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General Introduction

Under the sustainable development focus of European Horizon 2020, the importance of

building sector deserve a special attention. A part from the envelops, it includes the Stan-

dard EN 15232:2007 (EN et al., 2007) i.e the introduction of the concept of nearly zero-energy

building as well as hightech building materials i.e use of eco-efficient thermal insulators, mate-

rials with lower embodied energy and many more. Indeed, the influence of resource efficiency

on building sector is clearly expressed by the milestone below: ”By 2020 the renovation and

construction of buildings and infrastructure will be made to high resource efficiency levels. The

lifecycle approach will be widely applied; all new buildings will be nearly zero-energy and highly

material efficient and policies for renovating the existing building stock will be in place“ (Herczeg

et al., 2014). However, Fault Detection and Diagnosis is much more treated by industry than

Life cycle analysis in buildings. In fact, the whole building system is highly vulnerable to differ-

ent kinds of faults, failures and human misbehavior that could affect the building performance.

The detection of faults in buildings has become a major issue. Until now, the literature is

extremely large on each item mentioned below.

1. Modeling and optimization of HVAC energy consumption (Kusiak et al., 2010)

2. Improving energy efficiency via smart building energy management systems (Rocha et al.,

2015)

3. Estimating the number of occupancy and their activities in buildings. Amayri et al.

(2016) identifies the most relevant calculation from the sensor data in order to classify

the number of people in a zone and their activities in offices/homes at a given time period.

4. Modeling physical part of the building. In Scanu et al. (2017), different kinds of models are

implemented as well as different estimation methods. A selection methodology is set up

in order to identify and validate the best model structure for the energy services. Finally,

an automatic procedure to generate the model and services from only the informations

provided by the end-user.

5. Explanations for energy in buildings i.e. to put the occupants in the loop of usage energy

efficiency, to help them to understand their energy management system and to support

them to achieve their objectives (Alyafi et al., 2017)

6. Energy performance guarantee (Ligier, 2018).

7. Operating performance in green buildings: occupant satisfaction, energy use and envi-

ronmental quality (Geng et al., 2018)
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8. Mirror and key performance indicators which depict the performance of energy efficiency

in buildings. Indicators are means of communication which interact with the occupants so

that they can take informed decisions regarding their everyday customs and uses (Amayri

et al., 2019a)

The thesis of Mahendra Pratap Singh (Singh, 2017) proposes the concept of heterogeneous tests

with validity constraints in the context of building fault diagnosis but the proposed approach

assumes that the sensors are reliable and are only interested in thermo-aeraulic processes and

heating systems. However, the combination of sensor and actuator faults increases the com-

plexity in the building and existing diagnostic techniques so far don’t solve them and there is

a need to apprehend the complexity.

The validity constraints are measured with sensors. If these sensors are faulty, the diagnostic

result is not guaranteed and there is a need for a method to prove the test as well as global

diagnosis.

To make a test, data are required from different physical parts of the building. However, the

data gaps is the main sensor fault in buildings. Sensor values are not uniformly sampled and

there is a need to decide from which delay the sensor becomes faulty? In addition, the knowl-

edge of the expert could facilitate the fault diagnosis.

The objective of this work is to highlight these challenges as well as to provide a strategy

about how to solve them.

The presentation of this work is structured in the following way.

Chapter 1 deals with new challenges for fault detection and diagnosis in buildings illustrated

by an application.

Chapter 2 discusses the problem statement and research objective for this work. The follow-

ing points are to be solved in this work: complexity, modeling problem, no universal model,

need for testing in specific context, need for an indicator to prove diagnosis and unreliable

instrumentation in building.

Chapter 3 highlights the problem of complexity in building. At the beginning, diagnosability

challenges in building are discussed. Then, a framework for a global diagnostic approach based

on detection tests and diagnosis for first principle is presented. Two real case studies have been

studied to exemplify the complexity due to the model and the number of sensors: an office

setting and an apartment.

Chapter 4 presents the first step to apprehend the problem of complexity. This step consists

on improving decision making in building diagnosis using heterogeneous tests with constraints

of validity. The knowledge from heterogeneous tests proposed in Singh et al. (2019) solve the

whole-building modeling difficulty. The contribution is that the sensor level is emphasized in

this work. The difficulties encountered the validity are highlighted. A level of completeness

is proposed as a method for better formalizing validity. In this work, we make the hypothesis

that there is no precise global model for a building system but there are contextual models

with limited validity. The validity is measured with potentially faulty sensors. The problem
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is how to prove the test and the global diagnosis in the case of a set of tests. The test space

consists of a set of measurements. The completeness level is proposed as a method to prove if

a test space is fully covered or not i.e to assess a level of validity for a test.

Chapter 5 presents the concept of confidence level for diagnosis in order to compute test

validities in spit of unreliable sensors. The diagnostic result is calculated from a set of tests,

each one defined by its completeness level. The question that arise is how to conclude about

global diagnosis? To overcome this problem, a method based on fuzzy logic reasoning is used

to compute the confidence level of global diagnosis deduced from a set of tests whose some of

them have a completeness level lower than 1. An office has been used for validation.

Chapter 6 deals with the problem of unreliable instrumentation in buildings. The sensor

data gaps is the most important fault type in buildings. In fact, sensor measurements are

not uniformly sampled. The delay depends on the measured variable and the type of sensor.

The question that arises is from which delay a sensor becomes faulty? To overcome this prob-

lem, two algorithms for automatic thresholding for data gap detection for a set of sensors are

proposed (time series analysis and statistical approaches). An office has been used for testing.
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Chapter 1

Diagnosis in buildings: new challenges

illustrated by an application

1.1 Introduction

Smart buildings and their appliances are becoming more and more efficient as well as they

deliver useful building services that make occupants comfortable by providing them thermal

comfort, air quality and many more. They are an important provider of technology systems

as well as they include HVAC systems, sophisticated controllers, energy management systems

and a large number of sensors. However, buildings are vulnerable to various faults, failures

and various events that could cause a discrepancy in building performance and consequently a

discomfort to occupants.

In International Energy Agency Annex on Fault Detection and Diagnosis about 25 years ago

(Annex, 1996), diagnosis in buildings became an interesting field of research. Different tech-

niques have been developed in the literature to determine the faults that can affect the whole

building performance.

A smart building is defined by the group of the European Intelligent Building as “one that cre-

ates an environment which maximizes the effectiveness of the building’s occupants while at the

same time enabling efficient management of resources with minimum lifetime costs of hardware

and facilities”(Ghaffarianhoseini et al., 2016). However, the number of occupants and their

activities, the building envelope, the building interaction with the outside environment, the

number of sensors and the presence or absence of HVAC systems makes each building unique.

From this definition, we conclude that a building system is complex. It is decomposed into

two parts: the physics with the building envelop, devices for energy management and various

appliances, as well as human part. These two parts interact and it is difficult to model this

interaction and to elaborate a global building model. In fact, it is difficult to predict the inputs.

The models are rather good +/− 1◦C error.

In order to define the model of the building, data are required from different parts: meteoro-

logical (i.e. outdoor temperature), human (i.e. occupancy) and physical (i.e. airflow) parts.

Measuring theses variables need reliable sensors. However, these data are not always accurate:
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they may be biased, random or subject to outliers. Extracting sensor measurements will open

the gate to develop new tools in the diagnosis of unreliable sensors in smart buildings.

A conventional rule-based building automation system (BAS) provides alarms based on thresh-

olds. In the domain of diagnosis, these thresholds are known as fault detection and measure the

abnormality in building performance. Indeed, alarms require further analysis by the facility

manager to identify the fault type and their consequences. The corrective actions could be

online, maintenance, feedback or personalized recommendation. The fault diagnosis analysis

is generated from the modeled behavioral of the system thanks to detection tests. Conversely,

there are several situations in which diagnosed faults are not correct due to change in the local

context of the tested building site because underlying tests are not context independent. These

local contexts are hard to model and lead to invalid diagnosis results. In more general term,

the validity of diagnosed fault and the confidence level for diagnosis are always questioned.

The growing interest in the effective concretization of performance objectives and thus in the

verification of real building performances has given rise to a large number of test projects re-

lated to research work but also with a view to making these practices easier. This theme, which

deals with the “performance gap” and the gap between actual building performance and the

prior estimates, is concerned with the characterization of this gap, the search for causes and

the development of methodological or operational solutions for reducing it. The performance

gap is a problem of fault detection and diagnosis because of the unavailability of a complete

model valid in all contexts. In fact, it is difficult to obtain a complete model. For example,

variables like the blinds position are neglected in the modeling. The major difficulties faced

during modeling include the lack of detailed information on the constitution of the building, the

uncertainty about occupant use and behavior and many more. In addition, a universal valid

model i.e., valid whatever the context, is difficult to set up. Diagnosis reasoning must differ in

different scenarios, e.g., fault detection and diagnosis approaches should be different for normal

working days and a vacation period. In Ligier (2018), a global and innovating methodology

allowing to implement contracts of performance guarantee of the buildings is proposed.

The characterization of observed performance differences and the study of associated causes

aim at developing methods to limit these differences. This involves more realistic and repre-

sentative simulations of future operational conditions, by monitoring and accompanying the

implementation and by increasing control of the building’s operation. Achievement of these

objectives may include actors in the building sector better control of risks and the implementa-

tion of energy performance contracts; we talk about energy performance guarantee (EPG). The

energy performance guarantee is naturally leading to fault detection and diagnosis. In fact, if

we doesn’t meet a performance criterion, for example, the year energy need of a building, and

which is not verified, we need a diagnostic analysis to know the causes of the non-satisfaction

for this criterion.

One of the main objectives related to methods for EPG is to quantify the risk of fault asso-

ciated with a guaranteed value of consumption. This is directly related to the knowledge of

the risks related to construction or renovation projects but also to the exploitation. These are
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linked to several problems: an imperfect diagnosis of the existing building, a bad operation and

maintenance of energy systems and many more. The conclusion to be drawn is when we exceed

the guaranteed thresholds, we do not know how to find causes. This chapter is motivated by

new challenges in buildings illustrated by an application. A state of the art about diagnosis

in buildings is presented in section 1.2. In section 1.3, the major challenges that lie in this

problem domain are identified. Finally, an overview of diagnosis methods and their limitations

are reviewed in section 1.4.

1.2 Fault diagnosis in buildings: state-of-the-art

1.2.1 Faults in buildings

It is difficult to obtain detailed information on energy consumption in buildings since it

requires more detailed monitoring and measurements than what is usually available. However,

the energy consumption yearly report USDOE (2010) shows how the total energy consumption

can be divided into different end-uses in commercial buildings (Figure 1.1). The statistics show

that the energy end-use of commercial building are as follows: lighting 20.2%, spacing heat-

ing 16.0%, spacing cooling 14.5%, ventilation 9.1%, refrigeration 6.6%, other end-uses 33.6%

(USDOE, 2010; Treado and Chen, 2013). The faults in the system can occur in connection

with each of these end-uses. This figure reveals how costly a fault could be in terms of its

energy use. Studies show that 25%–45% of energy HVAC energy consumptions are wasted due

to faults, i.e to a difference between the characteristic observed on the device and the reference

characteristic when it is out of specification, including improper control logic and strategy,

malfunction of controllers and controlled devices, etc. (Akinci et al., 2011). In addition, the

waste of energy is also due to a non optimal control. In fact, a number of studies (Moroşan

et al., 2010; May-Ostendorp et al., 2011) indicated that optimal control strategies can reduce

the energy waste and improve the overall building energy efficiency.

Figure 1.1 – Commercial Energy End-Use Spilt
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Common faults in buildings are:

Breakdown:

The assets within buildings may be classified as parts of several systems according to the services

they provide to owners. For example, HVAC systems provide hot water and heat and electrical

systems provide electric power and possibly heat. However, each building system breaks down

over time, and regular maintenance, repairs, and renewals are required to keep a building in

working order. For example, items such as light fixtures and control panels in electrical part

in building are subject to breakdown. In addition, the HVAC system in building is responsible

for the heating, domestic hot water, ventilation, and cooling of a building. It consists of assets

such as pumps, filters, boilers, fans, and air conditioning equipment. These assets tend to have

short to medium service lives, breaking down due to regular wear.

Misusage:

Another important type of faults in buildings is misusage but it has not yet received much

attention in the scientific literature. Usage in general refers to the function of serving or using

something. We must think and conceive quality, not only from techniques and standards, but

also from the user as a human and social being.

When users occupy a building, they appropriate these three entities: envelope, equipment

and internal organization, and adjusts them as much as possible to their own comfort level.

Occupants interact with the environment around them. One of the main criteria of the confort

of occupants is the control of these interactions. In general, users prefer simple and modular

equipment and systems. All stages of the project life influence the final quality of the building.

Therefore, even if the use of a building is only effective during its operational phase, it is

important to ensure that certain good practices are followed during each stage of the building’s

life in order to guarantee good quality of use.

The notion of quality of use is a factor that must be integrated when planning the building.

About 65% of the discomfort encountered during the follow-up are due to errors made during

the programming and design phases. The evolution of home automation in buildings certainly

requires a new grip on the part of the user, but it must not be forgotten that this is the building

that must adapt to the needs of the user and not the other way around.

Misuse of the building may have effects harmful to:

— the comfort of the user

— the health of the user

— the durability of the building

— the environment with overconsumption linked to poor control of the equipment.

The bad uses are almost the same in any residential dwelling. The consideration of human be-

havior is essential in the application of diagnosis in buildings. Let’s take the following examples:

frequent door opening and use of an important number of appliances.

7



Human mistake:

Human mistake is another important type of faults in buildings which has not received an ad-

equate level of attention. Beyond the construction literature it is common ground that human

error, not technology, predominates in failures of all types (Rollings and Poindexter Rollings,

1991; Health et al., 1993). Examples of such faults are HVAC left on when space is unoccupied.

Human mistake is a very known fault type in diagnosis domain. A lot of studies like Atkinson

(1998) shows the role of early detection of human errors in building projects.

Wrong configuration:

Further investigation shows that faults due to the wrong configuration are also a typical fault

in new buildings, which has not received an adequate level of attention Mickens et al. (2007);

Lazarova-Molnar et al. (2016). Examples of such faults are: wrongly configured building equip-

ment, where the setting of the equipment is wrong and misplaced or wrongly wired sensors and

actuators.

Data failure:

Data failure is another important type of faults in buildings. The applications for sensor tech-

nology are increasing rapidly. Sensors are currently being used for applications in buildings.

Sensors are continually being developed with advanced capabilities, such as more reliable data

extracting. These sensors can also be used to better control the building but also to estimate

occupant practices essential for energy consumption by estimating the number of occupants

per area and their metabolic contribution, their activities and their routines (Amayri et al.,

2016). With the cost and size of sensors becoming cheaper and smaller at a fast rate, it has

been forecasted that sensors in the near future will be installed in dense arrays to eventually

monitor the entire built environment (Estrin et al., 2001). There is currently a gap between

modern sensing technologies and their application and applicability in the field for monitoring

the performance of buildings. Research and experimental validation tests are required to assess

the limitations, challenges and performance of installing new sensor technologies to monitor

certain aspects of concrete structures (Simkin and Ingham, 2014). The concept of healthy sen-

sors is known in the literature. Authors like Li et al. (2007) assumed that there are two groups

of sensors: sensors that correctly measure structural responses (termed as “reference sensors”)

and failed (or uncertain) sensors

Roth et al. (2005) concluded that typical faults in commercial buildings consist of 13 types

of faults. The annual impact of each of them in terms of energy consumption is presented in

Figure 1.2.
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Figure 1.2 – The annual impact of faults in terms of energy consumption (Roth et al., 2005)

All the types of faults mentioned above are faults of the type “normal faults”, i.e. easy to

reveal. On the other hand, there are other insidious types of faults. For example, there is no

noise in the ventilation system does not imply no fault but no fault has been revealed.

A few studies like Ilozor et al. (2004) defined the concept of insidious faults. In this study,

authors show that rising damp refers to ground water seeping up through the footings and

base walling of houses due to the absence of damp proof courses, or these being poorly edited

or dislodged. It is an insidious fault that can be difficult to address, without understanding

scientific concepts such as capillary action of water, drainage and hydrostatic pressure of ground

water.

1.2.2 Application examples

This section demonstrates new challenges in buildings illustrated by applications. Different

case studies have been investigated with diversity according to their context (available sensors,

occupancy or activities feedback, complexity of the environment...) to exemplify the new trends

in buildings.

The following applications are going to be discussed (see Table 1.2).
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â Monozone building application:

An office environment is firstly used: an office at Grenoble Institute of Technology, which

accommodates a professor and 3 PhD students. It is considered as a simple and basic one-zone

applications with lots of sensors (30 sensors). The office has frequent visitors with a lot of

meetings and presentations all through the week. The setup for the sensor network includes

(see Figure 1.3):

— 2 video cameras for recording real occupancy and activities.

— 2 luminosity sensors with different sensitivities

— 4 indoor temperature, for the office and the bordering corridor

— 2 COV+CO2 concentration sensors for office and corridor

— 1 relative humidity sensor

— 4 door and window contact sensors

— 1 motion detector

— 1 binaural microphone for acoustic recordings

— 5 power meters

— outdoor temperature, nebulousness, relative humidity, wind speed and direction, . . .

from weather forecasting services

— a centralized database with a web-application for retrieving raw data from different

sources continuously

Figure 1.3 – Test bench
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Occupants behavior is one of the major influence on building energy consumption. Accord-

ing to Gunay et al. (2013), occupants behaviors account for significant uncertainty in building

energy use. A better understanding of occupant behavior is needed in order to manage this

uncertainty. Occupants have influence due to their presence and activities in the building and

due to their control actions which aim to improve indoor environmental conditions (thermal,

air quality, light, noise).

A building model requires the determination of the number of occupants, the kind of activities

in the office (computer work, presentation, skype meeting, ...) and the frequency of discussions

between the colleagues during the working day. The diagnosis is based on information about a

building (devices, interconnected sub-systems, occupancy ...) and expected behavior (equation,

rules or procedures that relate the inputs and outputs) and consists on checking the consistency

between the model and the available information.

The building envelope is a total system of construction materials and design components that

control the temperature, movement of air, and moisture both into and out of the building. A

building’s insulation, air barrier and vapor barrier all need to work together to achieve a more

stable, comfortable and healthier indoor environment.

Nowadays, modeling the building envelop is a challenging one. Different parameters are difficult

to know and to model like the insulation thickness, the heat transfer coefficient of external wall,

the insulation thermal resistance, the heat transfer through the wall, the thermal conductivity

of insulation material and many more (Elsafty et al., 2013).

About 30 sensors have been installed in the office to monitor the power consumption, the

indoor temperature, the indoor CO2 concentrations, the number of occupants and many more.

Figure 1.4 shows the complete sensor configuration for the office. Sensor management is per-

formed in order to record changes in CO2 concentrations, temperature, electric power and many

more in the different part of the platform.
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Figure 1.4 – Sensor configuration at H358 office, Grenoble INP

An important challenge in building instrumentation is unreliable sensors. The following

figure (Figure 1.5) shows the frequency of sending data by a sensor.

Figure 1.5 – Raw CO2 concentration measurements

Sensor values are not uniformly sampled. The question that arises is from which delay each

sensor become faulty? Hence, the need to determine a threshold from which the sensor become

faulty.
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â Multizone building application

The thermodynamic state of a multi-zone building consists of temperature variables associated

with many subsystems that are geographically distributed. Each subsystem corresponds to the

thermodynamic interactions between adjacent zones (Goyal et al., 2011).

A multizone building system includes a split ductless air-conditioning system to provide cooling

to all four rooms of a building, ventilation system that provide outdoor air for each of the spaces:

a fan-only system, an energy recovery ventilation system, a dedicated outdoor air system and

many more. Each of these subsystems (building, air-conditioning system, ventilation system)

is represented by a high-order system model, and these system models are interconnected to

form a description of the heterogeneous building dynamics. This is a challenge.

Three main categories of multi-zone models can be defined:

— energetic: modeling the thermal behavior. They provide the temperatures in each zone

and allow to estimate the power consumed to heat or cool the building. Energy flows

infiltrated or exchanged between parts can be integrated into the calculation as parame-

ters.

— aeraulic: describing the movements of air. The main variable is pressure. Accurate data

on the permeability of the different walls, the ventilation system, the geometry of the

openings and the temperatures in each zone, allow to calculate the flow of air entering

and leaving each zone. These models are necessary for representing variable effects such as

wind or natural convection. They are also required to analyze the impact of the coupling

of two zones through large openings (doors for example).

— hygric: representing moisture in the air and / or materials. They take not only the sources

of steam, but also its transport by air and its absorption by solid materials.

Often simulation codes combine several aspects. Thus, for example, we have thermo-aeraulic

or thermo-hygric models. The mathematical description of the multizone building will suc-

cessively address: the thermal balance within a zone, the thermal balance through a wall, the

aeraulic balance of the building and many more in a single simulation. This is another challenge.

Occupant interaction in building is also challenging one. In fact, building interaction design

is presented as the interface between the end users and building systems that defines the level

and method of control over the building environment and operation systems.

In Federspiel and Villafana (2003), the user interface is designed for use by occupants of commer-

cial buildings. Allowing occupants accessing to information from the energy and maintenance

systems and by given them some control over theses systems, improving task performance.

Interaction with occupants could take another direction by involving them in an energy man-

agement process. This can be done by collecting information about their current state to be

used in occupancy and activities estimation process.
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Achieving the balance between energy consumption and occupant confort is a very compli-

cated issue faced in addressing building performance due to an inverse relation between them

(Hailemariam et al., 2011). It also mentioned that occupancy should be taken into account

besides the occupant behavior.

A first case study is about sensor placement and the issue with existing building energy man-

agement system (BEMS) in Predis/MHI located at the ENSE3 school in Grenoble-INP campus.

The platform has two large rooms for users. A room is used as conference room for students

while the other is an open space for building researchers. Classrooms are equipped with 15

computers and connected to the grid and the solar panels. Two other small rooms are con-

nected to the Air Handling Units (AHU) and Building Energy Management System (BEMS).

In Building Predis, more than 100 sensors are installed to monitor the total power, the indoor

temperature, the indoor CO2 concentrations and the number of occupants (see Figure 1.6).

Figure 1.6 – Sensor configuration at Predis/MHI

14



Sensor management is done in order to record variations of CO2 concentrations, temper-

ature, humidity and many more in the different parts of the platform. Figure 1.6 shows the

complete sensor configuration for Predis. A thermal model and a model of air quality are vali-

dated using a sensor placement. In addition, about 40 actuators are connected to sensors and

controllers. Motion detectors are able to detect the presence of occupants by their movement, In

addition to natural lighting in the platform, a number of lamps are installed. Manual switches

are also available to control lights in standby mode that turn them off after 15 minutes of no

presence detection.

A second case study is about estimating the number of occupants and activities in a resi-

dential building context: an apartment situated in Rue Cuvier, Grenoble. It is a more complex

application as compared to H358 with multi-zones and many activities. The apartment is

equipped with about 62 sensors.

— temperature sensor in each room

— motion sensor in each room

— windows contact sensor in each room

— door contact sensor in each room

— kettle, microwave, dishwasher, expresso, steam cooker, fridge and oven power consumption

sensors in the kitchen

— appliances power consumption sensors in each room

— humidity sensor in each room

— luminosity sensor in each room

It consists of two bedrooms, a common room, a kitchen, an office and a separate bathroom and

toilets (see Figure 1.7).
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Figure 1.7 – ”Rue Cuvier” apartment

Tracking user activities in the daily life and estimating occupant activities are important in

different areas. In Amayri et al. (2016), two categories have been defined in order to classify the

activities: firstly, activities with possibility to interact with occupants (activities 1), secondly,

when it is annoying to interact with occupants (activities 2), see Table 1.1.

Table 1.1 – Activity types

activities 1: with possible interactions activities 2: without possible interactions
cleaning working
talking sleeping

doing sport cooking
watching TV family meal

A third case study is about how to track real-time ventilation fan performance using mea-

sured flow-rate in a highly energy efficient called OU44: an academic building located in the

campus of University of Southern Denmark, SDU, shown in Figure 1.8
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Figure 1.8 – Building OU44

The succinct description about the building OU44 is given below.

— Building Name: OU44

— Area: 9600

— Year Built: November, 2015

— Building Type: Academic Building

— Operating Hours/Week (Max 168)

— Country: Odense, Denmark

Several sensors and communication protocols were installed to access the efficient data mea-

surements and performance monitoring. Moreover, 11 performance monitoring tests were also

implemented to assure the continuous performance of OU44. Ventilation unit VE01, VE02,

VE03 and VE04 cover most of the premise in SDU OU44. The ventilation systems are equipped

with rotatory heat exchanger, which recovers heat and cooling.
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The ventilation systems at OU44 are of the type VAV (Variable Air Volume) which serves

three floors called the ground floor, living room and 1st floor. Living room and ground floor

are divided into zones with one or more VAV dampers. In the first floor, there is an office area

where the offices are provided with VAV dampers and common exhaust with a pressure holding

damper which regulates the total extraction in relation to the total supplied air. Each AHU

unit has an exhaust fan, outside and supply airflow measuring stations, mixing box, pre-filter,

final filter, heating hot water coil, chilled water coil, and supply fan.

A centrifugal fan provided by NK Industri (NKI) is installed in the ventilation unit. NKI

climate control units are integrated with either centrifugal fans, axial fans or chamber fans.

The centrifugal fans can include 2 more variants:

— BK wheels are provided with backward curved blades which are used at pressures up to

1600 Pa. The fans have a high efficiency and thus good operating economy. This fan type

is suitable for plants with changes in air performance and energy consumption.

— BK/K wheels are equipped with rear curved blades in extra reinforced version for pressures

up to 3000 Pa. The work area is indicated on the fan curves with colors.

The BK and BK/K wheels are driven by a jacket-cooled norm motor via an adjustable V-belt

drive, which is mounted on the mounting frame, separated from the panel construction via

elastic connections and vibration dampers. These fans have a high efficiency and thus econom-

ical. The fan type is suitable for installations, with changes in air performance and energy

consumption. At the start of the HVAC system, the main damper is opened. The airflow for

each fan is calculated in CTS (Clear-to-send) programs based on pressure measurements at

the input rings for supply and return fan, respectively. Fan electricity consumption (absorbed

electrical power) should be provided in the CTS system with a continuous exercising.

Airflow sensors are installed inside the airflow measuring stations in the Schneider BMS system

to record the airflow rate for three ventilation fan units. Accuracy of the airflow measuring

satiation is marked as ± 2% at 6000 feet per minute± 0.5% at 2000 feet per minute. A graph-

ical user interface sMAP 2.0 is a plotting engine to display the raw data. In order to deal with

missing data and ambiguity in measurements, the measured data is re-sampled with the one

minute sample period.

Two types of heating are installed in the platform: hydraulic heating and forced air heating

from the ventilation system (see Fig. 1.9)
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Figure 1.9 – Heating in SDU OU44 office

Ventilation fans are an essential component of any HVAC system. A considerable amount of

energy goes to fan consumption. Tracking fan energy performance could also give an indication

about different faults and failures in buildings. For instance, over consumption from fan could

indicate partially or fully blocked duct or filter, a very poor efficiency due to the degradation

of performance such as a dirty blade can reduce the rotation speed of the fan.

On the other hand, under consumption might report a window or door opening, issue with

speed regulator or fan is out of order etc.

The proposed methodology for this problematic is the following: measured electricity consump-

tion has been compared against the estimated fan consumption. Estimated fan consumption is

derived with the help of measured air flow-rate, total pressure and efficiency. Moreover, total

pressure and efficiency are obtained from ideal fan performance curve which represents the fan

performance under certain conditions such as flow-rate and total pressure.

Table 1.2 – Knowledge based applications

application name multizone density of sensors long-term data availability validation
1- H358 no high yes yes

2- Rue Cuvier yes high yes yes
3- Predis yes yes yes no
3- OU44 yes medium no yes

1.3 Diagnosis in buildings: new challenges

The key challenges in building diagnosis are summarized below.

1.3.1 Complexity

The first challenge is complexity in testing a whole building system using both rule and

pure model-based test. Buildings are complex systems and the relations among the different

sub-system is intricated.
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Buildings are becoming more complex because of the higher expectations of users. as well as

the ongoing integration of many technologies. They are equipped with HVAC systems, sensors,

building automation system and supervisory controllers.

According to Leveson (1997), the problems in building complex systems often arise in the

interfaces between the various elements such as hardware, software, and human components.

Complexity is defined as uncertainty in Campbell (1988); Williams (1999), ambiguity in McKeen

et al. (1994), variability in Ribbers and Schoo (2002), and dynamism in Wood (1986); Meyer

and Curley (1991), which are caused by changes in organizational and technological project

environments. Changes may result from either the stochastic nature of the environment or a

lack of information and knowledge about the project environment.

1.3.2 No universal model

In connection with buildings, it is tough to develop a physical model that match precisely

the reality. The various phenomenon like heat transfer from facade or unplanned occupancy

are challenging jobs to model. Clarke et al. (2002) shows that models simulate reality within

+/−1◦C (well enough). The problem is the inputs. The IEA EBC Annex 58-project ”Reliable

Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements“

(Roels et al., 2015) is developing the necessary knowledge and tools to achieve reliable in-situ

dynamic testing and data analysis methods that can be used to characterise the actual thermal

performance and energy efficiency of building components and whole buildings. For identifying

systems, ARX-models are one of the standard tools. ARX model structure is a linear difference

equation which relates the current output at time t to a finite number of past outputs and

inputs. The main problem when applying ARX-models is the inputs which are obtained from

potentially faulty sensors.

Singh (2017) proposed the concept of contextual model i.e a model valid under specific con-

texts. These local contexts define the validity constraints. For example, for testing the indoor

temperature, we should take into account several factors such as occupancy, the door and win-

dow positions and weather conditions. The validity is measured with possibly faulty sensors.

In fact, these sensors are subject to bias, outliers or could be missed. The problem is how to

conclude about a test that can be valid or not knowing that validity can only be tested with

possibly faulty sensors? This is a challenge.

1.3.3 Unreliable sensors in buildings

In buildings, an important amount of data is available from sensors. Sensor values are not

necessarily uniformly sampled. While after pre-processing the sensors report values regularly,

reality shows that quite many values are missing. The gaps that as a result exist, are sometimes

too small to be visible on a graph.
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1.4 Overview of general diagnosis methods

Over recent years, FDD became an appealing area of research for building researchers. Var-

ious methodologies and tools have been developed to identify the faults in buildings to track the

whole building performance. Plenty of published research and survey papers are available to

classify the building diagnostic techniques (Katipamula and Brambley, 2005; Lazarova-Molnar

et al., 2016). Lately, building’s faults and failures are covered at more granular level with an

impact analysis in the terms of energy consumption and financial consequences (Roth et al.,

2005; Friedman et al., 2011). Hybrid diagnosis approaches have shown an improved result over

the conventional model-based diagnosis approaches (Du et al., 2009; Li and Wen, 2014).

Katipamula and Brambley (2005) presents a detailed review for fault detection and diagnosis

techniques in buildings.

