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Summary of the results

This PhD deals with the calculation of one point functions in integrable two dimensional Quantum
Field Theories. These quantities are of �rst interest. Indeed, any general n point function can be
reduced (in the Ultra-Violet limit) to a sum of products of one point functions and of coe�cients of
the Operator Product Expansion. The latter coe�cients can be computed by a usual perturbative
approach, whereas the one point functions carry important Infra-Red information that cannot be
accessed by perturbation theory. Therefore, it is an essential issue to develop a systematic, alternative
method for their calculation.

Such a method was elaborated in the last 15 years in the context of the sine-Gordon theory
[1, 2, 3, 4, 5]. The authors of this series of papers used the integrability of the model to �rst build
a basis of local operators in the context of the six vertex model (the lattice regularization of the
sine-Gordon Quantum Field Theory). This basis, termed fermionic, is powerful because the vacuum
expectation values of its operators on the lattice are easy to calculate : they are expressed in terms
of determinants of only two functions. Another remarkable property is that the fermionic structure
can be extended to the continuum limit of the six vertex model and be used to characterize local
operators in the Conformal Field Theory. Then, besides the usual Virasoro description, one gets
the fermionic basis to classify the �elds. Furthermore, the fermionic basis is well adapted to the
Conformal Perturbation Theory. From the correspondence between the Virasoro description and the
fermionic basis, and the possibility to compute the one point functions of the latter in the massive
theory, one access the one point functions of local �elds in the sine-Gordon model. This was a major
breakthrough in the general calculation of one point functions in integrable Quantum Field Theories.

In this thesis, we continue the work on this very promising approach, aiming to generalize the
fermionic basis construction to a more complex system. The logical choice to make is to consider a
"higher spin" theory, which naturally leads us to apply the previous ideas to the more complicated
Supersymmetric sine-Gordon model. The main objective is to achieve the following goal : calculate
the one point functions in the Supersymmetric sine-Gordon model. In order to do so, we are �rst
concerned with the generalization of the fermionic basis at the lattice level (in this new case it is
the 19 vertex model). The study of this new basis has already been initiated [6], and shows a much
richer structure since it involves not only operators of fermionic nature but also Kac Moody currents.
It will be referred to as the fermion-current structure. In the paper [8], we further con�rmed the
well foundedness of the fermion-current basis at the lattice level by using it to explicitly decompose
several local, invariant operators. Moreover we computed the density matrix and the entanglement
entropy for a small number of lattice sites. In the paper [7] we derived scaling equations governing
the thermodynamics of the Supersymmetric sine-Gordon theory. In particular in the conformal
limit we reproduced from them the Bazhanov-Lukyanov-Zamolodchikov generating function of local
integrals of motion, and checked the scaling equations against known results from the ODE-CFT
correspondence. Finally, in the work [9] we described the integrable structure of the Supersymmetric
sine-Gordon model in terms of the fermion-current basis. We focused on the fermionic part of the
latter and computed the one point functions of fermionic operators. In the conformal limit, these
results were checked to be consistent with an alternative approach relying on the re�ection relations.
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Résumé des résultats

Cette thèse porte sur le calcul des fonctions à un point dans les théories des champs quantiques
bidimensionnelles intégrables. Ces quantités sont de premier intérêt. En e�et, toute fonction générale
à n points peut être réduite (dans la limite Ultra-Violette) à une somme de produits de fonctions à un
point et de coe�cients provenant de l'Expansion du Produit d'Opérateur. Ces derniers coe�cients
peuvent être calculés à l'aide d'une approche perturbatrive habituelle, alors que les fonctions à un
point contiennent d'importantes informations infrarouges qui ne sont pas accessibles par la théorie
des perturbations. Il est donc essentiel de mettre au point une méthode de calcul systématique et
alternative des fonctions à un point.

Une telle méthode a été élaborée au cours des 15 dernières années dans le contexte de la théorie
de sine-Gordon [1, 2, 3, 4, 5]. Les auteurs de cette série d'articles ont utilisé l'intégrabilité du modèle
pour construire d'abord une base d'opérateurs locaux dans le contexte du modèle à six sommets (qui
est la régularisation sur réseau de la théorie des champs quantiques de sine-Gordon). Cette base,
appelé fermionique, est puissante parce que les valeurs moyennes dans le vide de ses opérateurs
sur le réseau sont faciles à calculer : ils sont exprimés en termes de déterminants de seulement
deux fonctions. Une autre propriété remarquable est que la structure fermionique peut être étendue
jusqu'à la limite continue du modèle à six sommets et être utilisée pour caractériser les opérateurs
locaux dans le modèle de la théorie des champs conformes. Cela implique qu'additionnellement à la
description habituelle de Virasoro, on peut utiliser la base fermionique pour classi�er les champs. De
plus, la base fermionique est bien adaptée à la théorie de la perturbation dans le cas d'une théorie
initiale conforme. D'après la correspondance entre la description de Virasoro et la description de
la base fermionique, et la possibilité de calculer les fonctions à un point de cette dernière dans la
théorie massive, on accède aux fonctions à un point des champs locaux dans le modèle sine-Gordon.
Il s'agit donc d'une percée majeure dans le calcul général des fonctions à un point dans les théories
des champs quantiques intégrables.

Dans cette thèse, nous poursuivons le travail sur cette approche très prometteuse visant à
généraliser la construction de la base fermionique à un système plus complexe. Le choix logique
à faire est d'envisager une théorie de "spin plus élevé", ce qui nous conduit naturellement à appli-
quer les idées précédentes au modèle plus compliqué de sine-Gordon supersymétrique. L'objectif
principal est donc le suivant : calculer les fonctions à un point dans le modèle sine-Gordon super-
symétrique. Pour ce faire, nous devons d'abord généraliser la base fermionique au niveau du réseau
(dans ce nouveau cas, il s'agit du modèle à 19 sommets). L'étude de cette nouvelle base a déjà
été initiée [6], et montre une structure beaucoup plus riche puisqu'elle contient non seulement des
opérateurs de nature fermionique mais aussi des courants de Kac Moody. On l'appellera donc la
structure de type "fermion-courant". Dans l'article [8], nous avons con�rmé le bien-fondé de la base
de type fermion-courant au niveau du réseau et nous l'avons utilisée pour décomposer explicite-
ment plusieurs opérateurs locaux. De plus, nous avons calculé la matrice de densité sur le réseau
et l'entropie d'intrication, pour un petit nombre de sites. Dans l'article [7] nous avons dérivé des
équations de scaling régissant la thermodynamique de la théorie de sine-Gordon supersymétrique.
En particulier dans la limite conforme de ces équations nous avons reproduit la fonction génératrice
des intégrales locales du mouvement de Bazhanov-Lukyanov-Zamolodchikov, et véri�é ces calculs
par comparaison avec des résultats connus de la correspondance ODE-CFT. En�n, dans l'article [9]
nous avons décrit la structure intégrable du modèle de sine-Gordon supersymétrique grâce à la base
de type fermion-courant. Nous nous sommes concentrés sur la partie fermionique de cette dernière
et avons calculé les fonctions à un point des opérateurs fermioniques. Dans la limite conforme, la
cohérence de ces résultats a été véri�é grâce à une approche alternative s'appuyant sur les relations
de ré�exion.
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Structure of the manuscript

The text is divided in 4 chapters. The �rst two chapters are intended to recall some introductory
material, the two last present the new results obtained during the PhD research. They are structured
as follows : the chapter 1 motivates the subject of one point functions and recall the known results
and methods on their computation for Integrable Quantum Field Theories. In the chapter 2, we
review some basic facts about lattice integrable system and describe the integrable structure of
Quantum Field Theories. In particular, the spin 1

2 fermionic basis is introduced. In the chapter 3
we then move to the lattice fermion-current construction and present the results of [8]. Finally, in
the chapter 4, we discuss the Super sine-Gordon model and explain the achievements of [7], [9].
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List of abbreviations

- QFT : Quantum Field Theory

- CFT : Conformal Field Theory

- SCFT : Supersymmetric Conformal Field Theory

- IQFT : Integrable Quantum Field Theory

- OPE : Operator Product Expansion

- sG : sine-Gordon

- shG : sinh-Gordon

- ssG : Super sine-Gordon

- IR : Infra-Red

- UV : Ultra-Violet

- TBA : Thermodynamic Bethe Ansatz

- SUSY : Supersymmetry

- 6 V : 6-vertex (model)

- 19 V : 19-vertex (model)

List of �gures

1.1 Insertion of a local operator O on a cylinder with boundary conditions ∆±.

1.2 Factorization of the scattering process of 3 particles : the Yang-Baxter equation.

2.1 Six vertex model on the cylinder.

2.2 Conventions for the weight of a vertex.

2.3 Con�gurations of the six-vertex model.

4.1 SCFT on a cylinder with the insertion of a local operator O and boundary conditions ∆±.

4.2 Super sine-Gordon model on a cylinder with the insertion of a local operator O and boundary
conditions δP .

4.3 19 vertex model on a cylinder with quasi-local insertion.

Notations

We shall attempt as much as possible to observe the following conventions : V, Vi, Vj , Vk, ... will be
used for generic �elds in QFT, V∆ will denote a primary �eld of conformal dimension ∆ in CFT,
Va will stand for a vertex operator in (Super) Liouville CFT with weight a. Simple letters (such as
b∗, c∗) will be used for the spin 1

2 fermionic basis and bold letters (such as b∗, c∗) will serve for the
spin 1 fermion-current basis.
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Chapter 1

One point functions in Quantum

Field Theories

This thesis aims at calculating the one point functions in a speci�c model of two dimensional Quan-
tum Field Theory (QFT) : the Supersymmetric sine-Gordon model (ssG). Two questions that should
be addressed in the �rst place are : why are the one point functions important quantities ? And
what are the existing methods to calculate them ? This �rst chapter will provide answers to these
two guiding questions. As a basis for our discussion, we present the ssG action :

AssG =
∫ [( 1

4π
∂zϕ∂z̄ϕ+

1
2π
(
ψ∂z̄ψ + ψ̄∂zψ̄

)
− 2µψ̄ψ cos

( β√
2
ϕ
)]
d2z , (1.1)

where ϕ is a bosonic �eld, ψ a Majorana fermion, β, µ are the coupling constants. Let us mention,
that we will handle the ssG model as a perturbation of a speci�c Conformal Field Theory (CFT) :
the complex Supersymmetric Liouville CFT. From a Lagrangian point of view this means that :

AssG = ACFT +Apert , (1.2)

where the terms ACFT and Apert will be explicited later. It implies that the Ultra-Violet (UV)
behavior of the ssG model is described by a conformal theory. Hence, it is of crucial importance
to know how to operate in the context of CFT and to be able to connect the ssG model with its
UV limit. Technically, this will be done through the use of scaling equations, that will be described
in great detail later. First we are going to motivate the importance of the computation of the one
point functions, in particular in the context of conformal perturbation theory. Do to so, we will take
the following steps :

1. Explain the relevance of the calculation of one point functions in the course of solving a QFT.

2. Recall some basic facts about Conformal Field Theory, explain how one deals with CFT on
a cylinder and introduce the Liouville CFT. As we said, the UV limit of the ssG model is
described by a particular CFT, and this is also true for all other theories where we know how
to obtain the one point functions. Moreover, this part will be a preparation for the calculations
carried out in the case of the Super Liouville model in the chapter 4.

3. Give a brief overview of the Conformal Perturbation Theory, since this is the framework in
which we will study the ssG. We will explain how to compute perturbatively the coe�cients
of the Operator Product Expansion and hence further underline the particularity and the
importance of one point functions.

4. Discuss the existence of conservation laws in QFT, especially the deformation of conformal
ones and the notion of Integrable QFT.

5. Recall the principles of the Thermodynamical Bethe Ansatz. It is stated in terms of Non
Linear Integral Equations, that share some similarities with the scaling Suzuki equations that
we will use to get new results in the ssG model.

6. Finally, explain how we can use re�ection relations to obtain the one point functions, and the
limits of this method. This will be illustrated for the sine-Gordon model, for the primary and
the simplest descendant �elds.

13
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1.1 One point functions : a fundamental object

Let us consider a general QFT in two Euclidean dimensions, described by the action AQFT. By
"solving" a QFT we usually understand that we should compute its spectrum S (the complete �eld
content), as well as all correlation functions among the elements of S. To be more precise, suppose
that we have a theory with a space of �elds S = {Vi}i∈I for some set I, and that the general
correlation function can be written from a path integral perspective :

〈Vi1(x1)...Vin(xn)〉 =
∫
DϕVi1(x1)...Vin(xn)e−AQFT[ϕ] . (1.3)

At this point, we should remark that even if we are not going to use the path integral to carry out
explicit calculations, it will reveal several times to be a useful tool to obtain an intuition about the
result (for example this will be case when we will be studying Conformal Perturbation Theory). As
is well known, the path integral is hard to manipulate, so one should take another way to compute
〈Vi1(x1)...Vin(xn)〉. To do so, let us assume that our theory admits a short distance Operator Product
Expansion (OPE), that is for any two elements of S we can write :

Vi(x)Vj(y) '
∑
k∈I

Ckij(x, y)Vk(y) , x→ y , (1.4)

where Ckij(x, y) are functions depending on the positions of the �elds. The OPE assumption has been
proposed in [10], [11] and re�ects the fact that the �eld space S can be considered as an algebra, with
a basis indexed by I and structure constants Ckij . Here we should make a warning about identities
between �elds : they will have to be always understood as holding inside correlation functions (X
is any product of elements of S) :

〈Vi(x)Vj(y)X〉 '
∑
k∈I

Ckij(x, y) 〈Vk(y)X〉 . (1.5)

Consider now (1.5) with only 〈Vi(x)Vj(y)〉 in the left hand side. In this decomposition, two
objects of very di�erent nature are involved. The coe�cients Ckij(x, y) are de�ned in the limit
x → y, and are thus purely Ultra-Violet data, meaning that they depend on the short distance
interaction of the theory. On the other hand, the one point functions 〈Vk(y)〉 are by de�nition the
average of the �elds Vk over all space-time, and have hence to depend on the overall long distance or
Infra-Red (IR) environment of the theory. The above reduction (1.5) holds for any n point function
in the UV limit. Therefore, we claim that the fundamental quantities that we should aim at in a
study of a QFT are :

1. The spectrum S.

2. The structure constants Ckij .

3. The one point functions 〈Vk(y)〉.

In the following sections, we will show how to compute the spectrum and the structure constants
in the case of the theories that we will consider : CFTs and Perturbation of CFTs. The one point
functions appear to be the most challenging quantities for which straightforward approaches do not
exist for the moment.

One �eld that we will always assume contained in S is the stress energy tensor of the theory
Tµν , that measures the response of the model under deformations of the space-time. To get an
explicit formula, we �rst consider our theory in curved space, and take the variation of the action
with respect to the metric :

Tµν =
1
√
g

δAQFT

δgµν

∣∣∣
gµν=δµν

. (1.6)

Since we work in Euclidean signature in two dimensions, it will be helpful to consider complex
coordinates z = x+ iy, for which we de�ne the following notations :

T = Tz,z , T̄ = Tz̄,z̄ , Θ = −Tz,z̄ . (1.7)

Let us make a remark here. The assumption that the theories we consider are invariant under
translations implies that the one point functions can be simply calculated at the origin :

〈Vk(y)〉 = 〈Vk(0)〉 . (1.8)
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Notice that Θ is often referred to as the trace of the stress energy tensor, however the exact relation
is Θ = − 1

4T
a
a . Since Tµν is a Noether current, it is conserved, and the conservation laws in the

complex coordinates are :

∂z̄T (z, z̄) = ∂zΘ(z, z̄) , ∂zT̄ (z, z̄) = ∂z̄Θ(z, z̄) , (1.9)

with the convention

∂z =
1
2

(∂x − i∂y) , ∂z̄ =
1
2

(∂x + i∂y) . (1.10)

The relations (1.9) are very important, and we will see that in the context of integrable QFTs they
represent the �rst occurrence of an entire tower of conservation laws. Notice also that from them
we can construct conserved charges :

P =
∮
c0

dz

2πi
(Tdz + Θdz̄) , P̄ =

∮
c0

dz

2πi
(
T̄ dz̄ + Θdz

)
. (1.11)

where c0 is a small circular contour around the origin. These are simply integrated in�nitesimal
complex translations, and this means that one can act with P, P̄ on a �eld of S to get :

PVi(w, w̄) = ∂wVi(w, w̄) , P̄Vi(w, w̄) = ∂w̄Vi(w, w̄) . (1.12)

At this moment in our discussion, we should start to look a speci�c theories. We will �rst see
how the above questions (spectrum, coe�cients of OPE, one point functions) can be fully answered
in the case of Conformal Field Theories, and then what remain hidden if we consider Perturbed
CFT.

1.2 Conformal Field Theory

The �rst type of theories to look at are the Conformal Field Theories (CFT) that have been very
extensively studied in the last 40 years. They allowed, in particular, a Quantum Field Theoretic in-
terpretation of critical phenomena and phase transitions. The fundamental paper where the modern
description of CFT was given is [12]. It was followed by a plethora of articles on the subject. There
are many excellent books and reviews, we used [13, 14, 15, 16].

In this section our modest objective is not to give an extensive introduction to CFT, but rather
to brie�y recall the most important concepts, introducing notations for further calculations and
illustrating the very general notions that have been considered above. We would like to prepare
the ground for the study of more complicate QFTs, which will be described by a CFT in their UV
limits. As we will recall, the CFTs are theories that are completely solved in the sense given above,
so we will heavily rely on them in our further calculations to extract information about the one point
functions.

1.2.1 The Virasoro algebra V.

Consider such a theory on the plane. Conformal means that this theory is invariant under conformal
transformations, in particular scale transformations. Therefore, the β-function is identically zero,
and this implies the vanishing of the �eld Θ(z, z̄) 1. The conservation laws (1.9) simpli�es to
holomorphicity (anti-holomorphicity) conditions :

∂z̄T (z, z̄) = 0 , ∂zT̄ (z, z̄) = 0 . (1.14)

The stress energy tensor is by de�nition the generator of conformal transformations. It is well known
that in a general QFT, the in�nitesimal e�ect of a symmetry on a �eld corresponds to the space
integral of the commutator of the �eld with the Noether charge. In the two dimensional setting, using
complex coordinates, we can rewrite the integrals of commutators as contour integrals. Focusing on

1 Consider a general QFT given by the action AQFT and depending on some coupling constants g = {ga}a. De�ne
the �elds ξa =

δAQFT
δga

. One can express the "trace" of the stress energy tensor Θ in terms of the beta-functions by

the formula :
Θ =

X
a

βa(g)ξa . (1.13)
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T , the action of an in�nitesimal conformal transformation z → ε(z) on a �eld V is then given by
(cw is a small circular contour around w) :

δεV (w, w̄) =
∮
cw

dz

2πi
ε(z)T (z)V (w, w̄) . (1.15)

From locality and holomorphicity assumptions, the stress energy tensor can be expanded in a Laurent
series :

T (z)V (w,w) =
∑
n∈Z

(z − w)−n−2LnV (w,w) . (1.16)

One obtains the action of the modes on the �elds by reversing the previous formula :

LnV (w, w̄) =
∮
cw

du

2πi
(u− w)n+1T (u)V (w,w) . (1.17)

An important assumption to make is that the spectrum S includes the so called primary �elds, that
are denoted V∆(w, w̄) and satisfy the properties :

LmV∆(w, w̄) = 0 , m > 0 , L0V∆(w, w̄) = ∆V∆(w, w̄) . (1.18)

The parameter ∆ is called the (holomorphic) conformal dimension , and characterizes the �eld V∆.
The relation (1.12) gives :

L−1V∆(w, w̄) = ∂wV∆(w, w̄) . (1.19)

We are mostly interested in the singular part of the OPEs. Applying the above properties of primary
�elds to the general expression (1.16), we get

T (z)V∆(w, w̄) =
∆

(z − w)2
V∆(w, w̄) +

1
z − w

∂wV∆(w, w̄) +O(1) . (1.20)

The expressions (1.15), (1.17) and (1.18),(1.20), as well as most of the following considerations have
dual formulae that involve the �eld T̄ (z̄) and its modes L̄n. In particular one can also de�ne the
anti-holomorphic conformal dimension ∆.

Plugging the OPE (1.20) in (1.15), one obtains the in�nitesimal transformation law for the
primary �elds :

δεV∆(z, z̄) = ε(z)∂zV∆(z, z̄) + ∆ε′(z)V∆(z, z̄) , (1.21)

(and an analogous expression for the second chirality). From this we deduce the transformation law
of a primary �eld under a generic conformal transformation z → w(z) (together with z̄ → w̄(z̄)) :

V∆(z, z̄) = V∆(w, w̄)
(
dw

dz

)∆(
dw

dz

)∆

. (1.22)

Let us now turn to the �eld T . The most general in�nitesimal conformal transformation that we
can write is [12] :

δεT (z) = ε(z)∂zT (z) + 2ε′(z)T (z) +
c

12
ε′′′(z) , (1.23)

where in the last term we have introduced the parameter c, which will be referred to as the central
charge of theory. This expression is equivalent the OPE between T and itself :

T (z)T (w) =
c
2

(z − w)4
+

2T (z)
(z − w)2

+
∂wT (w)
z − w

+O(1) . (1.24)

Notice, that from this OPE we read that T is not a primary �eld, since the series does not truncate
at the term 1

(z−w)2 , T will be therefore termed a quasi-primary �eld. Moreover it is clear that the

conformal dimension of T is 2 : L0T = 2T . Finally (1.24) implies the following behavior of the
stress energy tensor at in�nity :

T (z) = O

(
1
z4

)
, z →∞ . (1.25)

Then, computing the action of T (z)T (w)V (u, ū) we can deduce the commutation relations of the
modes of stress energy tensor. They satisfy the celebrated Virasoro algebra V :

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n . (1.26)
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Exactly the same analysis holds for the algebra of the modes L̄n. The full symmetry algebra of a
CFT is then V×V, made of two copies of the Virasoro algebra, one for each chirality. Since for our
needs the calculations for both chiralities will be identical, we will only speak about V and drop the
dependence of primary �elds on the variables z̄ most of the time. Another important consequence
of (1.23) is the transformation law of T under global conformal transformations :

T (z) =
(
dw

dz

)2

T (w) +
c

12
{w, z} , (1.27)

where {w, z} is the Schwarzian derivative given by :

{w, z} =
w′′′(z)
w′(z)

− 3
2

(
w′′(z)
w′(z)

)2

. (1.28)

We will apply this transformation rule to calculate the stress energy tensor on the cylinder.

Ward-Takahashi identities. Now that we have identi�ed the structure of the primary �elds in S,
one can look at the form of the correlation functions in a CFT. To understand the e�ects of conformal
transformations on correlation functions we must consider 〈T (z)V∆1(w1)...V∆n(wn)〉. This should
be a meromorphic function of z, with the poles located at the points wi and with singularities given
by (1.20). Hence we deduce the relation :

〈T (z)V∆1(w1)...V∆n
(wn)〉 =

n∑
k=1

(
∆k

(z − wk)2
+

∂wk
z − wk

)
〈V∆1(w1)...V∆n

(wn)〉 , (1.29)

This formula is termed the (local) Ward-Takahashi identity, and from the knowledge of (1.24) it is
possible to write similar expressions for any correlation function of the form

〈T (z1)...T (zm)V∆1(w1)...V∆n
(wn)〉 . (1.30)

They will be presented later in the case of the CFT on a cylinder. From the Ward-Takahashi
identities, one can compute correlation functions of more complex �elds. Using the inversion formula

〈L−mV∆(z)...〉 =
∮
cz

du

2πi
(u− z)−m+1 〈T (u)V∆(z)...〉 , (1.31)

we get the following correlation function :

〈L−mV∆(z)V∆1(z1)...V∆n(zn)〉 =

=
n∑
k=1

(
(m− 1)∆k

(zi − z)m
− 1

(zi − z)m−1
∂zi

)
〈V∆(z)V∆1(z1)...V∆n(zn)〉 . (1.32)

Finally taking the limit z →∞ of (1.29) and using (1.25) we recover the three global Ward-Takahashi
identities :

n∑
i=1

∂wi 〈V∆1(w1)...V∆n
(wn)〉 = 0 , (1.33)

n∑
i=1

(wi∂wi + ∆i) 〈V∆1(w1)...V∆n
(wn)〉 = 0 , (1.34)

n∑
i=1

(w2
i ∂wi + 2∆iwi) 〈V∆1(w1)...V∆n(wn)〉 = 0 . (1.35)

They are named "global" since they describe the invariance of the correlation functions of primary
�elds V∆k

under the global conformal transformations on the Riemann sphere. These transformations
form the SL(2,C) subgroup of the full conformal group. The global Ward-Takahashi identities can
be seen as the invariance of the correlation functions under translations (1.33), rotations (1.34) and
special conformal transformations (1.35).

The global Ward identities are important since they �x strong constraints on the correlation
functions of primary �elds. It follows immediately that the one point functions vanish on the plane,
due to the translational symmetry (1.33) :

〈V∆(0)〉 = 0 . (1.36)
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Furthermore, they allow to determine the form of the two and three point functions. Set zij = zi−zj ,
the full result is :

〈V∆1(z1, z̄1)V∆2(z2, z̄2)〉 =
D1,2 δ∆1,∆2δ∆̄1,∆̄2

z2∆1
12 z2∆2

12

, (1.37)

〈V∆1(z1, z̄1)V∆2(z2, z̄2)V∆3(z3, z̄3)〉 =
C123

zκ3
12 z

κ2
13 z

κ1
23 z̄

κ̄3
12 z̄

κ̄2
13 z̄

κ̄1
23

, (1.38)

where :

κi = ∆− 2∆i , ∆ = ∆1 + ∆2 + ∆3 , (1.39)

and similarly for κ̄i. The constant D1,2 depends only on the normalization of the �elds, we will
work with D1,2 = 1, calling this the conformal normalization of the two point function. On the
other hand, the functions C123 are extremely important. From the normalization of the two point
function, it follows that they are equal to the coe�cients of the �eld V∆3 in the OPE between the
�elds V∆1 and V∆2 . From dimensional reasons the latter is written

V∆1(z, z̄)V∆2(0) =
∑
k

Ck1,2z
∆k−∆1−∆2 z̄∆̄k−∆̄1−∆̄2Vk(0) , (1.40)

where the �eld Vk contains all the contributions of the primary �eld V∆k
and of its descendants,

that will be de�ned in the next paragraph. The correspondence between the three-point function
and OPE coe�cients is given by :

C3
12 = C123 . (1.41)

Finally the evaluation of (1.37) and (1.38) at the points ∞ and 0 gives (instead of taking naively

z →∞ we should �rst perform the conformal mapping z → 1
z and then send z → 0 ) :

〈V∆1(∞)V∆2(0)〉 = δ∆1,∆2δ∆̄1,∆̄2
, (1.42)

〈V∆1(∞)V∆2(z, z̄)V∆3(0〉 = C1,2,3z
∆1−∆2−∆3 z̄∆̄1−∆̄2−∆̄3 . (1.43)

Therefore the knowledge of the three point functions answers the question about the structure
constants of the operator algebra in the CFT context.

Representation Theory and CFT. Finally, we would like to give some representation theoretic
interpretation of CFT. As we have seen, a CFT contains primary �elds V∆ that satisfy (1.18). But
this condition is exactly the property that V∆ is considered as a highest weight vector for V, with
weight ∆. Keeping in mind this fact, we shall use the following obvious notation, representing the
primary �eld V∆ by a state 2 :

V∆ ≡ |∆〉 . (1.44)

From this highest weight vector, it is possible to generate a Verma module V∆ for V by acting with
modes with negative index :

V∆ = Vect
(
L−n1 ...L−np |∆〉 , nk ≥ 0

)
. (1.45)

Elements in V∆ can be classi�ed by their level l, which is de�ned for a generic element as

l =
∑
k

nk . (1.46)

From the �eld theoretic point of view, this is the same as acting on a primary �eld with the modes
by the formula (1.17) :

L−n1 ...L−np |∆〉 ≡ L−n1 ...L−npV∆ , nk ≥ 0 . (1.47)

We shall call these �elds descendants of the primary �eld V∆, at level l. The vector space generated
by all descendants of a primary �eld (that is the Verma module V∆) will be called a conformal family
in the QFT language, and denoted by [V∆].
Let us introduce two more important quantities : the spin s and the scaling or anomalous dimension

2This is a manifestation of the state-operator correspondence [17, 18].
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d : they are respectively the eigenvalues of the operators L0 − L̄0 and L0 + L̄0 for a given �eld. For
a primary �eld V∆ :

s = ∆−∆ , d = ∆ + ∆ . (1.48)

For generic values of c and of the conformal dimension ∆, the Verma module V∆ is an irreducible
representation of V. The spectrum of any CFT is then classi�ed by the representation of the Virasoro
algebra, and can be written formally as a sum of the above mentioned Verma modules (or conformal
families) 3:

S =
⊕
∆

V∆ . (1.49)

As usual in representation theory, a good numerical tool for the study of the spectrum are the
characters, or the partition function in the CFT language. From (1.49) the partition function of S
is :

ZS(t) =
∑
∆

χ∆(t) , χ∆(t) = TrV∆

(
tL0− c

24
)

=
∞∑
n=0

dim(n+ ∆)tn+∆− c
24 , (1.50)

where dim(n+ ∆) counts the dimension of the vector space of the descendants of V∆ at level n.

1.2.2 CFT on the cylinder.

In the following we will use a lot the CFT de�ned on a cylinder. Usually we will consider the cylinder
with the following boundary conditions : two primary �elds with respective dimensions ∆± will be
located at the in�nities. At the origin we insert a generic operator O, this is represented on the
picture 1.1.

Figure 1.1: Insertion of a local operator O on a cylinder with boundary conditions ∆±.

Moreover we will distinguish two types of cycles on the cylinder : cycles c that are contractible
and encircle the origin, and cycles C that are wrapping around the cylinder.

The passage from the plane with coordinate z to the cylinder with coordinate x is made by the
transformation :

z = eax , (1.51)

where a is a parameter characterizing the radius of the cylinder. First we need to de�ne the stress
energy tensor on the cylinder. We have {x, z} = 1

2z2 . With the help of (1.27) we then obtain :

T (x) =
(
dz

dx

)2 (
T (z)− c

12
{x, z}

)
= a2

(∑
n

e−anxLn −
c

24

)
. (1.52)

3We write here only the holomorphic part for simplicity, the complete Hilbert space of a CFT is

S =
M
∆,∆̄

V∆ ⊗ V∆̄
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To make contact with [4], we take a = − 1
R , and split the stress energy tensor T (x) :

T (x) =
1
R2

(∑
n

e
nx
R Ln −

c

24

)
= T+(x) + T−(x) , (1.53)

with

T+(x) =
1
R2

∑
n≥1

Lne
nx +

L0

2
− c

48

 , T−(x) =
1
R2

∑
n≥1

L−ne
−nx +

L0

2
− c

48

 . (1.54)

From the expressions (1.54) the boundary conditions can be rewritten in terms of the stress energy
tensor :

lim
x→±∞

T (x) =
1
R2

(
∆± −

c

24

)
(1.55)

De�ne the local action of the stress energy tensor on a �eld V by :

(lnV )(y) =
∮
cy

dx

2πi
(x− y)n+1T (T (x)V (y)) . (1.56)

where T is the time ordering symbol de�ned as follows :

T (V (x)W (y)) =

{
V (x)W (y), if x < y ,

W (y)V (x), if y < x ,
(1.57)

and x, y denote the coordinates along the non-compact direction of the cylinder.

To perform explicit calculations of one point functions on the cylinder (for example one point
functions of descendant �elds l−nV∆), we need the commutation relations between the two parts of
the stress energy tensor T± and the primary �eld V∆. They are obtained from the commutation
relation of the modes Ln of the Virasoro algebra with those of the primary �eld 4. First we de�ne
the following basic function (Bn are the Bernoulli numbers) :

χ(z) =
1
2

cth
( z

2R

)
=
∞∑
n=0

B2n

(2n)!

( z
R

)2n−1

. (1.60)

Then (with the notation χ(n) = ∂nz χ(z)) the following relations hold :

[T+(x), V∆(y)] =
∂yV∆(y)

R
χ(x− y)− ∆V∆(y)

R
χ′(x− y) , x < y . (1.61)

[V∆(y), T−(x)] =
∂yV∆(y)

R
χ(x− y)− ∆V∆(y)

R
χ′(x− y) , x > y . (1.62)

In addition, we have :

[T+(x), T (y)] =
∂yT (y)
R

χ(x− y)− 2T (y)
R

χ′(x− y)− c

12R
χ′′′(x− y) , x < y , (1.63)

[T (y), T−(x)] =
∂yT (y)
R

χ(x− y)− 2T (y)
R

χ′(x− y)− c

12R
χ′′′(x− y) , x > y . (1.64)

With these relations in hand, we can explicitly calculate the action of the modes lm applying (1.56).
To simplify our calculations we will from now compute the one point functions in the setting R = 1. A
generic value of R can be restored by taking an appropriate conformal transformation. For example
we can easily obtain :

l0V∆ = ∆V∆ , l−1V∆(y) = ∂yV∆(y) . (1.65)

4On the plane, expanding the primary �eld V∆ in modes :

V∆(z) =
X
n

z−n−∆Vn , (1.58)

the OPE (1.20) implies that :
[Lm, Vn] = (m(∆− 1)− n)Vm+n . (1.59)
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They are special cases of the more general result (with n ≥ 1) :

〈(l−nV∆)(y)〉 =
δn,2

2

(
∆+ + ∆− −

c

12

)
− δn,E∆

Bn
n(n− 2)!

+ δn,O (∆+ −∆−)
Bn−1

(n− 1)!
. (1.66)

First, the symbol δn,O equals 1 if n is odd and 0 otherwise, a similar de�nitions holds for δn,E
where E means even. Second, we use the following short-hand notation for one point functions :

〈l−nO(y)〉 =
〈l−nO(y)〉∆+,∆−

〈O(y)〉∆+,∆−

, (1.67)

meaning that we consider the one point functions in presence of the two primary �elds |∆±〉 at
in�nity. The proof is as follows : split the contour cy on two small half-circular parts located on the
left (c−y ) and right (c+y ) of y :

cy = c−y + c+y . (1.68)

Then :

(l−nV∆)(y) =
∮
cy

dx

2πi
1

(x− y)n−1
T (T (x)V∆(y))

=
∮
c−y

dx

2πi
1

(x− y)n−1
T (x)V∆(y) +

∮
c+y

dx

2πi
1

(x− y)n−1
V∆(y)T (x) .

=
∮
c−y

dx

2πi
1

(x− y)n−1

[
T−(x)V∆(y) + V∆(y)T+(x) + [T+(x), V∆(y)]

]
+
∮
c+y

dx

2πi
1

(x− y)n−1

[
V∆(y)T+(x) + T−(x)V∆(y) + [V∆(y), T−(x)]

]
. (1.69)

The application of (1.61),(1.62) gives :

(l−nV∆)(y) =
∮
cy

dx

2πi
1

(x− y)n−1
(T−(x)V (y) + V (y)T+(x))

+
∮
cy

dx

2πi
1

(x− y)n−1

[
∂yV∆(y)χ(x− y)−∆V∆(y)χ′(x− y)

]
=
∮
cy

dx

2πi
1

(x− y)n−1
(T−(x)V∆(y) + V∆(y)T+(x))

+ ∂yV∆(y)Resz→0

[ 1
zn−1

χ(z)
]
−∆V∆(y)Resz→0

[ 1
zn−1

χ′(z)
]

=
∮
cy

dx

2πi
1

(x− y)n−1
(T−(x)V∆(y) + V∆(y)T+(x))

+ ∂yV∆(y)δn,O
Bn−1

(n− 1)!
−∆V∆(y)δn,E

Bn
n(n− 2)!

. (1.70)

Now, let us de�ne another deformation of the contours : we can split cy into two large circular
contours C± (see 1.1) located on the right and on the left of y respectively and running in opposite
directions :

cy = C+ − C− . (1.71)

It implies that :

l−1V∆(y) =
∮
cy

dx

2πi
T (T (x)V∆(y)) = −

∮
C−

dx

2πi
T (x)V∆(y) +

∮
C+

dx

2πi
V∆(y)T (x)

= (∆+ −∆−)V∆(y) . (1.72)

To get the last line we pushed the contours to in�nity C± → ±∞. Applying (1.72) and the boundary
conditions (1.55) to the previous calculations (1.70), one recovers (1.66).

The multiple action of the modes is calculated by iteration, we will see more examples in the
section 4.1.2. Another illustration that will be useful is the one point function of the normal ordered
square of T . By de�nition it is given by

(TT )(y) = (l−2T )(y) =
∮
Cy

dx

2πi
T (T (x)T (y))

x− y
,

= T−(y)T (y) + T (y)T+(y)− 1
6
T (y) +

c

1440
. (1.73)
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With this formula one can �rst calculate the one point function of this �eld (there is here no
normalization by a primary �eld like in (1.67) ) :

〈(TT )(y)〉 =
((

∆+ −
c

24

)2

+
1
6

(
∆+ −

c

24

)
+

c

1440

)
δ∆−,∆+ , (1.74)

as well as the following expression of the Virasoro modes (the notation I3 will be clari�ed latter) :

I3 =
∫
C

(TT )(y)
dy

2πi
= 2

∞∑
n=1

L−nLn +
(
L0 −

c

24

)2

− 1
6

(
L0 −

c

24

)
+

c

1440
. (1.75)

The formulae like (1.66) will prove to be very useful when we will calculate the one point functions
of descendants �elds on the cylinder. However, in the case of an action of multiple modes on V∆,
the above method is not very e�cient to perform the calculations. There is a more adequate way to
compute the one point functions by using the Ward-Takahashi identities in the case of the cylinder.
First start with the OPE on the cylinder obtained from the commutation relations (1.61), (1.62),
(1.63), (1.64) in [4] :

T (x)T (y) =
∂yT (y)
R

χ(x− y)− 2T (y)
R

χ′(x− y)− c

12R
χ′′′(x− y) +O(1) , (1.76)

T (x)V∆(y) =
∂yV∆(y)

R
χ(x− y)− ∆V∆(y)

R
χ′(x− y) +O(1) . (1.77)

Then the Ward-Takahashi identities on a cylinder are given by (in the second line the ̂ means the
omission of the j-th term) :

〈T (xk)...T (x1)V∆(y)〉 =

− c

12R

k∑
j=2

χ′′′(x1 − xj) 〈T (xk)...̂ ...T (x2)∆(y)〉

+
[ k∑
j=2

(
− 2
R
χ′(x1 − xj) +

1
R

(χ(x1 − xj)− χ(x1 − y))
∂

∂xj

)
− ∆
R
χ′(x1 − y)

+ (∆+ −∆−)
1
R2

χ(x1 − y) +
1

2R2
(∆+ + ∆−)− c

24R2

]
〈T (xk)...T (x2)V∆(y)〉 . (1.78)

Now one can apply this to calculate any one point function 〈l−nk ...l−n1V∆〉 by iterating the formula
(1.78) and taking appropriate integrals :

〈l−nk ...l−n1V∆(y)〉 =
∮
cxk

dxk
2πi(xk − y)nk−1

...

∮
cx1

dx1

2πi(x1 − y)n1−1
〈T (xk)...T (x1)V∆(y)〉 ,

We shall also use the notation :∮
cxj

dxj =
∮
cxj

dxj
2πi(xj − y)nj−1

. (1.79)

In the what follows, we will write similar equations in the context of Supersymmetric CFT.

E�ective central charge. Finally, lets us give two more de�nitions. The Hamiltonian operator
H in a CFT is de�ned by 5 :

H =
2π
R

(
L0 + L̄0 −

c

12

)
. (1.80)

and the Momentum operator P is :

P =
2π
iR

(L0 − L̄0) . (1.81)

5To match the notations of [19], we take a = 2π
R

in (1.51). Then, on the cylinder we have w = τ + iσ , σ +R =

σ. To get the Hamiltonian, we naturally integrate the energy density : 1
2π

RR
0 Tττdσ = 1

2π

RR
0 (Tww + Tw̄w̄)dσ =

1
2π

`
2π
R

´2 H “
Tz2 + T̄ z̄2 − c

12

”
R

2πi
dz
z

= 2π
R

`
L0 + L̄0 − c

12

´
. For the momentum a similar calculation holds starting

with 1
2π

RR
0 Tτσdσ = 2π

iR
(L0 − L̄0).
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The ground state energy E0 is the minimal eigenvalue of H :

H = − π

6R
(
c− 12(L0 + L̄0)

)
=⇒ E0 = − π

6R
(c− 24∆min) . (1.82)

We introduce the e�ective central charge : c̃ = c− 24∆min and get :

E0 = − πc̃
6R

. (1.83)

This formula can be interpreted as a Casimir energy : the non zero energy of the ground state in
a �nite volume. One recovers E0 = 0 as expected on the plane when we take R → ∞. Moreover,
in the course of the identi�cation between statistical models at criticality and their continuum CFT
limit, the ground state energy E0 is a universal term obtained in the expansion of the free energy of
the statistical model with respect to the size of the system. We will tell more about this later.

Now we are ready to present explicit examples of CFTs, that will be important for future inves-
tigations.

1.2.3 Liouville CFT

A particular theory that will be useful is the Liouville CFT given by the Lagrangian [16],[20] 6 :

AL =
∫ (

1
4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) + µebϕ(z,z̄)

)
idz ∧ dz̄

2
. (1.84)

The stress energy tensor

T = −1
4

(∂zϕ(z, z̄))2 +
Q

2
∂2
zϕ(z, z̄) , Q = b+

1
b
,

ensures the conformal invariance of this theory, with the central charge :

c = 1 + 6Q2 . (1.85)

What is the spectrum of Liouville CFT ? The primary �elds in this theory are given by the expressions
Va(z, z̄) = eaϕ(z,z̄) and are parametrized by a weight a. Va(z, z̄) has the conformal dimension 7 :

∆a = a(Q− a) . (1.86)

Notice that we will also use another parametrization of the conformal dimension. Setting

a =
Q

2
+ iP , (1.87)

then

∆a =
Q2

4
+ P 2 . (1.88)

One very important result is that the 3 point function for this theory is explicitly known, and has
been obtained in [21],[22]. It is the famous DOZZ formula, given by :

C(a1, a2, a3) =
(
πµγ(b2)2b2−2b2

)Q−P
i ai
b

Υ(2a1)×

Υ0Υ(2a2)Υ(2a3)
Υ(a1 + a2 + a3 −Q)Υ(a1 + a2 − a3)Υ(a2 + a3 − a1)Υ(a3 + a1 − a2)

, (1.89)

with Υ0 = dΥ
dx

∣∣
x=0

. The function Υ is a solution of the functional equations :

Υ(x+ b)
Υ(x)

= γ(bx)b1−2bx ,
Υ(x+ 1/b)

Υ(x)
= γ(x/b)b−1+2x/b . (1.90)

6Recall that in our conventions ∂z = 1
2

(∂x − i∂y) and idz∧dz̄
2

= dx ∧ dy. This implies that a vertex operator in

the free boson theory has the "natural" conformal dimension : ∆(ehϕ) = h2.
7The conformal dimensions of vertex operators in the free boson theory have to be shifted in such a way that

the exponential interaction ebϕ has dimension ∆(ebϕ) = 1. Hence the above formula, which can be demonstrated by
algebraic methods when we make contact with the Heisenberg algebra.
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where

γ(x) =
Γ(x)

Γ(1− x)
. (1.91)

Υ is a meromorphic function, that admits an integral representation in the range 0 < Re(x) < Q :

log Υ(x) =
∫ ∞

0

dt

t

{(
Q

2
− x
)2

e−t −
sh2
(

(Q2 − x) t2
)

sh( tb2 )sh( t
2b )

}
. (1.92)

This explicit formula for Υ implies the symmetry property

Υ(x) = Υ(Q− x) . (1.93)

In turn, it leads to the following remarkable property for the structure function [21] :

C(Q− a1, a2, a3)R(a1) = C(a1, a2, a3) . (1.94)

where R is called the Liouville re�ection amplitude. To calculate R one can remark that the second
line of (1.89) is invariant under the re�ection a1 → Q− a1. This implies

R(a) =
(
πµγ(b2)

)Q−2a
b b−2γ(2ab− b2)γ(2ab−1 − b−2 − 1) . (1.95)

Indeed

R(a) =
C(a, a2, a3)

C(Q− a, a2, a3)
=
(
πµγ(b2)b2−2b2

)Q−2a
b

Υ(2a)
Υ(2a−Q)

=
(
πµγ(b2)b2−2b2

)Q−2a
b

Υ(2a)
Υ(2a− b)

Υ(2a− b)
Υ((2a− b)− b−1)

=
(
πµγ(b2)

)Q−2a
b b−2γ(2ab− b2)γ(2ab−1 − b−2 − 1) . (1.96)

We will also use the expression of the re�ection amplitude in terms of the quasi-momentum P . First
de�ne

S(ia− iQ/2) = R(a) . (1.97)

Recalling the relation (1.87), it implies :

S(P ) = −
(
πµγ(b2)

)− 2iP
b

Γ(1 + 2iP
b )Γ(1 + 2iP b)

Γ(1− 2iP
b )Γ(1− 2iP b)

. (1.98)

The property (1.94) of the Liouville three point function is used to infer the following re�ection
relation among the �elds (holding inside correlation functions) :

eaϕ(z,z̄) = R(a)e(Q−a)ϕ(z,z̄) . (1.99)

The Liouville CFT possesses a special position among the CFTs. Indeed, since its central charge
takes continuous values, it is possible to restrict it to speci�c Conformal Field Theories. The values
of the three point functions in these particular cases can be obtained by appropriately restricting
the general DOZZ formula (1.89).

Minimal models Let us introduce some more general notions. A �eld ξ of a CFT is called a
singular vector, if it is a descendant of some primary �eld V∆ that satisfy :

Lnξ = 0 , n > 0 . (1.100)

Basically this means that the representation [V∆] of V supported by the highest weight vector V∆

is reducible, and we need to factor out the descendants of the �eld ξ to recover an irreducible
representation. But how to spoil singular vectors ? The following result answers this question.

Consider a general CFT with the parametrization of the central charge c = 1 + 6Q2, Q = b+ b−1

and of the dimensions ∆a = a(Q− a). If the parameter a is equal to :

amn =
(1−m)b−1 + (1− n)b

2
, m, n ∈ N , (1.101)
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then there is a singular vector at level m × n, which is a descendant of the primary �eld with
conformal dimension ∆amn . This special primary �eld is often called a degenerate �eld and we will
denote it :

Vmn = V∆amn
. (1.102)

We can then try to construct theories containing only degenerate primary �elds. This is very
meaningful, since each module [Vmn] becomes �nite dimensional after the factorization by its sub-
module generated by the singular descendant. Moreover, the factorization condition ξ = 0 imposes
constraints on the OPE of Vmn with other �elds of the theory. The construction of a CFT out of a
�nite number of degenerate �elds, with a closed operator algebra under the OPE procedure leads to
the the so-calledMinimal Models. They are denotedMp q where p, q ∈ N with the condition p∧q = 1.
To ful�ll the above restrictions (�nite number of primary �elds and closed operator algebra), the
central charge and the conformal dimensions have to be equal to :

c = 1− 6
(p− q)2

pq
, (1.103)

∆rs =
(pr − qs)2 − (p− q)2

4pq
, r ≤ p , s ≤ q . (1.104)

Among the minimal models we single out the unitary minimal models de�ned by q = p+ 1 and
denoted simply Mp. They can be endowed with a Hermitian structure, giving rise to a unitary
theory. In such models the �eld V1,3 will play a special role, its conformal dimension is :

∆1,3 = 1− ε < 1 , ε =
2

p+ 1
, ∀p . (1.105)

The �eld V1,3 has the smallest (except the identity �eld V1,1 with ∆1,1 = 0) conformal dimension.
Remark that we can formally pass from the Liouville CFT parametrized by b to the minimal model
Mp by setting :

b2 = − p

p+ 1
. (1.106)

The conformal dimension of the Liouville �eld V−b = e−bϕ(z,z̄) is then :

∆−b = −b(Q+ b) = −(1 + 2b2) = 1− 2
p+ 1

, (1.107)

and hence, it can be interpreted as the V1,3 �eld in the Liouville context. This will be of some
importance latter.

Partial conclusion. We have seen that for two dimensional CFTs, all the information needed to
describe the �eld theory is accessible :

1. The spectrum is classi�ed by the representations of the Virasoro algebra (1.49).

2. The structure constants are given by the DOZZ formula (or its variations) (1.89).

3. On the plane the one point functions vanish. On the cylinder with the boundary conditions
(1.55), the one point functions of primary �elds are given (as a result of the conformal mapping
(1.51)) by the plane 3-point functions of the DOZZ formula. For the one point functions of
descendant �elds we have the formulae from the Ward-Takahashi identities (1.78).

Therefore, we can now move to more complex theories that will involve a length scale and hence mas-
sive particles. Bearing in mind the example of the ssG model, it is natural to look at perturbations
of CFT.



26 CHAPTER 1. ONE POINT FUNCTIONS IN QUANTUM FIELD THEORIES

1.3 Perturbed CFT

The 2d Conformal Field Theories describe critical phenomena in 2d statistical systems. If we want
to consider massive Quantum Field Theories, or equivalently theories with a length scale, we should
therefore focus instead on the vicinity of such critical points. This approach to CFT, termed the
Perturbation of Conformal Field Theory (PCFT) was initiated in the paper [23] by Al. Zamolod-
chikov. A very complete review on this (as well as other forthcoming) topic can be found in [24].
We are going to follow closely this two sources in this section.

The perturbation of CFT is signi�cant for us since our main model of investigation, the Super
sine-Gordon model, will be treated exactly in this set-up. Therefore, in this section we will brie�y
recall the ideas of conformal perturbation theory, concentrating on the two following objectives :

1. Explain the renormalization of the �elds in PCFT. The renormalization in this context will
actually allow to consider that the �elds in the perturbed model are just deformations of CFT
�elds. Consequently, one will still have the notion of primary and descendant �elds in the
PCFT. This will answer the question of the spectrum of such theories.

2. Demonstrate how one can calculate perturbatively the OPE coe�cients.

These two points indicate that the single object that is (theoretically) left unknown in dealing with
perturbed CFT are precisely the one point functions.

Generalities. We would like here to construct a perturbation theory of some CFT given by the
formal action ACFT. Let us consider a primary �eld ϕ in the CFT spectrum (take this �eld to be
spinless ∆ = ∆), introduce a coupling constant λ, and de�ne the resulting Quantum Field Theory
by :

AQFT = ACFT + λ

∫
ϕ(x)d2x . (1.108)

This is not the most general perturbation. It is possible to perturb the CFT by several primary
�elds, or to make a perturbation by complex composite operators [25]. This triggered a huge scienti�c
activity recently [26, 27]. However, for our needs, that is for dealing with the Supersymmetric sine-
Gordon QFT we concentrate on this simplest case. We start by making two fundamental comments.
First, as is pointed out in [23], we suppose that the local �elds in the perturbed theory are in one to
one correspondence with those of the short distance CFT, this will be demonstrated in this section
and means that we can still continue to label our �elds exactly as in the CFT. The second remark
concerns the fact that in order to get exact results it is enough to execute the calculations up to the
�rst order in perturbation theory, the outcomes are supposed to hold at all orders.

It is known from Renormalization Group analysis, that to ensure the production of a new theory
from the perturbation, we need the perturbing �eld ϕ to be relevant. It means that its anomalous
dimension should satisfy :

d = 2∆ < 2 . (1.109)

We assume that the introduction of a perturbation generates a mass M (see [28, 29, 30] for coun-
terexamples), which is from dimensional reasons related to the coupling constant by8 :

M = Cλ
1

2−2∆ , (1.112)

where C is a numerical constant, that can be calculated thanks to the Thermodynamic Bethe Ansatz,
this will be done in the section 1.6.

