. For these types of objects, the data
sent is the notification of a change. It is thus possible to make an exception for this type of
object, by not deleting what is considered to be redundancy, thus taking into account each
data transmission. However, since these objects are in the minority, we will not take them
into account in this thesis.

Summary The basic AmI system must take into account changes in categorical data. In
its evolutions, it can also take into account stationary data, in order to have contextual infor
mation, and the notion of negation to potentially reduce the number of rules to be found.
However, both these developments require more data to be processed.

2.3.2.3 Quantitative data

Integrating quantitative data into an analytical system or AI is a very complex area in itself.
In our case, it is necessary to clarify some concepts regarding input data:

38

2.3. Environment

0

5

10

15

20

25

30

35

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM

T
e
m

p
e
ra

tu
re

 (
in

 d
e
g
re

e
s

C
e
ls
iu

s)

Time

Figure 2.6: Example of quantitative events from a temperature sensor

• Basically, the AmI system has no idea of what kind of data it has in input. It does not
know if a sensor captures temperature, humidity or sound, if the data from a switch
turns on a light or closes a shutter. With this information, it would have been possible
to apply algorithms adapted to this data. For example, knowing that an object is a
microphone can induce using speech processing or sound recognition algorithms. It
knows neither the scale of values nor their meaning, other than by the name of the
connected object, which can be difficult to interpret. Thus, on this point, the AmI
system is completely agnostic.

• The arrival times of the data depend on the objects that send them, as shown in the
example in figure 2.6, mainly for energy saving reasons. We are rarely in a situation
where a fixed sampling frequency exists, as in audio files. The AmI system is completely
dependent on the object from which it receives events.

• The AmI system will need to process this data to identify habits, but also to execute
automation online, i.e. treating the events as they go along. Thus, if there are processes
to be done on the input data, they will have to be done online.

Let us take an example of a temperature sensor, sending events within a day, in figure 2.6.
To unify quantitative and categorical data, and thus process them homogeneously, we can
either convert all data into categorical data or into quantitative data.

In our case, we must transcribe the automation proposals, based on the data, in a way that
is intelligible to users. Converting data into categorical data can make a result more intelligible
than converting it into quantitative data. We will therefore discretize quantitative data, i.e.
convert them into categorical data. How to do this? Several ways are possible:

• Consider categories as value ranges (figure 2.7). For example, if a temperature is less
than 17, it is in the “cold” category, between 17 and 25, in the “comfy” category, and if it
is greater than 25, in the “warm” category. This discretization is very easy to understand,
but requires expert data to determine the boundaries of the categories.

• Consider basic variations in the data, according to several of their characteristics (fig
ure 2.8). This can be done by smoothing the signal, to remove very small variations
considered as noise, and then grouping the variations that are considered to be similar.
It is possible to understand this discretization because it refers to simple variations in
the signal. Cleaning the signal to keep only great variations in terms of amplitude can

39

Chapter 2. Research questions

be done with signal processing algorithms [Kay, 1993], if these data have a fixed sam
pling frequency. For example, a lowpass filter can be applied to audio data [Porle et al.,
2015]. If the data do not have a fixed sampling frequency, the signal can be cleaned by
segmentation algorithms, such as the TopDown algorithm, the BottomUp algorithm
and the Sliding Window algorithm [Lovrić et al., 2014]. Grouping variations together
can be done via clustering algorithms, such as Kmeans, DBSCAN or Hierarchical
Clustering [Madhulatha, 2012].

• Profiling the signal, to directly find similar signal pieces (figure 2.9). This can be used in
particular for anomaly detection, where we look for signal fragments that differ greatly
from the usual observed profile. Systems, recently using neural networks, make it pos
sible to search for them [Baccouche et al., 2012; Bascol et al., 2016]. Furthermore, tools
can be applied to compare two portions of a signal, such as Dynamic Time Warping
[Berndt and Clifford, 1994], or to group portions of signals, such as selforganizing maps
[Kohonen, 1990] or growing neural gas [Fritzke, 1995]. But, even if these systems are
powerful, the signal pieces identified as repetitive may be more difficult to interpret
than basic variations.

It is also possible to develop the basic techniques mentioned above, in particular by in
tegrating user feedback. If we repeat the previous example of discretizing a temperature, the
boundary between “cold” and “comfy” can change via observations of users’ heating prefer
ences. It is also possible to directly apply more advanced and specialized algorithms, such as
speech processing algorithms to transform speech signals into text, if we know the nature of
the data the AmI system will have.

Signal processing functions, such as the Fourier transform, can be applied to highlight im
portant information in the signal. However, this usually works with data with fixed sampling
frequency, except that in our case, the data do not necessarily meet this condition.

To summarize, if the AmI system has no idea of the data to be processed, discretizing
the categorical values according to their basic variations seems to be a good solution, because
it can remain understandable for the user, while not requiring any expert knowledge to be
given a priori. If the nature of the data can be known in advance, for example temperature,
value ranges discretization is possible, which is easier to understand. Preprocessing functions
can also be applied to simplify discretization, and finetuning can be done to improve the
discretization over time.

2.3.2.4 Metadata and data overload

It is possible to have additional data related to those returned by the objects, called metadata.
For example, the location of objects, whether GPS data or the room in which the object is
located. This data can either be returned by the object or defined by the user when installing
the object at home.

The problem of data overload, which has already been encountered in section 2.3.2.2,
then arises. How can we reduce the size of the data to be processed to discover habits, in other
words how to estimate the range of action of a habit? This is similar to the problem of the
frame problem, expressed in section 1.3.2.2: how to define a search boundary field in data
or objects? In other words, can we group objects according to their location or their share of
common habits, and thus, make the search for habits faster? It is easy to imagine, for example,
that an object connected in an attic will contribute little or nothing to habits in the kitchen,
for example.

40

2.3. Environment

0

5

10

15

20

25

30

35

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM

T
e
m

p
e
ra

tu
re

 (
in

 d
e
g
re

e
s

C
e
ls
iu

s)

Time

Cold

Hot

Comfy

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM

Time

Comfy Cold Hot ...

Figure 2.7: Discretization of quantitative data with value ranges

0

5

10

15

20

25

30

35

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM

T
e
m

p
e
ra

tu
re

 (
in

 d
e
g
re

e
s

C
e
ls
iu

s)

Time

Figure 2.8: Discretization of quantitative data with variations. Dashed variations are con
sidered similar, as are dotted ones.

0

5

10

15

20

25

30

35

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM

T
e
m

p
e
ra

tu
re

 (
in

 d
e
g
re

e
s

C
e
ls
iu

s)

Time

Figure 2.9: Discretization of quantitative data with patterns. Dashed variations are consid
ered similar.

41

Chapter 2. Research questions

Figure 2.10: Abstract view of the system. The AmI system will need preprocessing algo
rithms to clean and take into account the different kinds of events sent by the connected
objects

[Cumin et al., 2017b] dealt with this problem by grouping the connected objects according
to their location. The AmI system processed the data for each room separately, to reduce
computation time and make it easier to find habits. Unfortunately, this technique requires a
priori data, which can be given by the user or by the objects themselves, and does not allow
to find habits that take place in several places at the same time, such as the passageway from
the entrance to the living room, etc.

2.3.3 Summary

We see, in the quantitative and categorical data, that pre-processing will be present. For
quantitative data, a discretization will be necessary to be able to treat them equally with the
categorical data. For categorical data, a cleaning of duplicates is necessary, and other process
ing would be useful to take into account context data for example. Thus, the raw data from
the sensors will be different from those available after preprocessing. We distinguish these
new processed data from the original events by giving them a new name: atoms. An atom is
a categorical data describing the properties of a variation. In the same way that a variation can
be observed several times, an atom can also be instantiated several times. These atoms form
the basic material in search of habits, that is why the name “atom” was chosen. The set of all
atoms is noted A.

Thus, at the end of preprocessing, we can assume that, to simplify, we have a time series
of atoms, whose atoms come from all connected objects in the environment. This time series
can be formalized as TS=⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A, where:

• ti is a time stamp. It defines the time coordinates of the occurrence.

• Ii ⊆ A is called an itemset. It is the set of individual atoms of A which are observed
at time stamp ti.

These time series of atoms will be the data analyzed by the habit search algorithm. Thus, we
can evolve figure 2.3 into figure 2.10, by specifying a little more the architecture of the AmI
system.

Also, two major issues are apparent in data processing: how to avoid having too much
data, and how to discretize quantitative data in a way that is understandable to the user? We
have identified several ways of processing quantitative and categorical data, and these two
issues will guide the choices that will be expressed in the next chapter.

42

2.4. Automation

Front
door

opened

Entrance
light on

Someone
present in
entrance

Front
door

closed
TV on

Front
door

opened

Entrance
light on

Someone
present in
entrance

Front
door

closed

Entrance
light off

Figure 2.11: Example of a frequent sequence in a time series

2.4 Automation
In section 2.2, we identified that the AmI system would make automation proposals that are
understandable to users, because they are the ones who will validate them. It is important
to note that not all habits will necessarily lead to automation proposals. For example, “every
day at 11pm, the user is present in his room” cannot lead to automation because it does not
involve any action to be taken on the connected objects.

Thus, the main goals regarding automation are:

• Recognize the habits of users involving actions made on connected objects, which are
potential candidates for automation

• Provide automation in a way that is understandable to users, i.e. make a transcription
of the habits found by the system into an intelligible form

The purpose of this part is therefore to identify the structure of the automations to be
proposed, and to find an algorithm to search for the habits that can lead to automations.

In what form should these habits be stored, so that they are understandable to users? Of all
the possible data structures to represent habits, three are the most commonly used: patterns,
sequences and prediction rules.

2.4.1 Possible structures
2.4.1.1 Sequences and Patterns

A sequence is an ordered series of atoms. It is noted ⟨a, b, c⟩, which means that a comes
first, then b, and finally c. A sequence can have one, two or more atoms, up to infinity. If we
were to apply this structure to our case, the AmI system would have to search for frequent
sequences, i.e. sequences of atoms that have been seen many times in the input time series.
It is possible to add a notion of duration to these sequences, in order to have an estimate of
the time a habit takes.

Here is an example (figure 2.11): ⟨the front door opens, the entrance light turns on,
someone is present in the entrance, the front door closes⟩. With this example, it is easy to see
that a frequent sequence can characterize a common situation, in this case, the entry of a user
into his or her home. Many frequent sequence search algorithms exist, such as PrefixSpan,
[Pei et al., 2001], SPADE [Zaki, 2001], and IncSpan [Cheng et al., 2004; Nguyen et al., 2005]. An
overview of these algorithms can be found here: [FournierViger and Lin, 2017].

A pattern, on the other hand, is a set of data that is almost identical to a frequent sequence,
except that it is not ordered. It is noted s = {a, b, c}. In our case, patterns can also be useful
in characterizing a situation. Let us take the example of someone who cooks. Knowing in

43

Chapter 2. Research questions

Fridge
opened

Hood on
Oven

on

Kitchen
door

closed

Oven
on

Fridge on
Hood

onRadio on

Kitchen
window
opened

Figure 2.12: Example of a frequent pattern in a time series

which order he opened the fridge, turned on the oven, or the hood doesn’t really matter to
characterize the cooking situation, as seen in figure 2.12. This situation can thus be described
as {fridge opened, hood on, oven on}. Many pattern mining algorithms exist [Jin and Agrawal,
2007; Bouakkaz et al., 2017; Zarrouk and Gouider, 2012; Lee and Yun, 2017; Spiegel et al., 2011;
Galbrun et al., 2018; Tanbeer et al., 2009]. An overview of pattern mining can be found here:
[Aggarwal et al., 2014; Chee et al., 2019]. Overall, patterns describe situations in a more general
way. To describe situations for which the order of events does not matter, it would therefore
be interesting to use this structure.

However, we must not lose sight of the objective of our system: to provide automation to
users. Patterns and sequences therefore describe common situations, but there is a fundamen
tal notion missing: that of prediction. Finding a habit leading to automation means finding
a rule that successfully predicts certain user actions based on a set of observations. They may
therefore represent a step towards creating rules, but they do not represent the final form of
automation proposals. To describe the automations to be discovered, it is necessary to look
at another data structure: prediction rules.

2.4.1.2 Prediction rules

A prediction rule is composed of a condition part and a prediction part. It describes that
if the condition is observed, the prediction part will be observed after a certain time. Thus,
this structure is well suited to our case, in the sense that we are trying to predict actions to
be taken from a situation. If we imagine automation proposals, we can distinguish two main
types:

• “If a person is cooking, then turn off the light in the living room.” This is a situation
rule. If a situation occurs, then do a series of actions.

• “Every day at 6pm, turn on the radio.” This is a periodic rule. They represent a habit
that takes place at a fixed time indicator, which can be an hour, a day of the week, etc.

Of course, rules with time indicators and situations may exist. For example: If a person is in
his car and it is 6pm, then put the news channel on the radio. Thus, several types of rules can
be found, which would require one or several search algorithms.

Referring to the problem of intelligibility, expressed in section 2.2, the description of
these rules could be of a high level, as in the previous examples, so that the rules are easily
understandable. However, since the system must manage lowlevel data from connected ob
jects, it should be possible to obtain a semantic layer that transcribes the data to a highlevel
representation. Since the system is agnostic, and the highlevel layer depends on the users,
interactions will be necessary to build the necessary semantic layer.

44

2.5. Continuous improvement of the system

AmI system

Events

Atoms

Prediction

rules

Users

Pre-processing
Actions

Connected objects

Search Interactions

Figure 2.13: Abstract view of the system. This diagram presents the functional architecture
of the AmI system, allowing to search for habits.

2.4.2 Summary

After preprocessing, the AmI system will have to look for habits. Prediction rules and periodic
rules are complementary structures to represent these habits. Algorithms searching for these
rules from the time series of atoms will have to be determined in order to accomplish this task.
Also, it will be necessary to determine whether the order of events is important to characterize
a situation.

2.5 Continuous improvement of the system
So far, we have been able to detail the primary features of the system, shown in figure 2.13.
Now, let us recall two essential objectives of the system: to be useful and personalized. In
order to best achieve these objectives, it would be interesting for the AmI system to take into
account the feedback from its users to improve its internal functioning.

That is why we have envisaged multiple improvement processes coming from two sources,
which can be seen on figure 2.14:

• On the one hand, feedback coming from the user, which can be done in several ways.
Its most basic feedback is to accept that certain habits are automations. This provides a
small evaluation of the system, to measure its usefulness. We can also imagine that more
advanced interactions, allowing a more complete feedback, are possible. For example,
users could guide the search, such as asking to search for habits only in certain rooms
for example, or not taking into account certain objects. This evaluation, which we call
external feedback, aims to improve the building blocks of the system in order to make
it more efficient, and more useful.

• On the other hand, we can also imagine internal evaluations, specific to the building
blocks, to optimize them. This is internal feedback, which does not come from the
users. It is therefore complementary feedback to the first one.

This feedback would allow us to have a system that is constantly evolving, that responds
to user requirements, so that it is useful to them. However, designing these different feedback
processes of the desired AmI system is a complex issue. We will see in chapter 3 that the
building blocks were created with these feedbacks in mind. However, this thesis focused on
the search for habits, and therefore the feedbacks have not been implemented.

45

Chapter 2. Research questions

AmI system

Events

Atoms Prediction

rules

Users

Pre-processing
Actions

Connected objects

Search

Interactions

Internal
Feedback

Internal
Feedback

Feedback

External Feedback

Figure 2.14: Abstract view of the system. This diagram outlines the architecture of the AmI
system, including the feedbacks.

2.6 Conclusion
In this chapter, by identifying the main issues and problems, we were able to specify the
functionalities of the desired system, illustrated in figure 2.14.

Here is a summary:

• To avoid possible dangerous situations, the users will need to keep control of the system,
which will propose automations.

• To address confidentiality issues, it will act locally, via a machine integrated into the
environment, and will only process data from a single environment.

• The connected objects are separated into three categories: sensors, interfaces, and actu
ators. The objects that send more complex data, like video cameras are not considered
here.

• The AmI system will preprocess the items sent by the connected objects. This pre
treatment will be different depending on the nature of the events, i.e. quantitative or
categorical. The preprocessed data is called atoms.

• The instantiations of these atoms will be represented in a time series, which will be
the entry of an algorithm for searching prediction rules. These rules will form the
automation proposals to users.

• User feedback will be taken into account, and internal evaluations will be made, to
improve the system and make it more useful.

These precisions also bring their share of problems, which are summarized here:

• How to take into account changes in user habits?

• How to take into account changes in connected objects, i.e. additions, removals, fail
ures?

• How to take into account the desires of users on such a system, to avoid their lack of
interest?

• How to translate prediction rules in a way that makes it understandable to users?

46

2.6. Conclusion

• What types of prediction rules, i.e. situation or periodic, should the system find? Does
the system need to find both types of rules, or is one of these types less relevant?

• How to find prediction rules on a time series?

• What interactions should the AmI system have with its users?

• How to design the different feedback processes?

The following chapters therefore explain how the desired AmI system works. We will first
detail the architecture in chapter 3 and the algorithms in chapters 4 and 5. They allow to
answer some of these problems, and to propose a valid implementation of the AmI system
within the constraints set here.

47

48

Chapter 3

Architecture

3.1 Introduction
With this chapter, we start to attack the substance of the thesis subject. Here is detailed the
architecture of the desired AmI system.

First, the AmI system proposed in the thesis can be seen as a complement to another
research system developed within Orange, called “IoT Mashups” [Orange, 2016]. This system
proposes to manually create automations in a connected environment via a simplified web
interface, as shown in figure 3.1. An example of a mashup could be “If the front door opens
and I am present at the entrance, then switch on the entrance light and turn on the radio”.
Here, all actions on objects are named a priori, as well as the data that it is possible to have
from the sensors, to make it easier for users to understand. IoT Mashups is intended as an
evolution of tools such as IFTTT, which was mentioned in section 1.2.4, because it can take
into account several conditions and make several actions within the same automation. Even if
it has been developed from scratch, the AmI system proposed in the thesis takes the principles
of IoT Mashups, bringing automation proposals to facilitate the user in the use of this tool.
This inspiration guided the creation of the architecture.

To explain this architecture, we follow the same path as the data, coming from the con
nected objects, and going towards intelligible automation proposals, then towards effective
automations. Then, we answer why this architecture can respond to the problems and issues

49

Chapter 3. Architecture

Figure 3.1: Creation of an automation within the IoT Mashup interface

mentioned in the previous chapter, like the adaptation to changes, taking the users into ac
count, and the optimization of computation time. Also, we focused on some building blocks
of this system during this thesis. Thus, we detail which building blocks we have implemented,
and what remains to be designed.

3.2 Architecture
In this section, we detail the system architecture, taking as a starting point the events sent
by the objects, and then going on to automation proposals, then active automations, via
a user feedback that evaluates the AmI system in order to improve it. Figure 3.2 outlines
this architecture, and represents a visual support complementary to this section. As seen in
chapter 1, the proposed system is at the crossroads of several paths: AI with activity discovery,
UbiComp with connected objects, and ergonomics with the user perspective.

This architecture differs from those present in the state of the art. Indeed, most of the
architectures presented in the field of ambient intelligence do not focus on the discovery of
activities, but rather on optimization problems, such as in Ambient Assisted Living or the
reduction of energy consumption or the recognition of predefined activities. Other systems,
such as [Meurer et al., 2018] or [Jakkula and Cook, 2007], use neural networks, which makes it
impossible to understand why the system has made a decision, and therefore to know how to
control its actions. [Mazac et al., 2014] may be subject to the same criticism, as it uses a multi
agent system whose operation can be difficult to understand. The AmI architecture presented
here discovers new activities in a connected environment and proposes a concrete application
case, that of making automation proposals based on observed habits. Moreover, it is designed

50

3.2. Architecture

AmI system

Pre-processing

Users
Object

Object

Object

Events

Events

Events Atoms Raw Rules

Fine-tuning

Addition of
time indicators

Rule mining

Application of
the validated
automations

Atoms

Actions Feedback
dispatcher

User-friendly

propositions

Fine-tuning,

Ranking

Validation

of rules, etc

Interaction resultsNew automations

Interface

2 43 5

56

1
... Events

Internal feedbackInternal feedback

Legend Pre-processing algorithms Search algorithms Feedback algorithms Other algorithms

Figure 3.2: Architecture of the proposed AmI system

to promote user interactions, with interpretable results, and the taking into account of user
feedback.

3.2.1 From events...
As a reminder, we have connected objects1 sending quantitative or categorical events (identi
fied by block 1 in figure 3.2). An object is formalized as follows: o = {category, datatype},
where:

• category represents the category of the object, i.e. a sensor, interface, or actuator.

• datatype is the type of data sent, either quantitative or categorical.

• The set of all objects in the environment is named O.

Here, the function of the object, e.g. a temperature sensor or switch, is not mentioned.
This is because the system is agnostic, and it knows nothing about the object other than its
unique identifier, its category, i.e. sensor, interface or actuator, and the type of data sent by
the object.

Events have a different structure depending on the communication protocol used, such
as Bluetooth, Zigbee, or LoRA, which are not compatible with each other (section 1.2.4). In
our case, we determine that a sent event is composed of the identifier of the object sending it
and the value of the event.

We will therefore formalize an event as: e = {o, value}, where:

• o is the object that sends it.

• value is the value of the event.

• An example of an event would be e = {temp62, 21}.

• The set of all events coming from an object o is named Eo.

1To simplify the following formalizations, we will define an object as elementary, not composite, i.e. it is
composed of only one sensor, interface or actuator (section 2.3.1). Thus, according to this definition, a composite
object is simply the combination of elementary objects

51

Chapter 3. Architecture

It is possible to obtain further information about the event from the identifier of the object
sending it, namely the category of the object, i.e. sensor, actuator or interface, and the type of
data, i.e. quantitative or categorical.

Thus, we consider that each object sends a time series of events either quantitative or cate
gorical. To formalize, an object o sends over time a time series TSo = ⟨(t

o
1, e

o
1), ..., (t

o
n, e

o
n)⟩,

eo1, ..., e
o
n ∈ Eo, which we will simplify into TS = ⟨(t1, e1), ..., (tn, en)⟩, e1, ..., en ∈ Eo for

greater generality, where:

• ti is a time stamp, i.e. the time coordinates of the occurrence.

• ei ∈ Eo is an event which is observed at time stamp ti. In this thesis, we consider
that a connected object cannot send two different events at the same time. Thus, each
timestamp is different from the others.

• Eo is the total set of events that the object o can send. It is either a set of quantitative
or categorical events, not both.

• TS is ordered by the time stamps.

Thus, for n connected objects, the preprocessing part of the AmI system (block 2 in
figure 3.2) must process n time series. In our architecture, each time series is treated inde-
pendently. This allows adaptation to the input data. Indeed, temperature data do not have
the same range of values, nor the same variations, as electrical data for example. Processing
these time series independently therefore makes it possible to adapt to the specificities of each
time series. Preprocessing acts as follows:

• It discretizes quantitative events by identifying their basic variations (section 2.3.2.3).
This represents a good balance between intelligibility and ease of implementation with
out any data preconceptions, as stated in that section.

• It cleans categorical events by removing duplicates (section 2.3.2.2).

Preprocessing is an essential component of the system. As seen in figure 3.2, it provides
a time series of atoms that is used for two other parts of the system:

• The rule mining algorithm, to discover habits from the data history of connected objects

• The application of the rules validated by the user, which must react quickly in case of
the identification of a situation leading to an automation

In order for the automation to be effective, the data must be taken into account and
preprocessed as they arrive. The preprocessing must therefore work online, i.e. it should
return results as the data comes in, not process everything at once or periodically. Also, pre
processing algorithms must be defined by few parameters. Indeed, as the feedback part (5
in figure 3.2) will have to optimize these parameters, having as few as possible will facilitate
this optimization. Those parameters are first predetermined, or chosen according to the input
events, and can be modified at any time. In addition, if an object is deleted or added, the
system only needs to delete or add a process.

These time series of events, being modified by preprocessing, become time series of atoms.
The distinction between events and atoms is intended to emphasize the modification of these
data by preprocessing.

52

3.2. Architecture

1:30 PM 6:30 PM

2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

{Radio off}{Radio on, News} {Music}

1:30 PM 6:30 PM

2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

{Radio off}{Radio on}

1:30 PM 6:30 PM

2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

{Music}{News}

Figure 3.3: Example of merging two time series based on the time of arrival of events

3.2.2 ... to atoms...
As a reminder, an atom comes from one or more events from an object that have been modified
by preprocessing algorithms. An atom is formalized as a = {o, desc}, where:

• o is the object from which the atom has been made:

– It is used, among other things, to know in which category of object the atom
comes from, i.e. sensor, interface, actuator. This will be useful when searching for
rules.

• desc is a set of descriptors of the values represented by the atom:

– If the atom comes from categorical events, descwill be the end value of a variation
(section 2.3.2.2).

– If the atom comes from quantitative events, desc will be a set of indicators de
scribing the variation.

• An atom has a unique identifier, in the form of a number. This is used for the rule
search algorithm presented in chapter 5.

• An example of an atom would be a = {Radio,ON}.

• The set of all atoms is named A.

As a reminder, at the end of the preprocessing, there are several time series of atoms, one
for each object. All the time series of atoms are then merged into a single one, as illustrated
in the figure 3.3, which will be the input for the prediction rule search algorithm.

TS = ⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A, where:

• ti is a time stamp, i.e. the time coordinates of the occurrence.

• Ii ⊆ A is an itemset, i.e. the set of individual atoms of A which are observed at time
stamp ti, and are sent by one or several objects.

• A is the set of all atoms.

• TS is ordered by the time stamps.

53

Chapter 3. Architecture

9:30 AM 12:00 PM

10:00 AM 11:00 AM

{Present, 10am, Saturday}

{Radio on, Music, 10am, Saturday}

{Radio off, 11am, Saturday}

9:30 AM 12:00 PM

10:00 AM 11:00 AM

{Present}

{Radio on, Music}

{Radio off}

Figure 3.4: Example of adding time indicators to a time series. Here, hour and weekday
indicators are added.

Then, an algorithm adds time indicators to each itemset of the time series (block 3 in
figure 3.2). This process is illustrated in figure 3.4. Coming from timestamps, they will make
it easier to find periodic rules. Examples of time indicators can be the hour of the day, day of
the week, month, season of the year, etc. They therefore represent context data, and exist as
atoms. To unify this new kinds of atoms with the other ones, the system assigns a fictional
sensor to it, and represents the indicator variable, i.e. time, day of the week, etc.

Thus, this algorithm adds these time indicators for each itemset of the time series in the
form of atoms, then the prediction search can be done afterwards.

3.2.3 ... to prediction rules...
A prediction rule is noted r : Ac ⇒ Ap, where Ac is the condition, and Ap is the prediction
of the rule. R describes that if Ac is observed, Ap will be observed after a certain time. This
global structure corresponds to what we want to achieve in our AmI system. Indeed, in our
case, we are trying to propose automation in this form: If a set of conditions is recognized,
then do this set of actions. Thus, the prediction part of the rules to be found must be restricted
to observations of data from actuators only.

We could also look for rules of type Ap ⇐ Ac , where it is possible to make predictions
from more recent observations. An example would be: if the user turned on the bathroom
light, then he entered the bathroom first. However, these rules cannot lead to automation, so
we prefer to focus on the first type of rules.

The rule search algorithm (block 4 in figure 3.2) searches for two types of rules: situation
rules and periodical rules, using the time indicators mentioned above. This search does not
need to process the data online. This is different from preprocessing, where the results are
used to initiate automation. This part only serves to find new habits, which can take time,
and it can therefore run periodically, taking into account part of the data via a buffer system.

Several prediction rule structures are possible, which cover both situation and periodic
rules. Here are the two most common ones [FournierViger et al., 2015]:

• Fully-ordered sequential rules, where the condition Ac and the prediction Ap are
sequences of atoms

• Partially-ordered sequential rules [FournierViger et al., 2015], where Ac and Ap are
both unordered. This remains a prediction rule, because Ap comes after Ac. Two
mathematical structures are possible for Ac and Ap:

– Sets of atoms, where an atom can only appear once

– Multisets of atoms, where multiple instances of atoms are allowed. The number
of instances of an atom in the multiset is called the multiplicity. For example,
the multiplicity of the atom x in the multiset {x, x, y} is 2.

