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General introduction

Automation have gained a wide interest in the last centuries in various fields such as industries, medicine, household life, agriculture, space, etc. It is all about replacing the workspace of human beings by computerized machines that can percept the environment, take the optimal decision, and execute the desired process. Robotic manipulators have been one of the major automated machines used extensively in several areas. Two main types of robotic manipulators exist nowadays: serial manipulators and parallel manipulators.

Although serial manipulators have been mostly used in the last centuries, the interest about parallel manipulators has increased recently thanks to their special features. In contrast to serial manipulators, parallel ones offer more stiffness, better accuracy, highspeed capabilities, and a higher payload-to-weight ratio. However, it still suffers from some drawbacks such as limited workspace and complex singularities behavior. In fact, parallel manipulators are not replacing serial ones, but they offer various advantages for certain applications that need high accelerations and high accuracy.

Parallel manipulators are known by their high nonlinearities, coupled actuation, uncertainties, and actuation redundancy. All the aforementioned aspects can be considered as sources of errors (if they are not taken into account) that may deteriorate the performance of parallel manipulators. In this context, advanced control schemes capable of compen-
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sating for the errors become an important requirement for parallel manipulators. Control design shall guarantee robustness and good performances with the change of the operating conditions.

Problem formulation

The control design of parallel manipulators is a key factor in obtaining high dynamic performances. However, control of parallel manipulators is considered a challenging task due to several reasons can be mentioned as follows:

• Complexity of the dynamics:

Parallel manipulators are known with their high nonlinearities which may increase considerably when operating at high accelerations. Moreover, their closed-loop kinematic structure gives rise to coupled dynamics that need careful control synchronization between the actuators.

• Structured and unstructured uncertainties:

Uncertainties are the differences or errors between the formulated dynamic model and the real parallel manipulator. Unstructured uncertainties can emerge from the wear of the parts, geometric errors, modeling simplifications, disturbances, etc.

While structured uncertainties appear in the form of inaccurate knowledge about the dynamic parameters or their variation with time (payload, external contact force, etc.)

• Actuation redundancy:

Actuation redundancy is achieved by adding additional actuated kinematic chains to the structure such that the number of actuators become greater than that of the degrees-of-freedom. This may increase the achievable accelerations of the system and enlarge the workspace by eliminating singularities. However, it can generate important internal forces that may even cause damages to the mechanical structure of the parallel manipulator.

Objectives of the thesis

In this thesis, we are looking for the necessary control tools to improve the dynamic performance of parallel manipulators in terms of precision and robustness towards operating condition changes. Two strategies can be considered to achieve this goal: i) designing robust control solutions, and ii) compensating for the errors coming from the motor drivers, the actuators dynamics, the friction in the articulations, etc.

Main contributions of the thesis

The main contributions of this thesis revolve around improving the dynamic performance of parallel manipulators by the proposition of new advanced control schemes being robust towards changes of operating conditions, uncertainties, and external disturbances.

In this framework, the following control solutions were proposed:

1. A new time-varying feedback RISE control based on nonlinear feedback gains instead of static ones.

2. A novel model-based super-twisting sliding mode control that incorporates (i) a feedforward dynamic term, (ii) the super-twisting algorithm, and (iii) a feedback stabilizing term. 

Organization of the thesis

The thesis is organized as follows:

Chapter 1 provides the context, problem formulation, and the state of the art of this thesis. The main differences between serial and parallel manipulators are addressed.

A historical overview of parallel robots as well as some of their potential applications are included. A survey on the existing control schemes proposed in the literature
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and implemented to parallel manipulators is included. The chapter ends up with the main objectives of the thesis as well as the main contributions.

Chapter 2 is devoted to the description and modeling of the available parallel robot prototypes. The existing prototypes are grouped into two different categories: nonredundant and redundant parallel robots. The mechanical structure description, the kinematics, and the dynamics of each prototype are addressed within this chapter.

Chapter 3 provides a detailed explantation of the main proposed control solutions in this thesis. The contribution for each adopted control strategy is addressed and explained. The applied control solution for eliminating the internal forces in case of redundantly actuated parallel manipulators is explained at the end of this chapter.

Chapter 4 includes the presentation and discussion of the obtained experimental results by the proposed control solutions. The results for each experimental test are plotted, commented, and discussed in terms of the dynamic performance of the parallel manipulator. The chapter ends up with a conclusion regarding the proposed control solutions and the obtained results.

Finally, the thesis finishes up with a general conclusion in which a summary of the main contributions of the thesis is invoked as well as some perspectives on the extensions of the proposed controllers. 

Publications of the author

CHAPTER 1. CONTEXT, PROBLEM FORMULATION AND STATE OF THE ART

Introduction

In this chapter, the concept of a robotic manipulator is introduced distinguishing between two main types of manipulators: serial and parallel. The positive points of parallel manipulators compared to serial ones are highlighted such as more stiffness, higher accuracy, greater payload/weight ratio, and better dynamic performance. The long history of parallel robots and their typical and modern applications in different fields are addressed

showing the importance of such mechanisms in industries, medical applications, space, machining, agriculture, etc.

From a control point of view, the problem formulation of this thesis is described. Control of PKMs is considered a challenging task in the literature due to their complex and nonlinear dynamics, abundant uncertainties, parameter variations, and actuation redundancy. Control plays a significant role in fulfilling the requirements of the general targeted tasks. Examples on those tasks are high-speed pick-and-place motion cycles, accurate positioning, and precise surgical treatments. The dynamic performance of parallel manipulators can be evaluated through the tracking precision of the desired trajectory, robustness towards changes in operating conditions (speed, acceleration and parameters variation), and stability insurance in the presence of uncertainties and external disturbances. A good control design should take into account the nonlinear dynamics of PKMs, the abundant uncertainties, and the time-varying parameters.

A general overview of the major control strategies of parallel manipulators proposed in the literature is provided in this chapter. A brief discussion on each controller is carried out enlightening the positive and negative points of each strategy. One can distinguish between two types of control strategies of parallel manipulators: kinematic and dynamic control. Because considering the dynamic model within the control design can greatly enhance the dynamic performance of parallel manipulators, the majority of the existing control schemes are full or partial dynamic control strategies. Some of the controllers compensate for a part of the dynamics while the others compensate for all the modeled dynamics. Parameter-identification techniques exist in two modes, offline and online.

The main objectives of the thesis consist of improving the dynamic performance of
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parallel robots via control design by proposing robust control strategies and compensating for the errors coming from actuator and friction dynamics.

Robotic manipulators

The high demand for improving the quality of products and reducing the number of workers employed in several areas of production is guiding the industry nowadays towards automation. It is all about the use of robotic systems instead of humans, such as mechanical manipulators, equipped with control systems.

The need of robotic manipulation has been extended beyond industries [START_REF] Chua | Robotic manipulation of food products -a review[END_REF]] towards more areas such as space [START_REF] Yoshida | Achievements in Space Robotics[END_REF], underwater robotics [START_REF] Sivcev | Underwater manipulators: A review[END_REF], chemically active environments [START_REF] Svejda | Innovative design and control of robotic manipulator for chemically aggressive environments[END_REF][START_REF] Goubej | Dynamic analysis and control of robotic manipulator for chemically aggressive environments[END_REF], household life [START_REF] Jain | an assistive mobile manipulator that autonomously fetches objects from flat surfaces[END_REF], agriculture [START_REF] Monta | Agricultural robot in grape production system[END_REF], horticulture [START_REF] Tillett | Robotic Manipulators in Horticulture: A Review[END_REF], and medicine [START_REF] Preising | A literature review: robots in medicine[END_REF][START_REF] Davies | A review of robotics in surgery[END_REF].

According to the International Federation of Robotics under standard ISO 8373, a robot manipulator can be defined as follows [Robot-ISO]:

"A manipulating industrial robot is an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications".

In other words, a series of rigid bodies called links interconnected through hinges or joints that provide relative motion of two consecutive bodies is called a manipulator [START_REF] Kelly | Control of robot manipulators in joint space[END_REF]. The conventional robotic manipulator is the arm resembling the human hand.

To set the robotic arm in motion, the joints are actuated through actuators such as electric, hydraulic or pneumatic motors. The extremity of the robotic arm holds usually the socalled end-effector that is responsible for performing the required task (such as gripper).

The end-effector can execute translational and rotational motions in the workspace. These motions are known as Degrees of Freedom (DOFs) of the manipulator representing the position and orientation of the end-effector. The manipulator is accompanied by a control system (computer, PLC, etc.) that directs and regulates the motion of the actuated articulations through the control loops taking feedbacks from the sensors measuring the states 

Singularities

For serial manipulators, a singular configuration is a point in the workspace at which the end-effector may lose one or more degrees of freedom. For instance, the robot may lose the ability of motion in some directions despite the motion of its joints. Numerically, singularity happens when the Jacobian matrix (a transformation matrix that relates the
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joint and Cartesian velocities by q = J -1 Ẋ, where q, Ẋ are the joint and Cartesian velocities respectively) becomes ill-conditioned and may not be invertible resulting in infinite joint rates with a stationary end-effector [START_REF] Toyama | Machine tool having parallel structure, February[END_REF]. This type of singularities may occur at the boundary of the workspace (Boundary Singularities) when the manipulator is either in a fully stretched-out or a folded-back configuration or when the actuators reach their mechanical limits. It can also occur inside the workspace (Interior Singularities) when two or more joint axes become linearly dependent.

For parallel manipulators, the differential kinematic relationship between the joints and end-effector velocities is expressed as: J q q = J x Ẋ, where J q ,J x are the joint and Cartesian Jacobian matrices respectively (more details about this relationship are addressed in Chapter 2). Thus, one can distinguish among three different types of singularities [START_REF] Merlet | Parallel robots. Number 74 in Solid mechanics and its applications[END_REF][START_REF] Toyama | Machine tool having parallel structure, February[END_REF]:

1. Inverse kinematic singularities (serial singularities): Singularity in J q which means that the determinant of J q becomes zero and it is no longer invertible. This type of singularity is similar to that of the serial manipulators already discussed above.

2. Direct kinematic singularities (parallel singularities): Singularity in J x which means that the determinant of J x becomes zero and it is no longer invertible. This means that the end-effector may have non-zero velocity even though the actuated joints have zero velocities. Unlike a serial manipulator, the end-effector gains one or more uncontrollable degrees of freedom. In this case, the end-effector will not be able to resist forces or moments in some directions leading to harmful behavior.

3.

Combined singularities: Singularities in both J q and J x where the end-effector can be in a static position for which the actuators undergo some infinitesimal motions or vice versa.

One can conclude that similar types of singularities can occur in serial and parallel manipulators with two additional types special for parallel robots. Consequently, singularity analysis of parallel manipulators is much more complex to be performed than the case of serial ones.

Workspace

In comparison to serial manipulators, parallel manipulators possess less and limited dexterous workspace. This limitation is due to the geometrical and mechanical limits of the design such as the physical constraints of spherical and universal joints. The range of motion of actuators in the case of parallel manipulators is less than the one of serial manipulators due to the design and link interference. The rotational motion capabilities of the end-effector in parallel manipulators are limited compared to serial ones. Moreover, the abundant of singularities in parallel manipulators also limit the workspace to a smaller free-singularity region.

Payload/weight ratio

Unlike serial manipulators, the handled payload can be shared by the actuators and all the parallel kinematic chains in the case of parallel manipulators. Hence, the load-carrying capacity of parallel robots is much greater than that of serial ones.

Stiffness and dynamic performance

Robot stiffness can be defined as the resistance against the deflections caused by external forces and/or moments exerted on the end-effector [START_REF] Angeles | Fundamentals of robotic mechanical systems: theory, methods, and algorithms[END_REF]. The overall stiffness of a robotic manipulator is related to several factors such as rigidity of the links, mechanical transmission system, compliance errors, actuators, and controller. Due to the open kinematic structure of serial manipulators, the errors of the actuated joints are accumulated from one joint to another deteriorating its stiffness. Using heavy links in serial manipulators may increase their stiffness but it will surely reduce their dynamic performance. Moreover, as links become lighter and the arms longer, the stiffness will be lower as well as the payload/weight ratio [START_REF] Klimchik | Compliance error compensation technique for parallel robots composed of non-perfect serial chains[END_REF]. In parallel manipulators, the actuators are located at the fixed-base (one actuator for each kinematic chain) and the Cartesian errors are averaged at the end-effector instead of accumulation as in serial manipulators.

Thus, we can achieve higher stiffness properties and higher dynamic performance (with lightweight links and low inertia) simultaneously. 
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Accuracy

Since parallel manipulators are stiffer than serial ones, then the position accuracy of parallel manipulators is better. One of the main problems of serial manipulators is their cantilever structure making them more sensitive to bending with high payloads. Moreover, serial manipulators can suffer more than parallel ones from vibrations at high-speed motions leading to a low accuracy [START_REF] Bibliography | Comparison of the characteristics between serial and parallel robots[END_REF].

To this point, the main characteristics of serial and parallel manipulators are compared showing the strength points of parallel manipulators as well as their main drawbacks. Table 1.1 summarizes the main differences between serial and parallel manipulators in terms of dynamic properties.

A historical overview of parallel robots

Theoretical problems of parallel architectures can be originated back to the 17 th century to the English architect Sir Christopher Wren. More theoretical studies concerning parallel mechanisms have been done later in the 19 th century by Cauchy [Cauchy, 1813],

Lebesgue [START_REF] Lebesgue | Octaédres Articulés de Bricard[END_REF] and Bricard [START_REF] Bricard | Mémoire sur la théorie de l'octaédre articulé[END_REF][START_REF] Merlet | Parallel robots. Number 74 in Solid mechanics and its applications[END_REF].
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excited the research community to improve it, searching for the best model that fits the control requirements. Modeling of PKMs includes the inverse and forward dynamic formulation [START_REF] Khalil | Inverse and direct dynamic modeling of Gough-Stewart robots[END_REF][START_REF] Briot | Dynamic Modeling of Parallel Robots[END_REF], in addition to the kinematic relations [START_REF] Besnard | Identifiable parameters for parallel robots kinematic calibration[END_REF][START_REF] Bi | Kinematic modeling of Exechon parallel kinematic machine[END_REF]. Besides, a lot of papers in the literature mention the motion planning problem proposing some techniques to avoid the singularities in the workspace of the parallel robots [START_REF] Dash | Workspace generation and planning singularity-free path for parallel manipulators[END_REF][START_REF] Reveles | Trajectory planning of kinematically redundant parallel manipulators by using multiple working modes[END_REF] or to generate optimal trajectories that allow the parallel manipulators exiting the singularity loci [START_REF] Pagis | Optimal Motion Generation for Exiting a Parallel Manipulator From a Type 2 Singularity[END_REF]. Last but not least, control of parallel robots have possessed a wide interest from scientific researchers even though it is considered a challenging task, but advanced control schemes can provide PKMs enhanced accuracy and precision even at high-dynamic operating conditions [START_REF] Paccot | A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments[END_REF][START_REF] Azar | Control design approaches for parallel robot manipulators: a review[END_REF].

In this thesis, we aim at improving the dynamic performance of parallel manipulators in different scenarios, from a control point of view, by proposing robust control solutions and compensating for the errors coming from friction, actuator dynamics, etc.

Control challenges of parallel manipulators

Control of PKMs is often considered in the literature as a very challenging task since of their complex nonlinear dynamics inherited from their closed-loop structure, abundant uncertainties, parameters variation, and actuation redundancy [START_REF] Chemori | Control of Parallel Robots: Towards Very High Accelerations[END_REF][START_REF] Chemori | Control of complex robotic systems: Challenges, design and experiments[END_REF]. Figure 1.24 summarizes the most considerable control challenges that can reduce the dynamic performance of parallel robots in case they are not compensated.

Nonlinear complex dynamics of PKMs

The nonlinear dynamics of parallel manipulators make the control task hard to be accomplished for which the classical linear control approaches may fail to guarantee the stability at critical dynamic operating conditions such as high-speed operations [START_REF] Bibliography | Nonlinear Systems[END_REF].

Touching high-speed acceleration limits of parallel robots can increase considerably the effect of nonlinearity leading to mechanical vibration issues [START_REF] Natal | Dual-Space Control of Extremely Fast Parallel Manipulators: Payload Changes and the 100g Experiment[END_REF]. Thus, the need for advanced nonlinear control strategies arises to fit parallel robot application requirements of simultaneous high speed and high precision. [START_REF] Mueller | Effects of geometric imperfections to the control of redundantly actuated parallel manipulators[END_REF]. Antagonistic forces appear as generated control forces that have no effect on the motion, so-called prestress.

Three different sources of antagonistic internal forces are addressed in [START_REF] Hufnagel | A Projection Method for the Elimination of Contradicting Decentralized Control Forces in Redundantly Actuated PKM[END_REF]]: i) geometric-uncertainties, ii) measurement errors, iii) non-synchronized independent control of the actuators. This internal prestress resulting from antagonistic forces of the redundant actuation can be utilized in backlash avoidance [START_REF] Mueller | Internal Preload Control of Redundantly Actuated Parallel Manipulators-Its Application to Backlash Avoiding Control[END_REF] and stiffness control within the workspace [START_REF] Mueller | Stiffness control of redundantly actuated parallel manipulators[END_REF]. In case of no usage of those antagonistic forces, it should be taken into account by the control design in order not to deteriorate the dynamic performance of the PKM.

Dynamic modeling of parallel manipulators

Dynamics of parallel manipulators were investigated a lot in the literature and they are still an open problem presenting a notable complexity owing to the closed-loop structure of PKMs. Dynamic model represents a relation between the actuated joint forces Γ and the end-effector position, velocity and acceleration (X, Ẋ and Ẍ). There are two types of dynamic models:

• Direct dynamics: being given the actuated joint forces, we can determine the position, velocity and acceleration of the end-effector.

Ẍ = f(Γ,X, Ẋ) (1.1)
• Inverse dynamics: being given the position, velocity and acceleration of the endeffector, we can determine the actuated joint forces.

Γ = f(X, Ẋ, Ẍ) (1.2)
Indeed, there is no one general approved procedure to formulate the dynamics of parallel manipulators because of their inherent complexity and kinematic constraints [Taghirad, 2013]. There exist several methods in the literature to derive the dynamic equation for a general parallel manipulator.

Most of these methods use the following procedure to derive the dynamic equation [START_REF] Merlet | Parallel robots. Number 74 in Solid mechanics and its applications[END_REF][START_REF] Taghirad | Parallel Robots: Mechanics and Control[END_REF]]:

• q, q, q ∈ R n are the position, velocity and acceleration vectors of the actuated joints respectively,

• M(q) ∈ R n×n is the total mass and inertia matrix,

• C(q, q) ∈ R n×n is the centrifugal and Coriolis forces matrix,

• G(q) ∈ R n is the gravitational forces vector,

• Γ (t) ∈ R n is the input torques vector.

The inverse dynamics can be represented in Cartesian space (space of the end-effector) using the Jacobian transformations: q = J m Ẋ, q = J m Ẍ+ Jm Ẋ, and F = J T m Γ , with J m ∈ R n×m being the inverse Jacobian matrix of the manipulator. Then, the inverse Cartesian space model can be written as follows:

M x (q) Ẍ + C x (q, q) Ẋ + G x (q) = F(t) (1.4)
where • X, Ẋ, Ẍ ∈ R m are the position, velocity and acceleration vectors of the center of mass of the end-effector respectively,

• M x (q) = J T m M(q)J m is the Cartesian mass and inertia matrix,

• C x (q, q) = J T m M(q) Jm +J T m C(q, q)J m is the Cartesian centrifugal and Coriolis forces matrix,

• G x (q) = J T m G(q) is the Cartesian gravitational forces vector,

• F(t) ∈ R m is the input forces vector on the end-effector.

In case of redundant parallel manipulators, the direct Jacobian matrix can be calculated from the inverse one using the Moore-Penrose pseudoinverse matrix which can be used when a system of equations does not have a unique solution or has many solutions.

Properties of the dynamic model

The inverse dynamic model of parallel manipulators (1.3), as common for robotic manipulators, inherits some properties for its dynamic terms that are useful in designing the control schemes. 

µ 1 I ≤ M(q) ≤ µ 2 I 1 µ 2 I ≤ M -1 (q) ≤ 1 µ 1 I (1.5)
where µ 1 and µ 2 are two positive scalars that can be computed. µ 2 can be function of q for some cases (for example if using prismatic joints). Likewise, the boundedness inequality can represented as follows:

m 1 ≤ ||M(q)|| ≤ m 2 (1.6)
where ||.|| is the second norm of a matrix defined for any matrix A ∈ R n×m as the square root of the maximum eigenvalue of the matrix A * A being A * the conjugate transpose of A:

||A|| = λ max (A * A)
. m 1 and m 2 are two positive constants.

Furthermore, there exists a positive constant K M > 0 such that

||M(x)z -M(y)z|| ≤ K M ||x -y|| ||z|| (1.7) ∀ x,y,z ∈ R n .

Property of Coriolis and centrifugal matrix:

Property 2. Coriolis and centrifugal matrix is bounded as follows

||C(q, q)|| ≤ K C 1 || q|| (1.8)
where K C 1 is a positive constant and ||.|| the second norm of a vector or a matrix. Note that K C 1 can be function of q in some cases.
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Moreover, the matrix H(q, q) = Ṁ(q) -2C(q, q) or H(q, q) = 1 2 Ṁ(q) -C(q, q) is a skew-symmetric matrix holds the following:

x T H(q, q)x = 0 Ṁ(q) = C(q, q) + C T (q, q)

(1.9)

for any vector x ∈ R n .
Furthermore, there exist positive constants

K C 1 > 0 and K C 2 > 0 such that ||C(x,z)w -C(y,v)w|| ≤ K C 1 ||z -v|| ||w|| + K C 2 ||x -y|| ||w|| ||z|| (1.10) ∀ x,y,z,w,v ∈ R n .

Property of gravity vector:

Property 3. There exists some positive constant g 0 bounding the gravity vector as follows:

||G(q)|| ≤ g 0

(1.11)

Note that g 0 can be function of q in some cases.

Furthermore, there exists a positive constant K G > 0 such that Y(q, q, q)Φ = Γ (t)

||G(x) -G(y)|| ≤ K G ||x -y|| (1.12) ∀ x,y ∈ R n .
(1.13)
where Y(q, q, q) ∈ R n×r is the matrix of the known functions called regressor, Φ ∈ R r is the vector the parameters.

Overview of motion control solutions for parallel manipulators

The motion control problem of parallel manipulators has been studied a lot in the literature. A vast number of control solutions have been proposed and experimented [START_REF] Paccot | A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments[END_REF][START_REF] Azar | Control design approaches for parallel robot manipulators: a review[END_REF]. The proposed control solutions of serial manipulators can be extended easily to parallel manipulators due to their similar structure of dynamic models.

The proposed control strategies can be classified into two basic categories: kinematic and dynamic.

In kinematic control, the coupled structure of the PKM is decoupled into single independent axes. Then, a decentralized controller is developed for every single axis alone.

