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Abstract
The advent of high-throughput DNA sequencing technologies has set off an expanding
trend in genome assembling and scaffolding. Once limited to a few model organisms,
chromosome-level assemblies for an ever expanding range of species are now made possi-
ble by these technologies. Such genome quality is an essential preliminary to understand
interactions between and among chromosomes.

We built upon a computational and technological framework that let us tackle genome
assembly problems of increasing complexity. Our methods are mainly based on chro-
mosome conformation capture technologies such as Hi-C. In a Hi-C experiment, DNA
molecules are cross-linked with the surrounding proteins and form a large, static protein-
DNA complex. This captures the spatial conformation by trapping together molecules
that are physically close to each other. Therefore, Hi-C is very suitable for 3D genome
structure analysis, which lets us infer a wealth of information about the genome. It
was indeed shown that the tridimensional structure of the genome can be unambigu-
ously linked to its 1D structure thanks to the physical properties of DNA polymers.
Moreover, such 3D proximity also gives access to cell compartment information, thus
opening the way for an additional approach for metagenomic binning. Both of these
methods were implemented as proof-of-concepts or on simple model organisms where
prior information was easily available for reference.

In this work, we expand upon these methods and apply them to use cases with more
and more complexity.

vii



1 Introduction
One of the most salient characteristics of our modern era is its current fascination with
DNA. Due to the tremendous advances in sequencing technologies made over the re-
cent decade, coupled with the ever decreasing costs of computational resources, all fields
related to the study of DNA have received increased attention and have expanded be-
yond early expectations: from comparative genomics to metagenomics to evolutionary
genomics, the scale and pace at which new discoveries are made have dramatically ac-
celerated and show no signs of slowing down.

These advances have thoroughly transformed the way we think about DNA: no longer
a static string of code binding the individual according to some linear phenotype-to-
genotype dogma, it is indeed a dynamic molecule in a constant state of interaction: with
itself, as befits any polymer subject to random looping as well as internal rearrangements;
with its cell environment, as various proteins bind to specific regions and in turn affect
transcription levels and functional ability; with other DNA molecules, as more dramatic
rearrangements occur, such as DNA transfers; and lastly, with time, as evolution runs
its course and its additional mechanisms further complicate our model of understanding.

One may thus understand the need to access the entirety of a species’ genome in
order to draw definite conclusions about its global picture, whether it be evolutionary,
structural, or functional. Yet, to this day, relatively few genomes have been fully char-
acterized, with respect to the estimated 11 million species present on the planet; in fact,
with few exceptions, the genome of virtually all species that have been sequenced is
known in a more or less fragmented state. Still, many independent efforts have been
made to bring the genome of many species ever closer to a state of full completeness.
With this present work, we hope to contribute an additional step into that direction.

In the following sections, we will present a brief overview of genome sequencing tech-
nologies and the corresponding genome assembly strategies exploiting such sequence
data, from historical practices to current state-of-the-art techniques. We will explain
the approach we have chosen (chromosome conformation capture), and how its mathe-
matical and computational framework fits into global picture of genome assembly, adding
to it and bringing extra insights into chromosome dynamics from species of interest.

1.1 Overview of genome sequencing
DNA sequencing technologies are evolving quickly and have been traditionally sepa-
rated into generations; the first concerns early efforts to obtain the sequences of model
organisms, whereas the second may be argued to have kicked off the so-called ’genomics
revolution’ at the turn of the millennium. The third generation usually refers to ad-
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1 Introduction

vances made over the last decade, mostly regarding long read technology, which we will
detail below.

1.1.1 First generation: early genomes
In this section we will cover the first achievements and long-spanned projects that char-
acterized the first generation of sequencing.

1.1.1.1 Early efforts

Early landmarks on DNA sequencing were achieved in the sixties, in the trail of the
discovery of double-helix 3D structure of DNA the decade before [1]. Available techniques
were mostly focused on proteins, i.e. shorter sequences whose base units were very
different from one another [2]. Early protocols, inspired from analytical chemistry, could
not determine sequence order, and were not adapted to DNA [3].

The very first efforts to infer the order of nucleotide base pairs were derived from
RNA-related techniques, notably due to their single-stranded nature and shorter length,
making them simpler to analyze by techniques at the time [4], involving specific treat-
ments to partially degrade RNA fragments. For instance, in 1965, the very first fully
characterized acid nucleic sequence was that of alanine tRNA from the baker yeast Sac-
charomyces cerevisiae, by Robert Holley [5].

Gradually, a number of landmarks were made. The first protein-coding gene sequence
was determined in 1972 using a two-dimensional fractionation method by Walter Friers
[6]. It was the coat protein of the bacteriophage MS2, whose full genome (3,569 bp) would
be characterized in 1976, making it the first genome ever sequenced [7]. However, its
sequence had still been determined at the RNA level, the phage being a single-stranded
RNA virus.

DNA-specific sequencing methods began to arise with the use of DNA polymerase [8]
[9]. In 1970, using the Enterobacteria phage λ as a target, Ray Wu and Dale Kaiser
added radioactive nucleotides one by one with the enzyme, measuring each time the
composition to infer the actual order of incorporation [10]. The use of location-specific
oligonucleotides to help prime the polymerase would enable the sequencing at any region
in the molecule [11]. Although these primer-extension methods formed the basis for
future advances and helped sequence more genes [12], they were still time and resource
consuming, as they involved 2D fractionation, and could not scale beyond very short
molecules [13].

1.1.1.2 The plus and minus method

A number of changes simplified the sequencing protocols, and helped achieve further
landmarks. The use of polyacrylamide gels made 2D fractionation unnecessary, as their
separation power during an electrophoresis was much more resolutive [13]. However,
the first design shift came in 1975 with Sanger’s and Coulson’s plus and minus method
[14]. Like above, a primer and DNA polymerase are used to incorporate DNA in the
presence of 32P-labelled nucleotides. A separate mix was created for each nucleotide

2



1 Introduction

radiollabeled this way. Then, each mix would be then split for two joint reactions: the
first one would only use the specific nucleotide that was labelled (the plus reaction) and
the second would use all other three (the minus reaction). The principle is illustrated
in figure 1. A set of eight reactions, two for each nucleotide, was thus run. For each
nucleotide, there would be extension sequences only ending with that base, and a set
of sequences that terminate right before that nucleotide’s position. A polyacrylamide
gel featuring all eight runs could help infer the position of every single nucleotide in a
genome [15]. This technique was successfully used by Sanger to sequence the genome of
bacteriophage φX174 (or PhiX), the first ever DNA genome [16].

In parallel, in 1976, Maxam and Gilbert would use specific chemicals instead of DNA
polymerase that break up the strand at specific positions (DNA sequencing by chemical
degradation). Given these, as well as the fragments generated this way, it was possible
to infer the exact order of the sequence [17]. However, the technical complexity of the
procedure, as well as the dangerous chemicals it required handling, meant it rapidly fell
into disuse with the advent of Sanger sequencing ([18], see the following section).

1.1.1.3 Chain-termination, or Sanger sequencing

The first breakthrough was made by Sanger in 1977, whose eponymous protocol would
later define first-generation sequencing for decades to come [19]. Also called chain-
termination or dideoxy method, it uses so-called dideoxynucleotides (ddNTPs), which
are deoxyribonucleotide (dNTPs) analogues lacking the hydroxyl group in 3’ (figure 2).

That group is necessary to extend the DNA chain, and a chain ending with a ddNTP
cannot bind with the 5’ phosphate group of another dNTP [20]. A mix of radioactive
ddNTPs and dNTP is prepared for a DNA extension reaction, with ddNTPs present in
smaller amounts than dNTP; the end result is that ddNTP will be sometimes randomly
selected for incorporation uniformly across the strand, stopping its extension at various
points. Eventually chains that stop at every single point in the genome will be generated.
Such a reaction is run for each nucleotide and its corresponding dNTP/ddNTP base mix.
With the help of a polyacrylamide gel combining all four results, one may deduce the
original nucleotide sequence order: each position will be matched by a fragment stopping
exactly there [2][13]. The complete protocol is shown in figure 3.

This major advance enabled the sequencing of longer molecules; in 1981, Sanger pub-
lished the complete, 48 kb long sequence of the λ bacteriophage [22], which was the
longest at the time, and in 1984, the Medical Research Council published the 172 kb
long sequence of the Epstein-Barr virus [23]. This was a major undertaking that took
three years, but progress accelerated with time. The exponential evolution of the amount
of publicly available DNA sequences since the first ever genome is shown in figure 4. For
this design breakthrough, Sanger was rewarded with the 1980 Nobel price in chemistry,
which he shared with Gilbert.
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Figure 1: The plus and minus method

Source: Inspired from Sanger, Coulson et al., 1975, [14]

1.1.1.4 Industrial developments and further landmarks

Sequencing development was accelerated as the original Sanger protocol was subject to
various improvements [24] [13], such as replacing radioactive with fluorescent labelling
[25] [26] [27] [28] [29], the use of capillary based electrophoreses [30] [31], or a more suited
polymerase [32]. Increasingly, it became possible to automate the sequencing of genomes
at relatively cheap costs, thus giving rise to the first commercial DNA sequencing ma-
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Figure 2: Representation of (A) a deoxyribonucleotide, where the characteristic hy-
droxyl group has been marked, and (B) a dideoxynucleotide, where it is miss-
ing.

chines. The first semi-automated one was announced in 1986 [29], followed by Applied
Biosystems releasing the first fully automated sequencing machine (ABI 370) in 1987
[33], which was rapidly put to use to succesfully determine the sequence of a gene [34].
Later, Craig Venter would set up the Institute for Genomic Research (TIGR), putting
together 30 ABI 373A automated sequencers and 17 ABI Catalyst 800 robots [35] [36],
helping the sequencing efforts gain momentum.

These machines were limited in output and could only produce short chunks called
reads, which were approximately one kilobase long. In order to infer the sequence of
longer genomes, many such fragments had to be cloned and sequenced, and the overlaps
were to be assembled in silico ([37], see section 1.2); thus, shotgun sequencing was born
[38]. To that end, very highly concentrated amounts of DNA had to be produced so that
the redundancy provided by the read overlaps would make the assembly process easier.
This was facilitated with the development of polymerase chain reaction (PCR) [39] [40]
and recombinant DNA technologies [41] [42].

As a result of increased automation, landmarks were achieved rapidly at the turn of
the 1990’s and beyond: following the release of the direct blotting electrophoresis system
(GATC 1500) sequencer by GATC Biotech, the complete sequence of Saccaromyces
cerevisiae’s chrmosome III was published in 1994 [43]; the remaining fifteen chromosomes
would be sequenced in 1996 by an international consortium [44], making S. cerevisiae
the first eukaryotic genome to be ever published. It was, however, predated by the
sequencing of the Haemohilus influenzae genome in 1995, which, at 1.8 Mb long, was
the first free-living organism to be ever sequenced [45]. Other genomes would later follow,
such as Bacillus subtilis [46], Escherichia coli [47], the first animal Caenorhabditis elegans
[48], and Drosophila melanogaster [49].
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Figure 3: The Sanger protocol

Source: Adapted from Kim et al., 2012, [21]

1.1.1.5 The Human Genome Project

These pioneering projects, and notably the European led consortium on the yeast genome,
acted as successful proof-of-concept achievements that paved the way to the ambitious
Human Genome Project (HGP), an initiative aiming at characterizing the entire euchro-
matic regions of the human genome within 15 years. A joint international consortium
gathering institutes from Europe and Asia (notably including France’s Génoscope - that
provided the important genetic maps necessary to scaffold the chromosomes - and Ger-
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Figure 4: Evolution of publicly available sequences along the first sequencing generation

Source: Hutchison et al., 2007, [2]

many’s Max Planck Institute) contributed to the project [50]. It made use of vectors
called bacterial artificial chromosomes (BACs); after breaking up the 3 Gb genome into
150 kb chunks, each of these was then incorporated into the vectors, using the bacteria’s
internal machinery to replicate and produce more DNA. The resulting molecules were
then shotgun-sequenced as usual; this two-tiered method was called hierarchical shot-
gun sequencing [51]. Given the enormous size of the human genome, hundreds of such
samples needed to be processed this way, and progress was spurred by the release of
newer Sanger sequencers [52], such as the ABI PRISM machines from Applied Biosys-
tems in 1998. In the meantime, Craig Venter split off from TIGR to create his own
privately-funded company, Celera Genomics. Its business model was the creation of ge-
nomic data with shotgun approaches which researchers could access for a fee. It was
also known for attempting to patent genes, filing preliminary applications for 6,500 of
them. This was however abandoned when the US president and UK prime minister at
the time released a joint statement in 2000, arguing that the human genome should not
be patented. Overall, the increased competition incentivized the publicly-funded HGP
to double down its efforts and the project was completed ahead of time; a ”rough draft”
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of the human genome was announced in 2000 [53] [54], and the genome was declared
complete on April 13, 2003 [55]. Both Celera Genomics and the HGP shared the credit.
However, many sequence gaps still remain to this day [56]. The heterochromatic regions
(centromeres and telomeres) were outside the scope of the project, and figure 5 shows
that as of 2018, hundreds of gaps of various sizes were still extant.

Figure 5: Human genome gap count and locations by chromosome.

Source: Adapted from the Genome Reference Consortium

1.1.2 Second generation: the ’genomic revolution’
In this section we will briefly cover how a radically different approach to sequencing in
the early 2000’s helped reduce its costs and make it accessible to all.

1.1.2.1 The advent of high-throughput sequencers

In parallel with Sanger sequencing development, an independent method was discovered
by Pål Nyrén and colleagues from the Royal Institute of Technology in Stockholm, using
luciferase: in this protocol, ATP-sulfurylase converts pyrophosphate into ATP, which in
turn acts as a substrate for the enzyme. It is remarkable for an emission of light that’s
proportional to the amount of pyrophosphate it catalyzes [57]. In practice, a template
is attached to a solid support [58] and the DNA to be sequenced is flowed over it, and
the correct base is inferred by measuring the amount of pyrophosphate via the intensity
of light produced by the luciferase. This allowed the sequencing output to be directly
detected instead of using electrophoreses, and the protocol did not require modified
dNTPs [59] [60]. However, the intensity ceases to be proportional to the produced
pyrophosphate after a few identical nucleotides are passed through [61]. This led to
issues when attempting to sequence such long identical chains.

This method, dubbed pyrosequencing and illustrated in figure 6, was patented by 454
Life Sciences [62] and completely changed the way sequencing was thought of, as the
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machines they released could run many reactions in parallel, thus allowing much higher
amounts of DNA to be sequenced at a time [63]. Numerous improvements included the
use of paramagnetic beads for the DNA to be coated onto and PCR-amplified; each
bead is fits a well where the dNTPs are washed through [64]. In this setup, millions of
such wells could be fit, containing that many beads, thus greatly reducing the necessary
effort and cost to sequence ever longer stretches of DNA. This led to researchers coining
the term of high-throughput sequencing (HTS) to reflect the several orders of magnitude
gained in return-to-investment, and the era in which such developments were undertaken
(often made concurrently with technological advances in other fields that made these
breakthroughs possible in the first place) was referred to as second-generation sequencing,
to contrast with the first one [65].

1.1.2.2 Industrial competition

454 Life Sciences, which would later be acquired by Roche, released the first commercially
available machines designed with high-throughput sequencing in mind, such as the GS
20 or 454 GS FLX [66]. However, several methodologies and associated companies arose
in the wake of 454’s success. One of the more prominent ones is the Solexa sequencing
technique, illustrated in figure 7. In this design, DNA molecules are surrounded by
adapters; the molecules are then flowed through a field of oligonucleotides that are
complementary to the adapters and affixed to flowcells. After a PCR, each DNA molecule
processed this way is surrounded by identical molecules cornering the flowcell [67] [68].
Special fluorescent dNTPs are then used for the sequencing proper, where the fluorophore
(or dye) occupies the 3’ position and prevents further extension by the polymerase. The
nucleotide is detected by exciting the dye with lasers, and the dye itself is removed before
the next position is sequenced [69]. A DNA molecule and its replicates can thus been
sequenced synchronously, one nucleotide at a time.

Early machines using this design, such as Genome Analyzer (GA), could only produce
short reads but were among the first to yield paired-end data. The GA was followed by
the MiSeq and HiSeq: HiSeq was designed for longer and more covered reads, whereas
MiSeq was optimized for cost and run speed [70].

As the field of HTS opened and flourished, other companies started designing sequenc-
ing protocols of their own [13]:

• Ion Torrent was remarkable in that it relied on the pH difference caused by the
release of protons during the polymerase reaction. [71] This was enabled by com-
plementary metal oxide semiconductors (CMOS), a specific technology used in
integrating circuits and microchips [70].

• Applied Biosystems also emerged through the second generation with its SOLiD
(Sequencing by Oligonucleotide Ligation and Detection) system, using a ligase
instead of a DNA polymerase unlike all of the above methods [72]. It was reported
to struggle with palindromic sequences and produced shorter reads than Illumina
technologies, although at cheaper rates [73].
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Figure 6: Pyrosequencing protocol by 454 Life Sciences.

Source: Adapted from Voelkerding et al., 2008, [66]
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Figure 7: Illumina/Solexa sequencing protocol.

Source: Voelkerding et al., 2008, [66]
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• Complete Genomics used DNA nanoballs, whereby unknown DNA templates are
flanked by known adapters; a round of PCR amplification produces long, linear
chains of template-adapter monomers affixed to each other using rolling circle repli-
cation; they collapse into ”nanoballs” on their own accord before being attached
to a flowcell and sequenced in the usual fluorescence-based manner [74].

1.1.2.3 Aftermath

The above competition and breakthroughs in nucleotide sequencing technologies are
often described as a genomic revolution in that they helped drive down prices immensely,
at a several times faster rate than Moore’s law that is usually associated with the costs of
transistors, as illustrated in figure 8 [75]. Initially a costly and time-consuming endeavor,
DNA sequencing became in less than a decade accessible to many labs. In the mid-to-
late 2010’s, however, the competition seems to have died down, with Illumina emerging
as a clear winner and major contributor to the second generation [76].

Figure 8: Evolution of sequencing cost compared to Moore’s law.

Source: National Human Genome Research Institute (https://www.genome.gov/sequencingcosts), via
Lippert et al., 2015, [75]

The advances described above enabled the sequencing of many species, but the result-
ing assemblies often could not progress beyond draft form, especially for eukaryotes. The
main reason is the presence of repeated sequences that create ambiguity and additional
difficulty for traditional short-read based assemblers. Even to this day, Illumina short
reads are rarely above a few hundred base pairs long, making them ill-suited for large
stretches of repeats [73].