8 The mass dimension of a �eld is the same as the anomalous dimension

[ϕ] = 2∆ . (1.110)

This can be seen for example from the two points function 〈ϕϕ〉 ∼ r−4∆. It implies that the mass dimension of the
coupling constant is

[λ] = 2(1−∆) , (1.111)

since [λ
R
ϕd2x] = 0 with [d2x] = −2.
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Renormalization. Let us consider the one point function 〈V (0)〉QFT of a generic �eld in the
PCFT. Since in the conformal theory we know, in principle, all correlation functions, we can use
this information to compute the one point functions in the perturbed theory :

〈V (0)〉QFT =
∫
DφV (0) e−ACFT−λ

R
ϕ(w)d2w

=
∞∑
n=0

(−λ)n

n!

∫
d2w1...d

2wn 〈Ṽ (0)ϕ(w1)...ϕ(wn)〉CFT , (1.113)

where we explicitly indicated in which theory the correlation functions are calculated. Moreover,
we assume that the �eld V is a deformation of the CFT �eld Ṽ , with conformal dimension ∆V . If
the �eld ϕ is such that its conformal dimension is ∆ > 1

2 , then the above integrals su�er from both
UV and IR singularities. As we will see shortly, the type of these singularities is very di�erent. The
UV singularities can be dealt with by a renormalization of the �elds. The IR singularities are more
complicated. For the moment, to get �nite correlation functions, we need to introduce two cuto�s
(respectively UV and IR) : ε and R. A general correlation function is then at the �rst order :

〈X V (0)〉QFT = 〈X Ṽ (0)〉CFT − λ
∫
ε<|w|<R

d2w 〈X Ṽ (0)ϕ(w)〉CFT +O(λ2) . (1.114)

The OPE at the CFT level is given by :

ϕ(z, z̄)V (0) =
∑
k

CkϕV (zz̄)∆k−∆V −∆Ak(0) , (1.115)

where Ak are a set of �elds with dimensions ∆k. Recall a trivial formula that we will write explicitly
: ∫ R

ε

(zz̄)αd2z =
∫ π

0

∫ R

ε

r2αrdrdθ =
π

α+ 1
(R2(α+1) − ε2(α+1)) , with α 6= 1 . (1.116)

Then the integral of order O(λ) in (1.114) is divergent if the condition among the conformal dimen-
sions

∆k −∆V −∆ + 1 ≤ 0 , (1.117)

is satis�ed. In this case, by de�ning the renormalized �eld V by :

V = Ṽ + λ
∑
k

πCkϕV
ε2(∆k−∆V −∆+1)

∆k −∆V −∆ + 1
Ak +O(λ2) , (1.118)

we get UV-�nite correlation function at the order O(λ). This formula implies a mixing of the original

�eld Ṽ with �elds of lower dimensions.

OPE in the perturbed theory. Let us now turn to the analysis of the OPE in the PCFT. We
start with the two point functions, which are written analogously to (1.114) :

〈V (z)V (0)〉QFT =
∞∑
n=0

(−λ)n

n!

∫
〈Ṽ (z)Ṽ (0)ϕ(w1) ... ϕ(wn)〉CFT d2w1 ... d

2wn , (1.119)

where all the integrals on the right hand side are now UV �nite. Consider the OPE decomposition :

V (z)V (0) =
∑
i

Ck
V V (z)Ak(0) , (1.120)

where {Ak} is a complete set of renormalized �elds, that we will take listed by increasing dimension
(∆0 ≤ ∆1 ≤ ∆2 ≤ ...). The expression (1.120) represents the splitting between the analytic
(structure constants) and the non-analytic (one point functions) contributions to the two points
functions. Since the structure constants are local quantities, they are analytic functions of the
coupling constant λ and can be expanded in power series thereof :

Ck
V V (z) = z∆k−2∆V z̄∆k−2∆V

∞∑
n=0

C
k(n)
V V (λr2−2∆)n , (1.121)
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where here and in the following
r = |z| , (1.122)

and the coe�cient C
k(0)
V V = CkV V is the CFT (the theory for λ = 0) three points function coe�cient.

The perturbed theory is not conformally invariant anymore, and hence non-vanishing one point
functions of operators can appear. The one point functions are by de�nition non-local quantities,
hence they admit a non-analytic dependence on λ. On dimensional grounds we also have :

〈Ak(0)〉QFT = λ
∆k

1−∆Qk , Qk ∈ C , (1.123)

since

[λ
∆k

1−∆ ] =
∆k

1−∆
(2− 2∆) = 2∆k , (1.124)

which is what we need. All the non-analytic behavior of the OPE expansion (1.120) is therefore
hidden inside the one point functions, whereas the OPE coe�cients can be calculated by perturbative
methods, which is not so surprising since they are purely UV data. We explain this in the next
paragraph.

Perturbative calculation of the coe�cients. We would like to explicitly compute the �rst
terms of the perturbative expansion (1.121). We closely follow [23] and �rst de�ne the matrix
elements :

Ĩkl (λ,R, ε) = 〈Ãk(∞)Ãl(0)〉QFT

=
∞∑
n=0

(−λ)n

n!

∫
ε<|w|<R

〈Ãk(∞)Ãl(0)ϕ(w1) ... ϕ(wn)〉CFT d
2w1...d

2wn . (1.125)

In this expression Ãk are the non-renormalised versions of the �elds Ak. Use the conformal normal-
ization (see (1.37)) at zero order :

Ĩkl (λ,R, ε) = δkl +O(λ) . (1.126)

Since the UV and IR singularities have completely di�erent nature, one can assume the following
factorization property :

Ĩkl (λ,R, ε) =
∑
p

Ukp (λ, ε)Ipl (λ,R) . (1.127)

In the previous formula Ipl (λ,R) are renormalized matrix elements (they are therefore independent
of ε) :

Ikl (λ,R) = 〈Ak(∞)Al(0)〉QFT . (1.128)

The Ukp (λ, ε) is the UV cut-o� renormalization matrix. The terms of U can be expanded in a power
series in ε, that from dimensional considerations reads :

Ukl (λ, ε) =
∞∑
n=0

U
k(n)
l

ε2(∆l−∆k)

(
λε2(1−∆)

)n
. (1.129)

When taking the limit ε → 0, we should focus only on terms with negative powers of ε. Since the
perturbing �eld ϕ is relevant (∆ < 1), there are only a �nite number of such terms, for each matrix
element. In particular it means that :

Ukl (λ, ε) = 0 , ∆k > ∆l , (1.130)

and from the ordering of the �elds in {Ak(0)} de�ned above, it is clear that the matrix Ukl together
with its inverse (U−1)lk has a triangular structure. The elements of the renormalized matrix are also
normalized using the conformal prescription :

Ukl (λ, ε) = δkl +O(λ) . (1.131)

Now we can de�ne the renormalized perturbative �elds as :

Ak =
∑
l

(U−1)lkÃl . (1.132)
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From the normalization (1.131) we recover the formula (1.118) :

Ak = Ãk + ... , (1.133)

where the dots mean a �nite number of terms, given by �elds with dimensions lower than ∆k.
Remark, that in the above discussion, we supposed for simplicity that there are no resonances, in
other words that ∆k −∆l is not an integer multiple of 1−∆.

For the renormalized matrix I, we assume a similar power series expansion as the one of U , but
depending on the cut-o� R :

Ikl (λ,R) =
∞∑
n=0

I
k(n)
l

R2(∆l−∆k)

(
λR2(1−∆)

)n
. (1.134)

We can now proceed to the perturbative calculation of the three point function. De�ne the quantity

GkV V (λ, z,R) = 〈Ãk(∞)V (z)V (0)〉QFT ,

=
∞∑
n=0

(−λ)n

n!

∫
|w|<R

〈Ãk(∞)V (z)V (0)ϕ(w1) ... ϕ(wn)〉CFT d
2w1...d

2wn . (1.135)

Since V is already renormalized, there is no ε dependence (no UV singularities) in the integrals. The
use of the OPE expansion (1.120) implies :

Ck
V V (z) =

∑
l

GlV V (λ, z,R)(I−1)kl (λ,R) . (1.136)

One will need the following three-point functions at the CFT level (1.38) :

〈Ãk(∞)V (z)V (0)〉CFT = CkV V |z|2(∆k−2∆V ) , (1.137)

〈Ãk(∞)ϕ(z)V (0)〉CFT = CkϕV |z|2(∆k−∆−∆V ) , (1.138)

〈Ãk(∞)ϕ(z)Al(0)〉CFT = Ckϕl|z|2(∆k−∆l−∆) . (1.139)

Inserting (1.137) in the �rst order term of (1.125) and using (1.116) one has :

Ĩkl (λ,R, ε) = δkl − λπ Ckϕl
R2(∆k−∆l−∆+1) − ε2(∆k−∆l−∆+1)

∆k −∆l −∆ + 1
. (1.140)

Splitting the UV and IR contributions at the same order in λ we get :

Ikl (λ,R) = δkl − λπ Ckϕl
R2(∆k−∆l−∆+1)

∆k −∆l −∆ + 1
, (1.141)

Ukl (λ, ε) = δkl + λπ Ckϕl
ε2(∆k−∆l−∆+1)

∆k −∆l −∆ + 1
. (1.142)

At the �rst order the OPE coe�cients are then :

Ck
V V (z) = CkV V |z|2(∆k−2∆V ) − λ

∫
|w|<R

〈Ã(∞)ϕ(w)V (z)V (0)〉 d2w (1.143)

+ λπ
∑
l

ClV ϕC
k
ϕlR

2(∆k−∆l−∆+1)

∆k −∆l −∆ + 1
. (1.144)

The last sum cancels exactly the IR divergences of the integral. Using the OPE (1.120) we obtain
the �rst order term of the expansion (1.121) :

Ck
V V (z) = r2(∆k−2∆V )

×

(
CkV V + λπr2−2∆

∑
l

(
ClV V C

k
ϕl

∆k −∆l −∆ + 1
−

ClϕV C
k
V l

∆l −∆V −∆ + 1

)
+O(λ2)

)
. (1.145)
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Partial conclusion. The above analysis showed that the only quantities that we cannot access
from standard perturbative methods are the one point functions 〈Vk(0)〉 of the theory. These are
the principal quantities of interest and their calculation, in the case of the Super sine-Gordon model,
will be the main subject of this dissertation. However we can already claim that a large number of
them is equal to zero due to QFT symmetries. These are :

1. One point functions of �elds with non zero spin.

2. One point functions of �elds which are spatial derivatives of other �elds.

3. One point functions of �elds generated by the action of any local integral of motion.

The �rst two points represent the invariance of one point functions under rotations and spatial
translations. The third point is related to an outstanding feature of many perturbed CFT : under
certain conditions the perturbed �eld theories happen to be integrable models. This will be the topic
of the next section.

1.4 Deformation of conformal conservation laws

A crucial observation is that the above deformations of CFT often lead to integrable Quantum Field
Theories. Integrable QFTs are characterized by an in�nite number of integrals of motions (IoM),
and thus an in�nite number of conservation laws. The integrals of motions occupy a central place in
our work. First of all, they are already present in the CFT, and we will see why they are crucial to
display the integrable structure of conformal �eld theories in section 2.6. As we will explain in this
section, the integrals of motion can under certain conditions be deformed from CFT to the massive
QFT, and are then responsible of the integrability of the latter theory. Let us �rst start with the
conformal case.

Integrals of motion in CFT. Recall that in CFT, the �eld T is conserved :

∂z̄T (z, z̄) = 0 . (1.146)

From this equation we can try to build conserved quantities as combinations of the �eld T (and its
derivatives). To manipulate products of �elds we �rst de�ne the normal ordering between two �elds
V and W on the plane :

: VW (u) :=
∮
cu

dz

2πi
1

z − u
V (z)W (u) . (1.147)

We will also employ the notation (VW ) =: VW : to denote products of multiple normal ordered
operators. More precisely, we can construct conserved densities h by considering polynomials of
normal ordered products of T itself and of its derivatives. From the conservation law (1.146), any
such h will also satisfy

∂z̄h(z, z̄) = 0 , (1.148)

and is therefore a conserved quantity. A natural question is to understand how one could classify
these densities. Recall that the stress energy tensor is a descendant of the identity �eld T = L−2I.
It means that all such h belong to the conformal family of the identity [I], that is they are built from
I by applying the modes Ln with n < 0. Hence, one can try to characterize the h's by their spin.
Actually for each spin s, we can de�ne a �nite dimensional vector space Ts containing the di�erent
"candidate" densities with this given value of the spin. Let us list the �rst possible densities :

s = 0 h0 = I , (1.149)

s = 1 h1 = L−1I = ∂zI = 0 , (1.150)

s = 2 h2 = L−2I = T , h′2 = L2
−1I = 0 (1.151)

s = 3 h3 = L−1L−2I = ∂zT , h′3 = L3
−1I = 0 (1.152)

s = 4 h4 = L2
−2T = (TT ) , h′4 = ∂2

zT . (1.153)

The prime indicate other �elds, that might be considered for constructing densities (at each value of
the spin). Generally speaking, all density of odd spin will be set to zero, they are either equal to zero,
or total derivatives that means that their one point function is zero, and are of no interest for us.
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Therefore, we concentrate on even spin densities. At spin 6, we have two non trivial contributions
that can appear :

h
(1)
6 = ((TT )T ) , h

(2)
6 =: ∂zT∂zT : . (1.154)

The outcome of the previous analysis is the following : one has an in�nite family of conserved �elds
h2k, parametrized by their spin 2k that are expressed as homogeneous (in the spin) polynomials of
T and its derivatives.
But which density keep at spin 6 ? As we will see, in certain cases, specially constructed integrals
of motion can "survive" when the perturbation theory is applied, which means that such densities
still satisfy a conservation equation in the massive theory. Before presenting the procedure, we give
the densities that one should keep :

h2(z) = T (z) , (1.155)

h4(z) = : T (z)2 : , (1.156)

h6(z) = : T (z)3 : +
c+ 2

12
: (∂zT (z))2 : . (1.157)

Let us emphasize again that in the spin 4 case, we dropped the contribution of the �eld ∂2
zT because

being a total derivative, its one point function is zero.

Action on �elds. In the same spirit that we de�ned the action of the modes ln of the stress
energy tensor on �elds on the cylinder (1.56), we de�ne the local action of the integrals of motion.
Recall that on the cylinder we use circular contractible contours to de�ne the local actions :

(i2k−1V )(y) =
∮
cy

dx

2πi
T (h2k(x)V (y)) , (1.158)

where cy is a small circle around the point y. One should think about this formula as a local
de�nition, since cy is homotopical to point. This implies that one could also compute i2k−1 from
the residue of h2k(z) (in the plane geometry) at the origin :

i2k−1 = Resz=0(h2k(z)) . (1.159)

Let us list some properties of the modes i2k−1.

1. Since the h2k are constructed out of T 's, i2k−1 can be rewritten through the "local" modes ln.

2. Because h2k is a �eld of spin 2k, the operator i2k−1 is of spin 2k− 1. This is equivalent to the
equation :

[l0, i2k−1] = (2k − 1)i2k−1 . (1.160)

3. Since we are dealing with conserved quantities, all i2k−1 are in involution :

[i2k−1, i2l−1] = 0 . (1.161)

Now we explicitly calculate the �rst actions. We have

(i1V )(y) =
∫
cy

dx

2πi
T (h2(x)V (y)) =

∫
cy

dx

2πi
T (T (x)V (y)) = (l−1V )(y) ,

=⇒ i1 = l−1 . (1.162)

To get i3, let us calculate the residue of (1.156). We have the normal ordered expressions 9 :

(TT )(z) =:
∑
n

lnz−n−2
∑
m

lmz−m−2 :=
∑
n,m

: lnlm : z−n−m−4 =
∑
q

(∑
m

: lmlq−m :

)
z−q−4 .

(1.163)
This leads to :

i3 = Resz=0

[
(TT )(z)

]
=
∑
m

: lml−3−m := 2
∞∑

m=−1

l−3−mlm . (1.164)

Finally, by a similar computation, one obtain the expression of i5 [31] :

i5 = 3

( ∞∑
k=−1

∞∑
l=−1

l−5−k−llllk +
−2∑

k=−∞

−2∑
l=−∞

lllkl−5−k−l

)
+
c+ 2

6

∞∑
k=−1

(k+2)(k+3)l−5−klk . (1.165)

9In terms of modes, the normal order corresponds to placing operators with the bigger index to the right.
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Integrals of motion in Perturbed CFT. Let us now move to the consideration of perturbed
CFT. The key article where the deformations of integrals of motion were studied is [33]. It has been
shown that a unitary minimal CFT Mp perturbed by the �elds V1,3 and V1,2 possesses higher order
integrals of motion.

How do the conformal conservation laws (1.148) change in the massive context ? Recall the
formula (1.9) giving the continuity equation on a general stress-energy tensor and compare it with
the conservation law for the densities in the CFT ∂z̄h2k = 0. It is natural to suppose that in the
massive theory, the previous equation for h2k should develop a non zero right hand side taking the
form of a total holomorphic derivative :

∂z̄h2k = ∂zΘ2k−2 , (1.166)

for some �eld Θ2k−2 to be speci�ed. To balance the dimensions on both sides of (1.166), we can
claim that Θ2k−2 has spin 2k − 2. Also from this equation we can directly construct a conserved
charge of spin 2k − 1 (in the same spirit as (1.11)):

Q2k−1 =
1

2πi

∮
c0

(h2kdz + Θ2k−2dz̄) . (1.167)

In what sense are these charges conserved ? A naive application of the Stokes theorem would give :

Q2k−1 =
1

2πi

∮
c0

(dzh2k + dz̄Θ2k−2)

= − 1
2πi

∫
Ω

(∂z̄h2k − ∂zΘ2k−2)dz ∧ dz̄ = 0 , (1.168)

where Ω is the interior of c0. But we should handle this relation only inside correlation functions,
where singularities coming from products with other �elds are present, and hence give a non vanishing
result. Moreover the set of these charges should commute :

[Q2k−1,Q2l−1] = 0 . (1.169)

Recalling (1.12), we see that Q1 is simply the momentum

Q1 = P = ∂z . (1.170)

Let us make another remark. In the section 4.1 we will use a similar construction in the context of
Supersymmetric CFT to create conserved densities, but instead of working with the stress-energy
tensor we will focus on the super current �eld. This will in particular yield the usual super charges
of a SUSY QFT. Now that we made explicit the general form of the conservation laws in the context
of a massive �eld theory, we need a procedure to select the CFT densities h2k that will e�ectively
give rise to a deformed equation (1.166). This criterion is explained in the next paragraph.

Criterion for the deformation of conservation laws. This rule is based on the OPE between
h and the perturbing �eld, and reads :
For a density h to be an integral of motion in the QFT context it is necessary for the residue of the
OPE of h with the perturbation �eld to be proportional to a total derivative. Let us prove this. First
recall a formula for distribution theory :

δ(z − w) =
1
π
∂z̄

(
1

z − w

)
. (1.171)

Let h2k be a CFT density, we want to arrive at the conservation law in the context of QFT :

∂z̄h2k = ∂zΘ2k−2 . (1.172)

As we said, this is to be understood as an equality inside correlation functions. In a general CFT
perturbed by a �eld ϕ one can write the expansion of a correlation function of the �eld h2k :

〈h2k(z, z̄)...〉QFT =
∫
Dφe−A[φ]h2k(z, z̄)... =

∫
Dϕe−SCFT−λ

R
d2wϕ(w)h2k(z, z̄)...

=
∞∑
n=0

(−λ)n

n!

∫
dw2

1...dw
2
n 〈h2k(z, z̄)ϕ(w1)...ϕ(wn)...〉CFT

= 〈h2k(z)...〉CFT − λ
∫
dw2 〈h2k(z, z̄)ϕ(w)...〉CFT +O(λ) (1.173)
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As said above, it is enough to do the calculation in the �rst order of perturbation theory. Take the
derivative ∂z̄ of (1.173). To do this, we assume that the strongest singularity in the OPE between
h2k and ϕ is of order 2 (the general case is obtained in the same way) :

h2k(z, z̄)ϕ(w, w̄) =
A(2)

(z − w)2
ϕ(2)(w, w̄) +

1
z − w

ϕ(1)(w, w̄) + ... (1.174)

h2k(z, z̄)ϕ(w, w̄) =
A(2)

(z − w)2
ϕ(2)(z, z̄) +

1
z − w

(
ϕ(1)(z, z̄)−A(2)∂zϕ

(2)(z, z̄)
)

+ ... . (1.175)

We do this change because we want the variable of integration w to appear only in the denominator.
Performing the OPE (1.175) in the integral of (1.173), and using (1.171) we obtain at �rst order :

∂z̄h2k(z) = −λπ
(
ϕ(1)(z, z̄)−A(2)∂zϕ

(2)(z, z̄)
)
. (1.176)

Hence
∂zΘ2k−2(z, z̄) = −λπ

(
ϕ(1)(z, z̄)−A(2)∂zϕ

(2)(z, z̄)
)
, (1.177)

which implies the necessity for the �eld ϕ(1)(z, z̄) to be a total holomorphic derivative.

Example. Let us illustrate this method for the �rst density h2(z) = T (z). If the perturbation is
done by a primary �eld ϕ(z, z̄) of conformal dimension ∆, we recall the OPE (1.20) :

h2(z)ϕ(w, w̄) =
∆

(z − w)2
ϕ(w, w̄) +

1
z − w

∂wϕ(w, w̄) +O(1) (1.178)

Hence the density h2 gives rise to the perturbed conservation law (we already knew it from (1.9)) :

∂z̄T = ∂zΘ . (1.179)

with
Θ(z, z̄) = λπ(∆− 1)ϕ(z, z̄) (1.180)

This is a well known result : we have shown that the trace of the stress energy tensor is proportional
to the perturbing �eld, in the �rst order of perturbation theory. The structure of the spin 6 density
h6 (1.157) is chosen exactly so that it satis�es this criterion and gives an integral of motion in the
perturbed theory.

There exists also other, more algebraic methods, that allow to determine the explicit form of the
right hand side term Θ2k−2. For example the counting argument of A. Zamolodchikov [32].

Application. In the paper [33], A. Zamolodchikov used the above criterion to show that the per-
turbation of any unitary minimal model by the �elds V1,3 or V1,2, deform the conformal conservation
laws to the massive QFT. The main argument of the proof relies on the fact that since these two
�elds are degenerate primary �elds, there exist a dependence relation between their descendants at
level 3 and 2 respectively. This relation can be used to show that the residue of the OPE between
V1,3 or V1,2 with any conformal density h2k is a total derivative.

Hence the perturbation of unitary minimal models by V1,3 or V1,2 gives massive theories with an
in�nite number of local integrals of motion and conserved charges (1.167). This is what we will call
an Integrable Quantum Field Theory, they will be discussed in the next section.

As an example of such a theory, let us now consider the following perturbation of the Liouville
CFT, termed the sinh-Gordon model (shG). The shG is given by the Lagrangian :

AshG =
∫ (

1
4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) + 2µsh(bϕ(z, z̄))

)
idz ∧ dz̄

2
. (1.181)



34 CHAPTER 1. ONE POINT FUNCTIONS IN QUANTUM FIELD THEORIES

This is a perturbation of the Liouville theory AL by the �eld V−b(z, z̄) = e−bϕ(z,z̄) :

AshG =
∫ (

1
4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) + µebϕ(z,z̄) + µe−bϕ(z,z̄)

)
idz ∧ dz̄

2
. (1.182)

Recall that the stress energy tensor of the Liouville CFT is :

T = −1
4

(∂zϕ)2 +
Q

2
∂2
zϕ . (1.183)

The perturbing �eld V−b has conformal dimension ∆ = −b(Q+ b) = −(1 + 2b2).

Remember the correspondence between a minimal modelMp and the Liouville CFT parametrized
by b (1.107) :

b2 = − p

p+ 1
. (1.184)

One can then interpret the shG model as a perturbation of a CFT by the �eld V1,3, and hence from
the above considerations claim that shG is an Integrable QFT. Of course the integrability of this
model was proven without any reference to CFT, but this gives us a rather heuristic, extra argument.
The same considerations will hold for our case of interest, that is for the Super sine-Gordon (sinh-
Gordon) model.

The two facets of integrals of motion. To close this section, we would like to highlight once
again the two di�erent aspects of the integrals of motion in CFT and in QFT, by recapping the two
applications that we can make of the densities h2k.

1. We can use the densities to build operators acting on states of Verma modules. More precisely,
in the terminology that will be developed in the next chapter, we employ the densities in order
to act on the Matsubara Hilbert space. This will be made clearer later, for the moment consider
that this amounts to construct the operators I2k−1 in the Universal Enveloping Algebra of the
Virasoro algebra, out of the h2k by integrating the densities along a non-trivial cycle C of the
cylinder :

I2k−1 =
∮
C

h2k(y)
dy

2πi
=
∫ u+iπ

u−iπ
h2k(y)

dy

2πi
. (1.185)

The construction procedure for the densities described above implies the commutativity of the
operators I2k−1 :

[I2k−1, I2l−1] = 0 . (1.186)

An explicit calculation gives the expressions of the I2k−1 in terms of the modes Ln :

I1 = L0 −
c

24
, (1.187)

I3 = 2
∞∑
n=1

L−nLn + L2
0 −

c+ 2
12

L0 +
c(5c+ 22)

2880
. (1.188)

Recall that we computed I3 in (1.73), (1.75). A more complicated expression for I5 can be
found from [34] :

I5 =
∑

n1+n2+n3=0

: Ln1Ln2Ln3 : +
∞∑
n=1

(
c+ 11

6
n2 − 1− c

4

)
L−nLn+

3
2

∞∑
r=1

L1−2rL2r−1 −
c+ 4

8
L2

0 −
c(3c+ 14)(7c+ 68))

290304
. (1.189)

We have the evident action on the primary state |∆〉 :

I2k−1 |∆〉 = i2k−1 |∆〉 . (1.190)

For the operators (1.187),(1.188),(1.189) these are :

i1 = ∆− c

24
, (1.191)

i3 = ∆2 − c+ 2
12

∆ +
c(5c+ 22)

2880
, (1.192)

i5 = ∆3 − c+ 4
8

∆2 +
1

576
(c+ 2)(3c+ 20)∆− c(14 + 3c)(68 + 7c)

290304
. (1.193)
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2. As local densities, we can use them to de�ne the action of the integrals of motion on other
�elds V , by the formula (1.158) :

(i2k−1V )(y) =
∫
cy

dx

2πi
T (h2k(x)V (y)) (1.194)

Grouping the above results we have :

i1 = l−1 , (1.195)

i3 = 2
∞∑
n=0

l−n−2ln−1 , (1.196)

i5 = 3

( ∞∑
k=−1

∞∑
l=−1

l−5−k−llllk +
−2∑

k=−∞

−2∑
l=−∞

lllkl−5−k−l

)
+
c+ 2

6

∞∑
k=−1

(k + 2)(k + 3)l−5−klk .

(1.197)

To obtain the relation between the two descriptions we calculate the one point functions on the
cylinder (remember that we work on the cylinder with primary �elds of dimensions ∆± located at
±∞ respectively). Again, splitting the contour cy = C+ − C− one gets :

〈(i2k−1V )(y)〉∆+,∆−
= −

∫
C−

dx

2πi
〈h2k(x)V (y)〉∆+,∆−

+
∫
C+

dx

2πi
〈V (y)h2k(x)〉∆+,∆−

, (1.198)

= (i+2n−1 − i
−
2n−1) 〈V (y)〉∆+,∆−

. (1.199)

To get to the second line, we move the contours C± to in�nities, where the density h2k hits the
primary states ∆±. This gives the relation between the two descriptions. More importantly, we
have shown that when the boundary conditions are equal ∆+ = ∆−, the one point functions of
�elds obtained by the action of integrals of motion are zero.

1.5 Integrable Quantum Field Theory

We have seen that the perturbation of a unitary minimal model Mp by the �eld V1,3 leads to a
QFT owning an in�nite number of conserved, commuting charges. This is our de�nition of an
Integrable Quantum Field Theory. But how are they connected to general integrable systems ? One
needs to say that there is no universal de�nition for such models, but usually one agrees to consider
that integrability means that all physically relevant quantities can be computed analytically. This
behavior was �rst observed in the context of Analytical Mechanics (see [37] for a review) for theories
possessing enough conserved quantities, that is at least the same number as of degrees of freedom.
This is the result of the famous Arnold-Liouville theorem for classical integrable systems. In the
context of QFT one typically has in�nitely many degrees of freedom, and as we have seen above
in�nitely many conserved quantities for integrable QFTs. Why and in what sense do this charges
lead to an exact solution of the quantum theory ?

This question has been answered in [38], we shall brie�y recall the main steps from this paper
(also using [24] as a valuable reference). Hence, for a moment we come back to the relativistic non-
euclidean, massive theory. The characteristics of particles are then their masses m and rapidities
θ. The essential contribution of [38] is to demonstrate that integrability in QFT implies that the
spectrum and the scattering data (equivalently the S matrix of the theory) can be computed exactly.
We will in short explain why it is so, and how it leads naturally to the Yang-Baxter equation, the
cornerstone of any quantum integrable system.

Let us start from the last results of the previous section, we have a QFT with in�nitely many
conserved charges Qs (or integrals of motion), labeled by their spins, in involution :

[Qu,Qv] = 0 . (1.200)

Assume that the particles in the theory can be classi�ed by their species, a state of the theory with
n particles of species ai will then be denoted by

|Aa1(θ1)...Aan(θn)〉 , (1.201)
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where θi is the rapidity of the particle ai. Since we are working in only 2 dimensions, we can formally
think of Aai(θi) as non commuting symbols, whose order is associated to the spacial order of the
particles that they depict. Then the state (1.201) represent an asymptotic state with θ1 ≥ θ2 ≥ ... ≥
θn. The set of objects de�ned above (1.201) will be called the Faddeev-Zamolodchikov algebra, we
will soon explain its multiplication rule. Since the charges commutes, we can take a basis of such
states that diagonalize all conserved charges :

Qu |Aa(θ)〉 = ωau(θ) |Aa(θ)〉 . (1.202)

Then from the transformation properties of Qu under rotations, it is possible to explicit the depen-
dence of the eigenvalue ωau on the rapidity θ :

ωau(θ) = χaue
uθ . (1.203)

The presence of an in�nite number of conserved charges has therefore two tremendous consequences
:

1. The scattering processes are purely elastic. This means that there is no particle production or
annihilation, and the sets of initial and �nal momenta are coinciding. Indeed, let us act with
Qu on (1.201) and obtain :

Qu |Aa1(θ1)...Aan(θn)〉 =
n∑
k=1

χaiu e
uθi |Aa1(θ1)...Aan(θn)〉 . (1.204)

But Qu is a conserved quantity dQu
dt = 0. This means that there is an in�nite series of

constraints that involve the sum on the initial and �nal particles, and that can have any
number of terms : ∑

k∈in

χaku e
uθk =

∑
l∈out

χalu e
uθl . (1.205)

The only solution to these constraints corresponds to the case where both sums have the same
number of terms, and where they are pairwise equal. Hence an in�nite number of conserved
charges implies the elasticity of the scattering.

2. The scattering is factorizable. This means that the scattering process of any number of particles
is reduced to 2-particles scattering.

Hence all the scattering processes are encoded in the two particles scattering. The S matrix is
therefore de�ned as the exchange operator for 2-particles states :

|Aai(θ1)Aaj (θ2)〉 = Sklij (θ12) |Aak(θ2)Aal(θ1)〉 , (1.206)

where the notation θij = θi − θj is used. This relation �xes the multiplication rules between the
elements of the Faddeev-Zamolodchikov algebra. S depends only on the di�erence of the rapidity θij
because of relativistic invariance. Since the 3-particles process is factorizable in two di�erent ways
(see the picture 1.2) we have the following :

Sabij (θ12)Sclbk(θ13)Snmac (θ23) = Sabjk(θ23)Sncia (θ13)Smlcb (θ12) , (1.207)

this is the celebrated Yang-Baxter equation for the S matrix.

The appearance of the Yang-Baxter equation is a common feature of quantum integrable systems.
Indeed, from this equation it is possible to calculate many physically relevant quantities explicitly
[40]. Hence the fact that the S matrix satis�es the Yang-Baxter is a strong evidence towards
the integrability of the theory. From a slightly di�erent point of view, it can be easily seen that
the Yang-Baxter equation is equivalent to the associativity of the composition rule (1.206) in the
Faddeev-Zamolodchikov algebra.

There are additional constraints on the S matrix, such that the crossing symmetry and several
analytical conditions, we will not discuss them here. Together with the so called Bootstrap principle
they allow to �nd solutions of (1.207) for di�erent theories and hence access the spectrum and the
masses of the particles. The key point is that the speci�city (for example the spectrum) of each
theory will be hidden in the set of spins of the conserved charges, the description of this fact is out
of the scope of this presentation (see [24, 32]).

Now that we have explained how to calculated the S matrix, we shall describe how one can apply
it in thermodynamical considerations.
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Figure 1.2: Factorization of the scattering process of 3 particles : the Yang-Baxter equation. Each
line of the picture is interpreted as a trajectory of one of the particles (with rapidities θ1,2,3) in the
two dimensional space-time. An intersection between the lines correspond to the occurrence of a
scattering process described by the corresponding entry of the S matrix.

1.6 Thermodynamic Bethe Ansatz

In the future study of the Super sine-Gordon model our main tool will be thermodynamical equations
of non-linear, integral type. They allow to study numerically a massive QFT, and obtain results in its
short or long distance limits (UV or IR). The �rst type of thermodynamical equations were derived
in [41] for quantum system of bosonic particles. They were afterwards generalized to the relativistic
set-up in [19] and applied in the QFT context for the simplest massive perturbations of Conformal
Field Theories : the Scaling 3-state Potts model and the Lee-Yang model. Since then, the equations
constructed by the methodology of [19] are termed Thermodynamic Bethe Ansatz equations (TBA).
The TBA equations describe exactly the ground state energy E0(R) (1.83) of an integrable �eld
theory living on a �nite circle of length R with periodic (or twisted) boundary conditions. Usually
TBA is derived starting from a relativistic factorized scattering theory, that is from the data of the
S matrix of theory, which is supposed to be known for the model under consideration. The TBA
technology is one of the main tools that we have at our disposition to study the integrable massive
QFT, and some of its applications include :

1. The validation of the assumption that the proposed scattering theory does indeed describe the
deformation of the given CFT. One can in fact build a scaling function that tends towards the
central charge of the CFT in the UV limit.

2. The calculation of the bulk energy of the QFT.

3. The derivation of the exact relation between the mass of the lightest particle and the coupling
constant (1.112) in PCFT.

In addition to provide, as we are about to present, the above exact result for many QFTs, the
TBA equations are also intrinsically related to the integrable structure of the underlying CFT [34],
this will be discussed in more details in the section 2.6. Even if in our work we shall use di�erent
thermodynamical equations (the so-called Suzuki equations, in particular to make an even more
explicit contact with the construction of [34] ), their form and the spirit of their applications are
similar to the TBA. This is the reason for us to concisely recall the "historical" TBA equations
focusing on two applications :

1. The calculation of the UV CFT central charge.

2. The derivation of the mass - coupling constant formula.
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Ground state energy and free energy of a QFT. First we introduce several thermodynamical
quantities in the context of �eld theory. Consider a Quantum Field Theory, characterized by its
stress energy tensor T , on a cylinder of radius R and length L (with coordinates x and y respectively).
There are two ways to treat this theory, this is pictured in the two di�erent possibilities to write the
partition function Z :

Z(R,L) = Tr e−LHR , Z(R,L) = Tr e−RHL . (1.208)

The two Hamiltonians are expressed in terms of the components of the stress energy tensor :

HR =
∫
Tyy

dx

2π
, HL =

∫
Txx

dy

2π
. (1.209)

In the in�nite length limit L→∞, the ground state energy E0(R) of the Hamiltonian HR gives the
main contribution to the partition function :

Z(R,L) ' e−LE0(R) . (1.210)

But on the other hand this is equivalent 10 to consider the thermodynamics of a one dimensional
quantum system with Hamiltonian HL de�ned along the L axis at temperature 1/R. The partition
function is then :

Z(R,L) ' e−RLf(R) , (1.211)

where f(R) is the free energy per unit length at temperature 1/R. This gives the relation between
the ground-state energy and the free energy of the system :

E0(R) = Rf(R) . (1.212)

Let m0 be the mass of the lightest particle in the QFT, one can then de�ne the dimensionless scaling
length r = m0R. It is then natural from dimensional arguments to de�ne the scaling function F in
terms of the ground state energy

E0(R) =
2π
R
F (r) . (1.213)

The knowledge of the ground state energy is important because it allows to determine the one point
functions of the components of the stress energy tensor. From (1.209) :

〈Txx〉 = 2π
E0(R)
R

, (1.214)

〈Tyy〉 = 2π
d

dR
E0(R) , (1.215)

〈T aa 〉 = 〈Txx〉+ 〈Tyy〉 =
2π
R

d

dr
(RE0(R)) . (1.216)

In particular, (1.216) together with the formula (1.180) implies the knowledge of the ground state
energy and gives access to the one point function of the perturbing �eld in PCFT. Furthermore,
mimicking (1.83) de�ne the function c̃ of the scaling length r, related to the ground state energy :

E0(R) = −πc̃(r)
6R

. (1.217)

In the ultraviolet limit r → 0, one must recover the results of the CFT :

E0(R) =
2π
R

(∆min + ∆min −
c

12
) . (1.218)

One has therefore the relation between the function c̃ and the central charge c (assuming that the
�eld of minimal dimension is spinless) :

lim
r→0

c̃(r) = c− 24∆min . (1.219)

10More details on the Quantum-Statistical correspondence will be given at the end of section 2.1.
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The equations. We can now present the TBA equations, for a generic massive theory (a pertur-
bation of a CFT by a primary �eld ϕ with conformal dimension ∆), generalizing the equations of
[19] for the scaling 3-state Potts and Lee-Yang models. Consider that the scattering in the above
QFT is detailed by a S matrix Sab, where the Latin letter a (b, ...) indexes the particles of mass ma

(mb, ...). De�ne :

ϕab(θ) = −i d
dθ

logSab(θ) . (1.220)

The TBA equations are non-linear integral constraints on the pseudo-energies εa which read (in the
case of diagonal scattering) 11 :

maR cosh(θ) = εa(θ) +
n∑
b=1

∫
ϕab(θ − θ′) log(1 + e−εb(θ

′))
dθ′

2π
. (1.221)

From the pseudo-energies one can reconstruct the free energy by :

f(R) = − 1
R

n∑
a=1

∫ ∞
−∞

ma cosh(θ) log(1 + e−εa(θ))
dθ

2π
, (1.222)

and the partition function :

Z(L,R) = exp

(
L

n∑
a=1

∫ ∞
−∞

ma cosh(θ) log(1 + e−εa(θ))
dθ

2π

)
. (1.223)

TBA equations and CFT central charge. We aim to take the UV limit r → 0 and make
contact with CFT, in particular through the formula (1.219). For r → 0, an analysis of the TBA
equations (1.221) shows that the pseudo-energies εa(θ) �atten and tend to constants ε0a in the region
− log 2

r � θ � log 2
r . The functions log(1 + e−εa(θ)) have then a plateau shape, whose edges

are controlled by the so-called kink solutions of the TBA equations. The UV limit of the scaling
function F is then given in terms of these kink solutions which can be remarkably expressed using
the Rogers dilogarithm function. Without entering all the technical details, the calculation of the
UV central charges goes as follows. First, one should �nd the constant values ε0a that satisfy a set
of transcendental equations :

ε0a =
n∑
b=1

Nab log(1 + e−ε
0
b ) , Nab = −

∫ ∞
−∞

dθ

2π
ϕab(θ) . (1.224)

Then the central charge is related to the scaling function by

c̃(0) = −12F (0) , (1.225)

and simpli�es drastically to the nice expression :

c̃(0) =
6
π2

n∑
a=1

L

(
1

1 + eε
0
a

)
, (1.226)

where L is the dilogarithm function

L(z) = −1
2

∫ z

0

dt

(
log t
1− t

+
log(1− t)

t

)
. (1.227)

This formula allows to calculate the central charge of the UV CFT form the scattering S matrix
! It constitutes a very strong veri�cation of the identi�cation between the UV CFT and the IR
scattering theory.

11We consider only the so called fermionic case, in the terminology of [19].
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Mass - coupling constant relation. The next natural step in the analysis of TBA equations is
to try to expand the scaling function F in a power series of r. Actually, it is possible to determine
the exact value of the next-to-leading term T0 :

T0 =
(2π)2

r

dF

dr

∣∣∣∣
r=0

, (1.228)

by using again the kink solutions. Furthermore, from numerical investigations of (1.222), the scaling
function can be expanded in a power series of the variable G = r2(1−∆) :

F (r)− T0

8π2
r2 = − c̃

12
+
∞∑
n=1

FnG
n , (1.229)

with �nite radius of convergence. Let us emphasis that one can get exact values for c̃ and T0,
whereas the coe�cients Fn can be estimated numerically. From a di�erent perspective, the series∑∞
n=1 FnG

n is interpreted as the perturbative expansion of the free energy in the coupling constant.
Recalling that r = m0R, we should therefore expand perturbatively for example the ground state
energy E0 to operate the matching between m0 and λ. The perturbative corrections to the ground
state energy are [19, 42] :

E
(pert)
0 = − πc̃

6R
−R

∞∑
n=1

(−λ)n

n!

∫
〈ϕ(X1)...ϕ(Xn)〉 d2X1...d

2Xn . (1.230)

Here the correlation functions are computed for a CFT on the cylinder. Mapping the correlation
functions to the plane by the transformation z = e−

2πiX
R one gets :

E
(pert)
0 (R) =− πc̃

6R
−R

∞∑
n=1

(−λ)n

n!

(
2π
R

)2(∆−1)n+2

×
∫
〈V (0)ϕ(z1, z̄1)...ϕ(z1, z̄1)V (∞)〉

n∏
i=1

(ziz̄i)∆−1d2z1...d
2zn , (1.231)

where V corresponds to the CFT �eld with lowest dimension. This means that we have a power
series expansion of the form :

E
(pert)
0 (R) =

2π
R

(
− c̃

12
+ E1λR2(1−∆) + E2λ2R2(1−∆)2 + E3λ3R2(1−∆)3 + ...

)
, (1.232)

that should converge in some �nite region near the point λR2(1−∆) = 0, and whose coe�cients Ek
can be computed as integrals of CFT correlation functions. On the other hand, recall that from
thermodynamical considerations, the large R behavior of the ground state energy is given in terms
of the in�nite volume bulk free energy E0 :

E
(pert)
0 (R) ∼ E0R , R→∞ . (1.233)

Normalizing the ground state energy to zero in in�nite volume, we have the relation :

E0(R) = E
(pert)
0 (R)− E0R . (1.234)

One can now compare the two expansions (1.229) and (1.232) :

− E0R+
2π
R

(
− c̃

12
+ E1λR2(1−∆) + E2λ2R2(1−∆)2 + E3λ3R2(1−∆)3 + ...

)
(1.235)

=
2π
R

(
− c̃

12
− T0

8π2
r2 +

∞∑
n=1

Fn (m0R)2(1−∆)n

)
. (1.236)

First of all, this implies that we can access the bulk free energy from the TBA data :

E0 =
m2

0

4π
T0 . (1.237)

Second, comparing the terms of the series one arrives at :(
λ

m
2(1−∆)
0

)n
En = Fn . (1.238)
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From the CFT computation of the coe�cient E1 and the numerical result for F1, one therefore
gets the exact relation between the coupling constant and the mass. These relations have been
established in [43] for a very large range of perturbed CFT. In the paper [44] this has been done for
the sine-Gordon (sG) model, and can be applied to obtain a similar relation for the sinh-Gordon 12

model (1.181) :

m =
4
√
π

Γ( 1
2+2b2 )Γ(1 + b2

2+2b2 )

(
−µπΓ(1 + b2)

Γ(−b2)

) 1
2+2b2

, (1.239)

An analogous formula will be given for the Super sine-Gordon QFT in the chapter 4.

Comparison between TBA and Suzuki equations. The TBA equations are derived from the
knowledge of the scattering data, that is of the S matrix of the theory. In our case, for the study
of the Super sine-Gordon model, we will use scaling equations based on functional relations in the
underlying integrable lattice model, and on the position of the Bethe roots. We will called them
Suzuki equations, in reference to [45]. The advantage of this second approach is that it will be much
easier to make contact with the integrable structure of the �eld theory, in particular with the T and
Q operators of the ssG theory. This will be explained in details in sections 2.6 and 4.4.

1.7 One point functions from re�ection relations

1.7.1 Primary �elds

In this section we address the problem of providing explicit formulae for the one point functions
of local �elds on the plane, thanks to the re�ection relations. The �rst step in this direction was
done in the paper [46] where the calculation of one point functions of primary �elds in the sine-
Gordon theory have been considered. The proposed expression was mainly an interpolation between
several known results, rather than a derivation from �rst principles. In the work [47] a much more
fundamental approach to this problem has been elaborated. Considering instead the sinh-Gordon
model (1.182), and handling it as a perturbation of the Liouville CFT (1.84), the authors conjectured
that the shG QFT should inherit the remarkable re�ection properties of the latter model. This was
then applied to the computation of the one point functions. Recall that the shG model is de�ned as
a perturbation of the Liouville CFT by the primary �eld e−bϕ(z,z̄) :

AshG =
∫ (

1
4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) + µebϕ(z,z̄) + µe−bϕ(z,z̄)

)
idz ∧ dz̄

2
. (1.240)

We would like to compute the one point functions :

F (a) = 〈eaϕ〉shG . (1.241)

The shG model theory inherits the typical re�ection property of the Liouville CFT (1.99) :

F (a) = R(a)F (Q− a) , (1.242)

where R is the re�ection amplitude given in (1.95) :

R(a) =
(
πµγ(b2)

)Q−2a
b b−2γ(2ab− b2)γ(2ab−1 − b−2 − 1) . (1.243)

The one point functions of primary �elds verify the natural symmetry :

F (a) = F (−a) . (1.244)

Both symmetries can be interpreted as the transformation rules of the one point functions under the
re�ections σ1 and σ2 of the weight a :

σ1 : a → −a , σ2 : a → Q− a . (1.245)

12A remark is in order. This formula is obtained from the result of the sine-Gordon QFT by analytic continuation
with respect to the coupling constant b. Moreover, the conformal dimension in the CFT are taken in the Heisenberg
convention ∆ = −a2, this is equivalent to consider the shG model as a perturbation of the free boson CFT rather
than of the Liouville model. This explains the correctness of the power exponent 1

2+2b2
if we compare with (1.112).
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The one point functions F (a) are then calculated as the minimal, meromorphic solutions of the
re�ection equations (1.242),(1.244). The result reads [46]

F (a) = 〈eaϕ〉shG

=
(
−µπΓ(1 + b2)

Γ(−b2)

)− a2

1+b2

exp
(
−
∫ ∞

0

dt

t

(
sinh2(2abt)

2 sinh(b2t) sinh(t) cosh((1 + b2)t)
− 2a2e−2t

))
.

(1.246)

Let us recall some heuristic argument for the validity of the conjecture (1.242) from [47] : ex-
panding the one point function in a power series in the coupling parameter µ one obtains :

〈eaϕ(z,z̄)〉ShG =
∞∑
n=0

(−µ)n

n!

∫
dw2

1 ... dw
2
n 〈eaϕ(z,z̄)e−bϕ(w1,w̄1) ... e−bϕ(wn,w̄n)〉L , (1.247)

where the sum is expressed in terms of correlation functions written in the Liouville CFT. We can
then formally use the re�ection relation (1.99) of the Liouville theory in the integrals :

〈eaϕ(z,z̄)e−bϕ(w1,w̄1) ... e−bϕ(wn,w̄n)〉 = R(a) 〈e(Q−a)ϕ(z,z̄)e−bϕ(w1,w̄1) ... e−bϕ(wn,w̄n)〉 , (1.248)

which gives the expected result. Let us make some remarks :

1. The above derivation is loose since the convergence of the integrals is hard to show. It is
possible to make this argument more rigorous by working with a theory on a curved surface
of a certain area, that is then integrated out. Still the convergence of the above series is
hard to demonstrate. This is why the relations above for the one point functions were rather
conjectures, when they were established.

2. The result (1.246) can be transferred to the case of the sine-Gordon model, described by the
action :

AsG =
∫ (

1
4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄)− 2µ cos(βϕ)

)
idz ∧ dz̄

2
, (1.249)

and which primary �elds are of the form Vα = eiαϕ. The result for 〈eiαϕ〉sG is simply obtained
by continuing the formula (1.246) to the complex domain :

β → ib , α→ ia , (1.250)

and is given by

〈eiαϕ〉sG =(
µπΓ(1− β2)

Γ(β2)

) α2

1−β2

exp
(∫ ∞

0

dt

t

(
sinh2(2αβt)

2 sinh(β2t) sinh(t) cosh((1− β2)t)
− 2α2e−2t

))
.

(1.251)

3. Finally, let us brie�y mention as an application of the formula (1.251), that it is possible to
compute the one point functions of the primary �elds in the massive QFTs constructed as
perturbations of Minimal Models Mpp′ by the �eld V1,3. This can be done using the fact

that the sG model has a symmetry with respect to the quantum group Uq(sl2) with q = e
iπ
β2 .

Then one can calculate the one point functions in the perturbed CFT by applying the Quantum
Group restriction procedure [49], with the relation β2 = p

p′ where p∧p
′ = 1. Other applications

(for the boundary sine-Gordon theory) of the re�ection relations method can be found in [50].

Ratio of one point functions for primary �elds. Before going further we would like to explain
how one can compute the following speci�c ratio of one point functions

f(a) =
〈e(a−b)ϕ〉shG

〈eaϕ〉shG

, (1.252)
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without using the explicit formula (1.246). In this expression the numerator consist in the normal
order product of the primary �eld Va with the perturbation �eld V−b = e−bϕ of the Liouville CFT.
We have

f(a) =
F (a− b)
F (a)

. (1.253)

Since F (a) = F (−a) one rewrites (1.242) as F (a) = F (a−Q)R(a). It implies the following functional
relation on f :

f(a−Q) =
F (a−Q− b)
F (a−Q)

=
R(a)

R(a− b)
f(a) . (1.254)

Compute using (1.95)

R(a)
R(a− b)

=
(
πµγ(b2)

)−2 γ(2ab− b2)γ(2ab−1 − b−2 − 1)
γ(2(a− b)b− b2)γ(2ab−1 − b−2 − 3)

=
(
πµγ(b2)

)−2 γ(2ab− b2)γ(2ab−1 − b−2 − 1)
γ(2(a−Q)b− b2 + 2)γ(2ab−1 − b−2 − 3)

=
(
πµγ(b2)

)−2 γ(2ab− b2)
γ(2(a−Q)b− b2)

(2ab−1 − b−2 − 2)2(2ab−1 − b−2 − 3)2

(2(a−Q)b− b2)2(2(a−Q)b− b2 + 1)2

=
(
πµγ(b2)b4

)−2 γ(2ab− b2)
γ(2(a−Q)b− b2)

(2a− 2b− b−1)2(2a− 3b− b−1)2

(2a− 3b− 2b−1)2(2a− 3b− b−1)2

=
(
πµγ(b2)b4

)−2 γ((2a− b)b)
γ((2(a−Q)− b)b)

γ
(

1
2Q (2(a−Q)− b)

)
γ
(

1
2Q (2a− b)

) γ
(

1
2 + 1

2Q (2a− b)
)

γ
(

1
2 + 1

2Q (2(a−Q)− b)
) .