This type of control is simple to be implemented, but it needs a special care for the synchronization among the actuators. Moreover, the dynamics of the manipulator are not taken into account which may deteriorate the dynamic performance leading sometimes to instability at high-speed motions.

Dynamic control strategies consider, fully or partially, the dynamics of the manipulator in their closed-loop design compensating for the high effect of the nonlinear dynamics.

As a result, dynamic control provides much higher performance and robustness towards parameter variations compared to kinematic control [START_REF] Taghirad | Parallel Robots: Mechanics and Control[END_REF]. A classification tree of the main proposed control schemes in the literature is demonstrated in Figure 1.27. All the listed controllers will be discussed in this section.

The existing control strategies can be implemented in joint space or Cartesian space.

Joint space control is developed to allow the tracking of the desired joint trajectories while
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Considering the availability of fast and accurate end-effector pose measuring tool, Cartesian space control seems to be more relevant for parallel manipulators due to several issues explained below [START_REF] Paccot | A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments[END_REF]]:

• A joint space control acts to reduce the joint tracking error which is a geometric transformation of the end-effector tracking error (the interesting error to be reduced), and thus it can be affected by geometric errors. Consequently, Cartesian space control is considered to be more accurate since it is directly controlling the end-effector position.

• Since an inverse kinematic model is not used in Cartesian space control, the constraints on kinematic identification could be avoided. A dynamic identification, which is easier than kinematic one, could be enough to achieve the desired control performance.

• Any disturbance that may lead to a change in the end-effector posture can be observed by a Cartesian space control while can not be observed by a joint space control. For example, in the neighborhood of singularities, the end-effector position can be shifted without any change in the joint configuration (parallel singularities) [START_REF] Chablat | Working modes and aspects in fully parallel manipulators[END_REF][START_REF] Husty | An algorithm for solving the direct kinematics of general Stewart-Gough platforms[END_REF]. Thus, a Cartesian space control could correct this shifting while joint space control fails to do that.

• The kinematic constraints in a joint space control leads to uncontrolled moves of the end-effector in the case of redundantly actuated PKMs. Cartesian space control can minimize or cancel these internal forces ensuring better performance [START_REF] Marquet | ARCHI: a new redundant parallel mechanism-modeling, control and first results[END_REF][START_REF] Pierrot | Method of controlling a machine with redundant parallel actuation, associated control device and machine[END_REF].

As long as the fast and accurate measuring tools of the end-effector pose and orientation are still rare, the Cartesian space control is still implemented occasionally. The joint space control is the most employed strategy nowadays to solve the tracking control problem of parallel manipulators.

Kinematic control strategies 1.8.2.1 PD/PID control

The Proportional-Integral-Derivative (PID) controller is a closed-loop feedback mechanism that takes as input the position and velocity errors and generates the required control signal to correct the error between the desired trajectory and the actual one [START_REF] Ziegler | Optimum Settings for Automatic Controllers[END_REF]. This method has been employed widely in the industrial control systems thanks to its simplicity and easy implementation. The PID control equation for n-actuators parallel manipulator [START_REF] Chaudhary | 3-DOF Parallel manipulator control using PID controller[END_REF] is expressed in joint space form as follows:

Γ (t) = K p e(t) + K i e(τ)dτ + K d ė(t) (1.14)
where K p ,K d ,K i ∈ R n×n are diagonal positive definite matrices representing the proportional, integral, and derivative gains respectively. ė ∈ R n denotes the joint velocity errors. The proportional term effects the response of the system towards any disturbance or change in the error. The steady-state error and general dynamic performance can be improved by the integration part. The derivation term provides enough damping and reduces the oscillations of the system. High derivative gains can lead to signal noises stimulating the resonance frequency of the robot.

The integral term works on accumulating the error overall the time of operation. In the case of a large change in the error, it will accumulate a significant error during the rise leading to an excess overshooting and control input saturation. For this reason, the integral term is omitted sometimes (K i = 0) [Su et al., 2006] or treated with anti-windup integrator [START_REF] Kumar | A comparative study of PID tuning methods using anti-windup controller[END_REF].

A Cartesian PID control fed by measurements provided by a vision system is proposed and applied to a 2-DOF planar parallel manipulator in [START_REF] Garrido | Stability Analysis of a Visual PID Controller Applied to a Planar Parallel Robot[END_REF]. The disturbances in such a system appear as time-varying at the visual level. The stability analysis and the experiments provide reasonable performance in spite of uncertainty on the Jacobian matrix associated with the active joints.
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Nonlinear PD/PID control

The Nonlinear PD/PID (NPD/NPID) controller shares the same structure of the standard PID controller with the use of nonlinear time-varying feedback gains instead of fixed gains [START_REF] Jingqing | Nonlinear PID Controller[END_REF]. Those nonlinear gains can be a function of the system errors, control input, and other parameters. This allows the online automatic change of the gains while the robot is executing a task. The generated values of the gains can deal with the instant operating conditions to reduce the error as possible. The general form of the control equation of a NPID controller is written as follows:

Γ (t) = K p (.)e(t) + K i (.) e(τ)dτ + K d (.)ė(t) (1.15)
where K p (.),K d (.),K i (.) ∈ R n×n are diagonal matrices representing the nonlinear feedback gains for each axis. The NPID control implemented on a 6-DOF parallel manipulator in [START_REF] Duan | Nonlinear PID control of a six-DOF parallel manipulator[END_REF] shows better dynamic performance than the classical PID control. It guarantees stability when changing the operating conditions as well as it ensures better robustness towards uncertainties and disturbances. Furthermore, in [START_REF] Ouyang | Nonlinear PD Control for Trajectory Tracking with Consideration of the Design for Control Methodology[END_REF],

a NPD control design obtained good trajectory tracking performance for a 2-DOF parallel manipulator compared to a simple PD controller.

For a better understanding of the NPID control, consider the nonlinear function proposed in [START_REF] Jiang | An application of nonlinear PID control to a class of truck ABS problems[END_REF]] to be used for computation of the nonlinear feedback gains expressed as follows:

y = f(x,α,δ) =    |x| α sign(x), if |x| > δ δ α-1 , if |x| ≤ δ (1.16)
where x is the input to this function being e, ė or e, y is the output of this function, α and δ are two positive constants (0 < α ≤ 1). For α = 1, the linear relation appears again as y = x.

δ is usually chosen as a small positive value to get a linear relation around the origin (see 

L 1 adaptive control

The L 1 adaptive controller has been implemented experimentally for the first time on a parallel kinematic manipulator in [Bennehar et al., 2015a]. It is known for its decoupled estimation and control loops which enables fast adaptation while guaranteeing the robustness of the closed-loop system [Chengyu and Hovakimyan, 2006a,b]. The control input consisting of two independent terms, a fixed state-feedback term and an adaptive term that compensates partially for the nonlinearities of the system, is given as follows:

τ(t) = A m r(t) + τ ad (t) (1.19)
where A m ∈ R n×n is a Hurwitz matrix characterizing the transient response of the system, r(t) = ė + Λe is the combined error with Λ ∈ R n×n being a positive definite diagonal matrix, and τ ad (t) = φ(t)||r(t)|| L ∞ + σ(t) is the adapted nonlinear function gathering all the nonlinearities of the system including eventual external disturbances. φ(t) and σ(t) estimates the nonlinear functions φ(t) and σ(t) that represent all the nonlinearities and disturbances of the system. Figure 1.32 shows the general schema of the L 1 adaptive controller implemented on parallel manipulators. Using projection-based adaptation law, the boundedness of the estimated parameters is ensured as well as the convergence of r(t) to zero [Bennehar et al., 2015a 

Γ (t) = K p (.)e(t) + K d (.)ė(t) + G(q) (1.20)
In order to avoid the online computation of the gravitational term, which may take more time than a PD control, a desired gravity compensator can be used instead of the exact one.

A PD control with desired gravity compensation can be expressed as follows [START_REF] Kelly | PD Control with Desired Gravity Compensation of Robotic Manipulators: A Review[END_REF]:

Γ (t) = K p (.)e(t) + K d (.)ė(t) + G(q d ) (1.21)
In [START_REF] Niu | PD control with desired gravity compensation for a novel dynamics brace[END_REF], a PD control with desired gravity compensation was developed for controlling a dynamic brace based on a parallel-actuated structure. The experimental results

show reduced influence of the brace system gravity and better performance than a simple PID controller.

Augmented PD control

Unlike PD control with gravity compensation, Augmented PD (APD) control compensates the effects of more dynamics such as inertia and mass matrix, centrifugal and Coriolis forces, and the gravity. As more dynamic parameters are taken into account in the dynamic model, the controller can be improved. The joint space expression of the APD controller is given as follows [START_REF] Zhang | Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator[END_REF]:

Γ (t) = M(q) qd + C(q, q) qd + G(q) + K p e(t) + K d ė(t) (1.22)
It can be observed clearly that the APD controller compensates the effect of the full nonlinear dynamics relying on the desired and measured trajectories. The last two terms represent the PD controller to ensure global asymptotic tracking. However, an online computation of the nonlinear functions of the dynamic model is required for this controller as well as a priori knowledge of the dynamic parameters.
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reduced to its simplest expression leading to a better accuracy than the joint space CT control (because of no use of the kinematic model in Cartesian space control).

As shown in (1.23), all the known dynamics are used in the control input relying on the feedback measurements and estimations (position and velocity). This control can provide high dynamic performances, but it needs a good knowledge of the parameters. Moreover, it is computationally heavy leading to some limitations in real-time experiments.

PD control with computed feedforward

The idea of the PD control with computed feedforward is to use the full inverse dynamic model (similarly to APD controller) to compensate the effect of nonlinearity but within an offline-computation mode using the desired trajectory. One of the advantages of such controller is its simplicity and easy implementation exactly as a simple PD controller, due to all nonlinear dynamic terms are calculated before execution of the robot. Moreover, this strategy avoids the use of the actual measurement and estimated signals (q(t), q(t), q(t))

which are often noisy and can reduce the control performance, but use instead the desired trajectory signals (q d (t), qd (t), qd (t)). There is no need to develop velocity and acceleration observers for such control strategy since all the dynamic computations depend on the desired trajectory. The joint space control equation can be formulated as follows [Santibañez and Kelly, 2001]:

Γ (t) = M(q d ) qd + C(q d , qd ) qd + G(q d ) + K p e(t) + K d ė(t) (1.26)
In [START_REF] Natal | A Dual-Space Feedforward PID Control of Redundantly Actuated Parallel Manipulators with Real-Time Experiments[END_REF] 

• Other Dynamic Adaptive Control:

A nonlinear adaptive controller has been developed in task space for the trajectory tracking of a 2-DOF redundantly actuated parallel manipulator [Shang and Cong, 2010].

Experimental results show that the adaptive dynamic controller is more performant than the APD controller especially with dramatic changes of the dynamics in acceleration and deceleration processes. An additional adaptive friction compensation term enhanced the global performance in both low-and high-speed motions. To estimate the system parameters, the gradient descent algorithm is used thanks to its simplicity and easy implementation in real-time experiments. One more nonlinear adaptive dual-mode controller is proposed in [START_REF] Natal | Nonlinear control of parallel manipulators for very high accelerations without velocity measurement: stability analysis and experiments on Par2 parallel manipulator[END_REF] for the control of a 2-DOF parallel manipulator. The used adaptation law in dual-mode generates continuous control signals and limits the values of the estimated parameters. Different articular velocity observes have been developed for this controller showing better performances than a simple PD controller.

Control with time-varying feedback gains

Control strategies with time-varying feedback gains arise from the advantages of using nonlinear feedback gains instead of fixed ones. Indeed, feedback loops with constant gains may have limited performances for high accelerations as well as limited tuning capabilities. Moreover, they don't take into consideration the dynamic change of operating conditions which makes them more sensitive to these changes. In a similar manner of
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the NPD controller introduced hereinbefore, several dynamic control schemes of parallel manipulators have been enhanced in the literature.

An Augmented Nonlinear PD (ANPD) controller was proposed in [Shang et al., 2009] based on the conventional APD controller and the replacement of the linear PD control by nonlinear one. The stability analysis of such controller proved that it guarantees asymptotic convergence of both the tracking error and the error rate. The experimental results on a 2-DOFs redundantly actuated parallel robot show that the ANPD controller may realize higher-speed and higher-accuracy trajectory tracking compared to the conventional APD controller. The same approach was considered to improve the conventional CT controller in [Shang and Cong, 2009]. The developed Nonlinear CT (NCT) controller inherits merits from the CT controller, such as simple structure and clear physical meaning of each control parameter. Also it owns the good performances of the NPD algorithm in elimination of the nonlinear factors such as the modeling error and the nonlinear friction. The superiority of the proposed NCT controller in terms of accuracy and high-speed motion was validated through real-time experiments conducted on a 2-DOF redundantly actuated parallel manipulator.

Furthermore, the DCAL controller was revised in [START_REF] Bennehar | A new extension of desired compensation adaptive control and its real-time application to redundantly actuated PKMs[END_REF][START_REF] Bennehar | A new revised desired compensation adaptive control for enhanced tracking: application to RA-PKMs[END_REF]] by replacing the linear PD control term with a nonlinear one. Experiments conducted on a 3-DOF redundantly actuated PKM shows that the proposed controller outperforms the original one in terms of tracking performance while reducing the control effort.

Sliding mode control

As discussed before, SMC approach is a robust control strategy able to guarantee the finite time convergence of the sliding surface to the origin even with presence of disturbances and uncertainties. For the uncertain nature of parallel manipulators, SMC-based algorithms could be good candidates for the motion control problem.

In [START_REF] Huang | Sliding-mode tracking control of the Stewart platform[END_REF]], a SMC approach has been proposed based on the full knowledge of the 6-DOF Stewart platform dynamics given that the overall system parameters are subjected to uncertainties. The stability analysis based on the Lyapunov theory confirmed the
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finite-time convergence of the sliding surface to the origin, and the experimental results proved the effectiveness of the control design.

Besides, a cascaded-control algorithm based on SMC being in the outer loop was proposed in [START_REF] Guo | Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode[END_REF] to realize the trajectory tracking control of a hydraulically driven 6-DOFs parallel robot manipulator. The cascaded design was proposed to let the controller takes into account not only the mechanical dynamics but also the hydraulic dynamics of the manipulator. Satisfied position tracking behavior of the proposed controller has been shown through real-time experiments compared to a P controller with feedforward compensation.

An enhanced SMC was proposed in [Kim and Lee, 1998] for the real-time control of the 6-DOFs Stewart platform. The augmented proposed sliding surface and the added perturbation estimator compensated effectively for the nonlinear dynamics which was considered partially unknown. The sign function was treated with a continuous approximation to avoid the resulted chattering from the hard switching. Experimental results confirmed that the proposed SMC allowed to design a simple high-performance tracking control system for the Stewart PKM under high payloads and large disturbance conditions. The same controller was implemented on another 2-DOF parallel manipulator confirming again its effectiveness and good performance [Kim et al., 1998].

Another robust SMC approach with an active disturbance compensation has been proposed in [START_REF] Singh | Inverse dynamics and robust sliding mode control of a planar parallel (2-PRP and 1-PPR) robot augmented with a nonlinear disturbance observer[END_REF] for the trajectory tracking control of a 3-DOF vertical planar PKM in the presence of parameter uncertainties. Disturbance vector compromises dynamic parameter variations, frictional effects, and other unmodelled phenomena.

The efficiency and robustness of the proposed controller were proven by numerical simulations and real-time experiments in the presence of the aforementioned disturbances.

In the previous SMC-based controllers, the dynamics of a PKM were partially or fully included within the closed-loop control assuming that the system parameters are known and subjected to uncertainties. Some of the previous controllers compensated for those accommodated uncertainties by designing disturbance observers. In [START_REF] Bennehar | A novel adaptive terminal sliding mode control for parallel manipulators: Design and real-time experiments[END_REF], the uncertainties resulting from parameter variations were treated by an adaptive dynamic term that updates the values of the parameters depending on the operating con-
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ditions. Real-time experiments show that the proposed adaptive terminal SMC is more performant than the standard terminal SMC in terms of precision and robustness towards parameter variations (such as handled payload).

Furthermore, a fuzzy SMC algorithm has been proposed for the trajectory tracking problem of a 4-DOF parallel robot [START_REF] Qi | Trajectory Tracking with Parallel Robots Using Low Chattering, Fuzzy Sliding Mode Controller[END_REF]. The fuzzy logic system was proposed to replace the constant switching control gain avoiding the hard chattering that results from this term. Numerical simulations demonstrated a great reduction in the chattering with good tracking performance and robustness towards parameter uncertainties and external disturbances. Also in [START_REF] Xu | Parallel robot with fuzzy neural network sliding mode control[END_REF], a fuzzy SMC approach was designed based on a fuzzy neural network control theory. Numerical simulation results demonstrated the effectiveness of the proposed method.

Other dynamic control approaches

Other dynamic control approaches have been proposed in the literature worth to be The robust H ∞ controller has been tested experimentally on the 3-DOF Delta parallel robot in [START_REF] Rachedi | Design of an H ∞ controller for the Delta robot: experimental results[END_REF]. The control was designed by the mixed sensitivity approach taking into account both the sensitivity function matrix and the complementary sensitivity function. Experimental results show that H ∞ controller outperforms the classical PID control at high dynamic operating conditions.

It has been shown in [START_REF] Mueller | Effects of geometric imperfections to the control of redundantly actuated parallel manipulators[END_REF] that in the presence of kinematic uncertainties in redundantly actuated PKMs, the internal prestress becomes a serious problem leading to antagonistic control forces or interference with the environment. The paper proposed to deal with those parasitic feedback forces by the control design, and two amended versions of augmented PD and CT controllers were developed for that purpose.
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A compliance error compensation technique has been proposed for over-constrained parallel manipulators in [START_REF] Klimchik | Compliance error compensation technique for parallel robots composed of non-perfect serial chains[END_REF]. The proposition takes into account the effect of the nonlinear stiffness coming from the non-perfect geometric model due to manufacturing errors. A comparison study confirmed that the errors to be compensated are highly dependant on the workpiece location.

How can we improve the performance of PKMs from a control point of view ?

One can conclude from the literature review of control strategies of PKMs that achieving a performant controller depends on two main factors: the controller itself and the dynamic model of the manipulator. Thus, from a control point of view, the answer on how can we improve the dynamic performance of parallel manipulators is two-folded:

1. Modification of the control strategy: choosing a robust controller and trying to enhance it aiming at better robustness and accuracy could play an important role in getting better dynamic performances of parallel manipulators. Dynamic errors may be generated from the lack of robustness in the feedback controller against noisy measurements, friction, disturbances, and parameter variations. In particular, when the Cartesian measurements are not available, robust controllers become a valuable need to compensate for the sensors' errors and the geometric model errors.

Modification of the dynamic model: improving the dynamic model may lead to high

performances thanks to the model-based control strategies that compensate for the structured nonlinearities, as well as for the parameter variations for the case of dynamic adaptive schemes. Some sources of dynamic errors can be mentioned as follows: motor drivers, actuators dynamics, transmission system, and friction in the articulations, etc. The dynamic performance of parallel manipulators can be enhanced by proposing new formulations of the dynamic model, that take into account the aforementioned aspects, and enclosing it in the closed-loop control algorithms.

OBJECTIVES OF THE THESIS

65

Following the aforementioned strategies, one can achieve high dynamic performances of parallel manipulators at different operating conditions.

Objectives of the thesis

The objectives of this thesis are to look for the necessary control tools to improve the dynamic performance of parallel robots in terms of motion speed, precision, and robustness. In this framework, two strategies can be considered in order to achieve the goal of the thesis: i) designing robust control solutions, ii) compensating for the errors coming from actuators dynamics, friction in the articulations, etc.

The proposed control solutions will be validated through real-time experiments on different available PKM prototypes. Real-time experiments will be performed in different operating conditions (nominal case, robustness towards disturbances and uncertainties, change of operating conditions, etc.) to show the effectiveness and robustness of the proposed control solutions in terms of global performances of the parallel robots.

Main contributions of the thesis

Two general guide lines were adopted in order to improve the dynamic performance of parallel manipulators: i) improve some robust control strategies, ii) improve the dynamic model to be used with dynamic control strategies. The main contributions can be listed as follows:
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Conclusion

As we have seen, parallel mechanisms are serving a wide range of applications nowadays thanks to their significant advantages compared to their serial counterparts. PKMs, having their actuators at the fixed-base only, exhibit high-speed capabilities thanks to their lightweight moving parts. High stiffness and dynamic performance can be achieved simultaneously by PKMs due to their closed kinematic chains leading to high accuracies.

Moreover, higher payload/weight ratios can be handled by parallel manipulators compared to serial ones. However, PKMs still suffer from serious limitations regarding their small workspace, abundant singularities and complex mechanism that need more improvements.

The long history and wide range of applications have been addressed in this chapter. The importance of advanced control strategies to be implemented on PKMs has been shown. Control of PKMs is considered challenging due to their highly nonlinear dynamics that increase considerably at high-speed motions, abundant uncertainties, time-varying parameters, external disturbances, and actuation redundancy.

This chapter provided state of the art on the existing control strategies for parallel manipulators classifying them into two categories: kinematic and dynamic control. Kinematic control deals with each axis of the parallel manipulator independently without considering the dynamics in the controller, while dynamic control relies mainly on a part of the dynamics or the full structured dynamics.

Unlike kinematic control, dynamic control compensates for the abundant nonlinearities enhancing the global dynamic performance of the parallel manipulator, especially at high dynamic operating conditions. One family of the dynamic control approaches, dynamic adaptive controllers, provides an online estimation of the system parameters and feeds those parameters again to the controller.

As a conclusion, one of two options can be followed in order to improve the dynamic performance of parallel manipulators. First, one can develop robust control strategies dealing with disturbances and uncertainties. Second, one can enhance the inverse dy-
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namic model by incorporating some sources of error such as motor drivers, actuators dynamics, transmission system, and friction in the articulations, etc.

The objectives of this thesis have been introduced as improving the dynamic performance of PKMs from a control point of view in terms of motion speed, robustness, and precision concerning two aspects: i) enhancing some existing robust control strategies, ii)

considering more dynamic terms within the closed-loop control. The accomplished contributions of this thesis were listed at the end of this chapter.

The next chapters of the thesis describe the parallel robot prototypes that will be testbeds for validating the proposed controllers. Then, it explains the proposed control solutions within two classifications of contributions: improved robust control and enhanced dynamic model. Finally, the experimental validation of the proposed control solutions will be demonstrated and discussed. 

Introduction

This chapter provides descriptions of the experimental prototypes that are used during this thesis for the validation of the proposed control solutions in a real-time framework.

The existing prototypes are grouped into two different categories: non-redundant and redundant parallel manipulators. For each platform, a general description of the mechanical structure is presented, the kinematics are briefly addressed, and the dynamic model is mathematically explained and established.

very high accelerations thanks to the minimized mass of the mechanical parts which are supposed to be in motion. Figure 2.1 shows a kinematic illustration of the Delta robot and its main components.

