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Summary of the results

This PhD deals with the calculation of one point functions in integrable two dimensional Quantum Field Theories. These quantities are of rst interest. Indeed, any general n point function can be reduced (in the Ultra-Violet limit) to a sum of products of one point functions and of coecients of the Operator Product Expansion. The latter coecients can be computed by a usual perturbative approach, whereas the one point functions carry important Infra-Red information that cannot be accessed by perturbation theory. Therefore, it is an essential issue to develop a systematic, alternative method for their calculation. Such a method was elaborated in the last 15 years in the context of the sine-Gordon theory [START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF][START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF]. The authors of this series of papers used the integrability of the model to rst build a basis of local operators in the context of the six vertex model (the lattice regularization of the sine-Gordon Quantum Field Theory). This basis, termed fermionic, is powerful because the vacuum expectation values of its operators on the lattice are easy to calculate : they are expressed in terms of determinants of only two functions. Another remarkable property is that the fermionic structure can be extended to the continuum limit of the six vertex model and be used to characterize local operators in the Conformal Field Theory. Then, besides the usual Virasoro description, one gets the fermionic basis to classify the elds. Furthermore, the fermionic basis is well adapted to the Conformal Perturbation Theory. From the correspondence between the Virasoro description and the fermionic basis, and the possibility to compute the one point functions of the latter in the massive theory, one access the one point functions of local elds in the sine-Gordon model. This was a major breakthrough in the general calculation of one point functions in integrable Quantum Field Theories.

In this thesis, we continue the work on this very promising approach, aiming to generalize the fermionic basis construction to a more complex system. The logical choice to make is to consider a "higher spin" theory, which naturally leads us to apply the previous ideas to the more complicated Supersymmetric sine-Gordon model. The main objective is to achieve the following goal : calculate the one point functions in the Supersymmetric sine-Gordon model. In order to do so, we are rst concerned with the generalization of the fermionic basis at the lattice level (in this new case it is the 19 vertex model). The study of this new basis has already been initiated [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF], and shows a much richer structure since it involves not only operators of fermionic nature but also Kac Moody currents. It will be referred to as the fermion-current structure. In the paper [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF], we further conrmed the well foundedness of the fermion-current basis at the lattice level by using it to explicitly decompose several local, invariant operators. Moreover we computed the density matrix and the entanglement entropy for a small number of lattice sites. In the paper [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF] we derived scaling equations governing the thermodynamics of the Supersymmetric sine-Gordon theory. In particular in the conformal limit we reproduced from them the Bazhanov-Lukyanov-Zamolodchikov generating function of local integrals of motion, and checked the scaling equations against known results from the ODE-CFT correspondence. Finally, in the work [START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF] we described the integrable structure of the Supersymmetric sine-Gordon model in terms of the fermion-current basis. We focused on the fermionic part of the latter and computed the one point functions of fermionic operators. In the conformal limit, these results were checked to be consistent with an alternative approach relying on the reection relations.

Résumé des résultats

Cette thèse porte sur le calcul des fonctions à un point dans les théories des champs quantiques bidimensionnelles intégrables. Ces quantités sont de premier intérêt. En eet, toute fonction générale à n points peut être réduite (dans la limite Ultra-Violette) à une somme de produits de fonctions à un point et de coecients provenant de l'Expansion du Produit d'Opérateur. Ces derniers coecients peuvent être calculés à l'aide d'une approche perturbatrive habituelle, alors que les fonctions à un point contiennent d'importantes informations infrarouges qui ne sont pas accessibles par la théorie des perturbations. Il est donc essentiel de mettre au point une méthode de calcul systématique et alternative des fonctions à un point.

Une telle méthode a été élaborée au cours des 15 dernières années dans le contexte de la théorie de sine-Gordon [START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF][START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF]. Les auteurs de cette série d'articles ont utilisé l'intégrabilité du modèle pour construire d'abord une base d'opérateurs locaux dans le contexte du modèle à six sommets (qui est la régularisation sur réseau de la théorie des champs quantiques de sine-Gordon). Cette base, appelé fermionique, est puissante parce que les valeurs moyennes dans le vide de ses opérateurs sur le réseau sont faciles à calculer : ils sont exprimés en termes de déterminants de seulement deux fonctions. Une autre propriété remarquable est que la structure fermionique peut être étendue jusqu'à la limite continue du modèle à six sommets et être utilisée pour caractériser les opérateurs locaux dans le modèle de la théorie des champs conformes. Cela implique qu'additionnellement à la description habituelle de Virasoro, on peut utiliser la base fermionique pour classier les champs. De plus, la base fermionique est bien adaptée à la théorie de la perturbation dans le cas d'une théorie initiale conforme. D'après la correspondance entre la description de Virasoro et la description de la base fermionique, et la possibilité de calculer les fonctions à un point de cette dernière dans la théorie massive, on accède aux fonctions à un point des champs locaux dans le modèle sine-Gordon. Il s'agit donc d'une percée majeure dans le calcul général des fonctions à un point dans les théories des champs quantiques intégrables.

Dans cette thèse, nous poursuivons le travail sur cette approche très prometteuse visant à généraliser la construction de la base fermionique à un système plus complexe. Le choix logique à faire est d'envisager une théorie de "spin plus élevé", ce qui nous conduit naturellement à appliquer les idées précédentes au modèle plus compliqué de sine-Gordon supersymétrique. L'objectif principal est donc le suivant : calculer les fonctions à un point dans le modèle sine-Gordon supersymétrique. Pour ce faire, nous devons d'abord généraliser la base fermionique au niveau du réseau Publications This PhD work resulted in the following three publications : [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF] C. Babenko, F. Smirnov.

Suzuki equations and integrals of motion for Supersymmetric CFT. Nuclear Physics B, 924, (2017), 406-416.

[8] C. Babenko, F. Smirnov. Fermion-current basis and correlation functions for the integrable spin 1 chain. Int. J. of Modern Phys. A, 34, (2019), 1950075.

[9] C. Babenko, F. Smirnov.

One point functions of fermionic operators in the Super sine-Gordon model. Nuclear Physics B, 946, (2019), 114698.

Structure of the manuscript

The text is divided in 4 chapters. The rst two chapters are intended to recall some introductory material, the two last present the new results obtained during the PhD research. They are structured as follows : the chapter 1 motivates the subject of one point functions and recall the known results and methods on their computation for Integrable Quantum Field Theories. In the chapter 2, we review some basic facts about lattice integrable system and describe the integrable structure of Quantum Field Theories. In particular, the spin 1 2 fermionic basis is introduced. In the chapter 3 we then move to the lattice fermion-current construction and present the results of [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF]. Finally, in the chapter 4, we discuss the Super sine-Gordon model and explain the achievements of [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF], [START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF]. 

List of abbreviations

Notations

We shall attempt as much as possible to observe the following conventions : V, V i , V j , V k , ... will be used for generic elds in QFT, V ∆ will denote a primary eld of conformal dimension ∆ in CFT, V a will stand for a vertex operator in (Super) Liouville CFT with weight a. Simple letters (such as b * , c * ) will be used for the spin 1 2 fermionic basis and bold letters (such as b * , c * ) will serve for the spin 1 fermion-current basis. Chapter 1 One point functions in Quantum Field Theories

This thesis aims at calculating the one point functions in a specic model of two dimensional Quantum Field Theory (QFT) : the Supersymmetric sine-Gordon model (ssG). Two questions that should be addressed in the rst place are : why are the one point functions important quantities ? And what are the existing methods to calculate them ? This rst chapter will provide answers to these two guiding questions. As a basis for our discussion, we present the ssG action :

A ssG = 1 4π ∂ z ϕ∂ z ϕ + 1 2π ψ∂ z ψ + ψ∂ z ψ -2µ ψψ cos β √ 2 ϕ d 2 z , (1.1) 
where ϕ is a bosonic eld, ψ a Majorana fermion, β, µ are the coupling constants. Let us mention, that we will handle the ssG model as a perturbation of a specic Conformal Field Theory (CFT) : the complex Supersymmetric Liouville CFT. From a Lagrangian point of view this means that :

A ssG = A CFT + A pert , (1.2) 
where the terms A CFT and A pert will be explicited later. It implies that the Ultra-Violet (UV) behavior of the ssG model is described by a conformal theory. Hence, it is of crucial importance to know how to operate in the context of CFT and to be able to connect the ssG model with its UV limit. Technically, this will be done through the use of scaling equations, that will be described in great detail later. First we are going to motivate the importance of the computation of the one point functions, in particular in the context of conformal perturbation theory. Do to so, we will take the following steps :

1. Explain the relevance of the calculation of one point functions in the course of solving a QFT.

2. Recall some basic facts about Conformal Field Theory, explain how one deals with CFT on a cylinder and introduce the Liouville CFT. As we said, the UV limit of the ssG model is described by a particular CFT, and this is also true for all other theories where we know how to obtain the one point functions. Moreover, this part will be a preparation for the calculations carried out in the case of the Super Liouville model in the chapter 4.

3. Give a brief overview of the Conformal Perturbation Theory, since this is the framework in which we will study the ssG. We will explain how to compute perturbatively the coecients of the Operator Product Expansion and hence further underline the particularity and the importance of one point functions.

4. Discuss the existence of conservation laws in QFT, especially the deformation of conformal ones and the notion of Integrable QFT.

5. Recall the principles of the Thermodynamical Bethe Ansatz. It is stated in terms of Non Linear Integral Equations, that share some similarities with the scaling Suzuki equations that we will use to get new results in the ssG model. [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF]. Finally, explain how we can use reection relations to obtain the one point functions, and the limits of this method. This will be illustrated for the sine-Gordon model, for the primary and the simplest descendant elds.

1.1 One point functions : a fundamental object Let us consider a general QFT in two Euclidean dimensions, described by the action A QFT . By "solving" a QFT we usually understand that we should compute its spectrum S (the complete eld content), as well as all correlation functions among the elements of S. To be more precise, suppose that we have a theory with a space of elds S = {V i } i∈I for some set I, and that the general correlation function can be written from a path integral perspective :

V i1 (x 1 )...V in (x n ) = Dϕ V i1 (x 1 )...V in (x n )e -AQFT [ϕ] .

(1.3)

At this point, we should remark that even if we are not going to use the path integral to carry out explicit calculations, it will reveal several times to be a useful tool to obtain an intuition about the result (for example this will be case when we will be studying Conformal Perturbation Theory). As is well known, the path integral is hard to manipulate, so one should take another way to compute V i1 (x 1 )...V in (x n ) . To do so, let us assume that our theory admits a short distance Operator Product Expansion (OPE), that is for any two elements of S we can write :

V i (x)V j (y) k∈I C k ij (x, y)V k (y) , x → y , (1.4) 
where C k ij (x, y) are functions depending on the positions of the elds. The OPE assumption has been proposed in [START_REF] Wilson | Non-Lagrangian Models of Current Algebra[END_REF], [START_REF] Wilson | Operator product expansions and composite eld operators in the general framework of quantum eld theory[END_REF] and reects the fact that the eld space S can be considered as an algebra, with a basis indexed by I and structure constants C k ij . Here we should make a warning about identities between elds : they will have to be always understood as holding inside correlation functions (X is any product of elements of S) :

V i (x)V j (y)X k∈I C k ij (x, y) V k (y)X . (1.5) 
Consider now (1.5) with only V i (x)V j (y) in the left hand side. In this decomposition, two objects of very dierent nature are involved. The coecients C k ij (x, y) are dened in the limit x → y, and are thus purely Ultra-Violet data, meaning that they depend on the short distance interaction of the theory. On the other hand, the one point functions V k (y) are by denition the average of the elds V k over all space-time, and have hence to depend on the overall long distance or Infra-Red (IR) environment of the theory. The above reduction (1.5) holds for any n point function in the UV limit. Therefore, we claim that the fundamental quantities that we should aim at in a study of a QFT are :

1. The spectrum S.

2. The structure constants C k ij . 3. The one point functions V k (y) .

In the following sections, we will show how to compute the spectrum and the structure constants in the case of the theories that we will consider : CFTs and Perturbation of CFTs. The one point functions appear to be the most challenging quantities for which straightforward approaches do not exist for the moment.

One eld that we will always assume contained in S is the stress energy tensor of the theory T µν , that measures the response of the model under deformations of the space-time. To get an explicit formula, we rst consider our theory in curved space, and take the variation of the action with respect to the metric :

T µν = 1 √ g δA QFT δg µν gµν =δµν .
(1.6)

Since we work in Euclidean signature in two dimensions, it will be helpful to consider complex coordinates z = x + iy, for which we dene the following notations :

T = T z,z , T = T z,z , Θ = -T z,z .
(1.7)

Let us make a remark here. The assumption that the theories we consider are invariant under translations implies that the one point functions can be simply calculated at the origin :

V k (y) = V k (0) .
(1.8)

Notice that Θ is often referred to as the trace of the stress energy tensor, however the exact relation is Θ = -1 4 T a a . Since T µν is a Noether current, it is conserved, and the conservation laws in the complex coordinates are :

∂ z T (z, z) = ∂ z Θ(z, z) , ∂ z T (z, z) = ∂ z Θ(z, z) ,
(1.9) with the convention

∂ z = 1 2 (∂ x -i∂ y ) , ∂ z = 1 2 (∂ x + i∂ y ) .
(1.10)

The relations (1.9) are very important, and we will see that in the context of integrable QFTs they represent the rst occurrence of an entire tower of conservation laws. Notice also that from them we can construct conserved charges : ( 1.11) where c 0 is a small circular contour around the origin. These are simply integrated innitesimal complex translations, and this means that one can act with P, P on a eld of S to get :

PV i (w, w) = ∂ w V i (w, w) , PV i (w, w) = ∂ wV i (w, w) .

(1.12)

At this moment in our discussion, we should start to look a specic theories. We will rst see how the above questions (spectrum, coecients of OPE, one point functions) can be fully answered in the case of Conformal Field Theories, and then what remain hidden if we consider Perturbed CFT.

Conformal Field Theory

The rst type of theories to look at are the Conformal Field Theories (CFT) that have been very extensively studied in the last 40 years. They allowed, in particular, a Quantum Field Theoretic interpretation of critical phenomena and phase transitions. The fundamental paper where the modern description of CFT was given is [START_REF] Belavin | Innite conformal symmetry in twodimensional quantum eld theory[END_REF]. It was followed by a plethora of articles on the subject. There are many excellent books and reviews, we used [START_REF] Zamolodchikov | Conformal eld theory and 2D critical phenomena[END_REF][START_REF] Di Francesco | Conformal Field Theory[END_REF][START_REF] Ribault | Conformal eld theory on the plane[END_REF][START_REF] Nakayama | Liouville Field Theory : a decade after the revolution[END_REF].

In this section our modest objective is not to give an extensive introduction to CFT, but rather to briey recall the most important concepts, introducing notations for further calculations and illustrating the very general notions that have been considered above. We would like to prepare the ground for the study of more complicate QFTs, which will be described by a CFT in their UV limits. As we will recall, the CFTs are theories that are completely solved in the sense given above, so we will heavily rely on them in our further calculations to extract information about the one point functions.

The Virasoro algebra V.

Consider such a theory on the plane. Conformal means that this theory is invariant under conformal transformations, in particular scale transformations. Therefore, the β-function is identically zero, and this implies the vanishing of the eld Θ(z, z) 1 . The conservation laws (1.9) simplies to holomorphicity (anti-holomorphicity) conditions :

∂ z T (z, z) = 0 , ∂ z T (z, z) = 0 .
(1. [START_REF] Di Francesco | Conformal Field Theory[END_REF] The stress energy tensor is by denition the generator of conformal transformations. It is well known that in a general QFT, the innitesimal eect of a symmetry on a eld corresponds to the space integral of the commutator of the eld with the Noether charge. In the two dimensional setting, using complex coordinates, we can rewrite the integrals of commutators as contour integrals. Focusing on 1 Consider a general QFT given by the action A QFT and depending on some coupling constants g = {g a }a. Dene the elds ξa = δA QFT δg a . One can express the "trace" of the stress energy tensor Θ in terms of the beta-functions by the formula : Θ = X a β a (g)ξa .

(1.13)

T , the action of an innitesimal conformal transformation z → (z) on a eld V is then given by (c w is a small circular contour around w) :

δ V (w, w) = cw dz 2πi (z)T (z)V (w, w) .

(1.15)

From locality and holomorphicity assumptions, the stress energy tensor can be expanded in a Laurent series :

T (z)V (w, w) = n∈Z (z -w) -n-2 L n V (w, w) .

(1.16)

One obtains the action of the modes on the elds by reversing the previous formula :

L n V (w, w) = cw du 2πi (u -w) n+1 T (u)V (w, w) .

(1.17)

An important assumption to make is that the spectrum S includes the so called primary elds, that are denoted V ∆ (w, w) and satisfy the properties :

L m V ∆ (w, w) = 0 , m > 0 , L 0 V ∆ (w, w) = ∆V ∆ (w, w) .

(1.18)

The parameter ∆ is called the (holomorphic) conformal dimension , and characterizes the eld V ∆ .

The relation (1.12) gives :

L -1 V ∆ (w, w) = ∂ w V ∆ (w, w) .
(1.19) We are mostly interested in the singular part of the OPEs. Applying the above properties of primary elds to the general expression (1.16), we get

T (z)V ∆ (w, w) = ∆ (z -w) 2 V ∆ (w, w) + 1 z -w ∂ w V ∆ (w, w) + O (1) . 
(1.20)

The expressions (1.15), (1.17) and (1.18), (1.20), as well as most of the following considerations have dual formulae that involve the eld T (z) and its modes Ln . In particular one can also dene the anti-holomorphic conformal dimension ∆.

Plugging the OPE (1.20) in (1.15), one obtains the innitesimal transformation law for the primary elds : δ V ∆ (z, z) = (z)∂ z V ∆ (z, z) + ∆ (z)V ∆ (z, z) , (1.21) (and an analogous expression for the second chirality). From this we deduce the transformation law of a primary eld under a generic conformal transformation z → w(z) (together with z → w(z)) :

V ∆ (z, z) = V ∆ (w, w) dw dz ∆ dw dz ∆ . (1.22) 
Let us now turn to the eld T . The most general innitesimal conformal transformation that we can write is [START_REF] Belavin | Innite conformal symmetry in twodimensional quantum eld theory[END_REF] :

δ T (z) = (z)∂ z T (z) + 2 (z)T (z) + c 12 (z) , (1.23) 
where in the last term we have introduced the parameter c, which will be referred to as the central charge of theory. This expression is equivalent the OPE between T and itself :

T (z)T (w) = c 2 (z -w) 4 + 2T (z) (z -w) 2 + ∂ w T (w) z -w + O(1) .
(1. [START_REF] Mussardo | Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics[END_REF] Notice, that from this OPE we read that T is not a primary eld, since the series does not truncate at the term 1 (z-w) 2 , T will be therefore termed a quasi-primary eld. Moreover it is clear that the conformal dimension of T is 2 : L 0 T = 2T . Finally (1.24) implies the following behavior of the stress energy tensor at innity :

T (z) = O 1 z 4 , z → ∞ .
(1.25)

Then, computing the action of T (z)T (w)V (u, ū) we can deduce the commutation relations of the modes of stress energy tensor. They satisfy the celebrated Virasoro algebra V :

Exactly the same analysis holds for the algebra of the modes Ln . The full symmetry algebra of a CFT is then V × V, made of two copies of the Virasoro algebra, one for each chirality. Since for our needs the calculations for both chiralities will be identical, we will only speak about V and drop the dependence of primary elds on the variables z most of the time. Another important consequence of (1.23) is the transformation law of T under global conformal transformations :

T (z) = dw dz 2 T (w) + c 12 {w, z} , (1.27) 
where {w, z} is the Schwarzian derivative given by :

{w, z} = w (z) w (z) - 3 2 
w (z) w (z) 2 . 
(1.28)

We will apply this transformation rule to calculate the stress energy tensor on the cylinder.

Ward-Takahashi identities. Now that we have identied the structure of the primary elds in S,

one can look at the form of the correlation functions in a CFT. To understand the eects of conformal transformations on correlation functions we must consider T (z)V ∆1 (w 1 )...V ∆n (w n ) . This should be a meromorphic function of z, with the poles located at the points w i and with singularities given by (1.20). Hence we deduce the relation :

T (z)V ∆1 (w 1 )...V ∆n (w n ) = n k=1 ∆ k (z -w k ) 2 + ∂ w k z -w k V ∆1 (w 1 )...V ∆n (w n ) , (1.29) 
This formula is termed the (local) Ward-Takahashi identity, and from the knowledge of (1.24) it is possible to write similar expressions for any correlation function of the form T (z 1 )...T (z m )V ∆1 (w 1 )...V ∆n (w n ) .

(1.30)

They will be presented later in the case of the CFT on a cylinder. From the Ward-Takahashi identities, one can compute correlation functions of more complex elds. Using the inversion formula L -m V ∆ (z)... = cz du 2πi (u -z) -m+1 T (u)V ∆ (z)... , (1.31) we get the following correlation function :

L -m V ∆ (z)V ∆1 (z 1 )...V ∆n (z n ) = = n k=1 (m -1)∆ k (z i -z) m - 1 (z i -z) m-1 ∂ zi V ∆ (z)V ∆1 (z 1 )...V ∆n (z n ) .
(1.32) Finally taking the limit z → ∞ of (1.29) and using (1.25) we recover the three global Ward-Takahashi identities :

n i=1 ∂ wi V ∆1 (w 1 )...V ∆n (w n ) = 0 , (1.33) n i=1 (w i ∂ wi + ∆ i ) V ∆1 (w 1 )...V ∆n (w n ) = 0 , (1.34) n i=1 (w 2 i ∂ wi + 2∆ i w i ) V ∆1 (w 1 )...V ∆n (w n ) = 0 .
(1. [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF] They are named "global" since they describe the invariance of the correlation functions of primary elds V ∆ k under the global conformal transformations on the Riemann sphere. These transformations form the SL(2, C) subgroup of the full conformal group. The global Ward-Takahashi identities can be seen as the invariance of the correlation functions under translations (1.33), rotations (1.34) and special conformal transformations (1.35).

The global Ward identities are important since they x strong constraints on the correlation functions of primary elds. It follows immediately that the one point functions vanish on the plane, due to the translational symmetry (1.33) :

V ∆ (0) = 0 .

(1.36) Furthermore, they allow to determine the form of the two and three point functions. Set z ij = z i -z j , the full result is :

V ∆1 (z 1 , z1 )V ∆2 (z 2 , z2 ) = D 1,2 δ ∆1,∆2 δ ∆1, ∆2 z 2∆1 12 z 2∆2 12 ,
(1.37)

V ∆1 (z 1 , z1 )V ∆2 (z 2 , z2 )V ∆3 (z 3 , z3 ) = C 123 z κ3
12 z κ2 13 z κ1 where :

κ i = ∆ -2∆ i , ∆ = ∆ 1 + ∆ 2 + ∆ 3 , (1.39) 
and similarly for κi . The constant D 1,2 depends only on the normalization of the elds, we will work with D 1,2 = 1, calling this the conformal normalization of the two point function. On the other hand, the functions C 123 are extremely important. From the normalization of the two point function, it follows that they are equal to the coecients of the eld V ∆3 in the OPE between the elds V ∆1 and V ∆2 . From dimensional reasons the latter is written

V ∆1 (z, z)V ∆2 (0) = k C k 1,2 z ∆ k -∆1-∆2 z ∆k -∆1-∆2 V k (0) , (1.40) 
where the eld V k contains all the contributions of the primary eld V ∆ k and of its descendants, that will be dened in the next paragraph. The correspondence between the three-point function and OPE coecients is given by :

C 3 12 = C 123 .
(1.41)

Finally the evaluation of (1.37) and (1.38) at the points ∞ and 0 gives (instead of taking naively z → ∞ we should rst perform the conformal mapping z → 1 z and then send z → 0 ) :

V ∆1 (∞)V ∆2 (0) = δ ∆1,∆2 δ ∆1, ∆2 , (1.42) 
V ∆1 (∞)V ∆2 (z, z)V ∆3 (0 = C 1,2,3 z ∆1-∆2-∆3 z ∆1-∆2-∆3 .

(1.43)

Therefore the knowledge of the three point functions answers the question about the structure constants of the operator algebra in the CFT context.

Representation Theory and CFT. Finally, we would like to give some representation theoretic interpretation of CFT. As we have seen, a CFT contains primary elds V ∆ that satisfy (1.18). But this condition is exactly the property that V ∆ is considered as a highest weight vector for V, with weight ∆. Keeping in mind this fact, we shall use the following obvious notation, representing the primary eld V ∆ by a state2 :

V ∆ ≡ |∆ .

(1.44)

From this highest weight vector, it is possible to generate a Verma module V ∆ for V by acting with modes with negative index :

V ∆ = Vect L -n1 ...L -np |∆ , n k ≥ 0 .
(1. [START_REF] Suzuki | Spinons in magnetic chains of arbitrary spins at nite temperatures[END_REF] Elements in V ∆ can be classied by their level l, which is dened for a generic element as

l = k n k .
(1.46)

From the eld theoretic point of view, this is the same as acting on a primary eld with the modes by the formula (1.17) :

L -n1 ...L -np |∆ ≡ L -n1 ...L -np V ∆ , n k ≥ 0 .
(1.47)

We shall call these elds descendants of the primary eld V ∆ , at level l. The vector space generated by all descendants of a primary eld (that is the Verma module V ∆ ) will be called a conformal family in the QFT language, and denoted by

[V ∆ ].
Let us introduce two more important quantities : the spin s and the scaling or anomalous dimension d : they are respectively the eigenvalues of the operators L 0 -L0 and L 0 + L0 for a given eld. For a primary eld V ∆ :

s = ∆ -∆ , d = ∆ + ∆ . (1.48)
For generic values of c and of the conformal dimension ∆, the Verma module V ∆ is an irreducible representation of V. The spectrum of any CFT is then classied by the representation of the Virasoro algebra, and can be written formally as a sum of the above mentioned Verma modules (or conformal families) 3 :

S = ∆ V ∆ .
(1.49)

As usual in representation theory, a good numerical tool for the study of the spectrum are the characters, or the partition function in the CFT language. From (1.49) the partition function of S is :

Z S (t) = ∆ χ ∆ (t) , χ ∆ (t) = Tr V∆ t L0-c 24 = ∞ n=0 dim(n + ∆)t n+∆-c 24 , (1.50) 
where dim(n + ∆) counts the dimension of the vector space of the descendants of V ∆ at level n.

1.2.2 CFT on the cylinder.

In the following we will use a lot the CFT dened on a cylinder. Usually we will consider the cylinder with the following boundary conditions : two primary elds with respective dimensions ∆ ± will be located at the innities. At the origin we insert a generic operator O, this is represented on the picture 1.1. Moreover we will distinguish two types of cycles on the cylinder : cycles c that are contractible and encircle the origin, and cycles C that are wrapping around the cylinder.

The passage from the plane with coordinate z to the cylinder with coordinate x is made by the transformation :

z = e ax , (1.51)
where a is a parameter characterizing the radius of the cylinder. First we need to dene the stress energy tensor on the cylinder. We have {x, z} = 1 2z 2 . With the help of (1.27) we then obtain :

T (x) = dz dx 2 T (z) - c 12 {x, z} = a 2 n e -anx L n - c 24 .
(1.52) 3 We write here only the holomorphic part for simplicity, the complete Hilbert space of a CFT is

S = M ∆, ∆ V ∆ ⊗ V ∆
To make contact with [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF], we take a = -1 R , and split the stress energy tensor T (x) :

T (x) = 1 R 2 n e nx R L n - c 24 = T + (x) + T -(x) , (1.53) 
with

T + (x) = 1 R 2   n≥1 L n e nx + L 0 2 - c 48   , T -(x) = 1 R 2   n≥1 L -n e -nx + L 0 2 - c 48   .
(1.54)

From the expressions (1.54) the boundary conditions can be rewritten in terms of the stress energy tensor :

lim x→±∞ T (x) = 1 R 2 ∆ ± - c 24 
(1.55)

Dene the local action of the stress energy tensor on a eld V by :

(l n V )(y) = cy dx 2πi (x -y) n+1 T (T (x)V (y)) .
(1.56

)
where T is the time ordering symbol dened as follows :

T (V (x)W (y)) = V (x)W (y), if x < y , W (y)V (x), if y < x , (1.57) 
and x, y denote the coordinates along the non-compact direction of the cylinder.

To perform explicit calculations of one point functions on the cylinder (for example one point functions of descendant elds l -n V ∆ ), we need the commutation relations between the two parts of the stress energy tensor T ± and the primary eld V ∆ . They are obtained from the commutation relation of the modes L n of the Virasoro algebra with those of the primary eld 4 . First we dene the following basic function (B n are the Bernoulli numbers) :

χ(z) = 1 2 cth z 2R = ∞ n=0 B 2n (2n)! z R 2n-1
.

(1.60)

Then (with the notation χ (n) = ∂ n z χ(z)) the following relations hold :

[T + (x), V ∆ (y)] = ∂ y V ∆ (y) R χ(x -y) - ∆V ∆ (y) R χ (x -y) , x < y .
(1.61)

[V ∆ (y), T -(x)] = ∂ y V ∆ (y) R χ(x -y) - ∆V ∆ (y) R χ (x -y) , x > y .
(1.62)

In addition, we have :

[T + (x), T (y)] = ∂ y T (y) R χ(x -y) - 2T (y) R χ (x -y) - c 12R χ (x -y) , x < y , (1.63) 
[T (y), T -(x)] = ∂ y T (y) R χ(x -y) - 2T (y) R χ (x -y) - c 12R χ (x -y) , x > y .
(1.64)

With these relations in hand, we can explicitly calculate the action of the modes l m applying (1.56).

To simplify our calculations we will from now compute the one point functions in the setting R = 1. A generic value of R can be restored by taking an appropriate conformal transformation. For example we can easily obtain :

l 0 V ∆ = ∆V ∆ , l -1 V ∆ (y) = ∂ y V ∆ (y) .
(1.65) 4 On the plane, expanding the primary eld V ∆ in modes :

V ∆ (z) = X n z -n-∆ Vn , (1.58) 
the OPE (1.20) implies that :

[Lm, Vn] = (m(∆ -1) -n)V m+n .
(1.59)

They are special cases of the more general result (with n ≥ 1) :

(l -n V ∆ )(y) = δ n,2 2 ∆ + + ∆ -- c 12 -δ n,E ∆ B n n(n -2)! + δ n,O (∆ + -∆ -) B n-1 (n -1)! .
(1.66)

First, the symbol δ n,O equals 1 if n is odd and 0 otherwise, a similar denitions holds for δ n,E where E means even. Second, we use the following short-hand notation for one point functions :

l -n O(y) = l -n O(y) ∆+,∆- O(y) ∆+,∆- , (1.67) 
meaning that we consider the one point functions in presence of the two primary elds |∆ ± at innity. The proof is as follows : split the contour c y on two small half-circular parts located on the left (c - y ) and right (c + y ) of y :

c y = c - y + c + y .
(1.68) Then :

(l -n V ∆ )(y) = cy dx 2πi 1 (x -y) n-1 T (T (x)V ∆ (y)) = c - y dx 2πi 1 (x -y) n-1 T (x)V ∆ (y) + c + y dx 2πi 1 (x -y) n-1 V ∆ (y)T (x) . = c - y dx 2πi 1 (x -y) n-1 T -(x)V ∆ (y) + V ∆ (y)T + (x) + [T + (x), V ∆ (y)] + c + y dx 2πi 1 (x -y) n-1 V ∆ (y)T + (x) + T -(x)V ∆ (y) + [V ∆ (y), T -(x)] .
(1.69)

The application of (1.61), (1.62) gives :

(l -n V ∆ )(y) = cy dx 2πi 1 (x -y) n-1 (T -(x)V (y) + V (y)T + (x)) + cy dx 2πi 1 (x -y) n-1 ∂ y V ∆ (y)χ(x -y) -∆V ∆ (y)χ (x -y) = cy dx 2πi 1 (x -y) n-1 (T -(x)V ∆ (y) + V ∆ (y)T + (x)) + ∂ y V ∆ (y)Res z→0 1 z n-1 χ(z) -∆V ∆ (y)Res z→0 1 z n-1 χ (z) = cy dx 2πi 1 (x -y) n-1 (T -(x)V ∆ (y) + V ∆ (y)T + (x)) + ∂ y V ∆ (y)δ n,O B n-1 (n -1)! -∆V ∆ (y)δ n,E B n n(n -2)! .
(1.70)

Now, let us dene another deformation of the contours : we can split c y into two large circular contours C ± (see 1.1) located on the right and on the left of y respectively and running in opposite directions :

c y = C + -C -.
(1.71) It implies that :

l -1 V ∆ (y) = cy dx 2πi T (T (x)V ∆ (y)) = - C- dx 2πi T (x)V ∆ (y) + C+ dx 2πi V ∆ (y)T (x) = (∆ + -∆ -) V ∆ (y) .
(1.72)

To get the last line we pushed the contours to innity C ± → ±∞. Applying (1.72) and the boundary conditions (1.55) to the previous calculations (1.70), one recovers (1.66).

The multiple action of the modes is calculated by iteration, we will see more examples in the section 4.1.2. Another illustration that will be useful is the one point function of the normal ordered square of T . By denition it is given by

(T T )(y) = (l -2 T )(y) = Cy dx 2πi T (T (x)T (y)) x -y , = T -(y)T (y) + T (y)T + (y) - 1 6 T (y) + c 1440 .
(1.73)

With this formula one can rst calculate the one point function of this eld (there is here no normalization by a primary eld like in (1.67) ) :

(T T )(y) = ∆ + - c 24 2 + 1 6 ∆ + - c 24 + c 1440 δ ∆-,∆+ , (1.74) 
as well as the following expression of the Virasoro modes (the notation I 3 will be claried latter) :

I 3 = C (T T )(y) dy 2πi = 2 ∞ n=1 L -n L n + L 0 - c 24 2 - 1 6 L 0 - c 24 + c 1440 .
(1.75)

The formulae like (1.66) will prove to be very useful when we will calculate the one point functions of descendants elds on the cylinder. However, in the case of an action of multiple modes on V ∆ , the above method is not very ecient to perform the calculations. There is a more adequate way to compute the one point functions by using the Ward-Takahashi identities in the case of the cylinder. First start with the OPE on the cylinder obtained from the commutation relations (1.61), (1.62), (1.63), (1.64) in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] :

T (x)T (y) = ∂ y T (y) R χ(x -y) - 2T (y) R χ (x -y) - c 12R χ (x -y) + O(1) , (1.76) 
T (x)V ∆ (y) = ∂ y V ∆ (y) R χ(x -y) - ∆V ∆ (y) R χ (x -y) + O(1) .
(1.77)

Then the Ward-Takahashi identities on a cylinder are given by (in the second line the means the omission of the j-th term) :

T (x k )...T (x 1 )V ∆ (y) = - c 12R k j=2 χ (x 1 -x j ) T (x k )... ...T (x 2 )∆(y) + k j=2 - 2 R χ (x 1 -x j ) + 1 R (χ(x 1 -x j ) -χ(x 1 -y)) ∂ ∂x j - ∆ R χ (x 1 -y) + (∆ + -∆ -) 1 R 2 χ(x 1 -y) + 1 2R 2 (∆ + + ∆ -) - c 24R 2 T (x k )...T (x 2 )V ∆ (y) .
(1.78)

Now one can apply this to calculate any one point function l -n k ...l -n1 V ∆ by iterating the formula (1.78) and taking appropriate integrals :

l -n k ...l -n1 V ∆ (y) = cx k dx k 2πi(x k -y) n k -1 ... cx 1 dx 1 2πi(x 1 -y) n1-1 T (x k )...T (x 1 )V ∆ (y) ,
We shall also use the notation :

cx j dx j = cx j dx j 2πi(x j -y) nj -1 .
(1. [START_REF] Bershadsky | Superconformal symmetry in two dimensions[END_REF] In the what follows, we will write similar equations in the context of Supersymmetric CFT.

Eective central charge. Finally, lets us give two more denitions. The Hamiltonian operator H in a CFT is dened by 5 :

H = 2π R L 0 + L0 - c 12 .
(1.80)

and the Momentum operator P is :

P = 2π iR (L 0 -L0 ) .
(1.81) 5 To match the notations of [START_REF] Zamolodchikov | Thermodynamic Bethe ansatz in relativistic models : scaling the 3-state Potts and Lee-Yang model[END_REF], we take a = 2π R in (1.51). Then, on the cylinder we have w = τ + iσ , σ + R = σ. To get the Hamiltonian, we naturally integrate the energy density :

1 2π R R 0 Tττ dσ = 1 2π R R 0 (Tww + T w w )dσ = 1 2π `2π R ´2 H " T z 2 + T z2 -c 12 " R 2πi dz z = 2π R `L0 + L0 -c 12 
´. For the momentum a similar calculation holds starting with

1 2π R R 0 Tτσdσ = 2π iR (L 0 -L0 ).
The ground state energy E 0 is the minimal eigenvalue of H :

H = - π 6R c -12(L 0 + L0 ) =⇒ E 0 = - π 6R (c -24∆ min ) .
(1.82)

We introduce the eective central charge : c = c -24∆ min and get :

E 0 = - π c 6R .
(1.83)

This formula can be interpreted as a Casimir energy : the non zero energy of the ground state in a nite volume. One recovers E 0 = 0 as expected on the plane when we take R → ∞. Moreover, in the course of the identication between statistical models at criticality and their continuum CFT limit, the ground state energy E 0 is a universal term obtained in the expansion of the free energy of the statistical model with respect to the size of the system. We will tell more about this later.

Now we are ready to present explicit examples of CFTs, that will be important for future investigations.

Liouville CFT

A particular theory that will be useful is the Liouville CFT given by the Lagrangian [START_REF] Nakayama | Liouville Field Theory : a decade after the revolution[END_REF], [START_REF] Polyakov | Quantum Geometry of bosonic strings[END_REF] 6 :

A L = 1 4π ∂ z ϕ(z, z)∂ z ϕ(z, z) + µe bϕ(z,z) idz ∧ dz 2 .
(1.84)

The stress energy tensor

T = - 1 4 (∂ z ϕ(z, z)) 2 + Q 2 ∂ 2 z ϕ(z, z) , Q = b + 1 b ,
ensures the conformal invariance of this theory, with the central charge :

c = 1 + 6Q 2 .
(1.85)

What is the spectrum of Liouville CFT ? The primary elds in this theory are given by the expressions V a (z, z) = e aϕ(z,z) and are parametrized by a weight a. V a (z, z) has the conformal dimension 7 :

∆ a = a(Q -a) .
(1.86)

Notice that we will also use another parametrization of the conformal dimension. Setting

a = Q 2 + iP , (1.87) 
then

∆ a = Q 2 4 + P 2 .
(1.88)

One very important result is that the 3 point function for this theory is explicitly known, and has been obtained in [START_REF] Zamolodchikov | Structure Constants and Conformal Bootstrap in Liouville Field Theory[END_REF], [START_REF] Dorn | On correlation functions for non-critical strings with c≤1 but d≥1[END_REF]. It is the famous DOZZ formula, given by :

C(a 1 , a 2 , a 3 ) = πµγ(b 2 ) 2 b 2-2b 2 Q-P i a i b Υ(2a 1 )× Υ 0 Υ(2a 2 )Υ(2a 3 ) Υ(a 1 + a 2 + a 3 -Q)Υ(a 1 + a 2 -a 3 )Υ(a 2 + a 3 -a 1 )Υ(a 3 + a 1 -a 2 ) , (1.89) 
with Υ 0 = dΥ dx x=0 . The function Υ is a solution of the functional equations :

Υ(x + b) Υ(x) = γ(bx)b 1-2bx , Υ(x + 1/b) Υ(x) = γ(x/b)b -1+2x/b .
(1.90) 6 Recall that in our conventions ∂z = 1 2 (∂x -i∂y) and idz∧dz

2

= dx ∧ dy. This implies that a vertex operator in the free boson theory has the "natural" conformal dimension : ∆(e hϕ ) = h 2 . 7 The conformal dimensions of vertex operators in the free boson theory have to be shifted in such a way that the exponential interaction e bϕ has dimension ∆(e bϕ ) = 1. Hence the above formula, which can be demonstrated by algebraic methods when we make contact with the Heisenberg algebra.

where

γ(x) = Γ(x) Γ(1 -x)
.

(1.91)

Υ is a meromorphic function, that admits an integral representation in the range 0 < Re(x) < Q :

log Υ(x) = ∞ 0 dt t Q 2 -x 2 e -t - sh 2 ( Q 2 -x) t 2 sh( tb 2 )sh( t 2b )
.

(1.92)

This explicit formula for Υ implies the symmetry property

Υ(x) = Υ(Q -x) .
(1.93)

In turn, it leads to the following remarkable property for the structure function [START_REF] Zamolodchikov | Structure Constants and Conformal Bootstrap in Liouville Field Theory[END_REF] :

C(Q -a 1 , a 2 , a 3 )R(a 1 ) = C(a 1 , a 2 , a 3 ) .
(1.94

)
where R is called the Liouville reection amplitude. To calculate R one can remark that the second line of (1.89) is invariant under the reection

a 1 → Q -a 1 . This implies R(a) = πµγ(b 2 ) Q-2a b b -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) . (1.95) Indeed R(a) = C(a, a 2 , a 3 ) C(Q -a, a 2 , a 3 ) = πµγ(b 2 )b 2-2b 2 Q-2a b Υ(2a) Υ(2a -Q) = πµγ(b 2 )b 2-2b 2 Q-2a b Υ(2a) Υ(2a -b) Υ(2a -b) Υ((2a -b) -b -1 ) = πµγ(b 2 ) Q-2a b b -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) .
(1.96)

We will also use the expression of the reection amplitude in terms of the quasi-momentum P . First dene

S(ia -iQ/2) = R(a) .
(1.97)

Recalling the relation (1.87), it implies :

S(P ) = -πµγ(b 2 ) -2iP b Γ(1 + 2iP b )Γ(1 + 2iP b) Γ(1 -2iP b )Γ(1 -2iP b)
.

(1.98)

The property (1.94) of the Liouville three point function is used to infer the following reection relation among the elds (holding inside correlation functions) :

e aϕ(z,z) = R(a)e (Q-a)ϕ(z,z) .
(1.99)

The Liouville CFT possesses a special position among the CFTs. Indeed, since its central charge takes continuous values, it is possible to restrict it to specic Conformal Field Theories. The values of the three point functions in these particular cases can be obtained by appropriately restricting the general DOZZ formula (1.89).

Minimal models Let us introduce some more general notions. A eld ξ of a CFT is called a singular vector, if it is a descendant of some primary eld V ∆ that satisfy :

L n ξ = 0 , n > 0 .
(1.100) Basically this means that the representation [V ∆ ] of V supported by the highest weight vector V ∆ is reducible, and we need to factor out the descendants of the eld ξ to recover an irreducible representation. But how to spoil singular vectors ? The following result answers this question.

Consider a general CFT with the parametrization of the central charge

c = 1 + 6Q 2 , Q = b + b -1 and of the dimensions ∆ a = a(Q -a).
If the parameter a is equal to :

a mn = (1 -m)b -1 + (1 -n)b 2 , m, n ∈ N , (1.101) 
then there is a singular vector at level m × n, which is a descendant of the primary eld with conformal dimension ∆ amn . This special primary eld is often called a degenerate eld and we will denote it :

V mn = V ∆a mn .

(1.102)

We can then try to construct theories containing only degenerate primary elds. This is very meaningful, since each module [V mn ] becomes nite dimensional after the factorization by its submodule generated by the singular descendant. Moreover, the factorization condition ξ = 0 imposes constraints on the OPE of V mn with other elds of the theory. The construction of a CFT out of a nite number of degenerate elds, with a closed operator algebra under the OPE procedure leads to the the so-called Minimal Models. They are denoted M p q where p, q ∈ N with the condition p∧q = 1.

To fulll the above restrictions (nite number of primary elds and closed operator algebra), the central charge and the conformal dimensions have to be equal to :

c = 1 -6 (p -q) 2 pq , (1.103) 
∆ rs = (pr -qs) 2 -(p -q) 2 4pq , r ≤ p , s ≤ q .
(1.104)

Among the minimal models we single out the unitary minimal models dened by q = p + 1 and denoted simply M p . They can be endowed with a Hermitian structure, giving rise to a unitary theory. In such models the eld V 1,3 will play a special role, its conformal dimension is :

∆ 1,3 = 1 -< 1 , = 2 p + 1 , ∀p .
(1.105)

The eld V 1,3 has the smallest (except the identity eld

V 1,1 with ∆ 1,1 = 0) conformal dimension.
Remark that we can formally pass from the Liouville CFT parametrized by b to the minimal model M p by setting :

b 2 = - p p + 1 .
(1.106)

The conformal dimension of the Liouville eld V -b = e -bϕ(z,z) is then :

∆ -b = -b(Q + b) = -(1 + 2b 2 ) = 1 - 2 p + 1 , (1.107) 
and hence, it can be interpreted as the V 1,3 eld in the Liouville context. This will be of some importance latter.

Partial conclusion. We have seen that for two dimensional CFTs, all the information needed to describe the eld theory is accessible :

1. The spectrum is classied by the representations of the Virasoro algebra (1.49).

2. The structure constants are given by the DOZZ formula (or its variations) (1.89).

3. On the plane the one point functions vanish. On the cylinder with the boundary conditions (1.55), the one point functions of primary elds are given (as a result of the conformal mapping (1.51)) by the plane 3-point functions of the DOZZ formula. For the one point functions of descendant elds we have the formulae from the Ward-Takahashi identities (1.78).

Therefore, we can now move to more complex theories that will involve a length scale and hence massive particles. Bearing in mind the example of the ssG model, it is natural to look at perturbations of CFT.

Perturbed CFT

The 2d Conformal Field Theories describe critical phenomena in 2d statistical systems. If we want to consider massive Quantum Field Theories, or equivalently theories with a length scale, we should therefore focus instead on the vicinity of such critical points. This approach to CFT, termed the Perturbation of Conformal Field Theory (PCFT) was initiated in the paper [START_REF] Zamolodchikov | Two point correlation function in sclaing Lee-Yang model[END_REF] by Al. Zamolodchikov. A very complete review on this (as well as other forthcoming) topic can be found in [START_REF] Mussardo | Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics[END_REF]. We are going to follow closely this two sources in this section.

The perturbation of CFT is signicant for us since our main model of investigation, the Super sine-Gordon model, will be treated exactly in this set-up. Therefore, in this section we will briey recall the ideas of conformal perturbation theory, concentrating on the two following objectives :

1. Explain the renormalization of the elds in PCFT. The renormalization in this context will actually allow to consider that the elds in the perturbed model are just deformations of CFT elds. Consequently, one will still have the notion of primary and descendant elds in the PCFT. This will answer the question of the spectrum of such theories.