The last line is written in a suitable form for solving the equation (1.254). We infer

f(a) =
(
πµγ(b2)b4

) 2a−b
Q

γ
(

1
2Q (2a− b)

)
γ
(

1
2Q (2a+ b−1)

)
γ((2a− b)b)

. (1.255)

One can recover this formula from the integral expression (1.246). The calculation of f will be
important when we will study the fermionic basis, indeed the explicit formula (1.255) of f will
permit the identi�cation of particular fermionic elements with the primary �eld Va−b = e(a−b)ϕ.
This will be more precisely described in the chapter 4.

1.7.2 Descendants �elds and Riemann-Hilbert problem

The next problem to tackle is the computation of the one point functions of descendant �elds in the
shG (sG) theory. This problem was considered in the paper [48] and interpreted in a much more
fundamental way. The idea is the following : if for a primary �eld the e�ect of both re�ections on the
one point functions is immediately understood (as consequences of the Liouville case), it is not so
for the descendants. In particular, if a Virasoro descendant should have a manifest symmetry under
the re�ection σ2 (1.245), its transformation rule under σ1 is unclear. To understand the latter, it
is necessary to establish the correspondence between the Virasoro and the Heisenberg descriptions
of the Liouville CFT, by the means of a passage matrix U(a). Let us state this in terms of a
Riemann-Hilbert problem : de�ne VN to be the vector containing all the one point functions of
Virasoro descendants of a primary �eld Va at level N , and de�ne similarly HN (a) for the Heisenberg
descendants. One has straightaway the symmetries :

VN (a) = VN (Q− a) , HN (a) = HN (−a) . (1.256)

The relation between the two is given by :

VN (a) = U(a)HN (a) . (1.257)

The Riemann-Hilbert problem can be stated as (presented in such form in [31]) :

V (a+Q) = S(a)V (a) , S(a) = U(−a)U(a)−1 . (1.258)

It was �rst uncovered in [48], where the situation was analyzed for the simplest descendant at level
two : L−2L̄−2e

aϕ. This �eld was related to its Heisenberg counterpart by :

L−2L̄−2e
aϕ =

(
−1

4
(∂ϕ)2 +

(
Q

2
+ a

)
∂2ϕ

)(
−1

4
(∂̄ϕ)2 +

(
Q

2
+ a

)
∂̄2ϕ

)
eaϕ . (1.259)
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Now the left (right) hand side of (1.259) has a de�nite transformation rule under σ2 (σ1), which
conveys to :

(1 + 2a(Q+ 2a))2 〈(∂ϕ)2(∂̄ϕ)2eaϕ〉shG =

R(a)(1 + 2(Q− a)(3Q− 2))2 〈(∂ϕ)2(∂̄ϕ)2e(Q−a)ϕ〉shG .
(1.260)

It is then possible to compute the one point function of the descendant as the minimal solution of
the above equation :

〈(∂ϕ)2(∂̄ϕ)2eaϕ〉shG

〈eaϕ〉shG

=−

(
mΓ( b

2Q )Γ( 1
2bQ )

8Q2
√
π

)4

× γ
(
a

Q
− b

2Q

)
γ

(
− a
Q
− b

2Q

)
γ

(
a

Q
− b−1

2Q

)
γ

(
− a
Q
− b−1

2Q

)
, (1.261)

where we used (1.239)

m =
4
√
π

Γ( 1
2+2b2 )Γ(1 + b2

2+2b2 )

(
−µπΓ(1 + b2)

Γ(−b2)

) 1
2+2b2

, (1.262)

the mass of the shG particle.

In fact, the problem was solvable because there exists only one non trivial descendant at level 2,
both on the Virasoro and on the Heisenberg sides. Going at higher levels is di�cult : the problem
gets much more involved and it is impossible to compute the one point functions by such a direct
approach, unless one possesses extra information on the relation between the two descriptions. As
we are going to demonstrate later in the chapter 4, this data is precisely provided by the fermionic
basis.



Chapter 2

Integrable Structure of Quantum

Field Theories

We have seen that integrability plays an important role in the Quantum Field Theory : in CFT it is
possible to construct a series of densities in involution that can survive some types (V1,3 for example)
of perturbations. In particular the models of QFT that we are interested in are integrable. This is
one of the motivations to describe in this chapter the integrable systems from a more general point
of view. Actually, the integrable systems can be very di�erent in their natures : they range from
models of classical mechanics, to speci�c Quantum Field Theories, and to statistical lattice models.
Therefore, as we have already mentioned, there is no uni�ed de�nition of what an integrable system
is. However, one can gather the main recurrent features of this type of models :

• There are many conserved quantities (as least the same number as of degrees of freedom, this
means an in�nity in the case of QFT) that are in involution, including the Hamiltonian of the
system.

• For quantum systems, there exists a quantity that satis�es the Yang-Baxter equation.

• The system is considered to be exactly solvable, in the sense that physically relevant quantities
can be in principle calculated analytically.

In this section we shall explain how the integrability in QFT can be used to compute the one
point functions. To achieve this goal, we must �rst establish a description of the space of local
operators of the QFT in terms of some "integrable quantities", we will refer to this description of
the �elds as the integrable structure of the QFT. This was �rst done for the sine-Gordon model
[1, 2, 3, 4, 5], and goes by the name of the fermionic basis. The investigation of the fermionic basis
in this context started with a deep study of the vacuum expectation values of local operators in
the six vertex model, the lattice regularization of the sine-Gordon theory. In this chapter, we aim
to show how one can use the fermionic basis to describe the UV limit of the sG model, that is its
underlying CFT. To do so, we will have �rst to recollect some information about general integrable
systems (throughout this chapter we shall use notations compatible with [3]), and will proceed as
follows :

1. Start by recalling some elementary facts about the integrability of the six vertex model (among
other we will use the reference [51]). This model is not only the �rst step towards the fermionic
basis but is more generally speaking a prototypical example of lattice integrable systems.

2. De�ne the main protagonists of the integrable models : the transfer matrix, the Bethe Ansatz
equations and the Yang-Baxter equation.

3. Reinterpret the latter in terms of Quantum Groups, and use this general mathematical frame-
work to construct the Q operator. The Quantum Groups will be relevant to go further and
illustrate how integrable structures emerge in the context of QFT.

4. Present the Bazhanov-Lukyanov-Zamolodchikov (BLZ) construction that provided the descrip-
tion of the integrable structure in CFT. Remark that the integrable lattice models have con-
tinuous limits, in which they give integrable Quantum Field Theories. Thanks to the BLZ
construction, it is possible to de�ne the integrable data directly in �eld theory, without any
references to the lattice.

45
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5. Introduce the fermionic basis on the lattice and then explain how it can be extended to CFT
using the scaling limit. Finally describe the connection between the fermionic and the Virasoro
descriptions. This will give us a very powerful tool for the calculation of the vacuum expectation
values at the lattice level and of the one point functions at the QFT level.

2.1 The six vertex model

We consider a statistical system on a rectangular lattice. The lattice has N vertical lines and n
horizontal lines, giving in total N × n nodes. Take without restriction of generality both N and
n even. We declare the following boundary conditions : consider that the system is periodic in
both directions and think about N as very large, aiming in the following to take it to in�nity.
Then, the system appears wrapped around a cylinder (more precisely a torus when N is still �nite),
the compact vertical direction will be termed the Matsubara space (or chain), and the horizontal
direction will be called the Space chain. The lattice in this geometry is represented on the �gure 2.1.

Figure 2.1: 6V model on the cylinder

To each edge of the lattice one can associate an arrow, pointing to the left or to the right for
an horizontal edge, and for an vertical edge up or down. For each vertex, the orientation of the
neighboring arrows speci�es the weightW that will be associated to this vertex in this con�guration.
For a general con�guration of a vertex, we will use the convention of �gure 2.2.

Figure 2.2: Conventions for the weight of a vertex

Notice, that in this picture the line (µ − ν) is a vertical line on the cylinder of �gure 2.1, and the
line (α− β) is horizontal.

In the case of interest for us, only vertices that have the same number of incoming and out-
coming arrows will carry a non zero weight. This gives a total of six con�gurations that coined the
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name of the six vertex model. Moreover we will also assume that the weights are unchanged under
a simultaneous reversal of all arrows of the corresponding vertex, this fact leaves us with only three
quantities a, b, c that correspond to the following con�gurations :

a = W++
++ = W−−−− , (2.1)

b = W+−
+− = W−+

−+ , (2.2)

c = W−+
+− = W+−

−+ . (2.3)

The allowed con�gurations of arrows are represented in the �gure 2.3.

Figure 2.3: Con�gurations of the six-vertex model

Explicitly, the weights a, b, c that ensure the integrability of the model are :

a = sin(π(θ + ν)) , b = sin(πθ) , c = sin(πν) . (2.4)

In writing the weights of the 6 vertex model, we used the usual "trigonometric" notation, that is the
most standard when we deal with this system. The number ν is really the parameter of the model,
whereas θ is to be thought as a variable on which the thermodynamical functions will depend. This
dichotomy will be clearer when we will relate θ to the spectral parameter in (2.30).

As in any problem in statistical physics, our �rst priority is to calculate the partition function
Z6V of the system. The total weight of a particular con�guration of arrows x is given by the product
of the weights of each vertex : ∏

x

W βxνx
αxµx , (2.5)

and the partition function reads

Z6V =
∑

αx,µx,βx,νx

∏
x

W βxνx
αxµx . (2.6)

Let us try to simplify this expression. Each edge of the lattice can support two states : that is an
arrow in one direction, or in the opposite. Hence one can associate to every edge the vector space
C2. Take {e+, e−} the canonical basis of C2 :

e+ =
(

1
0

)
, e− =

(
0
1

)
. (2.7)

We declare the following correspondence (in the orientation of �gure 2.2) : e+ represents an arrow
pointing to the top or to the right and e− an arrow pointing to the bottom or to the left. At each
vertex we have thus an operator L which acts from a tensor product of two 2-dimensional spaces
V (α)⊗V (µ) to V (β)⊗V (ν) (where the letters refer to the position of the spaces in the �gure 2.2 and
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each V ' C2). De�ne the 2 × 2 elementary matrices Eij that satisfy the property (Eij)kl = δikδjl.
Then we set :

L = W βν
αµEβα ⊗ Eνµ . (2.8)

In the basis {e+ ⊗ e+, e+ ⊗ e−, e− ⊗ e+, e− ⊗ e−} the operator L is given by the matrix :

L =


W++

++ W++
+− W++

−+ W++
−−

W+−
++ W+−

+− W+−
−+ W+−

−−
W−+

++ W−+
+− W−+

−+ W−+
−−

W−−++ W−−+− W−−−+ W−−−−

 =


a

b c
c b

a

 . (2.9)

This interpretation in terms of linear operators is important. From now on, we will call the vector
spaces of the Matsubara direction, the "Matsubara spaces", and those that are in the horizontal
direction will be termed auxiliary spaces or spaces in the Space chain. De�ne the operator Ta :

Ta = La,nLa,n−1...La,1 ∈ End(Va ⊗ V1...⊗ Vn) , (2.10)

where La,k acts like L but only on the auxiliary space a and on one of the Matsubara spaces k. To
include the periodicity condition in the vertical direction we need to take the trace of (2.10) in the
auxiliary space :

T̃ = TrVa (Ta) . (2.11)

Explicitly, T̃ acts then on the total Matsubara space, and its components are given by :

T̃ β1...βn
α1...αn = W β1ν2

α1ν1
W β2ν3
α2ν2

...W βnν1
αnνn . (2.12)

This formula allows to rewrite the partition function (2.6) in a much more illuminating way. Because
of the periodicity in the Space direction, Z6V is the trace over the Matsubara space of a product of
T̃ operators :

Z6V = Tr(T̃N ) , (2.13)

The understanding of T̃ , and in particular of its eigenvalues (denote them ψk), gives access to the
thermodynamical quantities of the model. First we get the partition function :

T̃ψk = Λkψk , Z6V =
2n∑
k=1

ΛNk . (2.14)

As usual in statistical physics, the knowledge of Z6V leads to all other physical quantities. For
example the free energy per lattice site is :

f = − 1
nN

log(Z6V ) ∼ − 1
n

log Λmax , N →∞ . (2.15)

This formula is of course reminiscent of the expression for the free energy in Quantum Field Theory
on a cylinder of radius R (1.212), (1.83). Recall that the Casimir energy E0 of a CFT is simply
related to the (e�ective) central charge c̃ :

E0 = − πc̃
6R

. (2.16)

When studying the maximal eigenvalue Λmax it is therefore possible to match the lattice integrable
models with their continuum CFT counterparts, by explicitly calculating the central charges. This
was successfully done in [52] for the six and nineteen vertex models.

Quantum - Statistical correspondence. There exists a well known equivalence in physics be-
tween statistical models in d dimensions and quantum systems in d − 1 dimensions. We met it
already in the discussion on the TBA in section 1.6, where a QFT on a cylinder of radius R was
interpreted as a 2d statistical model and at the same time as a quantum system at �nite temperature
1
R (see (1.209)). Here, we shall illustrate this correspondence in the case of the six vertex model,
and show how it is equivalent to the XXZ spin chain. To be consistent with our further discussion
we shall slightly change our point of view. If in the computation of the partition function Z6V the
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emphasis was done on the Matsubara space, we concentrate now on the Space direction. This is the
vector space :

HS =
N⊗
k=1

Vak , Vak ' C2 . (2.17)

The crucial point is that the operator L (2.9) evaluated at θ = 0 is (up to a multiplicative factor)
the permutation operator Pperm :

L(0) = sin(πν)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = sin(πν)Pperm . (2.18)

In terms of indices this reads :
Lβναµ(0) = sin(πν)δναδ

β
µ . (2.19)

Now we construct a "Space chain T operator" T , analogue of (2.11) but that acts now on HS, and
that corresponds to a shift operator along the Space direction for θ = 0 :

T η1...ηN
µ1...µN (0) : HS → HS , (2.20)

T η1...ηN
µ1...µN (0) = (sin(πν))Nδη2

µ1
δη3
µ2
...δη1

µN . (2.21)

It is possible to �nd the inverse of this operator as the inversed shift operator :(
T η1...ηN
µ1...µN (0)

)−1 = (sin(πν))−NδηNµ1
δη1
µ2
...δηN−1

µN . (2.22)

Now consider the derivative of L with respect to πθ evaluated at θ = 0 :

1
π

d

dθ
L
∣∣∣
θ=0

=


cos(πν) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 cos(πν)

 . (2.23)

Applying the same derivative to T we get :

1
π

d

dθ
T η1...ηN
µ1...µN

∣∣∣
θ=0

= (sin(πν))N
N∑
k=1

δη2
µ1
...δηk−1

µk−2

(
1
π

d

dθ
Lηkηk+1
µkµk−1

∣∣∣
θ=0

)
δηk+2
µk+1

...δη1
µN . (2.24)

Now using (2.23) and (2.22) in the previous equation one obtains the logarithmic derivative of T :(
T −1(0)

1
π

d

dθ
T (0)

)η1...ηN

µ1...µN

=
N∑
k=1

(
L−1(0)

1
π

d

dθ
L(0)

)ηkηk+1

µkµk+1

. (2.25)

Recall now the de�nition of the Pauli matrices :

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.26)

One can see that the sum in (2.25) is exactly :

1
2

N∑
k=1

(
σ1
kσ

1
k+1 + σ2

kσ
2
k+1 + cos(πν)σ3

kσ
3
k+1

)
+

1
2

N∑
k=1

Idk Idk+1 . (2.27)

Dropping the last trivial term, we arrive at the Hamiltonian of the XXZ chain :

HXXZ =
1
2

N∑
k=1

(
σ1
kσ

1
k+1 + σ2

kσ
2
k+1 + cos(πν)σ3

kσ
3
k+1

)
. (2.28)

We have then shown that :

1
π

d

dθ
log(T (θ))

∣∣
θ=0

= sin(πν)HXXZ . (2.29)

We can now make more concrete the correspondence that we stated before. From the formula above
it is explicit that HXXZ commutes with the matrix T for any value of its variable θ. Finding the
eigenvectors of the T (θ) operator is then the same problem as diagonalizing the Hamiltonian of the
XXZ chain.
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2.2 The Transfer matrix

After this preparatory discussion on the six vertex model we shall take a more general point of view
on the subject, and introduce the terminology that will be used all along the rest of this thesis. We
will rely on [3]. For our following discussion (in particular to make connection with the Quantum
Groups), it will be more convenient to change variables to the spectral parameter ζ, and to the
Quantum Group parameter q :

ζ = eiπνθ , q = eiπν . (2.30)

We still consider a lattice in the cylinder geometry of 2.1, however we allow the following generaliza-
tion : the spaces in the Matsubara direction can carry any spin sm and a inhomogeneity τm. The
Matsubara space is then :

HM =
n⊗

m=1

C2sm+1 . (2.31)

For the space chain we still have the same structure

HS =
N⊗
k=1

C2 . (2.32)

Now, instead of dealing with the weight matrix (2.9) we consider the L operator 1 :

Lj,m(ζ) = q
1
2

 ζ2q
H+1

2 − q−
H+1

2 (q − q−1)ζFq
H−1

2

(q − q−1)ζq−
H−1

2 E ζ2q−
H−1

2 − q
H−1

2


j

. (2.33)

Lj,m acts on the site j of the Space chain and on the site m of the Matsubara direction. E,F,H
are the images of the generating elements of the algebra sl2 in the irreducible representation of spin
sm (that we denote V (2sm + 1)). The case that will be of most interest for us is to take spin 1

2
Matsubara spaces. In this situation the natural formula holds

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, (2.34)

and the L operator is :

Lj,m(ζ) = q
1
2


ζ2q − q−1

ζ2 − 1 (q − q−1)ζ
(q − q−1)ζ ζ2 − 1

ζ2q − q−1

 . (2.35)

Taking into account the change of variables (2.30), we recover in this case exactly the weight matrix
(2.9) (up to some multiplicative prefactor). From the knowledge of the L operator, one can build
the monodromy matrix in the same way as it was done for (2.10). Bearing in mind the presence of
inhomogeneities for each Matsubara space, we have :

Tj,M(ζ) = Lj,n( ζτn )Lj,n−1( ζ
τn−1

)...Lj,1( ζτ1 ) . (2.36)

The monodromy matrix is a linear operator acting in :

Tj,M(ζ) ∈ End (Vj ⊗ HM) . (2.37)

Introduce a twist κ that will change the periodic boundary condition in the Matsubara direction,
and de�ne the twisted transfer matrix TM :

Tj,M(ζ, κ) = Tj,M(ζ)qκσ
3
j , (2.38)

TM(ζ, κ) = Trj(Tj,M(ζ, κ)) . (2.39)

The previous formula paves the way to the calculation of the (twisted by κ) partition function of
the six vertex model :

Zκ6V = TrM(TM(ζ, κ)N ) , (2.40)

1The subscript j indicates that the matrix Lj,m is written in a basis of the space j, that is the entries of Lj,m are
operators acting on the space C2sm+1 at the site m.
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and will be the starting point of our calculations with the fermionic basis.

To close this section, we emphasize the critical property that the L operator (2.33) satis�es the
Yang-Baxter equation (which is equivalent to the integrability of the model) :

L12(ζ/µ)L13(ζ)L23(µ) = L23(µ)L13(ζ)L12(ζ/µ) , (2.41)

which is holding in the space

V1 ⊗ V2 ⊗ V3 . (2.42)

Here Vi (i = 1, 2, 3) can refer to any space in the Space or Matsubara chains. Once we have taken
all Matsubara spaces to be of spin 1

2 we have Vi ' C2. Then the formula (2.35) for L(ζ) can be
decomposed as follows :

L(ζ) = Lβναµ(ζ)Eβα ⊗ Eνµ ∈ End(C2 ⊗ C2) . (2.43)

The operators Li j of (2.41) are de�ned to be :

L12(ζ) = L(ζ)⊗ Id2 , L23(ζ) = Id2 ⊗ L(ζ) , L13(ζ) = Lβναµ(ζ)Eβα ⊗ δρσEρσ ⊗ Eνµ . (2.44)

The equation (2.41) implies the Yang-Baxter equation for monodromy matrices (2.38) :

Ljk(ζ/µ)TjM(ζ, κ)TkM(µ, κ) = TkM(µ, κ)TjM(ζ, κ)Ljk(ζ/µ) , (2.45)

that holds in the space Vj ⊗ Vk ⊗ HM (the �rst two spaces Vj ⊗ Vk are in the Space chain). The
immediate consequence of the Yang-Baxter equation (2.45) is the commutativity of the Matsubara
transfer matrix at di�erent values of the spectral parameter :

[TM(ζ, κ), TM(λ, κ)] = 0 . (2.46)

The Yang-Baxter equation is of primary importance, we will see how it appears naturally if we

consider the derivation of the L operators from the Quantum Group Uq(ŝl2). Moreover it is the
starting point of a powerful method to diagonalize the transfer matrix, which is termed the Algebraic
Bethe Ansatz. This is the topic of our next section.

2.3 Algebraic Bethe Ansatz

In this section we describe the Algebraic Bethe Ansatz (ABA), the most traditional method to
diagonalize the transfer matrix. It was �rst introduce in [39], a very complete reference is [40]. Let
us start by rewriting the twisted transfer matrix (2.38) in terms of operators acting on the Matsubara
space

Tj,M(ζ, κ) =
(
A(ζ) B(ζ)
C(ζ) D(ζ)

)
j

(
qκ 0
0 q−κ

)
j

. (2.47)

where A,B,C,D are elements of End(HM). The equation (2.39) gives :

TM(ζ, κ) = A(ζ)qκ +D(ζ)q−κ . (2.48)

Our goal is therefore to diagonalize this operator. The main point of the ABA is to make an educated
guess for the eigenvalues of TM(ζ, κ). First, consider the "vacuum" vector

Ω = e− ⊗ ...⊗ e− ∈ HM . (2.49)

The action of Lj,m (2.35) on e− implies the relations :

A(ζ)Ω = q
n
2 a(ζ)Ω , D(ζ)Ω = q−

n
2 d(ζ)Ω , B(ζ)Ω = 0 , (2.50)

where the functions a(ζ), d(ζ) are :

a(ζ) =
n∏

m=1

(
(ζ/τm)2 − 1

)
, d(ζ) =

n∏
m=1

(
(ζq/τm)2 − 1

)
. (2.51)
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The vector Ω can hence be considered as a highest weight vector, that is annihilated by the operator
B. It is then natural to look for eigenvectors of TM by acting on Ω with the "creation" operators
C. De�ne

Φ({λi}) = C(λ1) ... C(λl)Ω . (2.52)

One can show that Φ({λi}) is indeed an eigenvector of TM if the set of {λi}li=1 does satisfy cer-
tain equations that are referred to as the Bethe Ansatz Equation (BAE). To demonstrate this, we
should establish the commutation relations between the operators A,B,C,D. They are obtained
by expliciting the Yang-Baxter equation (2.45). Omitting arguments (A,B,C,D are function of ζ,
A′, B′, C ′, D′ of µ and a, b, c of ζ

µ ) we have :
a 0 0 0
0 b c 0
0 c b 0
0 0 0 a




AA′ AB′ BA′ BB′

AC ′ AD′ BC ′ BD′

CA′ CB′ DA′ DB′

CC ′ CD′ DC ′ DD′

 =


A′A B′A A′B B′B
C ′A D′A C ′B D′B
A′C B′C A′D B′D
C ′C D′C C ′D D′D




a 0 0 0
0 b c 0
0 c b 0
0 0 0 a

 , (2.53)

where we have used a, b, c as a short hand notation for the entries of the L operator (2.35) (not to
be mistaken with the particular values of the weights) :

L =


a

b c
c b

a

 . (2.54)

Then one can obtain the algebra of operators A,B,C,D. For example :

[C(ζ), C(λ)] = 0 , (2.55)

A(ζ)C(λ) =
a(ζ/µ)
b(ζ/µ)

C(λ)A(ζ)− c(ζ/µ)
b(ζ/µ)

C(ζ)A(λ) , (2.56)

D(ζ)C(λ) =
a(µ/ζ)
b(µ/ζ)

C(µ)D(ζ)− c(µ/ζ)
b(µ/ζ)

C(ζ)D(µ) . (2.57)

De�ne the quotient functions :

u(ζ) =
a(ζ)
b(ζ)

=
ζq − ζ−1q−1

ζ − ζ−1
, v(ζ) =

c(ζ)
b(ζ)

=
q − q−1

ζ − ζ−1
. (2.58)

Iterating the relations (2.56),(2.57), one can compute A(ζ)C(λ1) ... C(λl)Ω and D(ζ)C(λ1) ... C(λl)Ω
and obtain the action of A and D on the candidate eigenvector Φ({λi}). This implies the following
eigenvector condition :

TM(ζ, κ)Φ({λi}) = (qκA(ζ) + q−κD(ζ))Φ({λi}) = Λ(ζ, {λi})Φ({λi}) , (2.59)

where the eigenvalue Λ(ζ, {λi}) is expressed through the �rst terms of the right hand sides of (2.56)
and (2.57) :

Λ(ζ, {λi}) = qκ+n
2 a(ζ)

l∏
j=1

u(ζ/λj) + q−κ−
n
2 d(ζ)

l∏
j=1

u(λj/ζ) , (2.60)

given that the set {λi}li=1 satis�es the Bethe Ansatz Equations :

qκ+n
2 a(λi)

l∏
k=1

u(λj/λk)− q−κ−n
2 d(λi)

l∏
k=1

u(λk/λj) = 0 , 1 ≤ j ≤ l . (2.61)

The BAE can be rewritten is the following compact way (use the fact that
u(λj/λk)
u(λk/λj)

= q−2 λ2
k−q

2λ2
j

λ2
k−q−2λ2

j
)

:

q2κ+n−2l a(λj)
d(λj)

l∏
k 6=j

λk − q2λ2
j

λk − q−2λ2
j

= 1 , 1 ≤ j ≤ l . (2.62)
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Notice that the terms qn−2l represents the spin of the vector Φ({λi}). Indeed, de�ne the spin
operator in the Matsubara direction to be :

SM =
1
2

n∑
m=1

σ3
m , (2.63)

then
SMΦ({λi}) =

(
l − n

2

)
Φ({λi}) . (2.64)

This will be important to properly de�ne the Q operator latter in section 2.5. Let us now explain
how the L operator can be recovered from the more fundamental Quantum Group approach.

2.4 Quantum Groups

There is a more mathematical way to look at integrable systems, and it deals with the technology
of Quantum Groups. As we will see, in the Quantum Group set-up it is possible to construct an
R matrix, that automatically satis�es the Yang-Baxter equation. One of the advantages of this
approach is that it will allow us to de�ne the so-called Q operator, on the same footing as was done
for the transfer matrix, and show the similarities between these two objects. Without going into the
generalities of all Quantum Groups, after a brief recall, we shall concentrate in the case that will

be of most interest for us : the Quantum Group Uq(ŝl2) 2. For this section we use the references
[2, 53, 54, 55].

Generalities

The de�nition of a quantum group A is the following : it is a Hopf algebra that satis�es the quasi-
triangularity property. It means that A is an associative bialgebra over C, endowed with a coproduct
homomorphism ∆ : A → A ⊗ A, a co-unit map homomorphism ε : A → C and an antipode anti-
homomorphism S : A → A, that satisfy natural compatibility conditions. Notice that if we de�ne
σ to be the permutation of A⊗A

σ(a⊗ b) = b⊗ a , a, b ∈ A , (2.66)

then one can set another coproduct ∆′ :

∆′ = σ ◦∆ . (2.67)

The quasi-triangularity property is the existence of an element R ∈ A⊗A, the universal R matrix,
that satis�es the three axioms :

(i)
R∆(x) = ∆′(x)R , ∀x ∈ A , (2.68)

(ii)

(∆⊗ id)R = R13R23 , (2.69)

(id⊗∆)R = R13R12 . (2.70)

(iii)

(ε⊗ Id)R = 1 = (Id⊗ ε)R , (2.71)

(S ⊗ Id)R = R−1 = (Id⊗ S)R . (2.72)

2The algebra sl2 is in some sense the fundamental symmetry algebra of the sequence of theories (both lattice and
QFT) that we are considering. It governs the integrable 6 vertex model as well as the 19 vertex model, which is a
higher spin version (in the representation theoretic language) of the former. In addition to describe the lattice models,
the quantum version of sl2 further allows to exhibit the integrable structure of the series of related continuum QFTs.
We recall therefore again the relation between the Quantum Group parameter q and the "physical" parameter ν :

q = eiπν . (2.65)
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Here again we used the convention R12 = R ⊗ 1 and similar formulae for R13 and R23. Remark,
that the R matrix is an invertible element of A ⊗ A, and the antipode S can be thought of as an
"inverse" in the algebra A. This will be also more transparent when we will see examples of the

action of S on basis elements of Uq(ŝl2).
From the equations (2.68) as well as (2.69), (2.70) one can derive the Yang-Baxter equation for

the universal R matrix, that holds in A⊗A⊗A :

R12R13R23 = R23R13R12 . (2.73)

Let us next analyze the implications of the Quantum Group structure on the representations of the
algebra A. This is natural since we would like to apply the Yang-Baxter equation to intertwine
di�erent representation spaces. Consider (πa, Va) :

πa : A→ End(Va) , (2.74)

to be a representation of the algebra A. The key fact is that the Hopf algebra maps ∆, ε, S have
direct interpretations in the representation theoretic language. Indeed, we can use ∆ to de�ne a
representation on the tensor product of two representations (which is not usually possible for a
generic algebra). Furthermore ε provides us with the unit representation of A :

∆ : tensor product of reps. A
∆→ A⊗A π1⊗π2

→ End(V1)⊗ End(V2) , (2.75)

ε : unit rep. ε : A→ C . (2.76)

The coproduct is useful for de�ning the dual representation of a representation (π, V ). Set V ∗ =
Hom(V,C) and de�ne tπ as a map End(V )→ End(V ∗) :

f ∈ End(V ) , ϕ ∈ V ∗ , v ∈ V , tf(ϕ)(v) = ϕ(f(v)) , (2.77)

where we denoted tf = tπ(f). Then one accesses the dual representation (π∗, V ∗) :

S : dual rep. A
S→ A

tπ→ End(V ∗) , π∗ = tπ ◦ S . (2.78)

The natural question that arises is the following : is the representation πa ⊗ πb isomorphic to the
representation πb ⊗ πa ? In view of the equation (2.68) the universal R matrix is the natural
candidate for such an isomorphism. Let us apply this and consider the image of the universal R
matrix R ∈ A⊗A under two representations :

Ra,b = (πa ⊗ πb)R ∈ End(Va ⊗ Vb) . (2.79)

The compatibility between the tensor product operation and the representations (2.75) implies that
the Yang-Baxter equation (2.73) mutes into

Ra,bRa,cRb,c = Rb,cRa,cRa,b . (2.80)

This equations is crucial, the knowledge of a universal R matrix for a speci�c Quantum Group allows
to translate it to any two representations, and hence describe a variety of di�erent physical systems
having the same background symmetry.

The Quantum Group Uq(sl2).

We now discuss particular examples of Quantum Groups and start with the simple case of Uq(sl2).
This algebra is generated by 4 elements {e, f, t, t−1}, modulo the relations :

te = q2et , tf = q−2ft , [e, f ] =
t− t−1

q − q−1
, (2.81)

tt−1 = t−1t = 1 . (2.82)

This de�nes a structure of an algebra over C. We can endow Uq(sl2) with a Hopf algebra structure
by de�ning the maps ∆, ε, S :

∆(e) = e⊗ 1 + t⊗ e , ∆(f) = f ⊗ t−1 + 1⊗ f , ∆(t±) = t± ⊗ t± , (2.83)

ε(e) = 0 , ε(f) = 0 , ε(t±) = 1 , (2.84)

S(e) = −t−1e , S(f) = −ft , S(t±) = t∓ . (2.85)
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We shall also meet another set of more "formal" generators of this algebra, : {E,F, qH , q−H} related
to the former by :

E = e , F = f , q±H = t± . (2.86)

Taking the semi-classical limit q → 1, it is then possible to write the commutation relations between
E,F,H and q±H :

[H,E] = 2E , [H,F ] = −2F , [E,F ] =
qH − q−H

q − q−1
. (2.87)

From these relations, it is manifest that the construction of Uq(sl2) is a deformation of the universal
enveloping algebra U(sl2) by the parameter q. Generalizing this procedure one can construct the
Quantum Groups related to any complex semi-simple Lie algebra g, and even to the associated
Kac-Moody algebra ĝ. This is explained for example in [55] : one should consider the Cartan matrix
of g (or ĝ), and quantize the Serre relations as it is done for Uq(sl2). This is how we are going to

proceed to de�ne Uq(ŝl2).

Let us now turn to the representation theory of Uq(sl2). We will be interested in �nite dimensional
irreducible representations, and we will assume only generic values of q (when q is not a root of
unity). In this situation, the representation theory of the algebra Uq(sl2) is similar to that of sl2 :
any irreducible module of Uq(sl2) is isomorphic to some module V (m), characterized by an integer m
(the highest weight) and such that dimV (m) = m+1 3. One denotes this representation (πm, V (m)).
The action of the Uq(sl2) on V (m) is given by the deformation of the action of sl2. Let {vi}mi=0 be
a basis of V (m), then :

e · vk = [m− k + 1]vk−1 , f · vk = [k + 1]vk−1 , t · vk = qm−2kvk , t−1 · vk = q−m+2kvk , (2.88)

where we used the q-number notation :

[x] =
qx − q−x

q − q−1
. (2.89)

This indeed de�nes a representation, thanks to the relation [l − k][k + 1]− [l − k + 1][k] = [l − 2k].
Remark that (π0, V (0)) ' (ε,C) and the simplest non trivial module is V (1) where the representation
matrices are given by :

π1(e) =
(

0 1
0 0

)
, π1(f) =

(
0 0
1 0

)
, π1(t±) =

(
q± 0
0 q∓

)
. (2.90)

The case of Uq(ŝl2).

As we have seen, the R matrix of the six vertex model depends on a spectral parameter, a feature
that is absent in the representation theory of Uq(sl2). To make it appear naturally we should

consider instead the Quantum Group Uq(ŝl2) 4. The a�ne Kac-Moody algebra ŝl2 has 8 generators

3More precisely, the number of representations is doubled since there exists a non trivial automorphism η of Uq(sl2)
:

η(e) = −e , η(f) = f , η(t) = −t .
and from a representation (π, V ) we can construct a non isomorphic representation (π ◦ η, V ).

4One way to de�ne csl2 is to complete the central extension of the loop algebra of sl2 :csl2 = sl2 ⊗ C[X,X−1]⊕ Cc⊕ Cd , (2.91)

with the following centrally extended commutation relations :

[v ⊗Xm, u⊗Xn] = [v, u]⊗Xm+n + c δm+n,0 m tr(uv) , (2.92)

[c,#] = 0 , (2.93)

[d, v ⊗Xm] = mv ⊗Xm d = X
d

dX
. (2.94)

Observe, that if (π, V ) is a representation of sl2, then given any λ ∈ C∗, we can obtain a representation (πλ, V ) ofcsl2′ (where we drop the action of d) :

πλ(v ⊗Xn) = λnπ(v) , πλ(c) = 0 . (2.95)

This explains the appearance of the spectral parameter in the context of csl2.
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{ei , fi , t±i ; i = 0 , 1} whose commutation relations are encoded in the Cartan matrix :

C =
(

2 −2
−2 2

)
= (aij)i,j . (2.96)

According to the remark in the previous section we de�ne Uq(ŝl2) by appropriately deforming the
Serre relations to :

tiej = qaijejti , tifj = q−aijfjti , (2.97)

[ei, fj ] = δij
ti − t−1

i

q − q−1
, (2.98)

[ei, [ei, [ei, ej ]q2 ]q0 ]q−2 = 0 , i 6= j , (2.99)

[fi, [fi, [fi, fj ]q2 ]q0 ]q−2 = 0 , i 6= j , (2.100)

where we used the deformed commutator :

[a, b]r = ab− rba . (2.101)

We further endow Uq(ŝl2) with a Hopf algebra structure by de�ning the coproduct, counit and
antipode :

∆(ei) = ei ⊗ 1 + ti ⊗ ei , ∆(fi) = fi ⊗ t−1
i + 1⊗ fi , ∆(ti) = ti ⊗ ti . (2.102)

ε(ei) = 0 , ε(fi) = 0 , ε(ti) = 1 , (2.103)

S(ei) = −t−1
i ei , S(fi) = −fiti , S(t±i ) = t∓i . (2.104)

From now we would like to apply our knowledge about the representation theory of Uq(sl2) to

the a�ne case. This can be done with the use of the homomorphism ϕλ : Uq(ŝl2)→ Uq(sl2) de�ned
for any λ ∈ C∗ by :

ϕλ(e0) = λf , ϕλ(f0) = λ−1e , ϕλ(t0) = t−1 , (2.105)

ϕλ(e1) = λe , ϕλ(f1) = λ−1f , ϕλ(t1) = t . (2.106)

If (π, V ) is a representation of Uq(sl2) the composition map π ◦ ϕλ gives a representation of

Uq(ŝl2) in V :

Uq(ŝl2)
ϕλ→ Uq(sl2) π→ End(V ) . (2.107)

In the following we will denote πmλ the representation of Uq(ŝl2) given by (πm ◦ ϕλ, V (m)) :

πmλ = πm ◦ ϕλ . (2.108)

It is possible to show that the representation theory of Uq(ŝl2) and Uq(sl2) are in fact quite di�erent.
In particular, the tensor products such that πmζ ⊗ πnλ can be irreducible. The general result [53] is

that any irreducible, �nite dimensional representation of Uq(ŝl2) is of the form :

πm1
λ1
⊗ ...⊗ πmrλr . (2.109)

The universal R matrix for a wide class of algebras was calculated in [56]. In the case of Uq(ŝl2),
the key observation is that R has a factorized form :

R ∈ Uq(b+)⊗ Uq(b−) , (2.110)

where Uq(b+), Uq(b−) are the two Borel subalgebras of Uq(ŝl2) generated respectively by {ei , t±i , i =
0, 1} and {fi , t±i , i = 0, 1}. This factorization is of crucial importance, since it allows to construct
the Baxter Q operator from the data of the R matrix, by a similar procedure to the one that is used
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to obtain the L operator. We shall not reproduce the construction of R here because it is beyond
the scope of this work 5 , presenting only the image of the universal R matrix under (ϕλ ⊗ π1

µ) :

(ϕλ ⊗ π1
µ)(R) = q

1
2

(
ζ2q

H+1
2 − q−H+1

2 (q − q−1)ζFq
H−1

2

(q − q−1)ζq−
H−1

2 E ζ2q−
H−1

2 − qH−1
2

)
, (2.114)

up to some multiplicative factor. This is an element of Uq(sl2) ⊗ End(V (1)). Finally, evaluating
E,H,F in any representation V (2sm + 1) one recovers the result (2.33).

Nevertheless, let us still give a more "pedestrian" way of deriving the R matrix (in some speci�c

representations) in the case of Uq(ŝl2). The idea, already mentioned, is to reinterpret (2.68) as a
intertwiner condition on R. More precisely (see [53]), we claim that if we are given two representa-

tions πmλ and πnξ of Uq(ŝl2) de�ned in (2.108), then the R matrix (or some of its simple modi�cation)
should realize the isomorphism :

πmλ ⊗ πnµ ' πmµ ⊗ πnλ . (2.115)

It implies the identity :

R(λ, µ)∆(v) = ∆(v)R(λ, µ) , ∀v ∈ Uq(ŝl2) . (2.116)

Evaluating this for v = e0, f0 one obtains :

R(λ, µ)(λf ⊗ 1 + t−1 ⊗ µf) = (µf ⊗ 1 + t−1 ⊗ λf)R(λ, µ) , (2.117)

R(λ, µ)(λ−1e⊗ t+ 1⊗ µ−1e) = (µ−1e⊗ t+ 1⊗ λ−1e)R(λ, µ) . (2.118)

Using the explicit realization of e, f we can �nd in the case m = n = 1 :

R1,1(λ, µ) =


λq − µq−1

λ(q − q−1) λ− µ
λ− µ µ(q − q−1)

λq − µq−1

 (2.119)

This is the same R matrix as we considered for the six vertex model, up to the multiplication by
the permutation matrix and the rede�nition of the variables. Now, let us write the R matrix for
V (m)⊗ V (m). We know that it in the case of sl2 this representation is reducible to :

V (m)⊗ V (m) = V (2m)⊕ V (2m− 2)⊕ ...⊕ V (0) . (2.120)

Since R intertwines the actions, it must be a linear combination of the projectors Pk from V (m)⊗
V (m) to V (2m− 2k). Hence we have :

Rm,m(λ, µ) =
m∑
k=0

ρkPk , (2.121)

where the factors ρk are explicitly [53] :

Rm,m(λ, µ) =
m∑
k=0

k∏
r=1

λ− µq2m−2r+2

µ− λq2m−2r+2
Pk . (2.122)

5 To get a �avor of the computations we present the explicit result for Uq(sl2). De�ne �rst the q-exponential :

eq(z) =

∞X
m=0

q−
m(m−1)

2

[m]!
zm . (2.111)

Then the universal R matrix of Uq(sl2) reads [56] :

R = eq(−(q − q−1)e⊗ f)q−
h⊗h

2 . (2.112)

Evaluating this formula for the representation V (1) (2.90) of Uq(sl2) we obtain :

R1,1 = q−
1
2

0BB@
1 0 0 0
0 q 1− q2 0
0 0 q 0
0 0 0 1

1CCA . (2.113)
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2.5 The Baxter Q operator

In this section we shall construct the Baxter Q operator, in the same spirit as it was done in [2].
It �rst appeared a long time ago [57] in the Baxter's solution of the eight-vertex model, and it is
in the papers [34, 35, 36] that it was given a more modern interpretation. As we have seen, the

T operator is constructed starting with the universal Uq(ŝl2) R matrix R ∈ Uq(b+) ⊗ Uq(b−) by

evaluating the factor in Uq(b+) in a �nite dimensional irreducible representation of Uq(ŝl2) (of the
type V (m)) through the use of the homomorphism ϕλ. The key point of [35] is to de�ne Q in a
similar way to T , but adopting a di�erent algebra : the q-Oscillator algebra Osc.

The q-Oscillator algebra Osc is generated by 4 elements {a,a∗, qD, q−D} which are subject to
the commutation relations (that we take from [2]) 6 :

qDaq−D = q−1 a , qDa∗q−D = q a∗ . (2.125)

aa∗ = 1− q2D+2 , a∗a = q2D . (2.126)

By analogy with the quantum harmonic oscillator, we can construct two in�nite dimensional repre-
sentations (ρ±,W±) :

W+ =
⊕
k≥0

C |k〉 , W− =
⊕
k<0

C |k〉 , (2.127)

with the following action of Osc :

qD · |k〉 = qk |k〉 , a · |k〉 = (1− q2k) |k − 1〉 , a∗ · |k〉 = (1− δk,−1) |k + 1〉 . (2.128)

De�ne the homomorphism ψλ that embed the Borel subalgebra Uq(b+) into Osc :

ψλ : Uq(b+)→ Osc , (2.129)

ψλ(e0) =
λ

q − q−1
a , ψλ(e1) =

λ

q − q−1
a∗ , ψλ(t0) = q−2D , ψλ(t1) = q2D . (2.130)

Now, one can evaluate the universal R matrix of Uq(ŝl2) on the algebra Osc. This is done in the
following way. By analoy with (2.108), de�ne two representations π±λ of Uq(b+) in W± :

π±λ = ψλ ◦ ρ± : Uq(b+) → End(W±) . (2.131)

The use of the algebra Osc in the evaluation of the universal R matrix will be depicted by the index
"A", as well as the superscripts ± to specify which choice of W± is understood. Then, working with

the explicit expression of the universal R matrix of Uq(ŝl2) (2.110) one has 7 :

L±A,m(ζ) = (π±ζ ⊗ π
1
1)(R) =

(
q−D − ζ2q2D+1 −ζaq−D

ζa∗qD qD

)
m

∈ End(W±)⊗ End(Vm) , (2.132)

where Vm is a two dimensional vector space (to be thought on the Matsubara chain).
Similarly to the de�nition of the monodromy matrix (2.36), de�ne the "Q-monodromy" matrix

by multiplying di�erent L±A,m matrices along the Matsubara space, taking into account the presence
of inhomogeneities and eventually of the twist factor :

L±A,M(ζ, κ) = L±A,n

(
ζ

τn

)
L±A,n−1

(
ζ

τn−1

)
...L±A,1

(
ζ

τ1

)
q±2κD . (2.133)

Finally, tracing out the representation A we obtain the wished Q operator (Q±M(ζ, κ) ∈ End(HM)) :

Q±M(ζ, κ) = ζ±(κ−SM)TrA±(L±A,M(ζ, κ)) , (2.134)

6We can think about this algebra as the "quantized" version of the creation-annihilation commutation relations
for the quantum harmonic oscillator :

a =
1
√

2

„
x+

∂

∂x

«
, a† =

1
√

2

„
x−

∂

∂x

«
. (2.123)

[a, a†] = 1 , N = a†a . (2.124)

7Up to some multiplicative factor.
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where we have introduced an extra term carrying the twist κ and the total spin operator of the
Matsubara space SM (recall (2.63)) :

SM =
1
2

n∑
m=1

σ3
m . (2.135)

From the universal Yang-Baxter equation (2.73) it is possible to demonstrate the commutation
relations :

[TM(ζ, κ), QM(λ, κ)] = 0 , [QM(ζ, κ), QM(λ, κ)] = 0 . (2.136)

In particular, this means that TM and QM can be simultaneously diagonalized. Moreover, the key
identity between TM and QM is the Baxter equation (or "TQ equation") [3, 57] :

TM(ζ, κ)Q±M(ζ, κ) = a(ζ)Q±M(qζ, κ) + d(λ)Q±M(q−1ζ, κ) , (2.137)

where a and d are the Bethe Ansatz functions (2.51) :

a(ζ) =
n∏

m=1

(
(ζ/τm)2 − 1

)
, d(ζ) =

n∏
m=1

(
(ζq/τm)2 − 1

)
. (2.138)

Applying the equation (2.137) on a common eigenvector of TM(ζ, κ) and Q±M(ζ, κ) we obtain a func-
tional equation on the corresponding eigenvalues T (ζ, κ) , Q±(ζ, κ). Let us consider the analytical
structure of Q±(ζ, κ). It is assumed to be a polynomial in ζ2, and if the common eigenvectors carries
a spin s one can write :

Q±(ζ, κ) = q±(κ−s)
l∏

k=1

(ζ2 − λ2
k) . (2.139)

Evaluating the functional version of (2.137) at one of the roots λk of Q±, one recovers exactly the
Bethe Ansatz Equations (2.62) :

a(λ)Q±(qλk, κ)
d(λ)Q±(q−1λk, κ)

= −1 . (2.140)

Hence the roots of Q±(ζ, κ) are exactly the Bethe roots. Let us make a last comment to conclude
this section. Manifestly, Q+ and Q− seem to play a pretty similar role. This is natural, indeed Q is
a solution of the second order di�erence equation (2.137), which a priori has two di�erent solutions
: Q+ and Q−.

2.6 Integrable structures in Conformal Field Theory

We are now ready to discuss how the previous constructions can be generalized to the �eld theoretic
context and reveal the integrable structures of CFT. This was achieved in the paper [34] and its
sequels [35], [36] by Bazhanov, Lukyanov and Zamolodchikov, and is termed after the authors the

"BLZ construction". Recall that for the lattice six-vertex model (based on Uq(ŝl2)), the universal R
matrix was written as (2.110) :

R ∈ Uq(b+)⊗ Uq(b−) . (2.141)

Depending on the representations that we chose for the Borel subalgebra Uq(b+), we obtained either
the transfer matrix or the Baxter operator, whereas Uq(b−) was merely an observer, represented
ultimately in a �nite dimensional vector space in the Matsubara direction. To make connection with
CFT, one should substitute this last piece Uq(b−) by a more "�eld theoretic", in�nite dimensional
algebra. The farsighted idea of BLZ was to consider for such a role the Heisenberg algebra H. Our
explanation here is, I hope more natural, but slightly anachronistic. Indeed one must emphasis that
the introduction of the Baxter Q operator on the lattice presented before in the section 2.5 is entirely
due to the BLZ advances.

In the original BLZ papers, the problematic was rather di�erent. As we have show, any CFT
possesses an in�nite number of conserved integrals of motion built as descendants of the identity
operator, that can be described by local densities ((1.155),(1.156),(1.157) for the �rst ones). In turns,
these densities give rise to operators I2k−1 that act on the Matsubara Hilbert space, and commute
among themselves. The fundamental achievement of the work [34] was to consistently organize these
objects, by the introduction of a CFT transfer matrix T, which acts on a V-Verma module and is
the generating function of the integrals of motions I2k−1. This breakthrough was followed by several
important consequences :
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1. The introduction of the transfer matrix T preceded the de�nition of a CFT Baxter operator
Q [35]. Then the full set of identities that are essentially veri�ed by these operators (such
that the Yang-Baxter equation, the Baxter TQ relation, the fusion equations), were shown to
be valid also in the CFT context [36]. It means more conceptually, that T and Q realize the
Yang-Baxter equation in the Hilbert space of the CFT.

2. The description of CFT in terms of the "massless S matrix" scattering theory, proposed in
[28], was naturally related to the above construction : the TBA equations obtained from this
S matrix theory where shown to be particular truncations of the fusion rules satis�ed by the
transfer matrices T.

3. As we have seen the integrable structures of CFT remains essentially intact when we perturb
the conformal theory by the primary �eld V1,3, the outcome being a massive integrable QFT.
Working with IQFT, it is of course possible to �rst study the integrable lattice system (that
is build the operators T and Q) that are described by the CFT at criticality, and then take
an appropriate scaling limit towards the massive QFT. Then one would recover the wanted
T and Q operators at the �eld theoretic level. However, in many cases the associated lattice
models are not known. It is then very interesting to possess an intrinsic description of these
quantities, directly in terms of �elds of the theory and without any reference to the lattice
model.

In this section, we therefore propose a brief overview of the construction of T from [34], since
it will be crucial for our further analysis of the scaling equations [7]. Let us examine a CFT on a
cylinder (to stick to the original notations we take a = −i in (1.52), and drop the extra factor −1
in front of T ) whose (chiral) space of states is given by :

S =
⊕
∆

V∆ . (2.142)

One has the usual relation between the Matsubara integrals of motion and the densities :

I2k−1 =
∫ 2πi

0

du

2π
h2k(u) , (2.143)

the �rst expressions are recalled in (1.187), (1.188),(1.189). As stated at the beginning of this section,
one should introduce the Heisenberg algebra H 8. This is done by the means of a bosonic free �eld
ϕ :

ϕ(u) = iQ+ iPu+
∑
n 6=0

a−n
n
einu , (2.146)

whose relation to the CFT stress energy tensor is :

− β2T (u) =: ϕ′(u)2 : +(1− β2)ϕ′′(u) +
β2

24
. (2.147)

By convention, the densities are normalized such that h2k(u) =: T (u)k : +..., which amounts to take

I2k−1 = (−1)kβ−2k

∫ 2π

0

du

2π
(
: (ϕ′(u))2k : +...

