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Synthèse

Le Fond Diffus Cosmologique (FDC) est une sonde cosmologique clé mettant des contraintes
étroites sur le modèle ΛCDM de l’Univers. Emis 380000 ans après le big bang, il montre de
petites anisotropies en température et en polarisation qui tracent les inhomogénéités cosmiques
à différentes époques de l’Univers. En effet, d’une part les anisotropies primaires, imprimées au
moment de son émission, donnent accès à la phase d’inflation ayant lieu au tout début de l’Univers
et durant laquelle les perturbations primordiales sont générées. D’autre part, les anisotropies
secondaires, imprimées depuis lors, tracent les inhomogénéités dans l’Univers récent, qui ont
évolué en grandes structures sous l’action de la gravité à partir des inhomogénéités primordiales,
et interagissant alors avec le FDC. Ainsi les anisotropies du FDC sont une sonde puissante à la
fois de l’origine des inhomogénéités dans l’Univers très jeune, et de leur état évolué dans l’Univers
récent. Cette thèse porte sur deux aspects des inhomogénéités: d’abord leur production dans
une extension du scénario inflationnaire, puis la prédiction de l’impact des champs magnétiques
des grandes structures sur les anisotropies secondaires polarisées du FDC.

Malgré ses succès, l’inflation ne résout pas le problème de la singularité initiale du big bang,
où l’interaction gravitationnelle pourrait être quantifiée. En Cosmologie Quantique à Boucles
(CQB), cette singularité est remplacée par un rebond quantique. La CQB à un champ avec
potentiel quadratique a déjà été étudiée et prédit une phase d’inflation suivant le rebond avec une
probabilité proche de un. Dans ce cadre, les perturbations primordiales ne sont plus seulement
produites pendant l’inflation, mais aussi pendant le rebond et la contraction le précédant. Dans
ma thèse, j’ai considéré une extension à deux champs de la CQB avec un champ massif comme
inflaton, et un champ sans masse servant d’horloge interne. J’ai d’abord étudié l’évolution globale
de l’Univers de manière analytique et numérique, montrant que loin dans la contraction, le champ
massif domine le contenu énergétique. J’ai aussi vérifié que l’inflation reste probable, malgré la
présence du champ sans masse. Puis, j’ai examiné la production de perturbations: contrairement
au cas à un champ, en plus de la composante adiabatique standard, elles sont ici décrites par une
composante isocourbe, caractéristique des modèles multi-champs et pour laquelle Planck a mis
des limites supérieures. Loin dans la contraction, ces deux composantes sont hautement couplées.
J’ai montré comment fixer leurs conditions initiales en utilisant des variables combinant les deux
types de perturbations, rendant le couplage sous-dominant. Il reste maintenant à les propager à
travers le rebond jusqu’à la fin de l’inflation pour obtenir leurs spectres de puissance respectifs
ainsi que leur spectre de puissance croisé, à comparer ensuite aux contraintes observationnelles.

Depuis son émission, le FDC a voyagé à travers les grandes structures avant de nous atteindre.
Son interaction avec les structures engendre des anisotropies secondaires, comme celles dues à
l’effet Sunyaev-Zel’dovich dans les amas. Or, des plasmas magnétisés ont été observés dans les
galaxies et les grandes structures. Cela devrait engendrer de la rotation Faraday de la polari-
sation linéaire primordiale, transformant des modes E en B, et de la conversion Faraday de la
polarisation linéaire en circulaire. J’ai revisité ces sources d’anisotropies en calculant les spectres
de puissance angulaires de l’angle de rotation Faraday et du taux de conversion Faraday par les
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grandes structures. Pour cela, j’ai utilisé le modèle de halo en prêtant une attention particulière à
l’impact des projections des champs magnétiques. Les spectres piquent à des multipoles ` ∼ 104

et sont proportionnels à σ3
8 , en supposant un champ magnétique indépendant de la masse du halo.

Cette dépendance est cependant dégénérée avec celle qui existe entre les champs magnétiques
et la masse des halos. Ensuite, je détaille le calcul des spectres de puissance angulaires totaux
des anisotropies polarisées, à partir de ceux de la rotation Faraday et de la conversion Faraday.
Enfin, je montre comment reconstruire les champs de rotation Faraday et de conversion Faraday
à partir du FDC en adaptant les estimateurs développés pour la reconstruction du lentillage
gravitationnel.



Introduction

Modern cosmology is born in the XXth century, soon after the formulation of the theory of
General Relativity (GR) in 1915 by Albert Einstein to describe the gravitational interaction. The
general cosmological solutions to the Einstein equations were introduced by Alexander Friedmann
and Georges Lemaître independently in 1922 and 1927 respectively. These solutions allow the
Universe to be expanding and indeed, Hubble in 1929 observed that galaxies were receding from
us all the more fast that they were far. It has been interpreted as the expansion of the Universe.
This observation involves that the Universe has a thermal history: its temperature has decreased
during its expansion. This led Gamow in 1948 to draw the conclusion that there must be a relic
radiation from the early Universe, which is the first light it has released. Its temperature was
computed shortly afterwards, the very same year, by Alpher and Herman to be around 5 K.
Its first detection by chance in 1964 by Penzias and Wilson confirmed the theoretical prediction
and was another evidence for the expansion of the Universe. Since then, there have been three
satellite missions to observe the CMB in details and many other ground based or balloon born
observations. For the past 30 years, the CMB has become an important probe to test our modern
understanding of cosmology built upon the Friedmann-Lemaître solutions: indeed, it contains
information not only on the origin of the Universe and therefore about its initial conditions, but
also on its history from the release of the CMB 380 000 years after the big bang up to now, since it
took this long for the light to reach us. This information is actually contained in the temperature
and polarisation anisotropies of the CMB: the primary anisotropies, imprinted at the CMB
release, trace the production of the primordial inhomogeneities in the very early Universe while
the secondary anisotropies result of the interaction of the primary anisotropies with the large-
scale structures, which are nothing more than the evolved state of the primordial perturbations
which have collapsed under gravity, so that secondary anisotropies probe the recent structuration
of the Universe. The observation of the CMB anisotropies allows a better understanding of the
production and evolution of the cosmic inhomogeneities but also to set tight constraints on the
parameters of the standard model of cosmology ΛCDM (Planck Collaboration et al., 2018b). It
turns out that the hot big bang model, in reference to the thermal history of the Universe, is in
remarkable agreement with the observations and in particular the one of the CMB anisotropies.

No matter how well-fitted it is to observations, the model raises questions about its for-
mulation. The first satellite mission dedicated to the CMB, COBE launched in 1989, already
observed the incredible uniformity of the CMB over the whole sky by detecting only very small
temperature anisotropies. It has been further confirmed until Planck in 2013 which observed
them to be of the order of ∆T/T0 ∼ 10−5, with ultimate precision. The observation of the CMB
thus supports the cosmological principle, that is the homogeneity and isotropy hypotheses un-
derpinning the model. Nonetheless, the hot big bang scenario is incomplete as it does not explain
the origin of the homogeneity and isotropy of the model, nor the origin of the tiny fluctuations
observed in the CMB. It is therefore completed with the inflationary paradigm, a phase of accel-
erated expansion in the very early Universe that answers the initial condition ‘problems’ of the

9



10 CONTENTS

Universe. Indeed, the gaussian statistics of the CMB anisotropies suggest that they must have
quantum origin. Thus, the vacuum quantum fluctuations in the very early Universe are expected
to be amplified during inflation, giving rise to the primordial scalar and tensor inhomogeneities
which later leave their imprints on the temperature and polarisation anisotropies, explaining the
origin of the fluctuations. For now, this paradigm remains to be definitely confirmed, as only an
upper bound has been set on the energy scale of inflation, mostly through the observation of the
temperature anisotropies by Planck (see Planck Collaboration et al., 2018d). Nonetheless, the
tensorial quantum perturbations of the metric, or gravitational waves, are expected to be ampli-
fied during this phase but have never been detected so far. Thus, the detection of a gravitational
wave background originating from the primordial Universe would back up this paradigm. At the
level of CMB anisotropies, this translates into polarisation anisotropies. The linear polarisation
anisotropies of the CMB draw two kinds of polarisation patterns on the sky: the E modes which
are parity invariant corresponding to the curl-free component of the vector field, and the B modes
which are not and correspond to the divergence-free component of the vector field. It is useful to
introduce these two modes to describe linear polarisation because they are basis invariant unlike
the polarisation vector field. As the B modes are parity variant, scalar perturbations cannot
produce them and they are the unique signature of the tensor perturbations, contrary to the E
modes which can be produced by both scalar and tensor perturbations.

Inflation is expected to occur at very high energies very close to the Planck energy scale,
when the Universe was still very hot, shortly after the initial unphysical singularity predicted by
GR. However, the inflationary paradigm does not solve the initial big bang singularity issue: it is
believed that a quantum theory of gravitation might do so, like the Loop Quantum Gravity (LQG)
theory (see Gambini & Pullin, 2011, for an introduction). The application of its techniques to the
system Universe led to the field of Loop Quantum Cosmology (LQC) and replaces the big bang
singularity by a quantum bounce. Linking the inflationary paradigm to a quantum model of the
very early Universe that solves the initial singularity might answer some of the questions raised by
the hot big bang model. Such a model of the very early Universe may change the production of the
primordial inhomogeneities: in particular, they are now not only produced during inflation, but
also during the bounce and the contraction previous to it. This change may leave its footprints on
the CMB anisotropies, allowing further tests of these high energy physics models. A simple model
of LQC with a single massive scalar field with a quadratic potential has already been studied
and is compatible with an inflation phase following the bounce. Furthermore, the primordial
power spectra of its scalar and tensor perturbations show distinguishing features as compared to
a standard inflation phase, see Barrau et al. (2014a). Now, this model of the very early Universe
can be enriched by adding more fields, as suggested by the use of scalar fields as reference fields
Gielen & Oriti (2018). Indeed, even though the most favoured models of inflation involve a
single scalar field, we have reasons to consider more fields. In my thesis, I have been interested
in a two-field extension of LQC with a massive scalar field with quadratic potential as being the
inflaton and a massless scalar field parameterising time. Two kinds of motivations lie behind this
model: first, fundamental physics considerations coming from LQG, since in this theory, time is
not defined at the quantum level, but at the classical level a scalar field without potential is a
monotonic function of time and so can be used as a relational emergent time to parameterize
our equations. However, a field without potential cannot give rise to inflation. Thus, we also
need a scalar field with potential in order to have an inflation phase. Moreover, all the fields
of the Standard Model of particle physics make up the Universe. Thus, there is no reason that
there should be only one field during the contraction either. These reasons therefore suggest to
investigate bouncing cosmologies with at least two fields. My approach has been to study the
scalar perturbations produced in such a model, where an isocurvature component is expected in
addition to the standard adiabatic one, to be later propagated into primary induced anisotropies.
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Finally, the CMB is the superposition of the first light released by the Universe and of its
interaction with the large-scale structures on its way to our detectors. Thus, both primordial
and late-time effects leave their imprint on this relic radiation one receives today. This can be
good or bad news: either it can be used to extract information on the structures of the Universe
or it can be seen as polluting the primordial signal which is one of the only windows we have
on the primordial physics. It is thus relevant to characterise precisely the secondary effects
impacting the CMB, either to extract cosmological and astrophysical information on its own, or
to remove a foreground contamination. An example of secondary anisotropies are those due to the
lensing of the CMB by the gravitational potentials of large-scale structures, which deforms the
primordial image of the Universe. Both temperature and polarisation anisotropies are impacted
by this effect but in particular, it turns some E modes into B modes. While the primordial
B modes, signature of the primordial gravitational waves produced during inflation, have not
been observed yet and are actually expected to be very low, their secondary component, the
lensed B modes, have. Thus, a precise modeling of all the possible secondary B modes is needed
to subtract it to the observed CMB in order to recover the primordial signal and to extract
information about the early phases of the Universe. Conversely, these secondary anisotropies
could also be used to probe the standard model of cosmology or the structure formation of
the Universe, as shown for example with the reconstruction of the lensing potential map Planck
Collaboration et al. (2018c). Now, observations show that large-scale structures contain magnetic
fields of the order of the microGauss, as well as free electrons. These magnetised plasmas should
lead to magneto-optic effects like Faraday Rotation (FR) and Faraday Conversion (FC) of the
CMB. FR rotates the primordial linear polarisation of the CMB, and turns some E modes into
B modes, in a similar way to the gravitational lensing, while FC converts the primordial linear
polarisation into circular polarisation, which has no primordial component in the standard model
of cosmology. The second part of my thesis has consisted in making a full sky modelisation of
these two effects, in a way similar to what has already been done for the angular power spectra
of the thermal Sunyaev-Zel’dovich (tSZ) effect or lensing, as a first step to predict the induced
secondary polarised anisotropies of the CMB.

The PhD manuscript is organised as follows: I first introduce the context and background
needed to this thesis in Part I, starting from the background standard model of cosmology to the
production of anisotropies in the CMB, going through early Universe physics and the treatment
of perturbations within it. The Part II is then dedicated to predicting primordial power spectra
in an early Universe model within the LQC framework. For this purpose, I first present the
mother LQG theory and then its LQC application and a review of previous results useful for
the model of the early Universe I considered. I will solve both analytically and numerically its
dynamics and explore the consequences for an inflationary phase. I will also tackle the dynamics
for its coupled adiabatic and isocurvature perturbations by first solving it in the uncoupled case.
Finally, Part III is devoted to the prediction of secondary polarised anisotropies that could spoil
the detection of the primordial ones. I will focus on two effects impacting primary polarisation
anisotropies: the FR and FC effects. As a first step, I compute the angular power spectra of these
effects occurring in galaxy clusters and study their cosmological and astrophysical dependencies.
The angular power spectra of CMB secondary polarised anisotropies are also given as well as
quadratic estimators to reconstruct the FR and FC fields thanks to CMB secondary polarised
anisotropies, which could be used to probe both cosmology and the astrophysics of clusters.
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Chapter 1

The standard model of cosmology:
ΛCDM

This chapter presents the standard model of cosmology and its theoretical foundation, namely
the theory of General Relativity. Indeed, the modern theory of gravitation developed by Albert
Einstein in 1915 was used no later than in 1917 to build the first (static) model of the Universe
by Einstein himself. Contrary to original Einstein’s idea, the Universe is observed as expanding.
Today, observations enable us to measure the parameters of the current model of our Universe
with unprecedented precision. This gives a particular model of our Universe named ΛCDM, after
its two main constituents. However minimalistic and well-fitted this model can be to observations,
it also raises open questions on its theoretical framework, that is about General Relativity but
maybe also about particle physics.

1.1 From General Relativity to cosmology

1.1.1 From the principle of stationary action to Einstein’s equations

Modern formulations of physics are based on analytical mechanics and in particular the Hamil-
tonian formalism for its quantum part, or the Lagrangian formalism for General Relativity (ab-
breviated GR hereafter). Classical GR is formulated with a Lagrangian L and an action S that
is required to be stationary to get the equations of motion of space-time itself that depends on
its energy density content. The action is related to the Lagrangian by an integration

S =

∫
Ldt. (1.1)

The absolute space and time of Newtonian mechanics are no longer independent in GR: it forms
one single entity called space-time. Actually, it is even more than that: it is coupled to its energy
density content. In GR, the Euclidean 3-space of Newtonian mechanics is replaced by a pseudo-
Riemannian manifold of dimension 4 that locally looks like R4 but that is globally curved by
the presence of energy densities. To give coordinates to events in such space-times and measure
lengths or durations, one needs what is called a metric. Metrics are not unique to pseudo-
Riemannian manifolds, it is just a formal way to write lengths or durations within a coordinate
system: for example, there is a metric for cartesian coordinates and another one for spherical
coordinates. Formally, a metric is a rank-2 tensor written gµν . This metric allows to define

15
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a particular derivative on a manifold called covariant derivative: as the manifold representing
space-time is globally curved, one cannot easily compare objects such as tensors in two different
space-time points labelled by coordinates xµ. Therefore, one needs to parallel transport objects
between points, however close they are, in order to compare them, and all the more so to compute
derivatives. The covariant derivative, indicated by ∇µ, differentiates objects that are parallel
transported between infinitesimally closed points

∇µV ν = ∂µV
ν + ΓνµαV

α, (1.2)

where V µ is a vector, ∂µ is the usual partial derivative with respect to the space-time coordinate
xµ and Γνµα is the connection (also known as Christoffel symbol) because it ‘connects’ two neigh-
bour points: this connection is said to be metric compatible, meaning that it can be univocally
computed given the metric. As the covariant derivative is precisely needed to differentiate objects
on curved geometries, one can understand that it can be used to define a curvature tensor Rµναβ
of rank 4, also called Riemann tensor, following

(∇α∇β −∇β∇α)V µ = RµναβV
ν , (1.3)

where V µ is any vector. Using Einstein’s summation convention one can define a rank-2 tensor
called the Ricci tensor as: Rµν = Rαµαν and the Ricci scalar R = Rµνg

µν or the curvature scalar.
As metric describes the geometry of a space-time, the action of GR depends in particular on the
metric and its derivatives

S =
1

2κ

∫
(R− 2Λ)

√−g d4x+

∫
Lm

√−g d4x, (1.4)

where Lm is the Lagrangian density of matter fields related to the Lagrangian of matter by an
integration over space: L =

∫
d3xL, Λ is the so called cosmological constant, g is the determinant

of the metric and κ = 8πG/c4. The first term is named the Einstein-Hilbert action, after the two
physicists. The equations of motion for this space-time -the equations of motion of the theory
of GR- are then given by extremising the action following the least action principle, which is
central in modern formulations of physics. It leads to the Euler-Lagrange equations which are
in this context called the Einstein’s equations

Gµν + Λgµν = κTµν , (1.5)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor and Tµν is the energy-momentum tensor ob-
tained by varying the matter action with respect to the metric, or equivalently by differentiating
the Lagrangian of matter with respect to the metric. The energy momentum tensor is symmetric
and such a rank-2 tensor can be decomposed uniquely as follows

Tµν = ρuµuν + Pγµν + 2q(µuν) + πµν , (1.6)

where uµ is the velocity of an observer belonging to the fluid, ρ = Tµνu
µuν is the energy density

measured by a comoving observer with the fluid, γµν is the spatial metric of surfaces perpendicular
to the flow i.e. γµν = gµν + uµuν , P = Tµνγ

µν/3 is the pressure, qµ = −Tαβuαγβµ is the energy
flow with respect to uµ and πµν is the anisotropic pressure tensor which is symmetric. These
quantities satisfy the following properties

qµu
µ = 0, πµνu

µ = 0, πµνu
µ = πµνγ

µν = 0.

This is the most general form the energy-momentum tensor can have, but in cosmology one only
needs a reduced version of it, that of a perfect fluid where we do not use the anisotropic pressure
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tensor. In the following, we explain how a model of the Universe has been built in the years
following the construction of GR in 1915, under this theoretical framework, among other things.
It led to a domain of physics called (modern) Cosmology so that our current understanding of
the Universe is rather recent.

1.1.2 Application to the whole Universe: cosmology

1.1.2.1 The symmetries behind the model

The gravitational interaction is well described by the theory of GR on solar system scales (e.g.
Hoyle et al., 2004; Will, 2014). We have seen it is a manifestation of the geometry of space-time,
hence it led Einstein to use it to build a model of the Universe as soon as in 1917, by assuming
space-time would be well described by GR on the Universe scale. The current model of our
Universe relies on two additional hypotheses, based on observations, simplifying the construction
of the model:

The Copernican principle We do not occupy a special place in the Universe, let alone its
centre. This principle refers to Nicolas Copernic, who promoted the heliocentric model of the
Solar system, at a time when people thought the Earth was at the centre of the Universe.

The isotropy hypothesis The Universe is isotropic: there is no privileged direction in the
Universe. It is based on many observations: the distribution of galaxies is isotropic around us
as is the Comic Microwave Background (CMB) which is a relic radiation from the beginning of
the Universe.

Together, these two hypotheses form the cosmological principle: as the Universe is isotropic
around us and we do not occupy a special place within it, then it is isotropic around every position
in the Universe and it is therefore homogeneous. As a homogeneous Universe can be anisotropic
(for example if there is a flow of objects), the cosmological principle is often summarised as
follows: the Universe is spatially homogeneous and isotropic. These symmetries on the geometry
of the Universe restrict the possible solutions to the Einstein’s equations that can be used to build
a model of our Universe. These solutions are the Friedmann-Lemaître space-times, discovered
independently by the two astronomers in 1922 and 1927. Note that this space-time goes well
beyond our observable universe and describes the whole Universe.

The Friedmann-Lemaître solutions are given by metrics gµν expressed through space-time
intervals by ds2 = gµνdxµxν where xµ are space-time coordinates. The space-time intervals in
these solutions are

ds2 = −dt2 + a(t)2γij(x
k)dxidxj , (1.7)

where t is called the cosmic time, a(t) is the scale factor, γij is the spatial metric of the hyper-
surfaces of constant time Σt and the indices i, j, k are spatial indices running from 1 to 3. The
spatial metric has three possible expressions

dσ2 = γijdx
idxj = dχ2 + f2

K(χ)dΩ2 =
dr2

1−Kr2
+ r2dΩ2, (1.8)

with dΩ2 = dθ2 + sin2θdϕ2 is the infinitesimal solid angle, and χ and r are radial coordinates
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related by a function of the curvature constant K, r = fK(χ) where

fK(χ) =


K−1/2sin

(√
Kχ
)

K > 0,

χ K = 0,

(−K)−1/2sinh
(√
−Kχ

)
K < 0.

(1.9)

Indeed, the surface of a comoving sphere of radius χ is given by S(χ) = 4πf2
K(χ), which depends

on the spatial curvature radius 1/
√
|K|. Thus, one can also identify fK(χ) = r as a radial

coordinate, by analogy with the expression of the surface of a sphere in flat space. Indeed, in the
flat space case K = 0, one recovers the usual expression for the surface of a sphere S(χ) = 4πχ2

and the two radial coordinates coincide χ = r, which also holds for distances small compared to
the curvature radius: χ� 1/

√
|K|. The curvature constant is related to the Riemann tensor on

spatial surfaces Σt, also known as the spatial curvature tensor
(3)Rijkl = 2Kγk[iγj]l. (1.10)

1.1.2.2 An expanding Universe

The xi are called comoving coordinates, meaning that an observer for which xi = constant moves
along with the Universe: it does not move in space once the motion of the Universe has been
removed, but moves ‘with time’ x0 = t. To illustrate this, consider two comoving observers with
spatial coordinates x1 and x2, their physical separation is not given by the difference of the two
vectors but by

r12 = a(t)(x1 − x2), (1.11)

so that the scale factor a(t) translates the expansion of the Universe. Then, one has

ṙ12 = H(t)r12, (1.12)

with H(t) = ȧ(t)/a(t) is the Hubble parameter, and this relation is called the Hubble-Lemaître
law, which states that the moving away speed between two objects is all the more high as they
are remote, if H > 0. This is also called the recession speed and is due to the motion of the
Universe, also known as Hubble flow. The expansion of the Universe has been observed through
this Hubble-Lemaître law, by Hubble himself in 1929 by measuring independently the distance
and velocity of 24 galaxies: see the Hubble diagram in Fig. 1.1. The original observations by
Hubble overestimated the Hubble constant H0, which is the value of the Hubble parameter today,
by an order of magnitude, finding H0 = 500 km·s−1·Mpc−1 where it is now measured to be of
the order of H0 ≈ 70 km·s−1·Mpc−1.

Analogously to the spatial comoving coordinates xi, one can define a conformal time η as

dη =
dt

a(t)
, (1.13)

so that the metric Eq. (1.7) can be rewritten like

ds2 = a(η)2(−dη2 + γij(x
k)dxidxj). (1.14)

1.1.2.3 The energy content of the Universe

Finally, one needs to model the energy content of the Universe in order to have a complete model.
With the above space-time symmetries, the energy-momentum tensor Eq. (1.6) has the following
expression

Tµν = ρ(t)uµuν + P (t)a(t)γ̂µν , (1.15)
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Figure 1.1: The original Hubble diagram from the Hubble (1929) publication. Radial velocities
of ‘extra-galactic nebulae’, today known as galaxies, are plotted against their distances. Black
disks and plain line represent individual galaxies where circles and dashed line correspond to
galaxies gathered in groups.

where γ̂µν = gµν + uµuν so that γ̂ij = a(t)2γij . This expression corresponds to the energy-
momentum tensor of a perfect fluid, i.e. one for which πµν = 0 and qµ = 0. The fact that
the energy content of the Universe is modeled by such a perfect fluid is a consequence of the
hypotheses on space-time symmetries.

The possible solutions to the Einstein’s equations Eq. (1.5) that could model our Universe
are given by the Friedmann-Lemaître-Robertson-Walker metrics and are derived by considering
the cosmological principle only, and similarly for the energy-momentum tensor of its content.
The relation between the geometry of space-time and its energy content, that is, the Einstein’s
equations, would model different possible universes. In order to study these different models, it
is useful to rewrite the Einstein’s equations Eq. (1.5) given the hypotheses on spatial isotropy
and homogeneity

H2 =
κ

3
ρ− K

a2
+

Λ

3
,

ä

a
= −κ

6
(ρ+ 3P ) +

Λ

3
.

(1.16)

These equations are called the Friedmann’s equations and the second one is often called the
Raychaudhuri equation. One needs to solve these equations to study the possible models of
the Universe. However this is not possible without describing more the fluids making up the
Universe. For this, let us introduce another equation called the equation of state which relates
the pressure of a fluid to its energy density

P = wρ. (1.17)

The equation of state depends on the kind of matter considered. Here are the values for w for
some fluids

- pressureless matter: w = 0,
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- radiation: w = 1/3,

- cosmological constant Λ: w = −1,

- curvature K: w = −1/3.

The remaining question to build a model of our Universe by solving Eq. (1.16) is: in which
proportions these different fluids fill up the Universe?

1.2 ΛCDM: a model with only five independent parameters
The proportions of the different fluids

To answer this question, it is useful to introduce what are called the density parameters Ω

Ω =
κρ

3H2
, ΩΛ =

Λ

3H2
, ΩK = − K

H2a2
. (1.18)

The first parameter is actually a sum over different fluids with their own equation of state:
Ω =

∑
i Ωi. Among them is the pressureless matter for which w = 0: this kind of matter

can be further decomposed into baryonic matter Ωb and Cold Dark Matter (CDM) ΩCDM. The
baryonic matter is all matter mainly made up with baryons: atoms, molecules and all observables
objects in the Universe like stars, galaxies and galaxy clusters. Electrons are not baryonic matter
but as they are three orders of magnitude lighter than baryons, baryonic matter corresponds to
essentially all observable matter in the Universe. On the contrary, CDM corresponds to a kind
of matter which is described as collisionless matter only sensitive to the gravitational interaction
(dark, as it does not interact electromagnetically and so is not observable). Another component
of the Universe is radiation Ωr for which w = 1/3. Radiation can be either photons Ωγ or
neutrinos Ων . With these parameters at hand, the first of Friedmann’s equations Eq. (1.16) is
rewritten as a dimensionless equation∑

i

Ωi + ΩΛ + ΩK = 1. (1.19)

Having a concrete model of the Universe means solving the dynamics of the Friedmann’s equations
Eq. (1.16) and this requires knowledge of which fluids make up the Universe and in which
proportions: that is, knowing the ‘initial conditions’ for the energy density of the different fluids
making up the Universe. These initial conditions are given by the cosmological parameters
measured today: Ω0

K , Ω0
Λ, Ω0

r , Ω0
b, Ω0

CDM (the density parameter for the neutrinos is related to
the density parameter for photons in a simple way, so only one parameter is needed for radiation).
One also needs an initial condition for the scale factor a or equivalently for H, as the two are
related by an integration: thus the value of the Hubble parameter today H0, also known as the
Hubble constant, is also one of the cosmological parameter. At the end of the day, given the
constraint Eq. (1.19) on the sum of the Ω parameters, only five independent parameters are
needed to solve for the dynamics of the Universe and build a model.

Observations and measurements of the parameters of the model would then give the best fit
solution to model our Universe. Our current understanding of observations of the Universe is
based on the ΛCDM model. The acronym stands for the two main components of our Universe:
a cosmological constant Λ already appearing in the Einstein-Hilbert action whose nature is still
not understood currently, but is believed to be some kind of energy, called ‘Dark Energy’ (DE),
and its main matter content being CDM.

The need to split matter into two different kinds and to introduce CDM, a matter that
is collisionless and does not interact electromagnetically was indicated by the visible matter
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composed of baryons not behaving the way it was expected by GR. The most known example of
this is the rotation curves of galaxies, traced by the rotational velocities of galaxies as a function
of their distances to the galaxy centre, see red plain curve (B) of Fig. 1.2. The mass inferred
from the visible light is not enough to explain such high rotational velocities at the periphery
of galaxies, one indeed would expect the blue dashed curve (A). Therefore, there must be some
invisible, hence Dark Matter, mass surrounding galaxies. One distinguishes typically three types
of DM depending on how fast their particles travel: ‘cold’ corresponds to subrelativistic particles,
‘hot’ to ultrarelativistic ones and ‘warm’ is between these two regimes. The high velocity of hot
DM prevents it to form small scale structures while CDM can be the source of the observed
galaxy-sized lumps. Therefore CDM is currently preferred. Finally, regarding the fact that
DM is collisionless, it has been hinted by Chandra observations of the so-called bullet cluster
(e.g. Markevitch et al., 2004). This corresponds to an undergoing high-velocity merger in which
the positions of the various mass components were analysed. X-ray observations show that the
hot gas forms a shock due to the collision while lensing observations show that most of the
mass (which is dark) went through the shock, lying at the same place as the galaxies which are
collisionless (negligible probability of merging). This suggests that DM is collisionless itself.
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Figure 1.2: A typical so-called galaxy ‘rotation curve’, representing rotational velocities of stars
within a galaxy as a function of their distance to its centre. The full red (B) curve is what
is typically observed in a galaxy, where the dashed blue (A) curve is what is expected from
Newtonian dynamics. Credit: William Crochot.

The observation suggesting that there is a cosmological constant in the model of our Universe
and that it is actually the main component of our Universe comes from an improvement of the
Hubble diagram presented in Fig. 1.1. Indeed, two teams Perlmutter et al. (1999) and Riess et al.
(1998) observed Ia supernovae and made a Hubble diagram which extends to further distances.
The velocity-distance relation Eq. (1.12) is no longer linear for high distances, and their analysis
showed that the expansion of the Universe is accelerating. They found that the deceleration
parameter defined by q0 ≡ −ä/(aH2)|t=t0 = Ω0

m/2−Ω0
Λ + Ω0

r is negative. Combining this result
with observations of the relic radiation today, which shows in particular that the radiation density
parameter is negligible, proves that the main content of the Universe is a cosmological constant
and that its spatial sections are almost flat.

As an example, we give in Table 1.1 the cosmological parameters obtained by the Planck
collaboration in Planck Collaboration et al. (2018b). Of course, other probes than the relic
radiation (CMB) can be used to determine these parameters, such as Supernovae (SNe) or Baryon
Acoustic Oscillations (BAO). Fig. 1.3 shows contours at 68.3%, 95.4%, and 99.7% confidence level
on the ΩΛ and Ωm parameters obtained from these three probes, as well as their combination.

https://commons.wikimedia.org/w/index.php?curid=36485541
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h = H0/100 Hubble constant 0.64± 0.02
Ω0
k curvature density parameter −0.01± 0.01

Ω0
CDMh

2 CDM density parameter 0.119± 0.002
Ω0

bh
2 baryon density parameter 0.0225± 0.0002

Ω0
rh

2 radiation density parameter 4.148× 10−5

Ω0
Λ cosmological constant density parameter 0.66± 0.02

Table 1.1: Values of the cosmological parameters of the ΛCDM model measured or derived by
the Planck collaboration, as in Table 5 of Planck Collaboration et al. (2018b) except for Ω0

rh
2

which was derived thanks to the measurement of the temperature of the relic radiation by the
FIRAS instrument on board of the COBE satelite; Ω0

Λ is derived thanks to the constraint of
Eq. (1.19).

Figure 1.3: Contours at 68.3%, 95.4%, and 99.7% confidence level on the ΩΛ and Ωm parameters
obtained from the relic radiation (CMB), Baryon Acoustic Oscillations (BAO), and Supernovae
(SNe), as well as their combination. Figure taken from Kowalski et al. (2008).
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1.3 Chronology of the Universe
Domination eras and key moments in the history of the Universe

Another useful equation to study the dynamics of the Universe is the continuity or conserva-
tion equation for the fluids. It comes from the conservation of the total energy momentum tensor
Tµν of Eq. (1.6) with respect to the covariant derivative. The conservation of Tµν is actually not
a requirement but a consequence of the theory of GR: the Bianchi’s identities (a set of identities
on the derivative of the Riemann tensor that can be derived from its explicit expression) involve
that the Einstein’s tensor Eq. (1.5) is also conserved, and given the connection Eq. (1.2), so is the
metric. Then, the Einstein’s equations Eq. (1.5) directly gives the conservations of the energy-
momentum tensor. Therefore, this equation is not independent from the Einstein’s equations
Eq. (1.5). With our symmetries on space implying that the fluids are perfect, the conservation
of the energy-momentum tensor translates into

ρ̇+ 3H(ρ+ P ) = 0. (1.20)

One can indeed check that this equation is not independent from the Friedmann’s equations
(1.16) but is obtained by differentiating the first with respect to time and then using the original
equations. Using the equation of state (1.17), one can solve for the density of the different fluids
i making up the Universe and finds that

ρ ∝ a−3(1+w) or Ωi = Ω0
i

(
a

a0

)−3(1+w)(
H0

H

)2

, (1.21)

for w constant, where H2 = κ
∑
i ρi/3. Thus, the energy density for the fluids listed above

behaves like

- pressureless matter: w = 0, ρ ∝ a−3,

- radiation: w = 1/3, ρ ∝ a−4,

- cosmological constant Λ: w = −1, ρ ∝ a0 = cst,

- curvature K: w = −1/3, ρ ∝ a−2.

As the Universe is expanding, as shown by the Hubble diagram in Fig. 1.1 with H0 = ȧ0/a0 > 0,
it means that the scale factor is increasing, so that it has been smaller in the past. With the
behaviours of the different fluids with the scale factor, one finds that if a is decreasing going
backwards in time, the energy density of all these fluids increase, see Fig. 1.4. The energy
density increases all the more so as the inverse power in the scale factor is high. Thus, even
though we know today the cosmological constant or DE dominates, see Table 1.1, as matter is
the second most abundant fluid in the Universe, it must have dominated in the past and far
enough, radiation must have dominated the Universe content, as illustrated in Fig. 1.4.

Today, the energy density of radiation is negligible compared to the main components of the
Universe: CDM and the cosmological constant. However, the radiation filling up the Universe has
been observed to follow a black body spectrum (Fixsen et al., 1996). This means a temperature
can be assigned to it, and this will define the temperature of the Universe. The FIRAS instrument
on board of COBE has measured it with the best precision to date to be T0 = 2.725 K. We will
see in the next chapter that the energy density of radiation is related to it as ρr ∝ T 4. Given
that the energy density of radiation goes like ρ ∝ a−4, then temperature is inversely proportional
to the scale factor: T ∝ 1/a. Thus, the denser the Universe, the hotter it is. At the time where
radiation dominated the Universe, the temperature was greater than Teq = 9283 K. This value
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Figure 1.4: Behaviour of the energy density parameters of the three main fluids making up the
Universe content: radiation, matter and a cosmological constant or DE. Figure taken from the
University of Oregon website.

can be found by equating the energy density of matter with that of radiation to find the moment
where radiation starts dominating the Universe (going backwards in time); the temperature is
then deduced. When the temperature is high enough, atoms cannot form and consequently,
there were no structures as we see them today. For example, at this temperature, the Universe
is a plasma made of 75% hydrogen and 25% helium nuclei with free electrons and photons:
matter and radiation are thermodynamically coupled. We will detail this primordial phase of
the Universe and what happened before in Chapter 2. We now run through the chronology of
the Universe -as in Fig. 1.5, showing the timeline of the Universe- starting from this primordial
phase, which can be defined to end around 380 000 years after the ‘beginning of times’. From
this stage on, as the Universe expands, it cools down. While the energy density of the Universe is
dominated by matter, the first neutral atoms form at a temperature of T ∼ 3500 K, this period
is known as the recombination epoch. The radiation decouples from matter and the first photons
are consequently released, forming the relic radiation we still see today whose temperature is
T0. Small energy density perturbations in this early phase of the Universe, with typical value
δρ/ρ ≈ 10−5, evolved under gravity and are the seeds for the later formation of structures in
the Universe. We mention only briefly here the history of the Universe: after recombination,
there was a period called ‘Dark Ages’, which lasted about one hundred million years where the
Universe became dark as the expansion cooled the radiation down to infrared light. Then the
first stars known as pop III stars formed, followed by galaxies and then quasars, whose emitted
light reionised the Universe: this is the reionisation epoch which lasted about 8 hundred million
years. The Universe then became more and more structured, with galaxies clumping together

https://pages.uoregon.edu/jimbrau/astr123/Notes/Chapter27.html
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Figure 1.5: Timeline of the Universe. By NASA/WMAP Science Team - Original version: NASA;
modified by Cherkash.

to form the first proto-clusters, then clusters and superclusters so that the cosmic web began
emerging with a structure made of walls, filaments and nodes hosting the most virialised objects
just mentioned. During this evolution of the Universe, the cosmological constant, or DE, starts
dominating its evolution, exceeding that of matter.

1.4 Limitations of the model

The ΛCDM model is a minimalistic model that fits well to the observations. However, it shows
what can be seen to some people as limitations, which are actually more questions raised by the
model: these are open questions on the theoretical framework underlying the model that we will
mention now.

One of the biggest of these limitations is probably the unknown nature of DM. Indeed, there
is no particle in the Standard Model (SM) of particle physics with the properties described in
Section 1.2. This kind of matter is only seen through its gravitational effects, so a possibility
is that it could be a new particle, not discovered yet, the same way as neutrinos are only
sensitive to the weak interaction and the gravitational interaction, or that electrons do not feel
the strong interaction. Indeed, it has even been postulated that neutrinos could be DM but
its very small mass prevents it from explaining the whole missing mass of the Universe, as
they are still relativistic while DM is cold. Therefore, some people think it could be a more
massive neutrino, a particle yet to be discovered, not pertaining to the SM of particle physics.
There is a whole domain of particle physics/astroparticles searching for a new particle explaining
DM. Another approach is a modification of the gravitational law on galaxy scales in the weak
field regime of GR, known as MOND for Modified Newtonian Dynamics, an idea introduced by

https://commons.wikimedia.org/w/index.php?curid=11885244
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Milgrom (1983).
In the same vein there is modified gravity, a modified formulation of GR, to account for the

problems in the standard model of cosmology, like the unknown nature of DM and DE. Indeed,
some people see the cosmological constant as an unsatisfactory explanation for the acceleration
of the expansion of the Universe and think that it needs to be explained. For this, the modified
gravity people think that GR must be modified on cosmological scales, for example by replacing
the Ricci scalar by a function of R in the Lagrangian. Other theories explain the acceleration of
the expansion of the Universe by the introduction of a new fluid, of still unknown nature, with
negative pressure: the Dark Energy. Such theories include for example quintessence or other
scalar fields. Another explanation is that it could be the observable effect of the backreaction
of inhomogeneities on the simple homogeneous and isotropic model of the Universe. However,
some other people like Bianchi & Rovelli (2010) think that having a cosmological constant is a
sufficient explanation for the recent accelerated expansion of the Universe. For detailed reviews
on these topics see for example Clifton et al. (2012); Joyce et al. (2015); Brax (2018).

Another problem dealing now with the cosmological constant is that it is sometimes inter-
preted as the vacuum energy density of the Universe. Calculations made within the SM of
particle physics predict a value of 1074 GeV4 where it is observed to be 10−47 GeV4. There are
thus 120 orders of magnitude between the theoretical prediction and the observed value.

Some other problems have to do with the initial conditions of the Universe. We will detail
them in the next chapter when dealing with a solution to solve these issues. In just a few words,
we can mention them: the flatness problem or why the curvature density parameter is so small,
meaning it should have been very close to zero in the primordial Universe; the horizon problem
or why the Universe is so homogeneous with density fluctuations not exceeding δρ/ρ ≈ 10−5

while they were not causally connected; the structure origin problem or what is the mechanism
for the origin of the perturbations in a Universe described as being spatially homogenous and
isotropic (the simplicity being its own limitation) and finally, the monopoles problem which is a
particle physics problem, related to a break in the symmetry underlying the Grand Unification
of the three other interactions than gravity in a group G, namely the strong interaction and the
electromagnetic and weak ones.

Finally, a serious problem that we will also detail in the next chapter is the initial singularity.
Indeed, we have seen that the Universe is expanding, therefore when looking backwards in time,
the scale factor is decreasing: ȧ < 0, and if one looks at the Friedmann’s equations Eq. (1.16)
and incorporates the solution for the radiation (which is the kind of content that dominates the
further away one goes in the past) Eq. (1.21) into it, nothing prevents the scale factor to decrease
down to zero. Thus, the energy density should be infinite when the scale factor reaches 0, which
is quite unphysical: this is what is called a singularity. This kind of singularity is also found
elsewhere in GR, for example at the centre of black holes. This raises a question of fundamental
physics and may ask for the quantisation of GR.



Chapter 2

The early Universe

2.1 The hot Big Bang scenario

The standard model of cosmology is sometimes called the big bang model or hot big bang scenario.
Why is this so? As mentioned in the previous chapter, the Universe is observed to be expanding,
resulting in an increasing scale factor ȧ > 0. Thus, the scale factor decreases down to zero when
looking backwards in time: hence, the current Universe is seen as the result of a ‘big-bang’ at
its origin. As the temperature of the Universe is inversely proportional to the scale factor, the
younger the Universe, the hotter it is: hence the ‘hot big-bang scenario’. We will now detail a
bit why the Universe was hot in the past and what it looked like when it was very young, a phase
known as the (very) early Universe.

2.1.1 A bit of thermodynamics in an expanding Universe

As far as one can go in the remote past where the laws of physics are still valid, that is, until
the temperature reaches T ∼ 10 TeV ∼ 1019 K, which is the highest temperature where particle
physics has been tested experimentally in the Large Hadron Collider (LHC), the energy density of
the Universe is dominated by radiation. To show that at these temperatures radiation dominates,
let us assume that far away enough in the past the Universe is made of particles in thermal
equilibrium only, not yet bound into structures, so that they constitute a perfect gas whose
distribution functions are given by the Fermi-Dirac (+) and Bose-Einstein (-) statistics for the
fermions and bosons respectively in state i

Fi(Ei, Ti) =
gi

(2π)3

1

exp((Ei − µi)/Ti)± 1
, (2.1)

where µi and Ti are respectively the chemical potential and the temperature of the species and
gi is the degeneracy of the energy level i. Let us also assume that at some point everything in
the Universe was radiation (meaning all particles were relativistic so T � m and E ≈ pc), thus
one can compute its energy density to be

ρr(T ) ≈ g∗(T )

(
π2

30

)
T 4, (2.2)
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where we have taken the chemical potential to be zero for the SM particles of interest, and the
effective number of relativistic degrees of freedom is

g∗(T ) =
∑
i=b

gi

(
Ti
T

)4

+
7

8

∑
i=f

gi

(
Ti
T

)4

, (2.3)

where we have summed over all particles b=bosons and f=fermions.
The entropy of the thermodynamical system can be derived given its differential

dS =
dE

T
+
PdV

T
. (2.4)

Now using the variable T instead of E, one can rewrite dE as

dE = d(ρV ) = ρdV + V
dρ

dT
dT, (2.5)

as the energy density does not depend on the volume, by definition. Therefore

dS =
ρ+ P

T
dV +

V

T

dρ

dT
dT, (2.6)

which can be integrated to give

S =
V

T
(ρ+ P ). (2.7)

As the physical volume of the Universe V is proportional to the scale factor to the third, then
the energy E ∝ ρa3 and if we let S ∝ sa3, where s is the entropy density then

TdS = Td(sa3) = d(ρa3) + Pda3. (2.8)

Recalling the continuity equation Eq. (1.20) which can be rewritten as d(ρa3) = −Pda3 then
one has finally

d(sa3) = 0. (2.9)

One has just shown the conservation of entropy during the Early Universe. Given that for
radiation P = ρ/3, one can easily express the entropy density as

s ≈ 2π2

45
q∗T

3, (2.10)

with

q∗(T ) =
∑
i=b

gi

(
Ti
T

)3

+
7

8

∑
i=f

gi

(
Ti
T

)3

. (2.11)

The conservation of total entropy therefore translates into q∗(T )T 3a3 being a constant. For a
decoupled species from the rest of the plasma i, its own entropy is also conserved. Therefore,
the difference S−Si = (2π2/45)qγ(T )T 3a3 represents the entropy of the particles in the thermal
bath, made in particular of photons, is also conserved. Hence, the temperature of the Universe,
defined as the temperature of the photons follows

T ∝ q−1/3
γ a−1, (2.12)

where qγ is given by Eq. (2.11) summing only over relativistic particles in thermal equilibrium
with the photons.
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Now let us see that radiation indeed dominates when temperatures are of the order of the
highest one reached at the LHC. Radiation starts to dominate in the past when its energy density
equals that of matter

Ωm = Ωr ⇔ Ω0
m

(
aeq

a0

)−3(
H0

H

)2

= Ω0
r

(
aeq

a0

)−4(
H0

H

)2

⇔ aeq

a0
=

Ω0
r

Ω0
m

, (2.13)

where aeq is the scale factor at matter-radiation equality. The temperature at equality is thus
given by

Teq = T0

(
q0
γ

qγ,eq

)1/3
a0

aeq
= T0

(
q0
γ

qγ,eq

)1/3
Ω0

m

Ω0
r

. (2.14)

Today there are only two relativistic degrees of freedom q0
γ = 2, i.e. only photons are in thermal

equilibrium with themselves but as we do not know yet what is the composition of the Universe
at equality, let us assume that all particles have decoupled from the photons at equality so that
qγ,eq = 2, to get an upper bound on Teq. This gives

Teq < 9296 K, (2.15)

which is way below temperatures reached at the LHC. In fact, the right computation gives
Teq = 9282 K, so our approximation is not too far. Thus, one can safely assume that when
temperatures are as high as in the LHC, radiation dominates the Universe. Starting from these
very high temperatures, one can now run through the chronology of the Early Universe.

2.1.2 Chronology in the early Universe
The chronology of the early Universe is summarized in Fig. 2.1 and we will now detail it. I
present here a sequencing in terms of energy (or equivalently, temperature) which follows the
chronology of the Universe, since temperature decreases as the Universe expands.

Different sequencing of the early Universe can be made. A first one is regarding the four
fundamental interactions of nature. At energies above 1016 TeV, this is the Planck epoch: we
expect that at these energy scales, our physical theories may no longer be valid and one cannot
extrapolate them to explain what happened. Indeed, because of the large energy densities at play
when the Universe was at the Planck temperature, one is approaching the Big-Bang singularity
of the standard model, so that one might no longer be in the regime of validity of GR. GR
might need to be quantised at these energies: this will be detailed a bit more in the last section.
Then, until energy reaches ∼ 1013 TeV, the three interactions of the SM of particle physics are
expected to be unified in one interaction: this is the so-called Grand Unification Theory (GUT)
scale. This GU theory has not been tested yet and we actually do not even know if the SM of
particle physics can be described by such a theory. Nonetheless, from energies of ∼ 1013 TeV
and above energies of ∼ 106 TeV, we know that the electromagnetic and weak interactions form
only one called the electroweak interaction.

Then, at the highest temperatures where the laws of physics have been tested experimentally,
the Universe content is different than it is today. I detail here a second way of sequencing the
early Universe period from what we know about the SM of particle physics. Indeed, at these
temperatures, matter is in a plasma state and the energies are so high that atoms are not yet
bound, nor even the nucleons inside it. It is therefore expected that until the temperature cools
down to energies of ∼ 100 MeV, the primordial Universe is a quark-gluon plasma. This period is
simply called the quark epoch. As the Universe expands, the temperature drops and for energies
lower than ∼ 100 MeV, quarks and gluons bind to form hadrons like neutrons and protons: this
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is the hadron epoch which lasts until energy reaches ∼ 1 MeV. At this temperature happens the
neutrino decoupling: neutrinos stop interacting with the thermal plasma because the interaction
rate Γ of the following weak interactions

ν + ν̄ ↔ e+ ē and ν + e↔ ν + e (2.16)

becomes smaller than the expansion rate of the Universe H. In parallel and until the energy
reaches ∼ 100 keV, leptons and antileptons are in thermal equilibrium in the primordial plasma:
this is, without surprise, called the lepton epoch. Then happens the Big Bang Nucleosynthesis
(BBN) where protons and neutrons, formed during the hadron epoch, bind to finally form the
first atomic nuclei by fusion reactions: at this stage the Universe is mainly composed of the
hydrogen nuclei p formed during the hadron epoch, and now other nuclei form like helium 4, but
also deuterium, helium-3 and lithium-7 in smaller amounts. Then all of these particles (leptons,
atomic nuclei and photons) remain in thermal equilibrium, forming a plasma of radiation: this is
the photon epoch, which lasts until the energy drops to ∼ 0.4 eV where it is no longer high enough
for the photons to break the forming neutral atoms. Therefore, atomic nuclei ‘recombine’ with
electrons to form neutral atoms. Then photons can no longer interact with electrons which are
bound with nuclei and as atoms are neutral, photons do not have any particle left to interact with.
Therefore they decouple from matter and propagate freely in the Universe with their temperature
decreasing as the inverse of the scale factor (see Eq. (2.12)), so that we observe them today at a
temperature of T0 = 2.725 K all around us, giving the first picture of the Universe, at the end
of recombination. Given that the decoupling of photons occurs right after the recombination,
one can use the temperature to compute a(t)/a0 and inverse this function to get the time at
which this event happens. The first release of photons then happens at t = 380 000 yrs after the
Big-Bang phase where the Universe originates from.

During this early phase of the Universe which lasts over 380 000 years, another paradigm
takes place. This is not really a theory nor a phase predicted by our current knowledge of the
laws of physics, but more a model that gives an explanation to solve some of the problems of
the standard model mentioned in Chapter 1. In the next section, we will detail the original
motivations for such a paradigm.

2.2 The inflationary paradigm

2.2.1 Motivations: problems of the hot Big Bang scenario

Some of the problems of the hot big bang mentioned in the previous chapter like the curvature
or the horizon problems are deduced from the observation of the CMB. These with other ‘ini-
tial conditions’ problems are detailed here and are the original motivations for the inflationary
paradigm that we will describe afterwards.

2.2.1.1 Flatness problem or why the Universe is so flat?

One has found that the evolution of the curvature density parameter is given by Eq. (1.21)

ΩK = Ω0
K

(
a

a0

)−2(
H0

H

)2

. (2.17)

Observations show that today, the curvature density parameter is compatible with zero Ω0
K =

−0.01 ± 0.01, see Table 1.1. Given Eq. (2.17), it means that in the past, curvature must have
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Figure 2.1: A timeline of the primordial Universe. Figure from Pralavorio (2013).

been even closer to zero, for example at matter-radiation equality

Ωeq
K =

Ω0
K

2Ω0
r

(
Ω0

r

Ω0
m

)2

= −4× 10−6, (2.18)

where we have used Eq. (2.13) and Eq. (1.19) to derive this expression. At the Planck epoch
where radiation dominates the energy content of the Universe this gives

ΩPl
K =

Ω0
K

Ω0
r

(
T0

TPl

)2
(
q0
γ

qPl
γ

)2/3

. −10−62, (2.19)

where qPl
γ > 106.75 (106.75 is the effective number of degrees of freedom when all known particles

of the SM of particle physics are relativistic) and TPl ∼ 1016 TeV ∼ 1032 K and we have used
Eq. (2.12) to derive this expression. The very small value of ΩK means that the Universe is
very close to critical, i.e. Ω ≈ κρc/(3H

2) = 1 (where ρc = 3H2/κ is the critical density of the
Universe). It is argued in Peter & Uzan (2009) and Peacock (1999), by rewriting the Friedmann
equations in the form of a dynamical system, that a Universe with ΩK = 0 is unstable for any
matter content with equation of state w ≥ 0. This means that if one starts from a Universe with
ΩK = 0, it soon evolves to a Universe with ΩK departing significantly from zero, as shown in
Fig. 2.2, except if the Universe is only filled with a cosmological constant Λ (and no matter).
Therefore one is naturally led to ask himself the question: if a flat Universe is unstable, then why
ours is so flat? More precisely, we have shown that the curvature density parameter must have
been precisely constrained close to zero so that it has the value one observes today. If K 6= 0 and
ΩK ∼ 1, then our Universe would have been very different: K > 0 means an overdense Universe
with ρ > ρc and would lead to a recollapse of the Universe soon after the big-bang, into a ‘big-
crunch’ (the Universe collapses in a very dense state similar to the big-bang); on the contrary
K < 0 means an underdense Universe which expands so fast that it reaches the temperature we
observe today but in much less time, so that structures do not have time to form under the action
of gravity on density perturbations: the Universe would therefore just contains atoms diluted
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Figure 2.2: Dynamical evolution in the plane (ΩK ,ΩΛ) (left) and (Ωm,ΩΛ) (right) for a matter
content with equation of state w = 0. Figure from Peter & Uzan (2009).

through space. This problem is thus an initial value problem or fine-tuning problem to some
cosmologists because the standard model of cosmology do not explain why the initial value for
the curvature is so precisely constrained to give the complex Universe one observes today. This
problem is sometimes rephrased as the ‘oldness problem’: as the Universe expands, the value of
ΩK departs from zero. However, today ΩK is still very close to zero thus one can rather ask
‘why our Universe is so young?’.

2.2.1.2 Horizon problem or why the Universe is so homogeneous?

As we will see in Chapter 4 on the Cosmic Microwave Background (CMB), this relic radiation
is very uniform with an average temperature measured today of T0 = 2.725 K and even though
there are some fluctuations in temperature, there are so tiny 〈(δT/T )2〉1/2 ∼ 10−5 that one can
safely say that the Universe was in a state of thermal equilibrium at recombination. Now, this
should not be the case in the hot big bang model. Indeed, photons in our past light cone have
not been causally connected in the primordial Universe, so they could not equilibrate thermally,
see Fig. 2.3. To see this, let us compute the size of the horizon at decoupling. The horizon of an
observer is the distance (proper or comoving, measured with respect to the observer) at which
photons which have been emitted are received by the observer at a given time of reception tR.
It is computed by considering null geodesics of the metric Eq. (1.7), i.e. ds2 = 0, which gives,
for a homogenous and isotropic Universe and flat space

rH ≡
∫ tR

0

dτ

a(τ)
, (2.20)

this is the comoving horizon. The proper horizon is given by multiplying by the scale factor at
reception aR

dH ≡ aR
∫ tR

0

dτ

a(τ)
. (2.21)
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Universe

15 000 000 000 years
300 000 years

Figure 2.3: A visualisation of the horizon problem. The original uploader was Theresa knott at
English Wikipedia. Derivative work: chris - CC BY-SA 3.0.

If the time of reception is today: tR = t0 = 13, 8 Gyr, the above formulae would give our horizon.
The horizon when photons decouple from matter, i.e. at decoupling, is given by setting tR =
tLSS = 380 000 yr, where LSS stands for Last Scattering Surface, i.e. the spatial hypersurface
where photons last scattered with the electrons of the primordial bath so that they can wander
freely afterwards. Let D be the physical size of the horizon at decoupling

D = aLSS

∫ tLSS

0

dτ

a(τ)
. (2.22)

Now one can compute the angular size δθ of such an ‘object’ on the sky today. The LSS is located
at a comoving distance rLSS and at the time when photons were emitted, they had to travel the
physical distance aLSS rLSS before reaching us. Therefore, the angular size of the horizon on the
sky today is

δθ =

(
aLSS

∫ tLSS

0

dτ

a(τ)

)/
(aLSS rLSS) =

∫ tLSS

0

dτ

a(τ)

/
rLSS =

∫ tLSS

0

dτ

a(τ)

/∫ t0

tLSS

dτ

a(τ)
. (2.23)

It is computed by solving for the scale factor thanks to the first of the Friedmann’s equations
Eq. (1.16) in the matter dominated era and in the radiation dominated era (as 0 < teq < tLSS)
and then by integrating. This gives δθ ∼ 1◦: the horizon at decoupling has a size of 1◦ on
the sky today. Now the horizon encompasses the volume of a causally connected region which
means that regions larger than the angular size of 1◦ on the sky today have not been causally
connected at decoupling. Stated otherwise: causally connected regions at decoupling are smaller
than the observable Universe today, as seen in Fig. 2.3. There are thus ∼ (4π)/(π/180)2 ∼ 105

causally disconnected regions on the sky. If one assumes that the homogeneous temperature of
the sky is due to photons which have thermally equilibrate at decoupling, for example through
the Compton scattering process, then observations prove this hypothesis to be wrong. One would

https://commons.wikimedia.org/w/index.php?curid=10981976
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instead expect fluctuations of order unity on angular scales larger than 1◦. Then one asks ‘what
can be the physical reason for the Universe being so homogeneous?’.

2.2.1.3 Structure formation problem

The fact that the Universe is so homogeneous seems to be a philosophical problem to some cosmol-
ogists although it is at the root of our model, in the very hypotheses underlying it. Nonetheless, it
is thought that the tiny density inhomogeneities in the primordial plasma lead to the large-scale
structures one observes today through the collapse of such overdensities under the attraction
of gravity once matter dominates the Universe content. The problem is that our model does
not explain the origin of such primordial inhomogeneities. Worse: there is no causal mechanism
that can account for producing inhomogeneities on scales larger than the horizon at decoupling,
i.e. today one observes in the CMB perturbations with wavelengths larger than the size of the
horizon at decoupling, so these perturbations should not exist if they were formed by a causal
physical process during this epoch. In fact, as one approaches the singularity, every perturba-
tions are outside of the horizon. Thus, in the standard cosmological model, the initial conditions
for these perturbations cannot have been set by a causal physical process at this moment of the
Early Universe. This problem is thus intimately linked to the horizon problem.

2.2.1.4 Relic problem

Finally, another problem is the relic problem. As mentioned in the previous chapter, this is a
problem related to particle physics, but as the SM of particle physics is used to describe the early
stages of the Universe, one can consider it as an inconsistency of the hot big-bang model. As
explained in Section 2.1.2, one has a reliable history of the Universe until temperature reaches
energies of ∼ 10 TeV. In particular, the Universe underwent a phase transition corresponding to
the spontaneous symmetry breaking of the electroweak interaction: this is the electroweak phase
transition. In the SM of particle physics, for energies above ∼ 300 GeV, the electromagnetic
and weak interactions are unified into a single one known as the electroweak interaction whose
symmetry is described by the group SU(2)L⊗U(1)Y . However, for lower energies, the electroweak
interaction split in two, whose symmetry is described by the group U(1)EM , producing at the
same time the W± and Z0 bosons and the photon γ. Particle physicists think that at higher
energies, the three interactions of the SM of particle physics should also be unified, i.e. that
the electroweak interaction and the strong interaction are unified with a symmetry described
by a group G. Such theories are called Grand Unified Theories (GUT) and are expected to
describe physics at energies higher than ∼ 1016 GeV (this is called the GUT energy scale). The
Spontaneous Symmetry Breaking (SSB) of G into SU(3)c ⊗ SU(2)L ⊗ U(1)Y , where SU(3)c
describes the symmetry of the strong interaction, is expected to produce stable heavy particles.
This is where lies the problem: one does not observe these particles today. To be more precise,
for example, some of these particles are expected to be produced massively during this SSB so
that they should dominate the Universe today. These ones are point-like topological defects and
correspond to magnetic monopoles, that is, some kind of magnetic field ‘charge’. The density
parameter for these magnetic monopole relics is

ΩMh
2 ∼ 1017

(
TGUT

1016 GeV

)3 ( mM

1016 GeV

)
, (2.24)

where TGUT is the temperature of the SSB from GUT to the SM of particle physics and mM

is the mass of the magnetic monopoles which are predicted to be of the order ∼ 1016 GeV in
GUT models, see Section 4.5.2 of Peter & Uzan (2009) or 7.4 of Kolb & Turner (1990) for more
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details. Now, if one lets Ω be the total energy content of the Universe (excluding curvature),
one has that Ω is of order unity because of the constraint Eq. (1.19). Thus, magnetic monopoles
are overproduced during this phase transition and would drastically change the evolution of the
Universe if they had been there. Moreover, one does not detect any of these monopoles today.
The standard model of cosmology does not explain why, when extrapolating particle physics to
very high energies, these particles are at least so rare in the Universe one does not detect them.

