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Rapporteurs : Marceau Coupechoux Professeur, Télécom Paris
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Résumé

Compte tenu des modèles de prévision de trafic pour les services data mobiles, une

saturation des réseaux mobiles est prévue à horizon 2020. Le déploiement des systèmes

de prochaine génération 5G a pour but d’adresser ce problème tout en permettant aux

utilisateurs d’accéder à de nouveaux services très haut débit avec une qualité de ser-

vice et d’expérience accrue. L’implémentation des systèmes 5G se fonde notamment sur

une gestion optimisée des ressources des réseaux d’accès radio et donc des bandes de

fréquences. En effet, actuellement les licences pour utiliser certaines bandes de fréquences

sont achetées pour des dizaines d’années par les opérateurs via des mécanismes d’enchères,

et l’utilisation de ces bandes leur est exclusivement réservée. Les années à venir vont voir

la libéralisation de l’utilisation du spectre, dictée par la technologie, la régulation mais

aussi la nécessité d’augmenter les ressources disponibles pour pouvoir supporter plus de

trafic.

Plusieurs techniques sont en cours de développement, à commencer par le “Dynamic

Spectrum Access” (DSA), DSA fait référence à la situation dans laquelle un utilisateur

principal, qui a le droit exclusif d’utiliser la bande, partage sa bande de fréquence avec des

utilisateurs secondaires. Les utilisateurs secondaires doivent permettre à l’utilisateur prin-

cipal d’utiliser son spectre sans le perturber. Pour cela, ces systèmes utilisent généralement

la radio cognitive: les utilisateurs secondaires - les opérateurs de réseaux mobiles dans

notre contexte - peuvent détecter intelligemment les canaux de communication qui sont

utilisés et ceux qui ne le sont pas, et passer aux canaux inutilisés. Cependant, pour les

opérateurs mobiles, cette approche est risquée car ni l’accès au spectre ni la qualité de

service (protection contre les interférences) ne sont garantis. Ainsi, le “Licensed Shared

Access” (LSA) a été proposé comme une autre solution alternative pour le partage du

spectre.

Le LSA a été proposé par le Radio Spectrum Policy Group (RSPG) en novembre

2013. Le concept implique trois parties: le propriétaire d’une bande de fréquence, les

utilisateurs secondaires (des opérateurs) qui sont appelés titulaires d’une licence LSA et

le régulateur. Contrairement au DSA, à travers le LSA, un utilisateur secondaire doit

obtenir une licence auprès du régulateur avant d’accéder au spectre du titulaire. La

licence comprend les conditions de partage, notamment en terme de durée, de fréquence

et de zone géographique. Le concept LSA garantit au titulaire et au licencié LSA un

certain niveau de QoS spécifié dans la licence LSA. Le déploiement d’un système LSA

nécessite l’introduction de deux nouveaux blocs: le référentiel LSA et le contrôleur LSA.
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Le référentiel LSA est une base de données qui contient des informations sur la bande

LSA ainsi que les conditions de partage. Il est contrôlé par le régulateur et le titulaire

initial, et est tenu de fournir les informations sur la disponibilité de la bande LSA. Le

contrôleur LSA réside dans le domaine de l’opérateur et contrôle l’accès à la bande LSA

en suivant les instructions reçues du référentiel LSA. Chaque opérateur doit avoir son

propre contrôleur LSA.

Le concept LSA comporte deux différences majeures par rapport à l’attribution du

spectre 3G ou 4G aux opérateurs. Tout d’abord, l’allocation doit fonctionner à une

échelle de temps plus rapide, car la disponibilité du spectre LSA sera modifiée par le

titulaire via le référentiel LSA, éventuellement plusieurs fois par heure, et le régulateur

doit allouer le spectre LSA dès que son titulaire le libère afin d’améliorer l’utilisation

du spectre. Deuxièmement, la réutilisation spatiale (les opérateurs qui n’interfèrent pas

peuvent utiliser les mêmes bandes simultanément), doit être prise en compte.

L’attribution de la bande LSA se compose de quatre étapes: la première étape est

la phase de préparation au cours de laquelle le titulaire identifie les parties de sa bande

de fréquence qu’il pourrait partager avec d’autres en utilisant l’approche LSA. Dans la

deuxième étape, le régulateur alloue le spectre LSA aux opérateurs via une licence. La

phase de déploiement est la troisième étape. Dans cette étape, le titulaire efface la bande

LSA de son propre usage et signale cette bande au référentiel LSA. Les opérateurs ob-

tiennent la connaissance de la disponibilité du spectre LSA via le référentiel LSA et

commencent à utiliser la bande LSA. Enfin, dans la phase de libération, les opérateurs

libèrent la bande LSA lorsque la licence LSA expire.

La première bande candidate pour le contexte LSA est la bande 2.3-2.4 GHz. En

France, cette bande est aujourd’hui utilisée par le ministère de la Défense pour certaines

applications, notamment de télémesures aéronautiques. Le concept LSA semble être une

solution gagnant-gagnant: pour les opérateurs, ils peuvent étendre leurs capacités et pour

le titulaire, il peut gagner plus d’argent en libérant sa bande temporairement. Cependant,

un aspect important qui devrait être pris en compte est la disponibilité de la bande LSA.

En effet, les opérateurs peuvent ne pas être intéressés à utiliser une très petite quantité

de spectre ou à utiliser le spectre pendant une trop courte période de temps. La mise en

œuvre dépend de l’activité du titulaire de la bande, à titre d’exemple en France, on peut

améliorer l’utilisation de la bande 2,3-2,4 GHz puisque 80% de cette bande pourraient

être disponibles dans certaines zones géographiques. Plusieurs essais du concept LSA
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ont eu lieu en Europe 1 et ont montré son applicabilité. LSA en est actuellement aux

étapes finales de normalisation et de validation sur le terrain, mais les détails sur la façon

d’allouer et de tarifer le spectre entre plusieurs opérateurs potentiels restent ouverts.

En général, l’attribution des licences se fait selon deux approches: les démarches

administratives (par exemple, comparaison des candidatures ou concours de beauté dans

lequel un comité établit un certain nombre de critères et la licence est attribuée à l’opérateur

avec la meilleure combinaison de ces critères) et les approches basées sur le marché (par

exemple, enchères). Les approches administratives sont utilisées lorsque la demande est

inférieure à l’offre ou lorsque le régulateur et les opérateurs peuvent trouver un accord

pour diviser le spectre à un certain prix. Cependant, lorsqu’on ne peut pas satisfaire

tous les opérateurs ou en cas de manque de ressources, les enchères sont le moyen le plus

équitable d’attribution de spectre: puisque le régulateur ignore la valeur que la bande a

pour les opérateurs, une approche naturelle est de leur faire déclarer cette valeur, via un

mécanisme d’enchère et ensuite il peut allouer les ressources de la manière la plus efficace,

afin de maximiser la valeur résultante pour le marché.

La bande 2,3-2,4 GHz est considérée comme une ressource très précieuse grâce à sa

capacité de propagation et à offrir un débit élevé. De plus, selon une étude économique [1],

les économies réalisées sur les coûts d’infrastructure s’élèvent à environ 12 milliards e

lorsque la bande LSA est disponible pour les opérateurs. Ainsi, les enchères sont plus

adéquates pour allouer du spectre aux opérateurs dans ce contexte.

Le régulateur définit les règles de l’enchère (attribution des fréquences LSA et paiements)

et gère l’enchère. Une question fondamentale est: comment définir le mécanisme d’enchère?

La définition d’un mécanisme d’enchère dépend des objectifs du régulateur. Par exem-

ple, si le régulateur veut simplifier l’enchère aux opérateurs alors il doit concevoir un

mécanisme d’enchère sincère. Un mécanisme d’enchère est sincère (“truthful”) lorsque

chaque opérateur maximise son gain en révélant ses préférences au régulateur. C’est une

propriété importante car les opérateurs n’ont pas à construire des stratégies complexes

pour les enchères. En particulier, cette propriété induit une certaine équité dans la par-

ticipation: les participants plus riches ne peuvent pas prendre l’avantage sur leurs concur-

rents en mettant en œuvre des mesures coûteuses pour optimiser leur stratégie d’enchères.

D’autres considérations peuvent être prises en compte, afin d’évaluer un mécanisme

d’enchère, tel que le revenu du régulateur, l’équité et l’efficacité de l’allocation.

Il existe deux grandes catégories d’enchères: les enchères fermées et les enchères ou-

1https://www.cept.org/ecc/topics/lsa-implementation
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vertes. Une enchère fermée est composée d’un seul tour, le processus est asynchrone et les

participants ont une seule chance pour interagir avec le commissaire-priseur. Les enchères

ouvertes nécessitent la présence (physique ou électronique) de tous les participants en

même temps. À chaque tour, les prix peuvent augmenter (enchère ascendante) ou dimin-

uer (enchère descendante). Les enchères ouvertes ont été utilisées avec grand succès pour

l’allocation du spectre et elles sont préférées aux enchères fermées. En effet, ces enchères

présentent plusieurs avantages: elles préservent la confidentialité du ou des enchérisseurs

gagnants car le ou les gagnants n’ont pas besoin de révéler leurs valeurs. De plus, elles

sont plus transparentes: chaque enchérisseur voit l’évolution de l’enchère.

Les enchères traditionnelles sont largement discutées mais la plupart d’entre elles ne

peuvent pas être directement appliquées à notre scénario car elles ne prennent pas en

compte l’aspect dynamique de LSA (l’exécution de ces enchères peut prendre un temps

énorme par rapport à la disponibilité de la bande LSA) ou à la réutilisation du spectre:

deux stations de base qui n’interfèrent pas peuvent utiliser la bande en même temps. Une

spécificité des licences LSA réside dans les interactions entre les opérateurs, en raison du

chevauchement éventuel des zones de couverture, d’où la possibilité limitée d’allouer le

même spectre à plusieurs opérateurs. L’interférence entre les stations de base est gérée

par des groupes. Un groupe est un ensemble de stations de base de différents opérateurs

de sorte que deux stations de base dans le même groupe n’interfèrent pas, par conséquent

le spectre attribué à un groupe peut être utilisé par tous les membres du groupe. La

création des groupes est effectuée par le régulateur avant le déroulement de l’enchère.

Une fois les groupes constitués, chaque station de base soumet son bid au régulateur et

celui-ci effectue les allocations et les paiements à l’aide d’un mécanisme d’enchère. La

réutilisation du spectre complique l’analyse des enchères: en général, les enchères ont

été interprétées comme un jeu compétitif car les enchérisseurs sont en concurrence pour

obtenir des articles (chaque article est attribué à un et un seul enchérisseur). Cependant,

dans notre scénario, il n’y a pas nécessairement de concurrence ou de conflit (au sens de

l’allocation) entre les opérateurs qui n’interfèrent pas entre eux.

Récemment, de nombreux travaux ont été proposés qui prennent en compte la réutilisation

du spectre et peuvent être appliqués au contexte LSA. Cependant, l’enquête sur les revenus

et l’équité de l’allocation n’a pas suffisamment retenu l’attention. Une autre limitation

de ces travaux est que lorsqu’ils envisagent la réutilisation du spectre, ils séparent les

stations de base en groupes de telle sorte que chaque station de base appartient à un et

à un seul groupe. Cependant, permettre les stations de base à appartenir aux plusieurs
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groupes peut conduire à améliorer les performances de l’enchère. De plus, ces mécanismes

de la littérature sont tout ou rien, c’est-à-dire que toute la quantité disponible de spectre

LSA est considérée comme un bloc et allouée à un et un seul groupe. Une question peut

se poser: peut-on améliorer le résultat de l’enchère en divisant le spectre disponible en

plusieurs blocs? Si oui, comment convertir les mécanismes d’enchères tout ou rien en

mécanismes d’enchères multi-blocs? Aussi, ce sont des enchères fermées. En général, les

opérateurs préfèrent les enchères ouvertes où les informations sont révélées au cours d’une

phase de convergence. Dans cette thèse on investigue la possibilité d’extension de ces

hypothèses et ces choix. Le manuscrit est composé de sept chapitres.

Chapitre 1 introduit les motivations de la thèse ainsi que le vocabulaire associé à LSA

et aux enchères.

Chapitre 2 donne la définition d’un mécanisme d’enchère pour LSA et formalise les pro-

priétés souhaitées pour un tel mécanisme. Les notions essentielles de sincérité, d’efficacité,

de rationalité individuelle et d’équité sont expliqués dans ce chapitre. Les étapes des

enchères étudiées dans le manuscrit, incluant la notion d’enchère du groupe, sont listées.

Le modèle d’interférence choisi pour la thèse est également détaillé dans ce chapitre.

Chapitre 3 décrit une méthode d’estimation de la valeur du spectre, une donnée

nécessaire aux opérateurs pour participer aux enchères. La méthode proposée établit

les liens qui unissent la qualité de service dans le réseau, la satisfaction des utilisateurs et

le revenu pour l’opérateur. On choisit des modèles bien établis dans la littérature pour

montrer comment le spectre LSA peut être valorisé.

Dans le chapitre 4, on illustre les notions de sincérité, de revenu, d’efficacité et d’équité.

On étudie les mécanismes d’enchères de la littérature qui sont des candidats potentiels

pour allouer le spectre dans contexte LSA. Ces mécanismes attribuent la bande au groupe

ayant le group-bid (le bid global d’un groupe) le plus élevé. Pour chaque groupe, TAMES

[2] et TRUST [3] calculent le bid du groupe en fonction du bid minimal de sorte que

la décision prise pour un groupe (qu’il s’agisse du groupe gagnant ou non) est basée

uniquement sur ce bid minimal. Afin d’impliquer davantage des stations de base dans le

calcul du group-bid, le LSAA [4] a été proposé comme solution alternative. On montre

que ce mécanisme n’est pas sincère et deux variantes sincères de LSAA sont proposées:

TLSAA et TLSAA2. TLSAA surpasse LSAA en terme d’efficacité et TLSAA2 a les

mêmes revenus que LSAA en supposant une enchère sincère. Le principal problème des

mécanismes mentionnés ci-dessus est qu’on n’a pas de garantie en termes d’efficacité

qui peut être indésirable du point de vue du régulateur. Par conséquent, on montre
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comment obtenir une efficacité optimale en implémentant le mécanisme Vickrey-Clarke-

Groves (VCG) [5–7]). Comme le régulateur peut également être sensible à son revenu,

on montre comment augmenter le revenu en ajoutant un prix de réserve R par station

de base, c’est-à-dire que chaque station de base doit proposer au moins ce montant pour

participer à l’enchère.

Dans un deuxième temps, on propose PAM, un mécanisme d’enchère qui partage la

bande LSA proportionnellement entre les groupes. PAM surpasse les autres mécanismes

en terme d’équité. Aussi, lorsque R = 0, contrairement aux autres mécanismes (sauf

VCG), l’efficacité de PAM ne peut pas être arbitraire loin de l’optimale. Aussi, on montre

que l’allocation PAM correspond au “Nash bargaining solution”: supposons qu’il n’y ait

pas de processus d’enchère et que les groupes doivent négocier afin de partager la bande

LSA sinon (si aucun accord n’est atteint), chaque groupe obtient zéro. Les groupes doivent

s’entendre sur certains axiomes “ rationnels ” comme par exemple l’axiome de symétrie:

si deux groupes ont le même group-bid, ils doivent obtenir la même quantité. En fait,

Nash bargaining solution est adéquate dans ce cas car elle représente la solution unique

qui satisfait quatre axiomes: symétrie, indépendance des alternatives non pertinentes,

optimalité de Pareto (personne ne peut avoir de meilleurs résultats sans nuire à l’autre)

et l’invariance à la transformation affine. Cela représente un avantage de l’allocation de

PAM car cette allocation semble en quelque sorte naturelle et non imposée aux groupes.

PAM présente plusieurs avantages sous l’hypothèse que chaque groupe peut accepter

n’importe quelle fraction de la bande même si elle est trop petite ce qui n’est pas forcément

le cas en pratique. Afin de rendre le mécanisme plus approprié pour être appliqué dans la

vie réelle où de très petites portions de spectre pourraient ne pas être utiles aux opérateurs,

on propose PAM σ. Le régulateur fixe une fraction minimale σ: chaque station de base

doit obtenir au moins cette fraction ou elle ne reçoit rien. On analyse le trade-off entre

l’efficacité et l’équité après l’introduction de σ: PAM σ offre une efficacité plus élevée

et une équité inférieure par rapport à PAM, cela est naturel car certains groupes seront

exclus (ce qui conduit à diminuer l’équité) et la fraction d’origine allouée à ces groupes

(par PAM ) sera utilisée par d’autres groupes dont les valuations sont plus élevées (ce qui

augmente l’efficacité). En particulier, quand σ > 0.5 on montre que PAMσ est égale à

VCG.

Dans le chapitre 5, afin de donner au régulateur plus de flexibilité dans la construc-

tion du groupe, on relaxe l’hypothèse “chaque station de base doit appartenir à un et

un seul groupe”. On montre comment adapter les règles de paiement des mécanismes
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précédents, lorsque cela est possible, pour maintenir une enchère sincère sans modifier la

règle d’allocation. Cette relaxation a un impact sur le résultat de l’enchère, par exemple,

elle peut augmenter l’efficacité. Dans un deuxième temps, nous avons défini un opérateur

qui coordonne plusieurs stations de base comme un joueur, cela peut être plus proche de

la réalité. Cependant, la plupart des résultats étaient négatifs, nous avons montré qu’avec

cette hypothèse, seul VCG peut être appliqué. Pour les autres mécanismes ils ne sont

plus sincères.

Dans le Chapitre 6, on suppose que la quantité du spectre LSA peut être divisée en

K blocs de même taille. De plus, on suppose que le spectre dans la bande 2,3 - 2,4 GHz

est homogène, c’est-à-dire que les opérateurs ne sont sensibles qu’à la quantité de spectre

obtenue et non à une bande de spectre spécifique; et donc ces blocs sont identiques. De

plus, on suppose que chaque station de base a une fonction de valuation concave. Dans ce

scénario, chaque station de base soumet au régulateur un vecteur de bids composé par K

éléments. Le nth élément représente le bid pour un nième bloc supplémentaire étant donné

qu’elle a déjà n− 1 blocs.

On montre comment convertir un mécanisme d’enchère tout ou rien en un mécanisme

multi-blocs. De plus, on étudie le fractionnement du spectre, c’est-à-dire que pour une

quantité donnée de spectre, on montre comment définir K afin de maximiser l’utilité

du régulateur. De plus, lorsqu’une station de base peut appartenir à plusieurs groupes,

on prouve que les problèmes initiaux (construction des groupes et allocation) sont NP-

difficiles. Par conséquent, on propose une heuristique pour le regroupement. Cette heuris-

tique est facile et rapide à construire mais peut avoir un impact négatif sur l’efficacité.

La perte en terme d’efficacité est quantifiée. La simulation suggère que l’heuristique

fonctionne bien et que son efficacité est au moins 60 % de celle de l’optimale.

Dans Le Chapitre 7, on suppose à nouveau que le spectre LSA est composé par K blocs

identiques, mais contrairement aux travaux précédents mentionnés qui sont des enchères

fermées, on se concentre sur les “ enchères ascendantes ” où l’information est révélée par les

stations de base au cours d’une phase de convergence. On commence d’abord par étudier

un méchanisme, qui est équivalent à VCG (en teme d’allocation et paiement), proposé par

Mishra et Parkes [8], on montre comment l’adapter au contexte LSA. Comme on peut avoir

une certaine complexité de calcul, on utilise une autre approche “l’approche de clinching”

proposée par Ausubel [9]. À chaque tour, le régulateur déclare un prix et les enchérisseurs

répondent en demandant une quantité (à chaque tour la quantité demandée ne peut pas

dépasser la quantité demandée quantité au tour précédent) à ce prix, le prix augmente
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jusqu’à ce que la somme des demandes ne soit pas supérieure à K. Les paiements sont

calculés au cours de l’enchère. On montre, en utilisant l’approche de clinching, comment

convertir des mécanismes d’enchères fermés en des mécanismes d’enchères ascendantes.

Deux méthodes sont proposées pour cette conversion. La première méthode consiste à

introduire un représentant par groupe afin que chaque représentant agisse au nom des

membres de son groupe. Cette approche préserve la confidentialité des valuations des

gagnants. Cependant, les stations de base ne voient pas l’évolution de l’enchère qui

peut être indésirable. Dans la deuxième méthode, on montre comment implémenter la

version ascendante lors de la suppression des représentants afin que l’enchère se déroule

directement entre les stations de base et le régulateur et donc la transparence est garantie.

Le travail de cette thèse a de nombreuses ouvertures pour de futures extensions.

Tout d’abord, on a considéré une interférence binaire, c’est-à-dire que pour chacune des

deux stations de base, ou bien elles interfèrent ou bien elles n’interfèrent pas. Il serait

intéressant de considérer des modèles où l’interférence est traitée en fonction de la puis-

sance d’émission. Il serait également intéressant de traiter l’enchère LSA comme un jeu

répété car le régulateur peut exécuter l’enchère plusieurs fois par jour dans certaines con-

figurations. Un autre critère important est de savoir comment partager les revenus entre

le titulaire de la bande et le régulateur. Il serait également important de faire fonctionner

les mécanismes d’enchères en contexte réel afin de tester les performances. Les auteurs

de [10] ont proposé une plate-forme du système d’enchères en ligne pour le partage de

spectre LSA (ALS3). Il serait intéressant de mettre en œuvre les propositions sur cette

plate-forme.
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Chapter 1

Introduction

Accommodating exploding data traffic is among the greatest challenges for fifth gen-

eration (5G) [11]. According to some estimations, data rates will be multiplied by 10

compared to 4G [12], latency must go down to one millisecond or less [13, 14]. 5G use

cases can be mapped to three different classes: the first class is Machine-Type Commu-

nications (MTC) [15] which will create an environment of smart cities based on a new

concept called internet of everything [16]. Ultra-Reliable Low-Latency Communications

(URLLC) is the second class. This category includes new services, such as connected au-

tonomous vehicles, in which the level of latency is vital [17]. The third class is enhanced

Mobile BroadBand (eMBB).

The third category of use cases, eMBB, can be interpreted as an extension or an

evolution of 4G networks. Compared to 4G networks, 5G networks have to offer higher

user mobility, enhanced connectivity and higher capacity [18]. According to [19], cel-

lular network capacity may need to deliver as much as 1000 times the capacity of 4G.

Accommodating that traffic needs much larger bandwidths than the actual ones. There-

fore, millimeter wave bands (frequency spectrum from 30 GHz to 300 GHz 1) will be

deployed. In the millimeter-wave range, data rates can reach 10 Gbits/s and more. How-

ever millimeter waves cannot be used for all types of wireless applications because it has a

limited range. Contrary to millimeter waves, spectrum below 6 GHz provides a wide-area

coverage. Currently some holders (through a licence) of those frequencies (e.g., military,

satellites, some commercial users), which are called incumbents, do not always use all

their frequencies: usage varies with time and geographical location [20, 21]. Hence there

1https://www.electronicdesign.com/technologies/communications/article/21796260/millimeter-
waves-will-expand-the-wireless-future
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is some room for improvement which has given rise to the proposal of the concept of

Dynamic Spectrum Access (DSA) [22,23].

DSA refers to the situation in where a primary user, who has an exclusive right to

use the band, shares his bandwidth with a secondary user [24]. Secondary users must

allow the primary user to use his spectrum without disrupting it. For this, these systems

typically use cognitive radio [25,26]: secondary users–Mobile Networks Operators (MNOs)

in our context–can intelligently detect those communication channels that are in use and

those that are not, and move to unused channels [27]. However, for MNOs this approach

is risky because neither the access to spectrum nor the quality of service (protection from

interference) are guaranteed [28]. Thus, the Licensed Shared Access (LSA) was proposed

as another alternative solution for spectrum sharing.

1.1 Licensed Shared Access for dynamic spectrum

access

In November 2011, in order to support the deployments of 5G systems, the Radio

Spectrum Policy Group (RSPG) has proposed a new sharing concept called Licensed

Shared Access (LSA) [29–31] (Fig. 1 summarizes the relation between LSA concept and

5G). The concept involves three stakeholders: the owner of the 2.3− 2.4 GHz bandwidth

(the incumbent), the secondary user which is called LSA licensee, and the regulator [22].