)
. (2.148)

8 The key original idea of BLZ is to take inspiration from the classical case. It is well known that in the classical
limit c→∞, the Virasoro algebra reduces to the KdV problem described by the Poisson algebra (see [58, 59, 60]) :

T (u)→ −
c

6
U(u) , [ , ]→

6π

ic
{ , } , (2.144)

{U(u), U(v)} = 2(U(u) + U(v))δ′(u− v) + δ′′′(u− v) . (2.145)

The integrals I2k−1 are quantum counterparts of the classical conserved integrals of motion of the KdV hierarchy. To
solve the classical KdV problem, one constructs a classical monodromy matrix based on the algebra sl2, the important
step being in simplifying the problem by the application of a Miura transformation to the classical variable U .

The big progress of [34] is to transpose this classical considerations to the quantum level : the quantum version
of a Miura transformation corresponds to the Feigin-Fuchs free �eld representation of the algebra V, and instead of

working with the algebra sl2 the Quantum Group Uq(csl2) is considered.
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The elements P,Q, an satisfy the Heisenberg algebra H :

[Q,P ] =
i

2
β2 , [an, am] =

n

2
β2δn+m,0 , [Q, an] = [P, an] = 0 . (2.149)

With these de�nitions, the modes Ln of T satisfy the Virasoro algebra (1.26) with the central charge
given by

c = 1− 6
(
β − 1

β

)2

. (2.150)

The Fock space representation Fp for the algebra H is constructed as follows. Consider a highest
weight vector |p〉 for H :

P |p〉 = p |p〉 , an |p〉 = 0 , n > 0 . (2.151)

Then Fp is generated by the action of negatively indexed an on the vector |p〉, and is isomorphic to
the Verma modules V∆ of V with the following correspondence between the highest weights (1.88) :

∆ =
(
p

β

)2

+
c− 1

24
. (2.152)

The space Fp naturally decomposes into level subspaces. After these preparations, one can de�ne
the vertex �elds :

V±(u) =: e±2ϕ(u) := exp

(
±2

∞∑
n=1

a−n
n
einu

)
e±2i(Q+Pu) exp

(
∓2

∞∑
n=1

an
n
e−inu

)
, (2.153)

that act as

V±(u) : Fp → Fp±β2 . (2.154)

We use the generators {E,F, qH , q−H} of Uq(sl2) that satisfy (2.87) :

[H,E] = 2E , [H,F ] = −2F , [E,F ] =
qH − q−H

q − q−1
. (2.155)

The relation between the Quantum Group parameter q and the CFT parameter β is given by :

q = eiπβ
2
. (2.156)

Finally, the monodromy matrix of the CFT is de�ned to be the element of Uq(sl2)⊗ H given by :

L(λ) ∈ Uq(sl2)⊗ H , (2.157)

L(λ) = eiπPHP exp
(
λ

∫ 2π

0

du(V−(u)q
H
2 E + V+(u)q−

H
2 E)

)
. (2.158)

In this de�nition λ is the spectral parameter, and P denotes the usual path ordering operator. This
formula is a direct CFT analog of the lattice monodromy matrices (2.36), (2.38). Notice that the
momentum operator P plays the same role as the twist κ, which suggests that these two quantities
should be related when we go from the lattice to the continuum. Now consider πj to be the (2j+ 1)
dimensional irreducible representation V (2j) of Uq(sl2) of highest weight 2j. We de�ne Lj(λ) :

Lj(λ) = πj (L(λ)) . (2.159)

Tracing out the representation πj in Lj(λ), we get the wanted transfer matrix Tj of the CFT :

Tj(λ) = Trπj (Lj(λ)) . (2.160)

By construction Tj(λ) is a CFT �eld acting as

Tj(λ) : V∆ → V∆ . (2.161)

In the paper [36] it is shown that Lj(λ) satis�es the Yang-Baxter equation (2.41) :

Rjj′(λµ−1)(Lj(λ)⊗ 1)(1⊗ Lj′(µ)) = (1⊗ Lj′(µ))(Lj(λ)⊗ 1)Rjj′(λµ−1) . (2.162)
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with Rjj′(ζ) the R matrix of Uq(ŝl2) in the tensor product representation πj ⊗ πj′ . In the case of
spins 1

2 (highest weights 1), one recovers the usual L operator (2.35) :

R 1
2 ,

1
2
(ζ) = ζ−1q−

1
2L(ζ) . (2.163)

The equation (2.162) implies the commutativity of the transfer matrices :

[Tj(λ),Tj′(λ′)] = 0 . (2.164)

The operators Tj commute also with P , this implies that they act invariantly in Fp. Moreover the
operators Tj satisfy

[Tj(λ), I2k−1] = 0 . (2.165)

It means that the level subspaces F (l)
p are eigenspaces of Tj(λ). A very important point of [34], is

that T 1
2
admits speci�c analytical properties. It is an analytical function of λ2 that has an essential

singularity at the point λ→∞. The asymptotic expansion is given by :

log T 1
2
(λ) ' mλ

1
1−β2 −

∞∑
n=1

Cnλ
1−2n
1−β2 I2n−1 . (2.166)

where the I2n−1 are exactly the integrals of motion (2.143) on the cylinder. This asymptotic expan-
sion will be of crucial importance when we will derive the scaling equations for the Super sine-Gordon

model. A remark is in order : why is λ
1

1−β2 the variable of the series ? This holds since λ
1

1−β2 is
the truly dimensionless quantity : recall that we used the variable θ related to λ (2.30) by λ = eiπνθ

and we claim that the correspondence between lattice and QFT parameters is

ν = 1− β2 . (2.167)

The various coe�cients of the expansion of T 1
2
are given by :

m = 2
√
π

Γ( 1
2

1−2β2

1−β2 )

Γ( 1
2

2−3β2

1−β2 )

(
Γ(1− β2)

) 1
1−β2 , (2.168)

Cn =
1

n!(1− β2)
(
πβ2

)n 2
m

Γ( 1
2

1−2β2

1−β2 )

Γ( 1
2

2−3β2

1−β2 )

2n−1

Γ((n− 1
2 ) 1

1−β2 )

Γ(1 + (n− 1
2 ) β2

1−β2 ))
. (2.169)

In the paper [35] the investigations on the integrable structure of CFT were continued, and the
Baxter Q operator was de�ned in the CFT context. Exactly like in the lattice case, Q is built from
the q-oscillator algebra.

2.7 The fermionic basis.

In this section we will brie�y recall the main features of the fermionic basis. It was developed and
successfully applied in the papers [1, 2, 3, 4, 5, 61]. The fermionic basis construction was established
in the context of the six-vertex model on the cylinder and progressed through the following steps :

1. It provided a basis of local operators on the lattice, for which the vacuum expectation values
are calculated by rather simple formulae involving determinants (see (2.191)). The vacuum
expectation values are given by determinants involving a single function of two variables ω,
multiplied by a factor depending on a certain function ρ (of one variable). Both these function
are given only in terms of Matsubara data [1, 2, 3].

2. In addition to the simplicity of the correlation functions on the lattice, these fermionic operators
have very nice scaling properties towards QFT. This is the second very important feature of
the fermionic basis, and means that each of its operators has a QFT counterpart. Therefore,
when taking the scaling limit, one can construct creation operators for the QFT. This was
done in [4] in the CFT limit of the six-vertex model, and provided an alternative (to the usual
Virasoro one) basis for �elds in the relativistic quantum theory. Considering the scaling limits
of the functions ρ and ω, one therefore has very simple expressions for the one point functions
of CFT operators generated by the fermionic basis. These one point functions will be presented
in (2.229)-(2.232).
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3. Finally, the fermionic basis is compatible with Conformal Perturbation Theory. This was used
in [5, 61] to obtain the one point functions in the sine-Gordon model. Indeed, we have seen that
the �elds in the PCFT can be classi�ed in the same way as in the UV conformal theory. The
general idea is then to take the scaling limit of the fermionic construction towards the massive
QFT, and using the correspondence between the fermionic and the Virasoro description get
the wished one point functions in the massive case.

In this section the aim is to describe the derivation of the correspondence between the fermionic
and the Virasoro description at the CFT level (the formulae (2.235),(2.236),(2.237),(2.238) below),
since this is the work that will be accomplished later for the case of the Super sine-Gordon model in
the chapter 4 (see also [9]). Hence we will not discuss the application of the fermionic basis to the
computation of one point functions in the sine-Gordon QFT (the point 3 above). Let us start with
the lattice considerations.

2.7.1 The fermionic basis on the lattice.

General de�nitions.

We work here in the setting of section 2.2, in particular we use the terminology of the Matsubara
and Space chains. Recall that our goal is to �nd a simple way to compute vacuum expectation values
of local operators on the lattice. We shall �rst give our de�nition for the vacuum expectation values
and then explain the fermionic basis.

Consider the cylinder to be in�nite in length (take N →∞). The Space direction becomes :

HS =
∞⊗

k=−∞

C2 . (2.170)

Recall from the above discussion that on the Space chain we have the following spin 1
2 XXZ Hamil-

tonian (2.28) :

HXXZ =
1
2

∞∑
k=−∞

(
σ1
kσ

1
k+1 + σ2

kσ
2
k+1 + ∆σ3

kσ
3
k+1

)
, ∆ =

q + q−1

2
. (2.171)

Another operator what will be important is the spin in the Space direction :

S(k) =
1
2

k∑
j=−∞

σ3
j , S = S(∞) =

1
2

∞∑
j=−∞

σ3
j . (2.172)

To obtain the transfer matrix of the model we set :

Tj,M = Tj,M(1) , (2.173)

in the notations of (2.36), and de�ne the total monodromy matrix TS,M :

T[−N2 +1,N2 ],M = T−N2 +1,M...TN
2 ,M

, (2.174)

TS,M = lim
N→∞

T[−N2 +1,N2 ],M . (2.175)

Now we should de�ne the operators with which we are going to work. The spirit of the construction
is close to CFT considerations. We consider operators O that are local, in the sense that their action
is non trivial only on a �nite interval of the space direction. Then we can take products with the
lattice "primary �eld" qαS(0). This is a quasi-local operator with tail α since it stabilizes outside
some �nite interval to be the action by q

1
2ασj . Denote by Wα the space of quasi-local operators

with tail α, and by Wα,s its subspace of operators of spin s (the spin of O is the eigenvalue of the
operator ad(S)(.) = [S, .]). We will work in the space :

W(α) =
∞⊕

s=−∞
Wα−s,s . (2.176)

On W(α) we de�ne the following vacuum expectation value of the local operator O :

Zκn

{
q2αS(0)O

}
=

TrSTrM
(
TS,Mq2κS+2αS(0)O

)
TrSTrM

(
TS,Mq2κS+2αS(0)

) . (2.177)
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This formula is in fact natural. Indeed, the double trace of the total transfer matrix is nothing else
than the partition function of the six vertex model (2.13) (in the case of a cylinder of in�nite length)
:

Z6V = TrSTrM (TS,M) . (2.178)

Then (2.177) appears roughly speaking to be the partition function with the insertion of the operator
O, normalized by the partition function. This is a meaningful de�nition for a vacuum expectation
value from a QFT point of view.

Let us now go back to the general case (2.177). We should be worried about the fact that since
we are working on an in�nite cylinder, (2.177) might be a divergent quantity. This problem is in
fact avoided since we are dealing with quasi-local operators. Indeed, expliciting the large N limit
we have with evident notations :

Zκn

{
q2αS(0)O

}
= lim
N→∞

TrMTr[−N2 +1,N2 ]

(
T[−N2 +1,N2 ],Mq

2(κ+S[−N2 +1, N2 ]+αS[−N2 +1,0])O
)

TrMTr[−N2 +1,N2 ]

(
T[−N2 +1,N2 ],Mq

2(κ+S[−N2 +1, N2 ]+αS[−N2 +1,0])
) . (2.179)

Then, consider that the Matsubara transfer matrix (2.39) TM(1, κ) has a unique eigenvector |κ〉 with
maximal eigenvalue T (1, κ). This holds when the twist parameter κ is not to large. Making the
additional assumption that

〈κ+ α|α〉 6= 0 , (2.180)

the trace on the Matsubara space in the right hand side of (2.179) reduces to (exactly like in (2.15)
) :

Zκn

{
q2αS(0)O

}
= lim
N→∞

〈κ+ α|Tr[−N2 +1,N2 ]

(
T[−N2 +1,N2 ],Mq

2(κ+S[−N2 +1, N2 ]+αS[−N2 +1,0])O
)
|κ〉

〈κ+ α|Tr[−N2 +1,N2 ]

(
T[−N2 +1,N2 ]Mq

2(κ+S[−N2 +1, N2 ]+αS[−N2 +1,0])
)
|κ〉

,

(2.181)

= lim
N→∞

ρ(1)k−1 〈κ+ α|Tr[k,m]

(
T[k,m],Mq2κS[k,m]X[k,m]

)
|κ〉

T (1, κ)m−k+1 〈κ+ α|κ〉
, (2.182)

where we de�ned the above mentioned function ρ as the ratio of the eigenvalues of the Matsubara
transfer matrices :

ρ(ζ) =
T (ζ, κ+ α)
T (ζ, κ)

. (2.183)

We have taken [k,m] to be the interval where the operator O acts non trivially, and denoted the
restriction to this interval of q2αS(0)O by X[k,m].

Special limit of the functional Zκn. Let us make a comment on the usefulness of the general
Matsubara space (2.31) :

HM =
n⊗

m=1

C2sm+1 . (2.184)

The beginning of the fermionic construction started in [1] with the study a much simpler quantity
than Zκn :

Z0
∞(O) =

〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉

, (2.185)

which is de�ned for operators living only on the Space chain and without reference to any additional
direction. The above de�nition of the Matsubara space HM appears to be the right extension to
perform. Indeed, taking alternating inhomogeneities τm = ζ−1q−

1
2 for m even and τm = ζq

1
2 for m

odd one has the following expansion :

TrM(TS,M) = CnN exp

(
n
∞∑
p=1

z2p−1I2p−1

)
, (2.186)

where the variable z is related in some complicated way to ζ and I2p−1 are the lattice integrals of
motion (in particular I1 = HXXZ), C is a numerical constant. Considering the limit n → ∞ and
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introducing at the same time the temperature β by setting z = −βn , the above sum is reduced to
the �rst term:

lim
n→∞

C−nNTrM(TS,M) = e−βHXXZ . (2.187)

This implies that the functional Zκn boils down in the limit n→∞ to

Zκ∞ =
TrS(e−β(HXXZ+hS)q2αS(0)O)
TrS(e−β(HXXZ+hS)q2αS(0))

. (2.188)

This quantity has been studied in the paper [62] that provided the important result that the fermionic
basis is compatible with the presence of a non zero temperature and magnetic �eld. Taking the zero
temperature limit β →∞ together with κ = 0 (that is h = 0) we recover (2.185). This motivates the
study of the general Matsubara space (2.31), since it allows the use of any combination of integrals
of motion inside the trace on the Space chain, thanks to the formula (2.186).

A remark about the correlation functions. In the previous de�nition (2.179) of the vacuum
expectation value, the fact that we used a local operator together with the limit N →∞ automati-
cally singled out the maximal eigenvalue of the transfer matrix in (2.182). However, it is natural to
de�ne a similar quantity for any eigenvector |Φ〉 of the Matsubara transfer matrix (recall that their
general form is given by the ABA procedure (2.52)) :

Z|Φ〉(O) =
〈Φ|Tr[1,p](T[1,p],MO) |Φ〉

T p 〈Φ|Φ〉
. (2.189)

We are going to use this de�nition when we will work with the fermion-current basis in the chapter
3 (see (3.36) as well as [8]).

Fermionic basis and main theorem.

Let us now invoke the main results of [3]. In this paper, the authors introduced creation operators
b∗, c∗, t∗ that depend on spectral parameters in the space direction and create local operators out of
the lattice primary �eld q2αS(0). These operators act in the following way :

b∗ , c∗ , t∗ : W(α) → W(α) . (2.190)

We shall not discuss the detailed de�nition of these operators, and consider the results of [3] as an
existence theorem. On the other hand the completeness of the basis of operators created thanks to
b∗, c∗, t∗ was shown in [63]. As we already emphasized, the crucial feature of this basis is that one
has a very simple expression for the vacuum expectation values :

Zκn

{
t∗(ζ0

1 )...t∗(ζ0
p)b∗(ζ+

1 )...b∗(ζ+
r )c∗(ζ−r )...c∗(ζ−1 )

(
q2αS(0)

)}
=

p∏
i=1

2ρ(ζ0
i )× det

(
ω(ζ+

i , ζ
−
j )
)

1≤i,j≤r , (2.191)

where ρ is de�ned in (2.183) and together with ω depends only on the Matsubara data. It was
shown in [3] that ω has to satisfy several speci�c properties. We will recollect them in the case of
the general Matsubara situation (2.31) :

HM =
n⊗

m=1

C2sm+1 , (2.192)

with the L operator given in (2.33). The general case is important to the future application of the
fermionic construction to the 19-vertex model (sm = 1). Of course, to use the result (2.191) for the
6-vertex model we only need the case sm = 1

2 discussed above. Hence, in full generality we have :

1. Analytical properties. From this point of view the function ω splits in two parts :

ω(ζ, ξ) = ωhol(ζ, ξ) + ωsing(ζ, ξ) , (2.193)

where ωsing carries all relevant singularities :

ζ−αT (ζ, κ) (ω(ζ, ξ)− ωsing(ζ, ξ)) , (2.194)

is a polynomial in ζ2 of degree n. The singularities of ωhol are located at the zeroes of the
Matsubara transfer matrix eigenvalue T (ζ, κ).
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2. Normalization condition. First introduce the function ϕ

ϕ(ζ) =
n∏

m=1

2sm∏
k=0

1
(ζ/τm)2

q−2sm+2k+1 − 1
. (2.195)

It satis�es the important relation :

a(ζ)ϕ(ζ) = d(ζq)ϕ(ζq) , (2.196)

where a and d are Bethe Ansatz functions de�ned in (2.51) (for spin 1
2 ), whose de�nition for

any spin is :

a(ζ) =
n∏

m=1

((ζ/τm)2q−2sm+1 − 1) , d(ζ) =
n∏

m=1

((ζ/τm)2q2sm+1 − 1) . (2.197)

The function ϕ is used to specify the normalization of ω. Consider n + 1 contours Γm (several
small circles) going around the following points : Γ0 goes around the point 0, and Γm around the

poles ζ2 = τ2
mq

2sm−2k−1 with (k = 0, ..., 2sm) of
∏2sm
k=0

1
(ζ/τm)2q−2sm+2k+1−1

. The normalization

condition for ω is then :∫
Γm

T (ζ, κ)ω(ζ, ξ)Q−(ζ, κ+ α)Q+(ζ, κ)ϕ(ζ)
dζ2

ζ2
= 0 . (2.198)

for each m ∈ [0,n].

3. Symmetry condition :
ω(ξ, ζ| − κ,−α) = ω(ζ, ξ|κ, α) . (2.199)

4. The singular part is known in closed form :

ωsing(ζ, ξ) =
1

T (ζ, κ)T (ξ, κ)

(
(4d(ξ)a(ζ)− T (ζ, κ)T (ξ, κ)ψ(qζ/ξ, α))

− (4a(ξ)d(ζ)− T (ζ, κ)T (ξ, κ)ψ(q−1ζ/ξ, α))

− 2ψ(ζ/ξ, α)(T (ζ, κ)T (ξ, κ+ α)− T (ξ, κ)T (ζ, κ+ α))
)
. (2.200)

where the function ψ is given by :

ψ(ζ, α) = ζα
ζ2 + 1

2(ζ2 − 1)
. (2.201)

This closes the part of the discussion of the function ω on the lattice. Let us now present the scaling
limit and the one point functions of fermionic operators in the CFT.

2.7.2 The scaling limit towards Conformal Field Theory

In this subsection we are going to explain how to take the scaling limit towards the continuum �eld
theory, in the same way as it is performed in [4]. The scaling is done according to the ideas of
the Destri-De Vega equations [64] : knowing the behavior of the Bethe roots for the ground state
in the limit of large Matsubara space n → ∞, one should form Non-Linear Integral Equations on
some particular function whose dependence on these roots is traceable. For that purpose de�ne the
function a, constructed out of the eigenvalue Q of the Baxter operator (2.139) :

a(ζ, κ) =
a(ζ)Q−(ζq)
d(ζ)Q−(ζq−1)

. (2.202)

The Bethe equations (2.62) can be rewritten :

a(ζ, κ) + 1 = 0 . (2.203)

Take γ to be a contour around the Bethe roots, then the logarithm of (2.202) becomes after the
application of the Residue theorem :

log a(ζ, κ) = −2πiνκ+ log
(
d(ζ)
a(ζ)

)
−
∫
γ

K

(
ζ

ξ

)
log(1 + a(ξ, κ))

dξ2

ξ2
, (2.204)
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where the kernel K is constructed from the function ψ :

K(ζ, α) =
1

2πi
(
ψ(ζq, α)− ψ(ζq−1, α)

)
. (2.205)

The resolvent R is a solution of the following equation :

R(ζ, ξ)−
∫
γ

K(ζ/η, α)R(η, ξ)dm(η) = K(ζ/ξ, α) . (2.206)

The dependence of the resolvent on the function a is hidden in the measure dm :

dm(η) =
dη2

η2ρ(η, κ)(1 + a(η, κ))
. (2.207)

Now we introduce the shift operators :

∆ζf(ζ) = f(ζq)− f(ζq−1) , δ−ζ f(ζ) = f(ζq)− ρ(ζ)f(ζ) , (2.208)

and build thanks to them two more functions :

fleft(ζ, ξ) = δ−ζ ψ(ζ/ξ, α) , fright(ζ, ξ) = δ−ξ ψ(ζ/ξ, α) . (2.209)

Then one can write a scaling equation for the rede�ned version (according to [4]) of the function ω.
This equation was proposed in [65] and reads

1
4
ω(ζ, ξ|, α, κ) = (fleft ? fright + fleft ?R ? fright) (ζ, ξ) + δ−ζ δ

−
ξ ∆−1

ζ ψ(ζ/ξ, α) , (2.210)

with

∆−1
ζ ψ(ζ, α) = V P

∫ ∞
0

1
2ν(1 + (ζ/η)

1
ν )
ψ(η, η)

dη2

2πη2
. (2.211)

The symbol ? means the convolution product with measure dm :

(f ? g)(ζ) =
∫
γ

f(ζ/η)g(η)dm(η) . (2.212)

Recall that the behavior of the ground state Bethe roots in the limit n → ∞ is the following : the
roots are real and concentrate on a certain �nite interval [a, b] on the real axis. Moreover, one can
show that the function a is negligible in the upper half plane and very large in the lower one. Then,
after some manipulation of (2.204) we arrive at the scaling equation for a :

log a(ζ, κ) = f(ζ, κ)− 2i
∫ b

a

R(ζ/η)Im(log(1 + a(η + i0)))
dη2

η2
, (2.213)

with f(ζ, κ) = (1 +R) · (−2πνκ+ log(a(ζ)/d(ζ))). This equation can be solved by iterations in the
conformal regime.

Now we are ready to take the scaling limit (de�ne a to be the lattice step, it will be used to
rescale the spectral parameter) :

scaling limit : n→∞ , a→ 0 , n a = 2πR �xed , (2.214)

where R is the radius of the cylinder on which the model is considered. In the continuum limit,
the six-vertex model scales towards to a Conformal Field Theory 9. The �eld theory depends on a
parameter β related to the lattice parameter ν is the following way :

ν = 1− β2 . (2.215)

The limit CFT has central charge :

c = 1− 6(β−1 − β)2 = 1− 6
ν2

1− ν
. (2.216)

9 The scaling limit performed in [4] is actually rather complicated, and involves the use of a screening procedure
as well as the introduction of a second twist κ′. For reasons that will be clear soon we will not go into the details of
the screening procedure, referring to [4] for more information on this topic.
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The CFT primary �elds are obtained as appropriate limits of the lattice primary �elds, and take
the form :

lim
scaling

q2αS(0) = Φα , (2.217)

Φα(z, z̄) = e
1
2 (β−1−β)αiϕ(z,z̄) . (2.218)

This parametrization becomes clear in [5] where the fermionic basis is used to obtain the one point
functions in the sG model. The latter is considered as a perturbation of a complex Liouville CFT
with central charge (2.216). The conformal dimension of the primary �eld Φα is therefore :

∆α =
(β−1 − β)2

4
(
(α− 1)2 − 1

)
. (2.219)

The scaling limit implies the following limits for the lattice functions ω and ρ :

lim
scaling

ρ(λaν) = ρsc(λ) , (2.220)

lim
scaling

ω(λaν , µaν) = ωsc(λ, µ) , (2.221)

as well as the conjectured limits of the operators of the fermionic basis :

τ ∗(λ) = lim
scaling

t∗(λaν) , β∗(λ) = lim
scaling

b∗(λaν) , γ∗(λ) = lim
scaling

c∗(λaν) . (2.222)

Similarly to the lattice case, one has also a power series expansion for the operators β∗,γ∗ :

β∗(λ) =
∞∑
k=1

λ−
2k−1
ν β∗2k−1 , γ∗(λ) =

∞∑
k=1

λ−
2k−1
ν γ∗2k−1 . (2.223)

According to the BLZ result on the asymptotics of the CFT transfer matrix (recalled in (2.166)),
the asymptotics of the scaling limit of ρsc is simply given by :

log ρsc(λ) '
∞∑
n=1

λ−
2n−1
ν Cn (i2n−1(κ)− i2n−1(κ′)) , λ2 →∞ . (2.224)

In the previous formula the twists κ, κ′ parametrize the conformal dimensions of the boundary �elds
(∆±) 10 , the exact relation is given thanks to the general formula (2.219) :

∆+ = ∆κ+1 =
(β−1 − β)2

4
(κ2 − 1) . (2.225)

With the help of the equation (2.213), is it possible to study the properties of asc. Using this
information, the authors of [4] calculated the asymptotic expansion of the function ωsc :

ωsc(λ, µ) ' −
∞∑

r,s=1

1
r + s− 1

D2r−1(α)D2s−1(2− α)× λ
−2r−1
ν µ−

2s−1
ν ω2r−1,2s−1(κ, α) , (2.226)

λ, µ→∞ , (2.227)

and the coe�cients D2m−1(α) were found to be :

D2m−1(α) =

√
i

1− β2
Γ(1− β2)−

2n−1
1−β2 β2n−1 1

(n− 1)!

Γ(α2 + 1
2(1−β2) (2n− 1))

Γ(α2 + β2

2(1−β2) (2n− 1))
. (2.228)

10In the formula (2.224), κ′ is taken in [4] according to the screening procedure. However, for us the important
result of [4] are the Taylor coe�cients of the function ω that are obtained in the case κ = κ′, that is when the two
boundary �elds have the same conformal dimension and also ρsc = 1. In addition, ∆+ = ∆− is the situation in which
we will perform the calculations in the ssG model in section 4.6.
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Conclusively, a procedure permitting to extract the coe�cients ω out of the scaling equation (2.210)
was elaborated in [4]. The �nal results take the form :

ω1,1 =
i1
R
− ∆α

12R2
, (2.229)

ω1,3
3,1

=
i3
R
− ∆α

6R3
i1 +

∆2
α

144R4
+

c+ 5
1080R4

∆α ∓ dα
∆α

360R4
, (2.230)

ω1,5
5,1

=
i5
R
− ∆α

4R3
i3 +

(
∆2
α

48R5
+
c+ 11

360
∆α

)
i1

− ∆3
α

1728R6
− 13(c+ 35)

90720R6
∆2
α −

2c2 + 21c+ 70
60480R6

∆α

∓ dα
(

∆α

120R5
i1 −

1
1440R6

∆2
α −

c+ 7
7560R6

∆α

)
, (2.231)

ω3,3 =
i5
R
− ∆α

4R3
i3 +

(
∆2
α

48R5
+

c+ 2
360R5

∆α +
c+ 2

1440R5

)
i1

− 1
1728R6

∆3
α −

5c− 14
18144R6

∆2
α −

10c2 + 37c+ 70
362880R6

∆α −
1
2c

2 + c

36288R6
, (2.232)

where the function dα is given by :

dα = (β−2 − β2)(α− 1) , (2.233)

and the integrals of motion i1, i3, i5 have been calculated in (1.191),(1.192),(1.193). The explicit
results for the coe�cients ω2i−1,2j−1 allow to establish a correspondence between the Virasoro de-
scription of local operators and the fermionic basis. First, one has to properly normalize the fermions
to construct purely CFT objects :

β∗2m−1 = D2m−1(α)βCFT∗
2m−1 , γ∗2m−1 = D2m−1(2− α)γCFT∗

2m−1 . (2.234)

Then, recalling the Ward-Takahashi equations on the cylinder (1.78), one can compare the values of
ω2i−1,2j−1, with the corresponding one point functions of Virasoro descendant �elds, working level
by level. The outcome is given in [4] :

βCFT∗
1 γCFT∗

1 = l−2 , (2.235)

βCFT∗
1
3

γCFT∗
3
1

= l2−2 +
2c− 32

9
l−4 ∓ dα

2
3
l−4 , (2.236)

βCFT∗
1
5

γCFT∗
5
1

= l3−2 +
c− 2− 20∆α + 2c∆α

3(∆α + 2)
l−4l−2

+
−5600∆α + 428c∆α − 6c2∆α + 2352∆2

α − 300c∆2
α + 12c2∆2

α + 893∆3
α − 32c∆3

α

60∆α(∆α + 2)
l6

∓ dα
(

2∆α

∆α + 2
l−4l−2 +

56− 52∆α − 2c+ 4c∆α

5(∆α + 2)
l−6

)
, (2.237)

βCFT∗
3 γCFT∗

3 = l3−2 +
6 + 3c− 76∆α + 4c∆α

6(∆α + 2)
l−2l−4

−6544∆α + 498c∆α − 5c2∆α + 2152∆2
α − 314c∆2

α + 10c2∆2
α − 448∆3

α + 16c∆3
α

60∆α(∆α + 2)
l−6 .

(2.238)

These equations do not depend on R, which is logical since the expansion of the fermionic basis on
the Virasoro basis should not depend on the radius of the cylinder, and have the general structure :

βCFT∗
I+ γCFT∗

I− = CI+,I−

(
PEI+,I−({l−2k,∆α, c}) + dα P

O
I+,I−({l−2k,∆α, c})

)
, (2.239)

where I+, I− are multi-indices, CI+,I− is the Cauchy determinant, PEI+,I−({l−2k,∆α, c}) and
POI+,I−({l−2k,∆α, c}) are polynomial in even indexed Virasoro modes, de�ned up to the integrals of

motion i2k−1. These two polynomials (E stands for even, O for odd) satisfy the following symmetry
relations under the exchange of the sets I± (see (2.236) and (2.237)) :

PEI+,I− = PEI−,I+ , POI+,I− = −POI−,I+ . (2.240)
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It is possible to apply this very nice decomposition structure to further check the results (2.235),
(2.236), (2.237), (2.238) against re�ection relations. This was done in the paper [31], and we will
discuss it in the case of the Super sine-Gordon QFT in the chapter 4.

The results above illustrate the duality between the Virasoro algebra and the fermionic basis,
and hold at the CFT level. Recall that when perturbing such a theory, even if the conformal
invariance is broken, it is still possible to classify �elds in terms of Virasoro descendants. On the
other hand, the fermionic basis itself is well adapted to the perturbation theory, and thanks to the
scaling equations it is possible to compute the one point functions of fermionic operators in the
massive case. Together with the above fermions/Virasoro correspondence, it gives us the one point
functions for the sine-Gordon theory.

Conclusion. In this introduction we have explained why the one point functions are the crucial
data in Quantum Field Theories, and described the di�erent approaches that exists to calculate
them (re�ection relations and fermionic basis). Our challenge in this PhD work is to further apply
the fermionic basis constructions to the Super sine-Gordon QFT : one of the main outcome will be
the analogues of the formulae (2.229),(2.230),(2.231),(2.232) for the ssG theory. This last section
about the spin 1

2 basis, motivates the steps that we have to take in order to calculate the one point
functions in the ssG model.

1. The generalization of the fermionic basis to the spin 1 chain has been already achieved in [6].
In this more general case it will be called the fermion-current basis, because it involves not

only fermionic operators but also ŝl2 Kac-Moody currents.

2. Then in [8], we further checked the well foundedness of the fermion-current basis by applying
it to the calculations of vacuum expectation values in the isotropic spin 1 chain. These results
will be presented in the next chapter 3.

3. The Suzuki equations for the ssG models have been derived in [7]. In particular we recovered
the BLZ expansion of the ground state eigenvalue.

4. Finally, in [9], the one point functions of fermionic operators were calculated for the Super
sine-Gordon model and checked against re�ection relations.



Chapter 3

The Fermion-Current Basis

We now move to the investigation of the higher spin models : the nineteen vertex model and the
XXZ spin 1 chain at the lattice level and the Super sine-Gordon model at the �eld theoretic level.
In this chapter our goal is to describe the "spin 1 fermionic basis" on the lattice. This new basis
is more complicated than the original one, and for reasons that will soon become clear, it will be
referred to as the fermion-current basis. The fermion-current basis was introduced on the lattice in
[6], and loosely speaking can be built out of the initial spin 1

2 basis by a set of fusion relations, in
the same spirit as the nineteen vertex model is associated to the six vertex model.

In this chapter we will present some new applications of the fermion-current basis from our work
[8], related to the explicit decomposition on the latter of local invariant operators. This is connected
to the notion of "lattice OPE" that has been recently introduced in the context of the usual fermionic
basis in the papers [66, 67, 68]. As a byproduct of the decomposition we will be able to access the
density matrix and the entanglement entropy of the model.

In the papers [66, 67] a method was described which allows to compute expectation values of
local operators (up to 11 sites long) for the spin 1

2 isotropic spin chain. This method is based on
the results of the paper [3] in which for the six-vertex model (possibly inhomogeneous one) the
expectation values of local operators in the fermionic basis are computed in terms of the function ω
de�ned by the Matsubara data. Let us describe brie�y the method of [66, 67].

Every local operator allows a decomposition on the fermionic basis with the coe�cients depending
only on the operator in question. For su�ciently simple Matsubara data the expectation value of
the operator can be computed in two ways: directly with the help of the Algebraic Bethe Ansatz
or using the decomposition on the fermionic basis and the function ω. This provides equations for
the coe�cients of the decomposition for any given Matsubara data. Repeating this procedure for
su�ciently large number of Matsubara data one obtains a system of equations for the coe�cients
which allows to �nd them.

Let us make this description more precise : consider O to be a local operator acting on a �nite,
homogeneous subchain in the Space direction (that we will simply denote by [1, n]), and invariant
under the action of the algebra sl2. We should make here an important remark : in order to be able
to reuse the set-up of [66, 67] on the one hand, and to simplify the lattice fermion-current basis on
the other hand, we will work in this chapter in the isotropic limit ν → 0 of the six-vertex model or
equivalently of the XXZ spin chain model (2.28). For our needs, it is then enough to deal with the

algebra sl2, instead of working with the whole Quantum Group Uq(ŝl2).

As explained above, one expects that O can be written as the action of fermionic basis operators
on the identity operator I :

O =
∑
I,J

CI,J b
∗
Ic
∗
J · I , (3.1)

where I = {i1, ..., ip} and J = {j1, ..., jq} are multi-indices and the above notation means :

b∗I = b∗i1 ...b
∗
ip , c∗J = c∗i1 ...c

∗
iq , (3.2)

and CI,J are coe�cients. The structure of the sets I and J for given O has been analyzed in [66, 67],
it will be detailed to some extent later (see (3.32), (3.33)). Of course the formula (3.1) should be
interpreted as an identity between vacuum expectation values with speci�c Matsubara data Md :

〈O〉Md =
∑
I,J

CI,J 〈b∗Ic∗J · I〉Md , (3.3)

71
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where the exact de�nition of 〈 · 〉Md will be explained soon in (3.26). This formula looks pretty much
like the usual OPE in QFT or CFT (1.4) : the coe�cients CI,J are some universal, local ("Ultra-
Violet") data, that should not depend on the Matsubara space, whereas the terms 〈b∗Ic∗J · I〉Md are
the lattice analogs of the one point functions of local �elds in QFT that are manifestly Matsubara
data ("Infra-Red") dependent. One of the accomplishments of the papers [66, 67, 68] is to explicitly
show that the expansion (3.1) indeed hold for speci�c operators and to calculate the values of CI,J .
Since the coe�cients CI,J are independent of the Matsubara data, they can be used as such to study
the model for particular limits of the Matsubara chain (for example the zero temperature limit). As
we said, if we can calculate both 〈O〉Md and 〈b∗Ic∗J · I〉Md for a su�ciently large amount of Matsubara
data, one can hope that the system (3.3) is invertible and obtain the coe�cients.

In the present chapter we apply a similar method to the much more complicated case of the
integrable isotropic spin-1 chain described by the Hamiltonian (3.25). Therefore, we will progress in
the following order :

1. Recall the alternative de�nition of ω from [66, 67] that is particularly suited to perform calcu-
lations on the lattice. Then explain how one can use e�ciently the fermionic basis to calculate
the density matrix.

2. Give some general de�nitions in the spin 1 lattice model.

3. De�ne the fermion-current basis for the spin 1 XXX chain, this is the main part of this chapter.

4. Explain the computational procedure of the coe�cients and present the results on the expan-
sion of the operator

∑3
a=1 S

a
1S

a
n on the fermion-current basis. In addition provide the values

of the entanglement entropy for small number of sites.

5. In the appendix, detail the inhomogeneous results on the expansion of the operator
∑3
a=1 S

a
1S

a
n,

and explain the computational procedure for the density matrix. Finally display the explicit
density matrices at zero temperature.

3.1 Alternative formula for ω

First we recall some results on the function ω (2.193). In fact, in the paper [65] an alternative
construction of this function was proposed, that we shall recall from [67]. This de�nition hold for
the XXX spin chain, that is the isotropic limit ν → 0 of the XXZ spin chain model (2.28), where
many simpli�cations occur. To emphasize the fact that we work now towards applications to the
spin 1 case, and more importantly to use notations compatible with our papers [7, 8, 9] we will
denote L the length of the Matsubara space (instead of n before). The Bethe Ansatz functions
(2.51) become simply polynomials :

a(λ) = λL +
L∑
j=1

ajλ
L−j , d(λ) = λL +

L∑
j=1

djλ
L−j . (3.4)

The Baxter operator in this case is :

Q(λ) =
m∏
j=1

(λ− βj) , (3.5)

where βj are the Bethe roots. One de�nes also two auxiliary functions K and H :

K(λ) =
2

λ2 − 1
, H(λ) =

1
(λ− 1)λ

. (3.6)

Recall the de�nition of a and of the measure dm :

a(λ) =
a(λ)Q(λ+ 1)
d(λ)Q(λ− 1)

, dm(λ) =
dλ

1 + a(λ)
. (3.7)

This allow to rewrite the Bethe equations as in (2.140) :

a(βj) = −1 , 1 ≤ j ≤ m. (3.8)
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To de�ne ω we �rst construct the function G which satis�es :

G(η, µ) = H(η − µ) +
1

2πi

∮
Γ

K(η − σ)G(σ, µ)dm(σ) , (3.9)

where Γ goes around the Bethe roots and the point σ = µ. Using the Residue theorem, the above
integral equation for G actually reduces to a linear system for the quantities G(βj , µ), that can be
solved knowing the roots βj . Finally ω is de�ned by :

ω(λ, µ) =
1

2πi

∮
Γ′
H(η − λ)G(η, µ)dm(η) +

1
4
K(λ− µ) , (3.10)

where Γ′ encircles the same points as Γ as well as the additional point η = λ. Let us make an
important remark. As we said, our goal is to generate a lot of Matsubara data, which is equivalent
to solve many times the Bethe equations. But solving the Bethe equations for βj is hard, so we
should work di�erently, and in some sense reverse the logic of (3.8). We will consider the starting,
input data to be the parameters {β1, ..., βm, am+1, ..., aL, d1, ...dL}, and the equations (3.8) will
be used to obtain the remaining unknown {a1, ..., am} for which these equations are linear. This
procedure allows to compute e�ciently a very large quantity of sets {β1, ..., βm, a1, ..., aL, d1, ...dL}
that satis�es the Bethe equations. From them, one can compute ω thanks to the formulae (3.9),
(3.10). The vacuum expectation values of the operators b∗i c

∗
j are encoded in the Taylor decomposition

of ω(λ, µ) :

ω(λ, µ) =
∞∑

i,j=1

λi−1µj−1ωi,j , (3.11)

and the application of the general formula 1

〈b∗(λ1)...b∗(λp)c∗(µ1)...c∗(µq) · I〉 = det
[

(ω(λi, µj))1≤i≤p,1≤j≤q
]
, (3.12)

to the homogeneous case leaves :

〈b∗Ic∗J · I〉Md = det
[
(ωi,j)i∈I,j∈J

]
. (3.13)

This formula is the starting point of all calculations that aim to decompose the operator O on
the fermionic basis.

The function ω at zero temperature. In addition to the fact that (3.10) gives a simple way
to compute the function ω, this equation is useful to describe this function in the zero temperature
limit (L→∞, for the ground state the Bethe roots concentrate on a �nite interval on the real axis).
In this case, ω is given by an explicit function of a single argument :

ω(λ, µ) = ω1(λ− µ) ω1(λ) = −1
2

+ 2 log 2 +
∞∑
k=1

(
2ζ(2k + 1)(1− 2−2k)− 1

2

)
. (3.14)

3.2 Density matrix

De�nition. The density matrix D(n) (on n sites) is a local operator that allows to access all
vacuum expectation values of local invariant operators by a simple trace computation. Let O be a
local operator that acts on the Space chain. Then its vacuum expectation values in terms of the
density matrix are given by :

〈O〉Md = Tr[1,n] (D(n)O) . (3.15)

Obviously, the dependence on the Matsubara data in the right hand side is hidden inside the density
matrix. We would like to have an intrinsic de�nition of D(n), and a very useful expression can
be obtained in terms of the operators of the fermionic basis. On sites [1, n], we �rst decompose a
complete set of invariant operators (Oa)a (that is operators that commute with the sl2 action, they
will be described in the Appendix 3.9) on the fermionic basis :

Oa =
∑
IJ

CaIJb
∗
Ic
∗
J . (3.16)

1By convention if p 6= q the determinant is zero.
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Second, we calculate the dual invariant operators (Õa)a that satisfy :

Tr[1,n](ÕaOb) = δab . (3.17)

The density matrix is then given in terms of the fermionic basis by :

D(n) =
∑
a

(∑
IJ

CaIJ det
[
(ωi,j)i∈I,j∈J

])
Õa , (3.18)

which is easy to calculate for any Matsubara data. Let us show that this de�nition is consistent.
Take Y to be an operator that we can decompose on the basis of invariant operators Y =

∑
a paO

a.
Then

Tr[1,n] (D(n)Y ) = Tr[1,n]

(∑
a

(∑
IJ

CaIJ 〈b∗Ic∗J〉Md

)
ÕaY

)
(3.19)

= Tr[1,n]

∑
a,b

(∑
IJ

CaIJ 〈b∗Ic∗J〉Md

)
ÕapbO

b

 (3.20)

=
∑
a

pa

(∑
IJ

CaIJ 〈b∗Ic∗J〉Md

)
= 〈Y 〉Md . (3.21)

Entanglement entropy an comparison with CFT. From the density matrix, it is straightfor-
ward to calculate the entanglement entropy by the formula :

s(n) = −Tr[1,n](D(n) log(D(n))) . (3.22)

In the paper [69], it was shown that s(n) has the following thermodynamical limit n→∞ :

s(n) ' c

3
log n , (3.23)

where c is the value of the central charge of the CFT that describes the lattice model in the con-
tinuum. In the paper [67], D(n) was calculated thanks to the fermionic basis for the XXX spin 1

2
chain, for lattice sites up to 11 and showed very good agreement with the CFT with c = 1 :

s(n) ' 1
3

log n . (3.24)

In the rest of this chapter we generalize these results to the spin 1 XXX spin chain, and show
the consistency of the fermion-current basis from this "lattice OPE" point of view. The results
presented were obtained in the paper [8].

3.3 General spin 1 de�nitions

Let us start by de�ning the integrable isotropic spin-1 chain described by the Hamiltonian :

H =
∞∑

j=−∞

(
Saj S

a
j+1 − (Saj S

a
j+1)2

)
, (3.25)

where the summation over a is implied, Sa are generators of the spin-1 representation of sl2, whose
detailed expression will be given below. The in�nite chain (the Space chain) is understood as the
limit of �nite chains with periodic boundary conditions.

The correlation functions for the model (3.25) were studied in [70]. Later in [6] the problem was
considered in the spirit of the fermionic basis construction [3]. The authors of [6] were very much
in�uenced by [70]. In the present discussion we use [70] in two ways: indirectly through [6], and
directly, comparing exact results on 2 and 3 sites.

Below we formulate our problem. The exposition is close to that of the paper [66] where some
more details can be found.

The integrable models are closely related with Quantum Groups, but in the isotropic model
under consideration it is su�cient to work with the sl2 algebra. We denote by πS the representation
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obtained as the tensor product of the spin-1 representations along the Space. In addition we introduce
a �nite, possibly inhomogeneous and carrying di�erent spins, Matsubara chain and the corresponding
representation πM of sl2. We visualize the lattice on an in�nite cylinder with the compact direction
been the Matsubara space. The fundamental object is the evaluation of the universal R-matrix R:

TS,M = (πS ⊗ πM)R .

The relation with the integrable spin chain is due to the commutativity

[H,TrM(TS,M)] = 0 ,

which re�ects the fact that H is just one element of a huge commutative algebra generated by the
transfer-matrices TrM(TS,M) computed for all possible Matsubara chains.

Denote by Md the data for a given Matsubara chain (length, spins, inhomogeneities). For a
local operators O localized (acting non-trivially) on a �nite subchain of the Space chain, de�ne the
expectation value

〈O〉Md =
TrSTrM (TS,M · O)

TrSTrM (TS,M)
. (3.26)

Using the results of the paper [6] it can be shown that there exists a basis of the local operators
for the spin-1 chain created by the action on the unit operators of two fermions and one Kac-Moody
current (details will be given below). We shall call this the fermion-current basis. Denote the
elements of the fermion-current basis by vα. For any O we have

O =
∑
α

Xαvα ,

where Xα are the wanted coe�cients of the decomposition depending on the inhomogeneities of the
Space. This implies

〈O〉Md =
∑
α

Xα〈vα〉Md .

For reasonable simple Matsubara data there are independent ways to compute 〈O〉Md and 〈vα〉Md.
This is how we get equations for Xα.

3.4 Fermion-Current Basis

3.4.1 Homogeneous case

We begin this section by making our notations more detailed. Consider the algebra sl2. Denote by
π2s
λ the (2s + 1)-dimensional evaluation representation with the evaluation parameter λ. In order

to handle TS,M in the de�nitions above, we use the following expression for the R matrix of the
spin 1 chain R(λ, µ) = (π2

λ ⊗ π2
µ)R which depends only on the di�erence of arguments ζ = λ− µ :

R(ζ) =

0BBBBBBBBBBB@

(ζ + 1)(ζ + 2) 0 0 0 0 0 0 0 0
0 ζ(ζ + 1) 0 2(ζ + 1) 0 0 0 0 0
0 0 (ζ − 1)ζ 0 4ζ 0 2 0 0
0 2(ζ + 1) 0 ζ(ζ + 1) 0 0 0 0 0
0 0 ζ 0 ζ + ζ2 + 2 0 ζ 0 0
0 0 0 0 0 ζ(ζ + 1) 0 2(ζ + 1) 0
0 0 2 0 4ζ 0 (ζ − 1)ζ 0 0
0 0 0 0 0 2(ζ + 1) 0 ζ(ζ + 1) 0
0 0 0 0 0 0 0 0 (ζ + 1)(ζ + 2)

1CCCCCCCCCCCA
In the homogeneous case

πS = · · ·π2
0 ⊗ π2

0 ⊗ π2
0 ⊗ π2

0 ⊗ · · · .

As has been said we are supposed to begin with a �nite, periodic Space chain of length 2N and then
consider the limit N →∞. However, it is well-known that in the cylindrical geometry adopted here
the limiting procedure is trivial, so we shall consider the Space chain as an in�nite one. There is a
well-known in�nite family of commuting local integrals of motion which includes the Hamiltonian.
The adjoint action of these operators is well-de�ned on the space of local operators. We denote by
V the corresponding quotient space. For the problem considered in this chapter this is the space of
interest.

The simplest operator I acts as a unit operator in every tensor component. In [6] several operators
were introduced acting on the space of local operators, let us describe them. We start with the
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operators j−(λ), j0(λ), j+(λ), b∗(λ), c∗(λ), for which we shall often use the universal notation
x{1,2} = b∗, x{2,1} = c∗, x{1,3} = j+, x{2,2} = j0, x{3,1} = j−. The indices {1, 2} etc. are natural
in the framework of [6]. All these operators are understood as generating functions

xε(λ) =
∞∑

p=−∞
λp−1xεp .

It is almost correct that the space V is created by action of xεp with p > 0, but some re�nements
are needed. The �rst of them concerns the normal ordering. The operators j−(λ), j0(λ), j+(λ) form
an ŝl2 Kac-Moody algebra at level 1. The fermions b∗(λ), c∗(λ) form an ŝl2 doublet. That leads to
the natural commutation relations and, most importantly for our goals, to the rules of the normal
ordering:

: j0(λ)j0(µ) := j0(λ)j0(µ)− 2
(λ− µ)2

, : j+(λ)j−(µ) := j+(λ)j−(µ) +
j0(µ)
λ− µ

+
1

(λ− µ)2
, (3.27)

: j+(λ)j0(µ) := j+(λ)j0(µ) +
2j+(µ)
λ− µ

, : j0(λ)j−(µ) := j0(λ)j−(µ) +
2j−(µ)
λ− µ

, (3.28)

: b∗(λ)j−(µ) := b∗(λ)j−(µ)− c∗(µ)
λ− µ

, : c∗(λ)j+(µ) := b∗(λ)j−(µ) +
b∗(µ)
λ− µ

, (3.29)

: b∗(λ)j0(µ) := b∗(λ)j0(µ) +
b∗(µ)
λ− µ

, : c∗(λ)j0(µ) := c∗(λ)j0(µ)− c∗(µ)
λ− µ

. (3.30)

So, the local operators are created by acting on the unit operator by normal ordered products

: xε1p1
· · ·xεlpl : I , pj > 0 .

Introduce the ordering {1, 2} ≺ {2, 1} ≺ {1, 3} ≺ {2, 2} ≺ {3, 1}. For the sake of de�niteness we
shall require ε1 � ε2 ≤ · · · � εl. The second problem is that of completeness. Contrary to the case
of the spin 1/2 chain [63] we do not have a formal proof of the completeness in the present situation.
On the other hand the "Russian doll" construction discussed below makes the completeness quite
plausible.

Let us discuss now the most complicated issue. An important question is that of how the
operators located exactly on the interval [1, n] look like in our fermion-current basis. In the spin 1/2
case we had only fermionic operators b∗p, c

∗
p. For the operators

b∗p1
· · · b∗pkc

∗
q1 · · · c

∗
ql
I , (3.31)

to be located on [1, n] one imposes �rst of all two necessary conditions:

1) k + l ≤ n , (3.32)

2) pj ≤ n, qj ≤ n ∀j . (3.33)

Then there are more subtle necessary conditions explained in details in [66, 67]. Taking into account
all the necessary conditions we come to the subspace of the fermionic space, whose elements may
be located on [1, n], of rather reasonable size. Notice also that in [66, 67] as well as in the present
chapter we are interested in operators invariant under the action of global sl2. This requires k = l
in (3.31).

For the spin 1 case, let us write the elements of the fermion-current basis in complete notations

: b∗p1
· · ·b∗pk1

c∗q1 · · · c
∗
qk2

j+r1 · · · j
+
rk3

j0s1 · · · j
0
sk4

j−t1 · · · j
−
tk5

: I . (3.34)

There is one necessary condition which remains unchanged:

k1 + k2 + k3 + k4 + k5 ≤ n . (3.35)

The requirement of sl2-invariance of the operators is equivalent to

k1 − k2 + 2k3 − 2k5 = 0 .