2. Demonstrate how one can calculate perturbatively the OPE coecients.

These two points indicate that the single object that is (theoretically) left unknown in dealing with perturbed CFT are precisely the one point functions.

Generalities. We would like here to construct a perturbation theory of some CFT given by the formal action A CFT . Let us consider a primary eld ϕ in the CFT spectrum (take this eld to be spinless ∆ = ∆), introduce a coupling constant λ, and dene the resulting Quantum Field Theory by :

A QFT = A CFT + λ ϕ(x)d 2 x .
(1.108) This is not the most general perturbation. It is possible to perturb the CFT by several primary elds, or to make a perturbation by complex composite operators [START_REF] Zamolodchikov | Expectation value of composite eld T T in two-dimensional quantum eld theory[END_REF]. This triggered a huge scientic activity recently [START_REF] Cavaglià | T T deformed 2D quantum eld theories[END_REF][START_REF] Smirnov | On space of integrable quantum eld theories[END_REF]. However, for our needs, that is for dealing with the Supersymmetric sine-Gordon QFT we concentrate on this simplest case. We start by making two fundamental comments. First, as is pointed out in [START_REF] Zamolodchikov | Two point correlation function in sclaing Lee-Yang model[END_REF], we suppose that the local elds in the perturbed theory are in one to one correspondence with those of the short distance CFT, this will be demonstrated in this section and means that we can still continue to label our elds exactly as in the CFT. The second remark concerns the fact that in order to get exact results it is enough to execute the calculations up to the rst order in perturbation theory, the outcomes are supposed to hold at all orders.

It is known from Renormalization Group analysis, that to ensure the production of a new theory from the perturbation, we need the perturbing eld ϕ to be relevant. It means that its anomalous dimension should satisfy :

d = 2∆ < 2 .
(1.109)

We assume that the introduction of a perturbation generates a mass M (see [START_REF] Zamolodchikov | From Tricritical Ising to critical Ising by Thermodynamic Bethe Ansatz[END_REF][START_REF] Fendley | Massless Flows I : the sine-Gordon and O(n) models[END_REF][START_REF] Fendley | Massless Flows II : The exact S-matrix approach[END_REF] for counterexamples), which is from dimensional reasons related to the coupling constant by 8 :

M = Cλ 1 2-2∆ , (1.112)
where C is a numerical constant, that can be calculated thanks to the Thermodynamic Bethe Ansatz, this will be done in the section 1.6. 8 The mass dimension of a eld is the same as the anomalous dimension

[ϕ] = 2∆ . (1.110) This can be seen for example from the two points function ϕϕ ∼ r -4∆ . It implies that the mass dimension of the coupling constant is

[λ] = 2(1 -∆) , (1.111) since [λ R ϕd 2 x] = 0 with [d 2 x] = -2.
Renormalization. Let us consider the one point function V (0) QFT of a generic eld in the PCFT. Since in the conformal theory we know, in principle, all correlation functions, we can use this information to compute the one point functions in the perturbed theory :

V (0) QFT = Dφ V (0) e -ACFT-λ R ϕ(w)d 2 w = ∞ n=0 (-λ) n n! d 2 w 1 ...d 2 w n V (0)ϕ(w 1 )...ϕ(w n ) CFT , (1.113) 
where we explicitly indicated in which theory the correlation functions are calculated. Moreover, we assume that the eld V is a deformation of the CFT eld V , with conformal dimension ∆ V . If the eld ϕ is such that its conformal dimension is ∆ > 1 2 , then the above integrals suer from both UV and IR singularities. As we will see shortly, the type of these singularities is very dierent. The UV singularities can be dealt with by a renormalization of the elds. The IR singularities are more complicated. For the moment, to get nite correlation functions, we need to introduce two cutos (respectively UV and IR) : and R. A general correlation function is then at the rst order :

X V (0) QFT = X V (0) CFT -λ <|w|<R d 2 w X V (0) ϕ(w) CFT + O(λ 2 ) .
(1.114)

The OPE at the CFT level is given by :

ϕ(z, z)V (0) = k C k ϕV (z z) ∆ k -∆ V -∆ A k (0) , (1.115) 
where A k are a set of elds with dimensions ∆ k . Recall a trivial formula that we will write explicitly :

R (z z) α d 2 z = π 0 R r 2α rdrdθ = π α + 1 (R 2(α+1) -2(α+1) ) , with α = 1 .
(1.116)

Then the integral of order O(λ) in (1.114) is divergent if the condition among the conformal dimensions

∆ k -∆ V -∆ + 1 ≤ 0 , (1.117) 
is satised. In this case, by dening the renormalized eld V by :

V = V + λ k πC k ϕV 2(∆ k -∆ V -∆+1) ∆ k -∆ V -∆ + 1 A k + O(λ 2 ) , (1.118) 
we get UV-nite correlation function at the order O(λ). This formula implies a mixing of the original eld V with elds of lower dimensions.

OPE in the perturbed theory. Let us now turn to the analysis of the OPE in the PCFT. We start with the two point functions, which are written analogously to (1.114) :

V (z)V (0) QFT = ∞ n=0 (-λ) n n! V (z) V (0) ϕ(w 1 ) ... ϕ(w n ) CFT d 2 w 1 ... d 2 w n , (1.119) 
where all the integrals on the right hand side are now UV nite. Consider the OPE decomposition :

V (z)V (0) = i C k V V (z)A k (0) , (1.120) 
where {A k } is a complete set of renormalized elds, that we will take listed by increasing dimension (∆ 0 ≤ ∆ 1 ≤ ∆ 2 ≤ ...). The expression (1.120) represents the splitting between the analytic (structure constants) and the non-analytic (one point functions) contributions to the two points functions. Since the structure constants are local quantities, they are analytic functions of the coupling constant λ and can be expanded in power series thereof :

C k V V (z) = z ∆ k -2∆ V z∆ k -2∆ V ∞ n=0 C k(n) V V (λr 2-2∆ ) n , (1.121) 
where here and in the following

r = |z| , (1.122) 
and the coecient

C k(0) V V = C k V V
is the CFT (the theory for λ = 0) three points function coecient. The perturbed theory is not conformally invariant anymore, and hence non-vanishing one point functions of operators can appear. The one point functions are by denition non-local quantities, hence they admit a non-analytic dependence on λ. On dimensional grounds we also have :

A k (0) QFT = λ ∆ k 1-∆ Q k , Q k ∈ C , (1.123) since [λ ∆ k 1-∆ ] = ∆ k 1 -∆ (2 -2∆) = 2∆ k , (1.124) 
which is what we need. All the non-analytic behavior of the OPE expansion (1.120) is therefore hidden inside the one point functions, whereas the OPE coecients can be calculated by perturbative methods, which is not so surprising since they are purely UV data. We explain this in the next paragraph.

Perturbative calculation of the coecients. We would like to explicitly compute the rst terms of the perturbative expansion (1.121). We closely follow [START_REF] Zamolodchikov | Two point correlation function in sclaing Lee-Yang model[END_REF] and rst dene the matrix elements :

I k l (λ, R, ) = A k (∞) A l (0) QFT = ∞ n=0 (-λ) n n! <|w|<R Ãk (∞) A l (0)ϕ(w 1 ) ... ϕ(w n ) CFT d 2 w 1 ...d 2 w n .
(1.125)

In this expression A k are the non-renormalised versions of the elds A k . Use the conformal normalization (see (1.37)) at zero order :

I k l (λ, R, ) = δ k l + O(λ) .
(1.126)

Since the UV and IR singularities have completely dierent nature, one can assume the following factorization property :

I k l (λ, R, ) = p U k p (λ, )I p l (λ, R) .
(1.127)

In the previous formula I p l (λ, R) are renormalized matrix elements (they are therefore independent of ) :

I k l (λ, R) = A k (∞)A l (0) QFT .
(1.128)

The U k p (λ, ) is the UV cut-o renormalization matrix. The terms of U can be expanded in a power series in , that from dimensional considerations reads :

U k l (λ, ) = ∞ n=0 U k(n) l 2(∆ l -∆ k ) λ 2(1-∆) n .
(1.129)

When taking the limit → 0, we should focus only on terms with negative powers of . Since the perturbing eld ϕ is relevant (∆ < 1), there are only a nite number of such terms, for each matrix element. In particular it means that :

U k l (λ, ) = 0 , ∆ k > ∆ l , (1.130) 
and from the ordering of the elds in {A k (0)} dened above, it is clear that the matrix U k l together with its inverse (U -1 ) l k has a triangular structure. The elements of the renormalized matrix are also normalized using the conformal prescription :

U k l (λ, ) = δ k l + O(λ) .
(1.131)

Now we can dene the renormalized perturbative elds as :

A k = l (U -1 ) l k A l .
(1.132)

From the normalization (1.131) we recover the formula (1.118) :

A k = A k + ... , (1.133) 
where the dots mean a nite number of terms, given by elds with dimensions lower than ∆ k .

Remark, that in the above discussion, we supposed for simplicity that there are no resonances, in other words that ∆ k -∆ l is not an integer multiple of 1 -∆.

For the renormalized matrix I, we assume a similar power series expansion as the one of U , but depending on the cut-o R :

I k l (λ, R) = ∞ n=0 I k(n) l R 2(∆ l -∆ k ) λR 2(1-∆) n .
(1.134)

We can now proceed to the perturbative calculation of the three point function. Dene the quantity

G k V V (λ, z, R) = A k (∞)V (z)V (0) QFT , = ∞ n=0 (-λ) n n! |w|<R A k (∞)V (z)V (0)ϕ(w 1 ) ... ϕ(w n ) CFT d 2 w 1 ...d 2 w n .
(1.135) Since V is already renormalized, there is no dependence (no UV singularities) in the integrals. The use of the OPE expansion (1.120) implies :

C k V V (z) = l G l V V (λ, z, R)(I -1 ) k l (λ, R) .
(1.136)

One will need the following three-point functions at the CFT level (1.38) :

A k (∞)V (z)V (0) CFT = C k V V |z| 2(∆ k -2∆ V ) , (1.137) 
A k (∞)ϕ(z)V (0) CFT = C k ϕV |z| 2(∆ k -∆-∆ V ) , (1.138) 
A k (∞)ϕ(z)A l (0) CFT = C k ϕl |z| 2(∆ k -∆ l -∆) .
(1.139)

Inserting (1.137) in the rst order term of (1.125) and using (1.116) one has :

I k l (λ, R, ) = δ k l -λπ C k ϕl R 2(∆ k -∆ l -∆+1) -2(∆ k -∆ l -∆+1) ∆ k -∆ l -∆ + 1 .
(1.140)

Splitting the UV and IR contributions at the same order in λ we get :

I k l (λ, R) = δ k l -λπ C k ϕl R 2(∆ k -∆ l -∆+1) ∆ k -∆ l -∆ + 1 , (1.141) 
U k l (λ, ) = δ k l + λπ C k ϕl 2(∆ k -∆ l -∆+1) ∆ k -∆ l -∆ + 1 .
(1.142)

At the rst order the OPE coecients are then :

C k V V (z) = C k V V |z| 2(∆ k -2∆ V ) -λ |w|<R A(∞)ϕ(w)V (z)V (0) d 2 w
(1.143)

+ λπ l C l V ϕ C k ϕl R 2(∆ k -∆ l -∆+1) ∆ k -∆ l -∆ + 1
.

(1.144)

The last sum cancels exactly the IR divergences of the integral. Using the OPE (1.120) we obtain the rst order term of the expansion (1.121) :

C k V V (z) = r 2(∆ k -2∆ V ) × C k V V + λπr 2-2∆ l C l V V C k ϕl ∆ k -∆ l -∆ + 1 - C l ϕV C k V l ∆ l -∆ V -∆ + 1 + O(λ 2 ) . (1.145)
Partial conclusion. The above analysis showed that the only quantities that we cannot access from standard perturbative methods are the one point functions V k (0) of the theory. These are the principal quantities of interest and their calculation, in the case of the Super sine-Gordon model, will be the main subject of this dissertation. However we can already claim that a large number of them is equal to zero due to QFT symmetries. These are :

1. One point functions of elds with non zero spin.

2. One point functions of elds which are spatial derivatives of other elds.

3. One point functions of elds generated by the action of any local integral of motion.

The rst two points represent the invariance of one point functions under rotations and spatial translations. The third point is related to an outstanding feature of many perturbed CFT : under certain conditions the perturbed eld theories happen to be integrable models. This will be the topic of the next section.

Deformation of conformal conservation laws

A crucial observation is that the above deformations of CFT often lead to integrable Quantum Field Theories. Integrable QFTs are characterized by an innite number of integrals of motions (IoM), and thus an innite number of conservation laws. The integrals of motions occupy a central place in our work. First of all, they are already present in the CFT, and we will see why they are crucial to display the integrable structure of conformal eld theories in section 2.6. As we will explain in this section, the integrals of motion can under certain conditions be deformed from CFT to the massive QFT, and are then responsible of the integrability of the latter theory. Let us rst start with the conformal case.

Integrals of motion in CFT. Recall that in CFT, the eld T is conserved :

∂ z T (z, z) = 0 . (1.146) 
From this equation we can try to build conserved quantities as combinations of the eld T (and its derivatives). To manipulate products of elds we rst dene the normal ordering between two elds V and W on the plane :

: V W (u) := cu dz 2πi 1 z -u V (z)W (u) .
(1.147)

We will also employ the notation (V W ) =: V W : to denote products of multiple normal ordered operators. More precisely, we can construct conserved densities h by considering polynomials of normal ordered products of T itself and of its derivatives. From the conservation law (1.146), any such h will also satisfy

∂ z h(z, z) = 0 , (1.148) 
and is therefore a conserved quantity. A natural question is to understand how one could classify these densities. Recall that the stress energy tensor is a descendant of the identity eld T = L -2 I.

It means that all such h belong to the conformal family of the identity [I], that is they are built from I by applying the modes L n with n < 0. Hence, one can try to characterize the h's by their spin.

Actually for each spin s, we can dene a nite dimensional vector space T s containing the dierent "candidate" densities with this given value of the spin. Let us list the rst possible densities :

s = 0 h 0 = I , (1.149) s = 1 h 1 = L -1 I = ∂ z I = 0 , (1.150) s = 2 h 2 = L -2 I = T , h 2 = L 2 -1 I = 0 (1.151) s = 3 h 3 = L -1 L -2 I = ∂ z T , h 3 = L 3 -1 I = 0 (1.152) s = 4 h 4 = L 2 -2 T = (T T ) , h 4 = ∂ 2 z T .
(1.153)

The prime indicate other elds, that might be considered for constructing densities (at each value of the spin). Generally speaking, all density of odd spin will be set to zero, they are either equal to zero, or total derivatives that means that their one point function is zero, and are of no interest for us.

Therefore, we concentrate on even spin densities. At spin 6, we have two non trivial contributions that can appear :

h (1) 6 = ((T T )T ) , h (2) 
6 =: ∂ z T ∂ z T : .

(1.154) The outcome of the previous analysis is the following : one has an innite family of conserved elds h 2k , parametrized by their spin 2k that are expressed as homogeneous (in the spin) polynomials of T and its derivatives. But which density keep at spin 6 ? As we will see, in certain cases, specially constructed integrals of motion can "survive" when the perturbation theory is applied, which means that such densities still satisfy a conservation equation in the massive theory. Before presenting the procedure, we give the densities that one should keep :

h 2 (z) = T (z) , (1.155) h 4 (z) = : T (z) 2 : , (1.156) h 6 (z) = : T (z) 3 : + c + 2 12 : (∂ z T (z)) 2 :
.

(1.157)

Let us emphasize again that in the spin 4 case, we dropped the contribution of the eld ∂ 2 z T because being a total derivative, its one point function is zero.

Action on elds. In the same spirit that we dened the action of the modes l n of the stress energy tensor on elds on the cylinder (1.56), we dene the local action of the integrals of motion. Recall that on the cylinder we use circular contractible contours to dene the local actions :

(i 2k-1 V )(y) = cy dx 2πi T (h 2k (x)V (y)) , (1.158) 
where c y is a small circle around the point y. One should think about this formula as a local denition, since c y is homotopical to point. This implies that one could also compute i 2k-1 from the residue of h 2k (z) (in the plane geometry) at the origin :

i 2k-1 = Res z=0 (h 2k (z)) . (1.159) 
Let us list some properties of the modes i 2k-1 .

1. Since the h 2k are constructed out of T 's, i 2k-1 can be rewritten through the "local" modes l n .

2. Because h 2k is a eld of spin 2k, the operator i 2k-1 is of spin 2k -1. This is equivalent to the equation :

[l 0 , i 2k-1 ] = (2k -1)i 2k-1 .
(1.160)

3. Since we are dealing with conserved quantities, all i 2k-1 are in involution :

[i 2k-1 , i 2l-1 ] = 0 .
(1.161)

Now we explicitly calculate the rst actions. We have

(i 1 V )(y) = cy dx 2πi T (h 2 (x)V (y)) = cy dx 2πi T (T (x)V (y)) = (l -1 V )(y) , =⇒ i 1 = l -1 .
(1.162)

To get i 3 , let us calculate the residue of (1.156). We have the normal ordered expressions9 :

(T T )(z) =: n l n z -n-2 m l m z -m-2 := n,m : l n l m : z -n-m-4 = q m
: l m l q-m : z -q-4 .

(1.163) This leads to :

i 3 = Res z=0 (T T )(z) = m : l m l -3-m := 2 ∞ m=-1 l -3-m l m .
(1.164) Finally, by a similar computation, one obtain the expression of i 5 [START_REF] Negro | Reection relations and fermionic basis[END_REF] :

i 5 = 3 ∞ k=-1 ∞ l=-1 l -5-k-l l l l k + -2 k=-∞ -2 l=-∞ l l l k l -5-k-l + c + 2 6 ∞ k=-1 (k +2)(k +3)l -5-k l k . (1.165)
Integrals of motion in Perturbed CFT. Let us now move to the consideration of perturbed CFT. The key article where the deformations of integrals of motion were studied is [START_REF] Zamolodchikov | Higher Order integrals of motion in Two-Dimensional Models of the Field Theory with a Broken Conformal[END_REF]. It has been shown that a unitary minimal CFT M p perturbed by the elds V 1,3 and V 1,2 possesses higher order integrals of motion. How do the conformal conservation laws (1.148) change in the massive context ? Recall the formula (1.9) giving the continuity equation on a general stress-energy tensor and compare it with the conservation law for the densities in the CFT ∂ z h 2k = 0. It is natural to suppose that in the massive theory, the previous equation for h 2k should develop a non zero right hand side taking the form of a total holomorphic derivative :

∂ z h 2k = ∂ z Θ 2k-2 ,
(1.166) for some eld Θ 2k-2 to be specied. To balance the dimensions on both sides of (1.166), we can claim that Θ 2k-2 has spin 2k -2. Also from this equation we can directly construct a conserved charge of spin 2k -1 (in the same spirit as (1.11)):

Q 2k-1 = 1 2πi c0 (h 2k dz + Θ 2k-2 dz) .
(

1.167)

In what sense are these charges conserved ? A naive application of the Stokes theorem would give :

Q 2k-1 = 1 2πi c0 (dzh 2k + dzΘ 2k-2 ) = - 1 2πi Ω (∂ z h 2k -∂ z Θ 2k-2 )dz ∧ dz = 0 , (1.168) 
where Ω is the interior of c 0 . But we should handle this relation only inside correlation functions, where singularities coming from products with other elds are present, and hence give a non vanishing result. Moreover the set of these charges should commute :

[Q 2k-1 , Q 2l-1 ] = 0 .
(1.169)

Recalling (1.12), we see that Q 1 is simply the momentum

Q 1 = P = ∂ z .
(1.170)

Let us make another remark. In the section 4.1 we will use a similar construction in the context of Supersymmetric CFT to create conserved densities, but instead of working with the stress-energy tensor we will focus on the super current eld. This will in particular yield the usual super charges of a SUSY QFT. Now that we made explicit the general form of the conservation laws in the context of a massive eld theory, we need a procedure to select the CFT densities h 2k that will eectively give rise to a deformed equation (1.166). This criterion is explained in the next paragraph.

Criterion for the deformation of conservation laws. This rule is based on the OPE between h and the perturbing eld, and reads : For a density h to be an integral of motion in the QFT context it is necessary for the residue of the OPE of h with the perturbation eld to be proportional to a total derivative. Let us prove this. First recall a formula for distribution theory :

δ(z -w) = 1 π ∂ z 1 z -w .
(1.171) Let h 2k be a CFT density, we want to arrive at the conservation law in the context of QFT :

∂ z h 2k = ∂ z Θ 2k-2 .
(1.172)

As we said, this is to be understood as an equality inside correlation functions. In a general CFT perturbed by a eld ϕ one can write the expansion of a correlation function of the eld h 2k :

h 2k (z, z)... QFT = Dφe -A[φ] h 2k (z, z)... = Dϕe -S CFT -λ R d 2 wϕ(w) h 2k (z, z)... = ∞ n=0 (-λ) n n! dw 2 1 ...dw 2 n h 2k (z, z)ϕ(w 1 )...ϕ(w n )... CFT = h 2k (z)... CFT -λ dw 2 h 2k (z, z)ϕ(w)... CFT + O(λ) (1.173)
As said above, it is enough to do the calculation in the rst order of perturbation theory. Take the derivative ∂ z of (1.173). To do this, we assume that the strongest singularity in the OPE between h 2k and ϕ is of order 2 (the general case is obtained in the same way) :

h 2k (z, z)ϕ(w, w) = A (2) (z -w) 2 ϕ (2) (w, w) + 1 z -w
ϕ (1) (w, w) + ...

(1.174)

h 2k (z, z)ϕ(w, w) = A (2) (z -w) 2 ϕ (2) (z, z) + 1 z -w ϕ (1) (z, z) -A (2) ∂ z ϕ (2) (z, z) + ... . (1.175)
We do this change because we want the variable of integration w to appear only in the denominator. Performing the OPE (1.175) in the integral of (1.173), and using (1.171) we obtain at rst order :

∂ z h 2k (z) = -λπ ϕ (1) (z, z) -A (2) ∂ z ϕ (2) (z, z) .
(1.176)

Hence ∂ z Θ 2k-2 (z, z) = -λπ ϕ (1) (z, z) -A (2) ∂ z ϕ (2) (z, z) , (1.177) 
which implies the necessity for the eld ϕ (1) (z, z) to be a total holomorphic derivative.

Example. Let us illustrate this method for the rst density h 2 (z) = T (z). If the perturbation is done by a primary eld ϕ(z, z) of conformal dimension ∆, we recall the OPE (1.20) :

h 2 (z)ϕ(w, w) = ∆ (z -w) 2 ϕ(w, w) + 1 z -w ∂ w ϕ(w, w) + O(1)
(1.178)

Hence the density h 2 gives rise to the perturbed conservation law (we already knew it from (1.9)) :

∂ z T = ∂ z Θ .
(1.179) with Θ(z, z) = λπ(∆ -1)ϕ(z, z)

(1.180) This is a well known result : we have shown that the trace of the stress energy tensor is proportional to the perturbing eld, in the rst order of perturbation theory. The structure of the spin 6 density h 6 (1.157) is chosen exactly so that it satises this criterion and gives an integral of motion in the perturbed theory.

There exists also other, more algebraic methods, that allow to determine the explicit form of the right hand side term Θ 2k-2 . For example the counting argument of A. Zamolodchikov [START_REF] Zamolodchikov | Integrable Field Theory from Conformal Field Theory[END_REF].

Application. In the paper [START_REF] Zamolodchikov | Higher Order integrals of motion in Two-Dimensional Models of the Field Theory with a Broken Conformal[END_REF], A. Zamolodchikov used the above criterion to show that the perturbation of any unitary minimal model by the elds V 1,3 or V 1,2 , deform the conformal conservation laws to the massive QFT. The main argument of the proof relies on the fact that since these two elds are degenerate primary elds, there exist a dependence relation between their descendants at level 3 and 2 respectively. This relation can be used to show that the residue of the OPE between V 1,3 or V 1,2 with any conformal density h 2k is a total derivative. Hence the perturbation of unitary minimal models by V 1,3 or V 1,2 gives massive theories with an innite number of local integrals of motion and conserved charges (1.167). This is what we will call an Integrable Quantum Field Theory, they will be discussed in the next section.

As an example of such a theory, let us now consider the following perturbation of the Liouville CFT, termed the sinh-Gordon model (shG). The shG is given by the Lagrangian :

A shG = 1 4π ∂ z ϕ(z, z)∂ z ϕ(z, z) + 2µsh(bϕ(z, z)) idz ∧ dz 2 .
(1.181) This is a perturbation of the Liouville theory A L by the eld V -b (z, z) = e -bϕ(z,z) :

A shG = 1 4π ∂ z ϕ(z, z)∂ z ϕ(z, z) + µe bϕ(z,z) + µe -bϕ(z,z) idz ∧ dz 2 .
(1.182)

Recall that the stress energy tensor of the Liouville CFT is :

T = - 1 4 (∂ z ϕ) 2 + Q 2 ∂ 2 z ϕ .
(1.183)

The perturbing eld

V -b has conformal dimension ∆ = -b(Q + b) = -(1 + 2b 2 ).
Remember the correspondence between a minimal model M p and the Liouville CFT parametrized by b (1.107) :

b 2 = - p p + 1 .
(1.184)

One can then interpret the shG model as a perturbation of a CFT by the eld V 1,3 , and hence from the above considerations claim that shG is an Integrable QFT. Of course the integrability of this model was proven without any reference to CFT, but this gives us a rather heuristic, extra argument.

The same considerations will hold for our case of interest, that is for the Super sine-Gordon (sinh-Gordon) model.

The two facets of integrals of motion. To close this section, we would like to highlight once again the two dierent aspects of the integrals of motion in CFT and in QFT, by recapping the two applications that we can make of the densities h 2k .

1. We can use the densities to build operators acting on states of Verma modules. More precisely, in the terminology that will be developed in the next chapter, we employ the densities in order to act on the Matsubara Hilbert space. This will be made clearer later, for the moment consider that this amounts to construct the operators I 2k-1 in the Universal Enveloping Algebra of the Virasoro algebra, out of the h 2k by integrating the densities along a non-trivial cycle C of the cylinder :

I 2k-1 = C h 2k (y) dy 2πi = u+iπ u-iπ h 2k (y) dy 2πi .
(1.185)

The construction procedure for the densities described above implies the commutativity of the operators I 2k-1 :

[I 2k-1 , I 2l-1 ] = 0 .
(1.186) An explicit calculation gives the expressions of the I 2k-1 in terms of the modes L n :

I 1 = L 0 - c 24 ,
(1.187)

I 3 = 2 ∞ n=1 L -n L n + L 2 0 - c + 2 12 L 0 + c(5c + 22) 2880 .
(1.188)

Recall that we computed I 3 in (1.73), (1.75). A more complicated expression for I 5 can be found from [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF] :

I 5 = n1+n2+n3=0 : L n1 L n2 L n3 : + ∞ n=1 c + 11 6 n 2 -1 - c 4 L -n L n + 3 2 ∞ r=1 L 1-2r L 2r-1 - c + 4 8 L 2 0 - c(3c + 14)(7c + 68)) 290304 .
(1.189)

We have the evident action on the primary state |∆ :

I 2k-1 |∆ = i 2k-1 |∆ .
(1.190)

For the operators (1.187),(1.188),(1.189) these are : 

i 1 = ∆ - c 24 
(i 2k-1 V )(y) = cy dx 2πi T (h 2k (x)V (y)) (1.194)
Grouping the above results we have :

i 1 = l -1 , (1.195) i 3 = 2 ∞ n=0 l -n-2 l n-1 , (1.196) 
i 5 = 3 ∞ k=-1 ∞ l=-1 l -5-k-l l l l k + -2 k=-∞ -2 l=-∞ l l l k l -5-k-l + c + 2 6 ∞ k=-1 (k + 2)(k + 3)l -5-k l k .
( .197) To obtain the relation between the two descriptions we calculate the one point functions on the cylinder (remember that we work on the cylinder with primary elds of dimensions ∆ ± located at ±∞ respectively). Again, splitting the contour c y = C + -C -one gets :

(i 2k-1 V )(y) ∆+,∆-= - C- dx 2πi h 2k (x)V (y) ∆+,∆-+ C+ dx 2πi V (y)h 2k (x) ∆+,∆-, (1.198) 
= (i + 2n-1 -i - 2n-1 ) V (y) ∆+,∆-.
(1.199)

To get to the second line, we move the contours C ± to innities, where the density h 2k hits the primary states ∆ ± . This gives the relation between the two descriptions. More importantly, we have shown that when the boundary conditions are equal ∆ + = ∆ -, the one point functions of elds obtained by the action of integrals of motion are zero.

Integrable Quantum Field Theory

We have seen that the perturbation of a unitary minimal model M p by the eld V 1,3 leads to a QFT owning an innite number of conserved, commuting charges. This is our denition of an Integrable Quantum Field Theory. But how are they connected to general integrable systems ? One needs to say that there is no universal denition for such models, but usually one agrees to consider that integrability means that all physically relevant quantities can be computed analytically. This behavior was rst observed in the context of Analytical Mechanics (see [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF] for a review) for theories possessing enough conserved quantities, that is at least the same number as of degrees of freedom. This is the result of the famous Arnold-Liouville theorem for classical integrable systems. In the context of QFT one typically has innitely many degrees of freedom, and as we have seen above innitely many conserved quantities for integrable QFTs. Why and in what sense do this charges lead to an exact solution of the quantum theory ?

This question has been answered in [START_REF] Zamolodchikov | Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum eld theory models[END_REF], we shall briey recall the main steps from this paper (also using [START_REF] Mussardo | Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics[END_REF] as a valuable reference). Hence, for a moment we come back to the relativistic noneuclidean, massive theory. The characteristics of particles are then their masses m and rapidities θ. The essential contribution of [START_REF] Zamolodchikov | Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum eld theory models[END_REF] is to demonstrate that integrability in QFT implies that the spectrum and the scattering data (equivalently the S matrix of the theory) can be computed exactly. We will in short explain why it is so, and how it leads naturally to the Yang-Baxter equation, the cornerstone of any quantum integrable system.

Let us start from the last results of the previous section, we have a QFT with innitely many conserved charges Q s (or integrals of motion), labeled by their spins, in involution :

[Q u , Q v ] = 0 .
(1.200) Assume that the particles in the theory can be classied by their species, a state of the theory with n particles of species a i will then be denoted by |A a1 (θ 1 )...A an (θ n ) , (1.201) where θ i is the rapidity of the particle a i . Since we are working in only 2 dimensions, we can formally think of A ai (θ i ) as non commuting symbols, whose order is associated to the spacial order of the particles that they depict. Then the state (1.201) represent an asymptotic state with θ 1 ≥ θ 2 ≥ ... ≥ θ n . The set of objects dened above (1.201) will be called the Faddeev-Zamolodchikov algebra, we will soon explain its multiplication rule. Since the charges commutes, we can take a basis of such states that diagonalize all conserved charges :

Q u |A a (θ) = ω a u (θ) |A a (θ) .
(1.202) Then from the transformation properties of Q u under rotations, it is possible to explicit the dependence of the eigenvalue ω a u on the rapidity θ :

ω a u (θ) = χ a u e uθ .
(1.203) The presence of an innite number of conserved charges has therefore two tremendous consequences :

1. The scattering processes are purely elastic. This means that there is no particle production or annihilation, and the sets of initial and nal momenta are coinciding. Indeed, let us act with Q u on (1.201) and obtain :

Q u |A a1 (θ 1 )...A an (θ n ) = n k=1
χ ai u e uθi |A a1 (θ 1 )...A an (θ n ) .

(1.204)

But Q u is a conserved quantity dQu dt = 0.
This means that there is an innite series of constraints that involve the sum on the initial and nal particles, and that can have any number of terms :

k∈in χ a k u e uθ k = l∈out χ a l u e uθ l .
(1.205)

The only solution to these constraints corresponds to the case where both sums have the same number of terms, and where they are pairwise equal. Hence an innite number of conserved charges implies the elasticity of the scattering.

2. The scattering is factorizable. This means that the scattering process of any number of particles is reduced to 2-particles scattering. Hence all the scattering processes are encoded in the two particles scattering. The S matrix is therefore dened as the exchange operator for 2-particles states :

|A ai (θ 1 )A aj (θ 2 ) = S kl ij (θ 12 ) |A a k (θ 2 )A a l (θ 1 ) ,
(1.206) where the notation θ ij = θ i -θ j is used. This relation xes the multiplication rules between the elements of the Faddeev-Zamolodchikov algebra. S depends only on the dierence of the rapidity θ ij because of relativistic invariance. Since the 3-particles process is factorizable in two dierent ways (see the picture 1.2) we have the following : (1.207) this is the celebrated Yang-Baxter equation for the S matrix.

S ab ij (
The appearance of the Yang-Baxter equation is a common feature of quantum integrable systems. Indeed, from this equation it is possible to calculate many physically relevant quantities explicitly [START_REF] Faddeev | How algebraic Bethe ansatz works for integrable model[END_REF]. Hence the fact that the S matrix satises the Yang-Baxter is a strong evidence towards the integrability of the theory. From a slightly dierent point of view, it can be easily seen that the Yang-Baxter equation is equivalent to the associativity of the composition rule (1.206) in the Faddeev-Zamolodchikov algebra.

There are additional constraints on the S matrix, such that the crossing symmetry and several analytical conditions, we will not discuss them here. Together with the so called Bootstrap principle they allow to nd solutions of (1.207) for dierent theories and hence access the spectrum and the masses of the particles. The key point is that the specicity (for example the spectrum) of each theory will be hidden in the set of spins of the conserved charges, the description of this fact is out of the scope of this presentation (see [START_REF] Mussardo | Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics[END_REF][START_REF] Zamolodchikov | Integrable Field Theory from Conformal Field Theory[END_REF]). Now that we have explained how to calculated the S matrix, we shall describe how one can apply it in thermodynamical considerations. 

Thermodynamic Bethe Ansatz

In the future study of the Super sine-Gordon model our main tool will be thermodynamical equations of non-linear, integral type. They allow to study numerically a massive QFT, and obtain results in its short or long distance limits (UV or IR). The rst type of thermodynamical equations were derived in [START_REF] Yang | Thermodynamics of a one-dimensional system of bosons with repulsive Delta-function interaction[END_REF] for quantum system of bosonic particles. They were afterwards generalized to the relativistic set-up in [START_REF] Zamolodchikov | Thermodynamic Bethe ansatz in relativistic models : scaling the 3-state Potts and Lee-Yang model[END_REF] and applied in the QFT context for the simplest massive perturbations of Conformal Field Theories : the Scaling 3-state Potts model and the Lee-Yang model. Since then, the equations constructed by the methodology of [START_REF] Zamolodchikov | Thermodynamic Bethe ansatz in relativistic models : scaling the 3-state Potts and Lee-Yang model[END_REF] are termed Thermodynamic Bethe Ansatz equations (TBA).

The TBA equations describe exactly the ground state energy E 0 (R) (1.83) of an integrable eld theory living on a nite circle of length R with periodic (or twisted) boundary conditions. Usually TBA is derived starting from a relativistic factorized scattering theory, that is from the data of the S matrix of theory, which is supposed to be known for the model under consideration. The TBA technology is one of the main tools that we have at our disposition to study the integrable massive QFT, and some of its applications include :

1. The validation of the assumption that the proposed scattering theory does indeed describe the deformation of the given CFT. One can in fact build a scaling function that tends towards the central charge of the CFT in the UV limit.

2. The calculation of the bulk energy of the QFT.

3. The derivation of the exact relation between the mass of the lightest particle and the coupling constant (1.112) in PCFT.

In addition to provide, as we are about to present, the above exact result for many QFTs, the TBA equations are also intrinsically related to the integrable structure of the underlying CFT [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF], this will be discussed in more details in the section 2.6. Even if in our work we shall use dierent thermodynamical equations (the so-called Suzuki equations, in particular to make an even more explicit contact with the construction of [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF] ), their form and the spirit of their applications are similar to the TBA. This is the reason for us to concisely recall the "historical" TBA equations focusing on two applications :

1. The calculation of the UV CFT central charge.

2. The derivation of the mass -coupling constant formula.

Ground state energy and free energy of a QFT. First we introduce several thermodynamical quantities in the context of eld theory. Consider a Quantum Field Theory, characterized by its stress energy tensor T , on a cylinder of radius R and length L (with coordinates x and y respectively). There are two ways to treat this theory, this is pictured in the two dierent possibilities to write the partition function Z :

Z(R, L) = Tr e -LH R , Z(R, L) = Tr e -RH L .
(1.208)

The two Hamiltonians are expressed in terms of the components of the stress energy tensor :

H R = T yy dx 2π , H L = T xx dy 2π .
(1.209)

In the innite length limit L → ∞, the ground state energy E 0 (R) of the Hamiltonian H R gives the main contribution to the partition function : R) .

Z(R, L) e -LE0(
(1.210)

But on the other hand this is equivalent 10 to consider the thermodynamics of a one dimensional quantum system with Hamiltonian H L dened along the L axis at temperature 1/R. The partition function is then :

Z(R, L) e -RLf (R) , (1.211) 
where f (R) is the free energy per unit length at temperature 1/R. This gives the relation between the ground-state energy and the free energy of the system :

E 0 (R) = Rf (R) .
(1.212) Let m 0 be the mass of the lightest particle in the QFT, one can then dene the dimensionless scaling length r = m 0 R. It is then natural from dimensional arguments to dene the scaling function F in terms of the ground state energy

E 0 (R) = 2π R F (r) .
(1.213)

The knowledge of the ground state energy is important because it allows to determine the one point functions of the components of the stress energy tensor. From (1.209) :

T xx = 2π E 0 (R) R ,
(1.214)

T yy = 2π d dR E 0 (R) , (1.215) 
T a a = T xx + T yy = 2π R d dr (RE 0 (R)) .
(1.216)

In particular, (1.216) together with the formula (1.180) implies the knowledge of the ground state energy and gives access to the one point function of the perturbing eld in PCFT. Furthermore, mimicking (1.83) dene the function c of the scaling length r, related to the ground state energy :

E 0 (R) = - π c(r) 6R .
(1.217)

In the ultraviolet limit r → 0, one must recover the results of the CFT :

E 0 (R) = 2π R (∆ min + ∆ min - c 12 
) .

(1.218)

One has therefore the relation between the function c and the central charge c (assuming that the eld of minimal dimension is spinless) :

lim r→0 c(r) = c -24∆ min .
(1.219) 10 More details on the Quantum-Statistical correspondence will be given at the end of section 2.1.

The equations. We can now present the TBA equations, for a generic massive theory (a perturbation of a CFT by a primary eld ϕ with conformal dimension ∆), generalizing the equations of [START_REF] Zamolodchikov | Thermodynamic Bethe ansatz in relativistic models : scaling the 3-state Potts and Lee-Yang model[END_REF] for the scaling 3-state Potts and Lee-Yang models. Consider that the scattering in the above QFT is detailed by a S matrix S ab , where the Latin letter a (b, ...) indexes the particles of mass m a (m b , ...). Dene :

ϕ ab (θ) = -i d dθ log S ab (θ) .
(1.220)

The TBA equations are non-linear integral constraints on the pseudo-energies a which read (in the case of diagonal scattering) 11 :

m a R cosh(θ) = a (θ) + n b=1 ϕ ab (θ -θ ) log(1 + e -b (θ ) ) dθ 2π .
(1.221)

From the pseudo-energies one can reconstruct the free energy by :

f (R) = - 1 R n a=1 ∞ -∞ m a cosh(θ) log(1 + e -a (θ) ) dθ 2π , (1.222) 
and the partition function :

Z(L, R) = exp L n a=1 ∞ -∞ m a cosh(θ) log(1 + e -a (θ) ) dθ 2π .
(1.223)

TBA equations and CFT central charge. We aim to take the UV limit r → 0 and make contact with CFT, in particular through the formula (1.219). For r → 0, an analysis of the TBA equations (1.221) shows that the pseudo-energies a (θ) atten and tend to constants 0 a in the region

-log 2 r θ log 2
r . The functions log(1 + e -a (θ) ) have then a plateau shape, whose edges are controlled by the so-called kink solutions of the TBA equations. The UV limit of the scaling function F is then given in terms of these kink solutions which can be remarkably expressed using the Rogers dilogarithm function. Without entering all the technical details, the calculation of the UV central charges goes as follows. First, one should nd the constant values 0 a that satisfy a set of transcendental equations :

0 a = n b=1 N ab log(1 + e -0 b ) , N ab = - ∞ -∞ dθ 2π ϕ ab (θ) .
(1.224)

Then the central charge is related to the scaling function by

c(0) = -12F (0) , (1.225) 
and simplies drastically to the nice expression :

c(0) = 6 π 2 n a=1 L 1 1 + e 0 a , (1.226)
where L is the dilogarithm function

L(z) = - 1 2 z 0 dt log t 1 -t + log(1 -t) t .
(1.227)

This formula allows to calculate the central charge of the UV CFT form the scattering S matrix ! It constitutes a very strong verication of the identication between the UV CFT and the IR scattering theory.

Mass -coupling constant relation. The next natural step in the analysis of TBA equations is to try to expand the scaling function F in a power series of r. Actually, it is possible to determine the exact value of the next-to-leading term T 0 :

T 0 = (2π) 2 r dF dr r=0 ,
(1.228) by using again the kink solutions. Furthermore, from numerical investigations of (1.222), the scaling function can be expanded in a power series of the variable G = r 2(1-∆) :

F (r) - T 0 8π 2 r 2 = - c 12 + ∞ n=1 F n G n , (1.229) 
with nite radius of convergence. Let us emphasis that one can get exact values for c and T 0 , whereas the coecients F n can be estimated numerically. From a dierent perspective, the series ∞ n=1 F n G n is interpreted as the perturbative expansion of the free energy in the coupling constant. Recalling that r = m 0 R, we should therefore expand perturbatively for example the ground state energy E 0 to operate the matching between m 0 and λ. The perturbative corrections to the ground state energy are [START_REF] Zamolodchikov | Thermodynamic Bethe ansatz in relativistic models : scaling the 3-state Potts and Lee-Yang model[END_REF][START_REF] Saleur | Two-dimensional eld theories close to criticality[END_REF] :

E (pert) 0 = - π c 6R -R ∞ n=1 (-λ) n n! ϕ(X 1 )...ϕ(X n ) d 2 X 1 ...d 2 X n .
(1.230)

Here the correlation functions are computed for a CFT on the cylinder. Mapping the correlation functions to the plane by the transformation z = e -2πiX R one gets :

E (pert) 0 (R) = - π c 6R -R ∞ n=1 (-λ) n n! 2π R 2(∆-1)n+2 × V (0)ϕ(z 1 , z1 )...ϕ(z 1 , z1 )V (∞) n i=1 (z i zi ) ∆-1 d 2 z 1 ...d 2 z n , (1.231) 
where V corresponds to the CFT eld with lowest dimension. This means that we have a power series expansion of the form :

E (pert) 0 (R) = 2π R - c 12 + E 1 λR 2(1-∆) + E 2 λ 2 R 2(1-∆)2 + E 3 λ 3 R 2(1-∆)3 + ... , (1.232) 
that should converge in some nite region near the point λR 2(1-∆) = 0, and whose coecients E k can be computed as integrals of CFT correlation functions. On the other hand, recall that from thermodynamical considerations, the large R behavior of the ground state energy is given in terms of the innite volume bulk free energy E 0 :

E (pert) 0 (R) ∼ E 0 R , R → ∞ .
(1.233)

Normalizing the ground state energy to zero in innite volume, we have the relation :

E 0 (R) = E (pert) 0 (R) -E 0 R .
(1.234)

One can now compare the two expansions (1.229) and (1.232) :

-E 0 R + 2π R - c 12 + E 1 λR 2(1-∆) + E 2 λ 2 R 2(1-∆)2 + E 3 λ 3 R 2(1-∆)3 + ... (1.235) = 2π R - c 12 - T 0 8π 2 r 2 + ∞ n=1 F n (m 0 R) 2(1-∆)n
.

(1.236)

First of all, this implies that we can access the bulk free energy from the TBA data :

E 0 = m 2 0 4π T 0 .
(1.237)

Second, comparing the terms of the series one arrives at :

λ m 2(1-∆) 0 n E n = F n .
(1.238)

From the CFT computation of the coecient E 1 and the numerical result for F 1 , one therefore gets the exact relation between the coupling constant and the mass. These relations have been established in [START_REF] Fateev | The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal eld theories[END_REF] for a very large range of perturbed CFT. In the paper [START_REF] Zamolodchikov | Mass scale in the sine-Gordon model and its reductions[END_REF] this has been done for the sine-Gordon (sG) model, and can be applied to obtain a similar relation for the sinh-Gordon12 model (1.181) :

m = 4 √ π Γ( 1 2+2b 2 )Γ(1 + b 2 2+2b 2 ) - µπΓ(1 + b 2 ) Γ(-b 2 ) 1 2+2b 2 , (1.239)
An analogous formula will be given for the Super sine-Gordon QFT in the chapter 4.

Comparison between TBA and Suzuki equations. The TBA equations are derived from the knowledge of the scattering data, that is of the S matrix of the theory. In our case, for the study of the Super sine-Gordon model, we will use scaling equations based on functional relations in the underlying integrable lattice model, and on the position of the Bethe roots. We will called them Suzuki equations, in reference to [START_REF] Suzuki | Spinons in magnetic chains of arbitrary spins at nite temperatures[END_REF]. The advantage of this second approach is that it will be much easier to make contact with the integrable structure of the eld theory, in particular with the T and Q operators of the ssG theory. This will be explained in details in sections 2.6 and 4.4.