All these considerations about problems of the big bang model are actually considerations
about the initial conditions of our Universe. The hot big bang scenario well describes facts such
as the abundance of light elements or the temperature of the Universe but does not explain the
origin of the value of the curvature density parameter, the smallness of the relative temperature
fluctuations or the density perturbations that give rise to the structures we observe today. These
initial conditions seem very special, ‘fine-tuned’, to some of the cosmologists and this is why a
new paradigm has been proposed to bring answers. We will describe how this paradigm solves
the initial condition problems of the standard model of cosmology in the next section.

2.2.2 Solving these problems: the inflationary paradigm
A way to solve these problems is to have an accelerated phase of expansion in the early Universe.
Let us see how the above mentioned three problems are solved in this way.

2.2.2.1 Flatness problem

As we have seen in Section 2.2.1.1, the flatness problem is related to the value of the cosmological
parameter ΩK measuring the curvature density of the Universe, that is constrained to be so close
to zero in the very early Universe. The so-called ‘inflation’ is a mechanism that solves, among
other things, the flatness problem by starting from a random value of ΩK of order unity in the
very early Universe and bringing it to the very special and constrained value one observes in the
early Universe. To see that a phase of accelerated expansion in the early Universe solves the
flatness problem, let us rewrite the Friedmann’s equations Eq. (1.16) as

3K

κ
= a2ρ

(
1− 3H2

κρ

)
= a2ρ (1− Ω−1), (2.25)

so that a2ρ (1 − Ω−1) is a constant. Now Ω = 1 − ΩK , so the smaller ΩK , the closer to 1 Ω is.
As the very special value of ΩK in the Early Universe is believed to be fine-tuned within the
standard model of cosmology that we have presented up to now, one would prefer a value of Ω
not so constrained to be close to 1. Let us compare its value at an initial time ti with its value
at some later time tf in the early Universe

a2
i ρi (1− Ω−1

i ) = a2
f ρf (1− Ω−1

f ), (2.26)

if we let tf = teq, we know from Eq. (2.18) that Ωeq
K is very close to zero and so is (1 − Ω−1

eq ) =
−Ωeq

K /Ωeq. Starting from a random value of ΩK of order unity in the very early Universe and
bringing it to the very special and constrained value one observes in the early Universe, one has
1− Ω−1

i � 1− Ω−1
f . Therefore, solving the flatness problem requires that

a2
f ρf � a2

i ρi, (2.27)

which also means that, given Eq. (2.25),

ȧf(t) > ȧi(t). (2.28)
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Thus, the inflation is a mechanism during which the expansion of the Universe accelerates

ä(t) > 0. (2.29)

2.2.2.2 Horizon problem

This phase of inflation also solves the horizon problem. Indeed, let us consider the comoving
Hubble radius. The Hubble radius, or Hubble distance, is defined by noticing that H has the
dimension of the inverse of a time. Thus the Hubble distance is DH ≡ c/H, with c the speed
of light; this is a physical distance. The comoving Hubble radius is therefore given by c/(aH).
One can show that close to the decoupling time, this comoving Hubble radius well approximates
the comoving size of the particle horizon. With the requirement that inflation is a phase of
accelerated expansion of the Universe, see Eq. (2.29), the comoving Hubble radius decreases
with time during this phase

d

dt
(aH)−1 < 0. (2.30)

This means that the comoving distance between two points that have been causally connected
at the beginning of inflation, i.e. within the comoving Hubble radius, might be larger than the
comoving Hubble radius at the end of inflation. Thus, they may appear causally disconnected
if one does not consider this early accelerated phase, as the comoving Hubble radius always
increases with time for all known sources of matter. Thus, an accelerated phase of expansion in
the early Universe might also be required to solve the horizon problem.

2.2.2.3 Relic problem

Finally, a period of inflation simply solves the relic problem by diluting the monopoles drastically
since the Universe expands exponentially, removing them from the observable Universe. This
mechanism can lower their observed density by many orders of magnitude, similarly to ΩK → 0
and the geometry goes to flatness. Note that it is possible only if inflation happens below the
temperature where magnetic monopoles are produced.

2.2.2.4 Duration of inflation

Then, to quantify this accelerated phase of expansion, one usually computes its duration as the
ratio of the value of the scale factor at the end of inflation with that at the beginning of inflation

N ≡ ln

(
af

ai

)
, (2.31)

N is called the e-folds number and quantifies how much the scale factor increases during the
inflation phase. Now, Eq. (2.29) translates into ρ+ 3P < 0 given the second of the Friedmann’s
equations Eq. (1.16): one says that the strong energy condition ρ + 3P > 0 is violated, i.e.
w < −1/3, so that during inflation the Universe is filled with a fluid of negative pressure. Thus,
if one assumes that the inflation phase is due to a fluid with equation of state parameter w = −1
that lasts from ti to tf , one has ∣∣∣∣ΩK(tf)

ΩK(ti)

∣∣∣∣ =

(
af

ai

)−2

= e−2N . (2.32)

As the inflaton (the fluid dominating the Universe during the inflation) has not been observed
yet in any high energy particle physics experiment, it is expected to be part of the Universe
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content around the GUT scale. Recalling that in order to solve the flatness problem, inflation is
a mechanism that starts from a random value of ΩK(ti) ∼ O(1) and bring it the closer possible
to zero, we will get a lower bound for the duration of inflation by taking tf to be prior to the
Planck time so that |ΩK(tf)| . 10−60 and

N & 69. (2.33)

Likewise, for the horizon problem to be solved, one thus needs that the comoving Hubble radius
of today’s observable Universe is smaller than the comoving Hubble radius at the beginning of
inflation, so that all observable points on the CMB have been causally connected in the past, i.e.

1

a0H0
≤ 1

aiHi
. (2.34)

This implies that

eN ≥ Hi

Hf

afHf

a0H0
=
afHf

a0H0
≈ T0Hf

TfH0
, (2.35)

where we have used the fact that Hf = Hi because Ḣ = −κ(ρ+P )/2 = 0 as we assumed inflation
was governed by a fluid with equation of state w = −1, and the fact that the temperature of the
Universe is inversely proportional to the scale factor Eq. (2.12). Taking the end of inflation at
the GUT scale Tf ∼ 1016 GeV and that the Universe is later dominated by radiation to express
Hf , one has

eN &
T0

Tf

(
Tf

T0

)2

Ω0
r

√
2, (2.36)

with the temperature of the Universe today being T0 = 10−4 eV. Thus

N & ln

(
Tf

T0
Ω0

r

√
2

)
, (2.37)

i.e. numerically
N & 58; (2.38)

one notices that if the end of inflation is taken during the Planck epoch, the lower bound for
N increases while an inflation ending at lower energies will give a smaller value. Finally, a long
enough phase of inflation solves the horizon problem, with a value for its duration compatible
with the one found to solve the flatness problem, as solving the two problems give only a lower
bound for the number of e-folds.

2.2.3 The simplest model: inflation with one scalar field

In the previous section we have chosen an inflaton field with w = −1 to solve two of the problems
of the standard model of cosmology. We know from Chapter 1 that the cosmological constant Λ
fulfills this condition. However, by definition, the cosmological constant is a constant, so it cannot
be used to describe the dynamics of the inflation phase as it would lead to a forever accelerated
expansion of the Universe. Thus we rely on another fluid that can produce an accelerated phase
of expansion and then stops it: this is done thanks to a scalar field, the inflaton field. There are
many models of inflation: some with several fields known under the name of multifield inflation,
that could interact with each other, or with more or less complicated potentials. The simplest
models of inflation involve one scalar field ϕ with a potential V (ϕ) and are also the ones favored
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by the Planck data (Planck Collaboration et al., 2018d). The action of such a scalar field is then
simply given by

S = −
∫ √−g(1

2
∂µϕ∂

µϕ+ V (ϕ)

)
d4x, (2.39)

which, once varied with respect to the metric, gives its energy-momentum tensor

Tµν = ∂µϕ∂νϕ−
(

1

2
∂αϕ∂

αϕ+ V (ϕ)

)
gµν . (2.40)

From this, one can deduce the energy density in the scalar field and its pressure

ρϕ =
ϕ̇2

2
+ V (ϕ), and Pϕ =

ϕ̇2

2
− V (ϕ). (2.41)

Such a field is usually called the inflaton field, because it fills up the Universe during the inflation
phase. One recalls that the inflaton field must violate the strong energy condition Eq. (2.29) in
order to solve the ‘initial conditions’ problems of the standard model of cosmology

Pϕ < −
ρφ
3
, (2.42)

which implies that
ϕ̇2 < V. (2.43)

Thus, providing that this last condition is fulfilled, such a scalar field dominating the energy
content of the Universe enables a phase of accelerated expansion.

A way to ensure that condition Eq. (2.43) is fulfilled is if the potential energy of the inflaton
dominates over its kinetic energy

V � ϕ̇2

2
, (2.44)

which translates into either a relatively very large potential as in Fig. 2.4 (a) (convex potential)
or small kinetic energy (b) (concave potential), constraining the shape of the possible potentials.

Figure 2.4: Two examples of inflationary potentials with large field values (a) and small field
values (b). Figure adapted from Peter & Uzan (2009).
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With the inflaton being the dominant constituent of the Universe, the Friedmann’s equations
(1.16) are thus

H2 =
κ

3

(
1

2
ϕ̇2 + V (ϕ)

)
− K

a2
,

ä

a
= −κ

3
(ϕ̇2 − V (ϕ)),

(2.45)

and the continuity equation (1.20) can be replaced by the Klein-Gordon (KG) equation by
simplifying by ϕ̇

ϕ̈+ 3Hϕ̇+ V,ϕ = 0, (2.46)

where ,ϕ means derivative with respect to the field. As for any fluid, the three above equations are
not independent from each other, see Eq. (1.20). Now, a way that the inflation phase lasts long
enough is if the kinetic energy of the inflaton stay small compared to the inflationary potential,
that is, if the field does not evolve too rapidly. Stated otherwise, if the acceleration of the inflaton
ϕ̈ is small, the inflation phase can last. This is ensured by the friction term 3Hϕ̇ in Eq. (2.46)
to be dominant over the acceleration of the field

3Hϕ̇� ϕ̈. (2.47)

These last two conditions Eq. (2.44) and Eq. (2.47) define the slow-roll regime of inflation.
The slow-roll scenario allows to make predictions for most of the potentials without precising
their shape. Slow-roll means that the field is slowly rolling on its potential during the inflation
phase, i.e. that ϕ̇ is small, so that the condition ϕ̇2 < V is more likely satisfied. Furthermore, we
know that inflation must be long enough in order to solve the flatness and horizon problems at
least, thus, if one wants to describe the whole inflation with the slow-roll formalism, ϕ̇ must be
kept small so the acceleration of the field ϕ̈ is also small. With these conditions, the equations
of motion for the dynamics of the Universe and the scalar field become

H2 ≈ κ

3
V (ϕ),

ä

a
≈ κ

3
V (ϕ),

3Hϕ̇+ V,ϕ ≈ 0,

(2.48)

where we have neglected the spatial curvature as by definition, the inflaton dominates the energy
content of the Universe during inflation. Noticing that Ḣ = ä/a−H2 the second equation is

Ḣ ≈ −κ
2
ϕ̇2 ≈ 0, (2.49)

so that H is nearly constant and one can solve for the scale factor

a(t) = eHt. (2.50)

This is the reason why inflation is often referred to as a phase of exponential expansion of the
Universe.

To go beyond the exponential expansion of the Universe, one defines the slow-roll parameters

ε = − Ḣ

H2
,

δ = ε− ε̇

2Hε
,

(2.51)
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which in the case of single field inflation reduce to

ε =
3ϕ̇2

2(ϕ̇2/2 + V )
=

2

κ

(
H,ϕ

H

)2

,

δ = − ϕ̈

Hϕ̇
=

2

κ

H,ϕϕ

H
,

(2.52)

the first parameter would thus quantify the first of the slow-roll conditions while the second one
relates to the second. Indeed, the slow-roll conditions Eq. (2.44) and Eq. (2.47) are equivalent
to

ε� 3

2
and δ � 3, (2.53)

given the expressions Eq. (2.52) for the slow-roll parameters ε and δ. One can define other sets
of slow-roll parameters

εH =
2

κ

(
H,ϕ

H

)2

,

δH =
2

κ

H,ϕϕ

H
,

and
εV =

1

2κ

(
V,ϕ
V

)2

,

δV =
1

κ

V,ϕϕ
V

,

(2.54)

and one can show that these different sets of slow-roll parameters are not independent to each
other but are related by

ε = εH = εV and δ = δH = δV − εV . (2.55)

These small parameters are thus useful to Taylor expand the potential V or the expansion rate
H with the variable ϕ, in the equations of motion Eq. (2.45) and Eq. (2.46) and thus find
perturbative series approximations to their solutions. For example, the number of e-folds is
given by

N = ln

(
af

ai

)
=

∫ tf

ti

da

dt

1

a(t)
dt =

∫ tf

ti

H(t)dt. (2.56)

By making a change of variable t(ϕ), it becomes

N =

∫ ϕf

ϕi

H(ϕ)

ϕ̇
dϕ =

∫ ϕf

ϕi

√
κ

2ε
dϕ. (2.57)

Observations enable to directly measure these parameters in order to constrain the different
models of inflation, i.e. potentials, without testing them one by one.

Finally, inflation needs to stop to let radiation dominates the energy content of the Early
Universe. Inflation ends when the slow-roll conditions Eq. (2.53) are not fulfilled anymore, that
is ε ∼ 1 or δ ∼ 1. At the end of inflation, the field oscillates in the bottom of its potential.
Thus, there is on average as much kinetic energy in the field as potential energy so that 〈P 〉 = 0
and the inflation behaves like pressureless matter or dust, contrary to the inflation phase where
almost all the energy of the field was in the potential. As we do not observe any inflaton field
today, it must decay into the particles of the SM of particle physics, so the inflaton must be
coupled to these particles. This phase is called the ‘reheating’ phase because the energy of the
inflaton is transferred to the particles making up the Early Universe.
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2.3 Pre-inflationary physics

The inflationary paradigm does not solve the initial singularity issue already mentioned at the
end of Chapter 1. However, high energies are reached during this early phase of the Universe
and it is therefore relevant to connect it to very early Universe high energy models that cure this
problem: it is expected as a phase following the Planck epoch.

We recall here that one big issue with the standard model of cosmology is that when ex-
trapolated to the most ancient times of the Universe, and therefore to higher temperatures than
those reached experimentally (for example, at the LHC), a space-time singularity is found. This
singularity takes the form of several quantities going to infinity in a finite amount of time, like
the energy densities ρ and consequently the Hubble parameter H, and comes from a singularity
of the metric gµν . Of course the singularity is not physical, meaning one enters a region of
space-time which is beyond the regime of validity of GR. Indeed, the very early Universe is a
region of space-time described by the strong field regime of GR, where the space-time curvature
goes to infinity so that GR is necessarily needed (or a modification of it) to describe this epoch,
as well as quantum mechanics, given the very high energies assumed to be involved. We stress
that describing this epoch is a quite speculative exercise as neither GR nor the other interactions
have been tested in these physical conditions. Because both quantum mechanics and GR are
needed to make predictions about this epoch, it is usually expected that GR must be quantized at
these energy densities. Anyway, a well-formulated description of quantum fields in curved space
is done through a ‘semi-classical’ formulation of the usual quantum fields (those of the SM of
particle physics) in curved space-time, as developed in Birrell & Davies (1984), where gravitation
is treated classically, so that the resulting quantum theory of gravitation should recover this as
a limiting case.

One of the ideas to solve the initial singularity, based on the intuition that gravitation must
be quantised and that we need both gravitation and quantum mechanics to describe this epoch,
is the unification of the gravitational interaction with the three other fundamental interactions
(strong, weak and electromagnetic), quantizing it in the process. Such theories are for example
Kaluza-Klein theories, whose approach is to have a geometrical formulation of the three interac-
tions of the SM of particle physics, so as to mimic our geometrical understanding of gravitation.
This is done through the introduction of additional compactified spatial dimensions that should
be very small as compared to the three known ones today, but should have been of compara-
ble size at the Planck epoch. However, the link to the gauge theories of the SM of particle
physics has still to be done. Another similar idea, which also aims to unify the four fundamental
interactions, is superstring theory which unifies them in a quantum field theory described by
strings (one-dimensional objects). The gravitational interaction is modeled by a massless spin-2
field. The superstring theory also requires the introduction of extra spatial dimensions that are
compactified. Similarly, the link to the classical description of gravitation remains to be done.

A somehow less ambitious approach consists in quantising GR only, without unifying it with
the three other interactions. Attempts have been made in the context of cosmology leading to
the quantum cosmology field, in order to solve the initial singularity. The idea is to use the
canonical quantisation procedure to derive the wave function of the Universe describing both
the space-time geometry and matter content of the Universe. The Wheeler-DeWitt quantisation
was the first historical attempt but failed to remove the initial singularity. In Chapter 5 we will
present a theory that attempts to quantize gravitation only: the Loop Quantum Gravity (LQG)
theory, which essentially works by considering different canonical variables than the historically
considered one in the Wheeler-DeWitt equation. We will then see in Chapter 6 that when applied
to cosmology, and in particular to the early Universe, it gives rise to the field of Loop Quantum
Cosmology (LQC) and this time succeeds in removing the initial space-time singularity, replacing



42 CHAPTER 2. THE EARLY UNIVERSE

the big bang by a big bounce. We will see that this model naturally leads to an inflation phase,
justifying the paradigm.

To finish, there actually exists alternatives to inflation (like ekpyrotic cosmology or bouncing
universes). Indeed, one of the criticism about this paradigm is that it requires more fine-tuning
than no-inflation (Penrose, 1989; Hollands & Wald, 2002), supported by the father of inflation
Steinhardt himself in Ijjas et al. (2013), so that it is sometimes said that the inflationary paradigm
is not well motivated. Also, some people think that a proper treatment of the Planck epoch (which
is not doable currently with the most fundamental physical theories we have) where quantum
gravity effects are expected would lead to the classical initial conditions of our Universe.



Chapter 3

Cosmological perturbations

As mentioned in the previous chapter with the structure formation problem, the Universe is not
perfectly homogeneous and isotropic as it already contained some density fluctuations at the
time of the decoupling of photons from the primordial plasma, which later led to the structures
one observes today: stars, galaxies and galaxy clusters among others. They formed through the
gravitational collapse of primordial matter density perturbations in the matter dominated era.
However, the Universe was not far from being homogeneous and isotropic (until recombination)
as can attest the smallness of the relative density fluctuations in the primordial Universe seen
through the value of the relative temperature fluctuations with 〈(δT/T )2〉 ∼ 10−5, and still is
statistically at the largest scales. In this chapter we will see that these inhomogeneities are in fact
produced during inflation. It is expected that there are both density and gravity perturbations
in this primordial phase so we are going to study them in this context. In practice, as the
Einstein’s equations couple metric to matter, deriving the equations governing their dynamics
requires to perturb both the metric and the energy content of the Universe. After discussing
their quantum origin, we will extend this idea to a primordial phase with two scalar fields and
give the expressions of the primordial power spectra, and finally see how the measurement of
the parameters of the power spectra gives access to the model of inflation describing the early
Universe.

3.1 Dynamical equations for the perturbations

3.1.1 Perturbations of the metric: SVT decomposition

In order to give a more accurate model of our Universe, the fluctuations have been incorporated
in the model as first order perturbations around a homogeneous and isotropic Universe: gµν =
ḡµν + δgµν , where ḡµν is the FLRW metric. This translates into a perturbed metric

ds2 = a2(η)
(
−(1 + 2A)dη2 + 2Bidx

idη + (γij + hij)dx
idxj

)
, (3.1)

where the first order perturbations are thus modeled by a scalar perturbation A, a vector per-
turbation Bi (3 degrees of freedom) and a tensor perturbation hij (symmetric, so 6 degrees of
freedom). Therefore, the perturbed part of the metric has a total of 10 degrees. However, the
vector and tensor perturbation variables in Eq. (3.1) can be decomposed themselves following
a scalar-vector-tensor (SVT) decomposition, where vectors are divergence-free and tensors are
transverse and traceless. For instance, any vector field can be decomposed as the gradient of

43
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a scalar B and a divergence free vector B̄i (in the following bars will indicate divergence free
quantities)

Bi = DiB + B̄i with DiB̄i = 0, (3.2)

where D is the covariant derivative on the spatial hypersurfaces. Thus, the 3 vector degrees of
freedom in Eq. (3.1) are decomposed into 1 scalar and 2 vector. Similarly, any symmetric rank-2
tensor can be decomposed like

hij = 2Cγij + 2DiDjE + 2D(iĒj) + 2Ēij with DiĒ
ij = 0 and Ēii = 0, (3.3)

with the symmetrized tensor D(iĒj) = (DiĒj + DjĒi)/2, so that the 6 degrees of freedom are
decomposed into 2 scalar (C, E), 2 vector (Ēi) and 2 tensor (Ēij). Thus, the 10 degrees of
freedom of the metric have finally been decomposed into 4 scalar (A, B, C, and E), 4 vector
(B̄i and Ēi) and 2 tensor (Ēij). This decomposition is useful as the three kinds of perturbations
are decoupled at first order.

3.1.2 Gauge fixing

Although the perturbation variables seem to have been introduced quite simply in the previous
section, defining perturbations in GR is actually a difficult task. Indeed, the GR theory is used
to model space-time, thus the scene on which other physical interactions take place Therefore,
perturbations of physical quantities are referred to this background scene. But what about
perturbing the background scene itself? To what these perturbations should be referred to?
Actually, one cannot refer the perturbations of the metric to the unperturbed one describing
homogeneous and isotropic Universe as GR is background independent. There is no preferred
set of coordinates, hence no preferred metric in GR so that there is no hierarchy between the
unperturbed metric and the perturbed one: they are equivalent and one cannot use a metric to
refer to the other.

Therefore, a problem arising with the perturbations of the metric is that some of them can be
seen as ‘real’ perturbations around a homogeneous and isotropic Universe modeled by the FLRW
metric, while a change of coordinates of the FLRW metric itself like xi → yi = xi − ξi(xj , η)
would lead to a metric which looks like the perturbed one Eq. (3.1)

ds2 = a2(η)
(
−dη2 + 2ξ′idy

idη + (γij + 2D(iξj))dy
idyj

)
, (3.4)

so that one can identify Bi with ξ′i and Ei with ξi and a ′ means derivative with respect to
the conformal time η. These two perturbation variables thus do not correspond to ‘real’ ones,
in the sense of physical perturbations. One can instead build a set of so-called gauge invariant
perturbations, that do not change under a change of coordinates like the previous one. These
gauge invariant perturbations are obtained by making a change of coordinates of the perturbed
metric Eq. (3.1) and by considering how the first order perturbations change. The gauge invariant
variables are then built by making combinations of the first order perturbations that do not
contain the unphysical perturbation degrees of freedom of ξµ. Doing so leads to the following
gauge-invariant perturbations

Ψ, Φ, Φ̄i and Ēij , (3.5)

where
Ψ ≡ −C −H(B − E′),
Φ ≡ A+H(B − E′) + (B − E′)′,
Φ̄i ≡ Ēi′ − B̄i,

(3.6)
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and H = a′/a = aH is the comoving Hubble factor. These are ‘real’ space-time perturbations
in the sense that they cannot be removed by a change of coordinates. Notice that these per-
turbations are described by 6 degrees of freedom, rather than 10, as 4 degrees of freedom of
the perturbations of the metric can be removed by a change of coordinates (ξµ). The tensor
perturbations Ēij are the gravitational waves and Φ and Ψ are called the Bardeen potentials.

Fixing a gauge means choosing a system of coordinates. An appropriate gauge fixing is
when the gauge invariant perturbations Eq. (3.6) coincide with the perturbation variables of the
metric or energy content. A gauge that will be useful for us in the following (in Chapter 7 and
the next section) is the flat gauge, in which the scalar part of the curvature perturbation of
spatial hypersurfaces, δ(3)R, vanishes. Now, it can be shown that δ(3)R = −4(∆ + 3K)C/a2, so
that this gauge is completely set by

C = 0, E = 0, Ēi = 0, (3.7)

and the 6 remaining metric perturbations correspond to the following gauge invariant perturba-
tions

A = Ψ + Φ +

(
Ψ

H

)′
, B = −Ψ

H , B̄i = Φ̄i, and Ēij . (3.8)

Another noteworthy gauge, useful when dealing with only one scalar field, is the Newtonian
or longitudinal gauge in which the expansion appears as isotropic. It is completely set by

B = 0, E = 0, and B̄i = 0, (3.9)

so that the 6 remaining metric perturbations

A = Φ, C = −Ψ, Ēi =

∫
φ̄idη, and Ēij , (3.10)

also correspond to gauge invariant perturbations. Here, Ψ is related to the scalar 3-curvature
perturbation of spatial hypersurfaces and is the gravitational potential in the Poisson equation.
Hence, contrary to the flat gauge, there is a non-vanishing scalar 3-curvature perturbation δ(3)R.

Other gauges we will encounter in this manuscript are the comoving gauge in which the fluid
velocity vanishes or the gauge in which the scalar field is spatially uniform on constant time slices
(spatial hypersurfaces).

3.1.3 Perturbations of matter
The linearisation of the metric implies linearisation of Einstein’s tensor Gµν and therefore of the
energy-momentum tensor Tµν by virtue of Einstein’s equations. In the perfectly homogeneous
and isotropic hypotheses, the energy-momentum tensor is that of a perfect fluid Eq. (1.15) and
its perturbation leads to

δTµν = (δρ+ δP )ūµūν + δP ḡµν + 2(ρ+ P )ū(µδuν) + Pδgµν + a2Pπµν , (3.11)

where the notation with brackets means ū(µδuν) = (ūµδuν + ūνδuµ)/2; δρ and δP are the
density and pressure perturbations respectively, uµ = ūµ+δuµ is the four-velocity of a comoving
observer and πµν is the anisotropic pressure tensor, showing that the perturbed fluid is not
perfect. However, we will later be interested in perturbations in the primordial Universe, so
let us illustrate these perturbations with the energy content of the Universe being a scalar
field interacting in a potential V , as this could model the energy content of the Universe in its
primordial phase, during the inflation phase (cf. Chapters 2 and 6). The energy-momentum
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tensor of such a scalar field is given by Eq. (2.40). Decomposing the scalar field into a spatially
homogeneous part plus a first order perturbation, ϕ = ϕ̄ + δϕ, the perturbation of the energy-
momentum tensor is given by

δTµν = ∂µϕ̄∂νδϕ+ ∂νϕ̄∂µδϕ− δgµν
(

1

2
ḡλσ∂λϕ̄∂σϕ̄+ V (ϕ̄)

)
− ḡµν

(
−δg

λσ

2
∂λϕ̄∂σϕ̄+ ḡλσ∂λϕ̄∂σδϕ+

∂V

∂ϕ

∣∣∣∣
ϕ̄

δϕ

)
.

(3.12)

Under a coordinate or gauge transformation ξµ, the perturbation of the scalar field transforms
like

δϕ→ δϕ+ ϕ̄′ξ0, (3.13)
so, as for the perturbations of the metric, we need to build gauge invariant perturbations of the
scalar field like for example

Q = δϕ− C aϕ̄
′

a′
, (3.14)

which is called the Mukhanov-Sasaki variable and, in the flat gauge where C = 0, gives the
perturbation of the scalar field. Another gauge-invariant scalar field perturbation is

χ = δϕ+ ϕ̄′(B − E′), (3.15)

which, in the Newtonian gauge where B = E = 0, corresponds to the scalar field perturbation.
In the following, we will use this perturbation χ for the equations of motion of the scalar field
perturbation. One notices that the two are related as follows

Q = χ+ ϕ̄′
Ψ

H , (3.16)

where H = a′/a is the comoving Hubble factor. We introduce one final gauge-invariant pertur-
bation

R = C −Hδϕ
ϕ̄′

= −H
ϕ̄′
Q, (3.17)

which corresponds to the curvature perturbation in the comoving gauge.

3.1.4 Equations of motion
The equations of motion for the perturbations are given by the perturbed Einstein’s equations

δGµν = κδTµν , (3.18)

which relate the perturbations of the metric with those of the energy content.
By considering the (00) and (0i) components of Eq. (3.18) as well as the trace of their spatial

part (ij), one derives the equations of motion for the scalar modes that we will be mostly
interested in

Ψ = Φ,

(∆ + 3K)Ψ− 3H(Ψ′ +HΦ) =
κ

2

(
ϕ̄′χ′ − φ′2Φ + a2 dV

dϕ̄
χ

)
,

Ψ′ +HΦ =
κ

2
ϕ̄′χ,

Ψ′′ + 2HΨ′ −KΨ +HΦ′ +
(
2H′ +H2

)
Φ +

1

3
∆(Φ−Ψ) =

κ

2

(
ϕ̄′χ′ − ϕ̄′2Φ− a2 dV

dϕ
χ

)
.

(3.19)
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There is no vector perturbation associated with the field, only a scalar perturbation δϕ, so
the equations of motion for the vector modes only involve those of the metric, namely

(∆ + 2K) Φ̄i = 0,

Φ̄′i + 2HΦ̄i = 0.
(3.20)

If the content of the Universe had vector perturbations, they would appear on the right-hand-
side of these equations. The second of the above equations shows that the vector modes decrease
like Φ̄i ∝ a−2 so that one can neglect them at the end of the exponentially accelerated phase of
inflation.

Similarly, the equations of motion for the tensor modes involve only the tensor modes of the
metric

Ē′′kl + 2HĒ′kl + (2K −∆)Ēkl = 0, (3.21)
and, as for the vector modes, there would be a right-hand-side to this equation if there was
anisotropic stress associated with the field. These tensor perturbations of the metric are nothing
more than the gravitational waves of the Universe. The symmetric tensor Ēij being transverse
and traceless, it only has two degrees of freedom. Going to Fourier space, it can thus be decom-
posed for each mode ki like

Ēij(kk, η) =
∑

λ=+,×
Ēλ(kk, η)ελij(k̂k), (3.22)

where ελij are two polarisation tensors defined by

ελij =
e1
i e

1
j − e2

i e
2
j√

2
δλ+ +

e1
i e

2
j + e2

i e
1
j√

2
δλ×, (3.23)

which are traceless ελijγij = 0, transverse ελijki = 0 and perpendicular to each other ελijεijµ = 0,
and {e1, e2} is an orthonormal basis of the subspace perpendicular to ki. This decomposition will
prove useful when quantising the two polarisation degrees of freedom of the tensor perturbations
in the last section of this chapter.

One also derives the continuity or conservation equations for the perturbations of the fluid
by the conservation of the perturbed energy-momentum tensor

δ(∇µTµν ) = 0. (3.24)

Since there is only a scalar perturbation of the scalar field, δϕ, this only leads to the continuity
equation for this perturbation

χ′′ + 2Hχ′ −∆χ+ a2 d2V

dϕ̄2
χ = 2(ϕ̄′′ + 2Hϕ̄′)Φ + ϕ̄′(Φ′ + 3Ψ′), (3.25)

i.e., written with the gauge invariant perturbation Q,

Q′′ + 2HQ′ −∆Q+ a2 d2V

dϕ̄2
Q = ϕ̄′

(
Φ′ + Ψ′ +

(
Ψ

H

)′′
− ∆Ψ

H

)
, (3.26)

which is actually the perturbed Klein-Gordon equation. As for Eq. (2.46), this equation is not
independent from the three other equations for the scalar perturbations derived through the
Einstein’s equations Eq. (3.19). Actually, only two of the four equations for the scalar field
perturbation are independent, so they can be cast into a single second order differential equation
for the potential Φ. Indeed, using the Klein-Gordon equation Eq. (2.46) for ϕ̄, we get

Φ′′ + 2

(
H− ϕ̄′′

ϕ̄′

)
Φ′ −

(
∆− 2

(
H′ −H ϕ̄

′′

ϕ̄′
− 2K

))
Φ = 0 . (3.27)
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3.2 Quantum origin
In addition to solving the horizon, flatness and relic problems, the inflationnary paradigm also
provides a framework to explain the origin of the small primordial inhomogeneities one can ob-
serve in the CMB. We have seen that the energy content of the Universe during inflation is
mainly given by a field called the inflaton field. However, the origin of the primordial inhomo-
geneities cannot be classical fluctuations of the quantum field because the duration of inflation
required (around N ∼ 60 e-folds) would involve energy density fluctuations greater than the
energy density of the background, breaking the perturbative approach. This is due to the fact
that classical fluctuations of the scalar field are bosons and evolve as a−4, see section 2.3.3 of
Grain (2014). This is not the case for vacuum quantum fluctuations whose energy density remain
constant during inflation, solving the problem. Furthermore, the vacuum quantum fluctuations
of the inflaton field have the right statistics to explain the ones of the fluctuations of the CMB,
that is, gaussian statistics (Maldacena, 2003; Planck Collaboration et al., 2016, 2018d) and lead
to a scale-invariant primordial power spectrum, as is required from observations. Thus, we need
the equations of motion for the quantised perturbations rather than the equations of motion for
the classical perturbations as given in the previous section, so one must quantise Eq. (3.21) and
Eq. (3.26). Here, we will illustrate the quantisation of perturbations with the tensor ones and
postpone the procedure for the scalar perturbation(s) to the next section when dealing with two
primordial fields.

Now, rather than deriving the equations of motion for the perturbations by linearising Ein-
stein’s equations as we have done in the previous section, it is more convenient to use another
approach in order to see which perturbation variables should be quantised. This other approach,
developed for example in Sasaki (1986), starts directly from the action of the perturbed homoge-
neous and isotropic Universe written up to second order and then derive the equations of motion
for the first order perturbations (as when differentiating the Lagrangian written up to quadratic
order into linear perturbations, one order is lost).

The second order action for the tensor perturbations is given by

δ(2)S =
1

2

∑
λ

∫
dηd3x

(
v′2λT − δab∂avλT∂bvλT +

a′′

a
v2
λT

)
, (3.28)

where λ stands for the two polarisations of gravitational waves and vλT is a gauge invariant
perturbation related to the tensor perturbations of the metric by

vλT =
aĒλ√
8πG

, (3.29)

where Ēλ has been defined in Eq. (3.22). One derives the following equations of motion for the
new perturbation variable from Eq. (3.28)

v′′λT −
(

∆ +
a′′

a

)
vλT = 0. (3.30)

This is the variable vλT that will be quantised. The perturbation variable becomes a quantum
field by writing

v̂λT(τ,x) =
1

(2π)3/2

∫
d3k

(
âkvλT,k(τ)eik·x + â†kv

∗
λT,k(τ)e−ik·x

)
, (3.31)

where âk and â†k are the usual annihilation and creation operators respectively, with commutators[
âk, â

†
k′

]
= δ3(k − k′) and [âk, âk′ ] =

[
â†k, â

†
k′

]
= 0. (3.32)
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Thus Eq. (3.30) can be rewritten in Fourier space

v′′λT +

(
k2 − a′′

a

)
vλT = 0. (3.33)

In order to get the primordial quantum fluctuations, the vk in Eq. (3.33) are the functions to be
solved for, and in particular one needs to find the initial conditions for these perturbations. The
integrand of the second order action Eq. (3.48) defines a Lagrangian density that we will denote
by L, thus the conjugate momenta of vλT is

πλT =
δL
δv′λT

= v′λT. (3.34)

Thus, the mode functions vk(τ) must be normalised by the Klein-Gordon product or Wronskian
condition

vk(v∗k)′ − v∗kv′k = i, (3.35)
so that [v̂(x, η), π̂(y, η)] = iδ(3)(x−y): this normalisation helps to determine the initial conditions
for the perturbations, as we will now see.

The usual initial condition taken for the perturbations is the Bunch-Davies vacuum. This
vacuum is used for modes that are initially smaller than the comoving Hubble radius, which is
actually the case for all today’s observable modes at the beginning of inflation, as the comoving
Hubble radius decreased since then. As these modes are smaller than the comoving Hubble
radius, they do not feel the curvature of the Universe k2 � a′′/a and behave like in Minkowski
space, so their vacuum tend to the Minkowski vacuum, that is

vk(τ)→ 1√
k

exp(−ikτ) when

(
k

aH

)
→∞. (3.36)

The equation of motion Eq. (3.33) is a second order differential equation, so has two independent
solutions. Therefore, only the one that coincides with the Bunch-Davies vacuum at the beginning
of inflation remains with the constant of integration is appropriately taken and the solution indeed
satisfies the Klein-Gordon product Eq. (3.35). Another way to have done this would have been
to choose the solution that propagates in the positive time direction (remembering that to get
the full mode functions one multiplies vk by exp(ik · x), see Eq. (3.31)), so that only one of the
two independent solution is kept and the constant of integration is then determined thanks to
the Wronskian condition Eq. (3.35).

Finally, once the quantum perturbations have been computed, one can derive the power
spectrum for these fluctuations. It is given by

PvT =
k3

2π2

∑
λ

|vλT,k|2, (3.37)

where we have summed over the two possible polarisations λ. This is all the statistics one needs to
characterise the primordial fluctuations as they are gaussian because of being vacuum quantum
fluctuations of the field. Moreover, this involves that 〈vk〉 = 0, so the power spectrum is really
all the statistics one needs to describe the primordial fluctuations.

3.3 Perturbations with two scalar fields

3.3.1 Adiabatic and isocurvature decomposition
Although the single field model of inflation is the most favored by observations (see e.g. Planck
Collaboration et al., 2016, 2018d), there are reasons to introduce more fields in early phases of
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the Universe, especially in a pre-inflationnary context, as we will see in Chapter 7. Here let us
consider consider two scalar fields ϕ - the inflaton field - and φ as being the energy content of
the Early Universe, in the context of inflation. These two fields have their own Klein-Gordon
equation Eq. (2.46), where now V (ϕ, φ) is the total potential of this system that could possibly
couple the two fields. In the case where the two fields are uncoupled, the potential is just the
sum of the potentials of the two fields V (ϕ, φ) = V1(ϕ) + V2(φ). It is convenient to decompose
the two fields into a part σ tangent to the trajectory in field space, i.e. along the field velocity
(ϕ̇, φ̇), and a part s perpendicular to this trajectory, following the idea developed in Gordon
et al. (2001) for the perturbations generated by multiple scalar fields inflation in an interacting
potential. This is shown in Fig. 3.1. Formally, one has

Figure 3.1: Trajectory of the background fields ϕ and φ in field space. These two fields can be
decomposed into a field along the field velocity in field space, written σ and called the adiabatic
component, and a field perpendicular to it, s, called the isocurvature component. It therefore
leads to adiabatic and isocurvature perturbations δσ and δs respectively, which are a rotation in
field space of the field perturbations δϕ and δφ by an angle θ corresponding to the bending of
the trajectory of the background fields. Adapted from Peter & Uzan (2009).

(
σ̇
ṡ

)
= M(θ)

(
ϕ̇

φ̇

)
with M(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (3.38)

and the angle θ is defined by

cos θ =
ϕ̇√

ϕ̇2 + φ̇2

and sin θ =
φ̇√

ϕ̇2 + φ̇2

. (3.39)

This allows a rewriting of the equations of motion for the fields Eq. (2.46) with these new fields

s = cst and σ̈ + 3Hσ̇ + U,σ = 0, (3.40)
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with (
U,σ
U,s

)
= M(θ)

(
V,ϕ
V,φ

)
. (3.41)

This rewriting is useful to introduce the σ and s fields which are respectively the adiabatic
and isocurvature components of the system of two fields (ϕ, φ). They will lead to adiabatic
and isocurvature perturbations in the primordial Universe. These two fields are interesting
to study perturbations. Indeed, one can intuitively understand that there will be two kinds
of perturbations: as the two fields have their own scalar perturbations, resulting in energy
density fluctuations, these fluctuations can be either positive (corresponding to an overdensity)
or negative (corresponding to an underdense region). Therefore, the two fluctuations can either
add to give a net energy density fluctuation, which corresponds to the adiabatic perturbation,
or compensate each other so that there is no energy density fluctuation: this corresponds to the
isocurvature perturbation perpendicular to the trajectory in fields space, and explains its name,
as no curvature perturbation can be produced if there is no energy density fluctuation. Thus,
δσ is also called the curvature perturbation, while δs is also known as the entropy perturbation,
because the field s is conserved, which is linked to the entropy conservation.

3.3.2 Dynamical equations

Then, we are interested in the perturbations of these two scalar fields δϕ and δφ. The equations
of motion for the perturbations are given in Eq. (3.19) for one scalar field. One can derive them
adding another scalar field. Following the same steps we get

Φ̇ +HΦ =
κ

2
(ϕ̇χϕ + φ̇χφ),

3Φ̇ + (3H2 + Ḣ)Φ− ∆

a2
Φ = −κ

2

(
V,ϕχϕ + ϕ̇χϕ + V,φχφ + φ̇χφ

)
,

χ̈ϕ + 3Hχ̇ϕ −
∆

a2
χϕ + V,ϕφχφ = −2V,ϕΦ + 4ϕ̇Φ,

χ̈φ + 3Hχ̇φ −
∆

a2
χφ + V,φϕχϕ = −2V,φΦ + 4φ̇Φ,

(3.42)

using the fact that Ψ = Φ. We want to translate these equations of motion for the gauge
invariant perturbations χϕ and χφ into equations of motion for the adiabatic and isocurvature
perturbations δσ and δs. As ṡ = 0, the isocurvature perturbation is already gauge-invariant
since

χs = Qs = δs, (3.43)

but not δσ

Qσ = χσ + σ̇
Φ

H
. (3.44)

A bit of calculations leads to the coupled system of equations for the adiabatic and isocurvature
perturbations

Q̈σ + 3HQ̇σ +

(
−∆

a2
− θ̇2 + U,σσ −

κ

a3

(
a3σ̇2

H

))
Qσ = 2θ̇δs− 2

(
U,σ
σ̇

+
Ḣ

H

)
θ̇δs,

δ̈s+ 3Hδ̇s+

(
−∆

a2
− θ̇2 + U,ss

)
δs = − θ̇

σ̇

4δ

κa2
Φ.

(3.45)
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Finally, note that the curvature perturbation Eq. (3.17) written for one field generalises with two
fields to

R = C − H

ϕ̇2 + φ̇2
(ϕ̇δϕ+ φ̇δφ) = C − H

σ̇
δσ = −H

σ̇
Qσ, (3.46)

as ϕ̇δϕ+ φ̇δφ = σ̇δσ and σ̇2 = ϕ̇2 + φ̇2 from Eq. (3.38). One sees directly in Eq. (3.46) that the
adiabatic perturbations feed the curvature perturbations. This is the reason why the adiabatic
perturbations are also often called the curvature perturbations. On the contrary, the isocurvature
perturbations δs have no influence on R, hence their name.

3.3.3 Quantum initial conditions
In order to see which perturbation variables should be quantised, we will proceed similarly to
Section 3.2, as in the work of Langlois & Renaux-Petel (2008), to derive the equations of motion
for the perturbations. Likewise, they start directly from the action of the perturbed homogeneous
and isotropic Universe coupled to multiple fields written up to second order and then derive the
equations of motion for the first order perturbations. In the following we will use the notation
φI to label the fields, e.g. φ1 = ϕ, φ2 = φ in the two fields case. Note that they consider in full
generality non-standard kinetic terms T = −GIJ∇µφI∇νφJ/2, where GIJ is a metric in field
space and P is an arbitrary function of T and of the fields φI , but here we will not discuss such
extensions.

In the two fields case, introducing the normalised variables with conformal time

vσ = aQσ and vs = aQs, (3.47)

and going to Fourier space using the wavenumber k, the second order action for the adiabatic
and isocurvature perturbations is rewritten in terms of these variables

δ(2)S =
1

2

∫
dτd3k

(
v′2σ + v′2s − 2ξv′σvs − k2c2sv

2
σ − k2v2

s + Ωσσv
2
σ + Ωssv

2
s + 2Ωσsvσvs

)
. (3.48)

The functions ξ represents the coupling between the two adiabatic and isocurvature perturbations
as it multiplies a term mixing them, and consequently appears in the function Ωσs, while the
functions Ωσσ and Ωss can be interpreted as time dependent effective mass terms for the adiabatic
and isocurvature perturbations respectively. These functions are given by

ξ = aΞ, Ωσσ =
z′′

z
, Ωsσ =

z′

z
ξ, Ωss =

a′′

a
− a2µ2

s, (3.49)

and

Ξ =
2P,s√

2T
, z =

a
√

2T

H
, and µ2

s = −P,ss −
P 2
,s

2T
, (3.50)

and, in the model we are interested in here, T is the standard kinetic energy

T = (ϕ̇2 + φ̇2)/2, (3.51)

P is the standard pressure or the Lagrangian of the model

P = T − V, (3.52)

and we use the notation
P,n ≡ eInP,I , (3.53)
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where P,I is the partial derivative of P with respect to the field φI , and {eIn} is an orthonormal
basis in field space, the index n going from 1 to the total number of fields. With two fields this
basis is constructed as follows. The first vector is the ‘adiabatic’ unit vector

eIσ =
φ̇I√
2T
⇔
(
e1
σ

e2
σ

)
=

1√
ϕ̇(t)2 + φ̇(t)2

(
ϕ̇(t)

φ̇(t)

)
, (3.54)

so that the background velocity φ̇I corresponds to the instantaneous adiabatic direction in field
space. The entropy perturbations are orthogonal to the scalar field velocity so that the vector
orthogonal to the adiabatic direction eIσ gives the entropy direction in field space. The second
element eI2 of the basis is defined as the unit vector pointing along the projection on the entropy
subspace of the field acceleration Dtφ̇I . Here, we simply use the fact that the basis {eIσ, eIs} is
orthonormal so that the scalar product between the two vectors is zero, and unitarity together
with right-handedness of the field basis completely set the components of eIs:(

e1
s

e2
s

)
=

1√
ϕ̇(t)2 + φ̇(t)2

(
−φ̇(t)

ϕ̇(t)

)
. (3.55)

Then, one can compute the explicit expressions of the background functions appearing in
Eq. (3.48), given the shape of the potential V (ϕ, φ) as here, P = (ϕ̇(t)2 + φ̇(t)2)/2 − V (ϕ, φ).
Finally, note that from the above one sees that vσ is simply related to the curvature perturbation
(3.46) as

vσ = −zR. (3.56)

From the action Eq. (3.48), one derives the following equations of motion for the new pertur-
bation variables

v′′σ − ξv′s +

(
k2 − z′′

z

)
vσ −

(zξ)′

z
vs = 0,

v′′s + ξv′σ +

(
k2 − a′′

a
+ a2µ2

s

)
vs −

z′

z
ξvσ = 0.

(3.57)

These are the variables vσ and vs that will be quantised. The perturbation variables become
quantum fields as in Eq. (3.31) and in order to get the primordial quantum fluctuations, the vk
in the system of coupled equations Eq. (3.57) are the functions to be solved for, and in particular
one needs to find the initial conditions for these perturbations.

Here, we will consider as an example the resolution in the case where the coupling between
the adiabatic and entropy perturbations vanishes (ξ = 0), to simplify. Indeed, in that case one
can analyse the two kinds of perturbations independently, as is done in Langlois & Renaux-Petel
(2008). We recall that the Lagrangian density L is the integrand of the second order action
Eq. (3.48). In the case ξ = 0 the conjugate momenta of vσ and vs are then respectively

πσ =
δL
δv′σ

= v′σ and πs =
δL
δv′s

= v′s, (3.58)

and thus the mode functions vk(τ) must be normalised by the Klein-Gordon product or Wron-
skian condition Eq. (3.35). When ξ = 0, the equations of motion for the perturbations Eq. (3.57)
are decoupled

v′′σ,k +

(
k2 − z′′

z

)
vσ,k = 0,

v′′s,k +

(
k2 − a′′

a
+ a2µ2

s

)
vs,k = 0.

(3.59)
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In the slow-roll limit we have the approximation z′′/z ≈ 2/τ2. Therefore, one can solve analyti-
cally for the adiabatic perturbation vσ

vσ,k(τ) ≈ − 1√
2πk

(
C1eikτ

(
1 +

i

kτ

)
+ C2e−ikτ

(
1− i

kτ

))
, (3.60)

where C1 and C2 are two constants to be determined. We have just solved for the evolution of
one of the primordial quantum fluctuation during inflation, but one is left with finding its initial
condition. By taking the Bunch-Davies vacuum as initial condition at the beginning of inflation
like in Section 3.2, only the second term in the solution for vσ remains. The constant C2 is
appropriately taken and the solution indeed satisfies the Klein-Gordon product Eq. (3.35). As
explained in Section 3.2, another way to have done this would have been to choose the solution
that propagates in the positive time direction, so that only the second term in the solution for
vσ is kept and the constant C2 is then determined thanks to the Wronskian condition Eq. (3.35).
Finally

vσ,k(τ) ≈ 1√
2k

e−ikτ
(

1− i

kτ

)
. (3.61)

Similarly, one can show that the approximate solution for vs is

vs,k(τ) =

√
π

2
ei(νs+1/2)π/2

√
−τH(1)

νs (−kτ), (3.62)

where H(1)
ν is the Hankel function of the first kind of order ν; the order νs is given by Eq. (102)

in Langlois & Renaux-Petel (2008) and is a function of the Hubble factor and derivatives of the
pressure P .

Finally, once the quantum perturbations have been computed, one can derive the power
spectra for these fluctuations. They are given by

PQσ =
k3

2π2

|vσ,k|2
a2

and PQs =
k3

2π2

|vs,k|2
a2

. (3.63)

In the case where the two equations are coupled Eq. (3.57), there would also be a cross power
spectrum between the adiabatic and isocurvature perturbations PQsQσ . One final remark: in
the single scalar field case, there would only be adiabatic perturbations as one can no longer
compensate the perturbations of a field with another one to give a null net energy density
fluctuation leading to isocurvature perturbations. Therefore, there would only be the adiabatic
power spectrum, which has exactly the same expression as here.

3.4 Primordial power spectra: phenomenological parame-
terisation

The power spectra give all the statistics describing perturbations and they can be observed
by measuring the anisotropies of the CMB or the large-scale structures statistics. Indeed, the
statistical properties of the primordial inhomogeneities source the CMB anisotropies and later
the large-scale structures. In order to compare the above predictions with CMB observations for
example, one would need to propagate these power spectra up to the CMB to translate them in
angular power spectra for the anisotropies in temperature and polarisation. This is done through
the radiative transfer of the primordial anisotropies, i.e. by solving the Boltzmann equation in
the expanding primordial Universe, as is done for example in Zaldarriaga & Seljak (1997). The
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angular power spectra of primary anisotropies are then given by integrating over all modes k the
product of the primordial power spectra of the fluctuations, which gives the initial amplitude,
with the solutions of the Boltzmann equation.

In practice, in order to test the various existing models of inflation, a phenomenological
parameterisation in power law is used for the primordial power spectra

PS(k) = AS ×
(
k

k0

)nS−1

and PT(k) = r ×AS ×
(
k

k0

)nT

, (3.64)

where k0 is a pivot scale so that the parameters are defined by

AS = PS(k0), r =
PT(k0)

PS(k0)
, nS = 1 +

d lnPS

d ln(k)

∣∣∣∣
k=k0

, and nT =
d lnPT

d ln(k)

∣∣∣∣
k=k0

, (3.65)

AS is called the amplitude of the scalar power spectrum and the amplitude of the tensor power
spectrum is defined with respect to it by the tensor-to-scalar ratio r, nS and nT are the spectral
indices of the scalar and tensor power spectra respectively. Using the slow-roll formalism, one
can relate these phenomenological parameters to the slow-roll parameters, which at leading order
gives (see e.g. Sections 7.5 and 7.7 of Liddle & Lyth (2000))

AS =
1

πεH

(
H?

MPl

)2

, r = 16εH , nS = 1− 4εH , and nT = −2εH , (3.66)

themselves related to the derivatives of the potential of inflation. Hence, the measurements of the
phenomenological parameters Eq. (3.65) allows the reconstruction of the potential of inflation
and therefore to discriminate between the possible models.

The latest observational constraints on the phenomenological parameters in Eq. (3.65) given
by the Planck collaboration in Planck Collaboration et al. (2018d) are:

ln(1010AS) = 3.044± 0.014, r0.002 < 0.10, nS = 0.9649± 0.0042, and nT = −r
8
is assumed,

(3.67)
for a pivot scale k0 = 0.05 Mpc−1, except for r where k0 = 0.002 Mpc−1. The reader acquainted
with isocurvature perturbations can find upper bounds on this mode for different models in
Section 9, Table 14 of Planck Collaboration et al. (2018d).
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Chapter 4

The CMB: the observable of the
early and late-time inhomogeneities

The CMB is a key observable for our understanding of the Universe. The generation of the relic
radiation in two steps led to a black body primordial light with a very uniform temperature
measured today to be T0 = 2.725 ± 0.001K. However, we argued in the previous chapter that
there were perturbations to our homogeneous and isotropic model of the Universe. This translates
into small relative temperature fluctuations of the order of ∆T/T0 ∼ 10−5. The anisotropies in
temperature also induce polarisation anisotropies of the primordial light. We distinguish between
two kinds of anisotropies: those stemming from inhomogeneities present at the epoch at which
the CMB was generated (primary anisotropies) from those imprinted later, as photons traveled
the structured Universe before reaching us (secondary anisotropies). Both types of anisotropies
can be seen as a tracer of the different cosmic epochs: the primary trace the primordial physics
while the secondary the large-scale structures of the Universe. These anisotropies are observed
on the celestial sphere and their analysis requires to treat them statistically by predicting their
angular power spectra and higher order statistics. Finally, estimators of these statistics are
needed to compare the theoretical predictions to observations.

4.1 Release of the relic radiation

4.1.1 Recombination

In Chapter 2, we have explained that as the Universe expands from the hot dense state at its
origin (the Big Bang), it also cools down. The equivalence between temperature and energy
E = 3kBT/2 valid for relativistic particles, allows to translate the cooling down of the photons
(their temperature defining the temperature of the Universe) into a decrease in their energy.
Thus, we have seen in Section 2.1.2, that when their energy reaches ∼ 0.4 eV, they can no longer
break the binding of electrons with nuclei so that the latter combine to form neutral atoms: this
moment is called the ‘recombination’. The main reaction to consider to study the dynamics of
recombination is the photoionisation reaction

p+ e←→ H + γ, (4.1)

57
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as the most abundant nuclei are the hydrogen ones p. This reaction keeps the primordial plasma
in thermal equilibrium. One defines the ionisation fraction

Xe =
ne

np + nH
=
ne
nb
, (4.2)

where the denominator nb = np + nH is the total number of hydrogen nuclei, hence the name
‘ionisation fraction’. By doing a bit of out-of-equilibrium thermodynamics, one can find an
equation on Xe (Kolb & Turner, 1990) and its solution is plotted in Fig. 4.1 as a function of the
energy of the Universe. One sees that it drops sharply below the energy value of ∼ 0.4 eV so that

Figure 4.1: The ionisation fraction Xe as a function of temperature T expressed in units of
energy (eV).

once the energy of the Universe falls below ∼ 0.4 eV, all nuclei soon recombine into atoms. Thus,
recombination is not clearly defined but is actually identified by a threshold: Xe = 0.5, 0.1, 0.01.
Depending on the threshold chosen, one will find different values for the temperature of the
Universe at recombination. If one defines recombination as the time when there are only 10% of
free electrons left in the Universe (Xe = 0.1), one finds Trec = 3440 K. However, this temperature
does not yet correspond to the temperature of the CMB when it was emitted. To get it, one
has to consider the decoupling of the photons from the thermal bath, which is different from the
stopping of reaction (4.1).

4.1.2 Decoupling
Actually, in addition for photons to interact with neutral hydrogen, they also scatter off free
electrons through the Thomson scattering process so that they are tightly coupled to them.
However, when nuclei combine with electrons to form neutral atoms, there are not enough free
electrons left for the Thomson scattering process to take place. Indeed, the interaction rate of
this process is given by

ΓT = neσT, (4.3)

where σT = 6.65× 10−25 cm2 is the Thomson scattering cross-section, so that as ne(T ) drops at
recombination, so does the interaction rate. Therefore, the decoupling of photons occurs soon
after recombination. Actually, decoupling is defined when ΓT = H, the Hubble parameter. As
both ne and H depend on temperature

ne(T ) = Xe(T )nb(T ) with nb(T ) = ηnγ(T ) = η2
ζ(3)

π2
T 3 and H = H0

√
Ω0

m

(
T

T0

)3/2

, (4.4)
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where we have used Eq. (2.1) to determine nγ and the fact that the Universe is dominated by
matter to derive H, one can derive the temperature at which decoupling takes place. One finds
Tdec = 2720 K. This temperature corresponds to the temperature of the Universe when photons
scatter off electrons for the last time. These photons then make up the Cosmic Microwave
Background as the Universe becomes transparent so that these photons propagate freely in the
whole Universe, forming a relic radiation from that moment. This moment is also called the Last
Scattering Surface (LSS) as it is a spatial hypersurface in a four dimensional space-time. Actually,
the CMB as it was observed by satellites like COBE, WMAP or Planck is a two-dimensional
surface: a sphere centred around us which is the intersection of the three-dimensional LSS with
our past light-cone. In fact, the LSS is not properly a spatial hypersurface of the four-dimensional
space-time, but has a thickness because the instant when photons stop scattering off electrons
is not sharply defined. Therefore, the portion of the CMB observed also has a thickness but it
is small as compared to the age of the Universe at decoupling. Given that ȧ/a = H, one can
solve this equation and invert it to get the time t as a function of a and as a = a0T0/T , one can
translate Tdec in a time. The decoupling thus happens about t = 380 000 yrs after the Big-Bang.

4.2 Spectral properties of the CMB

4.2.1 Best black body ever measured

Today, the mean temperature of this relic radiation over the whole sky, which is also the tem-
perature of the Universe

T0 ≡ Tγ0 =
1

4π

∫
T (θ, ϕ)sinθdθdϕ, (4.5)

has been the most precisely measured by the FIRAS instrument on board of the COBE satellite
to be

T0 = 2.725± 0.001K. (4.6)

Furthermore, in the hot Big-Bang model, there is no energy injected in the photons bath be-
tween the last annihilation in the primordial Universe, which is the electron-positron annihilation
around ∼ 100 keV, and the beginning of the reionisation of the Universe, when new photons are
created by the first stars and galaxies formed. Therefore, it is expected that the CMB radiation
follows a Planck spectrum

I(ν, T ) =
2hν3

c2
ν3

ehν/(kBT ) − 1
, (4.7)

where I(ν, T ) is the spectral radiance, i.e. the power emitted by a surface per unit solid angle,
per unit projected area, per unit of frequency. Indeed, this quantity has been measured by the
FIRAS instrument and the measurement is plotted in Fig. 4.2: one clearly sees that the data
follows Planck’s law. This is often said that the CMB is the best black-body ever measured,
as evidenced by the error bars in Fig. 4.2. This means that the radiation has thermalised,
thanks to the interactions taking place in the primordial plasma, and in particular the Compton
scattering process. Thus, any injection of energy in the photons bath would be seen on the
measured spectrum as distortions of the black-body spectrum. As no primordial1 distortion has
been observed in the CMB spectrum yet, the observations put tight upper limits on them. We
will now see what are these possible distortions.