The frequency band is used by different incumbents in Europe [32] (e.g. in France it is used

by the military). Contrary to DSA, under the LSA approach, the secondary user needs to

obtain a license from the regulator before accessing the spectrum of the incumbent. The

license includes the conditions of sharing, in particular in terms of time, frequency and

geographic region. The LSA concept guarantees to the incumbent and to the LSA licensee

a certain level of QoS [33] specified in the LSA license. The LSA licensee is typically

an MNO. Deploying an LSA system requires the introduction of two new architectural

building blocks [34]: the LSA repository and the LSA controller. The LSA repository is

a database which contains information about LSA spectrum bands together with their

conditions of sharing. It is controlled by the regulator and the incumbent, and is required

to deliver the information on spectrum availability based on the incumbent spectrum

use and associated conditions for sharing. The LSA controller resides in the network

operator’s domain and controls the access to the incumbent’s spectrum by following the

instructions received from the LSA repository. Each MNO has to have his own LSA
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controller.

Figure 1 – LSA and 5G relation

The LSA concept involves two major differences with regard to the allocation of 3G

or 4G spectrum to operators. First, the allocation needs to work at a faster time scale,

since the availability of LSA spectrum will be changed by the incumbent via the LSA

repository, possibly several times per hour, and the regulator has to allocate the LSA

spectrum for potential LSA licensees as soon as the incumbent releases his spectrum in

order to improve the use of the spectrum. Second, spatial re-usability (MNOs who do not

interfere can use the same spectrum bands simultaneously), should be leveraged, more

will be said about it in the next chapter.

1.1.1 LSA workflow

The LSA workflow is composed of four steps: the first step is the preparation phase

in which the incumbent identifies parts of the spectrum bands that it could share with

others using the LSA approach, then it reports initial sharing conditions to the regulator.

In the second step the regulator allocates the LSA spectrum to MNOs via a license. The

deployment phase is the third step, in this step the incumbent clears the LSA bands from

its own use and reports these bands to the LSA repository. The MNO obtains knowledge

of LSA spectrum availability from the LSA controller via the LSA repository. The MNO

plans the Radio Access Network (RAN) for the LSA band according to the license rules.

Finally, in the release phase, the MNO clears the LSA band when the LSA license expires.
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The MNO informs the incumbent when the band is released to allow the incumbent to

use it for its own operations.

An important problem that should be addressed is the availability of the LSA band i.e.,

the activity of the incumbent. Indeed, MNOs may be not interested in using a very small

amount of spectrum or to use spectrum for a short period of time. The investigation

of the availability of LSA bandwidth for some European country is given in [1]. The

implementation depends on the activity of the incumbent as an example in France, we

can improve the use of the 2.3 − 2.4 GHz since 80%of that band could be available in

some geographical areas which are important for MNO (since those ares cover 80 % of

population). Several trials of the LSA concept have taken place in Europe 1 and have

shown its applicability. LSA is now under the final stages of standardization and field

validation [35] as regards the technical aspects, but the specifics of how to allocate and

price spectrum among several potential secondary users remain open.

A key objective for LSA is to allocate the spectrum in the most efficient way, so as to

maximize the resulting value to the market. In general the attribution of licences is done

via two approaches: administrative approaches (e.g., comparison of candidacies or beauty

contest in which a committee sets a numbers of criteria and the license is attributed to

the MNO with the best mix of those criteria [36]) and market-based approaches (e.g.,

auctions) [37]. Administrative approaches are used when demands are lower than supply

or when the regulator and MNOs can find an agreement to split spectrum at some price

[38]. However, when we cannot satisfy all MNOs or there is a lack of resources, auctions

are the fairest means for spectrum assignment: since the regulator ignores the valuation

that the bandwidth has for operators, a natural approach is to have them declare that

valuation, through an auction mechanism and then he can allocate resources in the most

efficient way, so as to maximize the resulting value to the market.

The 2.3 − 2.4 GHz is considered as a very valuable (and therefore scarce) resource

thanks to its ability to travel far and offer high capacity. In addition, according to an

economic study [1], the benefits from savings in infrastructure costs are around 12 billion

e when allowing that bandwidth available for MNOs. Ericsson, NSN and Qualcomm

encourage European regulators to consider that study. Thus, auctions are more adequate

to allocate spectrum for MNOs in this context.

1https://www.cept.org/ecc/topics/lsa-implementation
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1.1.2 Properties and indicators for LSA frequency allocation

auctions

The participants in the auction are the auctioneer (the regulator in the LSA context)

and the bidders (MNOs) who compete to obtain the item(s) (LSA spectrum). The auc-

tioneer defines the rules of the auction (allocation of item(s) and payments) and runs the

auction. Also, before participating in the auction, each MNO has to compute his valua-

tion for the LSA spectrum (how much is it worth). In the literature [2–4], it is common

to suppose that each bidder knows his valuation. In reality, MNOs may face significant

challenges in valuing LSA spectrum. Indeed, valuing spectrum is a very complex task

because many factors can affect that valuation [39].

In order to evaluate the performance of an auction, several metrics can be used, we

focus on the most used metrics and properties in the literature [40,41] which are:

• The revenue of the auction which is the sum of payments of bidders.

• Individual rationality, which means that a bidder has a bidding strategy that ensures

him to get a non-negative payoff so he is always better off participating in the auction

than staying out [42].

• The fairness of the allocation. (we detail that property in the next chapter).

• The efficiency of the auction which is defined as the sum of the valuations served

[43].

• Truthfulness : an auction mechanism is truthful or incentive compatible if and only if

for each bidder, declaring truthfully one’s preferences maximizes one’s utility given

any fixed bids of the other bidders.

Truthfulness is very important because it reduces the complexity of bidding process,

since the strategies to use are very simple (just declare one’s preferences). In particular,

that property induces some fairness in participation, in the sense that wealthier bidders

cannot get an edge over competitors by implementing costly measures to optimize their

bidding strategy. Also, this property is desirable from the auctioneer point of view because

it is simpler to base the allocation optimization (with respect to any indicator) on real

utilities rather than unfaithful ones.
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As for any multi-constraint problem, it is not possible to jointly maximize satisfac-

tion of all properties. It was proven in [44] that the Vickrey-Clarke-Groves (VCG) [5–7]

mechanism is the unique truthful auction mechanism which is individually rational and

maximizes efficiency. However, as for most proposed auction mechanisms for the LSA

context [3, 4, 45], there are no guarantees in terms of revenue for VCG.

Auctions can be interpreted from different angles. From mechanism design perspec-

tives, auctions are allocation mechanisms. From game theory perspectives: each auction

mechanism is defined by a set of rules, since the choice of each bidder will affect the out-

come of other bidders, those rules can be mapped to a mathematical formulation which

we call game. A game is defined by the set of players, strategies and payoffs [46]. Players

are bidders, a strategy for a player determines the action that he has to take (proposing

a bid) and payoff of a bidder which is his utility. Thus finding the optimal strategies for

players in the game, if they exist, leads to finding the optimal strategies of bidding in the

auction.

There are two major categories of auctions [47]: one-shot auctions and multi-round

auctions. A one-shot auction is composed of a single round. In general, they are also

called sealed-bid auction [48], each bidder submits his bids without knowing the bids of

other bidders. Each bidder has one chance to interact with the auctioneer. The traditional

reasons for the sealed auctions are: simplicity (the seller has to announce just the form of

bids), they are easier and faster to implement and finally there is no need to bring bidders

together (this reason is irrelevant nowadays thanks to technology).

When there are many objects to allocate, we can use combinatorial auctions [49] so

each bidder submits a bid for each bundle of objects. If the objective of the regulator is

to maximize efficiency, then the allocation is done by solving the winner determination

problem [50,51] in order to select the value-maximizing allocation of disjoint bids.

Contrary to one-shot auctions, multi-round auctions are more transparent because

bidders see the evolution of the auction. At each round, prices may increase or decrease:

there are two standard types of multi-round auction for a single item: the ascending

auction [52] and the descending auction [8]. In the ascending auction, the price increases

until one bidder remains so that bidder is the winner and he pays the final price. The

descending auction works in the opposite way i.e., at the first round the price is very high,

the auctioneer reduces the price at each round. The first bidder who accepts the current

price wins the auction and pays that amount.

For the general case when the auctioneer has many items, there are different types of

23



auctions [52] [53] [54] that could be applied for different scenarios. Indeed, an auction

designer has to take into account: the objectives of the auctioneer, the nature of items

(e.g., identical or not) and the utilities of bidders. In addition, in multi-round auctions,

in order to avoid sniping –which happens when bidders start bidding at the end of the

auctions– the auctioneer introduces some activity rules [55] to force bidders to be active

at each round. Sniping is undesirable because it limits the information discovery for some

bidders.

1.1.3 Why designing new auction mechanisms for LSA?

Traditional auctions are widely discussed (see e.g. [56, 57]), however most of them can-

not be directly applied to our scenario because they do not take into account either

the dynamic aspect of LSA (running those auctions may take a huge time compared to

the availability of the LSA band) or wireless spectrum re-usability specific consideration.

Spectrum re-usability complicates the auction analysis: in general, auctions were inter-

preted as a competitive game because bidders are in competition to obtain items (each

item is attributed to one and only one bidder). However in our scenario, there is not

necessarily a competition or conflict (in the allocation sense) between MNOs who do not

interfere with each other. As example, as shown in Fig. 2, base station (BS) 1 and BS 3

can use the same bandwidth simultaneously since there is no interference between them.

Figure 2 – Some base stations with their coverage areas

Recently, many works have been proposed which take into account spectrum re-

usability [2, 3, 58] and can be applied for the LSA context. However, the investigation

on the revenue and the fairness of the allocation have not drown enough attention.

Another limitation of those works is that when they consider spectrum re-usability,

they separate BSs into non-overlapping groups (partition). As an example, for Fig. 2, a

possible partition is to put BS 1 and BS 3 in a group and BS 2 in another group. In other

words, all previous works do not allow overlapping among group (otherwise they are not

anymore truthful). However, allowing overlapping among groups (example: put BS 1 and
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BS 3 in a group and BS 2 and BS 3 in another group) may leads to increase the outcome

of the auction. Therefore, the impact of overlapping needs to be investigated. Next we

summarize the document structure and the main contributions.

1.2 Document structure and contributions

The document is organized as follows: after providing some mathematical background

in Chapter 2, in Chapter 3, we address the LSA spectrum valuation. A simple model is

proposed and then used as a basis for possible application when real data is available.

Part II is composed of Chapter 4 and Chapter 5, we suppose that the regulator has a

small quantity of LSA spectrum to allocate. In Chapter 4, we investigate the auction

mechanisms which were proposed as candidates for LSA context. We propose two truth-

ful variants of LSAA, the first auction mechanism which was proposed as candidate for

the LSA context, we show also how to increase the revenue of all-or-nothing mechanisms

while maintaining truthfulness by introducing a minimum amount paid per bidder, a

contribution presented at IFIP Performance’18 [59]. At a second time, we show how to

increase fairness of the allocation by sharing the available LSA spectrum among all base

stations, this work was presented at PIMRC’18 conference [60]. In Chapter 5, we inves-

tigate the impact of groups overlapping. Overlapping complicates the auction analysis;

we show how to adapt the payment rule when it is possible so that mechanisms are still

truthful.

Part III is composed by two chapters: Chapter 6 and Chapter 7. In Chapter 6, we

suppose that the available quantity of spectrum can be split into K identical blocks.

We show how to adapt the one-shot version of VCG and study the impact of allowing

a BS to be in several groups on the complexity of the allocation, a work published in

NETGCOOP’18 [61]. Then, we show how to convert all-or-nothing auction mechanisms

into a multi-blocks auction mechanisms. This work is currently under review by the

journal Netnomics. In Chapter 7, we show how to implement the equivalent ascending

version of one-shot multi-blocks auction mechanisms. Finally in part IV, we conclude the

document and derive some perspectives.
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Chapter 2

Mathematical background

In this chapter, we start by defining what is an auction mechanism for the LSA context

and we formalize the required properties of LSA auctions in Section 2.1. Then, we present

in Section 2.2 the model used in the literature in order to manage interference among BSs.

2.1 Auction mechanisms and properties

In this section we provide the definition of an auction mechanism and the most desirable

properties. In this section as in the rest of the document, we shall use bidder, player and

BS interchangeably (unless where specifically mentioned).

2.1.1 Auction mechanism

An auction mechanism is an allocation mechanism used in order to assign some item(s)

(LSA spectrum in our context) for bidders. An auction mechanism (MEC) takes some

bids submitted by N bidders under a predetermined format and returns two components

[62]:

• an allocation of the goods among the bidders αMEC = (αMEC
1 , .., αMEC

N ).

• a payment vector pMEC = (pMEC
1 , .., pMEC

N ), where pMEC
i is the price that player i is

charged.

Note that in the ascending auction, the auctioneer may collect bids at each round.

In the following section, we describe the most desirable properties from the point of

view of the regulator.
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2.1.2 Properties

In this section, we list the properties that a mechanism may satisfy, which are the most

used in the literature [40, 41]. As for any multi-constraint problem, it is not possible to

jointly satisfy all properties, hence the auction designer has to set a trade-off between

them. For a bidder i, we denote by vi his valuation for the item(s), by ui his utility and

by bi his bid.

Truthfulness or Incentive Compatibility

A mechanism is truthful or incentive compatible if and only if for each player i, declar-

ing truthfully one’s preferences maximizes one’s utility given any fixed bids of the other

players. i.e.,

ui(vi, b−i, vi) ≥ ui(bi, b−i, vi) ∀ b−i.bi, (2.1)

where b−i = (b1, .., bi−1, bi+1, .., bN). Luckily, when bidders’ allocation is one-dimensional,

this property can be guaranteed in a quite general setting. Let us first introduce the

following definition.

Definition 1. (Implementable allocation rule) [63] An allocation rule is implementable

if there is a payment rule such that each bidder can maximize his utility by reporting his

valuation independently of bids of other bidders. .

Myerson indeed showed in a lemma [64] that an allocation rule αi(b1, ..., bN) is imple-

mentable if and only if it is monotone. An allocation rule is monotone if for each player

i and bids b−i, αi(bi, b−i) is non-decreasing in bi. In addition, if we add the constraint

that a zero bid implies a zero payment, the payment rule is unique. Roughgarden details

that payment rule in the general case [65]: given a piecewise constant monotone alloca-

tion curve as shown in Fig. 3a, each player i should pay a price as a function of the

corresponding breaking points (points at which i’s allocation changes) in the range [0, bi].

Specifically, if there are X breaking points (zj) then the payment is given by:

pi(bi, b−i) =
X∑
j=1

zj · (jump in α(., b−i) at zj) . (2.2)

This price corresponds to the greyed surface in Fig. 3a (X = 3). In particular, if there is

one and only one indivisible item, i.e., the allocation is either 1 or 0 as shown in Fig. 3b
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then there is one and only one breaking point for each player, that is his minimum bid to

win the auction. As an example, in the second-price auction the breaking point for each

player is the maximum bid of the other players. In addition, without loosing truthfulness

bi

αi(bi)

z1 z2 z3 z4

α1

α2

α3

α4

1

(a) Divisible item

0

1

bi

αi(bi)

(b) Indivisible item

Figure 3 – Some piece-wise constant monotone allocation curves (solid curves). The grey
area represents the price paid when the bid bi has value .

and in order to protect himself from low revenues, the auctioneer may introduce a “reserve

price per bidder”, imposing in the allocation rule that bids strictly below that price be

allocated no resource [59]. By applying Myerson’s result above (since the allocation is

still monotone), this involves that the per-unit revenue from each player is at least that

reserve price: any bid strictly below it leading to a null allocation, the breaking point(s)

for each winning player must at least equal that reserve price.

Individual rationality

This property means that a player has a bidding strategy (a function that transforms

valuation to bid) that ensures him to get a non-negative utility, hence he is always better

off participating in the auction than staying out of the mechanism.

Fairness of the allocation

According to Oxford English dictionary Fairness is “the quality of treating people

equally or in a way that is reasonable”. This definition seems ambiguous: suppose we

have two items and two bidders. Each bidder wants both items. For each item, the first is

willing to pay 10 and the second is willing to pay 1. Treating bidders equally leads to give

one item to each one. Treating people reasonably may lead to give both items to the first

one. We believe that people perceive equality in the same way but for the reasonability
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axiom, each one may have his own perception. Therefore, in this document we refers to

the fairness as “the quality of treating people equally”. There exist several measures of

fairness such as max-min fairness, proportional fairness and Jain’s index [66]. A detailed

description of those measures is given in [67]. We will use Jain’s index which is given by:

J(αMEC) =

(
N∑
i=1

αMEC
i )2

N
N∑
i=1

(αMEC
i )2

.

This index is a continuous function of the allocations, with values in [ 1
N
, 1]: it achieves

its maximum 1 if all players obtain the same amount, and is minimum and equal to 1
N

if

one and only one player obtains some good. As another reference, a situation in which

a% of users receive equal allocation and the remaining (100− a)% receive zero [68] gives

a Jain index of a/100. Motivated by those features we will use this index to measure the

fairness of a mechanism’s allocation.

Efficiency

Efficiency EMEC, of a given mechanism MEC, is defined as the sum of the valuations

served [43]:

EMEC =
N∑
i=1

αMEC
i vi. (2.3)

This means that the social value of the good being sold equals the maximum of the

potential buyers’ individual valuations [69]. Since valuations are private (so they are

unknown to the auctioneer), one may wonder how to maximize efficiency? i.e., how to set

α?. Indeed, if the auction is truthful then maximizing efficiency could be done based on

bids instead of valuations.

2.2 Grouping discussion and model

In this section, we present the grouping model and preferences of bidders.
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2.2.1 Grouping operators before the auction

Most LSA auction mechanisms which involve spectrum re-usability act as follows: they

consider a scenario in which multiple BSs of different operators compete for LSA spectrum

at a defined period of time in a particular geographical area; two BSs can use the same

bandwidth simultaneously if they do not interfere with each other. This can be captured

in a model by using an interference graph. Fig. 4 shows an example of an interference

graph: BSs are represented by vertices, an edge between two vertices means that those

BSs interfere. For example, in Fig. 4 BSs {3, 5} can use the same fraction of bandwidth

simultaneously. The competition between the BSs is transformed into a competition

between groups in such a way that two BSs in the same group do not interfere, hence the

spectrum allocated to a group is used by all the members of the group. An example of

group constitution for the interference graph of Fig. 4 is: g1 = {1, 2, 4, 6} and g2 = {3, 5}.
Groups are formed and their composition sent to bidders before the auction takes place.

Note that in some works [4,70], grouping is done after receiving bids. In such a situation,

bidders may try to manipulate their bids to change the groups formed so we may loose

truthfulness.

Moreover, works schemes proposed in the literature [3, 58, 71] introduce the following

two key assumptions. Without those assumptions, those works are not anymore truthful.

Assumption 1. The grouping is made such that each base station belongs to one and

only one group.

Assumption 2. Each base station is controlled by a different player, i.e., we assume

non-coordination among bids submitted by base stations.

A relaxation of assumption 1 means that each base station can be in several groups.

A relaxation of assumption 2 means that each MNOs can coordinate sever bids of BSs.

We discuss those relaxation in chapter 5.

Grouping is very important because it has a direct impact on the outcome of the

auction. As an example, if we want to maximize efficiency then a sufficient condition is

to extract the maximum independent sets from the interference graph (groups are the

maximum independent sets [72]): It consists in finding the largest subsets in a graph,

such that there is no edge between two nodes of each subset and such that each subset is

not included in another. In our context, it leads to the creation of the largest groups such

that, each two base stations which do not interfere with each other belong to at least one

same group. However there are two problems:
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Figure 4 – Some BSs with their coverage areas (left), the corresponding interference
graph (center), and two possible group configurations (right).

• First, extracting maximum independent sets is known to be an NP-hard problem

[73,74].

• It violates assumption 1 because BSs may belong to more than one group except

for two special cases:

– The interference graph is complete [75] i.e., there is an interference between

each two BSs. In this situation we have M different groups, each group contains

one and only one BS.

– The interference graph is edgeless i.e., each two BSs do not interfere with each

other. In this situation we have only one group composed of all BSs.

Therefore most of candidate mechanisms for LSA are not anymore truthful (except

for the two special cases).

In the following we provide a simple algorithm for grouping.
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2.2.2 Heuristic method for grouping

We sort in an ascending order all the BSs by the degree of interference. BSs with low

degree are ranked first and grouped together as much as possible. This heuristic will lead

to a group repartition in which each base station belongs to one and only one group, and

that may have a negative impact on some properties such as efficiency. But, is easy and

fast to build, and will create large groups to get close to the maximum independent sets

approach.

Algorithm 1 Grouping algorithm implemented in this chapter

Ω: sorted BSs by increasing degree in the interference graph (ties broken randomly)

Let us denote by h the current number of groups and set h = 1

for i = 1,i ≤ N,i+ + do

for j = 1,j ≤ h,j + + do

if vertex Ω(i) has no interference to any node in group gj then

Put the vertex (i) into gj

break

else

if j == h then

h+ +

create one more group gh, put Ω(i) into gh

end if

end if

end for

end for

2.2.3 Bidders preferences and group-bid

We suppose that spectrum in the 2.3 − 2.4 GHz is homogeneous i.e., MNOs are only

sensitive to the amount of obtained spectrum and not to a specific spectrum band they

can use. Also, we suppose that each bidder i has a concave valuation for spectrum

as shown in figure 5 and quasi-linear utility (payoff) function which is common in the

literature [76–78]: if it obtains a fraction αi > 0 of the available bandwidth and pays pi,

his utility ui is his valuation for the obtained amount of spectrum minus the price paid

for that amount.

32



V
al

u
a
ti

on
e

Obtained spectrum (MHz)

Figure 5 – An example of a concave valuation function of obtained spectrum for a bidder
i.

The competition of bidders is through submissions of bids. Since the utility of each

bidder depends on allocations and prices (computed based on bids), it is reasonable to

assume that players will try to bid strategically to maximize their utility.

Before summarizing steps of the auction, let us first introduce the definition of the

“group-bid”, which is a mechanism-specific quantity. Group-bid is very important because

it will impact the outcome of the auction: after receiving bids of each group, the auctioneer

constructs the group-bid (of that group) based on bids of its members. Then, he makes

the allocation for groups based on those group-bids.

Definition 2. The group-bid BMEC
h of each mechanism MEC is a positive real obtained

via a function fMEC
h that takes bids from bidders of a group h (which contains nh bidders)

and returns a positive real.

fMEC
h : Rnh → R

(b1, .., bnh
) → BMEC

h = fMEC
h (b1, .., bnh

)
(2.4)

We suppose that fMEC
h is a continuous and non-decreasing with respect to each vari-

able.

2.2.4 Steps of the auction

Steps of the auction are summarized in the following.

1. Group construction: from the interference graph, the regulator constructs groups.

2. Bid collection: bidders are asked to declare their bids.
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3. Allocation: each base station is allocated some fraction αMEC
i of the available spec-

trum.

4. Payment: each player i is charged a price pMEC
i .

Note that for the case of ascending auction, the second and the third steps may be

performed at each round. (The allocation at each round is temporary).

In the next chapter, we discuss the problem of assessing the value of spectrum for the

MNOs.
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Chapter 3

LSA spectrum valuation

3.1 Introduction

In this chapter, we address LSA spectrum valuation. There are several approaches for

spectrum valuation [79] such as the engineering value [80], which refers to the potential

saving in the infrastructure of the operator’s network as a result of acquiring additional

spectrum resources, and the economic value [81] which is the revenue surplus from the

market when using that spectrum. Each approach may have its advantages and disad-

vantages; and also its use cases. But it has to be based on cogent reasoning, logic and

scientific method. In this chapter, we propose to develop a model in order to compute

the economic value of an LSA bandwidth.

3.2 LSA spectrum valuation model

In the following, we present our model for computing the LSA spectrum using the revenue

surplus approach. We denote by Wn the normal bandwidth of base station i and by Wtot,

the total bandwidth i.e., the package composed of the normal bandwidth and the LSA

bandwidth. The valuation vi is given by

vi = Vi(Wtot)− Vi(Wn), (3.1)

where Vi(Wtot) is the valuation of the total bandwidth and Vi(Wn) is the valuation of the

normal bandwidth. Now the question is: given a bandwidth W , how to compute V (W )?

We suppose that the valuation of a bandwidth during a period t is just the average
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revenue from a user multiplied by the average number of users served during that period.

V (W ) = Nt ˜rev, (3.2)

where ˜rev is the average revenue from a user and Nt is the average number of users served

during t.

Authors in [82] have supposed that the revenue from a user depends on his satisfaction:

the more he is satisfied, the more he pays. In addition, authors in [83] have noted that

spectrum has more valuation in high-income region. Combining those assumptions we

suggest the following representation of average revenue from a user:

˜rev = czuS̃, (3.3)

where S̃ is the average satisfaction and czu is a constant in euro per unit of satisfaction in

a given geographical zone.