The overall structure is composed of three actuators that are integral to a fixed-base, three kinematic chains and one movable platform that is the traveling-plate. The three kinematic chains form passive links between the actuators and the moving platform. The shaft of each motor is connected to an extremity of a rear-arm supposed to make rotation through a revolute joint. The second extremity of the rear-arm is linked to two parallel rods through ball-and-socket passive joints. The parallel rods are then mounted to the traveling-plate from their other side through the same said joints. The traveling-plate holds a small end-effector that picks and places objects through an electric magnet. The synchronized control of the three arms allows the traveling-plate to manipulate within three basic translational DOFs (x, y and z) conserving its parallelism property with respect to the fixed-base. The robot is considered a non-redundant PKM because the number of actuators is equal to the number of the output DOFs.

Kinematics of Delta PKM

Consider the 3-dimensional coordinate vector X = [x,y,z] T as a representation of the pose of the end-effector in the reference frame attached to the fixed base. Another 3dimensional coordinate vector q = [q 1 ,q 2 ,q 3 ] T represents the formed angles by the actuated joints.

The distribution of the needed geometric points is shown in Figure 2.2. Let O be the center of the circle passing through all the actuated joints that are represented by points A i for i = 1,2,3 (see also Figure 2.3). The basic reference frame attached to O is R = {O,e x ,e y ,e z }, where e x ,e y ,e z are the corresponding unit vectors.

Let B i and C i be two virtual points located at the midpoints of each two ball-and-socket joints connecting one rear-arm to one forearm and one forearm to the traveling-plate respectively. This consideration can be done because the orientation of the traveling-plate never changes when it moves in the workspace of the robot [START_REF] Krut | Heli4: A Parallel Robot for Scara Motions with a Very Compact Traveling Plate and a Symmetrical Design[END_REF]]. An auxiliary frame R i = {A i ,u i ,v i ,z i } is attached to each actuated joint such that #» z i = #» e z and #» u i is auxiliary frame R i leads to a system of two equations as follows:

u 2 B i + z 2 B i = L 2 i (2.6) (u C i -u B i ) 2 + v 2 C i + (z C i -z B i ) 2 = l 2 i (2.7)
On one hand, the motion of a rear-arm is described by a circle of center A i and radius L i represented by equation (2.6). On the other hand, (2.7) describes the motion of a forearm as a sphere of center C i and radius l i . Solving the aforementioned two equations for u B i and z B i in the frame R i gives the intersection point B i between the circle of each rear-arm and the sphere of each forearm.

Using (2.6) and (2.7), one can find the coordinates of B i as function of the point C i ,

u B i = f 1 ( R i C i ) and z B i = f 2 ( R i C i )
, respecting the accessible geometric workspace of the robot.

Indeed, the frame R i is obtained after performing a rotation on the reference frame R about its z-axis by angle α i and then a translation T r b . C i is previously given in the reference frame R as function of the Cartesian position vector of the end-effector in (2.1). Then, the coordinates of C i in the frame R i can be computed using the transformation matrix as follows:

R i C i 1 =       cos(α i ) -sin(α i ) 0 r b cos(α i ) sin(α i ) cos(α i ) 0 r b sin(α i ) 0 0 1 0 0 0 0 1       C i 1 (2.8)
Thus, the coordinates of the four actuated joints representing the inverse kinematic solution can be obtained as follows:

q i = atan2(z B i ,u B i ) (2.9)

Forward kinematic Model of Delta PKM

The Forward Kinematic Model (FKM) provides the Cartesian vector position of the endeffector X given the joint vector position q.

For each kinematic chain, the coordinates of B i in the frame R i ( R i B i ) can be calculated from the given q i using (2.3). The coordinates of B i in the reference frame R are deduced based on the transformation matrix used in (2.8) as follows:

B i 1 =       cos(α i ) -sin(α i ) 0 r b cos(α i ) sin(α i ) cos(α i ) 0 r b sin(α i ) 0 0 1 0 0 0 0 1       -1 R i B i 1 B i = A i + [Lcos(q i )cos(α i ),Lcos(q i )sin(α i ),Lsin(q i )] T B i = A i + A i B i (2.10)
Now, developing (2.5) in the reference frame R leads to the following system of equations:

(x C i -x B i ) 2 + (y C i -y B i ) 2 + (z C i -z B i ) 2 = l 2 i ∀ i = 1,2,3 (2.11) 
Inserting (2.1) in (2.11) leads to another system of three equations and three unknowns,

x t ,y t and z t , the Cartesian coordinates of the moving platform of center O t , as follows:

(x t + r t cos(α i ) -x B i ) 2 + (y t + r t sin(α i ) -y B i ) 2 + (z t -z B i ) 2 = l 2 i ∀ i = 1,2,3 (2.
12)

The numerical solution of (2.12) respecting the mechanical constraints of the robot gives the coordinates of O t in the reference frame R which is the intersection point of three virtual spheres of center B ′ i and radius [B ′ i O t ] = l i (see Figure 2.4). Therefore, the forward kinematic solution is deduced as follows:

x = x t y = y t z = z th

(2.13)

Differential Kinematics of Delta PKM

The differential kinematic model of parallel robots provides a relation between the Cartesian velocity vector Ẋ and the joint velocity vector q using the Jacobian matrix J(q,X).

Then, one can formulate the Jacobian matrix by differentiating with respect to time the kinematic relationship between X and q in (2.11).
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Applying the time derivative to (2.11) in the reference frame R leads us to the following equality:

(x C i -x B i )ẋ C i + (y C i -y B i ) ẏC i + (z C i -z B i )ż C i = (x C i -x B i )ẋ B i + (y C i -y B i ) ẏB i + (z C i -z B i )ż B i (2.14)
From ( 2.1), one can conclude that point C i and the end-effector E have the same Cartesian velocity which means ẊC i = Ẋ. Moreover, the Cartesian velocity of B i can be derived from (2.10) as follows:

ẊB i = t i qi (2.15)
where t i is the tangent vector at point B i to the circle of the rear-arm, shown in Figure 2.4, given as follows:

t i = [-Lsin(q i )cos(α i ),-Lsin(q i )sin(α i ),Lcos(q i )] T (2.16)
Therefore, (2.14) can be arranged and rewritten in the form below:

J x Ẋ = J q q
(2.17)

where J q and J x are given as follows:

J q = diag t T 1 B 1 C 1 ,t T 2 B 2 C 2 ,t T 3 B 3 C 3 (2.18) J x = B 1 C 1 T ,B 2 C 2 T ,B 3 C 3 T T (2.19)
Finally, the Jacobian matrix is computed as follows:

J = J -1 x J q (2.20)
It is worth to say that in the case of non-redundant parallel manipulators, such as Delta robot, the inverse of J x always exists as long as the robot follows trajectories away from singularities. The differential kinematic model of Delta robot is then given by the following equations:

Ẋ = J q (2.21) q = J m Ẋ = J -1 Ẋ (2.22) L Figure 2
.5 -Illustration of dynamic parameters of Delta parallel robot arms.

Dynamics of Delta PKM

The dynamic model of Delta robot is established in this section, as in [START_REF] Bennehar | A new RISE-based adaptive control of PKMs: design, stability analysis and experiments[END_REF], based on the virtual work principle described in [START_REF] Codourey | Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation[END_REF]. As common for Delta-like PKMs, two assumptions are considered for a simplification purpose as follows:

Assumption 1. Both dry and viscous frictions in all passive and active joints are neglected.

Assumption 2. The forearms' mass is split up into two point-masses, the first one is added to the mass of the rear-arms while the second is considered with the mass of the traveling-plate (see Figure 2.5).

Looking for the dynamics of the traveling-plate, one can define two kinds of forces acting on it: the gravitational force G tp ∈ R 3 and the inertial force

F tp ∈ R 3 .
Back to Assumption 2, the total mass of the traveling-plate including the half-masses of the forearms can be calculated as follows:

m tp = m p + 3 m f 2 (2.23)
where m p is the own mass of the traveling-plate and m f is the mass of each forearm as shown in Figure 2.5.
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Then, the gravitational force acting on the traveling-plate can be expressed as follows:

G tp = -M tp G (2.24)
where M tp ∈ R 3×3 is the diagonal mass matrix of the traveling-plate (M tp = diag{m tp ,m tp ,m tp }). G ∈ R 3 is the gravity vector (G = [0 0 g] T , being g = 9.81 m/s 2 the gravity acceleration).

The inertial force acting on the traveling-plate arising from its acceleration is defined as follows:

F tp = M tp Ẍ (2.25)
with Ẍ ∈ R 3 denoting its acceleration vector.

The contributions of the gravitational and inertial forces to the actuator torques are evaluated using the Jacobian matrix as follows:

Γ G tp = J T G tp (2.26) Γ F tp = J T F tp (2.27)
Besides, the dynamics from the actuators side includes the contributions of forces acting on the rear-arms. Here, we name three contributing torques: (i) the actuators input torque Γ ∈ R 3 , (ii) the effect of the rear-arms gravitational forces Γ G arm ∈ R 3 and (iii) the inertial contribution due to rear-arms acceleration Γ arm ∈ R 3 .

In order to quantify the contribution of the rear-arms gravitational forces, let us define the following diagonal matrix taking into consideration the statement of Assumption 2.

M r = diag{m r eq ,m r eq ,m r eq } (2.28)

with m r eq = m r l r G + L m f 2 (2.29)
where m r is the mass of each rear-arm, l r G is the distance from the axis of rotation of each rear-arm to its center of gravity, while L is the complete length of each rear-arm as
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79 illustrated in Figure 2.5. Then, the torque produced by the gravitational forces of the reararms is given by:

Γ G arm = -g M r Cos(q) (2.30)
where Cos(q) [cos(q 1 ), cos(q 2 ), cos(q 3 )] T .

The inertial contribution of the operating acceleration of the rear-arms can be defined as follows:

Γ arm = I arm q

(2.31)

where I arm ∈ R 3×3 is a diagonal inertia matrix including the inertia of the actuators, the rear-arms and the half-masses of the forearms with respect to the actuators' rotation axes.

q ∈ R 3 is the acceleration vector in joint space.

After applying the virtual work principle, stating that the contribution of all non-inertial forces must be equal to the contribution of all inertial forces, one can formulate the inverse dynamic model as follows:

Γ = I arm q + J T M tp Ẍ + Γ G tp + Γ G arm (2.32)
By computing the first time derivative of (2.21), we obtain the relation between joint and Cartesian accelerations, expressed as follows:

Ẍ = J q + J q (2.33)
where J is the time derivative of J. 

Γ (t) = M(q) q + C(q, q) q + G(q) (2.34)
where M(q) = I arm + J T M tp J is the total mass and inertia matrix of the robot, C(q, q) = J T M tp J is the Coriolis and centrifugal forces matrix, G(q) = -Γ G tp -Γ G arm is the gravitational forces vector, and Γ (t) is the control input vector. The main dynamic parameters of delta parallel robot are summarized in Table 2.1. fully parallel manipulator having four identical kinematic chains where each one is considered a series of an actuator, a rear-arm, and a forearm. Each forearm comprises two parallel rods connected from one extremity to a rear-arm and from the other extremity to a traveling-plate through ball-and-socket passive joints the same as in Delta robot. Thus, the moving-platform maneuvers in three translation DOFs (x, y and z) and one rotational DOF (θ z ) around z-axis perpendicular to the fixed-base in the main reference frame preserving without any inclination or orientation.

The innovative feature of the VELOCE robot lies mainly in its moving-platform which is made of two traveling-plates guided in translation relatively along a screw (along z-axis)

holding by its end the end-effector as shown in Figure 2.6. Each traveling-plate is connected to two opposite side kinematic chains. This configuration transforms the relative distance between the two traveling-plates into the rotation of the end-effector [START_REF] Company | Fast pick-and-place parallel robot with compact travelling plate[END_REF].
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Point A i representing the position of each actuator:

A i = r b u i (2.37)
Point B i where the joint between a rear-arm and a forearm takes place:

B i = A i + L[cos(α i )cos(q i ),sin(α i )cos(q i ),sin(q i )] T (2.38)
Point C i where the joint between a forearm and one of the traveling-plates takes place:

C i = E + r t u i + (h + p i π θ z )e z (2.39)
where r b is the radius of the circle passing through the four actuators of center O, L is the length of the rear-arm, E = [x,y,z] T is the position vector of the end-effector in reference R, r t is the radius of the circle circumscribed of a traveling-plate, h is the geometric distance shown in Figure 2.7, p i = 0 for i = {1,3} and p i = p for i = {2,4} with p being the pitch of the helical joint which is the axial distance between the crests of adjacent threads of the screw.

Considering a double start screw used in our prototype, the linear distance covered in one full round is two pitches (2p/2π).

Inverse kinematic Model of VELOCE PKM

Following the same manner used to calculate the IKM of Delta PKM in Section 2.2.1.2, one can compute the position vector of point B i in the auxiliary reference R i , the intersection of the circle of the rear-arm and the sphere of the forearm, knowing the Cartesian coordinates of the end-effector.

Developing the equalities of rigidity of the rear-arms and forearms ,(2.4) and (2.5), in the auxiliary reference R i provides a relation between R i B i and R i C i . Using the transformation matrix in (2.8), one can deduce the position vector C i in the reference R.

Thus, the inverse kinematic solution representing the four actuated joint angles is given as follows:

q i = atan2(z B i ,u B i ) (2.40)
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position vector X as follows:

                     (x + r t -x B 1 ) 2 + (y -y B 1 ) 2 + (z + h -z B 1 ) 2 = l 2 1 (x -x B 2 ) 2 + (y + r t -y B 2 ) 2 + (z + h + p π θ z -z B 2 ) 2 = l 2 2 (x -r t -x B 3 ) 2 + (y -y B 3 ) 2 + (z + h -z B 3 ) 2 = l 2 3 (x -x B 4 ) 2 + (y -r t -y B 4 ) 2 + (z + h + p π θ z -z B 4 ) 2 = l 2 4 (2.42)
where l 1 = l 2 = l 3 = l 4 = l are the lengths of the forearms. Solving the final obtained system (2.42) that consists of four equations and four unknowns x,y,z and θ z provides the forward kinematic solution of VELOCE robot which is represented by the intersection of four spheres of equations shown in (2.42).

Differential Kinematics of VELOCE PKM

Differentiating with respect to time the kinematic relationship of VELOCE parallel robot (2.41) gives us the differential kinematic relation between the Cartesian velocity vector Ẋ and the joint velocity vector q.

To proceed in developing the Jacobian matrix, we address the time derivatives of the position vectors C i and B i in (2.39) and (2.38) respectively as follows:

             ẋC i = ẋ ẏC i = ẏ żC i = ż + p i π θz (2.43) ẊB i = t i qi ≡              ẋB i = -Lcos(α i )sin(q i ) qi ẏB i = -Lsin(α i )sin(q i ) qi żB i = Lcos(q i ) qi (2.44)
where t i is the tangent vector at point B i to the circle of the rear-arm.
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Ẋ = J q (2.45) J = J -1 x J q
(2.46)

J x =         B 1 C 1 T (z C 1 -z B 1 ) p 1 π B 2 C 2 T (z C 2 -z B 2 ) p 2 π B 3 C 3 T (z C 3 -z B 3 ) p 3 π B 4 C 4 T (z C 4 -z B 4 ) p 4 π         (2.47) J q = diag t T 1 B 1 C 1 ,t T 2 B 2 C 2 ,t T 3 B 3 C 3 ,t T 4 B 4 C 4 (2.48) 
Similar to Delta PKM, VELOCE PKM is a non-redundant prototype that has J x always invertible as long as the followed trajectory is free of singularities.

Dynamics of VELOCE PKM

The dynamic model of VELOCE robot and a Delta one have a lot of similarities, except few differences in VELOCE robot coming from the fourth kinematic chain and the additional rotational motion.

Considering Assumptions 1 and 2 of Delta-like PKMs, for simplification purposes, the dynamics of VELOCE robot can be classified according to the working space, either dynamics of Cartesian space or dynamics of joint space.

Regarding the dynamics of Cartesian space, it covers the forces acting on the travelingplate such as the gravitational force G tp ∈ R 4 and the inertial force F tp ∈ R 4 expressed as follows:

G tp = -M tp G (2.49) F tp = M tp Ẍ (2.50)
where M tp ∈ R 4×4 is the total mass matrix of the moving platform including the halfmasses of the forearms, G = [0,0,g,0] T is the gravity vector with g = 9.81m/s 2 being the gravity acceleration, and Ẍ ∈ R 4 represents the Cartesian acceleration vector. The contributions of the aforementioned forces to the actuator torques are computed using the Jacobian matrix as follows:

Γ G tp = J T G tp (2.51) Γ F tp = J T F tp (2.52)
In the joint space, the dynamics include the actuator input torques Γ ∈ R 4 , the effect of the rear-arm gravitational forces Γ G arm ∈ R 4 and the inertial contribution due to the reararm accelerations Γ arm ∈ R 4 . The torque contribution coming from the gravitational forces of the rear-arms is given as follows:

Γ G arm = -g M r Cos(q) (2.53) 
M r = diag{m r eq ,m r eq ,m r eq ,m r eq } (2.54)

m r eq = m r l rG + L m f 2 (2.55)
where m r is the mass of each rear-arm, l r G is the distance from the axis of rotation of each rear-arm to its center of gravity, L is the complete length of each rear-arm as illustrated in Figure 2.5, and Cos(q) [cos(q 1 ), cos(q 2 ), cos(q 3 ), cos(q 4 )] T .

Moreover, the torque contribution of the inertial forces coming from the acceleration of the rear-arms is calculated as follows:

Γ arm = I arm q (2.56)
where I arm ∈ R 3×3 is a diagonal inertia matrix including the inertia of the actuators, the inertia of the rear-arms and the inertia of the half-masses of the forearms with respect to the actuators' rotation axes. q ∈ R 3 is the acceleration vector in joint space. 
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Γ (t) = M(q) q + C(q, q) q + G(q) (2.57)
where M(q) = I arm + J T M tp J is the total mass and inertia matrix of the robot, C(q, q) = J T M tp J is the Coriolis and centrifugal forces matrix, G(q) = -Γ G tp -Γ G arm is the gravita- tional forces vector, and Γ (t) is the control input vector. The main dynamic parameters of VELOCE parallel robot are summarized in Table 2.2.

Redundant parallel robot prototype

In this section, the SPIDER4 parallel robot is presented. This platform can run controlled machining processes of material-removal that make a desired deformation in the shape and size of raw materials. Machining devices of parallel structures are considered good mechanical solutions for the machining operations thanks to the high accuracy and stiffness provided by their closed kinematic chains. In this thesis, we are concerned only with the parallel structure of SPIDER4 proposing control solutions for the trajectory tracking problem of the nacelle in the workspace. All the modeling coming in the sequel is based only on the parallel structure of the SPIDER4 robot.

SPIDER4 robot: a 5-DOF redundant PKM

Kinematics of SPIDER4 PKM

The kinematic model of SPIDER4 robot describes the relation between the actuated joint angles and the Cartesian position of the nacelle. As previously mentioned, in our modeling and control developments, we are concerned only with parallel structure and not aware of the spindle positioning.

Consider X = [x,y,z] T as the Cartesian position vector of the nacelle center and q = [q 1 ,q 2 ,q 3 ,q 4 ] T as the joint position vector representing the configuration of the actuated joints.

Let us define the reference frame R = {O,e x ,e y ,e z } attached to center of the fixed-base and the auxiliary frame R i = {A i ,u i ,v i ,z i } attached to the point A i representing one of the actuators for i = 1,..,4 as illustrated in Figures 2.10 and 2.11.

The position vector of each actuator can be given in the reference frame R as follows:

A i = r b u i (2.58)
where u i = [cos(α i ),sin(α i ),0] T , α i = 9-2i 4 π and r b is the radius of the circle circumscribed of the actuator points A i (see Figure 2.10).

Then, the position vector of the point B i where the joint between a rear-arm and a forearm takes place can be given as follows (see Figure 2.11):

B i = A i + L[cos(α i )cos(q i ),sin(α i )cos(q i ),sin(q i )] T (2.59)
where L is the length of a rear-arm.

The position vector of the point C i where the joint between a forearm and the nacelle takes place can be given in the reference frame R as follows:

C i = X + r t u i (2.60)
where r t is the length of a rear-arm.

Inverse kinematic Model of SPIDER4 PKM

Starting from a known Cartesian position vector X, one can compute the joint position vector q using the inverse kinematic model. Similarly to Delta PKM, calculating the coordinates of point B i in the auxiliary frame R i leads to a solution of the inverse kinematic problem as follows:

q i = atan2(z B i ,u B i ) (2.61)
z B i and u B i can be computed by developing the rigidity equalities of the rear-arms and the forearms, (2.4) and (2.5) respectively, in the auxiliary frame R i . motion of a rear-arm (circle of center A i and radius L i ) and forearm (sphere of center C i and radius l i ).

Solving the two obtained equations in terms of z B i and u B i give the coordinates of the point B i as an intersection of the rear-arm circle and the forearm sphere. Therefore, the inverse kinematic model is concluded by (2.61).

Forward kinematic Model of SPIDER4 PKM

The forward kinematic model of SPIDER4 PKM provides the Cartesian position vector of the nacelle starting from a known configuration of the four actuated joint angles.

One can develop the equality of rigidity of the forearm (2.5) in the reference frame R obtaining the following system of equations:

(x C i -x B i ) 2 + (y C i -y B i ) 2 + (z C i -z B i ) 2 = l 2 i ∀ i = 1,..,4 (2.62) 
Substituting the position vector of the point C i (2.60) in (2.62) leads to a new system of equations as follows:

(x + r t cos(α i ) -

x B i ) 2 + (y + r t sin(α i ) -y B i ) 2 + (z -z B i ) 2 = l 2 i ∀ i = 1,..,4 (2.63) 
For more simplification, following a technique of change of variables, (2.63) can be rewritten as follows:

(x -x B ′ i ) 2 + (y -y B ′ i ) 2 + (z -z B ′ i ) 2 = l 2 i ∀ i = 1,..,4 (2.64) 
where

B ′ i = B i -r t [cos(α i ),sin(α i ),0]
T is the translation of point B i along the u i -axis with coefficient -r t . Therefore, the forward kinematic solution represents the intersection of four spheres of centers B ′ i and radii l i .

Differential Kinematics of SPIDER4 PKM

Applying the time derivative to the kinematic relationship of SPIDER4 PKM (2.62) leads to a Jaccobian matrix formulation, and thus establishing the differential kinematic model.