In August 1996 (Revised in 2001), International energy agency (IEA) published Annex-25,

”Building optimization and fault diagnosis source book” (Hyvärinen and Oja, 1996; Dexter

and Ngo, 2001). This work is considered as a beginning of fault detection and diagnosis in

smart buildings. The aim of this work is to highlight the major faults that affect HVAC

systems and controllers. In 2002, a technical report called NBCIP1 was published by Iowa en-

ergy center and United states environmental protection agency (USEPA) (Ardehali and Smith,

2002). The report articulates 67 case studies with 110 field studies for buildings. The aim of

this work is to highlight the main source of faults in buildings coming from humans, software

and hardware. In more recent works, the Automatic Building Commissioning Analysis Tool

(ABCAT), and Whole Building Diagnostician (WBD) developed by Texas A& M University

and Pacific Northwest National Laboratory (PNNL) have been developed as new tools for iden-

tifying the whole building level faults (Katipamula et al., 2003; Bynum et al., 2012). Recently,

the Lawrence Berkeley National Laboratory and Simulation a model-based diagnostic tool has

been developed (Bonvini et al., 2014).

In general, all the major approaches have been used for building diagnoses are quantitative

(model-based), qualitative (rule-based) or signal-based methods.

1.4.1 Building fault diagnosis using model-based techniques

Model-based diagnosis (MBD) uses an explicit model of the system under diagnosis. It can

be qualitative or quantitative models. In general, all the model-based diagnosis approaches

consist of three important stages: symptom generation, symptom evaluation, and fault isola-

tion.
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Quantitative model-based approaches are based on physical models and require detailed

mathematical relations among all the operating variables with the characteristic of all compo-

nents within the system. Mostly, these models are in form of differential equation or state-space

model and presume to have additional knowledge of the normal operation of system under the

investigation. Unlike, the quantitative model-based diagnosis, qualitative model-based uses

qualitative reasoning or knowledge-based information to conclude whether system or its com-

ponents are in the faulty or normal state.

Dexter and Ngo (2001) presented a fuzzy model to diagnose several faults in the air handling

unit. Through comparing the outputs of the fuzzy model with those of the reference model,

the faults occurred in the air handling unit can be diagnosed. Norford et al. (2002) developed

a physical model to detect commonly occurred faults in the air handling unit. Castro (2002)

presented a physical model to detect the faults in the chillers. Wang and Chen (2002) also

presented the model-based strategy to diagnose the sensor faults in the chilling plant system.

Yu et al. (2011) presented a virtual model to estimate the supply air flow rate in the rooftop air-

conditioning units. Employing the mass balance and energy balance, the physical residues can

be calculated through comparing the outputs of the models with real measurements. Besides

the physical diagnosis models, the gray-box (Jia and Reddy, 2003) and black-box (Andersen

and Reddy, 2002) models have also been developed to diagnose the chiller faults. Generally,

the model-based methods (Yu et al., 2002) have been most widely developed in the HVAC sys-

tems. The well application of the model-based FDD method relies on the accurate mathematic

physical models.

Qualitative model-based approach uses a set of rules to diagnose the system abnormality. For

example, Ghiaus (1999) proposed a fault diagnosis of air conditioning systems based on qual-

itative bond graph. The main privilege of model-based techniques is that they require only

a knowledge of normal operation and a reasoning method based on consistency. The model-

based diagnosis has been developed by two communities: fault detection and isolation (FDI)

community in the field of automatic control and Logical Diagnosis (DX) in the field of artificial

intelligence (AI).

Model-based methods rely on analytical model, derived from a physical relation. In connection

with buildings, it is really impossible to develop a complete physical-model matching accurately

the reality for a whole building system. The various phenomenon like heat transfer from facade

or unplanned occupancy is challenging jobs to model. Model-based diagnosis believe in behav-

ioral constraints only and assumed to be true in all circumstances. However, universally valid

behavioral models i.e valid whatever the context are difficult to set up.

Model-based fault diagnosis and isolation techniques (FDI) assumes that model represents the

reality of building operation independately of the current context and any fault can be detected
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by measuring the physical variables and checking the consistency with a reference model. A

physical variable is a potentially observable element of information about the actual state of a

building system. Nevertheless, behavioral models always valid i.e. universal are difficult to set

up. Erroneous all-context models might lead to invalid diagnoses (Ploix et al., 2005).

These approaches are relevant for data failure, human mistake and breakdown type faults

but they augmented full analytical model.

1.4.2 Building fault diagnosis using rule-based techniques

Knowledge-Based FDD methods require sufficient amount of historic data. These methods

use methods from artificial intelligence to extract the knowledge based from the historic data

reflecting the relationship between system variables. The behaviour of the system is monitored

in real-time and is compared with the knowledge base to detect possible deviations and make

fault diagnosis decisions. Depending on the knowledge extraction process in this category,

the methods could be divided into qualitative methods (Henley, 1984; Mostafa et al., 2012)

and quantitative methods (Ma et al., 2010; Zhang et al., 2013). Some of the most popular

qualitative knowledge-based FDD methods are those that are based on expert systems. This

approach basically evaluates real-time data according to a set of rules, which are derived from

the knowledge of an expert human operator.

There are a number of papers that discuss expert system applications for fault diagnosis of

specific systems. Initial attempts at the application of expert systems for fault diagnosis can

be found in Chester et al. (1984); Niida et al. (1986). The objectives of this expert system

were twofold. First, the system classifies the reasons for the observed problem as an operator

error, equipment failure or system disturbance. Second, the expert system offers prescriptive

remedies to restore the process to normal operation.

In parallel, a contemporary group of researchers also focused on qualitative models for fault

diagnosis analysis. In buildings, rule-based qualitative models are used to diagnose faults in

air handling units or other part of HVAC (Glass et al., 1995; Katipamula et al., 1999; Schein

et al., 2006). With a set of rules, the faults occurred in the air handling unit can be diagnosed

successfully. Also, rule-based diagnosis methods are also adopted in the literature to manage

the whole building (Doukas et al., 2007). In this works, authors present an intelligent deci-

sion support model using rule sets based on a typical building energy management system.

In addition, the model’s impact on the energy consumption and indoor quality of a typical

office building in Greece is presented. The model can control how the building operational data

deviates from the settings as well as carry out diagnosis of internal conditions and optimize

building’s energy operation. In this context, the integrated ”decision support model” can con-

tribute to the management of the daily energy operations of a typical building, related to the

energy consumption, by incorporating the following requirements in the best possible way: the
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guarantee of the desirable levels of living quality in all building’s rooms and the necessity for

energy savings.

Qualitative models are not enough to cover all the possible actions by following rules. Moreover,

tests derived from rules are challenged by their validity. For instance, testing indoor tempera-

ture without validating door or window position might lead to a false alarm.

In addition, the application of rule-based FDD methods depends on the rules constructed. For

example, for testing a HVAC system using a set of rules, if the rules are not detailed enough,

the diagnosis efficiency may be limited.

These approaches are relevant for human mistake and breakdown type faults.

1.4.3 Building fault diagnosis using signal based techniques

Signal-based FDD methods mainly use signals, which are obtained from measurements for

diagnostics (Giantomassi et al., 2015). The algorithms within this category derive symptoms of

a healthy system as an output of the symptom analysis and the knowledge of the system, which

are at disposal. When a system is faulty, symptoms that appear in the measured signal differ

from those of healthy systems. Typically, these methods analyse signals in either time-domain

or frequency-domain. However, there are also methods in this category which use both time

and frequency domain. The difference between signal-based and rule-based diagnostic methods

is explained by the fact that signal-based methods are based on signal processing techniques,

whereas rule-based methods are based on rules coded in the form of if-then-else statements.

As a new FDD method, recently, the data-driven methods have been paid more attention in

HVAC field. The data-driven method such as principal component analysis (Du et al., 2007),

neural network (Zhu et al., 2012) etc... never need to build the accurate mathematic physical

models or detailed experience rules.

Authors in Lee et al. (2004) presented a general regression neural network in the air handling

unit. It can be used to diagnose the abrupt and performance degradation faults. Wang and

Chen (2002) developed a detection model based on neural network in the variable air volume

systems. The neural network can be used to diagnose the faults of outdoor air, supply air and

return air flow rate sensors after training using operation data. A fault detection and diagnosis

strategy using combined neural networks and subtractive clustering analysis is presented in Du

et al. (2014).

Actually, the data-driven FDD methods usually take advantage of the intrinsic relations among

the various data. Through calculating the deep intrinsic mathematic relations of the variables,

the normal and abnormal operation can be distinguished. When faults occur, the intrinsic

relations among variables will be broken, which is different with that under normal conditions.

These methods are relevant for data failure and might detect fault signature for breakdown

type fault.
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Most signal-based techniques in the literature are interested only by the following known fault

types: drift, outliers and bias. Occurrence of data gap faults have also not been given an ade-

quate span of attention in the academia.

1.5 Conclusion

Accurate diagnosis of faults in buildings present a significant building operation cost saving

opportunity. With the needs of new retrofitting and building intelligence solutions, diagnosis

has became significantly more important and, thus, requires new approaches to be designed,

as well as further enhancement of the existing ones. In this chapter, we have summarized the

efforts in the area of fault detection and diagnosis for smart buildings with the aim of identifying

the gaps and challenges that have not yet been given an adequate span of attention. This also

highlights the scope of our research and has yielded an initial framework for addressing these

issues.

The majority of existing building fault diagnosis techniques rely on behavioral knowledge.

Model-based fault diagnosis and isolation techniques (FDI) assumes that model represents the

reality of building operation independately of the current context and any fault can be detected

by measuring the physical variables and checking the consistency with a reference model. A

physical variable is a potentially observable element of information about the actual state of

a building system. Nevertheless, behavioral models always valid in any context are difficult

to set up. Erroneous all-context models might lead to invalid diagnoses. This is a challenge.

Complexity in testing a whole building system using both rule and pure model-based test,

insidious faults and unreliable sensors are also challenging one.

Thus, this work on building diagnosis differs from previous approaches since we are proposing

some solutions for modeling, complexity, testing in specific context taking account that the

validity is measured with possibly faulty sensors, confidence level for diagnosis and unreliable

instrumentation in buildings. The work in chapter 1 is published in (Najeh et al., 2018b) and

(Najeh et al., 2019b)

Next chapter highlights the problem statement and research objectives of this work.
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Chapter 2

Problem statement and research

objective

2.1 Introduction

Buildings are going to be more complex due to continuous integration of substantial amount

of emerging technologies and higher user expectations. In this context, the whole building

system is highly vulnerable to different kinds of faults and failures. Unbeknownst to many,

discrepancies from different sources could cause a big penalty over cost and comfort. Energy

efficiency and user comfort are directly targeted due to an abnormality in building operation.

So, to make a resilient building management system, it is important to identify the severity,

cause, and type of each fault.

The available fault diagnosis tools and methodologies particularly rely on rules or pure model-

based approaches. It is assumed that model or rule-based test could be applied to any situation

without taking into account actual testing contexts. These contexts are measured with possibly

faulty sensors. If these sensors are in ok state, the diagnostic result is always guaranteed. If

these sensors are faulty, the diagnostic result is not guaranteed, this is a challenge. Unreliable

sensors is also challenging one. These issues are introduced in the context of building diagnosis.

2.2 Problem statement

Current work highlights the following key challenges in building fault diagnosis.

- complexity

- modeling difficulty

- no universal model

- unreliable sensors in buildings

Following sub-sections explain these issues and proposed methodology in detail.
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2.2.1 Need for heterogeneous tests

Modeling the whole building system including building components require a huge effort

and there are various practical limitations. For instance, there are several variables shared

among the building sub-systems and difficult to model because of their intricate relations.

Qualitative models like expert knowledge are not enough to cover all the possible discrepancies

with the set of rules. Rule-based tests are not systematic; in fact it is a guess of all kinds of

possible faults based on experience and rules. Further, these tests are limited to certain rules

and unable to check the building performance at zonal-level. Building system encompasses

several zones with different zonal properties. In order to develop a global diagnosis approach,

the model-based zonal test is required. These models helps to model building sub-systems such

as ventilation, heating system, appliances and many more.

Taking into account the limitations of pure model-based and rule-based approaches, it is a

challenging job to test the whole building system. Hence, the need for heterogeneous tests.

This concept is introduced in Singh (2017). Heterogeneous tests are the combination of the rule-

based, range-based and model-based tests. Range-based tests are designed with the help of an

upper and lower limit of tested variable. Diagnosis process starts when an observation violates

the pre-defined threshold. However, in a building system, certain performance indicators do

not require explicit ranges for diagnostic analysis. For instance, a ventilation fan must be

consuming less power than the maximum rating. Such variables could be tested with the

help of a rule-based test. HAZOP concludes only range and rule-based tests. Rule-based

tests are limited to certain rules and unable to check the building performance at zonal-level.

Building system encompasses several zones with different zonal properties. In order to develop

a global diagnosis,the model-based zonal test is introduced. The proposed method uses a

heuristic HAZOP (Hazards and Operability Analysis) based approach to overcome the modeling

limitation (Németh et al., 2009). HAZOP is going to be used to discover possible detection

tests. The limitation of the proposed concept is that it relies on an assumption which is non-

faulty sensors and actuators. Moreover, a faulty sensor or measurement could disturb the

applicability of proposed methodology. The contribution in this work is that the sensor level in

emphasized.

2.2.2 Need for testing in specific context under the hypothesis of

fault modeling

In the domain of fault diagnosis, a symptom is defined as a measurable change in the be-

havior of a system from its normal behavior i.e. an indication of fault. Conventional model

or rule-based behavioral tests are used to generate only symptoms. These models appear in

the behavioral constraints and it is assumed that the behavioral test could be applied to any

situation without taking into account different contexts. These tests can be more or less valid

due the difficulty of getting good data sets in building and to the sensors ageing. If the validity

is not taken into account during the conception of tests, false symptoms may be produced
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and consequently a false diagnosis. The aim of this work is to explicitly take into account the

validity of the tests to make the diagnostic decision.

However, a model valid for all context is difficult to design and the validity of a test result is

always questioned in fault diagnosis. The difficulties encountered are the following

- validity is measured with potentially faulty sensors

- prove validity.

The test of the space of validity consists of observation points given either by the sensors or

by an expert. If the sensors are in operating mode, then the performance guarantee is assured.

Otherwise, there is no guarantee. The question is: Is the test space always covered or not?

Hence the need for an indicator to assess the level of validity for each test.

An example of contextual test considering the building thermal performance test is given in

Figure 2.1.

Figure 2.1 – Behavioral and contextual test for diagnosis

Consider a range-based test that checks the indoor temperature Tin for the building shown

in Figure 2.1 is estimating and testing the indoor temperature with a behavioral constraint

i.e Tin lies between the maximum temperature (Tmax) and minimum temperature (Tmin). This

model-based thermal test only consider the behavioral constraint and evaluate symptoms under

the predetermined thermal bounds for a specific building. However, no validity constraints are

integrated with the test. Figure 2.1 illustrates the significance of behavioral and contextual test

along with an example of invalid event i.e., open window. In this case the following validity

constraints are needed to be combined with behavioral constraints:
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— Testing indoor temperature without verifying occupancy level for all times might lead to

a false alarm

— The door and window position need to be verified for all times because these inputs are

not easy to model

— Similarly, outdoor weather condition needs to be verified for all times

These validity constraints are difficult to model and due to the lack of knowledge about the

validity. Pure model-based test might lead to an ambiguous test result. In conclusion, model

validity is another kind knowledge about the behavior. In order to launch a valid diagnosis

analysis, each test needs to satisfy the validity constraints V and behavioral constraints B

simultaneously (see Table 2.1).

Table 2.1 – Table of validity

B V Conclusion
satisfied ∀t satisfied ∀t normal behavior
satisfied ∀t non satisfied invalid

non satisfied satisfied ∀t abnormality
non satisfied non satisfied invalid
satisfied ∃t satisfied ∃t normal behavior
satisfied ∃t non satisfied invalid

non satisfied satisfied ∃t abnormality
non satisfied non satisfied invalid

2.2.3 Need for indicators to assess a level of validity of a test and a

confidence level for global diagnosis

A test is performed in a period of time considering behavioral and validity constraints.

Validity constraints evaluate whether the tests can be performed or not. However, the validity

is measured with potentially faulty sensors. If the sensors are in OK state, the test result is

always guaranteed. If the sensors are faulty, there is no longer guarantee and the question that

arises is how to evaluate the level of validity of a test in the presence of sensor faults? Hence,

there is a need for an indicator to assess a level of validity for each test.

The diagnostic result is calculated from a set of tests, each defined by its level of validity. The

problem is how to evaluate the confidence level of diagnoses in the presence of partially valid

tests? Hence, there is a need for a confidence level for global diagnosis.

2.2.4 Need to know the periods of good operation of sensors

After receiving signals from a sensor, these signals need to be processed. An acceptable and

accurate process of these signals requires:
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1. Full knowledge regarding the operation of the sensors and nature of signals:

In order to be able to use signals’ information correctly, the operation of a sensor, and

the nature of signals they produce, should be well understood. By having this knowledge,

we are able to choose the right tools for the acquisition of data from the sensor. For

instance, if the sensor produces a time varying signal where the information is embedded

in its frequency signatures, then a frequency counter and possibly a frequency analyzer

are needed.

2. Posteriori knowledge regarding the received signals:

A posteriori knowledge about the received signals is important in order to assure that the

data will be interpreted correctly and that the right device is used in the measurement

process. We need to have a good understanding for what is expected from the sensor and

system. The measured value can be significantly different from the real measurand.

A posteriori knowledge is dependent on experience.

3. Information about the dynamic and static characteristics of the sensing systems:

The characteristics of a sensor can be classified into two groups: static and dynamic. Un-

derstanding the dynamic and static characteristics behaviors are imperative in correctly

mapping the output versus input of a system (measurand).

With the increasing number of sensor devices, as well as sensor data types, the acquisition

of the sensor data samples becomes time and energy consuming, which is undesirable on low

power wearable devices.

Sensor values are not necessarily uniformly sampled. While after pre-processing the sensors

report values regularly, reality shows that quite many values are missing. The gaps that as a

result exist, are sometimes too small to be visible on a graph. Hence, the need to know the

periods of good operation of sensors.

2.3 Proposed methodology

2.3.1 Highlighting the problem of complexity in buildings

Nowadays, buildings are considered as highly dynamics and complex systems as well. They

include HVAC systems, sophisticated controllers, energy management systems and a large num-

ber of sensors.

Let’s consider a practical situation in a building system: three sensors measure the internal

temperature and are distributed in three different places of the zone. The alarm has detected

that the indoor temperature is below the desired setpoint and the most probable, the faults

could come from one of these three sensors. In this case, there is a lack of information to

construct a diagnostic system to decide the right source of fault.

Another task may be mentioned: The comments of the occupants can not indicate that such

a sensor is failing which is insufficient to solve the other problem, whereas the measured data

are not sufficient to capture every type of faults.
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The limitation of existing building diagnostic techniques encourages the development of a new

diagnostic tool for the sensor grids in a building system that could detect the source sensor of

faults. In the present work, a diagnosis methodology has been developed to tackle the limi-

tation of existing building diagnostic solution. The following key points define the important

terminology for proposed method.

— sensor grids: to look for all variables

— diagnosis: to isolate the conflicting causes that frequently occur due to equipment failure

and inappropriate human behavior

— test: is a processing yielding a symptom

This approach highlights the problem of complexity in buildings. It is developed in chapter 3

and published in Najeh et al. (2018a). Then, new services for diagnosis in building are proposed:

— service 1: a level of completeness for better formalizing validity.

— service 2: a confidence level to prove diagnosis

— service 3: detection of sensor data gaps

2.3.2 The completeness level: an indicator to assess a level of valid-

ity for a test

Singh et al. (2019) developed the concept of contextual test i.e a test valid under specific

context. The limitation of the proposed methodology is that it relies on a non-faulty sensors

assumption. In fact, the validity is measured using sensors that can be faulty: a faulty mea-

surement could disturb the applicability of the proposed methodology. The question raised is

how to conclude about a test that can be valid or not knowing that validity can only be tested

with sensors possibly faulty? In this work, a level of completeness is proposed as a method for

better formalizing validity in presence of possibly faulty sensors i.e to assess a level of validity

for each test. The test space consists of a set of measurements. The completeness level is

proposed as a method to assess if a test space is fully covered or not. This tool highlights the

problems of modeling difficulty. It is developed in chapter 4.

The following key points define the important terminology for proposed method.

— validity: means testing in specific context

— fault validity: means taking into account that the validity is measured through a sensor

that it can be itself faulty

— completeness level: an indicator to assess a level of validity for a test
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2.3.3 The confidence level: an indicator to prove global diagnosis

The completeness level is an indicator to assess the level of validity for each test. A test

could be complete if its completeness level is equal to 1 or incomplete if its completeness level

belongs to the interval ]0, 1[. Nevertheless, the diagnostic result is calculated from a set of

tests, each defined by its completeness level. In this work, the confidence level is proposed as

a method to conclude about diagnosis. This method is developed in chapter 5.

2.3.4 Automatic thresholding for data gap detection for heteroge-

neous sensors

Different literature surveys on diagnosis techniques for sensor grids in buildings have been

published but all of them treat only bias and outliers. Occurrence of data gaps have also not

been given an adequate span of attention in the academia.

In the present work, a new methodology for automatic thresholding has been developed to

tackle the limitation of unreliable sensors in buildings. The following key points define the

important terminology for proposed method:

— sensor grids: to look for all raw measurements of sensors

— data gap: means an abnormal change in the data delays sending by a sensor.

— threshold: boundary beyond which the delay between two consecutive samples is abnor-

mal.

— statistic approach: the delay a stochastic variable that follows a defined probability dis-

tribution function

This approach highlights the problem of unreliable sensors in buildings. It is developed in

chapter 6.

2.4 Conclusion

In general, a fault diagnosis algorithms that fully exploits all the available information

coming from sensors are an important tool to solve problems in smart buildings. Challenges

still remain to obtain robust methods in building fault diagnosis.

The objective of this chapter was to provide an overview of the limitations and challenges

to clearly place the contribution of this thesis. Diagnosis in building is widely studied, and

remarkable research achievements and collaborations have been developed. There are some

existing solutions and ongoing researchers addressing the problem of diagnosis in building.

This PhD extends existing studies by increasing the level of detail for defining the need of new

concepts to diagnose the whole building system.
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The majority of existing building fault diagnosis techniques rely on behavioral knowledge.

Model-based fault diagnosis and isolation techniques (FDI) assumes that the model represents

the reality of building operation independently of the current context and any fault can be

detected by measuring the physical variables and checking the consistency with a reference

model. A physical variable is a potentially observable element of information about the actual

state of a building system. Nevertheless, behavioral models always valid are difficult to set up.

Erroneous all-context models might lead to invalid diagnoses. Other challenges are complexity

in testing a whole building system using both rule and pure model-based test and unreliable

sensors.

Thus, this work on building diagnosis differs from previous approaches since we are proposing

some solutions, depending on:

— Contextual heterogeneous tests with a level of completeness on validity constraints.

— Confidence level to prove global diagnosis

— Automatic thresholding for data gaps detection for a set of sensors in instrumented build-

ings.

Next chapter highlights the problem of complexity in buildings.
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Chapter 3

Diagnosis in building: the complexity

issue

3.1 Introduction

Intelligent building design is entering its third generation (Shao et al., 2019), in which dif-

ferent control systems are exchanging data to assist a variety of building management systems.

The first generation of intelligent buildings deals with independent systems. The second gener-

ation deals with interconnected systems. The key phenomenon behind the third generation is

the increase in the number and variety of sensors distributed throughout functionalities build-

ings.

There is a fundamental need with existing building management fault diagnosis. In fact, dif-

ferent energy management tools have been proposed in the literature. All of them are based

on sensors and are particularly sensitive to faults on a building system.

The thesis of Mahendra Pratap Singh (Singh, 2017) proposes the concept of heterogeneous

tests. Rule, range and model-based tests can be combined in the same diagnostic analysis that

reduces the whole-building modeling effort but the proposed approach assumes that the sensors

are reliable and are only interested in thermo-aeraulic processes and heating systems.

However, the combination of sensor and actuator faults causes complexity in the building and

the methods used until now do not solve it. Testing exhaustively is not realistic because the

number of detection tests becomes usually huge.

This work aims at designing a diagnosis tool that shall be used to support maintenance opera-

tors for detecting and localizing faults in sensor grids of a building system as well as highlighting

the problem of complexity due the model and the number of sensors. It is based on detection

tests and logical diagnosis analysis for the first principle. Two real case studies have been

investigated with different characteristics (available sensors, occupancy and complexity of the

environment) to exemplify the complexity in buildings: H358 office (simple complexity) and

RueCuvier apartment (a more complex case).
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This chapter is organized as follow: section 3.2 presents a problem statement. Section 3.3

is devoted to the description of the proposed approach. To assess the efficiency of the proposed

methodology, simulation results for two real case studies are presented in section 3.4. Section

3.5 discusses the findings of the literature review, the proposed methodologies, their limits and

the results. Finally, concluding remarks are given in section 3.6.

3.2 Problem statement

3.2.1 Sensor grids in buildings increase diagnosis complexity

With the massive arrival of inexpensive communicating sensors, the building sector is un-

dergoing an unprecedent revolution: the building is becoming smart, which means it offers new

services to occupants related to safety, energy management, comfort. Article 23 of the thermal

regulation 2012 (France) requires the measurement of certain variables, which promotes the

deployment of sensor grids in new buildings. In addition, research projects such as the ANR

OMEGA show the interest of public institutions (CSTB, CEREMA) and companies (COFELY

AXIMA) to guarantee overall performances (total real consumption, interior comfort, ...) after

refurbishment. In addition to the different aspects of comfort and energy consumption, these

sensors can also be used to estimate occupant practices essential for energy consumption by

estimating the number of occupants per area and their metabolic contribution, their activities

and their routines.

Let’s consider a practical situation in a building system: three sensors measure the indoor

temperature and are distributed in three different places in the H358 office (Toffice-reference

sensor, Toffice-wall sensor and Theater sensor). The period under study is from June 1st, 2016

to June 30th, 2016. In the summer, Theater sensor measure the indoor temperature.

Figure 3.1 shows the different measurements from the three sensors.

Figure 3.1 – Indoor temperature from 3 different sensors
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An alarm has revealed that the indoor temperature is below the desired setpoint. In this

case, there is a lack of information to construct a diagnostic system to decide the right source

of fault.

With one test (Toffice-wall and Toffice-reference sensors for example), it is difficult to conclude

about the source of fault. That’s why, we should test the three combinations

— Test1: Toffice-wall and Toffice-reference sensors

— Test2: Toffice-wall and Theater sensors

— Test3: Toffice-reference and Theater sensors

Also, Toffice-wall sensor is involved 2 times in the tests.

Let’s consider a second case: 4 sensors that measure the indoor temperature and placed in four

different places in the H358 office. In this case, the number of tests is equal to 24 = 16

We conclude that the number of sensors increase the number of tests but not exponentially; it

depends on the system and consequently it increases the diagnosis complexity.

3.2.2 Needs for clear explanations to support maintenance opera-

tors

Let’s consider a practical example: an alarm is revealed because the indoor temperature is

below a set-point. Such possible fault explanations for this symptom are:

— the temperature sensor is faulty

— the set point temperature is faulty

— the number of appliances is abnormal

— the number of occupants is abnormal

— the heating system is not working well

In this case, there is a lack of data to decide the source of fault. Hence, there is a need for a

diagnostic tool that offer clear explanations to support maintenance operators.

3.2.3 Modeling difficulty

The difficulties encountered the building modeling include.

1. Parameter estimation

The physical models of buildings combine a part of physical knowledge formalized by

structures of equations and a part of parameters learnt thanks to an estimation procedure.

The parameters of these models are however difficult to estimate because their structure

is not suited for calibration (non-linearity with respect to parameters for example).

Different parameters are difficult to set up in the framework of the building such as the

thickness of the walls, the thermal heat loss/gain through material and many more. In

addition, variables such as the thermal resistance qualifying the convective and radiative

exchanges are considered always as a constant value. This is an approximation because in
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reality the exchange coefficient varies with temperature difference between the exchange

surface and the ambient air. It is therefore necessary to determine whether taking into

account this variation is of interest in terms of quality of the model or if a constant

value is sufficient. Also, convective exchanges are characterized by a convective exchange

coefficient that is commonly correlated with the wind speed and the orientation of the

surface with respect to the wind direction. On the other hand, the increase of the number

of estimated parameters cost the estimation in terms of computation time and necessary

data.

2. Forecasting the human practices for long term

The more efficient a building is, the more significant the impact of human practices are.

However, it is very difficult to forecast human practices on a long term.

3. Inertia and model’s order

Most authors in the literature consider that the inertia is located only in the exterior

walls and the air with only a few exceptions. However, Hazyuk et al. (2012) take into

consideration the impact of the slab in their modelling. Bacher and Madsen (2011) carried

out a study aiming at comparing models with different orders. The study conducted by

Del Barrio et al. (2000) highlights the fact that the choice of the order also depends on

the objective of the model and so on the requirements in terms of accuracy but also of

the controller used. It seems thus difficult to choose a model order a priori.

3.2.4 Sub-systems interaction

A building is subject to a very large number of interacting elements. In fact, we can not

speak of air conditioning without indicating the variations of the external temperatures, the

level of insulation, the internal charges and many more.

Such examples of sub-systems interaction are the following:

— Interaction of the occupants with the building environment thanks to sensors, smartphone

applications etc...

— Interaction of buildings between them: the smart building interacts with other buildings

(connectivity sharing, integration to the same smart grid, data sharing etc ...)

Taking into account several interaction increase the complexity. In fact, the model of a building

system touches many aspects and it is thus necessary to have a thermal description of the

envelope, a technical-physical description of the equipment, an economic description of the

reaction of these appliances and a description of the comfort of the occupants in addition to

their schedule and other sizes involved in the system. Control space is also an element that can

add complexity because all systems must be modeled so that the BEMS can take into account

the different influences.
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3.2.5 Sensor fault not easy to find

The detection and isolation of a faulty sensor is not an easy problem. The measurements

of a sensor depict characteristics of the system and the sensor. Consequently, any abnormal

deviation in the measurements of a sensor could be caused by a change either in the system or

in the sensor itself.

In addition, as a building system becomes more complex, the number of its interconnected

subsystems and the associated sensors increases, in which various failures may occur. The

disturbances of the system could add noise to the sensor measurements. All these challenges

raise the difficulty of detection and isolation of a sensor fault from a failure occurred in the

system.

Furthermore, a proposed methodology developed for the detection of sensor fault should satisfy

the following characteristics and be able to:

— distinguish if the source of fault is in the sensor or in the system itself.

— able to detect and isolate a sensor fault even in the case of multiple sensors faults

— able to validate the sensor measurements without the use of redundant sensors and the

requirement of a detailed physical model of building.

— applicable to a wide range of sensors

3.2.6 Limits for fault diagnosis techniques

Energy management tools have been proposed in the scientific literature: they are based

either on control heuristics, on emergent strategies of multi-agent systems, or on predictive

control. All these approaches are based on sensors and are therefore particularly sensitive to

faults on a building system.