Another consequence of the advent and subsequent widespread access to cheap second-
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generation shotgun sequencers is the emergence of the field of metagenomics [77]. It
became possible to indiscriminately sequence everything in a live sample and analyze
the results, often leading to the discovery of hitherto unknown species that could not be
grown in laboratory conditions [78].

1.1.3 Third generation and beyond: long reads
The definition of third generation is muddier than the previous two [79], but there
seems to be general agreement on its being hallmarked by the advent of single molecule
sequencing (SMS) [80] [81]. This technology distances itself from the second generation
by not requiring any PCR amplification. Early attempts at SMS had been made by
Helicos BioSciences [82]. However, as of the late 2010’s, two companies are currently
leading the field: Pacific Biosciences (PacBio, which was acquired by Illumina) [83] and
Oxford Nanopore Technologies (ONT, or simply nanopore) [84]. In this section we will
briefly cover the technologies at stake.

1.1.3.1 Pacific Biosciences

PacBio machines make use of their single molecule real time (SMRT) platform. The poly-
merisation reaction occurs in special structures dubbed zero-mode waveguides (ZMWs),
which are nanometer-sized holes in a film over a microchip [85]. As light goes through a
hole of diameter smaller than its wavelength, it undergoes exponential decay. Therefore,
only the bottom of the holes are illuminated. The sequencing makes use of laser-excited
dye molecules, and these can be visualized in real time [13]. The protocol is illustrated
in figure 9. The speed of the sequencing is very fast and equal to the polymerizing
rate itself. Moreover, the molecules being sequenced are noticeably larger than second-
generation ones and can reach 10 kb or more, and modified bases can be detected by
this method [86].

1.1.3.2 Oxford Nanopore Technologies

Nanopore sequencing is in fact a derivative of general nanopore use geared at any kind
of biochemical molecule [87]. In this design, the DNA passes through an ion channel,
which halts ion flow. This can be measured by the current difference, which should be
proportional to the length of the sequence itself. Very large sequences can be character-
ized this way. ONT has released a number of nanopore sequencing platforms such as the
GridION, PromethION and MinION. The latter is remarkable for being very compact,
as small as a normal USB device, and could be used in a decentralized way, further
increasing the accessibility of sequencing to the masses. Current limitations include a
high error rate, although improvements are being rapidly made [88].

1.1.3.3 Beyond: the fourth generation?

There is little consensus on what constitutes fourth-generation sequencing, but it has
been used for designating single-cell technologies and in situ sequencing [89]. One of
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Figure 9: Overview of PacBio sequencing technology.

Source: Adapted from Rhoads et al., 2015, [83]

the cited advantages would be to preserve the original spatial conformation of DNA and
RNA molecules and benefit from increased (cellular) resolution, making it suited for
cancer research. However, the efforts and technologies involved, such as in situ RNA
sequencing (ISS) are still in their early stage and haven’t reached industrial scale for
everyday use yet.

1.2 Genome assembly
With the advent of shotgun sequencing, i.e. cutting DNA molecules into chunks, the
field of genome assembly arose. It mostly piggybacks that of DNA sequencing technolo-
gies, and the underlying strategies naturally reflect the nature of sequence data being
produced and the different forms it takes. Most traditional assembly algorithms rely on
short accurate paired-end or single-end reads, whether they come from Sanger or second
generation sequencing. These range from 30 bp to over 1 kb (especially in the case of
Sanger sequencing). In the case of paired-end reads, a predetermined region of known
length fixed by the sequencer, called the insert size, lies between both ends. Paired-end
reads have a number of advantages over single-end data, in that they provide more map-
ping information, especially regarding repeated sequences [90] [91]. They also come in
handy when detecting small-scale rearrangements, splicing or gene fusion.

Two different kind of assembly processes must be distinguished:
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• Reference-guided or mapping assemblies are generated using a set of reads and a
reference genome to go from, which is presumed to be similar to the final output.
These assembly methods are fast and efficient [92] but they obviously make as-
sumptions about the data and require a reference to be available in the first place.
For the purpose of comparative genomics, they have proven successful for detect-
ing rearrangements across similar species, such as the saker falcon, budgeridar and
ostrich genomes [93].

• De novo assembly refers to the process of putting together sequence reads, often
from multiple sources, to newly form the most complete and contiguous sequences
representing a species’ genome (or more in the case of metagenomics). De novo
methods are orders of magnitude slower than reference-guided ones but are also
free from bias. Also, they’re often all one has at disposal.

In this work we will only focus on de novo assembly. Indeed, none of our case studies
gave any prior knowledge at our disposal about the genomes we worked on. The following
sections cover the different stages of a (meta-)genome assembly and their underlying
principles.

1.2.1 Assessing assembly stages
The case of a few chromosomes within a single genome needs to be treated separately
from metagenomics, and each one gets its own subsection.

1.2.1.1 Single genome

We roughly categorize the quality of an assembly into four states represented in figure
10, which we denominated according to current usage in the literature:

• Contigs represent an assembly in its most basic form, consensus sequences deduced
from read overlaps. They are generally short but accurate, since their error rate is
that of the sequencer itself.

• Scaffolds are ordered sets of contigs that have been determined to belong to the
same chromosome. Each scaffold is represented by a single sequence, whereby the
contigs themselves are separated by gaps, unknown sequences (represented by Ns
according to the IUPAC standard for ambiguous nucleotides) whose length can be
more or less accurately estimated [94].

• Chromosome-level assemblies represent the next improvement stage, whereby all
contigs have successfully been scaffolded such that there exists a one-to-one map-
ping between each chromosome and each scaffold, usually with the help of indepen-
dent data. In practice, there are often a few short contigs that couldn’t be assigned
to a chromosome, but the term can still be applied provided those sequences only
make up a small portion of the genome’s total size. The terminology is applied at
the discretion of the genome publisher and curators. Chromosome-level assemblies
may still feature gaps.
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• Complete or telomere-to-telomere assemblies have been completely and contigu-
ously characterized, i.e. each scaffold uniquely maps to a chromosome and there
are no gaps left. There are relatively few eukaryotic genomes in such a state: only
model organisms such as S. cervisiae (and, through the efforts of the Génolevures
consortium [95] [96] [97] [98], many other yeast species) or C. elegans. Complete
bacterial genomes are more common [99]. However, some large genomes have been
partially assembled this way, e.g. the human X chromosome.
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Figure 10: A scaffolding pipeline, from beginning to end. The four stages are contigs,
scaffolds (usually gapped), chromosome-level scaffolds (usually gapped) and
complete chromosomes.
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1.2.1.2 Metagenome assembly

In the case of metagenomics, the picture is different, as the genomes themselves are
smaller, being mostly bacterial, but much more numerous [100]. Gaps are seldom rele-
vant, but uneven coverage and lack of material often means many genomes are incomplete
and impossible to recover in their entirety. We roughly categorize the progression into
three steps, illustrated in figure 11:

• Metagenomic assemblies are often incomplete, fragmented and act as preliminary
steps for further analyses. Because of the uneven coverage across the genome spec-
trum, specialized software needs to be used, such as Bambus 2 [101]. Many popular
assemblers have their metagenomics-specialized counterpart, like metaVelvet [102]
or meta-IDBA [103].

• Metagenomic binning refers to the process of pooling contigs together so that each
bin (or metagenome-assembled genome, MAG) contains sequences that belong to
the same species. Bins are not necessarily complete (they don’t represent the en-
tirety of the genome), nor are they ordered; they are a next-best solution, absent
complete reconstruction of every single genome in a metagenome. Nevertheless,
with enough data from samples, thousands of new draft genomes have been suc-
cesfully published this way, greatly expanding the tree of life [104] [105]. Note that
reads may be directly binned, skipping the assembly phase.

• Scaffolding is the full reconstruction of a species’ genome within a metagenome. It
is in practice very hard (and sometimes impossible) to fully reconstruct every single
genome in a sufficiently complex sample, but many of the most highly covered ones
can be characterized this way. This step is often skipped.

Figure 11: A complete metagenomic pipeline.
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1.2.2 Base principle
In its simplest form, genome assembly is an offshoot of the shortest common superstring
(SCS) problem: give a set of strings S = {S1, . . . , Sn}, how to find the shortest string
SCS(S) such that each of the S1, . . . , Sn is contained within SCS(S)?

Unfortunately, this problem is NP-complete [106], and there is no known algorithm
running in efficient (polynomial) time for large inputs n that exactly solves this problem.
In practice, the community uses heuristics to (hopefully) reach a satisfactory solution.

Current short-read based assembly tools can be broadly sorted into several categories,
depending on the underlying fundamental algorithm behind it. Three of which are the
most prominent [107]:

• Greedy methods

• Overlap-layout-consensus (OLC) based methods

• De Bruijn graph (DBG) based methods

Other approaches exist, such as methods based on string graphs or hybrid ones, but
they have known comparatively less success, historical or current [108].

1.2.2.1 The Lander-Waterman model

Almost all assembly algorithms trace back to the original Lander-Waterman model, which
first set in 1988 the initial mathematical basis for sequence assembly [109]. In that model,
the sequencing depth or coverage c is assumed to be constant, as is the read length L.
Moreover, a cutoff threshold T for the overlap length between reads is set, below which
overlaps are discarded. If G, the genome size, is known, the Lander-Waterman model is
able to predict the exact number of contigs:

Ncontigs = G ·
c

L
· e−c·L−T

L (1)

The quantity G· c
L

is in fact the total read number, whereas the decaying factor e−c·L−T
L

corresponds to the probability that a read be the rightmost one within a contig.
Such a model gives an initial glance at the coverage c that would be needed given the

strength of the overlaps (related to T ) and the length of the reads L. In practice, L is
fixed by the platform and c is constrained as well, so algorithms often depend on the
overlap threshold T as a parameter [110].

The following methods can be more or less consistent with the model, from greedy
algorithms (that often disregard T altogether) to overlap layout consensus and de Bruijn
graphs (where an equivalence is often found).

1.2.2.2 Greedy methods

Greedy methods, the earliest assembly algorithms, are the simplest and probably the
most naive, and consist in systematically merging the biggest overlaps every time [108].
Simplified steps can be described in Algorithm 1.
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Algorithm 1 Simplified greedy de novo assembly
Require: S = {r1, . . . , rn}, a set of reads
Require: f(r1, r2), a function merging r1 and r2 if they overlap

repeat
for r in S do

rgreedy ← arg maxr̃ |r̃ ∩ r|
r ← f(r, rgreedy)

end for
until no more overlaps are found

Greedy algorithms are not guaranteed to find the optimal solution, and the problem
is exacerbated by the presence of repeated sequences or sequencing errors. They are also
very computationally intensive, as they require calculating distances between all read
pairs to find overlaps [107].

Examples of implementations of greedy algorithms include SSAKE, the first ever as-
sembler [111], as well as VCAKE [112].

1.2.2.3 Overlap layout consensus

Overlap layout consensus methods proceed by three steps:

• First, a graph of overlaps is built. In that weighted graph, each node represents a
read and each edge the length of the overlap. A simplified example of such a graph
is provided in figure 12.

• Second, the graph is simplified so that redundant edges that could be inferred by
simple transition across the graph are removed. Edges where the overlap is below a
certain threshold (the T value in the Lander-Waterman model) are also discarded.
One thus gets a layout of the graph. Deducing contigs then formally reduces to
finding Hamiltonian paths (a path going through every node exactly once), which
is an NP-complete problem [113].

• Lastly, all the reads making up a putative contig are aligned so that a consensus
can be built by simple majority. Ideally this should be superfluous; in practice,
sequencing errors and ambiguities created by ploidy or haplotypes make this step
necessary [110].
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Figure 12: An overlap graph with five four-base reads. Insufficiently large overlaps
(below T = 2) are marked to be removed.

In order to build the overlap graph, each read is mapped against each other read,
which can be computationally intensive. The graph can either be constructed using
suffix trees or using a scoring function when mapping two reads against each other [114].
The latter approach is more time-consuming but also more flexible since it allows for
gaps and mismatches, which are simply given a lower score.

OLC is very consistent with the Lander-Waterman model, as the threshold used to
build the overlap directly corresponds to the T parameter described in section 1.2.2.1.
Due to their reliability, they dominated the first generation of sequencing technologies
[110].

Examples of programs using OLC algorithms include PHRAP [115], TIGR [116],
ARACHNE [117] or Celera (from Celera Genomics). The latter was notable for its
extensive use during early genome projects such as the assembly of D. melanogaster
[49].

However, OLC methods have a number of limitations: building the overlap graph
can be slow, and the graph itself is huge: one node for each read, and edges grow even
quicker. They tend to be ill-suited for second-generation libraries that often feature
hundred of millions or even billions of reads [108].
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1.2.2.4 De Bruijn graphs

De Bruijn graph (DBG) algorithms have risen to prominence with the advent of very
large datasets and they are now the standard for modern assemblers [108]. DBGs take
their name after their inventor, Nicolaas Govert de Bruijn. They are formal structures
designed to represent overlaps exactly k − 1 bases long, where k is the total length of
the sequence, incidentally making them very suited for genome assembly [78]. A node
represents a k−1 overlap relationship, whereas an edge represents a sequence of k bases,
or k-mer. A simple example with four nodes is shown in figure 13.

AT TG

GCCA

ATG
T
G
C

GCA

C
A
T

Figure 13: A simple cyclic, four-node de Bruijn graph.

In order to build the graph, a fixed k value is set, normally an odd integer in order to
avoid palindromes between a sequence and its reverse complement. Then, each read of
length n is converted into a set of n− k + 1 such overlapping k-mers.

Contrary to OLC graphs, where overlaps are edges and sequences are nodes, DBGs
reverses this relationship. This means that solving an assembly, which would previ-
ously reduce to the computationally hard problem of finding a Hamiltonian path (going
through all nodes exactly once), is instead transformed into the much easier problem
of finding an Eulerian path (going along all edges exactly once) [110]. There are many
algorithms for finding Eulerian paths, running in linear time. An example of a DBG,
with its path outlined, is provided in figure 14.
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AT TG GG
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Figure 14: A de Bruijn graph and its Eulerian path.

It can be shown [118] that under certain conditions, an Eulerian path always exists, is
unique and corresponds to the initial genome. Unfortunately, real world datasets often
don’t benefit from these conditions. DBG algorithms struggle with various issues [119]:

• Sequencing errors

• Repeated sequences

• Haplotypes

• Pronouncing de Bruijn correctly [120]

Apart from the last point, many efforts have been undertaken to address these issues.
Sequencing errors result in spurious reads (and k-mers) that ”stick out” from the

graph, create bubbles, and make it non-Eulerian. Apart from using the sequencer’s own
quality scores to weed out such issues, they can be avoided by performing read error
correction prior to building the graph: since sequencing errors tend to be rare, the un-
usually low frequency of the resulting k-mers can be noticed, especially when compared
to that of their (presumably genuine) closest k-mers (in terms of Hamming distance).
Read error correction is thus a customary step in DBG-based assembly. Examples of
implementations include ECHO [121], BayesHammer [122], or SHREC [123]. Since the
step is so important, many DBG-based assemblers ship with a corrector, whether it be
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third-party software, such as SPAdes [124] (using BayesHammer) or their own imple-
mentation, such as EULER-USR [125].

Repeated sequences make multiple paths possible, or a repeat collapse, thus creating
misassemblies. This can be handled using multi-graphs. In these data structures, nodes
(overlaps) can be linked by m edges (k-mers), where m is the multiplicity of the k-mer
being repeated. Determining it can be difficult, especially given that coverage can be
uneven across a genome. Without that information, paired-end reads can still give an
estimate of the length of the total repeated stretch (and thus its multiplicity), provided
the insert size is long enough [78].

Resolving haplotypes is a long-standing issue in DBG-based approaches, combin-
ing both problems about bubbles (heterozygous sequences and polymorphisms falsely
marked as errors) and repeated sequences stemming from identical regions. Recent de-
velopments have been made to address it, notably with the BWISE assembler [126]
making use of super-reads as more complex data structures, analogous to the ones used
by long-read assemblers (see section 1.2.3).

DBG-based assemblers have taken over the field of genome assembly and most state-
of-the-art assembly software are DBG implementations. These include Velvet, one of the
earliest such programs [127], SOAPdenovo [128] [129], Abyss, [130], and more recently,
SPAdes [124], among the most well-known ones.

1.2.2.5 Scaffolding

The above methods were concerned with creating the most accurate contigs. However,
contigs are seldom sufficient to reconstruct the entirety of a genome; this is mostly due
to repeated sequences that can’t be bridged, or unsequenced regions. Scaffolding is thus
the process of ordering the contigs despite the presence of such gaps [94].

The advent of new technologies has greatly increased the avenues for scaffolding a
genome, and we will treat them below. In the case of short reads, however, the main
information comes from paired-end data. Since nearly all modern short-read based
sequencers produce paired-end reads, an initial scaffolding can be generated right away
and indeed most assembly programs do provide their own scaffolding steps .

The principle is illustrated in figure 15: if both ends of enough read pairs successfully
map on different contigs, one may infer that both contigs should be next to each other.
The orientation of the reads gives information about which way to orient both contigs.
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Figure 15: Scaffolding using short paired-end reads. The orientation of both ends help
disambiguate that of the contigs within a scaffold.

The sequence in-between is still unresolved and traditionally represented by stretches
of ambiguous NNNN on a FASTA file, but the length of such gaps can be estimated. It
is naturally bound by the insert size of the paired-end reads, and enough alignments at
the edge of either contig may shrink the bound further.

Unfortunately, some gaps are longer than the insert size of most sequencers, and are
thus impossible to bridge this way. This is particularly true for the genomes of many
eukaryotes where repeats may span hundreds of megabases. This is where long reads
and other such new technologies come into play.

Apart from assembly software’s own implementations, examples of standalone scaf-
folders include SSPACE [94], GapFiller [131] and ECHO [121].

1.2.3 Long read and hybrid methods
With the advent of long read sequencing technologies, new methods were necessary to
take this data into account. Long-read assemblies are crucial for bridge large stretches of
repeated sequences [132]. However, due to the still error-prone nature of these sequences,
long reads are often coupled with second-generation short reads to correct (or polish)
them; hence the hybrid nature of tools attempting to combine both kinds of data to
solve an assembly. An example of a complete pipeline is illustrated in figure 16. Note
that not all steps are necessarily present and most programs combine two steps in one
(e.g. read correction and assembly).
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Figure 16: Hybrid, short- and long-read based assembly pipeline. Reads are (optionally)
cleaned using error correction algorithms, then the short reads are used to
correct the long ones. Both read sets are used for the DBG assembly program.