User satisfaction depends on their perceived QoS [78, 84]. Indeed, many parameters

(such as data rate, bit error rate) have an impact on user perceived QoS. However, it’s

common in the literature [78, 82, 85, 86] to express user satisfaction as a function of data

rate. Results given in [87] suggest that user satisfaction keeps increasing with the data

rate but more and more slowly. That approach is used in [85, 86]. In [78] authors have

proposed the following formulation of user satisfaction:

S = 1− e−( d
dcom

), (3.4)

where d is his data rate and dcom is a comfort data rate (can be interpretted as the mean

data rate beyond which, user satisfaction exceeds 63% of maximum satisfaction [88]).

Among the many factors that can affect the data rate of a user who belongs to BS i, we

suppose that the main factors are:

• The total throughput D of BS i, D depends on the bandwidth W and other factors

such as the digital modulation.

• The number of users connected to BS i.

• The maximum number Nm of users that can be served simultaneously by BS i.

• The scheduling i.e., how resources are divided when there are n users connected to

BS i, we suppose that when there are n users, resources are allocated in such a way

36



that all users perceive the same data rate.

Now after defining the factors that impact user satisfaction, in the following we provide

a model which computes the average user satisfaction from those parameters (the final

formula is given in (3.6)). We use the Poisson process which is a simple and widely used

stochastic process for modeling inter-arrival times [89]. In addition, we suppose that there

are two types of users

• Type 1: Users with arrival rate λ1, each one is connected for a duration exponentially

distributed with mean 1
µ

so the service rate is independent of the BS throughput

(watching a video).

• Type 2: Users with arrival rate λ2, each one consumes a quantity of data expo-

nentially distributed with mean m so the service rate depends on the available BS

throughput (downloading an application, loading a web page).

At each time, when there are n users, resources are allocated in such a way that all users,

independently of their types, perceive the same data rate. Therefore if there are i users

of Type 1 and j users of Type 2, we can establish the following results:

• The service rate of users of Type 1 is µ1
i,j = i × µ (there are i users of Type 1 and

the service time of each one is 1
µ
).

• The service rate of users of Type 2, µ2
i,j depends on their data rate. That data rate

depends on the total throughput D and the total number of connected user (we

have i + j users ). There are j users of Type 2, the service rate of each one is his

throughput divided by m: µ2
i,j =

D
i+j

m
× j.

The number of connected users can be interpreted as a random process. Since, the

evolution of that process depends only on the actual state then it can be considered as

a Markov process [90]. As an example, if Nm = 3 the associated Markov chain of this

process is given at Fig. 6 (µsat = D
m

).

We suppose that λ1, λ2, D, m and Nm are known so we can compute service rates. We

denote by Πi,j the steady state probability when there are i users of Type 1 and j users

of Type 2. The associated balance equations of the Markov chain can be established as

follows:

• (λ1 + λ2)Π0,0 = µ1
1,0Π1,0 + µ2

0,1Π0,1
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Figure 6 – Markov chain for Nm = 3

• (λ1 + λ2 + µ1
i,0)Πi,0 = µ1

i+1,0Πi+1,0 + µ2
i,1Πi,1 + λ1Πi−1,0; i < Nm

• (λ1 + λ2 + µ2
0,j)Π0,j = µ2

0,j+1Π0,j+1 + µ1
1,jΠ1,j + λ2Π0,j−1; j < Nm

• λ1ΠNm−1,0 = µ1
Nm,0

ΠNm,0

• λ2Π0,Nm−1 = µ2
0,Nm

Π0,Nm

• (µ1
i,j + µ2

i,j)Πi,j = λ1Πi−1,j + λ2Πi,j−1; i+ j = Nm; i, j < Nm

• (λ1 +λ2 +µ1
i,j +µ2

i,j)Πi,j = λ1Πi−1,j +λ2Πi,j−1 +µ1
i+1,jΠi+1,j +µ1

i,j+1Πi,j+1; 0 < i, j <

Nm

From those equations, we built a matrix A such that ΠA = Π then we look for the

eigenvector of constant sign associated with 1 and we normalize it to find Π. Once Π is

computed the average satisfaction can be written as:

S̃ =
Nm∑
k=0

(
k∑
i=1

Πi,k−i)(1− exp(
dk
dcom

)),

with dk = D
k

the data rate of each user when there are k users.

In order to consider the refused users, we propose to penalize BS i, as in [82], by
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substraction pe from its revenue. Therefore, the average revenue ˜rev from a user is:

˜rev = czuS̃ − ΠNmpe (3.5)

Finally, the valuation of W during t is:

Vi(W ) = Nt(c
z
uS̃ − ΠNmpe) (3.6)

Fig. 7 summarizes steps that we have done in order to compute the valuation.

Capacity,
Throughput,
Arrival rates

Steady state
probability of
the Markov

Process

Average
satisfaction

Average
revenue

Valuation of W

Nm

D
λ1, λ2

Π S̃ ˜rev V (W )

Figure 7 – Steps for computing the valuation for the bandwidth during a period t
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Illustration

The objective of this illustration is to show how this model could be used. We fix

Nm = 100, czu = 1 euro/unit of satisfaction, dcom = 5 Mb/s, t = 300 s and pe = 0.2 euro.

We suppose that all users are of Type 2 with m = 50 Mb and arrival rate λ. We fix

three possible values for λ. For each value, we compute the valuation as a function of

the throughput as shown in Fig. 8. Suppose that the normal bandwidth generates a

throughput 40 Mb/s and by obtaining the LSA license, the total throughput will be

60 Mb/s then: if λ = 1 s−1, we can conclude that vi is very small. This can be interpreted

as follows: with the normal bandwidth we can well satisfy users connected to BS i so there

is no need to additional bandwidth. On the other hand if λ = 5 s−1, then by obtaining

the license, BS i can double its revenue so vi is important.

50 100
0

500

1,000

1,500

Throughput (Mb/s)

va
lu

a
ti

o
n

λ = 1 s−1

λ = 3 s−1

λ = 5 s−1

Figure 8 – Valuation as a function of the throughput for Nm = 100

3.3 Deriving the valuation of an LSA bandwidth in

real world

We suppose that there is an LSA bandwidth which can be used for a duration t in a

particular geographical area. Let’s consider a BS i, for simplicity, we suppose that all

users are of Type 2. The corresponding Markov chain is:

0 1 2 3 4 5 6 7

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

This chain is equivalent to the one of M/M/1/Nm (here µ = D
m

), Thus the stationary

distribution is:
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• Πn = (ρn)
n!
× Π0 for 1 ≤ n ≤ Nm and ρ = λ

µ

• Π0 =

(
Nm∑
n=0

(ρn)
n!

)−1

We want to compute vi = Vi(Wtot)−Vi(Wn). We start by computing the valuation of the

normal bandwidth which is the one without the added LSA spectrum.

3.3.1 Deriving the valuation of the normal bandwidth

We denote by Dn the throughput of the normal bandwidth Wn. In practice, from the

point of view of BS, it can compute the average arrival rate λ since it knows the average

number of presented users Np during t, therefore we can set λ as λ = Np

t
. However, in

order to compute µ, it has to compute m (µ = D
m

) which is not necessarily simple. In

practice during a period t, from real data, we have the average number of connected users

Ñc; Ñc =
Nm∑
i=0

iΠi. By using equation (3.7) presented in [91] we can find ρ.

Nm∑
i=0

iΠi =
ρ

1− ρ
1− (N + 1)ρN +NρN+1

1− ρN+1
. (3.7)

Once ρ = λ
µ

is computed, we compute the stationary distribution and we can therefore

compute the revenue from the bandwidth Wn using (3.6).

3.3.2 Deriving the valuation of the total bandwidth

We denote by Dtot the throughput generated by the package composed of the normal

bandwidth and the LSA bandwidth. After introducing the LSA bandwidth, the total

throughput of a BS will increase. In addition the stationary distribution is not anymore

the same (since service time of users depends on their throughput which will be increased).

We denote µ′ the new service rate. In order to compute µ′ we proceed as follows:

1. We compute the normal service rate (since we know λ and ρ) µ = ρ× λ

2. From µ, we can find m, which is Dn

µ

3. Finally, we compute µ′ = Dtot

m

4. We set ρ′ = λ
µ′

and compute the new stationary distribution Π′
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Once the new stationary distribution is found, we can apply (3.6) to find V (Wtot) and

then compute vi.

3.4 Conclusion

Valuing spectrum is a complex task because a lot of factors can be introduced. In our

study, we have developed a simple model: we have supposed that the valuation of an LSA

bandwidth for a BS is its surplus i.e., the revenue with that bandwidth minus its revenue

without that bandwidth. We have supposed that the revenue from a user depends on his

satisfaction which depends on his data rate.

We have defined the number of connected users as a Markov process and show how to

derive the steady state probability distribution so that from that probability distribution

we can derive the average satisfaction and therefore the revenue from a user. In order to

compute the steady state probability, we have supposed that there are two types of users

and we have derived some theoretical results. Results suggest that the valuation of an

LSA bandwidth varies and can be very high when users are not satisfied with the normal

bandwidth. On the other hand, it can be very low when users are well satisfied with the

normal bandwidth. We finally show how our model can be used to provide estimation of

valuation when real data is available.

In next chapters, we suppose that each BS knows its own valuation. In the next part,

we focus on one-shot auction for the case where the available quantity of LSA spectrum

is small.
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Part II

Geographical zones with little

available spectrum
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Chapter 4

From all-or-nothing auction

mechanisms to proportional

allocation

4.1 Introduction

In this chapter, we suppose that the regulator has a small quantity of LSA spectrum to

allocate for M groups. Since each BS may not accept an infinitesimal amount of spectrum,

then at a first time we suppose that all the available LSA spectrum will be considered as

one block so that each BS can either obtain that block or nothing i.e., for each auction

mechanism αMEC
i is either 0 or 1. We denote by vi the valuation of player i for all the

available quantity of LSA spectrum, therefore the utility of a BS i is vi− pMEC
i or 0. The

organisation of this chapter is as follows: we start by reviewing auction mechanisms (for

LSA) from the literature in Section 4.2. Then in Section 4.3, we show how to ensure

truthfulness to the first auction mechanism which was proposed as a candidate for the

LSA auction. The revenue generated by several auctions is analyzed in Section 4.5.

At a second time, we suppose that the available LSA spectrum can be split. Under this

assumption, a new auction mechanism which shares all the available bandwidth among

BSs is presented is Section 4.6. Simulations results are presented in Section 4.7. Finally

we conclude the chapter in Section 4.8.

In this chapter we consider two key assumptions introduced in the literature: assump-

tion 1 (each BS belongs to one and only one group) and assumption 2 (each base station

is controlled by a different player, i.e., we assume non-coordination among bids submitted
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by base stations).

4.2 State of the art

In this section we present the auction mechanisms which were proposed as candidates

to allocate LSA spectrum. Each bidder with valuation vi submits a bid bi which rep-

resents the willingness to pay for all the available LSA spectrum. After receiving bids

from bidders, the auctioneer computes the group-bid of each group and attributes the

bandwidth the the group with the highest group-bid.

4.2.1 TAMES

TAMES [2] computes the group-bid BTAMES
h of each gh as

BTAMES
h = (|gh| − 1) min

i∈gh
bi,

where |gh| is the cardinal of group h. All players of the highest group-bid group are

winners, except the one with the lowest bid of that group. Each winning player pays

the same price, that is the lowest bid in their group. This mechanism is truthful and

individually rational. However, under TAMES the bidder with the lowest bid who decide

whether his group is a winning group or not is not allowed to use the bandwidth. This is

contrary to TRUST in which all players of the winning group can use the bandwidth.

4.2.2 TRUST

TRUST [3] works quite similarly to TAMES. It computes the group-bid as:

BTRUST
h = |gh|min

i∈gh
bi.

All players of the group with the highest group-bid are winners. Winners pay equitably

the second-highest group-bid (each winner pays a proportion 1/|gh| of it). This mechanism

is truthful and individual rational.

Both Tames and TRUST are truthful and individually rational. However, they com-

pute the group-bid based on the player with the lowest bid. From the point of view of

bidders, those mechanisms are unfair because the bidder with the lowest bid decide for
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the members of his group i.e., if that bidder has a very low bid then other bidders of

his group cannot do anything in order to change the outcome (from losing to winning).

Contrary to TAMES and TRUST, in LSAA [4] each bidder of the group is involved in

the definition of the group-bid i.e., each bidder can increase the group-bid of his group.

4.2.3 LSAA

In LSAA [4], bids in each group are sorted in a non-ascending order. The group-bid of

a group gh is computed as:

BLSAA
h = max

i∈gh
rank(bi)bi,

where rank(bi) is the rank of player i’s bid in the group. This group-bid can be interpreted

as follows: it represents the maximum amount that a subset of gh can shares equitably.

The authors define an index j such that:

j = max

{
rank(bl), l ∈ arg max

i∈gh
(rank(bi)bi)

}
. (4.1)

If gh is the winning group, then only players with rank below or equal to j are winners.

Winners pay the second highest group-bid equally.

Authors of LSAA claim that LSAA is truthful. However, it is not the case as we will

show in the following proposition.

Proposition 1. LSAA is not truthful.

Proof. suppose we have two groups, the first group is composed of three bidders with bids

respectively {30, 19, 10} and the second is composed of two bidders with bids {15, 10}.
Group one is the winning group because it has the highest group-bid max{30 × 1, 19 ×
2, 10× 3} = 38. The group-bid of the second group is max{15× 1, 10× 2} = 20. Player 3

in group one is a loser. Players 1 and 2 are winners and each one pays 20
2

= 10. If player

3 had proposed 15 instead of 10 he would have been be a winning player and he would

have paid 20
3

, yielding him the strictly positive utility 10− 20
3

.

Assuming truthful bidding, this mechanism outperforms the previous one in terms of

efficiency and revenue. In the next section we show how to modify the payment rule of

LSAA to render it truthful.
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4.3 TLSAA and TLSAA2: Two truthful variants of

LSAA

In this section we propose two variants that are truthful: TLSAA and TLSAA2. Both

mechanisms compute the group-bid of each group in the same way as LSAA however:

1. TLSAA is more efficient than LSAA but has a lower revenue.

2. TLSAA2 has the same revenue as LSAA but it is less efficient than TLSAA.

4.3.1 TLSAA

We preserve LSAA’s method of group-bid computation and allocation. All bidders of

the winner group can use the bandwidth. We propose a new payment rule which ensures

truthful bidding: since the allocation rule is monotone, we can implement the truthful

payment rule given in (2.2). This gives

pTLSAA
i = min{bi s.t. αLSAA

i (bi) = 1}. (4.2)

Each player pays his break point (the point at which his allocation changes from zero to

one).

Example 1. We illustrate that rule with an example: suppose we have two groups with

bids respectively {20, 10, 9, 6} and {20, 8, 7}. The first group wins the auction since it has

the highest group-bid (with value 27). Let us compute the payment of the first player

(the one with bid 20): by proposing a bid lower than 5.25 player 1 would be a losing

player because the group-bid of his group would then be below the second group-bid 21,

and by proposing a bid higher than 5.25 group 1 wins the auction. So Player 1 should

pay 5.25. Note that for the second and the third player the same reasoning can be made

and each one should pay 5.25, however the fourth player should pay 0 because his group

is a winning group whether he is present or not (there is no break point for him).

In LSAA, the revenue is given by the second highest group-bid. A question which

may arise regards the revenue of this modified version of LSAA. We show below that

truthfulness comes at a cost, since revenue may decrease with respect to the initial version

(that was assuming truthful bidding).
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Proposition 2. The revenue of TLSAA cannot be higher than the second-highest group-

bid.

Proof. We denote by gLSAA
w the winning group and by BLSAA

second the second highest group-

bid. Let us define j′ such that:

j′ = max
{

rank(bi), i ∈ gLSAA
w and rank(bi)bi ≥ BLSAA

second

}
. (4.3)

Consider a player i in the winning group:

• if rank(bi) is strictly above j′ then that player pays 0, because his group always wins

whatever his bid (there is no breaking point for him);

• if rank(bi) is below j′ then we can distinguish two cases:

1. if his group remains the winning group without i’s bid, that player pays 0.

2. if his group is a losing group if i is not there (winning group only with his presence),

his breaking point is exactly
BLSAA

second

j′
.

Hence the maximum revenue is
BLSAA

second

j′
· j′ = BLSAA

second.

One may then wonder whether we can find an allocation rule that ensures the same

revenue as LSAA. To reach that goal, we propose TLSAA2, in which the group-bid is

defined as in LSAA, but we modify the allocation rule and still apply the payment rule

ensuring truthful bidding, given in (2.2).

4.3.2 TLSAA2

We propose TLSAA2, in which the group-bid is defined as in LSAA, but we modify

the allocation rule. The allocation rule is defined as follows: a winning player should not

only belong to the winning group but also bid at least as high as player j′ (see (4.3)). In

turn, the payment rule is defined as follows: each winning player pays

pLSAA
i =

BLSAA
second

j′
. (4.4)

Through the following proposition we prove that TLSAA2 is a truthful mechanism

with revenue achieved by the seller equal to BLSAA
second.

Proposition 3. TLSAA2 is truthful with revenue equal to BLSAA
second.
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Proof. For the revenue, it is clear that it is equal to
BLSAA

second

j′
j′ = BLSAA

second. This payment rule

ensures a truthful bidding because the allocation rule is monotone (the allocation rule of

TLSAA2 is just the allocation rule of TLSAA with constraint given by (4.3)), and the

payment rule corresponds to Equation (2.2).

It was shown in [4] that LSAA outperforms TAMES and TRUST in terms of efficiency.

Therefore we can conclude that TLSAA is the best one in terms of efficiency. However this

is relative because the real question is: how much far are we from the optimal efficiency?

Before providing an answer in proposition 4, let us first compute the optimal efficiency:

we have one block to attribute to one group. Clearly, using equation (2.3), the optimal

efficiency can be obtained by allocating that block to the group with the highest sum of

bids i.e., we define the group-bid of each group as the sum of bids of its members and we

allocate the bandwidth to the group with the highest group-bid.

Proposition 4. For TLSAA, efficiency can be arbitrary far from the optimal one

Proof. Suppose we have two groups. The first group is composed of n1 bidders with

valuation {n1,
n1

2
, n1

3
, .., 1}. Therefore the group-bid of this group is n1. The second group

is composed of one bidder with group-bid n1 + 1. Clearly TLSAA’s efficiency is n1 + 1

(since group two has the highest group-bid). The optimal efficiency is
n1∑
i=1

n1

i
. The ratio

between those two quantity is: n1+1

n1

n1∑
i=1

1
i

≤ n1+1
n1 ln (n1+1)

. Clearly, this ratio goes to zero when

n1 goes to infinity.

Obtaining the optimal efficiency while ensuring truthful telling could be done by im-

plementing VCG. In the next section, we show how to implement VCG for the setting of

this chapter.

4.4 VCG

We present the general principle of VCG ([5–7]), we show how to implement it for

the LSA context in the next section. The principle of VCG is to allocate resources to

maximize the “declared” efficiency (since computed based on submitted bids) and charge

each bidder the loss of declared efficiency his presence causes to the others. We denote

by E−ia the efficiency when bidder i is absent, and by E−ip the efficiency when bidder i is

49



present but without counting him. The payment rule is therefore:

pV CGi = E−ia − E−ip .

Contrary to TRUST and TAMES which may harm efficiency, VCG is khnown to be

the unique mechanism which is truthful, individually rational and maximizes efficiency.

An implementation of VCG could be done by defining the group-bid of a group gh as

BVCG
h =

∑
i∈gh

bi;

Another advantage of VCG compared to other mechanisms is that each bidder participates

in the computation of the group-bid of his group. The winning group is then the group

with the highest group-bid.

For the payment we perform as follows: if a player belongs to a losing group he pays

0 because whether he is present or not the winning group is the same. If a player belongs

to the winning group gwin with group-bid BVCG
win then we can distinguish two cases: if his

presence does not change the outcome, i.e., BVCG
win

−i ≥ BVCG
second (with BVCG

second the second-

highest group-bid and BVCG
win

−i
the group-bid of the winning group when player i is absent)

then he pays 0 otherwise he pays BVCG
second −BVCG

win
−i

. To summarize:

pV CGi = [BVCG
second −BVCG

win

−i
]+. (4.5)

Efficiency is important. But, revenue also is an important criterion. However, all the

previous mechanisms could generate an extremely low revenue as we illustrate in the

following example.

Example 2. Suppose we have two groups g1 and g2. The first group is composed of

three players with bids respectively 3, 2. The second group is composed of four players

with bids respectively 30, 20, 15 and 0.75 .

1. When TAMES is applied, the group-bid of the first group is 2 × 1 = 2 and the

group-bid of the second group is 0.75 × 3 = 2.25, thus group two (except bidder

with bid 0.75) wins the auction and each winner pays 0.75.

2. When TRUST is applied, the group-bid of the first group is 2 × 2 = 4 and the

group-bid of the second group is 0.75× 4 = 3, thus group one wins the auction and

each bidder pays 1.5.
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3. When VCG is applied, the group-bid of the first group is 5 and the group-bid of the

second group is 30 + 20 + 15 + 0.75 = 65.75, thus group two wins the auction. Each

bidder of the second group pays zero, therefore the revenue is 0.

4. For LSAA, the group-bid of the first group is 4 and 45 for the second group. For

TLSAA, the revenue is 0 and for TLSAA2 the revenue is 4.

In the following section, we show how to increase the revenue of any mechanism with

all-or-nothing allocation rule.

4.5 Improving revenue using minimum prices per buyer

In order to increase VCG’s revenue, the authors in [92] have introduced a reserve price

per bidder (minimum amount per bidder) R. In [59], we have extended that approach for

other mechanisms and developed the analytical expressions of the average revenue when

operators’ valuations for the spectrum are independent and identically distributed from a

uniform distribution. In the following proposition, we generalize [59] for any mechanism

with a monotone and all-or-nothing allocation rule.

Proposition 5. Consider a mechanism with a monotone all-or-nothing allocation rule

(αMEC
i is either 0 or 1 for each player i). We denote by pMEC′

i the corresponding truthful

payment rule. For any non-negative value R, the mechanism MEC′ defined as follows is

truthful:

• the allocation rule αMEC′ is simply the rule αMEC, ignoring all bids strictly below R;

• the payment rule consists in charging player i a price

pMEC′

i (bi) =

max{R, pMEC
i (bi)}, if αMEC′

i = 1

0, if αMEC′
i = 0,

(4.6)

Additionally, this modification ensures that the per-unit price paid by players is at least

R.

Proof. The allocation rule α′ is still monotone, therefore there must exist a payment rule

p′ which renders the mechanism truthful [93].
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Let us fix a player i with valuation vi. If vi < R, bidding truthfully ensures a utility

equal to 0 otherwise he obtains either a negative utility or a utility equal to 0.

We distinguish two cases for a winning player with vi > R:

• pMEC
i (vi) ≥ R: this situation corresponds to the original mechanism facing only bidders

with valuations above R, hence proposing a bid bi = vi maximizes his utility.

• 0 ≤ pMEC
i (vi) < R: bidding truthfully generates a utility vi −R, any other bid bi leads to

a lower utility since the bidder would either get no resource (hence utility 0), or still be

a winner and pay at least R.

For a losing player, the outcome corresponds to the original mechanism MEC (now

facing only bidders with valuations above R). Since MEC is truthful, and MEC’ only has

larger payments than MEC, bidding truthfully–and losing–remains a best strategy.

From Proposition 5, we can introduce to all previous mechanisms a reserve price per

bidder and the payment rule for each mechanism is given by (4.6).

Providing all the available bandwidth to the group with the highest valuation may

maximize efficiency but would result in the dissatisfaction of other groups. It is to allow

a trade-off between efficiency and fairness that we propose the Proportional Allocation

Mechanism (PAM).

4.6 The Proportional Allocation Mechanism (PAM)

Recall that we have supposed that valuation for spectrum is an increasing concave func-

tion. However, since that amount of spectrum is small then we can suppose that valuation

for spectrum is linear as shown in Fig. 9. If a BS obtains a fraction αi > 0 of the available

bandwidth and pays pi, then its utility ui is approximated by:

ui(αi, pi) = αivi − pi.

Moreover, if we suppose that each BS will accept any amount of spectrum even a small

one then in this situation we propose PAM: the Proportional Allocation Mechanism. The

general principle of our proposition is to share spectrum among groups proportionally

to their declared valuations. Sharing resource in proportion to group-bids ensures that
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Figure 9 – Valuation for spectrum can be assumed to be linear when the amount of
available spectrum is small

highest-bidding groups get more resource than the others (leaning toward efficiency), but

each group will receive a non-null allocation (leaning toward fairness).

4.6.1 Allocation

Similarly to the previous mechanisms, we introduce a minimum bid amount per bidder.

The group-bid BPAM
h of each group is similar to the group-bid of VCG. BPAM

h = BVCG
h =∑

i∈gh
bi. Denoting by BPAM

Tot =
∑M

h=1B
PAM
h the sum of all group-bids, we propose to allocate

to each group gh a proportion γPAM
h of the available spectrum, with γPAM

h =
BPAM

h

BPAM
Tot

.