One point functions from reection relations 1.7.1 Primary elds

In this section we address the problem of providing explicit formulae for the one point functions of local elds on the plane, thanks to the reection relations. The rst step in this direction was done in the paper [START_REF] Lukyanov | Exact expectation values of local elds in quantum sine-Gordon model[END_REF] where the calculation of one point functions of primary elds in the sine-Gordon theory have been considered. The proposed expression was mainly an interpolation between several known results, rather than a derivation from rst principles. In the work [START_REF] Fateev | Expectation values of local elds in Bullough-Dodd model and integrable perturbed conformal eld theory[END_REF] a much more fundamental approach to this problem has been elaborated. Considering instead the sinh-Gordon model (1.182), and handling it as a perturbation of the Liouville CFT (1.84), the authors conjectured that the shG QFT should inherit the remarkable reection properties of the latter model. This was then applied to the computation of the one point functions. Recall that the shG model is dened as a perturbation of the Liouville CFT by the primary eld e -bϕ(z,z) :

A shG = 1 4π ∂ z ϕ(z, z)∂ z ϕ(z, z) + µe bϕ(z,z) + µe -bϕ(z,z) idz ∧ dz 2 .
(1.240)

We would like to compute the one point functions :

F (a) = e aϕ shG .
(1.241)

The shG model theory inherits the typical reection property of the Liouville CFT (1.99) :

F (a) = R(a)F (Q -a) , (1.242) 
where R is the reection amplitude given in (1.95) :

R(a) = πµγ(b 2 ) Q-2a b b -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) .
(1.243)

The one point functions of primary elds verify the natural symmetry :

F (a) = F (-a) .
(1.244)

Both symmetries can be interpreted as the transformation rules of the one point functions under the reections σ 1 and σ 2 of the weight a :

σ 1 : a → -a , σ 2 : a → Q -a .
(1.245)

The one point functions F (a) are then calculated as the minimal, meromorphic solutions of the reection equations (1.242), (1.244). The result reads [START_REF] Lukyanov | Exact expectation values of local elds in quantum sine-Gordon model[END_REF] 

F (a) = e aϕ shG = - µπΓ(1 + b 2 ) Γ(-b 2 ) -a 2 1+b 2 exp - ∞ 0 dt t sinh 2 (2abt) 2 sinh(b 2 t) sinh(t) cosh((1 + b 2 )t) -2a 2 e -2t .
(1.246)

Let us recall some heuristic argument for the validity of the conjecture (1.242) from [START_REF] Fateev | Expectation values of local elds in Bullough-Dodd model and integrable perturbed conformal eld theory[END_REF] : expanding the one point function in a power series in the coupling parameter µ one obtains :

e aϕ(z,z) ShG = ∞ n=0 (-µ) n n! dw 2 1 .
.. dw 2 n e aϕ(z,z) e -bϕ(w1, w1) ... e -bϕ(wn, wn) L ,

(1.247)

where the sum is expressed in terms of correlation functions written in the Liouville CFT. We can then formally use the reection relation (1.99) of the Liouville theory in the integrals :

e aϕ(z,z) e -bϕ(w1, w1) ... e -bϕ(wn, wn) = R(a) e (Q-a)ϕ(z,z) e -bϕ(w1, w1) ... e -bϕ(wn, wn) , (1.248) which gives the expected result. Let us make some remarks :

1. The above derivation is loose since the convergence of the integrals is hard to show. It is possible to make this argument more rigorous by working with a theory on a curved surface of a certain area, that is then integrated out. Still the convergence of the above series is hard to demonstrate. This is why the relations above for the one point functions were rather conjectures, when they were established.

2. The result (1.246) can be transferred to the case of the sine-Gordon model, described by the action :

A sG = 1 4π ∂ z ϕ(z, z)∂ z ϕ(z, z) -2µ cos(βϕ) idz ∧ dz 2 , (1.249) 
and which primary elds are of the form V α = e iαϕ . The result for e iαϕ sG is simply obtained by continuing the formula (1.246) to the complex domain :

β → ib , α → ia , (1.250)
and is given by

e iαϕ sG = µπΓ(1 -β 2 ) Γ(β 2 ) α 2 1-β 2 exp ∞ 0 dt t sinh 2 (2αβt) 2 sinh(β 2 t) sinh(t) cosh((1 -β 2 )t) -2α 2 e -2t .
(1.251)

3. Finally, let us briey mention as an application of the formula (1.251), that it is possible to compute the one point functions of the primary elds in the massive QFTs constructed as perturbations of Minimal Models M pp by the eld V 1,3 . This can be done using the fact that the sG model has a symmetry with respect to the quantum group U q (sl 2 ) with q = e iπ β 2 . Then one can calculate the one point functions in the perturbed CFT by applying the Quantum Group restriction procedure [START_REF] Reshetikhin | Hidden quantum group symmetry and integrable perturbations of conformal eld theories[END_REF], with the relation β 2 = p p where p∧p = 1. Other applications (for the boundary sine-Gordon theory) of the reection relations method can be found in [START_REF] Fateev | Expectation values of boundary elds in the boundary sine-Gordon model[END_REF].

Ratio of one point functions for primary elds. Before going further we would like to explain how one can compute the following specic ratio of one point functions

f (a) = e (a-b)ϕ shG e aϕ shG , (1.252) 
without using the explicit formula (1.246). In this expression the numerator consist in the normal order product of the primary eld V a with the perturbation eld V -b = e -bϕ of the Liouville CFT.

We have

f (a) = F (a -b) F (a) . (1.253) Since F (a) = F (-a) one rewrites (1.242) as F (a) = F (a-Q)R(a).
It implies the following functional relation on f :

f (a -Q) = F (a -Q -b) F (a -Q) = R(a) R(a -b) f (a) .
(1.254)

Compute using (1.95)

R(a) R(a -b) = πµγ(b 2 ) -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) γ(2(a -b)b -b 2 )γ(2ab -1 -b -2 -3) = πµγ(b 2 ) -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) γ(2(a -Q)b -b 2 + 2)γ(2ab -1 -b -2 -3) = πµγ(b 2 ) -2 γ(2ab -b 2 ) γ(2(a -Q)b -b 2 ) (2ab -1 -b -2 -2) 2 (2ab -1 -b -2 -3) 2 (2(a -Q)b -b 2 ) 2 (2(a -Q)b -b 2 + 1) 2 = πµγ(b 2 )b 4 -2 γ(2ab -b 2 ) γ(2(a -Q)b -b 2 ) (2a -2b -b -1 ) 2 (2a -3b -b -1 ) 2 (2a -3b -2b -1 ) 2 (2a -3b -b -1 ) 2 = πµγ(b 2 )b 4 -2 γ((2a -b)b) γ((2(a -Q) -b)b) γ 1 2Q (2(a -Q) -b) γ 1 2Q (2a -b) γ 1 2 + 1 2Q (2a -b) γ 1 2 + 1 2Q (2(a -Q) -b) .
The last line is written in a suitable form for solving the equation (1.254). We infer

f (a) = πµγ(b 2 )b 4 2a-b Q γ 1 2Q (2a -b) γ 1 2Q (2a + b -1 ) γ((2a -b)b)
.

(1.255)

One can recover this formula from the integral expression (1.246). The calculation of f will be important when we will study the fermionic basis, indeed the explicit formula (1.255) of f will permit the identication of particular fermionic elements with the primary eld V a-b = e (a-b)ϕ . This will be more precisely described in the chapter 4.

Descendants elds and Riemann-Hilbert problem

The next problem to tackle is the computation of the one point functions of descendant elds in the shG (sG) theory. This problem was considered in the paper [START_REF] Fateev | Expectation values of descendant elds in the sine-Gordon model[END_REF] and interpreted in a much more fundamental way. The idea is the following : if for a primary eld the eect of both reections on the one point functions is immediately understood (as consequences of the Liouville case), it is not so for the descendants. In particular, if a Virasoro descendant should have a manifest symmetry under the reection σ 2 (1.245), its transformation rule under σ 1 is unclear. To understand the latter, it is necessary to establish the correspondence between the Virasoro and the Heisenberg descriptions of the Liouville CFT, by the means of a passage matrix U (a). Let us state this in terms of a Riemann-Hilbert problem : dene V N to be the vector containing all the one point functions of Virasoro descendants of a primary eld V a at level N , and dene similarly H N (a) for the Heisenberg descendants. One has straightaway the symmetries :

V N (a) = V N (Q -a) , H N (a) = H N (-a) .
(1.256)

The relation between the two is given by :

V N (a) = U (a)H N (a) .
(1.257)

The Riemann-Hilbert problem can be stated as (presented in such form in [START_REF] Negro | Reection relations and fermionic basis[END_REF]) :

V (a + Q) = S(a)V (a) , S(a) = U (-a)U (a) -1 .
(1.258)

It was rst uncovered in [START_REF] Fateev | Expectation values of descendant elds in the sine-Gordon model[END_REF], where the situation was analyzed for the simplest descendant at level two : L -2 L-2 e aϕ . This eld was related to its Heisenberg counterpart by :

L -2 L-2 e aϕ = - 1 4 (∂ϕ) 2 + Q 2 + a ∂ 2 ϕ - 1 4 ( ∂ϕ) 2 + Q 2 + a ∂2 ϕ e aϕ .
(1.259)

Now the left (right) hand side of (1.259) has a denite transformation rule under σ 2 (σ 1 ), which conveys to :

(1 + 2a(Q + 2a)) 2 (∂ϕ) 2 ( ∂ϕ) 2 e aϕ shG = R(a)(1 + 2(Q -a)(3Q -2)) 2 (∂ϕ) 2 ( ∂ϕ) 2 e (Q-a)ϕ shG .
(1.260)

It is then possible to compute the one point function of the descendant as the minimal solution of the above equation :

(∂ϕ) 2 ( ∂ϕ) 2 e aϕ shG e aϕ shG = - mΓ( b 2Q )Γ( 1 2bQ ) 8Q 2 √ π 4 × γ a Q - b 2Q γ - a Q - b 2Q γ a Q - b -1 2Q γ - a Q - b -1 2Q , (1.261) 
where we used (1.239)

m = 4 √ π Γ( 1 2+2b 2 )Γ(1 + b 2 2+2b 2 ) - µπΓ(1 + b 2 ) Γ(-b 2 ) 1 2+2b 2 , (1.262)
the mass of the shG particle.

In fact, the problem was solvable because there exists only one non trivial descendant at level 2, both on the Virasoro and on the Heisenberg sides. Going at higher levels is dicult : the problem gets much more involved and it is impossible to compute the one point functions by such a direct approach, unless one possesses extra information on the relation between the two descriptions. As we are going to demonstrate later in the chapter 4, this data is precisely provided by the fermionic basis.

Chapter 2

Integrable Structure of Quantum

Field Theories

We have seen that integrability plays an important role in the Quantum Field Theory : in CFT it is possible to construct a series of densities in involution that can survive some types (V 1,3 for example) of perturbations. In particular the models of QFT that we are interested in are integrable. This is one of the motivations to describe in this chapter the integrable systems from a more general point of view. Actually, the integrable systems can be very dierent in their natures : they range from models of classical mechanics, to specic Quantum Field Theories, and to statistical lattice models. Therefore, as we have already mentioned, there is no unied denition of what an integrable system is. However, one can gather the main recurrent features of this type of models :

• There are many conserved quantities (as least the same number as of degrees of freedom, this means an innity in the case of QFT) that are in involution, including the Hamiltonian of the system.

• For quantum systems, there exists a quantity that satises the Yang-Baxter equation.

• The system is considered to be exactly solvable, in the sense that physically relevant quantities can be in principle calculated analytically.

In this section we shall explain how the integrability in QFT can be used to compute the one point functions. To achieve this goal, we must rst establish a description of the space of local operators of the QFT in terms of some "integrable quantities", we will refer to this description of the elds as the integrable structure of the QFT. This was rst done for the sine-Gordon model [START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF][START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF], and goes by the name of the fermionic basis. The investigation of the fermionic basis in this context started with a deep study of the vacuum expectation values of local operators in the six vertex model, the lattice regularization of the sine-Gordon theory. In this chapter, we aim to show how one can use the fermionic basis to describe the UV limit of the sG model, that is its underlying CFT. To do so, we will have rst to recollect some information about general integrable systems (throughout this chapter we shall use notations compatible with [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF]), and will proceed as follows :

1. Start by recalling some elementary facts about the integrability of the six vertex model (among other we will use the reference [START_REF] Belavin | Lectures on Theoretical Physics[END_REF]). This model is not only the rst step towards the fermionic basis but is more generally speaking a prototypical example of lattice integrable systems.

2. Dene the main protagonists of the integrable models : the transfer matrix, the Bethe Ansatz equations and the Yang-Baxter equation.

3. Reinterpret the latter in terms of Quantum Groups, and use this general mathematical framework to construct the Q operator. The Quantum Groups will be relevant to go further and illustrate how integrable structures emerge in the context of QFT.

4. Present the Bazhanov-Lukyanov-Zamolodchikov (BLZ) construction that provided the description of the integrable structure in CFT. Remark that the integrable lattice models have continuous limits, in which they give integrable Quantum Field Theories. Thanks to the BLZ construction, it is possible to dene the integrable data directly in eld theory, without any references to the lattice.

5. Introduce the fermionic basis on the lattice and then explain how it can be extended to CFT using the scaling limit. Finally describe the connection between the fermionic and the Virasoro descriptions. This will give us a very powerful tool for the calculation of the vacuum expectation values at the lattice level and of the one point functions at the QFT level.

The six vertex model

We consider a statistical system on a rectangular lattice. The lattice has N vertical lines and n horizontal lines, giving in total N × n nodes. Take without restriction of generality both N and n even. We declare the following boundary conditions : consider that the system is periodic in both directions and think about N as very large, aiming in the following to take it to innity. Then, the system appears wrapped around a cylinder (more precisely a torus when N is still nite), the compact vertical direction will be termed the Matsubara space (or chain), and the horizontal direction will be called the Space chain. The lattice in this geometry is represented on the gure 2.1.

Figure 2.1: 6V model on the cylinder

To each edge of the lattice one can associate an arrow, pointing to the left or to the right for an horizontal edge, and for an vertical edge up or down. For each vertex, the orientation of the neighboring arrows species the weight W that will be associated to this vertex in this conguration. For a general conguration of a vertex, we will use the convention of gure 2.2. In the case of interest for us, only vertices that have the same number of incoming and outcoming arrows will carry a non zero weight. This gives a total of six congurations that coined the name of the six vertex model. Moreover we will also assume that the weights are unchanged under a simultaneous reversal of all arrows of the corresponding vertex, this fact leaves us with only three quantities a, b, c that correspond to the following congurations :

a = W ++ ++ = W -- --, (2.1) b = W +- +-= W -+ -+ ,
(2.2)

c = W -+ +-= W +- -+ .
(2.

3)

The allowed congurations of arrows are represented in the gure 2.3. (2.4)

In writing the weights of the 6 vertex model, we used the usual "trigonometric" notation, that is the most standard when we deal with this system. The number ν is really the parameter of the model, whereas θ is to be thought as a variable on which the thermodynamical functions will depend. This dichotomy will be clearer when we will relate θ to the spectral parameter in (2.30).

As in any problem in statistical physics, our rst priority is to calculate the partition function Z 6V of the system. The total weight of a particular conguration of arrows x is given by the product of the weights of each vertex :

x W βxνx αxµx , (2.5) 
and the partition function reads

Z 6V = αx,µx,βx,νx x W βxνx αxµx .
(2.6)

Let us try to simplify this expression. Each edge of the lattice can support two states : that is an arrow in one direction, or in the opposite. Hence one can associate to every edge the vector space C 2 . Take {e + , e -} the canonical basis of C 2 :

e + = 1 0 , e -= 0 1 .
(2.7)

We declare the following correspondence (in the orientation of gure 2.2) : e + represents an arrow pointing to the top or to the right and e -an arrow pointing to the bottom or to the left. At each vertex we have thus an operator L which acts from a tensor product of two 2-dimensional spaces V (α)⊗V (µ) to V (β)⊗V (ν) (where the letters refer to the position of the spaces in the gure 2.2 and

each V C 2 ). Dene the 2 × 2 elementary matrices E ij that satisfy the property (E ij ) kl = δ ik δ jl .
Then we set :

L = W βν αµ E βα ⊗ E νµ .
(2.8)

In the basis {e + ⊗ e + , e + ⊗ e -, e -⊗ e + , e -⊗ e -} the operator L is given by the matrix :

L =     W ++ ++ W ++ +- W ++ -+ W ++ -- W +- ++ W +- +- W +- -+ W +- -- W -+ ++ W -+ +- W -+ -+ W -+ -- W -- ++ W -- +- W -- -+ W -- --     =     a b c c b a     .
(2.9)

This interpretation in terms of linear operators is important. From now on, we will call the vector spaces of the Matsubara direction, the "Matsubara spaces", and those that are in the horizontal direction will be termed auxiliary spaces or spaces in the Space chain. Dene the operator T a :

T a = L a,n L a,n-1 ...L a,1 ∈ End(V a ⊗ V 1 ... ⊗ V n ) , (2.10) 
where L a,k acts like L but only on the auxiliary space a and on one of the Matsubara spaces k. To include the periodicity condition in the vertical direction we need to take the trace of (2.10) in the auxiliary space :

T = Tr Va (T a ) .
(2.11)

Explicitly, T acts then on the total Matsubara space, and its components are given by :

T β1...βn α1...αn = W β1ν2 α1ν1 W β2ν3 α2ν2 ...W βnν1 αnνn .
(2.12)

This formula allows to rewrite the partition function (2.6) in a much more illuminating way. Because of the periodicity in the Space direction, Z 6V is the trace over the Matsubara space of a product of T operators :

Z 6V = Tr( T N ) , (2.13) 
The understanding of T , and in particular of its eigenvalues (denote them ψ k ), gives access to the thermodynamical quantities of the model. First we get the partition function :

T ψ k = Λ k ψ k , Z 6V = 2 n k=1 Λ N k .
(2.14)

As usual in statistical physics, the knowledge of Z 6V leads to all other physical quantities. For example the free energy per lattice site is :

f = - 1 nN log(Z 6V ) ∼ - 1 n log Λ max , N → ∞ . (2.15)
This formula is of course reminiscent of the expression for the free energy in Quantum Field Theory on a cylinder of radius R (1.212), (1.83). Recall that the Casimir energy E 0 of a CFT is simply related to the (eective) central charge c :

E 0 = - π c 6R .
(2.16)

When studying the maximal eigenvalue Λ max it is therefore possible to match the lattice integrable models with their continuum CFT counterparts, by explicitly calculating the central charges. This was successfully done in [START_REF] Klümper | Central charges of the 6 and 19-vertex models with twisted boundary conditions[END_REF] for the six and nineteen vertex models.

Quantum -Statistical correspondence. There exists a well known equivalence in physics between statistical models in d dimensions and quantum systems in d -1 dimensions. We met it already in the discussion on the TBA in section 1.6, where a QFT on a cylinder of radius R was interpreted as a 2d statistical model and at the same time as a quantum system at nite temperature 1 R (see (1.209)). Here, we shall illustrate this correspondence in the case of the six vertex model, and show how it is equivalent to the XXZ spin chain. To be consistent with our further discussion we shall slightly change our point of view. If in the computation of the partition function Z 6V the emphasis was done on the Matsubara space, we concentrate now on the Space direction. This is the vector space :

H S = N k=1 V a k , V a k C 2 .
(2.17)

The crucial point is that the operator L (2.9) evaluated at θ = 0 is (up to a multiplicative factor) the permutation operator P perm :

L(0) = sin(πν)     1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1     = sin(πν)P perm .
(2.18)

In terms of indices this reads :

L βν αµ (0) = sin(πν)δ ν α δ β µ .
(2.19) Now we construct a "Space chain T operator" T , analogue of (2.11) but that acts now on H S , and that corresponds to a shift operator along the Space direction for θ = 0 :

T η1...η N µ1...µ N (0) : H S → H S , (2.20) 
T η1...η N µ1...µ N (0) = (sin(πν)) N δ η2 µ1 δ η3 µ2 ...δ η1 µ N .
(2.21)

It is possible to nd the inverse of this operator as the inversed shift operator :

T η1...η N µ1...µ N (0) -1 = (sin(πν)) -N δ η N µ1 δ η1 µ2 ...δ η N -1 µ N . (2.22)
Now consider the derivative of L with respect to πθ evaluated at θ = 0 :

1 π d dθ L θ=0 =     cos(πν) 0 0 0 0 1 0 0 0 0 1 0 0 0 0 cos(πν)     .
(

Applying the same derivative to T we get :

1 π d dθ T η1...η N µ1...µ N θ=0 = (sin(πν)) N N k=1 δ η2 µ1 ...δ η k-1 µ k-2 1 π d dθ L η k η k+1 µ k µ k-1 θ=0 δ η k+2 µ k+1 ...δ η1 µ N .
(2.24)

Now using (2.23) and (2.22) in the previous equation one obtains the logarithmic derivative of T :

T -1 (0) 1 π d dθ T (0) η1...η N µ1...µ N = N k=1 L -1 (0) 1 π d dθ L(0) η k η k+1 µ k µ k+1 .
(2.25)

Recall now the denition of the Pauli matrices :

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 .
(2.26)

One can see that the sum in (2.25) is exactly :

1 2 N k=1 σ 1 k σ 1 k+1 + σ 2 k σ 2 k+1 + cos(πν)σ 3 k σ 3 k+1 + 1 2 N k=1
Id k Id k+1 .

(2.27)

Dropping the last trivial term, we arrive at the Hamiltonian of the XXZ chain :

H XXZ = 1 2 N k=1 σ 1 k σ 1 k+1 + σ 2 k σ 2 k+1 + cos(πν)σ 3 k σ 3 k+1 .
(2.28)

We have then shown that :

1 π d dθ log(T (θ)) θ=0 = sin(πν)H XXZ .
(2.29)

We can now make more concrete the correspondence that we stated before. From the formula above it is explicit that H XXZ commutes with the matrix T for any value of its variable θ. Finding the eigenvectors of the T (θ) operator is then the same problem as diagonalizing the Hamiltonian of the XXZ chain.

The Transfer matrix

After this preparatory discussion on the six vertex model we shall take a more general point of view on the subject, and introduce the terminology that will be used all along the rest of this thesis. We will rely on [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF]. For our following discussion (in particular to make connection with the Quantum Groups), it will be more convenient to change variables to the spectral parameter ζ, and to the Quantum Group parameter q :

ζ = e iπνθ , q = e iπν .

(2.30)

We still consider a lattice in the cylinder geometry of 2.1, however we allow the following generalization : the spaces in the Matsubara direction can carry any spin s m and a inhomogeneity τ m . The Matsubara space is then :

H M = n m=1 C 2sm+1 .
(2.31)

For the space chain we still have the same structure

H S = N k=1 C 2 .
(2.32)

Now, instead of dealing with the weight matrix (2.9) we consider the L operator1 :

L j,m (ζ) = q 1 2   ζ 2 q H+1 2 -q -H+1 2 (q -q -1 )ζF q H-1 2 (q -q -1 )ζq -H-1 2 E ζ 2 q -H-1 2 -q H-1 2   j .
(2.33)

L j,m acts on the site j of the Space chain and on the site m of the Matsubara direction. E, F, H are the images of the generating elements of the algebra sl 2 in the irreducible representation of spin s m (that we denote V (2s m + 1)). The case that will be of most interest for us is to take spin 1 2 Matsubara spaces. In this situation the natural formula holds

E = 0 1 0 0 , F = 0 0 1 0 , H = 1 0 0 -1 , (2.34) 
and the L operator is :

L j,m (ζ) = q 1 2     ζ 2 q -q -1 ζ 2 -1 (q -q -1 )ζ (q -q -1 )ζ ζ 2 -1 ζ 2 q -q -1     .
(2.35)

Taking into account the change of variables (2.30), we recover in this case exactly the weight matrix (2.9) (up to some multiplicative prefactor). From the knowledge of the L operator, one can build the monodromy matrix in the same way as it was done for (2.10). Bearing in mind the presence of inhomogeneities for each Matsubara space, we have :

T j,M (ζ) = L j,n ( ζ τn )L j,n-1 ( ζ τn-1 )...L j,1 ( ζ τ1 ) .
(2.36)

The monodromy matrix is a linear operator acting in :

T j,M (ζ) ∈ End (V j ⊗ H M ) .
(2.37)

Introduce a twist κ that will change the periodic boundary condition in the Matsubara direction, and dene the twisted transfer matrix T M :

T j,M (ζ, κ) = T j,M (ζ)q κσ 3 j ,
(2.38)

T M (ζ, κ) = Tr j (T j,M (ζ, κ)) .
(2.39)

The previous formula paves the way to the calculation of the (twisted by κ) partition function of the six vertex model :

Z κ 6V = Tr M (T M (ζ, κ) N ) , (2.40) 
and will be the starting point of our calculations with the fermionic basis.

To close this section, we emphasize the critical property that the L operator (2.33) satises the Yang-Baxter equation (which is equivalent to the integrability of the model) :

L 12 (ζ/µ)L 13 (ζ)L 23 (µ) = L 23 (µ)L 13 (ζ)L 12 (ζ/µ) , (2.41)
which is holding in the space

V 1 ⊗ V 2 ⊗ V 3 .
(2.42) Here V i (i = 1, 2, 3) can refer to any space in the Space or Matsubara chains. Once we have taken all Matsubara spaces to be of spin 1 2 we have V i C 2 . Then the formula (2.35) for L(ζ) can be decomposed as follows :

L(ζ) = L βν αµ (ζ)E βα ⊗ E νµ ∈ End(C 2 ⊗ C 2 ) .
(2.43)

The operators L i j of (2.41) are dened to be :

L 12 (ζ) = L(ζ) ⊗ Id 2 , L 23 (ζ) = Id 2 ⊗ L(ζ) , L 13 (ζ) = L βν αµ (ζ)E βα ⊗ δ ρσ E ρσ ⊗ E νµ .
(2.44)

The equation (2.41) implies the Yang-Baxter equation for monodromy matrices (2.38) :

L jk (ζ/µ)T jM (ζ, κ)T kM (µ, κ) = T kM (µ, κ)T jM (ζ, κ)L jk (ζ/µ) , (2.45) 
that holds in the space V j ⊗ V k ⊗ H M (the rst two spaces V j ⊗ V k are in the Space chain). The immediate consequence of the Yang-Baxter equation (2.45) is the commutativity of the Matsubara transfer matrix at dierent values of the spectral parameter :

[T M (ζ, κ), T M (λ, κ)] = 0 .
(

The Yang-Baxter equation is of primary importance, we will see how it appears naturally if we consider the derivation of the L operators from the Quantum Group U q ( sl 2 ). Moreover it is the starting point of a powerful method to diagonalize the transfer matrix, which is termed the Algebraic Bethe Ansatz. This is the topic of our next section.

Algebraic Bethe Ansatz

In this section we describe the Algebraic Bethe Ansatz (ABA), the most traditional method to diagonalize the transfer matrix. It was rst introduce in [START_REF] Bethe | On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain[END_REF], a very complete reference is [START_REF] Faddeev | How algebraic Bethe ansatz works for integrable model[END_REF]. Let us start by rewriting the twisted transfer matrix (2.38) in terms of operators acting on the Matsubara space

T j,M (ζ, κ) = A(ζ) B(ζ) C(ζ) D(ζ) j q κ 0 0 q -κ j .
(2.47) where A, B, C, D are elements of End(H M ). The equation (2.39) gives :

T M (ζ, κ) = A(ζ)q κ + D(ζ)q -κ .
(2.48) Our goal is therefore to diagonalize this operator. The main point of the ABA is to make an educated guess for the eigenvalues of T M (ζ, κ). First, consider the "vacuum" vector

Ω = e -⊗ ... ⊗ e -∈ H M .
(2.49)

The action of L j,m (2.35) on e -implies the relations :

A(ζ)Ω = q n 2 a(ζ)Ω , D(ζ)Ω = q -n 2 d(ζ)Ω , B(ζ)Ω = 0 , (2.50) 
where the functions a(ζ), d(ζ) are :

a(ζ) = n m=1 (ζ/τ m ) 2 -1 , d(ζ) = n m=1 (ζq/τ m ) 2 -1 .
(2.51)

The vector Ω can hence be considered as a highest weight vector, that is annihilated by the operator B. It is then natural to look for eigenvectors of T M by acting on Ω with the "creation" operators C. Dene

Φ({λ i }) = C(λ 1 ) ... C(λ l )Ω .
(2.52)

One can show that Φ({λ i }) is indeed an eigenvector of T M if the set of {λ i } l i=1 does satisfy certain equations that are referred to as the Bethe Ansatz Equation (BAE). To demonstrate this, we should establish the commutation relations between the operators A, B, C, D. They are obtained by expliciting the Yang-Baxter equation (2.45). Omitting arguments (A, B, C, D are function of ζ, A , B , C , D of µ and a, b, c of ζ µ ) we have :

    a 0 0 0 0 b c 0 0 c b 0 0 0 0 a         AA AB BA BB AC AD BC BD CA CB DA DB CC CD DC DD     =     A A B A A B B B C A D A C B D B A C B C A D B D C C D C C D D D         a 0 0 0 0 b c 0 0 c b 0 0 0 0 a     , (2.53) 
where we have used a, b, c as a short hand notation for the entries of the L operator (2.35) (not to be mistaken with the particular values of the weights) :

L =     a b c c b a     .
(2.54)

Then one can obtain the algebra of operators A, B, C, D. For example :

[C(ζ), C(λ)] = 0 , (2.55) 
A(ζ)C(λ) = a(ζ/µ) b(ζ/µ) C(λ)A(ζ) - c(ζ/µ) b(ζ/µ) C(ζ)A(λ) , (2.56) 
D(ζ)C(λ) = a(µ/ζ) b(µ/ζ) C(µ)D(ζ) - c(µ/ζ) b(µ/ζ) C(ζ)D(µ) .
(2.57)

Dene the quotient functions :

u(ζ) = a(ζ) b(ζ) = ζq -ζ -1 q -1 ζ -ζ -1 , v(ζ) = c(ζ) b(ζ) = q -q -1 ζ -ζ -1 .
(2.58)

Iterating the relations (2.56),(2.57), one can compute A(ζ)C(λ 1 ) ... C(λ l )Ω and D(ζ)C(λ 1 ) ... C(λ l )Ω and obtain the action of A and D on the candidate eigenvector Φ({λ i }). This implies the following eigenvector condition :

T M (ζ, κ)Φ({λ i }) = (q κ A(ζ) + q -κ D(ζ))Φ({λ i }) = Λ(ζ, {λ i })Φ({λ i }) , (2.59) 
where the eigenvalue Λ(ζ, {λ i }) is expressed through the rst terms of the right hand sides of (2.56) and (2.57) :

Λ(ζ, {λ i }) = q κ+ n 2 a(ζ) l j=1 u(ζ/λ j ) + q -κ-n 2 d(ζ) l j=1 u(λ j /ζ) , (2.60) 
given that the set {λ i } l i=1 satises the Bethe Ansatz Equations :

q κ+ n 2 a(λ i ) l k=1 u(λ j /λ k ) -q -κ-n 2 d(λ i ) l k=1 u(λ k /λ j ) = 0 , 1 ≤ j ≤ l .
(2.61)

The BAE can be rewritten is the following compact way (use the fact that u(λj /λ k )

u(λ k /λj ) = q -2 λ 2 k -q 2 λ 2 j λ 2 k -q -2 λ 2 j ) : q 2κ+n-2l a(λ j ) d(λ j ) l k =j λ k -q 2 λ 2 j λ k -q -2 λ 2 j = 1 , 1 ≤ j ≤ l .
(2.62)

Notice that the terms q n-2l represents the spin of the vector Φ({λ i }). Indeed, dene the spin operator in the Matsubara direction to be :

S M = 1 2 n m=1 σ 3 m , (2.63) 
then

S M Φ({λ i }) = l - n 2 Φ({λ i }) .
(2.64)

This will be important to properly dene the Q operator latter in section 2.5. Let us now explain how the L operator can be recovered from the more fundamental Quantum Group approach.

Quantum Groups

There is a more mathematical way to look at integrable systems, and it deals with the technology of Quantum Groups. As we will see, in the Quantum Group set-up it is possible to construct an R matrix, that automatically satises the Yang-Baxter equation. One of the advantages of this approach is that it will allow us to dene the so-called Q operator, on the same footing as was done for the transfer matrix, and show the similarities between these two objects. Without going into the generalities of all Quantum Groups, after a brief recall, we shall concentrate in the case that will be of most interest for us : the Quantum Group U q ( sl 2 ) 2 . For this section we use the references [START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Jimbo | Topics from Representation of U q (g) -An introductory Guide to Physicists[END_REF][START_REF] Boos | Exercises with the universal R-matrix[END_REF][START_REF] Jimbo | Introduction to the Yang-Baxter equation[END_REF].

Generalities

The denition of a quantum group A is the following : it is a Hopf algebra that satises the quasitriangularity property. It means that A is an associative bialgebra over C, endowed with a coproduct homomorphism ∆ : A → A ⊗ A, a co-unit map homomorphism : A → C and an antipode antihomomorphism S : A → A, that satisfy natural compatibility conditions. Notice that if we dene σ to be the permutation of

A ⊗ A σ(a ⊗ b) = b ⊗ a , a, b ∈ A , (2.66) 
then one can set another coproduct ∆ :

∆ = σ • ∆ .
(2.67)

The quasi-triangularity property is the existence of an element R ∈ A ⊗ A, the universal R matrix, that satises the three axioms :

(i)

R∆(x) = ∆ (x)R , ∀x ∈ A , (2.68) 
(ii)

(∆ ⊗ id)R = R 13 R 23 , (2.69) 
(id ⊗ ∆)R = R 13 R 12 .
(2.70)

(iii) ( ⊗ Id)R = 1 = (Id ⊗ )R , (2.71) 
(S ⊗ Id)R = R -1 = (Id ⊗ S)R .
(2.72) 2 The algebra sl 2 is in some sense the fundamental symmetry algebra of the sequence of theories (both lattice and QFT) that we are considering. It governs the integrable 6 vertex model as well as the 19 vertex model, which is a higher spin version (in the representation theoretic language) of the former. In addition to describe the lattice models, the quantum version of sl 2 further allows to exhibit the integrable structure of the series of related continuum QFTs. We recall therefore again the relation between the Quantum Group parameter q and the "physical" parameter ν :

q = e iπν .
(2.65)

Here again we used the convention R 12 = R ⊗ 1 and similar formulae for R 13 and R 23 . Remark, that the R matrix is an invertible element of A ⊗ A, and the antipode S can be thought of as an "inverse" in the algebra A. This will be also more transparent when we will see examples of the action of S on basis elements of U q ( sl 2 ).

From the equations (2.68) as well as (2.69), (2.70) one can derive the Yang-Baxter equation for the universal R matrix, that holds in A ⊗ A ⊗ A :

R 12 R 13 R 23 = R 23 R 13 R 12 .
(2.73) Let us next analyze the implications of the Quantum Group structure on the representations of the algebra A. This is natural since we would like to apply the Yang-Baxter equation to intertwine dierent representation spaces. Consider (π a , V a ) :

π a : A → End(V a ) , (2.74)
to be a representation of the algebra A. The key fact is that the Hopf algebra maps ∆, , S have direct interpretations in the representation theoretic language. Indeed, we can use ∆ to dene a representation on the tensor product of two representations (which is not usually possible for a generic algebra). Furthermore provides us with the unit representation of A :

∆ : tensor product of reps. A ∆ → A ⊗ A π 1 ⊗π 2 → End(V 1 ) ⊗ End(V 2 ) , (2.75) : unit rep. : A → C .
(2.76)

The coproduct is useful for dening the dual representation of a representation (π, V ). Set V * = Hom(V, C) and dene t π as a map End(V ) → End(V * ) :

f ∈ End(V ) , ϕ ∈ V * , v ∈ V , t f (ϕ)(v) = ϕ(f (v)) , (2.77) 
where we denoted t f = t π(f ). Then one accesses the dual representation (π * , V * ) :

S : dual rep. A S → A t π → End(V * ) , π * = t π • S .
(

The natural question that arises is the following : is the representation π a ⊗ π b isomorphic to the representation π b ⊗ π a ? In view of the equation (2.68) the universal R matrix is the natural candidate for such an isomorphism. Let us apply this and consider the image of the universal R matrix R ∈ A ⊗ A under two representations :

R a,b = (π a ⊗ π b )R ∈ End(V a ⊗ V b ) .
(2.79)

The compatibility between the tensor product operation and the representations (2.75) implies that the Yang-Baxter equation (2.73) mutes into

R a,b R a,c R b,c = R b,c R a,c R a,b .
(2.80)

This equations is crucial, the knowledge of a universal R matrix for a specic Quantum Group allows to translate it to any two representations, and hence describe a variety of dierent physical systems having the same background symmetry.

The Quantum Group U q (sl 2 ).

We now discuss particular examples of Quantum Groups and start with the simple case of U q (sl 2 ). This algebra is generated by 4 elements {e, f, t, t -1 }, modulo the relations :

te = q 2 et , tf = q -2 f t , [e, f ] = t -t -1 q -q -1 ,
(2.81)

tt -1 = t -1 t = 1 .
(2.82)

This denes a structure of an algebra over C. We can endow U q (sl 2 ) with a Hopf algebra structure by dening the maps ∆, , S :

∆(e) = e ⊗ 1 + t ⊗ e , ∆(f ) = f ⊗ t -1 + 1 ⊗ f , ∆(t ± ) = t ± ⊗ t ± , (2.83 
)

(e) = 0 , (f ) = 0 , (t ± ) = 1 , (2.84) 
S(e) = -t -1 e , S(f ) = -f t , S(t ± ) = t ∓ .
(2.85)

We shall also meet another set of more "formal" generators of this algebra, : {E, F, q H , q -H } related to the former by :

E = e , F = f , q ±H = t ± .
(2.86) Taking the semi-classical limit q → 1, it is then possible to write the commutation relations between E, F, H and q ±H :

[H, E] = 2E , [H, F ] = -2F , [E, F ] = q H -q -H q -q -1 .
(2.87)

From these relations, it is manifest that the construction of U q (sl 2 ) is a deformation of the universal enveloping algebra U (sl 2 ) by the parameter q. Generalizing this procedure one can construct the Quantum Groups related to any complex semi-simple Lie algebra g, and even to the associated Kac-Moody algebra g. This is explained for example in [START_REF] Jimbo | Introduction to the Yang-Baxter equation[END_REF] : one should consider the Cartan matrix of g (or g), and quantize the Serre relations as it is done for U q (sl 2 ). This is how we are going to proceed to dene U q ( sl 2 ).

Let us now turn to the representation theory of U q (sl 2 ). We will be interested in nite dimensional irreducible representations, and we will assume only generic values of q (when q is not a root of unity). In this situation, the representation theory of the algebra U q (sl 2 ) is similar to that of sl 2 : any irreducible module of U q (sl 2 ) is isomorphic to some module V (m), characterized by an integer m (the highest weight) and such that dim V (m) = m+1 3 . One denotes this representation (π m , V (m)). The action of the U q (sl 2 ) on V (m) is given by the deformation of the action of sl 2 . Let {v i } m i=0 be a basis of V (m), then :

e • v k = [m -k + 1]v k-1 , f • v k = [k + 1]v k-1 , t • v k = q m-2k v k , t -1 • v k = q -m+2k v k , (2.88)
where we used the q-number notation :

[x] = q x -q -x q -q -1 .
(

This indeed denes a representation, thanks to the relation

[l -k][k + 1] -[l -k + 1][k] = [l -2k].
Remark that (π 0 , V (0)) ( , C) and the simplest non trivial module is V (1) where the representation matrices are given by :

π 1 (e) = 0 1 0 0 , π 1 (f ) = 0 0 1 0 , π 1 (t ± ) = q ± 0 0 q ∓ .
(2.90)

The case of U q ( sl 2 ).

As we have seen, the R matrix of the six vertex model depends on a spectral parameter, a feature that is absent in the representation theory of U q (sl 2 ). To make it appear naturally we should consider instead the Quantum Group U q ( sl 2 ) 4 . The ane Kac-Moody algebra sl 2 has 8 generators 3 More precisely, the number of representations is doubled since there exists a non trivial automorphism η of Uq(sl 2 ) :

η(e) = -e , η(f ) = f , η(t) = -t .
and from a representation (π, V ) we can construct a non isomorphic representation (π • η, V ). 4 One way to dene c sl 2 is to complete the central extension of the loop algebra of sl 2 :

c sl 2 = sl 2 ⊗ C[X, X -1 ] ⊕ Cc ⊕ Cd , (2.91) 
with the following centrally extended commutation relations :

[v ⊗ X m , u ⊗ X n ] = [v, u] ⊗ X m+n + c δ m+n,0 m tr(uv) , (2.92) [c, #] = 0 , (2.93) [d, v ⊗ X m ] = mv ⊗ X m d = X d dX .
(2.94)

Observe, that if (π, V ) is a representation of sl 2 , then given any λ ∈ C * , we can obtain a representation (π λ , V ) of c sl 2 (where we drop the action of d) :

π λ (v ⊗ X n ) = λ n π(v) , π λ (c) = 0 .
(2.95)

This explains the appearance of the spectral parameter in the context of c sl 2 .

{e i , f i , t ± i ; i = 0 , 1} whose commutation relations are encoded in the Cartan matrix :

C = 2 -2 -2 2 = (a ij ) i,j .
(2.96)

According to the remark in the previous section we dene U q ( sl 2 ) by appropriately deforming the Serre relations to :

t i e j = q aij e j t i , t i f j = q -aij f j t i , (2.97 
)

[e i , f j ] = δ ij t i -t -1 i q -q -1 ,
(2.98)

[e i , [e i , [e i , e j ] q 2 ] q 0 ] q -2 = 0 , i = j ,
(2.99)

[f i , [f i , [f i , f j ] q 2 ] q 0 ] q -2 = 0 , i = j , (2.100) 
where we used the deformed commutator :

[a, b] r = ab -rba .
(2.101)

We further endow U q ( sl 2 ) with a Hopf algebra structure by dening the coproduct, counit and antipode :

∆(e i ) = e i ⊗ 1 + t i ⊗ e i , ∆(f i ) = f i ⊗ t -1 i + 1 ⊗ f i , ∆(t i ) = t i ⊗ t i .
(2.102)

(e i ) = 0 , (f i ) = 0 , (t i ) = 1 , (2.103) 
S(e i ) = -t -1 i e i , S(f i ) = -f i t i , S(t ± i ) = t ∓ i .
(2.104)

From now we would like to apply our knowledge about the representation theory of U q (sl 2 ) to the ane case. This can be done with the use of the homomorphism ϕ λ : U q ( sl 2 ) → U q (sl 2 ) dened for any λ ∈ C * by :

ϕ λ (e 0 ) = λf , ϕ λ (f 0 ) = λ -1 e , ϕ λ (t 0 ) = t -1 ,
(2.105)

ϕ λ (e 1 ) = λe , ϕ λ (f 1 ) = λ -1 f , ϕ λ (t 1 ) = t .
(2.106)

If (π, V ) is a representation of U q (sl 2 ) the composition map π • ϕ λ gives a representation of U q ( sl 2 ) in V : U q ( sl 2 ) ϕ λ → U q (sl 2 ) π → End(V ) .
(2.107)

In the following we will denote π m λ the representation of U q ( sl 2 ) given by (π m • ϕ λ , V (m)) :

π m λ = π m • ϕ λ .
(2.108)

It is possible to show that the representation theory of U q ( sl 2 ) and U q (sl 2 ) are in fact quite dierent.

In particular, the tensor products such that π m ζ ⊗ π n λ can be irreducible. The general result [START_REF] Jimbo | Topics from Representation of U q (g) -An introductory Guide to Physicists[END_REF] is that any irreducible, nite dimensional representation of U q ( sl 2 ) is of the form :

π m1 λ1 ⊗ ... ⊗ π mr λr .
(2.109)

The universal R matrix for a wide class of algebras was calculated in [START_REF] Khoroshkin | Universal R-matrix for quantized (super)algebras[END_REF]. In the case of U q ( sl 2 ), the key observation is that R has a factorized form :

R ∈ U q (b + ) ⊗ U q (b -) , (2.110)
where U q (b + ), U q (b -) are the two Borel subalgebras of U q ( sl 2 ) generated respectively by {e i , t ± i , i = 0, 1} and {f i , t ± i , i = 0, 1}. This factorization is of crucial importance, since it allows to construct the Baxter Q operator from the data of the R matrix, by a similar procedure to the one that is used to obtain the L operator. We shall not reproduce the construction of R here because it is beyond the scope of this work 5 , presenting only the image of the universal R matrix under (ϕ λ ⊗ π 1 µ ) :

(ϕ λ ⊗ π 1 µ )(R) = q 1 2 ζ 2 q H+1 2 -q -H+1 2 (q -q -1 )ζF q H-1 2 (q -q -1 )ζq -H-1 2 E ζ 2 q -H-1 2 -q H-1 2 ,
(2.114) up to some multiplicative factor. This is an element of U q (sl 2 ) ⊗ End(V (1)). Finally, evaluating E, H, F in any representation V (2s m + 1) one recovers the result (2.33).

Nevertheless, let us still give a more "pedestrian" way of deriving the R matrix (in some specic representations) in the case of U q ( sl 2 ). The idea, already mentioned, is to reinterpret (2.68) as a intertwiner condition on R. More precisely (see [START_REF] Jimbo | Topics from Representation of U q (g) -An introductory Guide to Physicists[END_REF]), we claim that if we are given two representations π m λ and π n ξ of U q ( sl 2 ) dened in (2.108), then the R matrix (or some of its simple modication) should realize the isomorphism :

π m λ ⊗ π n µ π m µ ⊗ π n λ .
(2.115)

It implies the identity :

R(λ, µ)∆(v) = ∆(v)R(λ, µ) , ∀v ∈ U q ( sl 2 ) .
(2.116)

Evaluating this for v = e 0 , f 0 one obtains :

R(λ, µ)(λf ⊗ 1 + t -1 ⊗ µf ) = (µf ⊗ 1 + t -1 ⊗ λf )R(λ, µ) ,
(2.117)

R(λ, µ)(λ -1 e ⊗ t + 1 ⊗ µ -1 e) = (µ -1 e ⊗ t + 1 ⊗ λ -1 e)R(λ, µ) .
(2.118)

Using the explicit realization of e, f we can nd in the case m = n = 1 :

R 1,1 (λ, µ) =     λq -µq -1 λ(q -q -1 ) λ -µ λ -µ µ(q -q -1 ) λq -µq -1     (2.119)
This is the same R matrix as we considered for the six vertex model, up to the multiplication by the permutation matrix and the redenition of the variables. Now, let us write the R matrix for V (m) ⊗ V (m). We know that it in the case of sl 2 this representation is reducible to :

V (m) ⊗ V (m) = V (2m) ⊕ V (2m -2) ⊕ ... ⊕ V (0) .
(2.120)

Since R intertwines the actions, it must be a linear combination of the projectors

P k from V (m) ⊗ V (m) to V (2m -2k).
Hence we have :

R m,m (λ, µ) = m k=0 ρ k P k , (2.121) 
where the factors ρ k are explicitly [START_REF] Jimbo | Topics from Representation of U q (g) -An introductory Guide to Physicists[END_REF] :

R m,m (λ, µ) = m k=0 k r=1 λ -µq 2m-2r+2 µ -λq 2m-2r+2 P k .
(2.122) 5 To get a avor of the computations we present the explicit result for Uq(sl 2 ). Dene rst the q-exponential :

eq(z) = ∞ X m=0 q -m(m-1) 2 [m]! z m .
(2.111)

Then the universal R matrix of Uq(sl 2 ) reads [START_REF] Khoroshkin | Universal R-matrix for quantized (super)algebras[END_REF] :

R = eq(-(q -q -1 )e ⊗ f )q -h⊗h 2 .
(2.112)

Evaluating this formula for the representation V (1) (2.90) of Uq(sl 2 ) we obtain :

R 1,1 = q -1 2 0 B B @ 1 0 0 0 0 q 1 -q 2 0 0 0 q 0 0 0 0 1 1 C C A .
(2.113)

2.5 The Baxter Q operator

In this section we shall construct the Baxter Q operator, in the same spirit as it was done in [START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF]. It rst appeared a long time ago [START_REF] Baxter | Exactly Solved Models in Statistical Mechanics[END_REF] in the Baxter's solution of the eight-vertex model, and it is in the papers [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF][START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF][START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter relation[END_REF] that it was given a more modern interpretation. As we have seen, the T operator is constructed starting with the universal U q ( sl 2 ) R matrix R ∈ U q (b + ) ⊗ U q (b -) by evaluating the factor in U q (b + ) in a nite dimensional irreducible representation of U q ( sl 2 ) (of the type V (m)) through the use of the homomorphism ϕ λ . The key point of [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF] is to dene Q in a similar way to T , but adopting a dierent algebra : the q-Oscillator algebra Osc.