Read error correction and polishing is a time-consuming task, as it either requires
mapping the short reads onto the long ones to find overlaps and potential errors, or
building complex DBGs to find correct paths [133], and it is often the bottleneck of such
pipelines. Example of long read polishers using short-reads include FMLRC [134], Sprai
[135], PBcR [136] or LoRDEC [137]. This step is sometimes avoided in favor of long read
self-correction with programs like LoRMA [138] or HGAP [139], which doesn’t require
a short-read library.

Like modern short-read assemblers, hybrid and long-read assemblers generally use
DBGs and try to find Eulerian paths to get contigs. Among the most prominent pro-
grams are Canu [140], hybridSPAdes [141] or MaSuRCA [142] which have seen increased
and successful use as of late in many assembly projects such as the genome of the clown-
fish [143] or the tropical teak tree [144].

1.2.4 Metagenome assembly
This section is focused on the special case of metagenomics and field-specific algorithms
that have been developed to investigate genome assembly in a complex community and
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the underlying chromosome dynamics.

1.2.4.1 Challenges in metagenomics

The ”holy grail” of metagenomics is to be able to accurately reconstruct and characterize
the genome of every single species from a given sample, as shown in figure 17; however,
in setting out to do so, a number of assumptions made in the previous sections have to
be discarded, making the task even more challenging.

Figure 17: An idealized metagenomics pipeline. DNA is extracted from collected sam-
ples, indiscriminately sequenced and accurately sorted into groups so that
their constituent genomes can be reconstructed.

First, the diversity found in many metagenomic samples is enormous [145]. Commu-
nities of all kinds thrive under very different conditions [146]. It is estimated that the
human gut microbiome presents a thousand different species of bacteria [147]; a typical
soil sample contains more than ten times that amount [148] [149]. Moreover, the inter-
actions underlying these very complex communities are still to be fully understood, but
a number of findings indicate that they hold crucial roles in the maintenance of vari-
ous ecosystems, from oceans to soil to living hosts; within animals (including humans)
and plants, they contribute to their metabolism [150] [151] [152]. They have also been
known to alter behavior in humans [153]. Unfortunately, more than 99% of the species
found in these communities can’t be cultured in lab conditions [154], so very little prior
information about the genomes is available.

Second, the coverage distribution across these organisms is very much unequal. In
practice, a few species or genuses of bacteria are overabundant and drown out the signal
from the remainder. This doesn’t mean the rarer bacteria aren’t any less essential to the
balance of the ecosystem. This heterogeneity is compounded by the presence of multiple
similar strains sharing many of the same sequences, much like the presence of haplotypes
within an eukaryotic read set complicates traditional genome assembly.
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Third, a number of sequences may be shared among species for various reasons:

• Conserved by evolution (e.g. essential genes)

• General species similarity leading to sequence homology

• DNA transfers such as conjugation

• Phage infection (either integrated or only within the cell compartment). Bacteria
that are part of the same phage infection spectrum will share their viral DNA.

This shows that the characterization of a metagenome (and how it affects an ecosys-
tem) cannot be decoupled from an understanding of the underlying dynamics at play
among its constituent species.

1.2.4.2 Deconvolving a metagenome

As we have seen in section 1.2.1.2, two distinct steps are typically undertaken in practice:

• Metagenome assembly reproduces the steps described in 1.2.2.4 involving de Bruijn
graphs in order to produce high quality contigs that are as contiguous as possible,
while taking into account the extra constraints regarding coverage and sparsity.
Current state-of-the-art programs include metaSPAdes [155], MEGAHIT [156]
[157] or IDBA-UD [158], notable for their use of multiple k values when splitting
reads into k-mers.

• Metagenome binning refers to the grouping together of sequences according to their
species (or genus, etc.). These so-called bins are unordered collections of contigs
that presumably belong together. In order to do so, a number of assumptions are
made about the sequence composition, and each assumption determines a class of
binning algorithm [100]. The methods are described as follows.

Coverage-based binning The first kind measures the coverage of each sequence, and
reasons that two sequences having the same exact coverage are more likely to belong to
the same genome than not (i.e. by chance alone). Sequences are thus sorted and grouped
according to their relative abundance. In order to make the method even more robust,
and given that sequencing now comes rather cheaply, modern tools draw from multiple
sample libraries and track how the coverage of each sequence evolves from one sample
to the next. A simplified example is illustrated in figure 18. Therefore, they are often
called coverage based binning (respectively differential coverage) methods [159] [100].
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Figure 18: Differential coverage based binning. From sample 1 to sample 2, the green
and purple reads see the same variation in abundance (1 to 2), as do the red
and teal bins (2 to 1), thus giving hints that they belong together.

These are reasonably robust and have known increasing success [160]. They work well
in the case of more abundant bacterial genomes. However, they may struggle when it
comes to binning rare sequences, because the signal-to-noise ratio is lower and the above
assumption is more difficult to follow when so many sequences only appear a few times.
Moreover, the approach also encounters difficulties with edge cases such as repeated
sequences or a highly uneven coverage across the genome itself, as is often the case in
bacterial genomes where multiple instances of replication take place [161] [100]. These
caveats all but make the approach fall short for many rarer genomes of interest.

Examples of coverage-based binning pipelines include GroopM [162] or BinSanity
[163].

Composition-based binning The second kind reasons that nucleotide composition is
generally uniform across a bacterial genome, and thus any sequence of k bases (k-mers,
e.g. tetranucleotides, pentanucleotides for k = 4, 5) is expected to have a more or less
constant frequency. For each sequence, a vector of frequencies is extracted (for instance,
in the case of k = 5, such a vector has 45 = 1024 coordinates representing each possi-
ble pentanucleotide) and sequences are then sorted according to their closeness in that
feature space. The approach isn’t limited to a single type of k-mer and can indeed
incorporate any additional feature related to the sequence composition (e.g. GC con-
tent), such that a general n-dimensional representation of the sequence can be drawn
and clusters be formed.

Figure 19: Composition based binning. In a simplified example, the teal and purple
reads feature a common tetranucleotide (GAAT), as do the red and green reads
(TGCA), indicating that each pair belongs together.
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The approach is powerful but may fail when the assumption of uniform sequence
composition isn’t verified anymore. Abrupt changes in composition can occur in the
event of DNA transfers, such as conjugation (see figure 20). Moreover, phages often
drastically differ in sequence composition from their host, so a k-mer based approach
would not accurately capture such dynamic events.

Figure 20: Illustration of sequence composition heterogeneity. Due to the dynamics of
DNA transfers, a genome may have abrupt variations in sequence composition
across its chromosomal regions.

Exemples of composition-based binning programs include BusyBee [164].

Hybrid and other methods Most recent state-of-the-art binning algorithms use a hy-
brid approach that makes use of both methods, as well as additional sources such as
marker genes. These include Metabat [165], CONCOCT [166], MaxBin [167] [168],
CoMet [169] or COCACOLA [170]. Some tools act as a synthesis of the above tools in
order to maximize the number of genomes reconstructed this way, such as DasTool [171].

In practice, these tools typically pool all that information into feature vectors, compute
pairwise distances between these and perform a (generally unsupervised) clustering algo-
rithm such as affinity propagation (in BinSanity, [163]), DBSCAN (in CoMet, [169]) or
spectral clustering (MyCC, [172]). Another approach makes use specific data structures
to compute distances between coverage profiles and partition them, called eigengenomes
[173]. Very recent methods involve the use of deep learning on the signature of the
genomes [174]. By combining many different approaches, the goal is to avoid some of
the bias inherent in each, but it remains present.

1.3 Genome validation and curation
Once a (meta-)genome is assembled or scaffolded, the question of validating it natu-
rally arises. With no prior knowledge about the reference genome, independent ways
of obtaining data are often necessary to ascertain the information about the genome’s
sequences and order. Nevertheless, many rudimentary or error-prone assemblies are lib-
erally published on public databases, so that they can be improved or otherwise corrected
later. Indeed, many modern assembly tools and methods are developed by testing them
against existing genomes: the very solid ones act as a benchmark, while a correction of
misassembled ones act as added value.
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The correctness and validity of assemblies has been the subject of considerable interest
this decade and many concerted efforts have been set up to try and benchmark one’s
tools, among which the most prominent are GAGE [175] and competitions such as the
Assemblathons [176] [177].

On the data supplying side, researchers have taken advantage of the recent acces-
sibility of assembling technologies to set out and build a comprehensive database of
high-quality genomes, notable consortiums being the 1000 Genome Project (focusing on
human genomes) [178] [179] the 10k Genomes Project (focusing on vertebrates) [180]
[181] [182] [183], and invertebrate-focusing consortiums such as the Global Invertebrate
Genomics Alliance (GIGA) [184] [185]) and the Arthropod Genomics Consortium or i5k
project [186]. The stakes and insights to be gained into such a wealth of information
make it well worth focusing on the curating and validation of one’s genomes.

Genome assemblies can be assessed:

• Absolutely, by ensuring they are correct with external and independent sources.

• Relatively to one another, through the use of carefully tailored metrics for com-
parison.

1.3.1 Ensuring correctness
It is important to note that there is no such thing as a perfectly assembled genome.
Once one ventures outside the realm of specific cell lines of model organisms, genome
assemblies almost always feature a number of errors, gaps, unincorporated sequences
and other such misassemblies. Nevertheless, a number of verifications make it easy to
ensure an assembly isn’t inconsistent with available data. These range from basic checks
to integrated data validation from independent sources.

1.3.1.1 Basic verifications

Contamination A trivial preliminary way is checking for contamination or otherwise
foreign sequences that have somehow gotten through the whole assembly pipeline [187].
A variety of tools have been developed for this purpose and typically act as a first
screening upon genome publication [188], an example of which being PhylOligo [189].

Annotation transfer Another intuitive method is to verify that all previous annotations
made on a draft can be successfully transferred to the improved assembly. This change
of coordinates is sometimes metonymically known as liftover, due to the public tool
made available by the University of California Santa Cruz (USCS) at http://genome.
ucsc.edu/cgi-bin/hgLiftOver. Other tools have been designed to that effect, such as
CrossMap [190], notably used by Ensembl. One essentially converts one set of genome
coordinates to the other, with the possibility of raising red flags when a significant
number of features could not be transferred. Annotations and otherwise characterized
genome features take many different forms (gene models, expressed sequence tags (ESTs),
or even plain introns, exons, known centromeres, etc.) are often short in size, but
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relatively widespread. They are especially crucial given that assemblies are often used
for comparative or evolutionary purposes, where the analysis of synteny blocks (and thus
gene orders) depends on the ability to transfer these features successfully [191].

Detecting misassemblies Some misassemblies can be cleaned up right away with map-
ping issues. Shotgun reads, or a reference genome if available, act as preliminary filters
to detect false breakpoints, translocations or inversions. Early aligners were relatively
slow and resource-consuming, especially for genome-wide pairwise mapping, making the
process nontrivial; with the advent of modern mappers such as minimap2 [192], the task
has been considerably simplified, and it is now part of standard assembly validation
pipelines such as QUAST [193] (or its large genome counterpart, LG-QUAST [194]) or
Reapr [195].

Miscellaneous There also exists a number of rough indicators that will give a global
outline of the analysis and raise warnings if the assembly went wrong; if a karyotype
is available, the number of chromosomes should coincide with the main scaffold count.
Their relative size should also match, as well as their respective centromeric ratios if
applicable (assuming the centromere repeat pattern is known) [191].

1.3.1.2 Independent data integration

Once basic checks are made, ensuring the global integrity of the genome structure is
somewhat respected, more data from independent sources is needed to validate an as-
sembly on a finer level. In this section we will summarize current technologies that have
been successfully used in assembly projects.

Genetic maps Genetic maps are a convenient way of ensuring sequence order is re-
spected [196]. The technology is mature and it has been at the basis of many assembly
projects, including ones in our current thesis work. It is essentially based on linkage
desequilibrium (LD) data, whose extrema characterize so-called recombination hotspots
and coldspots among DNA strands. Additionally, linkage groups often give a strong
indication as to the genome structure, as they almost always map one-to-one to the
chromosomes. As such, they are a good source to validate contig ordering for the pur-
pose of genome scaffolding [197]. Examples of scaffolding software using genetic maps
include ALLMAPS [198].

Long reads As we have seen, long reads are now the standard for genome validation
and polishing. They have shown promising success, especially for notoriously large and
complex genomes such as that of plants [199] [200] such as the tomato or wheat genome
[201] [202]. When they are not used as a baseline for the assembly process (i.e. be used
in the assembly graph or data structure for a de novo genome) they may fill gaps that are
unaccounted for [203]. There is no exact guideline on whether one or the other approach
should be preferred, as both have been used successfully. Presumably, long reads with
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high coverage and quality are better suited as a baseline material for the scaffolding
process. Alternatively, strategies have been developed to merge assemblies, e.g. software
such as Metassembler [204] will, given two genomes, use the second one to correct the
first. Other assembly merging programs such as CAMSA treat all assemblies equally
and may be used for merging more than two genomes this way thanks to multi-mapping
[205]. With the proliferation of assemblies from different sources and the difficulty of
integrating them all, many tools have been developed to attempt to merge large-sized
genomes, all with some level of success and with no clear consensus best solution [206].

Lastly, if the coverage and accuracy of long reads are insufficient to yield a high-
quality assembly by themselves, the reads themselves can still be used to fill some gaps
when applicable with the use of pipelines such as PBJelly [207]. This was done for the
assembly project of the honey bee [208] or the black raspberry [209].

RNAseq RNAseq reads are a very robust way of polishing transcribed regions in a
genome. This is especially useful since these are usually the regions that are the focus of
subsequent analyses. The obvious drawback is that regions that are not transcribed are
unaccounted for, and these are usually the ones traditional assembly methods already
struggle with (e.g. repeated sequences).

Linked reads Linked reads are a novel sequencing method developed by 10X Genomics.
Long DNA molecules are partitioned and amplified, and all fragments derived from a
single long molecule are tagged with a uniquely identifiable barcode. This way, two
distant loci can be rightfully assumed to belong to the same chromosome. Linked reads
dispense with increased coverage and focus instead on the breadth of the molecule being
sequenced, so the individual long molecules are not fully sequenced. This does not result
in a single long read molecule but still lets one reconstruct large-scale haplotypes, call
structural variants or improve assemblies [210]. Linked reads have known growing and
successful usage in large assembly projects such as that of the sperm whale [211], the
Sitka spruce [212] or in metagenomics with deconvolving software such as Minerva [213].

Optical mapping Optical mapping uses a restriction map (called an optical map) of a
single elongated DNA molecule placed under a microscope. The DNA is digested by a
restriction enzyme and the resulting fragments are stained with dye. The intensity of
the fluorescence determines the size of each fragment. The main draw to this technique
is that it preserves the order of fragments and doesn’t need any amplification. As such,
it has often proven successful in genome scaffolding projects, especially for repeat-rich
genomes such as, yet again, plants [199]. They are also useful when validating assemblies
[214].

Hi-C Hi-C is increasingly becoming a crucial technology for genome scaffolding. Since
Hi-C based assembly is the basis of our present work, we will detail the framework in its
own section (see section 1.4.7.1).
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1.3.2 Validation metrics
Validation metrics are typically used to compare several assemblies, or to verify that one’s
pipeline, whether it involved optical maps, Hi-C, etc., actually improved an assembly
from a reference.

1.3.2.1 Size distribution metrics

These inform about how much of an assembly or scaffolding is contained within a few
molecules. Ideally, the entirety would be found within a few that correspond to actual
chromosomes. In practice, a range of so-called Nx/Lx metrics are in use, illustrated in
figure 21:

• N50 is the length of the scaffold below which all greater scaffolds do not make
up more than 50% of the total assembly in size. Same goes for N90, N20, etc.
Notably, N0 is the largest scaffold and N100 is the smallest scaffold.

• L50 is the index of the scaffold of length N50 (starting from the longest).

• If the size of the original genome is known (or if a putative reference is available),
NG50 measures the above 50% ratio with respect to that original size (as opposed
to the total size of the assembly). Same goes for NG90, LG50, and so on. This
more refined terminology comes from QUAST [193], the de facto standard for
genome validation software.

• If a reference genome is available, the misassembly count can be paired with an
additional set of metrics, called NAx: the genome is broken down into contiguously
aligned regions as though they were separate contigs and an N50 is computed from
these.

Figure 21: Illustration of assembly metrics.
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Generally, the higher one’s N50, the better (barring spurious fusions). Recently, the
Vertebrate Genome Project (VGP) set new quality standards, whereby released genomes
must, among other statistics, have an N50 greater than 1 Mb for contigs and 10 Mb for
scaffolds [215].

1.3.2.2 Completeness metrics

Completeness tells us to what extent a DNA sequence looks like an actual genome, based
on its genic composition. In practice, one checks for the presence of expected known
genetic markers found in the genome. They are used as a benchmarks and depend on
the species being examined and its position in the tree of life. Other composition-related
information such as k-mer content is also assessed.

Completeness metrics are usually paired with contamination metrics: while one indi-
cates how many features are lacking, the other indicates what sequences are extraneous
and should be removed. Contamination here is to be taken in a relatively loose sense,
distinct from the one covered in the previous section, as it also includes duplicated and
extra copies of genetic markers.

Gene content The most prominent validation method in the literature is gene com-
pleteness. Each distinct lineage features a number of unique, single-copy genes that are
conserved across a significant portion of the lineage’s species. Going back through the
tree of life, a more general (and thus smaller) set of markers can be identified, and so on.
Completeness validating tools therefore search the genome for the presence of such very
general markers, generally using Hidden Markov Model profiles with gene prediction
software like prodigal [216] [217] or Augustus [218] [219] [220]. When given specific lin-
eage information (or if they are able to infer it), the tools refine their search and statistics
with more markers. Each lineage has its validation tools and marker databases, and the
following are currently considered standard within their own researcher communities:

• Bacterial and archaeal genomes are usually validated with CheckM [221], taking
advantage of the conservation of 43 conserved, single-copy marker genes among
97% of all publicly archived genomes (initially pulled from the IMG database
[222] known for its trusted reference genomes). They are mostly genes coding
for ribosomal proteins and RNA polymerase domains. Additionally, for each bac-
terial lineage, additional single-copy genes respecting the 97% criterion are also
considered markers. CheckM identifies missing (general or lineage-specific) mark-
ers, duplicates, and thus yields a completeness and contamination report. As per
CheckM’s terminology [105], near-complete genomes have a completeness 90% and
a contamination 5%; medium-quality genomes have a completeness 70% and a
contamination 10%;and partial genomes have a completeness 50% and a contami-
nation 4%. Its rise to prominence has made it the standard for any metagenomic
validation.