The thesis of Mahendra Pratap Singh (Singh, 2017) proposes a diagnostic analysis strategy

combining a logical reasoning approach based on the first principles of diagnosis and an FDI

approach separating the test phase from the analysis or location phase. However, the proposed

approach assumes that the sensors are reliable and are only interested in thermo-aeraulic pro-

cesses and heating systems.

This work deals with highlighting the complexity due the model and the number of sensors

in building. A methodology for diagnosis of sensor grids in building system is proposed. The

proposed approach should make it possible to determine automatically the different possibilities

of faults, including multiple faults. Next section details the methodology.
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3.3 Followed methodology

This section deals with the description, of the methodology proposed by Singh (2017) for

fault detection and diagnosis. It is based on detection tests and diagnosis using BRIDGE

approach.

BRIDGE approach is a combination between Fault Detection and Isolation (FDI) and Logical

Diagnosis (DX) methodologies. Fault Detection and Isolation believes that the abnormality in

the system behavior implies the presence of fault and considers that no symptoms implies no

faults. DX is a component oriented referred as diagnosis from the first principle De Kleer and

Williams (1987) and it assumes that faulty behavior cannot be determined only from behavior,

it should involve a component level. The BRIDGE approach is used because it is capable to

find the diagnosis with the component level explanation.

Figure 3.2 illustrates the various steps of the proposed methodology.

Figure 3.2 – Required tasks to perform to setup a bridge diagnosis approach

3.3.1 The design phase

The first phase of the proposed framework is the design phase. It includes:

— Step 1: formalizing the reference behaviors which can be modeled by behavioral con-

straints (Definition 3.1)
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Definition 3.1. Let X(t,t+h) be a set of data covering a time horizon h. Let τ be a test

of a system Σ. If the test τ is true, then the system Σ is an ok state i.e τ true ↔ ok(Σ)

The test τ is true can be modeled by a behavioral constraint. Modelling the normal behavior

(ok) is defined by:

Let B(X(t,t+h)): dom(X(t,t+h)) 7→ Rm;m ∈ N+∗ be a behavioral constraint of test τ . I is

defined as following.

Σ is said consistent if it exists a subspace B ⊂ Rm such as

B(X(t,t+h)) ∈ B ↔ ok(Σ) (3.1)

Therefore, the test τ for Σ is inconsistent if

B(X(t,t+h)) /∈ B ↔ ¬ok(Σ) (3.2)

In the literature, different techniques could be used for the test of behavioral constraints

such as residual generation (Nyberg and Frisk, 2006), cause-effect relationships (Bossen

and Hong, 1971), ... The following example shows the use of residual generation for

testing two sensors measuring the indoor temperature inside a room, in Equation 3.3, a

residue r is expressed in term of difference between the measurements from the different

sensors.

r = T1(t)− T2(t) (3.3)

The behavioral constraint for this test is B(X(t,t+h)) ∈ B with B = T1(t)− T2(t) = 0

where T1 and T2 are two time series of temperature measured by the two sensors respec-

tively

Singh (2017) proposed the concept of contextual test i.e a test valid under specific con-

texts. The contextual test is based on validity constraints (Definition 3.2).

Definition 3.2. Validity constraints:

Let’s introduce another set of constraints V (X(t,t+h)) ∈ V where V is a bound domain to

define the validity of a behavior constraint set.

A behavior constraint modeling the normal behavior under validity conditions is defined

by Equation 3.4 or Equation 3.5

B(X(t,t+h)) ∈ B ∧ V (X(t,t+h)) ∈ V ↔ ok(Σ) (3.4)

B(X(t,t+h)) /∈ B ∧ V (X(t,t+h)) ∈ V ↔ ¬ok(Σ) (3.5)
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The determination of behavioral and validity constraints is usually done on the basis of

prior knowledge of input-output or cause-consequences relations between the variables

and sub-systems. The following example shows how to select behavioral and validity

constraints for a test of lighting system.

A lighting system is ok if the lamp is ON (i.e lamp position=1) and the switch position=1

i.e (there is an electric current). However, we can not conclude about a test in absence

of electricity during the period of test. Hence, the behavioral and the validity constraints

are the following:

Behavioral constraints: B(X(t,t+h)) : switchposition(t) = 1 ∧ lightposition(t) = 1, ∀t ∈
(t, t+ h)

Validity constraints: V (X(t,t+h)) : electricity(t) > 0, ∀t ∈ (t, t+ h)

In this work, the office and the apartment, where details are presented in Chapter 1,

are analysed. The evolution of indoor temperature and CO2 concentration are modeled

using building physics. Sensors are modeled by a model assuming that the actual value

is equal to the measured value under the assumption that the sensor is working well.

— Step 2: designing detection tests

BRIDGE approach yields all the analytical redundancy relationships of a system to be

diagnosed and allows the calculation of diagnosability from constraints. The algorithm is

based on a join operator coming from the relational algebra (Ploix et al., 2010). It also

relies on a structural abstraction of the constraints and trace all the constraints involved

in the obtained testable sub-systems. This point is crucial in diagnosis analysis or it is

to understand the possible causes of a test revealing an anomaly. These tests analyze the

faults in sensors with multiple fault scenarios.

In general, a test (Definition 3.3) is a process yielding a symptom and possible explana-

tions.

Definition 3.3. A detection test is defined by:

— a bunch of data, X(t,t+h) related to the variables X = {x1, x2, ...} covering a possibly

discontinuous time period from t to t+h. It satisfies:

B(X(t,t+h)) /∈ B ↔ Expl (3.6)

— a behavioral constraint: B(X(t,t+h)) ∈ B

— a validity constraint: V (X(t,t+h)) ∈ V

— a test support: a set of possible explanations for when behavioral constraints is not

satisfied in terms of component or item states like Expl = ¬ok(item1)∨¬ok(item2)∨
...

where ¬ is negation that implies ¬ ok= not ok and ∨ is the logical operator OR
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A practical example for testing the indoor temperature in building with behavioral and

validity constraints is given below.

Test(Tin) generates test results for the deviation of the indoor temperature comfort in

building.

Test(Tin) =

{
B(X(t,t+h)) ∈ B ∧ V (X(t,t+h)) ∈ V → ok(Σ)

B(X(t,t+h)) /∈ B ∧ V (X(t,t+h)) ∈ V → ¬ok(Σ)

whereB(X(t,t+h)) ∈ B → Tin(t) ∈ [Tmin, Tmax],∀t ∈ (September 1st, 2016, September 30th, 2016)

and

V (X(t,t+h)) ∈ V → occupancy(t) > 0∧ ζD(t) = 0∧ ζW (t) = 0∧Tout(t) ∈ [Tminout , T
max
out ],∀t ∈

(September 1st, 2016, September 30th, 2016)

The behavior of the building is dependant of the season, a period of validation from

September 1st, 2016 to September 30th, 2016 is chosen.

Tin is a time series of indoor temperature measured by ”Toffice-reference” sensor in the

H358 office, time range is continuous and corresponds to 720 hours (1 month). To set the

upper and lower values for indoor temperature, a behavior representative of the normal

behavior is firstly recorded.

Tminin and Tmaxin represent respectively the lower and upper bounds of normal behavior

of the indoor temperature sensor in the month of September, 2016 without fault in the

sensor.

To avoid false alarms, the upper and lower bounds have been increased by 10% (Tminin =

19.87◦C and Tmaxin = 31.5◦C)

Tout, ζD and ζW are time series of outdoor temperature, door and window positions mea-

sured respectively by weather station, door and window contact sensors. Occupancy is

a time series for number of occupants and it is estimated by the algorithm proposed by

Amayri et al. (2016)

When a behavioral constraint is not satisfied, the possible fault explanations for such

symptom include: ¬ ok(temperature sensor) ∨ ¬ ok(heating system) ∨ ¬ ok(appliances)

A symptom is detected when a test result violates behavioral constraints.

Figure 3.3 represents the behavioral constraint for the case of consistent test dealing with

indoor temperature.
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Figure 3.3 – Behavioral constraints for indoor temperature consistent test

In this case, this test is consistent from t=0 (initial date of the test) to t+h=720 (end of

test date).

Figure 3.4 shows the evolution of validity constraints. Figure 3.4(a) shows the evolution

of door and window positions. Figure 3.4(b) shows the evolution of occupancy.

(a) Door and window positions (b) Occupancy

Figure 3.4 – Validity constraints for indoor temperature test

In this case, this test is invalid from t=0 to t+h=720 because the validity constraints are

unsatisfied i.e there is a time period when the door and window are open and the number

of occupants is null.
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— Step 3: deducing signature table after merging non-discriminable components (i.e com-

ponents with same signature). All the detection tests are merged into a single table for

further analysis.

3.3.2 The run phase

The outcome of run phase gives a set of minimum possible diagnosis taking into account

BRIDGE diagnosis analysis.

The following tasks can be distinguished: symptom generation and diagnostic analysis.

1. Symptom generation

Symptoms are generated thanks to a threshold applied to residuals. If the value of the

residue is higher than the given threshold value, a symptom is detected.

2. Diagnostic analysis

Based on tests and their results, the BRIDGE approach identifies the faults of the system.

A test is defined by the components that might explain a symptom when faulty in the

test.

In practice, tests are performed to see how the system responds to given situations or

inputs. A symptom is what the user observes when comparing the behavior of the system

during a test with the results that were expected. A symptoms could be:

— Negative: if the system does not behave as expected, the test will be considered as

failed and the symptom will be negative.

— Positive: if the system behavior is consistent with the reaction that was expected,

the test is considered successful and the symptom will be positive.

BRIDGE approach analyzes all kind of possible faults based on:

Definition 3.4. Hamming distance

For given two equal length binary vectors b1 and b2, normalized hamming distance dH is defined

by Equation 3.7

dH(b1, b2) =
bit wise changes in b1 and b2

number of bits in b1 or b2
(3.7)

Hamming distance measure the closeness between observed symptom and each column of the

theoretical signature table.
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In order to compute logical diagnosis, BRIDGE approach uses the concept of conflict anal-

ysis and HS tree.

A conflict is a set of component states {component1, component2, ..., componentn} that cannot

be all true at the same time i.e. not ok(component 1) or not ok(component 2) or ...

For example, in case of inconsistency related to a test, possible fault explanations are non empty

subsets of Expl(Test)={ ¬ ok(component 1), ¬ ok(component 2) ...¬ ok(component n)}.
In a diagnostic problem, all the component states are potentially faulty. To overcome this prob-

lem, diagnosis approach based on first principle search only for minimal possible explanations

for all conflicts related to inconsistent test.

In order to examine minimum diagnosis, Reiter (1987) proposes to use a Hitting set Tree

(HS-Tree) based algorithm (Definition 3.5).

Definition 3.5. Hitting Set

H is a Hitting Set for the {¬ok(c1), ...,¬ok(cn)} if H ∩ ¬ok(c1≤k≤n) 6= 0

Let’s consider two tests Test 1 and Test 2, defined by the following explanations in case of

inconsistency:

Expl(Test 1)= ¬ ok(component 1) ∨ ¬ ok(component 2)∨ ¬ ok(component 3)

Expl(Test 2)= ¬ ok(component 1) ∨ ¬ ok(component 3)∨ ¬ ok(component 4)

The hitting set for this example is the following:

Figure 3.5 – HS Tree

The calculated minimal diagnoses are the following:

¬ ok(component 1)

¬ ok(component 3)

¬ ok(component 2) ∨ ¬ ok(component 4)
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A practical example for diagnosis analysis using hamming distance and hitting set algorithm

is given below. A test signature table below (Table 3.1) contains all the possible explanations for

3 tests. These explanations have conflicting components (i.e it exists at least two explanations

for a symptom) and require further analysis.

Table 3.1 – Signature Table

tests ¬ok(ventilation system) ¬ok(heating system) ¬ok(duct) ¬ok(boiler)
test 1 1 1 1 1
test 2 1 0 1 0
test 3 1 1 0 0

where 1=¬ ok(component) and 0= ok(component)

Let’s take the following symptom:

 test1

test2

test3

 =

 1

1

1


Where

 1

1

1

 means that tests 1, 2 and 3 are inconsistent.

All the tests show inconsistencies and a conflicting situation. Therefore, the hamming distance

between observed symptom and table 3.1 is give below:

dH(¬ok(ventilationsystem))=0

dH(¬ok(heatingsystem))=0.33

dH(¬ok(boiler))=0.33

dH(¬ok(duct))=0.66

Using hamming distance, it is obvious that ventilation system is faulty because he has the lowest

Hamming distance. However, the bridge method goes to the next level of analysis based on test

explanations and tries to find a minimum possible explanation for all symptoms. Although,

ventilation is present in all test explanations, i.e. diagnosed in the beginning of HS-tree (Figure

3.6). Now, the other nodes follow an expansion considering the next set of explanations.
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Figure 3.6 – HS tree

In Figure 3.6, nodes with green labels show the diagnosed component, while the nodes in

the red represent the termination or blocked diagnosis process.

The following equation shows the diagnosed set of component achieved from Figure 3.6.

The minimum diagnostic explanation shows that ventilation system, heating system and duct

are the most possibly faulty components.

In this example, diagnosis detects the problem in the ventilation, duct, and heating system.

Hence, it will be easy to detect multiple faults in one diagnostic explanation.

The approach proposed by Singh (2017) assumes that the sensors are reliable and are only inter-

ested in thermo-aeraulic processes and heating systems. However, a faulty sensor could disturb

the efficiency of the proposed methodology. In the following, we investigate a fault diagnostic

tool that incorporates sensor faults and that support maintenance operators for detecting and

localizing faults in sensor grids of a building system.
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3.4 A case study for a building system

This section deals with highlighting the complexity. For this purpose, two case studies have

been investigated with diversity according to their context (available sensors, occupancy and

complexity of the environment) to exemplify the complexity in buildings.

3.4.1 Case 1: H358 office

The first case study is a monozone building which is the office setting H358 where details

are presented in chapter 1. This example is interesting because the model of the office is not

very complex and the number of sensors is not very high (30 sensors)

3.4.1.1 Thermal model

Several thermal models for this office have been studied in Scanu (2017) from which the

model with one capacitor is used for this work. The equivalent model is represented in Figure

3.7(a) and is described by Equations 3.8 and 3.9. The parameters of which are mentioned in

Table 3.2. Thus, besides the physical context, the indoor temperature (Tin) heavily relies on

occupant actions of opening or closing of doors (ζD) and windows (ζW ).

(a)

(b)

Figure 3.7 – Building simulation models
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ok(room)→ dτ

dt
=
R−Ri

R2
iCi

τ +
R

RiCi
φin +

R

RiCi
(

1

Rout

+
ζw
Rw

)Tout +
R

RiCi
(

1

Rn

+
ζD
RD

)Tn (3.8)

ok(room)→ Tin =
R

Ri

τ +Riφin +R(
1

Rout

+
ζw
Rw

)Tout +R(
1

Rn

+
ζD
RD

)Tn (3.9)

where RD = 1
ρairCp,airQD

, RW = 1
ρairCp,airQW

and 1
Req

= 1
Ri

+ 1
Rout

+ ζW
RW

+ ζD
RD

+ 1
Rn

with time-invariant Rn, Rout, Ri and Ci

Table 3.2 – Description of model parameters.

τ Average temperature of the building envelope
Rn, Rout, RW and RD Thermal resistance of neighboring zones, outdoor, window and door

Ri, Ci Equivalent resistance and capacitance due to inertia
Req Equivalent resistance

Tin, Tn, Tout Temperatures inside, with adjacent corridor and outside
φin Total indoor energy gains
ρair Air density
Cp,air Specific heat of air at room temperature

Cin, Cn, Cout CO2 concentration indoor, with neighboring zone and outdoor
Qn, Qout, QW , QD Air flow with adjacent corridor, outdoor, through window, through door

SCO2 Breath production in CO2 from each occupant
Pelec, φappliances Power drawn from electric supply or net heat flow from appliances

3.4.1.2 CO2 based air quality model

Several factors influence the indoor air quality like number of occupants, door and window

positions. This work concentrates on the CO2 based air quality and uses the aeraulic model

recognized in Scanu et al. (2017). The equivalent model of the office is represented in Figure

3.7(b) and is described by Equations 3.10, 3.11 and 3.12. The parameters of which are men-

tioned in Table 3.6.

Given the physical context, the occupancy (n(t)) estimation approach of Amayri et al. (2016) is

considered. This aeraulic model can simulate the indoor CO2 concentration based on occupant

actions of opening or closing of doors (ζD) and windows (ζW ).

ok(room)→ V
dCin(t)

dt
= −(Qout(t) +Qcor(t))Cin(t) +Qout(t)Cout +Qcor(t)Ccor(t) + SCO2n(t)

(3.10)

with

Qout(t) = Qout
0 + ζW (t)QW (3.11)

Qcor(t) = Qcor
0 + ζD(t)QD (3.12)
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3.4.1.3 Determination of coefficients for thermal and CO2 based air quality model

A regressive model is used to identify those variables over a long time period. The training

period had then to be properly defined to guarantee a rich enough data-set. The coefficients are

determined as follows. The variables Qout
0 , Qcor

0 , QW and QD are as unknown constant values

i.e as parameters that are determined by optimization.

3.4.1.4 Physical model for sensors

Physical models to predict whether the sensors installed in the office are working well or

not are as follows:

ok(office reference temperature sensor)→ T̃office reference = Toffice reference (3.13)

ok(office wall temperature sensor)→ T̃office wall = Toffice wall (3.14)

ok(heater temperature sensor)→ T̃heater = Theater (3.15)

ok(corridor temperature sensor)→ T̃corridor = Tcorridor (3.16)

ok(CO2 concentration sensor)→ ˜CO2 = CO2 (3.17)

ok(corridor CO2 cencentration sensor)→ C̃corridor = Ccorridor (3.18)

ok(door contact sensor)→ ζ̃D = ζD (3.19)

ok(window contact sensor)→ ˜ζW = ζW (3.20)

ok(occupancy)→ ˜occupancy = occupancy (3.21)

Note that the symbol˜is used to denote the measured value and ok(component) stands for the

component is assumed to be in a normal state.

3.4.1.5 Design of tests for H358 office

The first phase of the proposed framework is the designing of tests. It includes analyzing

the living zone including all sensors.

The present approach yields all the analytical redundancy relation of a system to be diagnosed

for any class of systems and allows the calculation of diagnosability from constraints.

The algorithm is based on a join operator coming from the relational algebra Ploix et al. (2005).

It also relies on a structural abstraction of the constraints and trace all the constraints involved

in the obtained testable subsystems. This point is crucial in diagnosis analysis or it is to

understand the possible causes of a test revealing an anomaly.

Furthermore, this step ends up with a deduced signature table after removing non-detectable

components and merging non-discriminable ones.

The following tests have been designed in the framework of the office setting. Only the sensors

they rely on are presented:
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— test1: Toffice-reference sensor, Theater sensor

— test2: Toffice-wall sensor, Toffice-reference sensor

— test3: room, Toffice-reference sensor, door contact sensor, window contact sensor

— test4: Toffice-wall sensor, Theater sensor

— test5: room, Theater sensor, door contact sensor, window contact sensor

— test6: room, Toffice-wall sensor, door contact sensor, window contact sensor

The type of these tests is ”automatic tests” i.e software tests which refer to execute a predefined

set of test cases with the objective to identify faults. Based on a software code, we simulate

the reference behavior of test and then, we apply a fault scenario. The test results are tests

reports for fault detection and decision making.

In this work, only tests 1 and 6 are detailed. The other tests are detailed in Annex 1.

In this work, two hypotheses were used. The first is to assume that tests are done in any

situation without taking into account certain contexts. The second is to choose periods where

the data sets are complete.

Test1: Test of Toffice-reference sensor and Theater sensor performance

This test compares the measurements of Toffice-reference sensor and Theater sensor. Test1

generates a residual signal from measurements of two sensors.

Test1 =
{
Bτ (X(t,t+h)) ∈ Bτ ↔ ok(Σ)

where

Behavioral constraint: Bτ (X(t,t+h)) ∈ Bτ with Bτ = Tref (t)− Theater(t) = 0,∀t ∈ (t, t+ h)

where Tref and Theater are two time series for indoor temperature measured by Toffice-reference

and Theater sensors respectively.

Support: Possible fault explanations for Test 1 are: ¬ ok(Toffice reference sensor) ∨ ¬
ok(Theater sensor)

Test6: check the door-contact, window-contact and Toffice-wall sensors perfor-

mance and the model of temperature (ok(room))

This test checks the estimation of indoor temperature using door and window positions

and Toffice-wall as well as the performance of these sensors. Test6 generates a residual sig-

nal between measured and estimated temperature. The residual generation is based on state

observer.

Test6 =
{
Bτ (X(t,t+h)) ∈ Bτ ↔ ok(Σ)

where behavioral constraint is given by: Bτ (X(t,t+h)) ∈ Bτ with Bτ = T̃in(t) − Tin(t) = 0,∀t ∈
(t, t+ h)
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Support: Possible fault explanations for Test 6 are: ¬ ok(door contact sensor) ∨ ¬ ok(window

contact sensor) ∨ ¬ ok(Toffice-wall sensor)

Required sensors for behavior: the variable involved in the test of behavior are door

and window positions and Toffice-wall: they are measured respectively by door contact sensor,

window contact sensor and Toffice-wall sensor.

The outcome of the different tests are merged into a single table for further analysis. Ta-

ble 3.3 combines all tests with test support. These tests are derived from sensors installed

in the office. For example, possible fault explanations for Test 1 are : ¬ ok(Toffice-reference

sensor) ∨ ¬ ok(Theater sensor). So, Toffice-reference sensor and Theater sensor are checked as

(1) in the signature table. With the help of tests and their supports, the theoretical signature

table (Table 3.3) is developed.

Table 3.3 – Signature Table

Toffice wall door contact window contact Toffice reference Theater room
sensor sensor sensor sensor sensor

test1 0 0 0 1 1 0
test2 1 0 0 1 0 0
test3 0 1 1 1 0 1
test4 1 0 0 0 1 0
test5 0 1 1 0 1 1
test6 1 1 1 0 0 1

Before studying the results obtained for different fault scenarios, it is unnecessary to distin-

guish non-discriminable items (i.e items that have almong the same signature according to the

performed tests). They will multiply the number of diagnoses, so it is preferable to group the

non-discriminable items into a macro-item. Considering the signature table corresponding to

the 6 tests, it can be seen that the items office door sensor, office window sensor and room are

non-discriminable. To reduce the entries, a macro-item ROOM-SYSTEM which combines office

door sensor, office window sensor and room is introduced. The new signature table becomes

the one shown in Table 3.4.

Table 3.4 – Signature Table

Toffice wall Toffice reference Theater ROOM-SYSTEM
sensor sensor sensor

test1 0 1 1 0
test2 1 1 0 0
test3 0 1 0 1
test4 1 0 1 0
test5 0 0 1 1
test6 1 0 0 1
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In the following, various faults were simulated.

3.4.1.6 Simulation scenarios and diagnostic result for H358 office

This section demonstrates the experimental results of the proposed diagnosis method. Tests

had been performed for the entire office including all sensors. In order to make an explicit and

concise explanation, the following faulty scenarios have been considered:

— scenario 1: Toffice-reference sensor is subject to bias of 2 degrees from t=2000 until the

end of simulation (see Figure 3.8).

— scenario 2: Theater sensor gives null values from t=2000 until the end of simulation.

— scenario 3: Abnormal internal gain, it is assumed that the total metabolism power is

increased by 400 Watt from t=2000 until the end of simulation (see Figure 3.9).

— scenario 4: Toffice-wall sensor gives incorrect values over a well defined interval and it’s

assumed that the temperature is always equal to 23◦C from t=2000 until the end of

simulation.

— scenario 5: Door and window contact sensors give random values from t=2000 until the

end of simulation.

To set the threshold values for the tests, a behavior representative of the normal behavior is

firstly recorded. In order to set reasonable thresholds, it’s assumed to take the maximum value

for each residuals increased by 10% to avoid false alarms.

In this chapter, only simulation results for scenarios 1 and 3 are presented. The results for

other scenarios are in Annex 1.

The behavior of the building is dependent of the season, a period of validation from May

1st, 2015 to June 30th, 2015 is chosen.

Scenario 1 corresponds to the results of Figure 3.8. Fault has been detected for the whole

period. The symptom appeared with Test 1 at time t=2225.
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(a) Residual generation for tests 1, 2 and 4
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(b) Residual generation for tests 3, 5 and 6

Figure 3.8 – Residual generation for scenario 1

Test 1 is negative (i.e the test reveals an anomaly because the residual signal exceeds the

threshold at t=2225) and tests 2, 3, 4, 5 and 6 are positive (i.e these tests don’t detect any

anomaly because the residual signals do not exceed the threshold). Bridge approach shows that

Toffice-reference and Theater diagnosis are equiprobable with fault probability equal to 66%.

The simulated fault consists on simulating that the Toffice-reference sensor is faulty. Thus, the

current fault is found and this result is obvious. This approach leads to an accurate diagnosis

even for a low fault.
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Scenario 2 corresponds to the results of Figure 3.9. The symptoms appeared with tests 3,

5 and 6 at time t=2000.
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(a) Residual generation for tests 1, 2 and 4

(b) Residual generation for tests 3, 5 and 6

Figure 3.9 – Residual generation for scenario 3

The door-contact and window-contact diagnosis are the most probable. This test violates the

behavioral constraint. In the normal context of simulation, it was assumed that there are 3

persons in the office for full time (a professor and 2 Ph.D. students) and the internal gains

depends on occupancy and scenario 2 focuses on an abnormal occupancy. It’s assumed also

that the physical model depends on the opening rates of the door and the window. This is a

right result but it is not accurate. This result is due to the limited number of tests.
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The following table (Table 3.5) summarizes the BRIDGE possible diagnosis and actual fault

for each scenario.

Table 3.5 – Diagnosis result and fault explanation

Scenarios BRIDGE possible diagnosis Actual fault Conclusion
Scenario 1 Toffice-reference (66.66%) Toffice-reference Accurate

Theater (66.66%) disgnosis
Scenario 2 Theater (100%) Theater Accurate

ROOM-SYSTEM, Toffice-wall, Toffice-reference (50%) diagnosis
Scenario 3 ROOM-SYSTEM (100%) Abnormal internal Not accurate

Toffice-wall, Theater, Toffice-reference (50%) gains diagnosis
Scenario 4 Toffice-wall(100%) Toffice-wall Accurate

ROOM-SYSTEM, Theater, Toffice-reference (50%) diagnoses
Scenario 5 ROOM-SYSTEM door-contact Not accurate

Toffice-wall, Theater, Toffice-reference (50%) diagnoses

In the monozone case, the approach leads to a reduced number of tests which is equal to 6. The

approach leads in some cases to an inaccurate diagnosis. However, the diagnostic result is not

guaranteed because it is supposed that the tests are applied in any situation without taking

into account specific contexts. For example, testing the indoor temperature without taking into

account the outdoor temperature, the door and window openings and the number of occupants

could lead to a possibly false diagnosis.
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3.4.2 Case 2: RueCuvier apartment

The second case study is a multizone building which is the apartment presented in Chapter

1. The example is interesting because the complexity is high compared to H358. The number of

sensors is more important (70 sensors). Also, there are interactions between zones and difficult

parameters to know such as wall thickness, the coefficient of performance of the heat pump

and consequently, there is a complexity due not only on the number of sensors but also on the

model.

3.4.2.1 Physical model

The equivalent model for temperature in each zone in the apartment is represented by Fig-

ure 3.10 and is described by Equations from 3.22 to 3.35

Figure 3.10 – Thermal model for the apartment

This apartment is subject to an important number of interacting elements. For example, the

common room temperature relies on occupant actions of opening and closing of doors and win-

dows of the office, the kitchen, the parent’s room and Anna’s room.

The model of the apartment includes many aspects such as the thermal description, the occu-

pant comfort description, the equipment description and many more.