1We will see later that secondary distortions can be produced, for example due to the SZ effect.
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Figure 4.2: Fit to the measured spectrum of the CMB by the COBE satellite. The error bars are
a fraction of the line thickness, so that they are not visible on the figure. The spectrum is that
of a black-body with temperature T0 = 2.725± 0.001 K. Figure taken from Fixsen et al. (1996).

4.2.2 Spectral distortions y, µ and Yff

There are three kinds of possible distortions to the black-body spectrum depending on the phys-
ical process at play and which have different effects on the spectrum.

The first of it is the Compton distortion. As its name suggests, this distortion results from
the Compton scattering of photons by electrons. The distortion happens when the electrons are
hotter than the photons bath, so that energy is injected in the relic radiation. Therefore, this
heating of the radiation shifts the black-body spectrum to higher energies, hence frequencies,
but as no new photons are injected, the low frequency part has its amplitude decreased and
the resulting spectrum is no longer that of a black-body. This distortion is characterised by the
Compton y parameter

y =

∫
σTne

(Te − Tγ)

mec2
dt, (4.8)

being the integrated Compton optical thickness. We will come back to this distortion again when
talking about the tSZ effect happening in clusters of galaxies.

Another possible distortion is due to the fact that even though the primordial plasma is
thermalised thanks to the Compton scattering process, it can take some time for the spectrum
to relax to Planck’s law. This translates into a non-zero chemical potential µ for the photons,
distorting the black-body spectrum so that they follow a Bose-Einstein one

I(ν, T ) =
2h

c2
ν3

e(hν−µ)/(kBT ) − 1
. (4.9)

This is characterised by the µ̃ parameter

µ̃ =
µ

Tγ
. (4.10)
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Finally, the last kind of distortion is due to the emission of photons by the scattering of
electrons on charged particles and is proportional to the following parameter

Yff =
8
√
πg

3
√

6

(
e2

4πε0

)3 ∫
n2
e

meT 3
γ

√
meTe

(
1− Tγ

Te

)
dt, (4.11)

where g ∼ 2 is called the Gaunt factor. This kind of distortion is called ‘free-free’.
Fig. 4.3 shows the shapes of the spectral distortions y, µ̃ and Yff . None of them have been

Figure 4.3: The shapes of CMB spectral distortions y, µ̃ and Yff , resulting from energy-releasing
processes. Figure taken from Smoot & Scott (2000).

observed yet in the primordial CMB. In fact, observations give upper limits so that if distortions
of the black-body spectrum are to be present, they must be small

|y| < 1.9× 10−5, |µ̃| < 9× 10−5, |Yff | < 1.5× 10−5. (4.12)

4.3 Anisotropies
So far we have only presented the mean characteristics of the CMB radiation: how it is generated,
its temperature and spectrum. However due to primordial density fluctuations (themselves due
to primordial quantum fluctuations, see Chapter 3), the electron density ne is not uniform in
the primordial plasma. Therefore, the LSS is not quite a hypersurface t = cst, as the decoupling
of photons depends on ne through ΓT, but a surface for which ne = cst. As decoupling does
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not happen at the same time in every point of the Universe, the LSS does not have a uniform
temperature (time and temperature being related by the scale factor a: T (t) = T0a0/a(t)) but
contains so-called temperature anisotropies. The interaction rate ΓT being proportional to the
electron density ne, overdense regions decouple later and should in principle correspond to slightly
colder regions of the LSS. However, the Stefan-Boltzmann law relates the temperature contrast
to the energy density contrast of the photons

∆T

T
=

1

4

ργ − ργ
ργ

=
1

4
δγ , (4.13)

so that an overdense region corresponds to a hotter region in the primordial plasma. Therefore,
there is no obvious link between temperature and density at decoupling. Furthermore, other
physical effects have to be considered which impact the temperature of the LSS. One of them
has to do with overdense regions: these also correspond to perturbations of the gravitational
potential so that if photons decouple while in a gravitational potential, they lose energy as
they climb out of the potential well and are consequently colder. This effect together with
Eq. (4.13), dealing with overdense regions, are collected under the name of ‘Sachs-Wolf’ (SW)
effect. Another effect has to do with velocities in the primordial plasma or of the observer,
which again change the energy of the photons received. This one is called without surprise the
Doppler effect. Finally, photons travel in a perturbed Universe before reaching us and the impact
of the evolution of these perturbations (like for example the gravitational potentials of forming
structures) on the temperature of the photons is known as the Integrated Sachs-Wolf (ISW)
effect. This last effect is part of a set sourcing secondary anisotropies of the CMB, meaning
these temperature anisotropies are due to effects happening since decoupling. We will come back
to it at the end of this chapter.

Here we will not detail the derivation of all the possible effects impacting the temperature of
the CMB but rather focus on the formalism needed to describe these anisotropies in the CMB
by focusing first on the primary anisotropies, i.e. those imprinted at the time of decoupling.
Because of the vector nature of light, in addition to temperature anisotropies, there are also
polarisation ones. These primordial anisotropies have Gaussian statistics and are thus completely
characterised by their two-point correlation functions, or equivalently by their angular power
spectra. These primary statistics are then modified by their propagation through the large-scale
structures of the Universe, producing the above mentioned secondary anisotropies of the CMB.

4.3.1 Primary anisotropies

As mentioned in Chapter 3, the primary anisotropies are sourced by vacuum quantum fluctua-
tions in the very early Universe. Indeed, the scalar perturbations of primordial fields (like the
supposed inflaton field for example) result in classical energy density fluctuations, after amplifi-
cation and transfer through the primordial phases of the Universe. Similarly tensor perturbations
of the metric result in classical gravitational waves after amplification. We do not consider here
the contribution of vector perturbations as they are expected to decay in the very early Uni-
verse, see Eq. (3.20). Both scalar and tensor perturbations have an imprint on temperature and
polarisation anisotropies.

4.3.1.1 Temperature anisotropies

The two components of the temperature anisotropies, the Sachs-Wolf and Doppler effects, were
described in the introduction of this section 4.3. The temperature of the CMB can be modeled
by a temperature field T (x, t; θ, ϕ) measured at the space-time point (x, t) and which depends
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on the direction of observation indicated by the spherical coordinates (θ, ϕ). The temperature
field is a scalar field: it means that a single value is assigned to it at each space-time point and
this value does not change under any change of coordinates. Other examples of scalar fields are
the density or pressure fields. The inflaton field described in the previous chapter is another
example of a scalar field.

Such a field T (x, t; θ, ϕ) which depends on the direction of observation, can be considered as a
field belonging to the two-dimensional space being the celestial sphere. It can thus be expanded
onto an orthonormal basis of the space of square-integrable functions on the unit sphere S2: the
spherical harmonics {Y m` (θ, ϕ)}. They are called ‘spherical harmonics of degree ` and order m’,
where ` and m are integers such that 0 ≤ ` and −` ≤ m ≤ `. A representation of the first real
spherical harmonics is given in Fig. 4.4, with ` = 0 to 3 from top to bottom and m = −` to `
from left to right. As hinted by this representation, the first multipole number is thus related
to the angular scale given by the polar angle: ` ∼ π/θ and low ` values correspond to large
angular scales on the sky (and inversely, high ` values to small angular scales), while the second
multipole number m corresponds to the orientation on the sphere. The spherical harmonics are

Figure 4.4: Representation of the first real spherical harmonics Y`m(θ, ϕ) (which are combinations
of the real and imaginary parts of the spherical harmonics Y m` (θ, ϕ)), with ` = 0 to 3 from top to
bottom and m = −` to ` from left to right. The distance of the surface from the origin indicates
the absolute value of Y`m(θ, ϕ) in the direction (θ, ϕ) and the colors indicate its sign (blue is
positive, yellow is negative). Figure by Inigo.quilez.

orthonormal in the sense of the scalar product∫ ∫
S2

sin(θ) dθdϕ Y m
′∗

`′ (θ, ϕ)Y m` (θ, ϕ) = δ``′δmm′ , (4.14)

∗ denoting the complex conjugate, and where we have chosen the normalisation used in quantum
mechanics. Thus, any function f(θ, ϕ) can be expanded in a spherical harmonic series

f(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

Cm` Y
m
` (θ, ϕ). (4.15)

https://commons.wikimedia.org/w/index.php?curid=32782753
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This series expansion on the 2-sphere is the analog of the Fourier series expansion on the circle
with the orthonormal basis of exponentials {einx}. The Cm` are therefore often called generalised
Fourier coefficients and are thus obtained similarly

Cm` =

∫ ∫
S2

sin(θ) dθdϕ Y m∗` (θ, ϕ)f(θ, ϕ). (4.16)

Thus, following this formalism, the temperature field is expanded like

T (x, t; θ, ϕ) =
∑
`m

T`m(x, t)Y m` (θ, ϕ). (4.17)

The first coefficient of the expansion T00 gives the mean temperature of the CMB Eq. (4.5).
The other coefficients give the temperature of patches of the sky of the corresponding spherical
harmonics depicted in Fig. 4.4. As the differences with the mean temperature are small (of the
order of ∼ 10−5), we will rather work with the temperature fluctuation field Θ = (T − T0)/T0

and decompose it as

Θ(x, t; θ, ϕ) =
∑
`m

Θ`m(x, t)Y m` (θ, ϕ), (4.18)

so that the first coefficient of the expansion Θ00 vanishes.
A map of these primary temperature anisotropies on the celestial sphere is given in Fig. 4.5,

detected by the Planck satellite (Planck Collaboration et al., 2018a). This is the most pre-
cise detection ever made of the temperature anisotropies, sometimes even called the ‘ultimate’
detection, as its precision is not limited by the sensitivity of the instrument. The red (blue)
spots correspond to hotter (respectively colder) regions on the sky, with respect to the mean sky
temperature Eq. (4.5).

Figure 4.5: Projection of the CMB temperature anisotropies on the celestial sphere. The red
(blue) spots correspond to hotter (respectively colder) regions on the sky, with respect to the
mean sky temperature. This map has been observed by the Planck satellite, figure taken from
the ESA website.

https://www.esa.int/spaceinimages/Images/2013/03/Planck_CMB


4.3. ANISOTROPIES 65

4.3.1.2 Polarisation anisotropies

Light as an electromagnetic wave
Light is modeled in physics by three theories having different domains of application which

depend on the scale at which we are working. The simplest way to model light is to say that
it is composed of light rays propagating in straight lines: this is the formalism of geometrical
optics. However geometrical optics is an approximation of a more general theory called physical
optics or wave optics, describing light as an electromagnetic wave. The domain of validity of
geometrical optics corresponds to when the wavelength of the electromagnetic wave is small
compared to the size of the objects it interacts with. Geometrical optics is recovered by saying
that the light ray is the direction of propagation of the electromagnetic field describing light, or
the direction of propagation of the energy carried by the electromagnetic wave. However, when
going to smaller scales, we need a quantum theory of light to describe how light interacts with
matter at atomic scales, i.e. the atoms or molecules: such a theory is called quantum optics and
outline the corpuscular nature of light as being composed of photons. In this section, we will
describe light as an electromagnetic wave.

Thus, we now present the polarisation of light. Polarisation is the property for a wave with
at least two components (or two degrees of freedom, that is, at least vectorial) to have a pre-
ferred pattern for the direction of its oscillations. Electromagnetic waves, which are propagating
perturbations of the electric and magnetic fields, can be polarised. When we talk about the
polarisation of an electromagnetic wave, we actually talk about the direction of oscillations of
the electric field. The most general form for such a field can be written in an orthonormal basis
(ê1, ê2, ê3) as

E(r, t) =

∣∣∣∣∣∣
E1(r, t)
E2(r, t)
0

, (4.19)

assuming an electromagnetic wave propagating in the ê3-direction, so that the ê3-component
of the electric field is null, as electromagnetic waves are of transverse nature in vacuum. If the
electric field remains in the same direction while propagating, then we say the wave is linearly
polarised. A single temporally, spatially and spectrally coherent electromagnetic wave can be
polarised, and in full generality, its polarisation is elliptic: the electric field describes an ellipse
as time goes by, as shown in Fig. 4.6. Depending on whether the ellipse is drawn over time in the

Figure 4.6: Propagation of an ellipsoidally polarized wave. The tip of the electric field follows a
helical curves (in black), such that its projection on the plane perpendicular to the propagation
direction draws an ellipse. This is due to the fact that its orthogonal components (which follow
the blue and red curves) are phase shifted.

right(left) sense, one respectively talks about right(left)-handed elliptical polarisation. Linear
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polarisation is a degenerate case of elliptical polarisation when one of the axes of the ellipse
is zero. Another degenerate case is when the ellipse is actually a circle: one then talks about
circular polarisation. In any case, any polarised electromagnetic wave can be decomposed either
into two perpendicular linearly polarised waves, or into one right- and one left-handed circularly
polarised waves. Finally, if the two components have random values over time, then the wave is
said to be non-polarized.2

Why is most of the natural light non-polarised? If light is described by wave packets, each
of them has a different random polarisation, but if the wave packets have a short coherence
time, shorter than the time resolution of the detectors, its sampling frequency cannot follow
this variation of polarisation and, as it is random, the average polarisation over time is null.
Although natural light is composed of all the possible polarisations, some media or physical
processes let only one type of polarisation pass, as is the case of the Thomson scattering process
happening before decoupling. Another example is that of the optical devices called polarisers.
They consist in grids which only let the light polarised in the direction perpendicular to the grid
pass, see Fig. 4.7. Hence, polarisation of the light gives us information on these media or physical
processes.

Figure 4.7: A linear polariser only lets light polarized in the direction perpendicular to its grid
pass through. Figure by Bob Mellish.

Origin of CMB primary polarisation
We explain now the origin of the CMB primary polarisation anisotropies. As mentioned above,

some physical processes polarise light and in particular the Thomson scattering process. The
outgoing light is polarised in the perpendicular direction to the plane of scattering if the incoming
radiation is anisotropic. Therefore, it is the primordial fluctuations of the plasma, resulting in
temperature or intensity anisotropies, that allow the CMB to have primordial polarisation: this
is the reason why one talks about ‘polarisation anisotropies’ and not just polarisation.

We describe here physically how the Thomson scattering process polarises light. Actually, the
Thomson scattering differential cross section depends on the relative polarisation of the incoming
electromagnetic wave εin scattering off the electrons and the outgoing electromagnetic wave εout

dσ

dΩ
=

3

8π
σT(εin · εout)2, (4.20)

where dΩ is the elementary solid angle around the electron in the direction of scattering and
σT is the total Thomson scattering cross-section; note that εin and εout are unit vectors. This

2Actually, at each instant the electric field has a definite direction and thus a polarization, but this one is
changing too fast, and above all randomly, for any detector to detect a net polarization, as detectors only have
access to an average over time of the electric field (for example, the sampling frequency of the detectors of the
HFI instrument on the Planck mission was 180 Hz (Lamarre et al., 2010)).

https://commons.wikimedia.org/wiki/File:Wire-grid-polarizer.svg
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expression is obtained by considering the average power radiated per unit solid angle in the
polarisation state εout, by the acceleration of an electron by an incident electromagnetic wave.
In particular, this expression shows that the outgoing wave polarisation cannot be perpendicular
to the polarisation of the incoming wave. Now, consider like in Fig. 4.8 that an incoming

Figure 4.8: The Thomson scattering process in the reference frame of an electron. An incident
electromagnetic wave propagating along n is scattered at an angle θ in the direction n′. Figure
taken from Peter & Uzan (2009).

electromagnetic wave propagating in the direction n in the electron reference frame, is scattered
at an angle θ, resulting in an outgoing wave in the direction n′, so that the scattering takes
place in the plane (n,n′). The electromagnetic wave being transverse, its polarisation belongs
to the plane perpendicular to n, i.e. to the plane perpendicular to its direction of propagation.
Then, it can always be decomposed into two linearly polarised waves in that plane: one chooses to
decompose the polarisation into a linearly polarised wave in the scattering plane (n,n′) indicated
by E2 and a linearly polarised wave E1 perpendicular to that plane. A similar decomposition
can be made for the polarisation of the scattered wave with components E′2 in the scattering
plane and E′1 perpendicular to it. Using Eq. (4.20), one can compute the scattering cross-section
for the component along εout = E′2 as εin ·E′2 = E2 ·E′2 = cosθ. Similarly, the scattering cross-
section for the component along εout = E′1 is equal to 1 since εin · E′1 = E1 · E′1 = 1. It thus
shows that if a non-polarised incoming electromagnetic wave is scattered by an angle θ = π/2,
the outgoing wave will be linearly polarised along E′1 only, because E2 · E′2 = 0, so that the
Thomson scattering process favors a particular direction of polarisation out of a non-polarised
incident light.

Now, there is not a single electromagnetic wave scattering off an electron in the primordial
plasma, but many at the same time. One expects that the incoming waves come from all the
directions around the electron. Thus, if the primordial radiation is isotropic around the electron,
that is all incident waves have the same intensity, the addition of all the outgoing polarised
waves results in no net polarisation for the scattered radiation, as shown in Fig. 4.9 (a). Indeed,
consider four unpolarised incident waves propagating in the ±x and ±y directions, scattered by
an electron in O at an angle θ = π/2 in the same direction +z. According to the mechanism
polarising light described earlier, once scattered, the incident lights propagating along ±x will
give an outgoing wave linearly polarised along y, while the incident light propagating along ±y
will give an outgoing wave linearly polarised along x. The waves not being coherent, their sum
gives an unpolarised wave. However, we know that there are anisotropies in temperature in
the primordial plasma due to primordial fluctuations, which are either density fluctuations or
gravitational waves. Therefore, in the reference frame of an electron in the primordial plasma,
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Figure 4.9: The Thomson scattering process. Figure taken from Peter & Uzan (2009).

the incoming radiation is anisotropic. Still, if the anisotropy is only dipolar, for example with a
dipole intensity along x as in Fig. 4.9 (b), where the intensity of the incident waves coming from
the + and −x directions are symmetrically hotter and colder than the mean intensity coming
from the ±y direction, then the component along y of the outgoing wave is exactly equal to its
component along x. Again, the two components not being coherent, there is no net polarisation
for the scattered light. Finally, one has to consider a quadrupolar anisotropy as in Fig. 4.9 (c)
where the intensity of the incoming waves propagating along ±x are hotter than the intensity
of the incoming waves propagating along ±y, to get a net outgoing linear polarisation. Indeed,
the component along y of the outgoing wave results hotter than its component along x, so that
the scattered light has a net polarisation along y. Thus, even though the incoming polarisations
are all random, the anisotropic intensity results in a net incoming polarisation on the electron
and consequently a net outgoing polarisation. Note that only a quadrupolar anisotropy can
give rise to a polarised scattered wave, for some analogous symmetry reasons. Furthermore, the
Thomson scattering process does not produce any circularly polarised light. The CMB indeed is
not circularly polarised.

The Stokes parameters: characterising polarisation
The interested reader will find in Appendix A a presentation of the formalism of the Poincaré

sphere used to describe partially polarised light (starting from the usual description of the po-
larisation of an electromagnetic wave), as well as the Stokes parameters (defined in terms of
the spherical coordinates of this sphere) quantifying the polarisation of light. There exist other
definitions of the Stokes parameters, with the components of the electric field in different basis

I ≡ 〈E2
x〉+ 〈E2

y〉 = 〈E2
a〉+ 〈E2

b 〉 = 〈E2
l 〉+ 〈E2

r 〉,
Q ≡ 〈E2

x〉 − 〈E2
y〉,

U ≡ 〈E2
a〉 − 〈E2

b 〉,
V ≡ 〈|El|2〉 − 〈|Er|2〉,

(4.21)

for an electromagnetic wave propagating in the ez = ec direction, where (ex, ey, ez) is the
cartesian coordinates basis and (ea, eb, ec) is the same basis rotated by an angle of π/4 about
ez, and finally one defines the helicity basis el/r = (ex ± iey)/

√
2 to get the components El and

Er. Actually, one cannot measure the amplitude of the two components at each instant of time,
thus one measures averages of the components in the different basis over several periods.

The first Stokes parameter I is the total intensity of light. The three other ones can be seen
as a measure of the intensity of light in the different polarisation states. The Q and U parameters
measure the linear polarisation: the complex parameter

P ≡ Q+ iU = |P |ei2θ, (4.22)
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gives the intensity in the linear polarisation state, θ being the angle of the direction of polarisation
with respect to the basis in which Q and U are measured. Finally, V measures the intensity
in the circular polarisation state: V > 0 for left-handed while V < 0 for right-handed circular
polarisation. For partially polarised light as the CMB one, the Stokes parameters thus satisfy
the following inequality

Q2 + U2 + V 2 = I2
p ≤ I2, (4.23)

where Ip is the intensity in the polarised part of light. Fig. 4.10 shows how the sign of the Stokes
parameters depends on the orientation of the semi-major axis and the sense of rotation of the
polarisation ellipse.

Figure 4.10: The signs of the Stokes parameters are related to the orientation of the semi-major
axis and the sense of rotation of the polarisation ellipse. Figure by Dan Moulton.

One can see in Eq. (4.21) that the Stokes I parameter does not depend on the system of
coordinates chosen to measure it: it is thus a scalar quantity, which is not surprising as it
is related to the temperature of light. However, as suggested by the P parameter, and by the
definitions of the Q and U parameters, the latter are not basis invariant. Indeed, under a rotation
of angle α of the basis (ex, ey) around the ez axis{

e′x = cos(α)ex + sin(α)ey,

e′y = −sin(α)ex + cos(α)ey,
(4.24)

https://commons.wikimedia.org/w/index.php?curid=3319393
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they become {
Q′ = cos(2α)Q+ sin(2α)U,

U ′ = −sin(2α)Q+ cos(2α)U,
(4.25)

which is shown in Appendix A. Finally, the Stokes V parameter is invariant under such a rotation
of the coordinate basis, as can be seen from its definition, consistent with the fact that it quantifies
the circularly polarised component of light. Nonetheless, this is not a scalar quantity, but a
pseudo-scalar one. Indeed, under a parity transformation of the coordinate system, defined as
the flip in the sign of one spatial coordinate (also called reflection), like for example

Vx :

 x
y
z

 7→
 −xy

z

 , (4.26)

the Stokes V parameter changes sign
V ′ = −V. (4.27)

This sign flip is what distinguishes the scalar quantities from the pseudo-scalar ones.

The polarisation field of the CMB
The change in the Q and U Stokes parameters when doing a rotation of the system of

coordinates by an angle α can be encoded in complex notation

Q′ ± iU ′ = (Q± iU)e±2iα, (4.28)

defining the polarisation field of the CMB as

P±2(x, t; θ, ϕ) = Q(x, t; θ, ϕ)± iU(x, t; θ, ϕ). (4.29)

The polarisation field, when seen as a field on the celestial sphere, is what is called a spin-weighted
s = 2 function. A spin-weighted s function sf of the spherical coordinates (θ, ϕ) transforms like

sf
′ = eisψsf, (4.30)

under a rotation of the orthonormal basis (eθ, eϕ) tangent to the sphere by an angle ψ about the
radial vector er (Newman & Penrose (1966)). Similarly to the temperature field in Eq. (4.17),
one can thus expand the polarisation field in a series, but being a spin ±2 field, the expansion
is made on the spin-weighted spherical harmonics sY`m(θ, ϕ) with −` ≤ s ≤ `, which are used
to make the spherical harmonic transform of a spin-weighted s function sf(θ, ϕ) on the sphere.
They are defined thanks to the action of the spin raising (+) and spin lowering (-) operators ∂±
on the usual spherical harmonics. Indeed, for a spin-weighted s function sf , (∂±sf) transforms
like

(∂±sf)′ = ei(s±1)ψ∂±sf, (4.31)

under a rotation of angle ψ. Their explicit expressions are given by

∂±sf(θ, ϕ) = −sin±sθ

(
∂θ ±

i

sinθ
∂ϕ

)
sin∓sθ∂±, (4.32)

so that the spin-weighted spherical harmonics are

sY`m ≡



√
(`− s)!
(`+ s)!

(∂+)sY`m for (0 ≤ s ≤ `),√
(`+ s)!

(`− s)! (−1)s(∂−)−sY`m for (−` ≤ s ≤ 0).

(4.33)
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They are normalised in a similar way than the spherical harmonics Eq. (4.14)∫ ∫
S2

sin(θ) dθdϕ sY
m′∗
`′ (θ, ϕ)sY

m
` (θ, ϕ) = δ``′δmm′ . (4.34)

Thus, the polarisation field is written like

P±2(x, t; θ, ϕ) =
∑
`m

a±2
`m(x, t) ±2Y

m
` (θ, ϕ). (4.35)

Linear polarisation of the CMB: the E and B modes
However, the drawback of the Q and U parameters, and so of the polarisation field P±2,

is that they depend on the basis chosen to compute them. Indeed, we have just seen that
the polarisation field changes under a rotation of the basis (it is a spin ±2 quantity). This is
unconvenient as we do not want our description of polarisation to depend on the basis in which
computations are done. A way to achieve this is to transform the spin ±2 polarisation field into
a spin 0 field on the sphere, thus representing a scalar quantity (like temperature), thanks to the
action of the spin raising and spin lowering operators

(∂∓)2P±2 =
∑
`m

√
(`+ 2)!

(`− 2)!
a±2
`mY

m
` (θ, ϕ), (4.36)

where we have used the following property

∂±sY `m = ±
√

(`∓ s)(`+ 1± s)s±1Y `m. (4.37)

This way, two spin 0 and thus rotationally invariant fields with coefficients
√

(`+ 2)!/(`− 2)!a±2
`m

have been built to represent linear polarisation on the sky, but the fields are non-local as the
operators ∂± are. These two spin 0 (scalar) fields are combined together to get fields with nice
symmetries under a parity transformation

χE(θ, ϕ) = −1

2

(
(∂−)2P2(θ, ϕ) + (∂+)2P−2(θ, ϕ)

)
,

χB(θ, ϕ) =
i

2

(
(∂−)2P2(θ, ϕ)− (∂+)2P−2(θ, ϕ)

)
,

(4.38)

so that

χE(θ, ϕ) =
∑
`m

√
(`+ 2)!

(`− 2)!
E`mY`m,

χB(θ, ϕ) =
∑
`m

√
(`+ 2)!

(`− 2)!
B`mY`m,

(4.39)

with
E`m = −1

2
(a2
`m + a−2

`m),

B`m =
i

2
(a2
`m − a−2

`m).

(4.40)

The E and B superscripts stand for ‘electric’ and ‘magnetic’ parts of the polarisation field.
This denotes an analogy with the symmetry properties of the electric and magnetic fields.
Indeed, under a parity transformation of the coordinate system, the polarisation field trans-
forms like P±2 → P∓2 because the Q Stokes parameter is unchanged while U transforms into
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−U . This means that the coefficients of the expansion of the polarisation field transform like
a±2
`m → (−1)`a∓2

`m as the spin-weighted spherical harmonics transform like sY`m → (−1)`−sY`m un-
der a parity transformation. Therefore, the E and B coefficients transform like E`m → (−1)`E`m,
B`m → (−1)`+1B`m and χE is invariant under a parity transformation, while χB → −χB . The
electric part of the polarisation field is therefore a scalar, while the magnetic part is a pseu-
doscalar, which explains the analogy.

Equivalently, one can build similar spin 0 (scalar) fields by considering directly the coefficients
E`m and B`m

E(θ, ϕ) =
∑
`m

E`mY`m,

B(θ, ϕ) =
∑
`m

B`mY`m,
(4.41)

known as the E and B mode polarisation fields. These fields obviously have the same symmetry
properties as the χE/B fields and are also non-local. Thus, they cannot represent the polarisation
field at a single point, but rather represent the polarisation patterns around a point, see Fig. 4.11.
The symmetry properties of the E and B mode fields under a parity transformation are seen
in these patterns: the E mode pattern is indeed invariant under a parity transformation while
the B mode one is transformed into its mirror image. Furthermore, they are both invariant
under rotations, as expected from a spin 0 field. Building two scalar fields with these symmetry
properties starting from Eq. (4.36) is physically relevant. Indeed, density perturbations are scalar
perturbations so they can only give rise to the polarisation E mode which is parity invariant,
while tensor perturbations come in two polarisation states: one is parity invariant sourcing the
E modes and the other being not parity invariant, only source the B modes. This is the reason
why the B modes are a signature of the primordial gravitational waves, expected to be produced
during inflation.

Figure 4.11: Polarisation patterns corresponding to the E and B modes of polarisation around a
point, as they are non-local fields. Each bar represents the polarisation of the underlying point.
The E mode pattern is indeed invariant under a parity transformation while the B mode one
is transformed as its mirror image. Both are invariant under rotations, as expected from spin 0
fields.

4.3.1.3 Correlations: angular power spectrum and higher order statistics

We have described the CMB in terms of fields: temperature and polarisation fields, meaning a
temperature and polarisation ‘value’ can be assigned at each point of space-time. Theoretically,
this is an infinite amount of data. In practice, detectors divide space into pixels and assign
information to these. Now, given the age (13.8 billion years) and size (93 billion light-years) of the
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observable Universe, even though this amount of data is finite, it is so important that one cannot
handle them separately but needs a statistical characterisation and measure of the information
contained in the data. Furthermore, the theoretical predictions from inflation are only statistical
and these statistics are actually nearly gaussian. This is done thanks to the n−point correlation
functions and their derived statistics. Indeed, sometimes the only information available from the
telescopes and satellites belongs to the celestial sphere so one rather deals with angular n−point
correlation functions. For this purpose, we have already introduced all the formalism of the
(spin-weighted) spherical harmonics needed to deal with fields defined on the sky.

Definitions
Let us start by a few definitions. The simplest statistics to consider, giving an unresolved and

rough information on the large amount of data one has from an ensemble, is the mean value. For
example Eq. (4.5) gives the mean temperature of the CMB over the whole sky. However, all the
information about the temperature of the CMB measured and represented by the temperature
field cannot reduce to this mean value. Indeed, we have also seen in the previous chapter that
the CMB contained small relative temperature anisotropies of the order of ∆T/T0 ∼ 10−5, that
is, the temperature is not uniform over the whole sky. This was characterised by a temperature
fluctuation field defined over the whole sky: Θ(θ, ϕ) (see Eq. (4.18)). The CMB having nearly
gaussian statistics as the evolution from inflation is linear, preserving the gaussianity of the
primordial inhomogeneities, all of its information can be reduced to mean values and variances
of the temperature and polarisation fields. Defining n as the direction on the sky parameterised
by the spherical coordinates θ and ϕ, one defines the angular two-point correlation function as

w(n,n′) ≡ 〈Θ(n)Θ(n′)〉 =
∑
`m

∑
`′m′

〈Θ`mΘ∗`′m′〉Y m` (n)Y m
′∗

`′ (n′), (4.42)

where 〈.〉 is an ensemble average over universe realisations. This is the angular two-point correla-
tion function of the temperature fluctuation field, equivalent to the angular two-point correlation
function of the temperature field once the mean temperature is known, as

〈Θ(n)Θ(n′)〉 =
〈T (n)T (n′)〉

T 2
0

− 1. (4.43)

Thus, the angular two-point correlation function of the temperature fluctuation field is, up to a
prefactor, exactly the variance of the temperature field: T 2

0 〈Θ(n)Θ(n′)〉 = 〈T (n)T (n′)〉 − T 2
0 =

〈(T (n)− T0)(T (n′)− T0)〉.
The writing of the angular two-point correlation function with the spherical harmonics ex-

pansion of the temperature fluctuation field shows the covariance matrix 〈Θ`mΘ∗`′m′〉. Now, we
have seen in Chapter 1, Section 1.1.2 that the standard cosmological model relies on the isotropy
and homogeneity hypotheses. For the two-point correlation function, this translates into the
fact that w does not depend on the specific directions n and n′ but only on the separation
angle ψ defined by the two directions (homogeneity hypothesis), in whatever direction on the
sky (isotropy hypothesis). The function w can thus be expanded like

w(ψ) =
∑
`

2`+ 1

4π
C`P`(cos(ψ)), (4.44)

where P` are the Legendre polynomials. Given that the coefficients of the expansion of the
temperature fluctuation field are given by Eq. (4.16)

Θ`m =

∫
d2nY m∗` (n)Θ(n), (4.45)
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one can compute the covariance matrix 〈Θ`mΘ∗`′m′〉

〈Θ`mΘ∗`′m′〉 =

∫
d2n

∫
d2n′ Y m∗` (n)Y m

′

`′ (n′)〈Θ(n)Θ(n′)〉

=

∫
d2n

∫
d2n′ Y m∗` (n)Y m

′

`′ (n′)
∑
`′′

2`′′ + 1

4π
C`′′P`′′(cos(ψ)).

(4.46)

Using the addition theorem for the spherical harmonics

P`′′(cos(ψ)) =
4π

2`′′ + 1

`′′∑
m′′=−`′′

Y m
′′

`′′ (n)Y m
′′∗

`′′ (n′), (4.47)

and the orthonormality relation for the spherical harmonics Eq. (4.14), the covariance matrix
becomes

〈Θ`mΘ∗`′m′〉 = δ``′δmm′C`, (4.48)
so that it is a diagonal matrix whose diagonal coefficients are given by the angular power spectrum
C`. The coefficients Θ`m are thus statistically independent, as a result of statistical isotropy and
homogeneity.

Similarly, one can compute the angular power spectra for the E and B modes. Having
defined in Eq. (4.41) the E and B mode fields with their corresponding coefficients E`m and
B`m in Eq. (4.40), the covariance matrices also reduce to angular power spectra because of the
isotropy and homogeneity hypotheses

〈E`mE∗`′m′〉 = δ``′δmm′CEE` and 〈B`mB∗`′m′〉 = δ``′δmm′CBB` . (4.49)

Finally, the correlation between temperature and polarisation can be measured by the angular
cross-correlation function. For example, for the correlation between temperature and the E mode,
this is

wTE(n,n′) ≡ 〈Θ(n)E(n′)〉 =
∑
`m

∑
`′m′

〈Θ`mE
∗
`′m′〉Y m` (n)Y m

′∗
`′ (n′), (4.50)

to which corresponds an angular cross power spectrum because of homogeneity and isotropy

〈Θ`mE
∗
`′m′〉 = δ``′δmm′CTE` . (4.51)

As explained in the previous section, the temperature and E modes are scalar fields, while
the B mode is pseudo-scalar field. Therefore, the B mode angular power spectrum is a scalar
quantity, being the product of two pseudo-scalar fields. Of course, the temperature and E mode
angular power spectra are also scalar. The universe being parity invariant in the standard model
of cosmology, one expects vanishing TB and EB cross-corrrelations as these are pseudo-scalar
quantities.

To mention it, although at leading order the statistical predictions from inflation are gaussian,
a way to quantify the deviations from gaussianity of the temperature and polarisation fields is to
measure higher order correlation functions, like for example the third moment of the distribution
or the angular three-point correlation function

〈X(n)Y (n′)Z(n′′)〉 =
∑
`m

∑
`′m′

∑
`′′m′′

〈X`mY`′m′Z`′′m′′〉Y m` (n)Y m
′

`′ (n′)Y m
′′

`′′ (n′′), (4.52)

where X, Y and Z stand for Θ, E or B, and to which corresponds an angular bispectrum BXY Z`1`2`3
which is non-vanishing if |`1 − `2| ≤ `3 ≤ `1 + `2 (triangular condition) because of homogeneity
and isotropy. Only the X, Y and Z combinations giving a scalar angular three-point (cross-
)correlation function do not vanish, for the same reason as previously. Higher order angular
correlation functions can also be defined likewise.
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Predictions
The angular power spectra of the primary temperature and polarisation fields are computed

once the transfer equations in the primordial Universe have been solved, as they are sourced by
the primordial scalar and tensor power spectra

CXY` =

∫
dk
(
∆X
`,S(k, η0)∆Y

`,S(k, η0)PS(k) + ∆X
`,T(k, η0)∆Y

`,T(k, η0)PT(k)
)
, (4.53)

where X and Y stand for Θ, E or B and the ∆X
`,S/T are transfer functions that account for the

evolution of the power spectrum of primordial inhomogeneities at the end of inflation during the
early Universe and are integrals over the conformal time η. Some of these transfer functions
vanish following the symmetry considerations developed below. The primordial power spectra
contain information on the model of inflation and the initial conditions of the perturbations
through the phenomenological parameters defined in Eq. (3.65) while the transfer functions are
sensitive to the background cosmological parameters of Tab. 1.1.

The angular power spectra of the temperature, E and B modes with the TE cross power
spectrum are plotted in Fig. 4.12. On the left the angular power spectra are generated by
scalar perturbations while on the right are those generated by tensor perturbations. The B
mode angular power spectrum on the left is solely due to the secondary effect of lensing by
the large-scale structure, peaking at high ` corresponding to the angular scale of the large-
scale structures in question on the sky. Indeed, let us recall that only tensor perturbations
can produce a primordial component to the B mode for symmetry reasons, as explained in the
previous section. In practice, one observes the superposition of the contribution from scalar
and tensor perturbations. As the tensor contribution is smaller for the temperature and E mode
angular power spectra from one to five orders of magnitude, it is difficult to use these to constrain
the amplitude of the primordial tensor perturbations, i.e. the primordial gravitational waves,
although they can be used to put upper bounds on the tensor-to-scalar ratio r. On the contrary,
the primordial B modes being only produced by tensor perturbations, they are thus the unique
signature of the primordial gravitational waves expected to be produced during inflation. The
measurement of their power spectra at low ` would support the paradigm and give the amplitude
of the primordial gravitational waves. Note the specific contribution of the SW, ISW and Doppler
effects, introduced at the beginning of this section, on the CMB temperature power spectrum
shown in Fig. 4.13.

The background cosmological parameters dictate the position of the peaks of the angular
power spectra as well as their relative amplitude. Different set of cosmological parameters pre-
dict different angular power spectra, and fitting the data to these predictions enables to put
constraints on the cosmological parameters, although there are some degeneracies. Similarly, the
two types of initial conditions, adiabatic and isocurvature, also affect the position of the peaks
and their relative amplitude, thus the Planck collaboration has put tight constraints on the possi-
ble amount of isocurvature perturbations in Planck Collaboration et al. (2018d). Fig. 4.14 shows
the effect of the isocurvature mode on the CMB temperature and E mode power spectra for
different models of isocurvature initial conditions: CDM, baryon, neutrino density and neutrino
velocity isocurvature modes, as compared to purely adiabatic initial conditions in blue.

4.3.2 Secondary anisotropies
On top of the primary anisotropies of the CMB induced by the primordial fluctuations in the
early Universe, secondary anisotropies are imprinted on the CMB radiation. Interestingly, these
secondary anisotropies are also induced by the primordial fluctuations produced during inflation
but which are not located where the CMB radiation we observe was emitted. Thus, these
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Figure 4.12: Angular power spectra of temperature and polarisation E and B mode fields. The
cross power spectrum between temperature and E mode fields is also plotted (there is no TB
or EB cross-correlation for symmetry reasons). On the left are the power spectra due to scalar
perturbations while on the right are the power spectra due to tensor perturbations. There is
no B mode generated by scalar perturbations, the one plotted is due to the secondary effect of
lensing by large-scale structures. Figure taken from Challinor (2013).

primordial fluctuations have evolved into structures in the Universe before relic photons cross
them on their way to us. This causes several effects on the primordial radiation: we will list
some of them but this is not an exhaustive inventory (for a review see Aghanim et al., 2008).

Since decoupling, the first event in the history of the Universe that affects the primary
relic radiation is Reionisation. Indeed, when the first stars and galaxies form, new photons are
released in the Universe, and in particular UV photons so that they are able to reionise it. We
have seen in Section 4.2.1 that this process can already affect the black body spectrum of the
relic radiation because this injects energy in it. Actually, it also affects the anisotropies of the
radiation because the new free electrons scattering the relic photons make it more isotropic.
Reionisation affects both temperature and polarisation anisotropies through the thermal and
kinetic Sunyaev-Zel’dovich (tSZ and kSZ) effects we will mention below.

We have mentioned in the introduction of this section 4.3 the Integrated Sachs-Wolf (ISW)
effect, due to changing gravitational potentials: for example, forming structures have a gravi-
tational potential that is changing over time, so that when a photon crosses it, it looses more
energy when going out the potential than it earned falling in, resulting in a net negative balance.
The gravitational potential also changes at late times at matter-cosmological constant equality,
so that the cosmological constant leaves an imprint on the anisotropies of the CMB.
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Figure 4.13: Contribution of the SW effect δγ4 +ψ (magenta); Doppler effect from velocity (blue);
and the ISW effect (green) coming from the evolution of the potential along the line of sight.
The units of the spectrum are arbitrary. Figure taken from Challinor & Peiris (2009).

Figure 4.14: Angular power spectra for the temperature (left) and E mode (right) obtained from
purely adiabatic or purely isocurvature initial conditions. Figure taken from Langlois (2012).

The tSZ effect already mentioned happens in large-scale structures like galaxy clusters or
filaments. These structures are made of hot plasma with temperature around 107 K. Therefore,
inverse Compton scattering takes place with the free electrons inside the structures: the hot
electrons warm up the photons of the relic radiation. This can thus distort the black body
spectrum of the photons by shifting it to higher frequencies and decrease the low frequency part
of the spectrum: this is exactly the Compton distorsion described in Section 4.2.2. This effect
also induces secondary anisotropies in the CMB by changing its temperature locally on the sky
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by (Sunyaev & Zeldovich, 1972; Birkinshaw, 1999; Carlstrom et al., 2002)

∆TSZ = −2
kB

mec2

∫ Lmax

−Lmax

Tened`, (4.54)

where Te and ne are the temperature and number density of the free electrons respectively,
and we have integrated over the line-of-sight (L.O.S.), Lmax being the characteristic length of
the structure along the L.O.S.. If the structure is also moving with velocity v with respect to
the CMB, there is an additional Doppler effect on top of the inverse Compton scattering: this
effect on the CMB is called the kSZ effect and depends on the radial component of the velocity
(Rephaeli & Lahav, 1991; Nozawa et al., 1998).

Finally, other effects induce secondary polarisation anisotropies. This is the case of weak
lensing, which is the deflection of the primordial light by gravitational potentials (like galaxy
clusters) on their way to us. It also impacts temperature anisotropies but the effect is more
important on polarised anisotropies, converting some E modes into B modes and vice-versa. The
third part of this thesis is dedicated to two effects producing secondary polarised anisotropies:
the Faraday Rotation and Faraday Conversion effects in galaxy clusters. These effects peak at
small angular scales, typical of the size of a cluster on the sky, i.e. around ` ∼ 10000. The
Faraday Rotation effect being very similar to the lensing one, it could bias its reconstruction,
even though lensing peaks at larger angular scales ` ∼ 1000. Fig. 4.15 shows the impact of
secondary anisotropies on the CMB temperature angular power spectrum.

Figure 4.15: Left: the temperature anisotropies induced by the kSZ effect predicted from the
numerical simulations of Zhang et al. (2004). For comparison, the contribution from the linear
regime, Ostriker-Vishniac effect, is plotted in dashed line, as well as the primary power spectrum
and thermal SZ spectrum. Right: secondary anisotropies produced by reionization predicted
analytically by Santos et al. (2003). Top thick lines are for the inhomogeneous reionization-
induced fluctuations, while bottom lines are for density-induced fluctuations. The solid thin line
is for the linear Ostriker-Vishniac effect and the dashed one for the non-linear contribution to
this effect. Figure taken from Aghanim et al. (2008).



4.3. ANISOTROPIES 79

Relation to spatial correlation functions
So far, we have only dealt with angular correlation functions and their corresponding angular

spectra, that is correlations among directions on the celestial sphere or equivalently, deviations
from uniformity at a given angular scale. However, we have argued in Section 4.1.2 that the
decoupling of photons is not instantaneous and that the LSS is not properly a surface but has a
relatively small thickness compared to the age of the Universe when photons were released. Thus,
in full generality, one would have to consider the three dimensional spatial correlation functions
of the temperature and polarisation fields. This is even more so relevant when computing the
angular power spectra of the secondary anisotropies of the CMB, as one needs to integrate over
the whole history of the photons since decoupling, so that there is more depth than for primary
anisotropies, and we cannot only rely on the information on the celestial sphere but we need
to model it in the three-dimensional space. The spatial and angular correlation functions are
related by integrating along the L.O.S.. For example, for the spatial two-point (cross-)correlation
function ξXY (r12) and its angular counter-part w

wXY (ψ) =

∫
dr1FX(r1)

∫
dr2FY (r2) ξXY (r12), (4.55)

where FX(r1) and FY (r2) are two projection kernels of three-dimensional physical effects on
the sphere, X and Y stand for the two fields considered. If r1 and r2 are the position vectors
of the two points 1 and 2 considered, then the difference between these two positions defines
r12 ≡ r1 − r2. Again, homogeneity tells that the spatial two-point correlation functions do not
depend on the specific positions r1 and r2 but only on their difference r12 and isotropy tells
that ξ should not depend on the direction between the two positions, so it only depends on
the distance between them r12 = |r12| =

√
r2

1 + r2
2 − 2r1 · r2 =

√
r2

1 + r2
2 − 2r1r2cos(ψ). This

equation is similar to the relation between the angular power spectrum of primary anisotropies
and the primordial power spectra of scalar and tensor perturbations Eq. (4.53). Indeed, the
projection kernels FX(r1) and FY (r2) are the equivalent in real space of the transfer functions
∆X
`,S/T(k, η0) accounting for the evolution since decoupling, as they contain an integration up

to today of the visibility function which peaks at Recombination and Reionisation. The spatial
three-point correlation function ζ and higher order statistics are related likewise to their angular
counterparts.

Finally, the usual Fourier transform of the spatial two-point correlation function defines the
power spectrum

〈X̃(k)Ỹ ∗(k′)〉 = (2π)3δ3(k − k′)PXY (k), (4.56)

where X̃(k) and Ỹ (k′) are the Fourier transforms of the 3D fields X and Y . Statistical homo-
geneity requires that the Fourier components of different k are statistically independent and the
power spectrum PXY (k) only depends on the norm of the wavevector k as a result of statistical
isotropy.

The Limber approximation
A lot of the secondary effects on the CMB happen in the large-scale structures formed since

then, and in particular the galaxy clusters. A useful trick when one wants to correlates two
directions on the sky with small angular separation, or equivalently, large multipole `, like for
example the correlation between two points belonging to the same galaxy cluster (which corre-
sponds to what is called the ‘1-halo’ term of the two-point correlation function) is the Limber
approximation (Limber, 1953; LoVerde & Afshordi, 2008). With the previous introduced nota-
tions, one can relate the angular power spectrum to the standard power spectrum by taking the
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Fourier transform of the fields X and Y

CXY` =

∫
dr1FX(r1)

∫
dr2FY (r2)

∫
d3k

(2π)3
PXY (k)(4π)2j`(kr1)j`(kr2)Y m` (k̂)Y m∗` (k̂), (4.57)

where we have used
eik·r = 4π

∑
`m

i`j`(kr)Y
m∗
` (k̂)Y m` (n̂), (4.58)

and the orthonormality relation Eq. (4.14). The j` are the spherical Bessel functions of the first
kind, related to the Bessel functions of the first kind J by

j`(z) =

√
π

2z
J`+1/2(z). (4.59)

By performing the integral over the solid angle to remove the spherical harmonics, the angular
power spectrum thus becomes

CXY` =

∫
k dkPXY (k)

∫
dr1

FX(r1)√
r1

J`+1/2(kr1)

∫
dr2

FY (r2)√
r2

J`+1/2(kr2). (4.60)

The Limber’s approximation consists in the expansion of the integral of a function multiplied by
a Bessel function, which leads to

CXY` =

∫
dk

k
PXY (k)

FX(r)√
r

FY (r)√
r

with r =
`+ 1/2

k
. (4.61)

Higher order corrections exist to this approximation and can be found in LoVerde & Afshordi
(2008).

The statistics introduced in this chapter are not only useful to study the temperature and
polarisation random fields of the CMB, but also are almost unavoidable when doing observational
cosmology to treat observations. Indeed, the large amount of data encountered when studying
the CMB is not proper to this field but is characteristic of cosmology since the second part
of the XXth century. These tools (and the Limber approximation) are thus also convoked to
study other random fields like the mass density fluctuations field, the galaxy distribution (with
Poissonian statistics) or the gravitational potential field Φ(x) used to describe for example the
effect of weak lensing of the CMB. We will use them in Chapter 8 to study the Faraday Rotation
and Faraday Conversion effects in galaxy clusters.

4.3.3 Reconstruction of the angular power spectra
Up to now we have been very theoretical in defining the statistics one can use to extract infor-
mation about our Universe as they depend, among other things, on the cosmological parameters.
However, the statistics observed are not quite the statistics predicted theoretically from a model.
Indeed, the theoretical predictions involve averaging over an ensemble of realisations of universes,
while observations only give access to a unique realisation of universes: our observable Universe.
Fortunately, the isotropy hypothesis on our Universe allows to measure, for example, the angular
two-point correlation function as an average over the whole sky. One thus implicitly assumes an
ergodic hypothesis about our observable Universe, that is, the correlation functions computed
statistically as averages over different realisations of universe are equal to the averages of mea-
sures over the whole sky. This ‘spatial’ ergodic hypothesis is what enables to relate the theory
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to observations. As the two kind of correlation functions are not quite the same, one needs to
build estimators of the statistical theoretical predictions to compare them to observations. For
example, for the angular power spectrum of the CMB with primary and secondary anisotropies
C`, one builds an estimator as follows

Ĉ` =
1

2`+ 1

∑
m

a`ma
∗
`m. (4.62)

Indeed, statistical isotropy involves that the angular power spectrum C` does not depend on
the multipole m indicating the orientation on the sphere. Thus, the observed angular power
spectrum is obtained by taking the average over orientations, that is by summing over m the
observed harmonic coefficients which are statistically independent, and dividing by their number
equals to 2`+ 1

Cobs
` =

1

2`+ 1

∑
m

|aobs
`m |2, (4.63)

so that the observed angular power spectrum is a measure of the estimator Ĉ`. Now, taking the
average of this estimator over universe realisations, one gets

〈Ĉ`〉 = C`, (4.64)

this property gives the qualifier of unbiased to the estimator. Its variance can be computed and
one gets

〈Ĉ2
` 〉 − 〈Ĉ`〉2 =

2

2`+ 1
C2
` , (4.65)

this variance is the smallest one can get so 〈Ĉ`〉 is the best estimator of C`. However, for a given
`, there are only 2`+1 independent modes to estimate the angular power spectrum and therefore
there is a relative uncertainty on the observed one

〈Ĉ2
` 〉 − 〈Ĉ`〉2
C2
`

=
2

2`+ 1
, (4.66)

which is the largest at low `. This inherent statistical uncertainty is called the cosmic variance.
In practice, this comparison between theoretical predictions and observations is not so easy.

The estimator above is built in the ideal case of a complete sky coverage. In real life, some
proper foreground emissions pollute the CMB signal which are not secondary anisotropies, like
for example the emission by our Galaxy. The easiest way to remove these is to apply a mask
on the observed sky, so that one has an incomplete sky coverage. This has the effect to break
the statistical isotropy so that the covariance matrix now gets off-diagonal coefficients. This is
thus more difficult now to build an estimator of the angular power spectra. When the primordial
scalar and tensor perturbations do not have Gaussian statistics, the angular power spectra do
not characterise completely the statistics and the construction of an optimal estimator is more
difficult.

Conclusion
The CMB is a cosmological observable that allows to both probe the primordial Universe with
its primary anisotropies and understand its recent matter structuring thanks to the secondary
anisotropies. The next part is dedicated to the prediction of primordial adiabatic and isocurva-
ture power spectra in an LQC model of the early Universe while the third part to the prediction
of secondary polarised anisotropies due to the Faraday Rotation and Faraday Conversion effects
in clusters of galaxies.
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Chapter 5

A quantum theory of gravitation:
Loop Quantum Gravity

5.1 Theory: a brief introduction to LQG

5.1.1 Why quantising gravity?

Before presenting the theory of Loop Quantum Gravity (LQG hereafter), I would like to say a few
words on the need to quantise gravity. It might seem obvious that GR has to be quantised: after
all, we know that the theory has some theoretical limitations. If applied to the whole Universe
through the FLRW metric, and with the help of thermodynamics, it predicts a singularity when
going backwards in time: the Big Bang singularity. Indeed, we know from Hubble’s observations
in 1929 that the Universe is expanding, meaning that when going backwards in time, the Universe
should be contracting: actually, until such a point where curvature becomes infinite. The centers
of black holes are also space-time points where a singularity is predicted. Black holes are GR
predicted space-time regions where the gravitational field is so strong that anything which enters
cannot escape from it, even light which travels at the highest speed one can reach. Thus, matter
keeps accumulating and actually concentrating inside black holes, strengthening the gravitational
field which is stronger and stronger the more one gets inside it: again until such a point where the
curvature becomes infinite. There are thus a lot of similarities between the very Early Universe
and the inside of black holes. That GR predicts singularities with curvature becoming infinite is
one thing, but another thing is that from Einstein equations, this implies that energy densities
should also become infinite. Thermodynamics predicts then that these singular space-time points
must be very hot, hence energetic. Thus, one would also need the usual quantum field theory of
interactions (the Standard Model of particle physics) to describe what happens in these space-
time regions, both with GR, since they probe the strong field regime of the theory. Anyway,
one could think of a theory where one has classical GR interacting with quantum fields, like
the developments of quantum field theory in curved space-times (Birrell & Davies, 1984) and
semi-classical gravity. Another idea is the one of Verlinde (2011, 2017) where gravity is seen as
an emergent phenomenon.

We can question the need to quantise gravity; anyway the theory I will expose below proposes
a non-perturbative quantisation of GR, which has to be distinguished from other attempts to
unify gravity with the other three fundamental interactions, that for their part are already
quantised. An example of these theories is string theory, probably the most popular of them,
just to cite one. LQG does not have this ambition, even though to some physicists unifying
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gravity with the three other fundamental quantum field interactions may be the only way to
quantise it. LQG is an attempt to quantise only gravity, without the aim of finding the underlying
common symmetry that would unify it with the other three fundamental interactions. There have
been other attempts in the past to quantise gravity only, one of them being the perturbative
quantisation. In this attempt, GR is approximated by flat space-time plus small perturbations. It
led to the problem of non-renormalisability of the quantum field theory, meaning the perturbative
expansion of the theory has divergent terms. However, we must stress that quantum field theory
is not perturbative by nature. Hence, the failure to quantise gravity perturbatively led to the
developments of the non-perturbative quantisation of GR, and later to LQG.

5.1.2 Hamiltonian formulation of GR

We have seen in Eq. (1.4) that GR is formulated in terms of the Einstein-Hilbert action S

S =
1

16πG

∫
d4x
√−gR, (5.1)

that has to be extremised following the variational principle to get the Einstein equations. Here,
g is the determinant of the metric gµν and R is the scalar curvature. It is an integral over space-
time so that the part which is the integral over space is the Lagrangian L of the theory. GR is
thus a theory treated within the Lagrangian framework. However, either quantum mechanics of
particles or quantum field theories are casted in a Hamiltonian formulation. This comes from the
procedure of canonical quantisation. Theories are usually1 quantised following that procedure:
to do so, their classical formulation have first to be expressed in the Hamiltonian formalism with
a set of canonical variables {qi, pi} for quantum mechanics or {φa(x), π̃a(x)} for quantum field
theories, where the a index labels the possible components of the field or the possible multiple
fields of the theory considered. The space of the {qi} or {φa(x)} is called configuration space.
As we are interested in quantising GR, which is a field theory, from now on we will focus on the
Hamiltonian formulation of field theories. π̃a is the conjugate momentum of the configuration
variable φa defined by π̃a ≡ δL/δφ̇a, where δ is the functional derivative. In principle, one can
easily go from the Lagrangian formulation of a theory to its Hamiltonian formulation thanks to
a mathematical transform called Legendre transform

H (ϕa, π̃a) =

∫
d3x(π̃a(x)φ̇a(x)− L̃), (5.2)

where L̃(x) is the Lagrangian density. In the case of GR, it is given by L̃ =
√−gR/(16πG) and

the usual Lagrangian is simply L =
∫

d3xL̃. After all, analytical mechanics is just about finding
the right variables. Well, it took a while (about 50 years!) for physicists working in the field of
canonical quantisation of gravity to find the right ones, that would ease the calculations. In the
following we will catch a glimpse of the path taken to find the variables of LQG.

5.1.2.1 The 3+1 decomposition

If it was so difficult for physicists to find the Hamiltonian formulation of GR, this is because in
the Hamiltonian formalism one has to treat differently space and time, while GR puts on an equal
footing these two variables. Indeed, the canonical variables introduced above {φa(x), π̃a(x)} are
functions of the position x only, given at each time t. Because in the Hamiltonian formalism,

1The Feynman path integral formulation is another way to quantise a theory, however way more computation-
ally difficult.
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physical quantities evolve in time, that equal footing will unfortunately have to be broken to find
a Hamiltonian formulation of GR. This is done through a foliation of space-time, see Fig. 5.1.
The topology of space-time is thus chosen to be Σ×R, where Σ is a three-dimensional manifold

Figure 5.1: A space-time foliation with space-like hypersurfaces Σt. Figure taken from Grain
(2014).

modeling the space-like surfaces and the real line is the time-like direction. The time-like direction
is given by a 4-vector tµ whose world-line is parameterized by t so that the spatial slices Σ are
the t = constant surfaces. We can also introduce a 4-vector field nµ normal to Σ so that the
spatial metric on Σ is given by:

qab ≡ gab + nanb. (5.3)

We recall that the latin indices a, b go from 1 to 3 and the greek indices µ, ν from 0 to 3. We
must notice that tµ 6= nµ so we can decompose tµ in components normal and tangential to Σ

ta = Nna +Na and t0 = N. (5.4)

N is called the lapse and Na the shift vector: notice this is a regular 3-vector belonging to Σ.
We now have everything needed to write the space-time metric

ds2 = (−N +NaN
a)dt2 + 2Nadtdxa + qabdx

adxb. (5.5)

This is called the 3+1, or ADM decomposition, standing for the names of the physicists who
first introduced it (Arnowitt et al., 2008).

Another relevant quantity that is central in a Hamiltonian formulation of GR is the extrinsic
curvature

Kab =
1

2
Lnqab, (5.6)
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where L is here the Lie derivative, which is a derivative along a vector nc. The extrinsic curvature
thus tells how the spatial metric qab evolves along the normal to the spatial surfaces nµ, so in a
sense how the spatial slices evolve when viewed from the whole space-time: this is the concept
of extrinsic curvature. It is different from the intrinsic curvature which would tell if the spatial
slices are intrinsically curved, like a 2-sphere, but not like a cylinder. The cylinder has an
extrinsic curvature that can only be seen when plunged into a higher three-dimensional space.
Similarly, the fact that a 2-sphere is expanding in time or not can only be grabbed by the notion
of extrinsic curvature, if here the 2-sphere is plunged into a higher 2+1 dimensional space-time.
Indeed, as there is a relation between the time-like vector tµ and the normal nµ to the spatial
slices Eq. (5.4), the extrinsic curvature is related to the time derivative of the spatial metric qab:

q̇ab ≡ Ltqab = 2NKab + LNqab. (5.7)

We now have the canonical variables to write GR in the Hamiltonian formalism: qab is the
configuration variable and its conjugate momentum is related to the extrinsic curvature Kab.
The information of GR is therefore encoded in the spatial metric and its time derivative, or the
extrinsic curvature. As we will soon see, the ‘loop’ in LQG refers to this notion of curvature.