• Eukaryotes are usually validated by BUSCO [223]. The tool looks for benchmark-
ing universal single-copy orthologs (or BUSCOs, hence the name) specific to a
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lineage. Many such sets are publicly available on the Ortholog Database (ODB)
[224] and get updated [225]. For instance, there are 303 such orthologs for eu-
karyotes as of ODBv9. There are also sets for bacteria, although they tend to
be less widely used than CheckM. BUSCO scores often don’t reach 100%, even
for reference genomes; rather, the reference should act as a benchmark for other
assemblies. Another completeness tool, CEGMA [226] [227] used to be formerly
widespread but it has since then been largely superseded [228].

• There are a number of databases for specific lineages: the PLAZA platform pub-
lishes core gene families of its own for plants [229], and the Fungal Genome Map-
ping Project (FGMP [230]) also provides databases for validating fungal assemblies.
BUSCO remains extensively used in both cases as well [228].

k-mer content Estimating a genome’s k-mer content distribution can be useful if ge-
nomic information is already available for the species or neighboring ones, as it gives an
idea of what sequences are missing or superfluous. The distribution should match, or be
close to, that of the reference (if one is available), or that of reads from different sources
(with respect to coverage). It should also be close to the k-mer distribution of neighbor-
ing species in the tree of life [231]. If there are any contaminants, they usually stand out
in the distribution. Since computing k-mer statistics is such a common quality-control
task, various tools have been developed, such as KMC [232] [233] and KAT [234], and
they are integrated as part of larger pipelines such as QUAST.

Repeat content Most eukaryotic genomes have repeated sequences such as transpos-
able elements. The profile, quantity and composition of these repeats has been exten-
sively studied and a consensus sequence can be reconstructed for a family of repeats,
leading to the creation of the Repbase Update database [235] [236]. Using repeat detec-
tion tools such as RepeatMasker [237] or Red [238], one may verify that the purported
species’ repeat content and nature matches that of the database.

1.4 Our framework: chromosome conformation capture
In the light of all the aforementioned technologies and their current direction, our ap-
proach tackles the genome assembly problem in a complementary angle, rather than
superseding any of these methods. In this section, we will articulate the main principle
of our technological framework - Chromosome Conformation Capture (3C) - as well as
how it has been successfully applied to solve a variety of biological questions related
to chromosomal architecture and functional analyses. We will also note how access
to complete chromosome-level assemblies is a natural path that fully complements our
framework of understanding chromosomes’ architecture and evolutionary implications.
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1.4.1 Base principle
The idea that spatial information about the physical DNA molecule could be used to in-
fer functional properties is not new. In 1983, Mark Mitchell and Peter Dervan proposed a
synthesis of bis-(monoazidomethidium)octaoxahexacosanediamine (BAMO) which they
used as a cross-linking agent in order to bind DNA fragments from the λ bacteriophage
genome and probe its spatial structure. This resulted in a nearest-neighbors map, fea-
turing five contacts, that enabled the authors to speculate about a possible ’solenoid’
conformation of the bacteriophage’s [239].

However, the base principles behind cross-linking and how they relate to the genome
conformation were laid out much later. In 2001, Rippe drew from general hydrodynamic
principles and polymer physics to establish a first practical working model of DNA coiling
(also referred to as random looping) [240]. The model (and subsequent work on it) is
detailed below. The biological protocol proper was first established by Job Dekker (in
Nancy Klekner’s laboratory) in 2002 [241] and is illustrated in figure 22.

Figure 22: The chromosome conformation capture protocol. DNA is crosslinked, di-
gested, ligated to form a 3C library. The contacts are reported on a contact
map that represents interactions between DNA fragments.

Source: Taken from Dekker et al., 2002 [241].

The idea is one may obtain a picture of the chromosomal architecture by measuring the
contact DNA collisions between each locus pair in the genome. To do so, the chromatin
and its surrounding proteins are cross-linked by formaldehyde, a very small and reactive
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molecule that covalently bridges DNA with proteins, as well as proteins with proteins.
The DNA is then cut with a restriction enzyme, then ligated again. The end result is
that sequences that are close to each other in tridimensional space will be trapped in
the crosslinked DNA-protein complex and eventually ligated together. A set of chimeric
sequences is thus formed, called a 3C library. It is essentially like a regular DNA library
that can be PCR-amplified and sequenced in paired-end; by counting the occurrences of
each locus pair being part of the same paired-end read, one gains access to the global
contact frequencies across the whole genome.

1.4.2 3C-derived protocols in practice
The 2000’s saw an evolution of 3C-based protocols as they were adapted and made
to work on other species and underwent the next-generation sequencing wave. The
articulation of the initial idea into different protocols (and subsequent applications) is
detailed below [242].

1.4.2.1 Base 3C

The original 3C study was performed on Saccharomyces cerevisiae and showed the pecu-
liar ring-shaped conformation of its chromosome III [241]. This seminal paper not only
described the basis of the experimental protocol, but was also proposing a modeling
approach to represent data that is still included in articles today.

The protocol was then adapted to other species such as mammals. For instance, 3C
also showed that inter-chromosomal contacts may occur under specific circumstances
underlying functional mechanisms; these range from immune response regulation to the
homologous pairing of X chromosomes before X-inactivation [243]. It was also used in
yeast to propose the existence of gene loops, as well as to show that following a double
strand break chromatin becomes more insulated locally around the break.

1.4.2.2 Circularized Chromosome Conformation Capture (4C)

In 4C, or one vs. all, only one site is the focus of interest, and one examines its interac-
tions with all other loci. A second ligation step is added to circularize that site. Circular
DNA molecules containing the corresponding sequence act as ”bait” and the unidenti-
fied interacting sites are inverse PCR-amplified and sequenced. 4C has been notable
for showing that chromatin spatially segregates into active euchromatin and inactive
heterochromatin domains [244]. It was also used to confirm the presence of chromatin
looping at the β-globin locus in mammals and its importance in gene expression [245].

1.4.2.3 Carbon-Copy Chromosome Conformation Capture (5C)

5C corresponds to many vs. many; in other words, many loci are selected for interaction
detection, typically spanning a relatively small region. To do so, every fragment within
that region is ligated to universal primers. Fragments that are found to be annealing
at a restriction site during the ligation-based amplification are ligated and presumed to
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be interacting [246]. However, 5C has relatively low coverage and is ill-suited for indis-
criminate screening of a whole genome. 5C was notably used to characterize interaction
profiles at the X-inactivation center locus [247].

1.4.2.4 Whole genome Hi-C

With the advent of cheap second-generation sequencing technologies, Hi-C or all vs. all
has become the standard for genome interaction studies [248]. Every single interaction
between every fragment pair is thus accounted for. This is possible by an additional step
whereby a biotinylated nucleotide is introduced at the edges of digested DNA molecules,
before the ligation step. This enriches the library in molecules that have been digested
then ligated together, diminishing dramatically the cost of sequencing. The protocol is
illustrated in figure 23. Hi-C was showcased in the first genome-wide contact map of the
human genome in 2009 [249]. In 2010, the genome-wide contact map of the yeast genome
was published using an alternative protocol similar in spirit, i.e. aiming at enriching the
sequencing library with informative events. Genome-wide contact maps are now the
standard and in subsequent parts of this work, one should always assume that Hi-C was
performed to yield our datasets, unless specified otherwise.

Figure 23: The Hi-C protocol.

1.4.2.5 Single-cell protocols

Single-cell 3C or Hi-C focuses on chromosome conformation within a single cell [250].
Early results confirmed that pooling single cell contacts yields a normal population-wise
contact map [251]. It is unclear whether Hi-C data is ergodic, i.e. whether the behavior
of a single chromosome, when tracked and averaged over time, would yield equivalent
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data to that of a population’s worth of chromosomes at a single point in time [252].
Because there is so little material, the signal generated by this protocol tends to be very
sparse and relatively few interactions can be successfully recovered [253]. Nevertheless,
single cell Hi-C has got increased interest due to its ability to differentiate homologous
chromosomes within a cell, hence sometimes being called Dip-C for diploid single cell
Hi-C [254].

1.4.3 Theoretical model
The model described by Rippe treats the DNA polymer as a sequence of N freely jointed
monomers [240], as illustrated in figure 24. The length l of these monomeric segments
is called the Kuhn length of the polymer.

Figure 24: A freely-jointed polymer chain model. In this model, j(n) represents, for each
monomer, the local concentration of a neighbor separated by n monomers.

We want to assess, at any point in the polymer, the local concentration j(n) of one
segment located n Kuhn lengths away from it.

For a circular DNA molecule, and assuming Rippe’s hypothesis, it is given by:

j(n) = 0.53 · l−3 · (n−
n2

N
)−

3

2 · e

d−2

n−n2

N
+d (2)

and for a linear molecule, the equation can be deduced from above by setting N →∞:

j(n) = 0.53 · n− 3

2 · e
d−2

n+d · l−3 (3)

The standard interpretation is that initial resistance (due to the polymer’s rigidity, as
given by its persistence length) decreases the frequency of close contacts, whereas far-off
contacts also naturally decrease with distance. Since j(0) = 0 and j(n)→ 0 as n→∞,
there exists a contact peak, dependent on d and typically equal to a few Kuhn lengths
(see figure 25).
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Figure 25: Evolution of local concentration as a function of distance in Kuhn segments
(linear polymer, l = 1, A = 1).

Kuhn lengths can be impractical when reasoning with base pairs as a unit. This is be-
cause the flexibility of the chromatin may change across organisms, cell cycle conditions,
etc. Let L be the length of a base pair, which we will assume to be constant along the
DNA molecule. We therefore define the genomic coordinate s with the simple following
variable substitution:

s =
n · l

L
(4)

If we reason that the above model is generally applicable to chromatin, and that base
pairs are an accurate representation of monomers in the polymer chain, we obtain a
probability of contacts P (s) that directly depends on the genomic distance s between
two loci, as shown in figure 26.
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Figure 26: A freely-jointed polymer model adapted to chromatin. The frequency of
contacts P (s) is linked to the genomic distance s.

In practice, the quantity P (s) is directly proportional to the concentration j(n). Let
A be such a constant pre-factor accounting for everything, including the variable substi-
tution. In the case of a linear polymer, one obtains:

P (s) = A · s−
3

2 · e
d−2

s·L
l
+d (5)

The −3
2 exponent corresponds to concentration decay for ideal polymers at equilib-

rium state. However, current literature has also described DNA polymer in a fractal
globule state [255] [249], where the exponent value is −1. This, combined with empir-
ical observation, suggests that a whole range of intermediary states is possible [256] as
illustrated in figure 27, i.e. the exponent must be an independent variable γ:

P (s) = A · s−γ · e
d−2

s·L
l
+d (6)
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Figure 27: Evolution of the contact probability P (s) under different polymer conditions:
γ = −1 and γ = −3

2 (linear polymer, l = 1, L = 1, A = 1, d = 0.6). All the
area between the two lines is a possible state.

However, the d parameter is hard to ascertain in physical terms, and could be dis-
pensed with. Moreover, in the context of Hi-C experiments, very short range contacts
(i.e. preceding the peak) are very hard to observe in practice, and s has sufficiently large
values so that the exponential part negligibly affects the power law.

Recent work suggested that the frequency decay follows a (roughly) piece-wise power
law: γ roughly takes two (positive) values at short scales (smaller s values) and large
scales (larger s values), with a transitioning state at a given threshold [257] [258]. When
taking into account the fact that γ is a function of s, and absorbing all pre-factors into
either γ(s) or A, one obtains a simplified equation:

P (s) = A · s−γ(s) (7)

An example of such a function with a simplified sigmoid-like γ(s) function is plotted
in figure 28.
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The study of the γ(s) function remains an open question: in practice, it is known
to depend on the formaldehyde concentration used in the protocol [256], and has been
shown to change in various conditions, such as e.g. across the Saccaromyces cerevisiae
cell cycle [259] [260]. However, we will see in section 1.4.7.1 that for scaffolding purposes
its expression can be further simplified.

The question of inter-chromosomal contacts is muddier. Both theory and experimental
results confirm that they are markedly lower than intra-chromosomal ones, due to the
looping described above and because chromosomes tend to occupy territories of their
own [261] [262], although there are exceptions. In mammals, the intra

inter
chromosomal

contact ratio ranges between 40 and 60 [252], but it tends to decrease with coverage.
However, increased inter-chromosomal contacts can be observed in special circumstances,
such as e.g. the clustering of centromeres and/or telomeres in Rabl conformations [263].
In fact, this signal pattern is unique enough that it can be used to accurately identify
the position of centromeres in S. cerevisiae [264] [265].

The above model gives a baseline for how many contacts one can expect in a Hi-C
dataset. However, it is not clear whether there exists an analytical formulation of this
function in a way that reflects all the biases, and the same goes for quantifications of the
biases themselves. Several sources of signal distortion have been clearly identified, such
as local GC content (which seems to follow an unimodal distribution [266]) or fragment
length.
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In the following section we will see how to process and correct actual biological data
from Hi-C-based protocols.

1.4.4 Processing Hi-C reads
As Hi-C protocols grow more popular, a wealth of computational tools have spawned in
an attempt to process their resulting libraries [267], [268], [269] [270]. All of them share
a few things in common:

• They first align the reads against the reference genome of interest (or, in the case
of metagenomics, a preliminary assembly).

• Resulting alignments are assessed, filtered, conditionally transformed into actual
contacts and counted.

• A matrix, or contact map, or heat map of all final contacts is drawn.

The whole pipeline is illustrated in figure 29, using a contact map of the two-chromosome
Vibrio cholerae genome as an example.

A number of distinct features shared across contact maps appear:

• The map is separated into ”squares”, each corresponding to its own chromosome-
wide sub-matrix. Contacts are notably more important within a chromosome
than between them. This is the natural interpretation of the polymer model,
whereby each molecule interacts more with itself than other molecules. Barring
some unusual biological mechanisms [271], this property is always respected and
will be exploited in the following parts of our present work.

• The diagonal is notably more enriched in contact than other regions of the map.
This is a direct consequence of the P (s) power law (or piece-wise power law). The
distance to the diagonal is the genomic distance s itself, and P (s) decreases quickly.

• The corners of each intra-chromosomal submatrix are also enriched. This property
is unique to circular chromosomes and simply due to all corners of a circular
chromosome contact map representing in fact the same locus.

In the following sections we will go over the pipeline steps and and the various issues
each of them may raise.

1.4.4.1 Mapping

The alignment step already surfaces a number of problems:

• First, as we are concerned with capturing DNA collisions beyond the usual im-
mediate neighbors, it is important that each end of the read pair be mapped
independently of one another. Many state-of-the-art aligners, such as Bowtie 2
[272] or minimap2 [192] are not designed for this, hence the need to independently
map either read of a pair.
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Figure 29: A standard Hi-C pipeline. Each end of the read pairs is (A) mapped inde-
pendently onto the reference genome, (B) filtered so as to only retain ”true”
Hi-C contacts, then (C) reported onto a genome-wide contact map.
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• Second, repeated sequences, or sufficiently similar sequences are completely ignored
by standard mappers, and multi-mappers are not very suited for Hi-C processing.
This results in artifacts and data loss. Solutions to this problem are scant, although
recent attempts have been made to try and re-assign discarded contacts due to
multi-mapping [285], essentially through interpolation.

• Moreover, due to the relatively random distribution of restriction fragments, the
corresponding site could show up anywhere in the read pair, leading to some reads
only partially mapping or being rejected due to chimeric bits. In order to alleviate
that, it is often customary to iteratively truncate each read pair by regular intervals
(e.g. 10 bp) and independently map each truncated read set onto the reference
genome with the hopes of maximizing captured contacts. This step, however, can
be time- and resource-consuming for diminishing returns.

1.4.4.2 Filtering

It is important to consider whether an alignment can be considered a true contact.
The first criterion is the mapping quality Q, which relates to the probability E that an
alignment is wrong by E = 10

Q

10 ; in the literature, a threshold of 30 is often chosen,
meaning that one alignment out of a thousand will be wrong on average, and is usually
satisfactory in practice. The second factor concerns the nature of the alignment itself;
indeed many artifacts, illustrated in figure 30, arise due to the nature of the protocol:

• Loops occur whenever a DNA fragment wraps around itself instead of forming
contacts with far-off neighbors.

• Uncut sequences occur whenever the restriction enzyme fails to actually digest a
site between two DNA fragments, and both remain bound together and don’t form
other contacts.

• Other unexplained events (weirds) that are presumed to be artifacts due to the
ends having the wrong orientation in the alignment. These only make up a small
portion of all events.

Figure 30: Artifact and real contacts. Artifact contacts (top) are divided into loops
(left), uncuts (right) and weirds (not shown). Contrast with ”true” contacts
(bottom) between separated loci, as a result of an actual digestion-ligation.
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These artifacts tend to drop off as the distance between two fragments increases; a
threshold is typically set below which all alignments are considered artifacts and dis-
carded. The remaining ones are then used to generate the contact map.

1.4.4.3 Contact map generation

A contact map is essentially a heatmap of all contact counts between all loci in the
genome. The choice of contact map and its representation is not neutral; due to restric-
tion fragments being heterogeneous in size and too numerous to handle in large genomes,
contacts are typically regrouped, or sum-pooled, or binned into larger regions:

• Fixed length bins (kb-based binning), typically 2 kb to 100 kb for eucaryotes,
depending on the genome size and the library sequencing depth.

• A whole number of restriction fragments (fragment-based binning).

The effect of binning is shown in figure 31.

Figure 31: The effect of matrix binning. A simplified example (top) and a curated S.
cerevisiae single-chromosome dataset (bottom) are recursively sum-pooled
twice by groups of two fragments, yielding lower-resolution maps with
stronger signal.

Binning at different resolutions allows a multi-scale analysis and determining the cor-
rect binning for one’s interpretation is crucial, as some contact patterns are only visible
at short (respectively large) scales. Fixed length bins alleviate somewhat contact biases
related to fragment size, with the caveat that bins (and contacts thereof) do not rep-
resent the reality of physical DNA molecules in the protocol anymore. Fragment-based
bins are more faithful to the experiment but still retain biases due to size heterogeneity,
although the variation levels off at lower resolutions.
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1.4.5 Handling contact maps and bias
As with any kind of data, Hi-C contact maps are subject to random errors (noise) and
systematic errors (bias). Noise is often due to poor sequencing depth or poor-quality
libraries and the signal-to-noise ratio can be alleviated by binning further, although at
a cost of decreased resolution. On the other hand, bias is often inherent to the Hi-C
protocol and organism in questions and takes many sources:

• Repeated sequences are simply unmappable and an unknown amount of signal can
be ”lost” among these regions. In practice, matrices are often riddled of empty
columns and rows that represent these repeat ”gaps”. A showcase example is shown
in figure 32 (left).