In this work, only the thermal and indoor air quality aspects are detailed.
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The model parameters for the apartment are mentioned in Table 3.6

Table 3.6 – Description of model parameters for the apartment

τo, τa, τp, Average temperature of the building envelope
τk, τc respectively for office, Anna, parent, kitchen and common rooms

Rod, Rad, Rpd Thermal resistance for office, Anna,
and parent doors

Row, Raw, Rpw Thermal resistance for office, Anna,
Rkw, Rcw parent, kitchen and common windows

Roc, Rac, Rpc, Thermal resistance between office and common, Anna and common
Rkc parent and common, kitchen and common respectively

Roout, Raout, Rpout, Thermal resistance between office and outdoor, Anna and outdoor
Rkout, Rcout parent and outdoor, kitchen and outdoor, common and outdoor respectively

Ro, Co, Ra, Ca, Rp Equivalent resistance and capacitance due to inertia
Cp, Rk, Ck, Rc, Cc respectively for office, Anna, parent, kitchen and common rooms
Reqo, Reqa, Reqp Equivalent resistance respectively for

, Reqk, Reqc office, Anna, parent, kitchen and common rooms
To, Ta, Tp, office, Anna, parent, kitchen and common
Tk, Tc, Tout Temperatures inside, with outside
φo, φa, φp, Total indoor energy gains respectively for
φc, φk office, Anna, parent, kitchen and common rooms
ρair Air density
Cp,air Specific heat of air at room temperature

Co, Ca, Cp, office, Anna, parent, kitchen and common
Ck, Cc, Cout CO2 concentrations inside, with outside

Qn, Qout, QW , QD Air flow with adjacent corridor, outdoor, through window, through door
Qow, Qaw, Qpw, Air flow through office, Anna, parent,
Qkw, Qcw, kitchen and common windows respectively

Qoout, Qaout, Qpout, Air flow of office, Anna, parent,
Qkout, Qcout, kitchen and common with outdoor respectively
Qod, Qad, Qpd, Air flow through office, Anna, parent,

doors respectively
Qoc, Qac, Qpc, Air flow of office, Anna, parent,

Qkc kitchen with common respectively
SoCO2, SaCO2, SpCO2 Breath production in CO2 from each occupant

SkCO2, ScCO2 in office, Anna, parent, kitchen and common rooms respectively
Pelec, φappliances Power drawn from electric supply or net heat flow from appliances
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The thermal model for the office room is defined by Equations 3.22 and 3.23.

ok(office room)→ dτo
dt

= Reqo−Ro
R2
oCo

τo + Reqo
RoCo

φo + Reqo
RoCo

( 1
Roout

+ ζow
Row

)Tout + Reqo
RoCo

( 1
Roc

+ ζod
Rod

)Tc

(3.22)

ok(office room)→ To = Reqo
Ro

τo + Roφo + Reqo(
1

Roout
+ ζow

Row
)Tout + Reqo(

1
Roc

+ ζod
Rod

)Tc (3.23)

The thermal model for the Anna room is defined by Equations 3.24 and 3.25.

ok(Anna room)→ dτa
dt

= Reqa−Ra
R2
aCa

τa + Reqa
RaCa

φa + Reqa
RaCa

( 1
Raout

+ ζaw
Raw

)Tout + Reqa
RaCa

( 1
Rac

+ ζad
Rad

)Tc

(3.24)

ok(Anna room)→ Ta = Reqa
Ra

τa + Raφa + Reqa(
1

Raout
+ ζaw

Raw
)Tout + Reqa(

1
Rac

+ ζad
Rad

)Tc (3.25)

The thermal model for the parent room is defined by Equations 3.26 and 3.27.

ok(parent room)→ dτp
dt

= Reqp−Rp
R2
pCp

τp + Reqp
RpCp

φp + Reqp
RpCp

( 1
Rpout

+ ζpw
Rpw

)Tout + Reqp
RpCp

( 1
Rpc

+
ζpd
Rpd

)Tc

(3.26)

ok(parent room)→ Tp = Reqp
Rp

τp +Rpφp +Reqp(
1

Rpout
+ ζpw

Rpw
)Tout +Reqp(

1
Rpc

+
ζpd
Rpd

)Tc (3.27)

The thermal model for the kitchen room is defined by Equations 3.28 and 3.29.

ok(kitchen room)→ dτk
dt

= Reqk−Rk
R2
kCk

τk + Reqk
RkCk

φk + Reqk
RkCk

( 1
Rkout

+ ζkw
Rkw

)Tout + Reqk
RkCk

( 1
Rkc

)Tc (3.28)

ok(kitchen room)→ Tk = Reqk
Rk

τk + Rkφk + Reqk(
1

Rkout
+ ζkw

Rkw
)Tout + Reqk(

1
Rkc

)Tc (3.29)

The thermal model for the common room is defined by Equations 3.30 and 3.31.

ok(common room)→ dτc
dt

= Reqc−Rc
R2
cCc

τc + Reqc
RcCc

φc + Reqc
RcCc

( 1
Rcout

+ ζcw
Rcw

)Tout (3.30)

ok(common room)→ Tc = Reqc
Rc

τc + Rcφc + Reqc(
1

Rcout
+ ζcw

Rcw
)Tout (3.31)
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3.4.3 CO2 based air quality model

Several factors such as the number of occupants, the door and window openings influence

the air quality in each room of the apartment. This work concentrates on the CO2 based air

quality and uses the aeraulic model recognized in Scanu et al. (2017). The equivalent model

for the apartment is represented in Figure 3.11

Figure 3.11 – Aeraulic model for RueCuvier

The physical model for indoor air quality in office room is defined by Equation 3.32

ok(office room)→ Vo
dCo(t)
dt

= −(Qoout
0 +Qoc

0 +ζow(t)Qow+ζod(t)Qod)Co(t)+(Qoout
0 +ζow(t)Qow)Cout

+ (Qoc
0 + ζod(t)Qod)Cc(t) + SCO2no(t) (3.32)

The physical model for indoor air quality in anna room is defined by Equation 3.33

ok(Anna room)→ Va
dCa(t)
dt

= −(Qaout
0 +Qac

0 +ζaw(t)Qaw+ζad(t)Qad)Ca(t)+(Qaout
0 +ζaw(t)Qaw)Cout

+ (Qac
0 + ζad(t)Qad)Cc(t) + SCO2na(t) (3.33)

The physical model for indoor air quality in parent room is defined by Equation 3.34

ok(parent room)→ Vp
dCp(t)

dt
= −(Qpout

0 +Qpc
0 +ζpw(t)Qpw+ζpd(t)Qpd)Cp(t)+(Qpout

0 +ζpw(t)Qpw)Cout

+ (Qpc
0 + ζpd(t)Qpd)Cc(t) + SCO2np(t) (3.34)

The physical model for indoor air quality in common room is defined by Equation 3.35

ok(common room)→ Vc
dCc(t)
dt

= −(Qcout
0 + ζcw(t)Qcw)Cc(t) + (Qcout

0 + ζcw(t)Qcw)Cout

+ (Qoc
0 + ζod(t)Qod)Co(t) + (Qac

0 + ζad(t)Qad)Ca(t) + (Qpc
0 + ζpd(t)Qpd)Cp(t) + SCO2nc(t)

(3.35)
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3.4.3.1 Physical model for sensors

Physical models to predict whether the sensors installed in the office are working well or

not.

Only physical models for sensors in common room are presented. Physical models for other

sensors are in Annex 1.

ok(common temperature sensor)→ T̃ = T (3.36)

ok(common temperature motion sensor)→ T̃m = Tm (3.37)

ok(CO2 concentration sensor)→ ˜CO2 = CO2 (3.38)

ok(common window contact sensor)→ ˜ζcw = ζcw (3.39)

ok(common occupancy)→ ˜occupancycommon = occupancycommon (3.40)

3.4.3.2 Detection tests

The number of tests for the apartment is equal to 1196 difficult to handle and automatize.

Hence, there is a need to a methodology to apprehend it. Table 3.7 shows examples of such

tests.
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Table 3.7 – Diagnosis result and fault explanation

Tests components included in the test
Test 1 common temperature, common temperature motion
Test 10 office door, office window, parent occupancy, office occupancy, office room,

common co2, parent door, parent room, parent co2, parent window, office co2
Test 100 parent room, parent co2, common window, Tout, office temperature,

Anna occupancy, Anna temperature, parent window, common room, office door,
office co2, Cout, Anna room, Anna co2, parent occupancy, Anna door,

office occupancy, office room, parent door
Test 1000 parent room, common window, Anna window, Anna temperature,

office temperature motion, parent window, common occupancy, common room,
parent temperature, office door, office co2, Anna room, Anna door, common co2,

common temperature motion, office room, office occupancy, parent door
Test 1150 Anna window, common room, parent occupancy, Anna room, Tout, common co2,

parent door, parent room,parent co2, common occupancy, parent window,
Anna door, Anna temperature motion

Test 1170 office door, office temperature motion, Anna window, common room,
office window, parent occupancy, common temperature motion, Anna room, office room,
common co2, parent door, parent room, parent co2, common occupancy, parent window,

Anna door, Anna temperature motion
Test 1180 office door, common room, office window, parent occupancy,

common temperature motion, office occupancy, Tout, office room, parent door,
parent room, parent co2, parent window, common occupancy, office co2, Cout

Test 1195 parent room, parent co2, common temperature, office window, Tout, Anna window
Anna occupancy, parent window, common occupancy, common room, office door,

office co2, Anna room, Anna co2, parent occupancy, Anna door, office room,
office occupancy

Test 1196 parent room, parent CO2 sensor, office window, Tout sensor, Anna window,
Anna occupancy, parent window, common occupancy, common room,

office door, office co2, Anna room, Anna co2, parent occupancy, Anna door,
office room, office occupancy, common temperature motion, parent door

3.5 Discussion

In Singh et al. (2019), the concept of heterogeneous tests is proposed. Heterogeneous tests

is a combination of rule, range and model-based tests in the same diagnostic analysis to reduce

the whole-building modeling effort. The limitation of the proposed concept is that it relies on

an assumption of non-faulty sensors and interests only in thermo-aeraulic processes. Moreover,

the combination between building model, sensor and actuator faults increases the complexity.

In this chapter, we have highlighted the problem of complexity due to the model and the

number of sensors in buildings. A methodology for diagnosis of sensor grids in building system is

detailed. The proposed approach should make it possible to determine the different possibilities

of faults including multiple faults.
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Two real case studies have been investigated to exemplify the complexity: an office setting

with 30 sensors and an apartment setting with 70 sensors.

In the monozone case, the approach leads to a reduced number of detection tests which is equal

to 6. The approach leads in some cases to an inaccurate diagnosis. However, the diagnostic

result is not guaranteed. In fact, the fault diagnosis analysis is generated from the modeled

behavioural of the system thanks to detection tests. The detection tests are applied to any

situation without taking into account specific contexts. In fact, testing the indoor temperature

for example without taking into account specific contexts such as the outdoor temperature, the

door and window positions, the number of occupants and meteorological conditions could lead

to wrong diagnosis result.

In buildings, such concepts are still at an immature level. Diagnosis reasoning must differ in

different scenarios, e.g., fault detection and diagnosis approaches should be different for normal

working days and a vacation period.

In conclusion, characterizing a domain of validity where a test proves to be valid offers a guar-

antee to diagnostic result. However, the validity constraints is measured with possibly faulty

sensors that could mislead validity tests. If these sensors are in ok state, the guarantee of the

diagnostic result is always assured. If these sensors are faulty, the diagnostic result is not guar-

anteed. So, we conclude that there is a need for a method to prove a test and global diagnosis.

In this work, we made an assumption that consists of choosing periods where data sets are

complete. However, the data gaps is the major fault type in buildings and there is a need for

a method to find the periods of missing data.

In the multizone case, the proposed methodology leads to an important number of tests which

is difficult to handle and to automate.

3.6 Conclusion

This chapter aims at presenting a general diagnosis tool proposed by Singh (2017) that shall

be used to support maintenance operators for detecting and localizing faults in a sensor grid of

a building system. It is a tool-aided diagnosis with mathematical models and reasoning tools

that determines whether a sensor is faulty or not. It is based on detection tests and logical

diagnosis analysis for the first principle. At the beginning, the major challenges related to the

diagnosis in building are highlighted. Then, the diagnosis algorithm is proposed: it deals with

a BRIDGE approach of FDD for a building system focusing on sensor grids. Finally, a series

of tests are performed in order to validate the approach.
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Two real applications have been investigated to exemplify the complexity due the model

and the number of sensors: an office setting with 30 sensors and an apartment with 70 sensors.

The number of tests obtained for the monozone office setting is equal to 6. The results show

that if the tests are consistent with reality, the proposed approach leads to accurate diagnoses.

Indeed, it is not always possible to construct universal tests. For this reason, the proposed

approach leads in some cases to a possibly false diagnoses. The diagnostic result is not guaran-

teed because the tests are supposed to be applied in any situation without taking into account

specific contexts (Singh, 2017). For example, testing the temperature without verifying the

door and window positions, the number of occupants and the meteorological conditions could

lead to an inaccurate diagnostic result.

The number of tests obtained for the apartment setting is high and difficult to handle and

automate. The complexity due the model and the number of sensors is well justified and there

is a need to a method to apprehend it.

The work in chapter 3 has been published in (Najeh et al., 2017) and (Najeh et al., 2018a).

In the following, new services for diagnosis in building are proposed.

1. The first service consists on performing diagnosis with partially valid tests.

The diagnosis analysis must differ in different contexts (working days, vacation periods

and many more). These local contexts constitute the concept of validity constraints for

a test. The validity is measured with potentially faulty sensors. If these sensors are in

mode ok, the guarantee of the diagnostic result is always assured. If these sensors are not

ok, there is no guarantee and consequently, there is a need for an indicator to prove the

validity. The question that arise is how to conclude about a test that can be valid or not

knowing that validity can only be tested with sensors possibly faulty? The contribution

in this work is related to considering that sensors might be faulty when testing validity.

2. A test is characterized by net thresholds. It means that the behavioral constraint is either

satisfied either unsatisfied. Uncertainty is related to the validity constraint. The question

that arise is from which level of validity we can conclude about the test?

The diagnostic result is calculated from a set of tests, each defined by its level of validity

and the question that arise is how to prove diagnosis?

The second contribution is to calculate, from the level of validity for each test, the confi-

dence level for global diagnosis.

3. A test is defined over sensor data. In this work, we can not defined a test without data.

Hence, there is a need to know the periods of good operation operations. Data gaps

i.e missing data are the most important sensor fault type in building. Sensor values

are not uniformly sampled and the question that arise is from which delay a sensor

becomes faulty? The third service for apprehending the complexity consists on automatic

thresholding for data gap detection for a set of sensors in instrumented buildings

Next chapter deals with the first new service for diagnosis in building which deals with per-

forming diagnosis in buildings with partially valid tests.
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Chapter 4

Performing diagnosis in building with

partially valid tests

4.1 Introduction

In the literature (Swets, 1988), it is assumed that a test is valid in all contexts i.e. it could

be applied to any situation without taking into account the test context. In connection with

building thermal performance, testing the indoor temperature without verifying the number of

occupants, the door and window positions and the weather conditions might lead to complex

models or to a false diagnosis (Najeh et al., 2018a).

In the field of diagnosis, the concept of validity was initially introduced in Ploix (2009). In

Singh et al. (2019), the concept of contextual test i.e a test valid under specific context is

proposed. The limitation of the proposed methodology is that it relies on an assumption of

non-faulty sensors. In fact, the validity is measured using sensors that can be faulty: a faulty

measurement could disturb the applicability of the proposed methodology. The question that

arises is how to conclude about a test that can be valid or not knowing that validity can only

be tested with sensors possibly faulty?

In this work, a level of completeness is proposed as a method for better formalizing valid-

ity in presence of possibly faulty sensors. We do the hypothesis that there is no precise global

model for a building system but there are contextual models with limited validity. The validity

is measured with potentially faulty sensors. The problem is how to conclude about a test? The

test space consists of a set of measurements. The completeness level is proposed as a method

to prove if a test space is fully covered or not. The contribution in this work is related to

considering that sensors might be faulty when testing validity.
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This chapter is organised as follow: Section 4.2 presents the problem statement and high-

lights the difficulties encountered with the validity. Section 4.3 discusses the concept of partial

valid test. The innovative idea and mathematical basis for a method to better formalize validity

and prove a test is analysed in section 4.4. Finally, concluding remarks and perspectives are

given in section 4.5.

4.2 Problem statement

Current work focuses on better formalizing validity for partially tests where sensors can be

faulty. In Singh et al. (2019), a test is defined by:

Definition 4.1. A test is defined by:

1. a time period T. It is a set of time intervals for which the validity constraint is verified.

2. a behavioral constraint B(XT) ∈ Bτ
3. a validity constraint V (XT) ∈ Vτ
4. a test support

A set of possible explanations in terms of component or item states such as Expl =

¬ok(item1) ∨ ... ∨ ¬ok(itemn)

5. a bunch of data XT related to the variables X = {x1, x2, ..., xn} covering a time period T

The following example justifies why the definition of T is better. Let’s consider the example

of test dealing with an indoor temperature. This test checks the deviation of indoor thermal

comfort in the office setting H358. The test is generally defined by Singh et al. (2019):{
Bτ (XT) ∈ Bτ ∧ Vτ (XT) ∈ Vτ → ok(Σ)

Bτ (XT) /∈ Bτ ∧ Vτ (XT) ∈ Vτ → ¬ok(Σ)

The period of the test is February 1st, 2016 from t=16:00:00 to t=18:00:00 with, T = {t16 =

01/02 16 : 00 : 00, t17 = 01/02 17 : 00 : 00, t18 = 01/02 18 : 00 : 00}
This test is defined by a simple behavioral constraint Bτ (XT) ∈ Bτ with Bτ = Tin(t) ∈
[Tmin, Tmax],∀t ∈ T
The bunch of data required for the test of behavioral constraint isXT = {Tin(t16), Tin(t17), Tin(t18)}
where Tin is a set of data of indoor temperature measured by Toffice-reference sensor installed

in the H358 office.

Tmin and Tmax represent respectively lower and upper values of indoor temperature in the month

of March 2016 without fault in the sensor (Tmin = 15.52◦C and Tmax = 23.8◦C).
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This test is also defined by a validity constraint Vτ (XT) ∈ Vτ where Vτ = (Tout(t) ∈
[Tminout , T

max
out ]) ∧ (occupancy(t) > 0) ∧ (ζD(t) ∈ [0, 0.20]) ∧ (ζW (t) ∈ [0, 0.20]),∀t ∈ T

In this test, we consider that the door and the window are closed if their opening rates are

belong the interval [0, 0.20].

If we consider that the door and the window are open, then we must model the airflow through

the door and the window, which is difficult to do. So, doing the test with closed door and

window makes testing easier.

The bunch of data required for the test of validity constraint isXT = {Tout(t16), ..., Tout(t18), ζD(t16), ...,

ζD(t18), ζW (t16), ..., ζW (t18), occupancy(t16), ..., occupancy(t18)}
ζD and ζW are two data sets for door and window positions measured respectively by door and

window contact sensors installed in the H358 office. Occupancy is a set of data for the number

of occupants estimated by Amayri et al. (2016). Tout is a set of data for outdoor temperature

measured by a weather station.

Tminout and Tmaxout represent respectively lower and upper values of outdoor temperature in the

month of March 2016 without fault in the sensor (Tminout = −3.83◦C and Tmaxout = 25.65◦C).

This test is also defined by a test support i.e a set of possible explanations related to such symp-

tom. In Singh (2017), a faulty heating system or an important number of appliances could be

responsible for an abnormal thermal performance. Only component faults are considered as an

explanations for such symptom.

Figure 4.1 shows the behavioral constraints for this test

Figure 4.1 – Behavioral constraints for thermal comfort test

The behavioral constraints are satisfied. So, the test is consistent.

The behavior constraint is satisfied and all measurements of indoor temperature belong to the

domain of constraint of behavior which is [15.52, 23.8]. However, all the measurements for

indoor temperature occupy only one part of the space i.e all the measurements are between 23

and 23.99. Then, if the behavioral constraint is satisfied, all the domain space of the behavior

constraint must be covered. It means, the data set of indoor temperature should contain for
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example measurements between 15 and 18, measurements between 18 and 20, measurements

between 20 and 22 and measurements between 22 and 25 for example. So, there is a level of

completeness that is going to be introduced. This new concept of completeness level for tests

without validity is new and will be detailed later

Figure 4.2 shows the validity constraints satisfaction. Figures 4.2(a), 4.2(b), 4.2(c) and 4.2(d)

show respectively the evolution of occupancy, door and window position and outdoor temper-

ature during the time span T.

(a) Occupancy (b) Door position

(c) Window position (d) Outdoor temperature

Figure 4.2 – Validity constraints satisfaction for a period of 3 hours

The test is valid. In fact, the validity constraint is satisfied and all measurements of occupancy,

outdoor temperature, door and window positions belong to the domain of validity constraint

which is (number of occupants >0) for occupancy, [0, 0.20] for door and window positions and

[-3.83, 25.6] for outdoor temperature. However, the measurements occupy only one part of the

space of validity. For example, all the measurements of occupancy are between 1 and 2, the

measurements of outdoor temperature are only between 11◦C and 13◦C. The window is totally

closed and there is no measurements where the window is partially closed i.e (0 < ζW ≤ 0.20).

Then, if the validity constraint is satisfied, the whole space of validity constraint must be cov-

ered. It means, the data set for occupancy should contain for example measurements between

1 and 2 and measurements more than 2 occupants. Also, the data set for outdoor temperature

should contain measurements between −3.83◦C and 10◦C and measurements between 10◦C

68



and 25.65◦C . So, there is a level of completeness that could be introduced. This level of

completeness would make it possible to test at any point in the validity period and thus offers a

guarantee on the test. This concept of completeness level for validity constraint will be detailed

later.

Now, imagine that the period of test is March 7th, 2016 from t=00:00 to t=23:00. Figure

4.3 shows the validity constraint satisfaction for this period. Figures 4.2(a), 4.2(b), 4.2(c) and

4.2(d) show respectively the evolution of occupancy, door and window position and outdoor

temperature during this period.

(a) Occupancy (b) Door position

(c) Window position (d) Outdoor temperature

Figure 4.3 – Validity constraints satisfaction for a period of 3 hours

The test is invalid on a period of 23 hours. So, the longer the T is, the more the test tends

towards to be invalid and the shorter, the less representative it is.

Two conclusions can be withdrawn: On the one hand, the longer T is, the more the test tends

towards to be invalid. On the other hand, the validity is discontinuous. In the second period,

the test is valid from t=07:00 to t=14:00 and from t=17:00 to t=18:00 and invalid otherwise.

To overcome these issues, the concept of valid time span T is used. It allows tests to be

carried out over longer periods of time and only the moments where the test is valid are

taken into account. In fact, for the test of validity in March 7th, 2016, the valid time span

is T = {t7, ..., t14, t17, t18} with t7=07/03 07:00, t14=07/03 14:00, t17=07/03 17:00, t18=07/03

18:00.

69



Before introducing a completeness level, let’s define properly the different concepts.

A detection test could be range-based (Definition 4.2), rule-based (Definition 4.3) or model-

based (Definition 4.4).

Definition 4.2. Range based test

Range-based if Bτ (XT) ∈ Bτ is made of intervals belonging checks. It’s a simple test based on

signal processing techniques. It is derived with the help of upper and lower bounds and there is

no representation between system inputs / outputs.

Buildings are very often equipped with many heterogeneous materials and sensors from dif-

ferent generations, making the exploitation difficult on a daily basis. It is therefore with a view

to simplifying the operating work and reducing operating costs that the technical management

of building is developed. Technical Building Management is a system that allows to supervise

the equipment installed there (power supply, lighting, HVAC, plumbing (lifting pumps, tanks

and many more), access control, fire devices (alarms extinctions)). It can thus reassemble

alarms triggered in the event of anomalies and makes it possible to follow the consumption

of energy. Also, it improves security and simplifies day-to-day management. In this system,

all technical, safety and energy management appliances are centralized and the information is

transcribed on a graphic interface. The data collected are of various types:

— alarms (failure, abnormal stop, measurement exceeding a threshold) i.e a symptom of

anomaly

— states (equipment operation, position, order feedback)

— measurements (temperature, operating time, number of failures)

In Technical Building Management System, alarms can be generated from binary or analog sig-

nals. The binary signals trigger alarms when a change of state occurs. The values of the analog

signals are compared to the lower and upper limits and the alarm is triggered if the values go

below or beyond of these limits. When an alarm is triggered, an alarm message is displayed in

the alarm list of the operating station. So an alarm from the Technical Building Management

System belongs to a well-defined test family which are the signal-based tests (Definition 4.2).

An alarm detected that the indoor air quality is not beyond the maximum and minimum

air quality range (see Figure 4.4). This test generates test results for the deviation of indoor

air quality comfort.

The period of test is September 1st, 2016 from t=18:00 to t=22:00. So, the time period is

T = [t18 = 18 : 00 : 00, t19 = 19 : 59 : 00, t20 = 20 : 00 : 00, t21 = 21 : 00 : 00, t22 = 22 : 00 : 00]

This test is defined by a behavioral constraint Bτ (XT) ∈ Bτ made of intervals belonging checks

with the help of upper and lower bounds with Bτ = Cin(t) ∈ [Cmin
in , Cmax

in ],∀t ∈ T.

XT = CinT is a data set of CO2 concentrations collected from CO2 concentrations sensor lo-

cated in H358 office (CinT = [Cin(t18), ...Cin(t22)])

Cmin
in and Cmax

in represent respectively the lower and the upper bounds of CO2 concentrations

without fault in the sensor (Cmin
in = 390ppm and Cmax

in = 879ppm).

Figure 4.4 shows an abnormal CO2 concentrations i.e an air quality discomfort.
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Figure 4.4 – Range based test

The test is inconsistent because beyond the maximum CO2 concentrations range, building

enters into indoor air quality discomfort zone.

A building system is complex. To make such tests, it is possible to write the relationships

between the different physical quantities describing the different subsystems by rules i.e rule-

based tests (Definition 4.3)

Definition 4.3. Rule based test

Rule-based if Bτ (X(T)) ∈ Bτ is made of ” if ... then ... else”

As part of the energy performance requirements of buildings and the required state of the

indoor environment, air handling units are currently being studied in the literature, particularly

in terms of energy management (Taebnia et al., 2019). Fault detection and diagnosis at early

stage is mandatory for critical components of HVAC systems as air handling units (Yan et al.,

2018). To assess the performance of the AHU, a set of rules can be used. AHU performance

assessment rules uses control signals and access information to identify the mode of operation

of the AHU.

A practical example of rule based tests is given below. This test analyzes if the damper position

in ventilation system is faulty or not using a rule determined from a data sheet of ventilation

system installed in Denmark application where details are presented in chapter 1.

if (CO2 ≥ 900 ∧ damper position = 100) ∨ (700 ≤ CO2 < 900 ∧ 60 ≤ damper position <

100)∨ (600 ≤ CO2 ≥ 700∧ 45 ≤ damper position < 60)∨ (CO2 < 600∧ damper position = 0)

then damper fault=0

else

damper fault=1
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Let’s consider the following test of damper referred to the first rule. The test evaluates the mis-

match between the damper position and the indoor CO2 concentrations in the zone. Possible

explanations are derived from ”if...then...else” implication and help to establish a link between

the test and faulty components.

The period of test is from February 1st 2017 at midnight to February 7th, 2017 at t=23:00.

So, T = {(t0 = 01/02 00 : 00), ..., (t167 = 07/02 00 : 00)}
This test is defined by a behavioral constraint Bτ (XT) ∈ Bτ made of ”if...then...else” with

Bτ = CO2(t) ≥ 900 ∧ damper position(t) = 100,∀t ∈ T
where XT = [[CO2(t0), ..., CO2(t167)], [damper position(t0), ..., damper position(t167)]]

CO2 and damper position are measured respectively using CO2 concentrations sensor and

damper position sensor installed in Denmark application.

Figure 4.5 shows the satisfaction of behavioral constraint of the test of damper

Figure 4.5 – Rule based test

This test is inconsistent because the rule is not satisfied.

To make a tests, it is also possible to write the relationships between the different physical

quantities describing the different subsystems by physics or ARX models i.e model-based tests

(Definition 4.4).

Definition 4.4. Model based test

Model-based if Bτ (X(T)) ∈ Bτ is made of equations

An ARX model with exogenous input is a simple way to implement thermal model without

deep domain knowledge of the building system under study. Moreover, this type of model

takes into account the existing links between variables. An ARX model is a model-based test

(Definition 4.4)
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An example of model based test is given below. A simplified model is used for estimating

the indoor temperature in H358 office. This test performs a comparison of the measured and

estimated temperature. The thermal model verifies the thermal discomfort at zonal or local

level.

The period of test is March 2nd, 2016 from t=12:00 to t=18:00. So, the time period is T =

{t12, t13, t14, t16, t17, t18} with t12=12:00:00, t13=13:00:00, t14=14:59:00, t16=16:00:00, t17=17:00:00

and t18=18:00:00

The test is defined by a behavioral constraintBτ (X(T)) ∈ Bτ withBτ : Testimated(t) ∈ Tmeasured(t)−
∆T, Tmeasured(t) + ∆T,∀t ∈ T]

Tmeasured and Testimated represent respectively two data sets of measured and estimated indoor

temperature (TmeasuredT = [Tmeasured(t13), Tmeasured(t14), Tmeasured(t16), Tmeasured(t17),

Tmeasured(t18)] and TestimatedT = [Testimated(t13), Testimated(t14), Testimated(t16), Testimated(t17), Testimated(t18)])

The estimated temperature (Testimated) is performed with the help of linear regression model

defined by Equation 4.1. For the estimation, two independent data sets are used: a training

data set from October 1st, 2015 at midnight to February 28th, 2016 at t=23:00 and a validation

data set in March 2nd from t=12:00 to t=18:00

y[tk] = +0.056848u0[tk] + 0.893457u1[tk]− 0.299168u2[tk]− 0.541752u3[tk] + 0.003224u4[tk]

− 0.002491u5[tk] + 0.094985u6[tk] + 0.070550u7[tk] (4.1)

where

u0: sequence of similar intervals of outdoor temperature

u1: sequence of similar intervals of corridor temperature

u2: sequence of similar intervals of window positions

u3: sequence of similar intervals of door positions

u4: sequence of similar intervals of total power

u5: sequence of similar intervals of solar radiation

u6: sequence of similar intervals of number of occupants

u7: sequence of similar intervals of heater temperature

y: sequence of similar intervals of estimated indoor temperature

The outdoor temperature and solar radiation are measured by a weather station. The corridor

temperature, the window and door positions, the total power, the heater temperature and the

indoor temperature are measured respectively from corridor temperature sensor, window and

door position sensors, total power sensor, heater temperature sensor and Toffice-reference sen-

sors installed in the H358 office. Occupancy is estimated by the algorithm proposed in Amayri

et al. (2016).
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The test compares whether the corresponding measurement follow the estimated tempera-

tures or not. Figure 4.6 shows the error resulting from the comparison of the temperature is

measured and the estimated temperature.

Figure 4.6 – Model based test

The test is consistent.

However, the concept proposed by Singh et al. (2019) is challenged by:

1. The validity constraint is measured with sensors. Sensors are subject to different kinds of

faults; they can be biased, subject to outliers or missing data, quite common in buildings.

If these sensors are faulty, the diagnostic result is not guaranteed. The question that

arises is how to conclude about a test that can be valid or not knowing that validity can

only be tested with sensors possibly faulty. Also, if these faults are not detected, they

lead to a wrong conclusion about the validity.

Let’s consider the following case: for testing the indoor thermal comfort in building, the

test is defined by a validity constraint Vτ (XT) ∈ Vτ with Vτ = Tout(t) ∈ [Tminout , T
max
out ] ∧

ζD(t) = 0 ∧ ζW (t) = 0 ∧ occupancy(t) > 0, ∀t ∈ T
This outdoor temperature is measured by two different sensors from the weather station.

Figure 4.7 shows the data of outdoor temperature from two different sensors in the same

period.
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(a) Outdoor temperature from sensor 1

(b) Outdoor temperature from sensor 2

Figure 4.7 – Outdoor temperature from two different sensor

The two sensors don’t give the same values. Consequently, one of them is faulty.

In addition, missing data is the most important sensor fault type in building. Imag-

ine that the period of the test for indoor thermal comfort is from March 1st, 2016 to

March 31th, 2016. Figure 4.8 shows the missing data for door contact sensor in the

month of March.
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Figure 4.8 – Missing data for validity constraints

Hence, how to conclude about the validity and therefore, the test result with potentially

faulty sensors?

2. In Singh et al. (2019), a faulty heating system or an important number of appliances

could be responsible for an abnormal thermal performance. Only component faults are

considered as an explanation for such symptoms. In our contribution, possible fault

explanations for abnormal thermal performance include sensor level fault. For instance,

a faulty temperature sensor could be an explanation for this symptom.

3. The space of validity constraints is defined over sensor measurements. The objective is

to have data representative of all possible situations.

A practical example is given below. The validity constraint for the test of temperature is

Vτ (XT) ∈ Vτ with Vτ = occupancy(t) > 0 ∧ ζD(t) ∈ [0, 0.25] ∧ ζW (t) ∈ [0, 0.25] ∧ Tout(t) ∈
[Tminout , T

max
out ],∀t ∈ T

The variables included in the validity constraints could have different situations. For

example, the outdoor temperature could be low (−3.83 ≤ Tout ≤ 10) or high(10 <

Tout ≤ 25.65), the number of occupants could be few (0 < occupancy ≤ 2) or important

(2 < occupancy ≤ 4). Also, the door and window openings could be totally closed (i.e

ζD = 0 and ζW = 0) or partially closed (i.e 0 < ζD ≤ 0.25 and 0 < ζW ≤ 0.25). The

objective is to have data representative of all possible situations. Let’s consider 3 different

periods for testing how much the data are representative of all situations.
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(a) Period 1: March 9th, 2016 from t=09:00 to t=11:00

In this period the test is valid. The valid time span is T = {t9, t10, t11} with t9=09:00,

t10=10:00, t11=11:00

The bunch of data for validity constraint isXT = {Tout(t9), Tout(t10), Tout(t11), occupancy(t9),

occupancy(t10), occupancy(t11), ζD(t9), ζD(t10), ζD(t11), ζW (t9), ζW (t10), ζW (t11)}
Figure 4.9 shows the evolution of data involved in the validity constraint for period

1.