5.1.2.2 GR: a totally constrained system

As I said, analytical mechanics is just about finding the right variables: indeed, a system can be
described using different set of canonical variables {qi, pi} or {Jj , θj} where i and j are indices
running over the number of configuration variables used. This number can be bigger than the
number of degrees of freedom of the system, meaning we are using more variables than what
is really necessary. However, the use of a set of canonical variables may turn out to be more
convenient than using another one. This might also be due to a lack of knowledge about the
degrees of freedom of a system. Anyway, when this is the case, one has to compensate this too
high number of variables by adding constraints between them. Constraints are relations between
the canonical variables that are always satisfied, for example: C(φa, πa) = 0. In this case, the
constraint is also a conserved quantity. Now from Noether’s theorem, we know that conserved
quantities correspond to symmetries in the system or theory. Indeed, if we have m constraints
Ci = 0, the total Hamiltonian is given by

Htot = H +

m∑
i=1

λiCi, (5.8)

where H is the original Hamiltonian of the system and the λi are called the Lagrange multipliers
which can be time dependent. These Lagrange multipliers are unknowns of the system, like
the canonical variables. Suppose one has n configuration variables, one will have 2n equations
of motion given by the Hamilton equations. Given the 2n initial conditions, the solution will
depend on m additional unknowns. The solutions are then all related to each other by the
symmetries of the system corresponding to the constraints Ci. Note that the total Hamiltonian
is a function of the canonical variables, not of the solutions of the Hamilton equations giving the
canonical variables. Hence, the Ci appearing in the total Hamiltonian are the relations between
the canonical variables but for the constraint to be zero, it has to be taken on the solutions of
the Hamilton equations.

In the case of GR, the configuration variable is the spatial metric qab which is a symmetric
tensor, hence the theory has six configuration variables. However we know that GR has only
two degrees of freedom, the two possible polarizations of gravitational waves. Thus, formulated
with these canonical variables, the theory needs to have four constraints. One of them is called
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the Hamiltonian constraint and is associated with the lapse N , which is actually a Lagrange
multiplier. It represents the time invariance reparameterisation of the theory: H = 0, or the
invariance of the theory under deformations of the spatial surfaces since time can be reparame-
terised at any point in space. The other three constraints are a vector constraint associated with
the shift vector Na. The related symmetries are spatial diffeomorphisms: GR is indeed invariant
under spatial coordinate transformations. The total Hamiltonian of the theory is thus only a
sum of the constraints times Lagrange multipliers: GR is what is called a totally constrained
system.

We will now move to a new set of canonical variables, the Ashtekar’s variables, named after
the physicist who introduced them in 1986.

5.1.2.3 Ashtekar’s variables

The Ashtekar’s variables were introduced to make the theory look like the other three funda-
mental quantum field theories,2 in the hope to use the mathematical framework of quantum field
theories in order to quantise gravity. Let us recall that in the Hamiltonian formulation of GR,
the configuration variables are the spatial metric qab of the spatial slices Σ and its conjugate
momentum is related to the extrinsic curvature Kab. We rewrite the spatial metric like

˜̃qab = det(q)qab = Ẽai Ẽ
b
jδ
ij , (5.9)

Ẽai are three vector fields (i = 1, 2, 3) that are orthogonal and called the densitised triads. The
tilde denotes the absorption of a

√
det(q) in the definition of quantities like metric or vectors

and gives the attribute of "densitised". What we can see on this last expression is a mapping
between a possibly curved space qab and flat space δij . The indices i, j are said to be the internal
indices of the theory. Then, instead of using the spatial metric qab as canonical variables, one
can instead use the densitised triads Ẽai . These are ones of the Ashtekar’s canonical variables,
the other ones being related to the extrinsic curvature by:

Aia = Γia + βKi
a, (5.10)

where Γia = Γajkε
jki and Γ j

a k is called the spin connection, Ki
a = KabẼ

bi/
√

det(q) and β is
called the Barbero-Immirzi parameter. The spin connection is the same kind of object as the
usual connection used in GR, or Christoffel symbol. It is used to define a kind of covariant
derivative with respect to spatial coordinates but for objects with internal indices and it is
actually completely determined by the usual connection (Christoffel symbol). To complicate a
little bit, the Aia are also called connections: to be precise, they are su(2) connections. With
these variables, the situation is reversed with respect to the Hamiltonian formulation of GR that
we introduced above: the Aia are the configuration variables and their conjugate momentum are
the densitised triads Ẽai . There are thus nine configuration variables here, while the theory still
has only two degrees of freedom. Thus, in this formulation, there has to be seven constraints.
The Hamiltonian constraint is still one of them, so that the total Hamiltonian of the theory is
again the sum of the constraints times Lagrange multipliers.

A lot, but not all of the difficulties in quantising gravity came from the Hamiltonian constraint.
Indeed, the Hamiltonian itself is a constraint: H = 0. However, the Hamiltonian is always the
energy of the system considered. When the Hamiltonian does not depend on time, the energy
is therefore conserved and from Noether’s theorem it means that the system is invariant in time
or stated otherwise, there is no time evolution of the system. As we already noticed, this is

2To be more precise, written in terms of these variables, the theory looks like a Yang-Mills theory or gauge
theory.
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exactly what happens in GR: the theory is invariant under reparametrisation of time, hence
it is not surprising that the Hamiltonian is a constraint. However, we should emphasize that
the canonical variables we are using here in the 3+1 decomposition are defined on the spatial
surfaces Σ. As is always the case for any system, the Hamiltonian generates its time evolution,
hence it will not have a simple geometric action on these variables. Therefore, when it comes
to quantising gravity, it is difficult to find the wavefunctions of the configuration variables Ψ[A]
(these are the states used in the connection representation, where connection here refers to the
variable Aia) that would be annihilated by the Hamiltonian. So it might be that we have not
quite well chosen the variables to work with. This is one of the reasons why the variables of LQG
have been introduced; we will present them in the following.

5.1.3 Quantisation using loops

As we have stressed in the introduction, LQG is a non-perturbative quantisation of GR. Even
though the quantum version of the three other fundamental field theories is usually worked out
perturbatively, their canonical formulation with a Hamiltonian and canonical variables have the
same structure as GR formulated with Ashtekar’s variables. The quantisation of the theory with
these variables led to the connection representation but unfortunately, it came along with some
technical difficulties. The loop representation of LQG helped solving these difficulties. We go
from the connection representation to the loop one thanks to the loop transform:

Ψ[A] =
∑
γ

Ψ[γ]Wγ [A], (5.11)

where we have expanded the state Ψ[A] onto the basis formed by the {Wγ [A]} which are the
traces of holonomies of the connection:

Wγ [A] = Tr

(
P

[
exp

(
−
∮
γ

γ̇a(s)Aa(s)ds

)])
. (5.12)

The integral inside the exponential is the generalisation of the notion the circulation of a vector
field on a closed loop γ. γ̇a(s) is the tangent vector of the loop and the vector field is just the
su(2) connection Aia. The index a translates the fact it is a spatial 3-vector and the bold font
reminds us its components are su(2) matrices. The exponential of the resulting matrix is defined
by the Taylor expansion of the exponential. However the products of integrals over s have to
be ordered by increasing values of the parameter from the right to the left, as the matrices
do not commute and this is the reason of the appearance of the P operator, which stands for
path ordered. The trace is finally taken and the resulting object is called a holonomy of the
connection3.

In the loop representation, the states basis is almost given by the holonomies {Wγ [A]}. The
situation is very similar to quantum mechanics where one goes from the real space representation
with wavefunctions of the space variables to the momentum representation where states are
wavefunctions of the momentum p by a Fourier transform which is an expansion on the states
basis {exp(ikx)}. Thus, in the loop representation, the states are wavefunctions of the loop γ:
Ψ[γ].

Actually the loop basis {Wγ [A]} is overcomplete, meaning that all the states are not inde-
pendent from each other. To overcome this problem, one instead uses spin network states basis
ψs which is based on spin networks s.

3It is a particular case of a parallel propagator as it is along a closed curve
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Figure 5.2: On the left is the graph of an abstract spin-network, the nodes of which represent the
quanta of space-time illustrated on the right in different shades of grey. Linked nodes indicate
adjacent elementary volumes. Figure from Rovelli (2004)

Some of the difficulties encountered during quantisation with the Hamiltonian constraint are
solved thanks to the use of this states basis. It also helps us visualise the geometric interpretation
of LQG: the spin network is not a discrete version of space but the dual of it. Actually, real space
volumes correspond to vertices and areas to lines of the spin network (cf Fig. 5.2). Even though
many of the technical problems of LQG have been resolved with these variables, the theory is
still incomplete.

5.2 Potential footprints of LQG

Unfortunately, the effects of LQG are expected to be seen at energy, length and time scales orders
of magnitude away from the current experiments physicists do: in fact around the Planck scale
(∼ 1016 TeV) which is fifteen orders of magnitude higher than the energy reached at the LHC (7
TeV). One can have more hope by looking at our observational laboratory being the Universe,
where some astrophysical events involve higher energies. For example, historically the photons
of gamma ray bursts have been thought to potentially bear traces of quantum gravity effects.
Indeed, the discrete nature of space-time would change the dispersion relation for photons so
that high energy photons travel faster than lower energy ones and one would see delays in the
arrival time of rays of different frequencies in the gamma rays (Amelino-Camelia et al., 1998;
Gambini & Pullin, 1999).

Other astrophysical objects to look at when searching for quantum gravity effects are black
holes. Hawking (1971) and Bekenstein (1973) computed the entropy of a black hole to be
proportional to its area, from GR considerations. The same formula has been computed starting
from the more ‘fundamental’ LQG theory, fixing the value of the Barbero-Immirzi parameter
β = 0.274067. This, is not an observable effect of LQG but the consistency with other classical
considerations enables to constrain the parameter of the theory. However, the full study of the



92CHAPTER 5. A QUANTUM THEORY OF GRAVITATION: LOOP QUANTUM GRAVITY

geometry of a black hole horizon in LQG does lead to an observational effect as it predicts
quantum gravity corrections to the Hawking radiation of evaporating black holes. The quantum
corrections translate into a set of discrete frequencies on top of the thermal radiation spectrum
predicted by Hawking for black holes which could potentially be seen if one observed the radiation
emanating from a black hole (Bekenstein & Mukhanov, 1995; Barrau et al., 2011). Still about
black holes, recent research suggests that due to quantum repulsive effects, there is no singularity
inside a black hole but instead what is called a Planck star Rovelli & Vidotto (2014) which could
be a transition state between a black hole and a white hole (Barrau et al., 2014b; Barrau &
Rovelli, 2014).

Finally, the application of the LQG quantisation techniques to the system Universe with the
homogeneity and isotropy symmetries, encoded in the FLRW metric, leads to the field of Loop
Quantum Cosmology (LQC) and replaces the big bang singularity by a quantum big bounce. The
early Universe is thus another laboratory to test the LQG theory. In particular, the perturbations
expected to be produced during inflation in the standard model of cosmology are modified by the
pre-inflationary dynamics that contain quantum gravity corrections (Bolliet et al., 2016; Barrau
et al., 2014a). Part of this thesis deals with the phenomenology of LQC and its observational
effects, and we will explain these last considerations in more details in the next two chapters.



Chapter 6

Application to the early Universe:
Loop Quantum Cosmology

Loop quantum cosmology (abbreviated by LQC) is an application of the LQG theory to the
particular system Universe. Unlike gravity, cosmology is not a fundamental theory but a science
that uses GR and other physical theories to describe the Universe. It is thus natural to apply the
LQG theory to the whole Universe, as GR was applied soon after its publication to the whole
Universe, in 1917. It later led to its description in terms of the FLRW metric we described in
Chapter 1, Section 1.1.1. It is especially natural because this description predicts a singularity
at the origin of the Universe, where quantum effects have to be taken into account within the
strong field regime of GR. But how do we apply LQG to the whole Universe? One would
naturally think we should wait for the theory to be complete in order to apply it to this system.
Indeed, GR was well established by the time it was applied to the whole Universe to later lead
to the current Standard Model of Cosmology, ΛCDM. In particular, it would require to find the
states annihilated by the constraints, and among them the Hamiltonian constraint, and then take
the ones that are on average homogeneous and isotropic (because of the Heisenberg uncertainty
principle, states can have fluctuations around homogeneity and isotropy but not on average, to
stay consistent with the cosmological principle). Such states would describe the Universe as
observations tell it is homogeneous and isotropic on large scales and so translates the fact that
it was homogeneous and isotropic in the past as the large scales we see today correspond to the
Universe scale in the Early Universe.

Finding these states might be difficult and therefore this is not what is done in LQC. In
this chapter, we will explain how LQG is applied to the system Universe by considering a scalar
field as energy content of the Universe. We will see that the Big-Bang singularity is removed and
replaced by a Big Bounce no matter what is the potential of the scalar field. Then we will describe
a model of the Universe with a massive scalar field with quadratic potential as energy content,
focusing first on the background dynamics of this model, showing that with such a matter content,
one is naturally led to inflation in LQC. Secondly, we will describe how perturbations propagate
in this model and show the characteristic features of their power spectra, which depend on the
scale considered. This chapter shows the strategy followed in the next chapter in the simpler
case where one massive scalar field with quadratic potential is considered, where we will present
a model of the Universe with two scalar fields.
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6.1 The Big Bang singularity replaced by a quantum bounce

6.1.1 Semi-classical description of LQC
The idea of LQC is to start from cosmology and use the same techniques as the ones of LQG to
quantize it directly. Another approach would have consisted in quantizing GR and then reduce
the resulting LQG theory to homogeneity and isotropy to produce a new cosmological model of
the Universe. Instead, one starts with the already reduced version of GR, that is the Universe
described by the FLRW metric, and then apply the techniques of LQG to quantize it. This
approach is called the mini-superspace approximation.

In order to do so, we will have to go through all the steps we described in the previous
chapter. First, write the cosmological theory in the Hamiltonian formulation. With the FLRW
metric Eq. (1.7), the Ashtekar’s variables for space-time are the following:

Aia = c δia and Ẽai = p δai , (6.1)

with c = β ȧ and p = a2, where a is the scale factor of the ΛCDM model and β is the Barbero-
Immirzi parameter we already saw in the previous chapter. This pair of canonically conjugate
variables satisfy the Poisson bracket

{c, p} =
8

3
πGβ. (6.2)

For the FLRW metric not to model the only vacuum which would be represented by a trivial
space-time, the Hamiltonian of the theory must be coupled to matter. For a matter content of
the Universe described by a homogeneous scalar field ϕ whose canonical variables are written ϕ
and πϕ with Poisson bracket {ϕ, πϕ} = 1, the Hamiltonian constraint for such a cosmology is
given by

H = − 3

8πGβ2
c2
√
p+

π2
ϕ

2p3/2
+ p3/2V (ϕ), (6.3)

where V is the potential of the scalar field. The first term is the Hamiltonian of the geome-
try of the Universe corresponding to the curvature of space-time and the last two terms cor-
respond to the Hamiltonian of the scalar field which is just the energy density of the matter
field. Their sum equals zero as the total Hamiltonian vanishes. Then, it leads to the usual
equations of cosmology, the Friedmann’s equations, by combining the Hamilton’s equations
ṗ = {p,H} = −(8πGβ/3)∂H/∂c and ċ = {c,H} = (8πGβ/3)∂H/∂p with the constraint equa-
tion H = 0. Furthermore, the Hamilton’s equations for the field π̇ϕ = {πϕ,H} = −∂H/∂ϕ and
ϕ̇ = {ϕ,H} = ∂H/∂πϕ lead to another equation which is the Klein-Gordon equation. Note the
different normalisation for the Poisson bracket of the cosmological variables c and p Eq. (6.2) and
the Poisson bracket for the field ϕ and its conjugate momentum πϕ with usual normalisation to
1. Hence we stress that there is nothing quantum at this stage and this is just a reformulation
of the classical hamiltonian of the cosmological model with the Ashtekar’s variables.

The historical quantum cosmology model was the Wheeler-De Witt quantization and was
based on a variant of this set of canonical variables with the spatial metric qab being the configu-
ration variable, related to the densitised triad Ẽai by Eq. (5.9). Unfortunately, it did not remove
the singularity at the origin of the Universe. Anyway, these variables are not the analogous of
the variables of LQG. Indeed, we have seen in Eq. (5.12) that the configuration variables are not
the Ashtekar’s connections but holonomies of the connections. This comes from the fact that the
Ashtekar’s configuration variables Aia are here proportional to the connection curvature (which is
a curvature in the internal SU(2) space of LQG, and not curvature of space-time, but is related
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to it) and that in LQG-like quantization of theories, space and in particular areas are quantized.
The minimum physical surface value is given by the smallest eigenvalue of the physical area
operator: ∆ = 4π

√
3β`2Pl. Thus, it is no longer possible to compute the curvature at a single

point, hence the use of holonomies of the connection: instead, curvature is computed along a
loop enclosing an elementary space cell. Actually, this connection curvature at a point can be
computed classically along such a loop by taking the limit where the surface shrinks to a point.
Now in LQC, one cannot take this limit as there is a non-vanishing minimal size for surfaces,
so connection curvature is computed by taking the limit where the surface goes to its minimum
value and not zero. This procedure is thus a curvature regularisation. The regularisation is made
on physical surfaces as otherwise the elementary cells would expand with the Universe. As space
homogeneity is assumed in our model of the Universe, we take space to be composed of identical
elementary cells with comoving perimeter λ. In full generality, one should compute the curvature
at every point but because of homogeneity, its value is the same everywhere. The holonomies of
Eq. (5.12) are thus given by hλ = exp(iλc). The integral in Eq. (5.12) was easy to perform: Aia
is proportional to a Kronecker delta and thanks to homogeneity c only depends on time. With
these variables, the Hamiltonian constraint can be written as an effective Hamiltonian constraint
thanks to the regularisation procedure that we will not detail here, which is similar to what is
done in LQG to solve the technical difficulty to promote the Hamiltonian constraint to an oper-
ator with the Ashtekar’s variables. Indeed, one cannot promote Eq. (6.3) to a quantum operator
as curvature, hence c cannot be computed at a single point. In the following expression, c is
therefore replaced by sin(λc)/λ so that we recover the expression Eq. (6.3) in the limit where
λ→ 0

Heff = − 3

8πGβ2

sin2(λc)

λ2

√
p+

π2
ϕ

2p3/2
+ p3/2V (ϕ). (6.4)

This regularisation is done at an effective level here but at a quantum level one would have to
consider space states with real areas encompassed by loops to derive the quantum Hamiltonian
and then an effective one starting from it. We see on that expression that only the geometrical
part of the Hamiltonian constraint has changed which is not surprising since only the variables
associated with the geometry of space-time have changed. The λ parameter is the comoving
length of a loop so that the sine function can be expanded in terms of holonomies hλ. Thus,
it is this expression that would be promoted to a quantum operator, even though as areas are
quantized in LQG, the loop cannot be shrinked to a point in the quantum theory by taking
the limit λ → 0. This is the reason why the loop quantum version of cosmology have different
properties than the classical theory: this particularity allows us to get rid of the Big Bang
singularity. One can compute the minimal value of λ thanks to the smallest eigenvalue of the
physical area operator giving λ =

√
∆/p.

6.1.2 Modified Friedmann’s equations and bouncing cosmologies

Instead of entering into the details of the quantization of the constraints and operators, we will
work directly with the semiclassical theory of Eq. (6.4). As it is different from the rewriting of
classical cosmology given by Eq. (6.3), the equations of motion will be different than the classical
Friedmann’s equations encountered in Chapter 1, Section 1.1.1. Indeed, the equations of motion
give a modified Friedmann equation derived by combining the evolution equation given by the
Hamilton’s equation ṗ = {p,Heff} with the constraint equation Heff = 0

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
, (6.5)
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where ρ is the total energy density and ρc its critical value obtained thanks to the minimum area
value ∆ and given by

ρc =
3

8πGβ2λ2p
=

3

8πGβ2∆
. (6.6)

A modified Raychaudhuri equation can be derived likewise

Ḣ = −4πG(ρ+ P )

(
1− 2ρ

ρc

)
, (6.7)

where P is the pressure. We stress that H here is the Hubble parameter and not the Hamiltonian
constraint. As we said earlier, Hubble’s observations in 1929 showed the Universe was expanding.
Thus, the backwards evolution of the Universe is a contraction, translating in the scale factor a
becoming smaller and smaller and the energy density ρ consequently becoming bigger and bigger,
as shown in the standard Friedmann’s equation Eq. (1.16). In the Standard Model of Cosmology,
nothing prevents the energy density to blow up to infinity as the scale factor reaches 0. Indeed,
the classical Raychaudhuri equation Eq. (1.16) shows that Ḣ ∝ −ρ so that the forward expansion
of the Universe decelerates. It means that going backwards in time, the contraction never stops
and actually accelerates more and more as ρ increases, remembering that H measures the rate of
expansion/contraction of the Universe. Thus the Hubble parameter becomes infinite when the
scale factor vanishes, as shown for t = 0+ in Fig. 6.1: this is the Big Bang singularity. However,
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Figure 6.1: The Hubble parameter H in classical cosmology (blue) and in LQC (orange) for a
Universe with a massive scalar field for only matter content. For t > 0, H > 0 meaning the
Universe is expanding from t = 0. In classical cosmology, at t = 0+, H → +∞ meaning that
looking backwards in time from today, the Universe is contracting faster and faster approaching
t = 0 so that at this point there is a singularity: this is the Big Bang singularity of the FLRW
model of the Universe. We also draw the classical value of H for t < 0 for an hypothetical
contraction previous to the Big Bang singularity: H < 0. The Hubble parameter shows a
regular behaviour in LQC with two turning points (in red), occurring when ρ = ρc/2, and a
vanishing value at t = 0 (green dot) when ρ = ρc, replacing the big-bang singularity by a regular
big-bounce.
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the equation Eq. (6.5) tells a slightly different story that has a drastic change for the origin of
the Universe. Of course the backwards evolution of the Universe is a contraction and the scale
factor decreases back to the origin. At the same time, the energy density increases until such a
point where ρ = ρc. But at that point, the Hubble parameter H vanishes for a non-zero value of
the scale factor. Then, the backwards evolution of the Universe has to expand as ρ > ρc would
give unphysical solutions of Eq. (6.5) for the scale factor: so ρ has to decrease after reaching
ρc, meaning the Universe is expanding if one looks backwards in time after the instant when
ρ = ρc. This behaviour is usually called the Big Bounce and replaces the Big Bang singularity
at the origin of the Universe: it can be seen as a quantum repulsive effect due to the fact that
volumes are quantized with a minimum eigenvalue in LQC, so that the energy density cannot go
to infinity. This Big Bounce instant allows to connect the classical contracting branch shown in
Fig. 6.1 for t < 0 with the classical expanding branch for t > 0 with a Hubble factor vanishing at
t = 0. Therefore, if one goes back in time, there must be two turning points where the derivative
of the Hubble parameter vanishes, i.e. the Raychaudhuri equation Eq. (6.7) vanishes, one when
t > 0 and one when t < 0, in order to connect the two branches of Fig. 6.1. These turning
points must happen before ρ = ρc as this instant corresponds to H = 0. As ρ + P > 0, the
Raychaudhuri equation shows that Ḣ = 0 when ρ = ρc/2 where H reaches its extremum value
given by ±1/(β

√
∆). From this point then, Ḣ changes sign: while classically the contraction

accelerates going back in time, here it stops accelerating when ρ = ρc/2 and then decelerates.
When ρ = ρc, the Hubble parameter vanishes and changes sign since Ḣ stays positive even
when t < 0 while ρ < ρc/2, and Ḣ(0) has a finite value: the Big Bounce is said to be regular.
Therefore, the Universe is expanding when one goes back in time before t = 0 and the expansion
accelerates until ρ = ρc/2 where it starts decelerating.

One can be skeptical about this analysis as we worked with the semiclassical theory. However,
the Big Bounce is also the conclusion of the quantized theory of this simple cosmology with the
same value of the critical density so that we can effectively work with the semiclassical theory.
Actually, the solutions of the semiclassical equations like the scale factor a, are the expectation
values of the corresponding operators on the background wavefunction of the Universe. This
wavefunction can be decomposed into sharply peaked states of operators around their most
probable values. Therefore, making the full quantum gravity treatment whose solutions are
sharply peaked states or using the effective semiclassical theory with solutions that are the most
probable values of these states, is equivalent.

6.2 LQC with one scalar field

6.2.1 Inflation in LQC

As in the next chapter we will work with two scalar fields as an effective matter content of the
Universe, we can get some inspiration by what has already been done with one massive scalar
field as matter content, both at the background level and for the matter perturbations. The
motivation for incorporating a massive scalar field in the LQC framework comes from inflation.
Indeed, the resolution of the initial singularity by the bounce works well with a massless scalar
field without potential, but no inflation phase follows the bounce. Thus, one would want to
enhance the model by adding a massive scalar field as it is the simplest model of inflation, see
Chapter 2, Section 2.2.3, that is not ruled out by CMB observations (Planck Collaboration et al.,
2018d). The simplest potential one can choose is the m2ϕ2/2. We now know it is ruled out by
CMB observations (see for example Fig. 12 of Planck Collaboration et al. (2018d) for constraints
on the inflation potential that are degenerated with the number of e-folds), but at the time the
model was proposed it had not been yet. However, changing the potential does not change the
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qualitative features of the model.
The background equations of motion for this simple model of the Universe are given by the

modified Friedmann’s equation Eq. (6.5) and the Klein-Gordon (K-G) equation for the massive
scalar field ϕ H2 =

8πG

3
ρ

(
1− ρ

ρc

)
,

ϕ̈+ 3Hϕ̇+m2ϕ = 0,

(6.8)

where m is the mass of the scalar field, the dot derivative is here with respect to cosmic time.
Indeed, one can show that the K-G equation can be derived by combining the modified Ray-
chaudhuri equation Eq. (6.7) with the derivative of the modified Friedmann equation Eq. (6.5)
since ρ+ P = ϕ̇2 and ρ = ϕ̇2/2 +m2ϕ2/2 by assuming a quadratic potential for the scalar field:
V (ϕ) = m2ϕ2/2. As the motivation for introducing a massive scalar field in our model comes
from inflation, it would be good for consistency that inflation is part of our model. Actually, as
noticed in Mielczarek (2010), slow-roll inflation seems a natural feature of LQC. Indeed, during
the contraction phase previous to the bounce, the Hubble parameter is negative. Therefore, the
K-G equation Eq. (6.8) is the equation of an amplified harmonic oscillator as the 3Hϕ̇ is an an-
tifriction term, so that the oscillations of the field ϕ are amplified during the contraction. Hence,
even if the scalar field is initially at the bottom of its potential well but with a small non-zero
velocity ϕ̇ in the far past of the contraction, it climbs up the potential through this contraction
so that after the bounce, when initial conditions are usually taken for the inflation phase, there
is enough potential energy in the field to start a long enough period of inflation, as its duration
is given by the number of e-folds is N ≈ 2π

ϕ2
ini

m2
Pl
: the inflationary conditions are thus easily met.

This is illustrated in Fig. 6.2; the evolution of the scalar field can be decomposed into four phases.
First, the field shows an oscillatory behaviour during the contraction phase where ρ� ρc, H < 0
and H2 � m2: the antifriction term is therefore small enough to solve the K-G equation with
an oscillatory field with slowly growing amplitude. Then the bounce occurs for H2 � m2 and
ϕ̇2 � m2ϕ2: the large kinetic energy in the field allows it to climb up its potential so that it
ends up with a large fraction of potential energy. One notes the hypothesis on the kinetic energy
dominated bounce as one would need to take into account quantum backreaction effects other-
wise (Bojowald, 2008), so that the effective Hamiltonian would be modified and consequently
Eq. (6.5). From there, a phase of slow-roll inflation can follow, characterised by the slow-roll
conditions ρ � ρc, H > 0, H2 � m2 and m2ϕ2 � ϕ̇2. Finally, when inflation ends, a phase of
post-bounce oscillations similar to the oscillations occurring during the contraction takes place
where ρ � ρc, H > 0 and H2 � m2. This evolutionary scenario is consequently named the
shark-fin evolution because of the shape of the evolution of the field through time. The initial
conditions for inflation are thus naturally encountered in LQC thanks to the contraction phase.
Actually, this is not surprising as it is not a specific feature of LQC: indeed, people have shown
that inflation is an attractor (Bond et al., 1988), even in the classical model of cosmology.

6.2.2 Main phases of the bouncing Universe: contraction, bounce and
expansion

This is however not the only possible evolution of the field as the evolution also depends on
the initial conditions. However, it has been shown to be the most probable one, as we will see,
the dynamics being quite natural as explained above. To see it, analytic approximations have
been derived for the solutions of this simple model of the Universe in Linsefors & Barrau (2013).
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Figure 6.2: A natural evolutionary scenario in LQC: the shark fin-type evolution of a scalar field
with m = 10−3mPl. The (red) dot represents the point where the initial conditions in classical
cosmology are usually set. Notice the rescaling of time in mt. Figure taken from Mielczarek
(2010).

Defining the fractions of potential x and kinetic y energy by
x ≡ mϕ√

2ρc
,

y ≡ ϕ̇√
2ρc

,
(6.9)

so that the energy density of the matter field is given by

ρ = ρc(x
2 + y2), (6.10)

the K-G equation for this model of the Universe Eq. (6.8) can be rewritten using these variables
as a set of two first order differential equations{

ẋ = my,

ẏ = −mx− 3Hy.
(6.11)

Thanks to these equations, they showed that in full generality, the evolution of the very Early
Universe can be decomposed into five phases in this model, where different hypotheses run them.

1. First, the prebounce oscillations. During this phase, ρ � ρc, H < 0, H2 � m2 so that the
Universe can be described classically by Eq. (1.16). As already noted, one can neglect the
second term in the second equation Eq. (6.11) so that x and y are oscillating functions of
frequency m with growing amplitudes given by

√
ρ/ρc. Then one can introduce an equation

for ρ by taking the derivative of Eq. (6.10)

ρ̇ = −6Hρcy
2, (6.12)

which can be analytically solved. This phase ends when one of the three hypotheses running
it is violated, leading to the second following phase.
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2. Slow-roll deflation: the condition on the Hubble parameter is violatedH2 � m2 but one is still
far from the bounce ρ� ρc. If, by chance, at the same time x2 � y2 and y = sign(x) m√

24πρc
,

then y is almost constant and |x| is consequently linearly growing, hence the name slow-roll
deflation. It is however not very probable as it occurs for very specific conditions for x and y
at the end of the prebounce oscillations: slow-roll deflation is said to be unstable.

3. Superdeflation, bounce and superinflation: as the slow-roll deflation is unstable, it can be
that the kinetic energy dominates over the potential energy at some point: y2 � x2. This
phase is also characterised by H2 � m2 and ρ . ρc: one therefore needs to take into account
the quantum effects, i.e. the evolution of the Universe is described by Eq. (6.5). During
this phase, ρ > ρc/2 so even though the equation of state forbids an accelerated expansion,
the quantum corrections in the modified Raychaudhuri equation Eq. (6.7) involves that Ḣ >
0. Thus, the Hubble factor H increases rapidly (ρ also increases and Ḣ ∝ ρ2), hence the
names ‘superdeflation’ and ‘superinflation’, but the slow-roll conditions are not necessarily
met. Meanwhile, the fraction of potential energy x grows or decreases rapidly while y decreases
to zero, leading to the following fourth phase.

4. Slow-roll inflation: this is the symmetric version of slow-roll deflation with respect to the
bounce. Hence, during this phase ρ � ρc, H > 0, H2 � m2 and x2 � y2 as |x| grew
rapidly during the previous phase so that the condition y2 � x2 is violated. If this condition
is violated before the condition on H, one is naturally led to the desired phase of slow-roll
inflation by having a large fraction of potential energy in the field not long after the bounce,
see Fig. 6.2. Because y = −sign(x) m√

24πρc
is an attractor and y is almost constant, |x| is

linearly growing: the slow-roll conditions are met. Inflation is therefore stable, until one of
the two last conditions is broken.

5. Finally, the condition on the Hubble parameter is violated: H2 � m2 and ρ � ρc, H > 0.
This signs the end of inflation and starts a post-bounce oscillations phase, similar to the first
phase and symmetric to it with respect to the bounce. The field and its derivative oscillate
with frequency m and decreasing amplitude given by

√
ρ/ρc with ρ solving Eq. (6.12). If

coupled to other (SM) fields, this last phase corresponds to reheating in the standard model
of cosmology, the Universe being therefore described classically.

6.2.3 Main classes of cosmic evolution

As we will see and as already explained, inflation is the most probable evolution for such a massive
scalar field during the very Early Universe. However, we have also shown a phase called slow-
roll deflation can occur after the pre-bounce oscillations during the contraction, even though this
phase is unstable. In Fig. 6.3, we show different examples of evolutions of the scalar field through
the variable x ∝ ϕ. The linear behaviour of x for t > 0 characterises the slow-roll inflation phase
as in the shark-fin evolution. This same linear behaviour for t < 0 characterises the slow-roll
deflation phase. The bottom left plot shows a solution with deflation but no inflation and is
not very probable. Another possible trajectory is a solution with both deflation and inflation
as shown in three of the plots, like the upper right one. These trajectories are also unlikely as
they contain a deflation phase. One can show as in Mielczarek (2010) that one needs a small
fraction of potential energy at the bounce to initiate a long enough phase of slow-roll inflation.
This is illustrated in Fig. 6.4: the x = 0 case corresponds to no potential energy at the bounce
and results in symmetric phases of deflation and inflation. This trajectory is not very probable
as it corresponds to a very specific choice of initial condition for x at the bounce t = 0. This
figure also shows the higher the fraction of potential energy x at the bounce, the higher the value
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Figure 6.3: Examples of evolutions of the normalised value of the field x = mϕ/
√

2ρc as a
function of time for different solutions. The linear increase (decrease) of |x| is the slow-roll
deflation (inflation) phase, and the almost vertical increase or decrease of x is the superdeflation,
bounce, and superinflation phase. A solution with no deflation at all like in the upper middle
plot is by far the most probable. The mass of the scalar field used here is m = 10−3 but the
features remain true for any mass. Figure taken from Linsefors & Barrau (2013).

reached by the scalar field after the bounce, and we recall that a high value is needed to start a
long enough phase of inflation.

We kept on saying that trajectories with slow-roll deflation were not very probable while those
with inflation were extremely probable. Indeed, it has been shown in Linsefors & Barrau (2013)
that slow-roll deflation was unstable while slow-roll inflation was stable, see Sec. 6.2.2. But why
is it so? One could argue that slow-roll deflation is just slow-roll inflation for a Universe where
time is reversed. Indeed, the equations of motion for the Universe are reversible in time so that
the inflation phase can be seen as a deflation phase if one evolves the Universe backwards. This
is indeed the case, but in our description of the Universe, we chose a direction for time where
the Universe evolves causally from the past to the future. This sets the initial conditions for the
scalar field in the far past where it behaves like dust during the pre-bounce oscillations. As the
time symmetry is broken, slow-roll deflation is therefore unstable and not very probable, while
it is the contrary for slow-roll inflation.

6.2.4 Probability of inflation

When one talks about the initial conditions of the scalar field, one actually talks about their
Probability Distribution Function (PDF), as one cannot know exactly what would be the value
of the scalar field and its derivative initially, so one can at most give it a PDF. As one actually has
no guess on what this PDF might be, we will take the uniform PDF in order to be conservative.

As we set the initial conditions in the remote past contracting and oscillating phase, we first
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Figure 6.4: Time evolution of the scalar field. Different evolutionary scenarii leading to a slow-
roll inflation phase are displayed. The bottom (solid) line represents the symmetric case. The
middle (dotted) line represents the shark fin-type evolution. The top (dashed) line corresponds to
a larger fraction of potential energy. For all curves m = 0.01mPl. Figure taken from Mielczarek
et al. (2010).

need the analytic approximated solutions for this period (Linsefors & Barrau, 2013)

ρ = ρ0

(
1− 1

2

√
24πGρ0

(
t+

1

2m
sin(2mt+ 2δ)

))−2

, (6.13)

and 
x =

√
ρ

ρc
sin(mt+ δ),

y =

√
ρ

ρc
cos(mt+ δ),

(6.14)

where ρ0 and δ are initial free parameters. One notices that changing the value of ρ0 just
corresponds to a shift in the origin of times and a redefinition of δ. Thus, the only relevant free
parameter is δ. Setting the initial conditions for the scalar field during this phase amounts to
set their initial PDF and as there is only one free parameter, this is finally equivalent to set the
initial PDF for δ. As there is no knowledge of what the value of this parameter should be, a
flat probability distribution has been taken. This flat PDF will be preserved during the whole
pre-bounce oscillating phase meaning that once the solutions for the field are evolved with time
according to Eq. (6.14), δ still have the same flat PDF at any time provided one is still within this
phase. Thus, any prediction made from this initial PDF will not depend on the specific choice
for the value of ρ0. This comes from what is explained above: a time shift results in a change in
ρ0 (if we take some later time to be the origin of time, the new initial value of ρ has changed)
which redefines δ, but as the flat PDF for δ is preserved during the pre-bounce oscillating phase,
the initial value for ρ does not change the predictions made within this choice of initial PDF.
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Hence, in addition to being the natural choice of distribution for a process with no knowledge,
it is also consistent as it does not require specific knowledge on the value of the energy density
at some time.

The fraction of potential energy at the bounce, xB , and the duration of slow-roll inflation in
number of e-folds, N , have been computed with this initial PDF in Linsefors & Barrau (2013)
and are given in Fig. 6.5 left and right respectively. They showed that the most probable value
for xB was 3.55 × 10−6 (which scales as m log(1/m), with m � 1 in Planck units) which is
consistent with the treatment where the bounce is kinetic energy dominated so that one can
indeed neglect the quantum backreaction effects. This small fraction of potential energy at the
bounce as the most probable value confirms that trajectories with no slow-roll deflation are the
most probable ones. Furthermore, the duration of inflation is computed by N = 4πρc(xmax/m)2

where xmax is the highest value reached by the scalar field after the bounce, which starts the
phase of slow-roll inflation and the most probable value is found to be N = 145 e-folds. Thus,
trajectories with no slow-roll deflation but with a long enough slow-roll inflation are the most
probable ones, as already anticipated in Sec. 6.2.2 where the different phases in the very Early
Universe are described. Inflation is thus natural and occurs without fine-tuning in this simple
model of LQC.

Figure 6.5: PDF of sign(yB)xB on the left and of the number of e-folds of slow-roll inflation N
on the right. Figure taken from Linsefors & Barrau (2013).

Taking the initial PDF for the scalar field during the pre-bounce oscillations phase is a choice
motivated by the causal evolution of the Universe from the past to the future. The scalar field
existing prior to the bounce in this model, it is believed to later lead to a period of slow-roll
inflation, so the initial conditions for inflation usually needed in the standard model are pushed
back to the pre-bounce oscillations phase. This is however not the choice of Ashtekar & Sloan
(2011): the absence of information on what the initial conditions of the scalar field would be led
them to consider a flat PDF over the Liouville measure on the phase-space of solutions. This
Liouville measure is ‘canonical’, as they state, and preserved over time so likewise the choice
of Linsefors & Barrau (2013), it is consistent. However, as the total measure on the space of
solutions is infinite, it requires to choose a time slice to set the initial conditions. In LQC, there is
a ‘canonical’ time slice corresponding to the bounce surface so that initial conditions are specified
there. Then they found that the probability of having a slow-roll inflation with a quadratic
potential for the inflation field whose initial conditions are compatible with the seven year WMAP
data (Komatsu et al., 2011) is greater than 0.999997. The slow-roll inflation compatible with
observations does not occur only in the extreme kinetic energy dominated bounce: that is, if
the fraction of the total energy density which is in the potential at the bounce x2

B is less than
7.35 × 10−6. Therefore, it confirms the attractor behaviour of slow-roll inflation even in LQC
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dynamics when a massive scalar field with quadratic potential dominates its evolution. No fine-
tuning is required for a long enough inflation to occur and even for inflation with initial conditions
that are compatible with observations. It is then also consistent with the above analysis where
initial conditions are set during the pre-bounce oscillating phase, see also Bolliet et al. (2017) for
more details.

6.3 Cosmic perturbations in bouncing universes

Even though LQC solves the Big Bang singularity problem and allows to reach high energies in
a regular fashion so that the initial conditions for an inflation phase are met (when coupled to a
massive scalar field with a quadratic potential), the modified dynamics of this Universe does not
provide concrete observables, so the dynamics does not have predictive power. Indeed, one would
need to look at our Universe from a 5th dimension in order to do so. Nonetheless, the Universe
is not purely homogeneous and isotropic and contains initial perturbations that translate into
CMB anisotropies in temperature and polarisation and later into large-scale structures as seen
in Chapters 3 and 4. These initial perturbations are thus observable through their effects on
cosmological observables. The question is then: could we use these observables to constrain
LQC? Stated otherwise: does LQC make predictions different from the Standard Model for
these observables? As we will soon see, the answer is yes: the bouncing dynamics of LQC
modifies in itself the production of these perturbations and the very equations of motion for the
perturbations are different than in the Standard case, all of this translating in different angular
power spectra for the perturbations at the end of inflation. The next section is devoted to the
two different approaches for deriving the equations of motion for these perturbations within the
LQC framework.

6.3.1 Equations of motion for the perturbations

Within the LQC framework, there exists two main approaches to model these cosmological
quantum perturbations corresponding to the level at which they are modeled.

6.3.1.1 Deformed algebra approach

One of these approaches is called the deformed algebra approach and operates at the semiclassical
level of the theory. Indeed, the strategy consists in starting from the semiclassical Hamiltonian
of the quantized FLRW theory and add semiclassical first order perturbations to it. The name
‘deformed algebra’ stands for the way the perturbations are derived. Indeed, the constraints of the
(quantized) FLRW theory form an algebra called the algebra of constraints. When perturbations
are added, the constraints no longer form an algebra but anomalies are added on the right-hand-
side of the Poisson bracket. The strategy then is to correct these anomalies by changing the
structure functions and by adding counter-terms to the perturbed Hamiltonian that correct the
anomalies. The semiclassical effective equations of motion for the scalar and tensor perturbations
described by the Mukhanov-Sasaki variables as in Chapter 3 are derived thanks to this procedure

v′′ − Ω(η)∆v − z′′

z
v = 0, (6.15)

with

Ω(η) =

(
1− 2

ρ(η)

ρc

)
, (6.16)
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and, as away from the bounce ρ� ρc, Ω→ 1. The derivative ′ is with respect to conformal time
η and ∆ is the Laplacian; z is a function of the background given by

zS(η) =
a2(η)ϕ′(η)

a′(η)
or zT(η) =

a(η)√
Ω(η)

, (6.17)

for the scalar and tensor perturbations respectively. For the case of the scalar perturbations, this
function is exactly the same as classically, see the first equation of Eq. (3.59), but is different for
the tensor perturbations.

6.3.1.2 Dressed metric approach

The other approach, developed in Agullo et al. (2013a), works upstream: it uses again tech-
niques of LQG as what was done to build a quantized version of the FLRW model of cosmology
in LQC, see Sec. 6.1. Indeed, it starts with a truncated classical phase space of GR coupled
to a scalar field corresponding to the homogeneous and isotropic background plus first order
inhomogeneous perturbations: the truncation is made to second order in the first order pertur-
bations. The Hamiltonian for this model can be decomposed into two parts: one governing the
dynamics of the FLRW background, written H0, and one governing the dynamics of the pertur-
bations, H1. Then the quantum Hamiltonian corresponding to this phase-space is worked out by
finding the quantum geometry of this model. The quantum Hamiltonian operators are respec-
tively Ĥ0 and Ĥ1, and Ĥ0 is already known from the LQC framework as mentioned in Section
6.1. Then, the approximation that the backreaction of the perturbations on the background is
negligible allows to write physical states Ψ as a tensor product between a state describing the
background quantum geometry Ψ0 and a state describing the linear scalar and tensor pertur-
bations ψ: Ψ = Ψ0 ⊗ ψ. Thus, the background is quantized separately from the perturbations:
this is the Born-Oppenheimer approach. Then, it is shown that the evolution of the quantum
gauge perturbations Q̂ and T̂ on the background geometry is equivalent to their evolution on an
effective background metric g̃ab ‘dressed’ with quantum corrections which, away from the bounce,
tends to the FLRW metric. This ‘dressed metric’ depends on the expectation value of the sharply
peaked wavefunction Ψ0 representing the background geometry and captures some fluctuations
of the metric essential for describing the evolution of the quantum perturbations. Thus, finally,
the semiclassical effective Hamiltonian for the perturbations is derived to second order in the
first order perturbations (in fact, it is quadratic in the linear perturbations, as when one derives
the equations of motion, one order is lost). Hence, the semiclassical effective equations of motion
for the scalar and tensor perturbations are also derived

v′′ −∆v − 〈ẑ
′′〉
〈ẑ〉 v = 0, (6.18)

where 〈.〉 gives the quantum expectation value of a quantum operator on the background quantum
geometry and 〈ẑ〉 is not necessarily the same as their classical expressions or the ones given
by the deformed algebra approach. The ‘dressed metric’ approach for deriving the quantum
cosmological perturbations equations is therefore similar to what is done to find the semiclassical
effective Friedmann’s equations.

The two frameworks for the quantum perturbations allow us in the end to compute the power
spectra of scalar or tensor perturbations. The differences in the two approaches mainly show
up at high wavenumbers, i.e. in the Ultra Violet regime. Strictly speaking, in this thesis we
have not used either of these approaches but considered the standard equations of motion for
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the evolution of the quantum linear perturbations on the classical FLRW model of the Universe.
This is motivated by the fact that away from the bounce, both of these approaches reduce to this
classical procedure. Only during the bounce we replace the Friedmann’s equation by its LQC
modified version Eq. (6.5), keeping in mind that for further developments a more consistent LQC
treatment should be made of these perturbations. Anyway, in a sense the approach followed in
this thesis is close to the dressed metric one as the expectation values of the functions appearing in
the equations of motion Eq. (6.18) are computed on the sharply peaked states of the background,
and this is what is captured in the semi-classical background function z, as this last one is instead
composed of the expectation values of functions taken on the sharply peaked states computed
through the effective modified Friedmann’s equations Eq. (6.5).

6.3.2 Predicted primordial power spectra

Some work has already been done in LQC for the perturbations of a scalar field with a quadratic
potential in Schander et al. (2016) and for the tensor perturbations in Bolliet et al. (2015); Lin-
sefors et al. (2013). The equations of motion are given by Eq. (6.15) and as already stated above,
Ω → 1 away from the bounce, or by Eq. (6.18). Analytic approximations for the perturbations
have been derived in the past contracting phase where the initial conditions are set: we will get
some inspiration from what has already been done for our work.

In this section, we will focus on the power spectra of the tensor perturbations at the end of
inflation in the dressed metric approach, as this is the closest to ours, to describe some of its
characteristic features. We illustrate the case of the tensor perturbations as it is simpler but the
strategy and the features of the power spectra remain the same for the scalar perturbations. The
equations of motion for the tensor modes are given by Eq. (6.18)

v′′T −∆vT −
〈ã′′〉
〈ã〉 vT = 0, (6.19)

where ã is a dressed scale factor whose expectation value is taken on the background state. Going
to Fourier space and introducing the mode functions vk(η), one needs to solve the following
equation

v′′k +

(
k2 − 〈ã

′′〉
〈ã〉

)
vk = 0, (6.20)

and one can show that for sharply peaked background states 〈â′′〉 / 〈â〉 is well approximated by
a′′/a over the whole evolution, including the bounce (Agullo et al., 2013a). The function a is
the expectation value of the scale factor operator on the sharply peaked wavefunction describing
the background, and is solution of the modified Friedmann equation Eq. (6.5). Because the
fluctuations about the value where the wavefunction is maximum are negligible, an effective
approach can be taken with effective equations of motion for the perturbations. Thus, Eq. (6.20)
simplifies to

v′′k +

(
k2 − a′′

a

)
vk = 0. (6.21)

The primordial tensor power spectrum for the tensor perturbations at the end of inflation is then
given by

PT =
32Gk3

π

∣∣∣∣vk(ηe)

a(ηe)

∣∣∣∣2 , (6.22)

where ηe is the conformal time at the end of inflation. We will now present the two limits of this
power spectrum: the infrared (IR) and the ultraviolet (UV) limit.
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The UV limit corresponds to comoving modes k for which k2 � a′′/a. For small enough
wavenumbers, they coincide with modes for which k � aH where aH is the inverse of the
comoving Hubble radius. In terms of wavelength, it translates into comoving wavelengths smaller
than the comoving Hubble radius, thus they are called sub-Hubble modes. The UV modes are
oscillating during the prebounce contracting phase and until the start of the slow-roll inflation
phase because their equation of motion is now approximated by

v′′k + k2vk = 0. (6.23)

They thus do not feel the background curvature during the contracting phase and the bounce,
as shown in Fig. 6.6. They then become amplified once k2 < a′′/a, that is during the inflation
phase. One can easily solve the equation of motion for the mode functions Eq. (6.21) during
the contracting phase in this limit. Taking the initial conditions to be the Minkowski vacuum,
one shows the power spectrum in the UV limit to be slightly red-tilted, as the power spectrum
predicted in the standard inflationary scenario.

The IR limit corresponds to comoving modes k for which k2 � a′′/a. For small enough
wavenumbers, they coincide with modes for which k � aH. In terms of wavelength, it translates
into comoving wavelengths higher than the comoving Hubble radius, thus they are called super-
Hubble modes. The IR modes are frozen during the prebounce contracting phase, i.e. they
stopped oscillating during this phase because their equation of motion is now approximated by

v′′k − (a′′/a)vk = 0. (6.24)

They are thus amplified right in the contracting phase, contrary to the UV modes that keep
oscillating during this phase and have to wait until inflation to start being amplified. Now in
a model of the Universe with a matter scalar field with quadratic potential as matter content,
the analytical approximations for the solutions of the modified Friedmann’s equations during the
pre-bounce contracting phase Eq. (6.14) allows to compute a′′/a analytically which gives

a′′

a
=

2

η2
. (6.25)

As a′′/a is increasing during the contraction, if k2 is initially smaller than a′′/a during the
contraction, it remains smaller during the whole evolution so that the amplitude of the mode
remains frozen almost until the end of inflation, as shown in Fig. 6.6, up to two tiny periods
around the bounce. The equation Eq. (6.21) is easy to solve in the IR regime in the contracting
phase. Furthermore, one can also choose the Minkowski vacuum as initial conditions for the
modes as far enough in the past, all modes are in the UV regime, i.e. they satisfy k2 � a′′/a.
Thus, one can finally show that the power spectrum in the IR regime is scale invariant like the
prediction of standard GR.

Finally, the intermediate scales shown in Fig. 6.6 by the middle green line correspond to
modes that are amplified during the bounce. It is essentially at these intermediate scales that
the power spectrum of the modes differs from the standard prediction of classical cosmology.
Indeed, the full power spectrum is obtained numerically and is shown in Fig. 6.7. The left part
below the vertical dotted lines corresponds to the IR regime and one can see the scale invariance
of the power spectrum. The right part above the vertical dashed line corresponds to the UV
regime and one can guess the slightly red-tilted power spectrum as predicted in the inflationary
scenario. The intermediate scales show damped oscillations, which are characteristic features of
LQC.
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Figure 6.6: Schematic plot of a′′/a as a function of cosmic time t. In black are the values taken
by the function at the corresponding times given by the vertical dashed lines in red. The many
orders of magnitude spanned by the function does not allow us to plot it on a single graph in order
to see its different features during the contraction, bounce and inflation. This schematic plot is
therefore not to scale. The horizontal plain green lines represent the values of the wavenumber
k2 compared to a′′/a. The lower green line corresponds to the IR limit, whose modes are frozen
until the end of inflation, while the upper one corresponds to the UV limit whose oscillations are
amplified during inflation. The middle line shows an intermediate scale where oscillations are
amplified during the bounce.
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Figure 6.7: Primordial power spectra for tensor modes in the dressed metric approach for different
values of the mass of the scalar field: m = 10−3mPl (triangles), m = 10−2.5mPl (open disks),
and m = 10−2mPl (black disks). The dotted vertical lines at smaller k delimits the IR regime
(k2 � a′′/a) which scales as m2/3: one notices the scale invariant behaviour. It corresponds to
modes that are amplified during the contracting phase. The dashed vertical line at large k delimits
the UV regime (k2 � a′′/a) which does not depend on m: one can guess the slightly red-tilted
power spectrum as predicted in the standard inflationary scenario. These modes are amplified
during the inflation phase. The intermediate scales (between k2 � a′′/a and k2 � a′′/a) show
damped oscillations and correspond to modes amplified during the bounce. The figure is taken
from Bolliet et al. (2015).
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Chapter 7

LQC with two scalar fields

7.1 Motivations

Already in the original classical Hamiltonian formulation of cosmology coupled to a massless
scalar field φ without potential as content of the Universe, one can show that the field is a
monotonic function of time so that it can be used to parameterize the evolution of the variables
instead of time t (Gambini & Pullin, 2011): it is a relational clock field. This idea of relational
dynamics already has its roots in classical mechanics: one relates events in time to the number of
oscillations of a pendulum. At the quantum level of the modeling, as geometry itself is quantized,
the theory gives probability amplitudes for the metric and therefore time is no longer properly
defined. One can thus use the scalar field φ as a relational emergent time (see Ashtekar et al.,
2009). More recently, in a paper by Gielen & Oriti (2018), this idea has been generalised in
the Group Field Theory approach to quantum gravity which is close to the LQG formalism,
to include a total of four reference scalar fields coupled to gravity, used as relational clock and
rods. Symmetries are imposed on the dynamics of these fields so that they are used as a physical
coordinate system: they form a material reference frame. A beginning of study in this direction
within the framework of LQC has been made in Mielczarek (2009), which studied potentials of
scalar fields such that the latter behave like fluids, and are shown to have the property of being
monotonic. On the contrary, the massive field with quadratic potential studied in the previous
chapter has been seen being not monotonic, especially during the contracting phase. However,
this field is needed to have an inflation phase after the bounce. Indeed, we have seen that one
needs a small fraction of potential energy at the bounce to get such a phase. A massless field
alone therefore could not give rise to inflation. Furthermore, adding more fields to an early
Universe model would come within the scope of multifield inflation. As LQC allows to study
models of the very early Universe even prior to the phase of inflation, it would also be interesting
to study these multifield models within this framework. Indeed, actually one can expect the
massive scalar field to being coupled to other fields of the SM of particle physics during the
contraction phase, by a kind of inverse reheating process. The case of two scalar fields has been
considered in Wilson-Ewing (2013) in the ekpyrotic paradigm -an alternative to inflation in which
perturbations are produced during a contracting phase prior to the Big-Bang singulartiy- but
in the context of LQC. The ekpyrotic scenario is characterised by its potential. In this chapter,
in the idea of having a phase of inflation, we will build a model of the very early Universe with
the massive scalar field ϕ with mass m and quadratic potential V (ϕ) = m2ϕ2/2 described in
Section 6.2 that will be the inflaton field, and a massless scalar field φ that will be our clock
field. Both represent the effective content of the very early Universe. This work could be then
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generalised to include three more reference scalar fields to complete the material reference frame.
Finally, we will study the perturbations produced by these fields, with an adiabatic and and
isocurvature components.

7.2 Background dynamics

7.2.1 Equations of motion
The equations of motion for the background dynamics are given by Eq. (6.8) for the massive
scalar field ϕ, completed with the Klein-Gordon equation for the massless scalar field φ

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
,

Ḣ = −8πρc
(
Z2 + Y 2

) (
1− 2

(
Z2 + Y 2 +X2

))
,

ϕ̈+ 3Hϕ̇+m2ϕ = 0,

φ̈+ 3Hφ̇ = 0,

(7.1)

with ρ = (ϕ̇2 + φ̇2)/2 + V . One notices that the constraint equation on H2 is unchanged, up
to a redefinition of ρ to take into account the energy associated with the massless scalar field.
Therefore, the Big-Bang singularity is also removed in this model of the Universe and replaced
by a bounce like in the one scalar field model studied in the previous chapter.

In addition to define the fractions of potential X and kinetic Y energy in the massive scalar
field, we also define the fraction of kinetic Z energy in the massless scalar field

X ≡ mϕ√
2ρc

,

Y ≡ ϕ̇√
2ρc

,

Z ≡ φ̇√
2ρc

,

(7.2)

so that the total energy density of the Universe is given by

ρ = ρc(X
2 + Y 2 + Z2). (7.3)

The equations of motion for this model of the Universe Eq. (7.1) can be rewritten using these
variables as a set of four first order differential equations

Ḣ = −8πρc
(
Z2 + Y 2

) (
1− 2

(
Z2 + Y 2 +X2

))
,

Ẋ = mY,

Ẏ = −mX − 3HY,

Ż = −3HZ,

(7.4)

ensuring that the contraint on H2 is satisfied. We recall that away from the bounce one can
neglect the term −2(Z2 + Y 2 +X2) in this equation.

Qualitatively, as in the single massive field model H decreases away from the bounce (see
Fig. 6.1), one expects the same behaviour for the Hubble factor by adding just one other scalar
field (as it can be seen as just having more kinetic energy in the energy content of the Universe).
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Thus, far away in the contracting phase, one expects that |H| � m so that one would like to
neglect the last term in the Klein-Gordon equation for the massive scalar field Eq. (7.1), which
then would be approximated by

ϕ̈+m2ϕ ≈ 0. (7.5)

Hence, the massive scalar field oscillates with constant amplitude while the massless scalar field
decreases like φ ∝ 1/a3 away from the bounce: therefore, one expects that the contraction will
always be dominated by the massive scalar field, if one goes back far enough in the past. On the
contrary, closer to the bounce, |H| � m and this is the second term in the KG equation for the
massive scalar field that one would like to neglect. In this phase, the massive field seems to have
the same behaviour as the massless one, that is in 1/a3. Thus, there should be a transition at the
hypersurface |H| = m where the inflaton field transits from a massive field that oscillates with
frequency m to a massless one that dilutes as the inverse volume of the Universe. Hence, as the
two fields should have the same behaviour close to the bounce, one expects that depending on
which field dominates when |H| = m, this is the same field that should dominate at the bounce.
In the following section, we will check these intuitions more rigorously, both analytically and
numerically.

7.2.2 Analytical approximations phase by phase

7.2.2.1 The contraction

Two cases are to be considered: either the massless field dominates the energy content of the
Universe at some point during the contraction so that it leads the evolution of the Universe (by
virtue of the modified Friedmann’s equations), or it is the massive field that does. Let us begin
with the first case.

a) The massless scalar field dominates the energy content of the Universe during the contraction
well before to the moment when |H| = m.

From the reasoning presented in the last section, one expects the massless field not to dominate
very far in the remote past. Let us check this is the case. Our hypothesis allows us to neglect
the energy density of the massive field ρc(X2 + Y 2) in ρ, so that the equations of motion in
this limiting case are given by 

Ḣ = −8πρcZ
2,

Ẋ = mY,

Ẏ = −mX − 3HY,

Ż = −3HZ.