From (2.60), it is clear that the Cartesian velocity vector ẊC i and that of the center of the nacelle Ẋ are equal. Then, after differentiating with respect to time (2.62) and getting use of the velocity of the nacelle, one can establish the equation below:

B 1 C 1 T ,B 2 C 2 T ,B 3 C 3 T ,B 4 C 4 T T Ẋ = B 1 C 1 T ,B 2 C 2 T ,B 3 C 3 T ,B 4 C 4 T T ẊB i (2.65)
The velocity vector ẊB i can be derived from (2.59) as follows:

ẊB i = t i qi (2.66)
where t i is the tangent vector at point B i to the circle of the rear-arm given as follows:

t i = [-Lsin(q i )cos(α i ),-Lsin(q i )sin(α i ),Lcos(q i )] T (2.67)
Finally, the differential kinematic relationship between the Cartesian velocity vector and the joint velocity vector is formulated as follows:

Ẋ = J q (2.68)
where J is the Jacobian matrix given as follows:

J = J + x J q
(2.69) with (.) + denotes the pseudoinverse of a non-diagonal matrix. J x and J q can be stated as follows:

J x = B 1 C 1 T ,B 2 C 2 T ,B 3 C 3 T ,B 4 C 4 T T
(2.70)

J q = diag t T 1 B 1 C 1 ,t T 2 B 2 C 2 ,t T 3 B 3 C 3 ,t T 4 B 4 C 4 (2.71)
It is worth to note that using the pseudoinverse technique for solving redundancy looks good since it generates the minimum norm joint velocities, but still, the kinematic singularities are not avoided [START_REF] Siciliano | Kinematic control of redundant robot manipulators: A tutorial[END_REF]. The pseudoinverse of the Jacobian matrix exists as long as our robot is far from singular postures within its operational workspace, which means that the Jacobian matrix doesn't lose its rank.

Dynamics of SPIDER4 PKM

Considering the same Assumptions 1 and 2 of Delta robot, the inverse dynamic model of SPIDER4 PKM can be established based on the virtual work principle.

On the one hand, the traveling-plate dynamics can be described by Newton-Euler formulation as follows:

M tp ( Ẍ -G) = 0 (2.72)
where M tp = diag{m tp ,m tp ,m tp } is the total mass matrix including the mass of the nacelle, the payload lifted by the nacelle (the two motors and spindle), and the half-masses of the forearms, Ẍ ∈ R 3 is the Cartesian acceleration vector and G = [0,g,0] T represents the gravity vector with g = 9.81m/s 2 being the gravity acceleration. Then, the gravitational force acting on the traveling-plate can be given as follows:

G tp = -M tp G (2.73)
while the inertial force arising from the acceleration of the traveling-plate is stated as follows:

F tp = M tp Ẍ (2.74)
The above-mentioned forces are converted into torque contributions at the joint side using the Jacobian matrix as follows:

Γ G tp = J T G tp (2.75) Γ F tp = J T F tp (2.76)
On the other hand, the dynamics of the rear-arms from the joint side comprise the torque generated from the actuators Γ ∈ R 4 , the torque contribution of the gravitational force acting on the rear-arms Γ G arm ∈ R 4 , and the inertial contribution due to the reararms' acceleration Γ arm ∈ R 4 .

For the case of SPIDER4 PKM, it is clear that the gravitational force acting on a rear-arm is not in the same plane of its rotational motion as shown in Figure 2.12. This is due to the horizontal orientation of SPIDER4 PKM and its inclination around z-axis with an angle α. The torque contribution of the inertial force acting on a rear-arm can be defined as follows:

Γ arm = I arm q

(2.80)

where I arm ∈ R 4×4 is a diagonal inertia matrix including the inertia of the actuators, the rear-arms and the half-masses of the forearms with respect to the actuators' rotation axes.

q ∈ R 4 is the acceleration vector in joint space.

Finally, the inverse dynamic model of SPIDER4 PKM can be formulated using the virtual work priciple as follows:

Γ (t) = M(q) q + C(q, q) q + G(q)

(2.81)

where M(q) = I arm + J T M tp J is the total mass and inertia matrix of the robot, C(q, q) = J T M tp J is the Coriolis and centrifugal forces matrix, G(q) = -Γ G tp -Γ G arm is the gravitational forces vector, and Γ (t) is the control input vector. The main dynamic parameters of SPIDER4 parallel robot are summarized in Table 2.3.

Conclusion

In this chapter, we have introduced the three parallel manipulator prototypes that will be used for the experimental validation of the proposed control schemes. The experimental platforms can be listed as follows: Delta PKM at EPFL, Switzerland, VELOCE and SPI-
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DER4 PKMs at LIRMM. The presented prototypes are all Delta-like parallel robots redundantly and non-redundantly actuated for which we can verify the performance and applicability of our control schemes in both cases.

The general mechanical structure of each parallel manipulator has been described. The kinematic modeling has been presented as well as the Jacobian matrices of all robots were established. Using the virtual work principle and relying on some assumptions (Assumptions 1 and 2), the inverse dynamics of all the parallel manipulators were formulated. The main characteristics, geometric parameters and dynamic parameters of each PKM were addressed in this chapter.

The established dynamic models will be used in the design of some control approaches within the next chapter. In the presence of all those uncertainties, actuation redundancy (in case of redundantly actuated manipulators) may lead to some antagonistic forces that appear as generated internal forces, called prestress. These forces can deteriorate the performance of the parallel manipulator and they should be taken into account by the control design.

Therefore, the need of advanced control strategies robust against uncertainties, changing nonlinearities, and disturbances arises. Enhancing some robust control strategies and improving the dynamic model of PKMs can lead to a better dynamic performance in terms of high-speed motions, precision, and robustness. This chapter provides a detailed explantation of the main proposed control solutions in this thesis. The contribution for each adopted control strategy is addressed and explained.

The main contributions can be listed briefly as follows:

1. A new time-varying feedback Robust Integral of the Sign of the Error (RISE) control strategy was developed for parallel manipulators. Some static feedback gains in the original RISE controller were replaced by nonlinear feedback ones aiming at more robustness towards disturbances, dynamic changes, and uncertainties.

2. A novel model-based super-twisting sliding mode control was proposed as an extension of the original second order super-twisting algorithm. The control structure formed of a dynamic feedforward term and a feedback super-twisting control can be more adequate for parallel manipulator control in real-time framework compared to the conventional suer-twisting algorithm.

3. In the framework of improving the dynamic model, an actuator and friction dynam- Furthermore, in case of redundantly actuated parallel manipulators, the adopted solution to avoid the effect of the internal prestress is explained at the end of this chapter. 
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Contribution

Background on the original RISE controller

Consider the second order MIMO nonlinear dynamical systems represented as:

M(x, ẋ)ẍ + F(x, ẋ) = u (3.1)
where x(t), ẋ(t) ∈ R n denote the system states: position and velocity respectively, and ẍ(t) ∈ R n denotes the acceleration, with "n" actuators. Note that x(t) and ẋ(t) are assumed to be measurable states. u(t) ∈ R n represents the control input. M(.,.) ∈ R n×n and F(.) ∈ R n are uncertain nonlinear functions. In most of the real-world robotic systems, the mathematical model in (3.1) is poorly known and usually formulated with some simplifications, non-modelled phenomena and disturbances.

CHAPTER 3. PROPOSED CONTROL SOLUTIONS

Let the output tracking error be defined as follows:

e 1 = x d -x (3.2)
where x d (t) ∈ R n is the desired trajectory. In order to achieve an asymptotic tracking of a reference trajectory x d (t) (e 1 → 0 as t → ∞), the system and the desired signal should have the assumed properties below.

Property 5. The matrix M(.) ∈ R n×n is a symmetric positive-definite matrix and satisfies ∀ ξ(t) ∈ R n the following inequality: x and ẋ exist and are also bounded.

m||ξ|| 2 ≤ ξ T M(.)ξ ≤ m(x)||ξ|| 2 (3.3) with m ∈ R is a positive constant,
Property 7. The chosen reference trajectory x d (t) ∈ R n is differentiable till the 4th order, and its derivatives are bounded.

x (i)

d (t) ∈ L ∞ for i = 0,1,...,4 (3.4) 
To develop the closed-loop error system equation, we need to introduce the auxiliary errors e 2 (t), r(t) ∈ R n as follows:

e 2 = ė1 + α 1 e 1 (3.5a) r = ė2 + α 2 e 2 (3.5b)
where α 1 , α 2 are positive constant design gains added to increase the flexibility of tuning.

After differentiating (3.5b) with respect to time, multiplying both sides of the obtained equation by M(x, ẋ), then using the system dynamics (3.1), we get the equation below:

M(.)ṙ = M(.)( ...

x d + α 1 ë1 + α 2 ė2 ) + Ṁ(.)ẍ + Ḟ(.) -u (3.6)
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103 By adding and subtracting the two terms ( 1 2 Ṁ(.)r and e 2 ) for the right-hand side of the above-obtained equation (3.6), it can be rewritten as follows:

M(.)ṙ = - 1 2 Ṁ(.)r -e 2 -u + N(.) (3.7) 
where N(.) is defined as: where k s and β are two positive constant gains, sgn(.) is the standard signum function.

N(.) ≡ N(x,ẋ, ẍ, t) = M(.)( ... x d + α 1 ë1 + α 2 ė2 ) + Ṁ(.)(ẍ + 1 2 r) + e 2 + Ḟ(.) (3 
The integral of signum can hold smooth bounded disturbances for a sufficient condition on the feedback gain. The second term of (3.9) is used to ensure a zero input signal at time t 0 = 0.

Computing the first time derivative of (3.9) and substituting in (3.7) leads to the following closed-loop error system equation:

M(.)ṙ = - 1 2 Ṁ(.)r -e 2 -(k s + 1)r -βsgn(e 2 ) + N(.) (3.10) 
Let's now consider the auxiliary function defined by: N d (t) = N(x d , ẋd , ẍd ,t). Then, one can add and subtract N d (t) to the right-hand side of (3.10) obtaining the following:

M(.)ṙ = - 1 2 Ṁ(.)r -e 2 -(k s + 1)r -βsgn(e 2 ) + Ñ + N d (3.11) where Ñ(x, ẋ, ẍ, t) = N(x, ẋ, ẍ, t) -N d (t) (3.12)
Thanks to properties 5 and 6 of the nonlinear functions M(.) and F(.), and property 7 required in the desired trajectory, one can deduce that functions N d (t) and Ṅd (t) ∈ L ∞ (i.e. exist and bounded).

Since N(.) is continuous, one can show that Ñ(.) can be upper bounded as follows:

|| Ñ|| ≤ ρ(||z||)||z|| (3.13)
where z(t) = [e 1 e 2 r] T , and ρ(.) : R ≥ 0 → R ≥ 0 is a globally invertible nondecreasing function. For the proof of (3.13), the reader can refer to Lemma 1 in the appendix of [START_REF] Patel | Parallel Manipulators Applications-A Survey[END_REF].

Referring to [START_REF] Xian | A Continuous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems[END_REF], it can be verified that the control law of (3.9) ensures that all the closed-loop system states are bounded and converge to zero e (i)

1 (t) → 0 as t → ∞, for i = 0,1,2 (3.14) 
as long as the control gain k s is chosen large enough relative to the initial conditions of the system, α 1 ,α 2 > 1/2, and β satisfies the following condition:

β > ||N d (t)|| L ∞ + 1 α 2 || Ṅd (t)|| L ∞ (3.15) where ||.|| L ∞ is the L ∞ norm [Khalil, 2002].

Applications of RISE control

RISE feedback law is a continuous control solution dealing with Multi-Input-Multi-Output (MIMO) high-order nonlinear systems. This non-model-based control strategy can guarantee a semi-global asymptotic tracking under limited assumptions on the system uncertainties and time-varying parameters. RISE controller has been applied in different real-time applications thanks to the robustness and disturbances rejection provided by its feedback closed-loop architecture.

It has been proved experimentally in [START_REF] Feemster | Jitter reduction in a directed energy application using RISE[END_REF] the high efficiency of RISE controller for disturbance rejection, compared to some classical controllers, in a directed energy platform experiencing jitter to promote beam regulation on a target. In [Fischer et Moreover, the fixed feedback gains of RISE control limits the tuning capabilities of the controller. For parallel manipulators, the dynamic performance is affected by the position in the workspace (trajectory), operating acceleration, payload handled, and other uncertainties. RISE controller can show good behavior when operating at nominal conditions, but it may come out with weak performances at high dynamic operating conditions.

Indeed, conventional linear control has been used in a wide range of industrial applications providing a good performance. However, its good performance is limited to a small range operation and around the nominal steady state only. At critical operating conditions (for example: high-speed, high-precision applications), linear control may degrade the performance and even lead to instability while nonlinear control can handle the variation in the nonlinear dynamics preserving the stability and the good performance [START_REF] Slotine | Applied Nonlinear Control[END_REF][START_REF] Bibliography | Nonlinear Systems[END_REF].

One of the most studied concepts in the area of nonlinear control is utilizing nonlinear functions as feedback gains able to adapt itself with the variation of the system states, control inputs or other variables. A typical example of such nonlinear control is the NLPID discussed before in section 1.8.2.2 that was proposed to enhance the adaptability and robustness of the simple PID regulator [START_REF] Jingqing | Nonlinear PID Controller[END_REF]. The notion of NPID control was extended to several fixed-gain controllers of parallel manipulators as shown already in sections 1.8.2.2 and 1.8.3.6. All the nonlinear extended controllers show better dynamic performances compared to the fixed-gain controllers in terms of tracking precision and robustness towards uncertainties, disturbances, and varied parameters.

Motivated by the advantages of using nonlinear feedback gains instead of the fixed ones and the significant performance of RISE feedback law for different applications, the Time-Varying feedback RISE (TV-RISE) control is proposed as a new control methodology for robotics. The proposition works on enhancing the RISE control law by replacing the fixed feedback gains with time-varying ones that depend on the system states: position error, velocity error, and the integral of the position error. We look to increase the robustness of RISE regulator towards disturbances, uncertainties and variation of system nonlinearities depending on the operating point. The TV-RISE controller can be more adequate for the control problem of PKMs known with their high nonlinearities, uncertainties, and varied performance with the dynamic operating conditions.

Control design

The original controller in (3.9) can be split up into two parts: a linear feedback part based on the measured combined error e 2 , and a nonlinear signum function. The linear part consists of proportional and integral actions on the combined error, which is similar to a PI controller but taking as input the combined error instead of the position error. These two linear control actions may lead up to poor performances when dealing with highly nonlinear systems at critical dynamic operating conditions. They have considerable sensitivity to disturbances and limited tuning capabilities.

We propose to replace the proportional and the integral static feedback gains by non- 
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K s (.) ≡ K s (e 2 ,ǫ 1 ,δ 1 ) =      k s0 |e 2 | ǫ 1 -1 , |e 2 | > δ 1 k s0 δ ǫ 1 -1 1 , |e 2 | ≤ δ 1 (3.17a) α 2 (.) ≡ α 2 (e 2 ,ǫ 2 ,δ 2 ) =      α 20 | e 2 | ǫ 2 -1 , | e 2 | > δ 2 α 20 δ ǫ 2 -1 2 , | e 2 | ≤ δ 2 (3.17b) 
where k s0 ,α 20 ,ǫ 1 ,δ 1 ,ǫ 2 ,δ 2 are positive design parameters need to be chosen carefully. Indeed, to meet the desired performance, ǫ 1 and ǫ 2 are chosen within the intervals [0.5, 1] and [1, 1.5] respectively.

On the one hand, the selection of ǫ 1 within the interval [0.5, 1] can reduce the proportional gain K s (.) at high combined error values and increase it at small ones (see Figure 3.1). As long as the combined error remains within the small interval [-δ 1 ,+δ 1 ] around zero, the proportional gain remains constant as a maximum saturated value. Notice that the combined error gives knowledge about both position and velocity errors. Thus, such variation of the gain could result in a rapid transition of the closed-loop system states and favorable damping.

On the other hand, the nonlinear feedback gain α 2 (.) varies as function of the integral of the combined error (see Figure 3.2), which means that it is more concerned with the steady state combined errors (i.e. errors that persist with time). The choice of ǫ 2 within the interval [1, 1.5] gives large integral gain for the large steady state combined errors, and small integral gain for the small steady state combined errors as illustrated in Figure 3.2.

As long as this error remains within the small interval [-δ 2 ,+δ 2 ] around zero, the integral gain remains as a minimum constant value. This variation may accelerate the tracking Choosing ǫ 1 and ǫ 2 in their corresponding intervals leads to globally bounded nonlin-
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0 < K sm k s0 ||e 2 || ǫ 1 -1 ∞ ≤ K s (.) ≤ k s0 δ ǫ 1 -1 1 K sM (3.18a) 0 < α 2m α 20 δ ǫ 2 -1 2 ≤ α 2 (.) ≤ α 20 || e 2 || ǫ 2 -1 ∞ α 2M (3.18b)
where ||.|| ∞ indicates the infinity-norm.

Using the above introduced time-varying feedback gains in the standard equation of RISE controller may enhance the global tracking performance of such controller and may improve its robustness towards changes in system parameters. It is worth to confirm that the structure of the nonlinear functions is simple enough to be implemented in real-time experiments.

Closed-loop error dynamics:

In order to analyse the stability of the proposed TV-RISE controller, we need to establish its related closed-loop error equation based on the nonlinear MIMO system (3.1).

Let us first define the auxiliary error r(t) which is synthesized now using the nonlinear function α 2 (.) as follows: r = ė2 + α 2 (.)e 2 (3.19) Following the same previous procedure: differentiating r(t), multiplying both sides by M(.), getting use of the system dynamics (3.1), and arranging the elements of the obtained equation leads to:

M(.)ṙ = - 1 2 Ṁ(.)r -e 2 -u + N(.) (3.20) 
where N(.) is a new auxiliary function defined as follows:

N(.) ≡ N(x, ẋ, ẍ, t) =M(.)( ...

x d + α 1 ë1 + α 2 (.) ė2 + α2 (.)e 2 ) + Ṁ(.)(ẍ + 1 2 r) + e 2 + Ḟ(.) (3.21)
The equation of the closed-loop error system is then derived by differentiating the control law of TV-RISE controller (3.16) with respect to time and substituting it in (3.20). Intro-110
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ducing the supplementary function Ñ(., t) as in (3.12) allows the closed-loop error equation to be as follows: Proof. Let us first consider the function L(t) ∈ R defined as follows:

M(.)ṙ = - 1 2 Ṁ(.)
β > ||N d (t)|| L ∞ + (1/α 2M )|| Ṅd (t)|| L ∞ with α 1 > 1/2, ǫ 1 ∈ [0.5,1], ǫ 2 ∈ [1,1.5],
L(t) = r(N d (t) -βsgn(e 2 )) (3.23) 
With the use of Lemma 1 in [Xian et al., 2004], we can conclude that if β is chosen satisfying the following condition:

β > ||N d (t)|| L ∞ + 1 α 2M || Ṅd (t)|| L ∞ (3.24)
then the following inequality holds:

t 0 L(τ)dτ ≤ β|e 2 (0)| -e 2 (0)N d (0) (3.25)
Then, an additional function P(t) ∈ R needs to be defined as follows:

P(t) = β|e 2 (0)| -e 2 (0)N d (0) - t 0 L(τ)dτ (3.26)

CONTRIBUTION 1: A NEW TIME-VARYING FEEDBACK RISE CONTROL
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We now introduce a continuous differentiable definite positive function V : R 3n+1 × R ≥0 → R ≥0 as follows:

V(y,t) = 1 2 e T 1 e 1 + 1 2 r T M(.)r + P where y = [z T P] T and z(t) is defined previously. In view of the characteristics of the matrix M(.) stated by Property 5 and its bounds in (3.3), V(y,t) can be bounded as follows:

λ 1 ||y|| 2 ≤ V(y,t) ≤ λ 2 (||y||)||y|| 2 (3.28)
being λ 1 = (1/2) min{1, m} and λ 2 = (1/2) max{m(||y||), 1}.

Applying the time derivative of (3.27), and using equations (3.22), (3.23) and (3.26) leads to:

V = e T 1 e 2 -α 1 e T 1 e 1 -r T e 2 -Ks (.)r T e 2 -(K s (.) + 1)r T r + (K s (.) + 1)α 2 (.)r T e 2 -(k s0 + 1)α 2 (.)r T e 2 + r T Ñ (3.29)
where Ks (.) is the time derivative of the nonlinear function K s (.). Now, we need to find an upper bound for V in (3.29).

Using the conventional inequality for any two vectors, a and b namely a T b ≤ (||a|| 2 + ||b|| 2 )/2, one can write:

V ≤ 1 2 ||e 1 || 2 + 1 2 ||e 2 || 2 -α 1 ||e 1 || 2 - 1 2 ||r|| 2 -||e 2 || 2 - |K smp | 2 ||r|| 2 - |K smp | 2 ||e 2 || 2 -(K sm + 1)||r|| 2 + (K sM + 1)α 2m 2 ||r|| 2 + (K sM + 1)α 2m 2 ||e 2 || 2 - (k s0 + 1)α 2m 2 ||r|| 2 - (k s0 + 1)α 2m 2 ||e 2 || 2 + ||r||ρ(||z||)||z|| (3.30)
where K smp is a lower bound for Ks (.). After developing and re-arranging (3.30) we obtain:

V ≤ -ζ 1 ||e 1 || 2 -ζ 2 ||e 2 || 2 -ζ 3 ||r|| 2 -µ||r|| 2 + ||r||ρ(||z||)||z|| (3.31)
where ζ 1 ,ζ 2 ,ζ 3 and µ are constants to be chosen positive defined as follows: V

ζ 1 = α 1 - 1 2 (3.32a) ζ 2 = 1 2 1 -K sM α 2m + k s0 α 2m (3.32b) ζ 3 = 1 2 3 + 2K sm -K sM α 2m -α 2m (3.32c) µ = 1 2 (k s0 + 1)α 2m
≤ -λ 3 - ρ 2 (||z||) 4µ ||z|| 2 -c||z|| 2 (3.34) 
where c is some positive constant, which implies that the following inequality holds:

λ 3 > 1 4µ ρ 2 (||z||) (3.35)
Let us define the region D using inequality (3.35) as follows:

D = y ∈ R 3 × R ≥0 | ||y|| < ρ -1 (2 λ 3 µ) (3.36)
We know that V(y,t) ∈ L ∞ is a continuously differentiable function such that W 1 (y) ≤ V(y,t) ≤ W 2 (y) (see equation (3.28)) and V(y, t) ≤ -W(y) (from equation (3.34)). Hence e 1 ,e 2 ,r ∈ L ∞ .

W 1 (y),W 2 (y) are continuous positive-definite functions ∀ t ≥ 0 and ∀ y ∈ D, and W(y) is uniformly continuous positive-semidefinite function.

Given that the initial conditions y(0) ∈ S, a subset of D defined as follows:

S = y ⊂ D| W 2 (y) < λ 1 ρ -1 (2 λ 3 µ) 2 (3.37)
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113 then we can conclude, using Lemma 2 of [Xian et al., 2004], that ||z(t)|| 2 → 0 as t → ∞, ∀ y(0) ∈ S. This means that all the closed-loop system states (e 1 ,e 2 ,r) asymptotically converge to zero with time.

e (i)

1 (t) → 0 as t → ∞ ∀ y(0) ∈ S (3.38)
and here the proof is concluded.

Application of the proposed controller to PKMs

For an adequate control design and implementation, we re-define the position error in (3.2) for parallel manipulators of n actuators as a difference between the desired joint angle q d ∈ R n and the actual measured one q ∈ R n as follows:

e 1 = q d -q (3.39)
The measurement of the actual angle position is performed by means of encoders integrated in the motors, and the position in Cartesian space is computed using the forward kinematics of the robot as common for most parallel robots.