(a) Outdoor temperature (b) Number of occupants

(c) Door positions (d) Window positions

Figure 4.9 – Data involved in validity constraint for period 1

Figure 4.9(a) shows that outdoor temperature occupy only one part of the domain

of outdoor temperature which is [-3.83, 25.65]. In fact, all the measurement of Tout

are between 0◦C and 1◦C. Figure 4.9(b) shows that only the part of important

number of occupants is covered and there are no measurements that corresponds to

few number of occupants (i.e 1 ≤ occupancy ≤ 2). Figure 4.9(c) shows that the

door position occupy only one part of the space which is door partially closed (i.e

0 < ζD ≤ 0.25) and there are no measurements when the door is totally closed (i.e

ζD = 0). Figure 4.9(d) shows that the window position occupy only one part of the

space which is window totally closed (i.e ζW = 0) and there are no measurements

when the window is partially closed (i.e 0 < ζW ≤ 0.25).
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Table 4.1 shows how many situations are satisfied.

(a) Outdoor tem-
perature

low high

Tout

(b) Occupancy

few important

occupancy

(c) Door position

totally partially
closed closed

door

(d) Window position

totally partially
closed close

window

Table 4.1 – Data representation for period 1

where denote by the presence of data in a category

For period 1, the data are representative with 50%.

(b) Period 2: March 2nd, 2016 from t=09:00 to t=20:00

The test is valid from t=11:00 to t=18:00. The valid time span is T = {t11, t12, t13, t14, t15, t16,

t17, t18} with t11=11:00, t12=12:00, t13=13:00, t14=14:00, t15=15:00, t16=16:00, t17=17:00,

t18=18:00.

The bunch of data for validity constraint isXT = {Tout(t11), ..., Tout(t18), occupancy(t11), ...,

occupancy(t18), ζD(t11), ..., ζD(t18), ζW (t11), ..., ζW (t18)}
Figure 4.10 shows the evolution of data involved in the validity constraint for period

2.

Figure 4.10(a) shows that outdoor temperature occupy only one part of the domain

of outdoor temperature which is [-3.83, 10◦C] and there is no measurements for

Tout > 10◦C. Figure 4.10(b) shows that the domain of occupancy is covered. In fact,

the 2 possibilities of few (1 ≤ occupancy ≤ 2) and important (3 ≤ occupancy ≤ 4)

of occupants are present. Figure 4.10(c) shows that the door position is covered. In

fact, the 2 possibilities of door totally closed (i.e ζD = 0) and door partially closed

(i.e 0 < ζD ≤ 0.25) are present. Figure 4.10(d) shows that the window position

occupy only one part of the space which is window totally closed (i.e ζW = 0) and

there are no measurements when the window is partially closed (i.e 0 < ζW ≤ 0.25).
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(a) Outdoor temperature (b) Number of occupants

(c) Door positions (d) Window positions

Figure 4.10 – Data involved in validity constraint for period 2

Table 4.2 shows how many situations are satisfied.
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(a) Outdoor tem-
perature

low high

Tout

(b) Occupancy

few important

occupancy

(c) Door position

totally partially
closed closed

door

(d) Window position

totally partially
closed close

window

Table 4.2 – Data representation for period 2

where denote by the presence of data in a category

For period 2, the data are representative with 75% and XT is richer in data than

period 1.

The problem is how to conclude about a test that can be valid or not knowing that validity can

only be tested with sensors possibly faulty and how to know if the space of validity is totally

covered or not? Hence, there is a need for a method for better formalizing validity where sensors

can be faulty.

The next section deals with the design of partially valid tests.

4.3 Design of automatic partially valid tests

In this work, we make the hypothesis that there is no precise test for a building system but

there are contextual tests with partially validity. In the domain of fault diagnosis, a symptom

is defined as a measurable change in the behavior of a system providing information about the

system status or behavioral mode i.e. an indication of fault. A partially valid test is used to

generate symptoms. These symptoms appear in the behavioral constraints (Definition 4.5).

Definition 4.5. Behavioral constraint:

Let T = [t0, . . . , tn−1] be an ordered list of time samples, that will be called time span with

dom(T) = R+n, min(T) = t0, max(T) = tn−1 and ti < ti+1.

Let X(ti) = [x0(ti), . . . , xp−1(ti)] with ti ∈ T, be a set of data related to a system at time ti.

XT = [X(t0), . . . , X(tn−1)].

Let τ be a test for a system Σ defined by, if τ is true, then the system Σ is in an ok state i.e.

τ true↔ ok(Σ). ”Test τ is true” can be modeled by a behavioral constraint B(XT).

Let Bτ (XT) : dom(XT) 7→ Rm;m ∈ N+∗ be a behavioral function for test τ . The test τ of system

Σ is said consistent if it exists B ⊂ Rm such as:

1. Bτ (XT) ∈ Bτ ↔ ok(Σ)

2. max(T)→∞
the longer T is, the more it confirms the ok state of the subsystem Σ
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Therefore, the test τ for Σ is inconsistent if Bτ (XT) /∈ Bτ i.e ¬ok(Σ)

with ok(Σ)→ ∧iok(itemi) and ¬ok(Σ)→ ∨i¬ok(itemi)

The items are the components of the system. In diagnosis, it is interesting to distinguish

the modes that characterize the system state. An item can have 2 modes: the ok mode which

represents the normal behavior and the not ok mode which represents the complement of nor-

mal behavior. In the case of the appearance of a symptom, the test leads to an explanation.

Let’s consider a test examining the following modes ok(item1), ok(item2) and ok(item3)

The expression ∧iok(itemi) led to ok(item1) ∧ ok(item2) ∧ ok(item3). In this case, the system

Σ is on mode ok

The expression ∨i¬ok(itemi) led to ¬ok(item1) ∨ ¬ok(item2) ∨ ¬ok(item3). If the test con-

clusion is not ok, we obtain a list of explanations that led to this conclusion which is Expl =

{¬ok(item1),¬ok(item2),¬ok(item3)}

Corollary 4.1. Let’s introduce a partition of T: P(T) = {Ti,∀i}. Let’s decompose the con-

straint satisfaction problem into subproblems:

Bτ (XT) ∈ Bτ ↔
∧
i

Bτ,i(XTi) ∈ Bτ,i

Let’s examine the negation of 1 from definition 4.5:

Bτ (XT) /∈ Bτ ↔ ¬ok(Στ )

can be rewritten as

∨
i

Bτ,i(XTi) /∈ Bτ,i ↔ ¬ok(Στ )

For example, let’s consider XT = [19, 20, 19.8, 19.7, 19.1, 19]

Partitioning consists on decomposing XT in XT1 = [19, 20, 19.8] and XT2 = [19.7, 19.1, 19]

Let’s consider the following behavioral constraint Bτ (XT) ∈ Bτ with Bτ = X(t) ∈ [16, 21],∀t ∈
T. This constraint is decomposed into Bτ1(XT1) ∈ Bτ1 and Bτ2(XT2) ∈ Bτ2 with Bτ1 = X1(t) ∈
[16, 21],∀t ∈ T1 and Bτ2 = X2(t) ∈ [16, 21],∀t ∈ T2]

Bτ (XT) ∈ Bτ is satisfied if Bτ1(XT1) ∈ Bτ1 is satisfied and Bτ2(XT2) ∈ Bτ2

In this example, Bτ1(XT1) ∈ Bτ1 and Bτ2(XT2) ∈ Bτ2 are satisfied. So, Bτ (XT) ∈ Bτ is

satisfied.

The space of behavioral constraint is defined over measurements. In this case, the space of

behavioral constraint which is the interval [16, 21] is not totally covered. It means that the

measurements occupy only one part of the space which is between 19 and 20 and there is

no measurements between 16 and 19. Then, if the behavioral constraint is satisfied, all the

domain space of the behavior constraint must be covered. It means, the data set should

contain measurements between 16 and 19, measurements between 19 and 20 and measurements

between 20 and 21 for example. So, there is a level of completeness (Definition 4.6) for tests
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without validity that must appear. The level of completeness offers more guarantee on the test

result. In the following, we will detail a method to calculate it.

Definition 4.6. The completeness of XT with respect to the test τ

Let’s define a sub-set P of the partition T′ ∈ P(T).

If Bτ (XT′) ∈ Bτ ↔ ok(Σ) is equivalent to definition 4.5, XT′ is said complete with respect to

the test τ .

Let’s T = {t0, t1, t2, t3, t4, t5, t6, t7} an ordered list of time samples, XT = {16.1, 17, 17.2, 18, 17.5, 17.4,

17.2, 17} a set of data, T′ = {t0, t1, t2, t3} ∈ P(T) and XT′ = {16.1, 17, 17.2, 18}
Let’s consider the behavioral constraint Bτ (XT′) ∈ Bτ with Bτ = X

′
(t) ∈ [16, 18],∀t ∈ T′

In this case:

— Bτ (XT′) ∈ Bτ is satisfied

— max(T′)→∞. The space of behavioral constraint is defined over data in XT′ . The data

set is representative enough for different situations because we have data between 16 and

17 and data between 17 and 18. So, the space of behavioral constraint with T′ is covered

and XT′ is said complete with respect to the test τ ..

or it yields the corollary 4.2:

Corollary 4.2. ∃Ti ∈ P(T)/Bτ,i(XTi) /∈ Bτ,i → ¬ok(Στ )

For example, let’s consider XT = [19, 20, 21, 33, 35, 35.4, 38]

Partitioning consists on decomposing XT in XT1 = [19, 20, 21] and XT2 = [33, 35, 35.4, 38]

Let’s consider the following behavioral constraint Bτ (XT) ∈ Bτ with Bτ = X(t) ∈ [16, 21],∀t ∈
T]. This constraint is decomposed in Bτ1(XT1) ∈ Bτ1 and Bτ2(XT2) ∈ Bτ2 with Bτ1 = X1(t) ∈
[16, 21], ∀t ∈ T1] and Bτ2 = X2(t) ∈ [16, 21], ∀t ∈ T2]

Bτ (XT ∈ Bτ ) is not satisfied if Bτ1(XT1) ∈ Bτ1 is not satisfied or Bτ2(XT2) ∈ Bτ2 is not satisfied

In this example, Bτ2(XT2) ∈ Bτ2 is not satisfied. So, Bτ (XT) ∈ Bτ ) is not satisfied.

Definition 4.5 becomes Definition 4.7

Definition 4.7. for a test τ defined by the data XT and the behavioral constraint represented

by Bτ (XT) and Bτ
1. XT complete with respect to Bτ and Bτ (XT) ∈ Bτ ↔ ok(Στ )

2. ∃Ti ∈ P(T)/Bτ,i(XTi) /∈ Bτ,i → ¬ok(Στ )
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A contextual test is based on validity constraints (Definition 4.8) for a test.

Definition 4.8. Validity constraint

Let’s introduce another constraint set Vτ (XT) ∈ Vτ , where V is a bound domain, to specify

the context where the behavioral constraint set applies (XT is assumed to be a superset of the

variables appearing either in behavioral or in validity constraint sets ie some variables might

not appear in both constraint sets). Hence, a detection test modeling the normal behavior under

validity conditions is defined by:

1. (Bτ (XT) ∈ Bτ ) ∧ (Vτ (XT) ∈ Vτ )→ ok(Στ )

2. (Bτ (XT) /∈ Bτ ) ∧ (Vτ (XT) ∈ Vτ )→ ¬ok(Στ )

3. X(T) complete with respect to τ

Corollary 4.3. Let’s introducing a partition of T: P(T) = {Ti,∀i}. Let’s decompose the con-

straint satisfaction problem into subproblems:

Bτ (XT) ∈ Bτ ∧ Vτ (XT) ∈ Vτ ↔
∧
i

Bτ,i(XTi) ∈ Bτ,i ∧ Vτ,i(XTi) ∈ Vτ,i

Let’s examine the negation of 1 from Definition 4.8:

Bτ (XT) /∈ Bτ ∧ Vτ (XT) /∈ Vτ ↔ ¬ok(Στ )

can be rewritten as

∨
i

Bτ,i(XTi) /∈ Bτ,i ∧ Vτ,i(XTi) /∈ Vτ,i ↔ ¬ok(Στ )

or it yields the corollary 4.4

Corollary 4.4. ∃Ti ∈ P(T)/Bτ,i(XTi) /∈ Bτ,i ∧ Vτ,i(XTi) ∈ Vτ,i → ¬ok(Στ )

Definition 4.8 becomes Definition 4.9

Definition 4.9. Validity constraint

for a contextual test τ defined by the data XT, a behavioral constraint represented by Bτ (XT)

and Bτ , but also a validity constraint represented by Vτ (XT) and Vτ :

1. XT complete wrt Bτ and Vτ , and (Bτ (XT) ∈ Bτ ) ∧ (Vτ (XT) ∈ Vτ )→ ok(Στ )

2. ∃Ti ∈ P(T)/XTi complete wrt Vτ and (Bτ,i(XTi) /∈ Bτ,i) ∧ (Vτ (XTi) ∈ Vτ )→ ¬ok(Στ )
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Let’s consider the following example of partial valid test of CO2 concentrations during a

valid time span T = {t0, t1, t2, t3, t4, t5}
The test is defined by a behavioral constraint Bτ (XT) ∈ Bτ with Bτ = Cin(t) ∈ [390, 700],∀t ∈ T
The test is also defined by a validity constraint Vτ (XT) ∈ Vτ with Vτ = ζD(t) ∈ [0, 0.10]∧ζW (t) ∈
[0, 0.10],∀t ∈ T
The bunch of data required for the test of behavioral constraint is Cin(T) = [395, 410, 450, 500, 650, 698].

The bunch of data required for the test of validity constraint is ζD(T) = [0, 0.01, 0.08, 0.085, 0.09, 0.1]

and ζW (T) = [0, 0.01, 0.08, 0.085, 0.09, 0.1]

Partitioning consists on decomposing the data set of CO2 concentrations into Cin(T,1) = (395, 410, 450)

and Cin(T,2) = (500, 650, 698), decomposing the data set of door positions into ζD(T,1) =

(0, 0.01, 0.08) and ζD(T,2) = (0.085, 0.09, 0.1) and decomposing the data set of window posi-

tions into ζW (T,1) = (0, 0.01, 0.08) and ζW (T,2) = (0.085, 0.09, 0.1)

The behavioral constraint satisfaction is decomposed into Bτ,1(XT,1) ∈ Bτ,1 where Bτ,1 =

Cin(t) ∈ [390, 700],∀t ∈ T1 and Bτ,2(XT,2) ∈ Bτ,2 where Bτ,2 = Cin(t) ∈ [390, 700],∀t ∈ T2

The validity constraint satisfaction is decomposed into Vτ,1(XT,1) ∈ Vτ,1 where Vτ,1 = ζD(t) ∈
[0, 0.25]∧ζW (t) ∈ [0, 0.25],∀t ∈ T1 and Vτ,2(XT,2) ∈ Vτ,2 where Vτ,2 = ζD(t) ∈ [0, 0.25]∧ζW (t) ∈
[0, 0.25],∀t ∈ T2

Bτ (XT) ∈ Bτ is satisfied because Bτ,1(XT,1) ∈ Bτ,1 is satisfied and Bτ,2(XT,2) ∈ Bτ,2 is satisfied

In addition, the space of behavioral constraint is totally covered. It means that the data set

contains the two possibilities of low CO2 concentrations (i.e 390 ≤ CO2 ≤ 450) and high CO2

concentrations (i.e 450 < CO2 ≤ 700) are present. So, we conclude that Cin(T) is complete with

respect to Bτ

Also, Vτ,1(XT,1) ∈ Vτ,1 is satisfied and Vτ,2(XT,2) ∈ Vτ,2 is satisfied. So, Vτ (XT) ∈ Vτ is satisfied.

In addition, the space of validity constraint is totally covered. It means that the data set con-

tains the two possibilities of door and window totally closed (i.e 0 ≤ ζD ≤ 0.08 and 0 ≤ ζW ≤
0.08) and door and window partially closed (i.e 0.08 < ζD ≤ 0.10 and 0.08 < ζW ≤ 0.10). So,

we conclude that ζD(T) and ζW (T) are complete with respect to Vτ

Consequently, the conclusion about this test is ok.

The next section deals with a method to calculate the completeness level.

4.4 The completeness level: a new concept for better

formalizing validity

This section deals with a method for better formalizing validity and proving a test.
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4.4.1 Mathematical basis for completeness level

In this work, the concept of completeness level (Definition 4.11) for better formalizing valid-

ity and proving a test is used. It is an indicator to prove how much max(T)→∞ is satisfied. In

fact, proving the test ∀t is not possible because we don’t have an infinite time. To overcome this

problem, the solution is to test in some representative cases i.e in a finite time (max(T) <∞).

In this case, the conclusion is if the test is ok for some cases, we can conclude that it is ok for

max(T).

To calculate the completeness level for a test, a partitioning approach (Definition 4.10) is used

in this work.

Definition 4.10. representative partitioning approach

Recall a partitioning of an ordered set of data XT related to the set of ordered variables {x0, x1, ..., xp−1}
covering a valid time span T={t0, t1, ..., tn−1}, is to divide the set XT into partitions of T:

P(T) = {Ti,∀i}

The completeness level is computed by:

µτ (X(T)) =
Σi(X(T) ∩ Pi 6= 0)

n
(4.2)

with

P = {P1,P2, ...,Pn} be a partition of dom(XT)

X(T) ∩ Xi 6= 0 is number of points per partition

A such example of partitioning methodology is shown in the following.

Definition 4.11. Completeness level for test

Let XT be a set of known (measurements) covering a time span T
A completeness level µτ (XT) for a test τ is defined as follows:

1. µτ (XT) = 1 means the test with max(T) < ∞ yields the same conclusion than when

max(T)→∞
max(T) → ∞ means that the system is always normal for all times. This cannot be

verified as it does not have infinite time. To overcome this problem, the solution is to

test in some representative enough cases (ie in a finite time (max(T) <∞)) and so if the

behavior constraint is ok for some representative enough cases, we can say that it should

be ok for max(T)→∞

2. µτ (XT) = 0 means | T |= 0 where | T | is the cardinal of T. T has no element.

Let’s consider the following example:

Let T = {t1, t2, t3, t4}: The set T has 4 elements. It is said that | T |= 4.

Let T = ∅ be the empty set. | T | = 0. Indeed, T has no element.
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3. µτ (XT) < µT (X ′T) means the dataset X ′T is more representative of max(T) → ∞ than

XT.

For example, let’s (XT) and (X ′T) 2 data sets defined by

— XT = {−4,−4.3, 5, 5.5}, where T = [t0 = 0, t1 = 1, t2 = 2, t3 = 3], with t0 < t1 <

t2 < t3

— X
′

T = {−4,−4.3, 5, 5.5, 12, 13, 12.6, 14}, where T = [t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 =

, t5 = 5, t6 = 6, t7 = 7], with t0 < t1 < t2 < t3 < t4 < t5 < t6 < t7

Partitioning approach consists on decomposing the ordered data set XT into subsets for

example in two subsets (Xfew
T and X lot

T such as Xfew
T = X(t) ∈ [−3, 6],∀t ∈ T and

X lot
T = X(t) > 6,∀t ∈ T and decomposing the ordered data set (X ′T) in two subsets

(X
′

Tfew and X
′

Tlot) such as X
′
Tfew = X

′
(t) ∈ [−3, 6],∀t ∈ T and X

′

Tlot = X
′
(t) > 6,∀t ∈ T

The completeness level using partitioning based approach is to check how many boxes are

filled. Tables 4.3 and 4.4 show the number of filled boxes for XT and (X ′T).

Table 4.3 – Completeness level for XT

Xfew
T X lot

T
4 points 0 points

Table 4.4 – Completeness level for X
′

T

Xfew

T′ X lot
T′

4 points 4 points

The completeness levels for XT and X ′T are respectively µT (XT) = 0.5 and µT (X ′T) = 1.

We conclude that the data set X
′

T is more representative of max(T)→∞. So, the higher

the level of completeness is, the better the database quality is (ie one tends towards

max(T)→∞)

4.4.2 Illustrative example

This section highlights the steps for design of partial valid test with completeness level as

well as how to prove the test. An example of test of indoor air quality is used as an illustrative

example.

The proposed methodology is decomposed into 6 steps:

— Step 1 : define the behavioral and validity constraints for the test as well as possible

fault explanations for such symptom

— Step 2 : determine a period of test

— Step 3 : determine when the test is valid and consequently determine the valid time span

T.

— Step 4 : determine the bunch of data XT related to the variables of behavioral and

validity constraints covering the valid time span T.
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— Step 5 : Partitioning of the space of test to know how much the data are representative

of all possible situations.

— Step 6 : calculate the completeness level using partitioning approach

An example of test of indoor air quality is used as an illustrative example. Let’s consider the

following test that verifies the indoor air quality in the office. The test is defined by{
B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ → ok(Σ)

B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ → ¬ok(Σ)

Step 1: determine behavioral and validity constraints for the test This test is defined

by a behavioral constraint B(XT) ∈ Bτ with Bτ = Cin(t) ∈ [Cmin
in , Cmax

in ],∀t ∈ T
Cmin
in and Cmax

in represent respectively the upper and the lower of CO2 concentrations in the

month of September, 2016 without fault in the sensor (Cmin
in =390 ppm) and (Cmax

in =1000 ppm).

The test is also defined by a validity constraint V (XT) ∈ Vτ with Vτ = ζD(t) = 0 ∧ ζW (t) =

0,∀t ∈ T

Step 2: determine a period for the test

The period of test is September 1st from t=00:00 to t=23:00

Step 3: determine the valid time span

Figure 4.11 shows the evolution of door and window positions.

Figure 4.11 – Zones of validity

The test is valid from t=00:00 to t=09:00 and from t=18:00 to t=23:00 and invalid other-

wise. The time span contains only time samples in valid zones. In this case, the time span is

T={t0=00:00:00, t1=01:00:00, t2=02:00:00, t3=03:00:00, t4=00:00:00, t5=05:00:00, t6=06:00:00,

t7=07:00:00, t8=08:00:00, t9=09:00:00, t18=18:00:00, t19=19:00:00, t20=20:00:00, t21=21:00:00,

t22=22:00:00, t23=23:00:00}
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Step 4: determine the bunch of data

The bunch of data required for the behavioral is CinT, a sequence of similar intervals of CO2

concentrations in September 1st, 2016 measured by CO2 concentrations sensor installed in the

H358 office (Cin(T) = [[Cin(t0), ..., Cin(t9)], [Cin(t18), ..., Cin(t23)]])

The bunch of data required for the validity is ζD(T), a sequence of similar intervals of door

positions in September 1st, 2016 measured by door contact sensor installed in the H358 office

(ζD(T) = [[ζD(t0), ..., ζD(t9)], [ζD(t18), ..., ζD(t23)]]) and ζW (T), a sequence of similar intervals of

window positions in September 1st, 2016 measured by window contact sensor installed in the

H358 office (ζW (T) = [[ζW (t0), ..., ζW (t9)], [ζW (t18), ..., ζW (t23)]])

Step 5: representative partitioning of the space of test to know how much the

data are representative of all possible situations

The space of validity constraints is composed by sensor measurements. The variables included

in the validity constraints could have different situations. For example, the door and window

openings could be totally closed (i.e ζD = 0 and ζW = 0) or partially closed (i.e 0 < ζD ≤ 0.25

and 0 < ζW ≤ 0.25). The objective is to have data representative of all possible situations.

Partitioning approach consists on decomposing the ordered data set T into subsets for example

in two subsets (few and lot) such as the domain of CO2 concentrations (390 ≤ Cin ≤ 1100)

is decomposed on low CO2 concentrations(390 ≤ Cfew
in ≤ 450) and high CO2 concentrations

(450 < C lot
in ≤ 1100), the domain of door openings (0 ≤ ζD ≤ 0.25) is decomposed on door

totally closed (0 ≤ ζfewD ≤ 0.08) and door partially closed (0.08 < ζ lotD ≤ 0.25) and the domain

of window openings (0 ≤ ζW ≤ 0.25) is decomposed on window totally closed (0 ≤ ζfewW ≤ 0.08)

and window partially closed (0.08 < ζ lotW ≤ 0.25)

Step 6: calculate the completeness level

The completeness level check whether diverse enough situations are contained in a test or not.

The number of situations is 23 = 8 which are:

— when CO2 concentrations is low and door is totally closed

— when CO2 concentrations is low and door is partially closed

— when CO2 concentrations is high and door is totally closed

— when CO2 concentrations is high and door is partially closed

— when CO2 concentrations is low and window is totally closed

— when CO2 concentrations is low and window is partially closed

— when CO2 concentrations is high and window is totally closed

— when CO2 concentrations is high and door is partially closed

Table 4.5 checks how many boxes are filled.
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Table 4.5 – Completeness level for test of CO2

390 ≤ Cfew
in ≤ 450 450 < C lot

in ≤ 1100

0 ≤ ζfewD ≤ 0.08 2 points 0 points
(see Figure 4.12)

0.08 < ζ lotD ≤ 0.25 0 points 0 points

0 ≤ ζfewW ≤ 0.08 1 point 0 points
(see Figure 4.13)

0.08 < ζ lotW ≤ 0.25 0 points 0 points

Figure 4.12 – Combination between CO2 and door position

Figure 4.13 – Combination between CO2 and window position

The completeness level for the test of CO2 is µτ (XT) = 2
8

= 0.25

Figure 4.14 shows the behavioral constraint of CO2 concentrations
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Figure 4.14 – Behavioral constraint for test of CO2

We conclude that this test is consistent with a completeness level equal to µτ (XT) = 2
8

= 0.25

4.5 Conclusion

In Singh (2017), the concept of contextual test i.e a test valid under specific context is

proposed in the framework of fault diagnosis in building. The limitation of the proposed

concept is that it relies on an assumption that the sensors are reliable. However, the validity

is measured with faulty sensors and a faulty sensor could disturb the efficiency of this concept.

The question that arises is how to conclude about a test that can be valid or not knowing that

the validity can only be tested with sensors possibly faulty?

The contribution in this work is to consider that the sensors might be faulty when testing

validity. This chapter starts by highlighting the difficulties encountered in the test of validity

constraints which are related to the period of test and the coverage of the space of validity.

On the one hand, the longer the period of test is, the more that the test tends towards to be

invalid and the shorter, the less representative it is. To overcome this problem, the concept of

valid time span is used. It is an ordered list of time samples that corresponds to the moments

where the validity constraints are satisfied.

On the other hand, the space of validity constraints is defined over sensor measurements and

the objective is to have data representative of all possible situations. To overcome this problem,

a level of completeness is proposed as a method for better formalizing validity. It is an indicator

to prove if the test space is fully covered or not and it is calculated using partitioning approach.

Future work deals with new methods for the calculation of the completeness level such as

spreadrate technique.

The next chapter deals with the calculation of a confidence level for the result of a set of tests.
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Chapter 5

From completeness level to confidence

level of diagnosis

5.1 Introduction

In chapter 4, we presented a framework for performing diagnosis in building with partially

valid tests. The reference behavior has been simulated and then, we applied a fault scenario

as an illustration. The test results are symptoms for further usage, e.g., for decision making in

terms of diagnosis. A completeness level has been proposed as a method to assess the level of

validity of a test.

Nevertheless, the diagnostic result is calculated from a set of tests, each one defined by its

completeness level. The question that arises is how to conclude in terms of diagnosis and how

to take into account the completeness level in the diagnosis?

In the literature, the concept of confidence level for diagnosis is proposed in Dubois and Prade

(1989). In Ploix (2009), the confidence level for diagnosis with fuzzy logic reasoning is proposed

but without validity. It focused on the impact of a false alarm, which is very sensitive to de-

tection thresholds. Indeed, to prevent this from occurring, the setting must be very pessimistic

and thus generates a lot of non-detections. To remedy this, Ploix et al. (2005); Touaf (2005)

transposes the crisp logic of diagnostic analysis to a fuzzy logic reasoning (Zadeh, 1975).

The difference with the work proposed in Ploix et al. (2005) is that in our work, a test is

characterized by crisp threshold. It means that the behavioral constraint of a test is either

satisfied or unsatisfied. Doubt is related to the validity constraints and the question that arises

is from which completeness level we can conclude a test result is valid?

The novelty in this chapter is to propose a solution to compute the confidence level of a global

diagnosis deduced from a set of tests whose some of them have a completeness level lower than

1. To solve this problem, we are going to adapt a method based on fuzzy logic reasoning.
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This chapter is organized as follows: Section 5.2 presents the problem statement. The in-

novative idea and the mathematical basis for a confidence level for diagnosis are detailed in

section 5.3. Section 5.4 deals with a case study for performing diagnosis with partially valid

tests with confidence level for the platform in the University of Southern Denmark . Finally,

concluding remarks are given in section 5.5.

5.2 Problem statement

In chapter 4, a method for performing diagnosis in building with partial valid tests is pro-

posed. The validity is measured using sensors that can be faulty. To overcome this problem,

the completeness level is proposed as a method for better formalizing validity. The complete-

ness level is used to evaluate how much the space of the related variables is covered. It is a

measurement of a constraint satisfaction whatever the context is.

In the detection phase, a completeness level µτ (XT) for each test is determined. It is related to

a partial validity result. However, in a building system, various types of tests can be performed

and each of them is possibly defined by its own level of completeness. The result of tests and

therefore the diagnosis is expressed in terms of faulty components (i.e ∨i¬ok(componenti))

Let’s consider a simple example on how diagnoses are computed from inconsistent tests. Let τ1

and τ2 be 2 tests using the data of three similar sensors that measure the indoor temperature

Suppose that τ1 and τ2 are inconsistent with a completeness levels equal to µ(τ1(XT)) = 0.85

and µ(τ1(XT)) = 0.7 respectively. Because these tests are mostly negative, the possible expla-

nations for each test are given by:

Expl(τ1) = {¬ok(sensor1),¬ok(sensor2)}
Expl(τ2) = {¬ok(sensor1),¬ok(sensor3)}
Without considering the completeness level, the obtained diagnoses are:

D1: ¬ok(sensor1)

D2: ¬ok(sensor2) ∧ ¬ok(sensor3)

The question that arises is how to determine the confidence level for global diagnoses? In

fact, the diagnostic result is calculated from 2 tests, each defined by its completeness level

lower than one. The problem is how to take into account the completeness level to determine a

confidence level for global diagnoses?

The next section deals with a method to determine the confidence level for global diagnosis.

92



5.3 From completeness level to confidence level of diag-

nosis

In the detection phase, a completeness level for each test is determined to assess a level of

validity for each test. For the test conclusion to be ok, a test should be consistent AND valid

AND complete. For the test conclusion to be not ok, a test should be inconsistent AND valid

AND complete.