(7.6)

One first solve the equation for Z independently and then the equation for H and finally the
system of equations on X and Y . The solutions are

H(t) =
1

3t
,

X(t) =
m(AJ0(mt) +BY0(−mt))√

2ρc
,

Y (t) =
BY1(−mt)−AJ1(mt)√

2ρc
,

Z(t) = − 1√
24πρct

,

(7.7)
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where J and Y are respectively the Bessel functions of the first and second kinds and A and
B are constants to be determined given the initial conditions for X and Y . These solutions
are plotted in Fig. 7.1 together with the numerical solutions with the same initial conditions,
for the energy densities of the fields ρϕ = ρc(X

2(t) + Y 2(t)) and ρφ = ρc Z
2(t) as a function

of the normalised time t′ = mt. Now as Jα(x) = O
√

2/(πx) and similarly for Yα(x) =

O
√

2/(πx) as x → ∞, one can use these asymptotic behaviours in the infinite past. Thus,
the energy density of the massive scalar field ρϕ behaves like 1/t far in the contraction while
the energy density of the massless scalar field ρφ behaves like 1/t2 meaning that if at some
point the massless scalar field dominates the evolution of the Universe in the past contracting
phase, one will always find a remote time when it is not the case and it is the massive field
which dominates. This behaviour is also found numerically and Fig. 7.1 shows that indeed,
the massive field ends up dominating in the past. Stated otherwise, our hypothesis on the
dynamics is broken: we assumed the massless scalar field dominates the energy content of
the Universe, translating in the fact that the dynamics of the Universe is ruled by it, see
the Raychaudhuri equation in Eq. (7.6). However this is not the case during the whole
contraction, as one can find a remote time when this condition is violated. This is the reason
why the numerical solutions to the system of equations Eq. (7.4) under this hypothesis deviates
from the analytical approximations, as one can see in Fig. 7.1, the analytical approximations
overestimating the energy densities of both fields: indeed the true behaviours of the fields far
in the contraction fall faster as we shall soon see. Therefore from now on, we will choose initial
conditions such that the massive scalar field dominates the energy content of the Universe
during the contraction. Let us recall the analytical approximations in such a case.

b) The massive scalar field dominates the energy content of the Universe during the contraction
well before to the moment when |H| = m.
In this case, I neglect the energy density of the massless field ρcZ2 in ρ and the equations of
motion simplify to 

Ḣ = −8πρcY
2,

Ẋ = mY,

Ẏ = −mX − 3HY,

Ż = −3HZ.

(7.8)

One further assumes thatH2 � m2, which is necessarily the case far enough in the contraction
as the Hubble factor increases in absolute value during the contraction: H < 0 (the Universe is
contracting) and Ḣ < 0 given the Raychaudhuri equation, so the Hubble factor becomes more
and more negative and it increases in absolute value. With this assumption, one rewrites the
third equation like Ẏ = −mX, and we have already presented the analytical approximations
for the massive scalar field in Eq. (6.14) in this limiting case. These approximations can be
completed with the solution for the fraction of kinetic energy in the massless scalar field Z

ρ(t) = ρ0

(
1− 1

2

√
24πρ0

(
t− t0 +

1

2m
sin(2m(t− t0))

))−2

,

X(t) =

√
ρ

ρc
sin(m(t− t0)),

Y (t) =

√
ρ

ρc
cos(m(t− t0)),

Z(t) = Z0

(
t0
t

)2

,

(7.9)
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Figure 7.1: Energy densities of the massive scalar field ρϕ (upper panel) and the massless scalar
field ρφ (middle panel) and their comparison (lower panel) during the contraction, assuming that
at some initial time t′0 ≈ −215, the massive field dominates the energy content of the Universe.
If this is the case, our hypothesis is broken at some point prior to the initial time so that our
analytical approximations deviate from the numerical resolution of the dynamics Eq. (7.4). Then,
if some part of the contraction is dominated by the massless scalar field, one can always find a
remote time when it is the massive field that dominates the evolution of the Universe. Notice
the rescaling of time t′ = mt, where m = 1.21 × 10−6mPl is the mass of the inflaton field, for
numerical convenience. The Big-Bang singularity occurs at t = 0.

where we have set δ = 0 and redefine the origin of times so that at some initial time t0 in
the past contracting phase ρ(t0) = ρ0 and t0 is chosen so that the bounce occurs at t = 0 (on
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these solutions, it will be a singularity as we have neglected the effective quantum effect in the
Raychaudhuri equation) and Z0 is the initial condition for Z at t0. One can notice that the
energy density of the massive field behaves like ρϕ ∝ 1/(−t)2 and the energy density of the
massless field ρφ like ρφ ∝ 1/(−t)4, ensuring that the massive scalar field always dominates
the contracting phase as far as we can go in the remote past. These solutions are plotted in
Fig. 7.2 together with the numerical solutions with the same initial conditions. One sees good
agreement between the analytical approximations and the numerical resolution, supporting
the hypotheses we have made.

This study confirms our first intuition that the massive field should always dominate during
the contracting phase. Let us now study how the fields behave around the bounce, where quantum
gravity effects are taken into account, and see if it changes our qualitative conclusions.

7.2.2.2 The bounce

As for the contraction, two cases are to be considered: either the massless field dominates the
energy content of the Universe during the bounce so that it leads the evolution of the Universe,
or it is the massive field that does. Let us begin with the first case.

a) The massless field dominates the energy content of the Universe at the bounce, and the
massive field is kinetic energy dominated.

First, before deriving the analytical approximations at the bounce under these hypotheses,
we want to check the conclusion of Section 7.2.1, that if the massless field dominates when
|H| = m, it dominates at the bounce. With the initial conditions set during the contracting
phase exactly like in a), we check numerically that the massless field stil dominates when
|H| = m, as expected from the analytical study, since the quantum gravity effects are stil
negligible. Then the numerical resolution of the equations of motion, including the bounce,
confirms that the massless field dominates at the bounce with ρφ(0) ≈ ρc ≈ 0.41 while
ρϕ(0) ≈ 10−4 (in Planck units). Thus, this supports our first intuitions.

Let us now derive the solutions for the background in a bounce dominated by a massless field.
Under our assumptions, Z � Y � X and the system of equations (7.4) reduces to

Ḣ = −8πρcZ
2
(
1− 2Z2

)
,

Ẋ = mY,

Ẏ = −3HY,

Ż = −3HZ,

(7.10)

whose solutions around the bounce (occurring at t = 0) are given by

H(t) =
8πρct

1 + 24πρct2
,

X(t) = XB +
mYB√
24πρc

arcsinh
(√

24πρct
)
,

Y (t) =
YB√

1 + 24πρct2
,

Z(t) =
1√

1 + 24πρct2
.

(7.11)
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Figure 7.2: Energy densities of the massive scalar field ρϕ (upper panel) and the massless scalar
field ρφ (middle panel) and their comparison (lower panel) during the contraction, assuming that
at some initial time t′0 ≈ −44, the massive field dominates the energy content of the Universe.
If this is the case, our hypothesis is never broken for times prior to the initial time so that our
analytical approximations fit well to the numerical resolution of the dynamics Eq. (7.4). Then, if
the contraction is dominated by the massive scalar field, this one dominates the whole evolution
of the Universe up to the point where quantum effects have to be taken into account. Notice the
rescaling of time t′ = mt, where m = 1.21× 10−6 is the mass of the inflaton field, for numerical
convenience. The Big-Bang singularity occurs at t = 0.
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First, as the energy density of the massive field ϕ is dominated by its kinetic energy, the
energy density of the two fields around the bounce are given by

ρϕ(t) =
ρcY

2
B

1 + 24πρct2
,

ρφ(t) =
ρc

1 + 24πρct2
,

(7.12)

so that as expected already in Section 7.2.1, the two fields have the same behaviour when
|H| � m. It is not surprising that we recover this conclusion as we have just implemented in
our hypotheses the conditions for having the equations that solved like this. As the massless
field dominates at the bounce, one can take YB = 1/10 and from the above solution, one could
be tempted to conclude that if the massless field dominates at the bounce, it always dominates
away from it. This is seen not to be the case in Fig. 7.3 right, where we plotted the energy
densities of the massive field and the massless field, both with the numerical resolution and
the analytical approximations. Indeed, we have seen previously that the massless field cannot
dominate the whole evolution of the Universe and that far away enough from the bounce, the
massive field ends up dominating becauseH becomes small enough compared tom so that one
can no longer neglect the potentiel termm2ϕ in the KG equation on the massive field. Here, it
has been neglected because we further assumed the massive field was kinetic energy dominated
at the bounce. Thus, one does not have to wait that |H| = m for the massive field to dominate
over the massless one, which occurs for t ≈ ±11. Actually, away from the bounce, the fraction
of potentiel energy X becomes important X(t) ∼ mYB/

√
24πρcln(2

√
24πρct) with respect to

Y (t) ∼ −YB/(
√

24πρct) so that one of our hypothesis is violated, changing drastically the
evolution of the Universe. Indeed, the comparison with numerical simulations in Fig. (7.3)
right shows that away from the bounce, the analytical approximation overestimates the energy
density of the massless scalar field and that the massive scalar field ends up dominating the
evolution of the Universe. Thus, even though the massless scalar field dominates the evolution
of the Universe at the bounce if it dominates when |H| = m, the reverse is not true: if the
massless field dominates at the bounce, it does not necessarily dominate at the hypersurface
|H| = m.

b) The massive field dominates the energy content of the Universe at the bounce, which is kinetic
energy dominated.

Before deriving the analytical approximations in this case, let us check that as for the massless
field, if the massive field dominates at the hypersurface |H| = m, it dominates at the bounce.
By choosing initial conditions there, one imposes that the massive field dominates at the
hypersurface. Then, one computes the energy densities of the fields at the bounce and finds
ρϕ(0) ≈ 0.3 while ρφ(0) ≈ 0.1, confirming again our first conclusion.

Let us now derive the solutions for the background in a bounce dominated by a massive field.
Under our assumptions, one can use the analytic approximations of Linsefors & Barrau (2013)
for the massive scalar field and complete with the resolution for the additional massless scalar
field. Indeed, with our hypotheses Y � X,Z, and the system of equations (7.4) reduces to

Ḣ = −8πρcY
2
(
1− 2Y 2

)
,

Ẋ = mY,

Ẏ = −3HY,

Ż = −3HZ,

(7.13)
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Figure 7.3: Energy densities of the massive scalar field ρϕ and the massless scalar field ρφ around
the bounce occurring at t = 0. Even if the bounce is dominated by the massless scalar field, it
will not remain the case away from the bounce.

whose solutions around the bounce (occurring at t = 0) are given by

H(t) =
8πρct

1 + 24πρct2
,

X(t) = XB ±
m√

24πρc
arcsinh

(√
24πρct

)
,

Y (t) = ± 1√
1 + 24πρct2

,

Z(t) =
ZB√

1 + 24πρct2
.

(7.14)

Assuming the massless scalar field contributes to the total energy density with a ratio 10−1 at
the bounce through its only kinetic energy: ZB = 10−1 then Z(t) = 1/(10

√
1 + 24πρct2). The

energy densities of the massive scalar field ϕ and the massless scalar field φ are respectively
given by 

ρϕ(t) =
ρc

1 + 24πρct2
,

ρφ(t) =
ρc

100(1 + 24πρct2)
.

(7.15)

As for a), one could rapidly conclude that if the massive scalar field dominates the evolution
of the Universe at the bounce, it always dominates, either in the past contracting phase or in
the future expansion of the Universe. However as for a), one might be skeptical about this
conclusion, remembering that the above analytical approximations hold when the bounce is
kinetic energy dominated so that it may no longer be the case as one goes away from the
bounce. Indeed, the same analysis holds: the potential energy in the massive field becomes
important away from the bounce, overcoming the kinetic energy at some point, changing the
dynamics. Therefore, our hypothesis on the kinetic energy dominated massive field is also
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violated here. This is the reason why the comparison with numerical simulations shows in
Fig. (7.4) right that actually, the analytical approximation underestimates the energy density
of the massive scalar field away from the bounce. However, even though the fact that at some
point the potential energy in the massive scalar field overcomes its kinetic energy changes
the dynamics, one can expect from a) that the massive field keeps dominating away from the
bounce. Indeed, it is the potential energy of the scalar field which makes it dominate away
from the bounce in a) as kinetic energy alone (in the massless field) falls faster. Therefore,
here too we expect the same behaviour. Furthermore, we have shown that far enough in the
contraction, the massive field dominates. Thus, if it dominates the evolution at the bounce,
it always dominates either in the past or future.
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Figure 7.4: Energy densities of the massive scalar field ρϕ and the massless scalar field ρφ around
the bounce occurring at t = 0. If the bounce is dominated by the massive scalar field, it dominates
all the evolution of the Universe, in this model.

To conclude this section, we have checked that very close to a kinetic energy dominated
bounce, the two fields have the same behaviour in 1/a3 and that when one of the two fields
dominates at the hypersurface |H| � m, it also dominates at the bounce. Finally, the massive
scalar field dominates the evolution of the Universe away from it. Thus, in Section 7.3 we will
focus on a contracting phase dominated by the massive scalar field for the treatment of the
quantum perturbations in this model, using the analytic approximations of Eq. (7.9) for the
background.

7.2.3 Inflation in two-fields LQC

In Fig. 7.5, we redo the plot of Fig. 6.4 in our two fields model with the same fractions of potential
energy at the bounce x and the same mass m = 10−2 for the massive scalar field. We find the
same behaviours as in the model with one field, that is: a symmetric evolution when there is no
potential energy at the bounce x = 0 and a longer phase of inflation the bigger x is. However,
our massive field do no reach such high values, resulting in shorter phases of inflation. This is
explained by the fact that there is more kinetic energy in our model, although the values of the
fraction of potential energy are the same, because of the presence of the massless field. Therefore,
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inflation is still a feature of our model which happens under quite the same conditions, that is a
bit of potential energy at the bounce. However, we expect to have a shorter phase of inflation on
average than in the one field model, even though the massless field decreases rapidly away from
the bounce.

x=0
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x=0.02

-20 -10 10 20
t'=mt

-0.00005

0.00005

0.00010

0.00015

0.00020
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Figure 7.5: Time evolution of the scalar field. Different evolutionary scenarii leading to a slow-
roll inflation phase are displayed. The bottom (solid) line represents the symmetric case. The
middle (dotted) line represents the shark fin-type evolution. The top (dashed) line corresponds
to a larger fraction of potential energy. For all curves m = 0.01mPl.

Initial conditions for the background fields
In the previous section, we have just shown that the massless field is always negligible in

the past, if one goes far enough in the contracting phase. One can see it as convenient, as
if one finds an enough remote time, we can use the analytical approximations in this fields
configuration Eq. (7.9). Unfortunately, if with one massive field a natural PDF for the initial
conditions of the field arises that is preserved over time, as a PDF on the δ parameter (see
Section 6.2.4), there is none in our two fields model. Indeed, in addition of the natural PDF
for the massive field, one would need to find a PDF for the initial condition of the massless
field, that is, a PDF on Z0. A PDF for Z0 could be to take any value uniformly in the interval
[−Z0max, Z0max] with Z0max �

√
ρ0/ρc. Thus, two problems arise: first, how do you define the

fact that the initial value Z0max is negligible with respect to
√
ρ0/ρc. One could fix a threshold

like 10−1
√
ρ0/ρc but there would be some arbitrariness in this choice. Secondly, there is also

some arbitrariness in the choice of the initial time t0, or equivalently, in the choice of ρ0. In
the one field model of the previous chapter and likewise here, the initial time t0 is determined
by ρ0, such that one has |H(t0)| =

√
8πρ0/3 � m, delimiting the validity of our analytical

approximations in the contracting phase. As they hold for the whole contracting phase, one can
choose any value for ρ0 as long as this condition is fulfilled. Therefore, the interval where one
can set the initial condition for Z0, [−Z0max, Z0max], shrinks to zero in the infinite past. This
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is the reason why it is said that there is no natural PDF for this initial parameter in the past
contracting phase. A way to overcome this second issue would be to take the initial conditions
at the hypersurface |H| = m in the contracting phase, as it is around there that the massive
field changes behaviour, from massive to massless. This also further determines which field
dominates at the bounce, and consequently the existence and duration of inflation. It seems
therefore ‘natural’ to put the initial conditions there. Nevertheless, nothing ensures that the
massive field dominates at this point (as we have seen in the previous section), so one does not
have to require that Z0max �

√
ρ0/ρc but rather that Z0max =

√
3/(8πρc)m. Then the energy

density for the massive field would be fixed by X2
0 +Y 2

0 = 3m2/(8πρc)−Z2
0 but another problem

arises here because there is no more natural PDF for the massive field (previously set on the δ
parameter). Therefore the ratio between potential and kinetic energy in the massive field could
take any value on the real line, which is not of finite volume. However, one notices that the PDF
for the massless field is conserved, by considering the constant of motion πφ = a0φ̇0. Fixing
arbitrarily the value of a0 either at the bounce or during the contraction (as the value of a0 is
not important and changing it is just a rescaling of the Universe), one can choose randomly φ̇0

within [−√2ρc,
√

2ρc] or [−
√

3/(4π)m,
√

3/(4π)m] (if one chooses to put the initial conditions
when |H| = m), respectively, and the PDF is conserved.

Nonetheless, following Ashtekar & Sloan (2011), it seems that there are natural probability
distributions for the initial conditions of X, Y and Z at the bounce. As we do not know the
initial conditions for this model of the Universe, the probability distribution is taken to be flat
with respect to the Liouville measure. The choice of the Liouville measure is justified by the
fact it is preserved over time and ‘canonical’ (see Ashtekar & Sloan, 2011, for more details).
Concretely, as X, Y and Z are ratios of (square-roots of) energy densities, they take values in
the interval [-1,1]. Thus, we can parameterize the initial conditions as follows

X(0) = cos(γi)sin(δi),

Y (0) = sin(γi)sin(δi),

Z(0) = cos(δi),

(7.16)

with γi ∈ [0, 2π] and δi ∈ [0, π], so that they belong the unit sphere 7.6. Now, one can wonder
about the relevance of the signs of the initial conditions in Eq. (7.16). Indeed, what seems to be
physically relevant is the value of the potential 2ρcX(0)2 of the massive field at the bounce and
the values of the kinetic energies 2ρcY (0)2 and 2ρcZ(0)2 of the massive field and the massless
field, respectively. In particular, in this section we are interested in the duration of inflation
which only depends on X2

max, among these parameters. Therefore, one could think the sign of X
is not a relevant parameter. However, the plain (blue) and dotted (green) curves in Fig. 7.7 which
are symmetric with respect to the vertical axis show that it matters. In the first case, one has a
slow-roll inflation phase while in the second, one has no slow-roll inflation but a slow-roll deflation
phase prior to the bounce. In fact, this graphics shows that what is relevant to determine if an
inflation phase occurs or not is the sign of X(0)Y (0). Indeed, the plain (blue) and dot-dashed
(orange) curves are symmetric with respect to the horizontal axis, both predicting a slow-roll
inflation phase with the same duration, and similarly for the dashed (yellow) and green (dotted)
curves predicting a slow-roll deflation phase with the same duration. The left plot is done for
Z(0) > 0 while the right plot is done for Z(0) < 0 and are exactly identical: the trajectory
thus do not depend on the sign of this initial parameter. Thus, we can restrict ourselves to the
interval [0, π/2] for δi and [0, π] for γi.

Although this initial PDF is quite natural, the drawback is that it can pose a problem of
consistency. Indeed, one can have a very large fraction of potential energy at the bounce where
quantum backreaction effects should be taken into account. Further work thus needs to be made
to use this initial PDF in order to be fully consistent.
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Figure 7.6: The initial conditions for the fields X(0), Y (0) and Z(0) belong to the unit sphere, so
they can be parameterised by the spherical coordinates δi ∈ [0, π] and γi ∈ [0, 2π]. The evolution
scenarii do not depend on the sign of Z(0) so we restrict ourselves to the north hemisphere to
take the initial conditions: δi ∈ [0, π/2]. Furthermore, the fact that an inflation phase with given
length occurs or not only depends on the sign of X(0)Y (0). The red parts correspond to the
inflation phase in the evolution scenarii of Fig. 7.7 while the blue parts to the deflation phase
in these same scenarii. We thus further restrict ourselves to a quarter of the sphere to take the
initial conditions for the fields, that is taking γi ∈ [0, π] for example.
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Figure 7.7: The dependence of the evolution scenarii on the sign of the initial conditions for the
fields. The fact that an inflation phase with given length occurs or not only depends on the sign
of X(0)Y (0). The results are insensitive to Z(0), the initial value of the massless field velocity.

In conclusion, it seems to be difficult to find conserved PDF for the massive and the massless
scalar field simultaneously during the contracting phase so setting the initial PDF at the bounce
looks like the most convenient choice.
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7.3 Adiabatic and isocurvature scalar perturbations

7.3.1 Coupled equations of motion

As explained in Section 6.3.1, we will not use either of the two approaches developed in Grain
(2016) or Agullo et al. (2013a) for the equations of motion of the perturbations but use the
classical treatment made for the quantum perturbations during the very early Universe. The
reason for this is that away from the bounce, either of the two approaches reduces to this
treatment and we may need inputs from the mother LQG theory to arrive at a consensus and a
clear derivation of these equations. Only during the bounce the equations must include quantum
corrections. However, these quantum corrections should not affect modes that are not amplified
during the bounce, that is modes in the UV and IR limits. Furthermore, as for the case of a
perfectly homogeneous and isotropic Universe, we assume that the effective equations still give
the evolution of the expectation values of the sharply peaked states, both for the background and
linear perturbations, thus neglecting backreaction effects. Here, we use the framework developed
in Langlois & Renaux-Petel (2008) for the treatment of perturbations in generalized multi-field
inflation. As explained in Chapter 3, Section 3.3, in multi-field inflation, in addition to the usual
adiabatic or curvature perturbations σ one also predicts isocurvature or entropic perturbations
s. Their equation of motions are given in conformal time η by Eq. (3.57) which we recall here

v′′σ − ξv′s +

(
k2 − z′′

z

)
vσ −

(zξ)′

z
vs = 0,

v′′s + ξv′σ +

(
k2 − a′′

a
+ a2µ2

s

)
vs −

z′

z
ξvσ = 0.

(7.17)

Now we can compute the explicit expressions of the background functions appearing in Eq. (7.17)
given that here, the pressure is P = (ϕ̇(t)2 + φ̇(t)2)/2−m2ϕ(t)2/2 (there is no potential energy
associated with the massless scalar field φ), so that

P,s = eIsP,I =
m2ϕ(t)φ̇(t)

ϕ̇(t)2 + φ̇(t)2
,

P,ss = eIsP,sI =
−m2φ̇(t)2

ϕ̇(t)2 + φ̇(t)2
,

(7.18)

where we recall that P,I is the partial derivative of the pressure with respect to the field φI (with
φ1 = ϕ and φ2 = φ) and eIs is the unit vector orthogonal to the adiabatic direction and gives the
entropy direction in field space. Finally

ξ(t) =
a(t)

ϕ̇(t)2 + φ̇(t)2
2m2ϕ(t)φ̇(t),

z(t) =
a(t)

√
ϕ̇(t)2 + φ̇(t)2

H
,

µ2
s(t) =

m2φ̇(t)2

ϕ̇(t)2 + φ̇(t)2

(
1− m2ϕ(t)2

ϕ̇(t)2 + φ̇(t)2

)
.

(7.19)

Notice here that the functions of the background appearing in Eq. (7.17) are given with respect
to cosmic time t whose derivative is denoted by a dot. Actually, one can rewrite the equations
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of motions for the perturbations Eq. (7.17) in cosmic time
v̈σ +Hv̇σ −

ξ

a
v̇s +

(
k2

a2
−
(
z̈

z
+H

ż

z

))
vσ −

(
żξ

az
+
ξ̇

a

)
vs = 0,

v̈s +Hv̇s +
ξ

a
v̇σ +

(
k2

a2
−
(
ä

a
+H2

)
+ µ2

s

)
vs −

ż

az
ξvσ = 0,

(7.20)

with the dot ˙ meaning derivative with respect to cosmic time. This rewriting with cosmic time
will turn out to be more convenient as the numerical resolution of the background was done
in cosmic time, see Section 7.2.2. In the following, we will go back and forth between the two
formulations of the equations of motion for the perturbations Eq. (7.17) in conformal time η
and Eq. (7.20) in cosmic time t because it is easier to get intuitions on the physical properties
of the equations of motion in the first formulation while it is easier to deal with the second
one numerically. Therefore, we mention here the relation between the two time variables in the
dust-like contraction

t =
1

t20

(ηa0

3

)3

, (7.21)

and the link between the coefficient functions

z′′

z
= a2

(
z̈

z
+H

ż

z

)
,

(zξ)′

z
= a2

(
żξ

az
+
ξ̇

a

)
,

a′′

a
= a2

(
ä

a
+H2

)
, and

z′

z
ξ = a2 ż

az
ξ.

(7.22)

After introducing all these notations, we can go back to the equations of motion for the
perturbations (7.17) and comment. As ξ is non-vanishing, the equations of motion for the
adiabatic and entropy perturbations are coupled meaning that if ξ is not negligible, they feed
each other through all the evolution of the Universe. Indeed, as shown in Fig. (7.8), ξ/a shows
growing oscillations as going in the remote past. This system of two coupled second order
equations is quickly oscillating during the contraction so that it is particularly difficult to solve
in comparison to the inflationary phase where one can find approximations for the functions in
terms of the slow-roll parameters (e.g. Byrnes & Wands, 2006), or in comparison to the one-field
case where there is no coupling.

Another way to see that the perturbations are coupled is to look at the bakcground trajectory
in fields space, see Fig. 7.9. Indeed, we recall that the angle θ characterises the tangent of the
trajectory, see Fig. 3.1 and its definition equations Eq. (3.39)

tan θ =
φ̇

ϕ̇
. (7.23)

Now, differentiating this equation with respect to cosmic time t and using the KG equations for
the fields Eq. (7.1), one finds

θ̇ =
Ξ

2
=

ξ

2a
. (7.24)
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Figure 7.8: The coupling ξ/a during the contracting phase dominated by the massive scalar field.
It shows growing oscillations in the remote past. The orange dots indicate the tips of the peaks,
whose time position correspond to the orange dots in Fig. 7.9. The bounce is taken at t = 0.

Thus, the curvature of the background trajectory, given by θ̇ is another characterisation of the
coupling of the adiabatic and isocurvature perturbations. This is illustrated with the orange dots
in Fig. 7.8 and Fig. 7.9 that correspond to times when the coupling between the perturbations
is the strongest.

7.3.2 Initial conditions during the contraction

We want to set the initial conditions for the perturbations in the remote past when t → ∞.
Indeed, these initial conditions must be part of our model so that we can make predictions in
terms of power spectra of the perturbations. Hence, we use approximations for the background
functions in order to solve analytically the perturbations equations and then find initial condi-
tions.

The ξ = 0 case
We will start by considering the simpler case when there is no coupling ξ in the system of

equations (7.17) 
v′′σ +

(
k2 − z′′

z

)
vσ = 0,

v′′s +

(
k2 − a′′

a
+ a2µ2

s

)
vs = 0,

(7.25)

and try to solve it. The coefficient functions do not have simple analytic expressions. However,
using the analytic approximations for the background Eq. (7.9), we will try to compute the
asymptotic approximations in the infinite past for these functions of the background. Doing this,
the expressions of the coefficients are still very complicated as they show an oscillatory behaviour
because of the oscillatory massive field ϕ, see Fig. (7.10). We will thus need to approximate them
more, by averaging the oscillations, among other things.
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Figure 7.9: The fields trajectory in fields space, during the contracting phase dominated by
the massive scalar field. On the left the trajectory is plotted from t = −108 (black dot) to
t = −4.7 × 107 (green dot) and on the right from t = −4.7 × 107 to t = −6 × 106 (red dot),
so that the arrow indicates the direction of time, running from bottom to top. The analytical
approximations for the fields might break below t = −6 × 106 as H2 ∼ m2. One notices that
the background trajectory is curved, meaning the adiabatic and isocurvature perturbations are
coupled. The orange dots indicate where the trajectory is the most curved, indeed corresponding
to the times when the coupling ξ reach its highest values, i.e. the orange dots in Fig. 7.8.

If we write directly these functions in terms of the scalar fields and their derivatives, one gets

z′′

z
= a(t)2

[
− 16πm2ϕ(t)ϕ̇(t)

H(t)
+

32π2
(
φ̇(t)2 + ϕ̇(t)2

)2

H(t)2
+ 2H(t)2 +

m4ϕ(t)2

φ̇(t)2 + ϕ̇(t)2

+ ϕ̇(t)2

−m2
(
m2ϕ(t)2 + φ̇(t)2 + ϕ̇(t)2

)
(
φ̇(t)2 + ϕ̇(t)2

)2 +
48πφ̇(t)2

ρc
− 28π


+

24πφ̇(t)4

ρc
+

24πϕ̇(t)4

ρc
− 28πφ̇(t)2

]
,

(7.26)

a2µ2
s =

a(t)2m2φ̇(t)2

ϕ̇(t)2 + φ̇(t)2

(
1− m2ϕ(t)2

ϕ̇(t)2 + φ̇(t)2

)
, (7.27)
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Figure 7.10: The coefficient functions z′′/(za2) = z̈/z + Hż/z (upper panel) and −µ2
s (lower

panel), as a function of time. They show an oscillatory behaviour with growing amplitude in the
remote past.

and
a′′

a
=

2

η2
. (7.28)

Notice again the mix between conformal time η on the left-hand side denoted by derivative ′ and
cosmic time t on the right hand-side. This is the term in square brackets in Eq. (7.26) which is
plotted in Fig. 7.10 left, which is also equal to z̈/z+Hż/z appearing in Eq. (7.20). In Schander
et al. (2016) there is only one massive scalar field ϕ so we recover their equation (50) by setting
φ̇ = 0 in Eq. (7.26). In their case, they can easily take the average of z′′/(za2) as this is simply a
sum of sine and cosine modulated by positive powers of √ρ plus a constant −m2. As √ρ ∝ 1/t,
once the average taken, one is left only with the constant term −m2. In our case, the oscillatory
behaviour of our function is not that simple because of the appearance of the derivative of the
massive field in the denominators. Nonetheless, the oscillations are still imprinted on top of the
constant term −m2, as shown in Fig. 7.11 so that z′′/(za2) is almost always equal to −m2 except
in some tiny periods of time. Thus, we will solve the equation for the adiabatic perturbations
Eq. (7.25) by approximating z′′/z by −m2a2 ∝ m2η4 (even if in some tiny periods of time the
function scales like z′′/z ∝ η10), and consider physical modes such that (k/a)2 � m2, as it is
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Figure 7.11: The bottom shape of the function z′′/(za2).

the case for all modes in the infinite past. In conformal time, this gives

vσ(η) =

√
−a0η

3

(
AH

(1)
1/6

(
a3

0mη
3

27t20

)
+BH

(2)
1/6

(
a3

0mη
3

27t20

))
, (7.29)

where H(1)
1/6 and H(2)

1/6 are the Hankel functions of the first and second kind of order 1/6 respec-
tively; t0 is the initial cosmic time where the initial conditions are set for the background and a0

is the scale factor at that time. The constants A and B need to be determined to fully specify
our initial conditions for the perturbations. First, we use the fact that

H
(1)
1/6

(
a3

0mη
3

27t20

)
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√
54t20

πa3
0mη

3
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(
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0mη
3

27t20
− π

3
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,

H
(2)
1/6

(
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0mη
3

27t20

)
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η→−∞

√
54t20

πa3
0mη

3
exp

(
−i
(
a3

0mη
3

27t20
− π

3

))
,

(7.30)

to set A = 0 so that we only keep the solution that propagates in the positive time direction.
Then, B is found thanks to the Wronskian condition

vσv
∗′
σ − v∗σv′σ = i, (7.31)

which finally gives |B|2 = π/(4a0) and

vσ(η) =

√
−πη
12

H
(2)
1/6

(
a3

0mη
3

27t20

)
. (7.32)

One still has to solve the equation for the entropy perturbations Eq. (7.25). Using the same
trick as what was done for the function z′′/z, we notice that a2µ2

s behaves like 1/η2 except in
some tiny periods of time where the amplitude of the peaks goes like η10. Thus, we solve this
second equation by considering modes such that k2 � 1/η2, which again is always the case
in the infinite past. The equation is thus just a simple harmonic oscillator with frequency k.
Its solution, once normalised with the Wronskian and taken to propagate in the positive time
direction, is simply

vs(η) =
e−ikη√

2k
, (7.33)
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which is the Minkowski vacuum, see Section 3.3.

Going back to the full equations Eq. (7.17) in conformal time or Eq. (7.20) in cosmic time, let
us see if one can play the same trick to approximate the other coefficient functions. Fig. 7.8 seems
to show that ξ/a oscillates around a zero mean value so that it is zero except in some tiny periods
of time. Indeed, ξ ∝ 1/η except for the amplitude of the peaks that go like ±η5. Similarly, one
plots in Fig. 7.12 the coefficient functions żξ/(az) + ξ̇/a = (zξ)′/(za2) and żξ/(az) = z′ξ/(za2).
The functions are both proportional to η, (zξ)′/z ∝ η and z′ξ/z ∝ η, except in those tiny periods
of time where they show peaks with growing amplitude in the remote past. Unfortunately, it is
not as simple as for the other coefficient functions ξ, z′′/z or a2µ2

s to get how the amplitude of
the peaks scale. Anyway, one can already draw the conclusion that, even though ‘on average’,
the coupling ξ decreases to zero away from the bounce, the other coefficient functions (zξ)′/z and
z′ξ/z that couples the two equations of motion for the adiabatic and isocurvature perturbations
increase away from the bounce. Hence, it turns out to be difficult to neglect them in Eq. (7.17).
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Figure 7.12: The coefficient functions (zξ)′/(za2) (upper panel) and z′ξ/(za2) (lower panel), as a
function of time. As for the other coefficient functions, they show an oscillatory behaviour with
growing amplitude in the remote past.

In Section 3 of Lalak et al. (2007) which deals with curvature and isocurvature perturbations
in two-fields inflationary models, they make a rotation of the adiabatic and isocurvature basis
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that allows to rewrite Eq. (7.17) without the first order derivatives of the perturbations. It turns
out, as we will soon see, that this rotation is the inverse rotation performed in Eq. (3.38) to
go from the fields’ space to the adiabatic and entropy basis {eσ, es}. The system of equations
for the adiabatic and entropy perturbations Eq. (7.17) will thus be transformed into a system
of equations for the fields perturbations. Now, far in the contraction, away from the bounce,
gravity no longer couples the two scalar fields together as H2 = κY 2/3 → 0, since the energy
density is diluted and goes to zero infinitely far in the contraction. We thus expect a vanishing
coupling between the two fields perturbations, contrary to the case when one considers adiabatic
and isocurvature perturbations, where the coupling is related to the rotation of the adiabatic
and isocurvature basis. Thus, one actually factorises out this rotation of the basis by going back
to the fields’space, which then lowers the coupling between the perturbations. To see this, we
first rewrite Eq. (7.17) in matrix form

v′′(η) + C(η)v′(η) +D(η)v(η) = 0, (7.34)

with

v(η) =

(
vσ(η)
vs(η)

)
, C(η) =

(
0 −ξ(η)
ξ(η) 0

)
,

and D(η) =

(
k2 − z′′(η)

z(η) − (z(η)ξ(η))′

z(η)

− z
′(η)ξ(η)
z(η) k2 − a′′(η)

a(η) + a2(η)µ2
s(η)

)
.

(7.35)

As C(η) is an antisymmetric matrix, one can introduce a time-dependent orthogonal matrix
which satisfies R′(η) = −C(η)R(η)/2. Let

R(η) =

(
cosΘ(η) −sinΘ(η)
sinΘ(η) cosΘ(η)

)
, (7.36)

then

R′(η) =

(
−Θ′(η)sinΘ(η) −Θ′(η)cosΘ(η)
Θ′(η)cosΘ(η) −Θ′(η)sinΘ(η)

)
. (7.37)

Furthermore, see Eq. (7.24),

ξ(η) = ξ(t) = a(t)θ̇(t) = 2a(η)
θ′(η)

a(η)
= 2θ′(η) i.e. ξ(η) = 2θ′(η), (7.38)

and
C(η)

2 R(η) =

(
0 −θ′(η)

θ′(η) 0

)(
cosΘ(η) −sinΘ(η)
sinΘ(η) cosΘ(η)

)

=

(
−θ′(η)sinΘ(η) −θ′(η)cosΘ(η)
θ′(η)cosΘ(η) −θ′(η)sinΘ(η)

)
,

(7.39)

and R′(η) = −C(η)R(η)/2 gives
Θ′(η) = −θ′(η), (7.40)

so one can choose
Θ(η) = −θ(η), (7.41)

and one does get R′(η) = −C(η)R(η)/2. Then, defining the vector u(η) by

v(η) = R(η)u(η), (7.42)



132 CHAPTER 7. LQC WITH TWO SCALAR FIELDS

the choice for the angle Θ makes us identify R(Θ(η)) with M(θ) in Eq. (3.38) so that one can
interpret the components of the vector u(η) as being the fields perturbations

u(η) =

(
δϕ(η)
δφ(η)

)
. (7.43)

Then, one has {
v′(η) = R′(η)u(η) +R(η)u′(η),

v′′(η) = R′′(η)u(η) + 2R′(η)u′(η) +R(η)u′′(η),
(7.44)

and the matrix equation Eq. (7.34) becomes

R′′(η)u(η) + 2R′(η)u′(η) +R(η)u′′(η) + C(η)(R′(η)u(η) +R(η)u′(η)) +D(η)R(η)u(η) = 0,

⇔ R(η)u′′(η) +

(
R′′(η)− C(η)2

2
R(η) +D(η)R(η)

)
u(η) = 0,

⇔ u′′(η) +R−1(η)

(
−C

′(η)

2
−
(
C(η)

2

)2

+D(η)

)
R(η)u(η) = 0,

(7.45)
so that we have eliminated the first order time derivatives in the equations of motion. One is
left to compute the matrix R−1(η)

(
−C ′(η)/2− (C(η)/2)

2
+D(η)

)
R(η) and see if it simplifies

the coefficient functions. At first the coefficient functions seem more complicated

M(η) ≡ R−1(η)

(
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′(η)

2
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C(η)

2

)2

+D(η)

)
R(η) =

(
m11(η) m12(η)
m21(η) m22(η)

)
, (7.46)

with
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(7.47)
but one notices that the matrix is symmetric. Again for numerical convenience, one can rewrite
the rotated equations of motion for the perturbations Eq. (7.45) in cosmic time

ü(t) +H(t)u̇(t) +
M(t)

a(t)2
u(t) = 0. (7.48)

This makes first order derivatives appear again in the equation, but the Hubble factor just
multiplies the components of the vector u so that this term does not couple the two components.
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Then, one can approximate the diagonal coefficients far in the contraction, i.e. when η → −∞.
This gives

m11(η)− k2 ≈
η→−∞

η4a6
0m

2

81t40
,

m22(η)− k2 ≈
η→−∞

− 2

η2
,

(7.49)

where we substracted the k2 term as these are the functions m11(η)− k2 and m22(η)− k2 which
have to be compared to the wavenumbers k to determine if the mode oscillates or is frozen.
One can compare these functions to their homologues in the equations for the adiabatic and
isocurvature perturbations Eq. (3.57), that is the functions −z′′/z and −a′′/a + a2µ2

s. This is
done in Fig. 7.13 where on the left is plotted (k2 −m11(η))/a2 and z′′/(za2) with the constant
−m2 and on the right the functions (k2−m11(η))/a2 and (a′′/a−a2µ2

s)/a
2. The general behaviour

of −z′′/z and m11(η)−k2 are the same: they almost always scale like η4 but the function −z′′/z
behaves like η10 in some tiny periods of time, while m11(η) − k2 oscillates around the general
behaviour in η4. Similarly, the functions −a′′/a+a2µ2

s and m22(η)−k2 both almost always scale
like 1/η2, but the function −a′′/a + a2µ2

s behaves like η10 in some tiny periods of time, while
m22(η) − k2 oscillates around the general behaviour in 1/η2. To see this more closely, we have
plotted in Fig. 7.14, the function (k2 −m11(η))/a2 and its general behaviour in 2/(η2a2) as a
function of time, during the contracting phase.

Finally, we would be lucky if the off-diagonal coefficient vanishes in the contraction. In fact,
one can show that

m12(η) = m21(η) ∝ 1

η2
, except in some tiny periods of time where m12(η) = m21(η) ∝ ±η4,

(7.50)
so that one faces the same kind of issue already encountered in the decoupling case with the
coefficient functions z′′/z and a2µ2

s. However, ‘on average’, the off-diagonal terms decrease to
zero as 1/η2 far in the contracting phase, which is better than the coupling terms (zξ)′/z and
z′ξ/z that scale like η appearing in the equations of motion in the adiabatic and isocurvature
basis Eq. (3.57). This is shown in Fig. 7.15 where the function m12(η)/a2 is plotted, with its
general behaviour in 1/(η2a2) and the envelopes in η4/a2 =cst including how it behaves in some
tiny periods of time. Thus, one can assume that in this basis, the equations of motion are
decoupled, so that it might be easier to set the initial conditions for the perturbations. This
makes sense as we already argued that the two fields are independent far away in the contracting
phase.

Therefore, one might consider setting the initial conditions for the fields perturbations as we
did in the uncoupled case for the adiabatic and isocurvature perturbations, so that

δϕ(η) =

√
−πη
12

H
(2)
1/6

(
a3

0mη
3

27t20

)
,

δφ(η) =
e−ikη√

2k
.

(7.51)

One notices that in the uncoupled case, the adiabatic perturbation correspond to the perturbation
in the massive field δϕ while the isocurvature perturbation correspond to the perturbations in
the massless field δφ. One then solve numerically for these fields perturbations. Actually, as the
coefficient functions for the equations of motion for the fields perturbations are less stiff than for
the adiabatic and isocurvature perturbations, it might be easier to solve for them numerically.
Then, one can get the adiabatic and isocurvature perturbations by going back to the original
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Figure 7.13: The comparison between the functions z′′/(za2) and (k2−m11(η))/a2 (upper panel)
and (a′′/a− µ2

s)/a
2 and (k2 −m22(η))/a2 (lower panel), as a function of time. The functions in

the rotated system of equations Eq. (7.45) are less stiff than in the original system Eq. (3.57).
They also show an oscillatory behaviour, but instead of being on top of a general behaviour, it is
around it. Thus, the functions m11(η)− k2 and m22(η)− k2 are on average given by the formula
Eq. (7.49).
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Figure 7.14: The function (k2 −m11(η))/a2 and its general behaviour in 2/(η2a2) as a function
of time, during the contracting phase.



7.3. ADIABATIC AND ISOCURVATURE SCALAR PERTURBATIONS 135

-4×107 -3×107 -2×107 -1×107
t

-3.×10-13

-2.×10-13

-1.×10-13

1.×10-13

2.×10-13

3.×10-13

m12/a2

General behaviour

Envelopes
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with its envelopes being constants, during the contracting phase.

basis thanks to the rotation Eq. (7.42). Thus, one could also turn the initial conditions to get
the initial conditions for vσ and vs and then solve numerically for them. Finally, the results of
the two numerical resolutions could be compared.

Setting the initial conditions elsewhere

In Agullo et al. (2013b), they set the initial conditions for the perturbations of their field at the
bounce, in line with Ashtekar & Sloan (2011) where initial conditions for the background are also
taken at the bounce. This could also be considered here: the above analysis would need to be
redone by taking the analytical approximations for the background variables at the bounce, as
derived in Section 7.2.2, in order to find analytical approximations for the perturbations at the
bounce that would then allow us to set the initial conditions. However it is argued in Agullo et al.
(2013b) that the Bunch-Davies vacuum cannot be taken at the bounce for the perturabtions, as
the space-time geometry is far for being the de Sitter one (which is usually the approximation
taken for space-time during slow-roll inflation, as H is almost constant). Instead, they ask
the initial state for being regular and maximally symmetric with respect to the dressed metric
approach they use for the equations of motion for the perturbations, that is invariant under
spatial translations and rotations, which leads to a 4th order adiabatic vacuum.

In early studies of Grain & Barrau (2009); Grain et al. (2009), they put initial conditions
at the beginning of inflation so they can make use of the slow-roll approximation to derive
analytical approximations for the perturbations. One can wonder the relevance of doing this as
during inflation, gravitation can be treated classically, and so think this would give the same
results as the usual treatment made for inflation within GR. In fact, there is some residual
quantum gravity effects at the beginning of inflation so LQC can leave its imprints on the power
spectra of perturbations, which are indeed changed with respect to the usual treatment. These
considerations could be investigated in future works, although here we have chosen to set the
initial conditions in the past, with a view to having a causal evolution from the past to the future.

Perspectives on the power spectra of the perturbations
Finally, power spectra of the perturbations would need to be computed at the end of inflation.
Analytical approximations in the IR and UV limits could also be derived, by considering the
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evolution of the perturbations during the different phases: contraction, bounce and inflation.
These limiting cases will allow us to check our numerical predictions. The comparison of these
scalar power spectra with those derived in the case of one field for the scalar and tensor per-
turbations could give us hints about their impact on the CMB, as this has already been looked
at, for example in Grain et al. (2010). The interested reader can find for example in Bojowald
et al. (2011) observational constraints on LQC with a single scalar field. Eventually, one would
want to propagate our scalar spectra to the CMB to get the angular power spectra of primary
anisotropies in temperature and polarisation in order to compare them to the ones predicted
by the standard scenario and finally to observations. This would allow us to test or put con-
straints on our model of the very early Universe and maybe indicate directions to enrich it. The
observational constraints on isocurvature modes is promising to do so since our model has the
peculiarity to generate such modes. For this to be done thoroughly one may need to run the
data analysis with this specific model.
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Secondary polarised anisotropies of
the CMB
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Chapter 8

Faraday Rotation and Faraday
Conversion of the CMB photons in
large-scale structures

Other sources of CMB secondary polarised anisotropies are due to magnetised plasmas, in addi-
tion to the gravitational lensing (due to the gravitational potential of the virialised structures),
which also distort the polarisation image of the CMB. Virialised structures contain a magnetised
plasma, which leaves a footprint on the CMB through at least two effects: Faraday Rotation
(FR) and Faraday Conversion (FC). To quantify the secondary anisotropies, we need to study
the statistical effects of FR and FC. After explaining their mechanisms, and modeling the cos-
mological structures (Dark Matter halos and their statistical distribution), we will present the
computation of their angular power spectra which depend both on cosmological and astrophysical
parameters, and then their statistical impact on the CMB polarised anisotropies which inherit
of the correlations from the large-scale structures. Finally, estimators are built in order the
reconstruct the FR and FC effects in halos over the whole sky.

8.1 The Faraday Rotation and Conversion mechanisms

As light travels through a magnetised medium, its polarisation state is modified through magneto-
optical effects. Here we will focus on two of such effects: Faraday rotation and Faraday conver-
sion.

8.1.1 Faraday Rotation

Faraday rotation, also know as Faraday effect, is named after Michael Faraday who discovered it
in 1845. It is a magneto-optic or gyromagnetic effect, that is the interaction of an electromagnetic
wave with a quasi-static magnetic field in a medium, that rotates the polarization of an incident
linearly polarized wave. In such a medium, left and right circularly polarized electromagnetic
waves, which are the eigenpolarizations of the medium (see Azzam & Bashara, 1978), have
different speeds, so that the phenomenon is similar to optical rotation. Indeed, consider the
ideal and simplest case of a transverse monochromatic electromagnetic plane wave of frequency
ω propagating in the direction ê3 of an orthonormal basis {ê1, ê2, ê3} which is linearly polarized
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Figure 8.1: Illustration of a linearly polarised light travelling through a half-wave plate. Red
arrows indicate the total electric field, while the blue and green arrows correspond to orthogonal
projections. These two components have different propagation speeds in the medium, which
delays one with respect to the other, such that the polarisation direction of the outgoing light is
rotated by 90 degrees compared to the ingoing direction. Image by Bob Mellish.

in the {ê1, ê2} plane, i.e.

E(r, t) = E1cos
(ω
c
z − ωt

) ∣∣∣∣∣ 11 , (8.1)

as any electromagnetic wave can be decomposed onto the basis formed by these kinds of waves.
It is indeed a linearly polarized wave, as the electric field vector oscillates with frequency ω along
a constant direction given by the unit vector (1, 1)/

√
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polarized wave can be decomposed into the sum of a right and a left circularly polarized waves

E(r, t) =
E1

2

∣∣∣∣∣∣∣
2cos

(ω
c
z − ωt

)
+ sin

(ω
c
z − ωt

)
− sin

(ω
c
z − ωt

)
2cos

(ω
c
z − ωt

)
− sin

(ω
c
z − ωt

)
+ sin

(ω
c
z − ωt

)
=
E1

2


∣∣∣∣∣∣∣
√

2 cos
(ω
c
z − ωt− π

4

)
−
√

2 sin
(ω
c
z − ωt− π

4

) +

∣∣∣∣∣∣∣
√

2 cos
(ω
c
z − ωt+

π

4

)
√

2 sin
(ω
c
z − ωt+

π

4

)
 .

(8.2)

The first vector corresponds to a right circularly polarized wave and the second one to a left
circularly polarized wave. When a linearly polarized wave goes through a gyromagnetic medium
as described above, the effect is similar to a wave going through a chiral material, see Fig. 8.1.
It is similar in the sense that, as in a chiral material, the polarization direction of a linearly
polarized wave is rotated when going through the medium, all the more importantly as the
concentration of the chiral molecule in the medium and the path length of the wave are high.
As the linearly polarized wave is a superposition of two right and left circularly polarized waves,
the phenomenon acts effectively as the medium having a different refractive index n for the two
handedness. The difference with optical rotation is that here the rotation angle depends on the
sign of the projection of the magnetic field along the direction of propagation so that there is an

https://en.wikipedia.org/wiki/Waveplate
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assymetry. After going through the gyromagnetic medium, the electric field becomes

Ẽ(r + L ê3, t) =
E1

2
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4

)
,

(8.3)
where L is the length of the medium which is gone through, nr and nl are the refractive indices for
the right and left circularly polarized waves respectively so that the speed for the right circularly
polarized wave in the medium is c/nr and for the left circularly polarized wave it is c/nl. Then,
it can be rewritten as

Ẽ(r + L ê3, t) =
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(8.4)

and using the sum-to-product identity cos(θ1) + cos(θ2) = 2cos[(θ1 + θ2)/2]cos[(θ1 − θ2)/2], and
its similar expression for sine, we get

Ẽ(r + L ê3, t) = E1cos
(ω
c
z − ωt+ ϕ

)[
cos (α)

∣∣∣∣∣ 11 + sin (α)
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]
, (8.5)

with the phase

ϕ =
ω

c

(
nl + nr

2

)
L, (8.6)

and angle

α =
ω

c

(
nl − nr

2

)
L. (8.7)

The term in brackets can be written as a matrix of rotation, such that finally

Ẽ(r + L ê3, t) = E1cos
(ω
c
z − ωt+ ϕ

)( cos (α) −sin (α)
sin (α) cos (α)

) ∣∣∣∣∣ 11 . (8.8)

Comparing this expression to its initial state Eq. (8.1), we can see that the electric field is
phase-shifted and linearly polarized, but in a direction rotated by an angle α.

As an example, let us consider Faraday rotation in a cold stationary rarefied homogeneous
magnetized plasma with incident light frequency ω satisfying ω � ωp and ω � ωB , where
ωp =

√
nee2/(mε0) is the plasma frequency and ωB = eB/m is the cyclotron frequency. This is

relevant for modeling light propagation in the interstellar medium and the intracluster medium.
Under such conditions, starting from the expression Eq. (8.7) in differential form (i.e. modeling
the path of light as a succession of infinitesimal lengths), Melrose & McPhedran (1991) show
that the polarization direction of light traveling from a given source to an observer is rotated by
an angle

α = RM λ2, (8.9)
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Figure 8.2: Quarter-wave plates transform incoming linearly polarised light (on the right of the
figure) into circularly polarised light (on the left). Image from Wikimedia Commons.

with λ the wavelength of the incident light and RM the so-called Rotation Measure. This rotation
measure depends on the magnetic field projected along the direction of propagation B‖, the cold
electron density ne and the distance d over which the light has travelled in the plasma

RM =
e3

8π2ε0m2c3

∫ d

0

dr ne(r)B‖(r), (8.10)

where e is the charge of the electron, c is the speed of light, m is the mass of an electron and ε0

is the vacuum permittivity, the formula being given in SI units.
The physical interpretation of this phenomenon is that the two circularly polarized electro-

magnetic waves will imprint a force on the charged particles (more importantly on the electrons
because of their low mass), resulting in them having circular motion. They will thus create their
own magnetic field, adding to the already existing magnetic field. The circular motion of the
particles being clockwise or counter-clockwise depending on which of the two circularly polarized
waves imprinted the motion, the created magnetic field will then be either in the same direction
as the external magnetic field, or in the opposite direction so that the resulting magnetic field is
bigger or smaller, respectively. Then, this changes the interaction for each of the two circularly
polarized waves, so that one of the two will be slowed down more than the other, hence the phase
difference between the two polarizations. The superposition of two circularly polarized waves
with an additional phase shift will thus be a linearly polarized wave whose polarization direction
is rotated by an angle α (see p. 229 of Rybicki & Lightman, 1979).

8.1.2 Faraday Conversion
Faraday conversion or generalized Faraday rotation (also called circular repolarization (Pachol-
czyk, 1973) or Faraday pulsation (Pacholczyk & Swihart, 1970)), is the conversion of linear
polarization to circular polarization (Sazonov, 1969a; Jones & Odell, 1977; Melrose, 1997b). It
is similar to the Cotton-Mouton effect happening in liquids or the action of a quarter-wave plate
on linear polarization, see Fig. 8.2. Indeed, one can make a similar demonstration as what we
did for Faraday Rotation by decomposing the incoming linearly polarised wave into two linearly
polarised waves along the normal axes of the relativistic medium to show that the effect intro-
duces a phase shift between these two components making the outgoing wave having a circular
component. In a highly relativistic rarefied stationary homogeneous and weakly anisotropic mag-
netized plasma, the natural wave modes are linearly polarized (Sazonov, 1969b; Melrose, 1997a).

https://en.wikipedia.org/wiki/Waveplate
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The conversion of linear to circular polarization is characterized by a conversion rate

φ = RRM λ3, (8.11)

where RRM is called the relativistic rotation measure. In SI units

RRM =
e4

4π3ε0m3c4
βE − 1

βE − 2
Γmin

∫ d

0

dr nrelB
2
⊥, (8.12)

with Γmin the minimum Lorentz factor of a power-law distribution of relativistic particles and
βE the power law index. Indeed, the above formula is only valid for a power-law isotropic
distribution of relativistic particles

N(Γ) =
nrel(βE − 1)Γ−βE

Γ1−βE
min − Γ1−βE

max

, (8.13)

for Γmin ≤ Γ ≤ Γmax and Eq. (8.12) is derived assuming Γmax � Γmin and for frequencies much
larger than the plasma and synchrotron frequencies: ω � ωp � ωB (see e.g. Sazonov, 1969a;
Heyvaerts et al., 2013) and is a good approximation for Γmin ≤ 100 (Huang & Shcherbakov,
2011). Precise computations of the Faraday rotation angle and Faraday conversion rate for any
particle distribution have been derived in Shcherbakov (2008); Huang & Shcherbakov (2011) and
for different frequency regimes (Heyvaerts et al., 2013) but Eq. (8.12) is of most interest for us for
the astrophysical plasmas under consideration and for cosmic microwave background frequencies
of the order of 100 gigaHertz.

Faraday conversion has first been useful to interpret the circular polarization in compact radio
sources (Pacholczyk, 1973) which was not consistent with the frequency dependence of intrinsic
circular polarization from synchrotron emitting sources going as ω−1/2. It has later been used
in order to probe the magnetic field of the Active Galactic Nuclei (AGN) near the central black
hole of our galaxy, Sagittarius A∗, through its radio emission, leading to a GR polarized radiative
transfer treatment in Huang et al. (2009); Shcherbakov & Huang (2011). Here we will see to
what extent it has some effect on the CMB polarized light through galaxy clusters.

8.2 Dark Matter halos
Dark Matter halos are large (up to several Mpc) Dark Matter overdensities that host baryonic
matter (constituting roughly 10% of the mass fraction) in the form of galaxies and gas. Hot gas
has been probed in these structures by the SZ effect (see Section 4.3.2), and magnetic fields in
the intracluster medium of clusters of galaxies are observed through the methods reviewed in for
example Govoni (2006). Let us now detail how we model each of these components and most
importantly the electron density and magnetic field distribution.

8.2.1 Large-scale structure of dark matter
We have seen in Chapter 3 that there were some tiny quantum fluctuations in the very Early
Universe that could therefore be treated as cosmological perturbations around the homogeneous
and isotropic FLRW background. In Chapter 4, we have seen these perturbations translated
in the anisotropies in temperature and polarization of the CMB at the epoch of recombination.
The secondary CMB anisotropies due to large scale structures are another illustration of these
primordial perturbations: indeed, how these structures could have been formed if it were not from
original seeds at the beginning of the Universe? Roughly speaking, structures form through the
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following steps. First an overdense region decouples from the global expansion (a concept called
‘turn-around’, see e.g. Peebles, 1980) and starts collapsing onto itself. The gravitational collapse
overcomes the counteracting effect of pressure, according to Jeans’ criterion, and the structure
finally reaches a stable state. This process is called virialization and the end state is called the
virialized state. Finally, matter at cosmological scales ends up distributed in a filamentary way,
called the ‘Cosmic Web’. However here we focus on the most virialised structures and choose
to describe the distribution of matter at cosmological scales thanks to the halo model, replacing
this cosmic web by spherical structures, namely DM halos, the largest of them constituting the
nodes of this Web. DM halos are thus the result of the non-linear stages of the evolution of
the large scale structure of the Universe, and for simplicity, in the following we model them
as spherically symmetric. We will consider halo masses ranging from 1010 to 1016M�. High-
mass halos (typically greater than 1013M�) host so-called ‘clusters of galaxies’, namely groups of
between a hundred to a few thousands of galaxies, while low-mass halos (typically smaller than
1013M�) host less a hundred of them.

To be a little more quantitative, let us consider the following simple model. A DM halo is
assumed to be formed from the spherical collapse of a density perturbation, as a first approxi-
mation. The spherical collapse of an initial top-hat density perturbation model (Gunn & Gott,
1972) predicts the mean density of virialized halos to be (Bryan & Norman, 1998)

∆vir = 18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2, (8.14)

times the critical density at virialization time. This expression is valid in an Ωm + ΩΛ = 1
(flat) universe and accurate to 1% for Ωm(z) within the range [0, 1; 1]. In an Einstein-de Sitter
Universe, the expression Eq. (8.14) reduces to the exact 18π2 ≈ 178 value.

Analytical expressions for halo density profiles have been fitted to numerical simulations, and
it was found that Navarro et al. (1996)(NFW), Moore et al. (1999)(M99)

ρ(r|m) =
ρs

(r/rs)(1 + r/rs)2
(NFW) or ρ(r|m) =

ρs
(r/rs)3/2(1 + (r/rs)3/2)

(M99), (8.15)

are very good universal descriptions of the density profile around the centre of virialized halos.
The parameter rs is a scale radius fitted to the simulation and ρs is the density at that radius
determined by the mass m and virial radius rvir of the halos which is predicted by the spherical
collapse model Eq. (8.14). For the two above mentioned profiles, one has respectively

m = 4πρsr
3
s

[
ln(1 + c)− c

1 + c

]
and m = 4πρsr

3
s

2ln(1 + c3/2)

3
, (8.16)

where c ≡ rvir/rs is the concentration parameter. Therefore, the halo density profile depends
only on the mass of the halo and the rs fitted parameter, although simulations show that even
though the distribution at fixed mass of the concentration c depends on mass, its width does
not depend on the mass (Sheth & Tormen, 2002; Cooray & Sheth, 2002). Thus, at the end of
the day, the halo density profile only depends on the mass. To finish, note that it is still not
understood theoretically why the NFW and M99 profiles fit the DM simulations so well (e.g.
Huss et al., 1999).

8.2.2 Baryonic and magnetic content
The aim of this part of the manuscript is to study how, and quantify how much, the plasma
contained in galaxy halos acts as a source of secondary polarized anisotropies of the CMB,
revisiting and amending the first estimates of Cooray et al. (2003) and Tashiro et al. (2008). To
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do so, we need to model precisely two characteristics of halos: their free electron density and
their magnetic field spatial profiles. Inside large enough DM halos, the baryonic matter collapses
and galaxies begin to form.