The dynamic model of parallel manipulators (1.3) is considered as a second order nonlinear MIMO system with a structure similar to the system equation (3.1).

Consequently, the mass and inertia matrix M(q) is a symmetric positive-definite matrix satisfying the boundedness condition introduced in Property 5. The dynamics of a parallel manipulator satisfy Property 6 such that q(t) and q(t) are measurable and are bounded giving that C(q, q) and G(q) are bounded. Then, the first and second partial derivatives of M(q) with respect to q and those of C(q, q), G(q) with respect to q, q exist and bounded. Also, the chosen desired trajectory q d (t) satisfies the property of differentiability and boundedness reported in Property 7.

Therefore, parallel robot dynamics fit the design of RISE-based controllers and it is possible to implement the proposed control schemes in real-time experiments. The proposed TV-RISE control architecture is summarized in the block diagram depicted in Figure 3.3.
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finite-time convergence of the sliding variable and a local asymptotic convergence of the tracking error.

Background on the super-twisting sliding mode control

Consider the Single-Input-Single-Output (SISO) second order nonlinear uncertain system below:

ẍ1 = f(x 1 , ẋ1 ,t) + g(x 1 , ẋ1 ,t)ν (3.40)
where x 1 , ẋ1 are the system states with x 1 being the output, ν is the scalar control signal, f(.) represents the unknown bounded uncertainties and perturbations, such that |f(.)| ≤ L with L being a positive constant, and g(.) = 0 is the known nonlinearity. Assuming that g(.)

is positive and invertible for all t, the state-variable presentation of (3.40) can be written as follows:

   ẋ1 = x 2 ẋ2 = u + f(x,t) (3.41) 
where x = [x 1 ,x 2 ] T is the state vector and u is a control input such that ν = g -1 (x,t)u.

Main concept of the sliding mode control

The control objective is to develop a control signal u(x 1 ,x 2 ) that drives the state variables to zero as time goes to infinity in the presence of uncertainties and perturbations f(x,t) [Shtessel et al., 2014]. A linear state-feedback control law can achieve the asymp- totic stability if and only if f(x,t) ≡ 0, such that u is given as follows:

u = -k 1 x 1 -k 2 x 2 , k 1 ,k 2 > 0 (3.42)
Indeed, the state variables converge to a bounded domain around zero depending on the chosen control gains and the system perturbations.

Then, Sliding Mode Control (SMC) algorithm is proposed to attain the asymptotic convergence of the state variables in the presence of the unknown system perturbations [Sht-

essel et al., 2014].
It is all about inserting a nonlinear discontinuous term into the controller responsible for rejecting the disturbances, driving the state variables to a sliding surface in a finite time, and restricting them on the surface thereafter in the presence of the bounded disturbances. First, a new variable in the state space is defined representing the sliding surface:

s = x 2 + cx 1 (3.43)
where c is a positive constant. The above sliding surface results with the desired compensated dynamics, ẋ1 + cx 1 = 0, that leads to the asymptotic convergence of x 1 ,x 2 → 0 without any effect of the disturbance f(x,t). Thus, it is clear that we need to drive the sliding variable s to zero by the control u(x 1 ,x 2 ) in finite time so that we can obtain the asymptotic convergence lim t→∞ x 1 ,x 2 = 0. Applying some Lyapunov function techniques (V = 1 2 s 2 ) to the sliding surface dynamics, the required first-order SMC signal and the finite time of the reaching phase to the sliding surface can be derived respectively as follows [START_REF] Shtessel | Sliding Mode Control and Observation[END_REF]:

u = -cx 2 -ρsign(s) (3.44) t r ≤ 2V 1/2 (s 0 ) α (3.45)
where s 0 is the sliding variable value at time t = 0, the control gain ρ = L + α 2 , and α is a positive constant related to the reaching time. The introduced signum function works on compensating the bounded disturbances and achieving the asymptotic convergence of the state variables in the presence of perturbations and uncertainties. However, its highfrequency switching nature leads to a finite amplitude and frequency switching control signal, zigzag behavior, due to the discrete-time nature of the control implementation which is known as chattering. This oscillation in the control signal is undesirable for practical implementations being harmful to the actuators, the mechanical parts, and the control accuracy.

Mainly, the advantages of the first-order SMC are:

• robustness due to theoretical exact compensation of the bounded matched disturbances without being affected by such disturbances.

• reduced order of sliding equations.

• finite-time convergence of the sliding surface.
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and the disadvantages are:

• chattering.

• asymptotic convergence of the state variables and not finite-time convergence.

• relative degree one of the sliding surface such that higher order derivatives are required for the sliding surface design.

Several solutions were proposed in the literature to produce a smooth/continuous control signal and reduce the chattering such that Quasi-Sliding Mode and Asymptotic Sliding

Mode [START_REF] Bartoszewicz | Discrete-time quasi-sliding-mode control strategies[END_REF][START_REF] Lee | Discrete-time quasisliding mode control of an autonomous underwater vehicle[END_REF][START_REF] Christopher | Sliding Mode Control: Theory And Applications[END_REF]]. However, the price to be paid for obtaining a smooth control signal can be less robustness and accuracy (Quasi-Sliding Mode) or asymptotic convergence of both sliding surface and state variables (Asymptotic Sliding Mode).

Furthermore, second-order SMC algorithms can achieve finite-time convergence of the sliding variable and its derivative. It can ensure quadratic precision of the convergence with respect to the sliding output as well as the sliding surface is no longer needed (s = x 1 ) (Twisting and Terminal controllers) [START_REF] Zhihong | A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[END_REF][START_REF] Emel'yanov | High-order sliding modes in control systems[END_REF][START_REF] Yu | Model reference adaptive control systems with terminal sliding modes[END_REF]. Moreover, the sliding dynamics are reduced to the order (r-2) for the systems with relative degree r. The relative degree of a system describes how the control input enters the system. It is equal to the number of times we have to differentiate the output of a system before the input appears explicitly. Nevertheless, for the systems of relative degree two, the controller still produces a discontinuous control signal and chattering phenomenon persists.

Moreover, the second-order Super-Twisting SMC (ST-SMC) algorithm has been proposed and developed, resulting in an exact finite-time convergence of the sliding variable and its derivative, a high accurate asymptotic convergence of the variable states, and a continuous control signal [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF].
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Super-twisting sliding mode control

The ST-SMC algorithm that achieves the asymptotic stability of system (3.41) and finitetime convergence of sliding surface (3.43) is given as follows [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]:

   u = -k 1 |s| 1 2 sign(s) + w ẇ = -k 2 sign(s) (3.46)
where k 1 ,k 2 are positive control gains. Applying the time derivative to the sliding surface, the sliding variable dynamics can be written as follows:

ṡ = -k 1 |s| 1 2 sign(s) + w + f(x,t) (3.47)
The Lyaponuv candidate that proves the asymptotic stability is given as follows [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF]]:

V = 1 2 ξ T Pξ (3.48)
where ξ = [|s| 1 2 sign(s) w] T and

P = 4k 2 + k 2 1 -k 1 -k 1 2
is chosen to be a positive definite matrix.

Following a similar manner in [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF], the expression of the derivative of the Lyapunov function can be derived as follows:

V = - 1 2|s| 1/2 ξ T Qξ + f(x,t) |s| 1/2 F T ξ (3.49) where F = [2k 2 + k 2 1 2 -k 1 2 ] T and Q = k 1 2k 2 + k 2 1 -k 1 -k 1 1
Knowing that the bounded perturbation satisfies f(x,t) ≤ ǫ|s| 1/2 , ǫ being a positive constant, it can be shown that

V ≤ - 1 |s| 1/2 ξ T Qξ (3.50)

CONTRIBUTION 2: A NOVEL MODEL-BASED SUPER-TWISTING SLIDING MODE CONTROL 119

with

Q = k 1 2 2k 2 + k 2 1 -( 4k 2 k 1 + k 1 )ǫ -k 1 + 2ǫ -k 1 + 2ǫ 1
The global asymptotic stability is achieved when V is negative definite, which means Q > 0. Thus, the control gains should satisfy the following conditions:

k 1 > 2ǫ k 2 > k 1 5ǫk 1 + 4ǫ 2 2(k 1 -2ǫ) (3.51)
It can be shown also that the states converge to zero in finite-time t r as in (3.45) with

α = λ 1/2 min {P}λ 1/2 min { Q} λ max {P}
, such that λ min {.},λ max {.} are the minimum and maximum eigen values of a matrix respectively.

Applications of the super-twisting sliding mode control

An application of the ST-SMC algorithm to motion control systems was illustrated by numerical simulations to an under-actuated robotic system in [START_REF] Rivera | Super-Twisting Sliding Mode in Motion Control Systems[END_REF] 

Proposed model-based super-twisting sliding mode control

Motivation

Recalling the nonlinear dynamical system of the parallel manipulators, one can write:

M(q) q + C(q, q) q + G(q) + Γ d = Γ (3.52)
where Γ d ∈ R n represents the vector of the external disturbances, uncertainties, and nonmodeled phenomena. Assuming that Γ d is bounded, the conventional ST-SMC algorithm that can be designed for such type of models can be expressed as follows [START_REF] Jeong | Tracking Error Constrained Super-twisting Sliding Mode Control for Robotic Systems[END_REF]:

Γ = M(q)(r + Γ ST -SMC ) (3.53)
where r = qdλė with λ being a positive control gain such that the tracking error is defined as e = qq d , Γ ST -SMC is the control structure given in (3.46), and s = ė + λe being the sliding surface. One of the main drawbacks of this control structure is the lack of some parts of the model dynamics (including only the inertia matrix) which may decrease the dynamic performance of a parallel robot. Incorporating the structured nonlinearities within the closed-loop control is very essential for parallel manipulators known of high nonlinear dynamics that increase considerably when operating at high dynamic conditions (highspeed motions, payload handling, etc.).

Other implementations of the ST-SMC algorithm can be explained as considering the final control input equal to the original ST-SMC given in (3.46) without any consideration of the dynamics [START_REF] Rivera | Super-Twisting Sliding Mode in Motion Control Systems[END_REF]. This decentralized implementation is insufficient for compensating the nonlinearities, enhancing the dynamic performance, and increasing the robustness towards uncertainties. The aforementioned control approaches depend only on the high values of the control design gains, k 1 and k 2 , to achieve the desired tracking performance.
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The control design of the ST-SMC approach taking into account the nonlinear dynamics within computed torque formulation can be expressed as follows [START_REF] Derafa | Super twisting control algorithm for the attitude tracking of a four rotors UAV[END_REF][START_REF] Mobayen | Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control[END_REF]:

Γ = M(q)(r + Γ ST -SMC ) + C(q, q) q + G(q) (3.54)
The above computed torque control based on the ST-SMC algorithm needs well and precise knowledge of the dynamic model to obtain good tracking performances. Relying on the measured signals to compute the dynamic model in an online form can make the controller more sensitive to noise measurements decreasing the global performance and increasing the chattering. Further, it has been shown in [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]] that computed torque control is unable to cope well with modeling errors. Moreover, for computationally heavy dynamic model, this controller may face significant limitations in real-time implementations.

The implementations of the variable-gain ST-SMC strategies consider all or part of the dynamic nonlinearities of the system as perturbations. This provides an online adaptation of the maximum bound of those perturbations to be compensated by the robustness term (sign function). However, in the presence of structured nonlinearities as the dynamic model of parallel manipulators, it can be better to enhance the control by a nonlinear compensation term based on the dynamic model.

Avoiding all the above issues, we propose to replace the computed torque with a feedforward term having at the end a super-twisting feedforward sliding mode control approach. The feedforward dynamic term relying on the desired trajectories instead of the measured ones can be much more efficient in the computation cost since it can be computed offline and stored to be used within the control. Also it is insensitive to the sensor measurement noises providing better performance and less chattered signal.

However, the experimental work done in [START_REF] Cheng | Dynamics and control of redundantly actuated parallel manipulators[END_REF] has proven that an augmented PD control provides better tracking accuracy than a computed torque controller especially at high-speed motions. Thus a PD with computed feedforward which is exactly an augmented PD fed with the desired trajectory can perform better than computed torque control. Besides, the superiority in tracking performance of a PD control with computed feedforward among a simple PD, a computed torque, and an augmented PD controllers has been proved on an experimental robotic arm in [START_REF] Reyes | Experimental evaluation of model-based controllers on a direct-drive robot arm[END_REF]].

To deal with the parametric uncertainties existing in parallel robots (for example: variation of the handled payload in pick-and-place applications), a dynamic adaptive ST-SMC controller is proposed as an extension to the feedforward ST-SMC. The feedforward ST-SMC approach is considered as a preferable formulation to introduce the adaptive control which offer an online adaptation of the dynamic parameters that may vary while operating the robot.

The proposed controllers takes the advantages of the standard ST-SMC algorithm such as robustness towards disturbances, accurate convergence with the presence of external disturbances, and continuous control output, as well as the advantages of the feedforward dynamic term such as compensating for the structured nonlinearities, insensitivity towards measurement noises, computation-efficiency, and coping parametric uncertainties provided by dynamic adaptation algorithms.

Control design

This section provides a step-by-step derivation of the proposed feedforward ST-SMC algorithm. The standard sliding surface for a super-twisting SMC algorithm can be given as follows:

s = ė + Λe (3.55)
with e = q dq being the tracking error and Λ being a positive definite diagonal matrix of control gains for each axis.

Combining the defined sliding surface (3.55) and the dynamic system (3.52) leads to the equation below:

M(q) qd -ṡ + Λė + C(q, q) q + G(q) + Γ d = Γ (3.56)
Let us define an auxiliary reference velocity trajectory ṙ = qd + Λe shifted from the actual desired one by Λė. Then, (3.56) can be re-written in the form below:

M(q)r -M(q)ṡ + C(q, q) q + G(q) + Γ d = Γ

(3.57)
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where r is the corresponding shifted desired acceleration. The sliding surface dynamics can be obtained from (3.57) as follows: ṡ = M -1 (q) -Γ + M(q)r + C(q, q) q + G(q) + Γ d (3.58) Thus, the control input Γ can be chosen in a way having an exact compensation for the nonlinearities of the dynamic model as well as theoretical compensation for the disturbance term. The conventional model-based super-twisting SMC control is defined as follows:

Γ = M(q) r + K 2 |s| 1 2 sign(s) + w + C(q, q) q + G(q) ẇ = K 3 sign(s) (3.59)
where K 2 ,K 3 are two positive definite diagonal matrices. Note that the control law in (3.59) is in the form of computed torque control based on the super-twisting algorithm.

For highly nonlinear dynamic systems (especially those of large mass and inertia parameters), this control law may be sensitive to the measurements noise decreasing the global performance and increasing the chattering effect. Chattering could be augmented with this control law knowing that the conventional super-twisting algorithm reduces excessively the effect of chattering. As a result, this control can deteriorate the dynamic performance of the parallel manipulator in terms of precision and robustness.

To avoid all the aforementioned problems, a feedforward super-twisting SMC algorithm is proposed that can compensate for the abundant nonlinearities as well as take the advantages of the standard super-twisting algorithm. It has been shown experimentally the benefits of the feedforward-based controllers in terms of computational cost, robustness towards noises and disturbances, and nonlinearities compensation [START_REF] Bennehar | A novel adaptive terminal sliding mode control for parallel manipulators: Design and real-time experiments[END_REF][START_REF] Natal | Dual-Space Control of Extremely Fast Parallel Manipulators: Payload Changes and the 100g Experiment[END_REF].

The proposed feedforward ST-SMC algorithm comprises three main parts: the feedforward term, the super-twisting algorithm, and a feedback term added to insure the stability of the system. The control equation of the proposed control law is given as follows:

Γ = M(q d ) qd + C(q d , qd ) qd + G(q d ) + K 1 s + K 2 |s| 1 2 sign(s) + w ẇ = K 3 sign(s) (3.60)
where K 1 is a positive definite diagonal matrix of the feedback control gains.
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Stability analysis

Theorem 3.3.1. Assuming that the desired velocity is upper bounded, the joint position and velocity tracking errors (e = q dq, ė) of a robotic manipulator of dynamic model (3.52) with bounded disturbances follow a local asymptotic convergence under the feedforward super-twisting sliding mode control given by (3.60), with the proper choice of Λ,K 1 ,K 2 and

K 3 .
Moreover, the local asymptotic stability is achieved in a finite time of maximum value

T = 2V 1 2 (s 0 ) γ
, where s 0 = ė0 + Λe 0 is the initial value of the sliding variable, γ is a positive constant depending on the control gains Λ,K 1 ,K 2 ,K 3 and the disturbance's upper bound, and V(s) is a positive radially unbounded function given in (3.63).

Proof. Considering the nonlinear dynamical system (3.52) of bounded disturbances Γ d , the sliding variable (3.55), and the control equation of the proposed feedforward ST-SMC (3.60), one can establish the sliding variable dynamics as follows:

Mṡ = -K 1 s -K 2 |s| 1 2 sign(s) -w -h(q, q) -Cė + ΛMė + Γ d (3.61)
with h(q, q) being the residual dynamics expressed as follows:

h ≡ h(q, q) = M(q d ) -M(q) qd + C(q d , qd ) -C(q, q) qd + G(q d ) -G(q) (3.62)

Without loss of generality, the scalar notation will be considered in the coming part of the stability analysis for simplicity purposes. For system (3.61), the following Lyapunov function is proposed to prove its stability:

V(s) = 1 2 ξ T Pξ (3.63) with ξ = [|s| 1 2 sign(s),w] T and P = 4K 3 + K 2 2 K 2 K 2 2 (3.64)
chosen to be a positive definite matrix. One can notice that V(s) is continuously differentiable everywhere, except on s = 0. However, from (3.61), the state trajectories of the sys- tem just cross s = 0 and cannot stay on it, except when the origin (s = 0) has been reached.
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Thus, V(s) is differentiable for almost every t and one can apply Lyapunov's theorem for the points where V(s) is differentiable [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF].

The solutions of the discontinuous differential equation (3.61) are interpreted as the ones of the differential inclusion ṡ ∈ f(s). sign(s) assigns the interval [-1,1] for s = 0.

Then, since 0 ∈ f(0) = [-1,1], it follows that s = 0 is an equilibrium point [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF]. The time derivative of V(s) along the solutions of the system leads to the following:

V = - 1 2M|s| 1 2 ξ T Qξ + 1 2M|s| 1 2 f(s,t)F T ξ (3.65) where F = [K 2 2 + 4K 3 , K 2 ] T , f(s,t) = Γ d -K 1 s -(C -ΛM)ė -h , and Q =       K 3 2 + 4K 2 K 3 -2K 2 K 3 M K 2 2 + 2K 3 -2K 3 M K 2 2 + 2K 3 -2K 3 M K 2       (3.66)
M is positive (or positive definite matrix in non-scalar case) and K 2 ,K 3 are chosen such that Q becomes positive definite matrix. The perturbation term |f(s,t)| can be upper bounded as follows:

|f(s,t)| ≤ K 1 |s| + |C| |ė| + Λ|M| |ė| + |h| + |Γ d | (3.67)
According to [START_REF] Kelly | Control of robot manipulators in joint space[END_REF], the Euclidean norm of the residual dynamics of a robotic manipulator (||h(q, q)||) can be upper bounded by the following (for vector form): 

||h(q, q)|| ≤ k h 1 ||ė|| + k h 2 ||e|| (3.
|f(s,t)| ≤ K 1 + ǫ |s| + k C | qd | M + Λk M + k h 1 |ė| + k h 2 |e| + k C |ė| 2 (3.69)
where k C ,k M are two positive constants. | qd | M is the upper bound of the the desired velocity trajectory. For small values of (| ė|) (when s is around the origin), the linear term 

k C | qd | M + Λk M + k h 1 |ė|
with µ = K 1 +ǫ+k C | qd | M +Λk M +k h 1 + 1 Λ k h 2 .
|f(s,t)| ≤ µ |s| 1 2 (3.71)
Making use of (3.71), V(s) in (3.65) can be locally upper bounded as follows:

V ≤ - 1 2M|s| 1 2 ξ T Qξ + µ 2M|s| 1 2 |s| 1 2 |F T ξ| (3.72) leading to V ≤ - 1 2M|s| 1 2 ξ T Qξ V ≤ - 1 2M|s| 1 2 λ min { Q} ||ξ|| 2 (3.73) 
where

Q =       K 3 2 + 4K 2 K 3 -2K 2 K 3 M -µ(K 2 2 + 4K 3 ) K 2 2 + 2K 3 -2K 3 M -µ 2 K 2 K 2 2 + 2K 3 -2K 3 M -µ 2 K 2 K 2       (3.74)
with λ min { Q} is the minimum eigen value of Q and ||ξ|| is the Euclidean norm of vector ξ.

V is negative definite if Q is a positive definite matrix. Then, following Lyapunov's direct method, if Λ,K 1 ,K 2 ,K 3 are selected such that Q > 0, the origin s = 0 is an equilibrium point that is locally asymptotically stable.
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Furthermore, V(s) is positive definite and radially unbounded by the following [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF]: 

1 2 λ min {P} ||ξ|| 2 ≤ V(s) ≤ 1 2 λ max {P} ||ξ|| 2
|s| 1 2 ≤ ||ξ|| ≤ 2 V 1 2 λ 1/2 min {P} (3.76)
it can be shown that V is upper bounded by

V ≤ -γV 1 2 (3.77) 
where

γ = λ 1/2 min {P} λ min { Q} 2M λ max {P} (3.78) 
The differential equation ν(t) = -γν 1/2 (t) for ν(0) = ν 0 ≥ 0 has a solution expressed as:

ν(t) = ν 1 2 0 -γ 2 t 2 .
Then, following the comparison principle [START_REF] Bibliography | Nonlinear Systems[END_REF] that says V(t) ≤ ν(t) when V(s 0 ) ≤ ν 0 , one can conclude that V(s(t)), and therefore s(t), converges to zero in finite time at most after T = 2V 1 2 (s 0 ) γ . To this end, the proof is concluded.

Contribution 3: Actuator and friction dynamics formulation in control of PKMs

This contribution deals with a new dynamic formulation of parallel manipulators incorporating the actuator and friction dynamics to be utilized in control. A model-based controller, PD with computed feedforward, is proposed taking into consideration the formulated dynamics. The motivation behind this contribution is to enhance the control performance by compensating the unfavorable nonlinearities abundant extensively in PKMs.

Those nonlinearities may increase considerably when operating at high-speed motions.

The proposed feedforward dynamic part relies on the reference trajectories instead of the measured ones, improving the control performance and the computational efforts. This section covers the stability of the proposed control based on a Lyapunov function candidate showing a global asymptotic convergence of the tracking error.

Motivation

In robotic manipulators, the accomplishment of any operation task requires the execution of a specific motion prescribed to the manipulator's end-effector. The motion is driven by joint actuators fed with the suitable control signals that are delivered by the controller based on the desired trajectory and the measurements. The correct regulation of the controller needs an accurate analysis of the robot mechanical structure, actuators and sensors.