For the fermions the condition (3.33) and additional conditions from [66, 67] (null-vectors) still hold.
However, we were not able to formulate reasonable conditions for the currents. That is why in
what follows, we are forced to take much more complicated and less e�cient ways to calculate the
correlations functions of the fermion-current basis, than in [66, 67].
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3.4.2 Introducing Matsubara

The Matsubara chain is inhomogeneous

πM = π2s1
τ1 ⊗ π

2s2
τ2 ⊗ · · · ⊗ π

2sL
τL .

Let us introduce the transfer-matrix

TM(λ) = (Tr⊗ id) (π(2)
λ ⊗ πM)(R) .

This is a commutative family, for generic Matsubara data there is a unique eigenvector with the
maximal in absolute value eigenvalue of TM(0). We shall denote this eigenvector by |Ψ〉. The
corresponding eigenvalue of the transfer-matrix will be denoted by T(λ).

Clearly for any local operator located on the interval [1, n] we have

lim
N→∞

TrSTrM (TS,M · O)
TrSTrM (TS,M)

=
〈Ψ|Tr[1,n]

(
T[1,n],MO

)
|Ψ〉

T(0)n〈Ψ|Ψ〉
, (3.36)

where T[1,n],M is the restriction of TS,M for the Space taken to be the �nite interval [1, n], its explicit
expression is given below for the inhomogeneous case. Our way of computing the right hand side
does not depend on the fact that the eigenvalue is maximal being applicable to any eigenvector of
the transfer-matrix.

3.4.3 Inhomogeneous case : the "Russian doll" construction

The "Russian doll" construction is present indirectly already in the paper [2], however, in [6] it
becomes really indispensable. The construction requires some de�nitions which we are going to give.

We shall need an inhomogeneous space chain:

πS = · · ·π2
0 ⊗ π2

0 ⊗ π2
λ1
⊗ · · · ⊗ π2

λn ⊗ π
2
0 ⊗ π2

0 ⊗ · · · .

The inhomogeneity is located on a �nite subchain [1, n]. Consider the space of all the operators
located on this interval. Consider the expectation value (3.26) for the inhomogeneous case assum-
ing that the local operator O is located on the interval [1, n]. Denote the corresponding spaces,
isomorphic to C3 , by V1, · · · , Vn.

In order to describe a suitable for our goals basis in V1 ⊗ · · · ⊗ Vn we introduce nine operators
gε(λk) (ε = {i, j}, i, j = 1, 2, 3) and act by these operators on I consequently:

gεn(λn)gεn−1(λn−1) · · ·gε1(λ1)I .

For generic λ1, · · · , λn this gives a basis of the space of operators localized on the interval [1, n]. We
have the equality g{1,1}(λ) = id. The expectation values considered in the present chapter are such
that in the weak sense (holding when considered in correlation functions)

g{3,3}(λ)
w
= g{1,1}(λ) , g{2,3}(λ)

w
= g{1,2}(λ) , g{3,2}(λ)

w
= g{2,1}(λ) . (3.37)

So, e�ectively we are left with the same set of indices counting the operators g as we had before for
x.

As usual the monodromy matrix (π2
λj
⊗ πM)(R) with the �rst tensor component identi�ed with

Vj will be devoted by Tj,M(λj). The formula (3.36) remains valid for O being located on the interval
[1, n], and certainly,

T[1,n] = T1,M(λ1) · · ·Tn,M(λn) .

These operators gε are in one-to-one correspondence with the x's. Wanting to pass to the homoge-
neous case one has to apply the normal ordering, the rules are the same as above. The "Russian
doll" construction is based on the identity

lim
N→∞

TrSTrM (TS,M : xεn(λn) · · ·xε1(λ1) : I)
TrSTrM (TS,M)

(3.38)

=
〈Ψ|Tr[1,n] (T1,M(λ1) · · ·Tn,M(λn) : gεn(λn) · · ·gε1(λ1) : I) |Ψ〉∏n

j=1 T(λj)〈Ψ|Ψ〉
.

This formula establishes an identity between the expectation values of a family of local operators of
di�erent lengths for the homogeneous case with the expectation values for the operators of length
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n in the inhomogeneous case. For our goals, rather complicated reasonings concerning this formula
which are given in [6] can be avoided just by saying that the explicit computation of the right hand
side (which will be given soon for any Matsubara data), de�nes the operators x in the left hand side.

Still there is another way to apply this formula. Suppose one computes the right hand side and
then sets all λj to zero. In that case the right hand side gives the expectation value of a local
operator located on [1, n] for the homogeneous chain, this allows to identify the local operators of
length n in the left hand side. We shall explain how to apply this idea in practice later.

3.4.4 Fusion

Consider the tensor product of 2n two-dimensional spaces vj . Introduce the projector Pj : v2j−1⊗
v2j → Vj onto the symmetric component. Consider the product P = P1 ⊗ · · · ⊗ Pn . Denote by
Tj,M(λ) the monodromy matrix whose �rst tensor component acts in vj . We have the fusion

T1,M(λ1 − 1/2)T2,M(λ1 + 1/2) · · ·T2n−1,M(λn − 1/2)T2n,M(λn + 1/2)P
= P T1,M(λ1) · · ·Tn,M(λn) .

We began to consider the tensor product of 2n spaces vj isomorphic to C2. In the framework
of the present chapter the interest of this consideration is due to the fact that π2

λ1
⊗ · · · ⊗ π2

λn
is a

submodule of π1
λ1−1/2⊗π

1
λ1+1/2⊗· · ·⊗π

1
λn−1/2⊗π

1
λn+1/2. In what follows it will be useful to consider

a more general module π1
µ1
⊗· · ·⊗π1

µ2n
with generic µ1, · · ·µ2n specializing to µj = λ[ j+1

2 ]+
(−1)j

2 when

needed. We have operators gσ(µj) (σ = {1, 2}, {2, 1}) acting on the latter space. The Matsubara
expectation values are computed via a particular case of the main fermionic basis formula [3]:

〈Ψ|Tr[1,2n] (T1,M(µ1) · · ·T2n,M(µ2n) gσ2n(µ2n) · · · gσ1(µ1)I) |Ψ〉∏n
j=1 T (µj)〈Ψ|Ψ〉

(3.39)

= (−1)sgn(π) det |ω(µi, µj)|i:σi={2,1}, j:σj={1,2} ,

where π is the permutation putting all i such that σi = {2, 1} to the left. The functions ω(λ, µ)
depends on the Matsubara data as on parameters. It was de�ned above in (3.10).

Using the formula above one computes the right hand side of (3.38) using the following formulae

g{1,2}(λ) = g{1,2}(λ+ 1/2) + g{1,2}(λ− 1/2) , (3.40)

g{2,1}(λ) = g{2,1}(λ+ 1/2) + g{2,1}(λ− 1/2) ,

g{1,3}(λ) = g{1,2}(λ+ 1/2)g{1,2}(λ− 1/2) ,

g{3,1}(λ) = g{2,1}(λ+ 1/2)g{2,1}(λ− 1/2) ,

g{2,2}(λ) = g{2,1}(λ+ 1/2)g{1,2}(λ− 1/2) + g{1,2}(λ+ 1/2)g{2,1}(λ− 1/2) .

It is important to notice that gεn(λn) · · ·gε1(λ1)I in which g are de�ned by (3.40) satis�es the
identity

gεn(λn) · · ·gε1(λ1)I = Pgεn(λn) · · ·gε1(λ1)I ,

which provides the self-consistence of the fusion.
This procedure expresses the right hand side of (3.38) in terms of determinants of matrices with

the matrix elements being expressed in terms of the function ω(λ, µ) and the normalization

N (λ) =
T(λ)

T (λ+ 1
2 )T (λ− 1

2 )
,

as follows

〈Ψ|Tr[1,n] (T1,M(λ1) · · ·Tn,M(λn) gεn(λn) · · ·gε1(λ1)I) |Ψ〉∏n
j=1 T(λj)〈Ψ|Ψ〉

=
n∏
j=1

1
N (λj)

(3.41)

×Fε1,··· ,εnσ1,··· ,σ2n

〈Ψ|Tr[1,2n] (T1,M(µ1) · · ·T2n,M(µ2n) gσ2n(µ2n) · · · gσ1(µ1)I) |Ψ〉∏n
j=1 T (µj)〈Ψ|Ψ〉

,

where

{µ1, µ2, · · · , µ2n−1, µ2n} = {λ1 − 1
2 , λ1 + 1

2 , · · · , λn −
1
2 , λn + 1

2} ,
(3.42)

Fε1,··· ,εnσ1,··· ,σ2n is a tensor easily read from (3.40).
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3.5 Computational procedure and results

3.5.1 General procedure

In the homogeneous case consider an operator localized on the interval [1, n]. As usual we simplify
the notations in (3.34) introducing multi-indices:

: b∗P c∗Q j+R j0S j−T I : .

Consider an operator O localised on the interval [1, n]. Our goal is to �nd the decomposition

O ≡
∑

P,Q,R,S,T

XP,Q,R,S,T : b∗P c∗Q j+R j0S j−T I : , (3.43)

where ≡ means equality in the quotient by the action of the local integrals of motion space. We
would like to proceed as in [66, 67], namely, to use su�ciently simple Matsubara data in order
to obtain equations for the coe�cients X by computing independently the expectation values of
operators on the right hand side and on the left hand side. However, in the present case there are
some complications. The �rst is the normal ordering. The second is the multiplier containing N in
(3.41), it looks quite innocent, but actually it is not. Also, as has been discussed, we did not �nd
an e�cient way (similar to [66, 67]) to restrict the number of terms in the right hand side. With all
that in mind we decided to take a simpler way based on the inhomogeneous chain.

In the inhomogeneous case the analogue of (3.43) looks like

O ≡
∑
ε1,···εn

Xε1,···εn(λ1, · · · , λn) : gεn(λn) · · ·gε1(λ1) : I , (3.44)

having in mind (3.37) we reduce the indices to εp = {1, 1}, {1, 2}, {2, 1}, {1, 3}, {3, 1}, {2, 2} remem-
bering that g{1,1}(λj) = id, and ≡ stands for equality of the expectation values for all Matsubara
data in the geometry accepted in the present chapter, in other words for the case when the left and
the right Matsubara states are equal (we denote them by |Ψ〉). This is the inhomogeneous version
of the quotient by the action of the local integrals.

The computation of the expectation value of (3.44) follows closely that explained in [66, 67]. In
the left hand side we have

〈Ψ|Tr[1,n] (T1,M(λ1) · · ·Tn,M(λn) O) |Ψ〉∏n
j=1 T(λj)〈Ψ|Ψ〉

. (3.45)

The choice of Matsubara data is explained in [66]. The numerator of this expression is a linear
combination of terms of the kind

〈Ψ|Ti1,j1(λ1) · · ·Tin,jn(λn)|Ψ〉 ,

where Tik,jk(λk) ∈ End(M) stands for the coe�cient at position ik, jk of

Tk,M(λk) = (Tik,jk(λk))1≤ik,jk≤3 . (3.46)

Using the fusion procedure, the computations are reduced to the ones explained in details in [67].
The norm 〈Ψ|Ψ〉 is computed by Gaudin formula, the eigenvalue

T(λ) = T (λ− 1
2 )T (λ+ 1

2 )−∆(λ) ,

∆(λ) being the quantum determinant.
The right hand side of (3.44) is computed applying consequently the rules of the normal ordering,

that is the formulae (3.40), then we express the result in terms of the functions ω(λ, µ) and N (λ).
Notice that ω appear only in expressions of the form ω(λ± 1

2 , µ±
1
2 ) and is computed from the

formula given in (3.10). However ω need to be made compatible with the de�nition of the normal
order. To this end, we introduce an auxiliary function ϕ :

ϕ(z) =
1
4

(
− 3
z + 1

− 1
z − 1

+
3
z

+
1

z + 2

)
(3.47)

and consider the two rede�nitions :

ω̃(λ+ 1
2 , µ−

1
2 ) = ω(λ+ 1

2 , µ−
1
2 ) + ϕ(λ− µ) , ω̃(λ− 1

2 , µ+ 1
2 ) = ω(λ− 1

2 , µ+ 1
2 ) + ϕ(λ− µ− 1) ,
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where ω is taken as such from (3.10).
Below we give some examples of the expressions of the simplest elements of the fermion-current

basis in terms of ω, and of how the normal ordering works in practice :

〈b∗(λ)c∗(µ)〉
= N (λ)N (µ)

(
ω̃(λ+ 1

2 , µ+ 1
2 ) + ω̃(λ+ 1

2 , µ−
1
2 ) + ω̃(λ− 1

2 , µ+ 1
2 ) + ω̃(λ− 1

2 , µ−
1
2 )
)
,

〈j+(z)j−(w)〉 = −N (λ)N (µ)
∣∣∣∣ω̃(λ+ 1

2 , µ+ 1
2 ) ω̃(λ+ 1

2 , µ−
1
2 )

ω̃(λ− 1
2 , µ+ 1

2 ) ω̃(λ− 1
2 , µ−

1
2 )

∣∣∣∣+
1

(λ− µ)2
.

This type of formulae are easy to compute for given small Matsubara data and numerical λj .
Doing that we �nd experimentally how many di�erent Matsubara data we need to get the expansion
(3.44). Recall that L is the length of the Matsubara chain and denote B the number of Bethe roots.
For example, for the most complicated case considered in the paper [8], n = 5, the following stock
of Matsubara data is su�cient: 22 with L = 1, B = 0, 149 with L = 2, B = 0, 25 with L = 3, B = 0,
8 with L = 2, B = 1, 35 with L = 3, B = 1, 1 with L = 4, B = 2.

Up to n = 3 the computation is simple. The structure of the coe�cients is as follows

X (λ1, · · · , λn) =
∏
i<j

1
(λi − λj)di,j

P (λ1, · · · , λn)
R(λ1, · · · , λn)

, (3.48)

where di,j , P,R depend on ε1, · · · , εn, R(0, · · · , 0) 6= 0. The degrees di,j are easy to �nd: we take all
λ's su�ciently distant except λi and λj for which we consider two separations, say, 10−12, 1+10−13.
Obviously, this allows to de�ne di,j .

Using this as an Ansatz in the general case is di�cult mostly because of the denominator
R(λ1, · · · , λn). On the other hand we are not really interested in all the details of this denomi-
nator having in mind further application to the homogeneous case. Let us explain that.

Consider the right hand side of (3.44). The normally ordered expression : gεn(λn) · · ·gε1(λ1) : I
is regular at the point λ1 = 0, · · · , λn = 0. The left hand side of (3.44) does not depend on λ's. So,
setting λj = ελ′j and sending ε to 0 one concludes that in the function

F (λ1, · · · , λn) =
P (λ1, · · · , λn)
R(λ1, · · · , λn)

among the terms with εD, only those with D =
∑
di,j may contribute. The terms with D >

∑
di,j

vanish in the limit. The singular terms with D <
∑
di,j must vanish, this gives rise to null-operators

whose expectation values vanish regardless of the choice of the Matsubara data.
Experiments show that F (λ1, · · · , λn) is invariant under simultaneous shift of arguments. So we

need the expansion

F (λ1, · · · , λn) =
∑

m2,···mnP
mj≤

P
di,j

n∏
j=2

(λj − λ1)mjFm2,···mn .

Practical computations are easier in this form: we do not need to know the denominator R. The
computation of the Taylor series are performed taking su�ciently small λ's and determining the
Taylor coe�cients F step by step. The coe�cients of the Taylor series grow rapidly with the length
of the interval n, hence the inconvenience of the present procedure: for n = 5 we are forced to take
λ's of the order of 10−30. This makes computations rather slow.

Having the coe�cients F , we arrive after a simple computation at the �nal formula (3.43).

3.5.2 Examples

The simplest sl2-invariant operator of length n is
∑3
a=1 S

a
1S

a
n.

It is de�ned by :

3∑
a=1

Sa1S
a
n =

1
2
h⊗ In−2 ⊗ h+ e⊗ In−2 ⊗ f + f ⊗ In−2 ⊗ e ,

where we have the usual sl2 spin 1 operators :

h =

 2 0 0
0 0 0
0 0 −2

 , e =

 0 2 0
0 0 1
0 0 0

 , f =

 0 0 0
1 0 0
0 2 0

 .
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For n = 2, 3 we compute

3∑
a=1

Sa1S
a
2 = −34

3
− 4b∗1c

∗
1 −

8
3
j+1 j−1 , (3.49)

3∑
a=1

Sa1S
a
3 = −478 +

384
5

b∗1c
∗
1 +

176
3

(b∗2c
∗
2 − b∗3c

∗
1)− 13216

15
j+1 j−1

+
1024
15

(j+2 j−4 − j+5 j−1 − j+3 j−3 − j+3 j02j
−
1 )

+ 224(j+3 j−1 − j+2 j−2 ) + 240b∗1b
∗
2j
−
1 +

832
15

(b∗1b
∗
3j
−
2 − b∗2b

∗
3j
−
1 − b∗1b

∗
2j
−
3 ) .

The �rst results are derived from the inhomogeneous formula (n = 2, 3) which are presented
in the Appendix 3.7. In the case of the in�nite volume and zero temperature the function ω(λ, µ)
simpli�es a lot, this is explained in more details in Appendix 3.8. First, in this case it depends only
on the di�erence of the arguments: ω(λ, µ) = ω(λ− µ). Second, we have the functional equation

ω(λ+ 1) + ω(λ) =
π

2 sin(πλ)
− ϕ(λ) , (3.50)

where ϕ is de�ned in (3.47). The equation (3.50) is easy to solve, but actually the explicit solution
is never needed in our computations: the �nal results are expressed only through the shifted sum
of two ω's in the left hand side of (3.50). This explains why the �nal results are given by sums of
even powers of π with rational coe�cients. For two and three sites we have

〈
3∑
a=1

Sa1S
a
2 〉 =

8π2

9
− 34

3
= −2.560351643 ,

〈
3∑
a=1

Sa1S
a
3 〉 = −478 +

13216π2

45
− 224π4

5
+

4096π6

2025
= 1.283223553 ,

in full agreement with [70].
We found expressions similar to (3.49) for n = 4, 5 which are unfortunately too long to be

presented here. But the results for the in�nite volume and zero temperature are of reasonable size:

〈
3∑
a=1

Sa1S
a
4 〉 =

74317166
75

− 54372392π2

27
+

14677235264π4

10125
− 6743857664π6

14175

+
238274860288π8

3189375
− 1509154816π10

273375
+

17291214848π12

111628125
= −1.083843468 ,

〈
3∑
a=1

Sa1S
a
5 〉 =

30764875058782
175

− 5889239056193536π2

6615
+

129766077160539584π4

70875

− 1795332485778909184π6

893025
+

609942688710268901888π8

468838125

− 6922910606153603072π10

13395375
+

2684747793382087192576π12

21097715625

− 339956010411039064064π14

17722081125
+

7217056126203854848π16

4219543125

− 2439025898062610432π18

29536801875
+

572648486718144512π20

344596021875
= 0.8330261734 .

From the expressions above one conjectures that 〈
∑3
a=1 S

a
1S

a
n〉 is a polynomial in π2 of degree

n(n− 1)/2 with rational coe�cients.

Having developed the fermion-current basis it is easy to compute the correlators 〈
∑3
a=1 S

a
1S

a
n〉

(n = 2, 3, 4, 5) for �nite temperature (like in [67]), or for the generalized Gibbs ensemble.
Another interesting application consists in the computation of the density matrix D(n) for the

interval of length n in the in�nite antiferromagnetic chain and of the entanglement entropy. Our
methods of computation are far from perfection, so, we are doing much worse than in the paper
[67], namely, only up to n = 4. This is not enough to compare the entanglement entropy s(n) =
−Tr(D(n) logD(n)) with the CFT prediction [69]

s(n) ' c

3
log n+ a =

1
2

log n+ a ,
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where a is a non-universal constant. We remind that the scaling limit of the model is described by
a CFT with c = 3/2. Still some resemblance with the scaling behavior is already observed in the
table which present the results of our computations.

n s(n) s(n)− 1
2 log n

2 1.5005420731509647 1.153968482870992
3 1.7187172552051159 1.169411110871061
4 1.8681251161018912 1.174977935541946

3.6 Conclusion

We have shown that the fermion-current basis works for small subchains of an in�nite spin 1 inte-
grable chain. In particular, the completeness holds at least up to intervals of length 5. We produced
exact results for lengths n = 4, 5 which were not available previously. However, we are far from the
length 11 achieved in [66]. There are two reasons for that. First, there is an objective reason: the
model is far more complicated and the fermion-current basis contains much more elements than the
fermionic basis for the spin 1/2 case. Second, there is a subjective reason: our method of computa-
tion is not perfect, we did not �nd how to work with the homogeneous case directly, so, we are forced
to mix it with the inhomogeneous one, in a rather involved way which requires a lot of computer
memory.
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3.7 Appendix 1 : Explicit formula for the coe�cients

Here we give the formulae (in a weak sense) for the inhomogeneous case having in mind (3.37).
The inhomogeneities are λ1, · · · , λn. The coe�cients do not depend on a simultaneous shift of
inhomogeneities, for this reason we shall use

µj = λj+1 − λ1 .

For n = 2 we have

3X
a=1

Sa1S
a
2

w
=

2(17− 6µ2
1 + µ4

1)

3(µ2
1 − 1)

+ (µ2
1 − 4)g1,2(λ1)g

2,1(λ2)−
2

3
(µ2

1 − 4)(µ2
1 − 1)g1,3(λ1)g

3,1(λ2) .

For n = 3 we have

3X
a=1

Sa1S
a
3

w
= − 2

45(µ2
1 − 1)((µ1 − µ2)2 − 1)(µ2

2 − 1)
× (−10755 + 4406µ2

1 − 943µ4
1 + 20µ6

1 − 4406µ1µ2 + 1886µ3
1µ2

− 60µ5
1µ2 + 4241µ2

2 − 2499µ2
1µ

2
2 + 342µ4

1µ
2
2 + 4µ6

1µ
2
2 + 1556µ1µ

3
2 − 584µ3

1µ
3
2 − 12µ5

1µ
3
2 − 793µ4

2 + 372µ2
1µ

4
2 + µ4

1µ
4
2

− 90µ1µ
5
2 + 18µ3

1µ
5
2 + 35µ6

2 − 11µ2
1µ

6
2)

− 2

15(µ2
1 − 1)((µ1 − µ2)2 − 1)(µ1 − µ2)(µ2

2 − 1)µ2
× (1360− 416µ2

1 − 182µ4
1 + 30µ6

1 + 618µ1µ2 + 533µ3
1µ2 − 155µ5

1µ2

− 618µ2
2 − 259µ2

1µ
2
2 + 300µ4

1µ
2
2 − 5µ6

1µ
2
2 − 548µ1µ

3
2 − 284µ3

1µ
3
2 + 67µ5

1µ
3
2 + 274µ4

2 + 127µ2
1µ

4
2 − 178µ4

1µ
4
2 + 5µ6

1µ
4
2

+ 18µ1µ
5
2 + 179µ3

1µ
5
2 − 20µ5

1µ
5
2 − 6µ6

2 − 69µ2
1µ

6
2 + 30µ4

1µ
6
2 + 8µ1µ

7
2 − 20µ3

1µ
7
2 − 2µ8

2 + 5µ2
1µ

8
2))g

1,2(λ1)g
2,1(λ2)

+
1

15(µ2
1 − 1)µ1((µ1 − µ2)2 − 1)(µ1 − µ2)(µ2

2 − 1)
× (2720− 1176µ2

1 + 428µ4
1 + 48µ6

1 − 4µ8
1 + 1176µ1µ2 − 856µ3

1µ2

− 144µ5
1µ2 + 16µ7

1µ2 − 832µ2
2 − 773µ2

1µ
2
2 + 584µ4

1µ
2
2 − 213µ6

1µ
2
2 + 10µ8

1µ
2
2 + 1201µ1µ

3
2 − 928µ3

1µ
3
2 + 583µ5

1µ
3
2

− 40µ7
1µ

3
2 − 364µ4

2 + 840µ2
1µ

4
2 − 611µ4

1µ
4
2 + 75µ6

1µ
4
2 − 400µ1µ

5
2 + 269µ3

1µ
5
2 − 85µ5

1µ
5
2 + 60µ6

2 − 55µ2
1µ

6
2

+ 55µ4
1µ

6
2 + 15µ1µ

7
2 − 15µ3

1µ
7
2)g

1,2(λ2)g
2,1(λ3)

− 2

15(µ2
1 − 1)µ1((µ1 − µ2)2 − 1)(µ2

2 − 1)µ2
× (1360− 416µ2

1 − 182µ4
1 + 30µ6

1 + 214µ1µ2 + 195µ3
1µ2 − 25µ5

1µ2

− 416µ2
2 + 248µ2

1µ
2
2 − 25µ4

1µ
2
2 − 5µ6

1µ
2
2 + 195µ1µ

3
2 + 34µ3

1µ
3
2 − 37µ5

1µ
3
2 − 182µ4

2 − 25µ2
1µ

4
2 + 82µ4

1µ
4
2 + 5µ6

1µ
4
2

− 25µ1µ
5
2 − 37µ3

1µ
5
2 − 10µ5

1µ
5
2 + 30µ6

2 − 5µ2
1µ

6
2 + 5µ4

1µ
6
2))g

2,1(λ2)g
1,2(λ3)

− 8(µ2
1 − 4)(µ2

1 − 1)

45(−1 + (µ1 − µ2)2 − 1)(µ1 − µ2)2(µ2
2 − 1)µ2

2

(−96 + 32µ2
1 − 2µ4

1 + 67µ1µ2 − 18µ3
1µ2 − 67µ2

2 − 7µ2
1µ

2
2 + 5µ4

1µ
2
2

+ 50µ1µ
3
2 − 25µ4

2 − 25µ2
1µ

4
2 + 30µ1µ

5
2 − 10µ6

2)g
1,3(λ1)g

3,1(λ2)

− 2(µ2
2 − 4)

45(µ2
1 − 1)µ1((µ1 − µ2)2 − 1)(µ1 − µ2)2µ2

× (−384 + 992µ2
1 − 872µ4

1 + 306µ6
1 − 44µ8

1 + 2µ1
10 + 268µ1µ2 + 987µ3

1µ2

− 602µ5
1µ2 + 147µ7

1µ2 − 8µ9
1µ2 − 748µ2

2 + 138µ2
1µ

2
2 + 188µ4

1µ
2
2 − 178µ6

1µ
2
2 + 12µ8

1µ
2
2 − 1097µ1µ

3
2 + 274µ3

1µ
3
2 + 52µ5

1µ
3
2

− 21µ7
1µ

3
2 + 708µ4

2 − 194µ2
1µ

4
2 + 92µ4

1µ
4
2 + 54µ6

1µ
4
2 + 140µ1µ

5
2 − 74µ3

1µ
5
2 − 78µ5

1µ
5
2 − 104µ6

2 − 20µ2
1µ

6
2

+ 52µ4
1µ

6
2 + 25µ1µ

7
2 − 13µ3

1µ
7
2)g

1,3(λ1)g
3,1(λ3)

− 4((µ1 − µ2)
2 − 4)

45(µ2
1 − 1)µ1(µ1 − µ2)(µ2

2 − 1)µ2
2

× (−192 + 256µ2
1 − 68µ4

1 + 4µ6
1 + 614µ1µ2 − 402µ3

1µ2 + 52µ5
1µ2 − 374µ2

2 + 540µ2
1µ

2
2

− 142µ4
1µ

2
2 − 860µ1µ

3
2 + 561µ3

1µ
3
2 − 55µ5

1µ
3
2 + 354µ4

2 − 497µ2
1µ

4
2 + 111µ4

1µ
4
2 + 2µ6

1µ
4
2 + 227µ1µ

5
2 − 128µ3

1µ
5
2 − 3µ5

1µ
5
2

− 52µ6
2 + 55µ2

1µ
6
2 + 3µ4

1µ
6
2 − 5µ1µ

7
2 − µ3

1µ
7
2)× g3,1(λ2)g

1,3(λ3)

+
2(µ2

1 − 4)(µ2
2 − 4)(−26− 7µ2

1 + 12µ1µ2 + 5µ3
1µ2 − 7µ2

2 − 10µ2
1µ

2
2 + 5µ1µ

3
2)

15µ1((µ1 − µ2)2 − 1)(µ1 − µ2)µ2)
g1,3(λ1)g

2,1(λ2)g
2,1(λ3)

+
2(µ2

1 − 4)((µ1 − µ2)
2 − 4)(−26− 2µ2

1 + 2µ1µ2 − 7µ2
2 + 5µ2

1µ
2
2 − 5µ1µ

3
2

15µ1(µ1 − µ2)(µ2
2 − 1)µ2

g2,1(λ1)g
1,3(λ2)g

2,1(λ3)

− 2((µ1 − µ2)
2 − 4)(µ2

2 − 4)(26 + 7µ2
1 − 2µ1µ2 + 5µ3

1µ2 + 2µ2
2 − 5µ2

1µ
2
2)

15(µ2
1 − 1)µ1(µ1 − µ2)µ2

g2,1(λ1)g
2,1(λ2)g

1,3(λ3)

− 4(µ2
1 − 4)((µ1 − µ2)

2 − 4)(µ2
2 − 4)(−12 + µ2

1 − µ1µ2 + µ2
2))

45µ1(µ1 − µ2)µ2
g1,3(λ1)g

3,1(λ2)g
2,2(λ3) .
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3.8 Appendix 2 : The function ω at zero temperature

In the spin 1 case, it is not so evident to understand the right expressions of the function ω at
zero temperature. Indeed, if in order to get the expression (3.14) we should appropriately deform
the de�nition holding for general Matsubara space (3.10), in the spin 1 case we do not have such
general result. In the paper [70] the following expression has been proposed for the function ω that
corresponds to spin 1 Matsubara spaces :

ω0(λ) =
1
2
− 1

8
(λ2 + 4)

[
ψ

(
− iλ

4

)
+ ψ

(
iλ

4

)
− ψ

(
1
2
− iλ

4

)
− ψ

(
1
2

+
iλ

4

)
− πλ

2 sinh(πλ2 )

]
, (3.51)

where ψ is the logarithmic derivative of the Γ function :

ψ(λ) =
d

dλ
log Γ(λ) . (3.52)

It is interesting to notice that the expression for ω0 splits in two parts : one transcendental part
that involves the functions ψ, and a much simpler part given mainly by the combination πλ

2 sinh(πλ2 )
.

Moreover, the following function is de�ned in [70] :

Ω0(λ) = 2i
ω0(λ) + 1

2

λ2 + 4
. (3.53)

To match with our notations, we compare the value of the simplest density matrix on two sites.
Therefore, in order to recover the results for the density matrix on 2 sites from [70] we should take
for the de�nition of ω at zero temperature :

ω

(
λ

2i

)
= 2iΩ0(λ) +

2
4 + λ2

. (3.54)

It is then possible to show that the function ω de�ned in this way indeed satis�es the functional
relation (3.50), and obtain remarkable simpli�cations in the calculations of the determinants : the
transcendental part is absent from the calculations. Moreover the normalization factor also changes
in the zero temperature case. In order to recover the results of [70] we take :

T(λ)
T (λ+ 1

2 )T (λ− 1
2 )
−→ 1

2
. (3.55)

3.9 Appendix 3 : Density matrices at zero temperature

In this section we present the density matrices at zero temperature that led to the results summarized
in the table of section 3.5.2. In order to obtain the density matrix we need to expand all invariant
operators (Oa)a on the fermionic basis, in the same way as we did for the sole spin operator. Hence
we shall �rst describe how we calculated the invariant operators and then provide the results of the
computation of the density matrix, up to n = 4, since this is the largest length for which we were
able to do the explicit calculations.

Invariant operators. The starting point is the decomposition of the tensor product of represen-
tations of sl2 (we present the calculations for n = 4 since it is the most complex case) :

V (2)⊗4 = V (8)⊕ 3V (6)⊕ 6V (4)⊕ 6V (2)⊕ 3V (0) . (3.56)

This decomposition illustrates the fact that the segment of the Space chain [1, 4] = V (2)⊗4 has two
bases. The �rst one is the "physical", or multiplicative basis ei1ei2ei3ei4 with 1 ≤ ik ≤ 3 and the
second "additive" basis, is generated by the highest weight vectors of sl2. The invariant operators
(they form a vector space that we will denote Endsl2

(
V (2)⊗4

)
) can be trivially written in this second

basis, indeed a general invariant operators takes the form :

O =


x1I9

x2I7 x3I7 x4I7
x5I7 x6I7 x7I7
x8I7 x9I7 x10I7

...
...

 , (3.57)
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where xk are complex numbers. A basis of the invariant operators has therefore :

dim Endsl2(V (2)⊗4) =
∑
µ

m2
µ = 1 + 9 + 36 + 36 + 9 = 91 , (3.58)

elements. The number mµ is the multiplicity of the representation space V (µ) in the decomposition
of V (2)⊗4. So it is very easy to write down a complete set of independent invariant operators in the
additive basis : for the invariant operator Ok we can simply take xi = δik , i = 1, ..., 91 in (3.57).
They are linearly independent by construction.

What is left is to �nd an e�ective numerical procedure that will calculate the passage matrix
between the "additive" to the "multiplicative" bases.

The main trick is to represent the sl2 generators e, f, h as di�erential operators acting on a basis
of V (2) constructed out of homogeneous polynomials in two variables. In the simplest case n = 2
we take :

BXY = (X2, 2XY, Y 2) . (3.59)

e = X∂Y , f = Y ∂X , h = X∂X − Y ∂Y . (3.60)

For the basis B of V (2)⊗4 we take :

B = BXY ⊗ BZT ⊗ BUW ⊗ BRS . (3.61)

Numerically it is easy to decompose any polynomial depending on the variables X,Y, Z, T, U,W,R, S
on this basis. Then we have :

e = X∂Y + Z∂T + U∂W +R∂S , (3.62)

f = Y ∂X + T∂Z +W∂U + S∂R , (3.63)

and an analogous formula for the action of h on the polynomials. With this polynomial set-up we
can do e�ective calculations on the computer. In particular, we would like to identify the irreducible
submodules of the space V (2)⊗4. An irreducible sub-modules V (λ) (with dimension dimV (λ) = λ+1
and of multiplicity mλ in V (2)⊗4) is characterized by a highest weight vector vλ that satisfy

h · vλ = λvλ , e · vλ = 0 . (3.64)

Then we have :
V (λ) = Vect{vλ, fvλ, f2vλ, ..., f

λvλ} (3.65)

Suppose that we want to �nd such a basis of V (λ) in V (2)⊗4. Among all vectors of the basis B,
we look for independent highest weight (with weight λ) vectors vkλ with k = 1, ...,mλ. These are
represented by polynomials in our set-up. We can then easily act with the element f on them, using
its expression as a di�erential operator (3.63). This gives other polynomials that we can re-express
on our initial basis B. Finally, we arrive at vectors of B generating mλ copies of the submodule
V (λ). We do this for all submodules of our decomposition and we obtain the wanted passage matrix.
Before conjugating the expressions of the form (3.57) by the passage matrix we �rst compute the

"dual" invariant operators Õa that satisfy (3.17). They have the same form as (3.57), up to some
multiplicative normalization factors. Finally, the last step is to conjugate the dual expression of the
invariant operators in the highest weight basis by this passage matrix and check that one indeed
obtains independent operators.

The outcome of this procedure, is the set of 91 matrices acting on V (2)⊗4 and representing all
the invariant operators. It can be easily generalized to calculate the invariant operators for lengths
n ≥ 5. Below, we present the explicit expressions for the density matrices at zero temperature for
n = 2, 3, 4.

Density matrix for n = 2

The invariant operators can be taken as the usual identity, permutation and projectors : (Oi)i=1,2,3 =
(I9, Pσ, Pr) (the case n = 2 is somehow special and does not �t in the description above, we take
these "physical" invariant operators (I9, Pσ, Pr) to be like those of [70]). The density matrix is

written in the dual basis : (Õi)i=1,2,3 :

D(2) =
3∑
i=1

paÕa . (3.66)

p1 =
1
54
(
51− 4π2

)
, p2 =

1
54
(
20π2 − 201

)
, p3 =

1
81
(
51− 4π2

)
. (3.67)
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Density matrix for n = 3

In this case the decomposition reads :

V (2)⊗3 = V (6)⊕ 2V (4)⊕ 3V (2)⊕ V (0) , (3.68)

This gives 15 invariant operators in total. These invariant operators and their dual basis are con-
structed as above. The density matrix is then given by :

D(3) =
15∑
a=1

paÕa , (3.69)

where the Õa are the dual operators of the n = 3 analogues of (3.57). The coe�cients are given by :

 p1

...
p15

 =



− 6349
27 + 95872π2

675 − 2912π4

135 + 88576π6

91125
13612

27 − 41492π2

135 + 6308π4

135 − 38336π6

18225
0

2344
9 − 7202π2

45 + 1096π4

45 − 6656π6

6075

− 452
27 + 344π2

27 − 268π4

135 + 64π6

729

− 12964
45 + 39472π2

225 − 5996π4

225 + 36416π6

30375

− 358
15 + 1064π2

75 − 54π4

25 + 992π6

10125
1432
15 −

4256π2

75 + 216π4

25 − 3968π6

10125

− 9376
15 + 28808π2

75 − 4384π4

75 + 26624π6

10125

− 1048
45 + 2644π2

225 − 392π4

225 + 2432π6

30375
2864
15 −

8512π2

75 + 432π4

25 − 7936π6

10125

− 292
5 + 334π2

9 − 424π4

75 + 512π6

2025
44
15 −

11π2

5 + 26π4

75 −
32π6

2025
572
45 −

352π2

45 + 268π4

225 −
64π6

1215
1280
27 −

3616π2

135 + 544π4

135 −
3328π6

18225



. (3.70)
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Density matrix for n = 4

From the discussion above we have the decomposition

D(4) =
91∑
a=1

paÕa . (3.71)

The coe�cients (p1, ..., p45) are given by :

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

404232227
375 − 491712704π2

225 + 185730778112π4
118125 − 51207443456π6

99225 + 430817272832π8
5315625 − 133707218944π10

22325625 + 218843316224π12
1302328125

− 9342222274
3375 + 3786411208π2

675 − 204291811264π4
50625 + 844871959808π6

637875 − 3317129090528π8
15946875 + 29414235136π10

1913625 − 240715440128π12
558140625

− 185854018
225 + 3388178248π2

2025 − 7311382816π4
6075 + 1866490624π6

4725 − 84798819488π8
1366875 + 131590544384π10

28704375 − 43075346432π12
334884375

185854018
225 − 3388178248π2

2025 + 7311382816π4
6075 − 1866490624π6

4725 + 84798819488π8
1366875 − 131590544384π10

28704375 + 43075346432π12
334884375

− 2070117532
1125 + 838761424π2

225 − 407255145248π4
151875 + 37427772416π6

42525 − 2204247573152π8
15946875 + 41884171264π10

4100625 − 479869116416π12
1674421875

− 37112908
75 + 677237456π2

675 − 21927627104π4
30375 + 50381026048π6

212625 − 5651546528π8
151875 + 78929896448π10

28704375 − 5167489024π12
66976875

1960753508
3375 − 2382006128π2

2025 + 128488421824π4
151875 − 177128056576π6

637875 + 2086376641568π8
47840625 − 2642977792π10

820125 + 151402405888π12
1674421875

− 1140847442
1125 + 4160674568π2

2025 − 224470574848π4
151875 + 825174272π6

1701 − 3644784037376π8
47840625 + 161598654464π10

28704375 − 264492384256π12
1674421875

− 827056762
3375 + 201234424π2

405 − 18098716192π4
50625 + 74848177664π6

637875 − 881582040512π8
47840625 + 13028773888π10

9568125 − 21324775424π12
558140625

74515294
225 − 271293176π2

405 + 4876428992π4
10125 − 33611052032π6

212625 + 33934900736π8
1366875 − 650131456π10

354375 + 1915322368π12
37209375

78829808
45 − 10062350912π2

2835 + 36192085616π4
14175 − 9978499072π6

11907 + 1763000771104π8
13395375 − 130276836352π10

13395375 + 42645397504π12
156279375

420046888
675 − 3575252476π2

2835 + 192899888728π4
212625 − 265917707168π6

893025 + 3132114523456π8
66976875 − 138867961856π10

40186125 + 227289235456π12
2344190625

− 68496272
675 + 584276464π2

2835 − 31543135952π4
212625 + 43485702784π6

893025 − 512180088544π8
66976875 + 22707782656π10

40186125 − 37166096384π12
2344190625

− 36764764
135 + 521329924π2

945 − 5624977196π4
14175 + 23262898208π6

178605 − 125289232π8
6125 + 20247798272π10

13395375 − 6627979264π12
156279375

− 183901532
675 + 58034912π2

105 − 84564734932π4
212625 + 116571846208π6

893025 − 152554745216π8
7441875 + 12174742528π10

8037225 − 99635789824π12
2344190625

1231813072
675 − 3492602432π2

945 + 565233578512π4
212625 − 779200606976π6

893025 + 3059344128928π8
22325625 − 406927299584π10

40186125 + 666023993344π12
2344190625

617494144
135 − 1250769248π2

135 + 283399101952π4
42525 − 1953380985856π6

893025 + 43825303936π8
127575 − 8160948224π10

321489 + 333929414656π12
468838125

1030971008
675 − 250846216π2

81 + 473760937088π4
212625 − 130619120384π6

178605 + 1098916663808π8
9568125 − 68211193856π10

8037225 + 558218510336π12
2344190625

− 80483584
225 + 19547776π2

27 − 110705418112π4
212625 + 50869714432π6

297675 − 85597353344π8
3189375 + 79697186816π10

40186125 − 130439348224π12
2344190625

− 11432032
15 + 208415008π2

135 − 47223509696π4
42525 + 4340032000π6

11907 − 36514525408π8
637875 + 169989407744π10

40186125 − 55644790784π12
468838125

− 18479104
27 + 562353512π2

405 − 42489515872π4
42525 + 292857740288π6

893025 − 98551339744π8
1913625 + 30585930752π10

8037225 − 50061893632π12
468838125

2909268608
675 − 3537135904π2

405 + 445291625216π4
70875 − 1841560970752π6

893025 + 3098719174528π8
9568125 − 320571011072π10

13395375 + 174895366144π12
260465625

144414784
225 − 1227705368π2

945 + 66219642464π4
70875 − 91285485824π6

297675 + 1075237746848π8
22325625 − 47673054208π10

13395375 + 78026989568π12
781396875

129812048
675 − 221233294π2

567 + 59700389548π4
212625 − 82300336576π6

893025 + 969359460416π8
66976875 − 42978031616π10

40186125 + 70343950336π12
2344190625

− 46994912
675 + 79717328π2

567 − 21483253552π4
212625 + 29613083392π6

893025 − 348817706464π8
66976875 + 15465761792π10

40186125 − 25312436224π12
2344190625

− 79408492
675 + 135116980π2

567 − 1349938396π4
7875 + 50246919104π6

893025 − 591849928064π8
66976875 + 8746969088π10

13395375 − 14316290048π12
781396875

− 59992804
675 + 511203466π2

2835 − 27588875984π4
212625 + 38031430784π6

893025 − 447939490288π8
66976875 + 19860086272π10

40186125 − 32506155008π12
2344190625

12746048
25 − 2930014664π2

2835 + 158098610336π4
212625 − 14529763328π6

59535 + 2567088068192π8
66976875 − 113816415232π10

40186125 + 186286579712π12
2344190625

1532695424
675 − 13039892672π2

2835 + 703480434304π4
212625 − 969775171072π6

893025 + 11422681948928π8
66976875 − 506447372288π10

40186125 + 828911976448π12
2344190625

488795168
675 − 4161680672π2

2835 + 74851987216π4
70875 − 61910671616π6

178605 + 3646031254976π8
66976875 − 53884260352π10

13395375 + 88194301952π12
781396875

− 46654208
225 + 397096256π2

945 − 64279369024π4
212625 + 29537744896π6

297675 − 347911246336π8
22325625 + 46275387392π10

40186125 − 75739168768π12
2344190625

− 52596176
135 + 446841200π2

567 − 24096220304π4
42525 + 6643353344π6

35721 − 391260615584π8
13395375 + 17347492864π10

8037225 − 5678522368π12
93767625

− 24667376
75 + 378332144π2

567 − 11343563936π4
23625 + 46910672384π6

297675 − 1657538929888π8
66976875 + 24496436224π10

13395375 − 40094949376π12
781396875

1354493312
675 − 142391232π2

35 + 622359800192π4
212625 − 857955155968π6

893025 + 3368477201408π8
22325625 − 448041877504π10

40186125 + 733323198464π12
2344190625

147252608
135 − 695151616π2

315 + 22494745472π4
14175 − 66450086912π6

127575 + 365268180736π8
4465125 − 80974979072π10

13395375 + 3786604544π12
22325625

212055232
675 − 1806138064π2

2835 + 97466597392π4
212625 − 19194930176π6

127575 + 1582611693184π8
66976875 − 70167578624π10

40186125 + 16406413312π12
334884375

− 28535168
225 + 726369088π2

2835 − 4350658496π4
23625 + 285582848π6

4725 − 635783665408π8
66976875 + 9396355072π10

13395375 − 313851904π12
15946875

− 15238256
75 + 233114320π2

567 − 6985125296π4
23625 + 4126909184π6

42525 − 1020833443808π8
66976875 + 15087008768π10

13395375 − 3527548928π12
111628125

− 10920176
75 + 279070784π2

945 − 45179406304π4
212625 + 109842944π6

1575 − 244521346336π8
22325625 + 32523705344π10

40186125 − 7604690944π12
334884375

558060928
675 − 4750161664π2

2835 + 256300547968π4
212625 − 10095159808π6

25515 + 4161772366336π8
66976875 − 184519442432π10

40186125 + 43143528448π12
334884375

40440688
225 − 114205144π2

315 + 6154972336π4
23625 − 5091104768π6

59535 + 299867781376π8
22325625 − 4431910912π10

4465125 + 7253491712π12
260465625

27763856
675 − 236063822π2

2835 + 12732590476π4
212625 − 17552173024π6

893025 + 206745415232π8
66976875 − 1833315328π10

8037225 + 15003123712π12
2344190625

− 17693456
675 + 49958624π2

945 − 8077097696π4
212625 + 11135112064π6

893025 − 4858264256π8
2480625 + 232640512π10

1607445 − 9518661632π12
2344190625

− 24084992
675 + 203398936π2

2835 − 3651049424π4
70875 + 15098728672π6

893025 − 177869116384π8
66976875 + 525770752π10

2679075 − 4302430208π12
781396875

− 12905536
675 + 36636266π2

945 − 5929821236π4
212625 + 8174406848π6

893025 − 32094583904π8
22325625 + 4268972032π10

40186125 − 6987210752π12
2344190625

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,
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and the coe�cients (p46, ..., p91) are :

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

71956112
675 − 612389912π2

2835 + 33042456752π4
212625 − 45553394944π6

893025 + 536574812864π8
66976875 − 4758081536π10

8037225 + 38938394624π12
2344190625

− 593790232
375 + 722418584π2

225 − 38982621896π4
16875 + 53739292736π6

70875 − 632966451872π8
5315625 + 28063679488π10

3189375 − 45932797952π12
186046875

12050168
225 − 14490296π2

135 + 779435944π4
10125 − 5374465856π6

212625 + 12667207328π8
3189375 − 401210368π10

1366875 + 919134208π12
111628125

106333592
1125 − 129821432π2

675 + 7009724456π4
50625 − 9662166592π6

212625 + 113791773152π8
15946875 − 5044968448π10

9568125 + 8257544192π12
558140625

123217936
375 − 149949008π2

225 + 8091888368π4
16875 − 1239420608π6

7875 + 131384124496π8
5315625 − 5825138176π10

3189375 + 9534304256π12
186046875

22536256
125 − 82435232π2

225 + 4451224864π4
16875 − 409053952π6

4725 + 72262573568π8
5315625 − 3203772416π10

3189375 + 5243895808π12
186046875

22696344
125 − 82731176π2

225 + 13390420648π4
50625 − 6153566912π6

70875 + 72483217952π8
5315625 − 1928203264π10

1913625 + 15779209216π12
558140625

− 1060806376
1125 + 1290922696π2

675 − 69661889048π4
50625 + 96031019072π6

212625 − 1131089361376π8
15946875 + 10029753344π10

1913625 − 82080505856π12
558140625

106306232
1125 − 128692888π2

675 + 770271304π4
5625 − 9556560064π6

212625 + 112580681632π8
15946875 − 1663906816π10

3189375 + 2723160064π12
186046875

94426616
1125 − 12834488π2

75 + 693302632π4
5625 − 8601391552π6

212625 + 3751829248π8
590625 − 499013632π10

1063125 + 2450358272π12
186046875

224436704
1125 − 91044272π2

225 + 14739203312π4
50625 − 20318070208π6

212625 + 79770438128π8
5315625 − 10610269696π10

9568125 + 17366380544π12
558140625

24207424
375 − 1973216π2

15 + 177771488π4
1875 − 2205552128π6

70875 + 1236804704π8
253125 − 18277376π10

50625 + 1884790784π12
186046875

78433016
1125 − 95081464π2

675 + 5128119208π4
50625 − 7070122432π6

212625 + 83282718976π8
15946875 − 527501312π10

1366875 + 6043303936π12
558140625

− 188952152
225 + 1148767384π2

675 − 12395923816π4
10125 + 85441731008π6

212625 − 201277596992π8
3189375 + 1274863616π10

273375 − 14606221312π12
111628125

1422984
25 − 1035032π2

9 + 837080312π4
10125 − 1923822272π6

70875 + 647579392π8
151875 − 430696448π10

1366875 + 197361664π12
22325625

66927752
1125 − 81151592π2

675 + 1457853992π4
16875 − 6027410752π6

212625 + 10141491296π8
2278125 − 1850368π10

5625 + 1717182464π12
186046875

197620832
1125 − 240344816π2

675 + 4322528912π4
16875 − 17875923136π6

212625 + 210551064032π8
15946875 − 1037244416π10

1063125 + 1697701888π12
62015625

86187232
1125 − 21028832π2

135 + 1892486752π4
16875 − 1565153536π6

42525 + 92163322912π8
15946875 − 90801152π10

212625 + 2229346304π12
186046875

30470488
375 − 37069304π2

225 + 2000809384π4
16875 − 394097216π6

10125 + 4642145504π8
759375 − 205816832π10

455625 + 2357977088π12
186046875

− 702233632
375 + 853980832π2

225 − 138225399968π4
50625 + 2352468736π6

2625 − 748140224512π8
5315625 + 14215831552π10

1366875 − 162871771136π12
558140625

264284704
1125 − 320539808π2

675 + 1919925728π4
5625 − 23821561088π6

212625 + 280618214144π8
15946875 − 4147380224π10

3189375 + 6787760128π12
186046875

202926496
1125 − 82385248π2

225 + 4444792096π4
16875 − 18378849536π6

212625 + 72152947072π8
5315625 − 3198980096π10

3189375 + 35618816π12
1265625

445010176
1125 − 60128192π2

75 + 29196160448π4
50625 − 8049469696π6

42525 + 158018523392π8
5315625 − 3002601472π10

1366875 + 34401222656π12
558140625

34262912
375 − 13971328π2

75 + 2265977216π4
16875 − 3123632128π6

70875 + 583862144π8
84375 − 372736π10

729 + 14123008π12
984375

43944416
375 − 160027168π2

675 + 8635528544π4
50625 − 3969228544π6

70875 + 140271745408π8
15946875 − 6219206656π10

9568125 + 10178428928π12
558140625

− 68626672
375 + 1855376π2

5 − 4504723376π4
16875 + 6210017024π6

70875 − 2709118976π8
196875 + 3243096064π10

3189375 − 5308055552π12
186046875

51291632
1125 − 4156592π2

45 + 3362374576π4
50625 − 4634801152π6

212625 + 18197348864π8
5315625 − 2420467712π10

9568125 + 3961618432π12
558140625

30746224
1125 − 12567728π2

225 + 226305968π4
5625 − 2807456768π6

212625 + 3673659296π8
1771875 − 32574464π10

212625 + 38084608π12
8859375

43239952
1125 − 17521088π2

225 + 2835558656π4
50625 − 3908947712π6

212625 + 15347641664π8
5315625 − 2041421824π10

9568125 + 3341238272π12
558140625

− 47616
5 + 483008π2

25 − 140551808π4
10125 + 107604736π6

23625 − 760429984π8
1063125 + 505736192π10

9568125 − 23650304π12
15946875

− 369136
375 + 1534832π2

675 − 84103504π4
50625 + 38514176π6

70875 − 1356958688π8
15946875 + 60130304π10

9568125 − 98541568π12
558140625

− 26900152
225 + 163297304π2

675 − 1761366824π4
10125 + 12140515648π6

212625 − 4085838592π8
455625 + 253620224π10

382725 − 415105024π12
22325625

20393992
1125 − 915992π2

25 + 1333855256π4
50625 − 73568192π6

8505 + 7222280384π8
5315625 − 960673792π10

9568125 + 224608256π12
79734375

1481704
125 − 15998056π2

675 + 286614056π4
16875 − 18805312π6

3375 + 13955500096π8
15946875 − 206256128π10

3189375 + 337559552π12
186046875

28398608
1125 − 11494448π2

225 + 1859580304π4
50625 − 2563409344π6

212625 + 10064820896π8
5315625 − 1338761216π10

9568125 + 2191187968π12
558140625

798688
225 − 4927712π2

675 + 53341024π4
10125 − 52493056π6

30375 + 865076608π8
3189375 − 191746048π10

9568125 + 62783488π12
111628125

7262824
1125 − 2979448π2

225 + 483845752π4
50625 − 667364288π6

212625 + 2620225408π8
5315625 − 9957376π10

273375 + 570425344π12
558140625

124884184
1125 − 50867648π2

225 + 24737332016π4
151875 − 2273474176π6

42525 + 19124780992π8
2278125 − 17805838336π10

28704375 + 29145055232π12
1674421875

588704
1125 − 1951552π2

2025 + 34238432π4
50625 − 1896064π6

8505 + 1683152992π8
47840625 − 24906752π10

9568125 + 40689664π12
558140625

− 101060648
3375 + 123216448π2

2025 − 2218134928π4
50625 + 1834896512π6

127575 − 108058999168π8
47840625 + 532320256π10

3189375 − 290422784π12
62015625

610765088
3375 − 745114112π2

2025 + 4471388096π4
16875 − 55477754368π6

637875 + 93342558464π8
6834375 − 9656311808π10

9568125 + 2257911808π12
79734375

4137728
3375 − 540928π2

225 + 262144384π4
151875 − 363386368π6

637875 + 1431389696π8
15946875 − 190521344π10

28704375 + 6356992π12
34171875

− 55373024
1125 + 202354688π2

2025 − 3642251072π4
50625 + 5022022144π6

212625 − 25351721216π8
6834375 + 874225664π10

3189375 − 204406784π12
26578125

9786344
1125 − 7139008π2

405 + 1925706896π4
151875 − 884875904π6

212625 + 31268420672π8
47840625 − 198055936π10

4100625 + 2269233152π12
1674421875

357632
3375 − 90304π2

405 + 2762144π4
16875 − 34494592π6

637875 + 407012672π8
47840625 − 6017024π10

9568125 + 9846784π12
558140625

− 2718536
1125 + 661696π2

135 − 535867024π4
151875 + 246318976π6

212625 − 414524608π8
2278125 + 55138304π10

4100625 − 631717888π12
1674421875

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Chapter 4

One point functions in the Super

sine-Gordon model

In this chapter, we describe the integrable structure of the space of local operators for the Super-
symmetric sine-Gordon model. This is based on the papers [8, 9]. Namely, we conjecture that this
space is created by acting on the primary �elds by fermions and a Kac-Moody current. We proceed
with the computation of the one point functions. In the UV limit they are shown to be consistent
with the alternative results obtained by solving the re�ection relations.