The fraction αPAM
i allocated to each player i can be expressed as follows:

αPAM
i =

bi +BPAM
g

−i

bi +BPAM
Tot

−i =

bi +
nh∑

j=1,j 6=i
bj

bi +
N∑

j=1,j 6=i
bj

. (4.7)

Where BPAM
Tot

−i
(resp. BPAM

g
−i

) represents the aggregated group-bid (resp, the group-bid

for i’s group) had bidder i be absent. If a player i belongs to gh then αPAM
i = γPAM

h

Remark: PAM and the Nash bargaining solution

Suppose that there is no auction process and groups must negotiate in order to share

the bandwidth otherwise (if no agreement is reached) each group gets zero. The question

is how groups will behave? Groups should agree with respect to some “rational” axioms

like for example a symmetry axiom: if two groups have the same group-bid then they
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should obtain the same amount. In fact, the Nash bargaining solution [94] is adequate for

this case because it represents the unique solution that satisfy four axioms: symmetry,

independence of irrelevant alternatives, Pareto optimality (no one can have better pay off

without harming other one) and invariance to affine transformation. In our case the Nash

Bargaining solution (where the bargaining power of each group is Bh

BTot
) is just PAM’s

allocation: we have M groups who want to share the LSA available bandwidth. Each

group h, with valuation Vh =
nh∑
i=1

vi has to accept some amount xh, if no agreement is

reached, then each one gets 0. We denote by Vtot the sum of all valuations of groups and

by γh the bargaining power of group h. γh = Vh
VTot

.

The Nash bargaining solution solves the following optimization problem

maximize
X

M∏
h=1

(xhVh)
γh

subject to
M∑
h=1

xh = 1

xh ≥ 0

Which is equivalent to

maximize
X

M∑
h=1

γh log xh

subject to
M∑
h=1

xh = 1

xh ≥ 0

The Lagrangian is:

L(X,λ) =
M∑
h=1

γh log xh + λ(1−
M∑
h=1

xh)

Setting the gradient ∇L equal to the 0 vector we get:

L
∂λ

= (1−
M∑
h=1

xh) = 0 (4.8)

L
∂xh

=
γh
xh
− λ = 0, ∀h (4.9)
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(3.8) implies
M∑
h=1

γh = λ
M∑
h=1

xh (4.10)

which means λ = 1, hence by (3.8) we get xh = γh ∀ h
Thus the Nash bargaining solution is given by setting xh = γh which correspond to the

PAM allocation.

This represents an advantage of PAM’s allocation because that allocation, somehow

seems to be natural and not imposed for groups

4.6.2 Payments: building a truthful payment rule

We provide the payment rule that ensures truthful bidding for each player. Let us write

the payment pPAM
i for bidder i (who obtains a proportion αPAM

i of the available spectrum)

under the form:

pPAM
i = αPAM

i R + Si(bi),

where Si(bi) is an adjustment price which is introduced to ensure truthfulness and Si(bi) ≥
0 to ensure that no bidder pays a unit price below R as we see next (this also proves that

players with vi < R would get a strictly negative utility if bidding above R). Note that

αPAM
i and Si depend also on b−i but to simplify notation we only write the dependency

on bi.

Consider given bids b−i = (b1, ..., bi−1, bi+1, ..., bN) of bidders different from i. We want

truthful bidding to be a dominant strategy for bidder i. First, recall that the utility ui of

bidder i when bidding bi is, as seen as a function of bi,

ui(bi) = αPAM
i (bi)vi − (αPAM

i (bi)R + Si(bi))

= αPAM
i (bi)(vi −R)− S(bi).

(4.11)

Like αPAM
i and Si, ui depends also on b−i but we write ui(bi). The objective is to find the

adjustment price Si(bi) for each base station i so that its utility is maximized for bi = vi.

We can formulate the problem as follows:

Find Si(bi)

s.t argmax
bi

(vi −R)αPAM
i (bi)− Si(bi) = vi

(4.12)
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In particular, if Si is differentiable in bi, then ui being maximized for bi = vi means

u′(vi) = 0. Let us first rewrite (4.11) using (4.7), as

ui(bi) =
bi +BPAM

g
−i

bi +BPAM
Tot

−i (vi −R)− Si(bi).

Differentiating, we get

u′i(bi) = (vi −R)
BPAM

Tot
−i −BPAM

g
−i

(bi +BPAM
Tot

−i
)2
− S ′i(bi). (4.13)

Therefore, to satisfy u′i(vi) = 0 we must have for all vi

S ′i(vi) = (vi −R)
BPAM

Tot
−i −BPAM

g
−i

(vi +BPAM
Tot

−i
)2

. (4.14)

Integrating, we obtain:

Si(x) = BPAM
Tot

−i−BPAM
g

−i
(

ln(x+BPAM
Tot

−i
)+

BPAM
Tot

−i
+R

x+BPAM
Tot

−i

)
+Ci, (4.15)

where Ci is a constant. Note that vi is indeed a maximum because u′(vi) = 0 and
∂ui
∂bi

=
BPAM

Tot
−i−BPAM

g
−i

(bi+BPAM
Tot

−i
)2

(vi − bi), so for bi ≤ vi, ui is an increasing function and for bi ≥ vi,

ui is decreasing.

We now focus on the value of the constant Ci so that when vi ≥ R, bidding truthfully

yields a higher utility than bidding below R (which ensures utility 0). In particular, each

player submitting a bid bi = R should pay exactly a unit price R, since we imposed the

paid unit price to be above R and raising it more would lead to a strictly negative utility

for players with vi = R. Hence Si(R) = 0, which leads to

Ci = −BPAM
Tot

−i −BPAM
g

−i
(

ln(R +BPAM
Tot

−i
) + 1

)
.
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So finally we obtain the price to be paid by base station i:

pPAM
i =

bi +BPAM
g

−i

bi +BPAM
Tot

−iR+BPAM
Tot

−i−BPAM
g

−i
(

ln
bi +BPAM

Tot
−i

R +BPAM
Tot

−i +
R +BPAM

Tot
−i

bi +BPAM
Tot

−i −1

)
. (4.16)

Remark: PAM’s payment and Myerson lemma

We show how to obtain PAM’s payment using Myerson’s lemma. The payment corre-

sponds to the colored surface in Fig. 10 (it is equal to the area bounded by the allocation

curve and y = αPAM
i ). The colored surface composed of the grey surface and the black

surface.

• The grey surface is equal to

αPAM
i (bi)×R =

bi +BPAM
g

−i

bi +BPAM
Tot

−iR,

which corresponds to the first term of equation (4.16).

• The black surface Sblack is equal to (bi −R)αPAM
i (bi)−

∫ bi
R
αPAM
i (x) dx:

Sblack = (bi −R)αPAM
i (bi)−

(
(bi −R) + (BPAM

Tot

−i −BPAM
g

−i
) ln

bi +BPAM
Tot

−i

R +BPAM
Tot

−i

)
= (BPAM

Tot

−i −BPAM
g

−i
)

(
ln
bi +BPAM

Tot
−i

R +BPAM
Tot

−i + (bi −R)
(αPAM

i (bi)− 1)

BPAM
Tot

−i −BPAM
g

−i

)
= (BPAM

Tot

−i −BPAM
g

−i
)

(
ln
bi +BPAM

Tot
−i

R +BPAM
Tot

−i +
R− bi

bi +BPAM
Tot

−i

)
,

which corresponds to the second term of (4.16).
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Figure 10 – The colored surface represents PAM’s payment

4.6.3 Properties

In this subsection we illustrate PAM’s properties.

Truthfulness

By construction (see Subsection 4.6.2), we have the following proposition.

Proposition 6. PAM is truthful, i.e., for each bidder i = 1, . . . , N , bidding one’s true

valuation bi = vi is a dominant strategy.

Individual rationality

Since players have a dominant strategy, this translates into ui(vi) ≥ 0 ∀ vi ≥ 0, since

bidding bi = 0 ensures a non-negative utility. Hence the following proposition.

Proposition 7. PAM is individually rational.

Efficiency

We show in the next proposition that when R = 0, the normalized efficiency for PAM

allocations is lower-bounded, i.e., allocations cannot be arbitrarily far from the optimal

ones.

Proposition 8. If the reserve price per bidder R = 0, then the normalized efficiency of

PAM is at least 2√
M+1

.
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Proof. Without loss of generality, we suppose that group 1 has the highest group-bid. Let

1, X2, ..., XM be the normalized valuations, i.e., Xi =
BPAM

i

BPAM
1

. PAM’s normalized efficiency

can then be computed as:

EPAM
N =

EPAM

BPAM
1

=

N∑
i=1

αPAM
i bi

BPAM
1

=

M∑
i=1

γPAM
i BPAM

i

BPAM
1

=
M∑
i=1

γPAM
i Xi.

Applying the PAM allocation rule, we have γi = Xi
M∑
i=1

Xi

, therefore

EPAM
N =

M∑
i=1

X2
i

M∑
i=1

Xi

=

1 +
M−1∑
i=1

X2
i+1

1 +
M−1∑
i=1

Xi+1

.

Using the Cauchy-Schwarz inequality, we can deduce that:

EPAM
N =

1 +
M−1∑
i=1

X2
i+1

1 +
M−1∑
i=1

Xi+1

≥
1 +

(
M−1∑
i=1

Xi+1)2

M−1

1 +
M−1∑
i=1

Xi+1

.

Let Y =
M−1∑
i=1

Xi+1 and let g(Y ) =
1+ Y 2

M−1

1+Y
, we observe that g(Y ) has a minimum at

Y = Y0 =
√
M − 1 and g(Y0) = 2√

M+1
. Thus, the efficiency of the mechanism is lower

bounded by 2√
M+1

. Note additionally that this bound is tight: we attain it for Xi = 1√
M+1

for i ∈ 2, ...,M as an example, if the group-bid of the first group is 1 and the group-bid,

for i ∈ 2, ...,M , is 1√
M+1

then the normalized efficiency is 2√
M+1

.

4.6.4 PAMσ: guaranteeing winners get at least a minimum amount

of spectrum

In the following, we show how to make the mechanism more suitable to be applied in

real life, where very small portions of spectrum might not be useful for operators. The

regulator fixes a minimum amount σ: each player must get at least that amount or he

gets nothing. We call this extension PAMσ. For the allocation, we keep excluding groups

with low group-bids (we start by the one with the lowest group-bid) until obtaining a
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feasible allocation.

Example 3. Suppose there are three groups, the first group is composed of two players

with bids 12 and 5 respectively. The second group is composed of one player with bid 14

and the third group is composed of one player with bid 15. Suppose that σ = 0.4. We

start by computing the fraction allocated to group two which is lower than 0.4 (14
46
< 0.4).

Thus, group two will be excluded and the final allocation is 17
32

for group one and 15
32

for

group three. Also, in order to exclude the third group, the second bidder of the first group

(whose valuation is equal to 5) has to propose at least a bid b2 such that 15
15+12+b2

< 0.4

i.e., b2 = 10.5.

In the following, we investigate PAMσ’s efficiency.

Proposition 9. As σ gets closer to 0.5, PAMσ’s efficiency gets closer to VCG’s efficiency.

Moreover, when σ ≥ 0.5, PAMσ’s efficiency is equal to VCG’s efficiency.

Proof. We can distinguish three cases:

• σ < 0.5, we denote by M r the number of remaining groups i.e., groups with allocation

higher than σ. Please note that the maximum number of remaining groups is

⌊
1

σ

⌋
, and

that as we increase sigma, we exclude groups with low group-bids. Therefore, groups with

high group-bids will obtain more spectrum which leads to increase efficiency.

• σ = 0.5 in this situation M r is either:

– 1, when the two highest group-bids have different value. In this situation the group

with the highest group-bid obtains all the available bandwidth and we obtain the

same efficiency as VCG.

– 2, when the two highest group-bids are equal. In this situation, each group obtains

a fraction equal to 0.5 (each bidder pays bi
2

) and in this situation we obtain the same

efficiency as VCG but we increase the fairness of the allocation.

• σ > 0.5, all the available bandwidth must be allocated to one and only one group. The

remaining group is the group with the highest group-bid (if there are many, we choose

one randomly). Therefore we obtain the same efficiency as VCG.

In the following, we derive the analytical expression of payments for σ < 0.5.

We denote by Si(B
−i
Tot, R,B

−i
g , bi) = (B−iTot −B−ig )×

(
ln
( bi+B−i

Tot

R+B−i
Tot

)
+

R+B−i
Tot

bi+B
−i
Tot

− 1
)

.
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Let us fix a player i, we denote by b∗i the minimum bid that allows him to obtain σ, if b∗i

is lower than R then we set it to R (and he gets more than σ). We sort the group-bids of

other groups in a non-decreasing order. Player i can exclude some groups by increasing his

bid. We suppose that player i can exclude mi groups, i.e., there are (M − 1)−mi groups

excluded without the participation of player i. Without loss of generality, we suppose

that player i can exclude the first mi groups (which are sorted in a non-decreasing order).

We denote by {c1, ..., cmi
}, the breaking points, i.e. if player i proposes a bid higher that

cj, then group j (and groups below) will be excluded. We denote by
(
B−iTot

)0
the sum of

all group-bids except the bid of player i, when player i does not exclude any group (of the

mi groups that he can exclude). We denote by
(
B−iTot

)j
the sum of all bids after excluding

group j (and groups below),
(
B−iTot

)j
=
(
B−iTot

)0 −
j∑
i=1

Bi. Let us compute those breaking

points: in order to exclude the first group the following conditions must hold:

1. B1(
B−i

Tot

)0
+bi

< σ

2. bi ≥ b∗i .

Thus, c1 = max{b∗i , B1

σ
−
(
B−iTot

)0}. In general cj = max{b∗i ,
Bj

σ
−
(
B−iTot

)j−1}. We

denote by l the number of groups excluded when bi = b∗i . The payment rule is given by:

pi(bi) =



PPAM
i (bi,

(
B−iTot

)l
, b∗i ), if b∗i ≤ bi ≤ cl+1

pi(ck) + Ski (bi) + Jki (bi) if ck < bi ≤ ck+1,

k ∈ Jl + 1 ; mi − 1K

pi(cmi
) + Jmi

i , if bi > cmi
,

(4.17)

where:

• PPAM
i (bi,

(
B−iTot

)l
, b∗i ) is given by Equation (4.16) when replacing R by b∗i and B−iTot

by
(
B−iTot

)l
,

• Ski (bi) = Si

((
B−iTot

)k
, ck, B

−i
g , bi

)
,

• Jki (bi) = ck

(
bi+B

−i
g

bi+
(
B−i

Tot

)k − ck+B−i
g

ck+
(
B−i

Tot

)k−1

)
, and

• Jmi
i = cmi

(
1− cmi+B

−i
g

cmi+
(
B−i

Tot

)mi−1

)
.
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As an example if cl+1 < bi ≤ cl+2 then pi(bi) is equal to the sum of the following terms:

• pi(cl+1) =

cl+1 +B−ig

cl+1 +B−iTot

b∗i +

(
B−iTot −B

−i
g

)(
ln
(cl+1 +B−iTot

b∗i +B−iTot

)
+

b∗i +B−iTot

cl+1 +B−iTot

− 1

)
,

represented by the white area (S1) in Fig. 11.

• J l+1
i (bi) =

cl+1

(
bi +B−ig

bi +
(
B−iTot

)l+1
−

cl+1 +B−ig

cl+1 +
(
B−iTot

)l),
represented by the black area in Fig. 11.

• Sl+1
i (bi) =

((
B−iTot

)l+1 −B−ig
)
×
(

ln
( bi +

(
B−iTot

)l+1

cl+1 +
(
B−iTot

)l+1

)
+
cl+1 +

(
B−iTot

)l+1

bi +
(
B−iTot

)l+1
− 1

)
,

represented by the grey area in Fig. 11.

Figure 11 – Payment of player i when cl+1 < bi ≤ cl+2. Payment is the sum of S1, the
black surface and the grey surface.

4.7 Performance evaluation

This section compares the performance of the different aforementioned truthful mecha-

nisms. Table 1 summarizes state-of-the-art mechanisms as well as mechanisms proposed

in this chapter for truthful bandwidth allocation auctions in the LSA context.
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Mech. group-bid Allocation Payment

TAMES (|gh| − 1) mini∈gh bi

group with the
highest

group-bid
except the one
with the lowest

bid

each winning
player pays the
lowest bid of

his group

TRUST |gh|mini∈gh bi

group with the
highest

group-bid

winners pay the
second highest

group-bid
equally

VCG
∑
i∈gh

bi

group with the
highest

group-bid
see Eq. (4.5)

PAM
∑
i∈gh

bi

each group
obtains a
fraction in

proportion to
its group-bid

see Eq. (4.16)

PAMσ
∑
i∈gh

bi

each group
obtains either a

fraction (at
least equal to

σ) in
proportion to

its group-bid or
nothing

see Eq. (4.17)

TLSAA maxi∈gh rank(bi)bi

group with the
highes

group-bid
see Eq. (4.2)

TLSAA2 maxi∈gh rank(bi)bi

players (of the
group with the

highest
group-bid) and

with rank
below j′ see

(4.3)

see Eq. (4.4)

Table 1 – Summary of truthful auction mechanisms that can be applied to allocate LSA
spectrum.
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The performance evaluation is based on simulations. We are particularly interested in

average efficiency and fairness metrics, as well as in the average revenue of the auctioneer

(which we have derived analytically in [59] for some mechanisms).

Simulation settings

We recall that this chapter considers the scenario where each base station belongs to

one and only one group. We have thus fixed two groups from the interference graph of

Fig. 4: g1 = {1, 2, 4, 6} and g2 = {3, 5}. The marginal valuations of base stations are

drawn from the uniform distribution over the interval [0, 100]. For each mechanism and

for each minimum amount R, we have computed the average (with respect to each metric)

over 10.000 draws.

Results

Simulation results (Fig. 12) show that PAM outperforms the other schemes in terms of

fairness. In terms of revenue, Fig. 13 shows that TLSAA2 could offer the highest revenue

by playing on the reserve price. In terms of efficiency, VCG is efficient by construction.

In terms of fairness, we can observe that the curve is non-increasing, this can be

intuitively explained as follows: as we increase R, we increase the number of excluded

players (with valuation lower than R). On the other hand, the bandwidth will be allocated

for the remaining players (or for a set of the remaining players) hence we increase the gap

(of allocation) between players which means Jain’s index decreases.

We also observe a non-monotonicity on the average revenue and efficiency which can

be explained as follows: by increasing R the revenue from a player i keeps increasing

until reaching R = vi. Intuitively for efficiency, as we increase the minimum amount,

bidders with low valuations will be excluded and then bidders with higher valuations will

be allocated more resource, then we increase the efficiency; however if we set a too high

reserve price then many players will be excluded, reducing efficiency.

In addition for PAMσ, it offers higher efficiency and lower fairness compared to PAM,

this is natural since some groups will be excluded (which leads to decrease fairness) and

the original fraction allocated to those groups (by PAM) will be used by other groups

with higher valuations (leads to increase efficiency).
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Figure 12 – Average fairness as a function of the reserve price R
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Figure 13 – Average Revenue as a function of the reserve price R
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Figure 14 – Average efficiency as a function of the reserve price R

Simulations results show that, as aforementioned, there is no one single mechanism

which outperforms the others at all metrics. Which mechanism to chose should be thus

based on the sensibility of the auctioneer to each criteria.

4.8 Conclusion

We have studied the case where the auctioneer has a small quantity of LSA spectrum

to auction for. In this case it is reasonable to assume all or nothing allocations. We
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have reviewed auction mechanisms from the literature which are potential candidates

to allocate spectrum for the LSA context. Those mechanisms attribute the bandwidth

to the group with the highest group-bid. TAMES and TRUST compute the group-bid

of each group based on the bidder with the lowest bid so that the decision made for

a group (either it is the winning group or not) is based only on the lowest bid. In

order to involve more bidders in the group-bid computation (so that for the decision)

LSAA was proposed as an alternative solution. We have shown that this mechanism

is not truthful and therefore we have proposed two truthful variants of LSAA: TLSAA

and TLSAA2. TLSAA outperforms LSAA in terms of efficiency and TLSAA2 has the

same revenue as LSAA assuming truthful bidding. The main problem of the previous

mentioned mechanism is that we do not have guarantees in terms of efficiency which may

be undesirable from the point of view of the auctioneer. Therefore we have shown how to

obtain the optimal efficiency by implementing VCG.

The regulator may be sensitive also to his revenue, we have shown how to increase

revenue by adding a reserve price R per bidder i.e., each bidder has to propose at least

that amount in order to participate in the auction.

At a second time, since the quantity of the available spectrum is small, we have

supposed that utility can be approximated to be linear. We have proposed PAM, a

truthful auction mechanism which shares the bandwidth proportionally among groups.

PAM outperforms the other mechanisms in terms of fairness. Also, when R = 0, contrary

to other mechanism (except VCG), PAM’s efficiency can not be arbitrary far from the

optimal one. We have shown how to adapt PAM, by proposing PAMσ when each bidder

has to obtain at least a minimum amount (or nothing).

The studied mechanisms have different properties so the regulator can choose one

with respect to his preferences. We further investigate on it and report several simulation

results in the following chapter.
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Chapter 5

Extensions and limitations

5.1 Introduction

In this chapter, we consider first relaxing assumption 1 so that BS grouping allows a

BS to belong to several groups. This relaxation may improve efficiency of the allocation

but complicates the mechanism analysis (ensuring truthfulness becomes harder). Indeed,

the intuition behind the complexity is that in general payment of each BS which belongs

to the winner group is a function of bids of other losing group(s). When relaxing that

assumption a winner BS could be also in another losing group(s) therefore its bid may

impact its final payment. Also, when allowing a BS to belong to more than one group,

we increase efficiency: suppose that there is a BS which is not causing interference to any

other BS, clearly this BS should belong to all groups. In the following, we investigate the

truthfulness of the previous mechanisms when removing this restriction, by addressing the

following question: given the allocation rule and the hypothesis that a bidder can belong

to more than one group, is there a payment rule such that those mechanisms are still

truthful? We shall add a star to the original mechanism to denote the new version. Note

that the difference between MEC and MEC* (if it exists) resides only in the payment

rule.

As a next step, we investigate the relaxation of assumption 2 i.e., we treat the case

when several BSs are controlled by a common entity: Each BS belongs to an MNO, thus

we suppose that each MNO can coordinates the bids of his BSs which will participate in

the auction process.
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5.2 Extension: relaxing the one-group-per-player as-

sumption

In this section, we investigate the implementation of the previous studied mechanisms

in this new scenario.

5.2.1 Candidate mechanisms are not all adaptable

In this subsection, we show that we can adapt all previous mechanisms except TAMES

and TLSAA2. Before that, let us introduce the following proposition.

Proposition 10. Given a truthful monotone allocation rule, if a player belongs to all

groups then he pays 0.

Proof. Direct application of Myerson’s lemma (there is no breaking point for this player

because he is always a winning player).

We now analyze the extension of each one of the studied mechanisms to the case where

assumption 1 is relaxed.

• TAMES:

Under TAMES, all players of the group with the highest group-bid are winners

except the player with the lowest bid. With the assumption that a player can belong

to more than one group, the allocation rule is non-monotone. Indeed, consider the

following example:

Example 4. A player with valuation equal to 15, belonging to two groups with

bids respectively {15, 20, 25} and {9,10,15, 20}. Bidding truthfully leads to a utility

equal to 0 because he is a loosing player (group one wins and player two and three

pays 15 each one). However, any bid lower than 12 and higher than 9 leads to a

higher utility because in that situation this player is a winning player (he wins and

pays 9). Since the allocation rule is not monotone anymore, we cannot find a

truthful payment rule [93].

• TRUST*:

Under TRUST* all players of the group with the highest group bid are winners.
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Clearly, the allocation rule is monotone. Thus we can find a truthful payment rule.

The break-point for player i is given by the minimum bid that allows i to win the

auction. We denote by BTRUST
max

−i
the highest group-bid of groups to which i does

not belong.

pTRUST
i = min{bi,∃ gh s.t i ∈ gh and BTRUST

h ≥ BTRUST
max

−i} (5.1)

In order to compute that quantity we can proceed as follows, for each group h

which i belongs to, we compute the minimum bid, if it exists, which allows to have

BTRUST
h ≥ BTRUST

max
−i

. Then we take the minimum of all those minimum bids.