The actuator and friction dynamics play a significant role in enhancing the tracking performance of the robot manipulator especially in the case of parallel robots. The mechanical components of the actuator (inertia and damping coefficients) have high impact on the dynamic performance of the parallel manipulator particularly when operating at high-speed motions. Moreover, friction dynamics were investigated a lot in the literature showing complexity and difficulty in estimating its parameters. For this reason, it is mostly ignored while deriving the dynamic model unless some works where it was taken into account. However, it is featured with uncertainties and time-varying nature being highly effective on the dynamic performance of the parallel manipulator especially for low-speed and high-precision applications.

The mechanical model of the actuator dynamics including the inertia and the damping coefficients has been incorporated within an adaptive tracking control of a serial robotic manipulator in [START_REF] Cheah | Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models[END_REF]. Experimental results proved the ability of the endeffector to track a desired trajectory with the uncertain parameters. The good performance of the controller has been illustrated and verified.

In [START_REF] Grotjahn | Identification of Friction and Rigid-Body Dynamics of Parallel Kinematic Structures for Model-Based Control[END_REF][START_REF] Shang | Nonlinear friction compensation of a 2-DOF planar parallel manipulator[END_REF], nonlinear friction models were incorporated to dynamic control strategies implemented to parallel manipulators experimentally.
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The efficiency and capability of the proposed algorithms have been proved and validated.

Moreover, the tracking accuracy of the parallel manipulators has been improved obviously with the nonlinear friction compensation.

A robust nonlinear control equipped with a friction estimator has been implemented to a 6-DOF parallel manipulator in the Cartesian space in [START_REF] Kim | Robust nonlinear task space control for 6 DOF parallel manipulator[END_REF]. Real-time experiments were investigated showing better tracking performances with the friction observer under the uncertain friction property. A nonlinear friction model has been designed and included within an augmented PD control employed on a 2-DOF parallel manipulator in [START_REF] Zhang | Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator[END_REF]. The experimental results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

In [Shang et al., 2010], the friction dynamics of the actuated joints have been enclosed

within dynamic controller for a 2-DOF parallel manipulator. The weighted least square method was applied to estimate the friction parameters. The dynamic control experiments based on the identified model with the estimated parameters were implemented to the parallel manipulator. The tracking accuracy of the identified model show better results compared to the so-called nominal model.

Proposed compensation technique

Actuator mechanical dynamics

Thanks to the proven effectiveness of the dynamic controllers incorporating the actuator dynamics, we propose to extend the classical dynamic model of parallel robots in (1.3) by a full mechanical model of the actuator. The intend behind this proposition is to improve the inverse dynamic model to be used within dynamic control strategies of parallel manipulators. Thus, better dynamic performance can be expected in terms of high-seed motions, precision and robustness towards uncertainties and nonlinearities.

Robotic manipulators can be driven in general by electric actuators or hydraulic ones.

In this thesis, we are concerned only with electric actuators knowing that all our experimental prototypes are electrically actuated. Mostly, the used electric actuators in robotic manipulators are permanent-magnet DC motors controlled by current mode amplifiers.

The dynamic equation describing the rotational motion of such motors can be written as follows [START_REF] Frank | Robot manipulator control: theory and practice[END_REF]:

J qm + B qm = Γ m -R G Γ (3.79)
where Γ m ∈ R n is the actual requested torque from the motors by the controller, Γ ∈ R n is the output torque of the motors at the level of the jointed links to the shafts, J ∈ R n×n is a diagonal matrix representing the total inertia of the actuators and the linked load to the rotors (rear arm), B ∈ R n×n is a diagonal matrix denoted to the damping coefficient in the rotors of the actuators, qm , qm ∈ R n are the angular velocities and accelerations of the motor shafts respectively, and R G ∈ R n×n is a diagonal matrix representing the ratios of the gears equipped with motors.

Indeed, the requested torque from the motor Γ m by the drive controller is not the same as the output torque Γ . The torque vector Γ is defined as the desired torque needed to manipulate the mechanical structure of the robot at the level of the rear-arms. The internal actuator dynamics appear as a dynamic load in addition to the dynamics of the robot as illustrated in Figure 3.4. The torque and angle relations of the gear reduction ration can be expressed as follows:

Γ C = R -1 G Γ m (3.80) q = R G q m (3.81)
where Γ C is the control input vector including the actuator dynamics and q is the actuated joint angle at the level of the linked load. In the case of direct drive actuators where no gearbox is used, the gear ratio is subjected to one (R G = I, where I is the identity matrix).

Using the classical dynamics of parallel manipulators in (1.3), the actuator dynamics in J 0 + M(q) q + B 0 + C(q, q) q + G(q) = Γ C (3.82)

For practical reasons and control stability proof, signum function of the Coulomb friction dynamics is approximated by a hyperbolic tangent one. Indeed, the singularity at zero velocity of the direct Coulomb friction modeling can lead to a non-smooth discontinuous control force as well as to computational burden [START_REF] Duan | Dynamics of a 3dof torsional system with a dry friction controlled path[END_REF][START_REF] Pennestri | Review and comparison of dry friction force models[END_REF]. A hyperbolic tangent model ensures that acceleration is continuous and smooth, so the jerk of the system is also continuous. Moreover, it can guarantee an asymptotic stability and a smooth control signal simultaneously [START_REF] Cai | A smooth robust nonlinear controller for robot manipulators with joint stick-slip friction[END_REF][START_REF] Song | A sliding-mode based smooth adaptive robust controller for friction compensation[END_REF]].

Then, the control equation can be re-formulated as follows: 

Γ = K p e + K d ė + M ′ (q d ) qd + C ′ (q d , qd ) qd + G(q d ) + F c tanh( qd ) + D (3.87) with M ′ (q d ) = J 0 + M(q d , C ′ (q d , qd ) = B 0 + F v + C(q d ,
M ′ ë = -K p e -K d ė -C ′ ė -h (3.88) 
where M ′ ≡ M ′ (q), C ′ ≡ C ′ (q, q) and h being the residual dynamics expressed as follows:

h ≡ h(q, q) = M ′ (q d ) -M ′ (q) qd + C ′ (q d , qd ) -C ′ (q, q) qd + G(q d ) -G(q) + F c tanh( qd ) -tanh( q) (3.89)
Note that the boundedness properties of the inertia matrix and Coriolis and centrifugal matrix addressed in section 1.7.1 (Property 1 and Property 2) are still valid even after adding the actuator and friction dynamics. with the proper choice of K p and K d .

Stability analysis
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Proof. In order to study the stability analysis of the proposed controller, consider the Lyapunov function candidate below [START_REF] Kelly | Control of robot manipulators in joint space[END_REF]:

V(t,e, ė) = 1 2 ėT M ′ (q)ė + 1 2 e T K p e + γtanh(e) T M ′ (q)ė (3.90)
where tanh(e) ∈ R n is a vectorial hyperbolic tangent function of the position error and γ is a positive constant. The positivity and boundedness of the suggested Lyapunov function were proven in [START_REF] Kelly | Control of robot manipulators in joint space[END_REF].

Using Property 2 (Section 1.7.2 of Chapter 1) which provides the skew-symmetry feature of 1 2 Ṁ′ -C ′ (equations (1.9)), the time derivative of the Lyapunov function along the trajectories of the closed-loop system gives the following:

V(t, e, ė) = -ėT K d ė + γė T Sech 2 (e) T M ′ (q)ė -γtanh(e) T K p e -γtanh(e) T K d ė + γtanh(e) T C ′ (q, q) T ė -ėT h(q, q) - γtanh(e) T h(q, q) (3.91) 
where the squared hyperbolic secant Sech 2 (.) is the derivative of the hyperbolic tangent tanh(.). Now, an upper bound is needed for the derivative of the Lyapunov function in terms of the system states e, ė to establish the stability analysis.

One can bound V from the upper side as follows:

V(t, e, ė) ≤ -ėT K d ė + γė T Sech 2 (e) T M ′ (q)ėγtanh(e) T K p e + γ|tanh(e) T K d ė| + γ|tanh(e) T C ′ (q, q) T ė|

+ |ė T h(q, q)| + γ|tanh(e) T h(q, q)| (3.92) 
The vectorial hyperbolic tangent and secant functions can be bounded trivially for any vector x ∈ R n as follows: 

+ ||ė|| ||h(q, q)|| + γ||tanh(e)|| ||h(q, q)|| (3.95)
where λ min {A},λ max {A} are the minimum and maximum eigen values respectively for any matrix A.

There exist two positive constants k h 1 ,k h 2 > 0 such that the norm on the residual dynamics ||h(q, q)|| can be upper bounded by the following (see proof in Appendix A):

|h(q, q)|| ≤ k h 1 ||ė|| + k h 2 ||tanh(e)|| (3.96) 
With the use of (3.89), V can be then upper bounded as follows:

V(t, e, ė) ≤ -c 1 ||ė|| 2 -c 2 ||tanh(e)|| 2 + c 3 ||ė||||tanh(e)|| (3.97) 
where

c 1 = λ min {K d } -γλ max {M ′ } -γ n k C 1 -kh 1 c 2 = γλ min {K p } -γk h 2 c 3 = γλ max {K d } + γk C 1 || qd || M + k h 2 + γk h 1 (3.98)
where || qd || M > 0 is an upper bound of the desired velocity. Then, (3.97) can be re-written in the form below:

V(t, e, ė) ≤ -||ė|| ||tanh(e)|| c 1 -c 3 2 -c 3 2 c 2 ||ė|| ||tanh(e)|| V(t, e, ė) ≤ -z T Qz (3.99)
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In order to have V(t, e, ė) globally negative definite, matrix Q should be positive definite. A positive definite matrix must have strictly positive determinant (det{Q} > 0) and diagonal components (Q ii > 0) according to Sylvester's theorem. Thus, the control gain matrices K p ,K d need to chosen in a way that satieties the following inequalities:

c 1 > 0 c 2 > 0 c 2 3 < 4c 1 c 2 (3.100)
Following direct Lyapunov theorem of global asymptotic stability [START_REF] Kelly | Control of robot manipulators in joint space[END_REF], and having a globally positive definite Lyapunov function V(t,e, ė) > 0 such that its time derivative is globally negative definite V(t, e, ė) < 0, the global asymptotic stability of the closed-loop system (3.88) is verified as follows:

||z|| → 0 as t → ∞ (3.101) leading to ||e||,||ė|| → 0 as t → ∞ (3.102)
and the proof is concluded.

Friction parameters identification

The identification technique applied in this study is based on the method of Least Squares Estimation which is a procedure to determine the best fit line to a given data. The proof uses simple calculus and linear algebra. This identification goes in an offline mode based on the desired trajectory and some real data (position, velocity, acceleration, and input). To identify the parameters of the friction model in (3.84), a sequence of steps is performed using the experimental testbed and the Matlab/Simulink environment.

1. Apply on the experimental parallel robot prtototype a simple PD controller fed with a desired reference trajectory in a nominal scenario (used also in the PD control with computed feedforward (3.86) experiments).

2. Get out the generated control input Γ PD and the measured signal q.

3. Estimate from the measured angles q the angular velocity and acceleration q, q.

4. Compute using the available data the dynamic model including the actuator dynamics (3.82): H = J 0 + M(q) q + B 0 + C(q, q) q + G(q).

5. Evaluate the friction dynamic model using the following equation:

Y ≡ F( q) = H -Γ PD (3.103) 
6. Over N sample times, for each ithe actuator, one can formulate: 7. Apply the Least Square Estimation method [START_REF] Miller | The Method of Least Squares[END_REF] to identify f v i ,f c i ,d i for each ith actuator as follows:

       Y i,1 Y i,2 . . . Y i,N        =        qi,1 tanh( qi,1 ) 1 qi,2 tanh( qi,2 ) 1 . . . . . . . . . qi,N tanh( qi,N ) 1            f v i f c i d i     (3.104) where f v i ,f c i ,d i ∈ R
X = (A T A) -1 A T Y (3.106) 
Figure 3.7 summarizes the identification procedure in a block schema.

Redundantly actuated PKMs: Elimination of antagonistic internal forces

As discussed before, actuation redundancy in parallel manipulators can be achieved by adding additional actuated kinematic chains. It holds several advantages to parallel

Basic concept

The motion equation of a redundantly actuated PKM of n actuators and m-DOFs can be written the following form [START_REF] Mueller | Effects of geometric imperfections to the control of redundantly actuated parallel manipulators[END_REF]:

M(q) q2 + C(q, q) q2 + G(q) = J T m Γ (3.107)
where q is the overall vector of the joint coordinates (passive and actuated), q 2 is the mindependent generalized coordinates (considered here the Cartesian coordinates), M is the generalized mass matrix, C is the generalized Coriolis matrix, and G represents all noninertial forces including end-effector loads, and J m being the inverse Jacobian matrix that describes the relevant part of the generalized control forces which are the control forces in the actuated joints Γ .

For redundantly actuated PKMs, J m ∈ R n×m is full rank m unless at singularity configurations. Let the degree of redundancy be ρ = nm, then J T m has a ρ-dimensional kernel. This means that (3.107) has no unique solution for control force Γ . Thus, only those control input forces that are not in the kernel of J T m are effective on the structure of the PKM (J T m Γ = 0). While the actuator forces that belong to ρ-dimensional null space of J T m have no effect on the motion and appear as internal forces. Moreover, the load distribution overall the drives is not unique.

Effect of measurement errors

The effect of measurement errors on both decentralized and model-based control schemes was addressed in [START_REF] Hufnagel | A Projection Method for the Elimination of Contradicting Decentralized Control Forces in Redundantly Actuated PKM[END_REF]. The generated control forces that have no effect on the motion due to actuation redundancy may deteriorate the performance in the presence of measurements errors. A good example that illustrates the effect of those errors was introduced in [Hufnagel and Muller, 2012] on the linear PD control scheme. Consider the measured tracking actuated joint error with measurement imperfections as follows: ẽ = qq d = (q + ∆q)q d = e + ∆q (3.108)
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where ∆q represents the imperfections in the measurement. The PD control fed with the measured tracking error and generating the necessary control forces can be given as follows:

Γ = -K p ẽ -K d ė (3.109)
where K p and K d are diagonal positive definite gain matrices. Considering that PKM attains a setpoint reference position and stays stationary, the effect of the control forces belonging to the null space of J T m is expressed as follows:

0 = J T m Γ 0 = -J T m K p ẽ = -J T m K p (e + ∆q) (3.110)
where Γ 0 are the generated control forces in the null space of J T m . It is clear from (3.110) that in case of perfect measurement and geometric model (∆q = 0), the tracking error converges to zero. However, when measurement errors and geometric imperfections exist, the tracking error doesn't converge to zero but a value dependant on those imperfections.

Elimination of antagonistic internal forces

To this end, it has been shown that the internal forces are caused by the generated control forces that full in the null space of the inverse Jacobian matrix. Hence, the antagonistic forces can be eliminated by projecting the control forces vector into the range space of the inverse Jacobian matrix as follows [START_REF] Hufnagel | A Projection Method for the Elimination of Contradicting Decentralized Control Forces in Redundantly Actuated PKM[END_REF]:

Γ * = R J T m Γ (3.111)
where Γ * is the effective control forces applied to the redundant parallel manipulator and

R J T m = J T m + J T
m is the projection matrix, called also the regularization matrix. Note that this projection method does not change the drive action since J T m Γ * = J T m Γ . Indeed, the antagonistic forces are projected to the null space of J T m using the regularization matrix R J T m as 142 CHAPTER 3. PROPOSED CONTROL SOLUTIONS follows:

Γ * = R J T m Γ = I -(I -J T m + J T m ) Γ = I -N J T m Γ = Γ -N J T m Γ = Γ -Γ 0 (3.112) with N J T m = I -J T m + J T
m being the projection matrix to the null space. Thus, from (3.112), the generated control forces Γ can be decoupled into effective forces Γ * fed in the actuators and antagonistic forces Γ 0 eliminated by projecting them to the null space of inverse Jacobian matrix (Γ = Γ * + Γ 0 ).

In this thesis, for the redundantly actuated parallel manipulators (Spider4 robot), the generated control input, from a proposed control solution, is treated by the projection method introduced above before feeding the actuators. Precisely, the control input vector Γ is projected to the range space of the inverse Jacobian matrix as in (3.111), and the obtained effective control input Γ * enters then the actuators.

Conclusion

This chapter was dedicated for presenting and detailing the proposed control solutions of this thesis. The main objective was to design robust and performant control strategies capable of compensating the errors coming from the controller it self, the actuator dynamics, the friction in the articulations, the system nonlinearities, the external disturbances, the measurements noise, etc.

The main contributions can be mentioned briefly as follows:

1. A new time-varying feedback Robust Integral of the Sign of the Error (RISE) control strategy was developed for parallel manipulators. Replacing some static feedback gains in the original RISE controller may lead to more robustness towards disturbances, dynamic changes, and uncertainties.

2. A novel model-based super-twisting sliding mode control was proposed as an extension of the original second order super-twisting algorithm. The control structure comprises a feedforward dynamic term, the standard super-twisting algorithm, and a feedback stabilizing term. This may lead to high dynamic performances in terms of precision, robustness towards operating condition changes, and disturbancerejection.

3. An actuator and friction dynamics formulation was proposed within a model-based control strategy. Compensating for the errors coming from actuator dynamics and friction in the articulations can improve the global dynamic performance of parallel manipulators.

In the next chapter, the experimental results obtained from the proposed control solutions will be presented and discussed.

Introduction

In 

Experimental platforms and implementation issues

This section provides a description about the experimental testbeds that were used to validate our proposed controllers. The trajectory generation for each parallel robot prototype is introduced. Three platforms will be exposed in the sequel: 3-DOF Delta robot, 5-DOF SPIDER4 robot, and 4-DOF VELOCE robot.

Experimental testbed of the 3-DOF Delta robot

The Delta parallel robot used for the real-time experiments is shown in The control algorithms are implemented in C + + language level using Visual Studio software from Microsoft, running on a Windows XP operating system. RTX extension is used to establish the real-time communication. The internal timer (HAL timer) of RTX is configured to 100 µs in which the control loop is set to 10 times this value for synchronization, leading to a sample time 1 ms, and a sampling frequency of 1 KHz. 

EXPERIMENTAL PLATFORMS AND IMPLEMENTATION ISSUES

Reference trajectory generation

The motion control profile used for Delta robot is the point-to-point move. It means that from a stop point, the robot accelerates to a constant velocity. Then, the robot decelerates such that the final acceleration, and velocity, are zero at the final desired point.

An S-curve velocity profile is adopted for Delta robot such that the velocity increasing and decreasing phases are not linear but S-curved. Thus, the rapid change in the acceleration will be smooth (linear and not instant switching) and the vibration of the mechanical system will be reduced. An illustrative plot is shown in Figure 4.2 of the S-curve motion profile of a point-to-point move.

For each phase of motion in Figure 4.2, the continuous form equation used to compute the position variation with time is given as follows:

x d = P i + V i (t -t i ) + 1 2 A i (t -t i ) 2 + 1 6 J(t -t i ) 3 (4.1)
where x d is the obtained desired trajectory. t i ,P i ,V i ,A i ,J are the corresponding initial time, initial position, initial velocity, initial acceleration, and the desired jerk (time rate of change of acceleration) respectively for each phase. The velocity and acceleration profiles can be obtained by deriving equation (4.1) with respect to time. RMSE T , and that of the rotational motions is defined as RMSE R . For joint space, the performance index is defined as RMSE J . Then, the aforementioned performance indices can be given as follows:
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RMSE T = 1 N N i=1 m 1 j=1 e 2 j (i) RMSE R = 1 N N i=1 m 2 j=1
e 2 j (i)

RMSE J = 1 N N i=1 n j=1 e 2 j (i) (4.5)
where N is the number of the collected samples overall the whole trajectory, e represents the difference between the desired and measured positions (at Cartesian or joint space), m 1 ,m 2 are the corresponding numbers of translational and rotational motions can be performed by the end-effector respectively (m 1 + m 2 = DOFs), and n is the number of the actuators.

In order to estimate the energy consumption, the input-torques-based criterion is adopted given as follows:

E Γ = n j=1 N i=1 |Γ j (i)| (4.6)
where E Γ is the total summation of the absolute values of the input torques delivered by the n actuators.

Tuning of the control gains

A popular method for tuning of the control gains in experiments, used for complex robotic systems, is the Trial and Error method. It is characterized by trying manually and continuously different sets of control gains in real-time framework until the desired control performance is achieved. It is used mostly when the formulated dynamic model does not exactly match the physical system, and thus the automatic numerical closed-loop tuning methods may give unsuitable control gains for real-time experiments. The tuning process of the standard RISE control gains is performed by the following simple procedure:

1. Set α 2 = 0 and β = 0, 2. tune α 1 and k s as if dealing with a PD controller, given that α 1 (k s + 1) is the proportional gain and (k s + 1) is the derivative one till a satisfied tracking is reached, 3. start increasing α 2 with modifying again α 1 and k s either increasing or decreasing till we reach as best performance index as possible, 4. increase β until obtaining acceptable chattering input signal and better performance index.

Following the above procedure, the standard RISE control gains were tuned in real-time experiments, and the obtained final values are summarized in Table 4.1.

Tuning of the proposed time-varying feedback control gains

For the tuning process of the proposed time-varying feedback RISE controller, and especially tuning the nonlinear feedback gains, a similar manner for the one proposed in [Shang et al., 2009] to tune the nonlinear PD control gains is used in our case.

The main steps of this procedure are described as follows:

1. Initialization: ǫ 1 = 1, ǫ 2 = 1, α 20 = 0, β = 0, 2. increase α 1 and k s0 starting both from zero until obtaining an acceptable tracking performance, 3. increase the value of α 20 to get a better tracking performance, then make a trade-off between α 1 ,k s0 , and α 20 . 

Scenario 1: nominal case

In this scenario, the traveling-plate of Delta robot does not carry any additional payload and the robot is operating at acceleration of 2.5 G (with a speed of 1500 mm/s). 

EXPERIMENTAL RESULTS OF

Performance index versus operating acceleration

In this section, the operating acceleration is increased gradually starting from 2.5 G reaching up 10 G. Both controllers have been tested in the same scenarios: with and without additional payload (225 g). However, the gathered improvements of the proposed controller are much better in the case of added payload than that of no payload.

It is verified that the proposed nonlinear control law based on time-varying feedback gains is much appropriate for nature of PKMs especially when operating at high dynamics such as payload and acceleration. It is noticeable that at acceleration of 10 G in the case of added payload, the generated joint errors override 10 degrees, the specified safety margins for the robot to turn off, with RISE controller. While time-varying feedback RISE controller produces acceptable errors always within the defined safety margins.
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ture of the robot and the same type of motors is used to actuate the joints. The list of the obtained values of the gains are addressed in Table 4.4.

Table 4.4 -The control gains of the conventional CT-ST-SMC, the proposed FF-ST-SMC, and the standard PIDFF controllers used on SPIDER4 robot.