• Sequences that are not quite repeated, but strongly homologous, may fool aligners
into finding interaction signal when it only represents the occasional alignment
error due to sequence similarity. This results in a very recognizable homologous
pattern between the two regions in question. The pattern in question is shown in
figure 32 (right).

• The fragment size distribution can be highly heterogeneous and this may adversely
affect the contact distribution: larger fragments naturally receive more contacts
due to their increased ”surface area” of potential interactions and not because of
extra affinity in 3D. A practical example, shown in figure 33, shows that restriction
fragments can show a lot of variation in length.

• The GC distribution is typically neither perfectly uniform nor balanced across a
genome and this may bias the restriction site distribution. This can be remedied
somewhat by using a GC-neutral enzyme (such as DpnII, whose restriction site is
GATC) or several restriction enzymes and combining the libraries.

• Some chromosomes are naturally more covered in some regions. This is especially
true among bacteria where several rounds of replications take place at the same
time, and the origin may be up to eight times more covered than the ter region
[161].
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Figure 32: Two examples of mapping issues on a modified dataset: a gap created by
the presence of repeated sequences (left) and extraneous signal between two
homologous sequences (right).

Figure 33: The (truncated) size distribution of the HpaII (site CCGG) restriction frag-
ments on the E. coli genome.

Therefore, the need for correcting contact matrices naturally arises. In these sec-
tions we will cover different techniques for matrix normalization, noise reduction and
comparison.

1.4.5.1 Normalization and correction

In the context of this work, and Hi-C data in general, a normalization is an attempt to
transform the raw contact counts from the sequencer into actual interaction frequencies
or probabilities by removing biases brought by extra-biological factors. Many normal-
ization procedures have been documented regarding Hi-C data. They can be roughly
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sorted into two different categories:

• Bottom-up: in this framework, one attempts to enumerate most error sources,
quantify them, and adjust the signal accordingly. This requires one to accurately
model the 3C experiment that yields the matrix either ab initio or by assuming that
all bias source have been accounted for, a rather strong hypothesis. Nevertheless,
probabilistic frameworks have been developed to that effect [273] [274] [275] [276]
[277].

• Top-down: one makes no strong assumption about the bias sources and simply
attempts to ”regularize” the vectors individually with empirical procedures. They
often tend to be inspired from linear algebra. Two notable examples of such nor-
malizations are the iterative correction and eigenvector decomposition (ICE) [278]
and sequential component normalization (SCN) [279] that have proven successful
in subsequent analyses. Others include the Knight-Ruiz balancing algorithm [280],
or simply natural norms (‖·‖1, ‖·‖2, ‖·‖∞, etc.).

Throughout this work, one should assume that we have used the SCN when applicable.
It is an iterative process, and can be defined by the following: let M0 = (mij)ij be a
contact map of n fragments, where mij is the raw contact count between fragment i and
fragment j. We define:

M1 = (
mij

∑

k mik

∑

k mkj
)ij (8)

and define M2 recursively with respect to M1, etc. The (Mn)n = (M0,M1,M2, ...)
sequence can be shown to converge toward a matrix M where all of its vectors (columns
or rows) sum to one, i.e. are probability vectors. Empirically, only a few iterations are
sufficient to obtain matrices that are suitable for further analyses and interpretations.

Other procedures also coined normalizations have been recently published, attempting
to address specific, structural sources of biases, such as copy number variants (CNVs)
[281] [282].

1.4.5.2 Signal enhancing

Signal enhancing refers to methods and procedures that increase the signal-to-noise ratio.
It is essential to facilitate the interpretation of dynamic events, such as rearrangement
calling.

A very common source of noise is the low coverage of one’s genome. At very high
resolutions, on the restriction fragment level, relatively few contacts occur, and most
matrices take up a binary aspect. Even using one the aforementioned binning methods,
some regions in a genome may remain insufficiently covered to detect any pattern or
confidently interpret any signal. As such, a number of tools have been developed that
attempt at inferring the more obscure regions from the informative ones, following two
broad approaches:
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• Matrix-based approaches treat the contact map as an image. Since the contact dis-
tribution is generally continuous, and interaction counts of neighboring sequences
are likely to be close, one may infer the value of a missing pixel from the the pixels
around it, much like in imaging. Methods may range from very naive (convolution
with a Gaussian kernel) to very elaborate: HiCPlus predicts high-resolution matri-
ces from low-resolution ones by training a convolutional neural network on similar
datasets [283]. A chapter of our work is devoted to a manuscript on matrix-based
signal enhancement.

• Graph-based approaches reason that a contact map can be seen as the adjacency
matrix of a weighted, undirected graph whose nodes are the bins and whose edges
are the interactions. A simplified example is shown in figure 34. This approach is
very common in Hi-C analysis, as the following sections will show. In the context of
signal enhancement, instead of drawing inference from matrix neighbors, one takes
graph neighbors into account. A neighborhood becomes a short path through
the graph, instead of a pixel window. Examples of graph-based enhancement
procedures include Boost-Hi-C [284].

Figure 34: A contact map and its corresponding network. The map is the adjacency
matrix of the graph. Zero values are omitted.

Other methods attempt to address specific caveats, such as gaps left by repeated
sequences. Since multi-mapped reads do exist, and only have a limited set of potential
alignments, one may attempt to re-assign them according to a probabilistic model, as is
done by mHi-C [285].

1.4.5.3 Reproducibility and control

As Hi-C tools spawned and the field gained more prominence, these issues of data and
pipeline reproducibility arose. Combining all the steps described above to produce,
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process and handle Hi-C data can be time-consuming and error-prone. Subtle and hard-
to-detect modifications in the final Hi-C dataset can be incurred by the most mundane
sources such as one’s choice of aligner or binning scheme. One must therefore categorize
the source of variation:

• Hi-C protocols are not unified, and variations in how the experiment was carried
out may induce changes among datasets on the same population, cell line, etc.
This may cause issues among the community when one tries to reproduce published
results. The advent of commercial Hi-C kits such as that of Arima Genomics may
alleviate that. Two datasets that stem from independent experiments are called
biological replicates, while datasets that stem from the same populations are called
technical replicates.

• Most Hi-C pipeline implementations that have been made available typically differ
in the way they process the data, what back-end software they use (e.g. the aligner
could be Bowtie 2, BWA, minimap, etc.) which format they accept, etc.

Computational issues are thus compounded by biological ones. To that effect, many
methods have been designed, mostly borrowed from linear algebra and graph theory
since contact maps fit both fields pretty well. As is often the case, there is no consensus
solution:

• Most of them compute correlation coefficients (Spearman or Pearson) between the
matrices [286], with the drawback that these measures are particularly outlier-
sensitive. This can be alleviated by instead correlating some more robust proxy
measures related to the matrix [287].

• Some methods, like OneD, are specifically geared for structural and copy number
variants [288], by relying on the contact profile (summed bins) of the matrix.

• Other tools rely on multidimensional scale reduction (MDS): for instance, HiC-
spector [289] computes the Euclidian distance between the first twenty eigenvectors
of each matrix’s Laplacian. These vectors are presumed to contain the bulk of the
structuring signal. The final score is shown to separate pseudo-replicates and
biological replicates on one hand, from different cell line datasets on the other
hand.

• Another tool exploiting a graph-based approach GenomeDISCO [290], performing
random walks on the corresponding graph to smooth the matrix and thus ignore
outliers.

These reproducibility issues have been subject to increased scrutiny as researchers
attempted to detect structural variants, karyotypic aberrations and other such differences
between cell lines, as is common in cancer detection [286]. These are prime examples of
chromosome dynamics where the use of these tools grows crucial.
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1.4.5.4 Matrix comparison

It is common to have to compare two or more different Hi-C datasets to draw an in-
terpretation of interest. Just like matrix reproducibility boils down to quantifying the
”sameness” between two datasets, matrix comparison attempts to quantify their ”essen-
tial difference”. As multiple matrices get compared, the question of defining a contact
map distance arises.

A very simple and common practice is to qualitatively evaluate log-ratios between two
matrices, pixel by pixel. Unfortunately, it may fall short when differences one wishes to
see get drowned out by the noise: as figure 35 shows, despite the matrices A and B being
noticeably different when compared side to side, it is unclear whether the trend could
be detectable based solely on the resulting ratio C. Nevertheless, with enough coverage,
qualitative differences, and methods for ”averaging out” the noise, the approach still has
had success [291].

Figure 35: Two simulated contact maps (A) and (B) and their log-ratio (C). B and
the upper half of A are generated according to a Poisson random variable
of parameter λ and the lower half of A is generated according to a Poisson
random variable of parameter 2λ.

Other traditional methods such as spectral analysis or PCA have also met results. For
instance, a PCA on the pairwise Euclidian distances between contact maps along the
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cell cycle of S. cerevisiae showed that 1) points taken under the same stage tended to
cluster together, and 2) taken together, the clusters were scattered across a cycle that
respected the order of cell cycle stages (figure 36).

Figure 36: A PCA of contact maps taken at different points during the cell cycle of S.
cerevisiae. The coordinates of the points in principal component space are
consistent the orientation of the cell cycle itself.

Source: Adapted from Lazar-Stefanita et al., 2016, [259].

However, with a limited number of datasets or limited coverage, more refined methods
are necessary:

• diffHiC [292] implements a sophisticated model to account for both sources of vari-
ability (technical and biological) using a quasi-negative-binomial distribution for
contact counts, which generalizes previous models based on binomial distributions
[293].

• HiCCompare [294] performs a joint non-parametric regression (a LOESS) to elim-
inate the noise present in both datasets and computes Z-scores between regions of
interest. The joint-normalization design makes the method sidestep most sources
of bias between replicates.
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• FIND [295] and SELFISH [296] reason that any local difference between two regions
of interaction but also be reflected by their surroundings, and compute differences
in distribution in windows around loci pair to draw a distinction between noise
among replicates and actual differences of interest.

Many of these methods struggle with copy number variants, as they alter the con-
tact distribution and probability (P (s)) however it is modeled. Note that some of the
reproducibility tools described in section 1.4.5.3 are also commonly used as comparison
software.

1.4.6 Dynamics implications
After reviewing how Hi-C data works, we will give some of its principal results on
chromosome architecture and dynamics.

1.4.6.1 Compartments

In eukaryotes, notably mammals, chromatin folds into compartments. This was shown by
the first Hi-C experiment and the first genome-wide contact map of the human genome
[249]. It features interlaced megabase-sized stretches that alternate between active, eu-
chromatic and inactive, heterochromatic regions, also called A/B compartments. Genes
in A-compartments are transcriptionally active whereas those in B-compartments are
inactive [297]. Notably, the X chromosome structure changes considerably depending
on whether it’s active or inactive [298] [299]. Moreover, regions in A- (respectively B)
compartments tend to cluster together, at the exclusion of B- (respectively A) compart-
ments. This gives the corresponding contact maps a characteristic ”checkerboard” look
37, as contact-rich and contact-poor regions alternate in both directions.
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Figure 37: A/B compartments in a mouse chromosome contact map. The ”checker-
board” pattern stems from contact-depleted regions alternating with contact-
enriched regions.

Source: Adapted from Dekker et al., 2013, [297].

A/B compartment membership is also highly correlated to replication timing profiles:
regions in A- (resp. B) compartments are replicated early (resp. late) [300]. A- (resp.
B) compartments are also correlated with high (resp. low) GC content and DNA ac-
cessibility, as well as active histone marks (resp. repressive histone marks and lamina
association [301]). Membership is also highly predictive of cell type. However, this A/B
classification is not static: the chromatin architecture has been shown to reorganize
during cell differentiation. Up to 36% of the genome switches compartment at some
point during the process. This shows that the compartment organization can be plastic
and partly contribute to some cell-type specific patterns of gene expression [302]. Com-
partment membership is also known to be correlated, and in fact can be predictively
reconstructed, with epigenetic data [303].

A/B compartment classification can be determined by computing the first eigenvector
of the normalized contact map correlation matrix: its components alternate signs as one
switches from an A- to a B-compartment. Other statistical methods have been suggested
to compute it, such as CScoreTools [304].
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1.4.6.2 Topologically associating domains

Each compartment is made up of smaller-scale structures whose sequences preferentially
interact with each other, called topologically associating domains, or TADs, that are a
few hundreds of kilobases in size. They act as building blocks in many animal species
(but not in yeast): in humans and mice, more than 90% of the genome is structured
along a series of over 2,000 TADs [297].

In mammals, TADs are primarily defined by their borders, whose loci are enriched in
CCCTC-binding factor (CTCF) and condensin [297] [305], as shown in figure 38. Both
are known for orchestrating their formation and for their role in gene regulation. Genes
present within a TAD are expressed at the same time during cell differentiation [297],
and sequences within a TAD are also replicated at the same time during S phase [306].
They share the same set of regulatory elements; disrupting a TAD also disrupts gene
regulation, potentially pathogenically [307].

Figure 38: TADs in a mouse chromosome. The contact map (top) shows how they are
delimited by differential interactions on either side of the borders, and the
schematic (bottom) illustrates the role of condensin and CTCF binding at
the border loci to maintain the architecture.

Source: Taken from Pombo et al., 2015, [305].

On the other hand, in Drosophila melanogaster, TADs are not bound by CTCF sites or
cohesin. Instead, they tend to arise as a statistical property of the DNA polymer when
many instances are merged and pooled. This suggests that the chromosome dynamics
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within those TADs are different and markedly less constrained as what is found in
mammals [308] [309] [310] [311].

TADs can be computationally identified with the so-called directionality index (DI)
[312], or the insulation index [313]. A variety of implementations exist in the literature
[314] [315] [316]. The DI is computed with a statistical test between two vectors of
opposite orientations along a locus: since a TAD border is characterized by a stark
contrast between its left- and its right-hand side, the DI will peak at each border.
The insulation index compares contact counts along each direction. More sophisticated
methods of TAD-calling have been suggested, notably using Gaussian mixture models
[317] or network modularity approaches [318].

1.4.6.3 Chromatin loops

Loops are the 3D juxtaposition of two distant (in 1D) loci across a chromosome. The
distance can range from 10 kb to 200 kb [319]. They have been long known for their role
in gene regulation, notably through early nuclear ligation assays evidencing a promoter-
enhancing proximity for the rat prolactin gene [320]. Later, in of the first 3C studies
linking conformation to function, it was shown that the β-globuline gene promoter and
its corresponding target, located 50 kb away, were physically linked by a chromatin loop
[321]. The advent of Hi-C technologies later confirmed initial insights that transcription
could be activated or repressed with the juxtaposition of far-off gene loci, as well as
the role of CTCF in their structuring [322]. However, not all CTCF-enriched sites are
necessarily involved in loop formation [319].

Chromatin loops show a distinct pattern on a Hi-C map, a 2D signal peak far-off from
the diagonal, as shown in figure 39. In 2014, Rao and colleagues performed an extensive
Hi-C analysis of many cell human and mouse cell lines, confirming the presence of more
than 10,000 such loops, many of which were conserved among cell lines [299].

Figure 39: Hi-C profile of a chromatin loop from a human chromosome. The peak
represents the junction between two far-off loci.

Source: Adapted from Rao et al., 2014, [299].

The majority of these loops were bound by CTCF and cohesin. Later, it was shown
that cohesin loss induced a total loss of all loop structuring [323], causing superenhancers
to cluster together.
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Neither loops nor the TADs they are forming are static structures; both the initial
simulations and single-molecule imaging evidence show that both dynamically break and
reform across the cell cycle depending on cohesin degradation and replenishment [324].

Loops are sometimes found at the border of TADs, but not always. A potential mech-
anism by which chromatin looping results in TAD formation could be loop extrusion as
first suggested by an initial model [325] that was progressively refined [326] and followed
by computer simulations [327] [328] [329] [330]. It relies on a more advanced modeling
of the P (s) function than the one we have described. An illustration is shown in figure
40. The chromatin is translocated by a loop extruding factor (LEF) (presumably co-
hesin) until it the molecule meets an obstacle, which would be CTCF [331]. Simulations
show that the superposition of many different extrusion states as would be expected in
a population result in TAD-like structures.

Figure 40: The loop extrusion model in TAD formation. The molecule is extruded
between boundary sites and the combination of many different states of ex-
trusion yields TAD-like preferential interaction domains.

Source: Taken from Fudenberg et al., 2016, [330].

Although a growing body of evidence has emerged to point at cohesin being the main
LEF [332] [333], it has not been directly confirmed. On the other hand, live imaging
of DNA loop extrusion has unambiguously shown the mechanism to be mediated by
condensin [334], another member of the SMC family. With no consensus whether both
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are involved, or condensin only, the discussion is still ongoing.

1.4.7 Application for genome and metagenome assembly
In the previous sections we have covered a basic overview of sequencing and assembly
methods as well as their lingering challenges, on one hand; on the other hand, we have laid
out the basics of processing and interpreting Hi-C data and its relevance to chromosome
dynamics. In this section we will combine the two and explain how Hi-C can be used to
solve assembly problems and unveil the underlying dynamics.

1.4.7.1 3C-based genome scaffolding

In section 1.4.3, we have seen that, absent very short scales that don’t concern us in
the context of Hi-C experiments, and whichever equation is used, the contact frequency
function P (s) is strictly decreasing. It is therefore bijective, i.e. there exists a one-to-
one mapping between the contact frequency (3D distance) and the genomic distance (1D
distance). Scaffolding a genome based on contact data is therefore equivalent to finding
an appropriate P (s) function, and rearranging distances between sequences such that
the genome and its underlying contact map best fits that P (s) function.

Existing software There are few available Hi-C based scaffolding programs: Lachesis
[335] was one of the earliest attempt but had a number of drawbacks, the most notable
of which being the requirement to specify a number of scaffolds or chromosomes in
advance, resulting sometimes in aberrant chromosomes with large number of improper
rearrangements. It is now deprecated. Another more recent tool, 3D-DNA checks first for
”misjoins”, partitions misjointed scaffolds, removes problematic sequences, and merges
the remainder with overlaps. This method was hallmarked with the chromosome-level
scaffolding of the Aedes aegypti genome [336]. More recently, SALSA2 uses a promising
approach, directly integrating the weights of the contacts into the assembly graph [337].