The q-Oscillator algebra Osc is generated by 4 elements {a, a * , q D , q -D } which are subject to the commutation relations (that we take from [START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF]) 6 :

q D aq -D = q -1 a , q D a * q -D = q a * .
(2.125)

a a * = 1 -q 2D+2 , a * a = q 2D .
(2.126) By analogy with the quantum harmonic oscillator, we can construct two innite dimensional representations (ρ ± , W ± ) :

W + = k≥0 C |k , W -= k<0 C |k , (2.127)
with the following action of Osc :

q D • |k = q k |k , a • |k = (1 -q 2k ) |k -1 , a * • |k = (1 -δ k,-1 ) |k + 1 .
(2.128) Dene the homomorphism ψ λ that embed the Borel subalgebra U q (b + ) into Osc :

ψ λ : U q (b + ) → Osc , (2.129) ψ λ (e 0 ) = λ q -q -1 a , ψ λ (e 1 ) = λ q -q -1 a * , ψ λ (t 0 ) = q -2D , ψ λ (t 1 ) = q 2D .
(2.130) Now, one can evaluate the universal R matrix of U q ( sl 2 ) on the algebra Osc. This is done in the following way. By analoy with (2.108), dene two representations π ± λ of U q (b + ) in W ± :

π ± λ = ψ λ • ρ ± : U q (b + ) → End(W ± ) .
(2.131)

The use of the algebra Osc in the evaluation of the universal R matrix will be depicted by the index "A", as well as the superscripts ± to specify which choice of W ± is understood. Then, working with the explicit expression of the universal R matrix of U q ( sl 2 ) (2.110) one has 7 :

L ± A,m (ζ) = (π ± ζ ⊗ π 1 1 )(R) = q -D -ζ 2 q 2D+1 -ζaq -D ζa * q D q D m ∈ End(W ± ) ⊗ End(V m ) , (2.132) 
where V m is a two dimensional vector space (to be thought on the Matsubara chain).

Similarly to the denition of the monodromy matrix (2.36), dene the "Q-monodromy" matrix by multiplying dierent L ± A,m matrices along the Matsubara space, taking into account the presence of inhomogeneities and eventually of the twist factor :

L ± A,M (ζ, κ) = L ± A,n ζ τ n L ± A,n-1 ζ τ n-1 ...L ± A,1 ζ τ 1 q ±2κD .
(2.133)

Finally, tracing out the representation A we obtain the wished

Q operator (Q ± M (ζ, κ) ∈ End(H M )) : Q ± M (ζ, κ) = ζ ±(κ-S M ) Tr A ± (L ± A,M (ζ, κ)) ,
(2.134) 6 We can think about this algebra as the "quantized" version of the creation-annihilation commutation relations for the quantum harmonic oscillator :

a = 1 √ 2 " x + ∂ ∂x « , a † = 1 √ 2 " x - ∂ ∂x « .
(2.123)

[a, a † ] = 1 , N = a † a .
(2.124) 7 Up to some multiplicative factor.

where we have introduced an extra term carrying the twist κ and the total spin operator of the Matsubara space S M (recall (2.63)) :

S M = 1 2 n m=1 σ 3 m .
(2.135)

From the universal Yang-Baxter equation (2.73) it is possible to demonstrate the commutation relations :

[T M (ζ, κ), Q M (λ, κ)] = 0 , [Q M (ζ, κ), Q M (λ, κ)] = 0 .
(2.136) In particular, this means that T M and Q M can be simultaneously diagonalized. Moreover, the key identity between T M and Q M is the Baxter equation (or "T Q equation") [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Baxter | Exactly Solved Models in Statistical Mechanics[END_REF] :

T M (ζ, κ)Q ± M (ζ, κ) = a(ζ)Q ± M (qζ, κ) + d(λ)Q ± M (q -1 ζ, κ) , (2.137) 
where a and d are the Bethe Ansatz functions (2.51) :

a(ζ) = n m=1 (ζ/τ m ) 2 -1 , d(ζ) = n m=1 (ζq/τ m ) 2 -1 .
(2.138)

Applying the equation (2.137) on a common eigenvector of

T M (ζ, κ) and Q ± M (ζ, κ)
we obtain a functional equation on the corresponding eigenvalues

T (ζ, κ) , Q ± (ζ, κ). Let us consider the analytical structure of Q ± (ζ, κ).
It is assumed to be a polynomial in ζ 2 , and if the common eigenvectors carries a spin s one can write :

Q ± (ζ, κ) = q ±(κ-s) l k=1 (ζ 2 -λ 2 k ) .
(2.139)

Evaluating the functional version of (2.137) at one of the roots λ k of Q ± , one recovers exactly the Bethe Ansatz Equations (2.62) :

a(λ)Q ± (qλ k , κ) d(λ)Q ± (q -1 λ k , κ) = -1 .
(2.140)

Hence the roots of Q ± (ζ, κ) are exactly the Bethe roots. Let us make a last comment to conclude this section. Manifestly, Q + and Q -seem to play a pretty similar role. This is natural, indeed Q is a solution of the second order dierence equation (2.137), which a priori has two dierent solutions : Q + and Q -.

Integrable structures in Conformal Field Theory

We are now ready to discuss how the previous constructions can be generalized to the eld theoretic context and reveal the integrable structures of CFT. This was achieved in the paper [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF] and its sequels [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF], [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter relation[END_REF] by Bazhanov, Lukyanov and Zamolodchikov, and is termed after the authors the "BLZ construction". Recall that for the lattice six-vertex model (based on U q ( sl 2 )), the universal R matrix was written as (2.110) :

R ∈ U q (b + ) ⊗ U q (b -) .
(2.141) Depending on the representations that we chose for the Borel subalgebra U q (b + ), we obtained either the transfer matrix or the Baxter operator, whereas U q (b -) was merely an observer, represented ultimately in a nite dimensional vector space in the Matsubara direction. To make connection with CFT, one should substitute this last piece U q (b -) by a more "eld theoretic", innite dimensional algebra. The farsighted idea of BLZ was to consider for such a role the Heisenberg algebra H. Our explanation here is, I hope more natural, but slightly anachronistic. Indeed one must emphasis that the introduction of the Baxter Q operator on the lattice presented before in the section 2.5 is entirely due to the BLZ advances.

In the original BLZ papers, the problematic was rather dierent. As we have show, any CFT possesses an innite number of conserved integrals of motion built as descendants of the identity operator, that can be described by local densities ((1.155),(1.156),(1.157) for the rst ones). In turns, these densities give rise to operators I 2k-1 that act on the Matsubara Hilbert space, and commute among themselves. The fundamental achievement of the work [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF] was to consistently organize these objects, by the introduction of a CFT transfer matrix T, which acts on a V-Verma module and is the generating function of the integrals of motions I 2k-1 . This breakthrough was followed by several important consequences :

1. The introduction of the transfer matrix T preceded the denition of a CFT Baxter operator Q [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF]. Then the full set of identities that are essentially veried by these operators (such that the Yang-Baxter equation, the Baxter T Q relation, the fusion equations), were shown to be valid also in the CFT context [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter relation[END_REF]. It means more conceptually, that T and Q realize the Yang-Baxter equation in the Hilbert space of the CFT.

2. The description of CFT in terms of the "massless S matrix" scattering theory, proposed in [START_REF] Zamolodchikov | From Tricritical Ising to critical Ising by Thermodynamic Bethe Ansatz[END_REF], was naturally related to the above construction : the TBA equations obtained from this S matrix theory where shown to be particular truncations of the fusion rules satised by the transfer matrices T.

3. As we have seen the integrable structures of CFT remains essentially intact when we perturb the conformal theory by the primary eld V 1,3 , the outcome being a massive integrable QFT.

Working with IQFT, it is of course possible to rst study the integrable lattice system (that is build the operators T and Q) that are described by the CFT at criticality, and then take an appropriate scaling limit towards the massive QFT. Then one would recover the wanted T and Q operators at the eld theoretic level. However, in many cases the associated lattice models are not known. It is then very interesting to possess an intrinsic description of these quantities, directly in terms of elds of the theory and without any reference to the lattice model.

In this section, we therefore propose a brief overview of the construction of T from [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF], since it will be crucial for our further analysis of the scaling equations [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF]. Let us examine a CFT on a cylinder (to stick to the original notations we take a = -i in (1.52), and drop the extra factor -1 in front of T ) whose (chiral) space of states is given by :

S = ∆ V ∆ .
(2.142) One has the usual relation between the Matsubara integrals of motion and the densities :

I 2k-1 = 2πi 0 du 2π h 2k (u) , (2.143) 
the rst expressions are recalled in (1.187), (1.188), (1.189). As stated at the beginning of this section, one should introduce the Heisenberg algebra H 8 . This is done by the means of a bosonic free eld ϕ :

ϕ(u) = iQ + iP u + n =0 a -n n e inu , (2.146) 
whose relation to the CFT stress energy tensor is :

-

β 2 T (u) =: ϕ (u) 2 : +(1 -β 2 )ϕ (u) + β 2 24 .
(2.147)

By convention, the densities are normalized such that h 2k (u) =: T (u) k : +..., which amounts to take

I 2k-1 = (-1) k β -2k 2π 0 du 2π : (ϕ (u)) 2k : +... .
(2.148) 8 The key original idea of BLZ is to take inspiration from the classical case. It is well known that in the classical limit c → ∞, the Virasoro algebra reduces to the KdV problem described by the Poisson algebra (see [START_REF] Sasaki | Virasoro algebra, vertex operators, quantum sine-Gordon and solvable Quantum Field theories[END_REF][START_REF] Eguchi | Deformation of conformal eld theories and soliton equations[END_REF][START_REF] Kupershmidt | Quantum KdV like equations and perturbed Conformal Field theories[END_REF]) :

T (u) → - c 6 U (u) , [ , ] → 6π ic { , } , (2.144 
)

{U (u), U (v)} = 2(U (u) + U (v))δ (u -v) + δ (u -v) .
(2.145)

The integrals I 2k-1 are quantum counterparts of the classical conserved integrals of motion of the KdV hierarchy. To solve the classical KdV problem, one constructs a classical monodromy matrix based on the algebra sl 2 , the important step being in simplifying the problem by the application of a Miura transformation to the classical variable U .

The big progress of [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF] is to transpose this classical considerations to the quantum level : the quantum version of a Miura transformation corresponds to the Feigin-Fuchs free eld representation of the algebra V, and instead of working with the algebra sl 2 the Quantum Group Uq( c sl 2 ) is considered.

The elements P, Q, a n satisfy the Heisenberg algebra H :

[Q, P ] = i 2 β 2 , [a n , a m ] = n 2 β 2 δ n+m,0 , [Q, a n ] = [P, a n ] = 0 .
(2.149) With these denitions, the modes L n of T satisfy the Virasoro algebra (1.26) with the central charge given by

c = 1 -6 β - 1 β 2 .
(2.150)

The Fock space representation F p for the algebra H is constructed as follows. Consider a highest weight vector |p for H :

P |p = p |p , a n |p = 0 , n > 0 .
(2.151)

Then F p is generated by the action of negatively indexed a n on the vector |p , and is isomorphic to the Verma modules V ∆ of V with the following correspondence between the highest weights (1.88) :

∆ = p β 2 + c - 1 24 . 
(2.152)

The space F p naturally decomposes into level subspaces. After these preparations, one can dene the vertex elds :

V ± (u) =: e ±2ϕ(u) := exp ±2 ∞ n=1 a -n n e inu e ±2i(Q+P u) exp ∓2 ∞ n=1 a n n e -inu , (2.153) 
that act as

V ± (u) : F p → F p±β 2 .
(2.154)

We use the generators {E, F, q H , q -H } of U q (sl 2 ) that satisfy (2.87) :

[H, E] = 2E , [H, F ] = -2F , [E, F ] = q H -q -H q -q -1 .
(2.155)

The relation between the Quantum Group parameter q and the CFT parameter β is given by :

q = e iπβ 2 .
(2.156)

Finally, the monodromy matrix of the CFT is dened to be the element of U q (sl 2 ) ⊗ H given by :

L(λ) ∈ U q (sl 2 ) ⊗ H , (2.157) 
L(λ) = e iπP H P exp λ 2π 0 du(V -(u)q H 2 E + V + (u)q -H 2 E) .
(2.158)

In this denition λ is the spectral parameter, and P denotes the usual path ordering operator. This formula is a direct CFT analog of the lattice monodromy matrices (2.36), (2.38). Notice that the momentum operator P plays the same role as the twist κ, which suggests that these two quantities should be related when we go from the lattice to the continuum. Now consider π j to be the (2j + 1) dimensional irreducible representation V (2j) of U q (sl 2 ) of highest weight 2j. We dene L j (λ) :

L j (λ) = π j (L(λ)) .
(2.159)

Tracing out the representation π j in L j (λ), we get the wanted transfer matrix T j of the CFT :

T j (λ) = Tr π j (L j (λ)) .
(2.160) By construction T j (λ) is a CFT eld acting as

T j (λ) : V ∆ → V ∆ .
(2.161)

In the paper [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter relation[END_REF] it is shown that L j (λ) satises the Yang-Baxter equation (2.41) :

R jj (λµ -1 )(L j (λ) ⊗ 1)(1 ⊗ L j (µ)) = (1 ⊗ L j (µ))(L j (λ) ⊗ 1)R jj (λµ -1
) .

(2.162)

with R jj (ζ) the R matrix of U q ( sl 2 ) in the tensor product representation π j ⊗ π j . In the case of spins 1 2 (highest weights 1), one recovers the usual L operator (2.35) :

R 1 2 , 1 2 (ζ) = ζ -1 q -1 2 L(ζ) .
(2.163)

The equation (2.162) implies the commutativity of the transfer matrices :

[T j (λ), T j (λ )] = 0 .

(2.164)

The operators T j commute also with P , this implies that they act invariantly in F p . Moreover the operators T j satisfy

[T j (λ), I 2k-1 ] = 0 .
(2.165)

It means that the level subspaces F (l) p are eigenspaces of T j (λ). A very important point of [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz[END_REF], is that T 1 2 admits specic analytical properties. It is an analytical function of λ 2 that has an essential singularity at the point λ → ∞. The asymptotic expansion is given by :

log T 1 2 (λ) mλ 1 1-β 2 - ∞ n=1 C n λ 1-2n 1-β 2 I 2n-1 .
(2.166)

where the I 2n-1 are exactly the integrals of motion (2.143) on the cylinder. This asymptotic expansion will be of crucial importance when we will derive the scaling equations for the Super sine-Gordon model. A remark is in order : why is λ 1 1-β 2 the variable of the series ? This holds since λ 1 1-β 2 is the truly dimensionless quantity : recall that we used the variable θ related to λ (2.30) by λ = e iπνθ and we claim that the correspondence between lattice and QFT parameters is

ν = 1 -β 2 .
(2.167)

The various coecients of the expansion of T 1 2 are given by :

m = 2 √ π Γ( 1 2 1-2β 2 1-β 2 ) Γ( 1 2 2-3β 2 1-β 2 ) Γ(1 -β 2 ) 1 1-β 2 ,
(2.168)

C n = 1 n!(1 -β 2 ) πβ 2 n   2 m Γ( 1 2 1-2β 2 1-β 2 ) Γ( 1 2 2-3β 2 1-β 2 )   2n-1 Γ((n -1 2 ) 1 1-β 2 ) Γ(1 + (n -1 2 ) β 2 1-β 2 ))
.

(2.169)

In the paper [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF] the investigations on the integrable structure of CFT were continued, and the Baxter Q operator was dened in the CFT context. Exactly like in the lattice case, Q is built from the q-oscillator algebra.

The fermionic basis.

In this section we will briey recall the main features of the fermionic basis. It was developed and successfully applied in the papers [START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF][START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF][START_REF] Jimbo | On one point functions of descendants in sine-Gordon model[END_REF]. The fermionic basis construction was established in the context of the six-vertex model on the cylinder and progressed through the following steps : 2. In addition to the simplicity of the correlation functions on the lattice, these fermionic operators have very nice scaling properties towards QFT. This is the second very important feature of the fermionic basis, and means that each of its operators has a QFT counterpart. Therefore, when taking the scaling limit, one can construct creation operators for the QFT. This was done in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] in the CFT limit of the six-vertex model, and provided an alternative (to the usual Virasoro one) basis for elds in the relativistic quantum theory. Considering the scaling limits of the functions ρ and ω, one therefore has very simple expressions for the one point functions of CFT operators generated by the fermionic basis. These one point functions will be presented in (2.229)-(2.232).

3. Finally, the fermionic basis is compatible with Conformal Perturbation Theory. This was used in [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF][START_REF] Jimbo | On one point functions of descendants in sine-Gordon model[END_REF] to obtain the one point functions in the sine-Gordon model. Indeed, we have seen that the elds in the PCFT can be classied in the same way as in the UV conformal theory. The general idea is then to take the scaling limit of the fermionic construction towards the massive QFT, and using the correspondence between the fermionic and the Virasoro description get the wished one point functions in the massive case.

In this section the aim is to describe the derivation of the correspondence between the fermionic and the Virasoro description at the CFT level (the formulae (2.235),(2.236),(2.237),(2.238) below), since this is the work that will be accomplished later for the case of the Super sine-Gordon model in the chapter 4 (see also [START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF]). Hence we will not discuss the application of the fermionic basis to the computation of one point functions in the sine-Gordon QFT (the point 3 above). Let us start with the lattice considerations.

2.7.1

The fermionic basis on the lattice.

General denitions.

We work here in the setting of section 2.2, in particular we use the terminology of the Matsubara and Space chains. Recall that our goal is to nd a simple way to compute vacuum expectation values of local operators on the lattice. We shall rst give our denition for the vacuum expectation values and then explain the fermionic basis.

Consider the cylinder to be innite in length (take N → ∞). The Space direction becomes :

H S = ∞ k=-∞ C 2 .
(2.170)

Recall from the above discussion that on the Space chain we have the following spin 1 2 XXZ Hamiltonian (2.28) :

H XXZ = 1 2 ∞ k=-∞ σ 1 k σ 1 k+1 + σ 2 k σ 2 k+1 + ∆σ 3 k σ 3 k+1 , ∆ = q + q -1 2 .
(2.171)

Another operator what will be important is the spin in the Space direction :

S(k) = 1 2 k j=-∞ σ 3 j , S = S(∞) = 1 2 ∞ j=-∞ σ 3 j .
(2.172)

To obtain the transfer matrix of the model we set :

T j,M = T j,M (1) , (2.173) 
in the notations of (2.36), and dene the total monodromy matrix T S,M :

T [-N 2 +1, N 2 ],M = T -N 2 +1,M ...T N 2 ,M , (2.174) 
T S,M = lim

N →∞ T [-N 2 +1, N 2 ],M .
(2.175)

Now we should dene the operators with which we are going to work. The spirit of the construction is close to CFT considerations. We consider operators O that are local, in the sense that their action is non trivial only on a nite interval of the space direction. Then we can take products with the lattice "primary eld" q αS(0) . This is a quasi-local operator with tail α since it stabilizes outside some nite interval to be the action by q 1 2 ασj . Denote by W α the space of quasi-local operators with tail α, and by W α,s its subspace of operators of spin s (the spin of O is the eigenvalue of the operator ad(S)(.) = [S, .]). We will work in the space :

W (α) = ∞ s=-∞ W α-s,s .
(2.176) On W (α) we dene the following vacuum expectation value of the local operator O :

Z κ n q 2αS(0) O =
Tr S Tr M T S,M q 2κS+2αS(0) O Tr S Tr M T S,M q 2κS+2αS(0) .

(2.177)

This formula is in fact natural. Indeed, the double trace of the total transfer matrix is nothing else than the partition function of the six vertex model (2.13) (in the case of a cylinder of innite length) :

Z 6V = Tr S Tr M (T S,M ) .
(2.178) Then (2.177) appears roughly speaking to be the partition function with the insertion of the operator O, normalized by the partition function. This is a meaningful denition for a vacuum expectation value from a QFT point of view.

Let us now go back to the general case (2.177). We should be worried about the fact that since we are working on an innite cylinder, (2.177) might be a divergent quantity. This problem is in fact avoided since we are dealing with quasi-local operators. Indeed, expliciting the large N limit we have with evident notations :

Z κ n q 2αS(0) O = lim N →∞ Tr M Tr [-N 2 +1, N 2 ] T [-N 2 +1, N 2 ],M q 2(κ+S [-N 2 +1, N 2 ] +αS [-N 2 +1,0] ) O Tr M Tr [-N 2 +1, N 2 ] T [-N 2 +1, N 2 ],M q 2(κ+S [-N 2 +1, N 2 ] +αS [-N 2 +1,0] ) . (2.179)
Then, consider that the Matsubara transfer matrix (2.39) T M (1, κ) has a unique eigenvector |κ with maximal eigenvalue T (1, κ). This holds when the twist parameter κ is not to large. Making the additional assumption that

κ + α|α = 0 , (2.180) 
the trace on the Matsubara space in the right hand side of (2.179) reduces to (exactly like in (2.15) ) :

Z κ n q 2αS(0) O = lim N →∞ κ + α|Tr [-N 2 +1, N 2 ] T [-N 2 +1, N 2 ],M q 2(κ+S [-N 2 +1, N 2 ] +αS [-N 2 +1,0] ) O |κ κ + α|Tr [-N 2 +1, N 2 ] T [-N 2 +1, N 2 ]M q 2(κ+S [-N 2 +1, N 2 ] +αS [-N 2 +1,0] ) |κ , (2.181) 
= lim

N →∞ ρ(1) k-1 κ + α|Tr [k,m] T [k,m],M q 2κS [k,m] X [k,m] |κ T (1, κ) m-k+1 κ + α|κ , (2.182) 
where we dened the above mentioned function ρ as the ratio of the eigenvalues of the Matsubara transfer matrices :

ρ(ζ) = T (ζ, κ + α) T (ζ, κ) .
(2.183)

We have taken [k, m] to be the interval where the operator O acts non trivially, and denoted the restriction to this interval of q 2αS(0) O by X [k,m] .

Special limit of the functional Z κ n . Let us make a comment on the usefulness of the general Matsubara space (2.31) :

H M = n m=1 C 2sm+1 .
(2.184)

The beginning of the fermionic construction started in [START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF] with the study a much simpler quantity than Z κ n :

Z 0 ∞ (O) = vac|q 2αS(0) O|vac vac|q 2αS(0) |vac , (2.185) 
which is dened for operators living only on the Space chain and without reference to any additional direction. The above denition of the Matsubara space H M appears to be the right extension to perform. Indeed, taking alternating inhomogeneities τ m = ζ -1 q -1 2 for m even and τ m = ζq 1 2 for m odd one has the following expansion :

Tr M (T S,M ) = C nN exp n ∞ p=1 z 2p-1 I 2p-1 , (2.186)
where the variable z is related in some complicated way to ζ and I 2p-1 are the lattice integrals of motion (in particular I 1 = H XXZ ), C is a numerical constant. Considering the limit n → ∞ and introducing at the same time the temperature β by setting z = -β n , the above sum is reduced to the rst term:

lim n→∞ C -nN Tr M (T S,M ) = e -βH XXZ .
(2.187) This implies that the functional Z κ n boils down in the limit n → ∞ to

Z κ ∞ =
Tr S (e -β(H XXZ +hS) q 2αS(0) O) Tr S (e -β(H XXZ +hS) q 2αS(0) ) .

(2.188)

This quantity has been studied in the paper [START_REF] Boos | Factorization of the nite temperature correlation functions of the XXZ chain in a magnetic eld[END_REF] that provided the important result that the fermionic basis is compatible with the presence of a non zero temperature and magnetic eld. Taking the zero temperature limit β → ∞ together with κ = 0 (that is h = 0) we recover (2.185). This motivates the study of the general Matsubara space (2.31), since it allows the use of any combination of integrals of motion inside the trace on the Space chain, thanks to the formula (2.186).

A remark about the correlation functions. In the previous denition (2.179) of the vacuum expectation value, the fact that we used a local operator together with the limit N → ∞ automatically singled out the maximal eigenvalue of the transfer matrix in (2.182). However, it is natural to dene a similar quantity for any eigenvector |Φ of the Matsubara transfer matrix (recall that their general form is given by the ABA procedure (2.52)) :

Z |Φ (O) = Φ| Tr [1,p] (T [1,p],M O) |Φ T p Φ|Φ .
(2.189)

We are going to use this denition when we will work with the fermion-current basis in the chapter 3 (see (3.36) as well as [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF]).

Fermionic basis and main theorem.

Let us now invoke the main results of [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF]. In this paper, the authors introduced creation operators b * , c * , t * that depend on spectral parameters in the space direction and create local operators out of the lattice primary eld q 2αS(0) . These operators act in the following way :

b * , c * , t * : W (α) → W (α) .
(2.190)

We shall not discuss the detailed denition of these operators, and consider the results of [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF] as an existence theorem. On the other hand the completeness of the basis of operators created thanks to b * , c * , t * was shown in [START_REF] Boos | Completeness of a fermionic basis in the homogeneous XXZ model[END_REF]. As we already emphasized, the crucial feature of this basis is that one has a very simple expression for the vacuum expectation values :

Z κ n t * (ζ 0 1 )...t * (ζ 0 p )b * (ζ + 1 )...b * (ζ + r )c * (ζ - r )...c * (ζ - 1 ) q 2αS(0) = p i=1 2ρ(ζ 0 i ) × det ω(ζ + i , ζ - j ) 1≤i,j≤r , (2.191) 
where ρ is dened in (2.183) and together with ω depends only on the Matsubara data. It was shown in [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF] that ω has to satisfy several specic properties. We will recollect them in the case of the general Matsubara situation (2.31) :

H M = n m=1 C 2sm+1 , (2.192) 
with the L operator given in (2.33). The general case is important to the future application of the fermionic construction to the 19-vertex model (s m = 1). Of course, to use the result (2.191) for the 6-vertex model we only need the case s m = 1 2 discussed above. Hence, in full generality we have : 1. Analytical properties. From this point of view the function ω splits in two parts : (2.193) where ω sing carries all relevant singularities : 2 q -2sm+2k+1 -1 .

ω(ζ, ξ) = ω hol (ζ, ξ) + ω sing (ζ, ξ) ,
ζ -α T (ζ, κ) (ω(ζ, ξ) -ω sing (ζ, ξ)) ,
(2.195)

It satises the important relation :

a(ζ)ϕ(ζ) = d(ζq)ϕ(ζq) , (2.196) 
where a and d are Bethe Ansatz functions dened in (2.51) (for spin 1 2 ), whose denition for any spin is :

a(ζ) = n m=1 ((ζ/τ m ) 2 q -2sm+1 -1) , d(ζ) = n m=1 ((ζ/τ m ) 2 q 2sm+1 -1) .
(2.197)

The function ϕ is used to specify the normalization of ω. Consider n + 1 contours Γ m (several small circles) going around the following points : Γ 0 goes around the point 0, and Γ m around the poles

ζ 2 = τ 2 m q 2sm-2k-1 with (k = 0, ..., 2s m ) of 2sm k=0 1 (ζ/τm) 2 q -2sm +2k+1 -1 .
The normalization condition for ω is then :

Γm T (ζ, κ)ω(ζ, ξ)Q -(ζ, κ + α)Q + (ζ, κ)ϕ(ζ) dζ 2 ζ 2 = 0 .
(2.198)

for each m ∈ [0, n].
3. Symmetry condition :

ω(ξ, ζ| -κ, -α) = ω(ζ, ξ|κ, α) .
(2.199)

4. The singular part is known in closed form :

ω sing (ζ, ξ) = 1 T (ζ, κ)T (ξ, κ) (4d(ξ)a(ζ) -T (ζ, κ)T (ξ, κ)ψ(qζ/ξ, α)) -(4a(ξ)d(ζ) -T (ζ, κ)T (ξ, κ)ψ(q -1 ζ/ξ, α)) -2ψ(ζ/ξ, α)(T (ζ, κ)T (ξ, κ + α) -T (ξ, κ)T (ζ, κ + α)) .
(2.200)

where the function ψ is given by :

ψ(ζ, α) = ζ α ζ 2 + 1 2(ζ 2 -1
) .

(2.201)

This closes the part of the discussion of the function ω on the lattice. Let us now present the scaling limit and the one point functions of fermionic operators in the CFT.

The scaling limit towards Conformal Field Theory

In this subsection we are going to explain how to take the scaling limit towards the continuum eld theory, in the same way as it is performed in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF]. The scaling is done according to the ideas of the Destri-De Vega equations [START_REF] Destri | Unied Approach to Thermodynamic Bethe Ansatz and Finite Size Corrections for Lattice Models and Field Theories[END_REF] : knowing the behavior of the Bethe roots for the ground state in the limit of large Matsubara space n → ∞, one should form Non-Linear Integral Equations on some particular function whose dependence on these roots is traceable. For that purpose dene the function a, constructed out of the eigenvalue Q of the Baxter operator (2.139) :

a(ζ, κ) = a(ζ)Q -(ζq) d(ζ)Q -(ζq -1 )
.

(2.202)

The Bethe equations (2.62) can be rewritten :

a(ζ, κ) + 1 = 0 .
(2.203) Take γ to be a contour around the Bethe roots, then the logarithm of (2.202) becomes after the application of the Residue theorem :

log a(ζ, κ) = -2πiνκ + log d(ζ) a(ζ) - γ K ζ ξ log(1 + a(ξ, κ)) dξ 2 ξ 2 , (2.204) 
where the kernel K is constructed from the function ψ :

K(ζ, α) = 1 2πi ψ(ζq, α) -ψ(ζq -1 , α) .
(2.205)

The resolvent R is a solution of the following equation :

R(ζ, ξ) - γ K(ζ/η, α)R(η, ξ)dm(η) = K(ζ/ξ, α) .
(2.206)

The dependence of the resolvent on the function a is hidden in the measure dm :

dm(η) = dη 2 η 2 ρ(η, κ)(1 + a(η, κ))
.

(2.207)

Now we introduce the shift operators :

∆ ζ f (ζ) = f (ζq) -f (ζq -1 ) , δ - ζ f (ζ) = f (ζq) -ρ(ζ)f (ζ) , (2.208) 
and build thanks to them two more functions :

f left (ζ, ξ) = δ - ζ ψ(ζ/ξ, α) , f right (ζ, ξ) = δ - ξ ψ(ζ/ξ, α) .
(2.209)

Then one can write a scaling equation for the redened version (according to [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF]) of the function ω. This equation was proposed in [START_REF] Boos | On the physical part of the factorized correlation functions of the XXZ chain[END_REF] and reads

1 4 ω(ζ, ξ|, α, κ) = (f left f right + f left R f right ) (ζ, ξ) + δ - ζ δ - ξ ∆ -1 ζ ψ(ζ/ξ, α) , (2.210) 
with

∆ -1 ζ ψ(ζ, α) = V P ∞ 0 1 2ν(1 + (ζ/η) 1 ν ) ψ(η, η) dη 2 2πη 2 .
(2.211)

The symbol means the convolution product with measure dm :

(f g)(ζ) = γ f (ζ/η)g(η)dm(η) .
(2.212)

Recall that the behavior of the ground state Bethe roots in the limit n → ∞ is the following : the roots are real and concentrate on a certain nite interval [a, b] on the real axis. Moreover, one can show that the function a is negligible in the upper half plane and very large in the lower one. Then, after some manipulation of (2.204) we arrive at the scaling equation for a :

log a(ζ, κ) = f (ζ, κ) -2i b a R(ζ/η)Im(log(1 + a(η + i0))) dη 2 η 2 ,
(2.213)

with f (ζ, κ) = (1 + R) • (-2πνκ + log(a(ζ)/d(ζ))
). This equation can be solved by iterations in the conformal regime. Now we are ready to take the scaling limit (dene a to be the lattice step, it will be used to rescale the spectral parameter) :

scaling limit : n → ∞ , a → 0 , n a = 2πR xed , (2.214) 
where R is the radius of the cylinder on which the model is considered. In the continuum limit, the six-vertex model scales towards to a Conformal Field Theory 9 . The eld theory depends on a parameter β related to the lattice parameter ν is the following way :

ν = 1 -β 2 .
(2.215)

The limit CFT has central charge :

c = 1 -6(β -1 -β) 2 = 1 -6 ν 2 1 -ν .
(2.216)

The CFT primary elds are obtained as appropriate limits of the lattice primary elds, and take the form :

lim scaling q 2αS(0) = Φ α ,
(2.217)

Φ α (z, z) = e 1 2 (β -1 -β)αiϕ(z,z) .
(2.218)

This parametrization becomes clear in [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] where the fermionic basis is used to obtain the one point functions in the sG model. The latter is considered as a perturbation of a complex Liouville CFT with central charge (2.216). The conformal dimension of the primary eld Φ α is therefore :

∆ α = (β -1 -β) 2 4 (α -1) 2 -1 .
(2.219)

The scaling limit implies the following limits for the lattice functions ω and ρ :

lim scaling ρ(λa ν ) = ρ sc (λ) ,
(2.220)

lim scaling ω(λa ν , µa ν ) = ω sc (λ, µ) , (2.221) 
as well as the conjectured limits of the operators of the fermionic basis :

τ * (λ) = lim scaling t * (λa ν ) , β * (λ) = lim scaling b * (λa ν ) , γ * (λ) = lim scaling c * (λa ν ) .
(2.222)

Similarly to the lattice case, one has also a power series expansion for the operators β * , γ * :

β * (λ) = ∞ k=1 λ -2k-1 ν β * 2k-1 , γ * (λ) = ∞ k=1 λ -2k-1 ν γ * 2k-1 .
(2.223)

According to the BLZ result on the asymptotics of the CFT transfer matrix (recalled in (2.166)), the asymptotics of the scaling limit of ρ sc is simply given by :

log ρ sc (λ) ∞ n=1 λ -2n-1 ν C n (i 2n-1 (κ) -i 2n-1 (κ )) , λ 2 → ∞ .
(2.224)

In the previous formula the twists κ, κ parametrize the conformal dimensions of the boundary elds (∆ ± ) 10 , the exact relation is given thanks to the general formula (2.219) :

∆ + = ∆ κ+1 = (β -1 -β) 2 4 (κ 2 -1) .
(2.225)

With the help of the equation (2.213), is it possible to study the properties of a sc . Using this information, the authors of [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] calculated the asymptotic expansion of the function ω sc :

ω sc (λ, µ) - ∞ r,s=1 1 r + s -1 D 2r-1 (α)D 2s-1 (2 -α) × λ -2r-1 ν µ -2s-1 ν ω 2r-1,2s-1 (κ, α) , (2.226) λ, µ → ∞ , (2.227) 
and the coecients D 2m-1 (α) were found to be :

D 2m-1 (α) = i 1 -β 2 Γ(1 -β 2 ) -2n-1 1-β 2 β 2n-1 1 (n -1)! Γ( α 2 + 1 2(1-β 2 ) (2n -1)) Γ( α 2 + β 2 2(1-β 2 ) (2n -1))
.

(2.228) 10 In the formula (2.224), κ is taken in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] according to the screening procedure. However, for us the important result of [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] are the Taylor coecients of the function ω that are obtained in the case κ = κ , that is when the two boundary elds have the same conformal dimension and also ρ sc = 1. In addition, ∆ + = ∆ -is the situation in which we will perform the calculations in the ssG model in section 4.6.

Conclusively, a procedure permitting to extract the coecients ω out of the scaling equation (2.210) was elaborated in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF]. The nal results take the form :

ω 1,1 = i 1 R - ∆ α 12R 2 ,
(2.229)

ω 1,3 3,1 = i 3 R - ∆ α 6R 3 i 1 + ∆ 2 α 144R 4 + c + 5 1080R 4 ∆ α ∓ d α ∆ α 360R 4 , (2.230) ω 1,5 5,1 = i 5 R - ∆ α 4R 3 i 3 + ∆ 2 α 48R 5 + c + 11 360 ∆ α i 1 - ∆ 3 α 1728R 6 - 13(c + 35) 90720R 6 ∆ 2 α - 2c 2 + 21c + 70 60480R 6 ∆ α ∓ d α ∆ α 120R 5 i 1 - 1 1440R 6 ∆ 2 α - c + 7 7560R 6 ∆ α , (2.231 
)

ω 3,3 = i 5 R - ∆ α 4R 3 i 3 + ∆ 2 α 48R 5 + c + 2 360R 5 ∆ α + c + 2 1440R 5 i 1 - 1 1728R 6 ∆ 3 α - 5c -14 18144R 6 ∆ 2 α - 10c 2 + 37c + 70 362880R 6 ∆ α - 1 2 c 2 + c 36288R 6 , (2.232) 
where the function d α is given by :

d α = (β -2 -β 2 )(α -1) , (2.233) 
and the integrals of motion i 1 , i 3 , i 5 have been calculated in (1.191), (1.192), (1.193). The explicit results for the coecients ω 2i-1,2j-1 allow to establish a correspondence between the Virasoro description of local operators and the fermionic basis. First, one has to properly normalize the fermions to construct purely CFT objects :

β * 2m-1 = D 2m-1 (α)β CFT * 2m-1 , γ * 2m-1 = D 2m-1 (2 -α)γ CFT * 2m-1 .
(2.234)

Then, recalling the Ward-Takahashi equations on the cylinder (1.78), one can compare the values of ω 2i-1,2j-1 , with the corresponding one point functions of Virasoro descendant elds, working level by level. The outcome is given in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] :

β CFT * 1 γ CFT * 1 = l -2 ,
(2.235)

β CFT * 1 3 γ CFT * 3 1 = l 2 -2 + 2c -32 9 l -4 ∓ d α 2 3 l -4 ,
(2.236)

β CFT * 1 5 γ CFT * 5 1 = l 3 -2 + c -2 -20∆ α + 2c∆ α 3(∆ α + 2) l -4 l -2 + -5600∆ α + 428c∆ α -6c 2 ∆ α + 2352∆ 2 α -300c∆ 2 α + 12c 2 ∆ 2 α + 893∆ 3 α -32c∆ 3 α 60∆ α (∆ α + 2) l 6 ∓ d α 2∆ α ∆ α + 2 l -4 l -2 + 56 -52∆ α -2c + 4c∆ α 5(∆ α + 2) l -6 ,
(2.237)

β CFT * 3 γ CFT * 3 = l 3 -2 + 6 + 3c -76∆ α + 4c∆ α 6(∆ α + 2) l -2 l -4 -6544∆ α + 498c∆ α -5c 2 ∆ α + 2152∆ 2 α -314c∆ 2 α + 10c 2 ∆ 2 α -448∆ 3 α + 16c∆ 3 α 60∆ α (∆ α + 2) l -6 .
(2.238)

These equations do not depend on R, which is logical since the expansion of the fermionic basis on the Virasoro basis should not depend on the radius of the cylinder, and have the general structure :

β CFT * I + γ CFT * I - = C I + ,I -P E I + ,I -({l -2k , ∆ α , c}) + d α P O I + ,I -({l -2k , ∆ α , c}) , (2.239) 
where I + , I -are multi-indices, C I + ,I -is the Cauchy determinant, P E I + ,I -({l -2k , ∆ α , c}) and c}) are polynomial in even indexed Virasoro modes, dened up to the integrals of motion i 2k-1 . These two polynomials (E stands for even, O for odd) satisfy the following symmetry relations under the exchange of the sets I ± (see (2.236) and (2.237)) :

P O I + ,I -({l -2k , ∆ α ,
P E I + ,I -= P E I -,I + , P O I + ,I -= -P O I -,I + .
(2.240)

It is possible to apply this very nice decomposition structure to further check the results (2.235), (2.236), (2.237), (2.238) against reection relations. This was done in the paper [START_REF] Negro | Reection relations and fermionic basis[END_REF], and we will discuss it in the case of the Super sine-Gordon QFT in the chapter 4.

The results above illustrate the duality between the Virasoro algebra and the fermionic basis, and hold at the CFT level. Recall that when perturbing such a theory, even if the conformal invariance is broken, it is still possible to classify elds in terms of Virasoro descendants. On the other hand, the fermionic basis itself is well adapted to the perturbation theory, and thanks to the scaling equations it is possible to compute the one point functions of fermionic operators in the massive case. Together with the above fermions/Virasoro correspondence, it gives us the one point functions for the sine-Gordon theory.

Conclusion.

In this introduction we have explained why the one point functions are the crucial data in Quantum Field Theories, and described the dierent approaches that exists to calculate them (reection relations and fermionic basis). Our challenge in this PhD work is to further apply the fermionic basis constructions to the Super sine-Gordon QFT : one of the main outcome will be the analogues of the formulae (2.229),(2.230),(2.231),(2.232) for the ssG theory. This last section about the spin 1 2 basis, motivates the steps that we have to take in order to calculate the one point functions in the ssG model.

1. The generalization of the fermionic basis to the spin 1 chain has been already achieved in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF].

In this more general case it will be called the fermion-current basis, because it involves not only fermionic operators but also sl 2 Kac-Moody currents.

2. Then in [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF], we further checked the well foundedness of the fermion-current basis by applying it to the calculations of vacuum expectation values in the isotropic spin 1 chain. These results will be presented in the next chapter 3.

3. The Suzuki equations for the ssG models have been derived in [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF]. In particular we recovered the BLZ expansion of the ground state eigenvalue.

Chapter 3

The Fermion-Current Basis

We now move to the investigation of the higher spin models : the nineteen vertex model and the XXZ spin 1 chain at the lattice level and the Super sine-Gordon model at the eld theoretic level. In this chapter our goal is to describe the "spin 1 fermionic basis" on the lattice. This new basis is more complicated than the original one, and for reasons that will soon become clear, it will be referred to as the fermion-current basis. The fermion-current basis was introduced on the lattice in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF], and loosely speaking can be built out of the initial spin 1 2 basis by a set of fusion relations, in the same spirit as the nineteen vertex model is associated to the six vertex model.

In this chapter we will present some new applications of the fermion-current basis from our work [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF], related to the explicit decomposition on the latter of local invariant operators. This is connected to the notion of "lattice OPE" that has been recently introduced in the context of the usual fermionic basis in the papers [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF][START_REF] Smirnov | Exact density matrix for quantum group invariant sector of XXZ model[END_REF]. As a byproduct of the decomposition we will be able to access the density matrix and the entanglement entropy of the model.

In the papers [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF] a method was described which allows to compute expectation values of local operators (up to 11 sites long) for the spin 1 2 isotropic spin chain. This method is based on the results of the paper [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF] in which for the six-vertex model (possibly inhomogeneous one) the expectation values of local operators in the fermionic basis are computed in terms of the function ω dened by the Matsubara data. Let us describe briey the method of [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF].

Every local operator allows a decomposition on the fermionic basis with the coecients depending only on the operator in question. For suciently simple Matsubara data the expectation value of the operator can be computed in two ways: directly with the help of the Algebraic Bethe Ansatz or using the decomposition on the fermionic basis and the function ω. This provides equations for the coecients of the decomposition for any given Matsubara data. Repeating this procedure for suciently large number of Matsubara data one obtains a system of equations for the coecients which allows to nd them.

Let us make this description more precise : consider O to be a local operator acting on a nite, homogeneous subchain in the Space direction (that we will simply denote by [1, n]), and invariant under the action of the algebra sl 2 . We should make here an important remark : in order to be able to reuse the set-up of [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF] on the one hand, and to simplify the lattice fermion-current basis on the other hand, we will work in this chapter in the isotropic limit ν → 0 of the six-vertex model or equivalently of the XXZ spin chain model (2.28). For our needs, it is then enough to deal with the algebra sl 2 , instead of working with the whole Quantum Group U q ( sl 2 ).

As explained above, one expects that O can be written as the action of fermionic basis operators on the identity operator I :

O = I,J C I,J b * I c * J • I , (3.1) 
where I = {i 1 , ..., i p } and J = {j 1 , ..., j q } are multi-indices and the above notation means :

b * I = b * i1 ...b * ip , c * J = c * i1 ...c * iq , (3.2) 
and C I,J are coecients. The structure of the sets I and J for given O has been analyzed in [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF], it will be detailed to some extent later (see (3.32), (3.33)). Of course the formula (3.1) should be interpreted as an identity between vacuum expectation values with specic Matsubara data Md :

O Md = I,J C I,J b * I c * J • I Md , (3.3) 
where the exact denition of • Md will be explained soon in (3.26). This formula looks pretty much like the usual OPE in QFT or CFT (1.4) : the coecients C I,J are some universal, local ("Ultra-Violet") data, that should not depend on the Matsubara space, whereas the terms b * I c * J • I Md are the lattice analogs of the one point functions of local elds in QFT that are manifestly Matsubara data ("Infra-Red") dependent. One of the accomplishments of the papers [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF][START_REF] Smirnov | Exact density matrix for quantum group invariant sector of XXZ model[END_REF] is to explicitly show that the expansion (3.1) indeed hold for specic operators and to calculate the values of C I,J . Since the coecients C I,J are independent of the Matsubara data, they can be used as such to study the model for particular limits of the Matsubara chain (for example the zero temperature limit). As we said, if we can calculate both O Md and b * I c * J • I Md for a suciently large amount of Matsubara data, one can hope that the system (3.3) is invertible and obtain the coecients.