A test is characterized by thresholds i.e the behavioral constraint is either satisfied or unsat-

isfied. Doubt is related to the validity constraints. To remedy this, we have transpose the

crisp logic of diagnostic reasoning into fuzzy logic reasoning. The idea is, instead of speak-

ing about a completeness level to assess the level of validity for a test, we are talking about

a membership level to a valid domain for a test and consequently, instead of speaking about

consistent/inconsistent tests, we are speaking about a membership level to True/False for a test.

Before introducing the confidence level, let’s define the different concepts.

The theoretical basis of fuzzy logic was established in the early 1965s by Zadeh (1975). This

technique combines the notion of ”fuzzy membership” (Definition 5.1). An element can belong

partially to a given set, modeling an uncertainty that allows a more flexible reasoning. The

data are modeled by linguistic variables which are the association of a linguistic term with

a fuzzy subset. Thus, the ”classical” numerical computation model becomes a ”computation

with Words (CW)”. Fuzzy logic reasoning, based on the definition of rules and a membership

level to sets (Definition 5.2), allows to better understand difficult phenomena.

Definition 5.1. fuzzy membership

A subset A of the set X is characterized by a fuzzy membership function fA(x) such that:

∀x ∈ X, fA(x) ∈ [0, 1] with fA = 0 for a null membership and fA = 1 for a total membership

Definition 5.2. Membership level

Instead of belonging to the ”true” set or the ”false” set in crisp logic, fuzzy logic admits a

membership level to a given set. The membership level to a fuzzy set is materialized by a

number between 0 and 1. A precise value of the membership function linked to a value of the

variable is noted µ.
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Figure 5.1 shows an example of membership level to True/False for a test, from its com-

pleteness level. According to Figure 5.1, we can see that for a completeness equal to 0.6, the

Figure 5.1 – Example of membership level

membership level to True (µTrue) is equal to 0.3 and the membership level to False (µFalse) is

equal to 0.7.

In order to be able to easily manipulate fuzzy sets, we redefine the operators of the theory

of classical sets in order to adapt them to the membership functions. Here are two the most

commonly used operators: complement NOT (Definition 5.6), intersection AND (Definition

5.5), and union OR (Definition 5.4).

To compare two fuzzy subsets, one must compare their respective membership functions (Def-

inition 5.3)

Definition 5.3. Egality

A = B if and only if ∀x ∈ X, fA(x) = fB(x)

To know the common points between two fuzzy sets, we must also look at their respective

membership functions and estimate how similar they are. We often take the min operator for

that.

Definition 5.4. Intersection

A ∩B ⇒ µ(A ∩B)(x) = min(fA(x), fB(x))

To gather two fuzzy subsets, one often takes the operator max.

Definition 5.5. Union

A ∪B ⇒ µ(A ∪B)(x) = max(fA(x), fB(x))

It should be noted that the max and the min are not the only possible operators to de-

fine respectively the union and the intersection of two fuzzy subsets. In general, we can de-

fine the intersection by a triangular norm (t-norm) and the union by a triangular conorm

(t-conorm)(Karnik and Mendel, 1998)

To express a negation, we use the complement of the membership function of the fuzzy subset.
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Definition 5.6. Complement

The complement A is defined by fA(x) = 1− fA(x)

Reasoning in fuzzy logic is based on one main element which is the fuzzy relationship (Zadeh,

1975; Iancu, 2012)

Definition 5.7. fuzzy relation

Let X and Y be two sets. A fuzzy relationship R between X and Y is a fuzzy subset belonging

to X × Y

Thus, the fuzzy implications (Definition 5.8) have been constructed as fuzzy relations be-

tween two sets X and Y.

Definition 5.8. fuzzy implication

Let A and B be two fuzzy subsets belonging to the two sets X and Y. A fuzzy implication

translates as:

IF (x is A) THEN (y is B)

where x and y are values belonging to the two reference sets X and Y respectively.

A fuzzy implication is thus a quantification of the degree of truth which links the two ele-

mentary propositions (x is A) and (y is B). Therefore, it depends on the membership functions,

fA and fB, of the two fuzzy subsets A and B. The notation noted (p⇒ q) = (¬p ∨ q) in crisp

logic where the values take only the values 0 or 1, is defined by Table 5.1. On the other hand,

Table 5.1 – Implication in crisp logic

fA(x) fB(y) fR(x, y)
0 0 1
0 1 1
1 0 0
1 1 1

in fuzzy logic, there are several definitions of implication. of which we present some of the most

used in Table 5.2.

Table 5.2 – The main fuzzy implications

Name Definition
Mamdani(King and Mamdani, 1977) min(fA(x), fB(y))

Lukasiewicz(Lukasiewicz, 1920) min(1-fA(x)+fB(y), 1)
Larsen (Larsen, 1980) fA(x)fB(y)

Reichenbach(Reichenbach, 1934) 1-fA(x)+fA(x)fB(y)
Kleene-Dienes(Dienes, 1949) max(1-fA(x), fB(y))

Mamdani’s definition is the most simplifying since it reduces an implication to an opera-

tor of type ”and” (King and Mamdani, 1977). The implication of Reichenbach (1934) re-

sults from (p ⇒ q) = (¬p ∨ q) which can also be written (p ⇒ q) = (1 ∨ (¬p ∨ q)) so

(p⇒ q) = (¬p ∨ p) ∨ (¬p ∨ q), that is to say, by factoring, (p⇒ q) = ¬p ∨ (p ∨ q))
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The following steps explain the diagnostic analysis with confidence level based on fuzzy logic

reasoning.

5.3.1 Fuzzification of symptoms

To take better advantage of the fuzzy reasoning, we slightly modify the interpretation of the

validity. If a test is consistent, valid and incomplete, the level of completeness is represented

by a membership level to valid. Therefore, instead of considering that the test is true or false,

a membership level to true / false is used.

A system defined by a behavioral and a validity constraint is defined by

Vτ (XT) ∈ Vτ ∧ (∧iok(componenti))↔ Bτ (XT) ∈ Bτ (5.1)

or equivalent

∧i ok(componenti)↔ Bτ (XT) ∈ Bτ ∧ ¬(Vτ (XT) ∈ Vτ ) (5.2)

To make better use of the fuzzy reasoning, we slightly modify the interpretation of the validated

given in Equation 5.2. The idea is to say that if the validity constraints are not satisfied, instead

of considering that the system behaves a priori normally, it is in an indeterminate state.

∧i ok(itemi)← Bτ (XT) ∈ Bτ ∧ Vτ (XT) ∈ Vτ (5.3)

The constraint modeling the doubt in case of validity is given by Equation 5.4

¬(Vτ (XT) ∈ Vτ ) ≡ doubt in ∧i ok(itemi) (5.4)

This translates into a constraint that corresponds to Equation 5.5

∧i ok(itemi)→ Bτ (XT) ∈ Bτ ∨ ¬(Vτ (XT) ∈ Vτ ) (5.5)

Therefore, the validity constraint must be tested. With the fuzzy approach, we will consider

that there are more than two possible values for satisfaction (satisfied or not satisfied), but an

infinity that ranges from 1 (satisfied) to 0 (not satisfied). This corresponds to the membership

level to satisfied.

At the end of the test phase, there are two membership levels. In fact, instead of speaking

about a completeness level for a test, we speak about a membership level to a valid domain i.e

µV = µ(Vτ (XT) ∈ Vτ ). Also, instead of speaking about True or False test, we speak about a

membership level to True or False µTrue = µ(τ = True) and µFalse = µ(τ = False).

The objective is to determine a fuzzification function which allows to determine µTrue from

µV = µ(Vτ (XT) ∈ Vτ )
Using the fuzzy interpretation A→ B ≡ ¬A ∨B, µ(A ∨B) = min(1, µ(A) + µ(B))

Consider that, in Equation 5.5, the two sets of behavioral and validity constraints must be tested

and in the detection phase, two membership levels µB = µ(Bτ (XT) ∈ Bτ ) and µV = µ(Vτ (XT) ∈
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Vτ ) are distinguished. The objective is to find a function of fuzzification which allows to deduce

the membership level to the symptom ∧iok(componenti) and thus of the degrees of satisfaction

of the constraints of behavior and validity µ(Bτ (XT) ∈ Bτ ) and µ(Vτ (XT) ∈ Vτ ).
Let’s transpose Equation 5.5 to Equation 5.6

min(1, 1− µ(∧iok(itemi)) + µ(Bτ (XT) ∈ Bτ ) + (1− µ(Vτ (XT) ∈ Vτ )), 1) = 1 (5.6)

It comes Equation:

min(1, 2− µ(∧iok(itemi)) + µ(Bτ (XT) ∈ Bτ ) + +µ(Vτ (XT) ∈ Vτ ), 1) = 1 (5.7)

To check Equation 5.7, you have to check

µ(∧iok(itemi)) ≤ 1 + µ(Bτ (XT) ∈ Bτ )− µ(Vτ (XT) ∈ Vτ ) (5.8)

Equation 5.4 led to:

µ(Vτ (XT) ∈ Vτ ) ≡ (µ(∧iok(itemi)) = 0.5) (5.9)

Equation 5.3 yields

min(1,−2− µ(Bτ (XT) ∈ Bτ )− µ(Vτ (XT) ∈ Vτ ) + µ(∧iok(itemi))) = 1 (5.10)

To satisfy equation 5.9, we must check:

µ(∧iok(itemi)) ≥ µ(Bτ (XT) ∈ Bτ ) + µ(Vτ (XT) ∈ Vτ )− 1 (5.11)

In Ploix (2009), a function of fuzzification which allows to deduce the membership level to

the symptom ∧iok(componenti) and thus of the degrees of satisfaction of the constraints of

behavior and validity µ(Bτ (XT) ∈ Bτ ) and µ(Vτ (XT) ∈ Vτ ) and it is defined by:

Γ(µB, µV ) =
1 + (2µB − 1)µV

2
(5.12)

Our case differs from that of Ploix (2009). In our case, a test is characterized by thresholds

ie the behavior constraint of a test is either satisfied (µ(Bτ (XT) ∈ Bτ ) = 1) either unsatisfied

(µ(Bτ (XT) ∈ Bτ ) = 0). Uncertainty is related to the validity constraints. Indeed, it is difficult

to set a threshold for the level of completeness from which one can say that a test is valid.

In this work, we work on a function of fuzzification which allows to deduce the membership

level to True from the membership level to a valid domain. It is defined by:

µ(τ = True) =
µτ (XT)

2
+ 0.5 (5.13)

Figure 5.2 illustrates this point of view.
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Figure 5.2 – Membership level to ”valid” according to level of completeness

In fuzzy logic, if µV = 1, the test is valid. If µV = 0, the test is valid or invalid. So, we

conclude that, for the test to be valid, it is necessary that µV ≥ 0.5

Let’s consider the following example of 5 tests summarized in Table 5.3.

Table 5.3 – Test conclusion

Tests consistent/inconsistent valid/invalid complete/incomplete Test
conclusion

τ1 consistent valid complete(µτ (XT) = 1) True
τ2 consistent valid incomplete(µτ (XT) = 0.4) -
τ3 inconsistent valid complete(µτ (XT) = 1) False
τ4 inconsistent valid incomplete(µτ (XT) = 0.6) -
τ5 inconsistent valid incomplete(µτ (XT) = 0.8) -

where - means indefined

The diagnostic result is calculated from a set of tests, whose some of them have a completeness

level lower than 1.

To overcome this problem, we propose to calculated the membership level to True/False from

the membership level to a valid domain.

So, in fuzzy logic, a membership level to True/False for each test is determined by Equation

5.13.

µ(τ1 = True) = 1
2

+ 0.5 = 1

µ(τ2 = True) = 0.4
2

+ 0.5 = 0.7

µ(τ3 = False) = 1
2

+ 0.5 = 1

µ(τ4 = False) = 0.6
2

+ 0.5 = 0.8

µ(τ5 = False) = 0.8
2

+ 0.5 = 0.9

The next section deals with fuzzy logic diagnostic analysis
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5.3.2 Fuzzy logic diagnostic reasoning

In the detection phase, a membership level to True for each test is determined (µ(τ = True)).

In order to determine the faulty components, diagnostic reasoning analyses the symptoms from

detection tests. In this work, to compute diagnosis, we use the diagnostic from first principle,

based on the concept of conflict and proposed by Reiter (1987). If an abnormality is detected,

it means that the system state is necessarily false. A conflict is a set of component states, which

one of them is at least false.

Diagnoses are deduced from the analysis of sets of revealed conflicts. The number of possible

diagnoses could be huge. So, the search of minimum diagnoses is required. The minimum

diagnoses are obtained thanks to the HS Tree algorithm proposed by Reiter (1987).

Several situations can occur.

Let’s T, be a set of tests that is partitioned into:

T = Tpositive ∪ Tnegative ∪ Tdoubtful (5.14)

with

Tpositive = {τ, µ(τ = True) = 1}

Tnegative = {τ, µ(τ = False) = 1}

Tdoubtful = {τ, µ(τ = False) ∈]0, 1[}

where µ(τ = True) = 1− µ(τ = False)

Tdoubtful is decomposed into doubtful tests mostly positive Tdoubtfulmostly positive and doubtful tests

mostly negative Tdoubtfulmostly negative defined respectively by

Tdoubtfulmostly positive = {τ, µ(τ = False) ∈]0, 0.5[}

Tdoubtfulmostly negative = {τ, µ(τ = False) ∈ [0.5, 1[}

Now, let’s justify the value 0.5. Let A and B be two fuzzy sets. Benvenuti (1996) defines A < B

(A less fuzzy than B) by µA ≤ µB ≤ 0.5 or 0.5 ≤ µB ≤ µA. Through this showed that ”the set

(noted S/2) defined by µ = 0.5 is the single maximum element.

Let’s consider different situations

The first situation corresponds to the case where Tpositive = ∅ and Tdoubtfulmostly positive = ∅.

This situation is similar to that of the crisp logic: there is no reason to calculate diagnoses

because no anomaly has been revealed.
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The second situation corresponds to the case where Tnegative = ∅ and Tdoubtfulmostly negative =

∅..

The diagnoses must then be able to explain not only these tests but also doubtful tests

Tdoubtfulmostly negative, which reveal a possible anomaly. Let’s call Dnegative = {Dnegative
i , ∀i} the di-

agnoses explaining Tnegative.
Let’s consider the example of three tests T1, T2 and T3 where T1 and T2 are negative (i.e

µ(T1 = False) = 1 and µ(T2 = False) = 1) and T3 is doubtful mostly negative i.e µ(T1 =

False) = 0.8 ∈ [0.5, 1[.

Let’s consider the two following situations.

The first situation consists on calculating the minimal diagnoses from only negative tests that

reveal inconsistency. The explanations of each test are the following:

Expl(T1) = ¬ok(component1) ∨ ¬ok(component2)¬ok(component3)

Expl(T2) = ¬ok(component2) ∨ ¬ok(component3)

The set of global minimal diagnoses from negative tests Dnegative is deduced with the HS Tree

algorithm is the following:

Dnegative = ¬ok(component2) ∨ ¬ok(component3)

The second situation consists on calculating the minimal diagnoses from both negative and

doubtful mostly negative tests that reveal inconsisties. The explanations of each test are the

following:

Expl(T1) = ¬ok(component1) ∨ ¬ok(component2)¬ok(component3)

Expl(T2) = ¬ok(component2) ∨ ¬ok(component3)

Expl(T2) = ¬ok(component4)

The obtained diagnoses is:

D = ¬ok(component2) ∨ ¬ok(component3) ∨ ¬ok(component4)

According to these two situations, we conclude that with or without ¬ok(component4), the

minimal diagnoses ¬ok(component2) ∨ ¬ok(component3) are always present. To explain the

Tdoubtfulmostly negative tests, each Dnegative
i diagnosis must be completed by additional ¬ok modes (which

is ¬ok(component4) in this example). However, the diagnoses resulting from this comple-

ment are necessarily not minimal since they contain Dnegative (which is ¬ok(component2) ∨
¬ok(component3) in this example)

Therefore, in the situation where T = Tnegative, the minimum diagnoses are calculated only

from Tnegative, written D = Dnegative
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The diagnoses can be calculated but it remains to evaluate their confidence level. The

principle is to evaluate the confidence level of what induces each diagnosis. In this situation,

the diagnoses are induced by the Tnegative tests whose characterized by µ(Test = False) = 1.

So, the confidence level for global diagnosis is equal to:

µ(Dnegative) = 1

Let’s consider the following system defined by:

ok(sensor 1) ok(sensor 2) ok(sensor 3) ok(sensor 4)
τ1 1 0 1 1
τ2 1 1 0 1
τ3 1 1 1 0

Imagine that the observed symptoms are the following:

consistent/inconsistent valid/invalid complete/incomplete
τ1 inconsistent valid complete(µτ (XT) = 1)
τ2 inconsistent valid incomplete(µτ (XT) = 0.6)
τ3 inconsistent valid incomplete(µτ (XT) = 0.7)

The diagnostic result is calculated from tests, whose some of them are incomplete (i.e have a

completeness level lower than 1). To remedy this, we have transposed the crisp logic to fuzzy

logic reasoning.

The first step is to calculate the membership level to ”False” for each test.

µ(τ1 = False) = 1
2

+ 0.5 = 1

µ(τ1 = False) = 0.6
2

+ 0.5 = 0.8

µ(τ1 = False) = 0.7
2

+ 0.5 = 0.85

In this case, the test τ1 is negative and tests τ2 and τ3 are doubtful mostly negative because

their membership level to False is belong the interval [0.5, 1[

Imagine that the obtained diagnoses are ¬ ok (sensor 1) ∨ ¬ ok (sensor 2) ∨ ¬ ok (sensor

3) ∨ ¬ ok (sensor 4)

The confidence level for each diagnosis is equal to 1.
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The third situation corresponds to the case Tdoubfulmostly negative = ∅. Doubtful tests are

decomposed on 2 types of tests doubtful mostly negative tests and doubtful mostly positive

test. The question that arise is from which type of these tests, the diagnoses are calculated?

Let’s call Ddoubtful = {Ddoubtful
i ,∀i} the diagnoses explaining Tdoubtful tests.

Let’s consider the example of 3 tests τ1, τ2 and τ3 where τ1 and τ2 are doubtful mostly negative

(i.e µ(τ1 = False) = 0.9 ≥ 0.5 and µ(τ2 = False) = 0.8 ≥ 0.5) and τ3 is doubtful mostly

positive (i.e µ(τ3 = True) = 0.8 ≥ 0.5

Let’s consider the 2 following situations:

The first situation consists on calculating the minimum diagnoses from only doubtful mostly

negative tests that reveal anomalies. The explanations for each test are the following:

Expl(τ1) = ¬ok(component1) ∨ ¬ok(component2) ∨ ¬ok(component3) ∨ ¬ok(component5)

Expl(τ2) = ¬ok(component2) ∨ ¬ok(component3)

The set of minimum diagnosis from Tdoubtfulmostly negative tests, deduced with the Hitting Set algorithm,

are the following.

Ddoubtful = ¬ok(component2) ∨ ¬ok(component3)

The second situation consists on calculating the minimum diagnoses from both doubtful mostly

negative and doubtful mostly positive tests that reveal anomalies. The explanations for each

test are the following:

Expl(τ1) = ¬ok(component1) ∨ ¬ok(component2) ∨ ¬ok(component3) ∨ ¬ok(component5)

Expl(τ2) = ¬ok(component2) ∨ ¬ok(component3)

Expl(τ3) = ¬ok(component6)

The obtained diagnosis is

— D1 : ¬ok(component2) ∨ ¬ok(component6)

— D2 : ¬ok(component3) ∨ ¬ok(component6)

According to the 2 situations, we conclude that with or without τ3 which is doubtful mostly

positive, the minimum diagnoses (¬ok(component2) ∨ ¬ok(component3)) are always present.

So, to explain the combinatory of Tdoubtfulmostly negative tests, each Ddoubtful
i diagnosis must be com-

pleted by additional ¬ok modes (which is ¬ok(component6) in this example). However, the

diagnoses resulting from this complement are not minimum since they contain Ddoubtful (i.e

¬ok(component2) ∨ ¬ok(component3) in this case).

Therefore, in the situation where T = Tdoubtful, the minimum diagnosis are calculated only

from Tdoubtfulmostly negative written D = Ddoubtful = ∨τi∈Tdoubfulmostly negative
∨¬ok(componenti)∈Expl(τi) ¬ok(itemi)

In fact, in fuzzy logic,

if µ(τ = False) = 1→ τ = False

if µ(τ = False) = 0 → τ = False or τ = True So, for the test τ to be false, we must have

µ(τ = False) ≥ 0.5
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The diagnoses can be calculated, but it remains to evaluate their confidence level. The

principle is to evaluate the confidence level of what induces the diagnosis. In this situation, the

diagnoses are induced by ∨τi∈Tdoubfulmostly negative
∨¬ok(componenti)∈Expl(τi) ¬ok(componenti)

By using max, as the fuzzification operator for OR, the confidence level for diagnosis is defined

by:

µ(Ddoubtful) = maxτi∈Tdoubtfulmostly negative
µ(τi = False) (5.15)

Let’s consider the following example, let’s the system defined by the following symptoms

consistent/inconsistent valid/invalid complete/incomplete
τ1 consistent valid incomplete(µτ (XT) = 0.3)
τ2 inconsistent valid incomplete(µτ (XT) = 0.5)
τ3 inconsistent valid incomplete(µτ (XT) = 0.2)

The first step is to calculate the membership level to ”False” for each test.

µ(τ1 = False) = 0.3
2

+ 0.5 = 0.65

µ(τ2 = False) = 0.5
2

+ 0.5 = 0.75

µ(τ3 = False) = 0.2
2

+ 0.5 = 0.6

The confidence level is equal to max(0.65, 0.75, 0.6) = 0.75

The fourth situation corresponds to the case Tnegative = ∅. Let’s Dnegative be the

diagnoses explaining Tnegative. In this case, the minimum diagnoses are calculated from Tnegative

where each test τi ∈ Tnegative characterized by a membership level to False equal to µ(τi =

False) = 1. So, the confidence level for global diagnosis is equal to

µ(Dnegative) = 1 (5.16)

Let’s consider the following example, the system is defined by the following symptoms

consistent/inconsistent valid/invalid complete/incomplete
τ1 inconsistent valid complete(µτ1(XT) = 1)
τ2 inconsistent valid complete(µτ2(XT) = 1)

Tests 1 and 2 are False because they are inconsistent and valid and complete. The explanations

of each test are the following:

Expl(τ1) = ¬ok(component1) ∨ ¬ok(component2)

Expl(τ2) = ¬ok(component3)

The diagnoses are calculated from both tests 1 and 2. The minimum diagnoses are ¬ok(component

1) ∨ ¬ok(component 2) ∨ ¬ok(component 3). The confidence level for calculated diagnoses is

equal to 1

In the following, a real case study for performing diagnosis with partially valid tests with

confidence level is detailed
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5.4 Case study for Danish application

This section deals with performing diagnosis in the platform in Denmark with partially

valid tests. The objective is to detail the transition from the symptom analysis with level of

completeness to the confidence level of the calculated diagnoses. In the following, 3 methods

for diagnostic analysis are discusses: visual diagnostic analysis, diagnostic analysis by Singh

et al. (2019) and the proposed diagnostic analysis.

5.4.1 Contextual test design

The first step is the design of automatic tests. The following tests have been performed in

the framework of the platform.

— Test 1: damper(rule based test)

— Test 2: heat exchanger (rule-based)

— Test 3: Performance test design for a ventilation fan unit (model-based)

— Test 4: heater temperature from radiator 1(range-based)

— Test 5: heater temperature from radiator 2(range-based)

— Test 6: air quality(range-based)

Each test is defined by:

— a behavioral and validity constraints

— a valid time span T

— a bunch of data XT covering a valid time span T

— a test support i.e a list of explanations for the test in case of inconsistency

— required sensors for the test of behavior and validity constraints

— a completeness level µτ (XT)

In the following, various faults were simulated. The behavior of the building is dependent of

the season, a period of validation from February 6th, 2017 to February 15th, 2017 is chosen. In

this work, we make the assumption that to perform a test, all data sets are complete i.e there

are no data gaps.

Test 1: damper (rule-based)

This test verifies if the damper is faulty or not. Test1 generates test results about the

presence/absence of fault in the damper using a set of rules.

Test1 =

{
B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ → ok(Σ)

B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ → ¬ok(Σ)
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Since it is difficult to establish a linear law between the concentration of CO2 and the

position of damper, we tried to define a law of control experimentally (see Figure 5.3)

Figure 5.3 – Law of control between the concentration of CO2 and the position of damper

This test is always valid. This test is defined by a behavioral constraint Bτ (XT) ∈ Bτ with

Bτ : CO2(t) ≥ 800 ∧ damperposition(t) ≥ 50,∀t ∈ T
The bunch of data required for the test of behavioral constraint is damperposition(T) and CO2(T).

They are a sequence of similar intervals of damper positions and CO2 concentrations measured

respectively by damper position sensor and CO2 concentrations sensor installed in Denmark

application.

This test is also defined by a test support. The possible fault explanations for this test in

case of inconsistency are ¬ ok(damper) ∨ ¬ ok(damper controller) ∨ ¬ ok(damper sensor) ∨
¬ ok(CO2 concentrations sensor)

Test 2: heat exchanger (rule-based)

This test verifies the efficiency of the heater exchanger. Test2 generates test results about

the efficiency of the heater exchanger (see Figure 5.4). Possible fault explanations for this test

combines all the major components that potentially affect the efficiency of the heater exchanger.

Possible fault explanations include sensor level fault. For instance, ok(intake air temperature

sensor)→ obs(Tair) = Tair where ok signifies the non-faulty behavior of air temperature sensor

and obs stands for the observed value. The test of damper is given as:

Test2 =

{
B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ → ok(Σ)

B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ → ¬ok(Σ)
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Figure 5.4 – Heat exchanger efficiency

This test is defined by a validity constraint Vτ (XT) ∈ Vτ with Vτ : rpm(t) > 0∧airflow(t) >

0,∀t ∈ T. The first step for designing a partial valid test is the determination of a valid time

period. Figure 5.5 shows the evolution of rpm and airflow from February 6th, 2017 to February

15th, 2017 and consequently the valid time period for this test.

Figure 5.5 – Valid time period for Test 2
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The test is valid during:

— February 8th, 2017 from t=06:00 to t=19:00

— February 9th, 2017 from t=07:00 to t=22:00

— February 13th, 2017 from t=06:00 to t=17:00

— February 14th, 2017 from t=06:00 to t=22:00

— February 15th, 2017 from t=06:00 to t=20:00

These instants where the validity constraints are satisfied correspond to the valid time period

for Test 2.

This test is also defined by a behavioral constraint Bτ (XT) ∈ Bτ with Bτ : efficiency(t) ≥
70%,∀ ∈ T with efficiency is the efficiency of the heating exchanger and it is calculated by:

efficiency(t) =
∆T1 −∆T2

100
,∀t ∈ T (5.17)

with

∆T1 = TSuply air − Tintake air (5.18)

∆T2 = Texhaust air − Tintake air (5.19)

The bunch of data required for the test of behavioral constraint are TSuply air(T), Tintake air(T)

and Texhaust air(T). They are a sequences of similar intervals of supply air temperature, intake

air temperature and exhaust air temperature measured respectively by supply air temperature

sensor, intake air temperature sensor and exhaust air temperature sensor. The bunch of data

required for the test of validity constraint is rpm(T) and airflow(T). They are a sequence of

similar intervals of rotation speed per minute of the fan and airflow measured respectively by

rotation speed sensor and airflow sensor. The rpm is used to model that the ventilation system

is in mode ON.

This test is also defined by a test support. The possible fault explanations for this test in

case of inconsistency are ¬ ok (heater exchanger) ∨ ¬ok(temperature controller) ∨ ¬ ok(supply

air temperature sensor) ∨ ¬ ok(intake air temperature sensor) ∨ ¬ok(exhaust air temperature

sensor) ∨ ¬ ok(rpm sensor) ∨ ¬ ok(airflow sensor)

Test 3: Performance test design for a ventilation fan unit (model-based)

Ventilation fans are an important component of any mechanically ventilated building. Poor

fan performance could significantly affect the whole building performance metrics. There are

several issues such as dirty blades, mechanical wear could impact the fan’s performance. This

test evaluates the building ventilation system fan operation using performance curve (Stein

and M, 2004). Expected fan performance is modeled with the help of manufacturer data and

compared against the real-time fan performance. Two data-driven models are developed and

implemented. The first model is used to compute expected total fan pressure at a given airflow

rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency.
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The performance monitoring of the ventilation fan unit is determined in terms of expected and

actual fan energy consumption.

To estimate expected fan energy consumption of ventilation system fan using airflow measure-

ment it is necessary to model total fan pressure in the terms of measured airflow. A second

model requires to estimate expected fan efficiency followed by the expected fan energy con-

sumption. Further the following performance test is formalized to monitor the normal and

abnormal behavior of ventilation fan unit.

The test is also defined by a validity constraint Vτ (XT) ∈ Vτ with Vτ : electricity(t) > 0,∀t ∈ T.

The test is defined by a behavioral constraint Bτ (XT) ∈ Bτ with Bτ : Pexpected-DN
+ <

Pmeasured < Pexpected+DN
-, DN+ and DN- are upper and lower value of performance de-

sign number and can be obtained from the ventilation commissioning team (DN+ = 30% and

DN- = 30%), Pexpected and Pmeasured represent receptively the expected and the measured power

consumption. A set of fan performance curve (FPC), provided by NK Industri (Figure 5.6) is

used for the modeling purpose.

Figure 5.6 – Ventilation unit fan performance curve provided by NK Industri

This test is also defined by a test support. The possible fault explanations for this test in

case of inconsistency are ¬ ok(fan) ∨ ¬ ok(electricity meter sensor)∨ ¬ ok(energy consumption

sensor)∨ ¬ ok(airflow sensor)
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Test 4: heater temperature from radiator 1 (range-based)

This test aims at verifying the performance of the first radiator installed in the classroom.

Test 4 generates test results about the performance of the radiator.

Test4 =

{
B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ → ok(Σ)

B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ → ¬ok(Σ)

This test is defined by a validity constraint Vτ (XT) ∈ Vτ where Vτ : radiator1 opening(t) > 0∧
heating period, ∀t ∈ T. The test is valid from February 6th, 2016 at t=00:00 to February 15th,

2016 at t=23:00. These instants where the validity constraints are satisfied and correspond to

the valid time span for Test 4. This test is also defined by a behavioral constraint Bτ (XT) ∈ Bτ
where Bτ : heatradiator1(t) > 0,∀t ∈ T
The bunch of data required for the test of behavioral constraint is heatradiator1(T). It is a

sequence of similar intervals of heater from radiator 1 measured by heat sensor installed in the

classroom of Denmark application. The bunch of data required for the test of validity constraint

is radiator1 opening(T). The are a sequence of similar intervals of radiator opening rate (i.e the

position of the thermostatic valve) measured by radiator opening sensor of the radiator 1.

The test is also defined by a test support. The possible fault explanations for this test are

¬ok(radiator 1 thermostatic valve) ∨ ¬ok(radiator 1) ∨ ¬ok(radiator 1 thermostatic valve

sensor) ∨ ¬ok(radiator 1 heat sensor) ∨ ¬ok(outdoor temperature sensor)

Test 5: heater temperature from radiator 2 (range-based)

This test aims at verifying the performance of the first radiator installed in the classroom.