Our present work is based on GRAAL (Genome (Re-)Assembly Assessing Likelihood
from 3D) [338], a pioneering program developed by Hervé Marie-Nelly, a joint PhD stu-
dent between the groups of Romain Koszul and Christophe Zimmer. Notably, GRAAL
was the first program able to scaffold a truly incomplete eukaryotic genome in 2014.
Most of our present work is based on the continuation of GRAAL.

Naive method In order to understand why an elaborated method is necessary, consider
the following naive, greedy algorithm 2.

It simply finds the two most interacting fragments and extends in either direction
depending on the strongest neighbor of each extremity. Unfortunately, this invariably
encounters caveats:

• The approach is only guaranteed to work if the Hi-C data were perfect, i.e. each
fragment’s neighbors in 1D scrupulously respects the strictly decreasing P (s) con-
dition stated above. In practice, that function is subject to noise as any stochastic

61



1 Introduction

Algorithm 2 Greedy Hi-C assembly algorithm
Require: F = {f1, . . . , fn}, a set of fragments
Require: M = (mij)ij , a contact map of the framgents

(u, v)← arg maxi,j mij

C ← [u, v]
repeat

w1 ← arg maxk muk

w2 ← arg maxk mkv

if muw1
> mw2v then

C ← [w1, C]
else

C ← [C,w2]
end if

until an incompatibility arises

variable, in addition to the biases that we have covered. This means that loops
are created and the contact chain never extends to the full genome.

• Even if the data were perfect, Hi-C data remains a measurement over a population
of cells and we have seen the DNA polymer is known to be very dynamic: its
conformation constantly changes over time, sometimes drastically, with, as we
have seen, no indication as to whether its changing behavior is ergodic [252].

Stochastic model Ultimately the difficulties arise from the fact that Hi-C data is in-
herently noisy and the errors make such greedy methods fail at conveying the stochastic
aspect of contact counts. While the expected number of contacts P (s) is well-studied,
the nature of the random variable driving the actual contact counts between two loci
pairs remains elusive:

• One may treat each pixel (locus pair) as a counting procedure where each individual
contact is a rare event, thus yielding a Poisson distribution. This is what some of
the normalization procedures we have covered attempt to regress on.

• Many tools reason that each fragment or bin has a number M of contacts to be
distributed across the rest of the genome. The exact value of M depends on the
local coverage. From there, reasoning about the probability a certain amount of the
M contacts being made at a certain locus naturally leads to a binomial distribution
[339] [340].

• One may simply reason that the combination of many independent and identically
distributed conformations of chromosomes as reflected by a full cell population
leads to a Gaussian distribution for each pixel.

And as we have seen in section 1.4.5.4, other models such as a quasi negative binomial
one have emerged. In an analysis of a large aggregation of datasets [263] [259], plotting
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the evolution of the variance with the mean, it was strongly suggested that contacts
follow a Poisson distribution when they are scarce, and a Gaussian one when contacts
increase, with a transitory state between both regimes [256] (see figure 41).

Figure 41: Dual regime of the contact distribution, as illustrated by the relation between
the variance and the mean transitioning from Poisson to Gaussian. Datasets
were obtained from Mercy et al., 2017 [263] and Lazar‐Stefanita et al., 2017
[259].

Source: Adapted from Muller et al., 2018, [256].

Moreover, the regime is resolution-dependent, as more binning will lead to more con-
tacts per bin and thus favor the switch to a Gaussian distribution. Presumably the exact
scale at which the transition occurs is the optimal binning scale for a given dataset.

In the context of this work, we will rely on a Poisson distribution only, on the basis
that we want our algorithm to be relatively robust at low coverage and to work regardless
of any normalization.

The GRAAL algorithm The basic principles of the GRAAL algorithm have been laid
out in its original framework [341]. It is inspired from an Markov Chain Monte Carlo
(MCMC) method known as Gibbs sampling.

Modified polymer model First, the equation P (s) is simplified so as to fit a simple
three-variable model. In the context of this work we will consider γ(s) = γ to be
constant, which we have seen is true at short scales:

P (s) = A · s−γ (9)

However, this function decreases quickly to zero as s → ∞, leading to it having
lesser values than the base interchromosomal noise. This is a direct contradiction with
empirical evidence or any kind of accepted modeling, so one needs to introduce a third
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parameter δ representing that noise level (assumed to be constant) and stipulate that
P (s) ≥ δ, ∀s > 0. Therefore, our modified model becomes:

P (s) =

{

max (A · s−γ , δ) intra-chromosomal
δ inter-chromosomal

(10)

The vector of nuisance parameters ξ = (A, γ, δ) must therefore be initialized to best
fit the contact data. In practice, GRAAL uses the Broyden algorithm (a quasi-Newton
method).

Assessing likelihood Let M = (mij)ij be a contact map. Assuming the value of each
pixel mij obeys an independent Poisson counting process, and the expected value (equal
to the parameter) of that process is given by our polymer model P (s) = P (sij) (where
the genomic distance can be expressed as sij = b · |j − i| and b is the binning scale), the
likelihood of observing a contact count mij at the pixel (i, j) is given by:

L(mij) = e−P (sij) ·
P (sij)

mij

mij !
(11)

The likelihood of the whole matrix is the product of all likelihoods for each pixel, since
they are assumed to be independent:

L(M) =
∏

i>j

e−P (sij) ·
P (sij)

mij

mij !
(12)

It is the ratio of two such quantities that is examined when considering a genome or
parameter modification.

Genome mutations In order to perform the assembly, a number of mutations, shown
in figure 42 are predefined so they can be tested:

• Split: split a contig at the location of a given fragment.

• Paste: merge two contigs at the location of a given fragment.

• Duplicate: add a fragment to the current fragment set.

• Delete: remove a fragment from the current fragment set.

• Flip: invert a fragment’s orientation.
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Figure 42: The elementary genome mutations: split, paste, duplicate, delete, flip.

Source: Adapted from Marie-Nelly et al., 2014, [338].

These operations are elementary but testing each one of them may take a long time.
In practice, more advanced operations are defined on top of these (shown in figure 43):

• Eject: remove a fragment from a contig, merging the junctions. It is a combination
of two split and a paste.

• Insert: inserts a fragment at a given contig’s location. It is a combination of a
split and two paste.

• Translocate: swap two fragments’ respective locations. It is a combination of two
split and two paste.

• Jump: remove a fragment and directly place it next to another. It is a combination
of an eject and a insert.
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Figure 43: The advanced genome mutations that are compositions of elementary ones:
eject, insert, translocate, jump.

Source: Adapted from Marie-Nelly et al., 2014, [338].

These operations allow accelerated changes and lighten the computational load.

The GRAAL workflow Now that we have a way to change the genome in discrete
units and evaluate the likelihood of any change in genome or parameters, we can proceed
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with the workflow, as illustrated in figure 44. Each step is a combination of an update
in parameters and a genome mutation.

Figure 44: The GRAAL workflow. Data is initialized, parameters are first set to fit the
data, then the parameters and genome are iteratively updated.

Source: Inspired from Marie-Nelly et al., 2014, [338].

An update in parameters ξ proceeds as follows:

• Pick a parameter θ ∈ {A, γ, δ} at random.

• Take ǫθ ∼ N (0, σθ) from a normal distribution with a parameter-specific standard
deviation σθ, and set θ∗ = θ + ǫθ. One obtains a new set of candidate parameters
ξ∗.

• Accept ξ∗ with the probability r = min (1,
Lξ∗ (M)

Lξ(M) ) where Lξ∗ (M)

Lξ(M) represents the
likelihood ratio between the previous and modified parameters.

An update in genome follows a modified version of a multiple-try Metropolis algorithm
(MTM):

• Pick a fragment mi at random with uniform probability.
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• Pick a number of k different neighbors (m1, . . . ,mk). They are drawn with prob-
ability Ni(j) =

mij∑
l 6=i mil

, in order to be biased towards fragments with close 3D
proximity, since these are the ones to perform operations on.

• Consider the set of all new genomes G that would be obtained by performing
each of the nine above mutations on each of the neighbors, separately. It is in
practice higher than 9k because some mutations (such as translocate) may yield
different genomes depending on the orientation chosen. Compute the likelihood
L(G), G ∈ G for each of the corresponding matrices.

• Pick one, G with probability L(G)Ni(j) (where Ni(j) is the neighborhood weight
function defined above for each neighbor j).

• Accept G and update the new genome.

This is an accelerated version of the traditional MTM algorithm because G is accepted
right away. It is not a time homogeneous Markov chain anymore, but it requires less
computations and remains highly efficient.

GRAAL in practice The program operates by cycles: each fragment mi is assessed
for a mutation (and the corresponding parameters ξ updated accordingly) and once all
fragments have been iterated this way, a new cycle begins. After a number of cycles, con-
vergence usually becomes clear and the genome is considered reassembled. The program
was initially tested on S. cerevisiae, Trichoderma reesei and several human chromosomes.
An example is shown in figure 45.

Figure 45: An example of GRAAL scaffolding on the sixteen chromosomes of S. cere-
visiae.

Source: Inspired from Marie-Nelly et al., 2014, [338].

There are several strengths to the approach:

• The algorithm requires little prior information about the final scaffolding and is
in fact unbiased by the starting genome thanks to its Markov Chain nature. The
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implementation offers the option of completely splitting every single fragment prior
to re-assembly.

• The base design is relatively flexible and can be extended. For instance, the three-
parameter model ξ = (A, γ, δ) could be refined into a four- or five-parameter one if
more sophisticated models become known. Likewise, designing and implementing
new candidate mutations is relatively simple.

• Relatively little coverage is required. As long as the basic assumptions about the
contact distributions are respected (more intra- than inter-chromosomal contacts
and a strictly decreasing function) a scaffolding is possible.

• Contrary to other methods such as gradient descent, the algorithm can’t be ”trapped”
in local minima. Assuming P (s) conditions are respected, convergence is guaran-
teed.

However, there are also caveats to be mindful of:

• The contact map can’t be normalized. Since only raw contact counts (as generated
by the Poisson process) are assessed, the matrix can’t be reduced to frequency
vectors. This means some of the biases mentioned previously still carry over to the
algorithm.

• Coverage heterogeneity can heavily disrupt any attempt to fit a proper P (s) func-
tion. Some can be very little covered, some will heavily bias contacts toward them.
Since the matrix can’t be normalized, some of the most egregious fragments have
to be filtered beforehand.

• As discussed before, GC content and fragment size also bias the contact distribu-
tion.

• The program is nondeterministic. Any GRAAL run on a given reference will
yield different assemblies every time, although after convergence they will be very
similar.

• By design, the program tends to disregard any prior information about the genome
with burn-in cycles. This may or may not be desirable depending on how much
one trusts the initial reference, but in most cases one does not actually want to
rebuild everything from scratch, lest local artefacts such as spurious inversions or
small translocations appear within a contig.

Therefore, the approach needs some improvements and fine-tuning to be exploited to
its full extent.
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Refining GRAAL into instaGRAAL - PhD project In this section we have laid out
and summarized the basic principles behind the original GRAAL scaffolder. The prin-
ciple was proven to be effective, but only tested on relatively small and low-complexity
genomes and without the global picture of a complete integrated genome assembly so-
lution in mind. This is crucial if one is to reliably interpret dynamic events such as
rearrangements. Our work thus begins from there: we have successfully implemented an
updated version of the scaffolder, dubbed instaGRAAL. Among other things, it addresses
several key points:

• The scalability of the program, which needs to work on genomes that are hundreds
of megabases or gigabases in order to be useful in practice.

• The necessity for a form of polishing after scaffolding the genome. Since GRAAL
introduces artifacts, and the initial reference is (in most cases) a useful source of
prior information about the genome structure, one needs to re-inject that informa-
tion into the new scaffolding so as to correct any spurious mutations introduced
by the program.

• The modularity of the program needs to be emphasized so as to adapt to all pos-
sible case studies. Our work will demonstrate that we have had to tackle very
different species and unveil a wide range of dynamic events. Adjusting various
hyper-parameters of the program such as the distribution coverage, the binning
factor b (constant or not), the number of neighbors k, the range of possible muta-
tions, etc. has proven necessary to yield the best results.

• A possibility to integrate independent data sources such as long reads or genetic
maps. A sound strategy to infer the proper order of contigs when given several
information streams is necessary to obtain a properly complete assembly.

Over the course of this work, we successfully demonstrate its results on three case
studies:

• The brown alga Ectocarpus sp., whose 27-chromosome, 200 Mb genome serves as
a showcase species to demonstrate the efficiency of our program. Armed with the
completeness and misassembly metrics that we have mentioned before, we show
that our new program yielded the highest quality genome ever for that strain.

• The joint re-assmebly of two Trichoderma reesei strains (QM6A and RutC30)
shows a rearrangement, which was confirmed by the literature and fits its evolu-
tionary history. GRAAL has had a successful precedent with that species and our
case study is its natural continuation.

• The joint reassembly of two different lineages of the desert ant Cataglyphis his-
panica shows a chromosome fusion between one lineage and the other, thus going
from 27 to 26 chromosomes. Not only were these the first ever high quality as-
semblies for this species (in either lineage), but the dramatic rearrangements could
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give some hints as to the peculiar reproductive (hybridogenetic) strategy of the C.
hispanica queens.

We also integrate this scaffolding process into a global assembly and validation ap-
proach aiming at producing reference-grade quality assemblies and leaving no ambiguity
to the dynamic events that we have uncovered. The results are shown in chapter 3.

1.4.7.2 3C-based metagenome binning

The next natural step to genome assembly is metagenome assembly, and the dynamics
implications are crucial if one is to understand the interplay among bacteria and between
phages and bacteria. Indeed, there is growing evidence that e.g. the human phageome
dramatically affects the gut microbiome, but the mechanisms themselves are still in their
early steps [342] [343]. In the previous sections we have outlined the difficulties at stake
if one is to preserve interactions of interest while assembling a metagenome. Here we
will demonstrate how our approach alleviates these challenges and allows a bias-free
metagenome reconstruction.

Naive reconstruction In order to know whether a 3C-based approach could help re-
construct the genomes found in a complex sample, a simple question would be to test
it on a controlled community of relatively few bacteria. In 2014, a proof of concept was
achieved with the following mix [344], illustrated in figure 46.

• Bacillus subtilis

• Escherichia coli with its F plasmid

• Vibrio cholerae

A 3C experiment is thus performed on the mix, the resulting library sequenced and
assembled de novo as though one did not have access to the reference, in order to
mimic future conditions in metagenomic experiments. The scaffolds that do make up
the majority stretch of each genome act as references for the mapping.
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Figure 46: A meta3C experiment on a controlled mix. Three bacteria are indiscrimi-
nately sequenced, assembled de novo and mapped.

The choice of a two-chromosome bacterium (V. cholerae) as well as a bacterium fea-
turing a plasmid unveils an interesting consequence of the experiment: not only a 3C
library contains the relevant information to successfully sort the mix into its original
three bacteria, but one observes different levels of noise between the two chromosomes
of V. cholerae or between the E. coli chromosome and its plasmid. These, although
relatively low, are still noticeably higher than the standard inter-species noise.

This lets us envision a hierarchy of compartmental divisions that would allow a full
deconvolution on multiple scales at once, as seen in figure 47.
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Figure 47: Multi-scale view of contact levels. The order of magnitude of contacts among
chromosomes increases the more compartments are shared.

Complex networks and the Louvain algorithm In order to test the hypothesis further,
a mix with eleven different yeast strains was tested. This means 11x16 = 176 chromo-
somes were to be reconstructed, each within their own cell compartment. This, combined
with sequence homology issues, would make a naive de novo assembly too complex, even
with GRAAL.

In order to obtain a preliminary layout of the network, we use the Louvain algorithm,
an original method borrowed from social networks analysis and used for community
detection [345]. We use the same graph-based approach that we have mentioned in
figure 34 and partition the network of contacts into communities. The idea is that
sequences (nodes) within a community should see (interact with) each other more than
they see sequences outside their community, or what would be expected by chance. This
condition is formally known as the Newman-Girvan criterion.

In order to quantify this intra/inter relationship among communities, the algorithm
makes use of a metric called the modularity on the partitioned network. It is defined
as follows: let M = (mij)ij be a contact map representing the entire network (or the
adjacency matrix of the network). Let C be a set communities that completely partition
of the network, such that ci ∈ C represents the community to which the node i belongs.
Let δ be a simple delta function representing the intra- or inter-community status of a
node pair (i, j):

δij = δ(ci, cj) =

{

1 ci = cj

0 ci 6= cj
(13)
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Let ki =
∑

l mil the sum of all (possibly weighted) edges attached to the node i (or
alternatively, the sum of all contacts in the bin vector i), and m =

∑

i 6=j mij the sum of
all edges in the network (or non-diagonal elements in the matrix). The modularity Q is
given by:

Q =
1

2m

∑

ij

(mij −
ki · kj
2m

) · δij (14)

By definition, the modularity of a partition lies between -1 and 1. At -1, there are only
ever inter-communities contacts. It is 0 if nodes are spread in communities as though
the partition was random, and it is positive if there are more nodes within communities
than an hypothetical random rewiring of the network.

The Louvain algorithm seeks to maximize a network’s modularity. Since finding an
absolute maximum is a computationally hard problem, it instead focuses on a relatively
quick heuristic. It proceeds in a multiple pass approach. The first pass (detailed in
algorithm 3 computes, for each node i, the global modularity shift ∆Q incurred by
moving the node from its own community to one of its neighbors, and joins the one
maximizing the increase if it is positive. The process repeats until no more increase can
be found.

Algorithm 3 Louvain single-pass algorithm
Require: G, E , a network of nodes and edges
Require: C, a partition mapping a node i to its community ci
Require: VG,E(i), a function returning the neighbors of i
Require: Q, a modularity function and ∆Q, computing the modularity shift ∆Q(i→ j)

for moving i towards cj
repeat

for i in G do
k ← arg maxj∈VG,E(i)

∆Q(i→ j)
if ∆Q(i→ k) > 0 then

ci ← cj
end if

end for
until no more increase is possible

In a second pass, all nodes within each community merge to become a single node
representing it, and the above algorithm is run once again on the new graph. The
process can be iterated repeatedly and is illustrated in figure 48. A remarkable feature
of the method is that it runs in O(n log(n)) time: as the nodes get merged, the global
data structure adopts a hierarchical, tree-like layout and the algorithm gets faster as it
runs through it.