In the present chapter we apply a similar method to the much more complicated case of the integrable isotropic spin-1 chain described by the Hamiltonian (3.25). Therefore, we will progress in the following order :

1. Recall the alternative denition of ω from [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF] that is particularly suited to perform calculations on the lattice. Then explain how one can use eciently the fermionic basis to calculate the density matrix.

2. Give some general denitions in the spin 1 lattice model.

3. Dene the fermion-current basis for the spin 1 XXX chain, this is the main part of this chapter.

4. Explain the computational procedure of the coecients and present the results on the expansion of the operator 3 a=1 S a 1 S a n on the fermion-current basis. In addition provide the values of the entanglement entropy for small number of sites.

5. In the appendix, detail the inhomogeneous results on the expansion of the operator 3 a=1 S a 1 S a n , and explain the computational procedure for the density matrix. Finally display the explicit density matrices at zero temperature.

Alternative formula for ω

First we recall some results on the function ω (2.193). In fact, in the paper [START_REF] Boos | On the physical part of the factorized correlation functions of the XXZ chain[END_REF] an alternative construction of this function was proposed, that we shall recall from [START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF]. This denition hold for the XXX spin chain, that is the isotropic limit ν → 0 of the XXZ spin chain model (2.28), where many simplications occur. To emphasize the fact that we work now towards applications to the spin 1 case, and more importantly to use notations compatible with our papers [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF][START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF][START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF] we will denote L the length of the Matsubara space (instead of n before). The Bethe Ansatz functions (2.51) become simply polynomials :

a(λ) = λ L + L j=1 a j λ L-j , d(λ) = λ L + L j=1 d j λ L-j . (3.4)
The Baxter operator in this case is :

Q(λ) = m j=1 (λ -β j ) , (3.5)
where β j are the Bethe roots. One denes also two auxiliary functions K and H :

K(λ) = 2 λ 2 -1 , H(λ) = 1 (λ -1)λ . (3.6)
Recall the denition of a and of the measure dm :

a(λ) = a(λ)Q(λ + 1) d(λ)Q(λ -1) , dm(λ) = dλ 1 + a(λ) . (3.7) 
This allow to rewrite the Bethe equations as in (2.140) :

a(β j ) = -1 , 1 ≤ j ≤ m . (3.8) 
To dene ω we rst construct the function G which satises :

G(η, µ) = H(η -µ) + 1 2πi Γ K(η -σ)G(σ, µ)dm(σ) , (3.9) 
where Γ goes around the Bethe roots and the point σ = µ. Using the Residue theorem, the above integral equation for G actually reduces to a linear system for the quantities G(β j , µ), that can be solved knowing the roots β j . Finally ω is dened by :

ω(λ, µ) = 1 2πi Γ H(η -λ)G(η, µ)dm(η) + 1 4 K(λ -µ) , (3.10) 
where Γ encircles the same points as Γ as well as the additional point η = λ. Let us make an important remark. As we said, our goal is to generate a lot of Matsubara data, which is equivalent to solve many times the Bethe equations. But solving the Bethe equations for β j is hard, so we should work dierently, and in some sense reverse the logic of (3.8). We will consider the starting, input data to be the parameters 

ω(λ, µ) = ∞ i,j=1 λ i-1 µ j-1 ω i,j , (3.11)
and the application of the general formula

1 b * (λ 1 )...b * (λ p )c * (µ 1 )...c * (µ q ) • I = det (ω(λ i , µ j )) 1≤i≤p,1≤j≤q , (3.12) 
to the homogeneous case leaves :

b * I c * J • I Md = det (ω i,j ) i∈I,j∈J . (3.13) 
This formula is the starting point of all calculations that aim to decompose the operator O on the fermionic basis.

The function ω at zero temperature. In addition to the fact that (3.10) gives a simple way to compute the function ω, this equation is useful to describe this function in the zero temperature limit (L → ∞, for the ground state the Bethe roots concentrate on a nite interval on the real axis). In this case, ω is given by an explicit function of a single argument :

ω(λ, µ) = ω 1 (λ -µ) ω 1 (λ) = - 1 2 + 2 log 2 + ∞ k=1 2ζ(2k + 1)(1 -2 -2k ) - 1 2 . 
(3.14)

Density matrix

Denition. The density matrix D(n) (on n sites) is a local operator that allows to access all vacuum expectation values of local invariant operators by a simple trace computation. Let O be a local operator that acts on the Space chain. Then its vacuum expectation values in terms of the density matrix are given by :

O Md = Tr [1,n] (D(n)O) .
(3.15)

Obviously, the dependence on the Matsubara data in the right hand side is hidden inside the density matrix. We would like to have an intrinsic denition of D(n), and a very useful expression can be obtained in terms of the operators of the fermionic basis. On sites [1, n], we rst decompose a complete set of invariant operators (O a ) a (that is operators that commute with the sl 2 action, they will be described in the Appendix 3.9) on the fermionic basis :

O a = IJ C a IJ b * I c * J .
(3.16)

1 By convention if p = q the determinant is zero.

Second, we calculate the dual invariant operators ( Õa ) a that satisfy :

Tr [1,n] ( Õa O b ) = δ ab .
(3.17)

The density matrix is then given in terms of the fermionic basis by :

D(n) = a IJ C a IJ det (ω i,j ) i∈I,j∈J Õa , (3.18) 
which is easy to calculate for any Matsubara data. Let us show that this denition is consistent. Take Y to be an operator that we can decompose on the basis of invariant operators Y = a p a O a . Then

Tr [1,n] (D(n)Y ) = Tr [1,n] a IJ C a IJ b * I c * J Md Õa Y (3.19) = Tr [1,n]   a,b IJ C a IJ b * I c * J Md Õa p b O b   (3.20) = a p a IJ C a IJ b * I c * J Md = Y Md .
(3.21)

Entanglement entropy an comparison with CFT. From the density matrix, it is straightforward to calculate the entanglement entropy by the formula :

s(n) = -Tr [1,n] (D(n) log(D(n))) .
(3.22)

In the paper [START_REF] Holzhey | Geometric and renormalized entropy in conformal eld theory[END_REF], it was shown that s(n) has the following thermodynamical limit n → ∞ :

s(n) c 3 log n , (3.23) 
where c is the value of the central charge of the CFT that describes the lattice model in the continuum. In the paper [START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF], D(n) was calculated thanks to the fermionic basis for the XXX spin 1 2 chain, for lattice sites up to 11 and showed very good agreement with the CFT with c = 1 :

s(n) 1 3 log n .
(3.24)

In the rest of this chapter we generalize these results to the spin 1 XXX spin chain, and show the consistency of the fermion-current basis from this "lattice OPE" point of view. The results presented were obtained in the paper [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF].

General spin 1 denitions

Let us start by dening the integrable isotropic spin-1 chain described by the Hamiltonian :

H = ∞ j=-∞ S a j S a j+1 -(S a j S a j+1 ) 2 , (3.25) 
where the summation over a is implied, S a are generators of the spin-1 representation of sl 2 , whose detailed expression will be given below. The innite chain (the Space chain) is understood as the limit of nite chains with periodic boundary conditions. The correlation functions for the model (3.25) were studied in [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF]. Later in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] the problem was considered in the spirit of the fermionic basis construction [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF]. The authors of [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] were very much inuenced by [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF]. In the present discussion we use [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF] in two ways: indirectly through [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF], and directly, comparing exact results on 2 and 3 sites.

Below we formulate our problem. The exposition is close to that of the paper [START_REF] Ph | OPE for XXX[END_REF] where some more details can be found.

The integrable models are closely related with Quantum Groups, but in the isotropic model under consideration it is sucient to work with the sl 2 algebra. We denote by π S the representation obtained as the tensor product of the spin-1 representations along the Space. In addition we introduce a nite, possibly inhomogeneous and carrying dierent spins, Matsubara chain and the corresponding representation π M of sl 2 . We visualize the lattice on an innite cylinder with the compact direction been the Matsubara space. The fundamental object is the evaluation of the universal R-matrix R: (3.26)

T S,M = (π S ⊗ π M ) R .

The relation with the integrable spin chain is due to the commutativity

Using the results of the paper [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] it can be shown that there exists a basis of the local operators for the spin-1 chain created by the action on the unit operators of two fermions and one Kac-Moody current (details will be given below). We shall call this the fermion-current basis. Denote the elements of the fermion-current basis by v α . For any O we have

O = α X α v α ,
where X α are the wanted coecients of the decomposition depending on the inhomogeneities of the Space. This implies

O Md = α X α v α Md .
For reasonable simple Matsubara data there are independent ways to compute O Md and v α Md . This is how we get equations for X α .

Fermion-Current Basis

Homogeneous case

We begin this section by making our notations more detailed. Consider the algebra sl 2 . Denote by π 2s λ the (2s + 1)-dimensional evaluation representation with the evaluation parameter λ. In order to handle T S,M in the denitions above, we use the following expression for the R matrix of the spin 1 chain R(λ, µ) = (π 2 λ ⊗ π 2 µ )R which depends only on the dierence of arguments ζ = λ -µ :

R(ζ) = 0 B B B B B B B B B B B @ (ζ + 1)(ζ + 2) 0 0 0 0 0 0 0 0 0 ζ(ζ + 1) 0 2(ζ + 1) 0 0 0 0 0 0 0 (ζ -1)ζ 0 4ζ 0 2 0 0 0 2(ζ + 1) 0 ζ(ζ + 1) 0 0 0 0 0 0 0 ζ 0 ζ + ζ 2 + 2 0 ζ 0 0 0 0 0 0 0 ζ(ζ + 1) 0 2(ζ + 1) 0 0 0 2 0 4ζ 0 (ζ -1)ζ 0 0 0 0 0 0 0 2(ζ + 1) 0 ζ(ζ + 1) 0 0 0 0 0 0 0 0 0 (ζ + 1)(ζ + 2) 1 C C C C C C C C C C C A
In the homogeneous case

π S = • • • π 2 0 ⊗ π 2 0 ⊗ π 2 0 ⊗ π 2 0 ⊗ • • • .
As has been said we are supposed to begin with a nite, periodic Space chain of length 2N and then consider the limit N → ∞. However, it is well-known that in the cylindrical geometry adopted here the limiting procedure is trivial, so we shall consider the Space chain as an innite one. There is a well-known innite family of commuting local integrals of motion which includes the Hamiltonian.

The adjoint action of these operators is well-dened on the space of local operators. We denote by V the corresponding quotient space. For the problem considered in this chapter this is the space of interest.

The simplest operator I acts as a unit operator in every tensor component. In [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] several operators were introduced acting on the space of local operators, let us describe them. We start with the operators j -(λ), j 0 (λ), j + (λ), b * (λ), c * (λ), for which we shall often use the universal notation x {1,2} = b * , x {2,1} = c * , x {1,3} = j + , x {2,2} = j 0 , x {3,1} = j -. The indices {1, 2} etc. are natural in the framework of [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF]. All these operators are understood as generating functions

x (λ) = ∞ p=-∞ λ p-1 x p .
It is almost correct that the space V is created by action of x p with p > 0, but some renements are needed. The rst of them concerns the normal ordering. The operators j -(λ), j 0 (λ), j + (λ) form an sl 2 Kac-Moody algebra at level 1. The fermions b * (λ), c * (λ) form an sl 2 doublet. That leads to the natural commutation relations and, most importantly for our goals, to the rules of the normal ordering:

: j 0 (λ)j 0 (µ) := j 0 (λ)j 0 (µ) - 2 (λ -µ) 2 , : j + (λ)j -(µ) := j + (λ)j -(µ) + j 0 (µ) λ -µ + 1 (λ -µ) 2 , (3.27) : j + (λ)j 0 (µ) := j + (λ)j 0 (µ) + 2j + (µ) λ -µ , : j 0 (λ)j -(µ) := j 0 (λ)j -(µ) + 2j -(µ) λ -µ , (3.28) 
: b * (λ)j -(µ) := b * (λ)j -(µ) - c * (µ) λ -µ , : c * (λ)j + (µ) := b * (λ)j -(µ) + b * (µ) λ -µ , (3.29) 
: b * (λ)j 0 (µ) := b * (λ)j 0 (µ) + b * (µ) λ -µ , : c * (λ)j 0 (µ) := c * (λ)j 0 (µ) - c * (µ) λ -µ .
(3.30)

So, the local operators are created by acting on the unit operator by normal ordered products

: x 1 p1 • • • x l p l : I , p j > 0 .
Introduce the ordering {1, 2} ≺ {2, 1} ≺ {1, 3} ≺ {2, 2} ≺ {3, 1}. For the sake of deniteness we shall require

1 2 ≤ • • • l .
The second problem is that of completeness. Contrary to the case of the spin 1/2 chain [START_REF] Boos | Completeness of a fermionic basis in the homogeneous XXZ model[END_REF] we do not have a formal proof of the completeness in the present situation. On the other hand the "Russian doll" construction discussed below makes the completeness quite plausible.

Let us discuss now the most complicated issue. An important question is that of how the operators located exactly on the interval [1, n] look like in our fermion-current basis. In the spin 1/2 case we had only fermionic operators b * p , c * p . For the operators

b * p1 • • • b * p k c * q1 • • • c * q l I , (3.31) 
to be located on [1, n] one imposes rst of all two necessary conditions:

1) k + l ≤ n , (3.32) 
2) p j ≤ n, q j ≤ n ∀j .

(3.33)

Then there are more subtle necessary conditions explained in details in [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF]. Taking into account all the necessary conditions we come to the subspace of the fermionic space, whose elements may be located on [1, n], of rather reasonable size. Notice also that in [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF] as well as in the present chapter we are interested in operators invariant under the action of global sl 2 . This requires k = l in (3.31).

For the spin 1 case, let us write the elements of the fermion-current basis in complete notations

: b * p1 • • • b * p k 1 c * q1 • • • c * q k 2 j + r1 • • • j + r k 3 j 0 s1 • • • j 0 s k 4 j - t1 • • • j - t k 5
: I .

(3.34)

There is one necessary condition which remains unchanged:

k 1 + k 2 + k 3 + k 4 + k 5 ≤ n . (3.35)
The requirement of sl 2 -invariance of the operators is equivalent to

k 1 -k 2 + 2k 3 -2k 5 = 0 .
For the fermions the condition (3.33) and additional conditions from [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF] (null-vectors) still hold. However, we were not able to formulate reasonable conditions for the currents. That is why in what follows, we are forced to take much more complicated and less ecient ways to calculate the correlations functions of the fermion-current basis, than in [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF].

Introducing Matsubara

The Matsubara chain is inhomogeneous

π M = π 2s1 τ1 ⊗ π 2s2 τ2 ⊗ • • • ⊗ π 2s L τ L .
Let us introduce the transfer-matrix

T M (λ) = (Tr ⊗ id) (π (2) λ ⊗ π M )(R) .
This is a commutative family, for generic Matsubara data there is a unique eigenvector with the maximal in absolute value eigenvalue of T M (0). We shall denote this eigenvector by |Ψ . The corresponding eigenvalue of the transfer-matrix will be denoted by T(λ).

Clearly for any local operator located on the interval [1, n] we have

lim N →∞ Tr S Tr M (T S,M • O) Tr S Tr M (T S,M ) = Ψ|Tr [1,n] T [1,n],M O |Ψ T(0) n Ψ|Ψ , (3.36) 
where T [1,n],M is the restriction of T S,M for the Space taken to be the nite interval [1, n], its explicit expression is given below for the inhomogeneous case. Our way of computing the right hand side does not depend on the fact that the eigenvalue is maximal being applicable to any eigenvector of the transfer-matrix.

Inhomogeneous case : the "Russian doll" construction

The "Russian doll" construction is present indirectly already in the paper [START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF], however, in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] it becomes really indispensable. The construction requires some denitions which we are going to give. We shall need an inhomogeneous space chain:

π S = • • • π 2 0 ⊗ π 2 0 ⊗ π 2 λ1 ⊗ • • • ⊗ π 2 λn ⊗ π 2 0 ⊗ π 2 0 ⊗ • • • .
The inhomogeneity is located on a nite subchain [1, n]. Consider the space of all the operators located on this interval. Consider the expectation value (3.26) for the inhomogeneous case assuming that the local operator O is located on the interval [1, n]. Denote the corresponding spaces, isomorphic to

C 3 , by V 1 , • • • , V n .
In order to describe a suitable for our goals basis in V 1 ⊗ • • • ⊗ V n we introduce nine operators g (λ k ) ( = {i, j}, i, j = 1, 2, 3) and act by these operators on I consequently:

g n (λ n )g n-1 (λ n-1 ) • • • g 1 (λ 1 )I .
For generic λ 1 , • • • , λ n this gives a basis of the space of operators localized on the interval [1, n]. We have the equality g {1,1} (λ) = id. The expectation values considered in the present chapter are such that in the weak sense (holding when considered in correlation functions)

g {3,3} (λ) w = g {1,1} (λ) , g {2,3} (λ) w = g {1,2} (λ) , g {3,2} (λ) w = g {2,1} (λ) .
(3.37) So, eectively we are left with the same set of indices counting the operators g as we had before for x.

As usual the monodromy matrix (π 2 λj ⊗ π M )(R) with the rst tensor component identied with V j will be devoted by T j,M (λ j ). The formula (3.36) remains valid for O being located on the interval [1, n], and certainly,

T [1,n] = T 1,M (λ 1 ) • • • T n,M (λ n ) .
These operators g are in one-to-one correspondence with the x's. Wanting to pass to the homogeneous case one has to apply the normal ordering, the rules are the same as above. The "Russian doll" construction is based on the identity

lim N →∞ Tr S Tr M (T S,M : x n (λ n ) • • • x 1 (λ 1 ) : I) Tr S Tr M (T S,M ) (3.38) = Ψ|Tr [1,n] (T 1,M (λ 1 ) • • • T n,M (λ n ) : g n (λ n ) • • • g 1 (λ 1 ) : I) |Ψ n j=1 T(λ j ) Ψ|Ψ .
This formula establishes an identity between the expectation values of a family of local operators of dierent lengths for the homogeneous case with the expectation values for the operators of length n in the inhomogeneous case. For our goals, rather complicated reasonings concerning this formula which are given in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] can be avoided just by saying that the explicit computation of the right hand side (which will be given soon for any Matsubara data), denes the operators x in the left hand side.

Still there is another way to apply this formula. Suppose one computes the right hand side and then sets all λ j to zero. In that case the right hand side gives the expectation value of a local operator located on [1, n] for the homogeneous chain, this allows to identify the local operators of length n in the left hand side. We shall explain how to apply this idea in practice later.

Fusion

Consider the tensor product of 2n two-dimensional spaces v j . Introduce the projector P j : v 2j-1 ⊗ v 2j → V j onto the symmetric component. Consider the product P = P 1 ⊗ • • • ⊗ P n . Denote by T j,M (λ) the monodromy matrix whose rst tensor component acts in v j . We have the fusion

T 1,M (λ 1 -1/2)T 2,M (λ 1 + 1/2) • • • T 2n-1,M (λ n -1/2)T 2n,M (λ n + 1/2)P = P T 1,M (λ 1 ) • • • T n,M (λ n ) .
We began to consider the tensor product of 2n spaces v j isomorphic to C 2 . In the framework of the present chapter the interest of this consideration is due to the fact that π 2

λ1 ⊗ • • • ⊗ π 2 λn is a submodule of π 1 λ1-1/2 ⊗π 1 λ1+1/2 ⊗• • •⊗π 1 λn-1/2 ⊗π 1 λn+1/2 .
In what follows it will be useful to consider a more general module π 1

µ1 ⊗• • •⊗π 1 µ2n with generic µ 1 , • • • µ 2n specializing to µ j = λ [ j+1 2 ] + (-1) j 2
when needed. We have operators g σ (µ j ) (σ = {1, 2}, {2, 1}) acting on the latter space. The Matsubara expectation values are computed via a particular case of the main fermionic basis formula [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF]:

Ψ|Tr [1,2n] (T 1,M (µ 1 ) • • • T 2n,M (µ 2n ) g σ2n (µ 2n ) • • • g σ1 (µ 1 )I) |Ψ n j=1 T (µ j ) Ψ|Ψ (3.39) = (-1) sgn(π) det |ω(µ i , µ j )| i:σi={2,1}, j:σj ={1,2} ,
where π is the permutation putting all i such that σ i = {2, 1} to the left. The functions ω(λ, µ) depends on the Matsubara data as on parameters. It was dened above in (3.10).

Using the formula above one computes the right hand side of (3.38) using the following formulae

g {1,2} (λ) = g {1,2} (λ + 1/2) + g {1,2} (λ -1/2) , (3.40) 
g {2,1} (λ) = g {2,1} (λ + 1/2) + g {2,1} (λ -1/2) , g {1,3} (λ) = g {1,2} (λ + 1/2)g {1,2} (λ -1/2) , g {3,1} (λ) = g {2,1} (λ + 1/2)g {2,1} (λ -1/2) , g {2,2} (λ) = g {2,1} (λ + 1/2)g {1,2} (λ -1/2) + g {1,2} (λ + 1/2)g {2,1} (λ -1/2) .
It is important to notice that g n (λ n ) • • • g 1 (λ 1 )I in which g are dened by (3.40) satises the identity

g n (λ n ) • • • g 1 (λ 1 )I = Pg n (λ n ) • • • g 1 (λ 1 )I ,
which provides the self-consistence of the fusion. This procedure expresses the right hand side of (3.38) in terms of determinants of matrices with the matrix elements being expressed in terms of the function ω(λ, µ) and the normalization

N (λ) = T(λ) T (λ + 1 2 )T (λ -1 2 )
, as follows

Ψ|Tr [1,n] (T 1,M (λ 1 ) • • • T n,M (λ n ) g n (λ n ) • • • g 1 (λ 1 )I) |Ψ n j=1 T(λ j ) Ψ|Ψ = n j=1 1 N (λ j ) (3.41) × F 1,••• , n σ1,••• ,σ2n Ψ|Tr [1,2n] (T 1,M (µ 1 ) • • • T 2n,M (µ 2n ) g σ2n (µ 2n ) • • • g σ1 (µ 1 )I) |Ψ n j=1 T (µ j ) Ψ|Ψ , where {µ 1 , µ 2 , • • • , µ 2n-1 , µ 2n } = {λ 1 -1 2 , λ 1 + 1 2 , • • • , λ n -1 2 , λ n + 1 2 } , (3.42) 
F 1,••• , n σ1,••• ,σ2n
is a tensor easily read from (3.40).

3.5 Computational procedure and results

General procedure

In the homogeneous case consider an operator localized on the interval [1, n]. As usual we simplify the notations in (3.34) introducing multi-indices:

: b * P c * Q j + R j 0 S j - T I : .
Consider an operator O localised on the interval [1, n]. Our goal is to nd the decomposition

O ≡ P,Q,R,S,T X P,Q,R,S,T : b * P c * Q j + R j 0 S j - T I : , (3.43) 
where ≡ means equality in the quotient by the action of the local integrals of motion space. We would like to proceed as in [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF], namely, to use suciently simple Matsubara data in order to obtain equations for the coecients X by computing independently the expectation values of operators on the right hand side and on the left hand side. However, in the present case there are some complications. The rst is the normal ordering. The second is the multiplier containing N in (3.41), it looks quite innocent, but actually it is not. Also, as has been discussed, we did not nd an ecient way (similar to [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF]) to restrict the number of terms in the right hand side. With all that in mind we decided to take a simpler way based on the inhomogeneous chain.

In the inhomogeneous case the analogue of (3.43) looks like

O ≡ 1 ,••• n X 1,••• n (λ 1 , • • • , λ n ) : g n (λ n ) • • • g 1 (λ 1 ) : I , (3.44) 
having in mind (3.37) we reduce the indices to p = {1, 1}, {1, 2}, {2, 1}, {1, 3}, {3, 1}, {2, 2} remembering that g {1,1} (λ j ) = id, and ≡ stands for equality of the expectation values for all Matsubara data in the geometry accepted in the present chapter, in other words for the case when the left and the right Matsubara states are equal (we denote them by |Ψ ). This is the inhomogeneous version of the quotient by the action of the local integrals. The computation of the expectation value of (3.44) follows closely that explained in [START_REF] Ph | OPE for XXX[END_REF][START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF]. In the left hand side we have

Ψ|Tr [1,n] (T 1,M (λ 1 ) • • • T n,M (λ n ) O) |Ψ n j=1 T(λ j ) Ψ|Ψ . (3.45)
The choice of Matsubara data is explained in [START_REF] Ph | OPE for XXX[END_REF]. The numerator of this expression is a linear combination of terms of the kind

Ψ|T i1,j1 (λ 1 ) • • • T in,jn (λ n )|Ψ , where T i k ,j k (λ k ) ∈ End(M) stands for the coecient at position i k , j k of T k,M (λ k ) = (T i k ,j k (λ k )) 1≤i k ,j k ≤3 . (3.46)
Using the fusion procedure, the computations are reduced to the ones explained in details in [START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF]. The norm Ψ|Ψ is computed by Gaudin formula, the eigenvalue

T(λ) = T (λ -1 2 )T (λ + 1 2 ) -∆(λ) , ∆(λ)
being the quantum determinant.

The right hand side of (3.44) is computed applying consequently the rules of the normal ordering, that is the formulae (3.40), then we express the result in terms of the functions ω(λ, µ) and N (λ).

Notice that ω appear only in expressions of the form ω(λ ± 1 2 , µ ± 1

2 ) and is computed from the formula given in (3.10). However ω need to be made compatible with the denition of the normal order. To this end, we introduce an auxiliary function ϕ :

ϕ(z) = 1 4 - 3 z + 1 - 1 z -1 + 3 z + 1 z + 2 (3.47)
and consider the two redenitions :

ω(λ + 1 2 , µ -1 2 ) = ω(λ + 1 2 , µ -1 2 ) + ϕ(λ -µ) , ω(λ -1 2 , µ + 1 2 ) = ω(λ -1 2 , µ + 1 2 ) + ϕ(λ -µ -1) ,
where ω is taken as such from (3.10).

Below we give some examples of the expressions of the simplest elements of the fermion-current basis in terms of ω, and of how the normal ordering works in practice :

b * (λ)c * (µ) = N (λ)N (µ) ω(λ + 1 2 , µ + 1 2 ) + ω(λ + 1 2 , µ -1 2 ) + ω(λ -1 2 , µ + 1 2 ) + ω(λ -1 2 , µ -1 2 ) , j + (z)j -(w) = -N (λ)N (µ) ω(λ + 1 2 , µ + 1 2 ) ω(λ + 1 2 , µ -1 2 ) ω(λ -1 2 , µ + 1 2 ) ω(λ -1 2 , µ -1 2 ) + 1 (λ -µ) 2 .
This type of formulae are easy to compute for given small Matsubara data and numerical λ j . Doing that we nd experimentally how many dierent Matsubara data we need to get the expansion (3.44). Recall that L is the length of the Matsubara chain and denote B the number of Bethe roots. For example, for the most complicated case considered in the paper [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF], n = 5, the following stock of Matsubara data is sucient: 22 with L = 1, B = 0, 149 with L = 2, B = 0, 25 with L = 3, B = 0,

8 with L = 2, B = 1, 35 with L = 3, B = 1, 1 with L = 4, B = 2.
Up to n = 3 the computation is simple. The structure of the coecients is as follows

X (λ 1 , • • • , λ n ) = i<j 1 (λ i -λ j ) di,j P (λ 1 , • • • , λ n ) R(λ 1 , • • • , λ n ) , (3.48) 
where

d i,j , P, R depend on 1 , • • • , n , R(0, • • • , 0) = 0.
The degrees d i,j are easy to nd: we take all λ's suciently distant except λ i and λ j for which we consider two separations, say, 10 -12 , 1 + 10 -13 . Obviously, this allows to dene d i,j . Using this as an Ansatz in the general case is dicult mostly because of the denominator

R(λ 1 , • • • , λ n ).
On the other hand we are not really interested in all the details of this denominator having in mind further application to the homogeneous case. Let us explain that.

Consider the right hand side of (3.44). The normally ordered expression :

g n (λ n ) • • • g 1 (λ 1 ) : I is regular at the point λ 1 = 0, • • • , λ n = 0.
The left hand side of (3.44) does not depend on λ's. So, setting λ j = λ j and sending to 0 one concludes that in the function

F (λ 1 , • • • , λ n ) = P (λ 1 , • • • , λ n ) R(λ 1 , • • • , λ n )
among the terms with D , only those with D = d i,j may contribute. The terms with D > d i,j vanish in the limit. The singular terms with D < d i,j must vanish, this gives rise to null-operators whose expectation values vanish regardless of the choice of the Matsubara data. Experiments show that F (λ 1 , • • • , λ n ) is invariant under simultaneous shift of arguments. So we need the expansion

F (λ 1 , • • • , λ n ) = m 2 ,•••mn P m j ≤ P d i,j n j=2 (λ j -λ 1 ) mj F m2,•••mn .
Practical computations are easier in this form: we do not need to know the denominator R. The computation of the Taylor series are performed taking suciently small λ's and determining the Taylor coecients F step by step. The coecients of the Taylor series grow rapidly with the length of the interval n, hence the inconvenience of the present procedure: for n = 5 we are forced to take λ's of the order of 10 -30 . This makes computations rather slow.

Having the coecients F , we arrive after a simple computation at the nal formula (3.43).

Examples

The simplest sl 2 -invariant operator of length n is 3 a=1 S a 1 S a n . It is dened by :

3 a=1 S a 1 S a n = 1 2 h ⊗ I n-2 ⊗ h + e ⊗ I n-2 ⊗ f + f ⊗ I n-2 ⊗ e ,
where we have the usual sl 2 spin 1 operators :

h =   2 0 0 0 0 0 0 0 -2   , e =   0 2 0 0 0 1 0 0 0   , f =   0 0 0 1 0 0 0 2 0   .
For n = 2, 3 we compute

3 a=1 S a 1 S a 2 = - 34 3 -4b * 1 c * 1 - 8 3 j + 1 j - 1 ,
(3.49)

3 a=1 S a 1 S a 3 = -478 + 384 5 b * 1 c * 1 + 176 3 (b * 2 c * 2 -b * 3 c * 1 ) - 13216 15 j + 1 j - 1 + 1024 15 (j + 2 j - 4 -j + 5 j - 1 -j + 3 j - 3 -j + 3 j 0 2 j - 1 ) + 224(j + 3 j - 1 -j + 2 j - 2 ) + 240b * 1 b * 2 j - 1 + 832 15 (b * 1 b * 3 j - 2 -b * 2 b * 3 j - 1 -b * 1 b * 2 j - 3 ) .
The rst results are derived from the inhomogeneous formula (n = 2, 3) which are presented in the Appendix 3.7. In the case of the innite volume and zero temperature the function ω(λ, µ) simplies a lot, this is explained in more details in Appendix 3.8. First, in this case it depends only on the dierence of the arguments: ω(λ, µ) = ω(λ -µ). Second, we have the functional equation

ω(λ + 1) + ω(λ) = π 2 sin(πλ) -ϕ(λ) , (3.50) 
where ϕ is dened in (3.47). The equation (3.50) is easy to solve, but actually the explicit solution is never needed in our computations: the nal results are expressed only through the shifted sum of two ω's in the left hand side of (3.50). This explains why the nal results are given by sums of even powers of π with rational coecients. For two and three sites we have

3 a=1 S a 1 S a 2 = 8π 2 9 - 34 3 = -2.560351643 , 3 a=1 S a 1 S a 3 = -478 + 13216π 2 45 - 224π 4 5 + 4096π 6 2025 = 1.283223553 ,
in full agreement with [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF]. We found expressions similar to (3.49) for n = 4, 5 which are unfortunately too long to be presented here. But the results for the innite volume and zero temperature are of reasonable size: From the expressions above one conjectures that

3 a=1 S a 1 S a
n is a polynomial in π 2 of degree n(n -1)/2 with rational coecients.

Having developed the fermion-current basis it is easy to compute the correlators [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] for nite temperature (like in [START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF]), or for the generalized Gibbs ensemble.

3 a=1 S a 1 S a n (n = 2,
Another interesting application consists in the computation of the density matrix D(n) for the interval of length n in the innite antiferromagnetic chain and of the entanglement entropy. Our methods of computation are far from perfection, so, we are doing much worse than in the paper [START_REF] Miwa | New exact results on density matrix for XXX spin chain[END_REF], namely, only up to n = 4. This is not enough to compare the entanglement entropy s(n) = -Tr(D(n) log D(n)) with the CFT prediction [START_REF] Holzhey | Geometric and renormalized entropy in conformal eld theory[END_REF] 

s(n) c 3 log n + a = 1 2 log n + a ,
where a is a non-universal constant. We remind that the scaling limit of the model is described by a CFT with c = 3/2. Still some resemblance with the scaling behavior is already observed in the table which present the results of our computations. 

n s(n) s(n) -

Conclusion

We have shown that the fermion-current basis works for small subchains of an innite spin 1 integrable chain. In particular, the completeness holds at least up to intervals of length 5. We produced exact results for lengths n = 4, 5 which were not available previously. However, we are far from the length 11 achieved in [START_REF] Ph | OPE for XXX[END_REF]. There are two reasons for that. First, there is an objective reason: the model is far more complicated and the fermion-current basis contains much more elements than the fermionic basis for the spin 1/2 case. Second, there is a subjective reason: our method of computation is not perfect, we did not nd how to work with the homogeneous case directly, so, we are forced to mix it with the inhomogeneous one, in a rather involved way which requires a lot of computer memory.

Appendix 2 :

The function ω at zero temperature

In the spin 1 case, it is not so evident to understand the right expressions of the function ω at zero temperature. Indeed, if in order to get the expression (3.14) we should appropriately deform the denition holding for general Matsubara space (3.10), in the spin 1 case we do not have such general result. In the paper [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF] the following expression has been proposed for the function ω that corresponds to spin 1 Matsubara spaces :

ω 0 (λ) = 1 2 - 1 8 (λ 2 + 4) ψ - iλ 4 + ψ iλ 4 -ψ 1 2 - iλ 4 -ψ 1 2 + iλ 4 - πλ 2 sinh( πλ 2 )
, (3.51) where ψ is the logarithmic derivative of the Γ function :

ψ(λ) = d dλ log Γ(λ) . (3.52)
It is interesting to notice that the expression for ω 0 splits in two parts : one transcendental part that involves the functions ψ, and a much simpler part given mainly by the combination πλ 2 sinh( πλ 2 ) . Moreover, the following function is dened in [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF] :

Ω 0 (λ) = 2i ω 0 (λ) + 1 2 λ 2 + 4 . (3.53)
To match with our notations, we compare the value of the simplest density matrix on two sites. Therefore, in order to recover the results for the density matrix on 2 sites from [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF] we should take for the denition of ω at zero temperature :

ω λ 2i = 2iΩ 0 (λ) + 2 4 + λ 2 . (3.54)
It is then possible to show that the function ω dened in this way indeed satises the functional relation (3.50), and obtain remarkable simplications in the calculations of the determinants : the transcendental part is absent from the calculations. Moreover the normalization factor also changes in the zero temperature case. In order to recover the results of [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF] we take :

T(λ) T (λ + 1 2 )T (λ -1 2 )
-→ 1 2 .

(3.55)

3.9 Appendix 3 : Density matrices at zero temperature

In this section we present the density matrices at zero temperature that led to the results summarized in the table of section 3.5.2. In order to obtain the density matrix we need to expand all invariant operators (O a ) a on the fermionic basis, in the same way as we did for the sole spin operator. Hence we shall rst describe how we calculated the invariant operators and then provide the results of the computation of the density matrix, up to n = 4, since this is the largest length for which we were able to do the explicit calculations.

Invariant operators. The starting point is the decomposition of the tensor product of representations of sl 2 (we present the calculations for n = 4 since it is the most complex case) :

V (2) ⊗4 = V (8) ⊕ 3V (6) ⊕ 6V (4) ⊕ 6V (2) ⊕ 3V (0) . (3.56)
This decomposition illustrates the fact that the segment of the Space chain [START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF][START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] = V (2) ⊗4 has two bases. The rst one is the "physical", or multiplicative basis e i1 e i2 e i3 e i4 with 1 ≤ i k ≤ 3 and the second "additive" basis, is generated by the highest weight vectors of sl 2 . The invariant operators (they form a vector space that we will denote End sl2 V (2) ⊗4 ) can be trivially written in this second basis, indeed a general invariant operators takes the form : 

O =         x 1 I
elements. The number m µ is the multiplicity of the representation space V (µ) in the decomposition of V (2) ⊗4 . So it is very easy to write down a complete set of independent invariant operators in the additive basis : for the invariant operator O k we can simply take x i = δ ik , i = 1, ..., 91 in (3.57). They are linearly independent by construction.

What is left is to nd an eective numerical procedure that will calculate the passage matrix between the "additive" to the "multiplicative" bases.

The main trick is to represent the sl 2 generators e, f, h as dierential operators acting on a basis of V (2) constructed out of homogeneous polynomials in two variables. In the simplest case n = 2 we take :

B XY = (X 2 , 2XY, Y 2 ) . (3.59) e = X∂ Y , f = Y ∂ X , h = X∂ X -Y ∂ Y .
(3.60) For the basis B of V (2) ⊗4 we take :

B = B XY ⊗ B ZT ⊗ B U W ⊗ B RS .
(3.61) Numerically it is easy to decompose any polynomial depending on the variables X, Y, Z, T, U, W, R, S on this basis. Then we have :

e = X∂ Y + Z∂ T + U ∂ W + R∂ S , (3.62) f = Y ∂ X + T ∂ Z + W ∂ U + S∂ R ,
(3.63) and an analogous formula for the action of h on the polynomials. With this polynomial set-up we can do eective calculations on the computer. In particular, we would like to identify the irreducible submodules of the space V (2) ⊗4 . An irreducible sub-modules V (λ) (with dimension dim V (λ) = λ+1 and of multiplicity m λ in V (2) ⊗4 ) is characterized by a highest weight vector v λ that satisfy

h • v λ = λv λ , e • v λ = 0 .
(3.64) Then we have :

V (λ) = Vect{v λ , f v λ , f 2 v λ , ..., f λ v λ } (3.65)
Suppose that we want to nd such a basis of V (λ) in V (2) ⊗4 . Among all vectors of the basis B, we look for independent highest weight (with weight λ) vectors v k λ with k = 1, ..., m λ . These are represented by polynomials in our set-up. We can then easily act with the element f on them, using its expression as a dierential operator (3.63). This gives other polynomials that we can re-express on our initial basis B. Finally, we arrive at vectors of B generating m λ copies of the submodule V (λ). We do this for all submodules of our decomposition and we obtain the wanted passage matrix. Before conjugating the expressions of the form (3.57) by the passage matrix we rst compute the "dual" invariant operators O a that satisfy (3.17). They have the same form as (3.57), up to some multiplicative normalization factors. Finally, the last step is to conjugate the dual expression of the invariant operators in the highest weight basis by this passage matrix and check that one indeed obtains independent operators. The outcome of this procedure, is the set of 91 matrices acting on V (2) ⊗4 and representing all the invariant operators. It can be easily generalized to calculate the invariant operators for lengths n ≥ 5. Below, we present the explicit expressions for the density matrices at zero temperature for n = 2, 3, 4.

Density matrix for n = 2

The invariant operators can be taken as the usual identity, permutation and projectors : (O i ) i=1,2,3 = (I 9 , P σ , P r ) (the case n = 2 is somehow special and does not t in the description above, we take these "physical" invariant operators (I 9 , P σ , P r ) to be like those of [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF]). The density matrix is written in the dual basis :

( O i ) i=1,2,3 : D(2) = 3 i=1 p a O a .
(3.66)

p 1 = 1 54 51 -4π 2 , p 2 = 1 54 20π 2 -201 , p 3 = 1 81 51 -4π 2 .
(3.67)

Density matrix for n = 3

In this case the decomposition reads :

V (2) ⊗3 = V (6) ⊕ 2V (4) ⊕ 3V (2) ⊕ V (0) , (3.68) 
This gives 15 invariant operators in total. These invariant operators and their dual basis are constructed as above. The density matrix is then given by :

D(3) = 15 a=1 p a O a , (3.69) 
where the O a are the dual operators of the n = 3 analogues of (3.57). The coecients are given by : 

  p 1 ... p 15   =                               - 6349 
                              . ( 3 
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One point functions in the Super sine-Gordon model

In this chapter, we describe the integrable structure of the space of local operators for the Supersymmetric sine-Gordon model. This is based on the papers [START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF][START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF]. Namely, we conjecture that this space is created by acting on the primary elds by fermions and a Kac-Moody current. We proceed with the computation of the one point functions. In the UV limit they are shown to be consistent with the alternative results obtained by solving the reection relations.

Before moving towards the eld theoretic fermion-current basis, let us recap what we learned so far on the calculations of the one point functions in integrable QFTs, and demonstrate why it is natural to apply the latter methods to the Super sine-Gordon model.

The importance of the one point functions for the computation of correlation functions in the framework of the Perturbed Conformal Field Theory has been recalled in the chapter 1, and is mainly based on the breakthrough of the paper [START_REF] Zamolodchikov | Two point correlation function in sclaing Lee-Yang model[END_REF]. As we explained previously, for the sine-Gordon model at nite temperature the one point functions were computed in [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] using the fermionic basis of the space of local operators. This basis was found rst on the lattice for the (inhomogeneous) six-vertex model [START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF]. Since the expectation values in the fermionic basis are rather simple the scaling limit is not very dicult to consider. One of the main achievements is the exact relation between the local operators in the fermionic basis and their counterparts in the UV Conformal Field Theory. This was illustrated by the formulae (2.235),(2.236),(2.237),(2.238) in the section 2.7.

An alternative approach to the one point functions uses the reection relations which are based on two reections (Heisenberg and Virasoro). We recalled some details in the section 1.7 and a more modern approach to this problem was presented in [START_REF] Negro | Reection relations and fermionic basis[END_REF]. The reection relation "methodology" of getting one point functions includes certain subtleties with the analytical continuation with respect to the coupling constant. However, if the nal goal is restricted to nding a basis in the CFT, invariant under the two reections, one should not worry because the problem can be considered as a purely algebraic one. The reection relations are equivalent to a certain Riemann-Hilbert problem, and for a long time it was unclear how to solve it. The synthesis of the two methods, the fermionic basis on the one hand and the reection relations on the other, was made in [START_REF] Negro | Reection relations and fermionic basis[END_REF]. In this paper it was shown that the known examples of the fermionic basis (up to level 8) solve the reection relations. Moreover, making a qualitative assumption of the existence of the fermionic basis one can use the reection relations in order to compute the fermionic basis quantitatively.

It is consequently interesting to apply a similar procedure to other integrable models. For the models related to higher ranks the problem does not look very realistic for the moment (advances in the rank 2 "fermionic basis" were done in [START_REF] Boos | On the calculation of the correlation functions of the sl 3 model by means of the reduced qKZ equation[END_REF]). However, the sl 2 (or rather U q ( sl 2 )) symmetric case allows a highly nontrivial extension to the Fateev model, symmetric under the exceptional algebra U q ( D(2|1; α)) [START_REF] Fateev | The sigma model (dual) representation for a two-parameter family of integrable quantum eld theories[END_REF]. This model deserves the most profound study. It allows numerous particular cases and restrictions. The simplest of them is the sine-Gordon model and the next in complexity is the Supersymmetric sine-Gordon model. The latter is therefore the subject of the present chapter.

Similarly to the sG case we should begin the study of the ssG model by considering its lattice regularization which is the inhomogeneous 19-vertex model introduced by Fateev and Zamolodchikov [START_REF] Zamolodchikov | A model factorized S-matrix and an integrable spin-1 Heisenberg chain[END_REF] in other words the model based on the spin-1 evaluation representations of U q ( sl 2 ) (see the chapter 3 for the isotropic version). By the method close to that of the fermionic basis this model was considered in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] (this paper relies on the previous research [START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF]). Namely, as we showed in the chapter 3, the space of (quasi)-local operators allows a basis created by fermions and a Kac-Moody (KM) current on level one. It is easy to guess that for the integrable lattice models related to higher representations of spin s of U q ( sl 2 ) the space of (quasi)-local operators is generated by currents with all half-integer spins up to s. In the scaling limit these models produce the parafermionic sine-Gordon models. If we learn how to treat them in their totality it will bring us very close to the general case of the Fateev model.

As has been said, in the present chapter we consider the ssG model starting with the 19 vertex lattice model. The rst indispensable step towards the one point functions, consists in nding the corresponding description of the local elds in the conformal case like in the paper [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF]. The generalization is already not quite trivial. For example, in the computations of the ground state eigenvalues of the local integrals of motion the paper [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] follows the procedure proposed in [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF], namely it uses the Destri-DeVega equations on a half-innite interval. This allows to develop an analytical procedure for the computation of the eigenvalues in question. Then the procedure is generalized in order to compute the expectation values on a cylinder of the CFT operators in the fermionic basis. Unfortunately, a similar procedure for the Super CFT case is unknown to us, and we are forced to proceed with numerical computations based on equations which for the 19-vertex model were proposed by J. Suzuki [START_REF] Suzuki | Spinons in magnetic chains of arbitrary spins at nite temperatures[END_REF]. It should be said that Suzuki equations have been used already for the ssG model and its conformal limit in [START_REF] Hegedus | Exact nite size spectrum in super sine-Gordon model[END_REF]. In the present chapter we shall apply the Suzuki equations to the ssG model : in the high temperature limit we will compute numerically the eigenvalues of the rst three local integrals of motion. We will get the exact general formulae by interpolation and check them against results alternatively obtained by the ODE-CFT correspondence [START_REF] Dorey | Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations[END_REF][START_REF] Bazhanov | Spectral determinants for Schroedinger equation and Q-operators of Conformal Field Theory[END_REF] following Lukyanov [START_REF] Lukyanov | Notes on parafermionic QFT's with boundary interaction[END_REF] as will be explained.

The Suzuki equations pave the way to the scaling limit for the (quasi)-local operators created by fermions and a KM current at the QFT level. These operators provide the basis of local elds for the ssG model. Our consideration relies heavily on the numerical study of scaling equations for a certain function Ω(θ, θ ). The equation for this function is not rigorously derived, so, it is considered as a conjecture and should be checked against alternative data. Using the function Ω(θ, θ ) it is straightforward to compute the one point functions on the cylinder of radius R (at nite temperature) for the purely fermionic part of the basis. We restrict our attention to these (fermionic) operators leaving the KM contributions for future study. We consider the UV limit R → 0 in order to nd agreement with the corresponding CFT.