54

3.2. Architecture

Partially ordered prediction rules seem more appropriate to our case, because they are more
general, in the same way as the patterns in section 2.4.1.1. Describing a situation does not
necessarily require an order, but the multiplicity of an atom can be important. To explain this
choice, we can take the example of a sound detection lamp: when one claps twice, i.e. when
one makes the same sound twice, the lamp lights up. Of course, other rule structures may
be relevant, such as fully ordered rules, to discover habits where order is important, and the
system proposed in this thesis may be adapted to take them into account, via a modification
of the rule search algorithm, or a completely new algorithm.

Temporal data are affixed to these rules, improving their understanding: first, the time
delay between condition Ac and prediction Ap, the execution time of Ac and that of Ap. This
allows to visualize the time that a habit takes. In addition, over time, user habits will evolve,
and the rule search algorithm will be updated to adapt to these changes.

Thus, the search algorithm looks for partially ordered rules containing multisets, from a
time series of atoms. Now that we have the structure of the rules to search for, let us define
the data that will be in these rules. As mentioned above, atoms come from three types of
objects: sensors, actuators, and interfaces. The atoms present in condition Ac come only
from sensors and actuators, and those ofAp only from actuators.

This allows to search only for habits that can lead to automation, i.e. actions to be per
formed on connected objects. It should also be noted that interfaces are not taken into account
at all. Indeed, interfaces, by definition, are in a way duplicates of the actuators on which they
act. To speed up the calculation time, and avoid finding trivial rules, such as the action an
interface has on its actuator, or duplicate rules, they are therefore not taken into account.

3.2.4 ... to user-friendly automation propositions...
The way in which prediction rules will be proposed to users is a key component of the user
interface (block 5 in figure 3.2). The intelligibility of the proposed rules is therefore essential
for users to interact with the system. In this thesis, we focused on rule search algorithms,
not on this interface. However, a first step to improve the presentation of the rules has been
made. In our implementation, the rules are presented in the form of a sentence, broken down
as follows:

• “If ”

• Condition of the rule, presented as follows. For each atom present in the condition:

– Name of the connected object

– Value of the atom, using the present (example: the door opens, the light turns
off)

– “ and ”, if other atoms remain in the condition

• “, then ”

• Prediction of the rule

– Same as for the condition, except that the imperative is used to indicate actions
(example: open the door, turn on the light)

A priori data were used to be able to make this syntax, especially to simplify object names,
and use the imperative for prediction actions. In addition, for the purposes of the experiments,

55

Chapter 3. Architecture

Kitchen Kitchen

+ +

ON ON

Turn on, select

classic channel
Turn on

Figure 3.5: Mockup of a graphical presentation of a rule

a French translation has been made, as this is the mother tongue of the people participating in
the experiment. It should be noted that this representation remains possible to implement if
the user, or the object manufacturers, provide detailed information on the connected objects,
as well as on the possible actions to be taken on them. Atoms from quantitative events are
a particularly difficult issue when it comes to expressing rules in an intelligible way. Indeed,
we have seen in section 2.3.2.3 that several discretizations are possible, which it would be
interesting to test and compare for such a system, as each one brings its own set of advantages
and disadvantages in terms of intelligibility and ease of implementation.

Other representations are possible, such as a visual one, representing objects as icons (fig
ure 3.5). This allows a more expressive and pictorial view of the rule, in relation to a sentence.

There are many possibilities for simplification, especially through the metadata that can
be retrieved from objects. The location of objects, for example, not only makes it easier to
visualize where a rule is located, but also to simplify it. For example: “In the living room,
if the light comes on and someone is present, then turn on the television” can be a good
simplification. No need to add on each object name it is in the living room, this is summarized
at the beginning of the rule.

Finally, to simplify a rule, it would be preferable to have a higher level representation, i.e.
more abstract and more understandable for users, and less close to the atoms. An example
would be “When I cook, then turn on the hood”. This requires having a base of habitual
situations, gathering a set of atoms to a semantics. In the previous example, this would be a
“Cooking” situation associated with opening the fridge, turning on the hob, turning on the
oven, etc. As we have seen previously, the thesis is at the crossroads of several disciplines, and a
simple building block of the proposed architecture, such as the presentation of rules to users,
which appears anodyne, can lead to a number of studies.

3.2.5 ... to feedbacks...
As mentioned above, users will have interactions with the AmI system, especially to accept or
not the proposed rules. Indeed, it is the users who will evaluate the output rules, i.e. accept
or not them as automations.

It is possible to imagine many interactions with users. This has not been the focus of this
thesis, but we can already indicate some ways forward:

• Give full control to users, regarding:

– Adding or deleting objects

– Setting operating time slots, or common situations that the system should not
observe to find prediction rules. Indeed, the system is at the service of users.
They must be able to define observation limits, in order to be comfortable with it

56

3.2. Architecture

– Adding manual rules, and deleting all possible rules

– Modifications on all the building blocks of the system, for example reset the pre
processing, or change the algorithms of this part, no longer take into account
time indicators, etc.

– Manual actions on actuators or interfaces in the environment

– Monitoring on sensors of the environment

– Shut down the system at any time

– Reset the system at any time

• Have a simple presentation of the automation propositions, and to give users the pos
sibility to interact in order to have a more precise, but more complex representation of
them.

• Have several means of interaction, on several devices, in order to avoid having a central
control point, and rather to materialize the fact that the system is really ambient.

To summarize, these interactions form a feedback (block 6 in figure 3.2), and provide a
kind of evaluation of the system. Thus, the architecture presented here also aims to capitalize
on this user feedback to improve the different algorithms used by the system. A building
block of the AmI system, called “Feedback dispatcher”, is therefore intended to evaluate the
different building blocks involved in the automation proposals:

• Discretization, by finetuning the parameters or by putting several algorithms in com
petition

• Rule mining, by building a proximity map between objects, and a usefulness function,
to make search faster. This will be discussed in chapter 6.

• In addition to providing an evaluation, it will also be used to send the new accepted
rules to the algorithm applying the automations (block 6 in figure 3.2), for the effective
deployment of these automations.

In addition to this feedback from users, selfevaluation processes are present for rule pre
processing and rule mining. Also, it is very likely that a lot of results can be found by the rule
search algorithm. Of course, users will not be able to evaluate all of them, and these rules
should be given a usefulness rating based on past interactions with these users. Thus, this
notion of usefulness can make it possible to optimize the display of results according to users’
tastes, but also to optimize the search for rules, to make it faster. In addition, this algorithm
could make a proximity map between connected objects, also to optimize the search. It would
be based on the rules found previously.

3.2.6 ... to active automation
For the system to be complete, it is necessary not only to offer automations, but also to apply
those that are accepted. The building block for applying the rules (block 7 in figure 3.2) takes
as entries:

• Rules accepted by users

• The time series of atoms sent by the preprocessing algorithms

57

Chapter 3. Architecture

As soon as the condition part of one of the accepted rules is seen on the atomic time
series, the algorithm will apply the rule, i.e. make actions on the objects corresponding to the
prediction part of the rule by respecting the time between condition and prediction.

3.3 Answers to the problems of the previous
chapter

Now that we have defined the global architecture of the AmI system, let us look at how to
solve the issues raised in the previous chapter.

3.3.1 Adaptation

First, this architecture is intended to be adaptive to changes in user habits. Indeed, the rule
mining algorithm will periodically search for new habits, and updates its results. Then, ad
ditions and deletions of connected objects are supported by the architecture. Each object
having its own preprocessing process, adding or deleting an object is like adding or deleting
a process. If an object fails, and returns inconsistent data, no new prediction rule could take
it into account, and this object would be ignored by the AmI system. In addition, rules found
with this object would be deleted.

3.3.2 Taking users into account

The entire architecture is focused on users. First, preprocessing unifies categorical and quan
titative data, so that these data can be understood. Second, the system returns prediction rules
that are intended to be intelligible to users, with an explicitly defined condition and predic
tion part, and related information such as the time between condition and prediction. This
makes it possible to give all the necessary information so that users can validate a rule or not
in full awareness. Then, the users’ wishes are taken into account. The order in which the rules
are displayed, as well as the search for them, is adapted to interactions with users, through
the usefulness measure: it will be able to determine whether a rule is considered useful for the
user. The more useful it is, the more likely it will appear as an automation proposal.

Privacy is also taken into account. Since this AmI system only processes data from one
environment, it can be implemented in a local machine, present in the environment (sec
tion 2.2.2.2).

3.3.3 Optimization of computation time

As we have seen in section 2.3.2, the system must balance between having as much informa
tion as possible to best characterize the rules to be found, and having too much data to process,
making the execution time too long. In the algorithms used in the current implementation,
decisions have been made to address this issue. They will be explained in the following chap
ters, alongside with the algorithms themselves. Finally, the system aims to improve over time,
by optimizing rule search and preprocessing, based on user feedback.

58

3.4. Current implementation

Figure 3.6: Implementation of the AmI system. The system is not adaptive as it stands, but
the main components are present

3.4 Current implementation
As part of this thesis, a primary but functional implementation of the AmI system was made
(figure 3.6). During this thesis, we focused on the search for prediction rules. Thus, feedback
mechanisms have not been implemented yet, as well as the notion of usefulness, making the
system nonadaptive to users and the environment. In addition, some parameters in the rule
search and in the addition of time indicators are defined by hand. However, the current
implementation allows, from raw data of connected objects, to find situational prediction
rules and some periodicals. Details of the algorithms used and created for this system are
given in the next chapter. Moreover, since the architecture is detailed in this manuscript, it
can be taken over and modified, as well as its algorithms, and can thus evolve into a final form
corresponding to the original ambition.

3.5 Conclusion
This is one of the contributions of the thesis: an AmI architecture adaptive to changes in
objects and habits. This AmI system is scalable because it takes into account user feedback to
optimize its algorithms. The architecture is clear, including building blocks whose functions
are understandable to users, who may want to know how this system works. Finally, this AmI
system respects the privacy of users through local data processing and emphasizes the notion
of usefulness of the proposed automations, justifying its existence to users. This architecture
is fundamental to this thesis, because it highlights a possible way to build an AmI system that
meets all these criteria.

During the thesis, we focused on some of the fundamental building blocks of the system,
which are preprocessing, in chapter 4, and rule research, in chapter 5. Then, in chapter 6,
we will share our evolutionary perspectives, which may be useful to researchers in the field.

59

60

Chapter 4

Pre-processing

4.1 Introduction
This chapter, as well as the next one, presents the algorithms used and created for the main
building blocks of the AmI system. This chapter introduces an essential component of the
system: preprocessing, which consists in unifying quantitative and categorical data from var
ious objects, considering only variations in their data. There are several issues to be considered
in this chapter:

• The preprocessing must be able to adapt to the wide variety of data that can be re
turned by the connected objects. This includes the type of events, i.e. quantitative or
categorical, and, in the case of categorical events, the value range, and the variations
usually encountered in the data returned by the object.

• As mentioned in section 3.2.1, we need to have as few parameters as possible. This
allows the feedback part to optimize the preprocessing more easily if needed.

• The result of the algorithm, i.e. the atoms, must be at least understandable by a human
being, so that the automation proposals returned by the system can be understood by
the users.

61

Chapter 4. Pre-processing

Figure 4.1: Architecture of the preprocessing part of the AmI system

In this chapter, we introduce a preprocessing architecture designed with the above men
tioned objectives in mind. We detail the algorithms used, and show some results to illustrate
its operation.

Here, each connected object is treated independently of each other, allowing adaptation
to the characteristics of the objects. Also, the preprocessing algorithms will be different de
pending on the nature of the data, i.e. whether they are quantitative or categorical. Indeed,
as shown in section 3.2.1, quantitative events are discretized to unify the data. This is what is
applied in this architecture (Figure 4.1):

• For categorical events, a simple algorithm for cleaning redundant data is used, to keep
only events which represent a category change in the time series.

• For quantitative events, a discretization process is implemented, adapted to each time
series. This allows each time series to be treated in a unique way.

At the end, the modified data resulting from these algorithms are called atoms, and are
the basic elements of the rule search presented in chapter 5.

4.2 Categorical events
Suppose we have an object o, which sends categorical events. We therefore have a time series
of the form TS = ⟨(t1, e1), ..., (tn, en)⟩, e1, ..., en ∈ Eo. The algorithm only keeps the value
changes:

• Input:

– TS = ⟨(t1, e1), ..., (tn, en)⟩, e1, ..., en ∈ Eo: Time series of quantitative events

• Output:

– TSa = ⟨(t1, a1), ..., (tn, ana
)⟩, a1, ..., ana

∈ Ao: Time series of atoms

The goal here is simply to remove duplicates in the data, and to keep only the value
changes, so that a time series like that of figure 4.2 becomes like that of figure 4.3.

62

4.3. Quantitative events

Figure 4.2: Example of a time series of cat
egorical events. It is possible to draw a curve
(dashed on the figure) on the basis that as long
as there is no new event, the selected category
does not change

Time

C
a
te

g
o
ri
e
s

Rock

Classical

Pop

Figure 4.3: Same time series as in figure 4.2,
but with redundancies removed. Note that
the variations, and therefore the curve, of the
time series have not changed

Algorithm 1: Preprocessing algorithm for categorical events

Data: TS = ⟨(t1, e1), ..., (tn, en)⟩, e1, ..., en ∈ Eo: time series
// Initialization

1 TSa ← ⟨⟩;
// Main loop

2 foreach (ti, ei) ∈ TS, i > 0 do
// If the event is different from the previous one

3 if ei ̸= ei−1 then
// Create an Atom from this event and add it in the new

and cleaned time series

4 a← new Atom(o = ei.o, value = ei.value);
5 Add (ti, a) at the end of TSa;
6 Return TSa;

As can be seen, this algorithm works very simply. The time series of atoms contains all
changes in the values returned by the connected object.

4.3 Quantitative events
As specified in section 2.3.2.3, we have chosen to discretize the quantitative data. But how to
do this? Do we observe the variations, or rather the values, or make a profile of the signal, as
explained in section 2.3.2.3? Everything rests on a balance between two constraints that we
have set on this part: the lack of expert data on the data and the need to obtain intelligible
results. In this system, we have therefore chosen to simplify and classify the variations in the
data, which represents a good compromise for these two constraints. We therefore propose,
in this section, algorithms that discretize a signal according to its variations.

It should be noted that it is difficult, if not impossible, to evaluate the preprocessing of
quantitative data itself. Indeed, this evaluation depends entirely on the use that will be made
of the preprocessed data. In our case, the evaluation will therefore depend on the prediction
rules found by the entire AmI system.

Due to this lack of evaluation criteria, the discretization of quantitative elements was

63

Chapter 4. Pre-processing

Time

T
e
m

p
e
ra

tu
re

10

25

(a) Unprocessed time series

Time

T
e
m

p
e
ra

tu
re

10

25

(b) Same time series but keeping
only the major breaking points,
showing the macroscopic varia
tions

Time

T
e
m

p
e
ra

tu
re

10

25

(c) Same time series but where
similar variations are clustered.
Here, the dashed variations are
considered identical, and differ
ent to the dotted one

Figure 4.4: Example of the preprocessing a time series of quantitative events

designed with the following objectives:

• The identification of macroscopic variations, and the grouping together of similar vari
ations.

• The adaptation to the characteristics of a signal.

• The reduction of the number of parameters used by the algorithms.

• The need to have intelligible results.

• The need to run online, i.e. the algorithm preprocesses the data as it arrives.

To achieve these goals, two successive algorithms are used: Segmentation and Clustering.
Let us take a time series example shown in figure 4.4a.

• Segmentation first simplifies the time series of events by keeping only the major break
ing points (figure 4.4b). Those are the couples (timestamp, event) that are describing
the macroscopic variations of the variable, hence leaving microscopic variations. To do
it, it applies the “Sliding Window Algorithm”. [Lovrić et al., 2014], known in the time
series segmentation domain. We use this algorithm because it runs online, identifying
major variations as soon as they end. Other algorithms in this domain do not run on
line, such as the TopDown algorithm, also known as the DouglasPeucker algorithm
[Douglas and Peucker, 1973], and the BottomUp algorithm [Keogh and Smyth, 1997].
Others can, but through a buffer, like the Sliding Window And Bottom–Up algorithm
[Keogh et al., 2001].

Finally, it outputs a simpler time series of events, where the segments, i.e. the lines
formed by two consecutive points of the time series, form the macroscopic variations
of the variable.

• Clustering groups similar segments into atoms (figure 4.4c). It uses a clustering tech
nique called Hierarchical Clustering [Johnson, 1967] that can also be run online [Chen
et al., 2002; Widyantoro et al., 2002]. This process then creates a time series of atoms.

64

4.3. Quantitative events

It is important to note that Segmentation and Clustering both use a threshold: θseg for
Segmentation, θclu for Clustering, whose purposes will be explained in the next part. To adapt
to the input data, these two algorithms observe the signals during a time period noted δt. For
each time series of quantitative values, two thresholds have to be fixed for the discretization
to operate, in addition to the time period δt.

Also, even if the algorithms were chosen for their ability to run online, the implementation
made in this thesis does not run online. Thus, the experiments will be done offline, to give
an idea of the returned results and the execution time of these algorithms according to the
volume of processed data.

We illustrate here how these algorithms work by presenting their results.

4.3.1 Segmentation
4.3.1.1 Goal

The main goal of Segmentation is to clean the microscopic variations, while keeping the
macroscopic ones, by removing the points that are not used to form these macroscopic varia
tions. The challenge of this algorithm is to identify what a macroscopic variation is, whereas
it does not know in advance the range of the values of the events sent by the object.

4.3.1.2 Methodology

First, let us look at the algorithm used: the Sliding Window Algorithm. The algorithm splits
the times series in intervals on which the data points can reasonably be fitted by a linear
function. It takes into account a time series, and has as parameter a threshold named ϵ.
Figure 4.5 is a representation of this, and a complete pseudocode can be found in appendix A,
at algorithm 7.

• It starts from the first point of the time series (step 2 in figure 4.5), then creates a
segment between the first point and the third. This segment represents an attempt to
simplify the time series, as it aims to check whether the second point can be removed.

• If the second point in the time series has a vertical distance from the segment below
the threshold (symbolized in dark red in the second picture of the figure 4.5), it also
tries to delete the third point, by creating a new segment, this time between the first
and fourth points (step 3 in figure 4.5), and so on, by comparing the vertical distances
of all the points potentially to be deleted from the segment.

• As soon as one of the points is too far from the segment (i.e. the vertical distance
between the point and the segment is greater than the threshold), then the segment that
was previously created is validated, and the points it replaces are permanently deleted
(steps 3 and 4 in figure 4.5).

• Finally, the end point of the segment becomes the new starting point of the algorithm,
which iterates over the previous steps, until it reaches the end of the time series.

To express the algorithmic complexity of segmentation, let us take the example of a seg
ment, composed of two points, replacing k points in the original signal. To achieve this result,
the algorithm tries to replace 3 points, then 4, up to k + 1 points. Therefore, it calculates
the vertical distance of 1 point, then 2, up to k − 1 points, and does 1 + 2 + ... + k − 1

calculations, that is, (k−1)∗k
2

. For a signal composed of n points, the worst case is to replace

65

Chapter 4. Pre-processing

Time

V
a
lu

e
s ε : error

margin < ε ε ε
> ε ε

> ε
1 2 3 4

Figure 4.5: Sliding Window Algorithm Example. Here, the second point is removed, but
the macroscopic variations remain

the whole signal by a single segment, i.e. make (n−1)∗n
2

calculations. Thus, the algorithm has
a time complexity of O(n2).

As we have seen, to distinguish microscopic variations from macroscopic variations, the
Sliding Window Algorithm has as parameter an ϵ threshold. It is obvious that ϵ depends on
the range of values of the events sent by the object. The segmentation part therefore observes
the time series during a δt period to estimate this range, which is simply the difference between
the maximum and the minimum values observed during δt, and stores it as ∆t. Once ∆t is
estimated, ϵ is calculated as a fraction of this range, more precisely:

ϵ = θseg ∗∆t, 0 < θseg < 1 (4.1)

θseg is defined in our implementation as 0.1, and is intended to be editable by the feedback
part of the AmI system, described in section 3.2.5. Also, the observation time δt can be
modified by the feedback, and the feedback can make a new estimation of the range of values
∆t.

Then, a representative time series will be built, which will be used by the clustering al
gorithm, to have an estimate of the macroscopic variations characteristics to be expected in
the time series. Derived from the δt observation period, this time series is noted TSref . In
our current implementation, TSref is no longer updated once created. Indeed, the main
problem of updating it is that it can change the clustering, and therefore the resulting atoms.
Mechanisms can be designed to overcome this limitation, such as an alert if the signal differs
too much from its reference signal TSref , in which case TSref could be updated. If TSref

must be updated, an algorithm is needed to switch to these new atoms without losing the
rules found with the old ones.

4.3.1.3 Data

• Input:

– TS = ⟨(t1, e1), ..., (tn, en)⟩, e1, ..., en ∈ Eo: Time series of quantitative events

– θseg ∈ [0, 1]: Segmentation threshold, in the shape of an error margin (percent
age). Here, set to 0.1.

– δt: Data observation period. Here, set to 24 hours.

• Output:

– TSsim = ⟨(t1, e1), ..., (tnsim
, ensim

)⟩, e1, ..., ensim
∈ Eo: Time series of quanti

tative events

– TSref = ⟨(t1, e1), ..., (tnref
, enref

)⟩, tnref
≤ (t1+δt) < tnref+1: Representative

time series

66

4.3. Quantitative events

Algorithm 2: Segmentation algorithm

Data: Time series of quantitative events TS = ⟨(t1, e1), ..., (tn, en)⟩, Threshold
θseg, Observation time frame δt

Result: Time series of quantitative events TSsim, time series of quantitative events
TSref

// Get all the values observed after t1 and during δt
1 ∆t ← {ei.value, (ei, ti) ∈ TS|t1 ≤ ti ≤ t1 + δt};
// Compute the error margin used in the Sliding Window

Algorithm

2 ϵ =← θseg ∗ (max(∆t)−min(∆t));
// If the time series has no variation, we choose not to take

it into account

3 if ϵ = 0 then
4 return Error, no observed variation;
// Create the simplified time series using the Sliding Window

Algorithm (algorithm 7)

5 TSsim ← Sliding Window Algorithm(data: TS, threshold: ϵ);
// Create the representative time series (cut the simplified

time series according to δt)

6 TSref ← ⟨(ei, ti)⟩|(ei, ti) ∈ TSsim, t1 ≤ ti ≤ t1 + δt;
7 return TSsim and TSref

4.3.1.4 Experimentation

On quantitative data, this algorithm allows to simplify the general signal to keep only the
macroscopic variations. To illustrate this point, here are two signals from the Orange4Home
database [Cumin et al., 2017a], recorded on January 30, 2017 by a luminosity sensor in the
living room (figure 4.6a) and a temperature sensor (figure 4.6b) in the kitchen. Figures 4.6c
and 4.6d show these same signals simplified by the segmentation algorithm, with the param
eters described above. If θseg increases, the signal rendered by the algorithm will contain even
fewer points and will be even simpler, and if θseg decreases, the signal will contain more points
of the original signal. As said before, θseg has been empirically set to 0.1, which simplifies the
signal already, even if θseg remains primarily a parameter to be modified by the feedback part
of the AmI system. Here, more than 92% of the points have been removed for the luminosity
sensor and 86% for the temperature sensor.

However, we can already observe a limitation to this preprocessing. Figure 4.7a shows
data from a voltage sensor for the kitchen oven. On most current sensors, the data varies a
lot during the day, and this one is no exception. Thus, the algorithm provides less interest
ing results here, as shown in figure 4.7b because only 41% of the original signal points are
removed. In this case, two options are possible:

• The observation period does not reflect the entire signal, i.e. the signal has even greater
variations outside the observation period. Thus, the variations observed previously
would be minor, and could be simplified by segmentation. In this case, a process ex
tending the observation period should be put in place.

• The observation period reflects the entire signal. In this case, it is unlikely that rules can
be found using this object, due to the high frequency of the observed variations, unless

67

Chapter 4. Pre-processing

Luminosity of the living room Temperature of the kitchen

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time

0

100

200

300

400

500

liv
in
gr
oo

m
_l
um

in
os
ity

(a) Raw data from the luminosity sensor:
257 points

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time

20.4

20.6

20.8

21.0

kit
ch

en
_t
em

pe
ra
tu
re

(b) Raw data from the temperature sensor:
111 points

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time

0

100

200

300

400

500

liv
in
gr
oo

m
_l
um

in
os
ity

(c) Cleaned data from the luminosity sensor
after segmentation: 20 points

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time

20.3

20.4

20.5

20.6

20.7

20.8

20.9

kit
ch

en
_t
em

pe
ra
tu
re

(d) Cleaned data from the temperature sensor
after segmentation: 15 points

Figure 4.6: Result of the segmentation algorithm on quantitative data. Illustration with
events sent by two sensors registered on January 30, 2017, Orange4Home database [Cumin
et al., 2017a]

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time

236

237

238

239

240

241

kit
ch
en

_o
ve
n_

vo
lta

ge

(a) Raw data from the voltage sensor: 111
points

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time

236

237

238

239

240

241

kit
ch
en

_o
ve
n_

vo
lta

ge

(b) Cleaned data from the voltage sensor after
segmentation: 66 points

Figure 4.7: Result of the segmentation on data from a sensor with high variations, where
the cleaning is not as effective as in figure 4.6. Data from the voltage sensor monitoring the
kitchen oven, January 30, 2017, Orange4Home database [Cumin et al., 2017a].

68

4.3. Quantitative events

that frequency is an important information factor of the signal. In this case, it would
be interesting to use signal processing functions, as mentioned in section 2.3.2.3, to
transform the signal and bring out information from other indicators such as frequency.

We can assume that this is a special situation, but it seems important to see how this pre
processing can be put at fault. Indeed, a discretization technique alone cannot provide the
keys needed to understand all signals, and must therefore be enhanced by other algorithms in
some cases, or by user feedback.

4.3.2 Conversion into time series of segments
As mentioned above, the time series TSsim is now simplified, and its segments, i.e. the con
secutive pairs of points (ti, ei), (ti+1, ei+1), represent macroscopic variations. We formalize
a segment as: s = {mean, variation, duration}. The three characteristics of the segment
completely describe its linear variation, independently of the time of its appearance in the
series:

• The mean: mean = ei.value+ei+1.value

2

• The variation: variation = ei+1.value− ei.value

• The duration: duration = ti+1 − ti

To simplify the rest of the clustering part, TSsim and TSref are converted into time series of
segments using algorithm 3.

Other characteristics are possible to describe a segment. For example, we had previously
considered the start value, end value and duration. However, we think that defining a seg
ment by its linear variation allows us to get more information on the segment. For example,
for a temperature sensor, it would be useful to know that it has increased a lot in a short
period of time, or that it is stable for a few hours with an average of 20 degrees Celsius. This
information is made available with the mean, variation and duration. We have chosen to use
these characteristics in this system, but other choices remain possible.

As TSsim and TSref are time series, it is necessary to attach a timestamp to the segments
they contain. To do this, we choose to use the timestamp of the second point of the segment,
i.e. the end timestamp. To explain this, let us go back to the building of the segments and
their use: first, macroscopic variations are identified, and these variations are converted into
segments. Then, similar segments form groups that are represented by atoms. Finally, atoms
can be part of prediction rules, which can be validated by users, to become an effective au
tomation. Thus, a macroscopic variation can be part of prediction rules, but also of effective
automations. However, it can only be identified after it has taken place, and not at the be
ginning of its appearance. Using the end timestamp is therefore more relevant for the correct
recognition of the variation.

4.3.3 Clustering
The main goal of Clustering is to identify groups of similar segments, each of which will define
an atom, to create a time series of atoms. To do this, a distance measure is created to estimate
the proximity between two segments, and then a clustering algorithm is applied. The main
issue of this part is also the lack of a priori information on input data, i.e. variations. Indeed,
having a set of segments representative of the time series makes it possible to estimate the

69

Chapter 4. Pre-processing

Algorithm 3: Translation of a time series of events into a time series of segments

Data: Time series of quantitative events TS = ⟨(t1, e1), ..., (tn, en)⟩
Result: Time series of segments TSs = ⟨(t1, s1), ..., (tns

, sns
)⟩

// Initialization

1 TSs ← ⟨⟩;
2 foreach consecutive pair of points (ti, ei), (ti+1, ei+1) do

3 mea← ei.value+ei+1.value

2
;

4 var ← ei+1.value− ei.value;
5 dur ← ti+1 − ti;
6 s← {mea, var, dur};
7 Add (ti+1, s) at the end of TSs;
8 return TSs;

range of values of the characteristics of the segments, i.e. their mean, their variation, and their
duration. The range of these three characteristics allows, as it will be explained here, to treat
them fairly to measure the distance between two segments. For this reason, the segmentation
algorithm produces a representative time series TSref , to estimate the variations that can be
obtained from the connected object o.