Before moving towards the �eld theoretic fermion-current basis, let us recap what we learned
so far on the calculations of the one point functions in integrable QFTs, and demonstrate why it is
natural to apply the latter methods to the Super sine-Gordon model.

The importance of the one point functions for the computation of correlation functions in the
framework of the Perturbed Conformal Field Theory has been recalled in the chapter 1, and is mainly
based on the breakthrough of the paper [23]. As we explained previously, for the sine-Gordon model
at �nite temperature the one point functions were computed in [5] using the fermionic basis of the
space of local operators. This basis was found �rst on the lattice for the (inhomogeneous) six-vertex
model [2]. Since the expectation values in the fermionic basis are rather simple the scaling limit is
not very di�cult to consider. One of the main achievements is the exact relation between the local
operators in the fermionic basis and their counterparts in the UV Conformal Field Theory. This
was illustrated by the formulae (2.235),(2.236),(2.237),(2.238) in the section 2.7.

An alternative approach to the one point functions uses the re�ection relations which are based
on two re�ections (Heisenberg and Virasoro). We recalled some details in the section 1.7 and a more
modern approach to this problem was presented in [31]. The re�ection relation "methodology" of
getting one point functions includes certain subtleties with the analytical continuation with respect
to the coupling constant. However, if the �nal goal is restricted to �nding a basis in the CFT,
invariant under the two re�ections, one should not worry because the problem can be considered as
a purely algebraic one. The re�ection relations are equivalent to a certain Riemann-Hilbert problem,
and for a long time it was unclear how to solve it. The synthesis of the two methods, the fermionic
basis on the one hand and the re�ection relations on the other, was made in [31]. In this paper it was
shown that the known examples of the fermionic basis (up to level 8) solve the re�ection relations.
Moreover, making a qualitative assumption of the existence of the fermionic basis one can use the
re�ection relations in order to compute the fermionic basis quantitatively.

It is consequently interesting to apply a similar procedure to other integrable models. For the
models related to higher ranks the problem does not look very realistic for the moment (advances in

the rank 2 "fermionic basis" were done in [71]). However, the ŝl2 (or rather Uq(ŝl2)) symmetric case
allows a highly nontrivial extension to the Fateev model, symmetric under the exceptional algebra
Uq(D̂(2|1;α)) [72]. This model deserves the most profound study. It allows numerous particular
cases and restrictions. The simplest of them is the sine-Gordon model and the next in complexity is
the Supersymmetric sine-Gordon model. The latter is therefore the subject of the present chapter.

Similarly to the sG case we should begin the study of the ssG model by considering its lattice
regularization which is the inhomogeneous 19-vertex model introduced by Fateev and Zamolodchikov

[73] in other words the model based on the spin-1 evaluation representations of Uq(ŝl2) (see the
chapter 3 for the isotropic version). By the method close to that of the fermionic basis this model

89
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was considered in [6] (this paper relies on the previous research [70]). Namely, as we showed in the
chapter 3, the space of (quasi)-local operators allows a basis created by fermions and a Kac-Moody
(KM) current on level one. It is easy to guess that for the integrable lattice models related to higher

representations of spin s of Uq(ŝl2) the space of (quasi)-local operators is generated by currents
with all half-integer spins up to s. In the scaling limit these models produce the parafermionic
sine-Gordon models. If we learn how to treat them in their totality it will bring us very close to the
general case of the Fateev model.

As has been said, in the present chapter we consider the ssG model starting with the 19 vertex
lattice model. The �rst indispensable step towards the one point functions, consists in �nding
the corresponding description of the local �elds in the conformal case like in the paper [4]. The
generalization is already not quite trivial. For example, in the computations of the ground state
eigenvalues of the local integrals of motion the paper [4] follows the procedure proposed in [35],
namely it uses the Destri-DeVega equations on a half-in�nite interval. This allows to develop an
analytical procedure for the computation of the eigenvalues in question. Then the procedure is
generalized in order to compute the expectation values on a cylinder of the CFT operators in the
fermionic basis. Unfortunately, a similar procedure for the Super CFT case is unknown to us, and
we are forced to proceed with numerical computations based on equations which for the 19-vertex
model were proposed by J. Suzuki [45]. It should be said that Suzuki equations have been used
already for the ssG model and its conformal limit in [74]. In the present chapter we shall apply the
Suzuki equations to the ssG model : in the high temperature limit we will compute numerically the
eigenvalues of the �rst three local integrals of motion. We will get the exact general formulae by
interpolation and check them against results alternatively obtained by the ODE-CFT correspondence
[75, 76] following Lukyanov [77] as will be explained.

The Suzuki equations pave the way to the scaling limit for the (quasi)-local operators created
by fermions and a KM current at the QFT level. These operators provide the basis of local �elds
for the ssG model. Our consideration relies heavily on the numerical study of scaling equations
for a certain function Ω(θ, θ′). The equation for this function is not rigorously derived, so, it is
considered as a conjecture and should be checked against alternative data. Using the function
Ω(θ, θ′) it is straightforward to compute the one point functions on the cylinder of radius R (at
�nite temperature) for the purely fermionic part of the basis. We restrict our attention to these
(fermionic) operators leaving the KM contributions for future study. We consider the UV limit
R→ 0 in order to �nd agreement with the corresponding CFT.

The UV limit is studied using the numerical data and interpolating with respect to the coupling
constant, the quasi-momentum and the parameter of the primary �eld. There is a di�erence with
the sG case for which this kind of data allowed to obtain exact relation to the Virasoro descendants
up to the level 6. Then, an important check of the entire procedure consisted in verifying that the
results satisfy the re�ection relations. In the ssG case only level 2 is available by this mean. This
case agrees with the re�ection relations but we would like to proceed a little further. We reverse the
procedure following [31], namely, assuming that there are local operators created by fermions which
transform simply under the re�ection, and compute the elements of the fermionic basis up to the
level 6. Needless to say that the re�ection relations are considered as a conjecture which is hard to
justify rigorously.

Finally, it is possible to compare with the results obtained by the interpolation of numerical data
�nding a perfect agreement. This is the main result of the present chapter: two kind of formulae
whose derivations are based on completely di�erent conjectures agree.

This chapter is organized as follows :

1. We �rst provide in section 4.1 a brief description of Super Conformal Field Theory, focusing on
such theories on the cylinder and on the calculation of correlation functions. We also discuss
the Super Liouville CFT.

2. Then we give the de�nition of the Super sine-Gordon QFT and a short account on its basic
properties. This is done in section 4.2.

3. In section 4.3 we describe the fermion-current basis for the 19 vertex model, and present
important de�nitions on the lattice level.

4. The Suzuki equations are derived in section 4.4 and checked against former results coming
from the ODE-CFT correspondence.
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5. The function Ω on the lattice is de�ned in section 4.5.

6. We proceed to the derivation of the scaling equations for this function and to the numerical
investigation of these equations in section 4.6. The results obtained out of this numerical study
are one of the main outcomes of this chapter.

7. Finally in 4.7, we check the above results by comparing them with those obtained from re�ec-
tion relations.

4.1 Super Conformal Field Theory

In this section we shall give a very brief recall on the N = 1 Supersymmetric Conformal Field Theory
(SCFT). This is a natural extension of usual Conformal Field Theory that is particular in the fact
that it is endowed with SUSY. Examples of Super Conformal Field Theories have been studied in
[78, 79, 80, 81]. This section is constructed in the same spirit as the section 1.2 : we shall �rst
recollect some general de�nitions and then focus on the calculation of correlation functions on the
cylinder, mostly thanks to the Supersymmetric Ward-Takahashi identities. Finally, we will discuss
the N = 1 Super Liouville CFT and its three-point functions.

4.1.1 The Super Virasoro algebra.

Let us start with Super Conformal Field Theory on the plane. The novel feature is that SCFT
possesses, besides the stress energy tensor T , a fermionic primary �eld with conformal dimension 3

2 ,
the super current S which is the generator of the supersymmetry. It means that the following OPE
between T and S holds :

T (z)S(w) =
3
2S(w)

(z − w)2
+
S′(w)
z − w

+O(1) . (4.1)

We will work in the Neveu-Schwarz sector, since this sector is closed under the OPE procedure. In
particular it implies that the super current S is single valued and has the expansion :

S(z) =
∑

r∈Z+ 1
2

Srz
−r− 3

2 . (4.2)

The most general OPE between S and itself is [81] :

S(z)S(w) =
2
3c

(z − w)3
+

2T (w)
z − w

+O(1) . (4.3)

The expansions (4.1) and (4.3) induce that the Virasoro algebra (1.26) has to be extended to the
Super Virasoro algebra :

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n , (4.4)

{Sr, Ss} = 2Sr+s +
c

3
(r2 − 1

4
)δr,−s , (4.5)

[Lm, Sr] =
(m

2
− n

)
Sm+n . (4.6)

The last equation illustrates the fact that S is a primary �eld. We also introduce the reduced central
charge that will be of some utility later :

ĉ =
2
3
c . (4.7)

Of course, the antichiral part of the Virasoro algebra contains an antiholomorphic super current S,
analogous to T , with conformal dimensions (∆,∆) = (0, 3

2 ), it will be of some utility in Appendix
4.9 in order to realize the SUSY algebra in terms of �elds.

Exactly as we de�ned the action of the modes of T on a generic �eld V (1.17), we can de�ne the
action of S. This is given by the formula :

(SrV )(w) =
∮
cw

du

2πi
(u− w)r+

3
2−1S(u)V (w) , (4.8)

where cw is a small circular contour around the point w.
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Let us now discuss the primary �elds in SCFT. To a Virasoro primary �eld Va
1 one can associate

the fermionic �eld Wa de�ned by :
Wa = S− 1

2
Va . (4.9)

The �eld Wa is also a Virasoro primary : indeed it is easy to check that is satis�es the property
(1.18), and its conformal dimension is easily obtained to be ∆a+ 1

2 . Therefore, we obtain the typical
OPE between Va , Wa and T (1.20) :

T (z)Va(w) =
∆a

(z − w)2
Va(w) +

1
z − w

V ′a(w) +O(1) , (4.10)

T (z)Wa(w) =
∆a + 1

2

(z − w)2
Wa(w) +

1
z − w

W ′a(w) +O(1) . (4.11)

Finally, we give the last important OPE between the super current and the primary �elds :

S(z)Va(w) =
1

z − w
Wa(w) +O(1) , (4.12)

S(z)Wa(w) =
2∆a

(z − w)2
Va +

1
z − w

V ′a(w) +O(1) . (4.13)

Characters in Super Conformal Field Theory. In our further application of the re�ection
relations, it will be important to know how to count the number of states in Super Conformal Field
Theory, at each level. This information is exactly given by the characters of theory, and is obtained
by the multiplication of the bosonic and fermionic contributions. The Hilbert space of a SCFT has
the same decomposition in terms of Verma module as in (1.49). Recall that the usual "bosonic"
character (1.50) of a Verma module V∆ (which is irreducible for generic ∆ and central charge) is :

χ∆(t) = TrV∆

(
tL0− c

24
)

=
∞∑
n=0

dim(n+ ∆)tn+∆− c
24 =

t∆−
c
24

ϕ(t)
, (4.14)

where ϕ(t) =
∏∞
n=1(1 − tn) 2. The character of the free fermionic (c = 1

2 ) theory in the Neveu-
Schwarz sector is given by :

χNS(t) = TrF
(
tL0− c

24
)

= t−
1
48

∞∏
k=1

(1 + tk−
1
2 ) . (4.17)

Form these equations, the number of state PNS(k) in a SCFT at each level k is then given by the
product of the two characters :

ch∆,NS(t) = χNS(t)χV∆(t) = t∆−
c
24−

1
48

∞∑
k=0

tkPNS(k) = t∆−
c
24−

1
48 (4.18)

×
(

1 +
√
t+ t+ 2t3/2 + 3t2 + 4t5/2 + 5t3 + 7t7/2 + 10t4 + 13t9/2 + 16t5 + 21t11/2 + 28t6 + ...

)
.

(4.19)

In particular, we obtain 3, 10, 28 states at levels 2, 4, 6 respectively. This will be used in section 4.7.

4.1.2 SCFT on the cylinder

We now progress to the main arena of interest for our work : the cylinder. We will take the same
conventions as in section 1.2.2 : two contours C and c and a �eld O located at the origin. This is
recalled on the picture 4.1 :

1Here we anticipate the fact the UV CFT of the ssG model is the complex Super Liouville theory, and we therefore
use from the start the notations Va for the primary �eld with conformal dimension ∆a (instead of V∆ as in the chapter
1).

2For a generic Verma module one has
dim(n+ ∆) = p(n) , (4.15)

where p(n) is the number of partitions of the integer n. Its generating function is exactly 1
ϕ
:

∞X
n=0

p(n)tn =
1

ϕ(t)
. (4.16)
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Figure 4.1: SCFT on a cylinder with the insertion of a local operator O and boundary conditions
∆±.

Recall that in this geometry we assume that two primary �elds are located at the in�nities ±∞
of the cylinder, we take them of dimension ∆±.

To verify the results on the one point functions of the fermion-current basis obtained by a numer-
ical study of the scaling equations, we will have to compute the one point functions of descendant
operators, created from the action of the stress energy tensor and of the super current, and from the
mixed action of both.

As previously explained, we map the plane to the cylinder by the transformation 3:

z = e−x . (4.20)

On the cylinder the super current can be split as :

S(x) = S+(x) + S−(x) , (4.21)

where

S+(x) =
∞∑
n=0

Sn+ 1
2
e(n+ 1

2 )x , S−(x) =
∞∑
n=0

S−n− 1
2
e−(n+ 1

2 )x . (4.22)

The action on any highest weight vectors |∆〉 by these �elds is given by :

S+(x) |∆〉 = 0 , 〈∆|S−(x) = 0 . (4.23)

The presence of the primary �elds |∆±〉 at the in�nities and the equation (4.23) implies (see also
(1.55)) :

lim
Re(x)→±∞

T (x) = ∆± −
ĉ

16
, lim

Re(x)→±∞
S(x) = 0 . (4.24)

These boundary conditions on T and S will be of �rst importance when we will compute the one
point functions of descendant �elds thanks to the Ward-Takahashi identities.

In the same way as we de�ned the local action of the stress energy tensor (1.56) :

(lnV )(y) =
∮
cy

dx

2πi
(x− y)n+1T (T (x)V (y)) , (4.25)

we can act locally with S on a �eld V :

(srV )(y) =
∮
cy

dx

2πi
(x− y)r+

1
2 T (S(x)V (y)) . (4.26)

where cy is a small circle around the point y on the cylinder. Here we remark an important convention
about the ordering of fermionic �elds, that has to be taken as :

T (ψ(x)θ(y)) =

{
−ψ(x)θ(y), if x < y ,

θ(y)ψ(x), if y < x ,
(4.27)

3Here we take the radius R = 1 from the start for simplicity. It is possible to rewrite all formulae below for generic
radius by applying the appropriate conformal mapping.
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where ψ, θ are two fermionic �elds and x, y denote the coordinate along the non-compact direction
of the cylinder.

As we mentioned above, our leading goal is to to compute the one point functions of the descen-
dant �elds on the cylinder. We will use the same notation (recall (1.67)) :

〈l−n1 ...l−nps−r1 ...s−rqVa〉 =
〈∆−|l−n1 ...l−nps−r1 ...s−rqVa|∆+〉

〈∆−|Va|∆+〉
. (4.28)

The multiple action of lk and sj is obtained by a recursive application of the formulae (4.25) and
(4.26). We now present two methods for the calculation of (4.28). The �rst one relies on the
commutations relations between the modes of the �elds T, S, Va. The second one is more e�cient
and uses the Ward-Takahashi identities, this is a generalization of the chiral case presented in section
1.2.2.

Commutation relations on the cylinder. As usual we obtain the commutation relations on
the cylinder from the Super Virasoro commutation relations (4.4),(4.5),(4.6). For this purpose we
de�ne the function :

ξ(z) =
1
2

1
sh
(
z
2

) , (4.29)

chosen to be compatible with our geometry and with the NS (anti)-periodicity conditions. Then we
have the same type of equations as in 1.2.2. For example the commutation relations between the
super current and the primary �eld Va are :

[S+(x), Va(y)] = −ξ(x− y)Wa(y) , x < y , (4.30)

[Va(y), S−(x)] = −ξ(x− y)Wa(y) , y < x . (4.31)

The anti-commutation relation between S and itself is obtained from (4.5) :

{S+(x), S(y)} = −2T (y)ξ(x− y)− c

3
ξ′′(x− y) , x < y , (4.32)

{S(y), S−(x)} = 2T (y)ξ(x− y) +
c

3
ξ′′(x− y) , y < x . (4.33)

Finally, the commutation relations between the S and Wa read :

{S+(x),Wa(y)} = V ′a(y)ξ(x− y)− 2∆aVa(y)ξ′(x− y) , x < y , (4.34)

{Wa(y), S−(x)} = −V ′a(y)ξ(x− y) + 2∆Va(y)ξ′(x− y) , y < x . (4.35)

Then one can start to compute the action of the modes, using the customary splitting prescription
for the contours. Let us begin with the simplest case (s− 1

2
Va)(y). Since Va is a bosonic �eld :

(s− 1
2
Va)(y) =

∮
cy

dx

2πi
T (S(x)Va(y)) =

∮
c−y

dx

2πi
S(x)Va(y) +

∮
c+y

dx

2πi
Va(y)S(x) . (4.36)

Then, for each term we have :∮
c−y

dx

2πi
S(x)Va(y) =

∮
c−y

dx

2πi
([S+(x), Va(y)] + Va(y)S+(x) + S−(x)Va(y)) , (4.37)∮

c+y

dx

2πi
Va(y)S(x) =

∮
c+y

dx

2πi
([Va(y), S−(y)] + Va(y)S+(x) + S−(x)Va(y)) . (4.38)

It is possible to recollect the terms that are not inside commutators, their integrals vanish by
application of the Residue theorem. The commutators can be brought together similarly. We are
left with :

(s− 1
2
Va)(y) =

∮
cy

dx

2πi
(−ξ(x− y))Wa(y) = −Wa(y) . (4.39)

The sign in this identity might look paradoxical in view of (4.9), but the result will be con�rmed
when we will calculate the one point functions of �elds like s−rs− 1

2
Va. In addition, from the de�nition

of sr it is clear that the one point function on the cylinder of Wa is vanishing :

〈s− 1
2
Va〉 = 0 , 〈Wa〉 = 0 . (4.40)
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The computations above can be recast in a more general case. Consider s−rVa with generic r ∈ Z+ 1
2 .

We obtain from a similar computation :

(s−rVa)(y) =
∮
cy

dx

2πi
1

(x− y)r−
1
2

(−ξ(x− y))Wa(y)

+
∮
cy

dx

2πi
1

(x− y)r−
1
2

(Va(y)S+(x) + S−(x)Va(y)) . (4.41)

A particular case that will be useful later is r = 3
2 , we get :

(s− 3
2
Va)(y) = Va(y)S+(y) + S−(y)Va(y) . (4.42)

Let us now proceed to a more interesting example :

s− 3
2
s− 1

2
Va = −s− 3

2
Wa . (4.43)

We will employ the following fermionic commutation relations :

S(x)Wa(y) = {S+(x),Wa(y)} −Wa(y)S+(x) + S−(x)Wa(y) , (4.44)

Wa(y)S(x) = {Wa(y), S−(x)}+Wa(y)S+(x)− S−(x)Wa(y) . (4.45)

Then, by de�nition one has :

s− 3
2
s− 1

2
Va = −s− 3

2
Wa = −

∮
cy

dx

2πi(x− y)
T (S(x)Wa(y))

= −

(
−
∫
c−y

dx

2πi(x− y)
S(x)Wa(y) +

∫
c+y

dx

2πi(x− y)
Wa(y)S(x)

)
. (4.46)

Now we apply the formulae (4.44) and (4.45), as well as (4.34),(4.35) and obtain :

s− 3
2
s− 1

2
Va = −

[
−
∫
c−y

dx

2πi
1

x− y

(
{S+(x),Wa(y)}+ S−(x)Wa(y)−Wa(y)S+(x)

)
+
∫
c+y

dx

2πi
1

x− y

(
{Wa(y), S−(x)}+Wa(y)S+(x)− S−(x)Wa(y)

)]
= −Wa(y)S+(y) + S−(y)Wa(y)

+
∮
cy

dx

2πi
1

x− y

(
V ′a(y)ξ(x− y)− 2∆Va(y)ξ′(x− y)

)
. (4.47)

Taking into account the simple residue calculation :∮
c0

dz

2πi
2∆a

z
(−ξ′(z)) =

∆a

12
, (4.48)

we arrive at the result :

s− 3
2
s− 1

2
Va = −Wa(y)S+(y) + S−(y)Wa(y) +

∆a

12
Va , (4.49)

which implies :

〈s− 3
2
s− 1

2
Va〉 =

∆a

12
, (4.50)

and is the wished formula at level 2. Moreover, it is straightforward to generalize the above calcu-
lation to higher levels :

〈s−rs− 1
2
Va〉 =

∮
c0

dz

2πi
2∆a

zr−
1
2

(−ξ′(z)) . (4.51)

This gives in particular :

〈s− 7
2
s− 1

2
Va〉 = −7∆a

960
, 〈s− 11

2
s− 1

2
Va〉 =

31∆a

96768
. (4.52)

The advantage of this approach is that it allows in principle to compute explicitly the �elds
l−n1 ...l−nps−r1 ...s−rqVa and not only their one point functions. More examples of this type of
calculations are presented in the appendix 4.8. However, we are mostly interested in the one point
functions, and as we already mentioned in the �rst chapter, this approach is not really e�cient. We
prefer to use instead the Ward-Takahashi identities.



96 CHAPTER 4. ONE POINT FUNCTIONS IN THE SUPER SINE-GORDON MODEL

Super Ward-Takahashi identities on the cylinder

In this section we present the Super Ward-Takahashi identities. First we need to rewrite the su-
perconformal OPE (4.1),(4.3),(4.10),(4.11) on the cylinder. Recall the de�nitions of the functions χ
(with R = 1) and ξ (1.60), (4.29).

With them in hand, we conclude that the superconformal algebra is generated by the operators
T (z), S(z) with the OPE's

T (z)T (w) = − c

12
χ′′′(z − w)− 2χ′(z − w)T (w) + χ(z − w)T ′(w) +O(1) , (4.53)

T (z)S(w) = −3
2
χ′(z − w)S(w) + χ(z − w)S′(w) +O(1) ,

S(z)S(w) = −2ξ(z − w)T (w)− c
3
ξ′′(z − w) +O(1) .

We will also need the OPE's:

T (z)Va(w) = −∆aχ
′(z − w)Va(w) + χ(z − w)V ′a(w) +O(1) , (4.54)

T (z)Wa(w) = −(∆a + 1
2 )χ′(z − w)Wa(w) + χ(z − w)W ′a(w) +O(1) ,

S(z)Va(w) = −ξ(z − w)Wa(w) +O(1) ,
S(z)Wa(w) = 2∆aξ

′(z − w)Va(w)−ξ(z − w)V ′a(w) +O(1) ,

Recall that we are interested in the calculation of (4.28) :

〈l−n1 ...l−nps−r1 ...s−rqVa(y)〉 =
〈∆−|l−n1 ...l−nps−r1 ...s−rqVa(y)|∆+〉

〈∆−|Va(y)|∆+〉
, (4.55)

The main idea is to follow the route of [4], where Ward-Takahashi identities have been used to
obtain the values of the same kind of correlation functions but containing purely Virasoro generators.
UsingWard-Takahashi identities to express the correlation functions 〈T (z1)...T (zp)S(w1)...S(wq)Va(y)〉
we can then obtain (4.28) by a successive application of (4.25),(4.26) :

〈l−n1 ...l−nps−r1 ...s−rqVa〉 =
∮
cz1

dz1...

∮
czp

dzp

∮
cw1

dw1...

∮
cwq

dwq

× 〈T (z1)...T (zp)S(w1)...S(wq)Va(y)〉 , (4.56)

with the notation :

∮
czk

dzk =
∮
czk

dzk
2πi(zk − y)nk−1

,

∮
cwj

dwj =
∮
cwj

dwj

2πi(wj − y)rj−
1
2
, (4.57)

and the contours being small concentric circles around the point y : cz1 ⊂ ... ⊂ cwq . Using the
OPEs (4.53), (4.54), we can deduce the following simple correlation functions between the �elds (we
present here only the speci�c identities that we shall need later) :

〈S(x)Va(y)〉 =0 ,
〈S(x)Wa(y)〉 = (2∆aξ

′(x− y)− ξ(x− y)(∆+ −∆−)) 〈Va(y)〉 ,
〈S(x2)S(x1)Va(y)〉 =− ξ(x1 − y) 〈S(x2)Wa(y)〉 − 2ξ(x1 − x2) 〈T (x2)Va(y)〉+

− c

3
ξ′′(x1 − x2) 〈Va(y)〉 .

And the more complicated :
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〈T (x3)S(x2)S(x1)Va(y)〉 =(
−3

2
χ′(x3 − x2) + (χ(x3 − x2)− χ(x3 − y))

∂

∂x2

)
〈S(x2)S(x1)Va(y)〉

+
(
−3

2
χ′(x3 − x1) + (χ(x3 − x1)− χ(x3 − y))

∂

∂x1

)
〈S(x2)S(x1)Va(y)〉

+
(
−∆aχ

′(x3 − y) + χ(x3 − y)(∆+ −∆−) +
(

∆+ + ∆−
2

− c

24

))
〈S(x2)S(x1)Va(y)〉 ,

〈T (x4)T (x3)S(x2)S(x1)Va(y)〉 =

− c

12
χ′′′(x4 − x3) 〈S(x2)S(x1)Va(y)〉

+
(
−2χ′(x4 − x3) + (χ(x4 − x3)− χ(x4 − y))

∂

∂x3

)
〈T (x3)S(x2)S(x1)Va(y)〉

+
(
−3

2
χ′(x4 − x2) + (χ(x4 − x2)− χ(x4 − y))

∂

∂x2

)
〈T (x3)S(x2)S(x1)Va(y)〉

+
(
−3

2
χ′(x4 − x1) + (χ(x4 − x1)− χ(x4 − y))

∂

∂x1

)
〈T (x3)S(x2)S(x1)Va(y)〉

+
(
−∆aχ

′(x4 − y) + χ(x4 − y)(∆+ −∆−) +
(

∆+ + ∆−
2

− c

24

))
〈T (x3)S(x2)S(x1)Va(y)〉 .

These formulae echo the general formula (1.78) obtained for the non-supersymmetric case. As will
be explained in the next section 4.2, for applications to the Super sine-Gordon model we should
consider the case of equal boundary conditions

∆+ = ∆− = δP , (4.58)

where the precise de�nition of δP will be given soon.
The calculation of one point functions of descendants on the cylinder are then given by the

application of (4.56). As examples we recover the previously obtained results at level 2

〈l−2Va〉 = δP −
c

24
− ∆a

12
, 〈s− 3

2
s− 1

2
Va〉 =

∆a

12
, (4.59)

and new ones at level 4 :

〈l2−2Va〉 =
(
δP −

c

24

)2

− 1
6

(
δP −

c

24

)
− ∆a

6

(
δP −

c

24

)
+

∆2
a

144
+

7
360

∆a , (4.60)

〈s− 7
2
s− 1

2
Va〉 = −∆a

7
960

, 〈s− 5
2
s− 3

2
Va〉 = − 1

12

(
δP −

c

24

)
+ ∆a

17
960

+
7c

2880
,

〈l−2s− 3
2
s− 1

2
〉 =

∆a

12

(
δP −

c

24
− δa

12

)
− 1

144
∆a , 〈l−4Va〉 =

∆a

240
.

We also will need the one point functions at level 6. Since the results are quite long, we prefer to
display them in due time.

4.1.3 Super Liouville CFT

In this section we will describe the Super CFT that will be the most important for us : the N = 1
Super Liouville CFT (Super LCFT) (see [16] for more references), the conventions are taken from
[82] 4. The Super Liouville CFT is given by the supersymmetric generalization of the Liouville
Lagrangian (1.84) with coupling constant b and cosmological constant µ 5 :

ASL =
∫ ( 1

4π
∂zϕ∂z̄ϕ+

1
2π
(
ψ∂z̄ψ + ψ̄∂zψ̄

)
− µψ̄ψe

b√
2
ϕ
)
d2z . (4.61)

4With the correspondence that eϕ = ϕ√
2
and eµ = µb−2

2
, where tilded quantities are those used in [82].

5Actually this is not the "complete" Super Liouville Lagrangian, that can be found for example in [82]. One of the
terms assuring SUSY invariance has been dropped. Indeed this term is not relevant for the applications to the ssG
model, this will be explained later.
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The central charge of this theory is :

c =
3
2
(
1 + 2Q2

)
, Q = b+ b−1 . (4.62)

The primary �elds take again the form of vertex operators Va = e
a√
2
ϕ
, with conformal dimensions :

∆a =
1
2
a(Q− a) . (4.63)

In addition, it is also possible to construct primary �elds as normal ordered products of vertex
operators and fermionic �elds : Wa = ψ̄ψe

a√
2
ϕ
whose conformal dimension is naturally :

∆(Wa) =
1
2
a(Q− a) +

1
2
. (4.64)

The �elds Va and Wa will be the main building blocks for us.

Notice that for primary �elds, the three-point function on a sphere on the one hand, and the one
point function on the cylinder (with our usual asymptotical conditions) on the other hand coincide
in the CFT. In the paper [82] the important three points functions involving both �elds Va and Wa

with two other bosonic primary operators have been calculated. In a rather formal way, we de�ne
them as :

C(a1, a2, a3) = 〈Va1Va2Va3〉 , (4.65)

C̃(a1, a2, a3) = 〈Wa1Va2Va3〉 . (4.66)

Before presenting the results we should mention that they involve two generalizations ΥNS and ΥR

of the function Υ (1.92) that are given by :

ΥNS(x) = Υ
(x

2

)
Υ
(
x+Q

2

)
, ΥR(x) = Υ

(
x+ b

2

)
Υ
(
x+ b−1

2

)
. (4.67)

From the symmetries of Υ it is possible to show that they also satisfy the fundamental property :

ΥNS(x) = ΥNS(Q− x) , ΥR(x) = ΥR(Q− x) . (4.68)

The results from [82] are then given by :

C(a1, a2, a3) =
(

1
2πµγ( 1

2bQ)b−1−b2
)Q−a

b

ΥNS(2a1) (4.69)

× Υ′NS(0)ΥNS(2a2)ΥNS(2a3)
ΥNS(a−Q)ΥNS(a1+2−3)ΥNS(a2+3−1)ΥNS(a3+1−2)

,

where a = a1 + a2 + a3, a1+2−3 = a1 + a2 − a3 etc.
The function ΥR(x) was introduced in order to be able to write down the three-point function

C̃(a1, a2, a3) :

C̃(a1, a2, a3) =
(

1
2πµγ( 1

2bQ)b−1−b2
)Q−a

b

ΥNS(2a1) (4.70)

× 2iΥ′NS(0)ΥNS(2a2)ΥNS(2a3)
ΥR(a−Q)ΥR(a1+2−3)ΥR(a2+3−1)ΥR(a3+1−2)

.

In the formulae (4.69), (4.70) we separated the multiplier in the �rst line from the rest because this
is the only one which is not invariant under a1 → Q− a1. This gives the possibility to compute the
re�ection coe�cients, which happen to be the same for Va and Wa :

Va = R(a)VQ−a , Wa = R(a)WQ−a ,

(4.71)

and are given by :

R(a) =
(
πµγ(b2)

)Q−2a
b b−2γ(2ab− b2)γ(2ab−1 − b−2 − 1) .
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Applications to the integrability of the ssG model.

It is also possible to introduce other Super CFT, for example the unitary Super Minimal Models
SMp [79], which are (like non supersymmetric ones) also parametrized by an integer number p. In
the NS sector, the central charge and the conformal dimensions for such models are :

c =
3
2

(
1− 8

p(p+ 2)

)
, (4.72)

∆r,s =
(r(p+ 2)− sp)2 − 4

8p(p+ 2)
+

1
32

(1− (−1)r−s) . (4.73)

Among the �nite number of primaries, the important �eld is again V1,3 with lowest (without taking
into account the identity �eld) conformal dimension :

∆1,3 =
1
2

(
1− 4

p+ 2

)
. (4.74)

Again it is possible starting from the Super Liouville CFT, to recover Super unitary Minimal Models
by taking speci�c values of the central charge. Select for b the particular value :

b2 = − p

p+ 2
, (4.75)

then :

c =
3
2

+ 3Q2 =
3
2

(
1− 8

p(p+ 2)

)
. (4.76)

We have formally reduced the Liouville SCFT parameters to those of a Super Minimal Model.
The Super Liouville �eld V−b has the conformal dimension :

∆−b = −1
2

(1 + 2b2) = −1
2

(
1− 2

p

p+ 2

)
= ∆1,3 . (4.77)

Jumping slightly forward, and assuming that the conformal conservation laws can be deformed in
the same way for Super Minimal Models as for usual Minimal models, this discussion can be taken
as an heuristic argument in favor of the integrability of the Super sine-Gordon model 6. This theory
will be the topic of the next section.

4.2 Supersymmetric sine-Gordon model

In this section we give a very brief description of the N = 1 Supersymmetric sine-Gordon �eld
theory, more details can be found in [83]. In the framework of Perturbed CFT, the ssG model can
be at �rst considered as a perturbation of of the c = 3/2 CFT (one boson+one Majorana fermion)

by the relevant operator V = −µψ̄ψ cos
(
βϕ√

2

)
:

AssG =
∫ ( 1

16π
∂zϕ∂z̄ϕ+

1
2π
(
ψ∂z̄ψ + ψ̄∂zψ̄

)
− 2µψ̄ψ cos

(
βϕ√

2

))
d2z . (4.78)

The dimensional coupling constant µ is of dimension [mass]1−β
2
. The scaling dimension of this

operator ∆pert = 1
2 (1 + β2) is greater than 1

2 , so the UV regularization is needed. The OPE

V (z, z̄)V (0) =
1

(zz̄)1+β2 + C · 1
(zz̄)1−β2 cos

(√
2βϕ

)
+ · · · , (4.79)

shows that the UV regularization is simple: the �rst non-trivial contribution comes with integrable
singularity. The model is shown to be integrable, and as mentioned in the introduction actually is the
simplest example of perturbations of parafermionic models whose integrals of motion are obtained
in [72]. The factorizable S-matrix is known, it coincides with the S-matrix for the spin-1 integrable
magnetic [84], in the context of relativistic �eld theory it was discussed in [85]. The S-matrix is
compatible with the N = 1 Supersymmetry.

The formula for the action (4.78) may contradict the reader's intuition because the supersym-

metric classical action contains the additional term V1 = −πµ
2

β2 cos
(√

2βϕ
)
which we have seen

6More precisely, this is an argument in favor of the integrability of the Super sinh Gordon model.
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already in the OPE (4.79). In the frame work of the PCFT this term, as it is written, cannot be
added to the action for dimensional reasons, at least it needs a new dimensional coupling constant.
In the classical limit β → 0 the situation becomes more complicated. That is why, when proceed-
ing in the opposite direction, i.e. quantizing the classical model by more traditional methods of
QFT, one should indeed begin with the supersymmetric action which includes V1 and take care of
preserving the Supersymmetry. This was done in [86], the result is exactly as expected from our
dimensional considerations: the dimensional coupling constants for the two terms of the interaction
are renormalized di�erently, the term with V1 containing vanishing power of the cuto�.

The subject of the present thesis are the one point functions, this corresponds to the geometry
of the cylinder (that we take of radius R) with a local insertion. Correspondingly we consider two
types of contours: the contour c encircling the local insertion and a contour C which goes around
the cylinder. We will write C± to denote those which are to the right and to the left of the insertion
respectively, and use the notation C talking about any of C±.

Figure 4.2: Super sine-Gordon model on a cylinder with the insertion of a local operator O and
boundary conditions δP .

The cylinder is in�nite, in the terminology of the chapter 2 its generatrix is called the Space
direction, its directrix is called the Matsubara direction. In the present context by the Matsubara
transfer-matrix we understand an operator acting from the Matsubara Hilbert space to itself which
is graphically represented as a slice of our cylinder of small Space length ε. Since the cylinder
is in�nite, both transfer-matrices to the left and to the right of the insertion are replaced by the
one-dimensional projectors on the same eigenvector with maximal eigenvalue. Since the potential
is invariant under ϕ → ϕ + 2

√
2/β we can introduce additional parameter P which is the Floquet

index of the Matsubara wave-function. The one point function (partition function with insertion) is
denoted by

〈O(0)〉P,R . (4.80)

From a di�erent point of view, the ssG model can be formally considered as the perturbation of
the conformal complex Super Liouville model

ASL′ =
∫ [( 1

4π
∂zϕ∂z̄ϕ+

1
2π
(
ψ∂z̄ψ + ψ̄∂zψ̄

)
− µψ̄ψe−i

β√
2
ϕ
)]
d2z , (4.81)

by the relevant operator

W = µψ̄ψe
i β√

2
ϕ
,

whose scaling dimension is ∆ = β2.

Let us for a moment concentrate on this conformal theory. The central charge of the complex
Super Liouville model is

c = 3
2 ĉ , ĉ = 1− 2

(
β−1 − β

)2
. (4.82)

The comparison with the real Super Liouville CFT will be disclosed soon, see (4.157). We will
consider only the NS sector. According to the usual argument the operatorO with scaling dimensions
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(∆O,∆O) in generic position has a uniquely de�ned counterpart in the perturbed theory. We do
not distinguish the two notationally, the UV limit is

lim
r→0

r∆O+∆O 〈O(0)〉P,R = 〈O(0)〉P , (4.83)

where r ∼ R is a dimensionless quantity proportional to R, see (4.116) for details. As usual, in the
conformal case we can easily change the scale to have R = 1. By a change of variables from the
cylinder to the sphere the CFT one point function 〈O(0)〉P is mapped to the three point function
for the image of the operator O (for descendants this image can have rather complicated expression
in terms of O) and two primary �elds with dimensions (compare with (1.88))

δP = P 2 +
ĉ− 1

16
.

The superconformal algebra has been discussed in the previous section. Among its elements we will
single out two kinds of primary �elds parametrized by α ∈ C

Vα = e
iα(β−1−β) 1

2
√

2
ϕ
, Wα = ψ̄ψe

iα(β−1−β) 1
2
√

2
ϕ
. (4.84)

The scaling dimension of Vα is

∆α =
1
8

(β−1 − β)2α(α− 2) .

The scaling dimension of Wα equals ∆α + 1/2, their OPE with T and S are given in (4.54).
From the discussion in the last section, it is clear that the convenient way of �nding the CFT

one point functions consists in using the OPE and the asymptotical conditions

lim
Re(z)→±∞

T (z) = δP −
ĉ

16
, lim

Re(z)→±∞
S(z) = 0 . (4.85)

In Section 4.1.2 we already saw how to apply the above conditions to the computations of one point
functions of descendants.

The Super Liouville model, in addition to the super conformal symmetry, possesses the structure
of an integrable model, namely, it allows an in�nite number of local integrals of motion with chiral
local densities h2j(z), h̄2j(z̄). In our geometry there are two facets of the local integrals of motion:
they act either on the Matsubara Hilbert space or on the local operators inserted at the point z = 0,
and are respectively

I2j−1 =
∮
C

h2j(z)
dz

2πi
, (i2j−1O)(0) =

∮
c

h2j(z)O(0)
dz

2πi
, (4.86)

and similarly for the other chirality. Let us write explicitly the �rst two densities (more on this can
be found in the Appendix 4.9) :

h2(z) = T (z) , h4(z) = T (z)2 − 1
4
S(z)S′(z) . (4.87)

The formula for h2(z) means simply that the light cone component of the energy-momentum tensor
is the �rst integral, the formula for h4(z) is the most important: it is well-known that higher local
integrals of motion are completely de�ned by the requirement of commutativity with the density
h4(z).

Let us return to the perturbed model. It has been said that at least for irrational α the local op-
erator Vα and its Super Virasoro descendants (Wα in particular) have uniquely de�ned counterparts
in the perturbed theory, which we do not distinguish notationally. The local integrals of motion sur-
vive the perturbation, and give rise to an in�nite series of pairs of operators (h2j(z, z̄),Θ2j−2(z, z̄)),
(h̄2j(z, z̄), Θ̄2j−2(z, z̄)) satisfying the continuity equations

∂z̄h2j(z, z̄) = ∂zΘ2j−2(z, z̄) , ∂zh̄2j(z, z̄) = ∂z̄Θ̄2j−2(z, z̄) . (4.88)

the other pair being treated quite similarly. The action on the local operators is

I2j−1 =
∮
C

h2j(z)
dz

2πi
+ Θ2j−2(z)

dz̄

2πi
, (i2j−1O)(0) =

∮
c

h2j(z)O(0)
dz

2πi
+ Θ2j−2(z)O(0)

dz̄

2πi
,

The operators I1, Ī1 are the light-cone components of the energy-momentum tensor.
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Together with c = C+−C− this implies that the one point function of the local operators obtained
by the action of i2j−1, ī2j−1 vanish. So, like in [4] we work with the quotient space Vquo

α ⊗ Vquo

α

obtained from the tensor product of two super conformal Verma modules by factoring out the
descendants of the integrals of motion. The quotient space Vquo

α will be realized as the one obtained
by the action on Vα of modes sr of the super current and of the Virasoro generators lm.

The particle content of the ssG model consists of solitons and, for β2 < 1/2, their bound states.
There is an exact formula relating the mass of the soliton M to the dimensional coupling constant
µ:

M =
4(1− β2)
πβ2

(
π

2
µγ
(1− β2

2

)) 1
1−β2

, (4.89)

here and later we use again the conventional notation γ(x) = Γ(x)
Γ(1−x) .

After these preparations we are now ready to give the description of the integrable structure of
the ssG model by the fermion-current basis. As usual we start with lattice considerations.

4.3 Expectation values in the 19 vertex model

In this section we present the fermion-current basis in the case of the anisotropic lattice model.

4.3.1 General structure

In the lattice case we historically use for the coupling constant

ν =
1− β2

2
.

The paper [6] considers an (inhomogeneous) 19 vertex Fateev-Zamolodchikov model on a cylin-
der (or equivalently in an arbitrary generalized Gibbs ensemble) for the (inhomogeneous) spin-1
integrable spin chain. In what follows we closely follow the notations of [3, 6] with one exception:
we switch from the multiplicative spectral parameter to the additive one. Let us present some basic
formulae. As usual we combine the 19 vertices of the model into the L-operator

L(θ) =



a(θ) 0 0 0 0 0 0 0 0
0 b(θ) 0 c(θ) 0 0 0 0 0
0 0 f(θ) 0 d(θ) 0 h(θ) 0 0
0 c(θ) 0 b(θ) 0 0 0 0 0
0 0 d(θ) 0 e(θ) 0 d(θ) 0 0
0 0 0 0 0 b(θ) 0 c(θ) 0
0 0 h(θ) 0 d(θ) 0 f(θ) 0 0
0 0 0 0 0 c(θ) 0 b(θ) 0
0 0 0 0 0 0 0 0 a(θ)


,

where

a(θ) = sinh ν(θ + πi
2 ) sinh νθ , b(θ) = sinh νπ(θ − πi

2 ) sinh νθ , c(θ) = sinh νπi sinh νθ ,

d(θ) = sinh ν(θ − πi
2 ) sinh νπi , f(θ) = sinh ν(θ − πi

2 ) sinh ν(θ − πi) ,
e(θ) = cosh ν(θ + πi

2 ) cosh ν(θ − πi)− cosh νπi
2 , h(θ) = sinh νπi

2 sinh νπi .

We consider an ought to be in�nite Space chain of length N and a Matsubara chain of length L.
Introduce the rectangular monodromy matrix

TS,M =

y
N/2∏

j=−N/2+1

Tj,M , Tj,M =

x
L∏

m=1

Lj,m ,

where both Space and Matsubara chains can be inhomogeneous,

Lj,m = Lj,m(ξj − τm) , (4.90)
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ξj , (τm) are Space (Matsubara) inhomogeneities. The indices j,m in the right hand side have
double meaning: they count inhomogeneities and the copies in the tensor product. These notations
are standard. Eventually we take the limit N → ∞, the Space inhomogeneities are supposed to
follow some regular pattern in the limit.

Introduce the operators

H(j) =
j∑

k=−N/2+1

Hj , H = H(N/2) ,

with Hj being the Cartan generator of Uq(sl2) acting on j-th Space site. Consider the "primary
�eld" qαH(0), and an operator O acting non trivially on a �nite number of Space sites. The operators
qαH(0)O are called quasi-local. The main object of our study is (2.177)

ZκL
{
qαH(0)O

}
= lim
N→∞

TrSTrM
(
TS,MqκH+αH(0)O

)
TrSTrM

(
TS,MqκH+αH(0)

) , (4.91)

with κ being a parameter. Graphically this is represented on the �gure 4.3.

Figure 4.3: 19 vertex model on a cylinder with quasi-local insertion. The broken lines represent the
spaces where the action of O is non trivial, full circles represent the operator qκHj , empty circles
represent the operator q(κ+α)Hj .

The main result of [6] is that an e�ective way of computation goes through the introduction of
eight families of creation operators acting on the space of quasi-local operators. These families are
fermions b∗(θ), c∗(θ), b̃∗(θ), c̃∗(θ)7, level 1 Kac-Moody currents j+(θ), j−(θ), j0(θ), and an operator
lying in the center of the entire algebra t∗(θ). To be more precise the generating functions of
the quasi-local operators are produced by normally ordered products of fermions and Kac-Moody
currents (the central operator t∗(θ) does not need normal ordering). This is explained in [6, 8] and
recalled in chapter 3 (3.27). Since the most signi�cant results of the present thesis concern the
quasi-local operators created by fermions only, in which case the normal ordering is not needed, we
shall not go into the details.

In the case of homogeneous Space (ξj = 0,∀j) the creation operators are understood as power
series in θ. We shall be interested in the case when the Space inhomogeneities are staggering: ξ at
even sites and −ξ at odd one. In that case every of above operators give rise to two "chiral" families
de�ned as power series in θ− ξ, θ+ ξ. All that is absolutely parallel to [5] so we do not go into much
details.