Test 5 generates test results about the performance of the radiator.

Test5 =

{
B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ → ok(Σ)

B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ → ¬ok(Σ)

This test is defined by a validity constraint Vτ (XT) ∈ Vτ where Vτ : radiator2 opening(t) > 0∧
heating period, ∀t ∈ T. The test is valid from February 6th, 2016 at t=00:00 to February 15th,

2016 at t=23:00. These instants where the validity constraints are satisfied and correspond to

the valid time span for Test 5. This test is also defined by a behavioral constraint Bτ (XT) ∈ Bτ
where Bτ : heatradiator 2(t) > 0,∀t ∈ T
The bunch of data required for the test of behavioral constraint is heatradiator 2(T). It is a

sequence of similar intervals of heater from radiator 2 measured by heat sensor installed in the

classroom of Denmark application. The bunch of data required for the test of validity constraint

is radiator2 opening(T). The are a sequence of similar intervals of radiator opening rate (i.e the

position of the thermostatic valve) measured by radiator opening sensor of the radiator 2.
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The test is also defined by a test support. The possible fault explanations for this test

are ¬ok(radiator 2 thermostatic valve) ∨ ¬ok(radiator 2) ∨ ¬ok(radiator 2 thermostatic valve

sensor) ∨ ¬ok(radiator 2 heat sensor) ∨ ¬ok(outdoor temperature sensor)

Test 6: air quality (range-based)

Here is an example of a range-based test that verifies the indoor air quality (i.e CO2 con-

centrations) range in the classroom in the University of Southern Denmark. Test6 generates

test results for the deviation of indoor air quality performance. Possible fault explanations

for this test combines all the major components that potentially affect the office air quality

performance. For example, a faulty ventilation system or an important number of occupants

could be responsible for the poor air quality performance. Possible fault explanations include

sensor level fault. For instance: ok(indoor CO2 sensor) → obs(Cin) = Cin where ok signifies

the non-faulty behavior of CO2 concentrations sensor and obs stands for an observed value.

Indoor air quality test is given as:

Test6 =


consistent if B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ
inconsistent if B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ
no conclusion otherwise

Test 6 is always valid. This test is also defined by a behavioral constraint B(XT) ∈ Bτ with

Bτ = Cin(t) ∈ [Cmin, Cmax],∀t ∈ T where Cmin, Cmax represent respectively the lower and the

upper values for CO2 in fault free case of sensor in the month of March, 2016 (Cmin=390 ppm,

Cmax=1828.6 ppm)

The bunch of data required for the behavioral constraint is Cin(T). It contains the measurements

of CO2 concentrations during the valid time period T. These measurements are collected from

CO2 concentrations installed in the classroom.

This test is also defined by a test support. The possible fault explanations for Test 6 in case of

inconsistency are: ¬ ok (CO2 concentration sensor) ∨ ¬ ok(ventilation system) ∨ ¬ ok(damper)

5.4.2 Visual diagnostic analysis

This section discusses the visual diagnostic analysis. We have simulated fault scenarios that

we ask the reader to guess. The following figures show respectively the CO2 concentrations as

a function of the damper position, the efficiency of the heat exchanger, the fan power, the heat

from the radiator 1, the heat from the radiator 2 and the CO2 concentrations.

Figure 5.7 shows the satisfaction of behavioral constraint for Test 1 which corresponds to verify

the presence/absence of fault in the damper.
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Figure 5.7 – Behavioral constraint satisfaction for Test 1

Test 1 is inconsistent because the behavioral constraint is not satisfied during the valid time

period.

Figure 5.8 shows the satisfaction of behavioral constraint for Test 2 which verifies the effi-

ciency of the heater exchanger.

Figure 5.8 – Behavioral constraint satisfaction for Test 2

Test 2 is inconsistent because the behavioral constraint is unsatisfied during the valid time

period.

Figure 5.9 shows the satisfaction of behavioral constraint for Test 3 which verifies the per-

formance for a ventilation fan unit.
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Figure 5.9 – Behavioral constraint satisfaction for Test 3

Test 3 is consistent because the behavioral constraint is satisfied during the valid time period.

Figure 5.10 shows the satisfaction of behavioral constraint for Test 4 which verifies the perfor-

mance of the first radiator installed in the classroom.

Figure 5.10 – Behavioral constraint satisfaction for Test 4

Test 4 is consistent because the behavioral constraint is satisfied during the valid time period.

Figure 5.11 shows the satisfaction of behavioral constraint for Test 5 which verifies the perfor-

mance of the second radiator installed in the classroom.

Figure 5.11 – Behavioral constraint satisfaction for Test 5
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Test 5 is consistent because the behavioral constraint is satisfied during the valid time period.

Figure 5.12 shows the satisfaction of behavioral constraint for Test 6 which verifies the in-

door air quality in the classroom.

Figure 5.12 – Behavioral constraint satisfaction for Test 6

Test 6 is inconsistent because the behavioral constraint is unsatisfied during the valid time

period.

The question that arises is: What is the simulated fault? We conclude that it is difficult

to conclude on the source of default.

5.4.3 Diagnostic analysis by Singh et al. (2019)

According to Singh et al. (2019), the diagnoses are calculated from inconsistent and valid

tests, i.e. from tests 1, 2 and 6 (see Table 5.4)

Tests Consistent/Inconsistent Valid/Invalid
Test1 Inconsistent Valid
Test2 Inconsistent Valid
Test3 Consistent Valid
Test4 Consistent Valid
Test5 Consistent Valid
Test6 Inconsistent Valid

Table 5.4 – Diagnosis analysis by Singh et al. (2019)

Singh et al. (2019) uses the diagnosis according to first principle to calculate the diagnoses

because the supposed faults are not necessarily revealed and because it allows to calculate the

minimum explanations at the component level and it allows the detection of multiple faults.

With the method proposed by Singh et al. (2019), we obtain 27 diagnoses none of which is

right. In this work, only diagnoses number 0, 6, 8, 12, 26 and 27 are presented (see Table 5.5).
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Diagnostics found Results according Fault probability
to the proposed approach

D0 heater exchanger AND 100%
damper

D6 heater exchanger AND 100%
CO2 concentrations sensor

D8 Tair supply sensor AND 100%
CO2 concentrations sensor

D12 airflow sensor AND 100%
damper

D26 fan AND 83.33%
rpm sensor AND

damper
D27 fan AND 83.33%

airflow sensor AND
damper position sensor

Table 5.5 – Diagnosis analysis by Singh et al. (2019)

The simulated fault is an offset on the CO2 concentrations sensor, a bias on the Tair supply

sensor and an offset on the rpm sensor. The obtained result is inexact. The diagnoses are

calculated from the 3 tests which are Test 1, Test 2 and Test6. In this case, a bias is applied

to the rpm sensor which intervenes in the validity of test 2. So, with Singh et al. (2019), the

diagnoses are calculated by 3 tests, the validity of one of which is measured by a faulty sensor.

5.4.4 Proposed diagnostic analysis

In the proposed methodology, we suppose that the validity is measured with faulty sensors.

At the beginning, a level of completeness is calculated for each inconsistent test (see Table 5.7).

Tests 1 and 6 are always valid. So, their completeness levels are equal to 1. Now, let’s calculate

the completeness level for Test 2. This step consists on representative partitioning of the space

of test to know how much the data are representative of all situations. Figure 5.13 and Figure

5.14 show respectively the evolution of rpm and airflow during the valid time period.

Figure 5.13 – Evolution of rpm during the valid time period of Test 2
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Figure 5.14 – Evolution of airflow during the valid time period of Test 1

During the valid time period for Test 2, we notice from Figure 5.13 that there are few number of

points of rpm that belong to the interval [1.44, 24.76]. The points of rpm are widely distributed

in the interval ]24.76, 315.37]. Also, we notice from Figure that there are few number of points

of airflow that belong to the interval [262.3, 3004, 94] and the points of airflow are widely

distributed in the interval ]3004.94, 16667,8]. So, partitioning consists on decomposing the data

set of rpm into low rpm (i.e 1.44 ≤ rpmfew ≤ 24.76) and high rpm (i.e 24.76 < rpmlot ≤ 315.37)

and decomposing the data set of airflow into low airflow (i.e 262.3 ≤ airflowfew ≤ 3004.94) and

high airflow (i.e 3004.94 < airflowlot ≤ 16667.8). Table 5.6 shows all the possible combinations

to cover the test space, the number of boxes filled as well as the number of points in each box.

Table 5.6 – Completeness level for validity using partitioning method for Test 2

airflowfew airflowlot
rpmfew -
rpmlot -

with means that the case is filled.

Figure 5.15 shows the combination between rpm and airflow as well as the number of points in

each combination.

Figure 5.15 – Combination between rpm and airflow for Test 1 in scenario 1
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Figure 5.15 shows that the domain of rpm is covered and the two possibilities of low and

high rpm are present. Also, the domain of airflow is covered and the two possibilities of low

and high airflow are present.

The conclusion about this test is: Test 2 is inconsistent with a completeness level equal to

µτ (XT) = 2
4

= 0.5

The diagnostic result is calculated from a set of tests, each one defined by its completeness

level. To compute the confidence level of a global diagnosis deduced from a set of tests whose

some of them have a completeness level lower than 1, we are going to adapt a method based

on fuzzy logic reasoning.

In this case, tests 1 and 6 are negative and test 2 is doubtful mostly negative because µ(Test3 =

False) = 0.75 ≥ 0.5.

Tests consistent/inconsistent completeness level membership level to False
Test 1 inconsistent 1 negative
Test 2 inconsistent 0.5 0.75 (doubtful mostly negative)
Test 3 consistent - -
Test 4 consistent - -
Test 5 consistent - -
Test 6 inconsistent 1 negative

Table 5.7 – Proposed diagnostic analysis

According to the proposed methodology, the diagnoses are calculated from inconsistent and

valid tests taking account that the validity is measured by faulty sensors. A completeness level

is calculated to assess the level of validity for each test. i.e. from tests 1, 2 and 6 (see Table

5.4)

With the proposed methodology, we obtain 4 diagnoses of which 1 is correct (see Table 5.8).

Diagnostics found Results according Fault probability
to the proposed approach

D0 CO2 concentrations sensor 100%
D1 damper 100%
D2 fan AND 83.33%

temperature controller
D3 fan AND 83.33%

damper position sensor

Table 5.8 – Proposed diagnostic analysis

With the proposed methodology, we obtained fewer diagnoses compared to the number of

diagnoses found by Singh et al. (2019). In fact, in Singh et al. (2019), the diagnoses are

calculated from tests 1, 2 and 6. With the proposed approach, the diagnoses are calculated

only from tests 1 and 6. The validity of test 2 is measured by potentially faulty sensors. Test 2

is doubtful mostly negative, and therefore this test was not taken into account in the calculation

of diagnoses.
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The simulated fault is an offset on the CO2 concentrations sensor, a bias on the Tair supply

sensor and an offset on the rpm sensor. The obtained result is inexact. The diagnoses are

calculated from only 2 tests which are Test 1 and Test6. In fact, a bias is applied to the rpm

sensor which intervenes in the validity of test 2.

Table 5.9 summarizes a comparison between the different diagnosis methods.

Visual diagnostic Diagnostic analysis Proposed diagnostic
analysis by Singh et al. (2019) analysis

Remarks No formal tests Reliable sensors Validity measured by
potentially faulty sensors

Conclusion No idea about Diagnostics calculated Diagnostics calculated
the simulated fault by three tests by two tests

Table 5.9 – Comparison between different diagnosis methods

5.5 Conclusion

In this chapter, a method for performing diagnosis in building with partially valid tests is

proposed. The concept of completeness level is proposed as a method to assess the level of

validity of a test. A test is characterized by thresholds. It means that the behavioral constraint

is either satisfied either unsatisfied. Doubt is related to the validity constraints. In fact, it is

difficult to set a threshold for completeness level from which we can conclude a test result is

valid.

The diagnostic result is calculated from a set of tests where some of them have a completeness

level lower than 1. The contribution in this work is to adapt the completeness level for symptom

analysis to calculate the confidence level of calculated diagnoses. A fuzzy logic reasoning, is

proposed as a method to prove the global diagnosis.

A real case study is studied for performing diagnosis in building with partially valid automatic

with confidence level. At the beginning, a set of tests have been designed in the framework

to the classroom and a completeness level for each symptom is calculated using partitioning

approach. Then, two fault scenarios are simulated. The calculated diagnoses are proved with

a confidence level.

In this work, three diagnostic analysis methods are discussed: visual diagnostic analysis, diag-

nostic analysis by Singh et al. (2019) and proposed diagnostic analysis. The first method shows

that it is difficult to find the fault visually. The second method leads to a number of diagnoses

equal to 27 none of which is right.

The proposed approach leads to a number of diagnoses equal to 4 of which 1 is right. It

makes it possible to find the faults but the diagnosis does not come out at 100%, that is, there

is only a part of the diagnosis that is found. For example, in the case of the fault scenario which

consists on an offset for the CO2 concentrations sensor, an offset on the rpm sensor and a bias

on the Tair supply temperature. The fault is found (i.e faulty CO2 concentration sensor) but

the other faults are not found
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This chapter assumes that, to perform a test, all data sets are complete i.e there is no missing

data. However, the data gaps is the main sensor fault in buildings. Sensor values are not

uniformly sampled and there is a need to decide from which delay the sensor becomes faulty?

Next chapter deals with automatic thresholding for data gaps detection for a set of sensors in

buildings.
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Chapter 6

Coping with complexity due to

numerous sensors

6.1 Introduction

With the massive arrival of inexpensive communicating sensors, the building sector is un-

dergoing an unprecedented revolution: the building is becoming smart, which means it offers

new services to occupants related to safety, energy management, comfort. Article 23 of the

thermal regulation RT2012 in France requires the measurement of certain variables, which pro-

motes the deployment of sensor grids in new buildings. In addition, research projects such as

the ANR OMEGA show the interest of companies to guarantee overall performances i.e. total

real consumption, interior comfort, etc. . . after refurbishment. In addition to the different as-

pects of comfort and energy consumption, these sensors can also be used to estimate occupant

practices essential for energy consumption by estimating the number of occupants per area and

their metabolic contribution, their activities and their routines.

The concept of healthy sensors is explained in the literature (Teixeira et al., 2018; Shi et al.,

2011; Wang et al., 2018). Authors in Li et al. (2007) assumed that there are two groups of

sensors: first that correctly measure structural responses (termed as �reference sensors�) and

second are failed (or uncertain) sensors. Affordable sensor grids in buildings are particularly

sensitive to battery exhaustion, hardware and other communications related failures (Ni et al.,

2009). As a result, data sets collected from these sensors often miss some records (Ramanathan,

2006; Werner-Allen et al., 2006; Li et al., 2015).

In the literature, many techniques are available for data analysis such as time series, statistical

approaches, clustering methods and many more (Le Gruenwald, 2005; Pan and Li, 2010; Yuan,

2000; Gruenwald et al., 2007). However, all of them are interested only in bias (Yu et al., 2017)

and outliers (Zhang, 2018) fault types. Occurrence of data gaps has not been given interest

from building researchers. Hence, there is a need for techniques to detect them i.e. a need to

know the periods of good operation of sensors. Given these observations, research attention
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is now turning towards automated detection of sensor faults (Kim and Katipamula, 2018), as

well as techniques that can automatically scrub collected sensor data to ensure high quality

building performance. The possibility of time delayed data becomes a reality. It means while

after preprocessing the sensors report values regularly, reality shows that quite many values are

missing (Zhou and Huang, 2018; Mehmood et al., 2018).

Sensor measurements could have temporal and frequential representations (Monte-Moreno

et al., 2009). In this work, only the temporal representation is considered and sensor mea-

surements are considered to be statistical time series. When the sensors are in ok states, the

delay data have a distribution corresponding to the normal mode of operation and these distri-

butions change when the sensor is faulty. In general, sensor values are not uniformly sampled

and the question that arises is from which delay can we say that the sensor becomes faulty?

Hence, the automatic thresholding for data gap detection for heterogeneous sensors is a feasible

paradigm for the instrumented residential environment.

The objective of this chapter is to solve the issue of unreliable instrumentation in buildings.

It focuses on developing methods for automatic thresholding for data gap detection for hetero-

geneous sensors in instrumented buildings. Two algorithms based respectively on times series

analysis and statistical approaches have been adapted to an office setting at Grenoble Institute

of Technology which is equipped with 30 sensors.

This chapter is organized as follow: section 6.2 presents the problem statement and the pro-

posed methodologies. Sections 6.3 and 6.4 present respectively the automatic thresholding with

time series analysis and probability density function and analyse the results for each method

for the office H358. Section 6.5 discusses the findings of the literature review, the proposed

methodologies, their limits and the results. Finally, concluding remarks and future works are

given in section 6.6.

6.2 Problem statement and proposed methodologies

Let’s consider the evolution of raw sensor measurements for two different sensors: a door

contact sensor and a CO2 concentration sensor (see respectively Figure 6.1 and Figure 6.2)
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Figure 6.1 – Time of recordings for door contact sensor

Figure 6.2 – Time of recordings for CO2 concentration sensor

Many values are missing. Data Gaps (see Definition 6.1) are easy to identify visually but it

is not to that easy to define automatically a relevant threshold for each measurement.

Figures 6.1 and 6.2 show that there is no regularly delayed data for a variable. Delays depend

not only on the type of sensor but also on the measured values. Hence, there is a necessity

for automatic thresholding for data gap detection for heterogeneous sensors in instrumented

building.

Definition 6.1. Data gap

Data gap means an abnormal change in the data delays sending by a sensor.

Let T be a sequence of times T = (t0, ..., tn−1) with ∀ k, tk+1 > tk

The problem is to automatically detect abnormal delays defined by Equation 6.1

∆ = tk+1 − tk (6.1)

Let’s define the sequence of delays:

∆ = {∀k,∆k = tk − tk−1, k ∈ (1, ..., n− 1)} (6.2)
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Two methodologies have been proposed in this work for automatic thresholding for sensor data

gaps detection

6.2.1 Time series based methodology

In this work, a two steps methodology is proposed.

— Step 1 : The delay is considered as a stochastic variable modeled by a gaussian probability

density function

— Step 2 : Detection of samples far from gaussian probability distribution function (pdf).

The delay is abnormal if is gather than a threshold defined by

th = m∆x + λσ∆x (6.3)

where

— m∆x: average difference between two consecutive data points

— λ: represents how far we are from the normal pdf

— σ∆x: standard deviation of the difference between two consecutive data points

This method places the abnormality at λσ∆x

6.2.2 Statistical approaches based methodology

Let’s consider that ∆ is a stochastic variable satisfying a probability distribution function

δ to be characterized by suitable algorithms.

A probability density function defined by Equation 6.4 is most commonly associated with

absolutely continuous univariate distributions. A random variable X has a density fX , where

fX is a non-negative Lebesgue-integrable function, if:

P (a 6 x 6 b) =

∫ b

a

fX dx (6.4)

A given time delay ∆k is abnormal if ∆k > δ where δ is a threshold value satisfying Equation

6.5

P (∆ ≥ δ) ≤ ρ% (6.5)

where ρ% is a low probability value like 1% of chance of a ∆k to be greater that δ

Equation (6.5) has to be solved to get δ = δ (ρ%), parameters coming from the characterization

of the pdf.

To solve this problem, a three steps methodology is proposed:

— Step 1 : The delay is considered as a continuous random process modeled by a stochastic

variable. The first step is to identify the appropriate laws modeling the time series related

to delays.

122



— Step 2 : plot by class the data in order to trace the actual observed distribution as an

histogram. From the shape of the histogram, determine a distribution law that seems to

describe the actual distribution. Then determine the parameters of this law.

— Step 3 : Solve the following equation to get the threshold th.∫ th

0

fX dx = 0.99 (6.6)

6.3 Automatic thresholding with time series analysis

6.3.1 Methodology description

The proposed algorithm is a way of describing a data point in terms of its relationship to

the average difference between two consecutive data points for the whole data set and standard

deviation of the difference between two consecutive data points for the whole data set.

This method was based on the principle that the variation of measurements (i.e delays) should

smoothly vary and follow a Gaussian distribution. The proposed idea was the outlier fence,

which is defined by the average difference between two consecutive data added by a standard

deviation of the difference of the time serie measurements.

The aim of this work is to process time series of data representing time samples. Outliers

on the delay have to be detected. They are defined as data points, which, in the contact of

previous and future data points, seem highly improbable.

In the case of normally distributed time samples, it is assumed that, at a given moment, the

difference between the current and previous data point i.e. data sent by a sensor (see Equation

6.7) is equal to the current and next data point (see Equation 6.8).

pdiffk = xk − xk−1 (6.7)

fdiffk = xk+1 − xk (6.8)

Then, a rule has been fixed at a fixed threshold and is equal to

th = m∆x + λσ∆x (6.9)

with λ a configurable parameter. If no outlier is found, reducing the value of λ for testing is

required.

Since, the majority of points in a distribution are within ”λσ∆x” deviations of the average

difference the decision is ”abnormal delay” when the value of delay is this threshold, otherwise

the decision is ”normal case”.
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These points have been detected as the ones that follow the equations simultaneously:

|pdiffk | > m∆x + λσ∆x (6.10)

|fdiffk | > m∆x + λσ∆x (6.11)

pdiffk .fdiffk < 0 (6.12)

where:

— xk: value of the variable at time sample

— pdiffk : difference between the current and previous data point

— fdiffk : difference between the current and next data point

— m∆x: average difference between two consecutive data points for the whole dataset

— σ∆x: standard deviation of the difference between two consecutive data points for the

whole dataset

— λ: configurable parameter

6.3.2 Experimental results

A data set covering 1 month from 01-March-2016 have been used to detect the abnormalities

on the delay and subsequently the data gaps from raw measurements of sensors. Figure 6.3

and Figure 6.4 show respectively the detection of outliers with λ = 5 as well as the detection

data gaps for the Toffice-wall sensor installed in the H358 office.

Figure 6.3 – Detection of outliers on the delay
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Figure 6.4 – Time of recordings for Toffice-wall sensor

Each outlier corresponds to a non-healthy period.

The data gaps are detected in the following intervals:

((2016, 3, 10, 2, 19, 17), (2016, 3, 10, 10, 11, 28)),

((2016, 3, 15, 5, 24, 56), (2016, 3, 15, 10, 6, 6)),

((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12)),

((2016, 3, 31, 3, 17, 35), (2016, 3, 31, 9, 4, 20))

Figures 6.5, 6.6, 6.7, 6.8 show a zoom of these intervals.

Figure 6.5 – Interval 1
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Figure 6.6 – Interval 2

Figure 6.7 – Interval 3

Figure 6.8 – Interval 4
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Table 6.1 – Effect of λ on the Outlier Detection Rate

λ detection rate Intervals
12 1 ((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))
5 3 ((2016, 3, 10, 2, 19, 17), (2016, 3, 10, 10, 11, 28)),

((2016, 3, 15, 5, 24, 56), (2016, 3, 15, 10, 6, 6)),
((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))

0.3 4 ((2016, 3, 10, 2, 19, 17), (2016, 3, 10, 10, 11, 28)),
((2016, 3, 13, 5, 29, 42), (2016, 3, 13, 6, 55, 42)),
((2016, 3, 15, 5, 24, 56), (2016, 3, 15, 10, 6, 6)),
((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))

The configurable parameter λ has an effect on the outlier detection rate and consequently

on the determination of non-healthy periods of sensors (see Table 6.1).

The first algorithm for data gap detection is based on time series analysis. The approach

makes the hypothesis that the delay follows a Gaussian probability density function which is

defined on R. However, the delay is always strictly positive. This is the first limitation of this

approach.

Moreover, the approach places the abnormality at λσ and it is difficult to tune λ for each

measurement. This is the second limitation of the proposed approach.

These two limitations for time series analysis for data gap detection for automatic thresholding

for data gap detection encourage the development for an approach that makes the hypothesis

that the delay follows a specific pdf defined by suitable algorithms.

The next section deals with automatic thresholding with probability density function

6.4 Automatic thresholding with probability density func-

tion

6.4.1 Methodology description

This section demonstrates the proposed methodology for automatic thresholding for data

gap detection for a set of sensors.

This first step of the proposed methodology discusses about what probability density

function to use with data analysis. The delay is a continuous variable. It can correspond to

one of the continuous laws below (see Table 6.2).
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Table 6.2 – Probability laws

Law probability Support Adequacy for
name delay

uniform no(because the domain of delay
is R)

normal no(because the domain of delay
is R+)

truncated normal yes(because the domain of delay
is R+)

gamma yes(because the domain of delay
is R+)

beta no (because the domain of delay
/∈ [0, 1] and

it’s not meaningful to
normalize time delays

in case of failure)

According to the principles of each law of probability, it is concluded that the truncated

normal law and the gamma law are adequate for the delay.
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exponential no (because the order of
magnitude of delay in ms

is very high
between 1456786822423 and
1458082719570 in the month

of March 2016, the PDF
is e(−λx) which tends to 0)

chi squared no (because the order of
magnitude of delay in ms

is very high)
between 1456786822423 and
1458082719570 in the month

of March 2016, the PDF
is e(−λx) which tends to 0)

student no (because the order of
magnitude of delay in ms

is very high)
between 1456786822423 and
1458082719570 in the month

of March 2016, the PDF
is e(−λx) which tends to 0)

The second step of the proposed methodology is to compare the histogram represen-

tations of each of these laws.

Figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.13, represent the histogram representation of the time delay

and the pdf curve for the truncated normal and gamma distributions for door contact sensor,

temperature sensor (Toffice-wall sensor), power sensor respectively.

Only these sensors are presented in this chapter. The histogram respresentation for other sen-

sors are omitted in the reason of space.

The period of test is from January 1st, 2016 to January 31th, 2016.
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Figures 6.9 and 6.10 show the abnormal delays detected visually for temperature sensor by

truncated normal and gamma distributions respectively.

Figure 6.9 – Fitted probability density of the truncated normal distribution for door contact
sensor

Figure 6.10 – Fitted probability density of the gamma distribution for door contact sensor

Table 6.3 shows the number as well as the instants of detection of abnormal delays for door

contact sensor by truncated normal and gamma distributions respectively.

Table 6.3 – Resulting errors for door contact sensor

Law probability
name

number of detections

truncated nor-
mal

5 detections (at t=313698, t=1.14503 e+06, t=2.38682 e+06,

t=3.53624 e+06, t=3.9141 e+06)
gamma 3 detections (at t=338.819, t=1.14578 e+06,

t=3.91619 e+06)
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Figures 6.11 and 6.12 show the abnormal delays detected visually for temperature sensor

by truncated normal and gamma distributions respectively.

Figure 6.11 – Fitted probability density of the truncated normal distribution for Toffice wall
sensor

Figure 6.12 – Fitted probability density of the gamma normal distribution for Toffice wall sensor

Table 6.4 shows the number as well as the instants of detection of abnormal delays for power

sensor by truncated normal and gamma distributions respectively.

Table 6.4 – Resulting errors for door contact sensor

Law probability
name

number of detections

truncated nor-
mal

3 detections (at epochtime=17349.9, epochtime=264707

and epochtime=611247)
gamma 2 detections (at epochtime=17971.8, epochtime=264641

and epochtime=611377)
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Figures 6.13 and 6.14 show the abnormal delays detected visually for power sensor by

truncated normal and gamma distributions respectively.

Figure 6.13 – Fitted probability density of the truncated normal distribution for power sensor

Figure 6.14 – Fitted probability density of the gamma normal distribution for power sensor

Table 6.5 shows the number as well as the instants of detection of abnormal delays for power

sensor by truncated normal and gamma distributions respectively.

Table 6.5 – Resulting errors for power sensor

Law probability
name

number of detections

truncated nor-
mal

4 detections (at epochtime=20000, epochtime=594542,

epochtime=1.1674 e+06, epochtime=1.79014 e+06)
gamma 3 detections (at epochtime=29911.5, epochtime=594698

and epochtime=1.16879 e+06)
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Figures 6.15 and 6.16 show the abnormal delays detected visually for CO2 concentrations

sensor by truncated normal and gamma distributions respectively.

Figure 6.15 – Fitted probability density of the truncated normal distribution for CO2 concen-
trations sensor

Figure 6.16 – Fitted probability density of the gamma normal distribution for CO2 concentra-
tions sensor

Table 6.6 shows the number as well as the instants of detection of abnormal delays for CO2

concentrations sensor by truncated normal and gamma distributions respectively.

Table 6.6 – Resulting errors for CO2 concentrations sensor

Law probability
name

number of detections

truncated nor-
mal

3 detections (at epochtime=13291, epochtime=288548,

epochtime=595023)
gamma 2 detections (at epochtime=13591, epochtime=288296
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We conclude that the truncated normal distribution is more adequate for the delay because

it detects more abnormal delays compared to the gamma distribution

For example, there is an abnormal delay for power sensor at t=1.79014e+06 which is detected

by the truncated normal distribution and not detected by the gamma distribution.

In the following, we will be interested in the third step which is the resolution of
∫ th

0
fX(x) = 0.99

with fX is the probability density function of the truncated normal distribution.

The third step of the proposed methodology is the calculation of the threshold.

In probability and statistics, the truncated normal distribution is the probability distribution

derived from the normal distribution.