• Input:

– TSsim = ⟨(t1, e1), ..., (tnsim
, ensim

)⟩, e1, ..., ensim
∈ Eo: Time series of quanti

tative events

– TSref = ⟨(t1, e1), ..., (tnref
, enref

)⟩, tnref
≤ (t1 + δt) < tnref+1 ≤ tnsim

:
Representative time series

– θclu ∈ [0, 1]: Clustering threshold. Here, it is estimated by the clustering algo
rithm itself.

• Output:

– TSa = ⟨(t1, a1), ..., (tn, ana
)⟩, a1, ..., ana

∈ Ao: Time series of atoms

To analyze the similarities between segments, the clustering algorithm needs a distance
measure.

4.3.3.1 Distance measure

The distance measure aims to assess the similarity between two segments by comparing their
characteristics: averages, variations, and durations. This measure makes it easy to define
whether two segments are similar or not, and will be useful for grouping similar segments.

As a reminder, a segment is formed by two consecutive points in the time series, and
formalized as s = {mean, variation, duration}.

The distance measure will be built upon the means, variations, and durations of the seg
ments. It must take those characteristics as evenly as possible.

This is a complex issue. How can we make a distance measurement that takes into account
each characteristic equitably, knowing that we do not know in advance the value space of these
characteristics?

70

4.3. Quantitative events

We first thought of putting a weight on each characteristic in the distance measurement,
each weight would be equal to the value space of the characteristic. We defined the weight by
observing the segments produced during observation period δt. This allowed us to estimate
the value space of each characteristic, and thus the weights.

However, another problem arose. Let us imagine that, due to lack of battery, for example,
a temperature sensor stops sending data for two hours, whereas it usually sends data about
every minute. Thus, of all the segments observed, only one will have a duration of two hours.
This is therefore an outlier, because one of its characteristics differs too much from the most
observed segments.

Taking this outlier into account changes the distance measurement. Indeed, as the du
ration distance between the outlier and another segment is very large, the distance between
two segments that are not outliers will be comparatively very small. Thus, in this case, the
duration would not be taken into account in the distance measurement because of the outlier.

To take into account the outliers, we first tried to estimate the data density using the
Kernel Density Estimation tool, but without any convincing result. In the end, we decided
not to take into account this type of segments. To identify outliers, the three characteristics
of the segments are first normalized by their standard score, also known as zscore (xz in
equation (4.2)), obtained by the mean µ and the standard deviation σ observed in all the
segments of the representative time series TSref . The original value can be retrieved from its
normalization, as shown in equation (4.3).

xz =
x− µ

σ
(4.2)

x = xz ∗ σ + µ (4.3)

Then, any segment that has at least one characteristic not bound between 3 and 3 is
considered as an outlier, because one of its characteristics differs too much from the average
of the segments observed. Therefore, this segment is not taken into account in the rest of
the AmI system. This rule is usually applied to normally distributed data [Gorrie, 2016; Frost,
2019], which is not necessarily the case here. However, this method is an easy and efficient
way to standardize segment characteristics while identifying outliers.

In addition, to take the mean into account as evenly as the variation and the duration, we
use the Manhattan distance, also known as the Minkowski’s L1 distance, city block distance,
or taxi cab metric [Black and Pieterse, 2006]. The distance measure is defined as follows:

For two segments s1 = {mean1, variation1, duration1} and s2 =
{mean2, variation2, duration2},

d(s1, s2) =
|mean2 −mean1|+ |variation2 − variation1|+ |duration2 − duration1|

18
(4.4)

We wanted this distance to be limited between 0 and 1, since each characteristic is limited
between 3 and 3, the basic distance is bounded between 0 and a maximum of 3 ∗ 6 = 18.
To have this distance bounded as desired, we therefore divide it by 18.

4.3.3.2 Clustering Methodology

Now that we have a distance measure, we have to define a proximity metric to group similar
segments into atoms. As a reminder, we have a major constraint: the system has no a priori
knowledge of the input data, except for the fact that they are quantitative or categorical, where

71

Chapter 4. Pre-processing

7 6 8 11 9 13 10 12 3 0 1 5 2 4
Segments

0.0

0.1

0.2

0.3

0.4

0.5

D
is
ta

n
ce

 v
a
lu

e

Figure 4.8: Representation of a dendro
gram, result of the hierarchical clustering
of the segments shown in figure 4.6d

7 6 8 11 9 13 10 12 3 0 1 5 2 4
Segments

0.0

0.1

0.2

0.3

0.4

0.5

D
is
ta

n
ce

 v
a
lu

e

Figure 4.9: Cutting of the dendrogram at
0.479, resulting in new groups of segments
that will form atoms

on the latter clustering is not applied. Thus, the value range, and the types of variations are
not known in advance. Thus, defining a number of groups in advance may not be a good
solution for this case, which is required by clustering algorithms such as kmeans [MacQueen,
1967].

For this task, we have chosen to apply an agglomerative hierarchical clustering on all
segments, based on the distance measure defined above. In this algorithm, each segment
starts in its own group, and pairs of groups are merged according to their distance value, until
all groups are merged. This makes it possible to estimate all the groups that can be built, over
several granularities. These granularities range from the most precise, where the groups are
composed of only one segment, to the most global, where one group contains all the segments.
The result of this clustering can be visualized as a dendrogram (figure 4.8).

In this figure, the elements of the xaxis are the segments, numbered from 0 to 13. The
yaxis represents a distance. We can see that segments 10 and 12 are very close to each other,
because they join in the same group at a low distance. Segments 1 and 5, on the other hand,
are further away. Thus, the dendrogram illustrates the merge of these segments into groups.
It also illustrates the merge of groups among themselves, indicating at what distance they can
merge.

To estimate the distance between a segment group and a segment, or between two segment
groups, several linkage criteria are possible. For two groups of segments S1 and S2, we can
have, among others [Tan et al., 2018]:

• Completelinkage: d(S1, S2) = max{d(s1 ∈ S1, s2 ∈ S2)}

• Singlelinkage: d(S1, S2) = min{d(s1 ∈ S1, s2 ∈ S2)}

• Meanlinkage: d(S1, S2) = d(s1, s2), where s1 and s2 are the means of all the segments
of S1 and S2 respectively

In our implementation, we have chosen meanlinkage clustering, because it allows us to
obtain a segment representing the group, which will become an atom. The time complexity
for this algorithm is O(n2logn) [Manning et al., 2008]. Here, the representative segment of a
group are formed by the average of the characteristics of the segments of the group, namely
the mean, variation and duration. This is a proposal, and other representative segments are
possible, such as the segment of the group closest to this average.

72

4.3. Quantitative events

To get the desired atoms, a granularity must be chosen to obtain the segment groups.
This can be expressed as a cut of the dendrogram. In the example shown in figure 4.9, the
dendrogram is cut at a distance of 0.479, symbolized by the horizontal dashed line. This
leads to the creation of three groups of segments, identified by colors: one with segments 6
through 13, one with segments 0, 1 and 5, and one with segments 2, 4 and 5. Here, the
optimal granularity is defined by a known measure in Data Mining, called the silhouette
[Rousseeuw, 1987], which is estimated from the time series representative of the data.

4.3.3.3 Silhouette

The silhouette criterion estimates the quality of the groups formed. To do this, it assumes that
a good clustering forms groups that are far from each other, and that the elements within a
group are close to each other. Thus, two indicators are considered in this measure:

• The intergroup distance, i.e. the distance between the groups formed, which must be
maximized

• The intragroup distance, i.e. the distance between elements of the same group, which
must be minimized

To explain in more detail, let us imagine that we have a set of clusters named S1, S2, ...
up to Sn. For each segment si of Si, it is possible to determine the average distance between
this segment and the other segments of its cluster, Si in this form (here, |Si| is the number of
elements present in the cluster Si):

a(si) =
1

|Si| − 1

∑

sj∈Si,i ̸=j

d(si, sj) (4.5)

It is also possible to define the smallest distance between this segment and the segments
belonging to the other clusters:

b(si) = min
k ̸=i

1

|Sk|

∑

sk∈Sk

d(si, sk) (4.6)

The silhouette value for this particular point is defined as follows:

silhouette(si) =
b(si)− a(si)

max{a(si), b(si)}
if |Si| > 1, silhouette(si) = 0 if |Si| = 1 (4.7)

This measure can be simplified as:

silhouette(si) =

1− a(si)/b(si), if a(si) < b(si)

0, if a(si) = b(si)

b(si)/a(si)− 1, if a(si) > b(si)

(4.8)

Finally, the silhouette measurement of a set of clusters is the average of the silhouette of
all segments.

73

Chapter 4. Pre-processing

Distance Cutting of the dendrogram Resulting atoms Silhouette

0.493

7 6 8 11 9 13 10 12 3 0 1 5 2 4
Segments

0.0

0.1

0.2

0.3

0.4

0.5

D
is
ta

n
ce

 v
a
lu

e

2 atoms

0

13

1

...

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time

20.4

20.6

20.8

21.0

ki
tc

h
e
n
_

te
m

p
e
ra

tu
re

0.45

0.418

7 6 8 11 9 13 10 12 3 0 1 5 2 4
Segments

0.0

0.1

0.2

0.3

0.4

0.5

D
is
ta

n
ce

 v
a
lu

e

3 atoms

0

13

1

...

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time

20.4

20.6

20.8

21.0

ki
tc

h
e
n
_

te
m

p
e
ra

tu
re

0.479

0.289

7 6 8 11 9 13 10 12 3 0 1 5 2 4
Segments

0.0

0.1

0.2

0.3

0.4

0.5

D
is
ta

n
ce

 v
a
lu

e

5 atoms

0

13

1

...

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time

20.4

20.6

20.8

21.0

ki
tc

h
e
n
_

te
m

p
e
ra

tu
re

0.342

Figure 4.10: Result of the choice of the distance value on the formed atoms and the silhou
ette. Illustration with data from the kitchen temperature sensor taken on January 30, 2017,
Orange4Home database [Cumin et al., 2017a]

4.3.3.4 Hierarchical Clustering

As said before, we apply a hierarchical clustering with the distance measure mentioned in
this section. We use this clustering technique mostly because we can define the cluster con
figuration dynamically after the algorithm is run. Indeed, hierarchical clustering produces a
dendrogram, a tree representing the hierarchy of possible clusters. In this tree, each hierarchy
level is tied to a clusters’ granularity. A hierarchy level is defined by the maximum distance
that members of a same cluster can have. The AmI system chooses the clusters’s granularity
with a distance threshold (here, θclu), that can be changed anytime.

Furthermore, incremental hierarchical clustering algorithms exist that can update the clus
ter hierarchy when new segments are built from Segmentation [Chen et al., 2002; Widyantoro
et al., 2002]. In our implementation, the AmI system runs in batch mode, i.e. it processes all
the data at once. As said before, we use a mean linkage clustering [Tan et al., 2018] here, but
other methods can be applied, as long as they can be run online.

As said before, this hierarchical clustering produces a dendrogram. θclu defines which set
of clusters are kept. To choose θclu, the preprocessing does the following:

• A dendrogram is made from the set of all the segments of TSref .

74

4.4. Conclusion

• This dendrogram is cut on all distances values between two aggregations of segment
groups, as can be seen in figure 4.10. For example, if an aggregation occurs at a distance
of 0.5 and the following one at 0.7, the cut will be made at 0.6. This avoids making a
cut too close to an aggregation.

• For every cut made, the silhouette value is computed according to the atoms built from
the cut.

• θclu is the distance value of the cut that has the best silhouette value.

Then θclu does not change, as the segments are added to the clustering. Indeed, changing
this value would change the structure of the end atoms. It is therefore necessary to use an
algorithm that transforms the old atoms into the new representation, and to adapt the predic
tion rules accordingly. The formed groups can accommodate new segments, and new groups
can be formed in addition to the old ones.

Then, an atom is tied to each of these groups, and comes from the segment representing
the cluster. Thus, it has as information the averages of the means, variations, and durations
of all the segments of the group to which the atom is linked. This atom is the representative
of the group, and therefore of all the segments of the group.

The atoms built in the end represent a group of similar segments. They store the three
indicators of the group of segments it is representing: the average of the means, variations
and durations of all the segments from that group. In the end, a time series of atom is
produced, each segment being replaced by the atom of the cluster in which it is located:
TSa⟨(t1, a1), ..., (tna

, ana
)⟩, a1, ..., ana

∈ Ao. For more details about hierarchical cluster
ing, a complete pseudocode can be found in appendix A at algorithm 8.

4.3.3.5 Experimentation

As with segmentation, it is difficult to evaluate clustering itself. The characteristics used for
distance measurement, the clustering algorithm and the threshold used to define the atoms
depend entirely on the desired goal. However, we can show some results on the signals
shown in section 4.3.1.4, namely the temperature sensor and the brightness sensor in the
Orange4Home database [Cumin et al., 2017a].

In figure 4.10, we can observe the effects of the choice of the cutting distance on the created
atoms. The greater the cutting distance, the fewer atoms there are, and these atoms are more
generalized, i.e. they represent more different groups of segments. Having too high a cutting
distance makes the atoms too generalized, and no longer accurately describes variations in the
original signal. Conversely, having the cutting distance too low produces too many atoms, and
similar variations may not be gathered within the same atom. Even knowing these extremes,
it is difficult to choose the optimal distance. This is why the silhouette measure, recognized
in the field of clustering, was chosen to obtain the optimal distance. In figure 4.10, the
optimal distance is 0.418, which produces 3 atoms, because the silhouette measurement is at
the highest.

4.4 Conclusion
In this chapter, we have presented a contribution of the thesis by proposing a solution to one
of the building blocks of the AmI architecture. The main purpose of preprocessing is to take
into account only variations, whether the events are quantitative or categorical. This goal is

75

Chapter 4. Pre-processing

achieved by cleaning duplicates for categorical data and discretization for quantitative data.
Discretization comes to life with stateoftheart algorithms in the fields of segmentation and
clustering. This is therefore a first basis on which the AmI system can be based, and which can
evolve, as we will discuss it in chapter 6. This preprocessing will be used in the evaluation of
the system in section 5.5.

With these algorithms, the data is now unified. The system now processes atoms, which
are categorical data describing variations. These time series of atoms are the basic material of
the algorithm presented in the next chapter: prediction rule mining.

76

Chapter 5

Rule mining

5.1 Introduction

To finish the explanation of the AmI system, we focus on the major contribution of the thesis:
the algorithm for searching prediction rules, which is essential for identifying automation
proposals.

First, through the state of the art, we highlight the problems encountered in current rule
search algorithms, which are not in line with our objective. Even trying to adapt our frame
work to one of these algorithms creates its own set of problems.

For this reason, a new rule search algorithm has been created: TSRuleGrowth. Based
on the principles of TRuleGrowth present in the state of the art [FournierViger et al., 2015],
TSRuleGrowth is fully adapted to time series. This chapter details the algorithm, its princi
ples, and its advantages. But also, it describes the performances of this algorithm on several
real databases, coming from connected environments. These results validate the approach
envisaged with this algorithm, as it allows to discover habits that were not known in advance.

77

Chapter 5. Rule mining

5.2 Background
As said in section 3.2.3, this algorithm must find partially ordered prediction rules containing
multisets. This means that the condition and prediction of these rules are multisets of atoms,
i.e. unordered sets where an atom can appear several times. For the rest of this chapter, it is
important to clarify a few concepts.

5.2.1 Input: a time series of atoms
As an input to the rule search algorithm, we have a time series of atoms from all connected
objects. It is formalized as TS = ⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A, where:

• ti is a time stamp, i.e. the time coordinates of the occurrence.

• Ii ⊆ A is an itemset, i.e. the set of individual atoms of A which are observed at time
stamp ti, and are sent by one or several objects.

• A is the set of all atoms.

• TS is ordered by the time stamps.

5.2.2 Output: prediction rules
A prediction rule is noted r : Ac ⇒ Ap, where Ac is the condition, and Ap is the prediction
of the rule. r describes that if Ac is observed, Ap will be observed after a certain time.

In our case, we want to look for rules that can propose several actions based on several
observations. As seen in section 5.2.1, we do not consider an order within the condition or
prediction, but we consider the number of appearances of atoms. This is why Ac and Ap are
both multisets, i.e. sets of atoms where an atom can be present several times. This means that
we want the rule search algorithm to be able to find rules with several atoms in the condition
and prediction, not just one.

In our case, two points should be considered in the rules that the AmI system should
search for:

• The condition part of a rule contains only atoms from sensors, actuators, or time indi
cators. As stated in 3.2.3, interfaces are not considered.

• The prediction part of a rule contains only atoms from actuators. Indeed, we are looking
for automation proposals, which means having only actions at the end.

5.2.3 Data structures in rule mining
Prediction rules can be searched on several data structures. The two best known structures
are:

• A set of transactions, which are simply sequences, i.e. ordered lists of elements, and
in our case atoms. Here, no notion of time, but the order of instantiation of the atoms
is preserved. Transactions are most commonly used, among other things, to find rules
on online shopping histories. Here, a transaction represents a shopping list made by a
customer, where the order of adding products to the shopping cart is kept. All trans
actions are generally all the lists of purchases made by the buyer. The prediction rules

78

5.2. Background

are intended to determine which next product the customer will add to his list, from
the products present in his current shopping list.

• A time series, which is the structure used in this thesis. It is described in section 3.2.2.
Unlike transactions, we have only one time series, not several, and the time series keeps
the notion of time in atom instantiations, which is useful for our automations.

5.2.4 Validation of a rule
For a prediction rule to be validated, it must be:

• Frequent, i.e. it happens a fairly high number of times

• Reliable, i.e. the prediction must happen after the condition in almost all cases. Indeed,
depending on the use case, a percentage of failures can be tolerated

5.2.4.1 Support

In rule mining, to check that a rule is frequent, its support is calculated. The notion of
support depends on the structure of the input, but can be applied to a rule, a set of atoms,
or an atom, to estimate their frequencies. To simplify the following, we consider the case for
an atom named x, but this is also applicable for multisets, and rules. Two types of supports
exist:

• The absolute support, called sup, which determines the absolute number of times x is
encountered, as an integer.

• The relative support, called relSup, bounded between 0 and 1, determines the fre
quency of appearance of x.

To illustrate, let us take the case of transactions. Here, the most common support measure
is constructed as follows: imagine a set of transactions named TR, containing transactions
named tr1, tr2, ..., trn. The absolute support of x is the number of transactions where x

appears.
sup(x) = |tri, x ∈ tri ∧ tri ∈ TR| (5.1)

The relative support of x is equal to its absolute support, divided by the number of trans
actions in TR.

relSup(x) =
sup(x)

|TR|
(5.2)

For time series, several support measures exist, which will be described in section 5.3.

5.2.4.2 Interest

To ensure that a rule is reliable, its interest, named int, is calculated. Several measures can
estimate the interest of a rule. These measures depend on the supports of the rule r, the
condition Ac and the prediction Ap.

The best known is confidence [Azevedo and Jorge, 2007], formalized as:

confidence(r : Ac ⇒ Ap) =
relsup(r)

relSup(Ac)
(5.3)

79

Chapter 5. Rule mining

The confidence measure is bounded between 0 and 1 and is widely used in rule searching.
However, it does not test the independence between the occurrences of Ac and those of Ap.
This is a problem, because in our case, we are trying to test this independence. For the fol
lowing example, let us ignore the fact that a rule must have a prediction part composed only
of actuators. Imagine a weather station that very often sends back the “sunny” and “cloudy”
atoms, because the weather outside oscillates between the two. Let us also imagine a door
opening sensor. During the day, a person can open the door several times. Thus, it is highly
likely to see the “open door”⇒ “sunny” and “open door”⇒ “cloudy” rules. With the confi
dence measure, these rules are validated, because every time the door opens, the “sunny” and
“cloudy” atoms are seen, which makes no sense. It is precisely by testing the independence of
the occurrences of the condition and the prediction that we can avoid this case.

Known alternatives in the field of rule mining exist, such as conviction [Azevedo and Jorge,
2007], lift [Azevedo and Jorge, 2007], but they are not bounded, as their values can go to infinity,
making it difficult to set a minimum value from which a rule can be considered reliable.

conviction(r : Ac ⇒ Ap) =
1− relSup(Ac)

1− confidence(r)
(5.4)

lift(r : Ac ⇒ Ap) =
confidence(r)

relSup(Ac)
(5.5)

It is therefore important to look for other, less known measures of interest that are
bounded, and test the independence between the occurrences of Ac and those of Ap.

In the following section, we will review the existing algorithms that could solve our prob
lem of finding partiallyordered prediction rules over time series. We will see that the existing
algorithms do not fully address the problem, and that the proposed support measures, essential
to identify the rules, are also not satisfactory.

5.3 State of the art
As said before, the AmI system needs an algorithm for mining partiallyordered prediction
rules over a time series of atoms. Thus, this algorithm is at the crossroads of two research
domains, which are rule mining on time series and partiallyordered rule mining. We will
therefore study a state of the art in these two areas.

5.3.1 Rule mining on time series
[Das et al., 1998] proposes a system mining basic rules on a sequence of atoms, where one
atom predicts another. Those atoms represent simple variations of stock market data. It can
also search for more complex rules, where the condition is a sequence. This system therefore
makes it possible to mine prediction rules over a time series. However, it seeks fullyordered
prediction rules, rather than partiallyordered ones. Also, the prediction part of the rules is
limited to a single atom, a limitation that we want to avoid in our AmI system. [Schlüter
and Conrad, 2011] can be considered as an improvement over [Das et al., 1998], because this
system looks for rules where the prediction is not limited to a single atom. But, since it seeks
fullyordered rules, this system cannot be applied in our case.

[Mannila et al., 1997] introduces a notion of support for a time series, via a sliding window
with a determined duration. The support of an atom, a set of atoms or a rule is the number

80

5.3. State of the art

Time

{x} {y}

Time

{x} {y}

Time

{x} {y}

Time

{x} {y}

Time

{x} {y}

sup(x) = 2, sup(y) = 0
sup({x} =>{y}) = 0

sup(x) = 1, sup(y) = 0
sup({x} =>{y}) = 0

sup(x) = 3, sup(y) = 1
sup({x} =>{y}) = 1

sup(x) = 4, sup(y) = 2
sup({x} =>{y}) = 2

sup(x) = 4, sup(y) = 3
sup({x} =>{y}) = 2

sup(x) = 4, sup(y) = 4
sup({x} =>{y}) = 2

Time

{x} {y}

Figure 5.1: Example illustrating the problems of the notion of support on time series defined
in [Mannila et al., 1997]

of windows in which this atom, set or rule appears. This algorithm finds partiallyordered
rules, first finding sequences of atoms that are frequent, then dividing these sequences into
two subsequences in any possible way to determine whether they form a prediction rule or
not. Other algorithms use this notion of support, including [Deogun and Jiang, 2005] which
finds rules which prediction is composed of one single atom. The algorithm presented in
[Mannila et al., 1997] can therefore be applied in our case. But this support definition can be
problematic: the atoms of Ap being strictly later than Ac, the number of windows covering
the rule r will be strictly lower than the number covering Ac. Even if Ap always appears after
Ac, the support of the rule will be lower than that of Ac, reducing its interest.

In the example in figure 5.1, it is easy to visualize the problem. Here, the sliding window
advances at regular time steps, but the same problem would arise if this window advanced
one itemset at a time. Here, the sliding window covers the rule less often than it does the
atoms that compose it, which is normal, because these atoms are distant from each other.
Thus, in view of the different support values, the rule will not be validated. For example, the
confidence measure of this rule would be 0.5, i.e. the rule would be visible only once out of
two occurrences of x. However, this is not true in this example.

Furthermore, since the search is structured in two steps in [Mannila et al., 1997] and [Deo
gun and Jiang, 2005] (mine frequent sets, then search for rules), those algorithms are not fully
efficient.

As we can see, there is no algorithm to solve our problem with the fixed constraints. In
addition, the notions of support in time series also have problems inherent in their defini
tion. Let us now look at the state of the art of partiallyordered rule mining, which does not
necessarily take into account a time series, to see if it is possible to find a source of inspiration.

5.3.2 Partially-ordered rule mining
We have already discussed [Mannila et al., 1997] before, and shown the problems of its notion of
support, and in its twostep rule search. To our knowledge, few other algorithms of partially
ordered sequential rule mining exist. The most known are RuleGrowth [FournierViger et al.,

81

Chapter 5. Rule mining

2015], and its variations, TRuleGrowth [FournierViger et al., 2015] and ERMiner [Fournier
Viger et al., 2014]. These algorithms take as input a set of transactions.

RuleGrowth directly searches for prediction rules, unlike [Mannila et al., 1997] that searches
for frequent itemsets and then searches for rules on these itemsets. In addition, the incremental
architecture of RuleGrowth allows to limit the size of the searched rules, and to limit the atoms
in which rules are searched.

RuleGrowth allows this limitation directly during the search, reducing the total compu
tation time. TRuleGrowth is an extension of RuleGrowth that accepts the constraint of a
sliding window, determined by a number of consecutive itemsets. It allows to limit the search
to rules that can only occur in this window. ERMiner is presented as a more efficient version
of RuleGrowth, but without an extension that accepts a sliding window. However, those al
gorithms have a major problem in the proposed use case: they take transactions instead of a
time series. The notion of support depends directly on the structure of transactions, and can
not be straightforwardly applied on a time series. Despite the advantages of these algorithms,
they cannot be applied directly to our input data.

5.3.3 Scientific problems
To our knowledge, the stateoftheart algorithms are not satisfactory enough to solve the
initial problem. Two major issues need to be solved:

1. How to define the support of a rule in a time series that avoids the problem encountered
in section 5.3.1, preventing the validation of certain rules?

2. How to build a rule mining algorithm upon this new support measure?

In addition, this algorithm must address the following:

3. How to limit the duration of the found rules?

4. How to limit the search to certain atoms in the condition or prediction?

5. How to avoid that a rule is found twice?

RuleGrowth answers points 4 and 5, but only takes transactions as input. Its extension, TRule
Growth, uses a sliding window that can be used to answer to the third problem with some
modifications. The following section describes an adaptation of the AmI data to be accepted
by TRuleGrowth, and raises limitations of this adaptation. After, we describe our algorithm:
TSRuleGrowth. It uses the principles of TRuleGrowth, but applies them to time series, to
deal with the first two problems.

5.3.4 Adapting time series to TRuleGrowth
To solve the problem of the input data of these algorithms, one can simply convert the time
series into a list of transactions, as in figure 5.2. To do this, this time series (step 1 in the
figure) is divided into limited subsets with a defined duration noted ∆tr (steps 2 and 3 in
the figure). Then the timestamps of the small time series are removed, to keep only the order
of appearance of the atoms (step 4 in the figure). Without this notion of time, these are no
longer time series, but rather sequences of atoms, in other words, transactions.

But the main problem of this implementation is the calculation of the support of a rule.
Let us take the following example with three transactions:

82

5.4. TSRuleGrowth

Time
tn

In

Δtr

TS1

t1

I1

Time
tn

In
<I1,...,Ix-1>

<Iy,...,In>

<Ix,...,Iy-1>
Time

tx

Ix

ty-1

Iy-1

t1

I1

Time
tx-1

Ix-1

Time
tn

In

ty

IyTS2 TS3

TS1

TS2

TS3

1

2

3 4

t1

I1

tx

Ix

ty

Iy

Figure 5.2: Example of conversion of a time series into transactions

⟨{x}, {x}, {y}, {x}, {x}⟩
⟨{x}, {y}, {x}, {x}, {x}⟩
⟨{x}, {x}, {y}, {x}, {x}⟩

Here, {x} ⇒ {y} is considered valid, because its support is 3, the same as x and y. As
a reminder, in the context of transactions, the support of x is the number of transactions in
which x appears, as stated in equation (5.1). As long as a rule has only been seen once in a
transaction, it is considered present throughout that transaction, even if it could have been
invalidated, as in the example: x can be seen without y after, in all the transactions. Cutting
a time series into transactions can lead to rules that are validated by mistake. There are other
problems, inherent in the choice of the value of ∆tr. Having a small ∆tr can increase the
risk of a rule being “split in two”, i.e. whose occurrence is separated between two transactions,
which reduces interest. Having a large ∆tr, over a time series, reduces the absolute support
of the rules the system is looking for, because fewer transactions are generated from the time
series.