As we have seen in the two previous chapters, the main advantage of our creation operators is
that on the descendants which they create acting on the "primary �eld", the functional ZκL takes a
simple form. We shall describe a formal prescription for the computation, detailed explanations being
given in [6]. Introduce the creation operators b∗(θ), c∗(θ), t∗(θ), n(θ) (the �rst two are fermions, the
last two are bosons) which (anti)-commute among themselves. Prescribe the following values of the
functional ZκL:

ZκL{b∗(θ+
1 ) · · · b∗(θ+

k )c∗(θ−k ) · · · b∗(θ−1 )t∗(θ0
1) · · · t∗(θ0

m)n(σ1) · · ·n(σn)qαH(0)}

=
n∏
j=1

1
N (σj)

m∏
j=1

ρ(θ0
j ) det

(
ω(θ+

i , θ
−
j )
)
i,j=1,···k ,

7 These operators were denoted by b̄∗(θ), c̄∗(θ) in [6], but we prefer to keep the "bars" for a di�erent, more
important, use.
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where the functions N (θ), ρ(θ), ω(θ, θ′) depending on the Matsubara data will be de�ned soon.
The expectation values of the operators created by j+, j0, j−, b∗, c∗, b̃∗, c̃∗ are computed using the
identi�cation

j+(θ) = n(θ) b∗(θ + πi
2 )b∗(θ − πi

2 ) , (4.92)

j−(θ) = n(θ) c∗(θ − πi
2 )c∗(θ + πi

2 ) ,

j0(θ) = n(θ)
(
b∗(θ + πi

2 )c∗(θ − πi
2 ) + c∗(θ + πi

2 )b∗(θ − πi
2 )
)
,

b∗(θ) = n(θ)
(
b∗(θ + πi

2 )t∗(θ − πi
2 ) + b∗(θ − πi

2 )
)
,

c∗(θ) = n(θ)
(
c∗(θ + πi

2 )t∗(θ − πi
2 ) + c∗(θ − πi

2 )
)
,

b̃∗(θ) = n(θ)
(
b∗(θ + πi

2 ) + t∗(θ + πi
2 )b∗(θ − πi

2 )
)
,

c̃∗(θ) = n(θ)
(
c∗(θ + πi

2 ) + t∗(θ + πi
2 )c∗(θ − πi

2 )
)
.

We had one more operator: t∗(θ), it is similar to t∗(θ) with ρ(θ) being replaced by P(θ), this function
will be given soon. The operator t∗(θ) is in the center, so, we manipulate it as a C-number.

4.3.2 Basic functions

The functions ω(θ, θ′), ρ(θ), P(θ) are de�ned by the Matsubara data. The latter consists of the
length L chain, with inhomogeneities τj , right and left twists κ, κ + α, and the eigenvectors with
maximal eigenvalues of the right and left transfer-matrices:

TM(θ, κ) = Trj
(
Tj,M(θ)qκHj

)
, TM(θ, κ+ α) = Trj

(
Tj,M(θ)q(κ+α)Hj

)
. (4.93)

The corresponding ground state eigenvalues will be denoted respectively by T2(θ, κ), T2(θ, κ + α).
Then we are ready to de�ne the �rst of our functions:

P(θ) =
T2(θ, κ+ α)
T2(θ, κ)

. (4.94)

We shall need the eigenvalues of the two Baxter Q-operators [35]

Q±(θ, κ) = e±νκθ
m∏
j=1

sinh ν(θ − σj(κ)) , (4.95)

and similarly for κ + α. The Bethe roots are denoted by σj(κ). If κ is not too large the maximal
eigenvalue corresponds to m = L/2. We shall also use the eigenvalues of the transfer-matrix with
the two-dimensional auxiliary space T1(θ, κ), for which

T1(θ, κ)Q±(θ, κ) = a(θ)Q±(θ + πi, κ) + d(θ)Q±(θ − πi, κ) , (4.96)

T2(θ, κ) = T1(θ − πi/2, κ)T1(θ + πi/2, κ)− f(θ) , (4.97)

f(θ) = a(θ − πi/2)d(θ + πi/2) , (4.98)

where

a(θ) = s(θ − πi), d(θ) = s(θ + πi), s(θ) =
L∏
j=1

sinh ν(θ − τj) .

We have the relation between T2 and Q±:

T2(θ, κ) = a(θ + πi/2)a(θ − πi/2)
Q±(θ + 3πi/2, κ)
Q±(θ − πi/2, κ)

+ a(θ + πi/2)d(θ − πi/2)
Q±(θ − 3πi/2, κ)Q±(θ + 3πi/2, κ)
Q±(θ − πi/2, κ)Q±(θ + πi/2, κ)

+ d(θ + πi/2)d(θ − πi/2)
Q±(θ − 3πi/2, κ)
Q±(θ + πi/2, κ)

.

Denote y the quantity that has to be interpreted as the free energy of the system :

y(θ) =
T2(θ, κ)
f(θ)

. (4.99)
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We do not explicitly indicate the dependence of y(θ) on κ because it will be never used for another
value of twist.

Now we are ready to de�ne two more functions

ρ(θ) =
T1(θ, κ+ α)
T1(θ, κ)

, N (θ) =
y(θ)

1 + y(θ)
. (4.100)

4.4 Suzuki equations for the free energy

In this section we will prepare the ground for the calculation of scaling equations for the free energy
y. This is the �rst step in order to derive similar equations for the one point functions of fermionic
elements of the fermion-current basis, that is for the function Ω. In this section, we will denote the
Baxter operator simply by 8

Q(θ) = eνκθ
m∏
j=1

sinh ν(θ − σj(κ)) , (4.101)

and T1 and T2 depend only on the twist κ. We shall be interested in the case of real τj and κ which
implies

a(θ) = d(θ̄) . (4.102)

For large L and su�ciently small κ the Bethe roots are close to the two-strings: σ2j−1 ' ηj −
πi/2 , σ2j ' ηj + πi/2 for certain real ηj .

Let us introduce the auxiliary function Y :

Y (θ) = 1 + y(θ) = 1 +
T2(θ)
f(θ)

. (4.103)

The function log(T2(θ)) grows for Re(θ)→ ±∞ slowly (as ±2Lθ). This allows to derive from (4.97)
the �rst important relation:

log T1(θ) = (L ∗ log(fY ))(θ) , (4.104)

where we introduced the kernel which will be often used:

L(θ) =
1

2π cosh θ
,

and ∗ means the usual convolution product.
We have

T2(θ) = λ1(θ) + λ2(θ) + λ3(θ) ,

where

λ1(θ) = a(θ + πi/2)a(θ − πi/2)
Q(θ + 3πi/2)
Q(θ − πi/2)

,

λ2(θ) = a(θ + πi/2)d(θ − πi/2)
Q(θ − 3πi/2)Q(θ + 3πi/2)
Q(θ − πi/2)Q(θ + πi/2)

,

λ3(θ) = d(θ + πi/2)d(θ − πi/2)
Q(θ − 3πi/2)
Q(θ + πi/2)

.

The second auxiliary function is de�ned by

b(θ) =
λ1(θ + πi/2) + λ2(θ + πi/2)

λ3(θ + πi/2)
, B(θ) = 1 + b(θ) . (4.105)

Using the Baxter equation we derive

b(θ) = T1(θ)
Q(θ + 2πi)
Q(θ − πi)

a(θ + πi)
d(θ)d(θ + πi)

. (4.106)

8A priori one has two Baxter operators Q±, that di�er by e±νκθ. However, as we will see soon, the results obtained
in this section depend only on κ2 so we can work with Q+ for simplicity.
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On the other hand it is obvious from the de�nition that

T2(θ + πi/2) = B(θ)d(θ + πi)d(θ)
Q(θ − πi)
Q(θ + πi)

. (4.107)

Multiplying the latter equation by the conjugated one for real θ one easily derives the second im-
portant equation

log y(θ) = (L ∗ log(BB))(θ) . (4.108)

Now comes the main of Suzuki's tricks. Consider a function G(θ) which is regular in the strip
0 < Im(θ) < π, and which decrease su�ciently fast at ±∞. Then having in mind the structure of
zeros of T2(θ) described above we have

∞∫
−∞

(G(θ − θ′) log T2(θ′ + πi/2)−G(θ − θ′ + πi) log T2(θ′ − πi/2)) dθ′ = 0 . (4.109)

Using (4.107) we rewrite this as follows

∞∫
−∞

(G(θ − θ′) +G(θ − θ′ + πi)) log
Q(θ′ + πi)
Q(θ′ − πi)

dθ′

=

∞∫
−∞

(G(θ − θ′) log(d(θ′)d(θ′ + πi))−G(θ − θ′ + πi) log(a(θ′)a(θ′ − πi))) dθ′

+

∞∫
−∞

(
G(θ − θ′) log(B(θ′))−G(θ − θ′ + πi) log(B(θ′))

)
dθ′ .

The goal now is to rewrite the left hand side in terms of the auxiliary functions y(θ), b(θ). From
(4.106) and (4.104) one derives

log b(θ) = log
(
Q(θ + 2πi)
Q(θ − πi)

)
+ log

(
a(θ + πi− i0)
d(θ)d(θ + πi)

)
+

∞∫
−∞

L(θ − θ′) log (f(θ′)Y (θ′)) dθ′ .

So, our goal will be achieved if we �nd such G(θ) that

∞∫
−∞

(G(θ − θ′) +G(θ − θ′ + πi)) log
Q(θ′ + πi)
Q(θ′ − πi)

= log
(
Q(θ + 2πi)
Q(θ − πi)

)
+ πiνκ(4G− 3) , (4.110)

where the last term takes account of the multiplier eνκθ in Q(θ), G being the average of G over the
real line. Recalling that in the formula for Q(θ) (4.95) the Bethe roots are approximately two-string
one �nds G(θ) by Fourier transform (more details on this derivation are given in the appendix 4.10):

G(θ) =
1

4π

∞∫
−∞

sinh
(
πk
2ν (1− 3ν)

)
sinh

(
πk
2ν (1− 2ν)

)
cosh

(
πk
2

)e−ikθdk . (4.111)

Notice that G = 1−3ν
2(1−2ν) .

Finally, after some computation we arrive at

log b(θ) = 2
∑
j

log
(

tanh
1
2

(θ − τj − i0)
)
− πiνκ

1− 2ν
(4.112)

+ (L ∗ log Y )(θ) + (G ∗ logB)(θ)− (G ∗ logB)(θ + πi) .

We obtain the massive relativistic model from the inhomogeneous lattice one by the usual pre-
scription: set τj = (−1)jτ and consider the scaling limit

τ →∞ , L→∞, 2Le−τ → 2πMR �nite .
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In this situation

2
∑
j

log
(

tanh
1
2

(θ − τj)
)
→ −2πMR cosh(θ) .

The idea is that in this limit we should obtain the eigenvalue of the transfer-matrix corresponding
to the NS ground state with the twist de�ned by

√
2βP = νκ . (4.113)

Here
√

2 comes from the normalization of the topological charge consistent with (4.78). The nor-
malization of this twist is explained by the requirement that in the high temperature limit R → 0
the eigenvalue of the �rst integral of motion, I1, which is nothing but L0 − c/24 is given by

i1 = P 2 − 1
16
.

4.4.1 Numerical work

The function b(θ) rapidly decreases when Re(θ) → ±∞, 0 > Imθ > −π/2. Introducing the shift
0 < πγ < π/2 and moving the contours of integration we arrive at the system which allows a
numerical investigation:

log b(θ − πiγ) = −2πMR cosh(θ − πiγ)− πi
√

2
β

P + 1
2 log 2 (4.114)

+

∞∫
−∞

L(θ − θ′ + πiγ) log
(

1
2Y (θ′)

)
dθ′

+

∞∫
−∞

[
G(θ − θ′) logB(θ′ − πiγ)−G(θ − θ′ + πi(1− 2γ)) logB(θ′ − πiγ)

]
dθ′ .

log y(θ) =

∞∫
−∞

2Re
[
L(θ − θ′ + πiγ) logB(θ′ − πiγ)]dθ′ . (4.115)

The integrals containing logB converge at in�nities very rapidly because the absolute value of
the integrand is estimated as exp(−Const · e|θ|) with positive Const. The integral with log( 1

2Y )
converges much more slowly because y(θ) behaves as 1 + O(e−|θ|). In the numerical computations
we replace integrals by �nite sums, and the above estimates mean that the number of points needed
for the approximation of the integral containing log( 1

2Y ) should be bigger than that for the integrals
containing logB.

Our goal is to consider the high temperature limit R→ 0. The previous formulae are simpli�ed
if we use the parametrization:

R =
β√
2

(
π

2
µγ
(1− β2

2

))− 1
1−β2

e−θ0 , (4.116)

with θ0 being a dimensionless parameter. Now the driving term in the equation (4.114) becomes

−4
√

2
1− β2

β
e−θ0 cosh(θ − iγ) .

The local integrals of motion are extracted form y(θ) (recall that y represents the normalized
transfer matrix of auxiliary spin 1 (4.99)). Namely, for θ →∞ the asymptotical formula holds:

log y(θ) '
∞∑
k=1

C2k−1i2k−1(θ0)e−(2k−1)θ , (4.117)

similarly the asymptotic for θ → −∞ is related to ī2k−1(θ0). The constants Cm are given by

Cm = − β√
2(1− β2)

√
π Γ

(
m
2

)
Γ
(

1
1−β2m

)
(m− 1)!

(
m+1

2

)
!Γ
(

1 + β2

1−β2m
) . (4.118)
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This normalization is chosen for the sake of the conformal limit, the appearance of this kind of
coe�cients is not surprising for a reader familiar with [35], we shall give more explanation in the
next section.

The main advantage of the above normalization is that in the high temperature limit we have

e−(2k−1)θ0i2k−1(θ0) →
θ0→∞

i2k−1 ,

with i2k−1 being the local integrals of motion for the CFT case normalized as follows:

i2k−1 = P 2k + · · · .

Now we start the numerical work. Our goal is to obtain the formulae for i1, i3, i5 by interpolation
in P and ν. This may sound as a purely academic exercise having in mind that these formulae can be
obtained analytically as explained in the next section. However, in our further study we shall need
to guess the formulae for the one point functions in the integrable basis of Supersymmetric CFT,
which are unknown. That is why we want to be sure that our numerical methods are su�ciently
precise.

The twist P cannot be too large, we restrict ourselves to P ≤ 0.2, we take β su�ciently close
to 1. For given β we interpolate in P from the solutions to (4.114), (4.115) for θ0 = 18. Integrals
are replaced by sums with step 0.1, the shift is γ = 0.1, the limits in the integrals containing
logB(θ − πiγ) are [−24, 24], the limits of the integral containing log(Y (θ)/2) are [−72, 72].

We normalize by the leading coe�cient which is later compared with C2k−1. Doing that for a
su�cient number of di�erent β's and assuming that due to the general structure of CFT the local
integrals must be polynomials in

Q2 = − (1− β2)2

β2
,

we were able to interpolate further:

i1 = P 2 − 1
16

(4.119)

i3 = P 4 − 5
16
P 2 +

1
512

(9 + 2Q2) ,

i5 = P 6 − 35
48
P 4 +

537 + 46Q2

3072
P 2 − 475 + 190Q2 + 24Q4

49152
.

We shall not go into the details of the interpolation restricting ourselves to two examples in which
we compare the results of the numerical computations using the equations (4.114), (4.115) with the
analytical formulae (4.118), (4.119).

It is more direct to compare the computational results with

jm = Cmim .

Here are the results for β2 = 1
2 :

P j1 comp. j3 comp. j5 comp. j1 analyt. j3 analyt. j5 analyt.
0.02 0.195092899 -0.121737971 0.385270717 0.195092904 -0.121737972 0.385270720
0.04 0.191322988 -0.118811577 0.375422434 0.191322993 -0.118811578 0.375422438
0.06 0.185039803 -0.113984520 0.359237764 0.185039807 -0.113984521 0.359237767
0.08 0.176243343 -0.107332198 0.337056416 0.176243348 -0.107332199 0.337056419
0.1 0.164933610 -0.0989601675 0.309346006 0.164933614 -0.0989601686 0.309346008
0.12 0.151110603 -0.0890041464 0.276694070 0.151110607 -0.0890041473 0.276694072
0.14 0.134774321 -0.0776300103 0.239797812 0.134774325 -0.0776300111 0.239797814
0.16 0.115924766 -0.0650337947 0.199451558 0.115924769 -0.0650337954 0.199451559
0.18 0.0945619364 -0.0514416943 0.156531934 0.0945619389 -0.0514416947 0.156531935
0.2 0.0706858328 -0.0371100629 0.111980775 0.0706858347 -0.0371100632 0.111980775

Here are the results for β2 = 3
5 :
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P j1 comp. j3 comp. j5 comp. j1 analyt. j3 analyt. j5 analyt.
0.02 0.267141860 -0.315491660 1.87869822 0.267141961 -0.315491728 1.87869854
0.04 0.261979700 -0.308328920 1.83430033 0.261979797 -0.308328984 1.83430063
0.06 0.253376100 -0.296514050 1.76131551 0.253376191 -0.296514109 1.76131579
0.08 0.241331061 -0.280231598 1.66124365 0.241331143 -0.280231651 1.66124390
0.1 0.225844581 -0.259739931 1.53614935 0.225844653 -0.259739975 1.53614955
0.12 0.206916661 -0.235371233 1.38862669 0.206916720 -0.235371267 1.38862685
0.14 0.184547302 -0.207531507 1.22175395 0.184547345 -0.207531531 1.22175405
0.16 0.158736503 -0.176700578 1.03903821 0.158736527 -0.176700590 1.03903826
0.18 0.129484265 -0.143432085 0.844349942 0.129484268 -0.143432087 0.844349948
0.2 0.0967905868 -0.108353490 0.641847507 0.0967905654 -0.108353481 0.641847468

It is clear from these tables that the agreement is quite good. It can be made better by choosing
bigger θ0, using �ner discretization etc. But this is not needed for our goals since our precision was
su�cient for a successful interpolation.

4.4.2 Eigenvalues of integrals from ODE - CFT correspondence

The ODE - CFT correspondence is the statement that in the conformal case the vacuum eigenval-
ues of the operator Q(θ) coincide with the determinants of certain ordinary di�erential equations.
The eigenvalues of the transfer-matrices Tj(θ) coincide with certain Stokes multipliers for the corre-
sponding equation. In the case of c < 1 CFT this statement goes back to a remarkable observation
due to Dorey ans Tateo [75], which was later essentially clari�ed and generalized by Bazhanov,
Lukyanov, Zamolodchikov [76]. We shall not go into details of further generalization of the ODE-
CFT correspondence and its generalization to the massive case, restricting ourselves to the case of
Supersymmetric CFT which is considered in the present thesis. It is useful to consider a more gen-
eral situation of a parafermion Ψk interacting with a free boson because there is certain di�erence
between k even or odd. The c = 1 CFT corresponds to k = 1, and the c = 3/2 case, considered in
our situation, corresponds to k = 2. In general case Lukyanov [77] proved that the operator Q(θ) is
related to the following ODE:

ψ′′(z)−
(

(z2α − E)k +
l(l + 1)
z2

)
ψ(z) = 0 , (4.120)

the relation of E,α, l to parameters θ, β2, k, P is as follows

α =
1− β2

kβ2
, E =

β√
k
e

1−β2

k (θ−θ0) , l =

√
k

β
P − 1

2
. (4.121)

and θ0 is de�ned by a formula analogous to (4.116). The parameter α is positive, so, we are dealing
with a self-adjoint operator on the positive half-line. Then Q(E) is just its determinant (here and
later we allow ourselves to use both Q(θ) and Q(E) having in mind the identi�cation (4.121)).

The eigenvalues Q(E) and Tj(E) are entire functions of E. We are interested in their large E
asymptotics. It is known that for logQ(E) and for log Tj(E) with j up to k − 1 the asymptotics go

in two kinds of exponents: E
− 2j−1

2k(1−β2) and E
j

kβ2 , (j ≥ 1), the coe�cients being proportional to the
eigenvalues of local and non-local integrals of motion. The latter are of no interest for us, that is
why we shall deal directly with log Tk(E) which possesses an exceptional property of containing in

its asymptotics E
− 2j−1

2k(1−β2) only. In order to explain that we have to consider (4.120) as an equation
of a complex variable.

Let z = |z|eiϕ. Since the parameter α is generally irrational we are dealing with an in�nite
covering of the plane: −∞ < ϕ <∞.

The main property allowing to investigate the determinant and the Stokes multipliers is the fact
that for any solution ψ(z, E) the function

(Ωψ)(z, E) = q1/2ψ(pz, q2E) , p = eπiβ
2
, q = eπi

1−β2

k ,

is also a solution.

Consider the solution χ(z, E) characterized by the following asymptotics for real z → +∞:

χ(z, E) ' z−αk2 exp
(
− zαk+1

αk + 1

)
.
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Following the [76, 77] and using the fusion relations it is not hard to derive for any j the relation
between the three solutions:

(Ωj+1χ)(z, E) = −Tj−1(Eqj+1)χ(z, E) + Tj(Eqj)(Ωχ)(z, E) .

The asymptotic behavior at E →∞ is investigated by the WKB method, where the important role

is played by the the function
√

(zα − E)k + l(l+1)
z2 .

One rescales z for large E so that the term l(l+1)
z2 is small. It is clear that exactly for j = k the

function Tk(Eqk) can be considered as the Stokes multiplier between growing solutions (Ωχ)(z, E)
and (Ωk+1χ)(z, E) for two neighboring sectors which are semi-classically separated by the cut of the
square root. This implies a simple formula for the asymptotics of log Tk(Eqk) given below.

Let us change variables rewriting (4.120) as

a2ψ′′(x)−
(

(x2α − 1)k + a2 l(l + 1)
x2

)
ψ(x) = 0 , (4.122)

where a2 = E
− k

(1−β2) .

We prefer to write the WKB formulae in a somewhat XIX century way in order to avoid some
total derivatives. Namely, we present the solution to (4.122) in the form

ψ(x, x0) = S(x, a)
1
2 exp

(1
a

x∫
x0

dy

S(y, a)

)
,

where S(x, a) satis�es the Riccati equation (we omit arguments)

4
a2

(
1− FS2

)
− S′2 + 2S′′S + x−2S2 = 0 ,

with

F (x, a, b) = (x2α − 1)k +
b2

x2
,

where we introduced b = a(l + 1/2) (not to be confused with the Liouville parameter), in spite of
the fact that b � 1 it is convenient to develop S into a series in this parameter only at the �nal
stage. The ansatz for ψ is di�erent from usual quantum mechanical formulae, and it allows to avoid
the appearance of redundant total derivatives. Using Riccati equation we �nd for S(x, a) the power
series

S(x, a, b) =
∞∑
k=0

a2kSk(x, b) . (4.123)

In particular,
1

S0(x, b)
=
√
F (x, a, b) .

According to our reasoning concerning the Stokes multiplier, we have for the asymptotics

log Tk(Eqk) ' 1
a

∫
C

dy

S(y, a)
, (4.124)

where the contour C goes from ∞ · e+i0 to ∞ · e−i0 around the cut of
√
F (x, a, b). Let us consider

the contribution from S0(x, b). Recalling that b� 1 we develop

1
S0(x, b)

=
∞∑
p=0

(
1/2
p

)
(x2α − 1)

k(1−2p)
2 b2px−2p .

Now the di�erence between k odd or even becomes clear. We have to evaluate the integral∫
C

(y2α − 1)
k(1−2p)

2 y−2pdy .
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By the change of variables w = y2α this integral reduces for odd k to a beta-function and for even k
to a binomial coe�cient. In spite of this computational di�erence the �nal result does not depend
on the parity of k, after some simpli�cation we get

∫
C

(y2α − 1)
k(1−2p)

2 y−2pdy =
πikβ2

1− β2
e−

πi
2 k(2p−1)

Γ
(
k(2p−1)
2(1−β2)

)
Γ
(

1 + kβ2(2p−1)
2(1−β2)

)
Γ
(
k(2p−1)

2

) .
Plugging this into (4.124) we �nd the constants Cm. Higher corrections in a

2 following from (4.123)
are considered similarly. For k = 2 one �nds exactly the expressions (4.119).

From the above perspective, this method allows to compute the eigenvalue i7 that is hardly
accessible by interpolation, and was not given in [7] :

i7 = P 8 − 21
16
P 6 +

7(3881 + 202Q2)
38400

P 4 − 301877 + 57734Q2 + 3800Q4

1843200
P 2

+
1089809 + 622748Q2 + 149660Q4 + 12240Q6

117964800
. (4.125)

4.5 Lattice ω function

Now that we obtained the scaling equations for the free energy, we can move towards the computation
of one point functions. We start by considering the main piece ω on the lattice.

4.5.1 De�nitions

Recall the de�nition of the function ω from [3] and given also in the section 2.7 . This function splits
in two parts:

ω(θ, θ′) = ωhol(θ, θ′) + ωsing(θ, θ′) , (4.126)

where ωhol(θ, θ′) as a function of θ has no other singularities but simple poles at the zeros of T1(θ, κ),
and ωsing is its singular part given by :

ωsing(θ, θ′) =
1

T1(θ, κ)T1(θ′, κ)

(
a(θ)d(θ′)ψ(θ − θ′ + πi, α)− d(θ)a(θ′)ψ(θ − θ′ − πi, α)

)
(4.127)

+ (1 + ρ(θ)ρ(θ′))φ(θ − θ′, α)− ρ(θ)φ(θ − θ′ + πi, α)− ρ(θ′)φ(θ − θ′ − πi, α) ,

where

ψ(θ, α) = 2ν
eανθ

e2νθ − 1
, (4.128)

and φ is de�ned as a solution of the di�erence equation:

∆θφ(θ, α) = φ(θ + iπ, α)− φ(θ − iπ, α) = ψ(θ, α) . (4.129)

We shall remind the normalization conditions for the function ω. Start by de�ning the function
ϕ:

ϕ(θ) =
L∏
j=1

1
sinh ν(θ − τj − πi) sinh ν(θ − τj) sinh ν(θ − τj + πi)

,

satisfying
d(θ + πi)ϕ(θ + πi) = a(θ)ϕ(θ) ,

and the measure

dµ±(θ) = Q∓(θ, κ+ α)Q±(θ, κ)ϕ(θ)dθ . (4.130)

The poles of ϕ come in triplets re�ecting the fact that the Matsubara chain consists of spin-1
representations. Let the contour Γj go around the three points τj , τj ± πi. The normalization
conditions on the function ω(θ, η) from [3] are given by :∫

Γj

T1(θ, κ)ω(θ, η)dµ+(θ) = 0 . (4.131)
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The equations (4.127) , (4.131) de�ne ω(θ, θ′) completely. Due to the deformed Riemann bilinear
identity the following relation is automatic:∫

Γj

T1(θ, κ)ω(θ, η)dµ−(θ) = 0 .

In order to make the further formulae more readable we shall denote by τ without index any of the
inhomogeneities τj .

For future use we rewrite the normalization condition as

ω(τ + πi, η) + Y (τ)ω(τ, η) +X(τ)ω(τ − πi, η) = 0 , (4.132)

with

X(θ) =
T2(θ + πi/2, κ+ α)
a(θ)d(θ + πi)

, Y (θ) =
1
ρ(θ)

(1 +X(θ)) .

Similarly,

ω(η, τ + πi) + Y (τ)ω(η, τ) +X(τ)ω(η, τ − πi) = 0 . (4.133)

4.5.2 Rewriting normalization conditions

Introduce

F+(θ, η) = 〈b∗(θ)c∗(η)〉 =
1
N (θ)

(
ω(θ + πi/2, η)ρ(θ − πi/2) + ω(θ − πi/2, η)

)
,

F̃+(θ, η) = 〈b̃∗(θ)c∗(η)〉 =
1
N (θ)

(
ω(θ + πi/2, η) + ρ(θ + πi/2)ω(θ − πi/2, η)

)
,

F−(η, θ) = 〈b∗(η)c∗(θ)〉 =
1
N (θ)

(
ω(η, θ + πi/2)ρ(θ − πi/2) + ω(η, θ − πi/2)

)
,

F̃−(η, θ) = 〈b∗(η)c̃∗(θ)〉 =
1
N (θ)

(
ω(η, θ + πi/2) + ρ(θ + πi/2)ω(η, θ − πi/2)

)
.

These functions describe the pairings between the fused operators b∗(θ), c∗(θ) with not fused
ones c∗, b∗. Clearly the knowledge of these pairings is su�cient to compute any expectation value
containing b∗(θ), c∗(θ). So, the analytical properties of F+(θ, η), etc characterize in the weak sense
the analytical properties of b∗(θ), c∗(θ).

Similarly, in order to understand the analytical properties of j+(θ), j0(θ), j−(θ) we introduce

G+(θ, η1, η2) = 〈j+(θ)c∗(η2)c∗(η1)〉 =
1
N (θ)

∣∣∣∣ω(θ + πi/2, η1) ω(θ + πi/2, η2)
ω(θ − πi/2, η1) ω(θ − πi/2, η2)

∣∣∣∣ ,
G−(η1, η2, θ) = 〈b∗(η1)b∗(η2)j−(θ)〉 =

1
N (θ)

∣∣∣∣ω(η1, θ + πi/2) ω(η2, θ + πi/2)
ω(η1, θ − πi/2) ω(η2, θ − πi/2)

∣∣∣∣ ,
G0(θ, η1, η2) = 〈j0(θ)b∗(η1)c∗(η2)〉

=
1
N (θ)

(
(ω(θ + πi/2, θ − πi/2)− ω(θ − πi/2, θ + πi/2))ω(η1, η2)

+ ω(θ − πi/2, η2)ω(η1, θ + πi/2)− ω(θ + πi/2, η2)ω(η1, θ − πi/2)
)
,

where in the last line we imply

ω(θ+πi/2, θ−πi/2)−ω(θ−πi/2, θ+πi/2) = lim
θ′→θ

(
ω(θ+πi/2, θ′−πi/2)−ω(θ−πi/2, θ′+πi/2)

)
.

We want to rewrite the normalization conditions in terms of these functions and P(θ) only. As



4.5. LATTICE ω FUNCTION 113

before let τ be any inhomogeneity. Then we claim that

F+(τ + πi/2, η) + P(τ + πi/2)F̃+(τ − πi/2, η) = 0 , (4.134)

F̃+(τ + πi/2, η) + P(τ + πi/2)F+(τ − πi/2, η) = 0 ,

F−(η, τ + πi/2) + P(τ + πi/2)F̃−(η, τ − πi/2) = 0 ,

F̃−(η, τ + πi/2) + P(τ + πi/2)F−(η, τ − πi/2) = 0 ,

G+(τ + πi/2, η1, η2)− P(τ + πi/2)G+(τ − πi/2, η1, η2) = 0 ,

G−(τ + πi/2, η1, η2)− P(τ + πi/2)G−(τ − πi/2, η1, η2) = 0 ,

G0(τ + πi/2, η1, η2)− P(τ + πi/2)G0(τ − πi/2, η1, η2) = 0 .

Let us prove the �rst of these identities, others are checked similarly.
We begin with some useful identities. Using

a(τ + πi) = 0 , d(τ − πi) = 0 ,

we �nd

T1(τ + πi, κ) = d(τ + πi)
Q±(τ, κ)

Q±(τ + πi, κ)
, (4.135)

T1(τ − πi, κ) = a(τ − πi) Q±(τ, κ)
Q±(τ − πi, κ)

,

T2(τ + πi/2, κ) = d(τ + πi)d(τ)
Q±(τ − πi, κ)
Q±(τ + πi, κ)

,

T2(τ − πi/2, κ) = a(τ − πi)a(τ)
Q±(τ + πi, κ)
Q±(τ − πi, κ)

.

For (4.134) we have

F+(τ + πi/2, η) + P(τ + πi/2)F̃+(τ − πi/2, η)

=
1

N (τ + πi/2)

(
ω(τ + πi, η)ρ(τ) + ω(τ, η)

(
1 +
N (τ + πi/2)
N (τ − πi/2)

P(τ + πi/2)
)

+ ω(τ − πi, η)ρ(τ)
N (τ + πi/2)
N (τ − πi/2)

P(τ + πi/2)
)
.

Using (4.135) we compute

N (τ + πi/2)
N (τ − πi/2)

P(τ + πi/2) =
d(τ)
a(τ)

Q−(τ − πi, κ+ α)
Q−(τ + πi, κ+ α)

= X(τ) .

Using the latter identity we evaluate

F+(τ + πi/2, η) + P(τ + πi/2)F̃+(τ − πi/2, η)

=
ρ(τ)

N (τ + πi/2)

(
ω(τ + πi, η) + ω(τ, η)

Q−(τ, κ+ α)T1(τ, κ+ α)
a(τ)ρ(τ)Q−(τ + πi, κ+ α)

+X(τ)ω(τ − πi, η)
)

=
ρ(τ)

N (τ + πi/2)

(
ω(τ + πi, η) + Y (τ)ω(τ, η) +X(τ)ω(τ − πi, η)

)
= 0 ,

due to (4.131).

4.5.3 The case α = 0

In the case α = 0 the left and right eigenstates coincide, hence ρ(θ) = 1 and in the weak sense there
is no di�erence between b∗, c∗ on the one hand and b̃∗, c̃∗ on the other. So, all the expectation
values containing only fermions are expressed via one function

Ω(θ, θ′) =
1

N (θ)N (θ′)
(4.136)

×
(
ω(θ + πi

2 , θ
′ + πi

2 ) + ω(θ + πi
2 , θ

′ − πi
2 ) + ω(θ − πi

2 , θ
′ + πi

2 ) + ω(θ − πi
2 , θ

′ − πi
2 )
)
.
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We want to �nd an independent way of de�ning this function. As explained in [3] for α = 0 there
is an important analogy between the function ω(θ, θ′) and the normalized second kind di�erential
on a hyperelliptic Riemann surface. The normalization condition (4.131) is the analogue of the
requirement of vanishing of the a-periods.

We set
τ = τj .

Consider the function

ω̃(θ) =
δ

δτ

{
log t(θ)− log

(s(θ − πi)s(θ + πi)
s(θ)

)}
.

Notice that
δ

δτ
log
(s(θ − πi)s(θ + πi)

s(θ)

)
= (δ+

θ )−1 δ

δτ
log
(
s(θ − 2πi)s(θ + πi)

)
,

where δ+
θ f(θ) = f(θ) + f(θ − πi).

We want to show that ω̃(θ) is a normalized di�erential. First we prove that∫
Γk

T1(θ)ω̃(θ)dµ±(θ) = 0 , k 6= j .

The case k = j is special, instead of a direct computation for this case we consider Γ±∞ = [±Λ,±Λ+
πi/ν] for |λ| > max(|τk|). For Γ±∞ the computation is exactly the same as for Γk, k 6= j.

Recall that (in the case α = 0 we have dµ+ = dµ− = dµ) :

dµ(θ) = Q+(θ)Q−(θ)ϕ(θ)dθ .

We have two identities [3]:∫
Γk

T1(θ)(δ+
θ )−1f(θ)dµ(θ) =

∫
Γk

d(θ)f(θ)Q+(θ − πi)Q−(θ)ϕ(θ)dθ ,

=
∫

Γk

a(θ)f(θ + πi)Q+(θ + πi)Q−(θ)ϕ(θ)dθ .

Using these identities we derive∫
Γk

T1(θ)ω̃(θ)dµ(θ)

=
∫

Γk

{
Q+(θ)

δ

δτ
t(θ)−Q+(θ + πi)

δ

δτ
a(θ)−Q+(θ − πi) δ

δτ
d(θ)

}
Q−(θ)ϕ(θ)dθ

=
∫

Γk

{
a(θ)

δ

δτ
Q+(θ + πi) + d(θ)

δ

δτ
Q+(θ − πi)− t(θ) δ

δτ
Q+(θ)

}
Q−(θ)ϕ(θ)dθ

=
∫

Γk

{
a(θ)Q−(θ)

δ

δτ
Q+(θ + πi)− d(θ)Q−(θ − πi) δ

δτ
Q+(θ)

}
ϕ(θ)dθ

+
∫

Γk

{
d(θ)Q−(θ)

δ

δτ
Q+(θ − πi)− a(θ)Q−(θ + πi)

δ

δτ
Q+(θ)

}
ϕ(θ)dθ = 0 .

As a normalized di�erential ω̃(θ) must be expressible as a linear combination of ω(θ, ηj) for some
set {ηj}. The structure of singularities of ω̃(θ) suggests that this set is just τ, τ + πi. To be precise
we claim that

ω̃(ζ) =
1

N (τ + πi
2 )

(ω(ζ, τ) + ω(ζ, τ + πi)) . (4.137)

Let us prove this. We have

ω(θ, τ) + ω(θ, τ + πi) = ωhol(θ, τ) + ωhol(θ, τ + πi) + ωsing(θ, τ) + ωsing(θ, τ + πi) ,

where ωhol(θ, η) as a function of θ has no other singularities but simple poles at zeros of T1(θ),

ωsing(θ, η) = δ−θ δ
−
η ∆−1

θ (ν coth ν(θ − η))

+
1

T1(θ)T1(η)
(
a(θ)d(η)ν coth ν(θ − η + πi)− d(θ)a(η)ν coth ν(θ − η − πi)

)
, (4.138)
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which implies

ωsing(θ, τ) + ωsing(θ, τ + πi) = ν coth ν(θ − τ − πi)− ν coth ν(θ − τ)

+
a(θ)d(τ)
T1(θ)T1(τ)

ν coth ν(θ − τ + πi)− d(θ)a(τ)
T1(θ)T1(τ)

ν coth ν(θ − τ − πi)

+
a(θ)d(τ + πi)
T1(θ)T1(τ + πi)

ν coth ν(θ − τ) .

=
a(θ)d(τ)
T1(θ)T1(τ)

ν coth ν(θ − τ + πi) +
T1(θ)T1(τ)− d(θ)a(τ)

T1(θ)T1(τ)
ν coth ν(θ − τ − πi)

− T1(θ)T1(τ + πi)− a(θ)d(τ + πi)
T1(θ)T1(τ + πi)

ν coth ν(θ − τ) .

Using this identity one �nds

resθ=τ−πi
(
ωsing(θ, τ) + ωsing(θ, τ + πi)

)
=

a(τ − πi)d(τ)
T1(τ − πi)T1(τ)

= N (τ +
πi

2
) ,

resθ=τ+πi

(
ωsing(θ, τ) + ωsing(θ, τ + πi)

)
=

T2(τ + πi
2 )

T1(τ + πi)T1(τ)
= N (τ +

πi

2
) ,

resθ=τ
(
ωsing(θ, τ) + ωsing(θ, τ + πi)

)
= −

T2(τ + πi
2 )

T1(τ + πi)T1(τ)
= −N (τ +

πi

2
) .

This �nishes the proof.
Now we obtain the most important relation of this section :

δ

δτ
log
(
T2(θ)
f(θ)

)
(4.139)

=
1
N (θ)

(
δ

δτ
log T1(θ + πi/2) +

δ

δτ
log T1(θ − πi/2)

)
−
(
f(θ)
T2(θ)

+ 1
)
δ

δτ
log f(θ)

=
1
N (θ)

(
δ

δτ
log T1(θ + πi/2) +

δ

δτ
log T1(θ − πi/2)− δ

δτ
log f(θ)

)
=

1
N (θ)N (τ + πi

2 )

(
ω(θ +

πi

2
, τ) + ω(θ +

πi

2
, τ + πi) + ω(θ − πi

2
, τ) + ω(θ − πi

2
, τ + πi)

)
.

= Ω(θ, τ +
πi

2
) .

4.6 Scaling limit of the function Ω

In considering the scaling limit, we want, similarly to [4, 5], to combine two seemingly inconsistent
requirements: α 6= 0 and ρ(θ) = P(θ) = 1. In fact this can be achieved for a discrete set of α's
introducing the fermionic screening operators [4], and then invoking the analytical continuation. As
will be clear later our de�nition is consistent rather with the understanding of the model in terms
of the action (4.81).

Remember that the scaling limit presented in section 4.4 consists in taking in both Space and
Matsubara directions staggering inhomogeneities τj = (−1)jτ , and considering

τ →∞ , L→∞, 2Le−τ → 2πMR �nite ,

where R is the radius of the cylinder, M is the mass of the soliton (4.89).
For ρ(θ) = P(θ) = 1 in the weak sense the operators b̃∗(ζ), c̃∗(ζ) coincide with the operators

b∗(ζ), c∗(ζ). Similarly to [4, 5] the relations (4.134) hint that the asymptotics for θ → ±∞ of the
fermions (KM currents) are anti-periodic (periodic) in θ. Explicitly we assume

b∗(θ) '
θ→±∞

∞∑
j=1

e∓(2j−1)θb∗2j−1 , c∗(θ) '
θ→±∞

∞∑
j=1

e∓(2j−1)θc∗2j−1 ,

jσ(θ) '
θ→±∞

∞∑
j=1

e∓2jθjσ2j , σ = 0,± .
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As we have seen, the Suzuki equations (4.114) are obtained by this procedure from the corresponding
lattice equations. The latter have the same structure as (4.114), but di�er only by the driving term.
In the case of the lattice it is given by :

D(θ) = 2
∑
j

log
(

tanh
1
2

(θ − τj − i0)
)
− πiνκ

1− 2ν
, (4.140)

for which we have in the scaling limit

D(θ)→ −2πMR cosh(θ − πiγ)− πi
√

2
β

P ,

where P was given in (4.113).

4.6.1 Equations for Ω

Now we shall present a conjecture for the scaling limit of Ω(θ, θ′) in the case α 6= 0 and ρ(θ) =
P(θ) = 1 and provide some justi�cations for it :

Ω(θ, θ′) =

∞∫
−∞

L(θ − η + πiγ)G(η − πiγ, θ′)dmb(η − πiγ) (4.141)

+

∞∫
−∞

L(θ − η − πiγ)G(η + πiγ, θ′)dmb(η + πiγ) ,

where for the auxiliary functions we have the linear equations

G(θ − πiγ, θ′) = L(θ − θ′ − πiγ) +

∞∫
−∞

L(θ − η − πiγ)Ω(η, θ′)dmy(η) (4.142)

+

∞∫
−∞

Gα(θ − η)G(η − πiγ, θ′)dmb(η − πiγ)

−
∞∫
−∞

Gα(θ − η + πi(1− 2γ))G(η + πiγ, θ′)dmb(η + πiγ) ,

G(θ + πiγ, θ′) = L(θ − θ′ + πiγ) +

∞∫
−∞

L(θ − η + πiγ)Ω(η, θ′)dmy(η) (4.143)

+

∞∫
−∞

Gα(θ − η − πi(1− 2γ))G(η − πiγ, θ′)dmb(η − πiγ)

−
∞∫
−∞

Gα(θ − η)G(η + πiγ, θ′)dmb(η + πiγ) ,

and we de�ned 9

dmy(θ) =
y(θ)

1 + y(θ)
, dmb(θ) =

b(θ)
1 + b(θ)

, dmb(θ) =
b(θ)

1 + b(θ)
,

L(θ) =
1

2π cosh θ
, Gα(θ) =

1
4π

∞∫
−∞

sinh
(

3β2−1
2(1−β2)πk + πiα

2

)
sinh

(
β2

1−β2πk + πiα
2

)
cosh

(
1
2πk

)eikθdk . (4.144)

The shift γ is an arbitrary real number from the interval (0, π/2).

9Of course we have Gα=0(θ) = G(θ) de�ned in (4.111).
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The most important support for this de�nition is provided by the case α = 0 for which the
requirements ρ(θ) = P(θ) = 1 are automatic and do not demand additional work even on the lattice.
In that case we have (4.139)

δ

δτ
log y(θ) = Ω(θ, τ + πi

2 ) . (4.145)

Consider therefore the Suzuki equations for y(θ) at the lattice level, that is (4.114) with the driving
term replaced by D(θ) (4.140). One can readily compute the variation of y(θ) with respect to any
τj , �nding agreement with (4.141) after scaling.

Strictly speaking even for α = 0 to combine the equations (4.145) for all τj , we do not have
enough conditions to assert (4.141) for all θ′, but this is a very natural conjecture to make.

The next question is how did we incorporate α into the equations (4.141), (4.142), (4.143). This
was done due to the experience with equations of this kind [4, 5]. Our choice is supported by the
computation of the residue at θ = θ + πi. After some rather tedious computation we obtain the
following result

res
θ=θ′+πi

Ω(θ, θ′) =
1

2πi
y(θ′)y(θ′ + πi)− 1
y(θ′)y(θ′ + πi)

,

which coincides with the expected result from the de�nition (4.136) and known singularities of
ω(θ, θ′) [3].

4.6.2 Numerical results by interpolation

Our method of numerical investigation of the equations (4.114) was explained in the section 4.4.
With these results at hand the numerical solution to the linear equations (4.141), (4.142), (4.143)
is rather straightforward. The most interesting thing to study is the limit θ0 → ∞ where we make
contact with the UV CFT. We begin with the case θ →∞, θ′ →∞ for which we assume

Ω(θ, θ′) '
∞∑

i,j=1

e−(2i−1)θe−(2j−1)θ′D2i−1(α)D2j−1(2− α)Ω2i−1,2j−1(θ0) . (4.146)

The coe�cients D2i−1(α) are not hard to guess from (4.118) and by analogy with [4]:

Dm(α) = im
√
π

2

Γ
(
m
2

)
Γ
(

1
1−β2m+ α

2

)
(m− 1)!

(
m−1

2

)
!Γ
(

β2

(1−β2)m+ α
2

) . (4.147)

Additional support for this formula will be given below by considering the re�ection relations. We
have further

lim
θ0→∞

e−2(i+j−1)θ0Ω2i−1,2j−1(θ0)→ Ω2i−1,2j−1 ,

Ω2i−1,2j−1 is a polynomial in P of degree 2i+2j−2 with the leading coe�cient equal to 1/(i+j−1).
We proceed with numerical checks of these assumptions. For θ0 = 15 we obtain already perfect

agreement with the scaling behavior. The values of P should not be to large, we take P ≤ 0.2.
Considering an important amount of numerical data with di�erent P, α, ν we come with the following
conjectures for the exact forms of the �rst several Ω2i−1,2j−1:

Ω1,1 = P 2 − 1
16
− 1

8
∆α . (4.148)

2 · Ω 1,3
3,1

= P 4 − P 2 5
48

(2∆α + 3) +
ĉ+ 8
1536

(4∆α + 3) +
1

128
∆2
α ∓

1
96
dα∆α . (4.149)

3 · Ω3,3 = P 6 − P 4 1
64

(18∆α + 47) + P 2

(
27

1280
∆2
α +

23ĉ+ 378
3840

∆α +
46ĉ+ 881

5120

)
(4.150)

− 1
2048

∆3
α −

40ĉ+ 21
61440

∆2
α −

5ĉ2 + 52ĉ+ 222
81920

(2∆α + 3) .

3 · Ω 1,5
5,1

= P 6 − P 4

(
35
48

+
7
24

∆α

)
+ P 2

(
89

3840
∆2
α +

23ĉ+ 514
15360

(4∆α + 5)
)

(4.151)

− 1
2048

∆3
α −

10ĉ+ 479
61440

∆2
α −

6ĉ2 + 83ĉ+ 386
245760

(6∆ + 5)

∓ dα∆α

(
P 2 23

960
− 1

512
∆α −

83 + 12ĉ
15360

)
.
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where

dα=
1
4

(β−2 − β2)(α− 1) . (4.152)

Below we give some examples of comparison between numerical results and the analytical con-
jectures above.

Coe�cient Ω1,1 and β2 = 1
2

α = 0.2 α = 0.4 α = 0.6
P Ω1,1 comp. Ω1,1 analyt. Ω1,1 comp. Ω1,1 analyt. Ω1,1 comp. Ω1,1 analyt.
0.02 -0.059287494 -0.0592875 -0.057099995 -0.0571 -0.055537495 -0.0555375
0.04 -0.058087495 -0.0580875 -0.055899995 -0.0559 -0.054337495 -0.0543375
0.06 -0.056087495 -0.0560875 -0.053899995 -0.0539 -0.052337495 -0.0523375
0.08 -0.053287495 -0.0532875 -0.051099995 -0.0511 -0.049537496 -0.0495375
0.1 -0.049687495 -0.0496875 -0.047499996 -0.0475 -0.045937496 -0.0459375
0.12 -0.045287496 -0.0452875 -0.043099996 -0.0431 -0.041537497 -0.0415375
0.14 -0.04008745 -0.0400875 -0.037899997 -0.0379 -0.03633745 -0.0363375
0.16 -0.034087497 -0.0340875 -0.031899998 -0.0319 -0.030337498 -0.0303375
0.18 -0.027287498 -0.0272875 -0.025099998 -0.0251 -0.023537499 -0.0235375
0.2 -0.019687499 -0.0196875 -0.017499999 -0.0175 -0.015937400 -0.0159375

Coe�cient Ω1,3 and β2 = 3
5

α = 0.2 α = 0.4 α = 0.6
P Ω1,3 comp. Ω1,3 analyt. Ω1,3 comp. Ω1,3 analyt. Ω1,3 comp. Ω1,3 analyt.
0.02 0.01612247 0.01612249 0.01591101 0.01591102 0.01577159 0.01577160
0.04 0.01575287 0.01575289 0.01554374 0.01554376 0.01540599 0.01540600
0.06 0.01514328 0.01514329 0.01493803 0.01493804 0.01480306 0.01480307
0.08 0.01430328 0.01430329 0.0141035 0.01410349 0.01397239 0.01397240
0.1 0.01324632 0.01324633 0.01305352 0.01305353 0.01292743 0.01292744
0.12 0.01198969 0.01198969 0.01180544 0.01180545 0.01168546 0.01168547
0.14 0.01055449 0.01055449 0.01038035 0.01038036 0.01026760 0.01026760
0.16 0.008965691 0.008965693 0.008803224 0.008803226 0.008698802 0.008698804
0.18 0.007252093 0.007252093 0.007102848 0.007102848 0.007007872 0.007007871
0.2 0.005446336 0.005446333 0.005311868 0.005311867 0.005227447 0.005227444

Coe�cient Ω3,3 and β2 = 1
2

α = 0.2 α = 0.4 α = 0.6
P Ω3,3 comp. Ω3,3 analyt. Ω3,3 comp. Ω3,3 analyt. Ω3,3 comp. Ω3,3 analyt.
0.02 -0.0079402716 -0.0079402720 -0.0078464501 -0.0078464506 -0.0077795388 -0.0077795392
0.04 -0.0077381755 -0.0077381759 -0.0076463818 -0.0076463822 -0.0075809093 -0.0075809097
0.06 -0.0074059724 -0.0074059727 -0.0073175266 -0.0073175270 -0.0072544297 -0.0072544302
0.08 -0.0069505170 -0.0069505174 -0.0068666923 -0.0068666926 -0.0068068739 -0.0068068743
0.1 -0.0063812449 -0.0063812453 -0.0063032481 -0.0063032484 -0.006247564 -0.0062475644
0.12 -0.0057100111 -0.0057100113 -0.0056389640 -0.0056389643 -0.0055882093 -0.0055882096
0.14 -0.0049508823 -0.0049508825 -0.0048878029 -0.0048878031 -0.0048426982 -0.0048426985
0.16 -0.0041198841 -0.0041198842 -0.0040656674 -0.0040656675 -0.0040268458 -0.0040268459
0.18 -0.0032347010 -0.0032347011 -0.0031901003 -0.0031901004 -0.0031580934 -0.0031580936
0.2 -0.0023143311 -0.0023143311 -0.0022799390 -0.0022799391 -0.0022551639 -0.002255164

The scaling limit of (4.91) is supposed to give the ratio

〈Oα(0)〉P,R
〈Vα(0)〉P,R

,

for some operator Oα. In the case under consideration this operator is supposed to be a chiral
descendant of Vα (recall that we do not distinguish between the CFT operators and their perturbed
counterparts). To be more precise Ω2i−1,2j−1(θ0) should be related to a descendant on the level
2i+ 2j − 2. The determinants made of Ω2i−1,2j−1(θ0) correspond to other descendants but we shall
not discuss them here restricting ourselves to the simplest cases.