• VCG*:

We propose to apply VCG in this context. The winning group is the group with the

highest group-bid. We denote by BVCG
max

−i
the highest group-bid of groups to which

i does not belong. If the player belongs to the winning group gVCG
win with group-bid

BVCG
win then we can distinguish two cases: if i’s presence does not change the outcome

i.e., BVCG
win

−i ≥ BVCG
max

−i
then he pays 0 otherwise he pays BVCG

max
−i − BVCG

win
−i

. To

summarize:

pVCG
i = [BVCG

max

−i −BVCG
win

−i
]+. (5.2)

• PAM*:

We denote by ni the number of groups which i belongs to. The initial version of

PAM in [60] was actually designed under this assumption. The payment rule is

given by:

pPAM
i =

nibi +BPAM
g

−i

nibi +BPAM
Tot

−iR +
BPAM

Tot
−i −BPAM

g
−i

ni(
ln
nibi +BPAM

Tot
−i

niR +BPAM
Tot

−i +
niR +BPAM

Tot
−i

nibi +BPAM
Tot

−i − 1

)
.

(5.3)

• TLSAA*:

Under TLSAA* all players of the group with the highest group-bid are winners.

The allocation rule is monotone. Thus we can find a truthful payment rule (the

minimum bid which allows him to win the auction) by analogy to TRUST.

pTLSAA
i = min{bi,∃ gh s.t i ∈ gh and BTLSAA

h ≥ BTLSAA
max

−i} (5.4)
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• TLSAA2:

We cannot find a truthful payment rule since the allocation rule is non-monotone,

which can be seen on the following example.

Example 5. Suppose we have two groups with bids respectively {15,5, 3, 2.5}
and {7,5, 4}, where 5 is the valuation of a unique bidder belonging to both groups.

Clearly that bidder is a losing player (the first group wins the auction and only

the first player is a winning player and he pays 12). However, if that bidder had

proposed bi = 2.5 instead of 5 then he would be a winning player because in this

situation all players of the first group would be winners and each one would pay 2.

Table 2 summarizes the different truthful mechanisms for LSA with and without as-

sumption 1.

Scenario Candidate truthful mechanisms

Each BS belongs to one and only one
group

TAMES, TRUST, TLSAA,
TLSAA2, VCG, PAM

Each BS can belong to more than one
group

TRUST*, TLSAA*, VCG*, PAM*

Table 2 – Candidate truthful mechanisms.

In the following we numerically evaluate the impact of assumption 1. We compare

MEC and MEC*, without considering TAMES and TLSAA2 since as we have shown they

cannot be extended preserving truthfulness.

5.2.2 Impact of allowing a BS to be in several groups

In this section we study the impact of assumption 1 on each mechanism using the

following simulations: we fix two possible group configurations from the interference graph

of Fig. 4: In the first configuration C1, we have two groups g1 = {1, 2, 4, 6} and g2 = {3, 5}.
For the second configuration C2 we have three groups g1 = {1, 2, 4, 6}, g2 = {1, 2, 5} and

g3 = {3, 5, 6}. The marginal valuations of BSs are drawn from the uniform distribution

over the interval [0, 100]. For each mechanism and for each each reserve price R, we

compute the average (with respect to each metric) over 10000 draws. Results are shown

on Figs. 15 to 18.
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As we can see from these figures, for the all-or-nothing mechanisms, efficiency and

fairness are higher when a player can belong to more than one group: the cardinal of

the winning group will be higher in average with this assumption, yielding larger fairness

and efficiency. Hence first conclusion is: if the regulator wants to adapt an all-or-nothing

mechanism and his objectives are to maximize efficiency and fairness, he should choose

MEC* instead of MEC, i.e., construct groups by allowing BSs to belong to several groups.

When the allocation is not all-or-nothing (PAM and PAM*), it seems to be natural

that efficiency and fairness have opposite trends. Indeed, increasing efficiency means that,

in average, players with the highest valuations obtain more allocation (and hence players

with lower valuations obtain less), i.e., the allocation gap between players increases hence

a smaller Jain index (fairness).

In terms of revenue, as we can see from on Figs. 15 to 18, for some reserve prices the

revenue generated by MEC is higher than the revenue generated by MEC*, and we have

the opposite for other reserve prices. Thus we are not able to conclude whether MEC* is

better than MEC* (or the opposite) in terms of revenue.

0 50 100
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TRUST TRUST*

0 50 100
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0 50 100
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Figure 15 – Average revenue (left), fairness (center) and efficiency as a function of the
reserve price.

5.2.3 Choosing the best mechanism: revenue/fairness/efficiency

tradeoffs

We assume that the regulator is sensitive to the revenue from the auction, the alloca-

tion’s fairness and efficiency. More specifically, we suppose that, given a mechanism, the

normalized utility of the regulator UMec
Reg is of the form:

UMec
Reg = β1

RevMec

Revmax + β2J(α) + β3
EMec

Emax
, (5.5)
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Figure 16 – Average revenue (left), fairness (center) and efficiency (right) as a function
of the reserve price.
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Figure 17 – Average revenue (left), fairness (center) and efficiency (right) as a function
of the reserve price.

where β1 is the the weight that the regulator puts on revenue, β2 is the weight that he puts

on fairness and β3 is the weight that he puts on efficiency. β = (β1, β2, β3), β1+β2+β3 = 1,

Revmax and Effmax are respectively the maximum revenue and maximum efficiency over

the set of candidate mechanisms that we use to normalize the revenue criterion in (5.5).

Table 3 shows, for a fixed value of β, how the regulator can maximize his utility by

choosing a specific mechanism and by applying an appropriate configuration and reserve

price (we have fixed two possible group configurations from the interference graph of Fig.

4: In the first configuration C1, we have two groups g1 = {1, 2, 4, 6} and g2 = {3, 5}.
For the second configuration C2 we have three groups g1 = {1, 2, 4, 6}, g2 = {1, 2, 5} and

g3 = {3, 5, 6}). Also after allowing a BS to be in several groups, we provide the gain

of the operator i.e., how much his utility is increased compared to the scenario in which

there is only the configuration C1. In most cases the extension increases the utility of the

regulator except when his objective is to maximize the fairness of the allocation only: as

mentioned before, PAM is the most fair mechanism and it works better when each BS
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Figure 18 – Average revenue (left), fairness (center) and efficiency (right) as a function
of the reserve price.

(β1, β2, β3) Optimal mechanism Group configuration R UReg Gain
(1

3
, 1

3
, 1

3
) VCG* C2 27 0.765 8%

(0.5, 0.5, 0) PAM* C2 46 0.7384 4%
(0.5, 0, 0.5) TRUST* C2 41 0.92 9.5%
(0, 0.5, 0.5) PAM* C2 0 0.8638 3%
(1, 0, 0) PAM* C2 56 1 2%
(0, 1, 0) PAM C1 0 0.94 ×
(0, 0, 1) VCG* C2 0 1 23%
(0.2, 0.2, 0.6) TLSAA* C2 16 0.845 14%

Table 3 – Optimal mechanisms, reserve prices and configuration for some specific values
of β1, β2 and β3.

belongs to one and only one group.

5.3 Difficulty to ensure truthfulness when an MNO is

defined as a player who coordinates several BSs

In the literature, it’s common to suppose that a BS is player. In game theory, a player

is defined as a strategic agent who takes actions. In reality the action (proposing a bid)

is taken by the MNO who controls that BS. One may wonder why all those works do

not assume that a player is an MNO who coordinates several BSs. We can explain that

as follows: in order to obtain theoretical results and construct a truthful mechanism we

use Myerson lemma which states that for any monotone allocation rule we can find the

payment rule that ensures truthful bidding. However, this lemma does not work beyond

single parameter environments [95], for the general case when players submit bids in more
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than one dimension, there are no theoretical results, (except VCG), on how to implement

a truthful payment rule. In addition, the notion of monotonicity is not anymore clear and

needs to be defined.

But, for the special case where all BS of each MNO belong to one and only one group

(the same group), we can consider each MNO as a big BS with a bid equal to the sum of

bids of its BS and therefore we return to the original version (one dimension parameter).

In this section we consider relaxing assumption 2, we redefine an operator as a player

who coordinates several BSs. We suppose that the utility UI of an operator I which has

NI BSs is:

UI =

NI∑
i=1

αivi − pI .

Note that we will not change the system model i.e., the regulator collects bids from BSs

and then charges each BS its payment. The question which may arise is: under the new

definition of a player, do the previous mechanisms preserve truthfulness?

In this new definition of players, truthfulness means that for each operator I who has

NI BSs, proposing a bid vector equal to the valuation vector, i.e., proposing (b1, .., bNI
) =

(v1, .., vNI
) maximizes his utility.

Also, under this new definition of players, one may wonder the impact of assumption 1

on truthfulness. We show in the following proposition that relaxing assumption 1 is not

anymore challenging i.e., if we can find a mechanism which is truthful under assumption1

then it is still truthful when assumption 1 is relaxed.

Proposition 11. Under the new definition of player, if we can design a truthful auction

mechanism under assumption 1 then this mechanism can be adapted (we can find the

truthful payment rule) when assumption 1 is relaxed.

Proof. Let us fix an operator I with NI BSs with a vector of valuations VI = (v1, .., vNI
)

under the assumption that a BS can belong to more than one group. The utility of the

operator is given by:

UI =

NI∑
i=1

αi(BI)vi − PI(BI),
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where BI = (b1, .., bNI
) is the bid vector. We call this scenario scenario 1. Our objective is

to find PI(BI) which elicits truth telling. From scenario 1, we can find a similar scenario

(scenario 2) in terms of group allocation by considering each BS i with valuation vi and

bid bi and which belongs to ni groups in scenario 1 as ni different BSs in scenario 2 with

the same valuation vi and bid bi. In total we have N∗I =
NI∑
i

ni BSs; and αfirst
i =

ni∑
j=1

αsecond
j

where αfirst is the allocation vector in the first scenario and αsecond is the allocation vector

in the second scenario. We denote by B∗I and V ∗I the bid and valuation vectors of those

N∗I BSs.

Example 6. In the following example as shown in Fig. 19, the MNO has two BSs in

scenario 1: BS 1 with bid b1 belongs to g1, g2 and g3 and BS 2 with bid b2 belongs to g1

and g2. BS 1 which belongs to three groups in the first scenario is considered as three

different BSs in the second scenario BS 1, BS 3 and BS 4; BS 2 in the first scenario is

considered as two different BSs in the second scenario (BS 2 and BS 5 ). Since group-bids

are the same in both scenario (by construction) therefore the fraction allocated to BS 1

in the first scenario is just the sum of fraction allocated to BS 1, BS 3 and BS 4 in the

second scenario. Similarly, the fraction allocated for BS 2 in the fist scenario is the sum

of fractions allocated to BS 2 and BS 5 in the second scenario.

(a) Scenario 1 (b) Scenario 2

Figure 19 – Two equivalent scenarios in terms of group allocation

By assumption, for the second scenario, we can find the payment rule P ∗I which ensures

truthful bidding (B∗I = V ∗I ). Then, by construction PI(BI) = P ∗I (B∗I ) must ensure a truth
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telling. Indeed:

UI =

NI∑
i=1

αfirst
i (BI)vi − P ∗I (B∗I )

=

N∗I∑
i=1

αsecond
i (B∗I )v

∗
i − P ∗I (B∗I )

meaning that Ui is maximized for B∗I = V ∗I , by setting BI = VI we obtain that maximum

utility.

5.3.1 Most candidate mechanisms are not truthful

In the following proposition, we show that all the previous mechanisms, except VCG,

could not be applied.

Proposition 12. For all the previous mechanisms except VCG, there is no payment rule

ensuring truthful bidding when an MNO is defined as a player who coordinates several

bids of BSs.

Proof. We show the non-existence for each of the other schemes.

• TAMES and TLSAA2: it is a consequence of Proposition 11, and the fact that these

mechanisms need assumption 1 to be truthful. A negation of Proposition 11 is: if a

mechanism is not truthful when assumption 1 is relaxed then it could not be truthful

under assumption 1. Since TAMES and TLSAA2 are not truthful when assumption 1 is

relaxed ( and also in a special case when each operator has only one BS) then they could

not be truthful in this new scenario.

• TRUST: consider two groups, and suppose that operator I has two BSs with valuations

in bold and which are in two groups with valuations respectively {30, 3} and {5, 4}. By

bidding truthfully the second group wins the auction so the utility of the operator I is

5 − pI , however if that operator proposes a bid vector {30,0} then we are back to the

situation where a BS is a player (since each operator has one and only one BS): group one

wins the auction and in this situation the utility of the operator i is 30− 2 = 28 which is

strictly better than the previous one.

• PAM: consider an operator I with two BSs in two different groups. The first group

is composed by two BSs of different operators and the second contains only one BS. We
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denote by vI,1 the valuation of the first BS and by vI,2 the valuation of the second. Suppose

that vI,1 > vI,2 and the reserve price per bidder is zero. The utility of the operator is

given by:

UI = α1vI,1 + (1− α1)vI,2 − pI . (5.6)

But proposing any bid bI = (bI,1, 0) ensures a maximum utility which is equal to vI,1

because in this situation, a player is a BS and we have only one group thus the payment

is zero.

• TLSAA: we consider two groups with bids respectively {16, 20} and {15,30}. By bidding

truthfully, operator I gets a utility lower than 16. However, if he reports only his bid for

the second BS then he obtains a utility 30− 10 = 20.

5.3.2 Applying VCG

We apply the VCG mechanism in when an operator coordinates several bids of BSs.

The bandwidth is allocated to the group with the highest group-bid. The payment of

operator I, pVCG
I is given by

pVCG
I = E−I − (EI −

NI∑
i=1

biαi),

where E−I is efficiency when the operator I is absent, EI is efficiency when he I is present.

Example: Consider two groups with bids respectively {5, 30} and {12,8, 25}. The

payment of operator I (which has BSs with bold-written bids) is:

30− (45− (12 + 8)) = 5

5.4 Conclusion

In this chapter, in order to give the regulator more flexibility in the group construction,

we have relaxed assumption 1 by allowing each BS to be in multiple group. We have

shown how to adapt the payment rules of the previous mechanisms, when possible, to

maintain truthful bidding without modifying the allocation rule. This relaxation impact

the outcome of the auction as an example it can increase efficiency.
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At a second time, we have defined a player as an operator who coordinates several

BSs, this may be closer to reality. However, most of results were negative, we have shown

that under this assumption, only VCG can be applied and elicit truthful bidding.

We have supposed that the available quantity of available spectrum is small. However,

if the available LSA spectrum is important. Then, the auctioneer has to decide if that

quantity will be allocated as one block or it will be split to several blocks with equal [96] or

different [97] sizes. Splitting spectrum is important because it may increase the outcome

of the auction with respect to any metric, as an example it can increase fairness of the

allocation since spectrum will not be necessarily allocated to one and only one group, but

it may complicate the auction analysis. In the next chapter we treat the case where the

auctioneer has K blocks to allocate.
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Chapter 6

One-shot auctions for multiple blocks

6.1 Introduction

In the previous two chapters, we have designed mechanisms to allocate LSA spectrum,

that can be applied when there is only one block to allocate or valuation is linear. In this

chapter, we will take into account the concavity of valuations. We suppose that spectrum

is split into K identical blocks, identical meaning that BSs do not have preferences over

blocks [70, 98]. Each BS i has a private vector-valuation vi composed of K elements:

the first element vi,1 represents the value of one block and the nth element vi,n (n > 1)

represents the value of the BS i for an nth extra block given that it has already n−1 blocks.

The value of a block, for a BS, decreases with the number of blocks already obtained.

This corresponds to a discretization of concave valuation functions for spectrum [78], as

illustrated in Fig. 20. Finally, we adopt a quasi-linear utility model, if a BS i obtains nbi

blocks and pays pi, its utility is then:

ui =

nb
i∑

n=1

vi,n − pi.

In particular, an operator obtaining no block gets a utility equal to zero.
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Figure 20 – An example of a concave valuation function of obtained spectrum

The chapter is composed as follows: in Section 6.2, we show how convert all-or-nothing

auction mechanisms, under assumption 1 and assumption 2, to block allocation schemes.

Then is Section 6.4, we derive attention on the complexity of allocation for multi-blocks

scenario and we show that when assumption 1 is relaxed, the optimal allocation (with

respect to efficiency) is an NP-hard problem. Section 6.5 concludes the chapter.

6.2 Converting all-or-nothing schemes to block allo-

cation schemes

We suppose that each BS submits to the auctioneer a bid vector bi composed of K

elements in non increasing order. bi,n represents the bid of BS i for an nth extra block

given that it has already n − 1 blocks. We denote by BMEC
h the group-bid vector of gh.

BMEC
h is composed of K elements. The nth BMEC

h,n represents the bid of gh for an nth

extra block given that it has already n−1 blocks. We define BMEC
h , the group-bid vector

of gh which is composed of nh bidders, as follows (without loss of generality, we suppose

that gh is composed of the first nh bidders):

BMEC
h,n = fMEC

h (b1,n, .., bnh,n). (6.1)

We suppose that fMEC
h is a continuous and non-decreasing function with respect to each

variable.
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6.2.1 Allocation

Once group-bid vectors are computed from bids of players, the regulator obtains M×K
bids in total (we have M group-bid vectors and each vector is composed of K elements).

Blocks are allocated to the highest K bids among those M×K bids. We denote by CMEC
h

the vector of competing bids facing group h, i.e. CMEC
h is composed of the highest K bids

of other group. CMEC
h is sorted in an ascending order. The number of blocks that a group

wins is the number of competing bids he defeats:

if BMEC
h,n > CMEC

h,n then gh obtains an nth block. (6.2)

Example 7. Suppose we have five blocks to allocate to three groups which are

composed of one, two and three players respectively. Bids of players are assumed as

follows:

• bids of player of the first group: {(25, 19, 10, 8, 2)}

• bids of players of the second group: {(10, 9, 4, 3, 2), (11, 8, 3, 2, 1)}

• bids of players of the third group:

{(13, 10, 9, 8, 5), (11, 8, 6, 5, 2), (9, 8, 5, 3, 2)} ‘

We propose to apply VCG i.e., (BVCG
h,n =

nh∑
i=1

bi,n). Group-bids are defined as follows:

• BVCG
1 = {25, 19, 10, 8, 2}

• BVCG
2 = {21, 17, 7, 5, 3}

• BVCG
3 = {33, 26, 20, 16, 9}

Now let us compute the allocations: the five highest group-bid are {33, 26, 25, 21, 20}.
Three of those components (33, 26, 20) are in BVCG

3 therefore the third group obtains

three blocks. One component (21) is in BVCG
2 then the second group obtains one block

and one component (25) is in BVCG
1 then the first group obtains one block.

We can also performs allocations based on group-bid vectors and facing-bid vectors as

follows. Let us first introduce facing-bids:

• CVCG
1 = {17, 20, 21, 26, 33}
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• CVCG
2 = {19, 20, 25, 26, 33}

• CVCG
3 = {10, 17, 19, 21, 25}

The allocation can be performed as follows: BVCG
1 defeats only one elements of CVCG

1

(25 > 17), therefore the first group obtains one block. BVCG
2 defeats only one element

of CVCG
2 (21 > 19), therefore the second group obtains one block. BVCG

3 defeats three

elements of CVCG
3 (33 > 10, 26 > 17, 20 > 19), therefore the third group obtains three

blocks.

6.2.2 Payments

We denote by pMEC
i the payment vector of bidder i when the mechanism MEC is

applied. pMEC
i,n represents the payment of bidder i for his nth block. Here we propose a

payment rule that will ensure a truthful bidding as we will show next. The payment of

player i, who belongs to group h, is given by :

pMEC
i,n = min{r : fMEC

h (b1,n, .. r︸︷︷︸
i

, .., bnh,n) ≥ CMEC
h,n } (6.3)

This payment can be interpreted as follows: for his nth block, bidder i pays the minimum

amount r that allows him to obtain that block i.e., the minimum amount such that

BMEC
h,n = fMEC

h (b1,n, .. r︸︷︷︸
i

, .., bnh,n) ≥ CMEC
h,n .

Example 8. The payment rule of VCG using (6.3) is:

pVCG
i,n = min{r : r +

nh∑
j=1,j 6=i

bj,n ≥ CVCG
h,n }

= [CVCG
h,n −

nh∑
j=1,j 6=i

bj,n]+

This payment can be interpreted as follows: pVCG
i,n equal zero when the presence of bidder

i does not change the outcome i.e., there is no damage for other bidders, pVCG
i,n is strictly

positive only if the presence of bidder i causes damage to other bidders i.e., when he is

present that block is allocated to gh instead to another group (which has CVCG
h,n ). In this

situation the damage caused to other bidders is CVCG
h,n , but his presence is beneficial to
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the members of his group (the gain of his presence is
nh∑

j=1,j 6=i
bj,n). The difference between

those two quantities is (CVCG
h,n −

nh∑
j=1,j 6=i

bj,n).

Let us illustrate the payment of the first player of g3 of example 7, we denote by pVCG
i

that payment:

pVCG
i = pVCG

1,1 + p1,2
VCG + pVCG

1,3 = [10− 20]+ + [17− 16]+ + [19− 11]+ = 0 + 1 + 8 = 9

The gray surface in Fig. 21 illustrates how much player one of the third group has to

pay after obtaining three blocks. As this figure shows, for his first block he pays nothing

because his group obtains this block whether he is present or not. However, for the second

and the third block, he pays because his presence has changed the outcome.

0 1 2 3 4 5

10

20

30

LSA frequency blocks

B
id

s

Group-bid vector of g3
Group-bid vector of g3 without its first player

Competing bids facing g3

Figure 21 – Graphical illustration of the payments of the first player of the third group,
noted g3

We now prove that the proposed mechanism with allocation given in equation (6.2)

and payment given in equation (6.3) is truthful. Let us first introduce the two following

lemmas.

Lemma 1. Payments for blocks can only increase i.e., if player i pays pMEC
i,n for his n-th

block then he pays pMEC
i,n+1 ≥ pMEC

i,n for his (n+ 1)-th block.
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Proof. This is a consequence from the payment rule.

pMEC
i,n = min{r : fMEC

h (b1,n, .. r︸︷︷︸
i

, .., bnh,n) ≥ CMEC
h,n } (6.4)

≤ min{r : fMEC
h (b1,n, .. r︸︷︷︸

i

, .., bnh,n) ≥ CMEC
h,n+1} (6.5)

≤ min{r : fMEC
h (b1,n+1, .. r︸︷︷︸

i

, .., bnh,n+1) ≥ CMEC
h,n+1} (6.6)

= pMEC
i,n+1 (6.7)

For the first inequality we have used the fact that CMEC
h,n+1 ≥ CMEC

h,n . For the second

inequality, we have used the fact that for any bidder j bj,n ≥ bj,n+1 and the fact that

fMEC
h is an increasing function.

In the following, we call a component bi,n of the bid vector of player i a winning component

if bi,n ≥ pMEC
i,n and a losing component if bi,n < p

MEC
i,n .

Lemma 2. If a player gets n blocks, then the winning components of his bid vector are

exactly his first n components.

Proof. Assume that there is a situation in which bi,n is a losing bid and bi,n+1 is a winning

bid: bi,n being a losing bid means that bi,n < p
MEC
i,n with pMEC

i,n the price that he would

have pay for the n th block, and bi,n+1 being a winning bid means that bi,n+1 ≥ pMEC
i,n+1,

hence from Lemma 1, bi,n+1 ≥ pMEC
i,n and then bi,n+1 > bi,n, a contradiction.

We are now ready to establish the main result of this section.

Proposition 13. For the proposed mechanism with allocation given in equation (6.2)

and payment given in equation (6.3), truthful bidding, is a dominant strategy i.e., for

each bidder i proposing (bi,1, .., bi,K) = (vi,n, ..,vi,K) maximizes his utility.

Proof. Suppose that by bidding truthfully, player i (who belongs to group h) gets n blocks.

From lemma 2 his winning bids are the first n bids. For his first n bids, player i cannot

do better than proposing his true valuations: lowering the corresponding bids could make

him lose blocks that are charged below his valuation for them, and increasing those bids

would have no impact because he pays the same amount.
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Player i does not obtain an (n+ 1)th block, so we have

BMEC
h,n+1 = fMEC

h (b1,n+1, ..,vi,n+1, .., bnh,n+1) < CMEC
h,n+1. (6.8)

If player i wants an (n + 1)th block then he has to propose a bid bi,n+1 such that

BMEC
h,n+1 ≥ CMEC

h,n+1, however this leads to a lower utility: in this situation, player i pays

an amount r higher than vi,n+1 because fMEC
h (b1,n+1, ..,vi,n+1, .., bnh,n+1) ≤ CMEC

h,n+1,

fMEC
h (b1,n+1, .. r︸︷︷︸

i

, .., bnh,n+1) ≥ CMEC
h,n+1 and fMEC

h is an increasing function.

Remarks

In the approach that we propose, if a group gets a block, then all bidders of that group

can use that block. However in the original versions of TAMES and TLSAA2, there are

some bidders which will be scarified. In other word, the payment rule that we propose is

different from the one proposed in the original version (since allocation is not the same).