The UV limit is studied using the numerical data and interpolating with respect to the coupling constant, the quasi-momentum and the parameter of the primary eld. There is a dierence with the sG case for which this kind of data allowed to obtain exact relation to the Virasoro descendants up to the level 6. Then, an important check of the entire procedure consisted in verifying that the results satisfy the reection relations. In the ssG case only level 2 is available by this mean. This case agrees with the reection relations but we would like to proceed a little further. We reverse the procedure following [START_REF] Negro | Reection relations and fermionic basis[END_REF], namely, assuming that there are local operators created by fermions which transform simply under the reection, and compute the elements of the fermionic basis up to the level 6. Needless to say that the reection relations are considered as a conjecture which is hard to justify rigorously.

Finally, it is possible to compare with the results obtained by the interpolation of numerical data nding a perfect agreement. This is the main result of the present chapter: two kind of formulae whose derivations are based on completely dierent conjectures agree. This chapter is organized as follows :

1. We rst provide in section 4.1 a brief description of Super Conformal Field Theory, focusing on such theories on the cylinder and on the calculation of correlation functions. We also discuss the Super Liouville CFT.

2. Then we give the denition of the Super sine-Gordon QFT and a short account on its basic properties. This is done in section 4.2.

3. In section 4.3 we describe the fermion-current basis for the 19 vertex model, and present important denitions on the lattice level.

4. The Suzuki equations are derived in section 4.4 and checked against former results coming from the ODE-CFT correspondence.

5. The function Ω on the lattice is dened in section 4.5.

6. We proceed to the derivation of the scaling equations for this function and to the numerical investigation of these equations in section 4.6. The results obtained out of this numerical study are one of the main outcomes of this chapter.

7. Finally in 4.7, we check the above results by comparing them with those obtained from reection relations.

Super Conformal Field Theory

In this section we shall give a very brief recall on the N = 1 Supersymmetric Conformal Field Theory (SCFT). This is a natural extension of usual Conformal Field Theory that is particular in the fact that it is endowed with SUSY. Examples of Super Conformal Field Theories have been studied in [START_REF] Friedan | Superconformal invariance in two dimensions and the tricritical Ising model[END_REF][START_REF] Bershadsky | Superconformal symmetry in two dimensions[END_REF][START_REF] Eichenherr | Minimal operator algebras in superconformal quantum eld theory[END_REF][START_REF] Zamolodchikov | Innite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory[END_REF]. This section is constructed in the same spirit as the section 1.2 : we shall rst recollect some general denitions and then focus on the calculation of correlation functions on the cylinder, mostly thanks to the Supersymmetric Ward-Takahashi identities. Finally, we will discuss the N = 1 Super Liouville CFT and its three-point functions.

4.1.1 The Super Virasoro algebra.

Let us start with Super Conformal Field Theory on the plane. The novel feature is that SCFT possesses, besides the stress energy tensor T , a fermionic primary eld with conformal dimension 3 2 , the super current S which is the generator of the supersymmetry. It means that the following OPE between T and S holds :

T (z)S(w) = 3 2 S(w) (z -w) 2 + S (w) z -w + O (1) . (4.1) 
We will work in the Neveu-Schwarz sector, since this sector is closed under the OPE procedure. In particular it implies that the super current S is single valued and has the expansion :

S(z) = r∈Z+ 1 2 S r z -r-3 2 .
(

The most general OPE between S and itself is [START_REF] Zamolodchikov | Innite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory[END_REF] :

S(z)S(w) = 2 3 c (z -w) 3 + 2T (w) z -w + O(1) . (4.3) 
The expansions (4.1) and (4.3) induce that the Virasoro algebra (1.26) has to be extended to the Super Virasoro algebra :

[L m , L n ] = (m -n)L m+n + c 12 m(m 2 -1)δ m,-n , (4.4) 
{S r , S s } = 2S r+s + c 3 (r 2 - 1 4 )δ r,-s , (4.5) 
[L m , S r ] = m 2 -n S m+n . (4.6) 
The last equation illustrates the fact that S is a primary eld. We also introduce the reduced central charge that will be of some utility later :

c = 2 3 c . (4.7) 
Of course, the antichiral part of the Virasoro algebra contains an antiholomorphic super current S, analogous to T , with conformal dimensions (∆, ∆) = (0, 3 2 ), it will be of some utility in Appendix 4.9 in order to realize the SUSY algebra in terms of elds.

Exactly as we dened the action of the modes of T on a generic eld V (1.17), we can dene the action of S. This is given by the formula :

(S r V )(w) = cw du 2πi (u -w) r+ 3 2 -1 S(u)V (w) , (4.8) 
where c w is a small circular contour around the point w.

Let us now discuss the primary elds in SCFT. To a Virasoro primary eld V a 1 one can associate the fermionic eld W a dened by :

W a = S -1 2 V a .
(4.9) The eld W a is also a Virasoro primary : indeed it is easy to check that is satises the property (1.18), and its conformal dimension is easily obtained to be ∆ a + 1 2 . Therefore, we obtain the typical OPE between V a , W a and T (1.20) :

T (z)V a (w) = ∆ a (z -w) 2 V a (w) + 1 z -w V a (w) + O(1) , (4.10) 
T (z)W a (w) = ∆ a + 1 2 (z -w) 2 W a (w) + 1 z -w W a (w) + O(1) . (4.11) 
Finally, we give the last important OPE between the super current and the primary elds :

S(z)V a (w) = 1 z -w W a (w) + O(1) , (4.12) 
S(z)W a (w) = 2∆ a (z -w) 2 V a + 1 z -w V a (w) + O(1) . (4.13) 
Characters in Super Conformal Field Theory. In our further application of the reection relations, it will be important to know how to count the number of states in Super Conformal Field Theory, at each level. This information is exactly given by the characters of theory, and is obtained by the multiplication of the bosonic and fermionic contributions. The Hilbert space of a SCFT has the same decomposition in terms of Verma module as in (1.49). Recall that the usual "bosonic" character (1.50) of a Verma module V ∆ (which is irreducible for generic ∆ and central charge) is :

χ ∆ (t) = Tr V∆ t L0-c 24 = ∞ n=0 dim(n + ∆)t n+∆-c 24 = t ∆-c 24 ϕ(t) , (4.14) 
where

ϕ(t) = ∞ n=1 (1 -t n ) 2 .
The character of the free fermionic (c = 1 2 ) theory in the Neveu-Schwarz sector is given by :

χ NS (t) = Tr F t L0-c 24 = t -1 48 ∞ k=1 (1 + t k-1 2 ) . (4.17) 
Form these equations, the number of state P NS (k) in a SCFT at each level k is then given by the product of the two characters :

ch ∆,NS (t) = χ NS (t)χ V∆ (t) = t ∆-c 24 -1 48 ∞ k=0 t k P N S (k) = t ∆-c 24 - 1 48 (4.18) 
× 1 + √ t + t + 2t 3/2 + 3t 2 + 4t 5/2 + 5t 3 + 7t 7/2 + 10t 4 + 13t 9/2 + 16t 5 + 21t 11/2 + 28t 6 + ... . (4.19) 
In particular, we obtain 3, 10, 28 states at levels 2, 4, 6 respectively. This will be used in section 4.7.

SCFT on the cylinder

We now progress to the main arena of interest for our work : the cylinder. We will take the same conventions as in section 1.2.2 : two contours C and c and a eld O located at the origin. This is recalled on the picture 4.1 :

1 Here we anticipate the fact the UV CFT of the ssG model is the complex Super Liouville theory, and we therefore use from the start the notations Va for the primary eld with conformal dimension ∆a (instead of V ∆ as in the chapter 1). 2 For a generic Verma module one has

dim(n + ∆) = p(n) , (4.15 
) where p(n) is the number of partitions of the integer n. Its generating function is exactly 1 ϕ : Recall that in this geometry we assume that two primary elds are located at the innities ±∞ of the cylinder, we take them of dimension ∆ ± .

∞ X n=0 p(n)t n = 1 ϕ(t) .
To verify the results on the one point functions of the fermion-current basis obtained by a numerical study of the scaling equations, we will have to compute the one point functions of descendant operators, created from the action of the stress energy tensor and of the super current, and from the mixed action of both.

As previously explained, we map the plane to the cylinder by the transformation3 :

z = e -x . (4.20) 
On the cylinder the super current can be split as :

S(x) = S + (x) + S -(x) , (4.21) 
where

S + (x) = ∞ n=0 S n+ 1 2 e (n+ 1 2 )x , S -(x) = ∞ n=0 S -n-1 2 e -(n+ 1 2 )x . (4.22) 
The action on any highest weight vectors |∆ by these elds is given by :

S + (x) |∆ = 0 , ∆| S -(x) = 0 . (4.23) 
The presence of the primary elds |∆ ± at the innities and the equation (4.23) implies (see also (1.55)) :

lim Re(x)→±∞ T (x) = ∆ ± - ĉ 16 , lim Re(x)→±∞ S(x) = 0 . (4.24) 
These boundary conditions on T and S will be of rst importance when we will compute the one point functions of descendant elds thanks to the Ward-Takahashi identities.

In the same way as we dened the local action of the stress energy tensor (1.56) :

(l n V )(y) = cy dx 2πi (x -y) n+1 T (T (x)V (y)) , (4.25) 
we can act locally with S on a eld V :

(s r V )(y) = cy dx 2πi (x -y) r+ 1 2 T (S(x)V (y)) . (4.26) 
where c y is a small circle around the point y on the cylinder. Here we remark an important convention about the ordering of fermionic elds, that has to be taken as :

T (ψ(x)θ(y)) = -ψ(x)θ(y), if x < y , θ(y)ψ(x), if y < x , (4.27) 
where ψ, θ are two fermionic elds and x, y denote the coordinate along the non-compact direction of the cylinder.

As we mentioned above, our leading goal is to to compute the one point functions of the descendant elds on the cylinder. We will use the same notation (recall (1.67)) :

l -n1 ...l -np s -r1 ...s -rq V a = ∆ -|l -n1 ...l -np s -r1 ...s -rq V a |∆ + ∆ -|V a |∆ + .
(4.28)

The multiple action of l k and s j is obtained by a recursive application of the formulae (4.25) and (4.26). We now present two methods for the calculation of (4.28). The rst one relies on the commutations relations between the modes of the elds T, S, V a . The second one is more ecient and uses the Ward-Takahashi identities, this is a generalization of the chiral case presented in section 1.2.2.

Commutation relations on the cylinder. As usual we obtain the commutation relations on the cylinder from the Super Virasoro commutation relations (4.4),(4.5), (4.6). For this purpose we dene the function :

ξ(z) = 1 2 1 sh z 2 , (4.29) 
chosen to be compatible with our geometry and with the NS (anti)-periodicity conditions. Then we have the same type of equations as in 1.2.2. For example the commutation relations between the super current and the primary eld V a are :

[S + (x), V a (y)] = -ξ(x -y)W a (y) , x < y , (4.30) [V a (y), S -(x)] = -ξ(x -y)W a (y) , y < x . (4.31)
The anti-commutation relation between S and itself is obtained from (4.5) :

{S + (x), S(y)} = -2T (y)ξ(x -y) - c 3 ξ (x -y) , x < y , (4.32) 
{S(y), S -(x)} = 2T (y)ξ(x -y) + c 3 ξ (x -y) , y < x . (4.33) 
Finally, the commutation relations between the S and W a read :

{S + (x), W a (y)} = V a (y)ξ(x -y) -2∆ a V a (y)ξ (x -y) , x < y , (4.34) 
{W a (y), S -(x)} = -V a (y)ξ(x -y) + 2∆V a (y)ξ (x -y) , y < x .

(

Then one can start to compute the action of the modes, using the customary splitting prescription for the contours. Let us begin with the simplest case (s -1 2 V a )(y). Since V a is a bosonic eld :

(s -1 2 V a )(y) = cy dx 2πi T (S(x)V a (y)) = c - y dx 2πi S(x)V a (y) + c + y dx 2πi V a (y)S(x) . (4.36) 
Then, for each term we have :

c - y dx 2πi S(x)V a (y) = c - y dx 2πi ([S + (x), V a (y)] + V a (y)S + (x) + S -(x)V a (y)) , (4.37) 
c + y dx 2πi V a (y)S(x) = c + y dx 2πi ([V a (y), S -(y)] + V a (y)S + (x) + S -(x)V a (y)) . (4.38) 
It is possible to recollect the terms that are not inside commutators, their integrals vanish by application of the Residue theorem. The commutators can be brought together similarly. We are left with :

(s -1 2 V a )(y) = cy dx 2πi (-ξ(x -y)) W a (y) = -W a (y) . (4.39) 
The sign in this identity might look paradoxical in view of (4.9), but the result will be conrmed when we will calculate the one point functions of elds like s -r s -1 2 V a . In addition, from the denition of s r it is clear that the one point function on the cylinder of W a is vanishing :

s -1 2 V a = 0 , W a = 0 . (4.40) 
The computations above can be recast in a more general case. Consider s -r V a with generic r ∈ Z+ 1 2 . We obtain from a similar computation :

(s -r V a )(y) = cy dx 2πi 1 (x -y) r-1 2 (-ξ(x -y)) W a (y) + cy dx 2πi 1 (x -y) r-1 2 (V a (y)S + (x) + S -(x)V a (y)) .
(4.41)

A particular case that will be useful later is r = 3 2 , we get :

(s -3 2 V a )(y) = V a (y)S + (y) + S -(y)V a (y) . (4.42) 
Let us now proceed to a more interesting example :

s -3 2 s -1 2 V a = -s -3 2 W a . (4.43) 
We will employ the following fermionic commutation relations :

S(x)W a (y) = {S + (x), W a (y)} -W a (y)S + (x) + S -(x)W a (y) , (4.44) 
W a (y)S(x) = {W a (y), S -(x)} + W a (y)S + (x) -S -(x)W a (y) . (4.45) 
Then, by denition one has :

s -3 2 s -1 2 V a = -s -3 2 W a = - cy dx 2πi(x -y) T (S(x)W a (y)) = -- c - y dx 2πi(x -y) S(x)W a (y) + c + y dx 2πi(x -y) W a (y)S(x) . (4.46) 
Now we apply the formulae (4.44) and (4.45), as well as (4.34),(4.35) and obtain :

s -3 2 s -1 2 V a = -- c - y dx 2πi 1 x -y {S + (x), W a (y)} + S -(x)W a (y) -W a (y)S + (x) + c + y dx 2πi 1 x -y {W a (y), S -(x)} + W a (y)S + (x) -S -(x)W a (y) = -W a (y)S + (y) + S -(y)W a (y) + cy dx 2πi 1 x -y V a (y)ξ(x -y) -2∆V a (y)ξ (x -y) . (4.47) 
Taking into account the simple residue calculation :

c0 dz 2πi 2∆ a z (-ξ (z)) = ∆ a 12 , (4.48) 
we arrive at the result :

s -3 2 s -1 2 V a = -W a (y)S + (y) + S -(y)W a (y) + ∆ a 12 V a , (4.49) 
which implies :

s -3 2 s -1 2 V a = ∆ a 12 , (4.50) 
and is the wished formula at level 2. Moreover, it is straightforward to generalize the above calculation to higher levels :

s -r s -1 2 V a = c0 dz 2πi 2∆ a z r-1 2 (-ξ (z)) . (4.51) 
This gives in particular :

s -7 2 s -1 2 V a = - 7∆ a 960 , s -11 2 s -1 2 V a = 31∆ a 96768 . (4.52) 
The advantage of this approach is that it allows in principle to compute explicitly the elds l -n1 ...l -np s -r1 ...s -rq V a and not only their one point functions. More examples of this type of calculations are presented in the appendix 4.8. However, we are mostly interested in the one point functions, and as we already mentioned in the rst chapter, this approach is not really ecient. We prefer to use instead the Ward-Takahashi identities.

Super Ward-Takahashi identities on the cylinder

In this section we present the Super Ward-Takahashi identities. First we need to rewrite the superconformal OPE (4.1),(4.3),(4.10),(4.11) on the cylinder. Recall the denitions of the functions χ (with R = 1) and ξ (1.60), (4.29).

With them in hand, we conclude that the superconformal algebra is generated by the operators T (z), S(z) with the OPE's

T (z)T (w) = - c 12 χ (z -w) -2χ (z -w)T (w) + χ(z -w)T (w) + O(1) , (4.53) 
T (z)S(w) = - 3 2 χ (z -w)S(w) + χ(z -w)S (w) + O(1) , S(z)S(w) = -2ξ(z -w)T (w)- c 3 ξ (z -w) + O(1) .
We will also need the OPE's:

T (z)V a (w) = -∆ a χ (z -w)V a (w) + χ(z -w)V a (w) + O(1) , (4.54) 
T (z)W a (w) = -(∆ a + 1 2 )χ (z -w)W a (w) + χ(z -w)W a (w) + O(1) , S(z)V a (w) = -ξ(z -w)W a (w) + O(1) , S(z)W a (w) = 2∆ a ξ (z -w)V a (w)-ξ(z -w)V a (w) + O(1) ,
Recall that we are interested in the calculation of (4.28) :

l -n1 ...l -np s -r1 ...s -rq V a (y) = ∆ -|l -n1 ...l -np s -r1 ...s -rq V a (y)|∆ + ∆ -|V a (y)|∆ + , (4.55) 
The main idea is to follow the route of [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF], where Ward-Takahashi identities have been used to obtain the values of the same kind of correlation functions but containing purely Virasoro generators. Using Ward-Takahashi identities to express the correlation functions T (z 1 )...T (z p )S(w 1 )...S(w q )V a (y) we can then obtain (4.28) by a successive application of (4.25),(4.26) :

l -n1 ...l -np s -r1 ...s -rq V a = cz 1 dz 1 ... cz p dz p cw 1 dw 1 ... cw q dw q
× T (z 1 )...T (z p )S(w 1 )...S(w q )V a (y) , (4.56) with the notation :

cz k dz k = cz k dz k 2πi(z k -y) n k -1 , cw j dw j = cw j dw j 2πi(w j -y) rj -1 2 , (4.57)
and the contours being small concentric circles around the point y : c z1 ⊂ ... ⊂ c wq . Using the OPEs (4.53), (4.54), we can deduce the following simple correlation functions between the elds (we present here only the specic identities that we shall need later) :

S(x)V a (y) =0 , S(x)W a (y) = (2∆ a ξ (x -y) -ξ(x -y)(∆ + -∆ -)) V a (y) , S(x 2 )S(x 1 )V a (y) = -ξ(x 1 -y) S(x 2 )W a (y) -2ξ(x 1 -x 2 ) T (x 2 )V a (y) + - c 3 ξ (x 1 -x 2 ) V a (y) .
And the more complicated :

T (x 3 )S(x 2 )S(x 1 )V a (y) = - 3 2 χ (x 3 -x 2 ) + (χ(x 3 -x 2 ) -χ(x 3 -y)) ∂ ∂x 2 S(x 2 )S(x 1 )V a (y) + - 3 2 χ (x 3 -x 1 ) + (χ(x 3 -x 1 ) -χ(x 3 -y)) ∂ ∂x 1 S(x 2 )S(x 1 )V a (y) + -∆ a χ (x 3 -y) + χ(x 3 -y)(∆ + -∆ -) + ∆ + + ∆ - 2 - c 24 S(x 2 )S(x 1 )V a (y) , T (x 4 )T (x 3 )S(x 2 )S(x 1 )V a (y) = - c 12 χ (x 4 -x 3 ) S(x 2 )S(x 1 )V a (y) + -2χ (x 4 -x 3 ) + (χ(x 4 -x 3 ) -χ(x 4 -y)) ∂ ∂x 3 T (x 3 )S(x 2 )S(x 1 )V a (y) + - 3 2 χ (x 4 -x 2 ) + (χ(x 4 -x 2 ) -χ(x 4 -y)) ∂ ∂x 2 T (x 3 )S(x 2 )S(x 1 )V a (y) + - 3 2 χ (x 4 -x 1 ) + (χ(x 4 -x 1 ) -χ(x 4 -y)) ∂ ∂x 1 T (x 3 )S(x 2 )S(x 1 )V a (y) + -∆ a χ (x 4 -y) + χ(x 4 -y)(∆ + -∆ -) + ∆ + + ∆ - 2 - c 24 
T (x 3 )S(x 2 )S(x 1 )V a (y) .
These formulae echo the general formula (1.78) obtained for the non-supersymmetric case. As will be explained in the next section 4.2, for applications to the Super sine-Gordon model we should consider the case of equal boundary conditions

∆ + = ∆ -= δ P , (4.58) 
where the precise denition of δ P will be given soon. The calculation of one point functions of descendants on the cylinder are then given by the application of (4.56). As examples we recover the previously obtained results at level 2

l -2 V a = δ P - c 24 - ∆ a 12 , s -3 2 s -1 2 V a = ∆ a 12 , (4.59) 
and new ones at level 4 :

l 2 -2 V a = δ P - c 24 2 - 1 6 δ P - c 24 - ∆ a 6 δ P - c 24 + ∆ 2 a 144 + 7 360 ∆ a , (4.60) 
s -7 2 s -1 2 V a = -∆ a 7 960 , s -5 2 s -3 2 V a = - 1 12 δ P - c 24 + ∆ a 17 960 + 7c 2880 , l -2 s -3 2 s -1 2 = ∆ a 12 δ P - c 24 - δ a 12 - 1 144 ∆ a , l -4 V a = ∆ a 240 .
We also will need the one point functions at level 6. Since the results are quite long, we prefer to display them in due time.

Super Liouville CFT

In this section we will describe the Super CFT that will be the most important for us : the N = 1 Super Liouville CFT (Super LCFT) (see [START_REF] Nakayama | Liouville Field Theory : a decade after the revolution[END_REF] for more references), the conventions are taken from [START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory I[END_REF] 4 . The Super Liouville CFT is given by the supersymmetric generalization of the Liouville Lagrangian (1.84) with coupling constant b and cosmological constant µ 5 : The central charge of this theory is :

A SL = 1 4π ∂ z ϕ∂ z ϕ + 1 2π ψ∂ z ψ + ψ∂ z ψ -µ ψψe b √ 2 ϕ d 2 z .
c = 3 2 1 + 2Q 2 , Q = b + b -1 .
(4.62)

The primary elds take again the form of vertex operators V a = e a √ 2 ϕ , with conformal dimensions :

∆ a = 1 2 a(Q -a) .
(4.63)

In addition, it is also possible to construct primary elds as normal ordered products of vertex operators and fermionic elds : W a = ψψe a √ 2 ϕ whose conformal dimension is naturally :

∆(W a ) = 1 2 a(Q -a) + 1 2 .
(4.64)

The elds V a and W a will be the main building blocks for us.

Notice that for primary elds, the three-point function on a sphere on the one hand, and the one point function on the cylinder (with our usual asymptotical conditions) on the other hand coincide in the CFT. In the paper [START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory I[END_REF] the important three points functions involving both elds V a and W a with two other bosonic primary operators have been calculated. In a rather formal way, we dene them as :

C(a 1 , a 2 , a 3 ) = V a1 V a2 V a3 , (4.65) C(a 1 , a 2 , a 3 ) = W a1 V a2 V a3 . (4.66)
Before presenting the results we should mention that they involve two generalizations Υ NS and Υ R of the function Υ (1.92) that are given by :

Υ NS (x) = Υ x 2 Υ x + Q 2 , Υ R (x) = Υ x + b 2 Υ x + b -1 2 .
(4.67)

From the symmetries of Υ it is possible to show that they also satisfy the fundamental property :

Υ NS (x) = Υ NS (Q -x) , Υ R (x) = Υ R (Q -x) .
(4.68)

The results from [START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory I[END_REF] are then given by :

C(a 1 , a 2 , a 3 ) = 1 2 πµγ( 1 2 bQ)b -1-b 2 Q-a b Υ NS (2a 1 ) (4.69) × Υ NS (0)Υ NS (2a 2 )Υ NS (2a 3 ) Υ NS (a -Q)Υ NS (a 1+2-3 )Υ NS (a 2+3-1 )Υ NS (a 3+1-2 )
,

where a = a 1 + a 2 + a 3 , a 1+2-3 = a 1 + a 2 -a 3 etc.

The function Υ R (x) was introduced in order to be able to write down the three-point function C(a 1 , a 2 , a 3 ) :

C(a 1 , a 2 , a 3 ) = 1 2 πµγ( 1 2 bQ)b -1-b 2 Q-a b Υ NS (2a 1 ) (4.70) × 2iΥ NS (0)Υ NS (2a 2 )Υ NS (2a 3 ) Υ R (a -Q)Υ R (a 1+2-3 )Υ R (a 2+3-1 )Υ R (a 3+1-2 ) .
In the formulae (4.69), (4.70) we separated the multiplier in the rst line from the rest because this is the only one which is not invariant under a 1 → Q -a 1 . This gives the possibility to compute the reection coecients, which happen to be the same for V a and W a :

V a = R(a)V Q-a , W a = R(a)W Q-a , (4.71) 
and are given by :

R(a) = πµγ(b 2 ) Q-2a b b -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) .
Applications to the integrability of the ssG model.

It is also possible to introduce other Super CFT, for example the unitary Super Minimal Models SM p [START_REF] Bershadsky | Superconformal symmetry in two dimensions[END_REF], which are (like non supersymmetric ones) also parametrized by an integer number p. In the NS sector, the central charge and the conformal dimensions for such models are : (4.73)

Among the nite number of primaries, the important eld is again V 1,3 with lowest (without taking into account the identity eld) conformal dimension :

∆ 1,3 = 1 2 1 - 4 p + 2 . (4.74)
Again it is possible starting from the Super Liouville CFT, to recover Super unitary Minimal Models by taking specic values of the central charge. Select for b the particular value :

b 2 = - p p + 2 , (4.75) 
then :

c = 3 2 + 3Q 2 = 3 2 1 - 8 p(p + 2)
.

(4.76)

We have formally reduced the Liouville SCFT parameters to those of a Super Minimal Model. The Super Liouville eld V -b has the conformal dimension :

∆ -b = - 1 2 (1 + 2b 2 ) = - 1 2 1 -2 p p + 2 = ∆ 1,3 . (4.77) 
Jumping slightly forward, and assuming that the conformal conservation laws can be deformed in the same way for Super Minimal Models as for usual Minimal models, this discussion can be taken as an heuristic argument in favor of the integrability of the Super sine-Gordon model 6 . This theory will be the topic of the next section.

Supersymmetric sine-Gordon model

In this section we give a very brief description of the N = 1 Supersymmetric sine-Gordon eld theory, more details can be found in [START_REF] Bajnok | SUSY sine-Gordon theory as a perturbed conformal eld theory and nite size eects[END_REF]. In the framework of Perturbed CFT, the ssG model can be at rst considered as a perturbation of of the c = 3/2 CFT (one boson+one Majorana fermion) by the relevant operator V = -µ ψψ cos βϕ √ 2

:

A ssG = 1 16π ∂ z ϕ∂ z ϕ + 1 2π ψ∂ z ψ + ψ∂ z ψ -2µ ψψ cos βϕ √ 2 d 2 z . (4.78) 
The dimensional coupling constant µ is of dimension [mass] 1-β 2 . The scaling dimension of this operator ∆ pert = 1 2 (1 + β 2 ) is greater than 1 2 , so the UV regularization is needed. The OPE

V (z, z)V (0) = 1 (z z) 1+β 2 + C • 1 (z z) 1-β 2 cos √ 2βϕ + • • • , (4.79) 
shows that the UV regularization is simple: the rst non-trivial contribution comes with integrable singularity. The model is shown to be integrable, and as mentioned in the introduction actually is the simplest example of perturbations of parafermionic models whose integrals of motion are obtained in [START_REF] Fateev | The sigma model (dual) representation for a two-parameter family of integrable quantum eld theories[END_REF]. The factorizable S-matrix is known, it coincides with the S-matrix for the spin-1 integrable magnetic [START_REF] Reshetikhin | S-matrices in integrable models of isotropic magnetic chains[END_REF], in the context of relativistic eld theory it was discussed in [START_REF] Ahn | Complete S-matrices of supersymmetric sine-Gordon theory and perturbed superconformal minimal model[END_REF]. The S-matrix is compatible with the N = 1 Supersymmetry. The formula for the action (4.78) may contradict the reader's intuition because the supersymmetric classical action contains the additional term V 1 = -πµ 2 β 2 cos √ 2βϕ which we have seen 6 More precisely, this is an argument in favor of the integrability of the Super sinh Gordon model. already in the OPE (4.79). In the frame work of the PCFT this term, as it is written, cannot be added to the action for dimensional reasons, at least it needs a new dimensional coupling constant. In the classical limit β → 0 the situation becomes more complicated. That is why, when proceeding in the opposite direction, i.e. quantizing the classical model by more traditional methods of QFT, one should indeed begin with the supersymmetric action which includes V 1 and take care of preserving the Supersymmetry. This was done in [START_REF] Liao | Light-cone quantization of the super-Liouville theory[END_REF], the result is exactly as expected from our dimensional considerations: the dimensional coupling constants for the two terms of the interaction are renormalized dierently, the term with V 1 containing vanishing power of the cuto.

The subject of the present thesis are the one point functions, this corresponds to the geometry of the cylinder (that we take of radius R) with a local insertion. Correspondingly we consider two types of contours: the contour c encircling the local insertion and a contour C which goes around the cylinder. We will write C ± to denote those which are to the right and to the left of the insertion respectively, and use the notation C talking about any of C ± . The cylinder is innite, in the terminology of the chapter 2 its generatrix is called the Space direction, its directrix is called the Matsubara direction. In the present context by the Matsubara transfer-matrix we understand an operator acting from the Matsubara Hilbert space to itself which is graphically represented as a slice of our cylinder of small Space length . Since the cylinder is innite, both transfer-matrices to the left and to the right of the insertion are replaced by the one-dimensional projectors on the same eigenvector with maximal eigenvalue. Since the potential is invariant under ϕ → ϕ + 2 From a dierent point of view, the ssG model can be formally considered as the perturbation of the conformal complex Super Liouville model

A SL = 1 4π ∂ z ϕ∂ z ϕ + 1 2π ψ∂ z ψ + ψ∂ z ψ -µ ψψe -i β √ 2 ϕ d 2 z , (4.81) 
by the relevant operator

W = µ ψψe i β √ 2 ϕ , whose scaling dimension is ∆ = β 2 .
Let us for a moment concentrate on this conformal theory. The central charge of the complex Super Liouville model is

c = 3 2 ĉ , ĉ = 1 -2 β -1 -β 2 .
(4.82) The comparison with the real Super Liouville CFT will be disclosed soon, see (4.157). We will consider only the NS sector. According to the usual argument the operator O with scaling dimensions (∆ O , ∆ O ) in generic position has a uniquely dened counterpart in the perturbed theory. We do not distinguish the two notationally, the UV limit is

lim r→0 r ∆ O +∆ O O(0) P,R = O(0) P , (4.83)
where r ∼ R is a dimensionless quantity proportional to R, see (4.116) for details. As usual, in the conformal case we can easily change the scale to have R = 1. By a change of variables from the cylinder to the sphere the CFT one point function O(0) P is mapped to the three point function for the image of the operator O (for descendants this image can have rather complicated expression in terms of O) and two primary elds with dimensions (compare with (1.88))

δ P = P 2 + ĉ -1 16 .
The superconformal algebra has been discussed in the previous section. Among its elements we will single out two kinds of primary elds parametrized by α ∈ C

V α = e iα(β -1 -β) 1 2 √ 2 ϕ , W α = ψψe iα(β -1 -β) 1 2 √ 2 ϕ .
(4.84)

The scaling dimension of V α is

∆ α = 1 8 (β -1 -β) 2 α(α -2) .
The scaling dimension of W α equals ∆ α + 1/2, their OPE with T and S are given in (4.54).

From the discussion in the last section, it is clear that the convenient way of nding the CFT one point functions consists in using the OPE and the asymptotical conditions In Section 4.1.2 we already saw how to apply the above conditions to the computations of one point functions of descendants. The Super Liouville model, in addition to the super conformal symmetry, possesses the structure of an integrable model, namely, it allows an innite number of local integrals of motion with chiral local densities h 2j (z), h2j (z). In our geometry there are two facets of the local integrals of motion: they act either on the Matsubara Hilbert space or on the local operators inserted at the point z = 0, and are respectively

I 2j-1 = C h 2j (z) dz 2πi , (i 2j-1 O)(0) = c h 2j (z)O(0) dz 2πi , (4.86) 
and similarly for the other chirality. Let us write explicitly the rst two densities (more on this can be found in the Appendix 4.9) :

h 2 (z) = T (z) , h 4 (z) = T (z) 2 - 1 4 S(z)S (z) . (4.87) 
The formula for h 2 (z) means simply that the light cone component of the energy-momentum tensor is the rst integral, the formula for h 4 (z) is the most important: it is well-known that higher local integrals of motion are completely dened by the requirement of commutativity with the density

h 4 (z).
Let us return to the perturbed model. It has been said that at least for irrational α the local operator V α and its Super Virasoro descendants (W α in particular) have uniquely dened counterparts in the perturbed theory, which we do not distinguish notationally. The local integrals of motion survive the perturbation, and give rise to an innite series of pairs of operators (h 2j (z, z), Θ 2j-2 (z, z)), ( h2j (z, z), Θ2j-2 (z, z)) satisfying the continuity equations 

∂ z h 2j (z, z) = ∂ z Θ 2j-2 (z, z) , ∂ z h2j (z, z) = ∂ z Θ2j-2 (z, z) .
I 2j-1 = C h 2j (z) dz 2πi + Θ 2j-2 (z) dz 2πi , (i 2j-1 O)(0) = c h 2j (z)O(0) dz 2πi + Θ 2j-2 (z)O(0) dz 2πi ,
The operators I 1 , Ī1 are the light-cone components of the energy-momentum tensor.

Together with c = C + -C -this implies that the one point function of the local operators obtained by the action of i 2j-1 , ī2j-1 vanish. So, like in [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] we work with the quotient space V quo α ⊗ V quo α obtained from the tensor product of two super conformal Verma modules by factoring out the descendants of the integrals of motion. The quotient space V quo α will be realized as the one obtained by the action on V α of modes s r of the super current and of the Virasoro generators l m .

The particle content of the ssG model consists of solitons and, for β 2 < 1/2, their bound states. There is an exact formula relating the mass of the soliton M to the dimensional coupling constant µ:

M = 4(1 -β 2 ) πβ 2 π 2 µγ 1 -β 2 2 1 1-β 2 , (4.89)
here and later we use again the conventional notation γ(x) = Γ(x) Γ(1-x) . After these preparations we are now ready to give the description of the integrable structure of the ssG model by the fermion-current basis. As usual we start with lattice considerations.

Expectation values in the 19 vertex model

In this section we present the fermion-current basis in the case of the anisotropic lattice model.

General structure

In the lattice case we historically use for the coupling constant

ν = 1 -β 2 2 .
The paper [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] considers an (inhomogeneous) 19 vertex Fateev-Zamolodchikov model on a cylinder (or equivalently in an arbitrary generalized Gibbs ensemble) for the (inhomogeneous) spin-1 integrable spin chain. In what follows we closely follow the notations of [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF][START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] with one exception: we switch from the multiplicative spectral parameter to the additive one. Let us present some basic formulae. As usual we combine the 19 vertices of the model into the L-operator

L(θ) =               a(θ) 0 0 0 0 0 0 0 0 0 b(θ) 0 c(θ) 0 0 0 0 0 0 0 f (θ) 0 d(θ) 0 h(θ) 0 0 0 c(θ) 0 b(θ) 0 0 0 0 0 0 0 d(θ) 0 e(θ) 0 d(θ) 0 0 0 0 0 0 0 b(θ) 0 c(θ) 0 0 0 h(θ) 0 d(θ) 0 f (θ) 0 0 0 0 0 0 0 c(θ) 0 b(θ) 0 0 0 0 0 0 0 0 0 a(θ)              
, where

a(θ) = sinh ν(θ + πi 2 ) sinh νθ , b(θ) = sinh νπ(θ -πi 2 ) sinh νθ , c(θ) = sinh νπi sinh νθ , d(θ) = sinh ν(θ -πi 2 ) sinh νπi , f (θ) = sinh ν(θ -πi 2 ) sinh ν(θ -πi) , e(θ) = cosh ν(θ + πi 2 ) cosh ν(θ -πi) -cosh νπi 2 , h(θ) = sinh νπi 2 sinh νπi .
We consider an ought to be innite Space chain of length N and a Matsubara chain of length L. Introduce the rectangular monodromy matrix

T S,M = N/2 j=-N/2+1 T j,M , T j,M = L m=1 L j,m ,
where both Space and Matsubara chains can be inhomogeneous,

L j,m = L j,m (ξ j -τ m ) , (4.90) 
ξ j , (τ m ) are Space (Matsubara) inhomogeneities. The indices j, m in the right hand side have double meaning: they count inhomogeneities and the copies in the tensor product. These notations are standard. Eventually we take the limit N → ∞, the Space inhomogeneities are supposed to follow some regular pattern in the limit.

Introduce the operators

H(j) = j k=-N/2+1 H j , H = H(N/2) ,
with H j being the Cartan generator of U q (sl 2 ) acting on j-th Space site. Consider the "primary eld" q αH(0) , and an operator O acting non trivially on a nite number of Space sites. The operators q αH(0) O are called quasi-local. The main object of our study is (2.177)

Z κ L q αH(0) O = lim N →∞
Tr S Tr M T S,M q κH+αH(0) O Tr S Tr M T S,M q κH+αH(0) , The main result of [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF] is that an eective way of computation goes through the introduction of eight families of creation operators acting on the space of quasi-local operators. These families are fermions b * (θ), c * (θ), b * (θ), c * (θ) 7 , level 1 Kac-Moody currents j + (θ), j -(θ), j 0 (θ), and an operator lying in the center of the entire algebra t * (θ). To be more precise the generating functions of the quasi-local operators are produced by normally ordered products of fermions and Kac-Moody currents (the central operator t * (θ) does not need normal ordering). This is explained in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF][START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF] and recalled in chapter 3 (3.27). Since the most signicant results of the present thesis concern the quasi-local operators created by fermions only, in which case the normal ordering is not needed, we shall not go into the details.

In the case of homogeneous Space (ξ j = 0, ∀j) the creation operators are understood as power series in θ. We shall be interested in the case when the Space inhomogeneities are staggering: ξ at even sites and -ξ at odd one. In that case every of above operators give rise to two "chiral" families dened as power series in θ -ξ, θ + ξ. All that is absolutely parallel to [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] so we do not go into much details.

As we have seen in the two previous chapters, the main advantage of our creation operators is that on the descendants which they create acting on the "primary eld", the functional Z κ L takes a simple form. We shall describe a formal prescription for the computation, detailed explanations being given in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF]. Introduce the creation operators b * (θ), c * (θ), t * (θ), n(θ) (the rst two are fermions, the last two are bosons) which (anti)-commute among themselves. Prescribe the following values of the functional Z κ L :

Z κ L {b * (θ + 1 ) • • • b * (θ + k )c * (θ - k ) • • • b * (θ - 1 )t * (θ 0 1 ) • • • t * (θ 0 m )n(σ 1 ) • • • n(σ n )q αH(0) } = n j=1 1 N (σ j ) m j=1 ρ(θ 0 j ) det ω(θ + i , θ - j ) i,j=1,•••k ,
We had one more operator: t * (θ), it is similar to t * (θ) with ρ(θ) being replaced by P(θ), this function will be given soon. The operator t * (θ) is in the center, so, we manipulate it as a C-number.

Basic functions

The functions ω(θ, θ ), ρ(θ), P(θ) are dened by the Matsubara data. The latter consists of the length L chain, with inhomogeneities τ j , right and left twists κ, κ + α, and the eigenvectors with maximal eigenvalues of the right and left transfer-matrices:

T M (θ, κ) = Tr j T j,M (θ)q κHj , T M (θ, κ + α) = Tr j T j,M (θ)q (κ+α)Hj .

(4.93)

The corresponding ground state eigenvalues will be denoted respectively by T 2 (θ, κ), T 2 (θ, κ + α).

Then we are ready to dene the rst of our functions:

P(θ) = T 2 (θ, κ + α) T 2 (θ, κ) . (4.94) 
We shall need the eigenvalues of the two Baxter Q-operators [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF] Q

± (θ, κ) = e ±νκθ m j=1 sinh ν(θ -σ j (κ)) , (4.95) 
and similarly for κ + α. The Bethe roots are denoted by σ j (κ). If κ is not too large the maximal eigenvalue corresponds to m = L/2. We shall also use the eigenvalues of the transfer-matrix with the two-dimensional auxiliary space T 1 (θ, κ), for which

T 1 (θ, κ)Q ± (θ, κ) = a(θ)Q ± (θ + πi, κ) + d(θ)Q ± (θ -πi, κ) , (4.96) 
T 2 (θ, κ) = T 1 (θ -πi/2, κ)T 1 (θ + πi/2, κ) -f (θ) , (4.97) 
f (θ) = a(θ -πi/2)d(θ + πi/2) , (4.98) 
where

a(θ) = s(θ -πi), d(θ) = s(θ + πi), s(θ) = L j=1 sinh ν(θ -τ j ) .
We have the relation between T 2 and Q ± :

T 2 (θ, κ) = a(θ + πi/2)a(θ -πi/2) Q ± (θ + 3πi/2, κ) Q ± (θ -πi/2, κ) + a(θ + πi/2)d(θ -πi/2) Q ± (θ -3πi/2, κ)Q ± (θ + 3πi/2, κ) Q ± (θ -πi/2, κ)Q ± (θ + πi/2, κ) + d(θ + πi/2)d(θ -πi/2) Q ± (θ -3πi/2, κ) Q ± (θ + πi/2, κ) .
Denote y the quantity that has to be interpreted as the free energy of the system :

y(θ) = T 2 (θ, κ) f (θ) .
(4.99)

We do not explicitly indicate the dependence of y(θ) on κ because it will be never used for another value of twist. Now we are ready to dene two more functions

ρ(θ) = T 1 (θ, κ + α) T 1 (θ, κ) , N (θ) = y(θ) 1 + y(θ) .
(4.100)

Suzuki equations for the free energy

In this section we will prepare the ground for the calculation of scaling equations for the free energy y. This is the rst step in order to derive similar equations for the one point functions of fermionic elements of the fermion-current basis, that is for the function Ω. In this section, we will denote the Baxter operator simply by8 

Q(θ) = e νκθ m j=1 sinh ν(θ -σ j (κ)) , (4.101) 
and T 1 and T 2 depend only on the twist κ. We shall be interested in the case of real τ j and κ which implies

a(θ) = d( θ) .
(4.102)

For large L and suciently small κ the Bethe roots are close to the two-strings: σ 2j-1 η jπi/2 , σ 2j η j + πi/2 for certain real η j .

Let us introduce the auxiliary function Y :

Y (θ) = 1 + y(θ) = 1 + T 2 (θ) f (θ) . (4.103) 
The function log(T 2 (θ)) grows for Re(θ) → ±∞ slowly (as ±2Lθ). This allows to derive from (4.97) the rst important relation:

log T 1 (θ) = (L * log(f Y ))(θ) , (4.104) 
where we introduced the kernel which will be often used:

L(θ) = 1 2π cosh θ ,
and * means the usual convolution product. We have

T 2 (θ) = λ 1 (θ) + λ 2 (θ) + λ 3 (θ) ,
where

λ 1 (θ) = a(θ + πi/2)a(θ -πi/2) Q(θ + 3πi/2) Q(θ -πi/2) , λ 2 (θ) = a(θ + πi/2)d(θ -πi/2) Q(θ -3πi/2)Q(θ + 3πi/2) Q(θ -πi/2)Q(θ + πi/2) , λ 3 (θ) = d(θ + πi/2)d(θ -πi/2) Q(θ -3πi/2) Q(θ + πi/2) .
The second auxiliary function is dened by On the other hand it is obvious from the denition that Now comes the main of Suzuki's tricks. Consider a function G(θ) which is regular in the strip 0 < Im(θ) < π, and which decrease suciently fast at ±∞. Then having in mind the structure of zeros of T 2 (θ) described above we have 

b(θ) = λ 1 (θ + πi/2) + λ 2 (θ + πi/2) λ 3 (θ + πi/2) , B(θ) = 1 + b(θ) .
T 2 (θ + πi/2) = B(θ)d(θ + πi)d(θ) Q(θ -πi) Q(θ + πi) .
∞ -∞ (G(θ -θ ) log T 2 (θ + πi/2) -G(θ -θ + πi) log T 2 (θ -πi/2)) dθ = 0 .
∞ -∞ (G(θ -θ ) + G(θ -θ + πi)) log Q(θ + πi) Q(θ -πi) dθ = ∞ -∞ (G(θ -θ ) log(d(θ )d(θ + πi)) -G(θ -θ + πi) log(a(θ )a(θ -πi))) dθ + ∞ -∞ G(θ -θ ) log(B(θ )) -G(θ -θ + πi) log(B(θ )) dθ .
The goal now is to rewrite the left hand side in terms of the auxiliary functions y(θ), b(θ). From (4.106) and (4.104) one derives

log b(θ) = log Q(θ + 2πi) Q(θ -πi) + log a(θ + πi -i0) d(θ)d(θ + πi) + ∞ -∞ L(θ -θ ) log (f (θ )Y (θ )) dθ .
So, our goal will be achieved if we nd such

G(θ) that ∞ -∞ (G(θ -θ ) + G(θ -θ + πi)) log Q(θ + πi) Q(θ -πi) = log Q(θ + 2πi) Q(θ -πi) + πiνκ(4G -3) , (4.110) 
where the last term takes account of the multiplier e νκθ in Q(θ), G being the average of G over the real line. Recalling that in the formula for Q(θ) (4.95) the Bethe roots are approximately two-string one nds G(θ) by Fourier transform (more details on this derivation are given in the appendix 4.10): Notice that G = 1-3ν 2(1-2ν) . Finally, after some computation we arrive at

G(θ) = 1 4π ∞ -∞ sinh πk 2ν (1 -3ν) sinh πk 2ν (1 -2ν) cosh πk
log b(θ) = 2 j log tanh 1 2 (θ -τ j -i0) - πiνκ 1 -2ν (4.112) + (L * log Y )(θ) + (G * log B)(θ) -(G * log B)(θ + πi) .
We obtain the massive relativistic model from the inhomogeneous lattice one by the usual prescription: set τ j = (-1) j τ and consider the scaling limit

τ → ∞ , L → ∞, 2Le -τ → 2πM R nite .
In this situation

2 j log tanh 1 2 (θ -τ j ) → -2πM R cosh(θ) .
The idea is that in this limit we should obtain the eigenvalue of the transfer-matrix corresponding to the NS ground state with the twist dened by √ 2βP = νκ .

(4.113)

Here √ 2 comes from the normalization of the topological charge consistent with (4.78). The normalization of this twist is explained by the requirement that in the high temperature limit R → 0 the eigenvalue of the rst integral of motion, I 1 , which is nothing but L 0 -c/24 is given by

i 1 = P 2 - 1 16 .