Converting a time series into a set of transactions can be applied in the proposed use case.
However, the above limitations have led us to create a new algorithm, inspired by TRule
Growth, which is fully adapted to time series.

5.4 TSRuleGrowth
5.4.1 Inputs, Outputs
This section outlines the proposed rule mining algorithm on a time series of atoms: TSRule
Growth, for “Time Series RuleGrowth”. This algorithm is incremental, and can limit the
search to certain atoms in the condition and prediction. TSRuleGrowth takes as inputs:

• TS = ⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A: A time series of atoms, where:

– ti is a time stamp, i.e. the time coordinates of the occurrence.

– Ii ⊆ A is an itemset, i.e. the set of individual atoms of A which are observed at
time stamp ti, and are sent by one or several objects.

– A is the set of all atoms.

83

Chapter 5. Rule mining

1 2 3

{x} {x} {y}

Time

(a) Example 1

1 2

{x, y, z}

Time

{x, y, z}
(b) Example 2

1 2 3

{x} {y} {z}

Time

(c) Example 3

Figure 5.3: Examples of time series

– TS is ordered by the time stamps.

• minsup: The minimum absolute support for a rule to be frequent

• minint: The minimum interest for a rule to be reliable

• window: A time frame in which the rules must occur

TSRuleGrowth produces partiallyordered prediction rules using multisets, detailed in
section 3.2.3. In the proposed use case, the prediction part of the rules is only composed of
atoms coming from actuators. Since TSRuleGrowth takes a time series as input instead of a
list of transactions, some notions need to be redefined: the support, the interest, and how to
record the occurrences of a rule.

5.4.2 Metrics
5.4.2.1 Support

Distinct or possible occurrences? As stated in section 5.3.1, the current notions of
support on time series do not suit our problem. We want to propose a new notion of support,
which avoids the problems encountered in the state of the art.

This is an issue that provoked a considerable amount of debate during the course of the
thesis, which can be summarized in the following question. In figure 5.3a, are there 1 or 2
occurrences of {x, y}? In other words, should we count the distinct occurrences of {x, y},
i.e. 1 because there is only one y, or the possible occurrences, i.e. 2, located at the timestamps
[1, 3] and [2, 3]? From this simple question flows the whole notion of support, so it is crucial.

So, should we choose distinct occurrences or possible occurrences? To answer this ques
tion, let us try to define the relative support, which must be bounded between 0 and 1, as
stated in section 5.2.4.1:

• For distinct occurrences, it is possible to divide the absolute support by the total num
ber of itemsets. This would remain limited between 0 and 1, as in the example in
figure 5.3b. For an atom, multiset, or rule a:

relSup(a) =
sup(a)

|(tz, Iz) ∈ TS|
(5.6)

• For possible occurrences, dividing the absolute support by the total number of itemsets
will not work. In figure 5.3b, there are 8 possible occurrences of {x, y, z}, and there
are only 2 itemsets present in the time series. Thus, the relative support, which must
be bounded between 0 and 1, cannot be equal to 8/2 = 4.

The maximum number of possible occurrences for an atom, multiset, or rule a, is
|(tz, Iz) ∈ TS||a|, i.e. the number of itemsets in the time series to the power of the

84

5.4. TSRuleGrowth

number of atoms inside a. The relative support should therefore be defined as follows.
For an atom, multiset, or rule a:

relSup(a) =
sup(a)

|(tz, Iz) ∈ TS||a|
(5.7)

Now that we have an idea of the notions of absolute and relative supports in both cases, let
us compare them in a simple example. In figure 5.3c, let us compute the relative supports of
x, {x, y} and {x, y, z}, simple multisets.

• With the distinct occurrences:

– sup(x) = 1, so relSup(x) = 1/3

– sup({x, y}) = 1, so relSup({x, y}) = 1/3

– sup({x, y, z}) = 1, so relSup({x, y, z}) = 1/3

– Which is normal after all, because we only see these multisets once. Regardless of
their size, the notion of support does not change.

• With the possible occurrences:

– sup(x) = 1, so relSup(x) = 1/31 = 1/3

– sup({x, y}) = 1, so relSup({x, y}) = 1/32 = 1/9

– sup({x, y, z}) = 1, so relSup({x, y, z}) = 1/33 = 1/27

– Here, we see that the relative support decreases with the size of the multiset.

It is for this reason that we have decided to choose the distinct occurrences, to avoid the
difference in treatment of multisets according to their size. Now that we have answered this
question, the next paragraph will define the notion of support that we have built.

Definition of the new support metric For a time series TS noted
⟨(t1, I1), ..., (tns

, Ins
)⟩ where Ii is an itemset and ti is an associated timestamp, the

support of an atom a, noted sup(a), is defined as the number of itemsets containing a

(equation (5.8)).

sup(a) =
∣

∣(ti, Ii) ∈ TS|a ∈ Ii
∣

∣ (5.8)

The absolute support of a multiset of atoms Am is the number of distinct occurrences of
all atoms of Am within the time window. If an occurrence of an atom of Am has contributed
to an occurrence of the multiset Am, it can no longer contribute to other occurrences of Am.
The examples in figure 5.4 can help to understand this concept more easily.

The support counting algorithm, Count, scrolls a window on the time series. A simplified
pseudocode can be found in algorithm 4, and a more detailed one in appendix B, namely
algorithm 9. If all atoms of Am are seen, their occurrences will be blacklisted to prevent
them from being involved in another occurrence of Am. This ensures that the definition
of the support is respected. If several occurrences of the same atom of Am are seen in the
same window, only the earliest ones are blacklisted. It leaves to newer ones the possibility to
contribute to a future occurrence of Am. The absolute support of r : Ac ⇒ Ap is the distinct
number of occurrences where all the atoms of Ac are observed, followed by all the atoms of

85

Chapter 5. Rule mining

1 2 3

A1 A1

Time
4

1 2 3

A1 {y}

Time
4

{x}

1 2 3

{x} {y}{y}

Time
4

{x}

A1 = {x, y}

1 2 3

A1 {x}

Time

1 2 3

{x} {x}{y}

Time

A1 = {x, y}

1 2 3

A2 {x}

Time

1 2 3

{x} {x}{x}

Time

A2 = {x, x}

sup(A2) = 1sup(A1) = 2 sup(A1) = 1

Figure 5.4: Support calculation examples. Each column represents a stepbystep example
of support calculation

Algorithm 4: Count : support counting algorithm

Data: Am: multiset, TS = ⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A: time series,
window: duration

// Initialization

1 Assign an empty blacklist b(a) to every unique atom a ∈ Am;
2 sup(Am)← 0; // Support of Am

// Sliding window through the time series

3 while the window has not reached the end of TS do
4 found← True;
5 Scan the window, record the timestamps of a ∈ Am in T (a);
6 foreach atom a ∈ Am do
7 T (a)← T (a) \ b(a);
8 if |T (a)| < multiplicity of a in Am then
9 found← False ; // No distinct occurrence

10 if found is True then
11 sup(Am) += 1;
12 foreach atom a ∈ Am do

// Add the earliest timestamps of T (a) to the

blacklist of a

13 m← multiplicity of a in Am;
14 b(a)← b(a) ∪m earliest timestamps of T (a);
15 Slide the window by one itemset;
16 Return sup(Am);

86

5.4. TSRuleGrowth

Ap. The atoms of Ac and Ap also have blacklists, grouped into two sets: one for the atoms of
Ac, and one for those of Ap.

The relative support of an atom a, a multiset Am or a rule r, noted relSup, is its absolute
support divided by the total number of itemsets in the time series (equation (5.9)). This
support can be applied to partiallyordered rules, unlike the one detailed in [Das et al., 1998;
Schlüter and Conrad, 2011], which search for fullyordered rules. In addition, it avoids the
defect in the support detailed in [Mannila et al., 1997], which is explained in section 5.3.1.

relSup(r) =
sup(r)

|(tz, Iz) ∈ TS|
(5.9)

5.4.2.2 Interest

In TSRuleGrowth, one can compute the interest of a rule through its confidence, conviction
or lift as mentioned in section 5.2.4.2. In the proposed use case, we chose a metric that
is not widespread and rarely mentioned in the field: netconf [Ahn and Kim, 2004]. Unlike
confidence, netconf tests the independence between occurrences of Ac and those of Ap. Also,
unlike conviction and lift, it is bounded between 1 et 1, 1 showing that Ap has a high chance
of appearing after Ac, 1 that Ap has a high chance of not appearing after Ac, and 0 that this
chance is unknown. It is for these two reasons that we have chosen this metric.

For a rule r : Ac ⇒ Ap:

netconf(r) =
relSup(r)− relSup(Ac)× relSup(Ap)

relSup(Ac)× (1− relSup(Ac))
(5.10)

netconf(r) can also be written as netconf(relSup(Ac), relSup(Ap), relSup(r)).

5.4.3 Recording of rule occurrences
An occurrence of r is decomposed as the occurrence of Ac and Ap. Indeed, an atom can be
found in both Ac and Ap, and it is necessary to distinguish the occurrences of this atom in
Ac from those in Ap. An occurrence of a multiset is recorded in an associative array, which is
a collection of pairs of (key, value), where each key is unique. Here, the keys are the distinct
atoms of the multiset, and their values are the set of timestamps where the atoms are observed.

Let us take the example of r : {a, b, c} ⇒ {x, x, y} in figure 5.5a. Here, the occurrence of
Ac is {a:{2}, b:{2}, c:{1}} and the occurrence of Ap is {x:{5, 6}, y:{4}}. Two timestamps
are recorded for x, because it is present twice in Ap.

To reduce memory use, an occurrence of a multiset can also be stored as a list of times
tamps, provided that the multiset is ordered. Within the list, the index of a timestamp is
the same one as the index of the linked atom in the multiset. In the previous example, the
occurrence of Ap = {x, x, y} is recorded as [5,6,4]. Multiple occurrences of a multiset are
recorded as a list of these structures. All occurrences of the rule are recorded in two lists, for
Ac and Ap.

5.4.4 Principles
5.4.4.1 Principles shared with TRuleGrowth

TSRuleGrowth takes the principles of TRuleGrowth and applies them to time series. The
algorithm uses a sliding window, to limit the search. But, unlike TRuleGrowth where the

87

Chapter 5. Rule mining

1 2

{c}{a,b}

Time

r : {a,b,c}=>{x,x,y}

4 5

{y} {x}

6

{x}

(a) Example 1

1 2 3

{x} {x} {y}

Time

r : {x}=>{y}

(b) Example 2

Figure 5.5: Examples of rules and time series

window is a number of consecutive itemsets, TSRuleGrowth has a time sliding window. It
allows to restrict the search, and to have an estimate of the lifetime of a rule.

Furthermore, this algorithm first finds basic rules, where one atom can predict another.
Then, recursively, it extends them, by adding an atom in Ac or Ap, via ExpandCondition and
ExpandPrediction. This mechanism allows, if necessary, to limit the maximum length of the
rules to be searched, i.e. the maximum number of atoms in Ac and Ap. Then, TSRuleGrowth
applies two principles of TRuleGrowth to avoid finding duplicate rules. First, ExpandPredic
tion cannot be called by ExpandCondition. Second, ExpandCondition and ExpandPredic
tion can add an atom only if its identifier is larger than those of all the atoms of Ac or Ap.
Indeed, as mentioned in section 3.2.2, each atom has a unique identifier, in the form of a
number. In our implementation, the order between atoms is simply the numerical order. For
this algorithm, the order between the atoms can also be defined manually, or according to
another method.

5.4.4.2 New Principles

Let us take the example in figure 5.5b. For this rule r, even if sup(r) = 1, two occurrences
of the rule are possible: {x:{1}, y:{3}} and {x:{2}, y:{3}}. This problem is inherent in
time series: we cannot know a priori which occurrence will be useful for an extension of this
rule. To do this, TSRuleGrowth tries to extend all of the seen occurrences of this rule. In
addition, TSRuleGrowth does not use the same rule structure as TRuleGrowth: instead of
being sets, Ac and Ap are multisets. Therefore, a principle coming from TRuleGrowth needs
to be modified: ExpandCondition and ExpandPrediction can add an atom if its identifier is
greater than those of all the atoms of Ac or Ap, but also if it is equal to the greatest atom of
Ac or Ap, according to the numerical order between atoms identifiers. But a new problem
of duplication arises. In figure 5.5b, if we try to grow {x}⇒{y} to {x, x} ⇒ {y}, the
same occurrence will be found twice. {x:{1}, y:{3}} will extend to {x:{1,2}, y:{3}}, by
adding the timestamp 2, and {x:{2}, y:{3}} will extend to {x:{1, 2}, y:{3}}, by adding
the timestamp 1. To avoid this, TSRuleGrowth does the following: if the rule extends to
the greatest atom of Ac or Ap, it should only record the timestamps of that atom that occur
strictly later than the last timestamp of that atom in the base rule. Thus, in the previous
example, the first occurrence is recorded, not the second.

5.4.5 Algorithm
5.4.5.1 Main loop

Like TRuleGrowth, the main loop tries to find basic rules, i.e. rules which conditions and
predictions are composed of only one atom. To do this, it computes the support for all

88

5.4. TSRuleGrowth

basic rules that can be created in the time series. If one of these rules has a support higher
than minsup, it tries to grow it, by adding an atom in Ac (ExpandCondition), then in Ap

(ExpandPrediction). Finally, it computes its interest for validation. As mentioned earlier, the
algorithm computes all distinct occurrences of the rule for its support, but also all possible
occurrences for the expansion of the rule. To do this, TSRuleGrowth uses a blacklist system
to discern occurrences. Multiprocessing can be added to TSRuleGrowth, by treating all basic
rules and expansions in parallel, to reduce the execution time. A simplified pseudocode can
be found in algorithm 5, and a more detailed one in appendix B, namely algorithm 10.

Algorithm 5: TSRuleGrowth
Data: TS: time series, minsup: minimum support, minint: minimum interest,

window: duration
1 Scan TS once. For each atom a found, record the timestamps of the itemsets that

contains a in T (a);
// Creation of basic rules

2 foreach pair of atoms i, j do
3 sup(i⇒ j)← 0; // Support of the rule

4 Oc(i⇒ j), Op(i⇒ j)← []; // Occurrences of the condition and

the prediction

5 b(i), b(j)← ∅; // Blacklists

6 foreach ti in T(i) do
7 foreach tj in T(j) do
8 if 0 < tj − ti ≤ window then

// New occurrence of the rule

9 Add ti to Oc(i⇒ j);
10 Add tj to Op(i⇒ j);
11 if ti /∈ b(i) and tj /∈ b(j) then

// New distinct occurrence

12 sup(i⇒ j) += 1;
13 b(i)← b(i) ∪ {ti};
14 b(j)← b(j) ∪ {tj};

// Growth of basic rules

15 if sup(i⇒ j) ≥ minsup then

16 if netconf(|T (i)|
|TS|

,
|T (j)|
|TS|

,
sup(i⇒j)

|TS|
) ≥ minint then

17 Output rule;
18 Run ExpandCondition and ExpandPrediction on the rule i⇒ j;

5.4.5.2 Expanding the rules

ExpandCondition (algorithm 6) tries to expand a rule by adding an atom to its condition.
It goes through all the possible occurrences of the rule, from the earliest to the most recent.
To respect the time constraint imposed by window, the condition of a rule can only expand
between two timestamps, noted start and end, as seen in the figure 5.6. As for ExpandCon
dition, ExpandPrediction searches for new atoms for Ap in the area described in figure 5.7.
After having found new rules, ExpandCondition and ExpandPrediction compute their fre
quency and their interest, and output them if they are frequent and reliable. Finally, they try

89

Chapter 5. Rule mining

Search area

window

Prediction area

Start of the
window

Start of the
prediction area

End of the
prediction area

Time

start end

Figure 5.6: ExpandCondition Search Area

Search area

window

Condition area

Start of the

condition area

End of the

condition area

End of the

window

Time

start end

Figure 5.7: ExpandPrediction Search Area

to grow those rules again if they are frequent. Here, the simplified pseudocodes of TSRule
Growth and ExpandPrediction are described. In appendix B, more detailed pseudocodes of
ExpandCondition (algorithm 11) and ExpandPrediction (algorithm 12) are presented.

Algorithm 6: ExpandPrediction

Data: TS: time series, Ac ⇒ Ap: rule, sup(Ac), occurrences of Ac ⇒ Ap, minsup:
minimum support, minint: minimum interest, window: duration

// Growth of the original rule Ac ⇒ Ap

1 for each occurrence of the rule Ac ⇒ Ap do
2 foreach atom k seen in the search area, between start and end do
3 if k has never been seen before, i.e. Ac ⇒ Apk does not exist then
4 Create a new rule Ac ⇒ Apk, its lists of occurrences and its blacklists;
5 sup(Ac ⇒ Apk)← 0;
6 foreach timestamp of k tk inside the window (ascending order) do
7 if k > max(e), e ∈ Ap or tk > all occurrences of k in the prediction part

of the rule then
8 Create a new occurrence of Ac ⇒ Apk;
9 if timestamps are not in the blacklists then
10 sup(Ac ⇒ Apk) += 1;
11 Add the timestamps to the blacklists;
// Growth of the new rules found

12 foreach item k where sup(Ac ⇒ Apk) ≥ minsup do
13 sup(Apk)← Count(Apk, TS, window);

14 if netconf(sup(Ac)
|TS|

,
sup(Apk)

|TS|
,
sup(Ac⇒Apk)

|TS|
) ≥ minint then

15 Output rule;
16 Run ExpandCondition and ExpandPrediction;

5.4.5.3 Multiprocessing

TSRuleGrowth’s architecture allows multiprocessing to be implemented. In the main algo
rithm, TSRuleGrowth takes pairs of atoms to try to find primary rules, and then extend them.
Here, multiprocessing is implemented as follows: when TSRuleGrowth is started, several par
allel processes are created, up to one per logical core, and an ordered list of all possible atom
pairs is created. Each process has a copy of the time series and of the list of atom pairs, and
all processes share a common iterator, called iter. When a process is started, it does the fol
lowing loop: it locks iter, takes the couple of atoms defined by iter, increments iter, and

90

5.5. Experiments and results

Table 5.1: Database characteristics, and parameters applied to TSRuleGrowth

ContextAct@A4H Orange4Home

Recording period
7 days in July and

21 days in November
4 consecutive weeks

Number of connected objects 213 222
Data records 35634 746745

Preprocessing parameters, outlined in section 4.3
δt 24 hours 24 hours
θseg 0.1 0.1
θclu Defined by the maximum silhouette

TSRuleGrowth parameters, outlined in section 5.4.1
minsup 7 20
minint 0.9 0.9

window (in seconds)
1,2,5,20,40,60,80,

100,120,140,160,180
1,2,5,10,15,20,25,30

unlocks iter. Finally, it searches if this pair of atoms can lead to rules. Once completed, it
loops back to search on other pairs of atoms. This allows for dynamic resource management,
and processes interfere with each other as little as possible, as they share only one variable.

5.5 Experiments and results
In this section, we detail experiments with the implementation of the AmI system. The exper
iments focused on the two sets of algorithms detailed in this chapter: preprocessing and rule
research. At the time of these experiments, time indicators had not been added. In addition,
the concept of interfaces had not been created, and interfaces were part of the actuators at the
time. It should be noted that the discretization of quantitative data has run alongside with
the rule search, but the results will mainly focus on TSRuleGrowth. Further developments
regarding preprocessing, more precisely discretization, and the rest of the implementation
will be expressed in the next chapter.

5.5.1 Results of TSRuleGrowth on two databases

We tested this algorithm on two databases: ContextAct@A4H [Lago et al., 2017] and Or
ange4Home [Cumin et al., 2017a]. Both databases contain daily activities of a single occupant.
The characteristics of these databases and the parameters applied to TSRuleGrowth are de
scribed in table 5.1. The ContextAct@A4H database is located on the same physical location
as Orange4Home. But it has significant differences: the objects, as well as their names, are
not the same. In addition, the observed person is different, as is the observation period. Thus,
the observed habits are different from one database to another.

For the purpose of the experiment, some objects were specified manually to be actuators:
shutters, doors, and lights for example. In addition, the preprocessing part described in
chapter 4 was used for these experiments. Also, the timestamps have been rounded to the
nearest second on both databases. TSRuleGrowth has been implemented in Python with

91

Chapter 5. Rule mining

0:00:00

0:00:01

0:00:06

0:00:28

0:02:18

0:11:31

0:57:36

4:48:00

24:00:00

1

10

100

1000

10000

100000

1000000

10000000

1 2 4 8 16 32 64 128 256

E
xe

cu
ti
o
n
 t

im
e

N
u
m

b
e
r

o
f

ru
le

s

Window size (in seconds)

Rules(O4H) Rules(A4H) Time(O4H) Time(A4H)

Figure 5.8: Number of rules and execution time, TSRuleGrowth on Orange4Home (O4H)
and ContextAct@A4H (A4H)

multiprocessing1.

5.5.1.1 Cross-cutting results

First, let us look at TSRuleGrowth’s results on the two databases. In general, two aspects of
the algorithm are evident in figure 5.8.

First, the execution time increases exponentially as a function of the window size. Indeed,
when the window is large, so is the search space; it takes into account more atoms and results
in more possible combinations for rule creation.

Secondly, the number of rules found is also increasing exponentially. For example, on
the Orange4Home database, 43 rules are found on a onesecond window, and 57103 on a
30second window. This is explained by two complementary reasons:

• In a connected environment, several connected objects can be used to characterize a
situation. For example, a person’s entry into his or her home can be observed by a
presence, noise, or door opening sensor. Thus, the rules found can be formed from a
combination of atoms of these three objects. The larger a window is, the more combi
nations are possible, thus increasing the number of found rules and the computation
time.

• Also, the rules found on a given window will, for the most part, be found again on
larger windows.

It is mentioned “for the most part” in the previous sentence, as some rules can be invalidated
from one window to another. The invalidation of these rules does not come from the support
of the rule, which can only increase from one window to another, but rather from its interest.
Indeed, the interest of a rule is calculated according to the support of the rule, and the support
of its components. In some cases, the support of the components may increase more than that
of the rule, reducing the interest enough to invalidate the rule. Let us take the example of the
rule {‘bathroom light1:on, bathroom switch top left:off’}⇒ {‘bathroom door:closed’}:

1CPU: Intel(R) Xeon(R) Gold 5118 @ 2.30GHz, RAM: 128GiB, Ubuntu 18.04.2 LTS

92

5.5. Experiments and results

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 2
0 2
2

2
4

2
6

2
8

3
0 3
3

3
5

3
8

4
0 4
4

5
2

6
2

6
6 7
5

9
2

10
1

10
3

19
8

2
70

3
0

6

5
4
6

N
u
m

b
e
r

o
f

a
to

m
s

Support

Figure 5.9: Histogram of the atoms grouped by their support in ContextAct@A4H

1

10

100

1000

10000

0 5 10 15 2
0 2
5

3
0 3
5

4
0 4
5

5
0 5
5 6
1

6
8 78 8
3 9
1

10
2

11
2

12
1

12
7

13
6

14
3

17
6

18
6

19
6

2
15

2
3
1

2
5
2

2
6
9

3
0

0
3
2
2

3
6
6

3
9
9

4
3
1

5
0

5
6
7
7

11
15

19
9
6

3
17

0

N
u
m

b
e
r

o
f

a
to

m
s

Support

Figure 5.10: Histogram of the atoms grouped by their support in Orange4Home

• With a 5 second window, this rule is validated. The support of the rule is 38, the
support of the condition is 91 and the support of the prediction is 42. Its interest is
therefore 0,904. Using a 10 second window, the support is still at 38 for the rule and
91 for the prediction, but changes to 44 for the condition. This is typically the case
explained above, the support of the rule increases less than that of its components. As
a result, its interest drops to 0.863, invalidating the rule for this window.

• These invalidated rules represent only a fraction of the total number of rules found.
Indeed, if we compare the results obtained with 10 and 15 second window lengths, 3
rules were invalidated, while 694 rules were found on the window of 10 seconds, and
1170 rules were found on the window of 15 seconds.

5.5.1.2 Difference in results between the two databases

In figure 5.8, we have explained the overall result curve of TSRuleGrowth. However, there
is a very clear difference in results between Orange4Home and ContextAct@A4H. Why is
that so? After all, the physical environment and most of the connected objects are the same

93

Chapter 5. Rule mining

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

1 2 4 8 16 32 64 128 256

A
ve

ra
g
e

in
te

re
st

 o
f

th
e

ru
le

s

Window size (in seconds)

Orange4Home ContextAct@A4H

Figure 5.11: Evolution of the average interest of the rules found by TSRuleGrowth, according
to the size of the window

between these two databases. The explanation is based on two factors. First, there is much
less input data in ContextAct@A4H than Orange4Home (35634 vs 746745). The less input
data there is, the lower the probability of finding rules. Second, of all the atoms coming
from ContextAct@A4H, very few are frequent. It can be observed by comparing figure 5.9
to figure 5.10. Indeed, on this database, there are 63 atoms with an absolute support larger
or equal to 20, unlike 395 on Orange4Home. That’s why in our experiments, we lowered the
minimum support to 7 on ContextAct@A4H, to have enough frequent atoms (here, 132).
This is reflected in the results reported by TSRuleGrowth: even with a minimum support
lowered to 7, far fewer rules are found on ContextAct@A4H than on Orange4Home (1 vs
3689 for a 20 second window), and the execution time is also much lower (1 second vs 14
minutes for a 20 second window).

5.5.1.3 Focus on the discovered prediction rules

Let us now look at the rules themselves, first from the Orange4Home database. On small
windows (less than 5 seconds), straightforward rules are found, mostly the actions of switches
in the environment. For example, {‘bedroom switch bottom left:on’} ⇒ {‘bedroom shut
ter1:closed’, {‘bedroom shutter2: closed’} and {‘bedroom switch top right:on’}⇒ {‘bedroom
light1:off’, {‘ bedroom light2:off’}, seen in a 1 second window, indicate the different functions
of the connected switches of the room. Then, by increasing the window size, more complex
rules are observed, characterizing the user’s usual situations. {‘office door:open’,’office pres
ence:on’,’office switch left:on’}⇒ {‘office door:closed’}, seen in a 30 second window, indicates
the user’s entry into his office. It should be noted that this rule takes into account several dif
ferent connected objects. For the ContextAct@A4H database, many fewer rules are found in
general, but some interesting rules are emerging. For example, {‘fridge door:open’}⇒ {‘fridge
door:closed’} describes that the fridge door will be closed within 40 seconds of being opened.
As users, this rule may seem trivial to us. However, it should be remembered that the system
has no preconceptions about the objects to which it is connected. With TSRuleGrowth, the
system learns the rules that govern the environment, and the habits of users.

This corresponds well to the results found in figure 5.11, where we observe that the average
interest rate of the rules decreases, as the observation window increases: initially, we observe

94

5.5. Experiments and results

straightforward rules, with a very high measure of interest, because it only involves the action
of one object on another.

Furthermore, these results highlighted the fact that some objects were intended to act on
other objects. Observing these results led us to design the notion of interfaces, a new category
different from actuators and sensors, for this type of object. The system finds rules involving
these interfaces, and others involving the objects controlled by these interfaces. These rules
are basically duplicates. In addition, the system also finds rules describing the actions of the
interfaces on the objects they control. Although these rules may be interesting, they are not
relevant in the case of use, i.e. finding automation to do. Indeed, these rules are already
effective automations. This is why the notion of interface has been created, and why objects
of this category are no longer taken into account.

Then, rules involving the user are observed, making interest lower, because these habits
are less certain than the action of a switch on a light for example.

For Orange4Home as for ContextAct@A4H, TSRuleGrowth is able to discover relevant
prediction rules, in the desired format, describing the actions of switches in the room, which
was not detailed in the database documentation, and user habits. TSRuleGrowth can therefore
predict actions in the environment, and the rules found can therefore be proposed to users.
Let us now compare these results with those of TRuleGrowth.