• For TAMES, bidder with the lowest bid is excluded. A question may arise is: can

we generate the original payment of TAMES and keep excluding, for each winning

block, player with the lowest bid for that block and charging the winners with that

amount? That approach can not be generalized when there are K blocks because

we may loose truthfulness as we illustrate in the following example.

Example 9. Suppose there are two blocks and two groups the first group is

composed of two bidders: bids of the first bidder are {9, 5} and {8, 6} for the

second bidder. The second group is composed of two bidders with bids respectively

{3, 2} and {1, 1}. Applying TAMES means that the first group wins both blocks.

Applying the original formula of payment means that for the first block, bidder one

obtains that block and pays 8, the second bidder obtains the second block and pays

5. However, if the first bidder has proposed {7, 7}, then he will obtain the second

block (as before he obtains only one block) and pays 6 which increases his utility.

• Under TLSAA2 if a group obtains an nth block, then not all players of that group

will use that block. Contrary to TAMES in which we have shown that we can not

extend its payment rule for multi-blocks scenario,in the following we show how to

adapt TLSAA2. Let us fix jn such that:

jn = max {rank(bi,n), i ∈ gh and rank(bi,n)bi,n ≥ Ch,n} (6.9)
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Our proposed payment rule is then that each player with rank below to jn pays an

amount to Ch,n/jn, players with rank above jn will not get that block.

Proposition 14. The proposed payment rule (6.9) ensures a truthful bidding for

TLSAA2 adapted for multi-blocks scenario.

Proof. Suppose that by bidding truthfully, player i (who belongs to group h) gets

nbi blocks. For his first nbi bids, player i cannot do better than proposing his true

valuations: lowering the corresponding bids could make him lose blocks that are

charged below his valuation for them, and increasing those bids would have no

impact because the payments are independent of his bids.

Player i does not obtain an (nbi + 1)th block, so we have

vi,nb
i+1rank(vi,nb

i+1) ≤ CTLSAA2
h,nb

i+1 (6.10)

where rank(vi,n+1) is just rank(bi,nb
i+1) when bi,nb

i+1 = vi,nb
i+1. If player i wants an

(nbi+1)th block then he has to propose a bid bi,nb
i+1 ≥ vi,nb

i+1 such thatBTLSAA2
h,nb

i+1
≥

CTLSAA2
h,nb

i+1
, however this leads to a lower utility: in this situation, player i pays

CTLSAA2

h,nb
i
+1

j
nb
i
+1

such that jnb
i+1 ≤ rank(vi,nb

i+1) (see (6.9)). Thus player i pays at least
CTLSAA2

h,nb
i
+1

rank(v
i,nb

i
+1

)

for that block, which is higher than vi,nb
i+1 (from (6.10)).

In the following, we refer to a mechanism MEC to be a pay-facing-bid mechanism if the

payment of a group for its nth block is exactly CMEC
h,n (winning bidders of that group pay

that amount). As an example TLSAA2 is pay-facing-bid mechanisms. We establish some

revenue guarantees for pay-facing-bid mechanisms.

6.2.3 Revenue guarantees for pay-facing-bid mechanisms

For pay-facing-bid mechanism, if a group obtains an nth block i.e., BMEC
h,n > CMEC

h,n then

it pays CMEC
h,n . We have BMEC

1 , ..,BMEC
M group-bid vectors. Each element is composed of

K components. In total we have KM components. We sort all those components in a non

increasing order to form a bid vector BSMEC of size KM , BSMEC = {BSMEC
1 , ..,BSMEC

KM }.
Let us first introduce the following lemma.
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Lemma 3. If a group h wins n blocks then he pays the first n bids in {BSMEC
K+1 , ...,BSMEC

2k }
which are proposed by other groups.

Proof. CMEC
h is composed of the highest K bids of other groups which are a subset in

{BSMEC
1 , ...,BSMEC

2k }. {CMEC
h,n+1, .., C

MEC
h,K } are in {BSMEC

1 ..,BSMEC
K } because they are win-

ning bids (group h cannot defeat those bids). The first n components of CMEC
h (which

group h will pay) are in {BSMEC
K+1 , ...,BSMEC

2k } because they are defeated bids and by defi-

nition since CMEC
h is composed of the highest K bids of other groups, the first n compo-

nents of Ch must be the first n bids in {BSMEC
K+1 , ...,BSMEC

2k } which are proposed by other

groups.

Proposition 15. The revenue of each pay-facing-bid mechanism adapted from MEC to

the multi-block setting is in [
2K∑

i=K+1

BSMEC
i , K × BSMEC

K+1 ].

Proof. Clearly for each group, the facing vector cannot have a component lower than

BSMEC
2K hence the revenue from each block is higher than BSMEC

2K , also the first K com-

ponents {BSMEC
1 , ...,BSMEC

k } are the winning bids thus the maximum revenue from each

block is BSMEC
K+1 .

• Upper bound: The best case in terms of revenue is when all blocks are allocated to K

different groups (here we suppose that M higher than K) and BSMEC
K+1 is a bid from another

group who does not get any block, in this situation the revenue is K × BSMEC
K+1 .

• Lower bound: Suppose that the revenue could be lower than
2K∑

i=K+1

BSMEC
i , this means

that there exists at least BSMEC
j (j ∈ {K, .., 2K − 1}) which will not be paid and at least

a component BSMEC
i lower than BSMEC

j which will be paid at least twice by a group h

and another group h′. This is a contradiction because:

1. if BSMEC
j is not a bid of group h then in this situation and using lemma 3, since group h

pays BSMEC
i then it must pay BSMEC

j .

2. if BSMEC
j is a bid of group h then in this situation and using lemma 3, since group h′ pays

BSMEC
i then it must pay BSMEC

j .

Thus, BSMEC
j must be paid by some group. Hence the revenue cannot be lower than

2K∑
i=K+1

BSMEC
i .
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6.2.4 Performance analysis

In the following section, we suppose that the auctioneer has K blocks to allocate and

we compare the previous mechanisms in terms of average efficiency, average revenue and

average fairness.

Simulation settings

For our simulation we go through the following steps:

1. Fix the number of blocks and the number of groups.

2. The number of players is chosen randomly from the discrete uniform distribution of

integer values in the interval [1 ; 30]

3. For each player i we create the bid vector bi which is composed of K elements: the

first bid is drawn from the uniform distribution over the interval [0, 100] and the

n-th element (n > 1) is drawn from the uniform distribution [0, bi,n−1].

For each number of blocks and number of groups, the average revenue and social welfare

are computed over 10 000 draws. A draw means that we generate the number of players

for each group then we generate the vector bid of each player.

Simulation results

K 1 2 4 8 16 50 100
VCG 0.18 0.34 0.59 0.758 0.881 0.966 0.98

TRUST 0.12 0.21 0.39 0.61 0.78 0.92 0.96
TLSAA 0.17 0.35 0.58 0.78 0.896 0.965 0.97
TLSAA2 0.11 0.23 0.49 0.65 0.782 0.89 0.93

Table 4 – Average fairness as a function of the number of blocks for M = 10

In terms of fairness, Table 4 shows that as we keep increasing the number of blocks,

fairness increases this seems to be natural since as we keep increasing the number of blocks

there are more chances that each group will be served which leads to increasing Jain’s

index.
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K 1 2 4 8 16 50 100
VCG 1 1 1 1 1 1 1

TRUST 0.66 0.658 0.69 0.74 0.83 0.96 0.99
TLSAA 0.97 0.98 0.99 0.99 0.99 0.999 0.99
TLSAA2 0.86 0.88 0.91 0.93 0.95 0.99 0.99

Table 5 – Average normalized efficiency as a function of the number of blocks for M = 10

K 1 2 4 8 16 50 100
VCG 0.26 0.18 0.122 0.10 0.102 0.12 0.14

TRUST 0.23 0.208 0.166 0.12 0.068 0.005 0.004
TLSAA 0.31 0.23 0.15 0.12 0.118 0.13 0.15
TLSAA2 1 1 1 1 1 1 1

Table 6 – Average normalized revenue as a function of the number of blocks for M = 10

K 1 2 4 8 16 50 100
TLSAA2 722 1278.81 1970 2433 1067.5 599 26.07

Table 7 – Average revenue of TLSAA2 as a function of the number of blocks for M = 10

In terms of efficiency, Table 5 shows that TRUST, TLSAA and TLSAA2 converge to

the optimal efficiency as we keep increasing the number of blocks which can be justified

as follows: we can see from Fig. 20 that if we keep moving on to the right side by adding

blocks, the value of an extra block is very small. i.e., adding a block has a very low impact

on social welfare. In terms of revenue, as we can see from Table 6 TLSAA2 offers the

highest revenue. However, if we keep increasing K, the revenue converges to zero (Table

7), this can be explained from Fig. 15, as we increase the number of blocks BSMEC
K

converges to zero, which justifies the low revenue.

As we can see from Table 7, for K = 100, revenue is very low. If the objective of

the regulator is to maximize his revenue then by allocating 8 blocks he obtains a higher

revenue. Therefore a natural question that may arise is: how to divide spectrum?
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6.3 How to set the number of blocks for a given quan-

tity of spectrum?

Choosing the number of blocks is very important because it may impact the outcome of

the auction especially in terms of revenue as we show in the following example: we suppose

that the auctioneer has a quantity of spectrum that could be split into two blocks so he

can allocate that quantity as a one block or two blocks. There are three groups, each

group is composed of one bidder.

Example 10.

• For the first case, we suppose that valuation vectors of bidders for two blocks are:

{30, 1}, {25, 3} and {4, 4}. The valuation of bidders for the whole spectrum as a

one block are 31, 28 and 6. In such a situation, if the auctioneer allocates spectrum

as a one block, then the first bidder obtains that block and pays 28. On the other

hand, if the auctioneer allocates the spectrum as two blocks then bidder one and

bidder two obtain one block each one and each bidder pays 4. The revenue is 8.

• For the second case, we suppose that valuation vectors of bidders for two blocks are:

{10, 5}, {10, 1} and {9, 0}. The valuation of bidders for the whole spectrum as a

one block are 15, 11 and 9. In such a situation, if the auctioneer allocates spectrum

as a one block then the first bidder obtains that block and pays 11. On the other

hand, if the auctioneer allocates the spectrum as two blocks then bidder one and

bidder two obtain one block each one, and each bidder pays 9 so the revenue is 18.

In this situation, allocating spectrum as a two blocks maximizes the revenue.

Therefore, splitting spectrum is very important. In the following simulation, we suppose

that there are 100 blocks with the minimum allowed size. Those blocks can be seen as

K ′ = 50 blocks of double size or K ′ = 25 blocks of quadruple size etc.

We evaluate the outcome of the auction by changing the number of blocks. We conclude

that by setting K ′ = 5, and by applying TLSAA2, the auctioneer multiplies his revenue

by 1000 in average (Table 8) for a loss of efficiency lower than 35% (Table 9) compared

to the optimal efficiency (Applying VCG and set K ′ = 100) and a loss of fairness lower

than 50 % (Table 10).

In the following, we focus on efficiency. We study the impact of relaxing assumption

1 on the complexity of VCG’s allocation. Indeed, when assumption 1 is relaxed, then the

allocation is not necessarily trivial since there is a correlation among group-bid vectors.
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K’ 100 10 5 4 2 1
VCG 3.82 1.5 422 458 488 368

TRUST 0.01 548 563 450 306 275
TLSAA 4.08 1.17 492 534 525 380
TLSAA2 26.8 40 3740 3523 2292 1304

Table 8 – Average revenue as a function of the number of blocks for M = 10

K’ 100 10 5 4 2 1
VCG 15574 15487 11337 9962 5469 2945

TRUST 15535 15481 8233 6830 3606 1908
TLSAA 15574 15486 11271 9588 5379 2887
TLSAA2 15570 15486 10572 8862 4800 2558

Table 9 – Average efficiency as a function of the number of blocks for M = 10

K’ 100 10 5 4 2 1
VCG 0.98 0.99 0.71 0.6 0.33 0.18

TRUST 0.96 0.99 0.5 0.4 0.21 0.12
TLSAA 0.97 0.99 0.0.71 0.61 0.33 0.17
TLSAA2 0.93 0.99 0.54 0.44 0.22 0.11

Table 10 – Average fairness as a function of the number of blocks for M = 10

6.4 Impact of allowing a BS to be in several groups

on the complexity of VCG’s allocation

In this section, we treat the case when assumption 1 is relaxed so each BS i may

belong to several groups. We are interested in the implementation of VCG. We denote

by X the allocation vector for groups, X = {x1, .., xM} and
M∑
i=1

xi = K. In the following

proposition, we show that when assumption 1 is relaxed, VCG’s allocation is an NP-hard

problem.

Proposition 16. For a given configuration of groups and with the hypothesis that a player

can belong to more than one group, allocating resources in an efficient manner is an NP

Hard problem.

Proof. We show this by the reduction of the maximum coverage problem [99]. The max-
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imum coverage problem is known to be NP Hard. It can be described as follows: given

a collection of sets S = S1, S2, . . . , SM which may have common elements, select at most

K of these sets such that the maximum number of elements are covered i.e., the union of

the selected sets has maximal size. We consider an instance of the previous problem and

reduce it to our problem. The reduction may be made as follows:

• Each set is a group.

• An element of a set is a player.

• The number of sets to select is the number of blocks to allocate.

• Each player wants exactly one block and his valuation equals 1.

Clearly, solving our problem leads to solving the previous problem.

Relaxing assumption 1 may lead to increase efficiency but it may induce some compu-

tational complexity. On the other hand, when we consider assumption 1, the allocation

is easy: We have just to sort the KM components and attributing blocks to groups with

the K highest components (since there is no correlation among those components) so the

complexity is just the complexity of sorting KM components which is O(KM logKM),

but we may loose in terms of efficiency.

we evaluate the performance of the proposed method of grouping (Algorithm 1 in

Chapter 2 and compare it to the optimal one (assumption 1 is relaxed) in terms of

efficiency. We define the normalized efficiency ENor as follows:

ENor :=
Eprop

Eopt

, (6.11)

where Eprop is the efficiency generated with algorithm 1 and Eopt is the optimal efficiency

which is obtained in two steps:

1. Extracting all maximal independent sets of the interference graph. This can be

done using a software like Julia. Notice that this step depends on the density of

the graph i.e,. the number of edges divided by all possible edges which is equal to
N(N−1)

2
.

2. Computing an optimal allocation for that set of groups via a solver. To obtain the

optimal allocation , we have to solve the following problem:
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maximize
X

N∑
i=1

nb
i∑

j=1

bi,j (6.12)

subject to
M∑
h=1

xh = K, (6.13)

nbi =
M∑
h=1

γi,hxh, ∀ i ∈ J1;NK (6.14)

where γi,h = 1 if player i belongs to the group h. The first constraint ensures that the

sum of allocated blocks for groups is K. The second constraint means that the number of

blocks obtained by bidder i is the sum of blocks obtained by groups to which he belongs

to. This problem is a combinatorial and non-linear problem because the objective func-

tion is not linear. Having a linear formulation is an important task to solve effectively the

problem with classic solvers. Transforming the problem into a Integer Linear Problem

(ILP) problem consists in developing an equivalent expression where objective function

and all constraints are linear. In order to obtain a linear objective function, we have intro-

duced constraints (6.17), (6.18) to linearize the objective function. We have introduced

a binary variable yi,j, yi,j = 1 if j ≤ nbi . Thus, the linear problem is represented as follows:

maximize
X

N∑
i=1

wi (6.15)

subject to
M∑
h=1

xh = K, (6.16)

wi =
K∑
j=1

yi,jbi,j ,∀ i ∈ J1;NK, (6.17)

yi,jj ≤ nbi ,∀ i ∈ J1;NK, ∀ j ∈ J1;KK, (6.18)

nbi =
M∑
h=1

γi,hxh,∀ i ∈ J1;NK (6.19)
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Finally, the optimisation problem can written as follows:

maximize
X

N∑
i=1

K∑
j=1

yi,jbi,j , (6.20)

subject to
M∑
h=1

xh = K, (6.21)

yi,jj ≤
M∑
h=1

γi,hxh,∀ i ∈ J1;NK, ∀ j ∈ J1;KK, (6.22)

Simulation settings

As for the test settings, the computations have been made on a server of 16 processors

Intel Xeon of CPU 5110 and clocked at 1.6 GHz each. The code has been written in Julia

0.5.0, and the solver used is Cplex 12.6 (default branch-and-cut algorithm [100]).

The steps of simulation could be summarized as follows:

• Fix the density of the graph d (the number of edges divided by the maximum possible

number of edges), N and K.

• Generate an interference graph randomly with respect to N and d.

• Create groups in two manners: by the proposed method and by extracting all maxi-

mum independents sets: the generation of the interference graph and the extraction

of all maximum independents sets are made by Julia.

• Generate bids: For each player i we create the bid vector which is composed of K el-

ements: the first bid is drawn from the uniform distribution over the interval [0, 100]

and the n-th element (n > 1) is drawn from the uniform distribution [0, bi,n−1].

• Allocate blocks with respect to the two grouping methods.

Simulations were made over 100 independent draws. A draw means that we gener-

ate a graph with respect to d and N , and for each player i we generate his bid-vector.

We denote by t1 the average resolution time for the optimal solution (groups with max-

imum independent sets) and t2 the resolution time with the proposed method of grouping.
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Figure 22 – Cumulative density function of ENor as a function of the density of the
graph for K = 2 and N = 50

K 1 2 4 8

Average ENor 0.71 0.743 0.773 0.81

t1(s) 0.5 3.2 62.3 450

t2(s) 0.2 0.55 1.1 1.9

Table 11 – Average normalized efficiency and resolution time as a function of the
number of blocks for N = 50 and d = 0.2

Simulation results

As we see from Fig. 22 and Table 11, with the proposed method of grouping, efficiency

is at least 60 % of the optimal one. Table 11 shows the average resolution time of the

optimal allocation and the average resolution time of the allocation with the proposed

method of grouping. As we keep increasing the number of block, the gap between those

time increase exponentially, therefore when the number of block is high, allowing a BS to

be in one and only one group may be a necessarily assumption especially when duration

of license is near to the optimal resolution time otherwise we may loose time looking for

the optimal allocation.

6.5 Conclusion

In this chapter, we have studied the case when a regulator has several identical

blocks to allocate in the context of LSA. We have shown how to adapt any all-or-nothing

auction mechanism into a multi-blocks mechanism. Also, we have investigated spectrum

splitting i.e., for a given a quantity of spectrum we have shown how to set K in order to
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maximize the utility of the regulator. In addition, when assumption 1 is relaxed the initial

problems (group construction and allocation) are NP-Hard. Therefore, we have proposed

an heuristic for grouping. This heuristic is easy and fast to built but may have a negative

impact on efficiency. We have quantity the loss in terms of efficiency. Simulation suggest

that the heuristic performs well and efficiency is at least 60 % of the optimal one. In the

next chapter, we focus on ascending auctions.
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Chapter 7

Ascending auction for multiple

blocks

7.1 Introduction

In this chapter, we again suppose that the auctioned LSA spectrum is composed of K

identical blocks, but contrary to the mentioned previous work which are sealed-bid one-

shot auctions, we focus on “ascending auctions” where information is revealed by bidders

during some convergence phase. Ascending auctions have been used with great success

to auction spectrum and they are sometimes preferred to sealed auctions [52]. Compared

with one-shot auctions, ascending auctions have several advantages: they preserve the

privacy of the winning bidder(s) because the winner(s) do(es) not reveal his/their val-

uation(s). Also, they give bidders the opportunity to adjust their valuations over the

convergence phase. This benefit of price discovery is ignored in one-shot auctions, which

assume that each bidder perfectly knows his valuation. Another advantage is the trans-

parency because each bidder sees the evolution of the auction. In this document we first

present an auction mechanism proposed by Mishra and Parkes, we show how to adapt it

to the LSA context. Since we may have some computational complexity, we use another

approach: Ausubel [9] has developed a mechanism which achieves the outcome of VCG.

This mechanism is based on the “clinching approach”. We show how to adapt the clinch-

ing approach for the LSA context using two approaches: the first approach is by adding

a representative per group so that the auction will be between the auctioneer and those

representatives and the second approach is by removing those representatives i.e., BSs

communicate directly with the auctioneer.
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We assume (without much loss of generality, since one can select the monetary unit)

that all valuations are integers. Also, we consider assumption 1 and assumption 2.

7.2 Adapting Mishra and Parkes’s mechanism

In this section we start by presenting Mishra and Parkes’s mechanism then we show

how to adapt it for the LSA context.

7.2.1 Background: Mishra and Parkes’ UCE mechanism

The mechanism proposed by Mishra and Parkes can be applied for general valuations

(items may be different), this auction mechanism is equivalent to VCG (same allocations

and payments). Consider N bidders and a set of different items I = {1, ..., K}, and

denote by Ω = {S ⊆ I} the set of all bundles of items. Mishra and Parkes [54] define an

ascending auction –which we will call UCE– as a price path that starts from round 0 with

vector price P 0 and ends at some round T with vector price P T . The authors develop an

ascending auction that is equivalent to the VCG mechanism by introducing the concept

of Universal Competitive Equilibrium (UCE). The price vector P t at each round t is of

dimension N2K (each player i faces a price vector P t
i of 2K elements, one for each bundle),

and is therefore non-anonymous (each player sees a different price for the same bundle).

Before presenting the auction, we introduce some necessary notations and definitions.

Notations and definitions for UCE

We denote by vi(S) ≥ 0 the valuation of player i for the bundle of items S and by pi(S)

the price paid by buyer i when obtaining that bundle.

Feasible allocation An allocation is a vector of bundles on buyers, the set of feasible

allocations is denoted by X.

Demand set The demand set of a player i, dti at round t is defined as the set of bundles

that maximize his profit at price vector P t
i , i.e., mathematically,

di(P ) := arg max
S∈Ω

(
vi(S)− P t

i (S)
)
.
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Note that di(P ) can contain several elements if the player has several utility-maximizing

bundles. Each player reports his demand set at each round; if a buyer demands the

empty bundle, then this player is called inactive, and must receive a zero utility from any

obtained bundle, i.e., Pi(S) ≥ Vi(S) ∀S ∈ Ω.

Supply set The supply set is the set of allocations that maximize the payoff of the

seller, which is the sum of payments of all players at price P :

L(P ) := arg max
X∈X

∑
Pi(Xi)

Note that those are not the real paid prices: the price vector aims at eliciting preference

revelation, so each player will have a discount at the end of the auction. The final payment

by each player is indeed defined in [54] as:

pi = Pi(S)−
(

Π(P )− Π(P−i)

)
︸ ︷︷ ︸

discount

, (7.1)

where Π(P ) is the sum of prices (based on P ) of players for the final allocation, and Π(P−i)

is the sum of payments of all players when i is absent (i.e., for a new revenue-maximizing

allocation ignoring i).

Definition 3. Competitive Equilibrium (CE): a price P and an allocation X are a com-

petitive equilibrium (CE) if X ∈ L(P ) and Xi ∈ di(Pi) for every buyer i, i.e., for this

price the allocation both maximizes revenue and satisfies each buyer.

Definition 4. Universal Competitive Equilibrium (UCE): a price P is a UCE if it is

a CE and the projection of P on every marginal economy (that is, the same situation

but removing one player: in total there are N marginal economies) is a CE. This means

that we can always satisfy all buyers while maximizing the revenue of the regulator after

excluding any individual player.

Achieving a universal competitive equilibrium price is very important because as is

proved in [54], Vickrey payments can be computed from P if and only if P is a UCE price

vector.

We illustrate these notions using an example with two items (A and B) and three
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players having the following valuations:v1(A) v1(B) v1(A,B)

v2(A) v2(B) v2(A,B)

v3(A) v3(B) v3(A,B)

 =

4 0 4

0 5 5

0 2 4

 .

We also suppose that P1(∅) = P2(∅) = P3(∅) = 0. Now consider the price vectors in P =2 0 2

0 2 2

0 2 4

 . The player demands are then d1(P ) = {A, {A,B}}, d2(P ) = {B, {A,B}}

and d3(P ) = {∅, A,B, {A,B}}. In this example (P,X) –where X is the allocation that

assigns item A to player one and item B to player two– is a CE equilibrium for the main

economy because the seller can maximize his revenue and satisfy the players. However,

after excluding player one, P is not anymore a competitive equilibrium in the resulting

marginal economy because maximizing revenue implies allocating both items to player

three, in which case player two is not satisfied.

On the other hand, the price P =

2 0 4

0 4 4

0 2 4

 is a universal competitive equilibrium:

in the main economy composed by all players, the seller can maximize his revenue (6)

while satisfying all buyers by allocating item A for player one and item B for player two.