Standard PIDFF Conventional CT-ST-SMC

Proposed FF-ST-SMC

K p = 3500 Λ = 80 Λ = 90 K d = 40 K 1 = 3 K 1 = 7.5 K i = 1500 K 2 = 2 K 2 = 5 K 3 = 18 K 3 = 25 4.

Feedforward PID versus conventional CT-ST-SMC

In this section, the conventional CT-ST-SMC algorithm and the standard PIDFF control are implemented on SPIDER4 robot. Two scenarios are adopted for this experimental demonstration:

• Scenario 1: Trajectory I shown in Figure 4.8, at feedrate of 12000 Inch/Minute.

• Scenario 2: Trajectory II shown in Figure 4.9, at feedrate of 12000 Inch/Minute.

Scenario 1

The conventional CT-ST-SMC algorithm shows a bad behavior when the robot follows As discussed before (refer to Chapter 3), the chattering signal coming from the standard super-twisting control, which reduces chattering and not totally eliminates it, may be stimulated within a computed-torque control formulation. Moreover, the measurement noise of the experimental platform can elevate the effect of chattering phenomena deteriorating the dynamic performance. In order to reduce the effect of chattering, the measured signals are treated with second order filters and more smooth trajectory is adopted in scenario 2.

Scenario 2

In this scenario, the robot's nacelle follows Trajectory II at feedrate of 12000

Inch/Minute considering that circular motions can be more smooth on the actuators. Finally, this experimental demonstration proved that computed-torque based control approaches with sliding mode controllers are sensitive to chattering effect and measurement noises. This was more effective especially when dealing with dynamical systems of high nonlinearities and large parameter values such as SPIDER4 robot.

Feedforward PID versus proposed feedforward ST-SMC

Within this section, the experimental results on SPIDER4 robot of a PIDFF control and the proposed FeedForward ST-SMC (FF-ST-SMC) algorithm are demonstrated. The considered trajectory for these experiments is Trajectory I in which both linear and circular motions are generated.
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Two main scenarios are conducted in this experimental demonstration: scenario 1: nominal case, scenario 2: robustness towards speed changes.

Scenario 1: nominal case

This scenario allows the robot's nacelle to follow Trajectory I with a feedrate of 6000 Inch/Minute.

Following that trajectory, the Cartesian tracking errors for both controllers (standard PIDFF and proposed FF-ST-SMC) are registered and plotted in Figure 4.26. One can observe a good error regulation is performed by the proposed controller on all the translational axes compared to the classical PIDFF control. In particular, the tracking error at y-axis is dragged towards zero with the proposed controller by a remarkable compensation can be noticed clearly in Figure 4.26. Due to the horizontal inclination of SPIDER4 robot and its heavy parts, the y-axis motion is highly subjected to the effect of gravity. Thus, we can notice from the tracking errors that the proposed FF-ST-SMC is more robust towards gravitational effects than the standard PIDFF control. This scenario demonstrates the relevance and effectiveness of the proposed FF-ST-SMC approach in terms of nonlinearities compensation, disturbance-rejection, and precision. The superiority of the proposed control solution is verified experimentally compared to the basic PIDFF control law. Moreover, the applicability in a simple way and less computational efforts of the proposed FF-ST-SMC algorithm is validated. 

Experimental results of contribution 2 on Delta robot

In order to validate the proposed feedforward super-twisting SMC approach for pickand-place industrial operations, real-time experiments of the standard PIDFF controller and the proposed one are conducted on the Delta robot. In this experimental demonstration, three scenarios are adopted as follows:

• Scenario 1: nominal case.

• Scenario 2: robustness towards payload and speed changes.

• Scenario 3: robustness towards very high accelerations.

The trajectory generated for the three scenarios is the industrial pick-and-place cycle motions depicted in Figure 4.3. The control gains obtained by Trial-and-Error tuning method on the real-time experimental platform are summarized in Table 4.8. Table 4.8 -The control gains of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

Standard PIDFF

Proposed FF-ST-SMC

K p = 720 Λ = 360 K d = 2 K 1 = 0.25 K i = 3600 K 2 = 1.5 K 3 = 2 

Scenario 1: nominal case

In this scenario, Delta robot is allowed to follow the reference trajectory at acceleration of 2.5 G, at speed of 1500 mm/s, and without any additional payload. The end-effector traverses the proposed trajectory for 10 cycles of the pick-and-place motions shown in 4.9). 4.10. Significant improvements are monitored in Cartesian and joint tracking errors by the proposed FF-ST-SMC. For Cartesian tracking errors, a reduction of 58 % from the standard PIDFF to the FF-ST-SMC algorithm is remarked, while a reduction of 53.5 % is remarked for joint tracking errors. Thanks to the robust terms of the proposed FF-ST-SMC, more disturbance-rejection is achieved compared to the standard PIDFF. Thus, the robustness towards payload and speed changes of the proposed control approach is validated. The performance indices of both controllers for this scenario are summarized in Table 4.11. Improvements of 25 % and 28.9 % are remarked in the Cartesian and joint tracking errors respectively for the proposed FF-ST-SMC over the standard PIDFF. The good dynamic

CHAPTER 4. REAL-TIME EXPERIMENTS AND RESULTS

performance and robustness of the proposed control approach at extremely high-speed motions are verified. Then, a comparative study between the results of the three implementations is done.

Two main scenarios are conducted for the implemented controllers: scenario 1: nominal case, scenario 2: robustness towards payload and speed changes.

The proportional and derivative feedback gains are chosen using the Trial-and-Error tuning method in real-time framework which gives K p = diag{4000,4000,4000,4000} and
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K d = diag{6,6,6,6}. The parameters of the actuator dynamics are identified from the provided manuals of the motors driving VELOCE robot. The inertia of the actuator's rotor is J = 0.0041 kg.m 2 and the damping coefficient is provided as B = 0.0024. Note that VE-LOCE robot direct-drive motors are without gearboxes, and thus the gear ratio is 1 (R G = I).

Friction parameters identification results

The identification process of the friction parameters (explained in Section 3.4.3 of

Chapter 3) is conducted on VELOCE robot with two operating speeds:

• Low speed: point-to-point motion duration of 0.5 s (acceleration 1 G),

• High speed: point-to-point motion duration of 0.15 s (acceleration 10 G).

The obtained values of the viscous friction, Coulomb friction, and zero-drift coefficient for each active joint at low and high speeds are illustrated in Figure 4.38. The negative deviation of the estimated value of viscous friction of actuator 3 may come from the modeling errors or not sufficient exciting trajectories compared with the measurement perturbations. However, the estimated friction parameters at both operating speeds approximately matches for all the axes. The used friction parameters for the control implementation are addressed in Table 4.12. This scenario showed clearly the high positive impact of friction compensation on the dynamic performance of VELOCE robot in terms of precision and robustness towards nonlinearities variation with respect to the position in workspace. Indeed, the actuator dynamics compensation lead to a small improvement of the dynamic performance in this scenario.

Scenario 2: robustness towards payload and speed changes

In this scenario, the standard PDFF controller and the two formulated extensions (Ex- Without loss of generality, real-time experiments showed that actuator dynamics have a high impact on the parallel manipulator performance at high dynamic operating conditions and low impact at nominal conditions, while vice-versa for friction dynamics.

Conclusion

This chapter provided the experimental validation and demonstration of the proposed control solutions within this thesis. It began with descriptions of the existing experimental setups and the trajectory generation techniques adopted for each parallel manipulator prototype. Three experimental platforms were used for the control validation: a 3-DOF Delta robot, at EPFL, Switzerland, a 5-DOF SPIDER4 robot and a 4-DOF VELOCE robot at LIRMM. 
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 3 Actuator and friction dynamics formulation integrated within a model-based closedloop PD control with computed feedforward. The proposed control solutions have been studied and validated in real-time experiments on several available parallel manipulator prototypes.
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 12 Figure 1.2 -Robotic manipulator structures: (a) serial, (b) parallel, and (c) hybrid.

  mentioned. A predictive functional control strategy based on a simplified dynamic model of a 4-DOF parallel robot is proposed for the trajectory tracking problem within complex machining task trajectories [Vivas and Poignet, 2005]. Experimental results have shown that predictive functional control has the best performance compared to other control strategies, such as a classical PID and a CT control.

• Contribution 3 :

 3 Contribution 1: A new time-varying feedback RISE control A new time-varying feedback Robust Integral of the Sign of the Error (RISE) control strategy was developed for parallel manipulators. This proposed control takes the advantages of the nonlinear feedback gains and the robustness of the RISE controller. Some static feedback gains in the original RISE controller were replaced by nonlinear feedback ones aiming at more robustness towards disturbances, dynamic changes, and uncertainties. The new proposed controller was studied in the Lyapunov stability sense showing that the tracking error asymptotically converges CHAPTER 1. CONTEXT, PROBLEM FORMULATION AND STATE OF THE ART to zero with time. The relevance of this proposed controller have been validated experimentally on a parallel manipulator prototype. • Contribution 2: A novel model-based super-twisting sliding mode control A novel model-based super-twisting sliding mode control was proposed as an extension of the original second order super-twisting algorithm. The control structure formed of a dynamic feedforward term, a feedback super-twisting control, and a stabilizing feedback term is adequate for parallel manipulator control in real-time framework. This formulation is less sensitive to noise measurements that can deteriorate the performance and stimulate the chattering effect. The stability analysis of the proposed control strategy was included ensuring a local asymptotic convergence of the tracking error and a finite-time convergence of the sliding variable. Experimental results on different parallel manipulator platforms showed an improved dynamic performance and more robustness towards disturbances and dynamic changes. Actuator and friction dynamics formulation in control of PKMs In the framework of improving the dynamic model, an actuator and friction dynamics formulation was proposed being useful for model-based control strategies. The main idea was to include more dynamics to the enclosed model in the closed-loop control. This can boost up the dynamic performance and compensate for more percentage of existing nonlinearities. A PD control with computed feedforward incorporating the actuator and friction dynamics was suggested in order to test the formulated model. Moreover, the stability analysis of the proposed control has been investigated in the Lyapunov sense showing a global asymptotic convergence. The conducted experiments on a real parallel robot prototype showed effectiveness of the proposed dynamic formulation in terms of precision and robustness towards changes of operating conditions.
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 2 Figure2.8 shows SPIDER4 PKM structure consists of a fixed-base holding four high torque actuators each linked to a rear-arm through a revolute joint. Two parallel rods forming a forearm are connected to each rear-arm as well as to the traveling-plate by the means of universal joints. The traveling-plate (also referred as the nacelle) is allowed to move within three translational axes x,y and z thanks to the parallel kinematic structure. Additional independent serial wrist mechanism (two motors) is attached to the nacelle offering two more rotational movements for the machining spindle around the axes of the motors M 1 and M 2 as illustrated in Figure2.8. Thus, SPIDER4 robot is a 5-DOF redundant paral- lel manipulator with a degree of redundancy equal to one. It is worth to mention that the overall dimensions of SPIDER4 with the tooling are 4600 mm in length, 2500 mm in width and 2400 mm in height as illustrated in Figure2.9.

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.2 Contribution 1: A new time-varying feedback RISE control . . . . . . . . . 101 3.3 Contribution 2: A novel model-based super-twisting sliding mode control 114 3.4 Contribution 3: Actuator and friction dynamics formulation in control of PKMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.5 Redundantly actuated PKMs: Elimination of antagonistic internal forces . 138 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423.1 IntroductionControl of parallel manipulators gained a wide interest in the last decades with the hope of achieving an adequate control design fit with the desired performances. The increasing fields of the parallel robot applications require high dynamic performances, high accuracy at low-and high-speed motions, and robustness against abundant uncertainties and nonlinearities. The control task of parallel manipulators is considered complicated and challenging due to the complexity of dynamics, uncertainties, parameters variation, and actuation redundancy.100 CHAPTER 3. PROPOSED CONTROL SOLUTIONSNonlinearity effect may increase considerably in parallel manipulators especially at high-speed motions leading to bad performance or loss of stability in some cases. The closed-loop structure of PKMs induce complex structure and coupled dynamics need careful synchronization between the actuators. Moreover, uncertainties can exist in parallel manipulators in two forms: i) unstructured uncertainties emerging from model simplifications, wear of the parts, measurement noise, geometric-uncertainties, etc., ii) structured uncertainties that appear as parameters variation and inexact knowledge of the dynamic parameters.

  CONTROL 101 ics formulation was proposed being useful for model-based control strategies. A PD control with computed feedforward incorporating the actuator and friction dynamics was suggested in order to test the formulated model. Incorporating more dynamics can boost up the dynamic performance and compensate for more percentage of existing nonlinearities.

  1: A new time-varying feedback RISE control This study focuses on the development of a new class of the Robust Integral of the Sign of the Error (RISE) control law adequate for parallel manipulator systems. A revisit for the original RISE is done by altering some static feedback gains into time-varying nonlinear ones depending on the system states. The proposed controller takes advantage of both RISE control robustness towards uncertainties and the special behavior of nonlinear feedback gains towards time-varying parameters. A Lyapunov-based stability analysis is included to prove the semiglobal asymptotic tracking of the proposed new controller.
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 3 Figure 3.1 -Plot of the evolution of the proportional gain K s (.) with respect to its argument e 2 .
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 32 Figure 3.2 -Plot of the evolution of the integral gain α 2 (.) with respect to its argument e 2 .

  and the bounds K sM , α 2m in (3.18a) and (3.18b) are chosen large enough.

From ( 3 .

 3 32a), α 1 should satisfy the condition α 1 > 1/2. Equation (3.31) can be rewritten as follows:V ≤ -λ 3 ||z|| 2 -µ||r|| 2 -||r||ρ(||z||)||z||(3.33) being λ 3 = min{ζ 1 ,ζ 2 ,ζ 3 }. Using the mathematical remarkable square identities (ab) 2 = a 2 -2ab + b 2 , (3.33) can be rewritten as follows:

  ensuring the facilitation of the motion control design and elimination of the chattering phenomenon at the outputs. In [Derafa et al., 2012], the ST-SMC technique has been designed and implemented for the attitude tracking problem of a quadrotor. The implemented control law has the general formula of a computed torque approach based on the supertwisting algorithm which is able to ensure robustness with respect to bounded external disturbances. The experimental results show the good performance of the proposed controller in terms of stabilization and tracking accuracy. Another version of the model-based ST-SMC algorithm has been implemented to a mobile robot in [Solea and Cernega, 2015] based on a continuous sliding surface (integrated error). Simulation and experimental results show better performances of the proposed controller in terms of eliminating the chattering and reducing the tracking errors compared to conventional SMCs. Furthermore, several variable-gain ST-SMC versions have been proposed for different experimental prototypes (robotic arm [Mobayen et al., 2017], mass-spring-damper [Gonzalez et al., 2012], seesaw module [Oliveira et al., 2018] and space robot [Zhao et al., 2018]) allowing to compensate for a larger class of perturbations (by estimating the maximum bound of the perturbations) than the conventional ST-SMC and to further reduce the chattering effect of the classical first-order SMCs.

||ξ|| 2 =

 2 |s|+w 2 is the square of the Euclidean norm of ξ. λ min {A} and λ max {A} are the minimum and maximum eigen values respectively of any matrix A. Making use of (3.75), (3.73), and the fact that

( 3 .

 3 79), and the relations (3.80), (3.81), one can reformulate the extended dynamic model with actuator dynamics as follows:

  qd ), and tanh( qd ) = tanh( q1 d ),...,tanh( qn d ) T is the vectorial hyperbolic tangent of qd . Substituting the control law (3.87) in the dynamic model (3.85) gives the closed loop system equation as follows:

Theorem 3 . 4 . 1 .

 341 Assuming that the desired velocity and acceleration are upper bounded, the joint position and velocity tracking errors of a robotic manipulator of dynamic model (3.85), incorporating actuator parameters, viscous friction, and Coulomb friction, follow a global asymptotic convergence under the PD control with computed feedforward given by (3.87),

  are the corresponding viscous, coulomb, and zero-drift parameters respectively for each ith actuator. (3.104) can be displayed in a compact form as follows:

Figure 4 .

 4 1. It is located at Robotics Systems Laboratory, EPFL, Switzerland. Three direct-drive motors integrated with the fixed-base allow the motion of the kinematic chains generating three translational movements of the traveling-plate in x,y and z axes. Each motor can deliver a maximum torque of 23 Nm. The overall mechanical structure can reach up 50 G as peak acceleration.

Figure 4 .

 4 Figure 4.1 -View of the real Delta parallel robot used for real-time experiments.

Figure 4 . 3 -

 43 Figure 4.3 -3D view of pick-and-place reference trajectory in Cartesian space.
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 343 EXPERIMENTAL RESULTS OF CONTRIBUTION 1: TIME-VARYING FEEDBACK RISE CONTROL 159 Experimental results of contribution 1: Time-varying feedback RISE control Delta robot (Figure 4.1) is used as an experimental testbed to validate the proposed time-varying feedback RISE controller. To demonstrate the effectiveness of the proposed control solution, both the original RISE (refer to (3.9)) and the proposed one (refer to (3.16)) are implemented on Delta robot. Then, a comparative study between the results of the two implementations is done. Two main scenarios are conducted for both controllers: scenario 1: nominal case and scenario 2: robustness towards payload and speed changes.

4. 3 . 1

 31 Tuning procedure of the control gains 4.3.1.1 Tuning of the standard RISE control gains

4. find (e 2 )

 2 max and ( e 2 ) max values and set their halves as values of δ 1 and δ 2 respectively, 5. decrease the value of ǫ 1 within the interval [0.5, 1] and increase the value of ǫ 2 within the interval [1, 1.5], retune again the values of k s0 and α 20 making a compromise among the four values, 6. repeat steps 4 and 5 until obtaining the best possible RMSE, 7. increase β until obtaining better performance index. Based on the above tuning algorithm, the control parameters of the proposed timevarying feedback RISE controller are tuned experimentally, and the obtained final values are summarized in Table 4.1.

Figures 4 .

 4 Figures 4.22-a and 4.22-b are two bar graphs showing the variation of the Cartesian RMSE in (mm) with respect to the operating acceleration (G) in case of no added payload and payload of 225 g respectively. The quantified improvement of the new time-varying feedback RISE controller at each acceleration is written at the top of the corresponding column. It can be clear that the performance of time-varying feedback RISE is better than that of standard RISE in all cases.

  Trajectory I. The evolution of the control signals provided by the conventional CT-ST-SMC control law is plotted in Figure 4.23. The high chattering effect that appears clearly in the control signals induced a lot of vibrations into the mechanical structure of the robot. The generated control signal may heat the electrical circuits and lead to premature wear in actuators. It is harmful to the actuators and this scenario was not repeated any more.

Figure 4 . 23 -

 423 Figure 4.23 -Scenario 1: Evolution of the control input torques of the conventional CT-ST-SMC on SPIDER4 robot.

  The measured signals and the generated output are treated with second order filters only for the conventional CT-ST-SMC algorithm. A comparison between the standard PIDFF control and the conventional CT-ST-SMC algorithm is demonstrated in the sequel.The Cartesian tracking errors for both controllers are plotted in Figure4.24. One can observe the superiority of the PIDFF control law on the conventional CT-ST-SMC in terms of precision overall the reference trajectory. The RMSE performance index is evaluated in both Cartesian and joint spaces for the two controllers and reported in

Figure 4 . 24 -

 424 Figure 4.24 -Scenario 2: Evolution of the Cartesian tracking errors of the standard PIDFF and the conventional CT-ST-SMC controllers on SPIDER4 robot.

Figure 4 .

 4 Figure 4.25 -Scenario 2: Evolution of the control input torques of the standard PIDFF and the conventional CT-ST-SMC controllers on SPIDER4 robot.

Figure 4 .

 4 Figure 4.26 -Scenario 1: Evolution of the Cartesian tracking errors of the standard PIDFF and the proposed FF-ST-SMC controllers on SPIDER4 robot.

Figure 4 .

 4 Figure 4.27 -Scenario 1: Evolution of the control input torques of the standard PIDFF and the proposed FF-ST-SMC controllers on SPIDER4 robot.

Figure 4 . 28 -

 428 Figure 4.28 -Scenario 2: Evolution of the Cartesian tracking errors of the standard PIDFF and the proposed FF-ST-SMC controllers on SPIDER4 robot.

Figure 4 .

 4 Figure 4.29 -Scenario 2: Evolution of the control input torques of the standard PIDFF and the proposed FF-ST-SMC controllers on SPIDER4 robot.

Figure 4 . 3 .

 43 Figure 4.3. The evolution of the Cartesian tracking errors of both implemented controllers is depicted in Figure 4.30. It is clear from the figure the reduced dynamic errors by the proposed FF-ST-SMC algorithm compared to the standard PIDFF control. The produced peak errors by the standard PIDFF control can be noticed larger than that of the proposed FF-ST-SMC overall the whole trajectory and in the three axes.To quantify the achieved improvement by the proposed control solution, the RMSE performance index is evaluated for both PIDFF and FF-ST-SMC controllers in Cartesian and joint spaces. The evaluation of the RMSEs show an improvement of 26 % and 31 % in terms of Cartesian and joint tracking errors respectively (see Table4.9). Better performance

Figure 4 . 30 -

 430 Figure 4.30 -Scenario 1: Evolution of the Cartesian tracking errors of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.
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 44422 Figure 4.31 -Scenario 1: Evolution of the control input torques of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

4. 4 .Figure 4 . 32 -

 4432 Figure 4.32 -Scenario 2: Evolution of the Cartesian tracking errors of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

Figure 4 .

 4 Figure 4.33 displays the evolution of the control signals provided by both controllers overall the reference trajectory. All the control signals are within the admissible range of the motors. However, less peak torques are produced by the proposed controller compared to the PIDFF one. This reduction in energy consumption, from PIDFF to FF-ST-SMC controller, is evaluated by 22.1 % as shown in Table 4.10.

Figure 4 . 33 -

 433 Figure 4.33 -Scenario 2: Evolution of the control input torques of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

Figure 4 . 34 -

 434 Figure 4.34 -Scenario 3: Evolution of the Cartesian tracking errors of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

Figure 4 . 35 -

 435 Figure 4.35 -Scenario 3: Evolution of the Cartesian tracking trajectories with the standard PIDFF control on Delta robot.

4. 4 .Figure 4 . 36 -

 4436 Figure 4.36 -Scenario 3: Evolution of the Cartesian tracking trajectories with the proposed FF-ST-SMC algorithm on Delta robot.

2 %Figure 4 . 37 -

 2437 Figure 4.37 -Scenario 3: Evolution of the control input torques of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

4.5. 2 Figure 4 . 38 -Figure 4 . 39 .Figure 4 . 39 -

 2438439439 Figure 4.38 -Validation of the friction parameters identification at low and high operating speeds on VELOCE robot.

Figure 4 . 40 -

 440 Figure 4.40 -Scenario 1: Evolution of the Cartesian tracking errors of the standard PDFF, the Ex-PDFF I, and the Ex-PDFF II controllers on VELOCE robot within the interval [4.5, 5.5] sec.

Figure 4 . 41 -Figure 4 .