5.5.2 Comparison between TRuleGrowth and TSRuleGrowth
Let us compare TSRuleGrowth and TRuleGrowth. To do this, we use the same input
databases, Orange4Home and ContextAct@A4H. These data have been converted into trans
actions through the process detailed in section 5.3.4. Three sets of transactions were made,
with a ∆tr duration of one minute, one hour and one day. As a reminder, ∆tr sets the du
ration for splitting the time series into transactions, introduced in section 5.3.4. The same
parameters were applied between TRuleGrowth and TSRuleGrowth for minsup, minint, and
window sizes. TRuleGrowth uses netconf as a measure of interest, but no other changes are
made to this algorithm: the window used is still a consecutive number of itemsets, instead of
a duration for TSRuleGrowth.

As a reminder, for TRuleGrowth, this window is defined as a fixed number of consecutive
itemsets, regardless of the time difference between these itemsets. On the other hand, for
TSRuleGrowth, the window is defined by a duration, regardless of the number of itemsets
that may be in that window. This difference implies that for TRuleGrowth, it is possible to
find rules which duration can go up to ∆tr. This explains why TRuleGrowth can find more
rules than TSRuleGrowth in some cases. For example, on Orange4Home, for a window
of 25 itemsets/seconds, and with a ∆tr of 1 hour, TRuleGrowth finds 267007 rules, and
TSRuleGrowth only 5677.

Figure 5.12 shows that, like TSRuleGrowth, TRuleGrowth finds more rules exponentially
as the window expands. However, this figure also clearly shows the impact that the size of ∆tr

has on the number of rules found. On Orange4Home, and for a window of 25 consecutive
itemsets, TRuleGrowth finds 8028 rules if∆tr = 1 minute, 7052216 rules if∆tr = 1 hour, and
9851 rules if∆tr = 1 day. These results can be interpreted as follows: when∆tr=1 minute, the
number of rules is limited by the short duration of the transactions. When ∆tr =1 day, less
transactions are created from the time series, because the time series is split into transactions
with a longer duration. The number of transactions being smaller, the absolute support of
the rules found is therefore also lower. As minsup does not change, fewer rules are found.
Figure 5.12 shows that the number of rules made with ∆tr =1 day catches up with that of

95

Chapter 5. Rule mining

1

10

100

1000

10000

100000

1000000

10000000

1 2 4 8 16 32 64 128 256

N
u
m

b
e
r

o
f

ru
le

s

Window size (in consecutive itemsets)

Δtr=1minute(O4H) Δtr=1hour(O4H) Δtr=1day(O4H)

Δtr=1minute(A4H) Δtr=1hour(A4H)

Figure 5.12: Number of rules for TRuleGrowth on Orange4Home (O4H) and Contex
tAct@A4H (A4H)

∆tr =1 minute as the window grows, until it exceeds it when window = 25.
It should be noted that many identical rules are found by both TRuleGrowth and TSRule

Growth. For a 1 second window/itemset, and a 1hour ∆tr, 42 rules are found by these two
algorithms. This represents 84% of the rules found by TRuleGrowth and 98% of TSRule
Growth’s rules. For the same ∆tr, and a window of 10 itemsets/15 seconds, 1000 rules are
common, i.e. 73% of the TRuleGrowth rules, and 85% of the TSRuleGrowth rules. But ∆tr

can also limit the number of rules found by TRuleGrowth and TSRuleGrowth. Of all the
possible window combinations, only 194 common rules are found at most for ∆tr = 1 day,
2061 for ∆tr = 1 minute, and 8806 for ∆tr = 1 hour.

Why does ∆tr influence these results so much? We explain this by the principles cited in
section 5.3.4. The rules found with ∆tr = 1 minute are limited by the size of the transactions,
while those found with ∆tr = 1 day are limited by their minimal support. In addition, some
rules can be validated by mistake. This is even more visible when ∆tr is large, judging by
the small number of common rules for any window. For example, the rule {‘staircase switch
left:on’} ⇒ {‘walkway light:off’} is seen with ∆tr of 1 hour and 1 day, but not on ∆tr = 1
minute. Also, it has not been found by TSRuleGrowth. Instead, the rule {‘walkway switch2
top right:on’} ⇒ {‘walkway light:off’}, found by TSRuleGrowth, is more coherent, because
the two involved objects are in the same room. ∆tr’s limitations are even more visible on the
ContextAct@A4H database. With minsup = 7, and a ∆tr of 1 hour or 1 day, TRuleGrowth
does not find a rule, for any window. If ∆tr = 1 minute, TRuleGrowth finds a single rule,
which is also found by TSRuleGrowth. Thus, in the case of ContextAct@A4H, TRuleGrowth
finds much fewer rules than TSRuleGrowth for the same minimum support.

By lowering minsup to 6, TRuleGrowth finds more rules. If ∆tr = 1 day, no rule found, if
∆tr = 1 minute, only 1 rule found, also found by TSRuleGrowth. This number can be up to
64 if ∆tr = 1 hour. It is higher than TSRuleGrowth can find (maximum 40), but few rules are
common to both TRuleGrowth and TSRuleGrowth (maximum 16). This is explained by the
difference in the window concept between TRuleGrowth and TSRuleGrowth, giving unique
rules to TRuleGrowth, and the decrease in absolute support caused by the size of transactions,
giving unique rules to TSRuleGrowth.

We can therefore confirm that converting the time series into transactions can severely
limit the creation of rules and can create rules validated by mistake. TSRuleGrowth, taking

96

5.6. Conclusion

directly into account a time series, overcomes those shortcomings.

5.6 Conclusion
This chapter highlights the main contributions of the thesis, namely a prediction rule search
algorithm called TSRuleGrowth and a notion of support on time series. The notion of support
is freed from the limitations expressed in the state of the art. The algorithm also distinguishes
itself by its features: first, an incremental architecture, inspired by TRuleGrowth, allowing to
limit the search to certain atoms if necessary, as in the proposed use case; secondly, a sliding
window, allowing to limit the duration of the searched rules; finally, the use of multisets in the
rule structure, instead of sets in TRuleGrowth. Experiments carried out on two real databases
validate the global approach, and show that TSRuleGrowth provides several advantages over
stateoftheart algorithms, including the possibility of limiting the search to several levels,
either on the length of the rules, or on the atoms that compose them. These possibilities of
limitation allow to avoid excessive calculation times.

This algorithm, as well as those detailed in the previous chapter, form the main foundation
of the targeted AmI system, while allowing its evolution, through the implementation of
complementary components, such as feedback, or the application of rules.

However, this AmI system has many points of evolution, particularly concerning the con
sideration of user feedback or the intelligibility of the system, more precisely that of automa
tion proposals. The following chapter highlights the possibilities for further development of
the system presented here, to get an idea of a complete, local, and useful AmI system for users.

97

98

Chapter 6

Evolutions

6.1 Introduction

In this thesis, we have described the architecture and some algorithms of a system that provides
automation in a connected environment. This is a first step in the field of AmI, an area that
will continue and evolve in the coming decades. In this chapter, we will therefore focus on the
possible improvements of the proposed system. We have already detailed the possible major
approaches of AmI in section 2.2.1, namely first leaving control to users, then interacting with
them like a butler, and finally acting in the background, with few interactions.

In this chapter, we detail some ideas that have been imagined and sometimes tested in this
thesis. First, we review the test databases and their shortcomings, and propose improvements
to existing databases and new database designs. Then, we suggest improvement and alterna
tives concerning the two parts of the presented AmI system: preprocessing and rule mining.
We focus on the interface that this AmI system can have, through the display of prediction
rules, and user interactions. Finally, we discuss the feedback part, which is closely related to
the user interactions.

99

Chapter 6. Evolutions

6.2 Databases for AmI activity discovery
To understand the evolutions to be provided in the databases used to test activity discov
ery systems in connected environments, let us analyze those used to evaluate our system:
Orange4Home [Cumin et al., 2017a] and ContextAct@A4H [Lago et al., 2017]. It is first of
all very important to note that these databases were mainly made to test predefined activity
recognition algorithms, presented in section 1.4.3.2, which falls within the scope of supervised
learning. Those databases were not initially made for our use case, i.e. the discovery of new
activities, an unsupervised learning domain described in section 1.4.3.4. Since these databases
were made for a different purpose, it is normal to observe shortcomings and problems if we
use these databases for our use case.

First, let us look at the relevant aspects of these databases, and then analyze their short
comings.

6.2.1 Relevant aspects of existing databases
First of all, these databases have certain qualities that are advantageous to our use case. Indeed,
the environment in which these databases were made is a real and functional apartment, with
water, electricity, and appliances found in most apartments. The data are real, not simulated,
and come from real connected objects monitoring real human beings. This distinction is
crucial for the validation of an AmI system. Indeed, one specificity of AmI is to work in real
physical environments, and testing an AmI system on synthetic data would mean missing
this specificity. Also, simulated data may be biased in their creation, or may not faithfully
represent all the characteristics of the real data. The exact sending time of events coming
from connected objects are recorded in the database, which is perfect for time series rule
mining. The provided documentation makes it easy to find which object returns categorical
events, and which object returns quantitative events.

But the most interesting aspects of these bases are the number of objects and their di-
versity. Here, more than 200 objects are present in the environment. However, these objects
are not very varied in their functions. To illustrate, we have grouped all the objects of the Or
ange4Home database according to their functionality, which we deduced from their names.
The mapping table can be found in appendix C, table C.1. As shown in figure 6.1, the objects
are grouped into 21 categories, 3 of which represent half of the connected objects in the base:
many electrical sensors, switches, and also heaters, present in all the rooms and with multiple
properties to be adjusted, like the temperature. On top of this, there are many objects that
are identical between rooms, such as presence sensors, door opening sensors and water flow
sensors.

The number and diversity of these objects is debatable. Regarding the number, we can
judge that it is unrealistic to imagine 200 connected objects in the same environment. How
ever, we can also say that there is no need to take them all into account for testing purposes.
Moreover, this profusion of data allows a lot of experiments to be done. Finally, it is possible
that this number will be reached in the environments of the years to come.

Finally, we can ask the question of the diversity of the objects contained in the database.
Indeed, some users will buy objects of various kinds, because a connected object is interesting
for them only if it is useful. Some objects can be highlighted by their originality combined
with their functionality. Parrot’s Flower Power, for example, was unique when it was released.
It was one of the first connected objects in the garden to monitor a plant’s water needs. Even if
such basic objects as door opening sensors will be present, we can imagine more diversity in the

100

6.2. Databases for AmI activity discovery

0
5

10
15
20
25
30
35
40
45
50

N
u
m

b
e
r

o
f

o
b
je

ct
s

Object function

Figure 6.1: Diversity of the objects from the Orange4Home database [Cumin et al., 2017a]

objects than there is in the database. However, this diversity of objects in future environments
is not yet certain. Indeed, we can imagine environments connected with basic objects, such
as light bulbs, or door opening sensors, without more diversity. We can also think about the
construction of new buildings, containing connected objects monitoring it, such as electrical
sensors or water meters, without more diversity. Moreover, this lack of diversity also makes it
easier to characterize the data, and to interpret the results.

There is therefore no right or wrong solution regarding the number of objects to be
taken into account and their diversity. However, the precise purpose of the AmI system to
be tested can help in making a choice. In our case for example, we are looking to monitor and
act on objects in an environment to serve users in a personalized way. Thus, the environment
on which to test the system should be as close as possible to future personal environments,
such as connected homes. It would therefore be interesting to have a database containing fewer
objects, but more diversified in nature, with potentially more actuators. Indeed, having more
actuators means being able to act in more ways on the environment. So, with more actuators,
it would be interesting to see how people use them, and therefore how the AmI system can
automate them.

6.2.2 Shortcomings of existing databases
Orange4Home and ContextAct@A4H have shortcomings that need to be addressed in future
databases.

First, with these databases, it was very difficult to interpret the prediction rules found by
the algorithm. Generally speaking, we could only rely on the names given to the connected
objects and the data sent to interpret a result. We could also rely on the name of the activity
defined by hand in the schedule. In general, we would have liked to have more descriptive
data about the environment, the objects, and why not about the users’ actions. Thus, the data
of the connected objects would be the input of the system, and the descriptive data would
be used to interpret the results, and would not be processed by the AmI system. There is not
as much descriptive data as we would need because our goal, which is activity discovery, is
not the same as the one targeted by the database, which is the recognition of preestablished
activities.

Indeed, the purpose of these databases is to recognize preestablished activities, which is
supervised learning. Thus, to test a rule recognition algorithm, it is sufficient to check whether

101

Chapter 6. Evolutions

the algorithm recognizes the correct activity or not. But we want to discover new activities,
and we are not in a case of supervised learning. In our situation, we have to interpret the
prediction rules returned by the algorithm. Thus, any descriptive data is important for this
interpretation. What is particularly missing in these databases:

• The value range is not defined for connected objects, when the returned data is quan
titative.

• The function of the connected objects is also not clearly defined. For example, a con
nected heating system exists in the apartment. It has several sensors and actuators, but
they are not documented. There is also no descriptive data showing the dependency
relationships between objects: e.g. switches associated with lights or shutters. Relying
solely on the names of these sensors and actuators greatly limits the interpretation of
results.

• The location of the objects is also unclear. The plans provided do not indicate where the
connected objects are placed. Only the room can be deduced through the names given
to these objects, but nothing more. Having a precise location of the objects would
make it easier to interpret the found rules, and, for example, to trace the path a user
has taken during a rule.

• Habits are documented in the same way, limited to a name, start times, and end times.

Also, the two databases both reflect the actions of only one person. To have a database
that is representative of what is happening in a real environment, it would be necessary to be
able to observe several people. If several people are in the same environment, it will complicate
the search for rules, because these people do not necessarily have the same habits. Thus, it will
be necessary to find out what data can distinguish one person from another, in order to make
predictions. It would be interesting to see how rule finding would be able to find this data in
this context.

Another problem encountered is the fact that the observed period is relatively short.
For example, in the Orange4Home database, this is four consecutive weeks. This covers only
a small part of the year, and does not include, for example, the change of seasons. For Con
textAct@A4H, the observed period is split in two, in June and November. But here again,
the total observed duration is shorter than Orange4Home.

In the Orange4Home database, the observed person is only present during daytime, not
at night. This limits the number of possible rules to find.

Observing over a long period of time allows for habits changes, caused either by external
events, such as changing seasons, or by the simple will of users. In addition, with a longer
observation time, it is also possible to observe changes in connected objects, such as failures,
additions or deletions of objects. As mentioned in the previous chapters, the system must
adapt to these changes, so future databases will have to take this into account.

In these two databases, few activities were to be recognized. More specifically, Or
ange4Home has less than 20 activities, and ContextAct@A4H has only 8, according to their
respective documentation, such as taking a shower, sleeping, eating, working, watching tele
vision, or going up or down stairs. Thus, the actions undertaken were repetitive, in order
to respect the decided schedule. The schedule can also be the same from one day to the next,
which is also why so many rules can be found in section 5.5. Take as an example the planning
of the first week of the Orange4Home database in figure 6.2. It clearly shows the monotony
between the activities between the days. We could say that this is ideal for our case, because

102

6.2. Databases for AmI activity discovery

the habits are clearly defined. Only, with a schedule like that, where the days are homoge
neous, everything becomes a habit. Not only does it remove realism from what happens in
everyday life, with its diversity of actions, its share of unexpected events and its potentially
sudden changes, but a prediction rule search algorithm can find a lot of rules, because of this
preestablished planning.

In addition, the suppliers of connected objects are not varied, only one supplier per
object type. This does not allow, for example, to compare the consideration of several objects
with similar functions, but from different suppliers. For example, two temperature sensors
can measure the temperature differently, and thus return dissimilar data. Assessing the impact
of these differences would be important for the validation of a global AmI system.

Finally, some, but very few, objects return data already processed by an algorithm.
These include the noise sensors in the Orange4Home database, which are microphone data
processed by an algorithm that is not documented, to have a noise level that is not inter
pretable, making the object useless in our case. This may be due to confidentiality issues, but
we have not had confirmation of this. Although some objects may have this type of behavior,
it would be useful to document in detail the algorithms used, or at least the data returned
even if the overall concept is understood, in order to be able to interpret the results.

6.2.3 Summary

Future databases must keep the interesting aspects of Orange4Home and ContextAct@A4H:
the fact of having real data, coming from a functional physical environment populated with
connected objects, and whose exact sending times are recorded.

The future databases must also avoid the shortcomings mentioned above, to serve as a
master standard for verifying an activity discovery algorithm in an AmI context. A much more
complete documentation will have to be provided, as well as more metadata. Needless to say,
it will be impossible to make databases covering all the environments that can be analyzed.
However, we can imagine databases of various environments, such as a house in the country,
an apartment in the city, or a work environment. It would be interesting to see how the same
AmI system adapts to all these different environments.

In addition, the environment must contain a variety of objects, from several suppliers,
that are representative of the ones used today in connected houses, or what will be found in a
few years’ time. Activities in the environment must be documented, but above all they must
be varied and avoid following a predetermined schedule. The goal is to observe moments of
life for long periods of time, day and night, interpret the results to validate or not an AmI
system, and to see what is at stake in everyday life. Speaking of situations, they should also
involve several users, even if only at certain times.

For an AmI system to be validated, it must be tested on reallife situations. In addition, it
would be interesting to have realtime experiments to observe and understand the interactions
that users have with the AmI system. However, building a database for activity discovery will
also raise major issues in terms of privacy. Indeed, on the one hand, it would be necessary
to have data from objects present in a real physical environment, and observing everyday life
situations. For this, it is necessary to avoid cognitive biases in the subjects, as they are focused
on the fact that they are in a test environment. But on the other hand, it is imperative to
respect the privacy of these people. This issue will have to be addressed for future databases.

103

Chapter 6. Evolutions

Monday Tuesday Wednesday Thursday Friday

First week.

8:00 am

8:15 am

8:30 am

8:45 am

9:00 am

9:15 am

9:30 am

9:45 am

10:00 am

10:15 am

10:30 am

10:45 am

11:00 am

11:15 am

11:30 am

11:45 am

12:00 am

12:15 am

12:30 am

12:45 am

1:00 pm

1:15 pm

1:30 pm

1:45 pm

2:00 pm

2:15 pm

2:30 pm

2:45 pm

3:00 pm

3:15 pm

3:30 pm

3:45 pm

4:00 pm

4:15 pm

4:30 pm

4:45 pm

5:00 pm

5:15 pm

5:30 pm

5:45 pm

6:00 pm

Entering Entering Entering Entering

Going up Going up Going up Going up

Showering Showering Showering Showering

Using the sink Using the sink Using the sink Using the sink

Going down Going down Going down Going down

Watching TV Watching TV Watching TV Watching TV

Going up Going up Going up Going up

Computing Computing Computing Computing

Going down Going down Going down Going down

Preparing Preparing Preparing Preparing

Cooking Cooking Cooking Cooking

Eating Eating Eating Eating

Washing the dishes Washing the dishes Washing the dishes Washing the dishes

Cleaning Cleaning Cleaning Cleaning

Computing Computing Computing Computing

Going up Going up Going up Going up

Using the sink Using the sink Using the sink Using the sink

Dressing Dressing Dressing Dressing

Reading Reading Reading Reading

Napping Napping Napping Napping

Dressing Dressing Dressing Dressing

Computing Computing Computing Computing

Watching TV Watching TV Watching TV Watching TV

Going down Going down Going down Going down

Leaving Leaving Leaving Leaving

Entering

Going up

Showering

Using the sink

Going down

Watching TV

Going up

Computing

Going down

Preparing

Cooking

Eating

Washing the dishes

Cleaning

Cleaning

Going up

Using the sink

Cleaning

Cleaning

Computing

Cleaning

Going down

Leaving

Figure 6.2: Planning of the first week of the Orange4Home database, excerpt from the
Orange4Home documentation [Cumin et al., 2017a]

104

6.3. Pre-processing

6.3 Pre-processing
In the implementation presented in chapter 4, preprocessing cleans the repetitions for cat
egorical events, and discretizes quantitative events according to variations. Further develop
ment is possible.

6.3.1 Categorical events
First, regarding categorical events, it is possible to consider that some objects return notifica
tions of state changes, instead of just returning the state. For example, it is easy to imagine a
presence sensor that returns a notification only when someone is in a room, and nothing else.
This was mentioned in section 2.3.2.2. It would thus be possible to take them into account,
by not cleaning duplicates. On the other hand, it seems difficult to distinguish between ob
jects returning changes and those returning states, without prior information. The objects
themselves could provide this information.

It is also possible to take into account the stationary states of the connected objects, thus
giving context information to the rules to be found. This could be done in the same way
as adding time indicators, so that periodic rules can be found, as explained in section 3.2.2:
stationary states would exist in the form of atoms, and would be added to every itemset of
the time series. The danger of this method is to have much more data to process on the time
series, as we discussed in section 2.3.2.2.

6.3.2 Quantitative events
For quantitative events, several ways of improvement are possible. First of all, it is possi
ble, for some sensors, to make a discretization according to ranges of values, explained in
section 2.3.2.3. This can be useful for temperature sensors, where only the “cold”, “comfy”
and “warm” events could be defined. This requires expert data, but it would greatly simplify
discretization, and improve the readability of the results, compared to a discretization taking
into account variations. Also, signal processing algorithms could support the algorithms pre
sented in this thesis. They could be applied as is, if the observed data have a fixed sampling
rate. If this is not the case, resampling would become necessary. This could be useful when
the original discretization algorithms have been put in fault, as in section 4.3.1.4. One could
even imagine connecting dedicated systems, between the object data and the AmI system,
to handle the discretization process and provide categorical events. These systems would be
tailormade for specific objects, and would work for a specific type of data. For example, a
speech recognition algorithm for a microphone, an image recognition algorithm for a camera,
or an algorithm that estimates the number of people in a room based on CO2 levels. However,
using dedicated systems may seem contradictory to the nature of the AmI system proposed in
this thesis, which is intended to be learning by itself.

It would also be interesting to implement a selfevaluation of the preprocessing, for its
optimization. Also, as preprocessing has parameters that differ depending on the object, this
optimization would be done object by object. For that, it would be necessary to define perfor
mance indicators. These indicators should be created and evaluated to assess their relevance.
They will allow preprocessing to optimize the segmentation parameter θseg and the clustering
parameter θclu for a given object, as explained in section 4.3. For example, we could evaluate
the segmentation through the ratio of deleted points, as shown in section 4.3.1.4, counter
balanced by a measure of distance between the original and the simplified signal over a given

105

Chapter 6. Evolutions

period. Other indicators can come from rule mining, such as the number of rules found for
a given object. Those indicators would represent an inner feedback for this algorithm. These
settings could also be optimized based on user experience, through user feedback. These are
just a few ideas, as these indicators need to be precisely defined, evaluated, and implemented.

As we see, many perspectives exist regarding preprocessing, both for quantitative and
categorical events. These perspectives not only improve existing algorithms, but also provide
additional information to discover not only more rules, but also more significant and mean
ingful rules.

6.4 Rule mining
In the implementation of the AmI system, we made precise choices regarding the prediction
rules to be found: partially ordered rules containing multisets. In chapter 5, we developed
an algorithm named TSRuleGrowth, looking for this type of rules, but which has several
parameters to define: the size of the window, minsup, and minint.

6.4.1 Estimation of the parameters
It is precisely this first point that can be improved. It is possible to have an algorithm that
estimates the parameters to be applied to TSRuleGrowth by observing certain characteristics
of the environment, such as the number of objects, but also certain characteristics of the
time series, such as the density of atoms, or according to objectives dictated by the user. For
example, minint, which estimates the minimum reliability of the rules to be found, can be
set by hand at the beginning of the system launch, optimized according to certain parameters
such as the number of found rules and the computation time. It can also be modified by the
user via simple interfaces, like a slider, depending on whether he is looking for less reliable, or
more reliable rules. The same applies to minsup and window. We can imagine that minsup

and window can be calculated according to certain characteristics of the time series, like the
average of the absolute support of the atoms over the course of a week for minsup, or by
trial and error, by testing several parameters in parallel. The objective of the parameters to be
defined is a balance between finding the maximum number of useful rules to the user, and
not having too much computation time. Additional time series analyses and user experiences
will therefore be required.

6.4.2 Alternatives in the rule structure
In the proposed system, we chose to use multisets because we considered that the multiplicity
of an atom in a rule could be important. However, it would also be interesting, regarding
the structure of the rules to be found, to test alternatives, and to compare the results in terms
of found rules and computation time. First, sets could be used instead of multisets, which
removes the multiplicity of elements within rules. This would be easy to implement, would
make the TSRuleGrowth algorithm faster too, and lighter in memory, because the occurrence
recording, explained in section 5.4.3, would use lists instead of associative arrays. Secondly,
it would be interesting to look for rules containing sequences, i.e. ordered lists of atoms. For
example, “If I open the door and then I am in the entrance”, the order of which indicates that
the person has entered, not left, his or her home, “then turn on the light in the entrance and
then the light in the living room”, which directly lights up the room the user is currently in,

106

6.4. Rule mining

and then lights up the room he or she is used to going to afterwards. One could imagine a
rule whose condition is unordered and the prediction is a sequence. This type of rule would
define actions to be taken, one after the other. For example, we could produce a rule like:
“If the front door opens and the light at the entrance turns on, then run a bath and then
turn on the bathroom and then play soft music”. One could also imagine the opposite, i.e.
a sequential condition and an unordered prediction. Or even a fullyordered rule, defined
in section 3.2.3, where condition and prediction are both sequences. All these types of rules
would be interesting to observe, as some could be complementary to the partially ordered
rules we have chosen. Indeed, some habits may only be defined by sequences.

Secondly, one aspect of TSRuleGrowth was not developed in the thesis, that of updating
the rules over time. This is a major evolution to be made on this system: to be able to con
stantly update its results over time. Several ways are possible, such as simply deleting the old
results and keeping only the most recent ones, or keeping the entire history of the rules to be
found, to understand certain changes in habits, such as during the seasons, with the heating
on and the shutters closing early in the day in winter. All this aspect updated over time is
essential for our use case and must be considered.

6.4.3 Time indicators and other contextual information
In section 3.2.2, we mentioned the addition of time indicators in the time series to find
periodic rules. We experimented this with TSRuleGrowth on the Orange4Home database,
with the following parameters: minsup = 10, minint = 0.9, and window = 1, 2, 5, and 10
seconds. We added indicators for the hour and the weekday to each item and time series, as
explained in section 3.2.2. These indicators are treated in the same way as data from connected
objects. Here are some of the obtained results, presented in a simplified syntax:

• “If the front door opens and it is 8am, then turn on first light in the entrance and turn
on the light in the stairwell.” This indicates the entry of the occupant into his home,
between 8am and 9am which can easily be checked on the schedule shown in figure 6.2.
It has been found on a 10 second window.

• “If the bedroom door opens and someone is present in the bedroom and it is 12am,
then turn on third and fourth lights of the bedroom.” This shows that the occupant is
used to going into the bedroom between 12pm and 1pm, which is different from the
schedule presented. However, after analysis of the data, this habit is verified. This rule
has been found on a 5 second window.

This is very useful, and allows to have rules whose condition combines time information
and data of connected objects. However, it is very difficult to find rules whose condition is
composed only of time indicators. Indeed, they are repeated in each itemset of the input time
series of TSRuleGrowth, and are therefore seen many more times than events from connected
objects. Thus, if a rule of the type: “time indicator⇒ object events” is created, it will not be
validated, because the occurrences of the indicator are much more frequent than those of the
object events. To address this problem, new time indicators should be added, describing only
temporal changes, such as changes in hours, for example. This new indicator would only be
present once, and not repeatedly, in the time series.

In addition, other contextual information is possible, such as the stationary states of the
objects mentioned in section 6.3. However, adding this data could make the time series
heavier, lengthening the processing time of the rule mining algorithm. Experiments will be

107

Chapter 6. Evolutions

necessary to determine the relevance of the rules found with this contextual information, and
the impact this addition has on computation time.

6.4.4 Computational optimization
The last part of the evolution concerning rule mining is the computational optimization of
TSRuleGrowth. Indeed, to offer the AmI system to as many people as possible, it is important
to optimize the different algorithms that compose it. We have seen that the rule mining
algorithm could take several hours to find results in figure 5.8. Of course, this execution
time should be put into perspective with the large amount of data that was processed in
the experiment. Nevertheless, optimizing TSRuleGrowth will not only allow to get results
quickly, but also to offer the AmI system on less powerful machines, and thus to propose it to
more people.