Numerical work

The function b(θ) rapidly decreases when Re(θ) → ±∞, 0 > Imθ > -π/2. Introducing the shift 0 < πγ < π/2 and moving the contours of integration we arrive at the system which allows a numerical investigation: converges much more slowly because y(θ) behaves as 1 + O(e -|θ| ). In the numerical computations we replace integrals by nite sums, and the above estimates mean that the number of points needed for the approximation of the integral containing log( 12 Y ) should be bigger than that for the integrals containing log B.

log b(θ -πiγ) = -2πM R cosh(θ -πiγ) - πi √ 2 β P + 1 2 log 2 (4.114) + ∞ -∞ L(θ -θ + πiγ) log 1 2 Y (θ ) dθ + ∞ -∞ G(θ -θ ) log B(θ -πiγ) -G(θ -θ + πi(1 -2γ)) log B(θ -πiγ) dθ . log y(θ) = ∞ -∞ 2Re L(θ -θ + πiγ) log B(θ -πiγ)]dθ .
Our goal is to consider the high temperature limit R → 0. The previous formulae are simplied if we use the parametrization:

R = β √ 2 π 2 µγ 1 -β 2 2 -1 1-β 2 e -θ0 , (4.116) 
with θ 0 being a dimensionless parameter. Now the driving term in the equation (4.114) becomes

-4 √ 2 1 -β 2 β e -θ0 cosh(θ -iγ) .
The local integrals of motion are extracted form y(θ) (recall that y represents the normalized transfer matrix of auxiliary spin 1 (4.99)). Namely, for θ → ∞ the asymptotical formula holds: (4.117) similarly the asymptotic for θ → -∞ is related to ī2k-1 (θ 0 ). The constants C m are given by

log y(θ) ∞ k=1 C 2k-1 i 2k-1 (θ 0 )e -(2k-1)θ ,
C m = - β √ 2(1 -β 2 ) √ π Γ m 2 Γ 1 1-β 2 m (m -1)! m+1 2 !Γ 1 + β 2 1-β 2 m . (4.118)
This normalization is chosen for the sake of the conformal limit, the appearance of this kind of coecients is not surprising for a reader familiar with [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation[END_REF], we shall give more explanation in the next section.

The main advantage of the above normalization is that in the high temperature limit we have

e -(2k-1)θ0 i 2k-1 (θ 0 ) → θ0→∞ i 2k-1 ,
with i 2k-1 being the local integrals of motion for the CFT case normalized as follows:

i 2k-1 = P 2k + • • • .
Now we start the numerical work. Our goal is to obtain the formulae for i 1 , i 3 , i 5 by interpolation in P and ν. This may sound as a purely academic exercise having in mind that these formulae can be obtained analytically as explained in the next section. However, in our further study we shall need to guess the formulae for the one point functions in the integrable basis of Supersymmetric CFT, which are unknown. That is why we want to be sure that our numerical methods are suciently precise.

The twist P cannot be too large, we restrict ourselves to P ≤ 0.2, we take β suciently close to 1. For given β we interpolate in P from the solutions to (4.114), (4.115) for θ 0 = 18. Integrals are replaced by sums with step 0.1, the shift is γ = 0.1, the limits in the integrals containing log B(θ -πiγ) are [-24, 24], the limits of the integral containing log(Y (θ)/2) are [-72, 72].

We normalize by the leading coecient which is later compared with C 2k-1 . Doing that for a sucient number of dierent β's and assuming that due to the general structure of CFT the local integrals must be polynomials in

Q 2 = - (1 -β 2 ) 2 β 2 ,
we were able to interpolate further: We shall not go into the details of the interpolation restricting ourselves to two examples in which we compare the results of the numerical computations using the equations (4.114), (4.115) with the analytical formulae (4.118), (4.119).

i 1 = P 2 - 1 
It is more direct to compare the computational results with

j m = C m i m .
Here are the results for β 2 = 1 2 :

P j 1 comp. It is clear from these tables that the agreement is quite good. It can be made better by choosing bigger θ 0 , using ner discretization etc. But this is not needed for our goals since our precision was sucient for a successful interpolation.

Eigenvalues of integrals from ODE -CFT correspondence

The ODE -CFT correspondence is the statement that in the conformal case the vacuum eigenvalues of the operator Q(θ) coincide with the determinants of certain ordinary dierential equations. The eigenvalues of the transfer-matrices T j (θ) coincide with certain Stokes multipliers for the corresponding equation. In the case of c < 1 CFT this statement goes back to a remarkable observation due to Dorey ans Tateo [START_REF] Dorey | Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations[END_REF], which was later essentially claried and generalized by Bazhanov, Lukyanov, Zamolodchikov [START_REF] Bazhanov | Spectral determinants for Schroedinger equation and Q-operators of Conformal Field Theory[END_REF]. We shall not go into details of further generalization of the ODE-CFT correspondence and its generalization to the massive case, restricting ourselves to the case of Supersymmetric CFT which is considered in the present thesis. It is useful to consider a more general situation of a parafermion Ψ k interacting with a free boson because there is certain dierence between k even or odd. The c = 1 CFT corresponds to k = 1, and the c = 3/2 case, considered in our situation, corresponds to k = 2. In general case Lukyanov [START_REF] Lukyanov | Notes on parafermionic QFT's with boundary interaction[END_REF] proved that the operator Q(θ) is related to the following ODE:

ψ (z) -(z 2α -E) k + l(l + 1) z 2 ψ(z) = 0 , (4.120) 
the relation of E, α, l to parameters θ, β 2 , k, P is as follows

α = 1 -β 2 kβ 2 , E = β √ k e 1-β 2 k (θ-θ0) , l = √ k β P - 1 2 . 
(4.121) and θ 0 is dened by a formula analogous to (4.116). The parameter α is positive, so, we are dealing with a self-adjoint operator on the positive half-line. Then Q(E) is just its determinant (here and later we allow ourselves to use both Q(θ) and Q(E) having in mind the identication (4.121)). The eigenvalues Q(E) and T j (E) are entire functions of E. We are interested in their large E asymptotics. It is known that for log Q(E) and for log T j (E) with j up to k -1 the asymptotics go in two kinds of exponents: E -2j-1 2k(1-β 2 ) and E j kβ 2 , (j ≥ 1), the coecients being proportional to the eigenvalues of local and non-local integrals of motion. The latter are of no interest for us, that is why we shall deal directly with log T k (E) which possesses an exceptional property of containing in its asymptotics E -2j-1 2k(1-β 2 ) only. In order to explain that we have to consider (4.120) as an equation of a complex variable.

Let z = |z|e iϕ . Since the parameter α is generally irrational we are dealing with an innite covering of the plane: -∞ < ϕ < ∞.

The main property allowing to investigate the determinant and the Stokes multipliers is the fact that for any solution ψ(z, E) the function

(Ωψ)(z, E) = q 1/2 ψ(pz, q 2 E) , p = e πiβ 2 , q = e πi 1-β 2 k ,
is also a solution.

Consider the solution χ(z, E) characterized by the following asymptotics for real z → +∞:

χ(z, E) z -αk 2 exp - z αk+1 αk + 1 .
Following the [START_REF] Bazhanov | Spectral determinants for Schroedinger equation and Q-operators of Conformal Field Theory[END_REF][START_REF] Lukyanov | Notes on parafermionic QFT's with boundary interaction[END_REF] and using the fusion relations it is not hard to derive for any j the relation between the three solutions:

(Ω j+1 χ)(z, E) = -T j-1 (Eq j+1 )χ(z, E) + T j (Eq j )(Ωχ)(z, E) .

The asymptotic behavior at E → ∞ is investigated by the WKB method, where the important role is played by the the function (z α -E) k + l(l+1) z 2 . One rescales z for large E so that the term l(l+1) z 2 is small. It is clear that exactly for j = k the function T k (Eq k ) can be considered as the Stokes multiplier between growing solutions (Ωχ)(z, E) and (Ω k+1 χ)(z, E) for two neighboring sectors which are semi-classically separated by the cut of the square root. This implies a simple formula for the asymptotics of log T k (Eq k ) given below.

Let us change variables rewriting (4.120) as

a 2 ψ (x) -(x 2α -1) k + a 2 l(l + 1) x 2 ψ(x) = 0 , (4.122) 
where

a 2 = E -k (1-β 2 )
. We prefer to write the WKB formulae in a somewhat XIX century way in order to avoid some total derivatives. Namely, we present the solution to (4.122) in the form ψ(x, x 0 ) = S(x, a) where S(x, a) satises the Riccati equation (we omit arguments)

4 a 2 1 -F S 2 -S 2 + 2S S + x -2 S 2 = 0 , with F (x, a, b) = (x 2α -1) k + b 2 x 2 ,
where we introduced b = a(l + 1/2) (not to be confused with the Liouville parameter), in spite of the fact that b 1 it is convenient to develop S into a series in this parameter only at the nal stage. The ansatz for ψ is dierent from usual quantum mechanical formulae, and it allows to avoid the appearance of redundant total derivatives. Using Riccati equation we nd for S(x, a) the power series According to our reasoning concerning the Stokes multiplier, we have for the asymptotics

log T k (Eq k ) 1 a C dy S(y, a) , (4.124) 
where the contour C goes from ∞ • e +i0 to ∞ • e -i0 around the cut of F (x, a, b). Let us consider the contribution from S 0 (x, b). Recalling that b 1 we develop

1 S 0 (x, b) = ∞ p=0 1/2 p (x 2α -1) k(1-2p) 2 b 2p x -2p .
Now the dierence between k odd or even becomes clear. We have to evaluate the integral

C (y 2α -1) k(1-2p) 2 
y -2p dy .

By the change of variables w = y 2α this integral reduces for odd k to a beta-function and for even k to a binomial coecient. In spite of this computational dierence the nal result does not depend on the parity of k, after some simplication we get

C (y 2α -1) k(1-2p) 2 y -2p dy = πikβ 2 1 -β 2 e -πi 2 k(2p-1) Γ k(2p-1) 2(1-β 2 ) Γ 1 + kβ 2 (2p-1) 2(1-β 2 ) Γ k(2p-1) 2 .
Plugging this into (4.124) we nd the constants C m . Higher corrections in a 2 following from (4.123) are considered similarly. For k = 2 one nds exactly the expressions (4.119).

From the above perspective, this method allows to compute the eigenvalue i 7 that is hardly accessible by interpolation, and was not given in [START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF] : (4.125)

i 7 = P 8 - 21 

Lattice ω function

Now that we obtained the scaling equations for the free energy, we can move towards the computation of one point functions. We start by considering the main piece ω on the lattice.

Denitions

Recall the denition of the function ω from [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF] and given also in the section 2.7 . This function splits in two parts:

ω(θ, θ ) = ω hol (θ, θ ) + ω sing (θ, θ ) , (4.126) 
where ω hol (θ, θ ) as a function of θ has no other singularities but simple poles at the zeros of T 1 (θ, κ), and ω sing is its singular part given by :

ω sing (θ, θ ) = 1 T 1 (θ, κ)T 1 (θ , κ) a(θ)d(θ )ψ(θ -θ + πi, α) -d(θ)a(θ )ψ(θ -θ -πi, α) (4.127) + (1 + ρ(θ)ρ(θ ))φ(θ -θ , α) -ρ(θ)φ(θ -θ + πi, α) -ρ(θ )φ(θ -θ -πi, α) ,
where

ψ(θ, α) = 2ν e ανθ e 2νθ -1 , (4.128) 
and φ is dened as a solution of the dierence equation:

∆ θ φ(θ, α) = φ(θ + iπ, α) -φ(θ -iπ, α) = ψ(θ, α) . (4.129) 
We shall remind the normalization conditions for the function ω. Start by dening the function ϕ:

ϕ(θ) = L j=1 1 sinh ν(θ -τ j -πi) sinh ν(θ -τ j ) sinh ν(θ -τ j + πi) , satisfying d(θ + πi)ϕ(θ + πi) = a(θ)ϕ(θ) ,
and the measure

dµ ± (θ) = Q ∓ (θ, κ + α)Q ± (θ, κ)ϕ(θ)dθ .
(4.130)

The poles of ϕ come in triplets reecting the fact that the Matsubara chain consists of spin-1 representations. Let the contour Γ j go around the three points τ j , τ j ± πi. The normalization conditions on the function ω(θ, η) from [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF] are given by : Γj T 1 (θ, κ)ω(θ, η)dµ + (θ) = 0 .

(4.131)

We want to nd an independent way of dening this function. As explained in [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF] for α = 0 there is an important analogy between the function ω(θ, θ ) and the normalized second kind dierential on a hyperelliptic Riemann surface. The normalization condition (4.131) is the analogue of the requirement of vanishing of the a-periods.

We set τ = τ j .

Consider the function

ω(θ) = δ δτ log t(θ) -log s(θ -πi)s(θ + πi) s(θ) .
Notice that

δ δτ log s(θ -πi)s(θ + πi) s(θ) = (δ + θ ) -1 δ δτ log s(θ -2πi)s(θ + πi) , where δ + θ f (θ) = f (θ) + f (θ -πi).
We want to show that ω(θ) is a normalized dierential. First we prove that

Γ k T 1 (θ)ω(θ)dµ ± (θ) = 0 , k = j .
The case k = j is special, instead of a direct computation for this case we consider

Γ ±∞ = [±Λ, ±Λ+ πi/ν] for |λ| > max(|τ k |).
For Γ ±∞ the computation is exactly the same as for Γ k , k = j.

Recall that (in the case α = 0 we have dµ + = dµ -= dµ) :

dµ(θ) = Q + (θ)Q -(θ)ϕ(θ)dθ .
We have two identities [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF]:

Γ k T 1 (θ)(δ + θ ) -1 f (θ)dµ(θ) = Γ k d(θ)f (θ)Q + (θ -πi)Q -(θ)ϕ(θ)dθ , = Γ k a(θ)f (θ + πi)Q + (θ + πi)Q -(θ)ϕ(θ)dθ .
Using these identities we derive

Γ k T 1 (θ)ω(θ)dµ(θ) = Γ k Q + (θ) δ δτ t(θ) -Q + (θ + πi) δ δτ a(θ) -Q + (θ -πi) δ δτ d(θ) Q -(θ)ϕ(θ)dθ = Γ k a(θ) δ δτ Q + (θ + πi) + d(θ) δ δτ Q + (θ -πi) -t(θ) δ δτ Q + (θ) Q -(θ)ϕ(θ)dθ = Γ k a(θ)Q -(θ) δ δτ Q + (θ + πi) -d(θ)Q -(θ -πi) δ δτ Q + (θ) ϕ(θ)dθ + Γ k d(θ)Q -(θ) δ δτ Q + (θ -πi) -a(θ)Q -(θ + πi) δ δτ Q + (θ) ϕ(θ)dθ = 0 .
As a normalized dierential ω(θ) must be expressible as a linear combination of ω(θ, η j ) for some set {η j }. The structure of singularities of ω(θ) suggests that this set is just τ, τ + πi. To be precise we claim that

ω(ζ) = 1 N (τ + πi 2 ) (ω(ζ, τ ) + ω(ζ, τ + πi)) . ( 4 

.137)

Let us prove this. We have

ω(θ, τ ) + ω(θ, τ + πi) = ω hol (θ, τ ) + ω hol (θ, τ + πi) + ω sing (θ, τ ) + ω sing (θ, τ + πi) ,
where ω hol (θ, η) as a function of θ has no other singularities but simple poles at zeros of T 1 (θ),

ω sing (θ, η) = δ - θ δ - η ∆ -1 θ (ν coth ν(θ -η)) + 1 T 1 (θ)T 1 (η) a(θ)d(η)ν coth ν(θ -η + πi) -d(θ)a(η)ν coth ν(θ -η -πi) , (4.138) which implies ω sing (θ, τ ) + ω sing (θ, τ + πi) = ν coth ν(θ -τ -πi) -ν coth ν(θ -τ ) + a(θ)d(τ ) T 1 (θ)T 1 (τ ) ν coth ν(θ -τ + πi) - d(θ)a(τ ) T 1 (θ)T 1 (τ ) ν coth ν(θ -τ -πi) + a(θ)d(τ + πi) T 1 (θ)T 1 (τ + πi) ν coth ν(θ -τ ) . = a(θ)d(τ ) T 1 (θ)T 1 (τ ) ν coth ν(θ -τ + πi) + T 1 (θ)T 1 (τ ) -d(θ)a(τ ) T 1 (θ)T 1 (τ ) ν coth ν(θ -τ -πi) - T 1 (θ)T 1 (τ + πi) -a(θ)d(τ + πi) T 1 (θ)T 1 (τ + πi) ν coth ν(θ -τ ) .
Using this identity one nds

res θ=τ -πi ω sing (θ, τ ) + ω sing (θ, τ + πi) = a(τ -πi)d(τ ) T 1 (τ -πi)T 1 (τ ) = N (τ + πi 2 ) , res θ=τ +πi ω sing (θ, τ ) + ω sing (θ, τ + πi) = T 2 (τ + πi 2 ) T 1 (τ + πi)T 1 (τ ) = N (τ + πi 2 ) , res θ=τ ω sing (θ, τ ) + ω sing (θ, τ + πi) = - T 2 (τ + πi 2 ) T 1 (τ + πi)T 1 (τ ) = -N (τ + πi 2 ) .
This nishes the proof. Now we obtain the most important relation of this section :

δ δτ log T 2 (θ) f (θ) (4.139) = 1 N (θ) δ δτ log T 1 (θ + πi/2) + δ δτ log T 1 (θ -πi/2) - f (θ) T 2 (θ) + 1 δ δτ log f (θ) = 1 N (θ) δ δτ log T 1 (θ + πi/2) + δ δτ log T 1 (θ -πi/2) - δ δτ log f (θ) = 1 N (θ)N (τ + πi 2 ) ω(θ + πi 2 , τ ) + ω(θ + πi 2 , τ + πi) + ω(θ - πi 2 , τ ) + ω(θ - πi 2 , τ + πi) .
= Ω(θ, τ + πi 2 ) .

Scaling limit of the function Ω

In considering the scaling limit, we want, similarly to [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF], to combine two seemingly inconsistent requirements: α = 0 and ρ(θ) = P(θ) = 1. In fact this can be achieved for a discrete set of α's introducing the fermionic screening operators [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF], and then invoking the analytical continuation. As will be clear later our denition is consistent rather with the understanding of the model in terms of the action (4.81). Remember that the scaling limit presented in section 4.4 consists in taking in both Space and Matsubara directions staggering inhomogeneities τ j = (-1) j τ , and considering

τ → ∞ , L → ∞, 2Le -τ → 2πM R nite ,
where R is the radius of the cylinder, M is the mass of the soliton (4.89).

For Similarly to [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] the relations (4.134) hint that the asymptotics for θ → ±∞ of the fermions (KM currents) are anti-periodic (periodic) in θ. Explicitly we assume

b * (θ) θ→±∞ ∞ j=1 e ∓(2j-1)θ b * 2j-1 , c * (θ) θ→±∞ ∞ j=1 e ∓(2j-1)θ c * 2j-1 , j σ (θ) θ→±∞ ∞ j=1 e ∓2jθ j σ 2j , σ = 0, ± .
The most important support for this denition is provided by the case α = 0 for which the requirements ρ(θ) = P(θ) = 1 are automatic and do not demand additional work even on the lattice. In that case we have (4.139) δ δτ log y(θ) = Ω(θ, τ + πi 2 ) .

(4.145)

Consider therefore the Suzuki equations for y(θ) at the lattice level, that is (4.114) with the driving term replaced by D(θ) (4.140). One can readily compute the variation of y(θ) with respect to any τ j , nding agreement with (4.141) after scaling. Strictly speaking even for α = 0 to combine the equations (4.145) for all τ j , we do not have enough conditions to assert (4.141) for all θ , but this is a very natural conjecture to make.

The next question is how did we incorporate α into the equations (4.141), (4.142), (4.143). This was done due to the experience with equations of this kind [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF]. Our choice is supported by the computation of the residue at θ = θ + πi. After some rather tedious computation we obtain the following result

res θ=θ +πi Ω(θ, θ ) = 1 2πi y(θ )y(θ + πi) -1 y(θ )y(θ + πi) ,
which coincides with the expected result from the denition (4.136) and known singularities of ω(θ, θ ) [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF].

Numerical results by interpolation

Our method of numerical investigation of the equations (4.114) was explained in the section 4.4.

With these results at hand the numerical solution to the linear equations (4.141), (4.142), (4.143) is rather straightforward. The most interesting thing to study is the limit θ 0 → ∞ where we make contact with the UV CFT. We begin with the case θ → ∞, θ → ∞ for which we assume

Ω(θ, θ ) ∞ i,j=1 e -(2i-1)θ e -(2j-1)θ D 2i-1 (α)D 2j-1 (2 -α)Ω 2i-1,2j-1 (θ 0 ) . (4.146) 
The coecients D 2i-1 (α) are not hard to guess from (4.118) and by analogy with [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF]:

D m (α) = i m π 2 Γ m 2 Γ 1 1-β 2 m + α 2 (m -1)! m-1 2 !Γ β 2 (1-β 2 ) m + α 2 . ( 4 

.147)

Additional support for this formula will be given below by considering the reection relations. We have further

lim θ0→∞ e -2(i+j-1)θ0 Ω 2i-1,2j-1 (θ 0 ) → Ω 2i-1,2j-1 ,
Ω 2i-1,2j-1 is a polynomial in P of degree 2i + 2j -2 with the leading coecient equal to 1/(i + j -1).

We proceed with numerical checks of these assumptions. For θ 0 = 15 we obtain already perfect agreement with the scaling behavior. The values of P should not be to large, we take P ≤ 0.2. Considering an important amount of numerical data with dierent P, α, ν we come with the following conjectures for the exact forms of the rst several Ω 2i-1,2j-1 :

Ω 1,1 = P 2 - 1 16 - 1 8 ∆ α . (4.148) 2 • Ω 1,3 3,1 = P 4 -P 2 5 48 (2∆ α + 3) + ĉ + 8 1536 (4∆ α + 3) + 1 128 ∆ 2 α ∓ 1 96 d α ∆ α .
(4.149) where

d α = 1 4 (β -2 -β 2 )(α -1) . (4.152) 
Below we give some examples of comparison between numerical results and the analytical conjectures above.

Coecient Ω 1,1 and Ω 3,3 analyt. 0.02 -0.0079402716 -0.0079402720 -0.0078464501 -0.0078464506 -0.0077795388 -0.0077795392 0.04 -0.0077381755 -0.0077381759 -0.0076463818 -0.0076463822 -0.0075809093 -0.0075809097 0.06 -0.0074059724 -0.0074059727 -0.0073175266 -0.0073175270 -0.0072544297 -0.0072544302 0.08 -0.0069505170 -0.0069505174 -0.0068666923 -0.0068666926 -0.0068068739 -0.0068068743 0.1 -0.0063812449 -0.0063812453 -0.0063032481 -0.0063032484 -0.006247564 -0.0062475644 0.12 -0.0057100111 -0.0057100113 -0.0056389640 -0.0056389643 -0.0055882093 -0.0055882096 0.14 -0.0049508823 -0.0049508825 -0.0048878029 -0.0048878031 -0.0048426982 -0.0048426985 0.16 -0.0041198841 -0.0041198842 -0.0040656674 -0.0040656675 -0.0040268458 -0.0040268459 0.18 -0.0032347010 -0.0032347011 -0.0031901003 -0.0031901004 -0.0031580934 -0.0031580936 0.2 -0.0023143311 -0.0023143311 -0.0022799390 -0.0022799391 -0.0022551639 -0.002255164

β 2 = 1 2 α = 0.2 α = 0.4 α = 0.6 P Ω 1,1 comp. Ω 1,1 analyt. Ω 1,1 comp. Ω 1,1 analyt. Ω 1,1 comp. Ω 1,
The scaling limit of (4.91) is supposed to give the ratio

O α (0) P,R V α (0) P,R ,
for some operator O α . In the case under consideration this operator is supposed to be a chiral descendant of V α (recall that we do not distinguish between the CFT operators and their perturbed counterparts). To be more precise Ω 2i-1,2j-1 (θ 0 ) should be related to a descendant on the level 2i + 2j -2. The determinants made of Ω 2i-1,2j-1 (θ 0 ) correspond to other descendants but we shall not discuss them here restricting ourselves to the simplest cases.

All together we must have

lim θ0→∞ e -2(i+i-1)θ0 Ω 2i-1,2j-1 (θ 0 ) = P 2i-1,2j-1 ({s k , l m })V α P V α (0) P , (4.153) 
where P 2i-1,2j-1 ({s k , l m })V α is an element of the Verma module generated by V α quotiented by the action of local integrals of motion, this will be discussed in Section 4.7.

The expressions like the one in the right hand side of (4.153) can be computed for any P 2i-1,2j-1 , some examples have been given in the previous section 4.1.2. However, trying to nd P 2i-1,2j-1 from (4.153) we encounter more problems than in the usual Virasoro case [START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF]. The point is that the universal enveloping algebra of the super conformal algebra contains much more elements than that of the Virasoro algebra. The coecients of the polynomials P 2i-1,2j-1 do not depend on P , and actually the appearance of dierent degrees of P is the source (the only one) of dierent equations. When the level grows the number of coecients of P 2i-1,2j-1 grows much faster than the degree of the left hand side in P . For the Virasoro case we still could dene the coecients up to the level 6, and for levels 2 and 4 the systems of equations were even overdetermined, the fact that they allowed solutions was considered as an important check of our procedure. In the super conformal case the only possibility to nd the coecients occurs on the level 2: we have two descendants created by l -2 and s -3 2 s -1 2 and two coecients of the polynomial in P in the left hand side. Starting from the level 4 we do not have enough equations.

One way out of this diculty would be to allow descendants in the asymptotic states like it was done in [START_REF] Boos | Fermionic basis in conformal eld theory and thermodynamic Bethe Ansatz for excited states[END_REF] for the level 8 in the Virasoro case. This would be too hard, and not necessary: we have another, similar to that of [START_REF] Negro | Reection relations and fermionic basis[END_REF], way of xing the polynomials P 2i-1,2j-1 based on the reection relations [START_REF] Fateev | Expectation values of local elds in Bullough-Dodd model and integrable perturbed conformal eld theory[END_REF][START_REF] Fateev | Expectation values of descendant elds in the sine-Gordon model[END_REF][START_REF] Fateev | Expectation values of boundary elds in the boundary sine-Gordon model[END_REF]. We shall explain this in the next section. When the polynomials P 2i-1,2j-1 are dened from the reection relations, the formulae (4.153), (4.148), (4.149), (4.151), (4.150) can be used for checks. Since both our equation for Ω(θ, θ ) and the reection relations have the status of conjectures the fact that the results of their application are in agreement provides a very solid support for both.

Primary elds

Let us now consider the asymptotics θ → -∞, θ → ∞. We have

Ω(θ, θ ) ∞ i,j=1 e (2i-1)θ e -(2j-1)θ Ω -(2i-1),2j-1 (θ 0 ) .
We suspect that similarly to [START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] the Ω -1,1 (θ 0 ) is related to the ratio of the expectation values of two shifted primary elds. The question is: which primary elds exactly? Now we have two of them: V α , W α . Solving numerically our equations we nd that for xed β, α, P

log Ω -1,1 (θ 0 ) 2θ 0 ∆ α+ 2β 2 1-β 2 + 1/2 -∆ α .
Let us give an example. Consider the normalized expression:

R(θ 0 ) = exp -2θ 0 ∆ α+ 2β 2 1-β 2 + 1/2 -∆ α Ω -1,1 (θ 0 ) .
For α = 1/2, β 2 = 1/2, P = 0.1 we have θ 0 12 13 14 15 16 R(θ 0 ) 0.16825979 0.16825580 0.16825433 0.16825379 0.16825359 So, we see that the scaling is achieved with great precision. This suggests that Ω -1,1 (θ 0 ) is proportional to the ratio of the expectation values of W α+ 2β 2 1-β 2 and V α . Let us check the limiting value against the CFT. First, we have to normalize the primary elds

V α = 1 F (α) V α , W α = 1 F (α) W α ,
where F (α) is the one point function of the operator V α on the plane (for R = ∞) [START_REF] Baseilhac | Expectation values of local elds for a two-parameter family of integrable models and related perturbed conformal eld theories[END_REF]. For the operator W α the one point function on the plane vanishes since this operator is a super Poincaré descendant of V α and the vacuum is super Poincaré invariant. Nevertheless we normalize W α by the same function F (α). The reason for that is in the reection relations as explained in the next section. Denote by c(α, P ) (c(α, P )) the CFT one point functions of the normalized operator V α ( W α ) on the cylinder with our usual asymptotic conditions. In the next section we will nd that

c(α + 2β 2 1-β 2 , P ) c(α, P ) = π 2 1 -β 2 β 1 2 (αβ 2 -2β 2 -α) γ( 1 2 (1 -β 2 )(2 -α)) γ( 1 4 (1 -β 2 )(2 -α)) 2 (4.154) × γ( 1 2 (1 + β 2 ) + (1 -β 2 )α -βP )γ( 1 2 (1 + β 2 ) + (1 -β 2 )α + βP ) .
Consider the ratio

R 1 (θ 0 ) = R(θ 0 ) c(α, P ) c(α + 2β 2 1-β 2 , P ) . ( 4 

.155)

For θ 0 = 15 and the choice of ν, α, P presented below, we have data

β 2 = 1 2 , α = 2 5 , P = 0.2 β 2 = 3 5 , α = 2 3 , P = 0.1 β 2 = 1 3 , α = 1 2 , P = 0.15 R 1 (15)
1.00000211 1.00009870 0.99999998

The agreement is very good.

Reection relations and three-point functions in Super CFT

Long ago Al. Zamolodchikov did a remarkable observation that the one point functions for sine-Gordon and sinh-Gordon model are related by analytical continuation. This is very dierent from other properties of these models, for example the particle content is quite dierent. Nevertheless the Al. Zamolodchikov's observation proved to be correct in many other models. Here we shall apply it to the ssG model relating it to the Super sinh-Gordon theory (sshG) with the action

A sshG = 1 4π ∂ z ϕ∂ z ϕ + 1 2π ψ∂ z ψ + ψ∂ z ψ -µ ψψe b √ 2 ϕ -µ ψψe -b √ 2 ϕ d 2 z . ( 4 

.156)

We shall use the habitual notation

Q = b + b -1 .
The analytical continuation to the ssG case corresponds to

β = ib , α = 2a Q . (4.157) 
Slightly abusing the notation we will write the primary elds dened (4.84) as V a and W a . The idea behind the reection relations is that the physical quantities must be invariant under the two reections:

σ 1 : a → -a , σ 2 : a → Q -a .
(4.158)

The rst of them reects simply the C-reection of the action (4.156) while the second one is inherited from the symmetry of the Super Liouville model. The reection relations can be applied to the calculation of one point functions. For the primary elds it is rather direct, since their one point functions are invariant under σ 1 and their transformation rule under σ 2 is inherited from a remarkable property of the (Super) Liouville three point function. This will be explained in more details in Section 4.7.1. The situation is more complicated for descendants elds : a Virasoro descendants has a manifest σ 2 symmetry, but its behavior for σ 1 is unclear. This explains the necessity to construct a passage matrix U (a) that relates the Virasoro and Heisenberg descendants in order to use the action of the two reections simultaneously. Recall that V quo a is the quotient of the Verma module by the action of the local integrals of motion. Consider V (a) ∈ (V quo a ) * . The reection relations [START_REF] Fateev | Expectation values of descendant elds in the sine-Gordon model[END_REF] can be presented as the following Riemann-Hilbert problem (see [START_REF] Negro | Reection relations and fermionic basis[END_REF] for more details):

V (a + Q) = S(a)V (a) , S(a) = U (-a)U (a) -1 .
(4.159) Let us apply this idea, and rst explain how the reection relations can be used to recover the results of the previous section.

Primary elds

Let us now explain the values of the one point functions of primary elds in innite volume . Recall that we computed in section 4.1.3 the reection coecient relating

V a = R(a)V Q-a , W a = R(a)W Q-a , R(a) = πµγ(b 2 ) Q-2a b b -2 γ(2ab -b 2 )γ(2ab -1 -b -2 -1) .
The one point function F (a) of V a in innite volume for the Super sinh-Gordon model has the expected transformation properties under both reections (4.158)

F (a) = F (a -Q)R(a) .
The operators

V a = 1 F (a) V a , W a = 1 F (a) W a ,
are invariant under both reections. For our goals we do not need F (a) but rather the ratio f (a) =

F (a-b) F (a) for which f (a -Q) = f (a) R(a) R(a -b) .
We compute and rewrite the result in a useful for us way

R(a) R(a -b) = 1 2 πµγ( 1 2 bQ) -2 γ 1 2 + 1 2 b(2a -b) γ 1 2 + 1 2 b(2(a -Q) -b)
.

This equality implies

f (a) = C(b) 1 2 πµγ( 1 2 bQ) 2 bQ (∆ a-b + 1 2 -∆a) γ 1 2 b(Q -2a) , (4.160) 
where C(b) is a constant depending on b only. To nish the consideration of primary elds let us give the expression for the ratio

C(a -b, Q/2 + k, Q/2 -k) C(a, Q/2 + k, Q/2 -k) = 1 2 πµγ( 1 2 bQ)b -1 γ 2 ( 1 2 (1 + ab -b 2 ))γ( 1 2 b(Q -2a)) γ(ab -b 2 ) (4.161) × γ( 1 2 (1 -b 2 + ab) + bk)γ( 1 2 (1 -b 2 + ab) -bk) .
Divide (4.161) by f (a) (4.160) (there is an important cancellation) and change the variables by (4.157) and bk = βP , after some simplication this gives (4.154).

Super Virasoro and Super Heisenberg algebras

We would like to have an independent check of the results (4.148) -(4.151). In order to do so, we should interpret the expressions obtained for β * 2m-1 γ * 2m-1 V a as decompositions of the fermionic operators on the Super Virasoro basis, and check that this decomposition is compatible with the reection relations. As has been explained above and is clear from the interpretation of the reections, it is rst important to make the connection between the Super-Virasoro and the Super-Heisenberg algebras, that is to construct the passage matrix U (a). This is our goal in this subsection.

The expression of the stress energy tensor and the super current in terms of the elds in the action (4.156) are given by :

T (z) = - 1 4 (∂ z ϕ) 2 + Q 2 √ 2 ∂ 2 ϕ - 1 2 ψ∂ψ , S(z) = i 1 √ 2 ψ∂ϕ -Q∂ψ .
In order to exhibit the Heisenberg basis, we split the eld ϕ(z, z) = φ(z) + φ(z) in chiral parts and expand in modes :

φ(z) = φ 0 -2iπ 0 + i k∈Z * a k k z -k ,
where the Heisenberg algebra is :

[a k , a l ] = 2kδ k,-l , [φ 0 , π 0 ] = i .

(4.162)

The same analysis holds for the fermionic eld

ψ(z) = r∈Z b r+ 1 2 z -r-1 ,
with the fermionic algebra dened by : In the general case we should then take : The calculation for the two chiralities being independent, we will work only with the holomorphic one. We can now introduce the generators of the Super Virasoro algebra :

l m = 1 4 k =0,m : a k a m-k : +(π 2 0 + iπ 0 Q √ 2 )δ m,0 + (π 0 + i Q 2 √ 2 (m + 1))a m (1 -δ m,0 ) + 1 2 k∈ e Z : b m-k b k : (k + 1 2 ) ,
and the modes of the super current :

s r = 1 √ 2 k∈ e Z b k a r-k + √ 2π 0 + iQ(r + 1 2 ) b r .
Here the symbol : ... : means normal order. These generators satisfy the Super Virasoro algebra Finally, the natural identity holds :

l 0 V a = ∆ a V a , ∆ a = 1 2 a(Q -a) .
We are now ready to compute the passage matrix between the Super Virasoro and the Super Heisenberg bases. Recall that we work modulo the action of local integrals of motion. For our calculations (up to level 6), the integrals of motion that will be involved are just the rst two given by the densities (4.87). Explicitly :

i 1 = l -1 , (4.165) 
i 3 = 2 ∞ k=-1 l -3-k l k + 1 2 ∞ k=-1 2 s -3-k s k k + 3 2 .
(4.166)

Level 2.

At level 2 there is only one integral of motion to take into account :

i 2 1 V a = l 2 -1 V a = 0 .
We dene U (2) to be the passage matrix between the base {l -2 , s - 2 } which is found to be : with :

U (2) = 1 4 2a 2 + Qa + 1
N (6) (a, b) = a 2 (a + b) 5 (a + b -1 ) 5 (a + 2b) 2 (a + 3b) 2 (a + 2b -1 ) 2 (a + 3b -1 ) 2 

H (a 2 , Q 2 ) = a 2 (-15 + 3a 2 -10Q 2 ) , D

V (∆, c) = 1 .

(4.173)

Reections relations

We claim that similarly to [START_REF] Negro | Reection relations and fermionic basis[END_REF], the action of both reections σ 1 and σ 2 implies that the fermions transform as :

β * 2j-1 → γ * 2j-1 , γ * 2j-1 → β * 2j-1 .
(4.174) This means that we can use the coecients (4.147) to redene the elements of the fermionic basis and obtain purely CFT objects : The main conclusion drawn from Section 4.6.2, is that the fermionic basis should be decomposable on the Super Virasoro basis in the following way : and Q E I + ,I -, Q O I + ,I -polynomials in the Super Heisenberg algebra, depending rationally on a 2 and Q 2 . In the following we are going to verify this conjecture level by level.

β * 2m-1 = D 2m-1 (a)β CFT * 2m-1 , γ * 2m-1 = D 2m-1 (Q -a)γ

Level 2

Let us start with the simplest case of level 2 : (4.184)

β CFT * 1 γ CFT * 1 V a = Ω
Hence it is not dicult to compare with (4.183) and obtain :

β CFT * 1 γ CFT * 1 V a = l -2 - 1 2 s -3 2 s -1 2 V a .
(4.185)

Using (4.167), one can rewrite the combination (4.185) as :

β CFT * 1 γ CFT * 1 V a = 1 4 (a + b)(a + b -1 ) a 2 -1 + 2b -3 2 b -1 2 V a .
(4.186)

This neat factorization of the term (a + b)(a + b -1 ) is a check of our conjecture, and the above shows that :

Q E {1,1} = 1 4 (a -1 ) 2 + 2b -3 2 b -1 2 .
The main dierence with the usual Liouville case, is that at higher levels, we do not know a priori the decompositions of the type (4.179) (recall the discussion at the end of the Section 4.6.2). To overcome this diculty, we shall proceed as in [START_REF] Negro | Reection relations and fermionic basis[END_REF] where X I + ,I -,i (∆ a , c), Y I + ,I -,i (∆ a , c) are polynomials of some degree D to be determined. Also introduce the polynomials : Then (4.182) gives strong conditions on the structure of X I + ,I -,i (∆ a , c), Y I + ,I -,i (∆ a , c) (see [START_REF] Negro | Reection relations and fermionic basis[END_REF] as well as the appendix 4.11 for details). For any 1 ≤ j ≤ d we must have Taking the degree D appropriately large, we obtain enough linear equations on the coecients of X I + ,I -,i (∆ a , c), Y I + ,I -,i (∆ a , c). Now we demonstrate how this procedure works at higher levels.

T + I + I -(a) =

Level 4

Consider the set up described in 4.7.2. Recall that at this level there are 5 operators in total (modulo the action of i 1 ), that are :

l 2 -2 , l -4 , s -7 2 s -1 2 , s -5 2 s -3 2 , l -2 s -3 2 s -1 2 .
We solve the constraints (4.190) V a , all the individual contributions of descendants at level 4 are given in (4.60). One recovers exactly the values of Ω 1, 3 3,1 obtained in (4.149) by interpolation. Summarizing :

β CFT * 1 3 γ CFT * 3 1 V a = 1 2 P E {1,3} {3,1} ({l -k , s -r }, ∆, c) ∓ d a P O {1,3} {3,1}
({l -k , s -r }, ∆, c) V a . (4.192) This is an independent argument in favor of (4.149).

Level 6

We proceed through the same analysis. Recall that we had (modulo the action of i 1 and i 3 ) 10 Virasoro operators, that we took to be l 3 -2 , l -6 , l 2 -3 , s - Using the explicit value of U (6) and the factors (4.173), the reection constraints bring the following results : We also nd the same expressions for the polynomials P E {5,1} and P O {5,1} (up to an overall relevant minus sign for P O {5,1} ). Then one can proceed and calculate the relevant one point functions of descendants on the cylinder (see Subsection 4.1.2). We summarize here the results : Using these values for the one point functions, we recover exactly the expressions (4.150) and (4.151).

P E {3,3} = l 3 -2 + 1 480 572∆
l -6 V a = - ∆ a 6048 , l 2 
That is we check that : In particular for r = 1 2 we recover that :

β CFT *
s -1 2 W a (y) = -V a (y) =⇒ s 2 -1 2
V a (y) = V a (y) , In this appendix we give more information about the derivation of the kernels G α and G. In particular, we demonstrate that G solves the equations (4.110), and explain how this equation can be used to dene the kernel G α . Also, we will calculate the residue of the function G α . First, remark that the functions G and G α are dened as integrals (4.111),(4.144), but it is possible to show that they can be continued to meromorphic functions on the entire complex plane. In particular, this implies that the functions b, b, G, Ḡ can be dened everywhere.

Functional equation for G α .

The main idea is that G has to satisfy a functional integral equation with the Baxter eigenvalue Q (4.95), or more precisely with its logarithmic derivative : In going to the case α = 0, we should appropriately deform the function f , in the same way when going from the function ψ(θ, 0) to ψ(θ, α). The basic function has to be changed to : Finally, calculating the Fourier transform of the left hand side and of the right hand side of (4.214) one gets :

A(q) = e q π
2 e -π 2 αiν sh q π 2ν (1 -3ν) + 3 2 αiνπ sh q π 2ν (1 -2ν) + αiνπ = e qπ 2 sh π 2ν (q(1 -3ν) + αiπ) sh π 2ν (q(1 -2ν) + αiπ) , (4.223) where q = q + αiν. With this result in hand, applying the relation :

A(q) = e qπ 2 2ch qπ 2 G(q) , (4.224) 
we recover the expected formula for G α (remember that ν = 1-β 2 2 ) :

G α (θ) = 1 4π ∞ -∞
sh π 2ν (q(1 -3ν) + αiπ) sh π 2ν (q(1 -2ν) + αiπ) ch πq As we said G is a meromorphic function on C, which has poles at the points θ = ±πi. To see this, let us derive a functional equation on G :

F (θ) = G(θ + i π 2 ) + G(θ -i π 2 ) = 1 2π R dk sh( π 2ν (1 -3ν)k) sh( π 2ν (1 -2ν)k) e ikθ .
(4.226)

The function F can be given an explicit formula (see the result 3.511.5 in [START_REF] Gradshteyn | Table of integrals, series and products[END_REF]) : Here we explain how to obtain the constraints from the reection relations (4.190) and (4.191), that were rst established in [START_REF] Negro | Reection relations and fermionic basis[END_REF]. Recall that we expect the following form for the two polynomials (4.241)

The equations (4.240) and (4.241) allow to express the terms A I + ,I -,j and B I + ,I -,j in terms of Q E I + ,I -,j and Q O I + ,I -,j . We can now check the validity of the constraints (4.190), (4.191). The rst one can be rewritten as : Similarly, the right hand side is manifestly an odd function of a.

Conclusion

In this conclusion, we highlight the main results of this work and propose some further directions of investigation.

The ultimate achievement of this PhD research is the computation of the one point functions of fermionic operators in the Super sine-Gordon model. They are constructed out of a single function Ω, dened by a set of scaling equations, and which origin is traced to the computation of vacuum expectation values of lattice operators on the underlying 19-vertex model. On one hand, the analysis of the scaling equations in the conformal regime allowed to compute the one point functions of specic fermionic operators in the UV limit, and to establish the connection between the usual Virasoro description of CFT and the fermionic part of the fermion-current description. On the other hand, these results have been checked by an alternative method that relies on the reection symmetry of the ssG model. We emphasize again that both techniques completely dier in their nature and are both based on conjectures. The matching of the results from both sides is a very strong assertion for both of them.

In this eld theoretic context, notice that for what concerns the primary elds, we have obtained the most important quantity for applications. Indeed, we argued that the simplest non-chiral fermionic descendant provides the ratio of one point functions of the operators W α+ 2β 2 1-β 2 and V α . The former operator is exactly the most relevant contribution occurring in the OPE of the latter one with the perturbing operator W 2β 2 1-β 2

. In other words the ratio of one point functions in question provides the most important contribution to the conformal perturbation theory.

A second, just as important result produced in this thesis, is the verication of the decomposition of specic operators on the fermion-current basis, on the lattice. From a more conceptual point of view, this can be taken as an argument in favor of the completeness of the spin 1 basis. A research direction that would be interesting to consider is to study the structure of the set of elements in the fermion-current decomposition for a given operator, that is conditions such that (3.35). However, in the study of this problem (as well as in the continuation of our work concerning the density matrices for example) one has to cope with extremely involved computer calculations.

From the point of view of QFT, the natural direction to pursue is to consider the entire space of local operators adding those created by the KM currents. The one point functions of the latter include the function ω(θ, θ ). Recall the equation (4.136). Using this equation and the known Ω(θ, θ ) one can, in principle, reconstruct ω(θ, θ ). The result is not unique, one has to nd a way of xing the quasi-constants (anti-periodic with period πi functions of θ, θ ). When doing this numerically, it is hard to achieve a good precision which makes it dicult to put forward a conjecture based on the interpolation. This is a technical diculty which we hope to overcome in the future.

Having in hand the scaling equations for the KM currents, one could extract (provided that such quantities exist) the analogs of the coecients D m (a) (4.147) that are actually the starting point of the work on the reection relations. The understanding of the properties of the currents under reections represents an important advance since it would a priori provide an independent, and purely algebraic path for the calculation of the one point functions. In particular the KM currents are necessary to establish the full correspondence between the Super Virasoro and the fermion-current basis.

Furthermore, the solution to the "reection problem" for currents would bring more understanding of the integrable structure of the higher spin models. As we said, we do not expect the appearance of any new types of operators for spin s ≥ 3 2 , and at higher spins all basis elements should be consistently organized in the following matrix : where the dots represent higher spin currents. This picture is a generalization of a similar matrix expression for the spin 1 fermion-current basis given in [START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF]. The knowledge of the current reection transformation rules could give an independent approach for the study of such models, short-cutting the general Suzuki equations [START_REF] Suzuki | Spinons in magnetic chains of arbitrary spins at nite temperatures[END_REF].