 4414 Figure 4.41 -Scenario 1: Evolution of the control input torques of the standard PDFF, the Ex-PDFF I, and the Ex-PDFF II controllers on VELOCE robot.

  provided for the control validation of the proposed time-varying feedback RISE control, Contribution 1, and feedforward super-twisting sliding mode control, Contribution 2. Real-time experiments of the proposed time-varying feedback RISE control verified its superiority over the original RISE algorithm in terms of precision and robustness towards payload and speed variations. This is due to the special behavior of the proposed nonlinear feedback gains with the new time-varying feedback RISE control. Moreover, experimental results of the proposed feedforward ST-SMC algorithm showed a high dynamic performance in terms of extremely high-speed motions, precision, and robustness towards payload and speed changes. Moreover, SPIDER4 robot was used for the experimental validation of the proposed feedforward super-twisting SMC algorithm (Contribution 2). Experimental results showed that the proposed control solution overcomes the conventional computed torque supertwisting algorithm and the standard PID with computed feedforward in terms of dynamic performance. It has been shown that the conventional computed torque super-twisting algorithm is more sensitive to measurements noise compared to the standard PIDFF and the proposed controller especially when dealing with highly nonlinear systems of large dynamic parameter values. VELOCE robot has been used for the experimental validation of Contribution 3, the actuator and friction dynamics formulation in closed-loop control. It has been verified that incorporating more dynamic terms within a model-based control strategy can improve the dynamic performance of parallel manipulators in terms of precision, nonlinearities compensation, and robustness towards payload and speed variations. The high effect of the actuator and friction dynamics on the global performance of parallel robots was demonstrated experimentally. 1. An extended version of the standard RISE feedback control strategy has been proposed and developed in which some static feedback gains were replaced by timevarying ones. The idea was motivated by the proved effectiveness and robustness of the nonlinear feedback gains used with different control schemes such as PD control. RISE control law can accommodate a large class of different uncertainties and disturbances with limited restrictions on the system dynamics. Thus, the proposed time-varying feedback RISE control law takes the advantages of the nonlinear feedback gains and the robustness of the RISE controller. The stability of the proposed control solution has been studied in the sense of Lyapunov stability showing an asymptotic convergence of the tracking error. A 3-DOF Delta robot has been used to validate the proposed controller in real-time experiments. Real-time experiments verified the superiority of the proposed time-varying feedback RISE control over the original RISE algorithm in terms of precision and robustness towards payload and speed variations.

2 .

 2 A novel model-based super-twisting sliding mode control was proposed and designed such that the dynamic compensation term relies on the desired trajectories instead of the measured ones. The conventional super-twisting algorithm developed for robotic manipulator dynamics has the structure of a computed torque control which is sensitive to measurements noise. This can deteriorate the dynamic performance of the manipulator and reduce the robustness towards changes of operating conditions. Moreover, relying on the desired trajectory in the case of feedforward control strategies is more computationally efficient than the computed torque control. The proposed feedforward super-twisting algorithm comprises a feedforward dynamic compensator, the super-twisting control, and a feedback stabilizing term. The stability analysis of the proposed control solution has been addressed in the sense of Lyapunov ensuring the local asymptotic convergence of the tracking error and the finite time convergence of the sliding variable. Two parallel robot prototypes have been used to validate the proposed control strategy: a 3-DOF Delta robot and a 5-DOF SPIDER4 robot. Real-time experiments have shown the superiority of the proposed control approach among the conventional computed torque super-twisting Résumé Les robots manipulateurs parallèles ont acquis une popularité croissante au cours des dernières décennies. Cet intérêt a été stimulé par leurs grands avantages par rapport à leurs homologues sériels, en termes de précision et d'accélérations élevées. Le développement d'approches de commande efficaces et performantes joue un rôle primordial dans l'amélioration des performances globales des robots parallèles. La commande des robots parallèles est souvent considérée dans la littérature comme un challenge en raison de leur dynamique hautement non linéaire, de leurs incertitudes abondantes, des variations paramétriques et de la redondance d'actionnement. Dans cette thèse, nous visons à améliorer les performances dynamiques des robots parallèles en matière de précision et de robustesse vis-à-vis des changements dans les conditions opérationnelles. Ainsi, des approches de commande robustes ont été proposées, résultantes de l'extension de (i) la commande RISE (Robust Integral of the Sign of the Error) standard, (ii) la commande par mode glissant d'ordre supèrieure (Super Twisting). D'autre part, une nouvelles formulation à base de dynamique d'actionneurs et de frottement a été proposée dans une approche de commande basée-modéle pour la compensation de leurs erreurs résultantes. La stabilité des approches de commande proposées a été analysée par des techniques de Lyapunov, vérifiant la convergence asymptotique des erreurs de suivi. Afin de valider les solutions de commande proposées, des tests expérimentaux ont été réalisés sur différents prototypes de robots parallèles, à savoir : le robot Delta à 3 ddl (degrés de liberté) Ãȃ l'EPFL, en Suisse, le robot VELOCE è 4 ddl et le robot SPIDER4 à 5 ddl au LIRMM, en France. Différents scénarios d'expérimentation ont été effectués, y compris le cas nominal, le test de robustesse vis-à-vis des variations de vitesse, et le test de robustesse vis-à-vis des variations de charge utile. La pertinence des approches de commande proposées a été prouvée à travers l'amélioration des erreurs de suivi pour différentes conditions opérationnelles dynamiques. Mots clefs : Robot Manipulateurs parallèles, modèle dynamique, commande par mode glissant, commande RISE, analyse de stabilité, expérimentation en temps réel. LIRMM -161, rue Ada -34095 Montpellier cedex 5 -France

Table 1 .

 1 1 -The main dynamic properties of serial and parallel manipulators.

	Property	Serial manipulators	Parallel manipulators
	Singularities	Inverse kinematic singularities	Inverse, direct, and combined kinematic singularities
	Workspace	Large	Limited
	Workspace/robot size	High	Low
	Payload/weight ratio	Low	High
	Stiffness	Low	High
	Dynamic performance	Poor	Very high
	Accuracy	Low	High

1.7.2.4 Linear formulation property of the dynamics:
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	nonlinear) of the generalized coordinates. Consequently, (1.3) can be written in a linear form
	as follows:
	Property 4. A fundamental property of PKMs is very essential for model-based adaptive
	controllers consists of linearity of the dynamics with respect to the parameters, such as in-
	ertia and masses [Ortega and Spong, 1989; Siciliano and Khatib, 2016]. All the constant
	parameters in the dynamic model are considered coefficients of known functions (linear and

Table 2 .

 2 1 -The main dynamic parameters of Delta parallel robot.

	Parameter	Description	Value
	L	Rear-arm length	240 mm
	l	Forearm length	480 mm
	m r	Rear-arm mass	0.22 kg
	m f	Forearm mass	0.084 kg
	m p	Own traveling-plate mass	0.305 kg
	I act	Actuator inertia	1.82 ×10 -3 kg.m 2

2.2.2 VELOCE robot: a 4-DOF non-redundant PKM

2.2.2.1 Description of VELOCE PKM

VELOCE robot, designed and fabricated at LIRMM, is a Delta-like parallel robot featuring one additional kinematic chain and one additional rotational degree-of-freedom. A CAD view of the fabricated VELOCE robot is illustrated in Figure

2

.6. It is a non-redundant

Table 2 .

 2 2 -The main dynamic parameters of VELOCE parallel robot.

	Parameter	Description	Value
	L	Rear-arm length	200 mm
	l	Forearm length	530 mm
	m r	Rear-arm mass	0.541 kg
	m f	Forearm mass	0.08 kg
	m p	Own traveling-plate mass	0.999 kg
	I arm I act	Rear-arm inertia Actuator inertia	5.3 ×10 -3 kg.m 2 4.1 ×10 -3 kg.m 2

Similarly to dynamics of Delta robot in Section 2.2.1.4, and after applying the virtual work principle, the inverse dynamic model of VELOCE PKM in joint space is given as follows:

Table 2 .

 2 3 -The main dynamic parameters of SPIDER4 parallel robot.

	Parameter	Description	Value
	L	Rear-arm length	535 mm
	l	Forearm length	1100 mm
	m r	Rear-arm mass	17.6 kg
	m f	Forearm mass	4.64 kg
	m tp	Total traveling-plate mass	51.54 kg
	I arm	Rear-arm inertia	1.69 kg.m 2
	I act	Actuator inertia	2.23 ×10 -3 kg.m 2

  .8) Based on the stability analysis introduced in[START_REF] Xian | A Continuous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems[END_REF], RISE control law that can achieve the control objective is defined as follows:

u(t) = (k s + 1)e 2 (t) -(k s + 1)e 2 (0) + t 0 (k s + 1)α 2 e 2 (σ)dσ + t 0

βsgn(e 2 (σ))dσ

(3.9) 

  r-e 2 -Ks (.)e 2 -(K s (.) + 1) ė2 -(k s0 + 1)α 2 (.)e 2

	-βsgn(e 2 ) + Ñ + N d	(3.22)
	Since α 2 (.) is continuous, the upper bound of || Ñ|| in (3.13) still exist.	
	3.2.3.4 Stability analysis	

Theorem 3.2.1. The control law proposed in

(3.16

) applied to the second-order nonlinear MIMO system whose dynamic model is governed by

(3.1) 

ensures that all the system signals are bounded and converge asymptotically to zero with time going to infinity, knowing that the design control gains are chosen such that

  68)where k h 1 ,k h 2 are two positive constants. Considering the scalar case, |h| ≤ k h 1 |ė|+k h 2 |e|, Properties 1 and 2 of mass matrix and Coriolis and centrifugal matrix in Chapter 1, Section 1.7.2, and assuming that the disturbance function is globally bounded by |Γ d | ≤ ǫ|s|, such that ǫ > 0, the inequality (3.67) can be developed to be as follows:

  dominates the quadratic term k C |ė| 2 . Then, using the facts that |e| ≤ 1 Λ |s| and |ė| ≤ |s|, the term |f(s,t)| can be locally upper bounded as follows:

	|f(s,t)| ≤ µ |s|	(3.70)

  Moreover, if s is around the origin, it implies that |s| ≤ |s|

	1 2 . Thus, (3.70) can be expressed as follows:

  Using the two facts |x T y| ≤ ||x|| ||y|| and |x T Ay| ≤ ||x|| ||A|| ||y|| for any vectors x,y ∈ R n and matrix A ∈ R n×n , the bounds of tanh(.) and Sech(.) in (3.93) and (3.94) respectively, and boundedness property of the Coriolis and centrifugal matrix (1.8), one can develop (3.92) to the form below: V(t, e, ė) ≤λ min {K d }||ė|| 2 + γλ max {M ′ }||ė|| 2γλ min {K p }||tanh(e)|| 2 + γλ max {K d }||ė|| ||tanh(e)|| + γk C 1 ||ė|| || qd || ||tanh(e)|| + γ n k C 1 ||ė|| 2
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		||tanh(x)|| ≤ ||x||	and	||tanh(x)|| ≤ n	(3.93)
		||Sech 2 (x)|| ≤ n	(3.94)

  this chapter, the experimental results obtained by the proposed control solutions Different scenarios are conducted for each experimental test such as nominal case, robustness towards payload changes, and robustness towards speed changes. The purpose behind these scenarios is to test our proposed controllers at different dynamic operating conditions. The results for each experimental test are plotted, clarified, and discussed in terms of the dynamic performance of the parallel manipulator. Finally, this chapter ends up with a conclusion regarding the proposed control solutions and the obtained results.
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	butions 1 and 2 (time-varying feedback RISE and feedforward super-twisting SMC). More-
	over, SPIDER4 robot is proposed for the experimental validation of Contribution 2. For
	Contribution 3 (actuator and friction dynamics formulation), VELOCE robot is adopted as
	an experimental validation setup.
	are demonstrated and discussed. The experimental setups and implementation issues of
	the existing parallel robot prototypes are introduced. Three PKM prototypes (presented in
	Chapter 2) are used for the control validation during this thesis: a 3-DOF Delta robot, at
	EPFL, Switzerland, a 5-DOF SPIDER4 robot and a 4-DOF VELOCE robot at LIRMM.
		Delta robot is introduced as experimental platform for the control validation of Contri-

Table 4 .

 4 1 -The control gains of the original RISE and the proposed time-varying feedback RISE controllers.

	Original

RISE Proposed time-varying feedback RISE

  

Table 4 .

 4 3 -Scenario 2: Control performance evaluation of the original RISE and the proposed time-varying feedback RISE controllers on Delta robot.

	CONTRIBUTION 1: TIME-VARYING FEEDBACK RISE
	CONTROL			167
		RMSE C [mm]	RMSE J [deg]	E Γ [Nm]
	Original RISE New time-varying feedback RISE Improvements	5.3985 3.7542 30.5 %	1.2577 0.9012 28.3%	1.7692 × 10 4 1.4318 × 10 4 19.1 %

Table 4

 4 

	.5.

Table 4 .

 4 5 -Scenario 2: Control performance evaluation of the standard PIDFF and the conventional CT-ST-SMC controllers on SPIDER4 robot.

		RMSE C [mm]	RMSE J [deg]
	Conventional CT-ST-SMC	1.9895	0.2751
	Standard PIDFF	0.6785	0.0521

Table 4 .

 4 6 -Scenario 1: Control performance evaluation of both controllers of the standard PIDFF and the proposed FF-ST-SMC controllers on SPIDER4 robot.

	4.4. EXPERIMENTAL RESULTS OF CONTRIBUTION 2: MODEL-BASED ST-SMC
	ALGORITHM		175
	RMSE C [mm]	RMSE J [deg]
	Standard PIDFF	0.6026	0.0472
	Proposed FF-ST-SMC	0.2689	0.0264
	Improvements	55.4 %	44.1 %
	This scenario validated the relevance and applicability of the proposed FF-ST-SMC in
	real-time experiments. It showed a high dynamic performance by the proposed controller
	compared to the classical PIDFF control law.		

Scenario 2: robustness towards speed changes

In this scenario, the feedrate of the robot's nacelle is increased to 36000 Inch/Minute following the reference trajectory: Trajectory I. The intend behind this scenario is to test the performance of the proposed controller at high-speed motions when the nonlinearity effects of the parallel manipulator increase considerably.

The Cartesian tracking errors for both controllers (standard PIDFF and proposed FF-ST-SMC) are depicted in Figure

4

.28. Knowing that the peak errors of both controllers are greater than the obtained ones during scenario 1, but still the proposed FF-ST-SMC controller perform better than standard PIDFF in terms of precision. Similar observations to scenario 1 are noticed in this scenario. The dynamic error is reduced considerably by the proposed controller compared to the PIDFF control law as well as the static error.

Table 4 .

 4 7 -Scenario 2: Control performance evaluation of the standard PIDFF and the proposed FF-ST-SMC controllers on SPIDER4 robot.

		RMSE C [mm]	RMSE J [deg]
	Standard PIDFF	0.92064	0.08421
	Proposed FF-ST-SMC	0.5127	0.0519
	Improvements	44.3 %	38.4 %

Table 4

 4 

	.9). Better performance

Table 4 .

 4 9 -Scenario 1: Control performance evaluation of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

		RMSE C [mm]	RMSE J [deg]	E Γ [Nm]
	Standard PIDFF Proposed FF-ST-SMC Improvements	0.1392 0.1031 26 %	0.0362 0.025 31%	2.9486 × 10 4 2.3737 × 10 4 19.5 %
	This scenario verified the relevance of the proposed feedforward ST-SMC algorithm for

Table 4

 4 
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Table 4 .

 4 10 -Scenario 2: Control performance evaluation of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

		RMSE C [mm]	RMSE J [deg]	E Γ [Nm]
	Standard PIDFF Proposed FF-ST-SMC Improvements	1.9177 0.8064 58 %	0.4355 0.2024 53.5%	1.5025 × 10 4 1.1706 × 10 4 22.1 %
	ST-SMC towards high dynamic operating conditions. The proposed FF-ST-SMC approach
	performed much better than the standard PIDFF at high accelerations with a handled pay-
	load. The conclusion drawn is that the proposed FF-ST-SMC algorithm improves the dy-
	namic performance of parallel manipulators in terms of high-speed motions, precision,
	robustness, and energy consumption.		

3 Scenario 3: robustness towards very high accelerations

  For more challenging task, Delta robot is configured to operate at very high acceleration of 30 G and speed of 2650 mm/s in this scenario. The pick-and-place trajectory of Figure4.3 is followed without any additional payload. Two cycles are performed in this scenario. The evolution of the Cartesian tracking errors of both controllers are depicted in Figure 4.34. Smaller dynamic errors and less oscillations are obtained from the proposed FF-ST-SMC algorithm compared to the standard PIDFF. The Cartesian tracking trajectories of the PIDFF and FF-ST-SMC controllers are illustrated in 3D views in Figures 4.35and 4.36 respectively. One can be observe better tracking accuracy for the proposed FF-ST-SMC algorithm compared to the standard PIDFF controller.
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Table 4 .

 4 11 -Scenario 3: Control performance evaluation of the standard PIDFF and the proposed FF-ST-SMC controllers used on Delta robot.

		RMSE C [mm]	RMSE J [deg]	E Γ [Nm]
	Standard PIDFF Proposed FF-ST-SMC	1.0732 0.8058	0.2916 0.2074	1.1556 × 10 4 9.7987 × 10 3

Table 4 .

 4 12 -The identified friction parameters of VELOCE robot.

	Active Joint	f v i	f c i	d i
	1	0.1198	0.3019	0.1811
	2	0.2252	0.8879	-0.5834
	3	0.2354	0.0584	0.3194
	4	0.3269	0.7104	-0.5891

Table 4 .

 4 13 -Scenario 1: Control performance evaluation of the Ex-PDFF I.

	Scenario	Control	RMSE T [mm]	RMSE R [deg]
		Standard PDFF	0.089	0.7614
	Scenario 1	Ex-PDFF I	0.084	0.7386
		Improvements	5.62 %	3 %

Table 4 .

 4 14 -Scenario 1: Control performance evaluation of the Ex-PDFF II.

	Scenario	Control	RMSE T [mm]	RMSE R [deg]
		Standard PDFF	0.089	0.7614
	Scenario 1	Ex-PDFF II	0.072	0.5661
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General conclusion

The objectives of this thesis have aimed at improving the dynamic performances of parallel manipulators by developing robust control strategies and compensating for the errors coming from the actuator dynamics, the frictions in the articulations, the motors drivers, etc. Several parallel manipulator prototypes were available to validate the proposed control strategies in real-time experiments at different operating conditions showing their effectiveness in terms of motion speed, precision, and robustness.

Summary of the work

Control of parallel manipulators is not a trivial task since of their highly nonlinear dynamics which may increase considerably when operating at high accelerations, often leading to mechanical vibrations. Moreover, uncertainties are abundant in such systems due to model simplifications, the wear of the components of the robot and the variations of the environment. Furthermore, their highly coupled dynamics, singularities and actuation redundancy in some mechanisms give rise to very complex and challenging control issues.

Consequently, the developed control schemes should take into account all the previously mentioned issues and challenges.

In this thesis, the proposed, analysed, and validated control solutions can be mentioned as follows: algorithm and the PID control with computed feedforward in different operating conditions (nominal case, payload changes, and operating speed changes).

3. Actuator and friction dynamics formulation has been proposed and used as a compensator within a closed-loop control, a PD with computed feedforward. The main motivation behind this proposition was to compensate for the errors coming from the actuator and friction dynamics aiming at better performances of parallel manipulators. The proposed control incorporating the actuator and friction dynamics has been studied and analysed using a Lyapunov function candidate. The stability analysis showed a global asymptotic convergence of the tracking error. A 4-DOF VE-LOCE robot has been adopted for the real-time experimental validation of the proposed control formulation. An offline friction parameters identification technique has been conducted on VELOCE robot and the obtained values were used in the control law. Experimental results showed the effectiveness and relevance of the proposed dynamic formulation in terms of precision and robustness towards changes of operating conditions.

Future works

In this thesis, several strategies have been employed in order to improve the dynamic performance of parallel manipulators in terms of precision, robustness, and changes of operating conditions. Indeed, different possibilities exist to extend the proposed control solutions in this work and achieve better performances. One can mention the extension possibilities as follows:

• Extend the proposed time-varying feedback RISE control law with a dynamic compensating term in the form of computed or adaptive feedforward. This can accommodate for the nonlinear dynamics of parallel manipulators enhancing the tracking precision and the robustness.

• Apply an online dynamic adaptation for the proposed feedforward super-twisting sliding mode control taking into account the time-varying parameters. Consider the GENERAL CONCLUSION scenario of real machining with SPIDER4 robot with addressing the problems of contact forces, compliance errors, stiffness, etc.

• For the proposed actuator and friction dynamics formulation, design an online estimator of the friction parameters using adaptive control techniques. Consider more complicated nonlinear models of friction dynamics incorporating those of passive joints. Try to look for more tools that may be considered as sources of errors such as: electrical dynamics of the actuators, cogging ripple torques, amplifiers, etc.

APPENDIX

A Bounded residual dynamics of robotic manipulators

Property 8. Given the vector of the residual dynamics of a robotic manipulator incorporating the friction parameters as follows:

h(q, q) = M(q d ) -M(q) qd + C(q d , qd ) -C(q, q) qd

where the actuator inertia is included with the mass and inertia matrix 

for all e, ė ∈ R n .

Proof. The norm of the above residual dynamics function h(q, q) can be upper bounded
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as follows:

||h(q, q)|| ≤|| M(q d ) -M(q) qd ||

Regarding the first term at the right-hand side of (A.3) that consists of the mass and inertia matrix, two upper bounds can be derived from Property 1 (refer to Chapter 1) as follows:

where k M ,k ′ M are two positive constants. Similarly, the second term of (A.3) can be upper bounded by two bounds using Property 2 (refer to Chapter 1) as follows:

where k C 1 ,k C 2 are two positive constants. Making use of Property 3 (refer to Chapter 1), the third term of (A.3) can be upper bounded by two bounds as follows:

where k G ,k ′ G are two positive constants. The last term of (A.3) consisting of Coulomb friction dynamics can be upper bounded also by two bounds. The first upper bound can be established using the inequality ||tanh(x)|| ≤ ||x|| ∀ x ∈ R n as follows: 

Finally, the upper bounds on the residual dynamics (A.3) can be established using (A.4), (A.5), (A.6), (A.7), and (A.9) as follows:

Knowing that f c < f c (n + n), one can combine the two inequalities of (A.10) as follows:

where

and

The scalar function S(e) can be illustrated in |S

where k h 2 is a number that satisfies the following:

B

Property of the vectorial hyperbolic tangent Property 9. For any two vectors x,y ∈ R n , the following equality holds:

where tanh(u) = tanh(u 1 ),...,tanh(u n )

T is the vectorial hyperbolic tangent for any u ∈ R n , S = [1,0,...,0] T ∈ R n , and

Proof. Developing and expanding the left hand side of (B.1) leads to the following:

Using the subtraction formula of the conventional hyperbolic tangent function given be- . . .

and the proof is concluded. 

Abstract