Let us start with one of the features of TSRuleGrowth, which is to test all the possibilities
to extend rules. The aim here is to specify the search for rules based on the previously found
ones, through an exploration and exploitation process. It is possible, for example, to make a
map of the objects. The distance between two objects would be calculated according to the
rules previously found involving these two objects. On the exploitation part, the search for
rules would be limited according to the distance between objects. On the exploration part, to
avoid too much specialization on data, the system could randomly grant the search for rules
on objects with a large distance. There could also be an evaluation of this optimization by
comparing the results obtained with and without this optimization. The evaluation criteria
would still need to be defined. This optimization, aided by selfevaluation, would allow the
algorithm to specialize on the environmental data in order to find rules more quickly, while
remaining attentive to changes in habits and in the environment that may occur over time.

In parallel, this research could also be limited depending on the notion of usefulness de
fined in section 6.6. Indeed, this saves TSRuleGrowth from spending time searching rules
that will not be wanted by the user anyway.

6.5 Display of automation proposals
In section 3.2.4, we mentioned the issue of providing automation proposals in a way that is
understandable to users. We have attempted a first approach to this problem by proposing a
sentence describing the rule, of the type: “If... then...”. The condition part describes the state
changes of the objects, and the prediction part describes the actions to be done on them, using
the imperative. Thus, the main problem is to move from an internal representation produced
by the rulefinding algorithm to an intelligible representation, easily understandable by users.

Two major questions therefore arise. The first one is which representation to choose? And
once a representation has been chosen, how to make the transcription between the internal
rules of the system and this external representation?

6.5.1 Perspectives for the representation of automation proposals
6.5.1.1 Evolution of the textual representation

Firstly, adding delay information between the condition and the prediction could greatly im
prove the understanding of the rules. For example, “If the door opens, then in 5 seconds, turn
on the light”, or, “If the oven turns on, then, in 10 minutes, turn on the radio”. This delay

108

6.5. Display of automation proposals

can be calculated in the rule search algorithm, and we were able to integrate it and do some
experimentation in this thesis. Here, the delay is calculated directly by TSRuleGrowth. As a
reminder, in this algorithm, rule occurrences are recorded, as explained in section 5.4.3. In
our experiment, we calculated the delay between the end of the condition and the beginning
of the prediction on all possible occurrences of the rule, then we averaged these delays to ob
tain the one to display to the user. This information is easy to calculate in TSRuleGrowth,
and it is possible to compute other indicators with a similar method, such as a more precise
time of application of the rule, as well as for the condition or prediction.

For example, the rule “If the fridge door opens, then, after 8 seconds, close the fridge door”
describes a common situation typical of a kitchen, which would be useful to be automated.
Indeed, if the user forgets to close it or has closed it incorrectly, the system could close this door
automatically, thus preserving the cold chain for the products, and avoiding an energy waste.
This notion of delay is therefore crucial for this rule, and we can hardly imagine removing it,
i.e. closing the door directly after it has been opened. It would also be interesting to see the
duration of application of the condition, the prediction, and why not the entire rule.

6.5.1.2 Other means of representation

As mentioned in section 3.2.4, we can imagine other ways to show automation proposals
to users, for example, a graphical user interface, shown in figure 3.5. But it is also possible
to integrate it into a new means of interaction that have been widespread since 2011 with
the introduction of Siri for the iPhone [Gross, 2011]: the voice assistant. Here, the voice
assistant, present in the environment, could dialogue with the user, to propose rules, then
the user, by voice, could validate them. Thus, the control of the system would no longer be
done on a screen, and we would have a beginning of personification of the AmI system with
a conversational agent, as explained in section 2.2.1. Several voice assistants currently exist,
and this mode of interaction becomes familiar to most users. It would be an attractive means
of interaction for an AmI system, where the user could control the system anywhere in the
house, as long as a connected speaker is nearby. This has two major advantages:

• With this mode of interaction, an AmI system would be an integral part of the environ
ment, and users would interact with it in a natural way, which is speech. This is in line
with Mark Weiser’s original vision, who imagined computing acting as a background
in the environment.

• With this means of interaction, the transition to a more advanced AmI system acting
as a butler, described in section 2.2.1, would be easier. Intelligence could be embodied,
have a single voice, and interact with its users, in the same way that we speak.

6.5.2 Transcription of the rules
In parallel with the means of interaction, it is important to address the problem of translating
raw rules into automation proposals that are easily understood by users. Indeed, the prediction
rules found by the AmI system are very precise in their description, such as: “if fridge opens
and the weather is rainy and the kitchen light is on and the oven is on then turn on the hood
and turn off the television in the living room”. These rules, as they stand, can be difficult to
understand for the average user.

The problem is: how to transcribe these rules in a way that is understandable to users,
in other words how to go from a raw rule into an easy to understand representation? This

109

Chapter 6. Evolutions

problem is deeply tied to the one mentioned in the previous section. A workable solution
could be done in two phases:

• The first phase consists in searching for common metadata affiliated to the atoms con
tained in a rule. For example, if we take the rule “If the television in the living room
turns on, then turn off the light in the living room”, it can be simplified to “In the
living room, if the television turns on, then turn off the light”.

• The second phase consists in introducing a higher level of semantics. For example, if
we take the rule “If the front door opens, the light turns on, the door closes and it is
6pm, then turn on the oven”, it is possible that the condition part is in itself a usual
situation, shared by other automation proposals. Thus, through interactions with the
user, it is possible to add a high level of semantics that makes sense to the user. In this
case, the rule condition describes the arrival of a user at home after leaving work. The
rule could therefore be simplified to “If the user comes home from work, then turn on
the oven”.

But one last point must be worked on and evolved regarding the display of the rules. In
section 5.5, it should be noted that the TSRuleGrowth algorithm finds a huge amount of
prediction rules. However, if we want to make proposals to users, we can only propose very
few, less than a dozen. Thus, it is necessary to filter the rules to be displayed.

In some of our experiments, we have chosen to display only socalled closed rules. These
are rules that do not have overrules, i.e. rules with one more element in the condition or
prediction, which have the same support as the original rule.

For example, the rule “If the door opens, then turn on the light” can be seen 5 times, but
it has given rise to another rule, which is “If the door opens, then turn on the light and turn
on the heater”. This last rule is an overrule, because it has all the elements of the previous
rule, plus a new element. However, this last rule has only been seen 4 times, and there is no
other overrule observed. Thus, the first rule is a closed rule.

But this is only one method of rule filtering. In our case of use, it should be possible to
propose rules that the user would like to see: they should be selected and ordered according to
a usefulness measure, which will have been determined on the basis of user interactions and
feedback. It is precisely this notion that will be explained in the next section.

6.6 Interactions and user feedback
Mentioned in section 3.2.5, user interaction is an essential component of the AmI system.
The primary interaction that the system has with its users is the proposal of automations,
and the approval of these rules by these users. It is this basic interaction that allows to have
an evaluation on the rules found and displayed. From these interactions come user feedback,
which can be used to improve and customize the system. It is possible, for example, to imagine
that the overall performance of the AmI system can be calculated as a balance between the
ratio of accepted rules to the number of displayed rules, and the execution time of the rule
search algorithm. This section is closely related to section 6.5, as not only user interaction,
but also user feedback, are highly dependent on the way automation proposals are displayed.

A building block of the architecture, called the “Feedback Dispatcher” in section 2.5,
was imagined to continuously improve the various components of the system to find the
automations. In this block, user evaluation was materialized as a function, called a usefulness

110

6.6. Interactions and user feedback

function. The purpose of this function is to evaluate whether a rule can be considered useful
to the user, and to what extent.

How can this function be defined? To get an idea of the parameters to be taken into
account, we started to develop an experiment, where 22 people responded. In an online
survey, we displayed a list of prediction rules, and asked the participants which ones they
would approve, and why. A screenshot of the survey, in French, can be found in figure 6.3,
and the translation of the complete survey can be found in appendix D. This experiment was
done late in the thesis and was not very elaborate, so few conclusive results were drawn from
it. However, a clear result was observed: 14 people clearly expressed that the main criterion
for the choice of a rule is the nature of the actions present in it. For example, there were a few
people who did not want doors in their house or apartment to close or open on their own.
Thus, the function of objects will surely have a central place in the usefulness measure. It is
also conceivable that other indicators, derived from the metadata associated with the rules,
might be parameters of the usefulness function, such as the location of objects, or the time of
day when the rule takes place. On the other hand, usefulness can also come from preferences
that the user may express, such as saving energy. Needless to say, further experimentation with
test subjects will be required to define this measure of usefulness.

We can also take into account other relationships between objects, which would depend
on rules that have already been accepted. To illustrate this, let us imagine that a hotplate
and a fridge have some rules in common, because we are in the context of cooking. So the
link between the two objects would be strong. If a new rule is found that includes these two
previous objects, it could therefore have a high measure of usefulness. In any case, this notion
of usefulness must be defined through experiments involving human testers.

The building blocks of the system could be improved in this way:

• In preprocessing, the parameters to be set were few: for quantitative events, a segmen
tation threshold θseg and an observation duration δt, and no parameters for categorical
events. The user feedback of this algorithm would in fact be an optimization prob
lem, where θseg and δt must be chosen to get optimal feedback. We could imagine
such feedback as the number of useful rules involving the preprocessed object. For
the observation period, we could also imagine a reset mechanism, in order to obtain
an updated representative time series. And, as we mentioned in section 6.3, several
competing discretizations could run, maybe in parallel, to see which one would bring
its highest number of accepted rules.

• In the rule search, it would avoid searching for rules that the user will not want, which
reduces the execution time of the algorithm.

• In the presentation of the rules, an order could be established, according to this notion
of usefulness. This maximizes the chances that the user can find the automation he/she
wants.

We talked in section 6.5 about several kinds of interactions, including speech, to display
and validate the rules. However, it is also possible to imagine other kinds of complementary
interactions:

• Indirect interactions, which indicate that the user does not agree with an automation
when it is applied. For example, opening a door directly after it has been closed by the
system, or even preventing it from closing, shows that the user did not want the door
to close in the first place.

111

Chapter 6. Evolutions

Automatisation dans un environnement

intelligent

Vous êtes, en ce moment-même, chez vous, dans un environnement intelligent. Cet environnement a

détecté plusieurs habitudes que vous avez, et, à partir de celles-ci, vous propose d'automatiser

certaines actions.

Par exemple, si on détecte que vous allumez la lumière après avoir ouvert une porte, on peut vous

proposer que la lumière s'allume automatiquement à chaque fois que la porte s'ouvre.

La liste qui va suivre représente des habitudes observées chez vous, sous la forme de règles de

prédiction.

Une règle de prédiction est de la forme "Si ..., alors ...". Il est à noter que les conditions des règles n'ont

pas d'ordre.

Parmi les propositions suivantes, quelles sont celles que vous souhaiteriez automatiser ? Vous pouvez

choisir autant de règles que vous voulez, et vous devrez expliquer vos choix globaux ensuite.

Merci !

* Obligatoire

A vous de choisir !

Quelles propositions accepteriez-vous ?1.

Si la porte de la chambre s'ouvre et qu'il est 12 heures, alors fermer la porte de la chambre dans 15

secondes.

Si la lumière du couloir s'allume et que nous sommes Jeudi, alors éteindre la lumière du couloir dans

30 secondes.

Si le placard 1 de la cuisine s'ouvre, alors fermer le placard 1 de la cuisine dans 5 secondes.

Si la porte de la chambre s'ouvre, alors fermer la porte de la chambre dans 15 secondes.

Si la porte de la salle de bains s'ouvre et que quelqu'un est présent dans la salle de bains et que la

lumière du couloir s'éteint, alors fermer la porte de la salle de bains dans 25 secondes.

Si le tiroir 2 de la chambre s'ouvre, alors fermer le tiroir 2 de la chambre dans 20 secondes.

Si la porte du bureau s'ouvre et que la lumière du bureau s'allume et que quelqu'un est présent dans

le bureau, alors fermer la porte du bureau dans 25 secondes.

Si la porte de la douche s'ouvre, alors fermer la porte de la douche dans 25 secondes.

Si la porte d'entrée s'ouvre et que la lumière 1 de l'entrée s'éteint et que la lumière de l'escalier s'éteint,

alors fermer la porte d'entrée dans 10 secondes.

Figure 6.3: Screenshot of the survey displaying automation proposals

112

6.7. Conclusion

• We can also imagine manually teaching a rule to the AmI system. Either via a dedicated
interface, where the rule is described manually, or by asking the system to focus on
actions taken by users during a given period. In this case, the user would repeat a series
of actions, and the system would try, during this short period, to find the conditions
that led to these actions. For example, a user can ask the system to focus for 5 minutes.
During this period, he repeats the situation to be automated, such as opening the front
door and then switching on the light, so that the system can then propose it because it
only looked for a prediction rule in these 5 minutes.

• Finally, several privacy interactions are possible: asking not to operate, or not to ob
serve rules during certain time slots of the day, or even certain whole days, not to take
into account the data of certain objects, or of objects in certain locations. This can
be dynamic, i.e. privacy proposals can be made in return for refusing a rule, or via a
dedicated interface.

User interactions and feedback are perhaps the biggest areas for improvement in the AmI
system. And this is quite normal: such a system is at the service of these users and must be
customized. Many interactions are possible, and user feedback can be calculated in different
ways. These aspects can thus be the subject of much work in AI, ergonomics, user interface,
among others.

6.7 Conclusion
As we have seen in this chapter, there are perspectives at all levels of the AmI system: in
algorithms, in interactions, in the user interface and even in test databases. As a reminder,
this is a multidisciplinary subject. Thus, we can see that AmI will bring together scientists
from several fields, such as ergonomists and computer scientists. In order to move forward
on the subject, it would first be essential to work with ergonomists and test subjects, to study
the user interface, the display of rules, and above all to design and implement the feedback.

Here is a summary of these improvement perspectives.
First, the user interface of an AmI system should be simple but should not prevent the user

from having full control over the AmI system. The automation proposals must be designed
to be easily understandable, while describing the original prediction rule accurately.

Regarding databases, it would be interesting to develop new ones specifically focused on
the discovery of activities in an intelligent environment, still with real data, but with several
observed people doing various activities, more documentation and more metadata on the
objects.

Regarding the algorithms, it would be important to first study how the AmI system could
evolve to update the rules over time, to make it adaptive to changes. Also, user feedback will
allow for a system that is scalable and useful to the user. In addition, these exchanges with test
subjects would be used to validate preprocessing approaches, either those implemented in the
thesis or the alternatives presented in this chapter. Finally, an optimization of the different
algorithms, and especially of the rule finding algorithm, must be done in order to be able
to offer the AmI system to the largest number of people, without the need for a powerful
machine.

Finally, in the longer term, it is easy to imagine that new techniques will lead to a smarter,
more useful AmI system, as explained in section 2.2.1. Indeed, the purpose of AmI is to
operate in the background in an environment, without putting too much strain on the user.

113

Chapter 6. Evolutions

Thus, understanding the user’s intent, and automate the environment in a useful way while
minimizing interactions will be the major issue of AmI in the years to come. It will therefore
require algorithms more oriented towards strong AI to address this problem.

114

Conclusion
Ambient intelligence is a very vast field, and we have only scratched the surface. Coming
from ubiquitous computing theorized by Mark Weiser in the 1990s and artificial intelligence,
imagined by John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon in
the 1950s, it is not a passing trend, but a fundamental one, designed to last and evolve. It
is presented not only as an evolution of computing, but also and above all as an evolution of
society and our environment, making the latter more connected, more intelligent, but most
importantly able to help people in their daily lives.

This thesis presents a small step in this field. We started from a simple premise: connected
objects sold and used today communicate little with each other. From this premise, we first
imagined the global operation of a system that automatically orchestrates the services offered
by these objects. Several scientific constraints, such as current techniques in artificial intelli
gence, but also social constraints, such as the respect of privacy or personalization, allowed us
to specify this operation. Thus, this system operates within the environment it must analyze,
and not via centralized processing in the cloud, and makes automation proposals based on the
habits found in the data of the connected objects. Object data is preprocessed, and habits
are searched on these data to make automation proposals. As there are an infinite number of
different environments, we also made the choice to create an agnostic system, which knows
nothing about the data or objects to which it is connected. Finally, in order to adapt to users’
desires, this system must consider user feedback.

Then, an architecture has been created based on the previous operation, with building
blocks whose functions are clearly defined, to be easily understood by users who would like
to know how the system works. It specifies how object data is processed to extract prediction
rules, which will be proposed as automation proposals through an interface. Users will then
be able to validate these rules, in which case they become active automations, which will

115

Conclusion

be applied automatically in the environment. Finally, these user feedbacks are considered to
improve the different building blocks in order to propose more useful rules for them in the
future.

As part of this thesis, several building blocks of the architecture have been designed and
implemented.

Preprocessing takes into account the data of various objects, without having a priori on
them. Using discretization algorithms, the data is unified within a single structure called an
atom, and can be taken into account by the rule mining algorithm.

The algorithm for mining prediction rules, named TSRuleGrowth, is the major contribu
tion of this thesis. Helped by a new notion of support, it responds to the multiple problems
present in the stateoftheart algorithms, such as the nonvalidation of reliable rules in certain
cases, and allows several ways of guiding and limiting the search. This cannot only reduce the
execution time, but also disregard the data of certain objects that users do not want.

We also presented some perspectives for this ambient intelligence system, regarding the
algorithms presented in the thesis, but also on the interactions with the users and the consid
eration of their feedback.

As we said earlier, this is a step in the world of ambient intelligence. This field is still
in its early stages, and many studies are still to come in several disciplines. It would not
be unthinkable to imagine work in fields other than computer science, such as psychology,
philosophy, or ergonomics. Ambient intelligence is above all a dream, that of having an
environment that actively helps its users in their everyday life. However, we must not lose
sight of the fact that the means made available to achieve this dream can also be used to
track down or control the population. This is also the reason why we, for example, wanted
to imagine a system that is not in the cloud. This danger is crucial, and must be taken into
account by the various researchers working in this field.

Ambient intelligence is perhaps the next revolution in the world of information technol
ogy, and in our society, in the same way as transhumanism. This fusion between computer
science and nature can bring many things to all human beings, and shows that computer
science, even though it has already known three great eras, is still in its infancy.

116

Appendix A

Pre-processing
In this appendix, the pseudocodes of the algorithms used in preprocessing are detailed, more
precisely the algorithms that discretize the continuous events. In particular, the Sliding Win
dow Algorithm and hierarchical clustering are detailed.

117

Appendix A. Pre-processing

Algorithm 7: Sliding Window Algorithm

Data: TS = ⟨(t1, e1), ..., (tn, en)⟩: time series, ϵ: threshold
Result: Time series of continuous elements TSsim

// Initialization

1 TSsim = ⟨⟩;
2 i← 0;
// Main loop

3 while end is False do
// Create a new segment

4 stop← False;
5 j ← i+ 2;

// It the end of the time series is reached, stop all

6 if tj > tn then
7 end← True;
8 stop← True;
9 while stop is False do

// Compute the equation of the segment (y = a ∗ x+ b)

10 a← ej .value−ei.value

tj−ti
;

11 b← ei.value− a ∗ ti;
// Compute the distance between the points of the time

series and the segment

12 foreach (tx, ex)|ti < tx < tj do
13 point← a ∗ tx + b;
14 distance← |point ex.value|;
15 if distance > ϵ then
16 stop← True;

// If no distance exceeds epsilon, try a bigger segment

17 if stop is False then
18 j ← j + 1;

// If a distance exceeds epsilon, add the end of the

previous segment to the time series

19 Add (tj−1, ej−1) to TSsim;
20 i← j − 1;
21 Return TSsim;

118

Algorithm 8: Clustering algorithm

Data: Time series of elements TSsim, Time series of elements TSref

Result: Time series of atoms TSa = ⟨(t1, a1), ..., (tna
, ana

)⟩, a1, ..., ana
∈ Ao

// Initialization

1 TSa ← ⟨⟩;
2 Convert TSsim to a time series of segments TSssim;
3 Convert TSref to a time series of segments TSsref ;
4 Calculate the standardization components for the mean, variation and duration

from segments in TSsref : µmean, σmean, µvariation, σvariation, µduration, σduration;
// Delete the outliers

5 foreach (ti, si) ∈ TSssim do
// Normalize the characteristics

6 si.mean← si.mean−µmean

σmean
;

7 si.variation←
si.variation−µvariation

σvariation
;

8 si.duration←
si.duration−µduration

σduration
;

// If one of those characteristics is too different from the

other segments, remove it

9 if si.mean /∈ [−3, 3] or si.variation /∈ [−3, 3] or si.duration /∈ [−3, 3] then
10 Remove (ti, si) from TSssim;

// Build the atoms

11 Compute the dendrogram of the segments using Mean Linkage Clustering;
12 best_silhouette← 0;
13 foreach Possible cutting of the dendogram do
14 Cut the dendogram and get the resulting groups of segments;
15 Compute the silhouette value of this group configuration;
16 if silhouette > best_silhouette then
17 best_silhouette← silhouette;
18 θclu ← granularity of the cutting;
19 Build the groups of segments according to θclu and the dendrogram;

// Create the atoms corresponding to the groups of segments

20 foreach group of segments do
21 mmean,mvariation,mduration ← averages of mean, variation, duration of all

the semgents in the group;
// Denormalize the characteristics

22 mmean ← mmean ∗ σmean + µmean;
23 mvariation ← mvariation ∗ σvariation + µvariation;
24 mduration ← mduration ∗ σduration + µduration;
25 a← new Atom(o = o, value = [mmean,mvariation,mduration]);
26 Link a to this group;

// Create the time series of atoms

27 foreach (ti, si) ∈ TSssim do
28 a← atom of the segment group in which si is located;
29 Add (ti, a) to TSa;
30 return TSa;

119

120

Appendix B

TSRuleGrowth
Here are presented the detailed pseudocodes of the rule search algorithm, TSRuleGrowth,
and the new notion of support presented in this thesis.

121

Appendix B. TSRuleGrowth

Algorithm 9: Count

Data: Am: multiset, TS = ⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A: time series,
window: duration

/* Am is seen if all of its elements are seen in a window,

where those elements have not been seen in a previous

occurrence of Am. The blacklist keeps tracking the

occurrences of the elements of Am that have been seen

previously in an occurrence of Am. */

// Initialization

1 foreach unique a ∈ Am do
2 b(a)← ∅; // A blacklist is assigned to every unique element

of Am

3 sup(Am)← 0; // Support of Am: number of distinct occurrences

4 iterator← 1; // Iterator used for the sliding window

5 start← t1; // Start of the window

6 end← t1 + window; // End of the window

// Sliding window through the time series

7 while end ≤ tn ∈ TS do
8 found← True;
9 Scan TS through [start : end] and record the time stamps of the elements

a ∈ Am in T (a);
10 foreach element a ∈ Am do
11 T (a)← T (a) \ b(a) ; // Remove the occurrences of a that are

in the blacklist

12 if |T (a)| < multiplicity of a in Am then // Not enough occurrences

of a in the window

13 found← False ; // A distinct occurrence of Am cannot be

seen

14 if found is True then // A distinct occurrence of Am is seen

15 sup(Am)← sup(Am) + 1 ; // The support of Am is

incremented

16 foreach element a ∈ Am do
// The earlier time stamps of T (a) are added to the

blacklist of a

17 m← multiplicity of a in Am;
18 b(a)← b(a) ∪ earliest m time stamps of T (a);

// Iteration through the time series

19 iterator← iterator + 1;
20 start← titerator // t2,t3...

21 end← start + window;
22 Return sup(Am);

122

Algorithm 10: TSRuleGrowth

Data: TS = ⟨(t1, I1), ..., (tn, In)⟩, I1, ..., In ⊆ A: times series, minsup: minimum
support, minint: minimum interest, window: duration

1 Scan the database TS once. For each atom a found, record the time stamps of the
itemsets that contains a in T(a). All the lists of time stamps T(a) are stored in T;

2 Delete the atoms a where |T (a)| ≤ minsup from TS, and delete T(a) from T;
// Creation of basic rules

3 foreach pair of atoms i, j do
4 sup(i⇒ j)← 0; // Support of the rule

5 Oc(i⇒ j), Op(i⇒ j)← []; // Occurrences of the condition and

the prediction

/* Blacklists help calculate distinct occurrences of the

rule, for the support */

6 b(i), b(j)← ∅; // Blacklists of the occurrences of the

condition and the prediction

7 foreach ti in T(i) do
8 foreach tj in T(j) do
9 if 0 < tj − ti ≤ window then // If i and j are seen inside

the window and i is before j

/* A new occurrence of the rule i⇒ j is seen. It

is stored for expanding it later */

10 Oc(i⇒ j)← Oc(i⇒ j) + {i : {ti}};
11 Op(i⇒ j)← Op(i⇒ j) + {j : {tj}};

/* If ti and tj are not in the blacklists, a new

distinct occurrence of the rule i⇒ j is seen.