-

  QFT : Quantum Field Theory -CFT : Conformal Field Theory -SCFT : Supersymmetric Conformal Field Theory -IQFT : Integrable Quantum Field Theory -OPE : Operator Product Expansion -sG : sine-Gordon -shG : sinh-Gordon -ssG : Super sine-Gordon -IR : Infra-Red -UV : Ultra-Violet -TBA : Thermodynamic Bethe Ansatz -SUSY : Supersymmetry -6 V : 6-vertex (model) -19 V : 19-vertex (model) List of gures 1.1 Insertion of a local operator O on a cylinder with boundary conditions ∆ ± . 1.2 Factorization of the scattering process of 3 particles : the Yang-Baxter equation. 2.1 Six vertex model on the cylinder. 2.2 Conventions for the weight of a vertex. 2.3 Congurations of the six-vertex model. 4.1 SCFT on a cylinder with the insertion of a local operator O and boundary conditions ∆ ± . 4.2 Super sine-Gordon model on a cylinder with the insertion of a local operator O and boundary conditions δ P . 4.3 19 vertex model on a cylinder with quasi-local insertion.

Figure 1 . 1 :

 11 Figure 1.1: Insertion of a local operator O on a cylinder with boundary conditions ∆ ± .

Figure 1 . 2 :

 12 Figure 1.2: Factorization of the scattering process of 3 particles : the Yang-Baxter equation. Each line of the picture is interpreted as a trajectory of one of the particles (with rapidities θ 1,2,3 ) in the two dimensional space-time. An intersection between the lines correspond to the occurrence of a scattering process described by the corresponding entry of the S matrix.

Figure 2 . 2 :

 22 Figure 2.2: Conventions for the weight of a vertex

Figure 2 . 3 :

 23 Figure 2.3: Congurations of the six-vertex model

1 .

 1 It provided a basis of local operators on the lattice, for which the vacuum expectation values are calculated by rather simple formulae involving determinants (see(2.191)). The vacuum expectation values are given by determinants involving a single function of two variables ω, multiplied by a factor depending on a certain function ρ (of one variable). Both these function are given only in terms of Matsubara data[START_REF] Boos | Hidden Grassmann structure in the XXZ model[END_REF][START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Jimbo | Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction[END_REF].

( 2

 2 .194) is a polynomial in ζ 2 of degree n. The singularities of ω hol are located at the zeroes of the Matsubara transfer matrix eigenvalue T (ζ, κ).

2 .

 2 Normalization condition. First introduce the function ϕ ϕ

[

  H, Tr M (T S,M )] = 0 , which reects the fact that H is just one element of a huge commutative algebra generated by the transfer-matrices Tr M (T S,M ) computed for all possible Matsubara chains. Denote by Md the data for a given Matsubara chain (length, spins, inhomogeneities). For a local operators O localized (acting non-trivially) on a nite subchain of the Space chain, dene the expectation value O Md = Tr S Tr M (T S,M • O) Tr S Tr M (T S,M ) .

Figure 4 . 1 :

 41 Figure 4.1: SCFT on a cylinder with the insertion of a local operator O and boundary conditions ∆ ± .

(4. 61 ) 4

 614 With the correspondence that e ϕ = ϕ √ 2 and e µ = µb -2

1 -

 1 (-1) r-s ) .

Figure 4 . 2 :

 42 Figure 4.2: Super sine-Gordon model on a cylinder with the insertion of a local operator O and boundary conditions δ P .

√ 2 /

 2 β we can introduce additional parameter P which is the Floquet index of the Matsubara wave-function. The one point function (partition function with insertion) is denoted by O(0) P,R .

( 4 . 88 )

 488 the other pair being treated quite similarly. The action on the local operators is

( 4 .

 4 91)with κ being a parameter. Graphically this is represented on the gure 4.3.

Figure 4 . 3 :

 43 Figure 4.3: 19 vertex model on a cylinder with quasi-local insertion. The broken lines represent the spaces where the action of O is non trivial, full circles represent the operator q κHj , empty circles represent the operator q (κ+α)Hj .

  equation we derive b(θ) = T 1 (θ) Q(θ + 2πi) Q(θ -πi) a(θ + πi) d(θ)d(θ + πi).

( 4 .

 4 107)Multiplying the latter equation by the conjugated one for real θ one easily derives the second important equation log y(θ) = (L * log(BB))(θ) .

  107) we rewrite this as follows

2 e

 2 -ikθ dk .

( 4 .

 4 115)The integrals containing log B converge at innities very rapidly because the absolute value of the integrand is estimated as exp(-Const • e |θ| ) with positive Const. The integral with log( 1 2 Y )

S

  (x, a, b) = ∞ k=0 a 2k S k (x, b) .

  x, b) = F (x, a, b) .

  ρ(θ) = P(θ) = 1 in the weak sense the operators b * (ζ), c * (ζ) coincide with the operators b * (ζ), c * (ζ).

  {b r , b s } = δ r,-s . (4.163) We will call the combination of (4.162) and (4.163) the Super Heisenberg algebra (together with the commutation relation [a k , b r ] = 0). The primary eld e a √ 2 φ(0) is identied with the highest weight vector of the Super Heisenberg algebra : e a √ 2 φ(0) ⇐⇒ e a √ 2 φ0 |0 , a k |0 = b r |0 = 0 , k, r > 0 .

V a = e a √ 2 (

 2 φ0+φ0) |0 ⊗ |0 .

[ 3 with c = 3 2 ( 1 + 2 -

 3212 l m , l n ] = (m -n)l m+n + c 12 m(m 2 -1)δ m,-n , {s r , s s } = 2l r+s + c 2Q 2 ), and since S is a primary eld of conformal dimension ∆ = 3 2 we also have the relation :[l m , s r ] = m r s m+r .

3 2 s - 1 2 } and {a 2 - 1 , b -3 2 b - 1

 31211 

2 -

 2 a(a + Q) .

( 4 .

 4 167)Its determinant factorizes and gives as expected the null-vector conditions :det(U (2) ) = -1 4 a 2a + b + b -1 (a + b)(a + b -1) .

× 2 ×

 2 (a + 4b)(a + 5b)(a + 4b -1 )(a + 5b -1 ) × a + b + b -1 2a + b + b -1 5 2a + b + 3b -1 2 2a + 3b + b -1 2a + 5b + b -1 2a + b + 5b -1 ,the null vector contribution, and D

( 4 .

 4 176)For σ 1 we must consider an additional term coming from the change in the passage fromD 2m-1 (a) to D 2m-1 (Q -a) : D 2m-1 (Q -a) = D 2m-1 (-a) a -(2m -1)b -1 a + (2m -1)b ,

a

  -(2m -1)b a + (2m -1)b -1 γ CFT * 2m-1 ,(4.178)γ CFT * 2m-1 → a -(2m -1)b -1 a + (2m -1)b β CFT * 2m-1 .

8 ( 9

 89 a = C I + ,I -P E I + ,I -({l -k , s -r }, ∆ a , c) + d a P O I + ,I -({l -k , s -r }, ∆ a , c) V a ,(4.179) where C I + ,I -is the Cauchy determinant and d a is the function (4.152) rewritten in the variables a, b :d a = 1 -c) (16∆ α + 1 -c) = 1 4 (b -b -1 )(Q -2a) .

( 4 .

 4 180)The functions P E I + ,I -and P O I + ,I -(E, O superscripts stand respectively for even and odd) are polynomials in the modes of the Super Virasoro algebra, depending rationally on the parameters ∆ a , c. They are dened modulo the local integrals i 2k-1 and satisfy the symmetry relations :P E I + ,I -= P E I -,I + , P O I + ,I -= -P O I -,I + .

(4. 181 )

 181 The decomposition (4.179), as well as the transformation rules (4.176) and (4.178), imply a relation of the typeβ CFT * I + γ CFT * I - V a = C I + ,I - 2j-1∈I + (a + (2j -1)b -1 ) 2j-1∈I - (a + (2j -1)b) × Q E I + ,I -({a -k , b -r }, b r }, a 2 , Q 2 ) + g a Q O I + ,I -({a -k , b -r }, a 2 , Q 2 ) V a ,(4.182)with g a = a(b -b -1 ) ,

= l k 2 - 2 ) 1 DXY

 221 and obtain the decomposition by solving the reection constraints implied by (4.182). Let us briey recall the main steps. Consider that at an (even) level k = |I + | + |I -| we have a basis of Super Virasoro generators {v d } (by convention we consider that v (k) 1 that are related to the Super Heisenberg basis {h (k) 1 , ..., h (k)d } modulo the action of integrals of motions by : U (k) (a) the passage matrix, whose determinant can be factorized :det(U (k) (a)) = C (k) N (k) (a, b) D (k) V (∆ a , c) D (k) H (a 2 , Q 2 ) ,(4.187)where N (k) (a, b) is the null vector contribution. We look for P E I + ,I -, P O I + ,I -in the form :P E I + ,I -= v 1 + I + ,I -,i (∆ a , c)v i , I + ,I -,i (∆ a , c)v i ,

  jb -1 ) j∈I - (a + jb) + j∈I + (a + jb) j∈I - (a + jb -1 )   , (4.188) T - I + I -(a) = 1 2(b -b -1 )   j∈I + (a + jb -1 ) j∈I - (a + jb) -j∈I + (a + jb) j∈I - (a + jb -1 )   .(4.189) 

X

  I + ,I -,i U (k) i,j (a) -(Q 2 -4)(Q -2a)T - I + I -(-a) d i=2 Y I + ,I -,i U (k) i,j (a)} even in a, 2 -4)(Q -2a)T + I + I -(-a) d i=2 Y I + ,I -,i U (k) i,j (a)} odd in a,

( 4 . 2 T 2 {S 1 2 2 V 2 S

 422122 194)This strongly conrms the results obtained by interpolation.4.8 Appendix 1 : One point functions on the cylinderHere we present two more examples of direct calculations of one point functions.Example 1. Let us now compute the general eld s -r W a . We have by denition and using the relations (4.44),(4.45) :s -r W a (y) = cy dx 2πi(x -y) r-1 (S(x)W a (y)) = -+ (x), W a (y)} -W a (y)S + (x) + S -(x)W a (y) {W a (y), S -(x)} -S -(x)W a (y) + W a (y)S + (x) .Using the commutation relations (4.34),(4.35) we arrive at :s -r W a (y) =cy dx 2πi(x -y) r-1 a (y)ξ(x -y) -2∆ a V a (y)ξ (x -y)cy dx 2πi(x -y) r-1 -(x)W a (y) -W a (y)S + (x) .

( 4 . 5 2 s - 3 2

 453 196) which is natural considering the relation {S -1 2 , S -1 2 } = 2L -1 holding in the Super Virasoro algebra.Example 2. Let us compute the one point function of s -V a . We have already seen that :s -3 2 V a = V a (y)S + (y) + S -(y)V a (y) ,(4.197)and we will denote this eld by Ψ(y). Then we have s -5 2 Ψ(y) =c - y dx 2πi(x -y) 2 {S + (x), Ψ(y)} -Ψ(y)S + (x) + S -(x)Ψ(y) + c + y dx 2πi(x -y) 2 {Ψ(y), S -(x)} + Ψ(y)S + (x) -S -(x)Ψ(y) .

( 4 .

 4 198)When applying the boundary states the non-bracketed terms will disappear. Therefore, we only need to compute :s -5 2 Ψ(y) =c - y dx 2πi(x -y) 2 {S + (x), Ψ(y)} + c + y dx 2πi(x -y) 2 {Ψ(y), S -(x)} .

( 4 .

 4 199)Working modulo terms that vanish when ∆ -| and |∆ + are applied, we have :{S + (x), Ψ(y)} = [S + (x), V a (y)]S + (y) + V a (y){S + (x), S + (y)} + {S + (x), S -(y)}V a (y) + S -(y)[V a (y), S + (x)] = {S + (x), S -(y)}V a (y) = {S(x), S -(y)}V a (y) .

  ), S -(x)} = [S -(x), V a (y)]S + (y) + V a (y){S -(x), S + (y)} + {S -(x), S -(y)}V a (y) + S -(y)[S -(x), V a (y)] = V a (y){S -(x), S + (y)} = V a (y){S(x), S + (y)} .

( 4 .

 4 201)Using the explicit expressions for {S(x), S -(y)} and {S(x), S + (y)} (4.32) and(4.33) in the equation for s -5 2 Ψ(y) (be careful the variables are in opposite order compared to (4.32),(4.33) which produces an extra minus sign) :s -5 2 Ψ(y) = c - y dx 2πi(x -y) 2 2T (x)ξ(x -y) + c 3 ξ (x -y) V a (y) + c + y dx 2πi(x -y) 2 V a (y) 2T (x)ξ(x -y) + c 3 ξ (x -y) .

3 :

 3 The kernel G α

  θ -σ j )) ,(4.212) where the σ j are the Bethe roots and the term e νκθ can be treated separately. Dene the function A :A(x) = G(x) + G(x + iπ) .

( 4 .

 4 213)The dening property of G was the fact that it solves the equation (4.110) :m j=1 R A(x -y) (f (y + iπ -σ k ) -f (y -iπ -σ k )) dy = m j=1 f (x + 2iπ -σ k ) -f (x -iπ -σ k ) ,(4.214)where we introduced the basic function f (θ) = coth(νθ) .

g

  (θ) = e -ανθ coth(νθ) .

( 4 .

 4 216)The equation (4.214) with the new function g can be solved term by term, applying the Fourier transform dened by h(q) = R h(y)e iyq dy , h(y) = R h(q)e -iqy dy 2π .

R

  dy e iqy g(y+ ic) = e -ανic iπ ν e -(q+iαν)( π 2ν -c) sh( π 2ν (q + iαν)). the Sokhotsky relations :cth(β(x ± i0)) = cth(βx) ∓ iπ β δ(x) ,

e

  iax cth(β(x ± i0))dx = iπ β e ∓ πa 2β sh( πa 2β ).

( 4 .

 4 221)The analytic continuation of the previous formula reads :∞ -∞ e iax cth(β(x + ic))dx = iπ β e -a( π 2β -c) sh( πa 2β ).

2 e

 2 iqθ dq .

( 4 .F

 4 227)Replacing :a = θ , β = π 2ν (1 -3µ) , γ = π 2ν (1 -2ν), we obtain : of the denominator of F gives :

( 4 .π 2 F 2 G 4 :

 4224 229)From this relation one can deduce the value of the residue :Res θ=±i (θ) = Res θ=±i π Constraints from reection relations

I 1 DXY

 1 + ,I -and P O I + ,I -:P E I + ,I -= v 1 + I + ,I -,i (∆ a , c)v i , I + ,I -,i (∆ a , c)v i .

( 4 .V

 4 232)They provide the decomposition of a fermionic element of the fermion-current basis on the Super Virasoro basis :a = C I + ,I -P E I + ,I -({l -k , s r }, ∆ a , c) + d a P O I + ,I -({l -k , s r }, ∆ a , c) V a .(4.233)This decomposition has to be compatible with the expansion on the Super Heisenberg algebraβ CFT * I + γ CFT * I - V a = C I + ,I - 2j-1∈I + (a + (2j -1)b -1 ) 2j-1∈I - (a + (2j -1)b) × Q E I + ,I -({a -k , b r }, b r }, a 2 , Q 2 ) + g a Q O I + ,I -({a -k , b r }, a 2 , Q 2 ) V a .

( 4 . 1 DX 1 D

 411 234)Recall that U is the passage matrix between the Super Virasoro {v(k) i } d i=1 and the Super Heisenberg{h (k) i } di=1 bases, at level k : with an arbitrary basis element indexed by j. We rst start by plugging the polynomial expressions (4.231),(4.232) in the decomposition (4.233) and by factorizing the denominators :I + ,I -,i (∆ a , c)U ij + d a i Y I + ,I -,i (∆ a , c)U ij = + ,I -,j (a 2 , Q 2 ) + g a Q O I + ,I -,j (a 2 , Q 2 ) × 2k-1∈I + (a + (2k-1)b -1 ) 2k-1∈I - (a + (2k -1)b) .

H (a 2 )V

 2 U 1j + i X I + ,I -,i (∆ a , c)U ij + d a i Y I + ,I -,i (∆ a , c)U ij (∆(-a)) Q E I + ,I -,j (a 2 , Q 2 ) + g a Q O I + ,I -,j (a 2 , Q 2 ) × 2k-1∈I + (a + (2k -1)b -1 ) 2k-1∈I - (a + (2k -1)b) .

(4. 237 )

 237 Dene the product L I + I -(a) :L I + I -(a) = 2k-1∈I + (a + (2k -1)b -1 ) 2k-1∈I - (a + (2k -1)b) ,and notice that it implies the relations (recall (4.188),(4.189)) :T + I + I -(a) = 1 2 (L I + I -(a) + L I -I + (a)) ,(4.238)T - I + I -(a) =12(b -b -1 ) (L I + I -(a) -L I -I + (a)) .

(4.239) 4 . 11 .V

 411 APPENDIX 4 : CONSTRAINTS FROM REFLECTION RELATIONS 135We rewrite the relation (4.237) using the natural notations for the left hand side :A I + ,I -,j + d a B I + ,I -,j = L I + I -(a) Q E I + ,I -,j + g a Q O I + ,I -,j ,(4.240)where we have redened the functions Q, by multiplying them by the even in a factor D (∆(-a)) independent of I + , I -. Now, performing the replacement I + ↔ I -in the previous equation (4.240) we obtain :A I + ,I -,j -d a B I + ,I -,j = L I -I + (a) Q E I + ,I -,j -g a Q O I + ,I -,j .

2 L.

 2 T + I + I -(-a)A I + ,I -,j -d a (b -b -1 )T - I + I -(-a)B I + ,I -,j = 1 I + I -(-a)L I -I + (a) Q E I + ,I -,j -g a Q O I + ,I -,j + L I -I + (-a)L I + I -(a) Q E I + ,I -,j + g a Q O I + ,I -,j . (4.242)The right hand side of this expression is indeed an even function (because of the fact thatQ E I + ,I -,jand Q O I + ,I -,j are even functions of a). Now we write out the second constraint :-T -I + I -(-a)A I + ,I -,j + d a b -b -1 T + I + I -(-a)B I + ,I -,j = 1 2(b -b -1 ) -L I + I -(-a)L I -I + (a) Q E I + ,I -,j -g a Q O I + ,I -,j + L I -I + (-a)L I + I -(a) Q E I + ,I -,j + g a Q O I + ,I -,j

  j + ... c * j 0 ... j+ j -... j0 b * ... jc * t *

  {β 1 , ..., β m , a m+1 , ..., a L , d 1 , ...d L }, and the equations (3.8) will be used to obtain the remaining unknown {a 1 , ..., a m } for which these equations are linear. This procedure allows to compute eciently a very large quantity of sets {β 1 , ..., β m , a 1 , ..., a L , d 1 , ...d L } that satises the Bethe equations. From them, one can compute ω thanks to the formulae (3.9), (3.10). The vacuum expectation values of the operators b *

	of ω(λ, µ) :	i c * j are encoded in the Taylor decomposition

  9 x 2 I 7 x 3 I 7 x 4 I 7 x 5 I 7 x 6 I 7 x 7 I 7 x 8 I 7 x 9 I 7 x 10 I 7

	where x k are complex numbers. A basis of the invariant operators has therefore :
	dim End sl2 (V (2) ⊗4 ) =	m 2 µ = 1 + 9 + 36 + 36 + 9 = 91 ,
	µ			
				
		...	      	,	(3.57)
			...	

  .[START_REF] Klümper | Correlation functions of the integrable isotropic spin-1 chain : algebraic expressions for arbitrary temperature[END_REF] 

	404232227 375 -9342222274 3375 -185854018 -491712704π 2 225 + 3786411208π 2 + 185730778112π 4 118125 675 -204291811264π 4 -51207443456π 6 99225 50625 + 844871959808π 6 + 430817272832π 8 5315625 637875 -3317129090528π 8 -133707218944π 10 22325625 15946875 + 29414235136π 10 + 218843316224π 12 1302328125 -240715440128π 12 1913625 225 + 3388178248π 2 2025 -7311382816π 4 6075 + 1866490624π 6 4725 -84798819488π 8 1366875 + 131590544384π 10 28704375 -43075346432π 12 334884375 185854018 225 -3388178248π 2 2025 + 7311382816π 4 6075 -1866490624π 6 4725 + 84798819488π 8 1366875 -131590544384π 10 28704375 + 43075346432π 12 334884375 -2070117532 1125 + 838761424π 2 225 -407255145248π 4 151875 + 37427772416π 6 42525 -2204247573152π 8 15946875 + 41884171264π 10 4100625 -479869116416π 1674421875 -37112908 75 + 677237456π 2 675 -21927627104π 4 30375 + 50381026048π 6 212625 -5651546528π 8 151875 + 78929896448π 10 28704375 -5167489024π 12 66976875 1960753508 3375 -2382006128π 2 2025 + 128488421824π 4 151875 -177128056576π 6 637875 + 2086376641568π 8 47840625 -2642977792π 10 820125 + 151402405888π 1674421875 -1140847442 1125 + 4160674568π 2 2025 -224470574848π 4 151875 + 825174272π 6 1701 -3644784037376π 8 47840625 + 161598654464π 10 28704375 -264492384256π 1674421875 -827056762 3375 + 201234424π 2 405 -18098716192π 4 50625 + 74848177664π 6 637875 -881582040512π 8 47840625 + 13028773888π 10 9568125 -21324775424π 558140625 74515294 225 -271293176π 2 405 + 4876428992π 4 10125 -33611052032π 6 212625 + 33934900736π 8 1366875 -650131456π 10 354375 + 1915322368π 12 37209375 78829808 45 -10062350912π 2 2835 + 36192085616π 4 14175 -9978499072π 6 11907 + 1763000771104π 8 13395375 -130276836352π 10 13395375 + 42645397504π 156279375 420046888 675 -3575252476π 2 2835 + 192899888728π 4 212625 -265917707168π 6 893025 + 3132114523456π 8 66976875 -138867961856π 10 40186125 + 227289235456π 2344190625 -68496272 675 + 584276464π 2 2835 -31543135952π 4 212625 + 43485702784π 6 893025 -512180088544π 8 66976875 + 22707782656π 10 40186125 -37166096384π 12 2344190625 -36764764 135 + 521329924π 2 945 -5624977196π 4 14175 + 23262898208π 6 178605 -125289232π 8 6125 + 20247798272π 10 13395375 -6627979264π 12 156279375 -183901532 675 + 58034912π 2 105 -84564734932π 4 212625 + 116571846208π 6 893025 -152554745216π 8 7441875 + 12174742528π 10 8037225 -99635789824π 2344190625 1231813072 675 -3492602432π 2 945 + 565233578512π 4 212625 -779200606976π 6 893025 + 3059344128928π 8 22325625 -406927299584π 10 + 666023993344π 12 40186125 617494144 135 -1250769248π 2 135 + 283399101952π 4 42525 -1953380985856π 6 893025 + 43825303936π 8 127575 -8160948224π 10 321489 + 333929414656π 12 468838125 1030971008 675 -250846216π 2 81 + 473760937088π 4 212625 -130619120384π 6 178605 + 1098916663808π 8 9568125 -68211193856π 10 8037225 + 558218510336π 2344190625 -80483584 225 + 19547776π 2 27 -110705418112π 4 212625 + 50869714432π 6 297675 -85597353344π 8 3189375 + 79697186816π 10 40186125 -130439348224π 12 2344190625 -11432032 15 + 208415008π 2 135 -47223509696π 4 42525 + 4340032000π 6 11907 -36514525408π 8 637875 + 169989407744π 10 40186125 -55644790784π 12 468838125 -18479104 27 + 562353512π 2 405 -42489515872π 4 42525 + 292857740288π 6 893025 -98551339744π 8 1913625 + 30585930752π 10 8037225 -50061893632π 12 468838125 2909268608 675 -3537135904π 2 405 + 445291625216π 4 70875 -1841560970752π 6 893025 + 3098719174528π 8 9568125 -320571011072π 10 + 174895366144π 12 13395375 144414784 225 -1227705368π 2 945 + 66219642464π 4 70875 -91285485824π 6 297675 + 1075237746848π 8 22325625 -47673054208π 10 13395375 + 78026989568π 781396875 129812048 675 -221233294π 2 567 + 59700389548π 4 212625 -82300336576π 6 893025 + 969359460416π 8 66976875 -42978031616π 10 40186125 + 70343950336π 12 2344190625 -46994912 675 + 79717328π 2 567 -21483253552π 4 212625 + 29613083392π 6 893025 -348817706464π 8 66976875 + 15465761792π 10 40186125 -25312436224π 12 2344190625 -79408492 675 + 135116980π 2 567 -1349938396π 4 7875 + 50246919104π 6 893025 -591849928064π 8 66976875 + 8746969088π 10 13395375 -14316290048π 12 781396875 -59992804 675 + 511203466π 2 2835 -27588875984π 4 212625 + 38031430784π 6 893025 -447939490288π 8 66976875 + 19860086272π 10 40186125 -32506155008π 12 2344190625 12746048 25 -2930014664π 2 2835 + 158098610336π 4 212625 -14529763328π 6 59535 + 2567088068192π 8 66976875 -113816415232π 10 40186125 + 186286579712π 12 2344190625 1532695424 675 -13039892672π 2 2835 + 703480434304π 4 212625 -969775171072π 6 893025 + 11422681948928π 8 66976875 -506447372288π 10 40186125 + 828911976448π 12 2344190625 488795168 675 -4161680672π 2 2835 + 74851987216π 4 70875 -61910671616π 6 178605 + 3646031254976π 8 66976875 -53884260352π 10 13395375 + 88194301952π 781396875 -46654208 225 + 397096256π 2 945 -64279369024π 4 212625 + 29537744896π 6 297675 -347911246336π 8 22325625 + 46275387392π 10 40186125 -75739168768π 12 2344190625 -52596176 135 + 446841200π 2 567 -24096220304π 4 42525 + 6643353344π 6 35721 -391260615584π 8 13395375 + 17347492864π 10 8037225 -5678522368π 12 93767625 -24667376 75 + 378332144π 2 567 -11343563936π 4 23625 + 46910672384π 6 297675 -1657538929888π 8 66976875 + 24496436224π 10 13395375 -40094949376π 781396875 1354493312 675 -142391232π 2 35 + 622359800192π 4 212625 -857955155968π 6 893025 + 3368477201408π 8 22325625 -448041877504π 10 40186125 + 733323198464π 2344190625 147252608 135 -695151616π 2 315 + 22494745472π 4 14175 -66450086912π 6 127575 + 365268180736π 8 4465125 -80974979072π 10 13395375 + 3786604544π 12 22325625 212055232 675 -1806138064π 2 2835 + 97466597392π 4 212625 -19194930176π 6 127575 + 1582611693184π 8 66976875 -70167578624π 10 40186125 + 16406413312π 334884375 -28535168 225 + 726369088π 2 2835 -4350658496π 4 23625 + 285582848π 6 4725 -635783665408π 8 66976875 + 9396355072π 10 13395375 -313851904π 12 15946875 -15238256 75 + 233114320π 2 567 -6985125296π 4 23625 + 4126909184π 6 42525 -1020833443808π 8 66976875 + 15087008768π 10 13395375 -3527548928π 12 111628125 -10920176 75 + 279070784π 2 945 -45179406304π 4 212625 + 109842944π 6 1575 -244521346336π 8 22325625 + 32523705344π 10 40186125 -7604690944π 12 334884375 558060928 675 -4750161664π 2 2835 + 256300547968π 4 212625 -10095159808π 6 25515 + 4161772366336π 8 66976875 -184519442432π 10 40186125 + 43143528448π 12 334884375 40440688 225 -114205144π 2 315 + 6154972336π 4 23625 -5091104768π 6 59535 + 299867781376π 8 22325625 -4431910912π 10 4465125 + 7253491712π 12 260465625 27763856 675 -236063822π 2 2835 + 12732590476π 4 212625 -17552173024π 6 893025 + 206745415232π 8 66976875 -1833315328π 10 8037225 + 15003123712π 12 2344190625 -17693456 675 + 49958624π 2 945 -8077097696π 4 212625 + 11135112064π 6 893025 -4858264256π 8 2480625 + 232640512π 10 1607445 -9518661632π 12 2344190625 -24084992 675 + 203398936π 2 2835 -3651049424π 4 70875 + 15098728672π 6 893025 -177869116384π 8 66976875 + 525770752π 10 2679075 -4302430208π 12 781396875 -12905536 675 + 36636266π 2 945 -5929821236π 4 212625 + 8174406848π 6 893025 -32094583904π 8 22325625 + 4268972032π 10 40186125 -6987210752π 12 2344190625

  Ω 1,3 comp. Ω 1,3 analyt. Ω 1,3 comp. Ω 1,3 analyt. Ω 1,3 comp. Ω 1,3 analyt.

				1 analyt.
		0.02 -0.059287494 -0.0592875 -0.057099995	-0.0571	-0.055537495 -0.0555375
		0.04 -0.058087495 -0.0580875 -0.055899995	-0.0559	-0.054337495 -0.0543375
		0.06 -0.056087495 -0.0560875 -0.053899995	-0.0539	-0.052337495 -0.0523375
		0.08 -0.053287495 -0.0532875 -0.051099995	-0.0511	-0.049537496 -0.0495375
		0.1 -0.049687495 -0.0496875 -0.047499996	-0.0475	-0.045937496 -0.0459375
		0.12 -0.045287496 -0.0452875 -0.043099996	-0.0431	-0.041537497 -0.0415375
		0.14 -0.04008745 -0.0400875 -0.037899997	-0.0379	-0.03633745 -0.0363375
		0.16 -0.034087497 -0.0340875 -0.031899998	-0.0319	-0.030337498 -0.0303375
		0.18 -0.027287498 -0.0272875 -0.025099998	-0.0251	-0.023537499 -0.0235375
		0.2 -0.019687499 -0.0196875 -0.017499999	-0.0175	-0.015937400 -0.0159375
		Coecient Ω 1,3 and β 2 = 3 5
		α = 0.2	α = 0.4	α = 0.6
		P	
		0.02 0.01612247 0.01612249 0.01591101 0.01591102 0.01577159 0.01577160
		0.04 0.01575287 0.01575289 0.01554374 0.01554376 0.01540599 0.01540600
		0.06 0.01514328 0.01514329 0.01493803 0.01493804 0.01480306 0.01480307
		0.08 0.01430328 0.01430329	0.0141035	0.01410349 0.01397239 0.01397240
		0.1 0.01324632 0.01324633 0.01305352 0.01305353 0.01292743 0.01292744
		0.12 0.01198969 0.01198969 0.01180544 0.01180545 0.01168546 0.01168547
		0.14 0.01055449 0.01055449 0.01038035 0.01038036 0.01026760 0.01026760
		0.16 0.008965691 0.008965693 0.008803224 0.008803226 0.008698802 0.008698804
		0.18 0.007252093 0.007252093 0.007102848 0.007102848 0.007007872 0.007007871
		0.2 0.005446336 0.005446333 0.005311868 0.005311867 0.005227447 0.005227444
		Coecient Ω 3,3 and β 2 = 1 2
		α = 0.2	α = 0.4	α = 0.6
	P	Ω 3,3 comp.	

Ω 3,3 

analyt. Ω 3,3 comp.

Ω 3,3 analyt. Ω 3,3 comp.

  For β CFT * 2m-1 and γ CFT * 2m-1 we have clear transformation rules under σ 1,2 . As in the non-supersymmetric case for σ 2

		CFT * 2m-1 .	(4.175)
	β CFT * 2m-1 → γ CFT * 2m-1 ,	γ CFT * 2m-1 → β CFT * 2m-1 .

  1,1 = P 2 -On this level only two operators l -2 and s -3 2 s -1 2 are present. The calculation of one point functions on the cylinder was explained in Subsection 4.1.2 and gave in this case (4.59):

						1 16	-	∆ a 8	.	(4.183)
	l -2 V a = δ P -	c 24	-	∆ a 12	,	s -3 2 s -1 2	=	∆ a 12	.

  and (4.191) with the use of (4.168) and (4.170), and obtain the following expressions : {3,1} . One can now compute the one point function of

		P E {1,3} = l 2 -2 +	-45 + 4c 18	-	∆ a 3	l -4 +	45 -4c 36	+	∆ a 6	s -7 2 s -1 2 +
		1 4	s -5 2 s -3 2 -	1 2	l -2 s -3 2 s -1 2 ,
		P O {1,3} =	1 3	l -4 -	1 6	s -7 2 s -1 2 ,
	as well as the mirror polynomials P E {3,1} , P O
	P E {1,3}	∓ d a P O {1,3}							
	{3,1}	{3,1}							

  7 2 s -5 2 , s -9 2 s -3 2 , s -11 2 s -1 2 , l 2 -2 s -3 2 s -1 2 , l -2 s -7 2 s -1 2 , l -2 s -5 2 s -3 2 , l -3 s -5 2 s -1 2 .

  2 a + 1976∆ a -80c 2 -96c∆ a + 2076c -18381 l -6 + 1 96 12∆ 2 a + 228∆ a -16c∆ a -12c -27 l 2 68∆ a + 8c∆ a -8c + 291 l -3 s -5 2 s -1 2 , 804∆ a + 2c 2 + 88c∆ a -72c + 1315 s -11 2 s -1 2 + + ∆ a + 2c∆ a -c + 38 l -3 s -5 2 s -1 2 .

										-3 +
			1 192		-28∆ 2 a + 192∆ a -16c∆ a -20c + 117 s -7 2 s -5 2 +
			1 64	-4∆ 2 a + 92∆ a -8c∆ a -8c + 105 s -9 2 s -3 2 +
			1 960		28∆ 2 a + 404∆ a + 56c∆ a -136c + 6021 s -11 2 s -1 2 +
			-	1 2	l 2 -2 s -3 2 s -1 2 +	1 12	(4∆ a -2c + 27) l -2 s -7 2 s -1 2 +
	1 16 a -as well as (9 -2∆ a ) l -2 s -5 2 s -3 2 + 1 192 4∆ 2
	P E {1,5} = l 3 -2 +	1 90	79∆ 2 a + 1004∆ a -12c 2 -98c∆ a + 322c -2855 l -6 +
	1 12	2∆ 2 a + 12∆ a -2c∆ a -c -2 l 2 -3 +	1 36	∆ 2 a + 7∆ a -2c∆ a -3c + 18 s -7 2 s -5 2 +
	1 8 a --(2∆ a -c + 11) s -9 2 s -3 2 + 1 180 -19∆ 2 1 2 l 2 -2 s -3 2 s -1 2 + 1 9 (2∆ a -c + 14) l -2 s -7 2 s -1 2 +
	1 2 a Finally we obtain l -2 s -5 2 s -3 2 + 1 36 -∆ 2	
	P O {1,5} =	1 30	(-136∆ a -12c + 335) l -6 -∆ a l 2 -3 +	1 12	(-4∆ a -3) s -7 2 s -5 2 +
	-	3 4	s -9 2 s -3 2 +	1 60	(76∆ a -8c -115) s -11 2 s -1 2 + -	2 3	l -2 s -7 2 s -1 2 +	1 12	(4∆ a -5) l -3 s -5 2 s -1 2 .

  3968∆ a -35c 3 -210c 2 ∆ a + 2520c 2 δ P -462c 2 -420c∆ 2 a -2100c∆ α + 10080c∆ a δ P -60480cδ 2 P + 21168cδ P -1504c+ 10080∆ 2a δ P -120960∆ a δ 2 P + 48384∆ a δ P + 483840δ 3 P -241920δ 2 P + 32256δ P 3588∆ a -119c 2 -595c∆ a + 4536cδ P -1196c + 11928∆ a δ P -40320δ 2 P + 18144δ P .

	as well as the most complex results :	
	l 3 -2 V a = a -l 2 1 483840 -280∆ 3 a -2352∆ 2 -2 s -3 2 s -1 2 V a = ∆ a 241920 140∆ 2 a + 672∆ a + 35c 2 + 140c∆ a -1680cδ P +
	294c -3360∆ a δ P + 20160δ 2 P -6720δ P + 544 ,
	l -2 s -5 2 s -3 2 V a =	1 483840	-714∆ 2 a -
				-3 V a =	72∆ a + 31c -504δ P 30240	,
	s -7 2 s -5 2 V a =	604∆ a + 457c -3528δ P 483840	,	s -9 2 s -3 2 V a =	-1371∆ a -457c + 3528δ P 1451520	,
	s -11 2 s -1 2 V a =	31∆ a 96768	,	l -2 s -7 2 s -1 2 V a =	294∆ 2 a + 1252∆ a + 147c∆ a -3528∆ a δ P 483840	,
	l -3 s -5 2 s -1 2 V a =	17∆ a 60480	,			

  {l -k , s -r }, ∆ a , c) ∓ d a P O 3} ({l -k , s -r }, ∆ a , c)V a .

	1 5	γ CFT * 5 1	V a =	1 3	P E {1,5} {5,1}	{1,5} {5,1}
	β CFT * 3	γ CFT * 3	V a =	1 3	P E {3,	

(({l -k , s -r }, ∆ a , c) V a

(4.193) 

(dans ce nouveau cas, il s'agit du modèle à 19 sommets). L'étude de cette nouvelle base a déjà été initiée[START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF], et montre une structure beaucoup plus riche puisqu'elle contient non seulement des opérateurs de nature fermionique mais aussi des courants de Kac Moody. On l'appellera donc la structure de type "fermion-courant". Dans l'article[START_REF] Babenko | Fermion-current basis and correlation functions for the integrable spin 1 chain[END_REF], nous avons conrmé le bien-fondé de la base de type fermion-courant au niveau du réseau et nous l'avons utilisée pour décomposer explicitement plusieurs opérateurs locaux. De plus, nous avons calculé la matrice de densité sur le réseau et l'entropie d'intrication, pour un petit nombre de sites. Dans l'article[START_REF] Babenko | Suzuki equations and integrals of motion for Supersymmetric CFT[END_REF] nous avons dérivé des équations de scaling régissant la thermodynamique de la théorie de sine-Gordon supersymétrique. En particulier dans la limite conforme de ces équations nous avons reproduit la fonction génératrice des intégrales locales du mouvement de Bazhanov-Lukyanov-Zamolodchikov, et vérié ces calculs par comparaison avec des résultats connus de la correspondance ODE-CFT. Enn, dans l'article[START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF] nous avons décrit la structure intégrable du modèle de sine-Gordon supersymétrique grâce à la base de type fermion-courant. Nous nous sommes concentrés sur la partie fermionique de cette dernière et avons calculé les fonctions à un point des opérateurs fermioniques. Dans la limite conforme, la cohérence de ces résultats a été vérié grâce à une approche alternative s'appuyant sur les relations de réexion.

This is a manifestation of the state-operator correspondence[START_REF] Fubini | New approach to eld theory[END_REF][START_REF] Friedan | Introduction to Polyakov's string theory[END_REF].1.2. CONFORMAL FIELD THEORY

1.3. PERTURBED CFT

1.4. DEFORMATION OF CONFORMAL CONSERVATION LAWS

In terms of modes, the normal order corresponds to placing operators with the bigger index to the right.

1.6. THERMODYNAMIC BETHE ANSATZ

We consider only the so called fermionic case, in the terminology of[START_REF] Zamolodchikov | Thermodynamic Bethe ansatz in relativistic models : scaling the 3-state Potts and Lee-Yang model[END_REF].

A remark is in order. This formula is obtained from the result of the sine-Gordon QFT by analytic continuation with respect to the coupling constant b. Moreover, the conformal dimension in the CFT are taken in the Heisenberg convention ∆ = -a 2 , this is equivalent to consider the shG model as a perturbation of the free boson CFT rather than of the Liouville model. This explains the correctness of the power exponent 1 2+2b 2 if we compare with (1.112).

2.1. THE SIX VERTEX MODEL

The subscript j indicates that the matrix L j,m is written in a basis of the space j, that is the entries of L j,m are operators acting on the space C

2sm+1 at the site m.2.3. ALGEBRAIC BETHE ANSATZ

The scaling limit performed in[START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] is actually rather complicated, and involves the use of a screening procedure as well as the introduction of a second twist κ . For reasons that will be clear soon we will not go into the details of the screening procedure, referring to[START_REF] Boos | Hidden Grassmann structure in the XXZ model IV: CFT limit[END_REF] for more information on this topic.

Finally, in[START_REF] Babenko | One point functions of fermionic operators in the Super sine-Gordon model[END_REF], the one point functions of fermionic operators were calculated for the Super sine-Gordon model and checked against reection relations.

3.4. FERMION-CURRENT BASIS

Here we take the radius R = 1 from the start for simplicity. It is possible to rewrite all formulae below for generic radius by applying the appropriate conformal mapping.

, where tilded quantities are those used in[START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory I[END_REF].[START_REF] Jimbo | Hidden Grassmann structure in the XXZ model V: sine-Gordon model[END_REF] Actually this is not the "complete" Super Liouville Lagrangian, that can be found for example in[START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory I[END_REF]. One of the terms assuring SUSY invariance has been dropped. Indeed this term is not relevant for the applications to the ssG model, this will be explained later.

These operators were denoted by b * (θ), c * (θ) in[START_REF] Jimbo | Creation operators for the Fateev -Zamolodchikov spin chain[END_REF], but we prefer to keep the "bars" for a dierent, more important, use.

A priori one has two Baxter operators Q ± , that dier by e ±νκθ . However, as we will see soon, the results obtained in this section depend only on κ 2 so we can work with Q + for simplicity.

Remerciements

Appendix 1 : Explicit formula for the coecients

Here we give the formulae (in a weak sense) for the inhomogeneous case having in mind (3.37). The inhomogeneities are λ 1 , • • • , λ n . The coecients do not depend on a simultaneous shift of inhomogeneities, for this reason we shall use

For n = 2 we have + (µ 2 1 -4)g 1,2 (λ1)g 2,1 (λ2) -2 3 (µ 2 1 -4)(µ 2 1 -1)g 1,3 (λ1)g 3,1 (λ2) .

For n = 3 we have

.

Density matrix for n = 4

From the discussion above we have the decomposition

(3.71)

The coecients (p 1 , ..., p 45 ) are given by :

The equations (4.127) , (4.131) dene ω(θ, θ ) completely. Due to the deformed Riemann bilinear identity the following relation is automatic:

In order to make the further formulae more readable we shall denote by τ without index any of the inhomogeneities τ j .

For future use we rewrite the normalization condition as

with

Similarly,

(4.133)

Rewriting normalization conditions

Introduce

These functions describe the pairings between the fused operators b * (θ), c * (θ) with not fused ones c * , b * . Clearly the knowledge of these pairings is sucient to compute any expectation value containing b * (θ), c * (θ). So, the analytical properties of F + (θ, η), etc characterize in the weak sense the analytical properties of b * (θ), c * (θ).

Similarly, in order to understand the analytical properties of j + (θ), j 0 (θ), j -(θ) we introduce

where in the last line we imply

We want to rewrite the normalization conditions in terms of these functions and P(θ) only. As before let τ be any inhomogeneity. Then we claim that

Let us prove the rst of these identities, others are checked similarly. We begin with some useful identities. Using

we nd

For (4.134) we have

+ ω(τ -πi, η)ρ(τ ) N (τ + πi/2) N (τ -πi/2) P(τ + πi/2) .

Using (4.135) we compute

Using the latter identity we evaluate

due to (4.131).

The case α = 0

In the case α = 0 the left and right eigenstates coincide, hence ρ(θ) = 1 and in the weak sense there is no dierence between b * , c * on the one hand and b * , c * on the other. So, all the expectation values containing only fermions are expressed via one function

As we have seen, the Suzuki equations (4.114) are obtained by this procedure from the corresponding lattice equations. The latter have the same structure as (4.114), but dier only by the driving term.

In the case of the lattice it is given by :

for which we have in the scaling limit

where P was given in (4.113).

Equations for Ω

Now we shall present a conjecture for the scaling limit of Ω(θ, θ ) in the case α = 0 and ρ(θ) = P(θ) = 1 and provide some justications for it :

where for the auxiliary functions we have the linear equations

and we dened 9

(4.144)

The shift γ is an arbitrary real number from the interval (0, π/2). 9 Of course we have G α=0 (θ) = G(θ) dened in (4.111).
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where the lengthiest coecients are :

-

-

Its determinant can be factorized :

The contribution from the null vectors is :

and we have :

(4.170) Level 6.

We proceed through the same analysis. At level 6 we will need to factor out the action of both i 1 and i 3 . There are 28 Virasoro operators at level 6, but the factorization of the action of the integrals of motion leaves only 10, that we choose to be :

These are expressed on the Super Heisenberg basis :

The passage matrix U (6) is unfortunately too large to be presented here, but we can give its determinant :

V (∆, c) D Using the commutation relation between T and V a (1.61),(1.62) and the following residue calculations :

we arrive at the result : The SUSY charge in a perturbed SCFT.

Recall how above we have derived the conserved charges created from the stress energy tensor in 1.4. In the same way we can construct the conserved super charge : this is done by considering the residue term of the OPE between the super current and the perturbing eld (recall that previously all the discussion was based on the stress energy tensor). Recall that in our case the perturbing eld is W -b = ψψe -b √ 2 ϕ and the needed OPE reads :

The conserved super charge is therefore :

(4.206)

The charge Q 1 2 has manifestly spin 1 2 and it is possible to show that

where the momentum P has been dened in (1.11). Moreover, using the anti-holomorphic part T , S of the Super Virasoro algebra one can construct by the same procedure the charge Q 1 2 and recover the full SUSY algebra.

The deformation of integrals of motion to the super case.

Let us now return to the integrals of motion. In chiral CFT, it is known that the densities h 2k are homogeneous polynomials in the stress energy tensor T and its derivatives, of total spin 2k. In Supersymmetric CFT we should extend this denition by considering also polynomials in the super current S and its derivatives, remembering that S has a spin 3 2 . For the rst element of the series of integrals of motion, we have only one possibility : h 2 (y) = T (y) , (4.208) which gives the known result i 1 = l -1 . The situation starts to be more complicated at spin 4, where the general form is h 4 (y) = (T T )(y)+κ(S∂S)(y). Recall that the conservation law ∂ z h 2k = ∂ z Θ 2k-2 that holds for any density, is equivalent to the fact that the residue term in the OPE of h 2k with the perturbing eld has to be a total derivative. The coecient κ is determined to satisfy this prescription. Since the perturbing eld is W -b = ψψe -b √ 2 ϕ , we nd explicitly that : (4.210)

From the value of h 4 it is possible to compute the operator acting on the Matsubara Hilbert space :

and to recover its eigenvalue i 3 from (4.119).