The first application of Louvain algorithm on Hi-C data was successfully done to the
aforementioned mix of elven yeast species. All sequences successfully clustered to a
community matching a species. Not only that, but figure 49 shows that within each
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Figure 48: Partitioning of a non-weighted network (top) into four color-coded interaction
communities (bottom).

cluster, GRAAL was able to scaffold the corresponding sequences into their respective
sixteen chromosomes.

This proof-of-concept work lets us draw an outline of the workflow underlying the
basis of our present work and illustrated in figure 50: given a complex sample, perform a
preliminary metagenomic assembly on the reads, use a form of binning with a clustering
algorithm drawing from the contact information, and optionally reassemble each bin
with our (insta)GRAAL scaffolder.

The approach has several strengths:

• Any metagenome binning based on 3C reads is not hampered by the biases we have
described in section 1.2.4.2. Sequences that are completely different in coverage
and composition will nevertheless cluster together if the 3C data indicates that they
belong to the same compartment. This opens new perspectives for the isolation of
phages or identification of phage-host relationships and DNA transfers.

• The methods used are scalable and proven. Other criteria than the Newman-
Girvan one exist [346], and the Louvain algorithm isn’t the only way to partition
a network according to this criterion, but it is relatively fast and known to work
on a variety of data. Notably, it has been shown to be the most suitable algorithm
for clustering simulated 3C data [347].

• The multi-scale aspect means that many different hierarchies can be unveiled all at

75



1 Introduction

Figure 49: Global contact map of eleven yeast strains with their respective reconstructed
chromosomes.

Source: Adapted from Marbouty et al., 2014, [344]
.

once, from broad dynamics within families of species all the way to 3D information
about each DNA molecule for each bacterial species.

However, there are still a number of limitations:

• Modularity-based approaches are known for having a resolution limit [348]. When
a network grows very large, nodes will randomly merge within the same community,
as any neighborhood will appear as a cluster when compared to the large portion
of the network with which it doesn’t interact.

• The Louvain algorithm is non-deterministic. The output partition largely depends
on the order nodes are iterated, etc. This may prove problematic when attempting
to cluster shared sequences or sequences that ”hop” among genomes due to DNA
transfers or other dynamic events.

• Sometimes the contacts can be few and far between, in which case falling back to
traditional binning methods may be desired to reconstruct more genomes.

These need to be addressed in order to fully deconvolve a metagenome and understand
its dynamics.

Expanding and implementing the meta3C design with metaTOR In this section
we have explained the basics of meta3C. The approach had not been tested in vivo
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Figure 50: A meta3C workflow. Binning is performed on a preliminary assembly based
on 3C contacts before the bins can be scaffolded separately.

77



1 Introduction

prior to starting our work. Moreover, knowledge about the human gut phageome and
implications of the relationship between the phageome and the microbiome were only
emerging [349] [342] [343], and DNA transfers hard to characterize. Our work provides a
further step to help investigate this complex interplay, notably by addressing the above
issues:

• The non-deterministic nature of the algorithm can in fact be exploited by running
it many times and thus computing a clustering score between two sequences in the
contact network. This lets us refine the previously binary community classification
into a more quantifiable scale. It also lets us identify so-called core communities
composed of sequences that exclusively cluster together

• The resolution limit can be addressed by recursively running the algorithm onto
the subnetworks it has identified. If any artifact arises, it will end up deconvoluted
into smaller sub-communities. This also gives us an additional, hierarchical angle
of view into the nature of the relationships between genomes.

• Armed with this new design, we thus establish a benchmark between our method
and traditional ones. However, it is worth noting that both approaches are in fact
complementary and can be combined to yield even more reconstructed genomes.

These improvements upon the original meta3C design prove successful at reconstruct-
ing hundreds of genomes, most of them mostly or quasi-complete. We also recon-
struct phage genomes and isolate phage-host relationships, including the exact coor-
dinates of some prophages. Lastly, we show the latest implementation of our approach
(Metagenome Tridimensional Organisation-based Reconstruction or metaTOR) is able
to 1) reconstruct rare and/or previously unknown genomes, and 2) outperform existing
tools by binning more and better-quality genomnes. The results are shown in chapter 4

1.5 Our thesis work on 3C assembly: increasing layers of
complexity

In this chapter we have laid out the general principles of genome sequencing, assembly,
the implications for studying the dynamics of chromosomes and how Hi-C fits into this
global picture. Over the course of this work we will present our main results from
successful applications of Hi-C technology to genome assembly.

Chapter 2 focuses on serpentine binning, a basic computational tool that we have de-
veloped and implemented, using Hi-C data and simple mathematical methods; although
it is not directly concerned with genome assembly, it has proven useful for analyzing,
interpreting contact data in any form, and fits into the global picture of contact data
enhancers described in 1.4.5.2.

Chapter 3 focuses on large eukaryote genome scaffolding and investigating rearrange-
ments: we will first present our tool, instaGRAAL, and how it was successfully applied
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to the reassembly of the brown algae Ectocarpus sp.. Then we will cover the joint re-
assembly of two Trichoderma reesei strains, and preliminary results concerning two C.
hispanica lineages.

Chapter 4 takes the approach to another level of complexity with the challenge of
metagenome binning. We first demonstrate a successful and pioneering use of meta3C
on a mouse sample resulting in the reconstruction of many genomes and the isolation
of phage-host relationships, going as far as peering into the infection spectrum of some
phages. We then detail the formalized implementation of this design (dubbed metaTOR)
and demonstrate its capabilities on multiple mice samples and test it against other tools.

This work can therefore be seen as a progression as we apply our technological and
computational framework to increasingly complex subject matters and draw biological
insights into the underlying mechanics of chromosome interaction and evolution. From
simple Hi-C data to smaller genomes to larger genomes to metagenomes, each subject
matter offers a different set of challenges to tackle, methods to design and tools to
implement, all with the common threading line of chromosome dynamics.

79



2 Hi-C methods for enhancing interaction
signal

80



Genome analysis

Serpentine:  a  flexible  2D  binning  method  for 

differential Hi-C analysis

Lyam Baudry1,2, Romain Koszul1,* and Vittore Scolari1,*

1Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR3525, CNRS, 75015 Paris, 

France,

2Sorbonne Université, Collège Doctoral, F-75005, Paris, France

*To whom correspondence should be addressed.

Abstract

Motivation: Hi-C contact  maps  reflect  the  relative  contact  frequencies  between  pairs  of 

genomic  loci,  quantified  through  deep-sequencing.  Differential  analyses  of  these  maps 

facilitate  downstream  biological  interpretations.  However,  the  multi-fractal  nature  of  the 

DNA polymer inside the cellular envelope results in frequency values spanning several orders 

of  magnitude:  contacts  involving  loci  pairs  at  large  genomic  distance  are  much  sparser 

compared to closer pairs. The same is true for poorly covered regions such as telomeres and 

repeated sequences. Poor coverage translates into low signal-to-noise ratios. There is no clear 

consensus to address this limitation.

Results: We  present  a  fast,  flexible  procedure  operating  on  simple  data  that  takes  into 

account  the  contacts  in  each  region  of  a  contact  map.  Binning  is  performed  only  when 

necessary on noisy regions, preserving informative ones. This results in high-quality, low-

noise contact maps that can be conveniently visualized for rigorous comparative analyses.

Availability: The  software  is  available  on  the  PyPI  repository  and 

https://github.com/koszullab/serpentine.  Documentation  and  tutorials  are  provided  at 

https://serpentine.readthedocs.io/en/latest/.

Supplementary information: Supplementary data are available at Bioinformatics online.
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1. Introduction

Chromosomal  conformation  capture  experiments  provide  a  quantitative  way  to  infer  the 

spatial  proximity of DNA segments (Hi-C contact  maps,  (Lieberman-Aiden  et al.,  2009). 

Downstream analyses include normalization, contact quantification, 3D pattern recognition, 

etc. However, experimental variability can influence data analysis in slight yet irreproducible 

ways. While this does not affect the analysis where robust trends are not altered by noise, the 

quality  of  small-scale  and  local  comparisons  suffers  in  poorly-covered  regions,  limiting 

comparisons. A variety of sophisticated models taking into account the contact distribution 

(Lun  and  Smyth,  2015;  Stansfield  et  al.,  2018) have  been  developed  to  tackle  these 

limitations, but these packages don’t deal with very sparse information. Other approaches bin 

pixels  (i.e.  sum-pooling)  to  increase  the  signal-to-noise  ratio  in  regions  with  few or  no 

contacts at the expense of resolution, but do so over the entire map.

We  have shown that if binning is uniform over the entire matrix, the distribution will  be 

dominated  by  sampling  noise  (Poisson distribution)  at  large  genomic  distances,  while  at 

smaller  genomic  distances  the  resolution  will  be  limited  by  the  bin  size,  losing  the 

opportunity  to  observe  high-resolution  features.  More  information  on  the  rationale  is 

provided in supplementary material (section 1).

To tackle  the lack of  a  suitable  uniform resolution  over  the entire  map,  we developed a 

normalization-free, flexible method that only bins low-covered regions. The procedure makes 

no assumption about the contact distribution and only alters it locally. It requires two contact 

thresholds beyond which local binning stops. Parameters can be chosen according to the data 

or  automatically  inferred  from  the  contact  distribution.  When  applied  to  low-resolution 

positions, it unveils hidden patterns and improves the quality of log-ratio maps.



2. Method

Joint  binning and comparison:  Serpentine-shaped bins randomly aggregate  with nearby 

pixels depending on their  values (Figure 1A). Given two input thresholds  t and  m < t, a 

serpentine stops aggregating if  the sum of the values of its  pixels is lower than  t in  any 

contact maps, or lower than m in all of them. The log-ratio of the serpentine-binned matrices 

is then computed to visualize pattern differences (Figure 1C, right matrix, figure 1D and 1E, 

top-left half matrices). Full details on the algorithm are described in supplementary materials 

(section 3 and 4).

Application:  we  applied  serpentine  binning  to  compare  two  published  Saccharomyces.  

cerevisiae Hi-C datasets binned at 2.5 kb during meiosis  (Muller  et al., 2018; Figure 1B; 

Supplementary information). The data is not normalized. The log-ratio contact map (Figure 

1C,  leftmost  matrix  and  plot)  shows  significant  noise  and  local  variance  across  poorly 

covered  regions.  The  MD-plot  distribution  showing  the  log-ratio  vs.  log-average  values 

displays a large divergence at small average values, corresponding to sampling noise.

Comparison with other methods: We compared serpentine binning with classic re-binning 

and  Gaussian  kernel  convolution,  as  both  methods  are  normally  used  to  improve  map 

visualization (Figure 1C). Although the signal-to-noise ratio improves globally when using 

either  method,  short-scale  events  are  dwarfed  by  the  rest  of  the  signal.  Moreover,  noisy 

regions  are not  improved.  On the  other  hand,  serpentine  binning smoothens low-covered 

regions, confirming that differences between datasets in these areas are not significant, while 

strong short-scale patterns emerge. This remains true in down-sampled matrices (Figure 1D; 

Supplementary materials, section 6).

Observation of hidden patterns: we applied our binning algorithm to detect increases in 

trans-  homologous  interactions  after  4h  into  meiosis  (Figure  1E,  top-right  matrix).  The 

pattern correlates with cis loops bridging Rec8 binding sites, identifiable from ChIP-chip (Ito 



et al., 2014). It is not visible in the raw ratio map (bottom-left matrix); overall, it points at 

potential inter-chromosomal contacts to be further investigated.

Figure 1. (A) Algorithm flowchart. (B) Input matrices (chromosome V). Left: T0 (interphase, 

control).  Right:  6h into meiosis.  (C) Log-ratio  of (from left  to right)  raw maps,  after  re-

binning, after gaussian convolution, after serpentine binning (chr. V, T0 vs. 4h). (D) Down-

sampling effects (chr. V, T0 vs. 6h). Top-right: serpentine binning. Bottom-left: raw ratio. 

Loops (blue circle) form in meiosis between cohesin-enriched positions (green dots in the 

diagonal).  In  serpentine-binned matrices  a  strong loop can  still  be identified  after  down-

sampling. (E) cis- and trans- homeologous contacts (SynHiC region, T0 vs 4h).
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Supplementary materials

1. Principles

In Muller et al., 2018 we have shown that at a fixed genomic distance s, for high enough coverages 

C, the distribution of contacts modelling the observed pixel values can be characterized by 1) a 

mean μ(s, C), measuring the polymeric signature P(s), and 2) a standard deviation σ(s, C), reflecting 

an  estimation  of  the  biological  variability.  Both  functions,  in  this  interpretation,  are  strictly 

proportional to  C. However, the experimental generation of a contact map is altered by random 

sampling, happening at the PCR-amplification and sequencing level. This process results in Poisson 

distributed values.

The Poisson distribution is characterized by all its cumulants being equal to μ. For this reason, when 

PCR-driven random sampling is the dominant process, σ = μ1/2 , and thus the biological variability 

contained in σ(s, C) is lost. This happens for all values of C < t, where t is a threshold such that σ(C) 

< μ(C)1/2.

To overcome this effect, we locally bin the matrices using serpentine binning and make sure that the 

values of coverage for each bin are all above such a threshold.

2. Contact map generation

Data was taken from (Muller  et al., 2018,  BioProject PRJNA464299). Reads were mapped, each 

end independently, using the Bowtie 2 aligner with the –very-sensitive-local option against the S. 

cerevisiae reference genome taken from (Yue et al., 2017).  An iterative alignment procedure was 

used: for each read, the length of the sequence being aligned was gradually increased by 20 bp steps 

until  the  mapping  became  unambiguous  (mapping  quality  > 30).  Paired  reads  were  aligned 

independently,  and each mapped read  was assigned to a  restriction  fragment.  Alignments  were 

filtered for artifacts as described in (Cournac et al., 2012) and binned along 2.5 kb sequences.

Supplementary Figure 1: Contact maps of all sixteen chromosomes of S. cerevisiae at T0 and six 

hours into meiosis



3. Joint binning and comparison

The binning algorithm requires two input thresholds t,  m < t and at least two input contact maps; 

typically,  a  contact  map  in  a  given  experimental  condition  is  compared  to  a  control  map.  A 

serpentine  is  a  subset  of  pixels  identifying  a  single  connected  region  (along  the  four  spatial 

directions) in the pixels set  M.  Each pixel in  M is initialized as a serpentine singleton. Then, a 

serpentine is drawn randomly. If the sum of the coverage of its pixels is lower than t in all contact 

maps, or lower than m in any of them, then it is suitable to merge with another serpentine randomly 

chosen among its  neighbours.  Two serpentines are neighbours  if  they have at  least one pair  of 

adjacent pixels. The flowchart for merging is illustrated in figure 1A. Once all serpentines have 

been iterated over, the process begins anew until the total number of serpentines remains constant 

across two iterations, indicating that the serpentine structure cannot evolve further. The resulting 

contact maps are then binned serpentine-wise, i.e. each pixel value is replaced with the average 

value  of  its  final  serpentine.  The  algorithm  is  run  independently  N (N >  4)  times  to  ensure 

serpentines are not biased toward any specific 2D direction. The final binned matrix is the average 

of all binning runs. The log-ratio of the serpentine-binned matrices is then computed to visualize 

pattern differences (figure 1C, right matrix, figure 1D top-left half matrices). 

4. Parameters optimization

In  the  absence  of  biological  replicates,  users  can  use  MDplots  (figure  1C,  bottom  plots)  to 

determine an appropriate value for the threshold  t. The goal is to have a uniform noise-to-signal 

ratio that does not depend on signal intensity. This choice is justified by the fact that the MDplot 

divergence at low coverages is largely driven by random sampling, rather than biological variability. 

When  biological  replicates  are  available,  the  coverage  threshold  under  which  the  effects  of 

sampling becomes dominant over technical and biological variance can be otherwise estimated.

5. Chromosome-level differential analysis

We generated a contact map for each chromosome of  S. cerevisiae as described above. They are 

displayed in Supplementary Figure 2. We computed the corresponding log-ratios between contact 

maps (excluding infinite and undefined values) and performed our serpentine binning procedure on 

each log-ratio.  As the algorithm is  not  normalization-dependent  and log-ratios  cancel  out  most 

biases, we didn’t perform any normalization. The contact maps of all chromosomes (before and 

after serpentine binning) are displayed in supplementary figure 2, complete with the coordinates of 

cohesin peaks.



Supplementary Figure 2: Log-ratios of contact maps before and after 6 hours taken from Muller et 

al.,  2018. The raw log-ratio  data points  are on the lower left  corner  and the serpentine-binned 

contact map is on the upper right corner of each map. An artifact due to sequence capture on the 

Syn-Hi-C region can be observed in chromosome IV.

6. Down-sampling

To benchmark our method, we applied the algorithm on two matrices that we down-sampled in 

decreasing proportions. Serpentine binning highlights the strongest patterns in the full contact map 

even at high rates of down-sampling, whereas the raw log-ratio fails to do so (Figure 1D).

7. Comparison of cis- and trans- contacts

The  comparison  of  cis-  and  trans-  contact  is  obtained  by  performing  serpentine  binning 

independently on the two cis- and the single trans- sub-matrices, in order to avoid bins that span 



different regions. The matrices are finally merged and the log-ratios are normalized on the mean 

contact  values  taking  over  the  sole  cis-  region  of  the  matrix.  This  assumes  that  the  general 

polymeric compaction is less altered than the cis- to trans- contact ratio.

8. Performance

The algorithm’s runtime has worst-case complexity O(n² log(n)), which roughly corresponds to a 

serpentine structure necessitating the maximum amount of merging at every iteration. 

Supplementary Figure 3 shows experimental benchmarks confirming it. In practice, the runtime is 

dominated by the initial iteration (involving n (n + 1) / 2 serpentine singletons) acting as the 

bottleneck of the total algorithm runtime, and subsequent iterations run much faster.

Supplementary figure 3: The runtime scales as n2 where n defines the dimensions of the input 

matrices (n x n).
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3 Genome assembly and uncovering
intra-species genome dynamics

3.1 The instaGRAAL scaffolder
In the introduction we have presented the main motivation for building upon GRAAL
to improve genome assemblies. This section concerns our submitted work, presenting
the following main results:

• The implementation of instaGRAAL as an improved version of GRAAL, notably
featuring post-scaffolding polishing as well as genetic map integration

• The immediate application of our program on the genome of the model brown
alga Ectocarpus sp., complete with extensive validation, thus yielding the highest-
quality genome for this species.

This work acts as a preliminary step to investigate genome dynamics once they are
fully scaffolded and validated.