Suppose X → N( µ, σ2) has a normal distribution and lies within the interval X ∈ (a, b), -∝
≤ a <b ≤ +∝
Then X conditional on a < X < b has a truncated normal distribution defined by Equation

6.13.

f(x;µ, σ, a, b) =
φ(x−µ

σ
)

σ(Φ( b−µ
σ

)− Φ(a−µ
σ

))
(6.13)

where φ is the probability density function of the standard normal distribution defined by

Equation 6.14

φ(ξ) =
1√
2π
exp(
−1

2
ξ2) (6.14)

and Φ is its cumulative distribution function defined by Equation 6.15

Φ(x) =
1

2
(1 + erf(

x√
2

)) (6.15)

with erf is the error function defined by Equation 6.16:

erf(x) =
1√
π

∫ x

−x
exp−t

2

dt =
2√
π

∫ x

0

exp−t
2

dt (6.16)

The delay is abnormal if there is a probability of for instance 1% of a delay greater than the

threshold. The following equation has to be solved:∫ th

0

fX(x) dx = 0.99 (6.17)

In general, if the function f depends on a single parameter, so

f(x) =

∫ x

0

f
′
(t)dt

where f
′

is the derivative of f

If f depends on several parameters: f(x, y, z, t), when we speak about f
′
, 4 propositions are

distinguished: fx = df
dx

, fy = df
dy

, fz = df
dz

and ft = df
dt
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In our case, we have:

f(x) =

∫ th

0

fX(x)

It yields:

f(x, µ, σ, a, b) =

∫ th

0

fX(x) (6.18)

where fX is the derivative of f with respect to x. So, the primitive is f(x, µ, σ, a, b) It yields:

F (x) =

∫ x

0

f(t)dt (6.19)

where F(x)=f(x, µ, σ, a, b) and f(t)=fX

It yields:

f(th)− f(0) =
φ( th−µ

σ
)

σ(Φ( b−µ
σ

)− Φ(a−µ
σ

))
− f(0) = 0.99 (6.20)

φ( th−µ
σ

)

σ(Φ( b−µ
σ

)− Φ(a−µ
σ

))
= f(0) + 0.99 (6.21)

It comes:

φ(
th− µ
σ

) = σ(Φ(
b− µ
σ

)− Φ(
a− µ
σ

))(f(0) + 0.99) (6.22)

We apply the log:

1√
2π

exp
−1
2

( th−µ
σ

)2 = ln(f(0) + 0.99) + ln(σ(Φ(
b− µ
σ

)− Φ(
a− µ
σ

))) (6.23)

It yields:

ln(
1√
2π

)− 1

2
(
th− µ
σ

)2 = ln(f(0) + 0.99) + ln(σ(Φ(
b− µ
σ

)− Φ(
a− µ
σ

))) (6.24)

− 1

2
(
th− µ
σ

)2 = ln(f(0) + 0.99) + ln(σ(Φ(
b− µ
σ

)− Φ(
a− µ
σ

)))− ln(
1√
2π

) (6.25)

(
th− µ
σ

)2 = −2 ln(f(0) + 0.99)− 2 ln(
Φ( b−µ

σ
)− Φ(a−µ

σ
)

1
σ

) + 2 ln(
1√
2π

) (6.26)

(
th− µ
σ

) = ±

√
−2 ln(f(0) + 0.99)− 2 ln(

Φ( b−µ
σ

)− Φ(a−µ
σ

)
1
σ

) + 2 ln(
1√
2π

) (6.27)

The threshold is defined by:

th = µ+ σ ±

√
−2 ln(f(0) + 0.99)− 2 ln(

Φ( b−µ
σ

)− Φ(a−µ
σ

)
1
σ

) + 2 ln(
1√
2π

) (6.28)

where

Φ(
b− µ
σ

) =
1

2
[1 + erf(

b−µ
σ√
2

)] =
1

2
[1 + erf(

b− µ√
2σ

)] (6.29)
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Φ(
a− µ
σ

) =
1

2
[1 + erf(

a−µ
σ√
2

)] =
1

2
[1 + erf(

a− µ√
2σ

)] (6.30)

a=0 and b=∞
Equation 6.28 becomes:

th = µ+ σ ±

√√√√−2 ln(f(0) + 0.99)− 2 ln(

1
2
[1 + erf( b−µ√

2σ
)]− 1

2
[1 + erf(a−µ√

2σ
)]

1
σ

) + 2 ln(
1√
2π

)

(6.31)

where

f(0) =
φ(−µ

σ
)

σ[Φ( b−µ
σ

)− Φ(a−µ
σ

)]
=

1√
2π

exp
−1
2

(µ
2

σ2
)

σ[1
2
[1 + erf( b−µ√

2σ
)]− 1

2
[1 + erf(a−µ√

2σ
)]]

(6.32)

In this section, a 3-step methodology is used to find a threshold from which a delay is considered

abnormal. Delay is a continuous variable that follows the truncated normal law. The delay is

calculated by solving the equation 6.17.

In the following, we will test the calculation of this threshold on time series of delay for different

variables
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6.4.2 Experimental results

6.4.2.1 Experimental results for H358 office

A data set covering 3 months from January 1st, 2016 to March 31th, 2016 has been used to

detect the abnormalities on the delay and subsequently the data gaps from raw measurements

of sensors.

Figure 6.17 shows the detection of data gaps for the office CO2 concentration sensor installed

in the H358 office presented in chapter 1.

Figure 6.17 – Detected data gaps for the CO2 concentration sensor

Non-healthy periods for this sensor are the followings:

((2016, 1, 4, 14, 57, 5), (2016, 1, 8, 11, 42, 16)),

((2016, 1, 16, 2, 21, 26), (2016, 1, 17, 2, 1, 28)),

((2016, 1, 20, 16, 3, 19), (2016, 1, 26, 13, 13, 14)),

((2016, 1, 29, 6, 39, 45), (2016, 2, 1, 15, 52, 1)),

((2016, 2, 2, 11, 46, 55), (2016, 2, 23, 12, 22, 26)),

((2016, 2, 24, 4, 22, 49), (2016, 2, 25, 11, 6, 24)),

((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12)),

The following figures (Figure 6.18 and Figure 6.19) show a zoom of some intervals.
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Figure 6.18 – Detected data gaps for the CO2 concentration sensor: zoom 1

Figure 6.19 – Detected data gaps for the CO2 concentration sensor: zoom 2

Where for example (2016, 2, 2, 11, 46, 55) and (2016, 2, 23, 12, 22, 26) represent respectively

the lower and the upper bound of a non- healthy period

Table 6.7 shows the abnormal gaps visually detected and gaps detected with 1%
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Table 6.7 – Non-healthy periods for sensors in H358 office

Sensor abnormal gaps number of gaps threshold
visually detected detected with 1%

door 3 detections ((2016, 1, 4, 14, 46, 33), (2016, 1, 8, 11, 59, 24)), 247226213.58
contact (see Figure 6.20) ((2016, 2, 2, 11, 42, 56), (2016, 2, 23, 12, 38, 58)),

((2016, 3, 25, 17, 54, 39), (2016, 3, 29, 9, 40, 32))
Temperature 3 detections ((2016, 1, 4, 14, 57, 5), (2016, 1, 8, 11, 42, 16)), 38101174.48

(see Figure 6.21) ((2016, 1, 16, 2, 22, 56), (2016, 1, 17, 2, 1, 28)),
((2016, 1, 20, 16, 3, 19), (2016, 1, 26, 13, 13, 14))

CO2 3 detections (2016, 1, 4, 14, 57, 5), (2016, 1, 8, 11, 42, 16) 37144272.41
(see Figure 6.22) ((2016, 1, 16, 2, 21, 26), (2016, 1, 17, 2, 1, 28)),

((2016, 1, 20, 16, 3, 19), (2016, 1, 26, 13, 13, 14))
Power 3 detections ((2016, 1, 4, 14, 56, 43), (2016, 1, 8, 11, 48, 56)), 35154742.37

(see Figure 6.23) ((2016, 1, 16, 2, 11, 1), (2016, 1, 17, 2, 8, 58)),
((2016, 1, 29, 6, 37, 8), (2016, 1, 30, 2, 4, 38))

detected 3 detections ((2016, 1, 4, 14, 52, 16), (2016, 1, 8, 11, 47, 11)), 61472466.89
motions (see Figure 6.24) ((2016, 1, 16, 2, 5, 30), (2016, 1, 17, 2, 21, 34)),

((2016, 1, 29, 6, 14, 37), (2016, 1, 30, 2, 9, 7))

Figure 6.20 – Detection of data gaps for door window sensor

Figure 6.21 – Detection of data gaps for temperature sensor
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Figure 6.22 – Detection of data gaps for CO2 concentrations sensor

Figure 6.23 – Detection of data gaps for power sensor

Figure 6.24 – Detection of data gaps for detected motion sensor

We conclude that the data gaps visually detected data coincide with that detected with a

probability of 1% of a delay greater than the threshold. These results are obvious. The current

approach yields to an accurate result. We conclude also that the threshold depend on the

measured value and the type of sensor.
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6.4.2.2 Experimental results for RueCuvier

A data set covering 3 months from May 1st, 2016 to July 31th, 2016 has been used to

detect the abnormalities on the delay and subsequently the data gaps from raw measurements

of sensors.

Table 6.8 shows the abnormal gaps visually detected and gaps detected with 1% for common

window sensor, common temperature sensor, Anna motion sensor, parent motion sensor, par-

ent CO2 concentrations sensor and parent humidity sensor installed in the RueCuvier platform

presented in chapter 1.

Table 6.8 – Probability laws

Sensor abnormal gaps number of gaps threshold
visually detected detected with 1%

common 1 detection ((2016, 6, 28, 5, 36, 33), (2016, 6, 30, 18, 51, 50)) 158493225.35
window (see Figure 6.25)
common 1 detection ((2016, 5, 29, 15, 47, 25), (2016, 6, 29, 21, 13, 12)) 349347258.24

temperature (see Figure 6.25)
Anna 2 detections ((2016, 6, 12, 19, 36, 43), (2016, 7, 3, 20, 28, 58)), 200725887.85

motion (see Figure 6.27) ((2016, 7, 13, 12, 42, 1), (2016, 7, 18, 0, 33, 4))
parent 3 detections ((2016, 6, 12, 19, 29, 24), (2016, 6, 19, 8, 58, 6)), 59526522.43
motion (see Figure 6.28) ((2016, 7, 2, 10, 5, 5), (2016, 7, 3, 15, 54, 35))

((2016, 7, 12, 7, 43, 9), (2016, 7, 18, 0, 33, 37))
parent 3 detections ((2016, 5, 29, 15, 46, 51), (2016, 6, 29, 6, 54, 29)) 403727118.32
CO2 (see Figure 6.29) ((2016, 7, 16, 12, 48, 19), (2016, 7, 27, 17, 42, 44))

parent 1 detection ((2016, 7, 16, 12, 48, 19), (2016, 7, 27, 17, 42, 44)) 70273717.51
humidity (see Figure 6.30)

Figure 6.25 – Detection of data gaps for common window sensor
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Figure 6.26 – Detection of data gaps for common temperature sensor

Figure 6.27 – Detection of data gaps for Anna motion sensor

Figure 6.28 – Detection of data gaps for parent motion sensor
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Figure 6.29 – Detection of data gaps for parent CO2 concentrations sensor

Figure 6.30 – Detection of data gaps for parent humidity sensor

A second data set covering 5 months from August 1st, 2016 to December 31th, 2016 has

been used to detect the abnormalities on the delay and subsequently the data gaps from raw

measurements of parent kitchen motion sensor and kitchen window sensor.

Table 6.9 presents the abnormal gaps visually detected and the number of gaps detected with

1% of probability of having a delay greater than the threshold for kitchen motion sensor and

kitchen window sensor.

Table 6.9 – Probability laws

Sensor abnormal gaps number of gaps threshold
visually detected detected with 1%

kitchen 1 detection ((2016, 9, 26, 19, 1, 32), (2016, 9, 29, 22, 55, 54)) 39518937.67
motion (see Figure 6.31)
kitchen 1 detection ((2016, 8, 1, 5, 9, 46), (2016, 8, 18, 16, 41, 37)) 979648022.63
window (see Figure 6.32)

We conclude that the threshold depend on the measured value and the type of sensor.
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Figure 6.31 – Detection of data gaps for kitchen motion sensor

Figure 6.32 – Detection of data gaps for kitchen window sensor

6.5 Discussion

In this chapter, we have highlighted the issue of unreliable sensors in buildings. In fact,

smart buildings are equipped with several sensors that collect large amounts of data that can be

used for control, energy management and diagnosis. Significant discrepancies between simulated

and actual measured building performance also led to a move to uncover these discrepancies

by analyzing the data collected through extended sensor grids. Since the diagnosis of building

systems usually requires chronological data, ensuring the quality of sensor data is an important

step in pre-treatment.

Recent literature contributes methods for the detection and classification of sensor faults. Fault

classification techniques vary: several existing fault taxonomies use different criteria for catego-

rizing a fault. However, most researchers in the literature are interested only by the following

known fault types: drift, outliers and bias. Occurrence of data gap faults has also not been

given an adequate span of attention in the research literature. This is the key objective of

this work. It focuses on developing method for automatic thresholding for automatic data gap
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detection for heterogeneous sensors in instrumented buildings.

Two algorithms have been have been adapted to the H358 test bed. The first algorithm is

based on time series analysis. The time series method is a special case of statistical approach.

It makes the hypothesis of a Gaussian pdf and places the abnormality at λσ. This method

could provide the first explanation of automatic thresholding for sensor data gap detection to

help building researchers. However, the disadvantage of this method is that it does not take a

percentage error i.e a percentage of chance to have a delay outside the distribution.

The second method is based on statistical approaches. The delay is a stochastic variable

satisfying a truncated normal distribution and at a given time, the delay is abnormal if there

is a law probability value like 1% of chance of a delay gather then the threshold. In this work,

only the percentage has to be specified. However, this value is chosen arbitrary. Next works

investigate the determination of this percentage by suitable algorithms.

Also, in this work, only the data gaps due to a battery problem are studied. However, in a

building system, the sensors inform the controller which, in function of these data, controls the

actuators. Therefore if the actuator is totally faulty, there will be no measurements taken by

the sensor. So the data gaps can have as origin a faulty actuator. Future works will be around

diagnosing components themselves. The two steps i.e. sensor diagnosis and actuator diagnosis

are decoupled.

6.6 Conclusion

This chapter deals with the issue of unreliable sensors in buildings. At the beginning, a

state of the art about sensor fault detection is presented. It is concluded that research literature

focus only on classic fault types such as bias and outliers. This chapter focus on data gaps

fault type and presents a method of automatic thresholding for data gap detection applying to

heterogeneous sensors in instrumented buildings. Two solutions are proposed for detection of

abnormalities on the delays.

The first solution is a time series based methodology. The delay is considered as a stochastic

variable that follows the Gaussian law. The idea is to calculate the outliers on the delay to

find the sensor data gaps. This method is challenged by the domain of Gaussian pdf which

is R while the delay is defined on R+. An other challenge is the difficulty to tune λ for each

measurement. To overcome these limits, it is necessary to define an approach that makes the

hypothesis that the delay follows an adequate pdf defined by suitable algorithms. This solution

is published in Najeh et al. (2019a).

The second solution is a statistical approach based methodology. While the goal in time series

analysis is always to make the distribution of any continuous random variable compatible with

a Gaussian distribution. In this work, we propose to check whether the delay is abnormal or

not compared to a threshold. Before calculating the threshold for each variable one must first

identify the appropriate distribution law for the delay. With the proposed method, data gaps
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in the measurements can be carried out whatever the number of sensors is. Only the threshold

as percentage has to be specified. This solution is published in Najeh et al. (2019c).

In this work, only data gaps due to battery problem are studied. However, in buildings, if an

actuator is faulty, there is no measurements taken by the sensor. The next step is to diagnose

components themselves. The two steps are decoupled.
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General conclusion and future work

The goal of this PhD has been to design a diagnostic analysis system that takes into account

the reliability of sensors in diagnostic analysis.

The initial point of the work starts by highlighting the complexity in building. A framework

for detecting and localizing faults in a sensor grid of a building system is proposed. It is a

tool-aided diagnosis that determines whether a sensor is faulty or not. It is based on detection

tests and logical diagnosis analysis for the first principle. The bridge approach is used because

it determines the minimum diagnoses with explanation at the component level. Two real

applications have been studied for validation: an office and an apartment with different level

of complexity according to their available sensors, context and number of zones.

In the monozone case, the followed methodology leads to a few number of tests which is equal

to 6. The results show that if the tests are consistent with reality, the proposed approach leads

to accurate diagnoses. Indeed, it is not always possible to construct universal tests. For this

reason, the proposed approach leads in some cases to a possibly false diagnoses. The diagnostic

result is not guaranteed because the tests are supposed to be applied in any situation without

taking into account specific contexts. In the multizone case, the followed methodology leads to

a huge number of tests difficult to handle. The complexity is well justified and there is a need

for a method to apprehend it.

The scope of work includes a three steps methodology to apprehend the complexity in buildings.

Three challenges are considered in this research.

(A) Need for an indicator to better formalizing validity

(B) Need for a confidence level for global diagnosis

(C) Need for detecting faults for an unreliable instrumentation in building

In order to investigate these challenges and find solutions, three solutions have been proposed

for diagnosis in building.

(A) A level of completeness for better formalizing validity. It consists on improving decision

making in building diagnosis using partial valid tests with confidence level. The validity

is measured with potentially faulty sensors. To overcome this problem, the completeness

level is proposed as a method to prove a test. It is measured using partitioning approach

and it offers a guarantee to the diagnostic result. In order to prove the global diagnosis,

a confidence level with fuzzy logic reasoning is proposed as a new method.
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(B) A confidence level for proving diagnosis. The diagnostic result is calculated from a set

of tests, each one defined by its completeness level. The contribution is to propose a

solution to compute the confidence level of a global diagnosis deduced from a set of tests

whose some of them have a completeness level lower than 1. A method based on fuzzy

logic reasoning is used for this purpose. An office has been used for validation.

(C) Automatic thresholding for data gap detection for a set of sensors in instrumented build-

ings. Two methods have been studied for detection of abnormalities on the delays: a

times series based methodology and statistical based approach. In time series analysis,

the delay is considered as a stochastic variable that follows the Gaussian law. The idea

is to calculate the outliers on the delay to find the sensor data gaps. In statistical-based

approach, we propose to check whether the delay is abnormal or not compared to a

threshold. Before calculating the threshold for each variable one must first identify the

appropriate distribution law for the delay. Only the threshold as 1% probability of hav-

ing a delay greater than the threshold has to be specified. An office has been used for

validation.

Future work could be around:

(A) Development of new indicators to test the validity such as completeness level using

”spreadrate” technique (Amayri et al., 2019b). It’s an indicator about database qual-

ity.

(B) Validate the proposed methods on a block of flats. This allows for other types of tests at

the component and subcomponent level.

(C) Diagnosis of human misbehaviors. It consists on design indicators to analyse the behavior

of occupants towards specified criteria. Indicators are a means of communication that

allows interaction with the occupants so that they can make informed decisions about

their daily habits and consequently they can understand the consequences of their misuse

and learn to improve their comfort.

(D) Integrating knowledge collected through interactions with an expert in diagnostic analysis.

The idea is to accompany the expert as the diagnostic process progresses to allow him to

judge based on his tacit knowledge. The confidence level will be proposed as a method

to prove an expert-based test. A classroom in the university of Southern Denmark will

be used for validation.

(E) Dealing with the case where the expert defines specific fault modes for each component.

In fact, in this work, only two types of fault modes are studied (ok and not ok). However,

it is possible that a component admit specified fault modes that are clearly identifiable by

a mode name such as ”broken pipes” fault is an example of specific fault mode. Finally,

there remains the set of states that are neither normal nor specific fault modes. This

set, collated under the complementary fault mode label and that represent all abnormal

behaviors that have not been modeled.

(F) Guide the expert in the choice of test during the diagnostic process. In other words,
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after each iteration, it is necessary to decide on which test to give to the expert and this

requires a methodology to develop.
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Annex 1

In chapter 3, which deals with the problem of complexity in building, only the design of

tests 1 and 6 are detailed. Also, only simulation results for two fault scenarios (scenario 1 and

scenario 3) are detailed.

This annex details the design of tests 2, 3, 4 and 5 as well as simulation results for scenarios 2,

4 and 5.

Design of tests for H358 office

This section details the tests 2, 3, 4 and 5.

Test2: Test of Toffice-wall sensor and Toffice-reference sensor performance

This test compare the measurements of Toffice-wall sensor and Toffice-reference sensor.

Test2 generates a residual signal from measurements of two sensors.

Test2 =
{
Bτ (X(t,t+h)) ∈ Bτ ↔ ok(Σ)

where

Behavioral constraint: Bτ (X(t,t+h)) ∈ Bτ with Bτ = Twall(t)− Tref (t) = 0, ∀t ∈ (t, t+ h)

where Twall and Tref are two time series for indoor temperature measured by Toffice-wall abd

Toffice-reference sensors respectively.

Support: Possible fault explanations for Test 2 are: ¬ ok(Toffice wall sensor) ∨ ¬ ok(Toffice

reference sensor)

Test3: check the door-contact, window-contact and Toffice-references sensors per-

formance and the model of temperature (ok(room))

This test checks the estimation of indoor temperature using door and window positions

and Toffice-wall as well as the performance of these sensors. Test3 generates a residual sig-

nal between measured and estimated temperature. The residual generation is based on state

observer.

Test3 =
{
Bτ (X(t,t+h)) ∈ Bτ ↔ ok(Σ)

where

Behavioral constraint: Bτ (X(t,t+h)) ∈ Bτ where Bτ = T̃in(t)− Tin(t) = 0,∀t ∈ (t, t+ h)
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Support: Possible fault explanations for Test 3 are: ¬ ok(door contact sensor) ∨ ¬ ok(window

contact sensor) ∨ ¬ ok(Toffice-reference sensor)

Required sensors for behavior: the variable involved in the test of behavior are door and

window positions and Toffice-reference: they are measured respectively by door contact sensor,

window contact sensor and Toffice-reference sensor.

Test4: Test of Toffice-wall sensor and Theater sensor performance

This test compare the measurements of Toffice-wall sensor and Theater sensor. Test4 gen-

erates a residual signal from measurements of two sensors.

Test4 =
{
Bτ (X(t,t+h)) ∈ Bτ ↔ ok(Σ)

where

Behavioral constraint: Bτ (X(t,t+h)) ∈ Bτ where Bτ = Twall(t)− Theater(t) = 0,∀t ∈ (t, t+ h)

where Twall and Theater are two time series for indoor temperature measured by Toffice-wall and

Theater sensors respectively.

Support: Possible fault explanations for Test 4 are: ¬ ok(Toffice wall sensor) ∨ ¬ ok(Theater

sensor)

Test5: check the door-contact, window-contact and Theater sensors performance

and the model of temperature (ok(room))

This test checks the estimation of indoor temperature using door and window positions and

Theater as well as the performance of these sensors. Test5 generates a residual signal between

measured and estimated temperature. The residual generation is based on state observer.

Test5 =
{
Bτ (X(t,t+h)) ∈ Bτ ↔ ok(Σ)

where

Behavioral constraint: Bτ (X(t,t+h)) ∈ Bτ where Bτ = T̃in(t)− Tin(t) = 0,∀t ∈ (t, t+ h)

Support: Possible fault explanations for Test 5 are: ¬ ok(door contact sensor) ∨ ¬ ok(window

contact sensor) ∨ ¬ ok(Theater sensor)

Required sensors for behavior: the variable involved in the test of behavior are door and

window positions and Theater: they are measured respectively by door contact sensor, window

contact sensor and Theater sensor.

Simulation scenarios

This section details the simulation scenarios 2, 4 and 5.
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Scenario 2

Scenario 2 corresponds to the results of Figure 6.33.
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Figure 6.33 – Residual generation for scenario 2

Tests result: Test1, Test4, Test5: Negative

Test2, Test3, Test6: Positive

Possible faults:

Theater sensor (with fault probability 100%)

ROOM-SYSTEM AND Toffice-wall AND Toffice-reference (with fault probability 50%)

Interpretation: Scenario 2 corresponds to the results of figures 6.33(a) and 6.33(b). A fault

on Theater sensor is the most probable.

The simulated fault consists on supposing that the Theater sensor is faulty. Thus, the current

fault is found and this result is obvious. This scenario reveals that this approach leads to an

accurate diagnosis.

Scenario 4

Scenario 4 corresponds to the results of Figure 6.34.
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(b) Residual generation for tests 3, 5
and 6

Figure 6.34 – Residual generation for scenario 4
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Tests result: Test2, Test4, Test6: Negative

Test1, Test3, Test5: Positive

Possible faults:

Toffice-wall sensor (with fault probability 100%)

ROOM-SYSTEM AND Theater AND Toffice-reference (with fault probability 50%)

Interpretation: Scenario 4 corresponds to the results of figures 6.34(a) and 6.34(b) . The

Toffice-wall sensor diagnosis is the most probable.

The simulated fault consists on supposing that the Toffice-wall sensor is faulty. Thus, the

current fault is found and this result is obvious. This scenario reveals that this approach leads

to an accurate diagnosis.

Scenario 5

Scenario 5 corresponds to the results of Figure 6.35.
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Figure 6.35 – Residual generation for scenario 5

Tests result: Test3, Test5, Test6: Negative

Test1, Test2, Test4: Positive

Possible faults:

ROOM-SYSTEM (with fault probability 100%)

Toffice-wall AND Theater AND Toffice-reference (with fault probability 50%)

Interpretation: Scenario 5 corresponds to the results of figures 6.35(a) and 6.35(a). The

simulated fault consists on supposing that the door-contact and window-contact sensors are

faulty. In this scenario, 2 separate diagnoses are possible:

- The multiple faults are found but not accurately. It can be argued that only minimal diagnoses

are provided. On the one hand, this has the advantage of reducing the list of proposed diagnoses

and, on the other hand, it is possible to go back to any diagnosis by adding modes corresponding

to items not yet present in the diagnoses. In practice, it is often sufficient to have minimal

diagnoses and, when hidden fault modes are present, they will be found later.

- This diagnosis coincide with results of scenario 3. This result proves the diagnosability of the

system given in section 4.3 and confirms that the three components are non-discriminable.
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Abdelkrim. Diagnosis of sensor grids in a building context: Application to an office setting.

Journal of Building Engineering, 17:75–83, 2018a.

160



Houda Najeh, Mahendra Pratap Singh, Karim Chabir, Stéphane Ploix, and Mohamed Naceur
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Stéphane Ploix, Abed Yassine, and Jean-Marie Flaus. A new efficient and flexible algorithm

for the design of testable subsystems. International Journal of Applied Mathematics and

Computer Science, 20(1):175–190, 2010.

Ramakrishnan Ramanathan. Data envelopment analysis for weight derivation and aggregation

in the analytic hierarchy process. Computers & Operations Research, 33(5):1289–1307, 2006.

Howard F Reichenbach. Cocktail shaker, August 7 1934. US Patent 1,969,386.

Raymond Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):57–95,

1987.

Pieter MA Ribbers and Klaus-Clemens Schoo. Program management and complexity of erp

implementations. Engineering Management Journal, 14(2):45–52, 2002.

Paula Rocha, Afzal Siddiqui, and Michael Stadler. Improving energy efficiency via smart

building energy management systems: A comparison with policy measures. Energy and

Buildings, 88:203–213, 2015.

Staf Roels, Peder Bacher, Geert Bauwens, Henrik Madsen, and Maŕıa José Jiménez. Charac-
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Abstract: Fault diagnosis and maintenance of a whole-building system is a complex task

to perform. Available building fault detection and diagnosis tools are only capable of per-

forming fault detection using behavioral constraints analysis. The thesis of Mahendra Pratap

Singh proposes to use heterogeneous tests with validity constraints in the context of building

fault diagnosis but the proposed approach assumes that the sensors are reliable. Nevertheless,

validity constraints are checked with potentially faulty sensors. If these sensors are faulty, the

diagnostic result is not guarantee and there is a need for method to prove the test as well as

global diagnoses.

To make a test, data are required from different parts: meteorological, human and physical

parts. However, the data gaps is the main sensor fault in buildings. Sensor values are not

uniformly sampled and there is a need to decide from which delay the sensor becomes faulty?

The objective of this work is to highlight these challenges as well as to provide a strategy

about how to solve them. Three solutions for diagnosis in building are proposed

1. A level of completeness for better formalizing validity.

In this work, we make the hypothesis that there is no precise global model for a building

system but there is contextual models with limited validity. The validity is measured

with potentially faulty sensors. The completeness level is proposed as a method to prove

if a test space is fully covered or not i.e to assess the level of validity of a test.

2. A confidence level for proving global diagnosis

An automatic test is characterized by thresholds i.e the behavioral constraint is either

satisfied or unsatisfied. Uncertainty is related to the validity constraints. Indeed, it is

difficult to set a threshold for the level of completeness from which one can say that a

test is valid.

Diagnostic results are calculated from a set of tests, each one defined by its completeness

level. The contribution is to propose a solution to compute the confidence level of a global

diagnosis deduced from a set of tests whose some of them have a completeness level lower

than 1. A method based on fuzzy logic reasoning is used for this purpose.

3. Automatic thresholding for sensor data gap detection.

The delay depends on the measured value and the type of sensor. The objective is to

identify from which delay a sensor become faulty. Two techniques are proposed: a time

series analysis and a statistical approaches.

Different applications have been studied for validation: an office at G-SCOP lab, an apparte-

ment at Grenoble and a platform in the University of Southern Denmark.

Key-words: building system, diagnosis, sensors, faults, validity, data gaps, expert knowledge,

completeness level, confidence level



Résumé: Le diagnostic des défauts et la maintenance d’un système bâtiment est une

tâche complexe à effectuer. Les outils existants pour la détection et le diagnostic de défauts

dans les bâtiments permettent d’effectuer cette détection à l’aide d’une analyse des contraintes

comportementales. La thèse de Mahendra Pratap Singh propose le concept de tests hétérogènes

avec des contraintes de validité dans le contexte du diagnostic de défauts dans les bâtiments,

mais l’approche proposée suppose que les capteurs sont fiables et ne s’intéresse qu’aux processus

thermo-aérauliques et aux systèmes de chauffage. Les contraintes de validité sont mesurées avec

des capteurs. Si ces capteurs sont défectueux, le résultat du diagnostic n’est pas garanti et il

est nécéssaire d’avoir une méthode permettant de prouver le test ainsi que le diagnostic global.

Pour effectuer un test, il est nécessaire de disposer de données provenant de différentes parties:

météorologiques, humaines et physiques. Cependant, les données manquantes constituent le

type de défauts de capteurs majeur dans les bâtiments. Les mesures des capteurs ne sont pas

échantillonnées de manière uniforme et il est nécessaire de décider à partir de quel retard le

capteur devient défectueux.

L’objectif de ce travail est de mettre en évidence ces défis et de fournir une stratégie sur la

façon de les résoudre. Trois solutions pour le diagnostic du système bâtiment sont proposées

1. Un niveau de complétude pour une formalisation de la validité lorsque les capteurs sont

potentiellement défaillants.

Pour le système bâtiment, il n’existe pas de modèle global précis mais il existe des modèles

contextuels à validité limitée. L’espace de test consiste en un ensemble de mesures. Le

niveau de complétude est proposé comme méthode pour prouver si un espace de test est

entièrement couvert ou non c’est-à-dire pour évaluer le niveau de validité d’un test en

présence de capteurs non fiables.

2. Un niveau de confiance pour prouver un diagnostic global

Un test automatique est caractérisé par des seuils, c’est-à-dire que la contrainte comporte-

mentale est satisfaite ou non satisfaite. L’incertitude est liée aux contraintes de validité.

En effet, il est difficile de définir un seuil pour le niveau de complétude à partir duquel

on peut dire qu’un test est valide. Le résultat du diagnostic est calculé à partir d’un

ensemble de tests, chacun défini par son niveau de complétude. La contribution est de

proposer une solution permettant de calculer le niveau de confiance d’un diagnostic global

déduit d’un ensemble de tests dont certains ont un niveau de complétude inférieur à 1.

Une méthode basée sur le raisonnement de logique floue est utilisée à cet effet.

3. Seuillage automatique pour la détection de données de capteurs manquantes

Le retard dépend de la valeur mesurée et de type du capteur. L’objectif est d’identifier

à partir de quel retard un capteur devient défectueux. Deux techniques sont proposées:

une analyse de séries temporelles et une approche statistique.

Différentes applications ont été étudiées pour la validation: un bureau au laboratoire G-SCOP,

un appartement Grenoblois et une plateforme à l’Université de Danemark Sud.

Mots-clés: système bâtiment, diagnostic, capteurs, défauts, validité, données manquantes,

connaissance experte, niveau de complétude, niveau de confiance