In addition:

• this still holds in the marginal economy where player three is removed;

• in the economy composed by player two and three, revenue is maximized by allo-

cating both items (or only item B) to player two, both players having no better

option;

• similarly in the economy composed by player one and three, the seller can allocate

both items to player one.

Now applying (7.1), we get the paid prices p1 = 2− (6− 4) = 0, p2 = 4− (6− 4) = 2,

and p3 = 0.

The UCE auction steps

We now explain how the UCE auction can be implemented in practice.
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The auction starts with all prices set to 0 in P 0. At each round t, the seller asks players’

demands for the price vector, and checks whether a Universal Competitive Equilibrium is

reached. If it is not the case, a subset of active players (i.e., not having ∅ in their demand

set) is selected and all the prices of their demand sets are increased by one unit in the next

price P t+1. How to choose this subset opens some trade-offs, larger subsets speeding up

the convergence while possibly increasing the communication overhead and the revealed

valuations of players. An example of choosing that subset is given in Section 7.2.2.

We can summarize the auction steps as follows:

1. At every round t, each buyer reports his demand set for the price vector P t. Players

should respect two activity rules:

• Round Monotonicity: for every buyer di(P
t) ⊂ di(P

t+1).

• Bundle Monotonicity: if S ⊂ T and S ∈ di(P t) then T ∈ di(P t).

Note that these rules are satisfiable because valuations are integers and prices only

increase by one unit (or zero) between t and t + 1 for bundles in di(P
t), and never

increase if ∅ ∈ di(P t).

2. The seller computes the supply. If the situation is not an UCE, the auctioneer

chooses a set of players who will see a price increase at each demanded bundle.

3. The auction ends when a UCE price vector P is reached; then a CE allocation is

chosen, i.e., revenue is maximized and every buyer gets a bundle from his demand

set.

4. Each buyer is charged an amount pi computed from the final price P , applying (7.1)

for the chosen allocation.

7.2.2 Adapting Mishra and computational complexity

To implement the UCE auction mechanism, we need to take into account a set of feasible

allocations different from the original design since the allocation will be made for groups

instead of individual bidders while bids are individual.
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LSA-UCE rules

We denote by Xg the set of feasible allocations, that assign to each player i a bundle

Xg
i such that Xg

i = Xg
j if players i and j are in the same group and Xg

i ∩ X
g
j = ∅

otherwise. Note that all the demonstrations of [54] are still valid when replacing X with

Xg so the truthfulness and social welfare maximization properties can be easily proved.

The auction steps are exactly the same as those presented in subsection 7.2.1, except that

the allocation is made for groups i.e., players of the same group obtain the same bundle.

We illustrate in the following how we can adapt Mishra and Parkes’ model in the LSA

context.

Note that the price vector for each player is composed of K components instead of

2K (since items are identical), the first component representing the price for all K blocks

and the Kth component representing the price for only one block.

An example is provided in Tab. 12. At each round, following a proposition in [54], we

take a minimum set of buyers who cannot be jointly satisfied until a CE, i.e., until Round

7. Then we pick one of the active players (those having strictly positive utilities) until a

UCE is reached, at Round 9: in the marginal economies where one player of Group 1 is

removed, revenue is maximized by giving one block to each player, and if player four is

removed each player can get two blocks. Finally, Group 1 obtains two blocks since this

maximizes revenue, and the payments yield: p1 = 3− (9− 7) = 1, p2 = 3− (9− 7) = 1,

p3 = 3− (9− 8) = 2, and p4 = 0− (9− 9) = 0.

Computational complexity problems with U-LSA

Even if the original problem of computing an optimal allocation is not NP-hard when we

know the players’ valuations, implementing UCE may involve having to solve NP-hard

problems, which prevents its use in practice.

Proposition 17. Even when blocks are identical, an implementation of UCE can lead to

the regulator having to solve NP-hard problems.

Proof. We show that the step of finding a revenue- maximizing allocation can correspond

to solving a knapsack optimization problem with N items, item i (i = 1, ..., N) having

weight wi and value ṽi and maximum allowed weight W . Note that we assume W <
∑

iwi

otherwise the problem is trivial.

We consider an instance of the knapsack problem and reduce it to our problem:
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Round Group 1 Group 2
buyer 1 buyer 2 buyer 3 buyer 4

Vi,2, Vi,1 5, 3 6, 4 6, 3 7, 6

0 Price 0, 0 0, 0 0, 0 0, 0
Utility (5), 3 (6), 4 (6), 3 (7), 6

1 Price 1, 0 0, 0 0, 0 1, 0
Utility (4),3 (6),4 (6), 3 (6), (6)

2 Price 1, 0 0, 0 1, 0 2, 1
Utility (4), 3 (6),4 (5), 3 (5), (5)

3 Price 2, 0 0, 0 1, 0 3, 2
Utility (3), (3) (6), 4 (5), 3 (4), (4)

4 Price 2, 0 1, 0 1, 0 4, 3
Surplus (3), (3) (5), 4 (5), 3 (3), (3)

5 Price 2, 0 1, 0 2, 0 5, 4
Utility (3), (3) (5), 4 (4), 3 (2), (2)

6 Price 2, 0 2, 0 2, 0 6, 5
Utility (3), (3) (4), (4) (4), 3 (1), (1)

7 Price 2, 0 2, 0 3, 0 7, 6
Utility (3), (3) (4), (4) (3), (3) (0), (0)

8 Price 2, 0 3, 1 3, 0 7, 6
Utility (3), (3) (3), (3) (3), (3) (0), (0)

9 Price 3, 1 3, 1 3, 0 7, 6
Utility (2), (2) (3), (3) (3), (3) (0), (0)

Table 12 – Example of an UCE auction in the LSA context for two resource blocks and
two groups (Vi,2 is the valuation of bidder i for two blocks and Vi,1 is his valuation for
one block). At each round, bidder utility in parentheses indicate the demand sets (as
example, in the round 0 player one demands two blocks because he maximizes his utility
if he obtains two blocks), and grayed cells indicate the bidders whose prices (of the demand
set) will be raised by one unit (as example, in the round 0 player one demands two blocks
and player four demands two blocks, we choose them as minimum set, thus prices of their
demand sets will increase in the next round.
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• The maximum allowed weight W is the number of blocks K to allocate.

• Each item of weight wi and value ṽi corresponds to a group which contains only one

player with vector of valuations vi such that vi,n = ṽi1n≤wi
, this means that the valuation

of player i for ni blocks is niṽi if ni ≤ wi and wiṽi if ni ≥ wi.

Then, as long as its price is below ṽi, player i will keep asking for wi blocks or more, and

the corresponding prices will be of the form “pi for wi blocks or more, and 0 otherwise”.

Since the algorithm does not specify whose (unsatisfied) bidder prices will be raised, it can

happen1 that the prices of each bidder i reach ṽi, and finding an allocation maximizing

revenue then corresponds to solving the knapsack problem.

Thus, we propose in the following mechanism a simpler allocation based on the concept

of clinching.

7.3 Adapting the clinching approach to the LSA con-

text

We start by presenting the clinching auction and then we show how to adapt if for the

LSA context.

7.3.1 Background: clinching auction

The clinching auction is an ascendant auction for K homogeneous goods, where bidders

have decreasing marginal valuations: the willingness-to-pay for an extra item decreases

with the number of items already obtained. At each round t, the auctioneer declares

a price pt and bidders respond by asking for a quantity (at each round the demanded

quantity cannot exceed the demanded quantity in the previous round) at that price, the

price increasing (in general we can increment by ε > 0 but here with integer valuations

we take pt+1 = pt + 1) until demand is no greater than supply K. Bidders’ payments are

computed during the auction: an active bidder clinches (obtains) an item at price p if the

demand of the other players at that price is less than the supply. The seller computes two

1As an example suppose that W = 6 and consider an item of weight wi = 3 and value ṽi = 5, this
object corresponds to a player with vi = (5, 5, 5, 0, 0, 0), or Vi = (15, 15, 15, 15, 10, 5). The price starts
with (0, 0, 0, 0, 0, 0), player i keeps asking for 3, 4, 5 or 6 blocks, thus the price can reach (5, 5, 5, 5, 0, 0).
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quantities namely cumulative clinch and current clinch, defined as follows.The cumulative

clinch Clti of player i at round t is defined as:

Clti = max{0, K −
∑
j 6=i

dtj}, (7.2)

with dtj the demand of player j at round t. The increment of the obtained blocks is called

the current clinch at round t of player i, and denoted by clti:

clti = Clti − Clt−1
i . (7.3)

When the auction ends, each bidder i obtains a quantity equal to his cumulative clinch

Cli, and his payment pi is:

pi =
T∑
t=0

ptclti. (7.4)

It was proven in [9] that the clinching auction achieves the outcome of VCG i.e., it en-

sures an efficient allocation, charges each player with his Vickrey payment and bidding

truthfully is an ex post Nash equilibrium. Truthful bidding is an ex-post equilibrium

when each player knows that bidding truthfully is a best strategy if all other players

also bid truthfully and without knowing the other players’ valuations [101]. Here bid-

ding truthfully means that each player reports his demand with respect to his valuations:

di(p) = max{n such that vi,n > p}, for a given declared price p.

An illustrative example is provided in Tab. 13, with three items, and three players with

respective marginal valuations {6, 4, 0}, {5, 3, 2}, {2, 1, 0}. (Note that we will suppose that

players are not willing to pay a price per block equal to the valuation of that block, as

an example if player one gets one block for a price pt = 6 then his utility is zero, hence

we will suppose that for pt = 6 player one will not demand any block i.e., his demand is

zero.)

For p = 2, the sum of demands of player two and three is equal to 2, hence, cl21 =

1− 0 = 1,

player one clinches his first block at price 2. Similarly, player two clinches his block

at the same price. At p = 3, cl31 = 2 − 1 = 1, thus player one clinches his second block.

Finally the auction concludes at price p = 3 (d1 + d2 + d3 = 3), player one obtains two

blocks and pays 2 + 3 = 5 and player two obtains one block and pays 2.
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Round 0 1 2 3
Price 0 1 2 3

Total demand 7 6 4 3 = K

d1 2 2 2 2
Clt1 0 0 1 2
clt1 0 0 1 1
p1 0 0 2 2+3

d2 3 3 2 1
Clt2 0 0 1 1
clt2 0 0 1 0
p2 0 0 2 2

d3 2 1 0 0
Clt3 0 0 0 0
clt3 0 0 0 0
p3 0 0 0 0

Table 13 – An example of clinching auction for K = 3 items.

Remarks

1. We illustrate in the following example why truthful telling is not a dominant strat-

egy. We suppose we have two blocks and two players, where valuations of the first

player are {3, 2} and the second {2, 1}. Suppose that the second player uses the

following strategy: if the first player demands two blocks at the first round then

he will continue to demand 2 blocks until the end of the auction (even though he

will obtain a negative utility), otherwise he demands one block. Clearly, given that

strategy, player one has to demand only one block at the first round so at the sec-

ond round the auction clears (ends) and he obtains one block leading him to utility

3− 1 = 2.

2. We denote by ci the highest K valuations of other players facing player i. If a player

obtains his nth block at a price p then p is the minimum amount such that the sum

of demands of all other players is K − n, clearly p corresponds to ci,n.
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Figure 23 – The first approach (with a representative per group)

7.3.2 Adapting the clinching approach for the LSA context

We propose to implement the ascendant version of VCG, based on the clinching approach

using two approaches: the first version is by introducing a representative per group, an

intermediary between bidders and the auctioneer. In the second approach, we remove

those representative so that the auction will be between te auctioneer and bidders.

With representatives

We propose to introduce a representative per group which will act on behalf of members

of that group. It can be an interface between BSs and the auctioneer. There is no

communication between BSs and the auctioneer (see Fig. 23). The auction will be

between the M representatives and the auctioneer. Before the auction takes place, each

BS i transmits to the representative of its group its bids vector bi which can be different

from vi, then each representative h constructs the group-bid vector based on the received

bids (BVCG
h,n = fVCG

h (b1,n, .., bnh,n) =
nh∑
i=1

bi,n).

As in the initial clinching auction, the auctioneer broadcasts a per-block price P

starting with P = 0 (to simplify notation we write P instead of P t), each representative

h responds with its demand Dh(P ), that is, a number of blocks the group is willing to

buy at that price:

Dh(P ) = max{n,BVCG
h,n > P}. (7.5)

The auctioneer keeps increasing P by one unit until the sum of demands of all repre-

sentatives is equal to or below K. To perform clinching (i.e., decide on block allocations),

we use the same model as before but adapt it to groups (representatives): the cumulative
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clinch Clth of representative h is then defined as:

Clh(P ) := max{0, K −
∑
j 6=h

Dj(P )}. (7.6)

As in the original scheme, the current clinch at time t for representative h is the increment

of Clh.

clh(P ) = Clh(P )− Clh(P − 1). (7.7)

After obtaining a block at price P , each representative charges each BS of its group as

follow:

phi,n = min{r : fVCG
h (b1,n, .. r︸︷︷︸

i

, .., bnh,n) ≥ P} = [P − (BVCG
h,n )−i]+ (7.8)

Summarizing, the ascending auction we propose would follow the following steps:

1. Each BS reports to the corresponding representative its bids vector.

2. The representative constructs his vector of valuations.

3. At each round, each representative reports his demand Dh(P ) to the auctioneer.

4. The auctioneer computes the cumulative clinch Clth of each representative h at round

t which is defined as:

Clth = max{0, K −
∑
j 6=i

Dt
j}, (7.9)

with Dt
j the demand of other representative j at round t. the current clinch at round

t of the representative h is denoted by clth:

clth = Clth − Clt−1
h . (7.10)

5. If a representative clinches a block at a price P then it charges each BS i of its group

a price given in (7.8) and sends that amount to the auctioneer.

6. If the demands of all representatives is higher than K, then the auctioneer increases

P at the next round and we go back to step 3, otherwise the auction ends.

In the following, we investigate truthfulness of the proposed mechanism. Let us first

introduce the following proposition.
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Proposition 18. From the point of view of a BS, proposing a bid bi to the representative

is the same as proposing a bid to the auctioneer in the one shot version because both

auction will generate the same outcome (in terms of allocations and payments).

Proof. After receiving bids from BSs, each representative of gh computes the group-bid

vector of gh, (before that step is made by the auctioneer). A representative obtains his nth

block at price P means that the demand of other group at that price is K−n and at P −1

is K+1−n, therefore P must be equal to Ch,n. Thus the auction with representatives leads

to the some allocation as the one-shot version. Now, for his nth block i.e., when P = Ch,n,

player i will be charged, by the representative, with respect to (7.8). That amount is

the same as before (see (6.3)). Therefore both auction lead to the same allocations and

payments.

Proposition 19. After introducing representatives, for each bidder i, reporting his true

valuation vector to the corresponding representative is a dominant strategy.

Proof. Since in the one shot version bidding truthfully is a dominant strategy, then here

also bidding truthfully is a dominant strategy.

Example 11. Consider three groups and K = 4 blocks, with the following valuation

vectors:

• in Group 1 (3 players): {9, 7, 6, 5}, {7, 7, 5, 2}, {6, 3, 3, 2}.

• in Group 2 (2 players): {7, 6, 4, 3} {9, 7, 5, 2}

• in Group 3 (1 player): {15, 10, 3, 1}

Group-bids are: BVCG
1 = {22, 17, 14, 9},BVCG

2 = {16, 13, 9, 5} andBVCG
3 = {15, 10, 3, 1}.

We conclude that the auction stops at P = 14 (when the sum of demands equals 4):

Price 1 2 3 4 5 6 7 8 9 10 11 12 13 14
D1 4 4 4 4 4 4 4 4 3 3 3 3 3 2
D2 4 4 4 4 3 3 3 3 2 2 2 2 1 1
D2 3 3 2 2 2 2 2 2 2 1 1 1 1 1

Table 14 – Demand and price evolution for VCG

1. The first group clinch his first block at P = 10. Each one pays zero.
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2. At P = 13 the first group clinches its second block. The first bidder pays 13− (7 +

3) = 3, the second bidder pays 3 and the third bidder pays [13− 14]+ = 0.

3. At P = 14, the second and the third group clinch their first block. For the first

bidder of the second group he pays 14− 9 = 5. The second bidder pays 14− 7 = 7.

The bidder of the third group pays 14.

The implementation with representatives has the following advantages: truthful telling

is a dominant strategy and the auctioneer could not have a precised idea about valuations

of BSs, he may have only an idea about the total valuation of group h for an nth block

but he can not see the valuation of each BS. In practice, it may be difficult to introduce

those representatives because we may have “the black box effect”: from the point of view

of players, they cannot see the evolution of the auction (they are just asked to pay an

amount for an obtained block). For the auctioneer, he cannot see how each BS is charged;

in the original version of clinching (without groups), each player pays the clinching price.

In our situation, the clinching price is the maximum amount that a representative can

pay.

Proposition 20. If a group (representative) clinches his nth block at price P then the

sum of payments of players of that group cannot be higher than P .

Proof. We can distinguish two cases

1. There exists a player i such that bi,n > P , then in this situation, each player j (in the

same group as i) except i pays zero because BVCG
h,n

−j
> P , for player i he will pay

[P −BVCG
h,n

−i
]+ < P thus the revenue in this situation is lower than P .

2. ∀ i, bi,n < P , we take any set Sh such that the sum of bids of its members is higher

than P and lower than P when removing any player of the set i.e.,
∑

i=1,i∈Sh

bi,n ≥ P and

∀ j ∈ Sh
∑

i=1,i 6=j,i∈Sh

bi,n ≤ P , we can obtain that set as follows: we sort bids of group h in

a non increasing order. In the beginning Sh is composed by the player with the highest

bid. We keep extending Sh by adding players until both conditions hold. In this situation,

each player of group h who does not belong to Sh pays zero, and the payment of group h
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is given by:

Ph,n =

|Sh|∑
i=1

(P −
nh∑
j 6=i

bj,n) (7.11)

= |Sh|P −
|Sh|∑
i=1

nh∑
j 6=i

bj,n) (7.12)

Since

|Sh|∑
i=1

nh∑
j 6=i

bj,n =

|Sh|∑
i=1

(

nh∑
j 6=i

bj,n + bi,n − bi,n) (7.13)

= |Sh|BVCG
h,n −

|Sh|∑
i=1

bi,n , (7.14)

we obtain

Ph,n = |Sh|P − |Sh|BVCG
h,n +

|Sh|∑
i=1

bi,n (7.15)

≤ |Sh|P − |Sh|
|Sh|∑
i=1

bi,n +

|Sh|∑
i=1

bi,n (7.16)

= (|Sh| − 1)(P −
|Sh|∑
i=1

bi,n) + P (7.17)

≤ P. (7.18)

So if the auctioneer provides a representative a block at price P , then his revenue

varies from 0 to P .

In the following we show how to implement the ascending version when removing those

representatives so that the auction will be held between the auctioneer and BSs directly.

Without representatives

In this scenario, the auction will be between the regulator and BSs. Similarly to what

was presented before, the auctioneer fixes a price P and keeps increasing P until demand
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Figure 24 – The second approach

of groups is no higher than supply. The question here is how to compute the demand of

groups? We propose to introduce a price ph per group and perform as follows: for each

price P , the auctioneer keeps increasing ph and asks each player of group h his demand

di(ph) (see Fig. 24 ), until he can compute the demand of group h Dh(P ) i.e., demands

of groups will be computed from demands of players.

Dh(P ) = max{n : ∃ (r1, ..., rnh
) ∈ R|nh| s.t. di(ri) = n and fVCG

h (r1, ..., rnh
) > P} (7.19)

Note that bidder i reports his demand truthfully means that:

di(ph) = max{n,vi,n > ph}. (7.20)

We show in the following proposition that this demand is the same as the one presented

before (with representatives).

Proposition 21. The demand of a group h given in (7.19) is equivalent to the demand

given in ( (7.5)).

Proof. In order to prove the equivalence we show the following equivalence:

BVCG
h,n > P ⇐⇒ ∃ (r1, ..., rnh

) ∈ R|nh| s.t. di(ri) = n andfVCG
h (r1, ..., rnh

) > P

• ⇒ BVCG
h,n > P : this means that fVCG

h (b1,n, ..., bnh,n) > P , since fVCG
h is a continuous

function then we can find (εi, ..εnh
) such that fVCG

h (b1,n − ε1, ..., bnh,n − εnh
) > P . Thus

by setting ri = bi,n − εi we obtain fVCG
h (r1, .., rni

) > P and di(ri) = n.

• ⇐∃ (r1, ..., rnh
) ∈ R|nh| s.t. di(ri) = n andfVCG

h (r1, ..., rnh
) > P : means that bi,n > ri∀i

(because di(bi,n) = n− 1) since fVCG
h (r1, .., rni

) > P then fVCG
h (bi,1, .., bi,ni

) > P .
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The auctioneer keeps increasing ph until he can compute the demand of group h at

price P as illustrated in Fig. 25.

Can we
compute

the demand
of group h
at price P

Each player
of group h
reports his

demand for ph

ph = ph + 1

No

Yes

Figure 25 – Relation between P and ph

Remark

Preserving valuations of players is one of the most desirable properties of multi-round

auctions, however the auctioneer may have an idea about valuations of some players.

As an example, in the English auction, if a player drops out at a price, then that price

corresponds exactly to his valuation. Similarly here, when introducing prices per group,

the auctioneer can have some idea about valuations of some players: if di(ph) = n and

di(ph + 1) = n− 1 then bi,n = ph + 1.

Now the question is how to charge each player? We will use the same logic as before:

Let us fix the first bidder of gh. If gh can clinch an nth block without the participation of

that bidder i.e., we achieve some vector (0, r2, .., rnh
) such that fVCG

h (0, r2, .., rnh
) > P ,

then the first bidder pays zero. Otherwise group h cannot clinch that block therefore we

can compute the maximum amount that it can pay for that block i.e., from demand of

players we can compute BMEC
h,n

−1 and therefore player 1 pays P −BMEC
h,n

−1
.
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Can we
compute

the demand
of group h
at price P?

P = P + 1

Each player
of group h
reports his

demand for ph

ph = ph + 1

Can we
compute the
demand of
all groups?

Enter with P = 0
and ph = 0 for all h

No

Yes

No

Take a group
h whose

demand at P
is unknown

Yes

Operate
allocation

Can we
conclude

the auction?

Yes

Exit

No

Figure 26 – Applying the clinching approach in the LSA context.

In the following proposition, we show that truthful telling is an ex post-Nash equilib-

rium.

Proposition 22. In the ascending implementation of MEC without representative, truth-

ful telling is an ex post-Nash equilibrium.

Proof. Let us fix a player i, suppose that all other BSs report their demand truthfully

during the auction, by reporting its true demand player i will obtain the same utility as in

the auction with the representatives since both auctions have the same allocations (same

demands) and payments (by construction). We denote by u1 that utility. Now we have to

show that any other strategy of demanding for player i will reduce its utility i.e., it obtains

a utility u2 ≤ u1. Suppose that that strategy generates a higher utility, this means that

player i could obtain the same utility in the first implementation (with representatives)

by proposing a bid vector with respect to his reported demands i.e., if di(ph) = n − 1

and di(ph − 1) = n then he fixes bi,n = ph. This is a contradiction because in the first

implementation, proposing the valuation is a dominant strategy. Thus u1 ≥ u2.

Example 12. We take the same configuration as example 11 To compute D1(P ) for

P = 1, we start with p1 = 1 and ask players their demand at p1. All players are willing to
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buy 4 blocks at that price, hence we know that D1(P ) = 4 as long as P ≤ 3, each player

is willing to pay a unit price r1 = r2 = r3 = 1.

For P = 4 we need to ask individual demands at p1 = 2. Truthful answers give

d1(2) = 4 and d2(2) = d3(2) = 3, so we know that D1(P ) = 4 as long as P ≤ 5.

For P = 6, we know from the responses for p1 = 2 that D1(P ) ≥ 3. We increase p1

(p1 = 3). Since player one is willing to buy 4 blocks at a unit price 3, then D1(P ) = 4,

(r1 = 3, r2 = r3 = 1.5).

Following that process, we derive the group demands. D1(P ) = 4 for P < 9, D1(P ) = 3

for 9 ≤ P ≤ 13, D1(P ) = 2 for 14 ≤ P < 17, D1(P ) = 1 for 17 ≤ P < 22 and D1(P ) = 0

for P ≥ 22.

At each P , we compute the demand of all groups as the first group, until total demand

gets equal to or below K We conclude that the auction stops at P = 14 (when the sum

Price 1 2 3 4 5 6 7 8 9 10 11 12 13 14
D1 4 4 4 4 4 4 4 4 3 3 3 3 3 2
D2 4 4 4 4 3 3 3 3 2 2 2 2 1 1
D2 3 3 2 2 2 2 2 2 2 1 1 1 1 1

Table 15 – Demand and price evolution for VCG

of demands equals 4):

1. The first group clinches his first block at P = 10. Each one pays zero because when

he is absent the other players could obtain that block.