All together we must have

lim
θ0→∞

e−2(i+i−1)θ0Ω2i−1,2j−1(θ0) =
〈P2i−1,2j−1({sk, lm})Vα〉P

〈Vα(0)〉P
, (4.153)

where P2i−1,2j−1({sk, lm})Vα is an element of the Verma module generated by Vα quotiented by the
action of local integrals of motion, this will be discussed in Section 4.7.
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The expressions like the one in the right hand side of (4.153) can be computed for any P2i−1,2j−1,
some examples have been given in the previous section 4.1.2. However, trying to �nd P2i−1,2j−1

from (4.153) we encounter more problems than in the usual Virasoro case [4]. The point is that the
universal enveloping algebra of the super conformal algebra contains much more elements than that
of the Virasoro algebra. The coe�cients of the polynomials P2i−1,2j−1 do not depend on P , and
actually the appearance of di�erent degrees of P is the source (the only one) of di�erent equations.
When the level grows the number of coe�cients of P2i−1,2j−1 grows much faster than the degree of
the left hand side in P . For the Virasoro case we still could de�ne the coe�cients up to the level 6,
and for levels 2 and 4 the systems of equations were even overdetermined, the fact that they allowed
solutions was considered as an important check of our procedure. In the super conformal case the
only possibility to �nd the coe�cients occurs on the level 2: we have two descendants created by
l−2 and s− 3

2
s− 1

2
and two coe�cients of the polynomial in P in the left hand side. Starting from the

level 4 we do not have enough equations.
One way out of this di�culty would be to allow descendants in the asymptotic states like it was

done in [87] for the level 8 in the Virasoro case. This would be too hard, and not necessary: we
have another, similar to that of [31], way of �xing the polynomials P2i−1,2j−1 based on the re�ection
relations [47, 48, 50]. We shall explain this in the next section. When the polynomials P2i−1,2j−1

are de�ned from the re�ection relations, the formulae (4.153), (4.148), (4.149), (4.151), (4.150) can
be used for checks. Since both our equation for Ω(θ, θ′) and the re�ection relations have the status
of conjectures the fact that the results of their application are in agreement provides a very solid
support for both.

4.6.3 Primary �elds

Let us now consider the asymptotics θ → −∞, θ′ →∞. We have

Ω(θ, θ′) '
∞∑

i,j=1

e(2i−1)θe−(2j−1)θ′Ω−(2i−1),2j−1(θ0) .

We suspect that similarly to [5] the Ω−1,1(θ0) is related to the ratio of the expectation values
of two shifted primary �elds. The question is: which primary �elds exactly? Now we have two of
them: Vα, Wα. Solving numerically our equations we �nd that for �xed β, α, P

log Ω−1,1(θ0) ' 2θ0

(
∆
α+ 2β2

1−β2
+ 1/2−∆α

)
.

Let us give an example. Consider the normalized expression:

R(θ0) = exp
{
−2θ0

(
∆
α+ 2β2

1−β2
+ 1/2−∆α

)}
Ω−1,1(θ0) .

For α = 1/2, β2 = 1/2, P = 0.1 we have

θ0 12 13 14 15 16
R(θ0) 0.16825979 0.16825580 0.16825433 0.16825379 0.16825359

So, we see that the scaling is achieved with great precision.
This suggests that Ω−1,1(θ0) is proportional to the ratio of the expectation values of W

α+ 2β2

1−β2

and Vα. Let us check the limiting value against the CFT. First, we have to normalize the primary
�elds

V̂α =
1

F (α)
Vα , Ŵα =

1
F (α)

Wα ,

where F (α) is the one point function of the operator Vα on the plane (for R = ∞) [88]. For the
operator Wα the one point function on the plane vanishes since this operator is a super Poincaré
descendant of Vα and the vacuum is super Poincaré invariant. Nevertheless we normalize Wα by
the same function F (α). The reason for that is in the re�ection relations as explained in the next

section. Denote by c(α, P ) (c̃(α, P )) the CFT one point functions of the normalized operator V̂α
(Ŵα) on the cylinder with our usual asymptotic conditions. In the next section we will �nd that

c̃(α+ 2β2

1−β2 , P )

c(α, P )
=

π2

1− β2
β

1
2 (αβ2−2β2−α) γ( 1

2 (1− β2)(2− α))
γ( 1

4 (1− β2)(2− α))2
(4.154)

× γ( 1
2 (1 + β2) + (1− β2)α− βP )γ( 1

2 (1 + β2) + (1− β2)α+ βP ) .
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Consider the ratio

R1(θ0) = R(θ0)
c(α, P )

c̃(α+ 2β2

1−β2 , P )
. (4.155)

For θ0 = 15 and the choice of ν, α, P presented below, we have

data β2 = 1
2 , α = 2

5 , P = 0.2 β2 = 3
5 , α = 2

3 , P = 0.1 β2 = 1
3 , α = 1

2 , P = 0.15

R1(15) 1.00000211 1.00009870 0.99999998

The agreement is very good.

4.7 Re�ection relations and three-point functions in Super
CFT

Long ago Al. Zamolodchikov did a remarkable observation that the one point functions for sine-
Gordon and sinh-Gordon model are related by analytical continuation. This is very di�erent from
other properties of these models, for example the particle content is quite di�erent. Nevertheless the
Al. Zamolodchikov's observation proved to be correct in many other models. Here we shall apply it
to the ssG model relating it to the Super sinh-Gordon theory (sshG) with the action

AsshG =
∫ [( 1

4π
∂zϕ∂z̄ϕ+

1
2π
(
ψ∂z̄ψ + ψ̄∂zψ̄

)
− µψ̄ψe

b√
2
ϕ
)
− µψ̄ψe−

b√
2
ϕ
]
d2z . (4.156)

We shall use the habitual notation
Q = b+ b−1 .

The analytical continuation to the ssG case corresponds to

β = ib , α =
2a
Q
. (4.157)

Slightly abusing the notation we will write the primary �elds de�ned (4.84) as Va and Wa. The
idea behind the re�ection relations is that the physical quantities must be invariant under the two
re�ections:

σ1 : a→ −a , σ2 : a→ Q− a . (4.158)

The �rst of them re�ects simply the C-re�ection of the action (4.156) while the second one is
inherited from the symmetry of the Super Liouville model. The re�ection relations can be applied
to the calculation of one point functions. For the primary �elds it is rather direct, since their one
point functions are invariant under σ1 and their transformation rule under σ2 is inherited from a
remarkable property of the (Super) Liouville three point function. This will be explained in more
details in Section 4.7.1. The situation is more complicated for descendants �elds : a Virasoro
descendants has a manifest σ2 symmetry, but its behavior for σ1 is unclear. This explains the
necessity to construct a passage matrix U(a) that relates the Virasoro and Heisenberg descendants
in order to use the action of the two re�ections simultaneously. Recall that Vquo

a is the quotient of
the Verma module by the action of the local integrals of motion. Consider V (a) ∈ (Vquo

a )∗. The
re�ection relations [48] can be presented as the following Riemann-Hilbert problem (see [31] for more
details):

V (a+Q) = S(a)V (a) , S(a) = U(−a)U(a)−1 . (4.159)

Let us apply this idea, and �rst explain how the re�ection relations can be used to recover the
results of the previous section.

4.7.1 Primary �elds

Let us now explain the values of the one point functions of primary �elds in in�nite volume . Recall
that we computed in section 4.1.3 the re�ection coe�cient relating

Va = R(a)VQ−a , Wa = R(a)WQ−a ,

R(a) =
(
πµγ(b2)

)Q−2a
b b−2γ(2ab− b2)γ(2ab−1 − b−2 − 1) .
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The one point function F (a) of Va in in�nite volume for the Super sinh-Gordon model has the
expected transformation properties under both re�ections (4.158)

F (a) = F (a−Q)R(a) .

The operators

V̂a =
1

F (a)
Va , Ŵa =

1
F (a)

Wa ,

are invariant under both re�ections. For our goals we do not need F (a) but rather the ratio f(a) =
F (a−b)
F (a) for which

f(a−Q) = f(a)
R(a)

R(a− b)
.

We compute and rewrite the result in a useful for us way

R(a)
R(a− b)

=
(

1
2πµγ( 1

2bQ)
)−2 γ

(
1
2 + 1

2b(2a− b)
)

γ
(

1
2 + 1

2b(2(a−Q)− b)
) .

This equality implies

f(a) = C(b)
(

1
2πµγ( 1

2bQ)
) 2
bQ (∆a−b+

1
2−∆a)

γ
(

1
2b(Q− 2a)

)
, (4.160)

where C(b) is a constant depending on b only. To �nish the consideration of primary �elds let us
give the expression for the ratio

C̃(a− b,Q/2 + k,Q/2− k)
C(a,Q/2 + k,Q/2− k)

=
(

1
2πµγ( 1

2bQ)b−1
) γ2( 1

2 (1 + ab− b2))γ( 1
2b(Q− 2a))

γ(ab− b2)
(4.161)

× γ( 1
2 (1− b2 + ab) + bk)γ( 1

2 (1− b2 + ab)− bk) .

Divide (4.161) by f(a) (4.160) (there is an important cancellation) and change the variables by
(4.157) and

bk = βP ,

after some simpli�cation this gives (4.154).

4.7.2 Super Virasoro and Super Heisenberg algebras

We would like to have an independent check of the results (4.148) - (4.151). In order to do so,
we should interpret the expressions obtained for β∗2m−1γ

∗
2m−1Va as decompositions of the fermionic

operators on the Super Virasoro basis, and check that this decomposition is compatible with the re-
�ection relations. As has been explained above and is clear from the interpretation of the re�ections,
it is �rst important to make the connection between the Super-Virasoro and the Super-Heisenberg
algebras, that is to construct the passage matrix U(a). This is our goal in this subsection.

The expression of the stress energy tensor and the super current in terms of the �elds in the
action (4.156) are given by :

T (z) = −1
4

(∂zϕ)2 +
Q

2
√

2
∂2ϕ− 1

2
ψ∂ψ ,

S(z) = i

(
1√
2
ψ∂ϕ−Q∂ψ

)
.

In order to exhibit the Heisenberg basis, we split the �eld ϕ(z, z̄) = φ(z) + φ(z̄) in chiral parts and
expand in modes :

φ(z) = φ0 − 2iπ0 + i
∑
k∈Z∗

ak
k
z−k ,

where the Heisenberg algebra is :

[ak, al] = 2kδk,−l , [φ0, π0] = i . (4.162)

The same analysis holds for the fermionic �eld

ψ(z) =
∑
r∈Z

br+ 1
2
z−r−1 ,
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with the fermionic algebra de�ned by :

{br, bs} = δr,−s . (4.163)

We will call the combination of (4.162) and (4.163) the Super Heisenberg algebra (together with the

commutation relation [ak, br] = 0). The primary �eld e
a√
2
φ(0)

is identi�ed with the highest weight
vector of the Super Heisenberg algebra :

e
a√
2
φ(0) ⇐⇒ e

a√
2
φ0 |0〉 , ak |0〉 = br |0〉 = 0 , k, r > 0 .

In the general case we should then take :

Va = e
a√
2

(φ0+φ0) |0〉 ⊗ |0〉 . (4.164)

The calculation for the two chiralities being independent, we will work only with the holomorphic
one. We can now introduce the generators of the Super Virasoro algebra :

lm =
1
4

∑
k 6=0,m

: akam−k : +(π2
0 + iπ0

Q√
2

)δm,0+

(π0 + i
Q

2
√

2
(m+ 1))am(1− δm,0) +

1
2

∑
k∈eZ

: bm−kbk : (k +
1
2

) ,

and the modes of the super current :

sr =
1√
2

∑
k∈eZ′

bkar−k +
(√

2π0 + iQ(r +
1
2

)
)
br .

Here the symbol : ... : means normal order. These generators satisfy the Super Virasoro algebra

[lm, ln] = (m− n)lm+n +
c

12
m(m2 − 1)δm,−n,

{sr, ss} = 2lr+s +
c

3
(r2 − 1

4
)δr,−s,

with c = 3
2 (1 + 2Q2), and since S is a primary �eld of conformal dimension ∆ = 3

2 we also have the
relation :

[lm, sr] =
(m

2
− r
)
sm+r .

Finally, the natural identity holds :

l0Va = ∆aVa , ∆a =
1
2
a(Q− a) .

We are now ready to compute the passage matrix between the Super Virasoro and the Super Heisen-
berg bases. Recall that we work modulo the action of local integrals of motion. For our calculations
(up to level 6), the integrals of motion that will be involved are just the �rst two given by the
densities (4.87). Explicitly :

i1 = l−1 , (4.165)

i3 = 2
∞∑

k=−1

l−3−klk +
1
2

∞∑
k=− 1

2

s−3−ksk

(
k +

3
2

)
. (4.166)

Level 2.

At level 2 there is only one integral of motion to take into account :

i21Va = l2−1Va = 0 .

We de�ne U (2) to be the passage matrix between the base {l−2, s− 3
2
s− 1

2
} and {a2

−1, b− 3
2
b− 1

2
} which

is found to be :

U (2) =
( 1

4

(
2a2 +Qa+ 1

)
1
2

a2

2 −a(a+Q)

)
. (4.167)

Its determinant factorizes and gives as expected the null-vector conditions :

det(U (2)) = −1
4
a
(
2a+ b+ b−1

)
(a+ b)(a+ b−1) .
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Level 4.

At this level there are 10 operators in total, but working modulo integrals of motion (in this case
also only i1) we need to keep only 5 of them, that we choose to be

l2−2 , l−4 , s− 7
2
s− 1

2
, s− 5

2
s− 3

2
, l−2s− 3

2
s− 1

2
.

On the other hand, we select the following operators to describe the states at level 4 from the Super
Heisenberg algebra point of view :

a2
−2 , a−3a−1 , b− 7

2
b− 1

2
, b− 5

2
b− 3

2
, a2

−1b− 3
2
b− 1

2
.

We �nd for the matrix U (4) :

U (4) =


U

(4)
11 U

(4)
12

29a+12Q
4a

5a+4Q
4a

1
4 (2a2+Qa+1)

1
4

1
12 (2a2+3Qa+6) 3

2
1
2 0

0 a2
6 −a2−3Qa+3 1 a2

2

0 1
6 (a2+Qa+3) − 4(2a+3Q)

a U
(4)
44

1
2 (−a2−Qa+1)

1
4 (−2a2−Qa−1) 1

6 (2a2−3) U
(4)
53 U

(4)
54 U

(4)
55

 , (4.168)

where the lengthiest coe�cients are :

U
(4)
11 = −4a4 + 4Qa3 +Q2a2 + 4a2 + 2Qa+ 3

8a2
, U

(4)
12 =

4a4 + 2Qa3 − 6a2 − 6Qa− 9
12a2

,

U
(4)
44 = −a

3 + 3Qa2 + 2Q2a+ 3a+ 4Q
a

, U
(4)
53 =

1
2
(
−17a2 − 23Qa− 6Q2 + 6

)
,

U
(4)
54 =

1
2
(
−a2 − 3Qa− 2Q2 + 2

)
, U

(4)
55 = −1

4
a
(
2a3 + 3Qa2 +Q2a+Q

)
.

Its determinant can be factorized :

det(U (4)) =
1

384
D

(4)
V (∆, c)

D
(4)
H (a2, Q2)

N (4)(a, b) .

The contribution from the null vectors is :

N (4)(a, b) = a4(a+ b)2(a+ b−1)2(a+ 2b)(a+ 2b−1)(a+ 3b)(a+ 3b−1) (4.169)

× (2a+ b+ b−1)(2a+ b+ 3b−1)(2a+ 3b+ b−1) ,

and we have :

D
(4)
V (∆, c) = 1 , D

(4)
H (a2, Q2) = a2 . (4.170)

Level 6.

We proceed through the same analysis. At level 6 we will need to factor out the action of both i1
and i3. There are 28 Virasoro operators at level 6, but the factorization of the action of the integrals
of motion leaves only 10, that we choose to be :

l3−2 , l−6 , l2−3 , s− 7
2
s− 5

2
, s− 9

2
s− 3

2
, s− 11

2
s− 1

2
,

l2−2s− 3
2
s− 1

2
, l−2s− 7

2
s− 1

2
, l−2s− 5

2
s− 3

2
, l−3s− 5

2
s− 1

2
.

These are expressed on the Super Heisenberg basis :

a6
−1 , a4

−1a−2 , a2
−3 , b− 7

2
b− 5

2
, b− 9

2
b− 3

2
, b− 11

2
b− 1

2
,

a−1a−2b− 5
2
b− 1

2
, a2

−1b− 7
2
b− 1

2
, a−1a−3b− 3

2
b− 1

2
, a2

−1b− 5
2
b− 1

2
.

The passage matrix U (6) is unfortunately too large to be presented here, but we can give its deter-
minant :

det(U (6)) = − 1
212336640

N (6)(a, b)
D

(6)
V (∆, c)

D
(6)
H (a2, Q2)

. (4.171)
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with :

N (6)(a, b) = a2(a+ b)5(a+ b−1)5(a+ 2b)2(a+ 3b)2(a+ 2b−1)2(a+ 3b−1)2 (4.172)

× (a+ 4b)(a+ 5b)(a+ 4b−1)(a+ 5b−1)

×
(
a+ b+ b−1

) (
2a+ b+ b−1

)5 (
2a+ b+ 3b−1

)2 (
2a+ 3b+ b−1

)2
×
(
2a+ 5b+ b−1

) (
2a+ b+ 5b−1

)
,

the null vector contribution, and

D
(6)
H (a2, Q2) = a2(−15 + 3a2 − 10Q2) , D

(6)
V (∆, c) = 1 . (4.173)

4.7.3 Re�ections relations

We claim that similarly to [31], the action of both re�ections σ1 and σ2 implies that the fermions
transform as :

β∗2j−1 → γ∗2j−1 , γ∗2j−1 → β∗2j−1 . (4.174)

This means that we can use the coe�cients (4.147) to rede�ne the elements of the fermionic basis
and obtain purely CFT objects :

β∗2m−1 = D2m−1(a)βCFT∗2m−1 , γ∗2m−1 = D2m−1(Q− a)γCFT∗2m−1 . (4.175)

For βCFT∗2m−1 and γCFT∗2m−1 we have clear transformation rules under σ1,2. As in the non-supersymmetric
case for σ2

βCFT∗2m−1 → γCFT∗2m−1 , γCFT∗2m−1 → βCFT∗2m−1 . (4.176)

For σ1 we must consider an additional term coming from the change in the passage from D2m−1(a)
to D2m−1(Q− a) :

D2m−1(Q− a) = D2m−1(−a)
(
a− (2m− 1)b−1

a+ (2m− 1)b

)
, (4.177)

which implies

βCFT∗2m−1 →
(

a− (2m− 1)b
a+ (2m− 1)b−1

)
γCFT∗2m−1 , (4.178)

γCFT∗2m−1 →
(
a− (2m− 1)b−1

a+ (2m− 1)b

)
βCFT∗2m−1 .

The main conclusion drawn from Section 4.6.2, is that the fermionic basis should be decomposable
on the Super Virasoro basis in the following way :

βCFT∗I+ γCFT∗I− Va = CI+,I−

(
PEI+,I−({l−k, s−r},∆a, c) + daP

O
I+,I−({l−k, s−r},∆a, c)

)
Va , (4.179)

where CI+,I− is the Cauchy determinant and da is the function (4.152) rewritten in the variables
a, b :

da =
1
8

√
(9− ĉ) (16∆α + 1− ĉ) =

1
4

(b− b−1)(Q− 2a) . (4.180)

The functions PEI+,I− and POI+,I− (E,O superscripts stand respectively for even and odd) are poly-
nomials in the modes of the Super Virasoro algebra, depending rationally on the parameters ∆a, c.
They are de�ned modulo the local integrals i2k−1 and satisfy the symmetry relations :

PEI+,I− = PEI−,I+ , POI+,I− = −POI−,I+ . (4.181)

The decomposition (4.179), as well as the transformation rules (4.176) and (4.178), imply a relation
of the type

βCFT∗I+ γCFT∗I− Va = CI+,I−

∏
2j−1∈I+

(a+ (2j − 1)b−1)
∏

2j−1∈I−
(a+ (2j − 1)b)

×
(
QEI+,I−({a−k, b−r}, br}, a2, Q2) + gaQ

O
I+,I−({a−k, b−r}, a2, Q2)

)
Va, (4.182)

with
ga = a(b− b−1) ,

and QEI+,I− , Q
O
I+,I− polynomials in the Super Heisenberg algebra, depending rationally on a2 and

Q2. In the following we are going to verify this conjecture level by level.
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Level 2

Let us start with the simplest case of level 2 :

〈βCFT∗1 γCFT∗1 Va〉 = Ω1,1 = P 2 − 1
16
− ∆a

8
. (4.183)

On this level only two operators l−2 and s− 3
2
s− 1

2
are present. The calculation of one point functions

on the cylinder was explained in Subsection 4.1.2 and gave in this case (4.59):

〈l−2Va〉 = δP −
c

24
− ∆a

12
, 〈s− 3

2
s− 1

2
〉 =

∆a

12
. (4.184)

Hence it is not di�cult to compare with (4.183) and obtain :

βCFT∗1 γCFT∗1 Va =
(
l−2 −

1
2
s− 3

2
s− 1

2

)
Va . (4.185)

Using (4.167), one can rewrite the combination (4.185) as :

βCFT∗1 γCFT∗1 Va =
1
4

(a+ b)(a+ b−1)
(
a2
−1 + 2b− 3

2
b− 1

2

)
Va . (4.186)

This neat factorization of the term (a+ b)(a+ b−1) is a check of our conjecture, and the above shows

that : QE{1,1} = 1
4

(
(a−1)2 + 2b− 3

2
b− 1

2

)
.

The main di�erence with the usual Liouville case, is that at higher levels, we do not know a
priori the decompositions of the type (4.179) (recall the discussion at the end of the Section 4.6.2).
To overcome this di�culty, we shall proceed as in [31] and obtain the decomposition by solving the
re�ection constraints implied by (4.182). Let us brie�y recall the main steps.

Consider that at an (even) level k = |I+| + |I−| we have a basis of Super Virasoro generators

{v(k)
1 , ...,v(k)

d } (by convention we consider that v(k)
1 = l

k
2
−2 ) that are related to the Super Heisenberg

basis {h(k)
1 , ...,h(k)

d } modulo the action of integrals of motions by :

v(k)
i =

d∑
k=1

U
(k)
i,j (a)h(k)

j ,

with U (k)(a) the passage matrix, whose determinant can be factorized :

det(U (k)(a)) = C(k)N (k)(a, b)
D

(k)
V (∆a, c)

D
(k)
H (a2, Q2)

, (4.187)

where N (k)(a, b) is the null vector contribution. We look for PEI+,I− , P
O
I+,I− in the form :

PEI+,I− = v1 +
1

D
(k)
V (∆, c)

d∑
i=2

XI+,I−,i(∆a, c)vi ,

POI+,I− =
1

D
(k)
V (∆, c)

d∑
i=2

YI+,I−,i(∆a, c)vi ,

where XI+,I−,i(∆a, c), YI+,I−,i(∆a, c) are polynomials of some degree D to be determined. Also
introduce the polynomials :

T+
I+I−(a) =

1
2

∏
j∈I+

(a+ jb−1)
∏
j∈I−

(a+ jb) +
∏
j∈I+

(a+ jb)
∏
j∈I−

(a+ jb−1)

 , (4.188)

T−I+I−(a) =
1

2(b− b−1)

∏
j∈I+

(a+ jb−1)
∏
j∈I−

(a+ jb)−
∏
j∈I+

(a+ jb)
∏
j∈I−

(a+ jb−1)

 . (4.189)
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Then (4.182) gives strong conditions on the structure of XI+,I−,i(∆a, c), YI+,I−,i(∆a, c) (see [31] as
well as the appendix 4.11 for details). For any 1 ≤ j ≤ d we must have

D
(k)
V (∆(−a), c)D(k)

H (a2, Q2) (4.190)

× {T+
I+I−(−a)

(
D

(k)
V (∆a, c)U

(k)
1,j (a) +

d∑
i=2

XI+,I−,iU
(k)
i,j (a)

)

− (Q2 − 4)(Q− 2a)T−I+I−(−a)
d∑
i=2

YI+,I−,iU
(k)
i,j (a)} even in a,

and

D
(k)
V (∆(−a), c)D(k)

H (a2, Q2) (4.191)

× {−T−I+I−(−a)

(
D

(k)
V (∆a, c)U

(k)
1,j (a) +

d∑
i=2

XI+,I−,iU
(k)
i,j (a)

)

+ (Q2 − 4)(Q− 2a)T+
I+I−(−a)

d∑
i=2

YI+,I−,iU
(k)
i,j (a)} odd in a,

Taking the degree D appropriately large, we obtain enough linear equations on the coe�cients of
XI+,I−,i(∆a, c), YI+,I−,i(∆a, c). Now we demonstrate how this procedure works at higher levels.

Level 4

Consider the set up described in 4.7.2. Recall that at this level there are 5 operators in total (modulo
the action of i1), that are :

l2−2 , l−4 , s− 7
2
s− 1

2
, s− 5

2
s− 3

2
, l−2s− 3

2
s− 1

2
.

We solve the constraints (4.190) and (4.191) with the use of (4.168) and (4.170), and obtain the
following expressions :

PE{1,3} = l2−2 +
(
−45 + 4c

18
− ∆a

3

)
l−4 +

(
45− 4c

36
+

∆a

6

)
s− 7

2
s− 1

2
+

1
4
s− 5

2
s− 3

2
− 1

2
l−2s− 3

2
s− 1

2
,

PO{1,3} =
1
3
l−4 −

1
6
s− 7

2
s− 1

2
,

as well as the mirror polynomials PE{3,1}, P
O
{3,1}. One can now compute the one point function of(

PE{1,3}
{3,1}

∓ daPO{1,3}
{3,1}

)
Va, all the individual contributions of descendants at level 4 are given in (4.60).

One recovers exactly the values of Ω 1,3
3,1

obtained in (4.149) by interpolation. Summarizing :

βCFT∗1
3

γCFT∗3
1

Va =
1
2

(
PE{1,3}
{3,1}

({l−k, s−r},∆, c)∓ daPO{1,3}
{3,1}

({l−k, s−r},∆, c)
)
Va . (4.192)

This is an independent argument in favor of (4.149).

Level 6

We proceed through the same analysis. Recall that we had (modulo the action of i1 and i3 ) 10
Virasoro operators, that we took to be

l3−2 , l−6 , l2−3 , s− 7
2
s− 5

2
, s− 9

2
s− 3

2
, s− 11

2
s− 1

2
,

l2−2s− 3
2
s− 1

2
, l−2s− 7

2
s− 1

2
, l−2s− 5

2
s− 3

2
, l−3s− 5

2
s− 1

2
.
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Using the explicit value of U (6) and the factors (4.173), the re�ection constraints bring the following
results :

PE{3,3} = l3−2 +
1

480
(
572∆2

a + 1976∆a − 80c2 − 96c∆a + 2076c− 18381
)
l−6+

1
96
(
12∆2

a + 228∆a − 16c∆a − 12c− 27
)
l2−3+

1
192

(
−28∆2

a + 192∆a − 16c∆a − 20c+ 117
)
s− 7

2
s− 5

2
+

1
64
(
−4∆2

a + 92∆a − 8c∆a − 8c+ 105
)
s− 9

2
s− 3

2
+

1
960

(
28∆2

a + 404∆a + 56c∆a − 136c+ 6021
)
s− 11

2
s− 1

2
+

− 1
2
l2−2s− 3

2
s− 1

2
+

1
12

(4∆a − 2c+ 27) l−2s− 7
2
s− 1

2
+

1
16

(9− 2∆a) l−2s− 5
2
s− 3

2
+

1
192

(
4∆2

a − 68∆a + 8c∆a − 8c+ 291
)
l−3s− 5

2
s− 1

2
,

as well as

PE{1,5} = l3−2 +
1
90
(
79∆2

a + 1004∆a − 12c2 − 98c∆a + 322c− 2855
)
l−6+

1
12
(
2∆2

a + 12∆a − 2c∆a − c− 2
)
l2−3 +

1
36
(
∆2
a + 7∆a − 2c∆a − 3c+ 18

)
s− 7

2
s− 5

2
+

1
8

(2∆a − c+ 11) s− 9
2
s− 3

2
+

1
180

(
−19∆2

a − 804∆a + 2c2 + 88c∆a − 72c+ 1315
)
s− 11

2
s− 1

2
+

− 1
2
l2−2s− 3

2
s− 1

2
+

1
9

(2∆a − c+ 14) l−2s− 7
2
s− 1

2
+

1
2
l−2s− 5

2
s− 3

2
+

1
36
(
−∆2

a + ∆a + 2c∆a − c+ 38
)
l−3s− 5

2
s− 1

2
.

Finally we obtain

PO{1,5} =
1
30

(−136∆a − 12c+ 335) l−6 −∆al2−3 +
1
12

(−4∆a − 3) s− 7
2
s− 5

2
+

− 3
4
s− 9

2
s− 3

2
+

1
60

(76∆a − 8c− 115) s− 11
2
s− 1

2
+−2

3
l−2s− 7

2
s− 1

2
+

1
12

(4∆a − 5) l−3s− 5
2
s− 1

2
.

We also �nd the same expressions for the polynomials PE{5,1} and P
O
{5,1} (up to an overall relevant

minus sign for PO{5,1}). Then one can proceed and calculate the relevant one point functions of

descendants on the cylinder (see Subsection 4.1.2). We summarize here the results :

〈l−6Va〉 = − ∆a

6048
, 〈l2−3Va〉 =

72∆a + 31c− 504δP
30240

,

〈s− 7
2
s− 5

2
Va〉 =

604∆a + 457c− 3528δP
483840

, 〈s− 9
2
s− 3

2
Va〉 =

−1371∆a − 457c+ 3528δP
1451520

,

〈s− 11
2
s− 1

2
Va〉 =

31∆a

96768
, 〈l−2s− 7

2
s− 1

2
Va〉 =

294∆2
a + 1252∆a + 147c∆a − 3528∆aδP

483840
,

〈l−3s− 5
2
s− 1

2
Va〉 =

17∆a

60480
,
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as well as the most complex results :

〈l3−2Va〉 =
1

483840

(
− 280∆3

a − 2352∆2
a − 3968∆a − 35c3 − 210c2∆a + 2520c2

δP − 462c2 − 420c∆2
a − 2100c∆α + 10080c∆aδP − 60480cδ2

P + 21168cδP − 1504c+

10080∆2
aδP − 120960∆aδ

2
P + 48384∆aδP + 483840δ3

P − 241920δ2
P + 32256δP

)

〈l2−2s− 3
2
s− 1

2
Va〉 =

∆a

241920

(
140∆2

a + 672∆a + 35c2 + 140c∆a − 1680cδP+

294c− 3360∆aδP + 20160δ2
P − 6720δP + 544

)
,

〈l−2s− 5
2
s− 3

2
Va〉 =

1
483840

(
− 714∆2

a − 3588∆a − 119c2−

595c∆a + 4536cδP − 1196c+ 11928∆aδP − 40320δ2
P + 18144δP

)
.

Using these values for the one point functions, we recover exactly the expressions (4.150) and (4.151).
That is we check that :

βCFT∗1
5

γCFT∗5
1

Va =
1
3

(
PE{1,5}
{5,1}

({l−k, s−r},∆a, c)∓ daPO{1,5}
{5,1}

({l−k, s−r},∆a, c)
)
Va (4.193)

βCFT∗3 γCFT∗3 Va =
1
3
PE{3,3}({l−k, s−r},∆a, c)Va . (4.194)

This strongly con�rms the results obtained by interpolation.
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4.8 Appendix 1 : One point functions on the cylinder

Here we present two more examples of direct calculations of one point functions.

Example 1. Let us now compute the general �eld s−rWa . We have by de�nition and using the
relations (4.44),(4.45) :

s−rWa(y) =
∮
cy

dx

2πi(x− y)r−
1
2
T (S(x)Wa(y)) =

−
∮
c−y

dx

2πi(x− y)r−
1
2

[
{S+(x),Wa(y)} −Wa(y)S+(x) + S−(x)Wa(y)

]
+
∮
c+y

dx

2πi(x− y)r−
1
2

[
{Wa(y), S−(x)} − S−(x)Wa(y) +Wa(y)S+(x)

]
.

Using the commutation relations (4.34),(4.35) we arrive at :

s−rWa(y) = −
∮
cy

dx

2πi(x− y)r−
1
2

[
V ′a(y)ξ(x− y)− 2∆aVa(y)ξ′(x− y)

]
−
∮
cy

dx

2πi(x− y)r−
1
2

[
S−(x)Wa(y)−Wa(y)S+(x)

]
. (4.195)

In particular for r = 1
2 we recover that :

s− 1
2
Wa(y) = −V ′a(y) =⇒ s2

− 1
2
Va(y) = V ′a(y) , (4.196)

which is natural considering the relation {S− 1
2
, S− 1

2
} = 2L−1 holding in the Super Virasoro algebra.

Example 2. Let us compute the one point function of s− 5
2
s− 3

2
Va. We have already seen that :

s− 3
2
Va = Va(y)S+(y) + S−(y)Va(y) , (4.197)

and we will denote this �eld by Ψ(y). Then we have

s− 5
2
Ψ(y) = −

∫
c−y

dx

2πi(x− y)2

[
{S+(x),Ψ(y)} −Ψ(y)S+(x) + S−(x)Ψ(y)

]
+
∫
c+y

dx

2πi(x− y)2

[
{Ψ(y), S−(x)}+ Ψ(y)S+(x)− S−(x)Ψ(y)

]
. (4.198)

When applying the boundary states the non-bracketed terms will disappear. Therefore, we only
need to compute :

s− 5
2
Ψ(y) = −

∫
c−y

dx

2πi(x− y)2
{S+(x),Ψ(y)}+

∫
c+y

dx

2πi(x− y)2
{Ψ(y), S−(x)} . (4.199)

Working modulo terms that vanish when 〈∆−| and |∆+〉 are applied, we have :

{S+(x),Ψ(y)} = [S+(x), Va(y)]S+(y) + Va(y){S+(x), S+(y)}
+ {S+(x), S−(y)}Va(y) + S−(y)[Va(y), S+(x)]
= {S+(x), S−(y)}Va(y) = {S(x), S−(y)}Va(y) . (4.200)

And similarly :

{Ψ(y), S−(x)} = [S−(x), Va(y)]S+(y) + Va(y){S−(x), S+(y)}
+ {S−(x), S−(y)}Va(y) + S−(y)[S−(x), Va(y)]
= Va(y){S−(x), S+(y)} = Va(y){S(x), S+(y)} . (4.201)

Using the explicit expressions for {S(x), S−(y)} and {S(x), S+(y)} (4.32) and (4.33) in the equation
for s− 5

2
Ψ(y) (be careful the variables are in opposite order compared to (4.32),(4.33) which produces

an extra minus sign) :

s− 5
2
Ψ(y) =

∫
c−y

dx

2πi(x− y)2

(
2T (x)ξ(x− y) +

c

3
ξ′′(x− y)

)
Va(y)

+
∫
c+y

dx

2πi(x− y)2
Va(y)

(
2T (x)ξ(x− y) +

c

3
ξ′′(x− y)

)
. (4.202)
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This gives :

s− 5
2
Ψ(y) =

∮
cy

dx

2πi(x− y)2

c

3
ξ′′(x− y)Va(y)

+
∫
c−y

2ξ(x− y)dx
2πi(x− y)2

T (x)Va(y) +
∫
c+y

2ξ(x− y)dx
2πi(x− y)2

Va(y)T (x) . (4.203)

Using the commutation relation between T and Va (1.61),(1.62) and the following residue calculations
: ∮

c0

dz

2πiz2

c

3
ξ′′(z) =

7c
2880

,∮
c0

2ξ(z)dz
2πiz2

= − 1
12
,∮

c0

2χ(z)ξ(z)dz
2πiz2

= 0 ,∮
c0

2χ′(z)ξ(z)dz
2πiz2

= − 17
960

,

we arrive at the result :

〈s− 5
2
s− 3

2
Va〉 = − 1

12

(
δP −

c

24

)
+ ∆a

17
960

+
7c

2880
. (4.204)
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4.9 Appendix 2 : Conserved charges in Super Conformal Field
Theory

The SUSY charge in a perturbed SCFT.

Recall how above we have derived the conserved charges created from the stress energy tensor in
1.4. In the same way we can construct the conserved super charge : this is done by considering the
residue term of the OPE between the super current and the perturbing �eld (recall that previously
all the discussion was based on the stress energy tensor). Recall that in our case the perturbing �eld

is W−b = ψψe
− b√

2
ϕ
and the needed OPE reads :

S(z)W−b(w) =
2∆−b

(z − w)2
V−b(w) +

1
z − w

V ′−b(w) +O(1) . (4.205)

Then we set Ψ = −πλ(1− 2∆−b)V−b. The conserved super charge is therefore :

Q 1
2

=
∫

(Sdz + Ψdz̄) . (4.206)

The charge Q 1
2
has manifestly spin 1

2 and it is possible to show that

{Q 1
2
,Q 1

2
} = 2P , (4.207)

where the momentum P has been de�ned in (1.11). Moreover, using the anti-holomorphic part T , S
of the Super Virasoro algebra one can construct by the same procedure the charge Q 1

2
and recover

the full SUSY algebra.

The deformation of integrals of motion to the super case.

Let us now return to the integrals of motion. In chiral CFT, it is known that the densities h2k

are homogeneous polynomials in the stress energy tensor T and its derivatives, of total spin 2k. In
Supersymmetric CFT we should extend this de�nition by considering also polynomials in the super
current S and its derivatives, remembering that S has a spin 3

2 .

For the �rst element of the series of integrals of motion, we have only one possibility :

h2(y) = T (y) , (4.208)

which gives the known result i1 = l−1. The situation starts to be more complicated at spin 4, where
the general form is h4(y) = (TT )(y)+κ(S∂S)(y). Recall that the conservation law ∂z̄h2k = ∂zΘ2k−2

that holds for any density, is equivalent to the fact that the residue term in the OPE of h2k with
the perturbing �eld has to be a total derivative. The coe�cient κ is determined to satisfy this

prescription. Since the perturbing �eld is W−b = ψψe
− b√

2
ϕ
, we �nd explicitly that :

h4(y) = (TT )(y)− 1
4

(S∂S)(y) , (4.209)

which gives

i3 = 2
∞∑

k=−1

l−3−klk +
1
2

∞∑
k=− 1

2

s−3−ksk

(
k +

3
2

)
. (4.210)

From the value of h4 it is possible to compute the operator acting on the Matsubara Hilbert space :

I3 =
∫
C

dy

2πi
h4(y) , (4.211)

and to recover its eigenvalue i3 from (4.119).
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4.10 Appendix 3 : The kernel Gα

In this appendix we give more information about the derivation of the kernels Gα and G. In
particular, we demonstrate that G solves the equations (4.110), and explain how this equation can
be used to de�ne the kernel Gα. Also, we will calculate the residue of the function Gα. First, remark
that the functions G and Gα are de�ned as integrals (4.111),(4.144), but it is possible to show that
they can be continued to meromorphic functions on the entire complex plane. In particular, this
implies that the functions b, b̄,G, Ḡ can be de�ned everywhere.

Functional equation for Gα.

The main idea is that G has to satisfy a functional integral equation with the Baxter eigenvalue
Q (4.95), or more precisely with its logarithmic derivative :

d

dθ
logQ(θ) =

m∑
j=1

coth(ν(θ − σj)) , (4.212)

where the σj are the Bethe roots and the term eνκθ can be treated separately. De�ne the function
A :

A(x) = G(x) +G(x+ iπ) . (4.213)

The de�ning property of G was the fact that it solves the equation (4.110) :

m∑
j=1

∫
R
A(x− y) (f(y + iπ − σk)− f(y − iπ − σk)) dy =

m∑
j=1

[
f(x+ 2iπ − σk)− f(x− iπ − σk)

]
,

(4.214)

where we introduced the basic function

f(θ) = coth(νθ) . (4.215)

In going to the case α 6= 0, we should appropriately deform the function f , in the same way when
going from the function ψ(θ, 0) to ψ(θ, α). The basic function has to be changed to :

g(θ) = e−ανθcoth(νθ) . (4.216)

The equation (4.214) with the new function g can be solved term by term, applying the Fourier
transform de�ned by

ĥ(q) =
∫

R
h(y)eiyqdy , h(y) =

∫
R
ĥ(q)e−iqy

dy

2π
. (4.217)

First one has ∫
R
dy eiqyg(y + ic) = e−ανic

iπ

ν

e−(q+iαν)( π2ν−c)

sh( π2ν (q + iαν))
. (4.218)

Indeed, since ∫ ∞
−∞

eiaxcth(βx)dx =
iπ

β
cth
(
πa

2β

)
, (4.219)

one can use the Sokhotsky relations :

cth(β(x± i0)) = cth(βx)∓ iπ

β
δ(x) , (4.220)

to obtain the Fourier transform∫ ∞
−∞

eiaxcth(β(x± i0))dx =
iπ

β

e∓
πa
2β

sh(πa2β )
. (4.221)

The analytic continuation of the previous formula reads :∫ ∞
−∞

eiaxcth(β(x+ ic))dx =
iπ

β

e−a( π2β−c)

sh(πa2β )
. (4.222)
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Finally, calculating the Fourier transform of the left hand side and of the right hand side of (4.214)
one gets :

Â(q) =
e
q′π
2 e−

π
2 αiνsh

(
q′π
2ν (1− 3ν) + 3

2αiνπ
)

sh
(
q′π
2ν (1− 2ν) + αiνπ

) =
e
qπ
2 sh

(
π
2ν (q(1− 3ν) + αiπ)

)
sh
(
π
2ν (q(1− 2ν) + αiπ)

) , (4.223)

where q′ = q + αiν. With this result in hand, applying the relation :

Â(q) = e
qπ
2 2ch

(qπ
2

)
Ĝ(q) , (4.224)

we recover the expected formula for Gα (remember that ν = 1−β2

2 ) :

Gα(θ) =
1

4π

∞∫
−∞

sh
(
π
2ν (q(1− 3ν) + αiπ)

)
sh
(
π
2ν (q(1− 2ν) + αiπ)

)
ch
(
πq
2

)eiqθdq . (4.225)

Singularities of G.

As we said G is a meromorphic function on C, which has poles at the points θ = ±πi. To see
this, let us derive a functional equation on G :

F (θ) = G(θ + iπ2 ) +G(θ − iπ2 ) =
1

2π

∫
R
dk

sh( π2ν (1− 3ν)k)
sh( π2ν (1− 2ν)k)

eikθ . (4.226)

The function F can be given an explicit formula (see the result 3.511.5 in [89]) :∫
R
dkeiak

sh(βk)
sh(γk)

= 2
∫

R
dk cos(ka)

sh(βk)
sh(γk)

= 2
π

2γ
sin(πγ2 )

ch(aπγ ) + cos(βπγ )
. (4.227)

Replacing : a = θ , β = π
2ν (1− 3µ) , γ = π

2ν (1− 2ν), we obtain :

F (θ) =
1

2π
2ν

1− 2ν
sin(π 1−3ν

1−2ν )

ch( 2νθ
1−2ν ) + cos(π 1−3ν

1−2ν )
. (4.228)

The Taylor expansion of the denominator of F gives :

ch
(

2νθ
1− 2ν

)
+ cos

(
π

1− 3ν
1− 2ν

)
=

2iν sin
(

πν
1−2ν

)
1− 2ν

(
θ − iπ

2

)
+O

(
θ − iπ

2

)
. (4.229)

From this relation one can deduce the value of the residue :

Res
θ=±i π2

F (θ) = Res
θ=±i π2

G(θ) =
1

2πi
. (4.230)
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4.11 Appendix 4 : Constraints from re�ection relations

Here we explain how to obtain the constraints from the re�ection relations (4.190) and (4.191), that
were �rst established in [31]. Recall that we expect the following form for the two polynomials
PEI+,I− and POI+,I− :

PEI+,I− = v1 +
1

D
(k)
V (∆a, c)

d∑
i=2

XI+,I−,i(∆a, c)vi , (4.231)

POI+,I− =
1

D
(k)
V (∆a, c)

d∑
i=2

YI+,I−,i(∆a, c)vi . (4.232)

They provide the decomposition of a fermionic element of the fermion-current basis on the Super
Virasoro basis :

βCFT∗I+ γCFT∗I− Va = CI+,I−

(
PEI+,I−({l−k, sr},∆a, c) + daP

O
I+,I−({l−k, sr},∆a, c)

)
Va . (4.233)

This decomposition has to be compatible with the expansion on the Super Heisenberg algebra

βCFT∗I+ γCFT∗I− Va = CI+,I−

∏
2j−1∈I+

(a+ (2j − 1)b−1)
∏

2j−1∈I−
(a+ (2j − 1)b)

×
(
QEI+,I−({a−k, br}, br}, a2, Q2) + gaQ

O
I+,I−({a−k, br}, a2, Q2)

)
Va. (4.234)

Recall that U is the passage matrix between the Super Virasoro {v(k)
i }di=1 and the Super Heisenberg

{h(k)
i }di=1 bases, at level k :

v(k)
i =

d∑
k=1

U
(k)
i,j (a)h(k)

j , (4.235)

Let us work with an arbitrary basis element indexed by j. We �rst start by plugging the polynomial
expressions (4.231),(4.232) in the decomposition (4.233) and by factorizing the denominators :

1

D
(k)
V (∆a, c)

(
U1j +

∑
i

XI+,I−,i(∆a, c)Uij + da
∑
i

YI+,I−,i(∆a, c)Uij

)

=
1

D
(k)
H (a2)

(
QEI+,I−,j(a

2, Q2) + gaQ
O
I+,I−,j(a

2, Q2)
)

×
∏

2k−1∈I+

(a+ (2k − 1)b−1)
∏

2k−1∈I−
(a+ (2k − 1)b) . (4.236)

Then multiply both sides by D
(k)
V (∆(a))D(k)

V (∆(−a))D(k)
H (a2) and obtain :

D
(k)
V (∆(−a))D(k)

H (a2)

(
U1j +

∑
i

XI+,I−,i(∆a, c)Uij + da
∑
i

YI+,I−,i(∆a, c)Uij

)
= D

(k)
V (∆(a))D(k)

V (∆(−a))
(
QEI+,I−,j(a

2, Q2) + gaQ
O
I+,I−,j(a

2, Q2)
)

×
∏

2k−1∈I+

(a+ (2k − 1)b−1)
∏

2k−1∈I−
(a+ (2k − 1)b) . (4.237)

De�ne the product LI+I−(a) :

LI+I−(a) =
∏

2k−1∈I+

(a+ (2k − 1)b−1)
∏

2k−1∈I−
(a+ (2k − 1)b) ,

and notice that it implies the relations (recall (4.188),(4.189)) :

T+
I+I−(a) =

1
2

(LI+I−(a) + LI−I+(a)) , (4.238)

T−I+I−(a) =
1

2(b− b−1)
(LI+I−(a)− LI−I+(a)) . (4.239)
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We rewrite the relation (4.237) using the natural notations for the left hand side :

AI+,I−,j + daBI+,I−,j = LI+I−(a)
(
QEI+,I−,j + gaQ

O
I+,I−,j

)
, (4.240)

where we have rede�ned the functions Q, by multiplying them by the even in a factor

D
(k)
V (∆(a))D(k)

V (∆(−a)) independent of I+, I−. Now, performing the replacement I+ ↔ I− in the
previous equation (4.240) we obtain :

AI+,I−,j − daBI+,I−,j = LI−I+(a)
(
QEI+,I−,j − gaQ

O
I+,I−,j

)
. (4.241)

The equations (4.240) and (4.241) allow to express the terms AI+,I−,j and BI+,I−,j in terms of
QEI+,I−,j and Q

O
I+,I−,j . We can now check the validity of the constraints (4.190),(4.191). The �rst

one can be rewritten as :

T+
I+I−(−a)AI+,I−,j − da(b− b−1)T−I+I−(−a)BI+,I−,j =

1
2

(
LI+I−(−a)LI−I+(a)

(
QEI+,I−,j − gaQ

O
I+,I−,j

)
+ LI−I+(−a)LI+I−(a)

(
QEI+,I−,j + gaQ

O
I+,I−,j

))
.

(4.242)

The right hand side of this expression is indeed an even function (because of the fact that QEI+,I−,j

and QOI+,I−,j are even functions of a). Now we write out the second constraint :

− T−I+I−(−a)AI+,I−,j +
da

b− b−1
T+
I+I−(−a)BI+,I−,j =

1
2(b− b−1)

(
− LI+I−(−a)LI−I+(a)

(
QEI+,I−,j − gaQ

O
I+,I−,j

)
+

LI−I+(−a)LI+I−(a)
(
QEI+,I−,j + gaQ

O
I+,I−,j

))
. (4.243)

Similarly, the right hand side is manifestly an odd function of a.
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Conclusion

In this conclusion, we highlight the main results of this work and propose some further directions of
investigation.

The ultimate achievement of this PhD research is the computation of the one point functions of
fermionic operators in the Super sine-Gordon model. They are constructed out of a single function
Ω, de�ned by a set of scaling equations, and which origin is traced to the computation of vacuum
expectation values of lattice operators on the underlying 19-vertex model. On one hand, the analysis
of the scaling equations in the conformal regime allowed to compute the one point functions of speci�c
fermionic operators in the UV limit, and to establish the connection between the usual Virasoro
description of CFT and the fermionic part of the fermion-current description. On the other hand,
these results have been checked by an alternative method that relies on the re�ection symmetry of
the ssG model. We emphasize again that both techniques completely di�er in their nature and are
both based on conjectures. The matching of the results from both sides is a very strong assertion
for both of them.

In this �eld theoretic context, notice that for what concerns the primary �elds, we have ob-
tained the most important quantity for applications. Indeed, we argued that the simplest non-chiral
fermionic descendant provides the ratio of one point functions of the operators W

α+ 2β2

1−β2
and Vα.

The former operator is exactly the most relevant contribution occurring in the OPE of the latter
one with the perturbing operator W 2β2

1−β2
. In other words the ratio of one point functions in question

provides the most important contribution to the conformal perturbation theory.

A second, just as important result produced in this thesis, is the veri�cation of the decomposition
of speci�c operators on the fermion-current basis, on the lattice. From a more conceptual point of
view, this can be taken as an argument in favor of the completeness of the spin 1 basis. A research
direction that would be interesting to consider is to study the structure of the set of elements in the
fermion-current decomposition for a given operator, that is conditions such that (3.35). However, in
the study of this problem (as well as in the continuation of our work concerning the density matrices
for example) one has to cope with extremely involved computer calculations.

From the point of view of QFT, the natural direction to pursue is to consider the entire space
of local operators adding those created by the KM currents. The one point functions of the latter
include the function ω(θ, θ′). Recall the equation (4.136). Using this equation and the known Ω(θ, θ′)
one can, in principle, reconstruct ω(θ, θ′). The result is not unique, one has to �nd a way of �xing
the quasi-constants (anti-periodic with period πi functions of θ, θ′). When doing this numerically,
it is hard to achieve a good precision which makes it di�cult to put forward a conjecture based on
the interpolation. This is a technical di�culty which we hope to overcome in the future.

Having in hand the scaling equations for the KM currents, one could extract (provided that
such quantities exist) the analogs of the coe�cients Dm(a) (4.147) that are actually the starting
point of the work on the re�ection relations. The understanding of the properties of the currents
under re�ections represents an important advance since it would a priori provide an independent, and
purely algebraic path for the calculation of the one point functions. In particular the KM currents are
necessary to establish the full correspondence between the Super Virasoro and the fermion-current
basis.

Furthermore, the solution to the "re�ection problem" for currents would bring more under-
standing of the integrable structure of the higher spin models. As we said, we do not expect the
appearance of any new types of operators for spin s ≥ 3

2 , and at higher spins all basis elements
should be consistently organized in the following matrix :

1 b∗ j+ ...

c∗ j0 ... j̃+

j− ... j̃0 b̃∗

... j̃− c̃∗ t∗

 ,

where the dots represent higher spin currents. This picture is a generalization of a similar matrix
expression for the spin 1 fermion-current basis given in [6]. The knowledge of the current re�ection
transformation rules could give an independent approach for the study of such models, short-cutting
the general Suzuki equations [45].
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