8.2.2.1 Distribution of free electrons

Two populations of electrons may be distinguished in astrophysical clusters and halos: thermal
electrons, which are in particular responsible for the thermal Sunyaev-Zel’dovich (tSZ) effect,
and relativistic electrons, generated by AGNs, shocks or cosmic rays. It is crucial to make this
distinction because the expressions of the different coefficients in the Faraday effects introduced
in section 9.1, as well as their relative amplitude, depend on the nature of free electrons in the
magnetized plasma. As already explained in Section 8.1, the two extreme situations are either
normal waves of the plasma are circularly polarized, or these normal waves are linearly polarized.
In the former case, Faraday rotation is dominant over Faraday conversion, which is the case for a
plasma made of non-relativistic electrons (or cold plasma in Sazonov, 1969a). In the latter case,
it is Faraday conversion which is dominant. This can occur for a population of relativistic and
non-thermal electrons, with some restrictions on their energy distributions (see Sazonov, 1969a).

For the case of thermal electrons, the typical temperature of clusters is ∼ 107K, corresponding
to about few keV’s, hence much smaller than the electron mass. This population of electrons
is thus mainly non-relativistic. A typical value of the number density of thermal electrons for
clusters is ne ∼ 103m−3 for a halo mass of M = 1014M� and size rvir = 1 Mpc. Historically,
the spatial profile for the free electrons was taken to be the β-profile of Cavaliere & Fusco-
Femiano (1978) as it matched the X-ray observations, while now the tSZ community relies on
a generalisation of the NFW profile defined in Eq. (8.15), the GNFW profile, as it is expected
that the baryons follow the DM potentials. Here, as a first estimate, we chose the β-profile as in
Tashiro et al. (2008)

ne(r) = n(c)
e

(
1 +

r2

r2
c

)−3β/2

, (8.17)

where r and rc are respectively the physical distance (or comoving as it depends only on the
ratio of these two distances) to the halo centre and the typical core radius of the halo. One notes
that the physical halo core radius of the order of a tenth of the virial radius

rc ∼
rvir
10

, (8.18)

where the virial radius is

rvir =

(
M

(4π/3)∆c(z)ρ̄(z)

)1/3

, (8.19)

with the spherical overdensity of the virialized halo

∆c(z) ≈ 18π2Ωm(z)0.427, (8.20)

and ρ̄(z) the critical density at redshift z (see Tashiro et al., 2008). The quantity n
(c)
e is the

central free electron density. For thermal free electrons, it is given by:

n(c)
e = 9.26× 10−4cm−3

(
M

1014M�

)(
rvir

1Mpc

)(
Ωb
Ωm

)
× 2F

−1
1 (3/2, 3β/2; 5/2;−(rvir/rc)

2),

(8.21)
with 2F1 the hypergeometric function.
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For relativistic electrons however, the properties inside halos are not well known (see Sec. 5
of Cavaliere & Lapi, 2013, for a brief overview). We consider relativistic electrons to be described
by a power-law in the momentum space (following e.g. Colafrancesco et al., 2003, and references
therein) with Lorentz factor ranging from Γmin � 1 to Γmax and an isotropic spatial distribution
of the energy distribution. Assuming for simplicity that Γmax � Γmin, the relativistic electron
distribution function simplifies to (Colafrancesco et al., 2003)

n(rel)
e (r,Γ) = n(r)

e (r,Γmin)(βE − 1)ΓβE−1
min Γ−βE , (8.22)

with βE > 1 the spectral index, and n
(r)
e (r,Γmin) the number density of relativistic electrons

integrated over the range of Lorentz boost. Typical values for the spectral index is 2.5. We chose
the normalisation assumed by Colafrancesco et al. (2003), that is

n(r)
e (r,Γmin = 100) = 10−6cm−3, (8.23)

even though the number density of relativistic electrons is largely unknown and we consider here
the maximum value we found in the literature. Our results will be easily rescaled for different
values of n(r)

e (r,Γmin). Let us mention that the number density n(r)
e (r,Γmin) is in full generality

taken as a function of Γmin so that other choices of normalisation can be made. In fact the total
number density of electrons increases for lower values of Γmin.

8.2.2.2 Modeling the magnetic field

Let us denote by x a given position within the halo, and by xi the position of the halo centre.
The magnetic field B is in full generality a function of both x and xi, as well as a function of the
mass and the redshift of the considered halo. In particular, small scale structures of the magnetic
field in galaxy clusters have been observed via rotation measures. This can be taken into account
as in Murgia et al. (2004); Govoni et al. (2006); Bonafede et al. (2010) by modeling the magnetic
field in Fourier space as the convolution of the Fourier transform of a simple radial profile times
the Fourier coefficients of a vector potential A(k), described by a statistically isotropic, power-
law power spectrum at scales smaller than the cluster scales, i.e. smaller than the virial radius.
This models a magnetic field which is coherent on scales smaller than the halo size. For example,
in Murgia et al. (2004), the power spectrum is non zero on scales ranging from a hundredth of
the core radius, rc, to almost two times the core radius. This would mean a coherence length
of about half the virial radius. This modeling of the magnetic field as a convolution in Fourier
space of two components shows that it can be decomposed into two superposed magnetic fields:
an average magnetic field over the cluster scale with constant direction and a given radial profile
plus small scale fluctuations, i.e. a stochastic component in the magnetic field with coherence
length smaller than the virial radius.

However, because we have only a poor knowledge of the magnetic field inside halos, we allow
ourselves to choose a model for B that will simplify a bit the calculations of the angular power
spectra. Therefore, we assume a magnetic field which is coherent over the halo scale, by taking
only the above large-scale average component and we will later see how the model can be made
more complex. Thus, in our modeling, the orientation of the magnetic field is roughly constant
over the halo scale, but we still allow for potentially radial profile for its amplitude, i.e.

B(x,xi) = B(|x− xi|)b̂(xi). (8.24)

The vector b̂(xi) is a unit vector labelling the orientation of the magnetic field of a given halo.
Therefore it depends on the halo position only and is considered as a random variable. Here,
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we also assumed a spherically symmetric profile for the amplitude of the magnetic field. Based
on observations (e.g. Hummel et al., 1991; Murgia et al., 2004; Bonafede et al., 2009, 2010), we
consider that the radial dependency of the norm of the magnetic field is related to the gas density
by a power-law

B ∝ (ngas)
µ, (8.25)

and thus choose a β-profile

B(r) = Bc(z)

(
1 +

r2

r2
c

)−3βµ/2

, (8.26)

where Bc is the mean central value. As for the time evolution, denoting by B0 the field strength
at t0 (today), we take as in Widrow (2002)

Bc(z) = B0 exp

(
− t0 − t(z)

td

)
, (8.27)

which introduces the timescale

td =

√
r3
vir

GM
. (8.28)

Note that increasing the value of the µ parameter makes the profile fall down more rapidly. Now,
the stochastic component of the magnetic field having a coherence length smaller than the virial
radius, it induces a large-scale suppression with respect to the case where the magnetic field is
coherent over the halo scale. Thus, a smaller coherence length can be taken into account at an
effective level by increasing the value of the µ parameter.

In principle the magnetic field strength at the centre Bc depends on the mass of the halo.
Inside galaxies (halos with M < 1013M�) it may reach ∼ 10µG, while in clusters (halos with
M > 1013M�) a few µG’s are typically expected, though it could rise to 10µG in the most
massive ones (Vacca et al., 2012). In fact we expect B to increase with the mass, because of the
scaling law (Kunz et al., 2011)

B0 ∝ n1/2
e T 3/4, (8.29)

which, combined with the temperature-mass relation deduced from X-rays observations (Giodini
et al., 2013), gives

B0 ∝M. (8.30)

As we will see later, the dependence of the angular power spectra of Faraday rotation and
conversion on cosmological parameters is impacted by how B scales with the halo mass. Therefore
in this study, we will consider three different mass scalings. First, a mass-scale independent
magnetic field, which will be our benchmark. The second scaling, suited to model the effects due
to clusters, will be

B0(M) = Bp ×
(
M

Mp

)γ
, (8.31)

with Mp = 5 × 1014M�, Bp = 3µG, and γ > 0 for the magnetic field to increase with mass.
Third, to take into account galaxies, in which the field is greater than in clusters, we will take

B0(M) = Bp +Bg ×
{

1 + tanh

[
log(Mg/M)

∆ logM

]}
, (8.32)

with Bc = 3µG, Bg = 3.5µG,Mg = 1013M�, and ∆ logM ' 0.43. This last scaling is convenient
because it enables us to consider two regimes with a smooth transition: For low masses (M <
1013M�) it becomes B0 = 10µG, which is relevant for galaxies, while for high masses (M >
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1013M�) we have B0 = 3µG as expected in clusters. This transition is centered at 1013M� with
a width of about half of an order of magnitude in mass.

For simplicity, as a first approach, throughout our work we consider single profiles for the electron
density and magnetic fields in halos. However, we are aware that improving this modeling may
affect our results. For example Tashiro et al. (2008) show the effect of taking into account the
fact that galaxies have disc structures on which gas from the halo may condense.

8.3 The halo model
The halo model can be used to make a statistical study of various large scale structure physical
observables, such as the spatial distribution of galaxies, the nonlinear velocity field, the pressure
field, the weak gravitational lensing as well as secondary sources of anisotropies of the CMB such
as the thermal and kinetic SZ effects. Therefore, we will use this model to make a statistical
study of the FR and FC effects in galaxies and galaxy clusters, so that our treatment will be
close to the one of the SZ effect. To use the halo model for other physical observables than the
DM density field, it suffices to replace the DM halo density profile Eq. (8.15) with the relevant
spatial profile for the considered physical observable and the appropriate clustering.

A review of the halo model is presented in Cooray & Sheth (2002) and most of the content
of this chapter on this model is based on it. The halo model is based on the description of
the spatial distribution of galaxies by Neyman & Scott (1952). In their modeling, galaxies were
discrete points clumped together in clusters of galaxies with different sizes so that the ingredients
of the model were the distribution of cluster sizes, the distribution of galaxies around the cluster
centre and a model for the clustering of clusters. If one replaces these clusters of galaxies by the
DM virialized halos of Section 8.2.1, so that one replaces the distribution of galaxies around the
cluster centre by the halo density profile of Eq. (8.15), one is building the halo model of large
scale structure describing the spatial statistics of the dark matter density field. The motivation
for doing this comes from the fact that 84% of the matter in the Universe is dark (Planck
Collaboration et al., 2018b). In the halo model, all the mass of the complex network formed by
DM (sheets, filaments and knots) is replaced by the virialized DM halos, see Fig. 8.3.

Then, the distribution of halos in size, that is the distribution of halos in mass, is given by
the mass function n(m, z) which is the average comoving number density of halos of mass m at
redshift z

m2n(m, z)

ρ̄

dm

m
= νf(ν)

dν

ν
, (8.33)

with ρ̄ the comoving density of the background; ν ≡ δ2
sc(z)/σ2(m) where δsc(z) is the initial

density contrast δi (defined in Chapter 3) required for spherical collapse, extrapolated using
linear theory to the time of collapse z, and σ2(m) is the variance in the initial density fluctuation
field smoothed with a tophat filter on scale R. In fact, mass functions f can be parametrised
either by ν or σ. Here we describe the ν parametrisation taken when the virial density is used
to define halos, so that it is consistent with our definition of halos with the virial radius as in
Eq. (8.19). We have chosen the modelisation of Despali et al. (2016) based on ellipsoidal collapse
model (Sheth et al., 2001; Sheth & Tormen, 2002) which gives a good fit to the mass function in
DM numerical simulations

νf(ν) = A

(
1 +

1

ν′p

)(
ν′

2π

)1/2

e−ν
′/2, (8.34)

with ν′ = bν and best fit values for (b, p, A) are given in the paper by Despali et al. (2016). The
fitting parameters hardly depend on redshift: the mass function is therefore said to be universal.
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Figure 8.3: The complex distribution of DM as found in numerical simulations, shown on the
left, is replaced by the distribution of DM halos shown on the right. All the mass of the Universe
is therefore contained in these virialized DM halos. Figure taken from Cooray & Sheth (2002).

Finally, a model for the clustering of halos which takes into account the spatial correlations
between halos is related to the perturbation theory describing the clustering of DM (Bernardeau
et al., 2015) by the deterministic biasing on large scales

δh(m, z1|M,V, z0) =
∑
k>0

bk(m, z1)δk, (8.35)

where δh is the density contrast of halos of mass m which collapsed at z1 in cells of comoving
volume V and mass M at z0. The sum over k is just an expansion in powers of δ, which is
the usual DM density contrast, and the bk are called the bias parameters which account for the
difference between the DM density field one can observe in simulations and its halo description,
see Fig. 8.3. This allows us to compute the variance of the halo counts on large scales

〈δh(m, z1|M,V, z0)2〉 = 〈
(∑
k>0

bk(m, z1)δk

)2

〉 ≈ b21(m, z1)〈δ2〉V , (8.36)

where 〈δ2〉V is the variance of the DM distribution and can be computed using perturbation
theory, the average 〈...〉 in on large cells of volume V with mass M at z0. Then, the two-point
correlation function ξ of the continuous DM density field normalised to the mean density ρ̄ in
the model is given by

ξ(x− x′) = ξ1h(x− x′) + ξ2h(x− x′), (8.37)

with
ξ1h(x− x′) =

∫
dm

n(m)

ρ̄2

∫
d3y ρ(y|m)ρ(y + x− x′|m), (8.38)

ξ2h(x− x′) =

∫
dm1

n(m1)

ρ̄

∫
dm2

n(m2)

ρ̄

∫
d3x1 ρ(x− x1|m1)∫

d3x2 ρ(x′ − x2|m2)ξhh(x1 − x2|m1,m2).

(8.39)
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In this continuous description, the above average is transformed by an average over space and an
average over the halo mass function. The first term of the two-point correlation function is called
the one-halo term (hence the superscript ‘1h’) and represents the contributions coming from the
same halo to the two-point correlation function of the DM density field, the second term is called
the two-halos term (hence the superscript ‘2h’) and represents contributions coming from two
different halos which are correlated. Finally, ξhh(x1 − x2|m1,m2) is the two-point correlation
function of halos of mass m1 and m2 and can be computed using the deterministic biasing on
large scales Eq. (8.36)

ξhh(r|m1,m2) ≈ b(m1)b(m2)ξ(r), (8.40)
and it has been noticed that using the linear theory for ξ is a good estimation at all scales:
ξhh(r|m1,m2) ≈ b(m1)b(m2)ξlin(r).

8.4 Angular power spectra of the FR and FC effects by
large-scale structures

The purpose of our work in the paper of Chapter 9 was to model the FR and FC effects in
large scale structures such as galaxies and galaxy clusters as a first step in order to predict their
impact on the anisotropies in polarisation of the CMB. This was an all sky modelisation of the
effects, thus we made use of the spherical harmonics formalism of Section 4.3.1, used to describe
the anisotropies of the CMB and of the above described halo model of large scale structure.

We have seen in Section 8.3 that the halo model allows us to compute correlation functions
of various physical observables of large scale structure, in particular the secondary effects on the
CMB such as the thermal and kinetic SZ effects. Similarly in our work of Chapter 9, we have
used the two-point correlation function Eq. (8.37) derived in the halo model to study statistically
the two FR and FC effects in galaxies and galaxy cluster halos. Thus the DM halo density profile
Eq. (8.15) has been replaced by the gas and magnetic field spatial distributions in galaxy clusters
Eq. (8.17) and Eq. (8.26) in the above expressions of Eq. (8.38) and Eq. (8.39).

Let φs be the effect under consideration, either the Faraday Rotation angle or Faraday Con-
version rate, with s labelling the spin of the effect (the FR angle is a scalar while the FC rate is
a spin 2 quantity). It can be written as an integrated effect over the Line-Of-Sight (L.O.S.) as
all clusters along the L.O.S. contribute cumulatively to the effect

φs(n) =

∫ rCMB

0

dr a(r)

∫
dMi

∫
d3xi nh(Mi,xi)fs(b(xi),n)Φ(Mi, |x− xi|), (8.41)

where n is L.O.S. direction pointing towards the sky such that x = rn and r is the comoving
distance along the L.O.S., xi the position of the centre of a cluster, nh(Mi,xi) the abundance
of halos, fs is a function of the projection of the orientation b(xi) of the magnetic field which
depends only on the cluster i through its position, and Φ(Mi, |x−xi|) is the dimensional spatial
profile of the effect, depending on the magnetic field and electron density profiles, where we have
assumed spherical symmetry. We bother writing the effects we considered this way to highlight
our statistical modelisation. Indeed, the two-point correlation function of φs is then

ξφsφs′ (n1,n2) ≡ 〈φs(n1)φs′(n2)〉 ∝ 〈nh(Mi,xi)nh(Mj ,xj)fs(bi,n1)fs′(bj ,n2)〉, (8.42)

and can be split into a one-halo term and a two-halo term following Eq. (8.37). Now assuming the
spatial distribution of halos is uncorrelated to the distribution of the magnetic field orientations,
the above average can be factorised in two

〈nh(Mi,xi)nh(Mj ,xj)fs(bi,n1)fs′(bj ,n2)〉
= 〈nh(Mi,xi)nh(Mj ,xj)〉c 〈fs(bi,n1)fs′(bj ,n2)〉SO(3),

(8.43)
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where 〈...〉c is an average over the spatial distribution of clusters and 〈...〉SO(3) an average over
the magnetic fields orientations which are labelled by three Euler angles, or equivalently by a
rotation matrix belonging to SO(3). Finally, we assumed the magnetic field orientations to be
independent from one halo to another so that

〈fs(bi,n1)fs′(bj 6=i,n2)〉SO(3) = 〈fs(bi,n1)〉SO(3)〈fs′(bj 6=i,n2)〉SO(3), (8.44)

and that these orientations are uniformly distributed over the whole halo population, as is re-
quired for a statistically homogeneous and isotropic Universe so 〈fs(b,n)〉SO(3) = 0. Thus, the
two-point correlation of the magnetic field orientations is proportional to a Kronecker delta

〈fs(bi,n1)fs′(bj ,n2)〉SO(3) ∝ δij , (8.45)

so that it is non-zero only for the same halos, and the two-halos term in the two-point correlation
function Eq. (8.42) vanishes.

Finally, the angular power spectrum of the effect is obtained by going to the analog of Fourier
space on the sky, i.e. making a spherical harmonic tranform

〈φs;`mφ∗s′;`′m′〉 =

∫
d3n1

∫
d3n2 ξ

φsφs′ (n1,n2)sY
∗
`m(n1)s′Y`′m′(n2), (8.46)

where 〈φs;`mφ∗s′;`′m′〉 is the correlation matrix of the multipolar coefficients and is expected
to be diagonal as the effects are statistically homogeneous and isotropic: 〈φs;`mφ∗s′;`′m′〉 =

C
φs,φs′
` δ`,`′δm,m′ , Cφs,φs′` being the angular power spectrum of the effect. As the two-point

correlation function Eq. (8.42) is written as the product of the two-point correlation function for
the magnetic field orientations and the two-point correlation function for the amplitude of the
effect, the angular power spectrum is actually the convolution of their two respective angular
power spectra.

As already mentioned in Section 8.2.2.2, a more realistic magnetic field model would be one
with a power spectrum at smaller scales than the virial radius (as in Murgia et al., 2004; Govoni
et al., 2006; Bonafede et al., 2010), characterised by a vector potential described by a statistically
isotropic, power-law power spectrum on small scales (smaller than the cluster scale). Including
such fluctuations, the two-point correlation function Eq. (8.45) of the magnetic field orientations
becomes

〈fs(bi,n1)fs′(bj ,n2)〉 → 〈fs(b′i,n1)fs′(b
′
j ,n2)〉S(r1,2), (8.47)

where here b′ corresponds to the orientation of the average magnetic field over the halo scale, that
is to the large-scale component of the full magnetic field of the halo. This two-point correlation
function is non-zero if and only if the two lines-of-sight cross the same clusters (encoded in the
δij). Finally, the function S(r1,2) is the two-point correlation function associated to the power
spectrum of magnetic fields at small scales. It is a function of the distance r1,2 between the two
points at which Bi(r1) and Bj(r2) are considered (not to be confused with r1 and r2 which are
distances of each point from the observer). Such a two-point correlation function drops down
to zero beyond a separation Λc that is smaller than the size of the halo, i.e. for r1,2 > Λc with
Λc < rvir, while it tends to one for r1,2 → 0. This drop accounts for the fact that the magnetic
field is coherent on scales smaller than the halo size. In Murgia et al. (2004) for instance, the
power spectrum is non vanishing on scales ranging from a hundredth of the core radius, rc, to
almost twice the core radius. This corresponds to a coherence length of roughly half the virial
radius. Here we assumed that the magnetic fields are coherent over the entire halo, meaning
that up to the virial radius the function S equals ∼ 1. By assuming a coherence up to the virial
radius, it is likely that the angular power spectrum on large scales will be overestimated, in the
range from rvir/2 to rvir or so.
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Let us finally examine how the above result can be modified to include a stochastic component
in the magnetic field (as in Murgia et al., 2004; Govoni et al., 2006; Bonafede et al., 2010). It
can be shown that adding the 2-point correlation S(r) of the stochastic magnetic field can be
accounted for introducing an effective profile, X → Xeff , where X is the profile of the effect
considered, i.e. X ∝ ne(r)B‖(r) for FR and X ∝ nrel(r)B

2
⊥(r) for FC. This profile should take

into account two effects. First it has to fall down to zero faster than the β-profile in order to
include the large scale suppression due to a coherence length smaller than the virial radius. The
precise shape of such an additional drop depends on the details of the power spectrum describing
the stochastic magnetic field. However, as a simple effective description, one can increase the
values of the parameter µ in Eq. (8.26), since the profile drops faster for higher values of µ.
Therefore in what follows, the parameter µ should be interpreted as an effective parameter
which also (partially) captures the impact of a magnetic field coherent on scales smaller than
the virial radius. Second, the correlation S(r) may add a new scaling of the total amplitude of
the effect with the mass. Nevertheless this modification can be absorbed completely in the mass
scaling of Bc. We will thus consider that the impact of such a stochastic component is effectively
captured by an increased value of µ (in terms of shape), and by the mass-scaling we introduced
for Bc. This obviously does not capture the details of the power spectrum of the magnetic field,
but at least it takes into account its impact at a qualitative level. The other way around, one
can also expect that the large-scale suppression induced by the power spectrum description, and
the additional scaling in mass, is partially degenerate with the parameter µ and the mass-scaling
of Bc.

In our work of Chapter 9, we have computed the angular power spectra of the FR and
FC effects for different values of the parameters β and µ of the electron density and magnetic
field spatial profiles Eq. (8.17), (8.26), as well as for different models for the amplitude of the
magnetic field Eq. (8.31), (8.32) and also for relativistic electrons instead of cold electrons.
Fig. 8.4 shows the angular power spectrum of the Faraday Rotation angle α for different models
for the amplitude of the magnetic field. The solid red curve is the reference curve representing
no mass-scaling of the amplitude of the magnetic field: here, all halos have the same magnetic
field amplitude set to 3µG. The dashed blue curve accounts for the galaxy scaling Eq. (8.32):
galaxies (i.e. halos with M < 1013M�) have a higher magnetic field, as high as 10µG for halos
with massM = 1010M�, thus the overall amplitude of the angular power spectrum is higher with
respect to the no-mass scaling model. However, as galaxy clusters (halos with M > 1013M�)
have a lower magnetic field amplitude, as low as 3µG for the most massive halos, the galaxies
dominate the contribution to the effect: it is reflected by the fact that the dashed blue curve is
shifted to higher `, hence to smaller scales, galaxies being smaller scale objects on the sky than
galaxy clusters for a given redshift. The dot-dashed orange and dotted green curves correspond
to a more refined model of magnetic field amplitude where one has the above galaxy scaling
Eq. (8.32) plus a mass-scaling Eq. (8.31) for galaxy clusters. In this model, galaxy clusters have
a stronger magnetic field compared to the galaxy scaling only, as strong as 60µG for the most
massive clusters (M = 1016M�) in the γ = 1 case. Therefore, the overall amplitude is again
greater with respect to the galaxy scaling model, as we add more power through the galaxy
clusters: hence, the gain in amplitude is at small `, i.e. large scales, galaxy clusters being larger
scale objects on the sky than galaxies. These qualitative features are also found for the angular
power spectra of the Faraday Conversion rate with cold electrons, however enhanced because the
FC rate scales with the magnetic field to the square.

The different models for the magnetic field strength, electron density and magnetic field
profiles change the scaling of the angular power spectra with cosmological parameters. Thus, a
precise modeling of the electron density and magnetic field inside galaxies and galaxy clusters
is needed if one wants to use these effects to probe the cosmological parameters or inversely,
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Figure 8.4: The power spectrum of the Faraday Rotation angle α for different models of the
magnetic field amplitude inside halos.

knowing precisely the cosmology could allow us to probe the gas and magnetic field properties of
galaxy halos. The table 8.1 summarizes our results concerning the scalings with the cosmological
parameters σ8, which is the amplitude of the linear matter power spectrum on scales of 8/hMpc,
and Ωm, the matter density parameter, of the two FR and FC angular power spectra for different
models of the magnetic field strength and electron populations. One notices that our effects are
above all sensitive to the σ8 parameter which is strongly linked to the mass function, as the
latter gives the abundance of halos in mass and redshift, hence being another manifestation of
the density fluctuations. Furthermore, the more the effects depend on mass, the more strongly
it scales with σ8, see the ‘no mass’ and ‘cluster’ scalings of the magnetic field strength cases for
example. This is due to the fact that the mass function depends more strongly on σ8 for high
masses. For that matter, the scaling with σ8 at ` = 10 is always stronger than at ` = 10000,
as low multipoles correspond to large scales, hence high masses. There is thus a degeneracy
between this scaling in σ8 and the mass dependence of the magnetic field strength. Finally, the
effects are almost insensitive to Ωm when varying ΩCDM . For a comparison, we give the scalings
with these cosmological parameters of other probes, the different scaling in σ8 being explained
by a different mass scaling of the effects. When constraining the cosmological parameters, there
is usually a degeneracy in the σ8 − Ωm plane, see for example Fig. 20 of Planck Collaboration
et al. (2018b). The different scalings of our effect as compared to other probes could therefore
be used to lift this degeneracy, provided that the magnetic field properties are well known and
the other way around, knowing the cosmological parameters from other probes would allow to
determine the scaling with mass of the magnetic field strength.
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σ8 Ωm

Faraday Rotation power spectrum

No mass-scaling 3.1; 2.1 −0.12; −0.22
Galaxy scaling 2.0; 0.89
Cluster scaling γ = 1 9.6; 7.6

Galaxy scaling + 7.0; 1.0
cluster scaling γ = 1

Faraday Conversion power spectrum Thermal electrons 3.1; 1.9 −0.12; −0.21
Relativistic electrons 1.0; 0.7

Halo number counts from thermal SZ 9 3
Thermal SZ power spectrum at ` ' 3000 8.1 3.2
CMB lensing power spectrum at ` ' 30 2 0.5

Table 8.1: Scaling of different large-scale-structure probes with σ8 and Ωm. The scaling reported
here is to be understood as P ∝ σn8 Ωpm with P the amplitude of any of the considered probe.
They are given for two values of the multipole ` = 10 and ` = 10000 for the Faraday Rotation
angle and the Faraday Conversion rate, at the peaking multipole of `(`+ 1)C` for the tSZ flux,
and the peaking multipole of `2(`+ 1)2Cφφ` for the lensing potential.

8.5 Impact on the CMB

The impact of the FR and FC effects in galaxy clusters on the CMB is similar to the weak
lensing of the background radiation by these very large-scale structures. The weak lensing effect
has been mentioned in Section 4.3.2 and consists in the deflection of the background light by the
gravitational potential of large-scale structures such as galaxy clusters. It changes the primordial
image of the CMB by inducing secondary temperature anisotropies, but also secondary polarised
anisotropies, converting some of the primordial E modes patterns into secondary B modes ones,
as shown in Fig. 4.12. The FR and FC effects also transforming polarisation, it is this last part of
the impact of weak lensing on the CMB that is similar. The CMB being described statistically (cf
Chapter 4), the impact of these effects on the CMB translates into a modification of the angular
power spectra of the polarised anisotropies CEE/BB` . Therefore, similarly to the lensing effect,
the observed polarised anisotropies of the CMB can be used to reconstruct the FR and FC fields,
containing potentially a lot of astrophysical and cosmological information. The reconstruction
of these fields requires to build their estimators, in a similar way to those built for lensing in Hu
& Okamoto (2002); Okamoto & Hu (2003), see also Kamionkowski (2009) for the FR angle α.

8.5.1 Secondary polarised anisotropies

Thus, the second step in our work was to predict the impact of such effects on the anisotropies
in polarisation of the CMB. The CMB being described statistically, its anisotropies can be
characterised by their statistical moments; the angular power spectra for the secondary linearly
polarised CMB anisotropies have already been derived elsewhere for the case of gravitational
lensing (see Zaldarriaga & Seljak, 1998; Hu, 2000) and Faraday Rotation (see Takada et al.,
2001; Scoccola et al., 2004; Kosowsky et al., 2005; Tashiro et al., 2008) with the help of the
basis independent non-local E and B modes (see Chapter 4) rather than the Q and U basis
dependent Stokes parameters. Therefore, we will only give the expressions of the angular power
spectra for the two combined effects and begin with the derivation of the angular power spectrum
of the secondary circularly polarized anisotropies of the CMB due to Faraday Conversion, the
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derivation being similar but simpler than for the E and B modes due to Faraday Rotation and
gravitational lensing.

8.5.1.1 Secondary V Stokes parameter

Contrary to the Q and U Stokes parameters, the V Stokes parameter is invariant under rotations
of the coordinate basis. It is however a pseudo-scalar (the intensity I is a real scalar), meaning it
gets a minus sign when reversing the handedness of the basis (under a parity transformation). We
will therefore use it to characterise the angular power spectrum of circular polarisation. Faraday
Conversion transforms the incoming linear polarisation described by the polarisation field P±2

(defined in Eq. (4.29)) into circular polarisation described by the V Stokes parameter at a rate
φ∓2. Formally a perturbative solution for V at the next-to-leading order is given by

Ṽ FR+FC = Ṽ + i

(∫ 0

rCMB

dr
dφ−2(r)

dr
e−2iθB(r)e−2iα(r,rCMB)

)
P̃2

− i
(∫ 0

rCMB

dr
dφ2(r)

dr
e2iθB(r)e2iα(r,rCMB)

)
P̃−2,

(8.48)

where Ṽ and P̃±2 are the primary+lensed CMB polarisation fields, assuming lensing occurs before
FR and FC 1, rCMB is the comoving distance to the CMB, φ is the FC rate of Eq. (8.11), α the
FR angle defined in Eq. (8.9) and θB is the angle between the magnetic field projected on the
plane perpendicular to the L.O.S. (eθ, eϕ), which is along e2, and the basis vector eθ, as shown
in Fig 8.5. The primordial Stokes V parameter is however expected to be zero in the standard

Figure 8.5: The angle θB between the magnetic field projected on the plane perpendicular to the
L.O.S. direction n, which is along e2 as in Sazonov (1969a), and the spherical coordinates basis
vector eθ.

cosmological model, as there is no source of circular polarisation at recombination. Moreover,
as the FR angle is small, it is treated like a perturbation and one can expand the exponential in
the above integrals. Keeping terms at the lowest order it becomes

Ṽ (n) = i (φ−2(n; 0, rCMB)P2(n)− φ2(n; 0, rCMB)P−2(n)) , (8.49)

1As shown for example in Lewis & Challinor (2006) (cf the right panel of their fig 3) the main contribution to
the power spectrum of the lensing potential is due to the cumulative effect of redshifts z > 0.5 for all multipoles,
while our effects are expected to mainly occur at low redshifts z . 1.



156CHAPTER 8. FARADAY ROTATION AND FARADAY CONVERSION OF THE CMB PHOTONS IN LARGE-SCALE STRUCTURES

where φ±2(n; 0, rCMB) is the integral over the L.O.S. of dφ(r)/dr e±2iθB(r). Note on this expres-
sion that terms involving α do not appear because as it is a small effect, one can Taylor expand
the exponential so that these terms are of higher order.

Decomposing Ṽ onto the spherical harmonics gives the following multipolar coefficients

Ṽ`m =

∫
d3n Ṽ (n)Y ∗`m(n). (8.50)

We can do the same for the spin 2 field φ±2(n)

φ±2(n) =
∑
`m

±2φ`m ±2Y `m(n), (8.51)

and define the φE and φB modes for φ±2, similarly to what is done for the polarisation field P±2

in Section 4.3.1.2,
±2φ`m = −(φE`m ± iφB`m). (8.52)

With these notations, the Ṽ Stokes parameter is rewritten

Ṽ (n) = i

(∑
`m

(φE`m − iφB`m) −2Y`m(n)
∑
l′m′

(E`′m′ + iB`′m′) +2Y`′m′(n)

−
∑
`m

(φE`m + iφB`m) +2Y`m(n)
∑
`′m′

(E`′m′ − iB`′m′) −2Y`′m′(n)

)
, (8.53)

and using the Gaunt integrals∫
d2n −2Y`′m′(n)+2Y`′′m′′(n)Y ∗`m(n) =(−1)m

√
(2`′ + 1)(2`′′ + 1)(2`+ 1)

4π(
`′ `′′ `
−m′ −m′′ m

)(
`′ `′′ `
−2 +2 0

)
,

(8.54)

and∫
d2n +2Y`′m′(n)−2Y`′′m”(n)Y ∗`m(n) =(−1)`

′+`′′+`(−1)m
√

(2`′ + 1)(2`′′ + 1)(2`+ 1)

4π(
`′ `′′ `
−m′ −m′′ m

)(
`′ `′′ `
−2 +2 0

)
,

(8.55)

the multipolar coefficient for V is

Ṽ`m =i
∑
`′m′

∑
`′′m′′

(−1)m
√

(2`′ + 1)(2`′′ + 1)(2`+ 1)

4π

(
`′ `′′ `
−m′ −m′′ m

)(
`′ `′′ `
−2 +2 0

)
((
φE`′m′ − iφB`′m′

)
(E`′′m′′ + iB`′′m′′)− (−1)`

′′+`′+`
(
φE`′m′ + iφB`′m′

)
(E`′′m′′ − iB`′′m′′)

)
.

(8.56)

Finally, the covariance matrix of the multipolar coefficients for the circular polarisation
〈Ṽ`1m1

Ṽ ∗`2m2
〉 reduces to an angular power spectrum. Indeed, the two processes involved are

homogeneous and isotropic (generation of primary linearly polarized anisotropies or Faraday
Conversion)

〈X`′′1m
′′
1
Y ∗`′′2m′′

2
〉 = δXY δ`′′1 `′′2 δm′′

1m
′′
2
CXX`′′1 , (8.57)

〈φX`′1m′
1
φY ∗`′2m′

2
〉 = δXY δ`′1`′2δm′

1m
′
2
CφXφY`′1

, (8.58)
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where X and Y stand either for E or B. There is no φEφB cross-correlation: CφEφB` = 0 and no
primary cross-correlation between E and B modes CEB` = 0 for symmetry reasons (the CMB is
parity invariant, see chapter 4). Thus for example, the sums over m′2, m′′2 in the computation of
〈Ṽ`1m1

Ṽ ∗`2m2
〉 disappear. Furthermore, we make use of the Wigner−3j orthogonality relation

∑
m′

1m
′′
1

(
`′1 `′′1 `1
−m′1 −m′′1 m1

)(
`′1 `′′1 `2
−m′1 −m′′1 m2

)
= δ`1`2δm1m2

1

2`1 + 1
, (8.59)

to remove the last sums on m′1 and m′′1 . Then, it is given by

〈Ṽ`1m1
Ṽ ∗`2m2

〉 = δ`1`2δm1m2
C̃V V`1

= δ`1`2δm1m2

∑
`′1

∑
`′′1

(2`′1 + 1)(2`′′1 + 1)

2π

(
`′1 `′′1 `
−2 +2 0

)2

[
(Cφ

EφE

`′1
+ Cφ

BφB

`′1
)(CEE`′′1 + CBB`′′1 )

− (−1)`
′
1+`′′1 +`1(Cφ

EφE

`′1
− Cφ

BφB

`′1
)(CEE`′′1 − C

BB
`′′1

)
]
.

(8.60)

One notices on this expression that the angular power spectrum for circular polarization mixes
the primary E and B modes (if any) and different multipoles to create a new type of anisotropies:
the circularly polarized ones for which there is no primary contribution, as it does not exist a
standard way to generate them primarily at recombination. As the Stokes V parameter is a
linear combination of products of the Faraday Conversion rate φ±2 with the linear polarisation
field P∓2, its angular power spectrum is therefore convolutions of the angular power spectra of
the Faraday Conversion rate with angular power spectra of the E and B modes.

Observationally, the current most stringent upper limit on CMB circular polarisation has been
set by the SPIDER collaboration (Nagy et al., 2017). Based on measurements for multipoles
33 < ` < 307, they obtain that `(` + 1)CV V` /(2π) ranges from 141µK2 to 255µK2 at 150 GHz
at 95% confidence level.

8.5.1.2 Secondary E and B modes

As mentioned at the beginning of this section, the angular power spectra for the secondary E and
B modes have already been computed in the literature separately for the gravitational lensing
and Faraday Rotation effects. The derivation for the two combined effects is similar, although
a bit more complicated, and in particular follows the same steps as the above derivation for
the angular power spectrum for secondary circular polarisation. We will thus give only the key
ingredients to perform such a derivation.

One starts with the expression of the lensed and Faraday rotated polarisation field

P̃±2(n) = exp
(
∓2iα(n +∇φ)

)
P±2(n +∇φ)

= P±2 +∇aφ∇aP±2 +
1

2
∇aφ∇bφ∇a∇bP±2 ∓ 2iαP±2

− 2α2P±2 ∓ 2iα∇aφ∇aP±2 ∓ 2i∇aφ∇aαP±2,

(8.61)

where φ is here the lensing field (and not the FC rate), and the underlined terms are present
only if FR happens before lensing. This notation will be kept to keep track of these terms only
present in this case. The second equality accounts for the development at the next-to-leading
order of the lensed and Faraday rotated polarisation field, in order to take into account both
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effects at the same time, as they are same order of magnitude perturbations to the polarisation
field.

Now, using the expressions for the multipolar coefficients of the E and B modes given in
Section 4.3.1.2 by inverting the polarisation field Eq. (4.29)

E`m = −1

2

∫
d3n (P2(n)2Y

∗
`m(n) + P−2(n)−2Y

∗
`m(n)) ,

B`m =
i

2

∫
d3n (P2(n)2Y

∗
`m(n)− P−2(n)−2Y

∗
`m(n)) ,

(8.62)

and replacing the transformed polarisation field Eq. (8.61) into these expressions for the E`m and
B`m, gives the secondary Ẽ and B̃ modes. Finally, the angular power spectra of the secondary Ẽ
and B̃ modes are obtained by computing the correlation matrices of the multipolar coefficients
〈Ẽ`mẼ∗`′m′〉 and 〈B̃`mB̃∗`′m′〉 and are given by

C̃EE` =
{

1 +R[Cφφ`1 , C
αα
`1 ]
}
CEE` +

∑
`2

CEE`2 F
(+)
``2

[Cφφ`1 , C
αα
`′1

] +
∑
`2

CBB`2 F
(−)
``2

[Cφφ`1 , C
αα
`′1

], (8.63)

C̃BB` =
{

1 +R[Cφφ`1 , C
αα
`1 ]
}
CBB` +

∑
`2

CBB`2 F
(+)
``2

[Cφφ`1 , C
αα
`′1

] +
∑
`1

CEE`2 F
(−)
``2

[Cφφ`1 , C
αα
`′1

], (8.64)

C̃EB` = REB [Cαφ`1 ]
(
CEE` − CBB`

)
+
∑
`2

(
CEE`2 − CBB`2

)
FEB``2 [Cαφ`1 ], (8.65)

with

F
(+)
``2

[Cφφ`1 , C
αα
`′1
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∑
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M`1,`2

[
1

8
(N`,`1,`2)

2 [
1 + (−1)`+`1+`2

]2
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+
[
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](
` `1 `2
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)2

, (8.66)

F
(−)
``2

[Cφφ`1 , C
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`′1

] =
∑
`1

M`1,`2

[
1

8
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2 [
1− (−1)`+`1+`2

]2
Cφφ`1

+
[
1 + (−1)`+`1+`2

]2
Cαα`1

]( ` `1 `2
−2 0 2

)2

, (8.67)

R[Cφφ`1 , C
αα
`1 ] = −

∑
`1

(
2`1 + 1

π

)[
1

8
`1(`1 + 1) [`(`+ 1)− 4]Cφφ`1 + Cαα`1

]
, (8.68)

FEB``2 [Cαφ`1 ] = −
∑
`1

(−1)`+`1+`2

2
(N`,`1,`2)M`1,`2

(
` `1 `2
−2 0 2

)2

Cαφ`1 , (8.69)

REB [Cαφ`1 ] = −
∑
`1

(
2`1 + 1

2π

)
`1(`1 + 1)

[
1 + (−1)

]
Cαφ`1 , (8.70)

where

N`,`1,`2 = [`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)] , and M`1,`2 =
(2`1 + 1)(2`2 + 1)

4π
. (8.71)

The quantitative computation of the impact of both FR and lensing, simultaneously taken
into account, on the polarisation power spectra of the CMB, is left for future work. The interested
reader will find in Fig. 9-13 of Tashiro et al. (2008) the B mode angular power spectrum including
the FR effect only, for different values of the model parameters (β and µ), and including the disk
structure of galaxies.



8.5. IMPACT ON THE CMB 159

8.5.2 Reconstructing the FR angle and FC rate fields
The FR and FC effects can be used as probes for cosmology (being able to constrain the cos-
mological parameters) or for astrophysical properties of clusters of galaxies (such as the electron
density profile or the magnetic field model (see Tashiro et al., 2009) but they also produce sec-
ondary polarised anisotropies, as shown in the previous section. In particular, the secondary
B modes should be precisely known to be taken into account in the reconstruction of the pri-
mordial B mode, which is a direct tracer of the primordial gravitational waves produced during
inflation. As these effects take place in galaxy clusters, the secondary B mode due to FR and
gravitational lensing is expected to peak at smaller angular scales than the primordial B mode,
allowing an easier reconstruction of this primordial component. However, these secondary po-
larised anisotropies can also be used to reconstruct the lensing field, which is a more efficient
way than using the temperature anisotropies (Hirata & Seljak, 2003; Okamoto & Hu, 2003; Ade
et al., 2014). The presence of FR could bias this reconstruction as the two effects, FR and
lensing, produce secondary B modes starting from the primary E mode.

In this section we introduce and adapt the concept of quadratic estimator used to estimate the
lensing potential from polarized maps (see Hu & Okamoto, 2002; Okamoto & Hu, 2003) to the
FC rate. Then, we see how FR can impact the estimation of lensing by considering the estimator
of the FR angle, as already introduced by Gluscevic et al. (2009); Kamionkowski (2009).

The idea of building estimators of cosmological quantities has already been introduced in
Section 4.3.3, with the estimator of the angular power spectra of the CMB anisotropies. Such
estimators of statistical quantities are needed because one only has access to a single realisation
of the temperature, polarisation or even lensing fields. Thus, making an ensemble average over
multiple universe realisations is not possible, but statistical isotropy and homogeneity involves
an ergodic hypothesis which tells that it is equivalent to averaging over the whole sky.

Here, similarly to what has already been done for the lensing field, we would like to reconstruct
the FR angle and FC rate fields or equivalently, their harmonic coeffcients αLM and φ

E/B
LM .

However one does not directly measure these fields but they are observed by their impact on the
CMB polarised anisotropies. These last ones can thus be used to reconstruct them. These effects
on the primordial CMB anisotropies are characterised statistically by the angular power spectra
of secondary anisotropies Eq. (8.65) and Eq. (8.60). Actually, the CMB spherical harmonic
coefficients are given to first order by Eq. (8.56) for circular polarisation, and by

X̃`m = X`m + δφX`m + δαX`m, (8.72)

for the X = E or B mode, with
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(8.73)

where ±I``1`2mm1m2
and ±K``1`2mm1m2

are some kernels, whose precise form is not important here,
but one notes that they are coupling induced by φ and α: ±I``1`2mm1m2

only depends on φ and
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±K``1`2mm1m2
only on α. Both harmonic coefficients show a coupling between different primordial

CMB multipoles ` and it is this coupling between different angular scales that is used to build
the estimators of the FR angle and FC rate fields. One could thus think of inverting Eq. (8.65)
and Eq. (8.60) to get the angular power spectrum of the fields as a function of the power spectra
of secondary CMB anisotropies, but one rather wants to reconstruct the harmonic coefficients of
the fields themselves.

The case of FR angle has already been treated in Gluscevic et al. (2009); Kamionkowski
(2009) and we will mention it briefly at the end of this section; hence, let us now illustrate
how it is done for the case of the FC rate field φE/B . Because one wants to reconstruct the
harmonic coefficients rather than the angular power spectrum of the effect, when computing
the covariance matrices of secondary harmonic coefficients, instead of taking a full average over
universe realisations, one ‘theoretically’ averages over the CMB realisations only, as if the FC
rate field was fixed and given. This allows to make appear the correlations between the different
primordial CMB multipoles. One can show that it leads to the correlators

〈ã`mṼ`′m′〉|FC =
∑
LM

(−1)M
(

` `′ L
m m′ −M

)(
faV,φ

E

`L`′ φELM + faV,φ
B

`L`′ φBLM

)
, (8.74)

and we insist on the fact that (`,m) 6= (`′,m′) as we correlate different multipoles, a can be the
temperature field T or the E or B mode. At first order, one actually correlates a primary a`m
with a ‘deformed’ Ṽ`′m′ , as V is already a first order quantity. The covariance matrices are now
non-vanishing when one does not average over the FC rate field realisations; on the contrary,
when taking the full average over CMB and FC rate field realisations, one can show that

C̃aV` = 0. (8.75)

Furthermore, the covariance matrices now get off-diagonal terms with faV,φ
E/B

`L`′ weights for the
different quadratic pairs aV that are known forms of the ‘Faraday unconversed’ angular power
spectra of the E and B modes
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(8.76)

with

K±`L`′ =

√
(2`+ 1)(2L+ 1)(2`′ + 1)

4π

(
` L `′

−2 2 0

)(
1± (−1)`+L+`′

)
. (8.77)

Note that in Eq. (8.76) do not appear CTB` or CEB` as the CMB is assumed to be parity invariant
in the standard model of cosmology. If one averages again over a statistical ensemble of FC rate
fields, one recovers the vanishing angular power spectra C̃aV` = 0. Indeed, the off-diagonal terms
of the covariance matrices vanish as the FC rate field is assumed to be statistically isotropic so
that it has zero mean 〈φE/BLM 〉 = 0. We however have access to only one realisation of the FC rate
field, and we can build two estimators for it (one for φE and one for φB) as a weighted average
over covariance matrix coefficients as suggested by Eq. (8.74) (Okamoto & Hu, 2003)
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with gaV,φ
E/B

`1`2
(L) some weights that are derived requiring that the estimator is unbiased

〈φ̂E/B,aVLM 〉|FC = φ
E/B
LM , where we have averaged over primary CMB and noise realisations only,

keeping the FC field fixed. This leads to the constraint∑
`1`2

gaV,φ
E/B

`1`2
(L)faV,φ

E/B

`1L`2
= 1. (8.79)

Notice that only the aV estimators can be used to reconstruct the FC field, with a = T, E
or B, as only circular polarisation is impacted by the FC effect at lowest order. The weighted
sum Eq. (8.78) is similar to the sum in Eq. (4.63) in the sense that we only have one realisation
of the CMB or of the FC rate field, so we estimate them by summing the spherical harmonic
coefficients over the multipoles to reconstruct them. Then, the optimal weights are obtained by
minimising the Gaussian variance of the estimator 〈φ̂E/B,aVLM φ̂

E/B,aV ∗
LM 〉−〈φ̂E/B,aVLM 〉〈φ̂E/B,aV ∗LM 〉 =
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LM 〉 with respect to them, where now the ensemble average is made over CMB,

noise and FC rate field realisations, so that 〈φ̂E/B,aVLM 〉 = 0. The two sets of weights for φE and
φB are finally given by
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. (8.80)

The quadratic estimators for the lensing φ and the FR angle α fields have already been
computed separately in Okamoto & Hu (2003) and Gluscevic et al. (2009) respectively. These
estimators are built by taking into account only the effect on lensing (or FR) and noise on
the primary E and B modes and not FR (respectively lensing), i.e. Ẽ and B̃ correspond to
secondary anisotropies in polarisation due to lensing (FR) and noise but not FR (lensing). Thus,
we can evaluate the impact of Faraday Rotation on lensing by recomputing the covariance matrix
〈ã`mb̃`′m′〉|lens (where a, b = T , E or B), taking into account the FR effect in the ã`m, which will
add the angular power spectrum of polarised anisotropies due to FR to the expression. The bias
induced by FR on the estimated lensing potential is characterised by an estimator

∆φ̂abLM = φ̂abLM − φLM , (8.81)

which is in full generality biased 〈∆φ̂abLM 〉|lens 6= 0. However, computing it explicitly, with the
weights given in Okamoto & Hu (2003) and the full expressions of the angular power spectra at
linear order in φ and α Eq. (8.65), one can show that it gives vanishing estimators, assuming
the primary CMB anisotropies to be parity-invariant as is the case in the standard model of
cosmology: CTB` = CEB` = 0. This is due to parity reasons: indeed, +I``1`2mm1m2

, +K``1`2mm1m2

and φ are even while −I``1`2mm1m2
, −K``1`2mm1m2

and α are odd, and the CMB is parity invariant.
The estimators are thus unbiased by FR. Similarly, one can build an estimator for the Faraday
Rotation angle α, as is done in Gluscevic et al. (2009); Kamionkowski (2009)

α̂abLM = (2L+ 1)
∑
`1m1

∑
`2m2

(−1)M
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`1 `2 L
m1 m2 −M

)
gab,α`1`2

ã`1m1
b̃`2m2

, (8.82)

whose weights gab,α`1`2
are constrained by requiring that α̂abLM is unbiased by the lensing potential

(which is the case for the symmetry reasons explained above). Unlike for the lensing potential,
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there is no TT estimator for the Faraday Rotation angle as FR does not impact the primary
temperature anisotropies of the CMB.

Although the expected level of circular polarisation generated by FC is lower than the sec-
ondary linear polarisation generated by FR (first estimations give six orders of magnitude differ-
ence), it is always higher than the primary component which vanishes. Therefore, in the case of
highly sensitive experiments, one could potentially use the anisotropies in circular polarisation to
reconstruct the FC field, which in turn can be used to put constraints on cosmological parameters
or models of the spatial profile of free electrons and magnetic field models. This is similar to
what is done for lensing, where the lensed BB correlation is used to reconstruct the lensing field,
as the primary BB correlation is expected to be very small as it is still undetected, with current
upper limit on the tensor-to-scalar ratio r = 0.12 (see Ade et al., 2015).
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ABSTRACT

Magnetized plasmas within haloes of galaxies leave their footprint on the polarized anisotropies of the cosmic microwave background.
The two dominant effects of astrophysical haloes are Faraday rotation, which generates rotation of the plane of linear polarization, and
Faraday conversion, which induces a leakage from linear polarization to circular polarization. We revisit these sources of secondary
anisotropies by computing the angular power spectra of the Faraday rotation angle and the Faraday conversion rate by the large-scale
structures. To this end, we use the halo model and we pay special attention to the impact of magnetic field projections. Assuming
magnetic fields of haloes to be uncorrelated, we found a vanishing two-halo term, and angular power spectra peaking at multipoles
` ∼ 104. The Faraday rotation angle is dominated by the contribution of thermal electrons. For the Faraday conversion rate, we found
that both thermal electrons and relativistic, non-thermal electrons contribute equally in the most optimistic case for the density and
Lorentz factor of relativistic electrons, while in more pessimistic cases the thermal electrons give the dominant contribution. Assuming
the magnetic field to be independent of the halo mass, the angular power spectra for both effects roughly scale with the amplitude
of matter perturbations as ∼σ3

8, and with a very mild dependence with the density of cold dark matter. Introducing a dependence of
the magnetic field strength with the halo mass leads to an increase of the scaling at large angular scales (above a degree) with the
amplitude of matter fluctuations up to ∼σ9.5

8 for Faraday rotation and ∼σ15
8 for Faraday conversion for a magnetic field strength scaling

linearly with the halo mass. Introducing higher values of the magnetic field for galaxies, as compared to clusters, instead leads to a
decrease of such a scaling at arcminute scales down to ∼σ0.9

8 for Faraday rotation.

Key words. cosmic background radiation – large-scale structure of Universe – cosmology: theory

1. Introduction

One of the main challenges in observational cosmology is
a complete characterization of cosmic microwave background
(CMB) polarization anisotropies, targeted by a large number of
ongoing, being deployed, or planned experiments either from
ground or space-borne missions (see e.g. Simons Observatory
Collaboration 2019; Suzuki et al. 2018). In full generality, polar-
ized light (in addition to its total intensity, I) is described by
its linear component encoded in the two Stokes parameters Q
and U, and its circular component encoded in the parameter V .
For CMB anisotropies, there is no source of primordial V in the
standard cosmological scenario (however, see e.g. Giovannini
2010, for potential primordial sources) with upper bounds on
its rms of ∼1 µK at ten degrees (Mainini et al. 2013; Nagy
et al. 2017). Hence, the CMB polarization field is completely
described on the sphere by two Stokes parameters, Q and U.
In the harmonic domain, this field can be described either by
using spin-(2) and spin-(−2) multipolar coefficients or using gra-
dient, E, and curl, B, coefficients. From a physical point of view,
the gradient/curl decomposition is more natural as it is directly
linked to the cosmological perturbations produced in the primor-
dial Universe. For symmetry reasons, at first order, scalar pertur-
bations can produce E-modes only and the B-modes part of the

polarization field is thus a direct tracer of the primordial gravity
waves (Zaldarriaga & Seljak 1997; Kamionkowski et al. 1997).
Although such a picture is partially spoilt by the presence of a
secondary contribution generated by the gravitational lensing of
the E-modes polarization (Zaldarriaga & Seljak 1998), its pecu-
liar angular-scale shape and delensing techniques should allow
for a reconstruction of the primordial component.

Lensing of the CMB anisotropies is however not the sole
source of cosmological and astrophysical E–B conversion. Dur-
ing the propagation of CMB photons from the last scattering sur-
face to our detectors, the plane of linear polarization could be
rotated. Such a rotation could be due to Faraday rotation induced
by interactions of CMB photons with background magnetized
plasmas, with magnetic fields of either cosmological (Kosowsky
& Loeb 1996; Kosowsky et al. 2005; Campanelli et al. 2004;
Scoccola et al. 2004) or astrophysical origins (Takada et al. 2001;
Ohno et al. 2003; Tashiro et al. 2008, 2009), or interactions with
pseudo-scalar fields (Carroll 1998). Furthermore, even though
primordial circular polarization is not present in the CMB in the
standard model of cosmology, secondary circular polarization
could be produced by Faraday conversion (Cooray et al. 2003;
De & Tashiro 2015) or for example by nonlinear electrodynam-
ics (Sawyer 2015; Ejlli 2018, 2017) (see also Montero-Camacho
& Hirata 2018, for other sources).

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
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With the significant increase of sensitivity of the forthcom-
ing observatories aimed at an accurate mapping of the CMB
polarization on wide ranges of angular scales, clear predictions
for such additional secondary anisotropies are of importance
for many reasons. First, these secondary anisotropies contain
some cosmological and/or astrophysical informations and could
thus be used to probe, for example parity violation in the Uni-
verse (Li & Zhang 2008; Lue et al. 1999; Pospelov et al. 2009;
Yadav 2009), intra-halo magnetic fields, or gas evolution at early
epochs (Takada et al. 2001; Ohno et al. 2003; Tashiro et al.
2008, 2009). Second, such a signal should be known to be cor-
rectly taken into account in identifying the primordial compo-
nent of the B-mode from such secondary anisotropies or at least
shown to be subdominant at super-degree scales at which the
primordial B-mode is expected to peak above the lensing B-
mode. Thirdly, these secondary anisotropies are of importance
for lensing reconstruction using CMB polarized data, which has
been shown to be more powerful than starting from temperature
data in the case of highly sensitive experiments (Okamoto & Hu
2003; Hirata & Seljak 2003; Ade et al. 2014). Secondary polar-
ized anisotropies in addition to lensing-induced anisotropies
could indeed mimic contributions from the lensing potential,
thus biasing its reconstruction from E- and B-modes. This last
point is also of relevance for the delensing, either internal (Seljak
& Hirata 2004; Carron et al. 2017) or based on external tracers
of the lensing potential such as the cosmic infrared background
(Sigurdson & Cooray 2005; Marian & Bernstein 2007; Smith
et al. 2012; Sherwin & Schmittfull 2015).

For any possible non-primordial sources of CMB anisotrop-
ies, we first have to quantitatively predict the induced CMB
anisotropies. Second, we can further investigate the amount of
cosmological/astrophysical information they carry, and finally we
can estimate how they may bias the reconstruction of the pri-
mordial B-mode and the lensing potential reconstruction. In this
article we are interested in magnetized plasmas in haloes of galax-
ies as a source of secondary polarized anisotropies of the CMB,
revisiting and amending first estimates in Tashiro et al. (2008)
and Cooray et al. (2003). Observations with, for example Fara-
day rotation measurements from polarized point sources, suggest
that they are magnetized with a coherence length of the size of the
halo scale and a typical strength ranging from 1 to 10 µG (Kim
et al. 1989; Athreya et al. 1998; Bonafede et al. 2010, 2009). This
implies that the CMB linear polarization field is rotated – an effect
known as Faraday rotation – and converted to circular polarization
– referred to as Faraday conversion. The goal of the present paper
is to give an accurate computation of the angular power spectra
of the Faraday rotation angle and Faraday conversion rate, which
is the first mandatory step before estimating its impact on CMB
secondary anisotropies.

This article is organized as follows. We first briefly describe
in Sect. 2 the propagation of CMB photons through a magne-
tized plasma. We show that for the specific case of haloes, the
two dominant effects are Faraday rotation and Faraday conver-
sion. This section is also devoted to a brief presentation of the
physics and statistics of haloes. Second in Sect. 3, we present
our calculation of the angular power spectra of the Faraday rota-
tion angle and Faraday conversion rate. This is done using the
halo model, and we amend previous analytical calculations giv-
ing special attention to the statistics of the projected magnetic
fields of haloes. Our numerical results are provided in Sect.
4 in which we discuss the dependence of the angular power
spectra with cosmological parameters. We finally conclude in
Sect. 5. Throughout this article, we use the Planck Collaboration
Int. XLVI (2016, PlanckTTTEEE+SIMlow) best-fit parameters,

namely σ8 = 0.8174, ΩCDMh2 = 0.1205, Ωbh2 = 0.02225, and
h = 0.6693.

2. Physics of haloes

2.1. Radiative transfer in a magnetized plasma

Propagation of radio and millimeter waves in a magnetized
plasma has been studied in Sazonov (1969), and later reassessed
in Kennett & Melrose (1998), Melrose (2005), Heyvaerts et al.
(2013), and Shcherbakov (2008). Generalization to the case of
an expanding Universe is done in Ejlli (2018, 2019). In Eq. (1.5)
of Sazonov (1969), the radiative transfer equation for the four
Stokes parameters, (I,Q,U,V), is provided in a specific refer-
ence frame in which one of the basis vectors in the plane orthog-
onal to the direction of light propagation is given by the magnetic
field projected in that plane. The Stokes parameters (Q,U,V)
are however reference-frame dependent, and it is thus impor-
tant to get this equation in an arbitrary reference frame, for at
least two reasons. First, we are interested in the Stokes param-
eter of the CMB light and there is a priori no reason for the
reference frame chosen to measure the Stokes parameter to be
specifically aligned with the magnetic fields of the many haloes
CMB photons pass through. We usually make use of (eθ, eϕ, n)
with n pointing along the line of sight and eθ, eφ the unit vec-
tors orthogonal to n associated to spherical coordinates, and
there is no reason for eθ to be aligned with the projection of the
many magnetic fields. Second, we are interested in computing
the two-point correlation function and there is obviously no rea-
son for the chosen reference frame to coincide at two arbitrary
selected directions on the celestial sphere with the specific refer-
ence frame used in Sazonov (1969), which clearly differs from
direction to direction on the celestial sphere.