The support is incremented, and the time stamps

are added to the blacklist to avoid using those

elements for a new distinct occurrence */

12 if ti /∈ b(i) and tj /∈ b(j) then
13 sup(i⇒ j)← sup(i⇒ j) + 1;
14 b(i)← b(i) ∪ {ti};
15 b(j)← b(j) ∪ {tj};

// Growth of basic rules

/* If the rule has enough support, TSRuleGrowth tries to

expand it, and computes its interest */

16 if sup(i⇒ j) ≥ minsup then

17 if netconf(|T (i)|
|TS|

,
|T (j)|
|TS|

,
sup(i⇒j)

|TS|
))≥ minsup then

18 Output rule;
19 ExpandCondition(TS, i, j, |T (j)|, Oc(i⇒ j), Op(i⇒ j), window);
20 ExpandPrediction(TS, i, j, |T (i)|, Oc(i⇒ j), Op(i⇒ j), window);

123

Appendix B. TSRuleGrowth

Algorithm 11: ExpandCondition
Data: TS: time series, Ac: multiset, Ap: multiset, sup(Ap): support of Ap, Oc(Ac ⇒ Ap):

occurrences of the condition of Ac ⇒ Ap, Op(Ac ⇒ Ap): occurrences of the prediction of
Ac ⇒ Ap, minsup: minimum support, minint: minimum interest, window: duration

// Growth of the original rule

/* For each occurrence of the rule Ac ⇒ Ap, the ocurrences of new items

are tracked */

1 for i from 0 to |Oc(Ac ⇒ Ap)| do
2 oc ← Oc(Ac ⇒ Ap)[i]; // Occurrence of the condition

3 op ← Op(Ac ⇒ Ap)[i]; // Occurrence of the prediction

/* For each occurrence of Ac ⇒ Ap, the observation window is between:

*/

4 start← last time stamp in op − window ; // The end of the prediction - window

5 end← easliest time stamp in op ; // And the beginning of the prediction

/* For each new item k seen in the window, where k ≥ max(e), e ∈ Ap to

avoid duplicates */

6 foreach item k seen in [start, end[, where k ≥ max(e), e ∈ Ac do
7 ok ← occurences of k in [start, end[;
8 if k has never been seen before then // Initialization:

9 Ack ← Ac ∪ {k}; // New multiset, union of Ac and k

10 sup(Ack ⇒ Ap)← 0; // Support of the new rule

11 Oc(Ack ⇒ Ap), Op(Ack ⇒ Ap)← []; // Occurrences of the new rule

12 Bc(Ack ⇒ Ap)← {e : ∅|e ∈ Ack}; // Blacklists for the atoms of Ack

13 Bp(Ack ⇒ Ap)← {e : ∅|e ∈ Ap}; // Blacklists for the atoms of Ap

14 foreach time stamp tk ∈ ok (ascending order) do
/* If k is larger than all atoms of Ac or (k is equal to the

greatest atom of Ac and its time stamp is greater than all

time stamps of k in Ac) */

15 if k > max(e), e ∈ Ac or tk > all occurrences of k in oc then
/* A new occurrence of the rule Ack ⇒ Ap is seen. It is

stored for expanding it later */

16 Oc(Ack ⇒ Ap)← Oc(Ack ⇒ Ap) + {oc + {k : tk}};
17 Op(Ack ⇒ Ap)← Op(Ack ⇒ Ap) + op;
18 if time stamps in oc are not in Bc(Ack ⇒ Ap) and time stamps in op are not in

Bp(Ack ⇒ Ap) and tk /∈ Bc(Ack ⇒ Ap) then
/* A new distinct occurrence of the rule Ack ⇒ Ap is

seen. The support is incremented, and the time stamps

are added to the blacklists to avoid using those

atoms for a new distinct occurrence */

19 sup(Ack ⇒ Ap)← sup(Ack ⇒ Ap) + 1;
20 Add the time stamps of oc and tk to Bc(Ack ⇒ Ap);
21 Add the time stamps of op to Bp(Ack ⇒ Ap);

// Growth of the new rules found

22 foreach item c where sup(Ack ⇒ Ap) ≥ minsup do // If the rule has enough support

23 if netconf(sup(Ack)
|TS| ,

sup(Ap)
|TS| ,

sup(Ack⇒Ap)
|TS|)≥ minint then

24 Output rule;
25 sup(Ack)← Count(Ack, TS, window) ; // Compute the support of Ack

26 ExpandCondition(TS,Ack, Ap, sup(Ap), Oc(Ack ⇒ Ap), Op(Ack ⇒ Ap), window);

124

Algorithm 12: ExpandPrediction
Data: TS: time series, Ac: multiset, Ap: multiset, sup(Ac): support of Ac, Oc(Ac ⇒ Ap):

occurrences of the condition of Ac ⇒ Ap, Op(Ac ⇒ Ap): occurrences of the prediction of
Ac ⇒ Ap, minsup: minimum support, minint: minimum interest, window: duration

// Growth of the original rule

/* For each occurrence of the rule Ac ⇒ Ap, the ocurrences of new items

are tracked */

1 for i from 0 to |Oc(Ac ⇒ Ap)| do
2 oc ← Oc(Ac ⇒ Ap)[i]; // Occurrence of the condition

3 op ← Op(Ac ⇒ Ap)[i]; // Occurrence of the prediction

/* For each occurrence of Ac ⇒ Ap, the observation window is between:

*/

4 start← last time stamp in oc ; // The end of the condition

5 end← earliest time stamp in oc +window ; // And the beginning of the condition

+ window

/* For each new item k seen in the window, where k ≥ max(e), e ∈ Ap to

avoid duplicates */

6 foreach item k seen in]start, end], where k ≥ max(e), e ∈ Ap do
7 ok ← occurences of k in]start, end];
8 if k has never been seen before then // Initialization:

9 Apk ← Ap ∪ {k}; // New multiset, union of Ap and k

10 sup(Ac ⇒ Apk)← 0; // Support of the new rule

11 Oc(Ac ⇒ Apk), Op(Ac ⇒ Apk)← []; // Occurrences of the new rule

12 Bc(Ac ⇒ Apk)← {e : ∅|e ∈ Ac}; // Blacklists for the atoms of Ac

13 Bp(Ac ⇒ Apk)← {e : ∅|e ∈ Apk}; // Blacklists for the atoms of Apk

14 foreach tk ∈ ok (ascending order) do
/* If k is larger than all atoms of Ap or (k is equal to the

greatest atom of Ap and its time stamp is greater than all

time stamps of k in Ap) */

15 if k > max(e), e ∈ Ap or tk > all occurrences of k in op then
/* A new occurrence of the rule Ac ⇒ Apk is seen. It is

stored for expanding it later */

16 Oc(Ac ⇒ Apk)← Oc(Ac ⇒ Apk) + oc;
17 Op(Ac ⇒ Apk)← Op(Ac ⇒ Apk) + {op + {k : tk}};
18 if time stamps in oc are not in Bc(Ac ⇒ Apk) and time stamps in op are not in

Bp(Ac ⇒ Apk) and tk /∈ Bp(Ac ⇒ Apk) then
/* A new distinct occurrence of the rule Ac ⇒ Apk is

seen. The support is incremented, and the time stamps

are added to the blacklists to avoid using those

atoms for a new distinct occurrence */

19 sup(Ac ⇒ Apk)← sup(Ac ⇒ Apk) + 1;
20 Add the time stamps of oc to Bc(Ac ⇒ Apk);
21 Add the time stamps of op and tk to Bp(Ac ⇒ Apk);

// Growth of the new rules found

22 foreach item k where sup(Ac ⇒ Apk) ≥ minsup do // If the rule has enough support

23 sup(Apk)← Count(Apk, TS, window) ; // Compute the support of Apk

24 if netconf(sup(Ac)
|TS| ,

sup(Apk)
|TS| ,

sup(Ac⇒Apk)
|TS|)≥ minint then

25 Output rule;
26 ExpandCondition(TS,Ac, Apk, sup(Apk), Oc(Ac ⇒ Apk), Op(Ac ⇒ Apk), window);
27 ExpandPrediction(TS,Ac, Apk, sup(Ac), Oc(Ac ⇒ Apk), Op(Ac ⇒ Apk), window);

125

126

Appendix C

Databases
Here is the correspondence table between the objects present in the Orange4Home database
[Cumin et al., 2017a] and their manually defined functionality, highlighting that these objects
are not varied in their functions in section 6.2.2.

Table C.1: Mapping table between the objects present in the Orange4Home database [Cumin
et al., 2017a] and their manually defined functionality

Object name Category

bathroom_CO2 CO2
bathroom_door door
bathroom_heater_command heater
bathroom_heater_effective_mode heater
bathroom_heater_effective_setpoint heater
bathroom_heater_temperature heater
bathroom_humidity humidity sensor
bathroom_light1 light bulb
bathroom_light2 light bulb
bathroom_luminosity luminosity sensor
bathroom_presence presence sensor

Continued on next page

127

Appendix C. Databases

Table C.1 – continued from previous page

Object name Category

bathroom_shower_coldwater_instantaneous water flow sensor
bathroom_shower_coldwater_total water flow sensor
bathroom_shower_door door
bathroom_shower_hotwater_instantaneous water flow sensor
bathroom_shower_hotwater_total water flow sensor
bathroom_sink_coldwater_instantaneous water flow sensor
bathroom_sink_coldwater_total water flow sensor
bathroom_switch_bottom_left switch
bathroom_switch_bottom_right switch
bathroom_switch_top_left switch
bathroom_switch_top_right switch
bathroom_temperature temperature
bedroom_CO2 CO2
bedroom_bed_pressure bed pressure
bedroom_closet_door door
bedroom_door door
bedroom_drawer1 drawer
bedroom_drawer2 drawer
bedroom_heater1_command heater
bedroom_heater1_effective_mode heater
bedroom_heater1_effective_setpoint heater
bedroom_heater1_temperature heater
bedroom_heater2_command heater
bedroom_heater2_effective_mode heater
bedroom_heater2_effective_setpoint heater
bedroom_heater2_temperature heater
bedroom_humidity humidity sensor
bedroom_light1 light bulb
bedroom_light2 light bulb
bedroom_light3 light bulb
bedroom_light4 light bulb
bedroom_luminosity luminosity sensor
bedroom_noise noise
bedroom_presence presence sensor
bedroom_shutter1 shutter
bedroom_shutter2 shutter
bedroom_switch_bottom_left switch
bedroom_switch_bottom_right switch
bedroom_switch_middle_left switch
bedroom_switch_middle_right switch
bedroom_switch_top_left switch
bedroom_switch_top_right switch
bedroom_temperature temperature
entrance_door door

Continued on next page

128

Table C.1 – continued from previous page

Object name Category

entrance_heater_command heater
entrance_heater_effective_mode heater
entrance_heater_effective_setpoint heater
entrance_heater_temperature heater
entrance_light1 light bulb
entrance_noise noise
entrance_switch_left switch
global_active_energy electrical sensor
global_active_power electrical sensor
global_clouds_ext weather
global_coldwater_instantaneous water flow sensor
global_coldwater_total water flow sensor
global_commonID_ext weather
global_condition_ext weather
global_condition_id_ext weather
global_current electrical sensor
global_frequency electrical sensor
global_gas_total gas
global_heaters_temperature heater
global_humidity_ext humidity sensor
global_lighting_current light bulb
global_lighting_partial_energy light bulb
global_lighting_power light bulb
global_lighting_total_energy light bulb
global_lighting_voltage light bulb
global_power_factor electrical sensor
global_pressure_ext weather
global_pressure_trend_ext weather
global_rain_ext weather
global_shutters_current shutter
global_shutters_partial_energy shutter
global_shutters_power shutter
global_shutters_total_energy shutter
global_shutters_voltage shutter
global_snow_ext weather
global_temperature_ext temperature
global_temperature_feel_ext temperature
global_voltage electrical sensor
global_waterheater_current electrical sensor
global_waterheater_partial_energy electrical sensor
global_waterheater_power electrical sensor
global_waterheater_status water heater
global_waterheater_total_energy electrical sensor
global_waterheater_voltage electrical sensor

Continued on next page

129

Appendix C. Databases

Table C.1 – continued from previous page

Object name Category

global_wind_direction_ext weather
global_wind_speed_ext weather
kitchen_CO2 CO2
kitchen_cooktop_current electrical sensor
kitchen_cooktop_partial_energy electrical sensor
kitchen_cooktop_power electrical sensor
kitchen_cooktop_total_energy electrical sensor
kitchen_cooktop_voltage electrical sensor
kitchen_cupboard1 cupboard
kitchen_cupboard2 cupboard
kitchen_cupboard3 cupboard
kitchen_cupboard4 cupboard
kitchen_cupboard5 cupboard
kitchen_dishwasher_current electrical sensor
kitchen_dishwasher_partial_energy electrical sensor
kitchen_dishwasher_power electrical sensor
kitchen_dishwasher_total_energy electrical sensor
kitchen_dishwasher_voltage electrical sensor
kitchen_fridge_current electrical sensor
kitchen_fridge_door door
kitchen_fridge_partial_energy electrical sensor
kitchen_fridge_power electrical sensor
kitchen_fridge_total_energy electrical sensor
kitchen_fridge_voltage electrical sensor
kitchen_hood_current electrical sensor
kitchen_hood_partial_energy electrical sensor
kitchen_hood_power electrical sensor
kitchen_hood_total_energy electrical sensor
kitchen_hood_voltage electrical sensor
kitchen_humidity humidity sensor
kitchen_light1 light bulb
kitchen_light2 light bulb
kitchen_luminosity luminosity sensor
kitchen_noise noise
kitchen_oven_current electrical sensor
kitchen_oven_partial_energy electrical sensor
kitchen_oven_power electrical sensor
kitchen_oven_total_energy electrical sensor
kitchen_oven_voltage electrical sensor
kitchen_presence presence sensor
kitchen_sink_coldwater_instantaneous water flow sensor
kitchen_sink_coldwater_total water flow sensor
kitchen_sink_hotwater_instantaneous water flow sensor
kitchen_sink_hotwater_total water flow sensor

Continued on next page

130

Table C.1 – continued from previous page

Object name Category

kitchen_switch_bottom_left switch
kitchen_switch_bottom_right switch
kitchen_switch_top_left switch
kitchen_switch_top_right switch
kitchen_temperature temperature
kitchen_washingmachine_current electrical sensor
kitchen_washingmachine_partial_energy electrical sensor
kitchen_washingmachine_power electrical sensor
kitchen_washingmachine_total_energy electrical sensor
kitchen_washingmachine_voltage electrical sensor
label context data
livingroom_CO2 CO2
livingroom_couch_noise noise
livingroom_couch_plug_consumption electrical sensor
livingroom_heater1_command heater
livingroom_heater1_effective_mode heater
livingroom_heater1_effective_setpoint heater
livingroom_heater1_temperature heater
livingroom_heater2_command heater
livingroom_heater2_effective_mode heater
livingroom_heater2_effective_setpoint heater
livingroom_heater2_temperature heater
livingroom_humidity humidity sensor
livingroom_light1 light bulb
livingroom_light2 light bulb
livingroom_luminosity luminosity sensor
livingroom_presence_couch presence sensor
livingroom_presence_table presence sensor
livingroom_shutter1 shutter
livingroom_shutter2 shutter
livingroom_shutter3 shutter
livingroom_shutter4 shutter
livingroom_shutter5 shutter
livingroom_switch1_bottom_left switch
livingroom_switch1_top_left switch
livingroom_switch1_top_right switch
livingroom_switch2_top_left switch
livingroom_switch2_top_right switch
livingroom_table_luminosity luminosity sensor
livingroom_table_noise noise
livingroom_table_plug_consumption electrical sensor
livingroom_temperature temperature
livingroom_tv_plug_consumption electrical sensor
livingroom_tv_status tv status

Continued on next page

131

Appendix C. Databases

Table C.1 – continued from previous page

Object name Category

office_AC_setpoint electrical sensor
office_desk_plug_consumption electrical sensor
office_door door
office_heater_command heater
office_heater_effective_mode heater
office_heater_effective_setpoint heater
office_heater_temperature heater
office_light light bulb
office_luminosity luminosity sensor
office_noise noise
office_presence presence sensor
office_shutter shutter
office_switch_left switch
office_switch_middle switch
office_switch_right switch
office_tv_plug_consumption electrical sensor
office_tv_status tv status
staircase_light light bulb
staircase_switch_left switch
staircase_switch_right switch
toilet_coldwater_instantaneous water flow sensor
toilet_coldwater_total water flow sensor
toilet_light light bulb
toilet_switch_left switch
toilet_switch_right switch
walkway_light light bulb
walkway_noise noise
walkway_switch1_bottom_left switch
walkway_switch1_bottom_right switch
walkway_switch1_top_left switch
walkway_switch1_top_right switch
walkway_switch2_bottom_left switch
walkway_switch2_bottom_right switch
walkway_switch2_top_left switch
walkway_switch2_top_right switch

132

Appendix D

Survey
Here is a translation of the survey sent to 22 people, the purpose of which was to identify
parameters to be taken into account in measuring the usefulness of a rule. This experiment is
described in section 6.6.

Automation in an intelligent environment

You are, at this very moment, at home in an intelligent environment. This environment
has detected several habits that you have, and, based on them, proposes to automate certain
actions. For example, if we detect that you turn on the light after opening a door, we can
suggest that the light turns on automatically each time the door is opened.

The list that follows represents habits observed in your home, in the form of prediction
rules. A prediction rule is of the form “If ..., then ...”. Note that the conditions of the rules
are not ordered.

Which of the following proposals would you like to automate? You can choose as many
rules as you want, and you will have to explain your global choices afterwards.

Thank you!

1. Which proposals would you accept? (Several choices are possible)

• If the front door opens, then close the front door in 10 seconds.

133

Appendix D. Survey

• If kitchen cupboard 1 opens and someone is present in the living room sofa and
it is 12 o’clock, then close kitchen cupboard 1 in 25 seconds.

• If the bathroom door opens and it is 12 o’clock, then close the bathroom door in
10 seconds.

• If the hallway light comes on and it is Friday, then turn the hallway light off in
20 seconds.

• If the fridge door opens, then close the fridge door in 30 seconds.

• If the bathroom door opens and bathroom light 1 goes out and bathroom light 2
goes out, then close the bathroom door in 10 seconds.

• If the bathroom door opens and it is 8 o’clock, then close the bathroom door in
10 seconds.

• If the room door opens and someone is present in the room, then close the room
door in 30 seconds.

• If the office door opens and the office light comes on and someone is present in
the office, then close the office door in 25 seconds.

• If the bathroom door opens and someone is present in the bathroom and it is 8
o’clock, then close the bathroom door in 25 seconds.

• If the hallway light comes on and it is 8 o’clock, then turn the hallway light off
in 25 seconds.

• If kitchen cupboard 4 opens, then close kitchen cupboard 4 in 20 seconds.

• If the bathroom door opens and the hallway light goes out, then switch on bath
room light 1 in 20 seconds.

• If the office door opens and someone is present in the office, then close the office
door in 25 seconds.

• If bathroom light 1 goes out and bathroom light 2 goes out and it is 8 o’clock,
then close the bathroom door in 10 seconds.

• If the staircase light comes on and the hallway light comes on, then turn the
hallway light off in 20 seconds.

• If the bathroom door opens and someone is present in the bathroom, then close
the bathroom door in 10 seconds.

• If chamber drawer 1 opens, then close chamber drawer 1 in 20 seconds.

• If the bathroom door opens and someone is present in the bathroom and the
hallway light goes out, then close the bathroom door in 25 seconds.

• If bathroom light 1 goes out and bathroom light 2 goes out, then close the bath
room door in 10 seconds.

• If the bathroom door opens and bathroom light 1 goes out and bathroom light 2
goes out and it is 8 o’clock, then close the bathroom door in 15 seconds.

• If the shower door opens and it is 8 o’clock, then close the shower door in 25
seconds.

• If the bathroom door opens, then close the bathroom door in 10 seconds.

• If the bathroom door opens and it is Tuesday, then close the bathroom door in
10 seconds.

134

• If kitchen cupboard 1 opens and it is 12 o’clock, then close kitchen cupboard 1
in 5 seconds.

• If the office door opens, then close the office door in 25 seconds.

• If the room door opens, then close the room door in 15 seconds.

• If the room door opens and it is 12 o’clock, then close the room door in 15
seconds.

• If the hallway light comes on and it’s Thursday, then turn the hallway light off in
30 seconds.

• If chamber drawer 2 opens, then close chamber drawer 2 in 20 seconds.

• If the front door opens and the entrance light 1 goes out and the staircase light
goes out, then close the front door in 10 seconds.

• If the shower door opens, then close the shower door in 25 seconds.

• If the bathroom door opens and no one is present in the kitchen and no one
is present towards the living room table and the hallway light goes on and the
hallway light goes off, then turn on bathroom light 1 in 30 seconds.

• If the office door opens and the office light goes out, then close the office door in
10 seconds.

• If kitchen cupboard 1 opens, then close kitchen cupboard 1 in 5 seconds.

• If the office light goes out, then close the office door in 10 seconds.

2. Could you explain your choices? (Free text)

3. You are...

• A man

• A woman

4. You are...

• Under 15 years old

• Between 15 and 19 years old

• Between 20 and 25 years old

• Between 25 and 29 years old

• Between 30 and 35 years old

• Between 35 and 39 years old

• Between 40 and 45 years old

• Between 45 and 49 years old

• Between 50 and 55 years old

• Between 55 and 59 years old

• Between 60 and 65 years old

• Between 65 and 69 years old

• Between 70 and 75 years old

135

Appendix D. Survey

• Over 75 years old

5. You are in the category of...

• Operating farmers

• Craftsmen, traders and entrepreneurs

• Professionals and Senior Professionals

• Intermediate professions

• Employees

• Workers

• Students, or no occupation

136

Bibliography
[Aarts and Encarnação, 2006] Aarts, E. H. L. and Encarnação, J. L., editors (2006). True

Visions: The Emergence of Ambient Intelligence. Springer, Berlin ; New York.

[Abowd et al., 1999] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and
Steggles, P. (1999). Towards a Better Understanding of Context and ContextAwareness.
In Goos, G., Hartmanis, J., van Leeuwen, J., and Gellersen, H.W., editors, Handheld and
Ubiquitous Computing, volume 1707, pages 304–307. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Acampora et al., 2013] Acampora, G., Cook, D. J., Rashidi, P., and Vasilakos, A. V. (2013).
A Survey on Ambient Intelligence in Healthcare. Proceedings of the IEEE, 101(12):2470–
2494.

[Aggarwal et al., 2014] Aggarwal, C. C., Bhuiyan, M. A., and Hasan, M. A. (2014). Frequent
Pattern Mining Algorithms: A Survey. In Aggarwal, C. C. and Han, J., editors, Frequent
Pattern Mining, pages 19–64. Springer International Publishing, Cham.

[Ahn and Kim, 2004] Ahn, K.I. and Kim, J.Y. (2004). Efficient Mining of Frequent Item
sets and a Measure of Interest for Association Rule Mining. Journal of Information &
Knowledge Management, 03(03):245–257.

[Allen, 1984] Allen, J. F. (1984). Towards a general theory of action and time. Artificial
Intelligence, 23(2):123–154.

[Alpaydin, 2014] Alpaydin, E. (2014). Introduction to Machine Learning. MIT press.

137

Bibliography

[Apple, 2017] Apple (2017). An Ondevice Deep Neural Network for Face Detection.
https://machinelearning.apple.com/2017/11/16/facedetection.html.

[Asimov, 1950] Asimov, I. (1950). I, Robot. Gnome Press, New York, 1st ed. edition.

[Augusto and McCullagh, 2007] Augusto, J. C. and McCullagh, P. (2007). Ambient intel
ligence: Concepts and applications. Computer Science and Information Systems, 4(1):1–27.

[Augusto and Nugent, 2004] Augusto, J. C. and Nugent, C. D. (2004). The use of temporal
reasoning and management of complex events in smart homes. In Proceedings of the 16th
European Conference on Artificial Intelligence, ECAI’04, pages 778–782, Valencia, Spain.
IOS Press.

[Azevedo and Jorge, 2007] Azevedo, P. J. and Jorge, A. M. (2007). Comparing Rule Measures
for Predictive Association Rules. In Kok, J. N., Koronacki, J., de Mantaras, R. L., Matwin,
S., Mladenič, D., and Skowron, A., editors,Machine Learning: ECML 2007, Lecture Notes
in Computer Science, pages 510–517, Berlin, Heidelberg. Springer.

[Aztiria et al., 2010] Aztiria, A., Izaguirre, A., and Augusto, J. C. (2010). Learning patterns
in ambient intelligence environments: A survey. Artificial Intelligence Review, 34(1):35–51.

[Baccouche et al., 2012] Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Baskurt, A.
(2012). SpatioTemporal Convolutional Sparse AutoEncoder for Sequence Classification.
In Procedings of the British Machine Vision Conference 2012, pages 124.1–124.12, Surrey.
British Machine Vision Association.

[Balit et al., 2018] Balit, E., Vaufreydaz, D., and Reignier, P. (2018). PEAR: Prototyping
Expressive Animated Robots A framework for social robot prototyping. In HUCAPP
2018 - 2nd International Conference on Human Computer Interaction Theory and Applica-
tions, page 1.

[Barden and Leonard, 2011] Barden, L. H. and Leonard (2011). From the archive, 12 May
1997: Deep Blue win a giant step for computerkind. The Guardian.

[Bascol et al., 2016] Bascol, K., Emonet, R., Fromont, E., and Odobez, J.M. (2016). Un
supervised Interpretable Pattern Discovery in Time Series Using Autoencoders. In Robles
Kelly, A., Loog, M., Biggio, B., Escolano, F., and Wilson, R., editors, Structural, Syntactic,
and Statistical Pattern Recognition, Lecture Notes in Computer Science, pages 427–438,
Cham. Springer International Publishing.

[Beaumont, 2008] Beaumont, B. C. (2008). Bill Gates’s dream: A computer in every
home. http://www.telegraph.co.uk/technology/3357701/BillGatessdreamAcomputer
ineveryhome.html.

[Ben Allouch et al., 2009] Ben Allouch, S., van Dijk, J. A. G. M., and Peters, O. (2009). The
Acceptance of Domestic Ambient Intelligence Appliances by Prospective Users. In Tokuda,
H., Beigl, M., Friday, A., Brush, A. J. B., and Tobe, Y., editors, Pervasive Computing,
Lecture Notes in Computer Science, pages 77–94, Berlin, Heidelberg. Springer.

[BenDavid et al., 1997] BenDavid, S., Kushilevitz, E., and Mansour, Y. (1997). Online
learning versus offline learning. Machine Learning, 29(1):45–63.

138

Bibliography

[Berndt and Clifford, 1994] Berndt, D. J. and Clifford, J. (1994). Using dynamic time warp
ing to find patterns in time series. In Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining, AAAIWS’94, pages 359–370, Seattle, WA. AAAI
Press.

[BernersLee, 1989] BernersLee, T. (1989). The original proposal of the WWW, HTML
ized. https://www.w3.org/History/1989/proposal.html.

[Betters, 2018] Betters, E. (2018). What is IFTTT and how does it work?
https://www.pocketlint.com/smarthome/news/130082whatisiftttandhowdoes
itwork.

[Black and Pieterse, 2006] Black, P. E. and Pieterse, V. (2006). Manhattan distance.

[Blasco et al., 2014] Blasco, R., Marco, Á., Casas, R., Cirujano, D., and Picking, R. (2014).
A Smart Kitchen for Ambient Assisted Living. Sensors, 14(1):1629–1653.

[Bosche et al., 2018] Bosche, A., Crawford, D., Jackson, D., Schallehn, M., and Schorling,
C. (2018). Unlocking Opportunities in the Internet of Things. Technical report, Bain &
Company.

[Bouakkaz et al., 2017] Bouakkaz, M., Ouinten, Y., Loudcher, S., and FournierViger, P.
(2017). Efficiently mining frequent itemsets applied for textual aggregation. Applied In-
telligence, pages 1–7.

[Bühler, 2009] Bühler, C. (2009). Ambient Intelligence in Working Environments. In
Stephanidis, C., editor, Universal Access in Human-Computer Interaction. Intelligent and
Ubiquitous Interaction Environments, Lecture Notes in Computer Science, pages 143–149,
Berlin, Heidelberg. Springer.

[Cadwalladr and GrahamHarrison, 2018] Cadwalladr, C. and GrahamHarrison, E.
(2018). Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in
major data breach. The Guardian.

[Chee et al., 2019] Chee, C.H., Jaafar, J., Aziz, I. A., Hasan, M. H., and Yeoh, W. (2019).
Algorithms for frequent itemset mining: A literature review. Artificial Intelligence Review,
52(4):2603–2621.

[Chen et al., 2002] Chen, C.Y., Hwang, S.C., and Oyang, Y.J. (2002). An Incremental
Hierarchical Data Clustering Algorithm Based on Gravity Theory. In Chen, M.S., Yu,
P. S., and Liu, B., editors, Advances in Knowledge Discovery and Data Mining, pages 237–
250. Springer Berlin Heidelberg.

[Chen et al., 2012a] Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., and Yu, Z. (2012).
SensorBased Activity Recognition. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 42(6):790–808.

[Chen et al., 2012b] Chen, L., Nugent, C. D., and Wang, H. (2012). A KnowledgeDriven
Approach to Activity Recognition in Smart Homes. IEEE Transactions on Knowledge and
Data Engineering, 24(6):961–974.

139

Bibliography

[Chen et al., 1996] Chen, M.S., Han, J., and Yu, P. S. (1996). Data mining: An overview
from a database perspective. IEEE Transactions on Knowledge and data Engineering,
8(6):866–883.

[Cheng et al., 2004] Cheng, H., Yan, X., and Han, J. (2004). IncSpan: Incremental mining
of sequential patterns in large database. In Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 527–532,
Seattle, WA, USA. Association for Computing Machinery.

[Christensen et al., 2004] Christensen, W. D., Hooker, C. A., et al. (2004). Representation
and the meaning of life. Representation in mind: New approaches to mental representation,
pages 41–69.

[Computer Chronicles, 1990] Computer Chronicles (1990). High Tech France Part One.
http://archive.org/details/frenchtech1.

[Computer Chronicles, 1995] Computer Chronicles (1995). Gary Kildall Special.
http://archive.org/details/GaryKild.

[Cook et al., 2009] Cook, D. J., Augusto, J. C., and Jakkula, V. R. (2009). Ambient intel
ligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing,
5(4):277–298.

[Cook et al., 2013] Cook, D. J., Crandall, A. S., Thomas, B. L., and Krishnan, N. C. (2013).
CASAS: A Smart Home in a Box. Computer, 46(7):62–69.

[Cook et al., 2003] Cook, D. J., Youngblood, M., Heierman, E. O., Gopalratnam, K., Rao,
S., Litvin, A., and Khawaja, F. (2003). MavHome: An agentbased smart home. In
Proceedings of the First IEEE International Conference on Pervasive Computing and Commu-
nications, 2003. (PerCom 2003)., pages 521–524.

[Cumin, 2018] Cumin, J. (2018). Reconnaissance et Prédiction d’activités Dans La Maison
Connectée. PhD thesis, Université Grenoble Alpes (ComUE).

[Cumin et al., 2017a] Cumin, J., Lefebvre, G., Ramparany, F., and Crowley, J. L. (2017).
A Dataset of Routine Daily Activities in an Instrumented Home. In 11th International
Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI).

[Cumin et al., 2017b] Cumin, J., Lefebvre, G., Ramparany, F., and Crowley, J. L. (2017).
Human Activity Recognition Using PlaceBased Decision Fusion in Smart Homes. In
Brézillon, P., Turner, R., and Penco, C., editors, Modeling and Using Context, volume
10257, pages 137–150. Springer International Publishing, Cham.