2. At P = 13 the first group clinches its second block. The first bidder pays 13 −
(7 + 3) = 3, because from p1 = 8 we can see that bidder two can pay a maximum

amount 7 for a second block and the third bidder can pay a maximum amount 3.

The second bidder pays 3 and the third bidder pays 0.

3. At P = 14, the second and the third group clinch their first block. For the first

bidder of the second group he pays 14 − 9 = 5 (p2 was incremented till 9 which

corresponds to the maximum amount that bidder can pay in order to obtain one

block. The second bidder can not obtain that block when he is alone). The second

bidder pays 14− 7 = 7. The bidder of the third group pays 14.

Remark We can generalize those approaches to any auction mechanism with group-bid

function fMEC
h . Indeed, we have just to replace fVCG

h by fMEC
h and all demonstrations
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are still valid (truthfulness is an ex-post Nash equilibrium). In the following example we

show how to implement the ascending version of TLSAA.

Example 13. We take the configuration of example 11. Recall that:

• fTLSAA
h (r1, .., rh) = max{rirank(ri)} which can be interpreted as the maximum

amount that a subset of players of group h can pay equitably.

TLSAA implementation with representatives

Group-bids are: BTLSAA
1 = {18, 14, 10, 6}, BTLSAA

2 = {14, 12, 8, 4} and BTLSAA
3 =

{15, 10, 3, 1}.

Price 1 2 3 4 5 6 7 8 9 10 11 12
D1 4 4 4 4 4 3 3 3 3 2 2 2
D2 4 4 4 3 3 3 3 2 2 2 2 1
D2 3 3 2 2 2 2 2 2 2 1 1 1

Table 16 – Demand and price evolution for TLSAA

We conclude that the auction stops at P = 12 (when the sum of demands equals 4):

the first and the second group clinches their first block each one at P = 10. For the first

group, each player pays 0. For the second group, each bidder pays 5.

At P = 12 the first group clinches its second block and the third group clinches its first

block. Player one and two of the first group pay 6 each one for their second block and

player three pays 0 for his second block. The player of the third group pays 12.

TLSAA implementation without representatives

The demand of gh under TLSAA can be written as:

Dh(P ) = max{n : ∃ (r1, ..., rnh
) ∈ R|nh| s.t. di(ri) = n and fLSAA

h (r1, ..., rnh
) > P}

= max{n : ∃ (r1, ..., rnh
) ∈ R|nh| s.t. di(ri) = n and max{rirank(ri)} > P}

= max{n : ∃ ω ⊂ gh and r ∈ R s.t. di(r) = n and r|ω| > P}

Dh(P ) is the maximum number of blocks that a subset of players in group h are willing

to buy if they equally share the unit price P .

117



To compute D1(P ) for P = 1, we start with p1 = 1 and ask players their demand at

p1. All players are willing to buy 4 blocks at that price, hence we know that D1(P ) = 4

as long as P ≤ 3, each player is willing to pay a unit price r = P/3 ≤ 1.

For P = 4 we need to ask individual demands at p1 = 2. Truthful answers give

d1(2) = 4 and d2(2) = d3(2) = 3, so we know that D1(P ) = 4 as long as r = P/3 < 2,

i.e., when P ≤ 5.

For P = 6, we know from the responses for p1 = 2 that D1(P ) ≥ 3, since all three

players are interested to buy 3 blocks at a unit price 6/3 = 2. But possibly D1(P ) = 4, if

player one is willing to buy 4 blocks at a unit price 6. So we increase p1 and ask players

their demand until either 6 is reached or d1(p1) < 4. The latter occurs first, for p1 = 5,

which leads to the conclusion that D1(6) = 3 (each player is willing to pay r = 2 ).

Following that process, we derive the group demands D1(P ) = 3 for P = 7, 8,9, as an

example for P = 9 we have r = 4.5 and ω is composed by the first and the second bidder

since the third bidder is not willing to pay 3 in order to have 3 blocks.

Finally, we have D1(P ) = 2 for 10 ≤ P ≤ 13, D1(P ) = 1 for 14 ≤ P ≤ 17, and

D1(P ) = 0 for P ≥ 18.

At each P , we compute the demand of all groups as the first group, until total demand

gets equal to or below K We conclude that the auction stops at P = 12 (when the sum

Price 1 2 3 4 5 6 7 8 9 10 11 12
D1 4 4 4 4 4 3 3 3 3 2 2 2
D2 4 4 4 3 3 3 3 2 2 2 2 1
D2 3 3 2 2 2 2 2 2 2 1 1 1

Table 17 – Demand and price evolution for TLSAA

of demands equals 4):

1. The first and the second group clinch their first block at P = 10. For the first group,

each player pays 0 because when he is absent, the author two bidders can obtain

that block for r = 5. For the second group, it obtains his first block block and each

bidder pays 5, p was incremented till 9 so we know that 5 is the minimum amount

that each one has to propose in order to obtain that block.

2. At P = 12 the first group clinches its second block and the third group clinches its

first block. Player one and two of the first group pay 6 each one for their second
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block: when one of them is absent the group will not obtain that block (p1 = 9).

When they are present, r = 6 is the minimum amount that allow each one of them

to win that block. Player three pays 0 for his second block). The player of the third

group pays 12.

Note that, in order to evaluate the performances of an auction mechanism, there is

no need to implement the ascending version, we can use the one-shot auction since both

auction leads to the same outcome.

7.4 Conclusion

In this chapter, we have shown how to implement the ascending version of VCG using

the UCE auction and highlighted some computational complexity issues with the result-

ing mechanism, even when auctioned items (spectrum blocks) are identical. To deal with

computation complexity of UCE, we have proposed to adapt the clinching approach for

the LSA context. That approach can be used to develop the equivalent ascending auction

of any one-shot truthful mechanism that could be applied for LSA. we have proposed

two implementations: For the first implementation, we have introduced a representative

per group. At each round, each representative transmits to the regulator the demand

of its group based on bids of its members. Each BS is charged a price computed by

the representative of its group. There are two advantages of this implementation. First,

truthful telling is a dominant strategy and second we preserve privacy of valuations of

BSs. However, it can be difficult to introduce those representatives in practice. Thus, at

a second time, we have proposed another ascending implementation without those repre-

sentatives and in which communication is directly between the auctioneer and BSs. We

have introduced a price per group and show how to compute the payment of each player.

In the second approach truthful telling is an ex post Nash equilibrium. Transparency is

the main advantage of the second implementation because each BS sees the evolution of

the auction.
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Part IV

Conclusions and perspectives
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Chapter 8

Conclusion and perspectives

8.1 Conclusion

In this thesis we have studied efficient frequency allocation in the context of 5G LSA.

Under LSA the owner of the 2.3 − 2.4 GHz bandwidth can share his bandwidth with

MNOs. Sharing is done after obtaining a license from the regulator.

How to attribute licenses is not specified yet. In general, in the licensing process,

the regulator can use administrative approaches when demand is lower than supply and

auctions when demand exceeds the amount of spectrum to offer. The 2.3 − 2.4 GHz

bandwidth is considered as a valuable resource thanks to its ability to travel far and offer

high capacity. Therefore, for the licensing process in the LSA context, auctions are more

adequate.

A specificity of LSA licenses lies in the interactions among buyers, due to possibly over-

lapping coverage areas, hence there are limited possibilities of allocating the same spec-

trum to several MNOs. Interference among coverage areas is managed through groups.

A group is a set of base stations of different MNOs such that two base stations in the

same group do not interfere, hence the spectrum allocated to a group can be used by all

the members of the group. The group creation is performed by the auctioneer from the

interference graph before the actual auction takes place.

Once groups are formed, base stations submit to the auctioneer their bids and the

auctioneer performs allocations and payments using an auction mechanism. An auction

mechanism needs to be well designed otherwise the benefits of the auction can be lost. A

well designed auction mechanism should be truthful so it prevents strategic behaviour

and therefore bidders do not have to construct complex strategies for bidding. Other
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considerations can be taken into account, in order to evaluate an auction mechanism,

such as revenue of auctioneer, fairness and efficiency of the allocation.

Potential candidate auction mechanisms for the LSA context are truthful one-shot

auctions. A one-shot auction mechanism is composed of a single round so bidders have

only one chance to submit bids for the auctioneer. In addition, those mechanisms of

the literature attribute all the available spectrum as a one block for only one group.

Also, they make two main key assumptions, without those assumptions they are not

anymore truthful. The first assumption is that each base station has to be in one and

only one group. The second assumption is that when modeling interaction between base

stations, each base station is considered as player. Finally, they do not draw enough

attention for the revenue.

In this thesis, we investigate the above mentioned considerations through these ques-

tions: can we design alternative mechanisms with better performances? Is it possible to

relax the assumptions made while preserving truthfulness? If yes what are the impacts

on the outcome of the auction? We have provided answers for those questions in Part II

of this document. Other questions which may arise are: can we improve the outcome of

the auction by splitting the available spectrum and how to convert all-or-nothing auction

mechanisms to multi-block auction mechanism? Can we develop equivalent ascending

versions of those mechanisms? In Part III of the document we have treated those ques-

tions.

In Part II of this document, we have treated the case when the quantity of spectrum

is relatively small so it can be allocated as a one block. After studying the potential

candidate mechanisms for LSA and proposing two truthful variants of LSAA, we have

shown how to increase revenue while maintaining truthfulness by introducing a reserve

price per bidder and how to maximize efficiency by showing how to implement VCG.

Also, we have proposed PAMσ, an auction mechanism which allocates the bandwidth

proportionally among groups such that each group obtains at least a fraction equal to σ,

or nothing. PAMσ is flexible: a fairness oriented regulator could set σ = 0 and R = 0; in

this case simulation results suggest that Jain’s fairness index achieves 90% of its maximum

value. On the other hand, an efficiency and revenue oriented regulator can trade-off them

by playing on R and σ.

At a second time we have supposed that each base station can be in several groups so

that we give the regulator more flexibility in the group construction phase. We have shown

how to adapt the payment rules of the previous mechanisms, when possible, to maintain
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truthful bidding without modifying the allocation rule. In most cases, simulations suggest

that the relaxation has a positive impact on the outcome of the auction. The gain of the

auctioneer which we define as a linear combination of efficiency, revenue and fairness could

be increased more than 20%. After, in order to provide a more realistic assumption, we

have considered no longer that players are given by BSs but that a player coordinates

several BSs (thus MNOs are the players), under this new definition of players, most of

our results were negative except for VCG. We have shown how to apply VCG in this new

scenario.

In Part III of the document, we have supposed that the available quantity of LSA

spectrum allows to split it into several blocks. We have shown that the choice of the

number of blocks is very important. This choice has a direct impact on the outcome of

the auction. As an example it can increase efficiency or fairness but it can also decrease

revenue therefore the auctioneer has to set a trade-off between those metrics. Then, we

have shown, when it is possible and under the assumption that each base station must

belong to one and only one group, how to convert all-or-nothing auction schemes to

multi-blocks schemes while preserving truthful bidding.

At a second time, we have considered the relaxation of allowing a base station to be

in several groups. We have studied its impact on the complexity of the allocation and

we have shown that the allocation is an NP-hard problem. Therefore to avoid heavy

computation steps, we have supposed that each base station must belong to one and only

one group. Avoiding heavy computation steps may be vital in the LSA context especially

when the resolution time for the optimal allocation is close to the duration of licenses.

We have proposed a grouping method under the assumption that each base station must

belong to one group. This heuristic is easy and fast to build but it may have a negative

impact on efficiency. We have quantified that impact through simulations. Simulations

suggest that the average minimum efficiency is 67 % compared to the optimal one. Also as

we keep increasing the number of blocks, we keep getting closer to the optimal efficiency.

In the second chapter of this part, we have considered ascending auctions. Ascending

auctions are more transparent than one-shot auctions because bidders see the evolution of

the auction. In addition, ascending auctions preserve privacy because bidders do not reveal

necessarily their valuations. We started by studying Mishra and Parkes’s mechanism, an

ascending truthful auction mechanism which maximizes efficiency. Then we have shown

how to adapt that mechanism for the LSA context. Since that implementation may lead to

solve an NP-hard problem, we have studied another ascending-price auction mechanism,
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proposed by Ausubel, that stops once demand is no higher than supply. That mechanism

was proven to be equivalent to VCG. We have shown, by using the approach proposed

by Ausubel which is called “the clinching approach”, how to convert one-shot multi-block

auction mechanisms to ascending multi-block auction mechanisms. We have proposed

two methods for that conversion. The first method is by introducing a representative

part per group so that each representative will act on behalf of the members of its group.

Since bidders do not see the evolution of the auction which may be undesirable, in the

second method, we have shown how to implement the ascending version when removing

representatives so that the auction is run directly between bidders and the auctioneer and

therefore we ensure transparency.

8.2 Perspectives

We believe this thesis work has many interesting openings for future extensions. First,

in our work, we have considered binary interference i.e., for each two base stations either

they interfere with each other or not. It would be interesting to consider models where

interference has more flexibility: the interference between BSs would depend on their

respective coverage areas. The coverage area of BSs depends on their transmission power

therefore a better approach is to model the interference with respect to the transmission

powers and BSs positions. On the other hand, reducing the transmission power may

reduce the coverage which may reduce the valuation, in such a situation each BS submits

a valuation function to the auctioneer (valuation as a function of the transmitted power).

This may improve the outcome of the auction but would need more elaborate auction

analysis.

It would be also intersecting to treat LSA auction as a repeated game [102], since the

auctioneer may run the auction many times per day in some configurations. Repeated

games have a larger space of strategies therefore truthfulness is not anymore dominant

strategy: in repeated game bidders may decide to make a cooperation with other bidders.

This occurs because bidders can maximize their utilities by making such a cooperation and

also they want to avoid future punishment, such punishment in repeated games context

is known as trigger punishment.

Another important criterion is how to share the revenue between the incumbent and

the regulator. Indeed, if we want to divide that revenue in a fair manner then Shapely

value, which is a solution concept in cooperative games used to share gains and costs
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fairly between several agents working in a coalition [103], could be a good solution. But

several other exist and many metrics can be considered to evaluate the method. This

should be carefully studied as a cooperative game, and trade-offs between metrics should

be analyzed.

Also, it would be interesting to run our auction mechanisms in real context in order to

test its performances. Authors in [10] have proposed an online Auction system platform

as a marketplace for LSA−based Short−term Spectrum Sharing (ALS3). According to

the authors, ALS3 allows easy addition of new auction mechanism. It would be interesting

to implement our proposed algorithms on that platform.

In this thesis, we consider that groups are already set and provide some elements for

the constitution of the groups. We focus on auctions mechanisms and their performance.

Yet, it seems evident that the choice of groups has an important effect on the behavior

of auctions and their results. Indeed, group configuration depends on the objective of

the auctioneer. Our results allow each base station to be in several groups, therefore our

results still hold for any resulting group configuration.

Also, when there is a small quantity of LSA spectrum, we have supposed that the

auctioneer fixes a minimum amount so that each bidder may obtain at least that amount,

or nothing. A question may arise is: how to adapt PAM when each BS has its own

minimum amount? And for the case when spectrum allows to be split to several blocks,

we have supposed that blocks are identical. It would be interesting to investigate the case

when blocks have different size.

Last but not least, once the 5G specific LSA application framework is decided by

regulation authorities, we think that the algorithms and models developed in this thesis

can be updated in order to have the best efficiency in the practical 5G framework.
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Appendix A

Abbreviations

• BS: Base Station

• CE: Competitive Equilibrium

• DSA: Dynamic Spectrum Access

• eMBB: enhanced Mobile BroadBand

• LSA: Licensed Shared Access

• LSAA: LSA Auction

• MNO: Mobile Network Operator

• MTC: Machine-Type Communications

• PAM: Proportional Allocation Mechanism

• RAN: Radio Access Network

• RSPG: Radio Spectrum Policy Group

• TAMES: Truthful Auction Mechanism for hEterogeneous Spectrum allocation

• TLSAA: Truthful LSAA

• TRUST: TRuthful doUble Spectrum aucTions

• UCE: Universal Competitive Equilibrium
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• URLLC: Ultra-Reliable Low-Latency Communications

• VCG: Vickrey-Clarke-Groves
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Appendix B

Notations

• N : number of bidders

• M : number of groups

• vi: valuation of bidder i for the available LSA spectrum when there is only one

block.

• bi: bid of bidder i for the available LSA spectrum when there is only one block.

• αMEC
i : fraction allocated to bidder i when the mechanism MEC is applied

• pMEC
i : payment of bidder i when the mechanism MEC is applied

• R: reserve price per bidder

• ui: utility of bidder i

• gh: group h which contains a subset of players.

• nh: number of bidders in gh

• BMEC
h : group-bid of gh when the mechanism MEC is applied and when there is only

one block of LSA spectrum.

• RevMEC: revenue of the auctioneer when the mechanism MEC is applied.

• EMEC: efficiency when the mechanism MEC is applied.

• K: number of blocks
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• nbh: number of blocks that gh obtains

• nbi : number of blocks that bidder i obtains.

• vi: vector-valuation of BS i when there are more than one block. vi,n: valuation of

the BS i for an nth extra block given that it has already n− 1 blocks.

• BMEC
h : group-bid vector of gh when the mechanism MEC is applied and when there

are more than one block.

• BMEC
h,n : group-bid of gh, when the mechanism MEC is applied, for an nth extra

block given that it has already n− 1 blocks.
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Access for 5G: which auction mechanism to choose?”,Computer Network, Elsevier,

2020

130



Bibliography

[1] “Plum consulting, the economic benefits of lsa in 2.3 ghz in europe,” 2013.

[2] Y. Chen, J. Zhang, K. Wu, and Q. Zhang, “Tames: A truthful auction mecha-

nism for heterogeneous spectrum allocation,” in 2013 Proceedings IEEE INFOCOM,

pp. 180–184.

[3] X. Zhou and H. Zheng, “Trust: A general framework for truthful double spectrum

access,” in Proc. of IEEE INFOCOM, 2009.

[4] H. Wang, E. Dutkiewicz, G. Fang, and M. D. Mueck, “Spectrum Sharing Based

on Truthful Auction in Licensed Shared Access Systems,” in Proc. of VTC Fall,

(Boston, MA, USA), Jul 2015.

[5] W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,” The

Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[6] E. H. Clarke, “Multipart pricing of public goods,” Public choice, vol. 11, no. 1,

pp. 17–33, 1971.

[7] T. Groves, “Incentives in teams,” Econometrica: Journal of the Econometric Soci-

ety, pp. 617–631, 1973.

[8] D. Mishra and D. Veeramani, “Vickrey–dutch procurement auction for multiple

items,” European Journal of Operational Research, vol. 180, no. 2, pp. 617–629,

2007.

[9] L. M. Ausubel, “An efficient ascending-bid auction for multiple objects,” American

Economic Review, vol. 94, no. 5, pp. 1452–1475, 2004.

131



[10] S.-C. Zhan, S.-C. Chang, C.-T. Chou, and Z. Tsai, “Spectrum sharing auction

platform for short-term licensed shared access,” in 2017 Wireless Days, pp. 184–

187, IEEE, 2017.

[11] C. Forecast, “Cisco visual networking index: Global mobile data traffic forecast

update, 2016–2021 white paper,” Cisco Public Information, 2017.

[12] G. Ancans, V. Bobrovs, A. Ancans, and D. Kalibatiene, “Spectrum considera-

tions for 5g mobile communication systems,” Procedia Computer Science, vol. 104,

pp. 509–516, 2017.

[13] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and J. Sköld, “5g
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and benefits,” Rivista di politica económica, vol. 91, no. 4/5, pp. 59–110, 2001.

[37] P. Cramton et al., “Spectrum auctions,” Handbook of telecommunications eco-

nomics, vol. 1, pp. 605–639, 2002.
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[66] P. Maillé and B. Tuffin, Telecommunication network Economics. Cambridge Uni-

versity Press, 2014.

[67] A. Ahmad, M. Beg, and S. Ahmad, “Fairness issues and measures in wireless net-

works: A survey,” IOSR Journal of Electronics and Communication Engineering,

vol. 11, pp. 20–24, 12 2016.

136



[68] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness

and discrimination,” Eastern Research Laboratory, Digital Equipment Corporation,

Hudson, MA, 1984.

[69] E. Maskin, Auctions and Efficiency, pp. 1–24. Cambridge University Press, 2003.

(text of the Seattle lecture).

[70] X. Zhou, S. Gandhi, S. Suri, and H. Zheng, “eBay in the sky: Strategy-proof wireless

spectrum auctions,” in Proc. of ACM MobiCom, pp. 2–13, 2008.

[71] S. Wang, P. Xu, X. Xu, S. Tang, X. Li, and X. Liu, “Toda: Truthful online double

auction for spectrum allocation in wireless networks,” in New Frontiers in Dynamic

Spectrum, 2010 IEEE Symposium on, pp. 1–10, IEEE, 2010.

[72] J. M. Robson, “Algorithms for maximum independent sets,” Journal of Algorithms,

vol. 7, no. 3, pp. 425–440, 1986.

[73] R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent set,” SIAM

Journal on Computing, vol. 6, no. 3, pp. 537–546, 1977.

[74] T. Back and S. Khuri, “An evolutionary heuristic for the maximum independent

set problem,” in Proceedings of the First IEEE Conference on Evolutionary Com-

putation. IEEE World Congress on Computational Intelligence, pp. 531–535, IEEE,

1994.

[75] E. Mendelsohn and A. Rosa, “One-factorizations of the complete graph—a survey,”

Journal of Graph Theory, vol. 9, no. 1, pp. 43–65, 1985.

[76] J. Bae, E. Beigman, R. A. Berry, M. L. Honig, and R. Vohra, “Sequential bandwidth

and power auctions for distributed spectrum sharing,” IEEE Journal on Selected

Areas in Communications, vol. 26, pp. 1193–1203, Sep. 2008.

[77] B. Lehmann, D. Lehmann, and N. Nisan, “Combinatorial auctions with decreasing

marginal utilities,” Games and Economic Behavior, vol. 55, no. 2, pp. 270–296,

2006.

[78] N. Enderle and X. Lagrange, “User satisfaction models and scheduling algorithms

for packet-switched services in umts,” in VTC 2003-Spring. The 57th IEEE Semi-

annual, vol. 3, pp. 1704–1709.

137
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Titre : Jeux d’acteurs et mécanismes d’enchères dynamiques pour la gestion du spectre

dans les réseaux 5G

Mot clés : Enchères, théorie des jeux, partage des fréquences, partage sous licence

Résumé : Dans le cadre de la 5G, des nouveaux modes de partage dynamique de spectre

comme le “Licensed Shared Access” (LSA) vont être implémentés. A travers ces modes,

les opérateurs peuvent utiliser temporairement une bande de fréquence attribuée initiale-

ment à un autre utilisateur. L’accès à la bande se fait après l’obtention d’une licence.

L’attribution des licences se fait à travers des mécanismes d’enchères. Les mécanismes

proposés dans la littérature pour le contexte LSA sont des mécanismes d’enchères à un

seul tour qui attribuent tout le spectre disponible comme un seul bloc.

Dans cette thèse, nous montrons d’abord comment améliorer les performances de ces

enchères (en termes de revenus, d’efficacité et d’équité de l’allocation) -tout en préservant

la sincérité des enchères- en divisant le spectre et en convertissant les enchères mono-bloc

en des enchères multi-blocs. Ensuite, nous montrons comment convertir des mécanismes

à un seul tour en mécanismes ascendants équivalents (en termes d’allocations et de

paiements) afin d’ajouter la transparence et la confidentialité à l’enchère.

Title: Designing new auction mechanisms for spectrum sharing in 5G networks

Keywords: auctions, game theory, spectrum sharing, Licensed Shared Access

Abstract: In 5G networks, new spectrum sharing concepts such as Licensed Shared

Access (LSA) will be implemented in order to optimize spectrum usage: a Mobile Net-

work Operator can access temporarily to other incumbent’s spectrum after obtaining a

license. The LSA concept guarantees to the incumbent and the LSA licensee a certain

level of QoS according to the LSA license. The licensing process is made via an auction

mechanism. The mechanisms proposed in the literature for the LSA context are one-shot

auction mechanisms which allocate all the available spectrum as a one block.

In this thesis, first we show how to increase the performances of those auctions

(in terms of revenue, efficiency and fairness of the allocation)–while preserving truth-

ful bidding–by splitting spectrum and converting single block auctions to multi-block

auctions. Then, we show how to convert one-shot mechanisms to equivalent ascending

mechanisms (in terms of allocations and payments) so that we add transparency and

privacy to the auction.
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