The radiative transfer equation is written in an arbitrary ref-
erence frame by performing an arbitrary rotation of the basis
vectors in the plane orthogonal to the light propagation, or equiv-
alently an arbitrary rotation of the magnetic field projected in
such a plane (Huang et al. 2009; Ejlli 2019). We denote by θB the
angle between the magnetic field projected on the plane orthog-
onal to the line of sight and the basis vector eθ. By further intro-
ducing the spin-(±2) field for linear polarization, P±2 = Q ± iU,
this gives

d
dr



I
P2
P−2
V


=

[
Mabs + MI→P + MP→P

]


I
P2
P−2
V


, (1)

where r is labelled as the path of light. The three matrices encod-
ing the different contributions to radiative transfer are

Mabs =



τ̇ 0 0 0
0 τ̇ 0 0
0 0 τ̇ 0
0 0 0 τ̇


, (2)

MI→P =



0 φ̇I→Pe−2iθB φ̇I→Pe2iθB φ̇I→V

φ̇I→Pe2iθB 0 0 0
φ̇I→Pe−2iθB 0 0 0
φ̇I→V 0 0 0


, (3)

MP→P =



0 0 0 0
0 0 −2iα̇ −iφ̇P→Ve2iθB

0 2iα̇ 0 iφ̇P→Ve−2iθB

0 iφ̇P→Ve−2iθB −iφ̇P→Ve2iθB 0


, (4)

where ḟ means differentiation with respect to r.
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Table 1. Scaling of the radiative transfer coefficients for thermal electrons and relativistic electrons with the projection of the magnetic fields along
or orthogonal to the line of sight, the frequency of photons, and the density and temperature of free electrons (adapted from Sazonov 1969).

τ̇ φ̇I→P φ̇I→V α̇ φ̇P→V

Thermal electrons n2
e/(ν

2T 3/2
e ) 1013(neB⊥)2/(ν4T 3/2

e ) 106(n2
e B‖)/(ν3T 3/2

e ) 105(neB‖)/(ν2) 1011(neB2
⊥)/(ν3)

∼10−36 m−1 ∼10−55 m−1 ∼10−46 m−1 ∼10−23 m−1 ∼10−33 m−1

Relativistic electrons n(r)
e B2

⊥/ν
3 n(r)

e B2
⊥/ν

3 n(r)
e B5/2

n /ν7/2 n(r)
e B‖/ν2 n(r)

e B2
⊥/ν

3

∼10−32 m−1 ∼10−32 m−1 ∼10−36 m−1 ∼10−30 m−1 ∼10−31 m−1

Notes. For thermal electrons, the numerical constants in front of the reported scalings span a large range of values and we provide their value
relative to that for the parameter τ̇. These constants are all of the same order in the case of relativistic electrons. The corresponding values are
obtained for the case of haloes with ne = 10−5 cm−3, Te = 107 K for thermal electrons, and n(r)

e = 10−5 cm−3 for relativistic electrons. In both cases,
the magnetic field is set to B = 3 µG and the frequency to ν = 30 GHz.

The different coefficients, τ̇, α̇, and φ̇i→ j are real and their
expressions can be found in, for example Sazonov (1969), by set-
ting θB = 0, which basically corresponds to choosing the specific
reference frame adopted in Sazonov (1969). These coefficients
are interpreted as follows. First, the coefficient τ̇ in Mabs sim-
ply corresponds to absorption of light by the medium. Second
in MI→P, the coefficients φ̇I→P and φ̇I→V amount to the transfer
from total intensity to linear polarization and circular polariza-
tion, respectively. Finally in MP→P, the coefficient α̇ corresponds
to Faraday rotation which mixes the two modes of linear polar-
ization, while φ̇P→V is Faraday conversion which transfers linear
polarization in circular polarization.

In an expanding universe, there is an additional contribu-
tion because of the dilution, captured by an additional matrix
in the right-hand side of Eq. (1), i.e. MHubble = −3HI4 with
I4 the identity matrix (Ejlli 2019). We note that S is the vector
of the 4 Stokes parameters; the solution accounting for the sole
impact of dilution by the expansion (i.e. setting all the radia-
tive transfer coefficients to zero) is S(t) = [ai/a(t)]3I4Si. Using
an interaction-picture-like approach, the differential equation for
S̃(t) ≡ [a(t)/ai]3I4S(t) is given by Eq. (1), where all the dilution
is accounted for in the Stokes parameters S̃ (Ejlli 2019)1.

The expressions of the different coefficients and their relative
amplitude depend on the nature of free electrons in the magnetized
plasma. Two extreme situations are either normal waves of the
plasma are circularly polarized or these normal waves are linearly
polarized. In the former case, Faraday rotation is dominant, which
is the case for a plasma made of non-relativistic electrons2. In the
latter, Faraday conversion is dominant. This can occur for a pop-
ulation of relativistic and non-thermal electrons; there are some
restrictions on their energy distributions (see Sazonov 1969).

For the case of astrophysical clusters and haloes as consid-
ered as magnetized plasmas, two populations of electrons are
at play. First, the thermal electrons which are for example at
the origin of the thermal Sunyaev–Zel’dovich (tSZ) effect, and
second, relativistic electrons generated by either active galactic
nuclei or shocks. For the case of thermal electrons, the typical
temperature of clusters is ∼107 K, corresponding to about few
kiloelectron volts, hence much smaller than the electron mass.
This population of electrons is thus mainly non-relativistic. A
typical value of the number density of thermal electrons for clus-
ters is ne ∼ 103 m−3 for a halo mass of 1014 M�. For the case
of relativistic electrons, the coefficients depend on the energy
distribution of the relativistic electrons in the injected plasma
via the minimal Lorentz factor, Γmin, the spectral index of the

1 We note that this could also be done for the impact of the absorption
coefficients since Mabs = τ̇I4.
2 This population is dubbed “cold plasma” in Sazonov (1969).

energy distribution, i.e. n(r)
e (Γ) ∝ Γ −βE , and the spatial distribu-

tion of the energy distribution of the injected relativistic elec-
trons in the plasma. In this work we follow Cooray et al. (2003)
and De & Tashiro (2015) by considering a spectral index of the
energy distribution of relativistic electrons of 2, a minimal value
of the Lorentz factor of Γmin = 300, and an isotropic spatial dis-
tribution. The number density of relativistic electrons is largely
unknown and we consider the maximum value we found in the
literature, n(r)

e = 10 m−3 (Colafrancesco et al. 2003).
The expressions of these radiative transfer coefficients from

Sazonov (1969) are provided in Table 1 up to numerical con-
stants. We highlight their scaling with the electron number den-
sity (ne and n(r)

e ), the magnetic field either projected on the line
of sight, B‖, or in the plane perpendicular to it, B⊥, the fre-
quency of the radiation light, ν, and, for the case of thermal elec-
trons the temperature of electrons, Te. For thermal electrons, the
numerical constants in front of the reported scalings span a large
range of values and we provide their value relative to that for the
parameter τ̇. These constants are all of the same order in the case
of relativistic electrons. The values reported are for a magnetic
field of 3 µG and a frequency of 30 GHz.

For linear polarization, the dominant effect is Faraday rota-
tion by thermal electrons. Faraday rotation from relativistic elec-
trons is 7 orders of magnitude smaller, and absorption, τ̇, is 13
(thermal electrons) and 9 (relativistic electrons) orders of mag-
nitude smaller than Faraday rotation. Faraday conversion from
V to P±2 is zero for CMB since there is no primordial circu-
lar polarization. Intensity of the CMB is about 1–2 orders of
magnitude higher than the E-mode of linear polarization, and
at least 3 orders of magnitude higher than the B-mode. Leakages
of I to P±2 could thus rapidly become important because of this
great hierarchy. However, the transfer coefficient φ̇I→P for ther-
mal electrons and relativistic electrons is 32 and 9 (resp.) orders
of magnitude smaller than α̇. Hence leakages from intensity to
linear polarization is totally negligible as compared to Faraday
rotation by thermal electrons.

The dominant effect for circular polarization is Faraday con-
version from both thermal electrons and relativistic electrons.
Absorption is vanishing for zero initial V . Leakages from inten-
sity to circular polarization remains smaller than Faraday con-
version. In the most optimistic case for the number density of
relativistic electrons φ̇I→V indeed remains 5 orders of magnitude
smaller than φ̇P→V , meaning that circular polarization generated
through leakages of intensity is about 3 orders of magnitude
smaller than that generated through Faraday conversion3.

3 We note that in this case Faraday conversion and Faraday rotation
by relativistic electrons are of equal magnitude. Faraday rotation by
this population remains however much smaller than that due to thermal
electrons.
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An important last comment is in order at this point. The
terms e±2iθB naturally appear for preserving the symmetry prop-
erties of the four Stokes parameters.

We note that these parameters are defined in the plane (eθ, eϕ)
orthogonal to the line of sight and in a manner that is reference-
frame dependent. The total intensity I is independent of rota-
tion and parity transformations of the reference frame (i.e. it is
a scalar). Linear polarization, P±2, are spin-±2 fields meaning
that they rotate by an angle (±2θ) by a rotation θ of the reference
frame, and spin-(+2) and spin-(−2) are interchanged by a par-
ity transformation. Finally, circular polarization V is unchanged
through rotations but changes its sign via a parity transformation
of the reference frame (i.e. it is pseudo-scalar).

The coefficients α̇ and φ̇P→V are independent of the refer-
ence frame. The angle θB however is reference-frame dependent
and the quantities e±2iθB are spin-(±2) fields. We can then check
that indeed all the symmetry properties are properly preserved
through radiative transfer. For example, we obtain

V̇(n) = iφ̇P→V (n)
[
e−2iθB(n)P2(n) − e2iθB(n)P−2(n)

]
, (5)

where the right-hand side is an appropriate combination of
different spin-(±2) fields leading to a pseudo-scalar field, V .
We note that this is in agreement with expressions used in
Huang et al. (2009), Ejlli (2018, 2019), Montero-Camacho &
Hirata (2018), and Kamionkowski (2018), written as V̇(n) =
φU(n)Q(n) − φQ(n)U(n) with φQ = 2φ̇P→V cos(2θB) and φU =
2φ̇P→V sin(2θB).

It is also easily checked that by selecting the specific refer-
ence frame adopted in Sazonov (1969), i.e. setting θB = 0, the
Eq. (1.5) of Sazonov (1969) is recovered. In particular in this
reference frame we see that I is transferred into Q only, while V
receives contribution from U only, i.e. V̇ = −2φ̇P→VU. We note
that this last expression was used in Cooray et al. (2003) and
De & Tashiro (2015), which is however valid on a very specific
reference frame.

2.2. Impact on CMB polarization

The impact of radiative transfer within magnetized haloes on the
CMB is in theory obtained by integrating Eq. (1). Such radiative-
transfer distortions of the CMB within haloes are expected to
mainly occur at low redshifts, z . 1. We can thus take as initial
conditions the lensed CMB fields.

In full generality, the matrix
[
Mabs + MI→P + MP→P

]
is too

complicated to solve the radiative transfer equation given in
Eq. (1). Perturbative solutions using Neumann series have been
found in Ejlli (2019). The dominant effect in the case consid-
ered in this work is the Faraday rotation by thermal electrons.
Neglecting the other coefficients, only linear polarization is mod-
ified and the solution is

P̃FR
±2 (n) = e∓2iα(0,rCMB) P̃±2(n), (6)

where P±2 is the {primary+lensed} CMB linear polarization
field, and α(0, rCMB) is the integral of α̇ over the line of sight
from the last scattering surface at rCMB, to present time at r = 0;
we note that the angle is also a function of n. Our forthcoming
calculations of the Faraday rotation angle integrated over haloes
show that a tiny effect remains, and we can Taylor expand the
exponential for small α (see also Tashiro et al. 2008).

The next-to-leading order effect is the Faraday conversion
whose impact on the CMB can be implemented with a pertur-
bative approach to solve for Eq. (1). Since the initial V param-
eter is vanishing, this leaves the solution for linear polarization

unchanged. Circular polarization generated should in principle
be generated by Faraday conversion of the rotated linear polar-
ization, Prot

±2, integrated over the line of sight, hence mixing the
rotation angle and the conversion rate. These effects are however
expected to be small. Multiplicative effect of rotation and con-
version are thus of higher orders and these can be neglected. A
perturbative approach to solve Eq. (1) keeping α̇ at the leading
order and φ̇P→V at the next-to-leading order gives (Ejlli 2018)

P̃FR+FC
±2 = e∓2iα(0,rCMB) P̃±2∓i

[∫ 0

rCMB

dsφ̇P→V (s)e±2iθB(s)e∓2iα(0,s)
]

Ṽ ,

and

ṼFR+FC = Ṽ + i
[∫ 0

rCMB

dsφ̇P→V (s)e−2iθB(s)e−2iα(s,rCMB)
]

P̃2

− i
[∫ 0

rCMB

dsφ̇P→V (s)e2iθB(s)e2iα(s,rCMB)
]

P̃−2.

The values P±2 and V are the {primary+lensed} CMB polariza-
tion field. We then set the initial circular polarization to zero,
V = 0, and keep the leading order in a Taylor expansion of
e±2iα(s,rCMB). This gives for circular polarization

Ṽ(n) = i
[
φ−2(0, rCMB)P̃2(n) − φ2(0, rCMB)P̃−2(n)

]
, (7)

where φ±2(0, rCMB) is the integral over the line of sight of
φ̇P→Ve±2iθB . We note that the impact of dilution implicitly con-
tained in P̃±2 and Ṽ is homogeneous and does not bring addi-
tional anisotropies.

2.3. Haloes description

Distortions of the CMB polarized anisotropies by Faraday rota-
tion and Faraday conversion is a multiplicative effect. Their
impact on the CMB angular power spectra is thus determined
by the angular power spectra of the Faraday rotation angle, α,
and the Faraday conversion rate, φ±2.

We make use of the halo model (Cooray & Sheth 2002)
to characterize the statistical properties of the radiative transfer
coefficients of the haloes as magnetized plasmas. The basic ele-
ments in this theoretical framework are first the physics internal
to each halo, i.e. its gas and magnetic field distributions, and sec-
ond the statistical properties of haloes within our Universe. We
consider halo masses ranging from 1010 to 5 × 1016 M�. Such
a range covers both clusters of galaxies as described by high-
mass haloes (typically masses M > 1013 M�), and galaxies as
described by low-mass haloes (typically smaller than 1013 M�).

2.3.1. Gas, relativistic electrons, and magnetic field
distribution

In the following, we have mainly two characteristics of haloes:
their free electron density and magnetic field spatial profiles,
which for simplicity are considered as spherically symmetric.

For the profile ne of free electrons we choose to take the
β-profile of Cavaliere & Fusco-Femiano (1978) following
Tashiro et al. (2008), i.e.

ne(r) = n(c)
e

(
1 +

r2

r2
c

)−3β/2

, (8)

where r and rc are the physical distance to the halo centre and
typical core radius of the halo, respectively; we note that these
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could be comoving distances as only the ratio of these two
distances shows up in the expression. The physical halo core
radius rc is related to the virial radius by rvir ∼ 10rc, where
rvir = (M/(4π∆c(z)ρ̄(z)/3))1/3 and ∆c(z) = 18π2Ωm(z)0.427 is the
spherical overdensity of the virialized halo, and ρ̄(z) is the crit-
ical density at redshift z (see Tashiro et al. 2008). The quantity
n(c)

e is the central free electron density. For thermal free electrons,
this quantity is given by

n(c)
e = 9.26 × 10−4 cm−3

(
M

1014 M�

) (
rvir

1 Mpc

) (
Ωb

Ωm

)
(9)

× 2F−1
1 (3/2, 3β/2; 5/2;−(rvir/rc)2),

where 2F1 is the hypergeometric function.
The properties of relativistic electrons inside haloes are not

well known (see Sect. 5, Cavaliere & Lapi 2013, for a brief
overview). We consider relativistic electrons to be described by a
power law in the momentum space (following e.g. Colafrancesco
et al. 2003, and references therein) with Lorentz factor ranging
from Γmin � 1 to Γmax. Assuming for simplicity that Γmax �
Γmin, the relativistic electron distribution function simplifies to
(Colafrancesco et al. 2003)

n(rel)
e (r,Γ) = n(r)

e (r,Γmin) (βE − 1) Γ
βE−1
min Γ−βE , (10)

where βE > 1 the spectral index and n(r)
e (r,Γmin) is the num-

ber density of relativistic electrons integrated over the range of
Lorentz boost. Typical values for the spectral index is 2.5. In
Colafrancesco et al. (2003), the number density n(r)

e (r,Γmin) is
taken as a function of Γmin ensuring n(r)

e (r,Γmin) (βE − 1) Γ
βE−1
min is

constant for different values of Γmin, and with a normalization
assumed to be n(r)

e (r,Γmin = 100) = 10−6 cm−3. This means that
the total number density of electrons increases for lower values
of Γmin.

Relativistic electrons could be of secondary origin, as decay
products of pions produced by collision between a cosmic-ray
proton and a proton from the thermal gas (Blasi & Colafrancesco
1999). A rough upper bound on the number density of relativis-
tic electrons can then be derived using the ratios of the energy
density in cosmic rays to the thermal energy density of the gas,
ε = ρCR/ρgas. Stacking of clusters observed with Fermi-LAT
shows that such a ratio ε is of the order of few percent on aver-
age (Huber et al. 2013) and considering cosmic rays as protons
with a kinetic energy of at least 1 GeV. This ratio can be used to
set a relation between the number density of relativistic, cosmic-
ray protons to the number density of thermal protons. Thermal
energy of the gas is ρgas = (3/2)n(c)

p kBTp while the energy density

in cosmic rays is ρCR =

(
βp−1
βp−2

)
n(r)

p mpΓmin, where mp the proton
mass. We assume here a similar description for relativistic pro-
tons as for relativistic electrons. This gives

n(r)
p = ε f (βp)

(
kBTp

mpΓmin

)
n(c)

p , (11)

where f (βp) is of order unity for values of βp considered in
Huber et al. (2013, Table 2). For the thermal part, the number
density of electrons roughly equals that of protons, and they are
both thermalized at the same temperature. The proton mass is
∼1 GeV while temperatures of clusters are about few kiloelec-
tron volts, hence the number of cosmic-ray protons is highly

suppressed by the factor ε
(

kBTp

mpΓmin

)
∼ 10−10 as compared to

the number of thermal electrons. If relativistic electrons are of

secondary origin as a result of proton-proton collision, we thus
expect their number density to be suppressed by a similar fac-
tor as compared to the thermal electrons. In this case, we thus
expect the number of relativistic electrons in cosmic rays to
be ten orders of magnitude less than the number of relativistic
electrons.

The magnetic field, denoted B, is in full generality a func-
tion of both x and xi (respectively labelling any position within
the halo and the centre of the halo), as well as a function of
the mass and redshift of the considered halo. Because we only
have only poor knowledge of the magnetic field inside haloes,
we allow ourselves to chose a model for B that simplifies the cal-
culations of the angular power spectra a bit. Therefore, the first
of our assumptions is that the orientation of the magnetic field
is roughly constant over the halo scale, although we still allow
for potentially radial profile for its amplitude, i.e. B(x, xi) =

B(|x − xi|) b̂(xi). The vector b̂(xi) is a unit vector labelling the
orientation of the magnetic field of a given halo, thus depending
on the halo position only and considered as a random variable.
In this work, we also assume a spherically symmetric profile for
the amplitude of the magnetic field. Observations suggest that
the amplitude of the magnetic field scales radially as the halo
matter content, i.e. B ∝ (ngas)µ (see e.g. Hummel et al. 1991;
Murgia et al. 2004; Bonafede et al. 2009, 2010). We thus choose
the following form for the amplitude of the magnetic field that
corresponds to the β-profile:

B(r) = Bc(z)
(
1 +

r2

r2
c

)−3βµ/2

, (12)

where Bc is the mean magnetic field strength at the centre of the
halo. Its time evolution is given by (Widrow 2002)

Bc(z) = B0 exp
(
− t0 − t(z)

td

)
µG, (13)

where t0 is the present time and td =

√
r3

vir/GM, and B0 is the
field strength at present time.

In full generality, the central value of the magnetic field is
expected to depend on the mass of the halo. For clusters, i.e.
haloes with M > 1013 M�, typical values of few µG are expected,
while for galaxies, i.e. haloes with M < 1013 M�, typical val-
ues for the magnetic fields reaches ∼10 µG. The core magnetic
field could however increase for most massive clusters up to
10 µG (Vacca et al. 2012). Theoretical studies suggest that B
increases with the mass, since B0 ∝ n1/2

e T 3/4 (Kunz et al. 2011).
For the temperature-mass relation obtained from X-rays obser-
vations (Giodini et al. 2013), this would give B0 ∝ M.

Scaling of B with the halo masses has key impact on
how angular power spectra of Faraday rotation and conversion
depends on cosmological parameters, since such scalings weight
different regions the halo mass function. Hence in this study,
we first consider a magnetic field which is scale-independent to
serve as a benchmark. The different mass scaling is then imple-
mented as follows. For clusters, we introduce a power-law scal-
ing with the halo mass, i.e.

B0(M) = Bp ×
(

M
Mp

)γ
, (14)

where Mp = 5 × 1014 M�, Bp = 3 µG, and γ > 0 ensuring the
magnetic field of clusters to increase with the mass.
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For galaxies, we introduce a second scaling that takes into
account the increase of magnetic fields there as compared to
clusters, i.e.

B0(M) = Bc + Bg ×
{

1 + tanh
[
log(Mg/M)

∆ log M

]}
, (15)

where Bc = 3 µG, Bg = 3.5 µG, Mg = 1013 M�, and ∆ log M '
0.43. This allows for having a smooth transition from B0 =
10 µG for galaxies, M < 1013 M�, to B0 = 3 µG for clusters
M > 1013 M�. This transition is centred at 1013 M� with a width
of roughly half of an order of magnitude in mass.

In Sect. 4 we study the effect of the two scalings both sepa-
rately and in combination.

2.3.2. Statistical distribution of haloes

The spatial distribution of haloes and their abundance in mass
and redshift is described using the halo model (Cooray & Sheth
2002). The abundance in mass and redshift is given by the halo
mass function, dN/dM, and their spatial correlation is derived by
the matter power spectrum plus halo bias. In this study, we make
use of the halo mass function derived in Despali et al. (2016),
which is defined using the virial mass. Halo masses range from
1010 M� to 5× 1016 M�, hence covering galaxies and clusters of
galaxies (similar to Tashiro et al. 2008).

The radiative transfer coefficients introduced in Sect. 2.1
depend on the projection of the magnetic field either along the
line of sight or in the plane orthogonal to it. We thus need to
introduce some statistics for the orientation of magnetic fields
of haloes. This statistics of the relative magnetic field orienta-
tions of haloes is however poorly known. To motivate our choice
(presented latter), we first briefly comment on previous results
obtained in the literature.

The angular power spectrum of the Faraday rotation angle
has been firstly computed in Tashiro et al. (2008) using an
approach adapted from the study of the Sunyaev–Zel’dovich
effect developed in Cole & Kaiser (1988), Makino & Suto
(1993), and Komatsu & Kitayama (1999). We however believe
that this first prediction should be amended. This is motivated
by the following intuitive idea, which is most easily formulated
using the two-point correlation function.

The Faraday rotation angle is derived from the projection
of the magnetic field on the light of sight followed by CMB
photons, i.e. α(n) ∝ n · B, and the correlation function is thus
ξ(n1, n2) := 〈α(n1)α(n2)〉 ∝

〈
(n1 · Bi)

(
n2 · B j

)〉
, where the sub-

scripts i, j label the haloes which are crossed by the lines of sight
n1 and n2, respectively. A first case is that the lines of sight are
such that they cross two distinct haloes, i.e. i , j, corresponding
to the so-called two-halo term in the angular power spectrum.
We further assume that magnetic fields in haloes are produced
by astrophysical processes. Hence two different haloes are sta-
tistically independent (from the viewpoint of magnetic fields),
leading to ξ2h(n1, n2) ∝ 〈n1 · Bi〉

〈
n2 · B j,i

〉
. To be in line with a

statistically homogeneous and isotropic Universe, the orientation
of the magnetic field of haloes should be uniformly distributed
leading to 〈n · Bi〉 = 04. We thus expects the two-halo term to

4 We note that for two distinct haloes having however the same mass
and are at the same redshift, it may well be that they share the same
amplitude for B. This remains consistent with a statistically homoge-
neous and isotropic Universe as long as the orientations of the magnetic
fields average down to zero.

be zero, which is however not the case in Tashiro et al. (2008) in
which such a term is not vanishing5.

Considering then the one-halo term, this is ξ1h(n1, n2) ∝
〈(n1 · Bi) (n2 · Bi)〉 providing that both lines of sight cross the
same halo. This is a priori non-zero since 〈BiBi〉 does not van-
ish. There is however a subtlety which to our viewpoint, has not
been considered in Tashiro et al. (2008). These authors consid-
ered that the statistical average of the orientation of magnetic
fields for the one-halo term is

〈
(n · Bi)2

〉
= 1/3, the value being

that corresponding to orientations distributed uniformly. How-
ever, the spatial extension of haloes allows for having two dif-
ferent lines of sight crossing the same halo, and there is a priori
no reason that (n1 · Bi) = (n2 · Bi) for a randomly selected halo.
As a consequence, this is 〈(n1 · Bi) (n2 · Bi)〉 which enters as a
statistical average on the one-halo term, and not

〈
(n · Bi)2

〉
. A

similar argument applies for Faraday conversion except that this
is the projection of the magnetic field on the plane orthogonal to
n, which is involved in this case.

We thus suppose that orientations are uniformly distributed
in the Universe, independent for two different haloes, and inde-
pendent of the spatial distribution of haloes. This can be under-
stood as follows: we assume no coherence of the magnetic field
orientations of different haloes or, to put it differently, the mag-
netic field correlation length is smaller than the inter-halo scale.
This assumption is clearly in line with the cosmological prin-
ciple, and it is motivated by the idea that the magnetism of the
haloes is a result of processes isolated from other haloes. Thus,
this orientation is a random variable which should be zero once
averaged over haloes.

Orientations are given by the unit vector, b, which is thus
labelled by a zenithal angle, β(xi), and an azimuthal angle, α(xi).
In the Cartesian coordinate system, the three components are

bi
x = sin (β(xi)) cos (α(xi)), (16)

bi
y = sin (β(xi)) sin (α(xi)), (17)

bi
z = cos (β(xi)). (18)

Any projection of the magnetic field orientation can be written
as a function of the two angles, β and α. Our assumption of
uniformly distributed orientations translates into the following
averaging

〈
f (αi, βi)

〉
=

1
4π

∫
f (αi, βi) dαi d(cos βi), (19)

where βi and αi are a shorthand notation for β(xi) and α(xi).
Since we assume two haloes to be independent, we do not
need to introduce some correlations further and the above fully
describe the statistics of orientations of magnetic fields.

Assuming a magnetic field which is coherent over the scales
of haloes does not capture the full complexity of magnetic fields
in clusters of galaxies, in particular the small-scale structures
observed via rotation measure. This can be taken into account
for clusters as in Murgia et al. (2004), Govoni et al. (2006), and
Bonafede et al. (2010) by modelling the magnetic field in Fourier

5 We mention that the two-halo term may not be vanishing assuming
some correlations between the magnetic fields of two different haloes;
for example if these magnetic fields are seeded by a primordial magnetic
field. In this case however, the two-halo term should be composed of a
convolution of the matter power spectrum with the magnetic field power
spectrum, as we could expect from results obtained for the similar case
of the kinetic Sunyaev–Zel’dovich effect induced by the peculiar veloc-
ity of haloes (Hernandez-Monteagudo et al. 2006).
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space as the convolution of the Fourier transform of the β-profile
times the Fourier coefficients of a vector potential described
by a statistically isotropic, power-law power spectrum at scales
smaller than the cluster scales, i.e. smaller than the virial radius.

With such a modelling (including small scale fluctuations),
averages over haloes of the two-point correlation are written as
〈
(n1 · Bi)

(
n2 · B j

)〉
=

1
3

(n1 · n2) δi, jB(r1)B(r2)S (r1,2)

if the two lines of sight cross the same clusters, and zero for two
different clusters (encoded in the δi, j). The function B(r) is given
by the β-profile. The function S (r1,2) is the two-point correlation
functions associated with the power spectrum at small scales. It
is a function of the distance r1,2 between the two points at which
Bi(r1) and B j(r2) are considered; this is not to be confused with
r1 and r2, which are the distances of each point from the centre of
the clusters. Such a two-point correlation function tends to one
for r1,2 → 0. It then drops down to zero above a typical radius,
r(s), than the size of the halo, i.e. s(r1,2 > r(s)) → 0 with r(s) <
rvir. This drop takes into account the fact that the magnetic field
is coherent on scales smaller than the halo size. In for example
Murgia et al. (2004), the power spectrum is non-zero on scales
ranging from a hundredth of the core radius, rc, to almost two
times the core radius. This would mean a coherence length of
about half the virial radius.

Assuming instead magnetic fields to be coherent over the
entire halo (as we did here) supposes that the function S equals
∼1 up to the virial radius. Otherwise stated, in this article we
assume a coherence length of the size of the virial radius and the
average over orientations simplfies to
〈
(n1 · Bi)

(
n2 · B j

)〉
' 1

3
(n1 · n2) δi, jB(r1)B(r2)

for two lines of sight crossing the same halo, and 0 otherwise.
With the simplifying assumption of coherence up to the virial
radius, we thus expect to overestimate the angular power spec-
trum on large scales, roughly in the range rvir/2 to rvir. We dis-
cuss the impact of such an assumption in more detail in the next
section.

3. Angular power spectra of Faraday rotation and
Faraday conversion

3.1. Faraday rotation angle

The Faraday rotation angle is given by the following integral
over the line of sight

α(n) =
e3

8π2 m2
e c ε0

∫ rCMB

0

a(r)dr
ν2(r)

∑

i=halo

[n̂ · B(x, xi)] ne(|x − xi|),

(20)

where r stands for the comoving distance on the line of sight,
x = rn, rCMB is the distance to the last-scattering surface, and xi is
the centre of the ith halo. With our assumption regarding the mag-
netic field, and further replacing the summation over haloes by
integrals over the volume and over the mass range, the above is

α(n) =
e3

8π2 m2
e c ε0

∫ rCMB

0

a(r)dr
ν2(r)

"

dMid3xi

[
nh(xi) (21)

× b(n, xi)X (|x − xi|)
]
,

where nh(xi) is the abundance of haloes, b(n, xi) = n · b(xi)
the projection along the line of sight, and X (|x − xi|) =
B (|x − xi|) ne (|x − xi|).

Two simplifications result from the different assumptions
made about the statistics of the orientation of the magnetic field.
To this end, we introduce the notation

Ai(n) =
e3

8π2 m2
e c ε0

∫ rCMB

0

a(r)dr
ν2(r)

X (|x − xi|) ,

where we stress that the impact of orientation is omitted in the
above. It can basically be interpreted as the maximum amount
of rotation the halo i can generate. We note that this is also a
function of the mass of the halo.

In the halo model first, the angular power spectrum, or equiv-
alently the two-point correlation function, is composed of a one-
halo term and a two-halo term. This gives for the one-halo term

〈α(n1)α(n2〉1h =

"

dMid3xi

(
dN
dM

)
Ai(n1)Ai(n2) (22)

× 〈b(n1, xi)b(n2, xi)〉 ,
where we use

〈
n2

h(xi)
〉

= dN/dM6. The two-halo term then is

〈α(n1)α(n2)〉2h =

"

dMid3xi

"

dM jd3x j

〈
nh(xi)nh(x j)

〉

× Ai(n1)A j(n2)
〈
b(n1, xi)b(n2, x j)

〉
, (23)

where in the above the halo j is necessarily different from
the halo i7. The two-halo term is however vanishing because
of averaging over the orientation of magnetic field. Since
two different haloes have uncorrelated magnetic fields, one
has

〈
b(n1, xi)b(n2, x j)

〉
=

〈
b(n1, xi)

〉 〈
b(n2, x j)

〉
, which is finally

equal to zero since magnetic orientations have a vanishing
ensemble average.

Second, the two-point correlation function is described by an
angular power spectrum, i.e.

〈α(n1)α(n2)〉 =
∑

`

Cα
` Y`m(n1) Y?

`m(n2). (24)

As detailed in Appendix A, this angular power spectrum, Cα
`
, is

given by the convolution of two angular power spectra and is
written as

Cα
` =

1
4π

∑

L,L′
(2L + 1)

(
2L′ + 1

) ( L L′ `
0 0 0

)2

DA
L D‖L′ , (25)

where DA
L is the angular power spectrum associated with the two-

point functions of the maximum of the rotation angle, i.e.
"

dMid3xi

(
dN
dM

)
Ai(n1)Ai(n2),

and D‖L′ is the angular power spectrum associated with the cor-
relation function of orientations, 〈b(n1, xi)b(n2, xi)〉. Finally, the
term
(

L L′ `
0 0 0

)

6 We note that abundances are given by a Poisson staistics for which〈
n2

h

〉
= 〈nh〉.

7 We note that in the above

〈
nh(xi)nh(x j)

〉
=

(
dN
dMi

) (
dN
dM j

) [
1 + b(Mi, zi)b(M j, z j)ξm

(
xi − x j

)]
,

with b(M, z) the bias and ξm the two-point correlation function of the
matter density field.
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corresponds to Wigner-3 js. The expression in Eq. (25) means
that the total angular power spectrum is obtained as the angu-
lar power spectrum for the maximum amount of the effect, DA

L ,
modulated by the impact of projecting the magnetic field on the
line of sight, hence the convolution with D‖L′ .

It is shown in Appendix B that the angular power spectrum
DA

L is using Limber’s approximation

DA
L =

∫ zCMB

0
dz

(
r

ν2(r)

)2 dr
dz

∫
dM

dN
dM

[
α(c)αL

]2 , (26)

with αc(M, z) the rotation angle at the core of the halo given by

αc =

(
e3

m2
ecε0
√

8π

)
n(c)

e (M, z) Bc(B0, z). (27)

This core angle depends on the mass, the redshift and the mag-
netic field amplitude of the considered haloes. The projected
Fourier transform of the profile is

α` =

√
2
π


r(phys)

c

`2
c


∫ ∞

0
dx x2U(x) j0((` + 1/2)x/`c), (28)

where `c = Dang(z)/rc the characteristic multipole for a halo
of size rc at a redshift z, and Dang(z) the angular diameter dis-
tance. The normalized profile U(x) for a β-profile is U(x) =
(1 + x)−3β(1+µ)/2 where x = r/rc.

Similarly in Appendix C, the angular power spectrum for the
orientation of the magnetic field projected on the line of sight is

D‖L′ =
4π
9
δL′,1. (29)

Using the triangular conditions for the Wigner-3 j (see e.g.
Varshalovich et al. 1988), the angular power spectrum of the
Faraday rotation angle boils down to

Cα
` =

1
3

[(
`

2` + 1

)
DA
`−1 +

(
` + 1

2` + 1

)
DA
`+1

]
. (30)

We note that the above does not assume Limber’s approximation
in the sense that the involved DA

` s can be either the expression
obtained from the Limber’s approximation, Eq. (26), or the non-
approximated expression as given in Eq. (B.6).

The impact of projecting the magnetic fields on the line of
sight translates into the modulation of the angular power spec-
tra for the maximum amount of rotations haloes can generate.
In the limit of high values of `, the two lines of sights, n1 and
n2, can be considered as very close to each other. This leads to
〈b(n1, xi)b(n2, xi)〉 '

〈
b2(n1, xi)

〉
= 1/3 and one should recover

the same result as derived in Tashiro et al. (2008), restricted to
the one-halo term however. In this high-` limit, Eq. (30) simpli-
fies to Cα

`
= DA

` /3. From the expression of DA
` using Limber’s

approximation, we can check that this is identical to the one-halo
term derived in Tashiro et al. (2008).

We finally discuss how the above result can be amended to
take into account a stochastic component in the magnetic field
as described in Murgia et al. (2004), Govoni et al. (2006), and
Bonafede et al. (2010). In Appendix B, we show that adding
the two-point correlation S (r) of the stochastic magnetic field
can be accounted for introducing an effective profile, X → Xeff .
This profile should take into account two effects. First it has to
decrease to zero more rapidly than the β-profile so as to take into
account the large-scale suppression introduced by a coherence
length smaller than the virial radius. The precise shape of such

an additional drop depends on the details of the power spectrum
describing the stochastic magnetic field. At an effective level
however, we can simply increase the values of the parameter µ
in Eq. (12), since the profile drops more rapidly for higher val-
ues of µ. In the following then, the parameter µ should be inter-
preted as an effective parameter which also (partially) captures
the impact of a magnetic field coherent on scales smaller than
the virial radius8. Second, the correlation S (r) may add a new
scaling of the total amplitude of the effect with the mass. This
change can however be entirely absorbed in the mass scaling of
Bc.

In this paper, we consider that the impact of such a stochas-
tic component is effectively captured by an increased value of
µ (in terms of shape), and by the mass scaling we introduced
for Bc. This obviously does not capture the details of the power
spectrum of the magnetic field, but at least it takes into account
its impact at a qualitative level. Conversely, we can also expect
that the large-scale suppression induced by the power spec-
trum description, and the additional scaling in mass, is partially
degenerate with the parameter µ and the mass scaling of Bc.

3.2. Faraday conversion

For the Faraday conversion, we first recall that irrespective of
the nature of free electrons (either from a thermal distribution or
from a relativistic, non-thermal distribution) the conversion rate
is proportional to B2

⊥e±2iθB , where B⊥ is the norm of the projected
magnetic field on the plane orthogonal to n, and θB is the angle
between the projected magnetic field and the first basis vector
in the plane orthogonal to n. This defines the spin-(±2) struc-
ture of these conversion coefficients which can be conveniently
rewritten using projections of the magnetic field on the so-called
helicity basis in the plane orthogonal to n, i.e.

B2
⊥e±2iθB = B2 (|x − xi|)

[
b(xi) ·

(
eθ ± ieϕ

)]2
, (31)

where we note in the equation above that the norm of the mag-
netic field is a radial function and its orientation depends on the
haloes location only.

3.2.1. Thermal electrons

The radiative transfer coefficients integrated over the line of sight
is defined as φ±2(n) =

∫
a(r)dr

∑
haloes φ̇

P→V
i (n, r)e±2iθ(i)

B (n,r). For
thermal electrons, this explicitly is

φ±2(n) =
e4

16π3m3
e c ε0

∫ rCMB

0

a(r)
ν3(r)

dr
"

dMidxi

[
nh(xi) (32)

× b±2(n, xi)X (|x − xi|)
]
,

where now X (|x − xi|) = ne (|x − xi|) B2 (|x − xi|), and b±2

(n, xi) =
[
b(xi) ·

(
eθ ± ieϕ

)]2
.

Apart from the spin-(±2) structure encoded in b±2, the above
has exactly the same structure as the Faraday rotation angle,
Eq. (21), and we adopt the same strategy as for the Faraday
rotation angle. The key difference for Faraday conversion lies
in the spin structure and we have to compute three correlations
(two autocorrelations and one cross-correlation). We can either

8 This is obviously a very simple approach. It is also possible to replace
the profile U(x) by U(x) × s(x) so as to account for a more complex
shape of the correlation function of the stochastic magnetic field; see
for example Tashiro et al. (2008, 2009).
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use spin fields or more conveniently, E and B decompositions
which is reference frame independent (see e.g. Kamionkowski
et al. 1997; Zaldarriaga & Seljak 1997). We first compute the
correlation for spin fields, defined as
〈
φ±2,`mφ

?
±2,`′m′

〉
= C±2,±2

`
δ`,`′δm,m′ , (33)

〈
φ2,`mφ

?
−2,`′m′

〉
= C2,−2

`
δ`,`′δm,m′ . (34)

These angular power spectra are easily transformed into angular
power spectra for the E and B field associated to φ±2 using φE

`m =

−(φ2,`m + φ−2,`m)/2 and φB
`m = i(φ2,`m − φ−2,`m)/2.

As the case for Faraday rotation, the two-halo term is vanish-
ing because of the orientations of the magnetic fields averages
down to zero, i.e.
〈
b±2(n1, xi)b±2(n2, x j,i)

〉
=

〈
b±2(n1, xi)

〉 〈
b±2(n2, x j,i)

〉

for two different haloes, and for uniformly random orientations
it is found that 〈b±2(n, xi)〉 = 0.

Following Appendix A then, we show that

C±2,±2
`

=
1

4π

∑

L,L′
(2L + 1)(2L′ + 1)

(
L′ L `
∓2 0 ±2

)2

DΦ
L D⊥L′ , (35)

and

C2,−2
`

=
1

4π

∑

L,L′
(2L + 1)(2L′ + 1) DΦ

L D⊥L′ ,

×
(

L′ L `
−2 0 2

) (
L′ L `1
2 0 −2

)
. (36)

The above is interpreted in a very similar way to Cα
`
. It is the

power spectrum of the maximum of the effect of Faraday con-
version, DΦ

L , which is further modulated by the impact of pro-
jecting the magnetic field in the plane orthogonal to the line of
sight, which is encoded in D⊥L′ .

The angular power spectrum of the amplitude of the effect
is derived using the standard technique described in Appendix B
and by selecting the appropriate profile, nE B2 instead of nE B.
This gives with the Limber’s approximation

DΦ
L =

∫ zCMB

0
dz

(
r

ν3(r)

)2 dr
dz

∫
dM

dN
dM

[
Φ(c)φL

]2 , (37)

where the amplitude of the conversion at the core of the halo is
given by

Φ(c) =

(
e4

2(2π)3/2m3
e c ε0

)
n(c)

e B2
c . (38)

The Fourier-transformed normalized profile is

φ` =

√
2
π


r(phys)

c

`2
c


∫ ∞

0
dx x2U(x) j0((` + 1/2)x/`c), (39)

where the profile is now given by U(x) = (1 + x)−3β(1+2µ)/2.
The angular power spectrum for the orientation contribution is
detailed in Appendix D. It is non-zero for a multipole of two
only and it is D⊥L′ = (32π/75) δL′,2.

The last step consists in deriving the angular power spec-
trum in the E and B decomposition of the spin-(±2) of the

Faraday conversion coefficients. This first shows that the 〈EB〉
cross-spectrum is vanishing, i.e. CφEφB

`
= 0. The autospectra are

given by

CφEφE

`
=

4
15

[
(` + 1)(` + 2)

2(2` − 1)(2` + 1)
DΦ
`−2 +

3(` − 1)(` + 2)
(2` − 1)(2` + 3)

DΦ
`

+
`(` − 1)

2(2` + 1)(2` + 3)
DΦ
`+2

]
, (40)

and

CφBφB

`
=

4
15

[(
` + 2
2` + 1

)
DΦ
`1−1 +

(
` − 1

2` + 1

)
DΦ
`+1

]
. (41)

In the above, we made use of the triangular conditions for the
Wigner-3 js. We note that the above angular power spectra are
spin-(±2) and they are nonvanishing for ` ≥ 2. In the high-
` limit, the two autospectra are identical and equal to CφEφE

`
'

CφBφB
`
' (4/15)DΦ

` .

3.2.2. Relativistic electrons

For relativistic electrons, the rate of Faraday conversion inte-
grated over the line of sight is

φ±2(n) =
e4Γmin

8π3m3
e c ε0

(
βE − 1
βE − 2

) ∫ rCMB

0

a(r)
ν3(r)

dr (42)

×
"

dMidxi

[
nh(xi) b±2(n, xi)X (|x − xi|)

]
,

where Γmin is the minimum Lorentz factor of the relativistic elec-
trons, and βE is the spectral index of the energy distribution of
relativistic electrons. The profile is X = n(r)

e B2, i.e. the same as
for thermal electrons replacing the number density of thermal
electrons by the number density of relativistic ones.

The angular power spectrum for the Faraday conversion rate
due to relativistic electrons has exactly the same form as for ther-
mal electrons, i.e. Eqs. (40) and (41) for the E and B autospectra.
The expression for DΦ

` also is the same. It is given by Eq. (37)
where we only have to replace Φ(c) by

Φ(r) =

(
e4Γmin

4(2π)3/2m3
e c ε0

) (
βE − 1
βE − 2

)
n(r)

e B2
c . (43)

3.3. Remarks on cross-correlation

We briefly comment on possible cross-correlation. The first point
is that in this approach, the cross-correlation between the Fara-
day rotation angle with any tracer of haloes which is not corre-
lated with the projection of magnetic fields on the line of sight is
vanishing. This is because the cross-correlation is proportional to

either 〈b · n〉 or
〈[

b ·
(
eθ ± ieϕ

)]2
〉
, both of which average down

to zero. This is indeed the case for cross-correlation with the
thermal and relativistic Sunyaev–Zel’dovich effect, the lensing
potential, or the cosmic infrared background fluctuations. This
is also the case for cross-correlation with the absorption coeffi-
cients, µ.

Finally, we checked that the averages
〈
[b · n1]

[
b ·

(
e(2)
θ ±

ie(2)
ϕ

)]2
〉

equals to zero. This yields a vanishing cross-correlation
between the Faraday rotation angle and Faraday conversion.
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Fig. 1. Left: mass distribution of the Faraday rotation effect for various ` modes. Right: redshift distribution of the Faraday rotation effect for
various ` modes.

4. Numerical results

Our results are shown for a frequency of observation ν0 =
30 GHz, and a field strength at present time B0 = 3 µG. The
angular power spectrum for the Faraday rotation angle scales as
Cα
`
∝ B2

0/ν
4
0. The angular autospectra of the E and B modes of

Faraday conversion scale as CφEφE (φBφB)
`

∝ B4
0/ν

6
0. Unless spec-

ified, the parameters for the β-profile are β = µ = 2/3, which
would correspond to a magnetic field frozen into matter.

All the numerical results reported in this work are obtained
using the universal mass function from Despali et al. (2016). For
consistency, we checked that similar results are obtained using
the mass function of Tinker et al. (2008). In particular, we found
similar scaling with cosmological parameters, despite a small
variation regarding the overall amplitude of the angular power
spectra.

4.1. Power spectrum of the Faraday rotation angle

Figure 1 shows the mass and redshift distributions of the Fara-
day rotation angle power spectrum for different multipoles `,
with, on the left, dlnCα

`
/dlnM as a function of mass and, on the

right, dlnCα
`
/dlnz as a function of redshift. Compared to Tashiro

et al. (2008) (Figs. 4 and 3, respectively), we note that our distri-
butions are slightly shifted to higher masses and lower redshifts.
This results in the Faraday rotation effect being more sensitive
to higher mass values and lower redshift galaxy haloes than their
Faraday rotation angle, so that its power spectrum seems to be
slightly shifted to lower ` values as compared to that in Tashiro
et al. (2008). Indeed, low multipoles correspond to high angu-
lar scales, hence to high masses or low-redshift haloes because
these haloes appear bigger on the sky than low masses and high-
redshift haloes.

Figure 2 shows the angular power spectrum of the Faraday
rotation angle for different values of the parameters β and µ of
the spatial distribution profiles of the free electrons density and
magnetic field, respectively. First, we note a shift of power to
higher multipoles when increasing β or µ. Indeed the profile of
free electrons and magnetic fields then becomes steeper so that
they are more concentrated in the centre of the halo, which con-
sequently appears smaller on the sky. This result is consistent
with Tashiro et al. (2008). We also see that the difference in

Fig. 2. Angular power spectra of the Faraday rotation angle, Cα
` , for

different values of the parameter β of the β-profile and different values
of the parameter µ of the magnetic field profile.

amplitudes is more significant when we change β rather than µ
because β appears both in the free electrons and magnetic field
profiles. However, the trend is different when changing β or µ.
Indeed, when increasing µ, the amplitude decreases, as expected
from the magnetic field profile Eq. (12). On the contrary, when
increasing β, the amplitude also increases. This is because as the
profile of free electrons is steeper, keeping the number of elec-
trons constant; their concentration increases in Eq. (9), as does
the amplitude.

Figure 3 shows two different representations of the depen-
dence of the angular power spectrum of the Faraday rotation
angle on the amplitude of density fluctuation σ8: on the left we
plot the angular power spectrum for different values of σ8 and
on the right we plot the logarithmic derivative of the angular
power spectrum with respect to σ8 as a function of `. The latter
gives the scaling of Cα

`
with σ8, i.e. by writing Cα

`
∝ σn(`)

8 then
n(`) = d ln(Cα

`
)/d ln(σ8).

The angular power spectrum Cα
`

is composed of the one-
halo term only. Hence its scaling with σ8 is driven by the mass
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Fig. 3. Left: angular power spectra of the Faraday rotation angle, Cα
` , for different values of the density fluctuations amplitude σ8. Right: scaling

of the angular power spectra with σ8, d ln Cα
` /d lnσ8, as a function of `.

function, dN/dM, and the rotation angle at the core of haloes,
αc. The latter does not explicitly depends on σ8. However, the
scaling of dN/dM with σ8 is mass-dependent. Then the mass
dependence of αc probes different mass ranges of the mass func-
tion, and as a consequence, different scaling of dN/dM with the
amplitude of matter perturbations.

We find a dependence as Cα
`
∝ σ3.1

8 − σ2.1
8 for ` = 10 and

` = 104, respectively. The power spectrum of the Faraday rota-
tion angle is more sensitive to σ8 for low ` values than for high `
values because as seen above, the angular power spectrum is sen-
sitive to higher mass at low ` and in this mass regime the mass
function is more sensitive to σ8. We noticed that reducing the
mass integration range from M = 1013 M� to M = 5 × 1016 M�
(where it was [1010 M�, 5 × 1016 M�] before) slightly increases
the power in σ8. This may be because the Faraday rotation effect
is mainly sensitive to galaxy haloes with masses in the range
M = 1013 to M = 1015 M� (see Fig. 1) and that our mass func-
tion depends on σ8 more strongly from M = 1014 M�.

We note that the scaling in σ8 of the angular power spectrum
is different than that for the tSZ angular power spectrum, which
scales with σ8.1

8 (see e.g. Hurier & Lacasa 2017). The reason is
a different scaling in mass of the rotation angle at the core of
haloes as compared to the tSZ flux; we note that the tSZ angu-
lar power spectrum is dominated by the one-halo contribution.
Indeed, |αc|2 scales as M2, whereas the square of the tSZ flux at
the core scales as M3.5. This results in a different weighting of
the mass function, which is more sensitive to σ8 for high-mass
values, the tSZ effect giving more weight to high masses than the
Faraday rotation angle.

The dependence with σ8 found in this work is however dif-
ferent from that reported in Tashiro et al. (2008), the difference
being mainly due to the presence of a two-halo term in Tashiro
et al. (2008). The mass range

[
M = 1013 M�, 5 × 1016 M�

]
is

first considered in Tashiro et al. (2008) for which the angular
power spectrum is dominated by its one-halo contribution9. In
this case, the obtained scaling is σ5

8. The difference with the
scaling found in this case lies in the reduced mass range, which
gives more weight to the total effect to higher mass haloes. Sec-
ond the mass range is extended in Tashiro et al. (2008) down
9 The angular power spectra derived in Tashiro et al. (2008) has a non-
zero two-halo contribution.

to 1011 M�, leading then to a scaling as σ5.5
8 . In the mass range

[1011 M�, 1013 M�], the two-halo term present in Tashiro et al.
(2008) is not negligible anymore. This two-halo term then gives
much more contribution to low-mass haloes as compared to ours
(see Fig. 7 of Tashiro et al. 2008). However, the scaling of the
two-halo term with σ8 is not driven anymore by

∼
∫

dM
dN
dM

α2
c ,

but instead by

∼
(∫

dM
dN
dM

b(M, z)αc

)2

Pm(`/r, z),

where Pm(k, z) is the matter power spectrum (proportional to
σ8). The steeper scaling with σ8 found in Tashiro et al. (2008)
is thus mainly due to the non-negligible contribution of the two-
halo term in their work.

We now want to study whether the Faraday rotation angle is
sensitive to the matter density parameters. Keeping other cosmo-
logical parameters fixed, we have two possibilities to vary Ωm:
either by varying the density of cold dark matter, ΩCDM, or that
of baryons, Ωb.

We found that the Faraday rotation effect is almost indepen-
dent of Ωm, when Ωb is kept fixed while varying ΩCDM, i.e.

Cα
` ∝ Ω−0.1

CDM −Ω−0.2
CDM

for ` = 10 and ` = 104, respectively. This translates into a similar
scaling with Ωm for a varying density of dark matter, i.e.

Cα
` ∝ Ω−0.1

m −Ω−0.2
m

for ` = 10 and ` = 104, respectively.
However, when keeping ΩCDM fixed and varying Ωb, the

dependence is clearly different and is written as

Cα
` ∝ Ω2.0

b −Ω1.9
b

for ` = 10 and ` = 104, respectively. The resulting scaling with
Ωm by varying the density of baryons is then

Cα
` ∝ Ω13

m −Ω12
m
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Fig. 4. Left: angular power spectra of the Faraday rotation angle, Cα
` , when adding a mass dependence for the magnetic field strength at the centre

scaling as B = Bp(M/Mp)γ, where Mp = 5 × 1014 M�, Bp = 3 µG, and for different values of γ. Right: scaling of the angular power spectra with
σ8, d ln Cα

100/d lnσ8, as a function of γ. We chose to plot this effect for ` = 100 as Cα
` depends more strongly on σ8 for low ` values.

for ` = 10 and ` = 104, respectively. The dependence with
Ωb and ΩCDM is simply understood by the fact the angular
power spectrum scales with the fraction of baryons to the square.
The effect is almost Ωm-independent when varying ΩCDM, as
compared to the tSZ effect, which scales as ∼Ω3

m (Komatsu &
Kitayama 1999). We can thus hope to use the Faraday rotation
as a cosmological probe, by combining it with another physical
effect having a different degeneracy in the Ωm − σ8 plane, such
as the tSZ effect.

We finally study the effect of having a mass dependence of
the (central) magnetic field strength owing to either an increase
of this magnetic field strength with the mass of clusters, or by
considering the higher values of magnetic fields for galaxies.

For the scaling with clusters mass first, we introduce
B0(M) = Bp × (M/Mp)γ, where Mp = 5 × 1014M�, Bp = 3 µG,
and we let γ to vary from 0 to 1. The global amplitude of the
power spectrum now scales with (Bp)2 while the mass scaling
impacts the shape of the spectrum. We note that a change of Bp
only changes the global amplitude of the power spectrum and
not its scale dependence nor its response to changes in the cos-
mological parameters. The left panel of Fig. 4 shows Cα

`
for five

different values of γ. When increasing γ, the power spectrum is
increased and the peak is shifted to lower ` values. Increasing
the value of γ indeed leads to a higher contribution of massive
haloes, which appears larger once projected on the sky, hence a
peak at smaller multipoles. This shift to lower ` values and the
difference in amplitude of the Faraday rotation angle could give
insight into the scaling of the magnetic field strength with mass.

Figure 4 (right) shows how this mass dependence affects
the dependence on σ8 of the Faraday rotation effect by plotting
d ln Cα

100/d lnσ8 with respect to γ. For ` = 100, when γ = 1, we
find Cα

`
∝ σ9.5

8 and we recover Cα
`
∝ σ3.0

8 for γ = 0. In between,
Cα
`
∝ σ4.7

8 − σ6.4
8 − σ7.9

8 for γ = 0.25, 0.5, 0.75, respectively.
We stated a few lines above that our different scaling with σ8
of the angular power spectrum as compared to the thermal SZ
effect came from a different scaling in mass. Indeed, the angu-
lar power spectrum of our effect scales as M2, where it scales
as M3.5 for the tSZ effect, hence we recover the same scaling
in σ8 for γ = 0.75. From this we also see that if we could
model the magnetic field with a power-law mass dependence,

the more it would depend on mass, the more the effect would
be sensitive to σ8, allowing for a better determination of this
cosmological parameter. Hence there is a correlation between
the uncertainty on σ8 and the mass dependence of the mag-
netic field strength. The Faraday rotation angle still almost does
not depend on Ωm (when varying ΩCDM only). Indeed, Cα

`
∝

Ω−0.1
m −Ω−0.0

m −Ω−0.0
m −Ω−0.1

m −Ω−0.1
m for γ = 0, 0.25, 0.5, 0.75,

and 1, respectively.
Second, the impact of a higher magnetic field in galaxies is

taken into account using the hyperbolic tangent introduced in
Eq. (15). We first only account for the increase in B for galax-
ies, i.e. no power-law scaling for clusters. This is shown as the
dashed blue curve in Fig. 5, to be compared to the solid red curve
where there is no mass scaling. It first increases the total power
as a result of a globally higher magnetic field. The main impact
is in the smallest scales since galaxies (which are low masses,
hence smaller sized objects) now have an increased contribution
because of the higher value of B0(M < 1013 M�). In this case,
the scaling of Cα

`
with σ8 is shifted to lower values as follows:

Cα
` ∝ σ1.99

8 − σ0.89
8 ,

for ` = 10 and ` = 104, respectively. This change is because
more weights are now attributed to lower haloes, hence probing
a region of the mass function less sensitive to σ8

10.
We finally consider the two types of mass scaling simultane-

ously, i.e. an increase in the galaxy-mass range using tanh mod-
elling, and an increase for massive cluster using a power law at
masses above 5×1014 M�. This is depicted in Fig. 5 considering
two values for the power law, i.e. γ = 0.25 in dotted green, and
γ = 1 in dash-dotted orange. The scaling of the angular power
spectra with the parameter σ8 now is

Cα
` ∝

{
σ2.56

8 − σ0.90
8 for γ = 0.25,

σ7.00
8 − σ1.01

8 for γ = 1,

10 This is, once again, to be compared with the scaling obtained in
Tashiro et al. (2008). Accounting for galaxies with a central magnetic
field of 10 µG, the scaling obtained in Tashiro et al. (2008) is σ5.5

8 . The
authors of Tashiro et al. (2008) however have a non-negligible contri-
bution of the two-halo term which is vanishing in our study, hence the
different scaling.

A149, page 12 of 19



N. Lemarchand et al.: Secondary CMB anisotropies from magnetized haloes. I.

101 102 103 104 105
10 8

10 7

10 6

10 5

(
+

1)
/(2

)C

Galaxy scaling
Galaxy scaling + Cluster scaling with = 1
Galaxy scaling + Cluster scaling with = 0.25
No mass-scaling

Fig. 5. Angular power spectrum for four models of the scaling of the
magnetic field with the halo masses: (i) B0 = const. in solid red; (ii) an
increase of the magnetic field for galaxies, i.e. at masses lower than
1013 M� as given by Eq. (15) (dashed blue); and a combination of
increased magnetic field for galaxies, Eq. (15), with a power law for
massive clusters, Eq. (14), where (iii) γ = 0.25 (dotted green), and (iv)
γ = 1 (dash-dotted orange).
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Fig. 6. Angular power spectra of the Faraday conversion rate CφEφE

`
for thermal electrons (dotted-blue) and for relativistic electrons (solid-
orange). For relativistic electrons, one set of n(r)

e = 10−6 cm−3 and
Γmin = 100.

for ` = 10 and ` = 104, respectively. The case γ = 1 is partic-
ularly instructive. At large scales, dominated by massive cluster,
we recover the scaling with σ8 mainly driven by the high-mass
region of the mass function. At small scales however, the scaling
is dominated by low-mass objects, hence much less sensitive to
σ8. This has to be contrasted with the case of a magnetic field
independent of the mass, for which the scaling with σ8 ranges
from σ3.1

8 to σ2.1
8 for ` = 10 and ` = 104.