[Cuofano, 2018] Cuofano, G. (2018). What Is a Hidden Revenue Business Model? Google’s
Business Model Explained. https://fourweekmba.com/hiddenrevenuemodelgoogle/.

[Das et al., 1998] Das, G., Lin, K.I., Mannila, H., Renganathan, G., and Smyth, P. (1998).
Rule discovery from time series. In Proceedings of the Fourth International Conference on
Knowledge Discovery and DataMining, KDD’98, pages 16–22, New York, NY. AAAI Press.

[Deogun and Jiang, 2005] Deogun, J. and Jiang, L. (2005). Prediction Mining – An Ap
proach to Mining Association Rules for Prediction. In Rough Sets, Fuzzy Sets, Data Min-
ing, and Granular Computing, Lecture Notes in Computer Science, pages 98–108. Springer
Berlin Heidelberg.

140

Bibliography

[Douglas and Peucker, 1973] Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the
reduction of the number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information and Geovisualization,
10(2):112–122.

[Duman et al., 2019] Duman, T. B., Bayram, B., and İnce, G. (2019). Acoustic Anomaly
Detection Using Convolutional Autoencoders in Industrial Processes. In 14th International
Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO
2019), pages 432–442. Springer, Cham.

[Elegant, 2019] Elegant, N. X. (2019). The Internet Cloud’s Dirty Secret: It Consumes Tons
of Energy, Has Large Carbon Footprint. https://fortune.com/2019/09/18/internetcloud
serverdatacenterenergyconsumptionrenewablecoal/.

[European Parliament, 2016] European Parliament (2016). Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the protection of nat
ural persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).
http://data.europa.eu/eli/reg/2016/679/20160504.

[Favreau, 2008] Favreau, J. (2008). Iron Man.

[FengHsiung Hsu, 1999] FengHsiung Hsu (1999). IBM’s Deep Blue Chess grandmaster
chips. IEEE Micro, 19(2):70–81.

[Ferrucci et al., 2010] Ferrucci, D., Brown, E., ChuCarroll, J., Fan, J., Gondek, D., Kalyan
pur, A. A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J., Schlaefer, N., and Welty, C.
(2010). Building Watson: An Overview of the DeepQA Project. AI Magazine, 31(3):59.

[FournierViger et al., 2014] FournierViger, P., Gueniche, T., Zida, S., and Tseng, V. S.
(2014). ERMiner: Sequential Rule Mining Using Equivalence Classes. In Advances in
Intelligent Data Analysis XIII, pages 108–119. Springer International Publishing.

[FournierViger and Lin, 2017] FournierViger, P. and Lin, J. C.W. (2017). A Survey of
Sequential Pattern Mining. Data Science and Pattern Recognition, pages 54–77.

[FournierViger et al., 2015] FournierViger, P., Wu, C.W., Tseng, V. S., Cao, L., and
Nkambou, R. (2015). Mining PartiallyOrdered Sequential Rules Common to Multiple
Sequences. IEEE Transactions on Knowledge and Data Engineering, 27(8):2203–2216.

[Frey, 2013] Frey, J. (2013). AdAPT – A Dynamic Approach for Activity Prediction and
Tracking for Ambient Intelligence. In 2013 9th International Conference on Intelligent
Environments, pages 254–257.

[Fritzke, 1995] Fritzke, B. (1995). A growing neural gas network learns topologies. In Ad-
vances in Neural Information Processing Systems, pages 625–632.

[Frost, 2019] Frost, J. (2019). 5 Ways to Find Outliers in Your Data.

[Galbrun et al., 2018] Galbrun, E., Cellier, P., Tatti, N., Termier, A., and Cremilleux, B.
(2018). Mining Periodic Patterns with a MDL Criterion. CoRR, abs/1807.01706:16.

141

Bibliography

[Galdeano et al., 2018] Galdeano, A., Gonnot, A., Cottet, C., Hassas, S., Lefort, M., and
Cordier, A. (2018). Developmental Learning for Social Robots in RealWorld Interactions.
In First Workshop on Social Robots in the Wild at the 13th Annual ACM/IEEE International
Conference on Human-Robot Interaction (HRI 2018), page 5, Chicago, IL, United States.

[Gardner, 1983] Gardner, H. (1983). Frames of Mind: The Theory of Multiple Intelligences.
Basic Books, New York.

[Gardner, 1993] Gardner, H. (1993). Frames of Mind: The Theory of Multiple Intelligences.
BasicBooks, New York, NY, 10th anniversary ed. edition.

[Georgia Institute of Technology, 1998] Georgia Institute of Technology (1998). Welcome
| Aware Home Research Initiative. http://www.awarehome.gatech.edu/.

[Ghahramani, 2004] Ghahramani, Z. (2004). Unsupervised learning. In Advanced Lectures
on Machine Learning, pages 72–112. Springer.

[GilQuijano and Sabouret, 2010] GilQuijano, J. and Sabouret, N. (2010). Prediction of
Humans’ Activity for Learning the Behaviors of Electrical Appliances in an Intelligent Am
bient Environment. In 2010 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, pages 283–286, Toronto, AB, Canada. IEEE.

[Gomes et al., 2019] Gomes, L., Ramos, C., Jozi, A., Serra, B., Paiva, L., and Vale, Z. (2019).
IoH: A Platform for the Intelligence of Home with a Context Awareness and Ambient
Intelligence Approach. Future Internet, 11(3):58.

[González García et al., 2017] González García, C., MeanaLlorián, D., Pelayo García
Bustelo, B., and Cueva Lovelle, J. (2017). A review about Smart Objects, Sensors, and
Actuators. International Journal of Interactive Multimedia and Artificial Intelligence, 4:7–
10.

[Gorrie, 2016] Gorrie, C. (2016). Three ways to detect outliers.
http://colingorrie.github.io/outlierdetection.html.

[Gottfried et al., 2006] Gottfried, B., Guesgen, H. W., and Hübner, S. (2006). Spatiotem
poral Reasoning for Smart Homes. Designing Smart Homes, pages 16–34.

[Griffith, 2019] Griffith, B. E. (2019). The US Is the Undisputed Leader in Smart Homes.
https://www.pcmag.com/news/367137/theusistheundisputedleaderinsmarthomes.

[Gross, 2011] Gross, D. (2011). Apple introduces Siri, Web freaks out.
https://www.cnn.com/2011/10/04/tech/mobile/siriiphone4sskynet/index.html.

[Gu et al., 2004] Gu, T., Wang, X. H., Pung, H. K., and Zhang, D. Q. (2004). An
Ontologybased Context Model in Intelligent Environments. In In Proceedings of Com-
munication Networks and Distributed Systems Modeling and Simulation Conference, pages
270–275.

[Harnad, 1990] Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear
Phenomena, 42(13):335–346.

[Harnad, 2007] Harnad, S. (2007). Symbol grounding problem. Scholarpedia, 2(7):2373.

142

Bibliography

[Hauben, 2007] Hauben, M. (2007). History of ARPANET.
http://pages.infinit.net/jbcoco/ArpaArpanetInternet.pdf.

[Hawkins, 2012] Hawkins, D. (2012). Part II. Constructivism: Some history. The Content
Of Science: A Constructive Approach To Its Teaching And Learning, page 9.

[Inria, 2013] Inria (2013). Smart Home – Amiqual4Home.
https://amiqual4home.inria.fr/fr/tools/smarthome/.

[Jakkula and Cook, 2007] Jakkula, V. and Cook, D. (2007). Using Temporal Relations in
Smart Environment Data for Activity Prediction. Proceedings of the 24th International
Conference on Machine Learning.

[Jakkula and Cook, 2008] Jakkula, V. R. and Cook, D. J. (2008). Anomaly detection using
temporal data mining in a smart home environment. Methods of information in medicine,
47(1):70–75.

[Jin and Agrawal, 2007] Jin, R. and Agrawal, G. (2007). Frequent Pattern Mining in Data
Streams. In Aggarwal, C. C., editor, Data Streams: Models and Algorithms, Advances in
Database Systems, pages 61–84. Springer US, Boston, MA.

[Johnson, 1967] Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika,
32(3):241–254.

[Jones, 2001] Jones, J. (2001). Halo: Combat Evolved.

[Katehakis and Veinott, 1987] Katehakis, M. N. and Veinott, A. F. (1987). The MultiArmed
Bandit Problem: Decomposition and Computation. Mathematics of Operations Research,
12(2):262–268.

[Kay, 1993] Kay, S. M. (1993). Fundamentals of Statistical Signal Processing. Prentice Hall
PTR.

[Keogh et al., 2001] Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2001). An online al
gorithm for segmenting time series. In Proceedings 2001 IEEE International Conference on
Data Mining, pages 289–296, San Jose, CA, USA. IEEE Comput. Soc.

[Keogh and Smyth, 1997] Keogh, E. and Smyth, P. (1997). A probabilistic approach to fast
pattern matching in time series databases. In Proceedings of the Third International Con-
ference on Knowledge Discovery and Data Mining, KDD’97, pages 24–30, Newport Beach,
CA. AAAI Press.

[Keshavarz et al., 2006] Keshavarz, A., Tabar, A. M., and Aghajan, H. (2006). Distributed
visionbased reasoning for smart home care. In Proc. of ACM SenSys Workshop on DSC.

[Kieras and Meyer, 1997] Kieras, D. E. and Meyer, D. E. (1997). An overview of the EPIC
architecture for cognition and performance with application to humancomputer interac
tion. Human-Computer Interaction, 12(4):391–438.

[Kohonen, 1990] Kohonen, T. (1990). The selforganizing map. Proceedings of the IEEE,
78(9):1464–1480.

[Kubrick, 1968] Kubrick, S. (1968). 2001: A Space Odyssey.

143

Bibliography

[Kuipers et al., 2006] Kuipers, B. J., Beeson, P., Modayil, J., and Provost, J. (2006). Boot
strap learning of foundational representations. Connection Science, 18(2):145–158.

[Kurzweil, 2006] Kurzweil, R. (2006). The Singularity Is Near: When Humans Transcend
Biology. Penguin Books, New York.

[La Tona et al., 2018] La Tona, G., Petitti, A., Lorusso, A., Colella, R., Milella, A., and At
tolico, G. (2018). Modular multimodal user interface for distributed ambient intelligence
architectures. Internet Technology Letters, 1(2):e23.

[Lago et al., 2017] Lago, P., Lang, F., Roncancio, C., JiménezGuarín, C., Mateescu, R.,
and Bonnefond, N. (2017). The ContextAct@A4H RealLife Dataset of DailyLiving Ac
tivities. In Brézillon, P., Turner, R., and Penco, C., editors, Modeling and Using Context,
Lecture Notes in Computer Science, pages 175–188, Cham. Springer International Pub
lishing.

[Laird et al., 1987] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). SOAR: An ar
chitecture for general intelligence. Artificial Intelligence, 33(1):1–64.

[Langley et al., 1991] Langley, P., McKusick, K. B., Allen, J. A., Iba, W. F., and Thompson,
K. (1991). A design for the ICARUS architecture. ACM SIGART Bulletin, 2(4):104–109.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.

[Lee and Yun, 2017] Lee, G. and Yun, U. (2017). A new efficient approach for mining un
certain frequent patterns using minimum data structure without false positives. Future
Generation Computer Systems, 68:89–110.

[Lovrić et al., 2014] Lovrić, M., Milanović, M., and Stamenković, M. (2014). Algoritmic
methods for segmentation of time series: An overview. Journal of Contemporary Economic
and Business Issues, 1(1):31–53.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and analysis of
multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. The Regents of the University of California.

[Madhulatha, 2012] Madhulatha, T. S. (2012). An Overview on Clustering Methods. IOSR
Journal of Engineering, 02(04):719–725.

[Mannila et al., 1997] Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997). Dis
covery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery,
1(3):259–289.

[Manning et al., 2008] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction
to Information Retrieval. Cambridge University Press, USA.

[Masciotra, 2007] Masciotra, D. (2007). Le constructivisme en termes simples. Vie péda-
gogique, 143:48–52.

[Mazac, 2015] Mazac, S. (2015). Approche Décentralisée de l’apprentissage Constructiviste et
Modélisation Multi-Agent Du Problème d’amorçage de l’apprentissage Sensorimoteur En En-
vironnement Continu : Application à l’intelligence Ambiante. These de doctorat, Université
Claude Bernard Lyon 1.

144

Bibliography

[Mazac et al., 2014] Mazac, S., Armetta, F., and Hassas, S. (2014). On bootstrapping
sensorimotor patterns for a constructivist learning system in continuous environments.
In Artificial Life Conference Proceedings 14, pages 160–167. The MIT Press.

[Mazzetti et al., 2019] Mazzetti, M., Perlroth, N., and Bergman, R. (2019). It Seemed Like
a Popular Chat App. It’s Secretly a Spy Tool. The New York Times.

[McCarthy, 2007] McCarthy, J. (2007). What is Artificial Intelligence?

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. J. (1969). Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In Meltzer, B. and Michie, D.,
editors, Machine Intelligence 4, pages 463–502. Edinburgh University Press.

[Melnick, 2018] Melnick, K. (2018). Navigate Your Smart Home Devices In AR.
https://vrscout.com/news/smarthomedevicesinar/.

[Meurer et al., 2018] Meurer, R. S., Frohlich, A. A., and Hubner, J. F. (2018). Ambient
Intelligence for the Internet of Things Through ContextAwareness. In 2018 International
Symposium on Rapid System Prototyping (RSP), pages 83–89, Torino, Italy. IEEE.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Humanlevel control through deep reinforcement learning. Nature,
518(7540):529–533.

[Moravec, 1990] Moravec, H. (1990). Mind Children - The Future of Robot & Human Intel-
ligence. Harvard University Press, Cambridge, reprint edition.

[Murphy, 2012] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT
press.

[Nakashima et al., 2010] Nakashima, H., Aghajan, H. K., and Augusto, J. C., editors (2010).
Handbook of Ambient Intelligence and Smart Environments. Springer, New York.

[Nazari Shirehjini and Semsar, 2017] Nazari Shirehjini, A. A. and Semsar, A. (2017). Hu
man interaction with IoTbased smart environments. Multimedia Tools and Applications,
76(11):13343–13365.

[Newell and Simon, 1976] Newell, A. and Simon, H. A. (1976). Computer science as em
pirical inquiry: Symbols and search. Communications of the ACM, 19(3):113–126.

[Ng, 2019] Ng, A. (2019). Google calls Nest’s hidden microphone an ’error’.
https://www.cnet.com/news/googlecallsnestshiddenmicrophoneanerror/.

[Ngiam et al., 2011] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011).
Multimodal Deep Learning. Proceedings of the 28th international conference on machine
learning (ICML-11), pages 689–696.

[Nguyen et al., 2005] Nguyen, S. N., Sun, X., and Orlowska, M. E. (2005). Improvements
of IncSpan: Incremental Mining of Sequential Patterns in Large Database. In Advances in
Knowledge Discovery and Data Mining, pages 442–451. Springer, Berlin, Heidelberg.

145

Bibliography

[Olaru et al., 2013] Olaru, A., Florea, A. M., and El Fallah Seghrouchni, A. (2013). A
ContextAware MultiAgent System as a Middleware for Ambient Intelligence. Mobile
Networks and Applications, 18(3):429–443.

[Orange, 2016] Orange (2016). Orange IoT Mashups. http://orangeiot
mashups.nprpaas.ddns.integ.dnsorange.fr/cloudlife/v2/homepage/?setLng=en.

[Pancardo et al., 2018] Pancardo, P., Wister, M., Acosta, F., and Hernández, J. A. (2018).
Ambient Assisted Working Applications. In Intelligent Data Sensing and Processing for
Health and Well-Being Applications, pages 81–99. Elsevier.

[Paulin et al., 2018] Paulin, R., Fraichard, T., and Reignier, P. (2018). HumanRobot Mo
tion: Taking Human Attention into Account. In IROS 2018- IEEE/RSJ International
Conference on Intelligent Robots and Systems; Workshop on Assistance and Service Robotics in
a Human Environment, pages 1–5.

[Pazhaniraja et al., 2017] Pazhaniraja, N., Paul, P. V., Roja, G., Shanmugapriya, K., and
Sonali, B. (2017). A study on recent bioinspired optimization algorithms. In 2017 Fourth
International Conference on Signal Processing, Communication and Networking (ICSCN),
pages 1–6.

[Pei et al., 2001] Pei, J., Han, J., MortazaviAsl, B., Pinto, H., Chen, Q., Dayal, U., and Mei
Chun Hsu (2001). PrefixSpan: Mining sequential patterns efficiently by prefixprojected
pattern growth. In Proceedings 17th International Conference on Data Engineering, pages
215–224.

[Philips, 2019] Philips (2019). Official Philips Hue apps. https://www2.meethue.com/en
us/app.

[Piaget, 1936] Piaget, J. (1936). La Naissance de l’intelligence Chez l’enfant. Delachaux et
Niestlé.

[Piaget and Cook, 1952] Piaget, J. and Cook, M. (1952). The Origins of Intelligence in Chil-
dren. International Universities Press New York.

[Porle et al., 2015] Porle, R. R., Ruslan, N. S., Ghani, N. M., Arif, N. A., Ismail, S. R.,
Parimon, N., and Mamat, M. (2015). A survey of filter design for audio noise reduction.
J. Adv. Rev. Sci. Res, 12:26–44.

[Ramadan et al., 2010] Ramadan, R. A., Hagras, H., Nawito, M., Faham, A. E., and Eldes
ouky, B. (2010). The Intelligent Classroom: Towards an Educational Ambient Intelli
gence Testbed. In 2010 Sixth International Conference on Intelligent Environments, pages
344–349, Kuala Lumpur, Malaysia. IEEE.

[Randall 5th, 2006] Randall 5th, A. (2006). Q&A: A lost interview with ENIAC co
inventor J. Presper Eckert. http://www.computerworld.com/article/2561813/computer
hardware/qa–alostinterviewwitheniaccoinventorj–prespereckert.html.

[Randell et al., 1992] Randell, D. A., Cui, Z., and Cohn, A. G. (1992). A Spatial Logic Based
on Regions and Connection. In Proceedings of the Third International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR’92, pages 165–176, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

146

Bibliography

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model for infor
mation storage and organization in the brain. Psychological Review, 65(6):386–408.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpreta
tion and validation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53–65.

[Rushe, 2020] Rushe, D. (2020). $15bn a year: YouTube reveals its ad revenues for the first
time. The Guardian.

[SanchezPicot et al., 2016] SanchezPicot, A., Martin, D., de Rivera, D. S., Bordel, B., and
Robles, T. (2016). Modeling and Simulation of Interactions Among People and Devices in
Ambient Intelligence Environments. In 2016 30th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pages 784–789. IEEE.

[Schilit, 2008] Schilit, B. (2008). Projects. https://sites.google.com/site/schilit/projects.

[Schlüter and Conrad, 2011] Schlüter, T. and Conrad, S. (2011). About the analysis of time
series with temporal association rule mining. In 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), pages 325–332.

[Searle, 1980] Searle, J. R. (1980). Minds, brains, and programs. Behavioral and brain sci-
ences, 3(03):417–424.

[Shi et al., 2003] Shi, Y., Xie, W., Xu, G., Shi, R., Chen, E., Mao, Y., and Liu, F. (2003).
The smart classroom: Merging technologies for seamless teleeducation. IEEE Pervasive
Computing, 2(2):47–55.

[Silver et al., 2018] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez,
A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and
Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi,
and Go through selfplay. Science, 362(6419):1140–1144.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of
Go without human knowledge. Nature, 550(7676):354–359.

[Singh et al., 2017] Singh, D., Merdivan, E., Psychoula, I., Kropf, J., Hanke, S., Geist, M.,
and Holzinger, A. (2017). Human Activity Recognition Using Recurrent Neural Networks.
In Machine Learning and Knowledge Extraction, pages 267–274. Springer, Cham.

[Somfy, 2019] Somfy (2019). myLink for Smartphones and Tablets.
https://www.somfysystems.com/enus/productsheetpage.

[Spiegel et al., 2011] Spiegel, S., Gaebler, J., Lommatzsch, A., De Luca, E., and Albayrak, S.
(2011). Pattern recognition and classification for multivariate time series. In Proceedings
of the Fifth International Workshop on Knowledge Discovery from Sensor Data - SensorKDD
’11, pages 34–42, San Diego, California. ACM Press.

[Stikic and Schiele, 2009] Stikic, M. and Schiele, B. (2009). Activity Recognition from
Sparsely Labeled Data Using MultiInstance Learning. In Choudhury, T., Quigley, A.,
Strang, T., and Suginuma, K., editors, Location and Context Awareness, Lecture Notes in
Computer Science, pages 156–173. Springer Berlin Heidelberg.

147

Bibliography

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An
Introduction. MIT press Cambridge.

[Tan et al., 2018] Tan, P.N., Steinbach, M., Karpatne, A., and Kumar, V. (2018). Introduc-
tion to Data Mining. Pearson, second edition.

[Tanbeer et al., 2009] Tanbeer, S. K., Ahmed, C. F., Jeong, B.S., and Lee, Y.K. (2009).
Sliding windowbased frequent pattern mining over data streams. Information Sciences,
179(22):3843–3865.

[Tang et al., 2016] Tang, Z., Guo, J., Miao, S., Acharya, S., and Feng, J. H. (2016). Ambient
Intelligence Based ContextAware Assistive System to Improve Independence for People
with Autism Spectrum Disorder. In 2016 49th Hawaii International Conference on System
Sciences (HICSS), pages 3339–3348, Koloa, HI, USA. IEEE.

[Tran et al., 2010] Tran, A. C., Marsland, S., Dietrich, J., Guesgen, H. W., and Lyons, P.
(2010). Use Cases for Abnormal Behaviour Detection in Smart Homes. In Aging Friendly
Technology for Health and Independence, pages 144–151. Springer, Berlin, Heidelberg.

[Turing, 1950] Turing, A. M. (1950). Computing machinery and intelligence. Mind,
LIX(236):433–460.

[Tuyls et al., 2018] Tuyls, K., Perolat, J., Lanctot, M., Leibo, J. Z., and Graepel, T. (2018).
A Generalised Method for Empirical Game Theoretic Analysis. In Proc. of the 17th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018).

[van Kasteren et al., 2011] van Kasteren, T. L. M., Englebienne, G., and Kröse, B. J. A.
(2011). Human Activity Recognition from Wireless Sensor Network Data: Benchmark
and Software. In Chen, L., Nugent, C. D., Biswas, J., and Hoey, J., editors, Activity Recog-
nition in Pervasive Intelligent Environments, Atlantis Ambient and Pervasive Intelligence,
pages 165–186. Atlantis Press, Paris.

[Vaughan et al., 2018] Vaughan, J., Sudjianto, A., Brahimi, E., Chen, J., and Nair, V. N.
(2018). Explainable Neural Networks based on Additive Index Models. arXiv:1806.01933
[cs, stat].

[Vernon et al., 2007] Vernon, D., Metta, G., and Sandini, G. (2007). A survey of artificial
cognitive systems: Implications for the autonomous development of mental capabilities in
computational agents. IEEE transactions on evolutionary computation, 11(2):151–180.

[Von Glasersfeld, 1984] Von Glasersfeld, E. (1984). An introduction to radical construc
tivism. The invented reality, pages 17–40.

[Want et al., 1995] Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D.,
Ellis, J., and Weiser, M. (Dec./1995). An overview of the PARCTAB ubiquitous comput
ing experiment. IEEE Personal Communications, 2(6):28–43.

[Warneke et al., 2001] Warneke, B., Last, M., Liebowitz, B., and Pister, K. S. J. (2001).
Smart Dust: Communicating with a cubicmillimeter computer. Computer, 34(1):44–51.

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. Scientific american,
265(3):94–104.

148

Bibliography

[Weiser, 1996] Weiser, M. (1996). Nomadic Issues in Ubiquitous Computing.
http://www.ubiq.com/hypertext/weiser/NomadicInteractive/.

[Widyantoro et al., 2002] Widyantoro, D., Ioerger, T., and Yen, J. (2002). An incremental
approach to building a cluster hierarchy. In 2002 IEEE International Conference on Data
Mining, 2002. Proceedings., pages 705–708.

[Wouk, 2019] Wouk, K. (2019). 6 Smart Home Devices that Are Totally Useless.
https://www.iottechtrends.com/uselesssmarthomedevices/.

[Yan, 2016] Yan, S. (2016). A Google computer victorious over the world’s ’Go’
champion. https://money.cnn.com/2016/03/12/technology/googledeepmindalphago
wins/index.html.

[Yang et al., 2017] Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., and Li, H. (2017).
Highresolution image inpainting using multiscale neural patch synthesis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6721–6729.

[Yang and Karamanoglu, 2013] Yang, X.S. and Karamanoglu, M. (2013). Swarm Intelli
gence and BioInspired Computation. In Swarm Intelligence and Bio-Inspired Computation,
pages 3–23. Elsevier.

[Yang et al., 2019] Yang, Z., Zhang, A., and Sudjianto, A. (2019). Enhancing Explainability
of Neural Networks through Architecture Constraints. arXiv:1901.03838 [cs, stat].

[Ye et al., 2015] Ye, J., Stevenson, G., and Dobson, S. (2015). KCAR: A knowledgedriven
approach for concurrent activity recognition. Pervasive and Mobile Computing, 19:47–70.

[Yu et al., 2018] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2018). Gener
ative image inpainting with contextual attention. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5505–5514.

[Zaki, 2001] Zaki, M. J. (2001). SPADE: An Efficient Algorithm for Mining Frequent Se
quences. Machine Learning, 42(1):31–60.

[Zarrouk and Gouider, 2012] Zarrouk, M. and Gouider, M. S. (2012). Frequent Patterns
mining in timesensitive Data Stream. arXiv:1206.1032 [cs].

[Zou et al., 2008] Zou, J., Han, Y., and So, S.S. (2008). Overview of Artificial Neural
Networks. Artificial Neural Networks, pages 14–22.

149

	Introduction
	Context
	Introduction
	Ubiquitous Computing (UbiComp)
	Mainframes: multiple users per machine (1940-1970)
	Personal Computing: one user per machine (1970-2010)
	Ubiquitous Computing: multiple machines per user (2010-*)
	Problems
	Summary

	Artificial Intelligence (AI)
	History and definition
	Philosophical debates
	Techniques
	Summary

	Ambient Intelligence (AmI)
	Environment: test platforms
	Interactions
	Intelligence

	Conclusion

	Research questions
	Introduction
	Users
	How to provide the automation?
	In what physical form will the AmI system be?
	Summary

	Environment
	Definitions
	Data
	Summary

	Automation
	Possible structures
	Summary

	Continuous improvement of the system
	Conclusion

	Architecture
	Introduction
	Architecture
	From events...
	... to atoms...
	... to prediction rules...
	... to user-friendly automation propositions...
	... to feedbacks...
	... to active automation

	Answers to the problems of the previous chapter
	Adaptation
	Taking users into account
	Optimization of computation time

	Current implementation
	Conclusion

	Pre-processing
	Introduction
	Categorical events
	Quantitative events
	Segmentation
	Conversion into time series of segments
	Clustering

	Conclusion

	Rule mining
	Introduction
	Background
	Input: a time series of atoms
	Output: prediction rules
	Data structures in rule mining
	Validation of a rule

	State of the art
	Rule mining on time series
	Partially-ordered rule mining
	Scientific problems
	Adapting time series to TRuleGrowth

	TSRuleGrowth
	Inputs, Outputs
	Metrics
	Recording of rule occurrences
	Principles
	Algorithm

	Experiments and results
	Results of TSRuleGrowth on two databases
	Comparison between TRuleGrowth and TSRuleGrowth

	Conclusion

	Evolutions
	Introduction
	Databases for AmI activity discovery
	Relevant aspects of existing databases
	Shortcomings of existing databases
	Summary

	Pre-processing
	Categorical events
	Quantitative events

	Rule mining
	Estimation of the parameters
	Alternatives in the rule structure
	Time indicators and other contextual information
	Computational optimization

	Display of automation proposals
	Perspectives for the representation of automation proposals
	Transcription of the rules

	Interactions and user feedback
	Conclusion

	Conclusion
	Pre-processing
	TSRuleGrowth
	Databases
	Survey