4.2. Power spectra of the Faraday conversion rate

First, we found no significative difference between the two angu-
lar power spectra of the Faraday conversion rate, CφEφE

`
and

CφBφB

`
. Hence, for simplicity we now show results for the CφEφE

`
power spectrum only.

In Fig. 6, we compare the angular power spectra of the
Faraday conversion rate for two populations of free electrons,
either thermal or relativistic. In the case of the relativistic

electrons, the central density in the halo is taken to be con-
stant, contrary to the cold case which follows Eq. (9). We took
the value n(r)

e = 10−6 cm−3 corresponding to Γmin = 100 and
βE = 2.5 (Colafrancesco et al. 2003). We note that with this
specific choice for the spectral index we gets n(r)

e Γ1.5
min = const.

(see Sect. 2.3 and Colafrancesco et al. 2003). Since the ampli-
tude of the angular power spectrum of the Faraday conversion
rate is ∝

(
n(r)

e Γmin

)2
, we obtain CφEφE

`
, which scales as ∝ (n(r)

e )2/3

or conversely in terms of the Doppler factor as ∝ 1/Γmin. For
such values describing relativistic electrons, we find that CφEφE

`
is

∼2 orders of magnitude higher in the thermal electron case com-
pared to the relativistic case. This means that the number density
of relativistic electrons should be pushed towards the unrealis-
tic values of ∼10−3 cm−3 for the relativistic contribution to equal
those of thermal electrons. This would correspond to a minimal
Lorentz factor of Γmin ∼ 1,which is far below the values of ∼100
derived from the lifetime of relativistic electrons in the intraclus-
ter medium (Rephaeli 1979; Sarazin 1999).

The values of n(r)
e used above are already over-optimistic

with respect to the upper bound obtained on the number of cos-
mic rays (see Sect. 2.3). The contribution of relativistic electrons
shown in Fig. 6 is thus a conservative upper bound, and we can
safely neglect the case of relativistic electrons as compared to
the contribution of thermal electrons.

4.2.1. Thermal electrons

The dependence of the angular power spectra of the Faraday con-
version rate from thermal electrons on the density fluctuation
amplitude σ8 is similar to that of the Faraday rotation angle: i.e.
CφEφE

`
∝ σ3.1

8 − σ1.9
8 for ` = 10 and ` = 104, respectively; the

difference between low ` and high ` values has already been
explained. The small differences with Faraday rotation come
from the fact that the Faraday conversion rate for the angular
power spectra scales as 1/(1 + z)6, where the conversion rate
scales as 1/(1 + z)4 for the Faraday rotation angle.

As for the Faraday rotation effect, there is almost no variation
of the Faraday conversion rate with Ωm, when varying ΩCDM and
Ωb kept fixed, the dependence is written as

CφEφE

`
∝ Ω−0.1

m −Ω−0.2
m or CφEφE

`
∝ Ω−0.1

CDM −Ω0.2
CDM

for ` = 10 and ` = 104, respectively.
When varying Ωm via Ωb instead (ΩCDM kept fixed), the

dependence is not very different from Faraday rotation either,
i.e.

CφEφE

`
∝ Ω13

m −Ω12
m or CφEφE

`
∝ Ω2.0

b −Ω1.9
b

for ` = 10 and ` = 104, respectively. Although these scalings are
not very different from Faraday rotation, the same remark on the
σ8 scaling differences applies here, which is that the two effects
scale differently with redshift.

We also investigate the degeneracy between a scaling in mass
of the magnetic field at the centre of the halo and the σ8 scaling,
as what we have done for the Faraday rotation angle; see Fig. 7.
The dependence in σ8 is CφEφE

`
∝ σ15

8 when γ = 1, CφEφE

`
∝ σ12

8

when γ = 0.75, CφEφE

`
∝ σ9.5

8 when γ = 0.5, and CφEφE

`
∝ σ6.4

8
when γ = 0.25. When γ = 0.5 the angular power spectra scales
with the mass to the four. This results in a scaling with σ8 to
the power 9.5. For a comparison, it was also 9.5 for the Faraday
rotation angle when it scaled with the mass to the four, corre-
sponding for this case to γ = 1, so that our analysis is consistent.
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Fig. 7. Left: angular power spectra of the Faraday conversion rate, CφE/BφE/B

` when adding a mass dependence for the magnetic field strength at the
centre scaling as ∼(M/Mp)γ, where Mp = 5×1013 M� for different values of γ. Right: scaling of the angular power spectra withσ8, d ln Cα

100/d lnσ8,

as a function of γ. We chose to plot this effect for ` = 100 as CφE/BφE/B

` depends more strongly on σ8 for low ` values.

Table 2. Scaling of different large-scale-structure probes with σ8 and Ωm.

σ8 Ωm

Faraday rotation power spectrum at ` ' 104 2.1 −0.1
Faraday conversion power spectrum at ` ' 104 (thermal electrons) 2.1 −0.1
Faraday conversion power spectrum at ` ' 104 (relativistic electrons) 2.1 1
Halo number counts from thermal SZ 9 3
Thermal SZ power spectrum at ` ' 3000 8.1 3.2
CMB lensing power spectrum at ` ' 30 2 0.5

Notes. The scaling reported is to be understood as P ∝ σn
8 Ω

p
m with P any of the considered probe. These values are given at the peaking multipole

of `(` + 1)C` for the Faraday rotation angle, the Faraday conversion rate, the tSZ flux, and the peaking multipole of `2(` + 1)2Cφφ
` for the lensing

potential.

4.2.2. Relativistic electrons

We mention the case of Faraday conversion with relativistic elec-
trons because the dependence of the angular power spectra with
cosmological parameters is a bit different.

Indeed, when varying ΩCDM and Ωb kept fixed, the depen-
dence is written as

CφEφE

`
∝ Ω1.0

m −Ω0.7
m or CφEφE

`
∝ Ω0.9

CDM −Ω0.6
CDM

for ` = 10 and ` = 104, respectively.
When varying Ωb and ΩCDM kept fixed, the dependence is

written as

CφEφE

`
∝ Ω0.9284

m −Ω0.2
m or CφEφE

`
∝ Ω0.1

b −Ω0.0
b

for ` = 10 and ` = 104, respectively.
This difference in dependence compared to the thermal elec-

tron case is explained by the constant value for the density of
relativistic free electrons at the centre of the halo, whereas the
density of cold free electrons at the centre scales with the fraction
of baryons fb as well as the critical density ρc and the spherical
overdensity ∆ of the virialized haloes.

5. Conclusions

We revisited the derivation of the angular power spectrum of the
Faraday rotation angle using the halo model and extended it to

the case of Faraday conversion with an emphasis on the assump-
tions made for the statistics and orientations of magnetic fields
inside haloes. Indeed, we first assumed the magnetic field of a
halo to have a spherically symmetric profile but the same orien-
tation over the halo scale. Second, the orientations are supposed
to be uniformly distributed in the Universe to be consistent with
the cosmological principle. Third, the orientations of magnetic
fields in different haloes are independent from each other; the
underlying idea is that magnetism is produced within halo in a
local physical process. We also made the hypothesis that the dis-
tribution of the orientations of the magnetic fields inside haloes
are independent from the abundance in mass and the spatial dis-
tribution of haloes. All of these hypotheses simplified the deriva-
tion of the angular power spectra: in particular, only the one-halo
term remains because of the independence of the orientations
from one halo to another.

We then explored the dependence of the angular power spec-
tra with astrophysical and cosmological parameters. In Table 2,
we report the scaling of the angular power spectra of the Faraday
rotation angle and the Faraday conversion rate with the parame-
ters σ8 and Ωm, assuming in this case that Ωm would vary by a
change of the cold dark matter density. We also reported in this
table the scaling for three other probes of the large-scale struc-
tures, namely halo number counts as observed through the tSZ
effect, the tSZ angular power spectrum, and the angular power
spectrum of CMB lensing potential.

In particular, the angular power spectra of both Faraday rota-
tion and Faraday conversion scale with the amplitude of the
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density fluctuations as σ3
8 while it scales with σ8

8 to σ9
8 for the

other probes. However, this scaling withσ8 is degenerated with a
mass-dependent magnetic field11. Still the scaling with the mat-
ter density parameter Ωm is in contrast to the tSZ and lensing
probes: while for the SZ there is a scaling with Ω3

m, in this case
it is almost independent of this parameter. Thus the two effects
could be combined to lift the degeneracy in the σ8 −Ωm, assum-
ing nonetheless the magnetic field mass-dependence model to be
known. Conversely, a joint analysis could be used so as to infer
the scaling of the magnetic fields with the masses of haloes.

Although other physical effects happen in the magnetized
plasmas in haloes of galaxies, the dominant contributions are
from Faraday rotation and Faraday conversion with thermal elec-
trons as stated in Sect. 2. Indeed, an estimation of the angular
power spectra of secondary anisotropies suggests that at 1 GHz,
where a magnetic field of 10 µG and a density of relativistic
electrons of nrel = 10−5 cm−3 for the absorption coefficients;
there are 18 orders of magnitude between the secondary linearly
polarized anisotropies produced thanks to Faraday rotation and
those produced by absorption of intensity. Similarly, there are 9
orders of magnitude between the secondary circularly polarized
anisotropies produced thanks to Faraday conversion and those
produced by absorption of intensity. These differences in orders
of magnitude do not change significantly when changing the fre-
quency to 30 GHz and the magnetic field to 3 µG. Moreover, this
is an ultra-conservative upper bound on such spectra since we
consider in this paper a largely overestimated values for the num-
ber density of relativistic electrons. Thus, we can safely conclude
that the secondary anisotropies induced by absorption would be
negligible compared to the Faraday rotation and Faraday conver-
sion induced anisotropies.
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Appendix A: Formal derivation of the angular
power spectra for any effect considered

A.1. Radiative transfer coefficients

Looking at the expressions of the different radiative transfer
coefficients reveals that they can assume two possible forms.
These forms are first of scalar type as the Faraday rotation angle,
and they read as an integral over the line of sight and over the
halo distribution as follows:

α(n) =

∫ rCMB

0
a(r)dr

"

dMid3xi nh(xi)

× [b(xi) · n] A (Mi, |x − xi|) . (A.1)

In the above, the dependence over orientations is encoded in
[b(xi) · n], which is a scalar function. The function A is the pro-
file of the effect, which is for Faraday rotation by thermal elec-
trons

A (Mi, |x − xi|) =

(
e3

8π2 m2
e c ε0ν2(r)

)
ne (|x − xi|) B (|x − xi|) .

(A.2)

Since projection effects can only reduce the impact of the effect,
the quantity A can be interpreted as the maximum of the effect a
given halo can generate. Finally, nh is the halo distribution. The
above scalar-type of coefficients are the Faraday rotation angle
and the conversion from intensity to circular polarization, φI→V .

The second type of coefficients are those which are propor-
tional to B2

⊥e±2iγ, where B⊥ is the amplitude of the projected
magnetic field on the plane orthogonal to the line of sight, and γ
the angle between the projected magnetic field with the basis
vector eθ in that plane. This is typical of the coefficients for
Faraday conversion, φP→V , or conversion from intensity to lin-
ear polarization, φI→P. In terms of the amplitude of the mag-
netic field, B, and its orientation b, the phase is B2

⊥e±2iγ =

B
[
b ·

(
eθ ± ieϕ

)]2
. We thus have spin-(±2) coefficients reading

as an integral over the line of sight as follows:

iφP→V (n)e±2iγ(n) =

∫ rCMB

0
a(r)dr

"

dMid3xi nh(xi)

×
[
b ·

(
eθ ± ieϕ

)]2
P (Mi, |x − xi|) . (A.3)

The spin structure of the above is entirely encoded in projec-
tion coefficients

[
b ·

(
eθ ± ieϕ

)]2
. The other terms are identical to

those in scalar coefficients, except that the profile of the effect,
P (r, |x − xi|), admits a different explicit expression, for example
for Faraday conversion by thermal electrons

P (Mi, |x − xi|) =

(
e4

16π2m2
ec3ν3(r)

)
ne (|x − xi|) B2 (|x − xi|) .

(A.4)

Apart from the explicit expression of P, the formal expression of
the coefficient remains the same for relativistic electrons or for
conversion from intensity to linear polarization.

A formal expression for all the above radiative transfer coef-
ficients can be abstracted from that above. On denoting φs any
such coefficients, where s = 0 for scalar coefficients and s = ±2
for the spin coefficients, this is given by

φs(n) =

∫ rCMB

0
a(r)dr

×
"

dMid3xi nh(xi) fs(bi, n)Φ (Mi, |x − xi|) , (A.5)

where Φ (r, |x − xi|) the profile amounting the maximum amount
of the effect, which is a scalar function, and fs(bi, n) the function
encoding the impact of projecting the magnetic field; the sub-
script i reminds us that the orientation is a priori a function of
the haloes positions, xi. This is this last function which contains
the spin structure of the considered coefficients.

A.2. Angular power spectrum

To compute the angular power spectrum, the usual approach con-
sists in first computing the multipolar coefficients of φs(n) thanks
to φs,`,m =

∫
dnφs(n)sY?

`m(n), and then to consider the two-point
correlation between these multipolar coefficients,

〈
φ(1)

s,`mφ
(2) ?
s′,`′m′

〉

(superscripts 1, 2 labels two possibly different radiative trans-
fer coefficients). The fields φs being statistically homogeneous
and isotropic, the two-point correlation of multipolar coeffi-
cients is entirely described by an angular power spectrum, i.e.〈
φ(1)

s,`mφ
(2) ?
s′,`′m′

〉
= C(1,2)

`
δ`,`′δm,m′ .

We adopt a slightly different path (totally equivalent though)
by first considering the two-point correlation function on
the sphere, denoted ξ1,2(n1, n2) =

〈
φ(1)

s (n1)φ(2)
s′ (n2)

〉
, which is

further simplified thanks to our assumption about the statis-
tics of the magnetic fields orientations. The two-point cor-
relation of the multipolar coefficients is secondly derived
from the two-point correlation function via

〈
φs,`mφ

?
s′,`′m′

〉
=∫

dn1
∫

dn2 ξ1,2(n1, n2)sY?
`m(n1)s′Y`m(n2).

Assuming that orientations of the magnetic fields is not cor-
related to the spatial distribution of haloes leads to

ξ1,2(n1, n2) =

∫ rCMB

0
[a(r1)dr1] [a(r2)dr2]

×
" [

dMid3xi

] [
dM jd3x j

]
Φ(1)

× (Mi, |x1 − xi|) Φ(2)
(
M j,

∣∣∣x2 − x j

∣∣∣
)

×
〈
nh(xi)nh(x j)

〉 〈
fs(bi, n1) fs′ (b j, n2)

〉
. (A.6)

Since the orientation of the magnetic fields of two differ-
ent haloes is uncorrelated, this gives

〈
fs(bi, n1) fs′ (b j, n2)

〉
∝

δi, j, and only the one-halo term contributes to the two-
point cross-correlation function. In addition, these orienta-
tions are statistically homogeneous and isotropic, meaning that〈

fs(bi, n1) fs′ (b j, n2)
〉

is a function of
∣∣∣xi − x j

∣∣∣ only. Because
there is only the one-halo term, this relative distance is zero
and

〈
fs(bi, n1) fs′ (b j, n2)

〉
is a function of n1 and n2, i.e.〈

fs(bi, n1) fs′ (b j, n2)
〉

= ξO
s,s′ (n1, n2) δi, j. Hence the two-point

correlation function boils down to

ξ1,2(n1, n2) = ξO
s,s′ (n1, n2) ×

∫ rCMB

0
[a(r1)dr1] [a(r2)dr2]

×
"

dMid3xi
dN
dM

Φ(1) (Mi, |x1 − xi|) Φ(2)

× (Mi, |x2 − xi|) , (A.7)

where the mass function arises from the one-halo average of
the abundance

〈
n2

h(xi)
〉

= dN/dM. The function ξO
s,s′ (n1, n2) is

interpreted as the correlation function of orientations, while the
remaining term is the one-halo contribution of the two-point cor-
relation function of the amplitude of the radiative transfer coef-
ficient. Let us denote this second correlation function ξΦ

1,2.
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The full correlation function is thus a product of two correla-
tion functions, one for the orientation and one for the amplitude
of the coefficient, i.e.

ξ1,2(n1, n2) = ξO
s,s′ (n1, n2) × ξΦ

1,2(n1, n2). (A.8)

The correlation function of the amplitude, ξΦ
1,2, is formally identi-

cal to the one-halo term of the correlation function of, for exam-
ple the tSZ effect, which is well known to be described by an
angular power spectrum, i.e.

ξΦ
1,2(n1, n2) =

∑

L,M

DΦ
L YLM(n1)Y?

LM(n2), (A.9)

where DΦ
L is the angular power spectrum. Similarly, the correla-

tion function of orientations is described by an angular power
spectrum, DO

L′ , since this is a statisically homogeneous and
isotropic field, i.e.

ξO
s,s′ (n1, n2) =

∑

L′M′
DO

L′ sYL′M′ (n1)s′Y?
L′M′ (n2). (A.10)

We note that in the above, spin-weighted spherical harmonics
are used to take into account the non-zero spins of the projected
orientations.

Plugging Eqs. (A.9) and (A.10) into Eq. (A.8), and then
taking the spherical harmonic transforms of ξ1,2, we show that〈
φ(1)

s,`mφ
(2) ?
s′,`′m′

〉
can be expressed as a function of Gaunt integrals,

the latter being defined as

G`1m1 s1
`2m2 s2;`3m3 s3

=

∫
dn̂ s1 Y`1m1

(n̂) × s2 Y`2m2
(n̂) × s3 Y`3m3

(n̂).

(A.11)

Gaunt integrals can be casted as products of Wigner-3 j sym-
bols. By then using triangular conditions and symmetries of the
Wigner symbols (Varshalovich et al. 1988), we find

〈
φ(1)

s,`mφ
(2) ?
s′,`′m′

〉
=

√
(2` + 1)(2`′ + 1)

4π

∑

L,L′
(2L + 1)(2L′ + 1)

× DΦ
L DO

L′

(
L′ L `
−s 0 s

) (
L′ L `′
−s′ 0 s′

)

×
∑

M,M′

(
L′ L `
M′ M −m

) (
L′ L `′
M′ M −m′

)
.

(A.12)

The last summation over M and M′ of two Wigner-3 js is equal
to (2`+ 1)−1 δ`,`′ δm,m′ . We thus finally obtain that the correlation
matrix of the multipolar coefficients is diagonal (as expected for
statistically homogeneous and isotropic process), i.e.
〈
φ(1)

s,`mφ
(2) ?
s′,`′m′

〉
= C(1,2)

`
δ`,`′ δm,m′ , (A.13)

where the angular power spectrum of the Faraday effect is given
by

C(1,2)
`

=
1

4π

∑

L,L′
(2L + 1)(2L′ + 1)

(
L′ L `
−s 0 s

)

×
(

` L `
−s′ 0 s′

)
DΦ

L DO
L′ . (A.14)

Since the two-point correlation function is the product of two
two-point correlation functions, we consistently find that the
angular power spectrum is the convolution of the respective two
angular power spectra DΦ

L and DO
L′ .

Appendix B: Derivation of DA
L

B.1. Uniformly oriented magnetic field

We describe the derivation of the expression of DA
` . This is very

reminiscent to the calculation of the angular power spectrum of,
for example the tSZ effect (see e.g. Cole & Kaiser 1988; Makino
& Suto 1993; Komatsu & Kitayama 1999), simplified in this
work since we only need to derive the one-halo term. To this
end let us define A(n̂) such that

A(n̂) =
e3

8π2 m2
e c ε0

∫ rCMB

0

a(r)dr
ν2(r)

×
"

dMid3xinh(xi)X (|x − xi|) . (B.1)

Then DA
L is the angular power spectrum of the above quantity

restricted to its one-halo contribution.
The integral over xi in A(n) is the convolution of the halo

abundance, nh, where the profile of the halo, X. This is then writ-
ten as a product in Fourier space to get

A(n) =
e3

8π2 m2
e c ε0

∫ rCMB

0

a(r)dr
ν2(r)

×
"

dMi d3 k ñh(k,Mi) X̃(k)eik·x, (B.2)

where f̃ (k) means the three-dimensional Fourier transform of
f (xi). Because the radial profile is spherically symmetric, it only
depends on the norm of the wavevector k ≡ |k| and can be
expressed using spherical Bessel functions

X̃(k) = X̃(k) =

√
2
π

∫ ∞

0
dR R2 X(R) j0(kR), (B.3)

where R ≡ |x − xi| and j0 is the spherical Bessel function at
order ` = 0. We further make use of the Rayleigh formula to
express the eik·x using spherical Bessel functions and spherical
harmonics. The multipolar coefficients are then obtained through
ALM =

∫
dn A(n)Y?

LM(n) leading to

ALM =
e3

8π2 m2
e c ε0

∫ rCMB

0

a(r)dr
ν2(r)

"

dMi d3 k ñh(k,Mi) X̃(k)

× (4π)(i)L jL(kr) Y?
LM(k/k). (B.4)

The two-point correlation of the above set of multipolar coeffi-
cients involves the auto-correlation of the Fourier transform of
the halo abundance. The Poisson part of the two-point correla-
tion of the halo density field is

〈
n2

h(xi,Mi)
〉

= (dN/dMi) δ(Mi −
M j) δ3(xi − x j), where dN/dMi is the mass function. The cor-
responding power spectrum is constant (independent of scale):〈
ñh(k) ñ?h (q)

〉
= (dN/dMi) δ(Mi − M j) δ3(k − q). Thanks to the

scale independence of this power spectrum and to the fact that
the Fourier-transformed profile of the angle depends on k only,
we can perform the integral over (k/k) to get
〈
ALMA?

L′M′
〉

= DA
L δL,L′ δM,M′ , (B.5)

where the angular power spectrum is written as

DA
L =

(
e3

2πm2
e c ε0

)2 ∫ rCMB

0

a(r1) dr1

ν2(r1)

∫ rCMB

0

a(r2) dr2

ν2(r2)

×
∫

dM
dN
dM

∫
k2 dk

∣∣∣X̃(k)
∣∣∣2 jL(kr1) jL(kr2). (B.6)
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The numerical evaluation of the angular power spectrum DL
as derived above is still prohibitive because of the presence of
the highly oscillating Bessel functions. It is however built from
expressions of the form
"

dr1 dr2 H1(r1) H2(r2)
∫

2k2 dk
π

P(k) j`(kr1) j`(kr2),

which can be simplified using the Limber approximation
(LoVerde & Afshordi 2008). Using this approximation, we
obtain

DA
L =

(
e3

m2
e c ε0

√
8π

)2 ∫ rCMB

0
dr

a2(r)
r2 ν4(r)

×
∫

dM
dN
dM

∣∣∣∣∣∣X̃
(

L + 1/2
r

)∣∣∣∣∣∣
2

. (B.7)

We finalize our expression of the angular power spectrum DA
L by

introducing the projected Fourier transform of the profile. To this
end, we first note that X(R) = X(c)(M, z, Bc) U(R/Rc),where Bc is
the mean magnetic field strength at the centre of the halo (which
can also depend on M and z; see Tashiro et al. (2008)), and U
is a normalized profile which only depends on the ratio of the
comoving distance from the centre, R, to the typical comoving
radius of the halo, Rc, which is also a function of z and M. For
a β-profile, this is written as X(c) = n(c)

e Bc and U(R/Rc) = (1 +
R/Rc)−3β(1+µ)/2.

Introducing the variable x = R/Rc and physical radius of the
halo, r(phys)

c = a(z)Rc, we find

X̃
(
` + 1/2

r

)
=

(
r2

a(r)

)
X(c) ×

√
2
π


r(phys)

c

`2
c



×
∫ ∞

0
U(x) j0 ((` + 1/2)x/`c) x2 dx,

where `c = Dang(z)/r(phys)
c , which is the typical multipole associ-

ated with the typical size of the halo (the latter being also a func-
tion of M and z through r(phys)

c ), and Dang(z) the angular diame-
ter distance. By defining the projected Fourier transform of the
profiles

α`(M, z) =

√
2
π


r(phys)

c

`2
c


∫ ∞

0
U(x) j0((`+1/2)x/`c) x2 dx, (B.8)

the angular power spectrum DL is then written as

DA
L =

(
e3

m2
e c ε0

√
8π

)2 ∫
dz
ν4(z)

dr
dz

r2
∫

dM
dN
dM

∣∣∣X(c)
∣∣∣2 α2

L.

(B.9)

B.2. Adding a stochastic contribution to the magnetic field

Adding a contribution of a stochastic component to the magnetic
field is done by amending Eq. (B.4) as follows: we replace the
Fourier transform of the profile X([x − xi|) by

X̃(k)→ X̃(k) =

∫
d3qX̃(q)̂b (k − q) , (B.10)

where b̂ is a stochastic variable described by a statistically
isotropic power spectrum. This is just the convolution of the pro-
file with some random component described by a power spec-
trum. This gives for the two-point correlation of the multipolar
coefficients

〈
ALMA?

L′M′
〉

=

(
e3

2πm2
e c ε0

)2 ∫ rCMB

0

a(r1) dr1

ν2(r1)

∫ rCMB

0

a(r2) dr2

ν2(r2)

×
∫

dM
dN
dM
×

∫
d3k

〈∣∣∣∣X̃(k)
∣∣∣∣
2〉

(i)L−L′

× jL(kr) jL′ (kr) Y?
LM(k/k) YL′M′ (k/k). (B.11)

We note that only the diagonal of the spectrum, i.e.
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

, is

involved here, and not the off-diagonal terms, i.e.
〈
X̃(k)X̃(k′)

〉

with k , k′. This is because the statistical average of the
halo abundance, i.e.

〈
ñh(k) ñ?h (k′)

〉
, is proportional to δ3(k− k′).

Although in this case we are only interested in the one-halo term,
this would equally apply to the two-halo term with the addition,
however, of the matter power spectrum.

It can be shown that the power spectrum of the random vari-
able X̃ is also isotropic, i.e. a function of k only, as follows: We
first note
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

=

∫
d3q

∣∣∣X̃(q)
∣∣∣2 S̃ (|k − q|) , (B.12)

where we use the fact that b̂ is a statistically isotropic random

field, i.e.
〈̂
b(k))̂b?(k′)

〉
= S̃ (k)δ3(k − k′). Hence

〈∣∣∣∣X̃(k)
∣∣∣∣
2〉

is the
convolution of the Fourier coefficients of two functions which
are spherically symmetric, since both

∣∣∣X̃(q)
∣∣∣2 and S̃ (k) are func-

tions of the wavenumber only. Hence we rewrite this in real-
space (leading then to a product of two spherically symmetric
functions) as follows:
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

=

∫
d3r

(2π)3/2 eikrX2(r)S (r)

=

√
2
π

∫ ∞

0
dr r2 X2(r)S (r) j0(kr), (B.13)

where the inverse-Fourier transform introduced above reads

X2(r) =

∫
d3k

(2π)3/2

∣∣∣X̃(k)
∣∣∣2 e−ikr =

√
2
π

∫ ∞

0
dk k2

∣∣∣X̃(k)
∣∣∣2 j0(kr),

(B.14)

S (r) =

∫
d3k

(2π)3/2 S̃ (k)e−ikr =

√
2
π

∫ ∞

0
dk k2 S (k) j0(kr).

(B.15)

We note that r can be understood as a mere dummy variable.
We also stress that X2(r) should not be confused with |X(r)|2.
Finally, the function S (r) is no more than the correlation function
introduced in Sect. 2.3.

It is then clear that
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

can be replaced by
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

where it is now a function of the wavenumber only. We can thus
perform in Eq. (B.11) the integral over (k/k) to get δL,L′δM,M′ .
We thus obtain

〈
ALMA?

L′M′
〉

= DA
L δL,L′δM,M′ ;the amended angu-

lar power spectrum reads

DA
L =

(
e3

2πm2
e c ε0

)2 ∫ rCMB

0

a(r1) dr1

ν2(r1)

∫ rCMB

0

a(r2) dr2

ν2(r2)

∫
dM

dN
dM

×
∫

k2 dk
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

jL(kr1) jL(kr2), (B.16)

where the new power spectrum of haloes,
〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

, is obtained

from the Fourier transform of the β-profile, X̃(k), and the power
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spectrum of the stochastic component, S̃ (k), using the set of
Eqs. (B.13)–(B.15)12.

Let us now discuss how this impact DA
L as compared to the

simplifying assumption of uniform orientation of the magnetic
field up to the virial radius. This basically consists in comparing〈∣∣∣∣X̃(k)

∣∣∣∣
2〉

to
∣∣∣X̃(k)

∣∣∣2. We first note to ease the comparison that the
latter is directly derived from the former by setting S (r) = 1.
Hence we need to compare

〈∣∣∣∣X̃(k)
∣∣∣∣
2〉

=

√
2
π

∫ ∞

0
dr r2 X2(r)S (r) j0(kr), (B.17)

to

∣∣∣X̃(k)
∣∣∣2 =

√
2
π

∫ ∞

0
dr r2 X2(r) j0(kr). (B.18)

Assuming self-similarity, we can write S (r) = S c(M) × s(r/rc),
where S c is some amplitude (potentially mass-dependent), and
s(r/rc) a shape function depending on the ratio r/rc only, and
which decreases to zero at scales smaller than the virial radius.
At a qualitative level then, adding the stochastic contribution
leads to two effects. First, the shape function introduces a uni-
versal smoothing hence suppressing power at large scales. The
second impact comes from the peculiar scaling with the mass
which might give more or less weights for haloes with different
masses. This additional scaling however can be fully incorpo-
rated within the mass scaling of Bc.

The function X2(r) is no more than the convolution of the
profile X(r) with itself. Hence we can introduce an effective
profile, Xeff(r), accounting for the stochastic contribution as the
function such its auto-convolution product equals X2(r)S (r), i.e.∫

dx Xeff(r)Xeff(r − x) = X2(r)S (r). This effective profile should
then account for the additional smoothing introduced by s(r)
plus some potential additional scaling of the total amplitude of
the effect with the mass; the latter is however easily absorbed
into the scaling Bc(M). Armed with such an effective profile, all
the analytical expressions derived in the previous section of this
appendix can be directly used replacing X by Xeff .

Appendix C: Derivation of D‖
L

for Faraday rotation

The angular power spectrum D‖L for Faraday rotation is obtained
through the computation of the correlation

〈
b(n1, xi)b(n2, x j)

〉
.

Wenote thatb(n, xi) = n·b(xi).Weuse thevectorbasis (ez, e+, e−),
where e± = (ex ± iey)/

√
2 and (ex, ey, ez) is the standard Cartesian

basis of R3. The components of the orientation of the magnetic
field b and the line-of-sight direction n are given by

b =



cos(β(xi))
1√
2

sin(β(xi))eiα(xi)

−1√
2

sin(β(xi))e−iα(xi)


, and, n = 2

√
π

3


Y0

1 (n)
Y−1

1 (n)
Y1

1 (n)

 . (C.1)

We note that in the specific reference frame adopted in this case,
the components of the line-of-sight unit vector are expressed
using the spherical harmonics for ` = 1. This way of expressing
the components of the unit vector of the line of sight is appro-
priate for further reading the angular power spectrum from the
two-point correlation function; see Eq. (A.10).

12 This computation requires only three one-dimensional Fourier
transforms.

For uniformly distributed unit vectors, we obtain the follow-
ing average:

〈
b(xi)b(x j)

〉
=


1/3 0 0
0 0 −1/3
0 −1/3 0

 δi, j , (C.2)

which is only non-zero for the same haloes. This is also constant
in space because, as explained in Appendix A, it results from an
homogeneous and isotropic process. The two-point correlation
function finally is writen as

〈
b(n1, xi)b(n2, x j)

〉
=

4π
9
δi, j

1∑

m=−1

Y1,m(n̂1) Y?
1,m(n̂2), (C.3)

from which the angular power spectrum is easily obtained to be
D‖L = (4π/9) × δL,1.

Appendix D: Derivation of D⊥
L

for Faraday
conversion

In this appendix we compute the following two-point correlation
functions:

〈
b±2(n1, xi)b±2(n2, x j)

〉
and

〈
b±2(n1, xi)b∓2(n2, x j)

〉

where we note that b±2 (n, xi) ≡ [b(xi) · (eθ ± ieϕ)]2. Working
in the basis (ez, e+, e−) as used in Appendix B, squares of inner-
dot products b±2 (n, xi) are conveniently expressed as

b±2 (n, xi) =

5∑

µ=1

bµ(xi) e(±)
µ (n), (D.1)

where the five coefficients bµ depend on the orientations of the
magnetic fields only (i.e. they are functions of β(xi) and α(xi)
only). They are given by

bµ(xi) =



√
2
3 (2 cos(β(xi))2 − sin(β(xi))2),

−2 sin(β(xi)) cos(β(xi))e−iα(xi),
2 sin(β(xi)) cos(β(xi))eiα(xi),
sin(β(xi))2e−2iα(xi),
sin(β(xi))2e2iα(xi).

(D.2)

The five coefficients e(±)
µ (n) are functions of the line of sight only

and with our choice of the reference frame, they are expressed
using spin-weighted spherical harmonics for s =±2 and `= 2, i.e.

e(±)
µ (n) =

√
4π
5



±2Y2,0(n̂),
±2Y2,1(n̂),
±2Y2,−1(n̂),
±2Y2,2(n̂),
±2Y2,−2(n̂).

(D.3)

Ensemble averages are done for the bµ coefficients, which for
a uniform distribution of orientations gives

〈
bµ(xi) bν(x j)

〉
=

δµ,ν δi, j. The different correlation functions are then given by

〈
b±2(n1, xi)b±2(n2, x j)

〉
=

32π
75

δi, j

2∑

m=−2
±2Y2,m(n1) ±2Y?

2,m(n2),

(D.4)

〈
b±2(n1, xi)b∓2(n2, x j)

〉
=

32π
75

δi, j

2∑

m=−2
±2Y2,m(n1) ∓2Y?

2,m(n2).

(D.5)

All these correlation are thus described by the angular power
spectrum (which is non-zero for the one-halo term only) written
as D⊥` = (32π/75) δ`,2.
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Conclusion and prospects

Today, the CMB anisotropies still make up an important observable for the whole cosmology
as they are made of both primary and secondary anisotropies, tracing respectively the origin
of the cosmic inhomogeneities as well as their evolved state in the late-time Universe, namely
the large-scale structures, through their interaction with the primordial light. Actually, they
are even essential to probe the early Universe physics. Although the hot big bang model is in
remarkable agreement with the observation of the CMB anisotropies, it does not provide any
explanation about the conditions in which the Universe is found (its homogeneity and flatness
for example) and it asks a question of fundamental physics by predicting a singularity at the
origin of the Universe. The inflationary paradigm set the Universe in the right conditions for
the hot big bang scenario but does not solve the initial singularity problem. It is thought that
a modification of Einstein’s theory of gravitation would do, and more precisely its quantisation.
An attempt to do so is the LQG theory whose application to cosmology led to the LQC field,
replacing the initial big bang singularity by a quantum big bounce. In order to have a more
complete picture of the Universe, it is thus needed to link very early Universe models like the
ones of LQC to the inflationary scenario. All of this remains very theoretical and our only
observables to test these models are the perturbations produced during the very early Universe,
as different models of the very early Universe might change the production of the inhomogeneities,
later leaving their imprints in the temperature and polarisation anisotropies of the CMB. For
example, the B modes polarisation patterns are the unique signature of the gravitational waves
produced and amplified during inflation so that their detection would support the paradigm,
and enable to put tighter constraints on the different early Universe models and discriminate
between them. The primordial B modes have not been detected yet because of their very low
signal, although a secondary component coming from the lensing of the CMB by large-scale
structures has. Lensing transforms some of the primordial (detected) E modes into B modes.
It is therefore important to model precisely all the possible sources of secondary B modes -and
of secondary anisotropies in general- in order to have access to the primordial signal and to put
constraints on the early Universe physics. Conversely, the secondary anisotropies (in temperature
and polarisation) of the CMB induced by lensing, among others, contain information both about
the evolution of the cosmic inhomogeneities (and therefore about the Universe) since the last
scattering surface and the parameters of the Λ CDM model of cosmology. Other sources of
secondary anisotropies are due to magneto-optic effects taking place in large-scale structures
because of the presence of magnetised plasmas within them, like FR of the primordial linear
polarisation, turning some E modes into B modes. These magnetised plasmas also lead to FC of
the primordial linear polarisation into circular polarisation, which has no primordial component
in the standard model of cosmology. My thesis work has consisted in studying two sides of the
cosmic inhomogeneities: on one side, their production in an extension of the inflationary scenario
within the LQC framework and on the other side the modelisation of the impact of magnetic
fields in their evolved state, namely the large-scale structures, on the CMB polarised anisotropies.
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I have checked that the model of the very early Universe presented in Part II with a mass-
less and a massive scalar field is still compatible with the inflationary scenario. I have shown
both analytically and numerically that in the remote past of the contraction, the massive field
dominates the energy content and thus the evolution of the Universe. Therefore, the analytical
approximations of the one field model can be used for the background in this regime. However,
at the perturbation level, the perturbations of both fields must be taken into account. Indeed,
the scalar perturbations of the two fields are combined into two components: an adiabatic and
an isocurvature one, which have been shown to be strongly coupled during the contraction. I
have demonstrated how to set the initial conditions for the perturbations there, by making a
rotation of basis to go back to the fields’ space, since far enough in the contraction, gravity
no longer couples the two fields so that the coupling between the two fields’ perturbations thus
becomes negligible. The perturbations now remain to be propagated through the bounce down
to the end of inflation to get the primordial power spectrum of scalar perturbations which would
be split in three with an adiabatic, an isocurvature and a cross power spectrum. The two fields
model thus presents the distinctive feature of isocurvature perturbations, for which Planck has
put upper limits. Hence, as a prospect of the present work, to see if the model lies within the
current constraints on isocurvature perturbations, one would need to propagate these primordial
power spectra to the CMB, by modifying an early Universe radiative transfer code like CAMB
or CLASS, to compute the induced temperature and polarisation anisotropies.

Other prospects have to do with theoretical considerations. At the background level, in
addition to the holonomy corrections to the Friedmann’s equations, one might want to add the
so-called inverse volume corrections which are not clearly established, and are due to the fact
that the Hamiltonian of GR contain terms inversely proportional to the volume, and then to
fully study the background dynamics with all the corrections. Still at the background level,
quantum back-reaction effects should be taken into account when the initial conditions for the
fields are set at the bounce, in order to consistently study the probability and duration of an
inflation phase. This raises a question about the moment when to put the initial conditions
for the fields and their perturbations. As what is done for the fields themselves, it might be
relevant to put the initial conditions for the perturbations during the bounce. Then, a related
consideration is about the equations of motion for the perturbations to be used: either in the
deformed algebra or dressed metric approach, quantum modifications to the equations of motion
for the perturbations may need to be taken into account if the initial conditions were to be
set at the bounce. Finally, prospects more about the physics such a model describes are to be
considered. Indeed, the only known massive scalar field is the Higgs field but it is also known
that it cannot trigger the required inflation phase. Maybe a more physical model would include
other kinds of more realistic fields than a scalar field. Furthermore, as for reheating where the
inflaton is coupled to the other fields of the SM of particle physics, one could wonder why our
massive field is not coupled to other fields during the contraction, following some kind of inverse
reheating process. Thus, a more realistic and refined model would take into account more fields
during both the contraction and the inflation but also during the bounce if a total of four fields
are needed to make up a material reference frame.

The primary anisotropies of the CMB are used to extract information about the primordial
Universe. However, the observed CMB contains much more information: proper foreground emis-
sion by astrophysical sources or secondary anisotropies due to the interaction of the primordial
light with large-scale structures. In Part II, I have revisited two sources of secondary polarised
anisotropies which are the FR and FC effects, by computing their angular power spectra by
the large-scale structures, using the halo model and paying special attention to the projections
of the magnetic fields of halos. Assuming magnetic fields of haloes to be uncorrelated, I have
found that the two-halo term of the angular power spectra vanishes, and that the latter peak at
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multipoles ` ∼ 104. I have shown that the FR angle is dominated by the contribution of cold
thermal electrons, while both cold and relativistic electrons contribute equally to the FC rate
in the most optimistic case and in less optimistic situations, the cold electrons dominate the
contribution. Both angular power spectra show astrophysical and cosmological dependencies. In
particular, when the magnetic field is independent of the halo mass, the angular power spectra
scale with the amplitude of matter perturbations σ8 as C` ∝ σ3

8 , while it almost does not depend
on the matter density parameter Ωm. This scaling with σ8 is degenerated with a mass-dependent
magnetic field. Indeed, introducing a dependence of the magnetic field strength with the halo
mass leads to an increase of the scaling at large angular scales (above a degree) with the ampli-
tude of matter fluctuations up to ∼ σ9.5

8 for FR and ∼ σ15
8 for FC for a magnetic field strength

scaling linearly with the halo mass. Introducing higher values of the magnetic field for galaxies,
as compared to clusters, instead leads to a decrease of such a scaling at arcminute scales down
to ∼ σ0.9

8 for FR. There is however a degeneracy in the Ωm − σ8 plane which could be lifted by
combining these effects with other large-scale structure probes that scale differently with those
parameters, like the tSZ effect or lensing for example, assuming nonetheless the magnetic field
mass-dependence model to be known. Conversely, a joint analysis could be used so as to infer
the scaling of the magnetic fields with the masses of haloes.

The FR and FC effects could thus be used to probe the late-time Universe and for this
purpose we have built quadratic estimators of the FR and FC fields to reconstruct them, thanks
to their induced secondary anisotropies. The FR and lensing effects impact the primordial CMB
similarly by turning some primordial E modes into B modes, so that they could potentially
bias each other’s reconstruction, but this is not the case for symmetry reasons. Only correlators
involving polarised anisotropies can be used to reconstruct the FR angle and FC rate fields, as
both of these effects have no impact on the temperature anisotropies of the CMB. Finally, a rough
estimate shows that the secondary polarised anisotropies due to the FR effect are expected to be
of the same order of magnitude as the lensing effect although at smaller angular scales (` ∼ 104)
for a CMB frequency of ν = 30 GHz, while the secondary ‘V mode’ is expected to be 6 orders of
magnitude lower. However, no primordial circular component of polarisation is expected in the
CMB, so that its detection would be made easier. The precise quantification of the secondary
polarised anisotropies is the natural next step and the full power spectra can be computed by
taking the input primordial angular power spectra of CMB anisotropies computed in simulations
like CAMB or CLASS. These secondary polarised anisotropies could potentially be detected by
small-scale CMB S4 missions and for this purpose a signal-to-noise ratio analysis remains to
be made. This all-sky detection could also be completed with single observations of clusters.
For the case of circular polarisation, observational constraints already exist on the V Stokes
parameter (see Nagy et al., 2017, for upper bounds) and its comparison with the value computed
by a numerical simulation might already put upper limits on the magnetic field strength or the
density of relativistic electrons. To finish, in order to have additional observables that could
potentially lift the degeneracy among cosmological parameters or between cosmology and cluster
astrophysics, the predictions could also be completed by computing higher order correlations,
and cross-correlations with other cosmological probes like the tSZ effect. Note that because of the
statistical independence of the magnetic fields from one halo to another, one needs to correlate
an even number of FR or FC fields so that higher-order correlation functions are needed when
considering cross-correlations with other observables.
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Appendix A

The formalism of the Poincaré
sphere

A.1 Preliminaries
A single temporally, spatially and spectrally coherent electromagnetic wave can be polarised, and
the most general case is that the two components E1(r, t) and E2(r, t) obey an ellipse equation(

E1(r, t)

a

)2

+

(
E2(r, t)

b

)2

= 1, (A.1)

where a and b are the semi-major axis and the semi-minor axis of the ellipse respectively, being
along the 1- and 2-directions for convenience, so that we say the wave is elliptically polarized:
the electric field describes an ellipse as time goes by, see Fig. A.1.

Figure A.1: The ellipse drawn by the electric field components over time. This is a left-handed
polarisation.

Depending on whether the ellipse is drawn over time in the right(left) direction, we respec-
tively talk about right(left)-handed elliptical polarisation. Hence to fully describe the polarisation
state of the electromagnetic field, one must know the values of the axes a and b of the ellipse
as well as its sense of rotation. Linear polarisation is a degenerate case of elliptical polarisation
when one of the axes of the ellipse is considered to be null. Another degenerate case is when
a = b so that the ellipse is actually a circle: then we talk about circular polarization. Actually,
any polarisation of an electromagnetic wave can be decomposed either into two perpendicular
linearly polarized waves, or into right- and left-handed circular polarized waves. Knowing that,
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such an electromagnetic wave can be parametrized by

E(r, t) =

∣∣∣∣∣∣
E01cos(k · r − 2πνt)
E02cos(k · r − 2πνt+ φ)
0

, (A.2)

ν being the frequency at which the ellipse is drawn and k = 2πn/λ ê3 so that the wave indeed
propagates in the ê3-direction, λ being its wavelength. n is the refractive index of the medium
in which the wave propagates, so that its speed is c/n. The phase φ, only in the 2-component,
will determine the polarization of the wave. If φ > 0, the wave is left-handed, and conversely if
φ < 0. In the case of Eq. (A.1) and Fig. A.1, φ = π/2. 1 For a temporally coherent wave, this
phase is constant over time. In real life, no waves are perfectly coherent, this phase is actually
changing over a timescale called the coherence time of the source τc which can be up to 10−6s
for a helium-neon laser.

Another property of the electromagnetic wave describing light one might want to measure
is its amplitude. Because of the short durations of the wave packets, one cannot measure the
amplitude of the two components of the electric field over time, hence what we actually measure
is a kind of mean value over time of the amplitude: the intensity of light. It is given by

I = 〈|E1|2〉+ 〈|E2|2〉 = a2 + b2. (A.3)

Physically, it is the energy of the light (up to a constant factor), the brackets corresponding to
time average. It is thus uniquely related to the scalar component of light described in Chapter 4:
its temperature.

A.2 The Poincaré sphere
The Poincaré sphere is a formalism developed in Poincaré (1892) to describe the properties of
light and the action of optical media. Contrary to the Jones formalism which only describes
fully polarized light, it can describe a partially polarized light which is what we more commonly
encounter in nature. In the previous section, in describing our electromagnetic wave, we chose
a particular coordinate system in which we did not distinguish between the axes of the ellipse
and the axes of our basis. Let us now describe this wave in a basis where the axes of the ellipse
and those of the basis (ê1, ê2, ê3) are not degenerate. Going now to another orthonormal basis
(ê′1, ê

′
2, ê3) rotated by an angle ψ with respect to the original basis (ê1, ê2, ê3) around the ê3-

direction in a right-handed sense (see Fig. A.2), so that the axes of the ellipse are degenerate
with the axes of the new basis, the components of the electric field become{

E′1 = E1cos(ψ) + E2sin(ψ),
E′2 = E2cos(ψ)− E1sin(ψ),

(A.4)

ψ is therefore the tilt of the ellipse with respect to the basis in which the electric field is measured:
it is called the azimuth angle of the ellipse. Earlier we said that to fully describe the polarisation
state, we needed to know the parameters a, b and the sense of rotation of the ellipse. With the
parameterization given in Eq. (A.2) in a random basis, this was equivalent to know E01, E02 and
the sign of φ. However, we cannot really rely on the E01 and E02 parameters as they depend
on our choice of coordinate system. Therefore, we must specify in which system of coordinates

1Note that it was arbitrary to put this phase in the 2-component and not into the 1 or split it into both of
the components: what is important here is the polarization of the wave, not the amplitude at each instant of this
wave. Indeed, changing the way we introduce this phase will just consist in redefining the origin of times.
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Figure A.2: Change of basis in describing the electromagnetic wave where (ê′1, ê
′
2) are now

undistinguishable from the proper axes of the ellipse drawn by the electric field over time.

we describe the polarisation, or equivalently give the tilt ψ of the ellipse with respect to the
basis where polarisation is described. Given that, two parameters are missing to fully describe
the polarisation. These two remaining parameters are independent on the chosen system of
coordinates and are intrinsic to the polarisation. One such parameter is the intensity of the light

I = E2
01 + E2

02 = E
′2
01 + E

′2
02 = a2 + b2, (A.5)

which is indeed the same regardless of the coordinate system. We then need another parameter
to fully describe our polarization state. This is given by the ellipticity of the ellipse:

tan(χ) = ± b
a
. (A.6)

A partially polarized light is described by an additional parameter: the degree of polarization
p. It is defined as the ratio between the intensity of the polarized light Ip and the total intensity
I of the light

p ≡ Ip
I
, (A.7)

so that it is comprised between 0 and 1. Thus, any real light can be described by these four
parameters

p, I, ψ, χ. (A.8)
We then represent it thanks to the Poincaré sphere. It is a sphere of radius I centered on
the origin O of a coordinate system (O;x, y, z) where the polarization properties of the light
parametrised by these four parameters are translated into spherical coordinates: the angle ψ is
defined with respect to the x-axis while χ is defined with respect to the (Oxy) plane, see Fig. A.3.
The coordinates of a point corresponding to a given light beam are x = Ip cos(2ψ)cos(2χ),

y = Ip sin(2ψ)cos(2χ),
z = Ip sin(2χ),

(A.9)

so that any light with χ = 0, i.e. any linearly polarized light, will lie in the (Oxy) plane and any
light with χ = ±π/2, corresponding respectively to left(right)-handed circularly polarized light
will be located at the poles. The northern hemisphere corresponds to left-handed polarisation
while the southern one is the right-handed polarization. A fully polarized light thus having p = 1
will be represented on the sphere while a partially polarized light within the sphere. The factors
of 2 in front of ψ & χ are respectively related to the facts that one cannot distinguish an ellipse
from its rotation by π or from a π/2 rotation plus a swapping of its axes.
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2χ
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Figure A.3: A point in the Stokes parameters (S1, S2, S3) space, with spherical coordinates
given by (Ip, χ, ψ). The Poincaré sphere has its radius equal to I (corresponding to maximal
polarisation p = 1), and for p < 1 this point will lie within the Poincaré sphere. Figure from
Inductiveload.

A.3 The Stokes parameters
With the above, we may define the Stokes parameters as

S0 = I,
S1 = Q = Ip cos(2ψ)cos(2χ),
S2 = U = Ip sin(2ψ)cos(2χ),
S3 = V = Ip sin(2χ).

(A.10)

Note that the total polarized intensity can then be written Ip = Ip =
√
Q2 + U2 + V 2.

Allowing for a rotation by an angle α of the coordinate system in a right-handed sense, as
was done with the ψ angle, the Q and U parameters are changed according to:

Q′= Ip cos(2(ψ + α))cos(2χ)
= Ip (cos(2ψ)cos(2α)− sin(2ψ)sin(2α))cos(2χ)
= Q cos(2α)− U sin(2α),

U ′= Ip sin(2(ψ + α))cos(2χ)
= Ip (sin(2ψ)cos(2α) + cos(2ψ)sin(2α))cos(2χ)
= U cos(2α) +Q sin(2α).

(A.11)

The Q and U parameters therefore depend on our choice of coordinate system, while I and V are
unchanged when rotating this coordinate system. This last equation can be rewritten in complex
notation as

Q′ ± iU ′ = (Q± iU)e±2iα, (A.12)

showing that Q± iU is a spin 2 quantity. Although V is unchanged when rotating the coordinate
system, which is consistent with the fact that it quantifies the circularly polarized component of
light, it is however not a scalar quantity but rather a pseudo-scalar one. Indeed, when doing a
parity transformation of the coordinate system, V changes according to

V ′ = −V. (A.13)

https://fr.m.wikipedia.org/wiki/Fichier:Poincar%C3%A9_sphere.svg
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This property of the V parameter will be useful to recall when we will deal with the Faraday
Conversion effect in Chapter 8.



Titre : Impact des inhomogénéités cosmiques sur le FDC : perturbations primordiales dans les cosmologies
en rebond à deux champs et champs magnétiques dans les structures récentes

Mots clés : Univers en rebond, inflation multichamp, champs magnétiques dans les amas de galaxies, fond
diffus cosmologique, polarisation, cosmologie

Résumé : Le Fond Diffus Cosmologique (FDC) est
une sonde cosmologique clé mettant des contraintes
étroites sur le modèle ΛCDM de l’Univers. Emis
380000 ans après le big bang, il montre de petites ani-
sotropies en température et en polarisation qui tracent
les inhomogénéités cosmiques à différentes époques
de l’Univers. D’une part, les anisotropies primaires
donnent accès à l’inflation durant laquelle les pertur-
bations primordiales sont générées. D’autre part, les
anisotropies secondaires tracent les inhomogénéités
dans l’Univers récent, qui ont évolué en grandes
structures sous l’action de la gravité, à partir des in-
homogénéités primordiales. Ainsi les anisotropies du
FDC sont une sonde puissante à la fois de l’origine
des inhomogénéités dans l’Univers très jeune, et de
leur état évolué dans l’Univers récent. Cette thèse
porte sur deux aspects des inhomogénéités: d’abord
leur production dans une extension du scénario infla-
tionnaire, puis la prédiction de l’impact des champs
magnétiques des grandes structures sur les anisotro-
pies secondaires polarisées du FDC.
Malgré ses succès, l’inflation ne résout pas le
problème de la singularité initiale du big bang, où la
gravité pourrait être quantique. En Cosmologie Quan-
tique à Boucles (CQB), cette singularité est rem-
placée par un rebond quantique. La CQB à un champ
avec potentiel quadratique a déjà été étudiée et prédit
une phase d’inflation suivant le rebond. Les perturba-
tions primordiales ne sont plus seulement produites
pendant l’inflation, mais aussi pendant le rebond et la
contraction le précédant. Ici, j’ai consideré une exten-
sion à deux champs de la CQB avec un champ mas-
sif comme inflaton, et un champ sans masse servant
d’horloge interne. J’ai d’abord étudié l’évolution glo-
bale de l’Univers de manière analytique et numérique,
montrant que loin dans la contraction, le champ mas-
sif domine le contenu énergétique. J’ai aussi vérifié
que l’inflation reste probable, malgré la présence du
champ sans masse. Puis, j’ai examiné la production

de perturbations: contrairement au cas à un champ,
en plus de la composante adiabatique standard, elles
sont ici décrites par une composante isocourbe, ca-
ractéristique des modèles multi-champs et pour la-
quelle Planck a mis des limites supérieures. Loin dans
la contraction, ces deux composantes sont hautement
couplées. J’ai montré comment fixer leurs conditions
initiales en utilisant des variables combinant les deux
types de perturbations, rendant le couplage sous-
dominant. Il reste maintenant à les propager à travers
le rebond jusqu’à la fin de l’inflation pour obtenir leurs
spectres de puissance (croisé), à comparer ensuite
aux contraintes observationnelles.
Depuis son émission, le FDC a voyagé à travers les
grandes structures avant de nous atteindre. Son in-
teraction avec les structures engendre des anisotro-
pies secondaires, comme celles dues à l’effet SZ
dans les amas. Des plasmas magnétises ont été ob-
servés dans les galaxies et les grandes structures.
Cela devrait engendrer de la Rotation Faraday (RF)
de la polarisation linéaire primordiale, transformant
des modes E en B, et de la Conversion Faraday (CF)
de la polarisation linéaire en circulaire. J’ai revisité ces
sources d’anisotropies en calculant les spectres de
puissance angulaires de l’angle de RF et du taux de
CF par les grandes structures. J’ai utilisé le modèle
de halo en prêtant attention à l’impact des projec-
tions des champs magnétiques. Les spectres piquent
à des multipoles ` ∼ 104 et sont proportionnels à
σ3
8 , en supposant un champ magnétique indépendant

de la masse du halo. Cette dépendance est cepen-
dant dégénérée avec celle qui existe entre les champs
magnétiques et la masse des halos. Puis, je détaille
le calcul des spectres de puissance angulaires totaux
des anisotropies polarisées, à partir de ceux de la RF
et de la CF. Enfin, je montre comment reconstruire les
champs de RF et de CF à partir du FDC en adaptant
les estimateurs développés pour la reconstruction du
lentillage gravitationnel.



Title : Impacts of cosmic inhomogeneities on the CMB: primordial perturbations in two-field bouncing cosmo-
logies and cosmic magnetism in late-time structures

Keywords : bouncing Universe, multifield inflation, magnetic fields in galaxy clusters, cosmic microwave back-
ground, polarisation, cosmology

Abstract : The Cosmic Microwave Background
(CMB) is a key cosmological probe, that sets tight
constraints on the ΛCDM model of the Universe. Re-
leased 380000 years after the big bang, it exhibits tiny
anisotropies in temperature and polarisation which
trace the cosmic inhomogeneities at different epochs
of the Universe. On the one hand, primary anisotro-
pies give access to inflation, during which the primor-
dial perturbations are generated. On the other hand,
secondary anisotropies trace inhomogeneities in the
recent Universe, which have evolved into large scale
structures through gravity, starting from the primordial
ones. Hence CMB anisotropies are a powerful probe
of both the origin of inhomogeneities in the very early
Universe, and their evolved state in the late-time Uni-
verse. This thesis deals with two aspects of inhomo-
geneities by first considering their production in an
extension of the inflationary scenario, and second by
predicting the impact of magnetic fields in large scale
structures on the secondary CMB polarised anisotro-
pies.
Despite its successes, inflation does not solve the
initial big bang singularity issue, where gravity might
need to be quantised. In Loop Quantum Cosmo-
logy (LQC), this singularity is replaced by a quantum
bounce. Single field LQC with quadratic potential has
already been studied and predicts an inflation phase
following the bounce. Then, primordial inhomogenei-
ties are not only produced during inflation, but also
during the bounce and the contraction preceding it.
Here, I considered a multifield extension of LQC with
two fields: a massive one as being the inflaton, and a
massless one used as an internal clock. I first studied
the background evolution of the Universe both analyti-
cally and numerically. I showed that far in the contrac-
tion, the massive field dominates the energy budget. I
have also checked that inflation remains likely to hap-
pen, despite the presence of the massless field. Se-
condly, I investigated how perturbations are produced.

Unlike the one-field case, they are now described by
an isocurvature component in addition to the standard
adiabatic one, the former being characteristic of multi-
field models, for which Planck has put upper limits. In
the remote past of the contraction, these two kinds of
perturbations are highly coupled. I showed how to set
their initial conditions by using appropriate variables
mixing both kinds of perturbations, making the cou-
pling subdominant. These perturbations remain to be
propagated through the bounce down to the end of
inflation to get their primordial (cross)spectra, to be
subsequently compared to observational constraints.
Since its released, the CMB traveled through large
scale structures before reaching us. This leads to
secondary anisotropies by its interaction with these
structures, like e.g. gravitational deflection or the SZ
effect in clusters. Magnetic fields have been observed
in galaxies and larger structures. Since these struc-
tures are also filled with free electrons, this should
lead to the Faraday Rotation (FR) effect which ro-
tates the primordial linear polarisation, turning E into
B modes, and to the Faraday Conversion (FC) effect
which converts linear into circular polarisation. I revisi-
ted these sources of secondary anisotropies by com-
puting the angular power spectra of the FR angle and
the FC rate by large-scale structures. I used the halo
model paying special attention to the impact of ma-
gnetic field projections. I found angular power spec-
tra peaking at multipoles ` ∼ 104. Assuming a mass-
independent magnetic field, the angular power spec-
tra scale with the amplitude of matter perturbations as
∼ σ3

8 . This scaling is however degenerated with the
one of the magnetic field with halos’ mass. I finally de-
tail how to compute the full angular power spectra of
polarised anisotropies, starting from the FR and FC
power spectra. I also show how to reconstruct the FR
and FC fields from the CMB adapting the estimators
developed for lensing reconstruction.
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