90



Chromosome-level quality scaffolding of the Ectocarpus sp. genome with 

instaGRAAL, a proximity ligation-based scaffolder 

Lyam Baudry1,2,3, Martial Marbouty1,2, Hervé Marie-Nelly1,2,3, Alexandre 

Cormier4, Nadège Guiglielmoni1,2, Komlan Avia4, Lieven Sterck4, J. Mark Cock4, 

Christophe Zimmer2,5, Susana M. Coelho4,&, Romain Koszul 1,2& 

  

1 Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR3525, CNRS, 75015 Paris, 

France 

2 Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), 

USR3756, CNRS 

3 Sorbonne Université, Collège Doctoral, F-75005, Paris, France 

4 Sorbonne Université, Laboratory of Integrative Biology of Marine Models, Algal Genetics, 

UMR 8227, Roscoff, France 

5 Institut Pasteur, Imaging and Modeling, UMR3691, CNRS, 75015 Paris, France 

& contacts: romain.koszul@pasteur.fr or coelho@sb-roscoff.fr 

  

 

 

  



ABSTRACT 

Hi-C has become a popular technique in recent genome assembly projects. Hi-C exploits 

contact frequencies between pairs of loci to bridge and order contigs in draft genomes, 

resulting in chromosome-level assemblies. We developed instaGRAAL, a complete 

overhaul of the program GRAAL suited for large genomes, which uses a Markov Chain 

Monte Carlo algorithm to perform Hi-C scaffolding. InstaGRAAL features a number of 

improvements, including a modular polishing approach that optionally integrates 

independent data. To validate the program, we used it to generate a chromosome-level 

assembly for the model brown alga Ectocarpus sp., and quantified improvements compared 

to the initial draft. 

 

Keywords: Ectocarpus, Hi-C scaffolding, Hi-C, genome assembly, MCMC, GPU, parallel 

computing 

 

  



Background 

Despite continuous and impressive developments in DNA sequencing technologies, 

technical challenges remain regarding the assembly of sequence data into full length 

chromosome assemblies, especially for large genomes [1,2]. Conventional assembly 

programs and pipelines often encounter difficulty closing gaps in draft genome assemblies 

caused by regions enriched in repeated elements. At the chromosome level, these programs 

often incorrectly orient DNA sequences or predict incorrect numbers of chromosomes [3]. 

Conventional assemblers efficiently generate overlapping set of reads (i.e. contiguous 

sequences, or contigs) but encounter difficulties linking these contigs together into scaffolds. 

Consequently, many available genomes feature gaps which need to be bridged to reach a 

chromosome-level structure. These computational limitations are being addressed thanks 

to active support from the community and competitions such as GAGE [4] or the 

Assemblathon [5] but there is as yet no systematic, reliable way of producing near-perfect 

genome assemblies of guaranteed optimal best quality without a considerable amount of 

empiric parameter adjustment and manual post-processing evaluation and correction [6]. [6] 

Recent sequencing projects have typically relied on a combination of independently 

obtained data such as optical mapping, long read sequencing, and chromosomal 

conformation capture (3C, Hi-C) to obtain large genome assemblies of high accuracy. The 

latter procedure derives from techniques aiming at recovering snapshots of the higher-order 

organization of a genome [7,8]. When applied to genomics, Hi-C-based methods are 

sometimes referred to as proximity ligation approaches, as they quantify and exploit physical 

contacts between pairs of DNA segments in a genome to assess their collinearity along a 

chromosome, and the distance between the segments [9]. Early studies demonstrated that 

Hi-C scaffolds large eukaryotic DNA regions using control datasets [10–12]. The Hi-C 

scaffolder GRAAL (Genome Re-Assembly Assessing Likelihood from 3D), a probabilistic 



tool that uses a Markov Chain Monte Carlo (MCMC) [12] was able to generate the first 

chromosome-level assembly of an incomplete eukaryotic genome (see also [13]. Since 

these proof of concept studies, the assemblies of many genomes of various sizes from 

eukaryotes [14–16] and procaryotes [17] have been significantly improved using scaffolding 

approaches exploiting Hi-C data.  

Although GRAAL was effective on medium-sized or small (<100 Mb) eukaryotic 

genomes such as that of the fungi Trichoderma reesei [18], scalability limitations were 

encountered when tackling genomes whose complexity and size required significant 

computer calculation capacity. Furthermore, as observed also with other Hi-C-based 

scaffolders, the raw output of GRAAL includes a number of caveats that need to be corrected 

manually to obtain a finished genome assembly. To tackle these limitations, we developed 

instaGRAAL, an enhanced, open-source program optimized to reduce the computational 

load of chromosome scaffolding and that includes polishing steps to automatically complete 

the assembly process. The polishing, which aims to minimise assembly errors, can exploit 

available genetic linkage data.  

InstaGRAAL was applied to the 214 Mb haploid genome of the model brown alga 

Ectocarpus sp., which is currently only published in draft form [19]. Brown algae are a group 

of complex multicellular eukaryotes that have been evolving independently from animal and 

land plants for more than a billion years. Ectocarpus was the first species within the brown 

algal group to be sequenced, as a model organism to investigate multiple aspects of brown 

algal biology including the acquisition of multicellularity, sex determination, life cycle 

regulation and adaptation to the intertidal [20–23]. A range of genetic and genomic resources 

have been established for Ectocarpus sp. including a dense genetic map generated with 

3,588 SNP markers [24]. Here we used instaGRAAL to generate a high quality, 

chromosome-level assembly of the Ectocarpus genome and used resources generated for 



this model organism, in particular the dense genetic map, to comprehensively validate the 

assembly. 

 

Results 

From GRAAL to instaGRAAL 

The technical limitations of GRAAL were i) high memory usage when handling Hi-C data for 

large genomes (i.e. over 100 Mb), 2) difficulties when installing the software, and 3) the need 

to adjust multiple ad hoc parameters to adapt to differences in genome size, read coverage, 

Hi-C contact distribution, specific contact features, etc. We designed instaGRAAL to address 

all these shortcomings. First, we rewrote the memory-critical parts of the program, such as 

permutation sampling and likelihood calculation, so that they are computed using sparse 

contact maps. We reduced the software’s dependency footprint and added detailed 

documentation, deployment scripts and containers to ease its installation. Finally, we 

opened up multiple hard-coded parameters to give more control for end-users while 

improving the documentation on each of them, and selecting relevant default parameters 

that can be implemented for a wide range of applications. These parameters include the 

size of the neighbourhood to sample for each bin and the relative coverage threshold for 

retaining bins in the contact distribution (see Discussion). Overall, these upgrades resulted 

in a program that was lighter in resources, more flexible, and more user-friendly. 

Other problems encountered with the original GRAAL program included 1) the presence of 

potential artefacts introduced by the permutation sampler, such as spurious permutations 

(e.g. local inversions) or incorrect junctions between bins; 2) difficulties with the correct 

integration of other types of data such as long reads to resolve conflicts and 3) the need to 

filter out sequences that were either too short, included repeated motives or had low 

coverage prior to scaffolding. We addressed these points by implementing correction 



strategies that not only identify and remove artefacts but also reinsert problematic 

sequences, which are initially put aside during the filtering step, into the final scaffolds (see 

Methods). These steps can exploit linkage data when available. Overall, when compared to 

GRAAL’s raw output, the resulting “polished” assemblies are significantly more complete 

and more faithful to the actual chromosome structure.  

 

The core principles of GRAAL and instaGRAAL are similar: both exploit a MCMC approach 

to perform a series of permutations (insertions, deletions, inversions, swapping, etc.) of 

genome fragments based on an expected contact distribution. The parameters (A, α and δ) 

that describe this contact distribution are first initialized using a model inspired by polymer 

physics [25]. That model describes the expected contact frequency P(s) between two loci 

separated by a genomic distance s (when applicable):  𝑃(𝑠) = {𝑚𝑎𝑥(𝐴 ⋅ 𝑠−𝛼 , 𝛿): ∈ 𝑡𝑟𝑎𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝛿: 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠  

The parameters are then iteratively updated directly from the real scaffolds once their size 

increase sufficiently [12]. Each fragment or stretch of adjacent fragments (referred to here 

as a ‘bin’, see Methods) is tested in several positions relative to the neighbouring fragments. 

The likelihood for each arrangement is assessed from the simulated or expected contact 

distribution, and the arrangement accepted or rejected [12]. This analysis is carried out in 

cycles. A cycle is completed when all fragments of the genome have been processed in this 

way. Any number of cycles can be run iteratively and the process is usually continued until 

the genome structure ceases to evolve, as measured by the evolution of the parameters of 

the model. The core functions of the program use Python libraries as well as the CUDA 

programming language, and therefore necessitate a NVIDIA graphics card with at least 1 

Gb of memory. 

 



Scaffolding of the Ectocarpus sp. chromosomes with instaGRAAL 

To test and validate the instaGRAAL program, we generated an improved assembly of the 

genome of the model brown alga Ectocarpus sp.. A reference genome consisting of 1,561 

scaffolds generated from Sanger sequence data is available for this species [20]. A Hi-C 

library was generated from a clonal culture of a haploid partheno-sporophyte carrying the 

male sex chromosome using a GC-neutral restriction enzyme (DpnII). The library was 

paired-end sequenced (2x75 bp – the first ten bases were used as a tag and to remove PCR 

duplicates) on a NextSeq apparatus (Illumina). Of the resulting 80,521,968 paired-end 

reads, 41,288,678 read pairs were both concordantly and unambiguously mapped onto the 

reference genome using bowtie2 (quality scores below 30 were discarded), resulting in 

2,554,639 contacts bridging 1,806,386 restriction fragments (Fig 1a) (see Methods for 

details on the experimental and computational steps). The resulting contact map in sparse 

matrix format was then used to initialize instaGRAAL along with the restriction fragments 

(RFs) of the reference genome (Fig 1a-b) (see Table S1 for an example of sparse file matrix). 



 

Fig. 1 : Matrix generation and binning process. 

(A) (from left to right): i) The input data to be processed, paired-end reads to be mapped 

onto the Ectocarpus. sp. draft assembly; ii) the raw contact map before binning, where 

each pixel is a contact count between two restriction fragments (RF); iii) the raw contact 

map after binning, here each pixel is a contact between a determined numbers of RFs 

(see B). (B) schematic description of one iteration of the binning process (from left to right): 

i) initialisation of the contact map, where each pixel is a contact count between two RFs; ii) 

filtering according to coverage, discarding RFs less covered than one standard deviation 

below the mean and RFs that are too short; iii) sum-pooling along all pixels in a 3x3 

square, grouping all RFs by three. 

 
 

Convergence of the assembly towards 27 major scaffolds 

In order to evaluate the program’s consistency, given the probabilistic nature of the 

algorithm, we ran it three times with different resolutions. Briefly, we filtered out RFs shorter 

than 50 bp and/or whose coverage was one standard deviation below the mean coverage. 



Then, we sum-pooled (or binned) the sparse matrix by groups (or bins) of three RFs five 

times, recursively (Fig 1a-b). Each recursive instance of the sum-pooling is subsequently 

referred to as a level of the contact map. A level determines the resolution at which 

permutations are being tested: the higher the level, the lower the resolution, the longer the 

sequences being permuted and, consequently, the faster the computation. The binning 

process is shown in Fig. 1b. Regarding Ectocarpus sp., we found that level four (bins of 81 

RFs) was an acceptable balance between high resolution and fast computation on a desktop 

computer with a GeForce GTX TITAN Z graphics card. Moreover, whether instaGRAAL was 

run at level four, five or six (equivalent to bins of 81, 243 and 729 RFs respectively), all 

assemblies quickly (~6hrs) converged towards similar genome structures (Fig. 2a). 

 

Fig. 2 : Evolution of the contact map, the parameters of the polymer model and the 

log-likelihood of the contact map.  



(A) The raw contact map before (upper part) and after (bottom part) scaffolding using 

instaGRAAL. (B) The evolution of three parameters of the polymer model (exponent, pre-

factor, mean trans-contacts) and the log-likelihood through the iterations. 

 
 

In order to assess whether an assembly converged, we plotted the evolution of the log-

likelihood, as well as the model parameters such as mean trans-scaffold contacts and the 

exponent of the power law used in the model that ceased to evolve (Fig. 2b). The 

interquartile ranges (IQR, used to indicate stability in Marie-Nelly et al., 2014) of all 

parameters decreased to near-zero values at the end of each scaffolding run, again 

indicating that the convergence was stable and that the final structures oscillated near the 

final values in negligible ways. More qualitatively, each run led to the formation of 27 main 

scaffolds (Fig. 2a) with the 27th largest scaffold being more than a hundred times longer than 

the 28th largest one (Fig. 3) (movie S1). Each of the 27 scaffolds was between four and ten 

times longer than the combined length of the remaining sequences (Fig. 3). This strongly 

suggests that these 27 scaffolds correspond to chromosomes, which is consistent with 

previous estimations based on karyotype analyses [26]. Taken together, these results 

indicated that instaGRAAL had successfully assembled the Ectocarpus genome into 

chromosome-level scaffolds. Notably, as the supplementary movie suggests, scaffold-level 

convergence is visible after a few cycles only, indicating that instaGRAAL is able to very 

quickly determine the global genome structure most likely to fit the contact map. The 

remainder of the cycles is devoted to intra-chromosome refining. 



 

Fig. 3: Size distribution (log scale) of the final scaffolds after 250 instaGRAAL 

iterations.  

After filtering, and prior polishing, 27 main scaffolds (red bars) or putative chromosomes 

were obtained. The dotted green horizontal line represents the proportion of the filtered 

genome that was not integrated into the main 27 scaffolds and represent less than 0.6% of 

the initial assembly. Each scaffold presents, after normalization, a high quality Hi-C profile 

with features that are typical of eukaryotic genomes (Figure S2c). 

 

Polishing the chromosome-level assembly 

As stated above, the instaGRAAL improvements include a number of procedures that aim 

at correcting modifications of the reference assembly contigs introduced during the Hi-C 

based scaffolding (Fig. 4). 

 



 

Fig. 4 : Step-by-step correction procedure. 

How the polishing procedure keeps track of contig bins (from top to bottom) : i) in silico 

digestion by the restriction enzyme and binning, yielding a set of bins; ii) reassembly of all 

fragments without reference to their contig of origin; typically, groups of bins from the same 

contig naturally aggregate, but some bins get scattered among other scaffolds; iii) 

reconstruction of the original contigs by relocating scattered bins next to the biggest bin 

group; iv) reorientation of bins within original contigs according to the concensus orientation. 

 

These modifications principally involve discrete inversions or insertions of DNA segments 

(typically corresponding to single bins or fragments) (see also Marie-Nelly et al. 2014). Such 

alterations are inherent to the statistical nature of instaGRAAL, which will occasionally 

improperly permute neighbouring bins because of the high density of contacts between 

them. These are part of a broader set of assembly errors (subsequently referred to as 

‘misassemblies’) that we detected by mapping the reference contigs, generated by 

instaGRAAL and analysing the mapping results using QUAST. We corrected misassemblies 

detected in this manner as follows: First, all bins processed by instaGRAAL that belonged 

to the same contig were constrained to their original orientation in that contig (Fig 4). If a 

contig was split across multiple scaffolds, the smaller parts of this contig were relocated to 

the largest one, respecting the original order and orientation of the bins. Then, we reinserted 



all the sequences that had been removed by filtering prior to running instaGRAAL (e.g. 

contig extremities with poor read coverage; see Methods and Marie-Nelly et al., 2014a) into 

the chromosome level scaffold at their original position within the contig of origin when such 

a position could be found. 

A total of 3,832,980 bp were reinserted into the assembly in this way. These simple steps 

alleviated the artificial contig truncation problem observed with the original GRAAL program. 

Some sequences had been filtered out but had no reliable neighbour that they could be 

associated with, because the entire initial scaffold they belonged to was filtered prior to 

assembling. These sequences were thus left as-is and appended at the end of the genome. 

These sequences represent 543 scaffolds spanning 3,141,370 bp, which is less than 2% of 

the genome. Together, these steps removed all the misassemblies that had been detected 

by QUAST (Table 1). 

 

Assembly 
Pseudochromosomes 

(bp) 
GRAAL instaGRAAL 

N50 6,528,661 6,867,074 6,813,345 

NG50 6,528,661 6,725,743 6,813,345 

N75 5,613,161 5,693,784 5,686,617 

NG75 5,613,161 5,672,622 5,686,617 

L50 12 11 11 

LG50 12 12 11 

L75 19 18 19 

LG75 19 19 19 

# genomic features 350,497 + 7,261 part 342,253 + 9,766 part 350,555 + 7,261 part 

Complete BUSCO (%) 76.9 76.24 77.56 

K-mer-based compl. (%) 99.97 98.53 100 

Table 1. Comparison of Nx, NGx (Nx with respect to the reference) stats and other genomics 



statistics for the different assemblies (Pseudochromosomes, GRAAL and instaGRAAL). 

 

In an effort to further improve and validate the assembly, we exploited genetic linkage data 

generated for a high density linkage map study to search for potential translocations 

between the extremities of the scaffolds [24]. This optional analysis, now implemented in 

instaGRAAL, detected many such events in the unpolished version, but none in the polished 

assembly. The polished instaGRAAL assembly is therefore fully consistent with the genetic 

recombination data, confirming the efficiency of the procedure. 

 

 

Comparisons with previous Ectocarpus genome assemblies and validation of the 

instaGRAAL assembly 

To further validate the polished instaGRAAL assembly (subsequently referred to as the 

polished assembly), a comparison was carried out with three earlier Ectocarpus genome 

assemblies (Table1 and Table S2): 1) the reference assembly, mentioned above, which is 

highly-accurate but highly fragmented (1,561 scaffolds) generated using Sanger sequencing 

data [20]; 2) an assembly generated by combining genetic recombination data and the 

Sanger assembly [19,24] (subsequently referred to as the pseudochromosome assembly) 

and 3) an assembly generated by running the original GRAAL program on the reference 

genome data (subsequently referred to as the GRAAL assembly). 

We aligned each assembly to the reference assembly to detect misassemblies and 

determine whether the genome annotations (362,919 features) were conserved. We then 

validated each assembly using genetic linkage data (see Methods). For each assembly, we 

assessed a variety of metrics, the most important being the number of misassemblies, the 

fraction of conserved annotations, ortholog completeness and cumulative length/Nx 



distributions (Table 1). These assessments were carried out using BUSCO [27] for ortholog 

completeness (Figure S1) and QUAST-LG’s validation pipeline [28] for the other tests. 

QUAST-LG is an updated version of the traditional QUAST pipeline specifically designed for 

large genomes. We follow the terminology used by both programs, including for example 

the BUSCO definition of ortholog and completeness, as well as QUAST's classification 

system of contig misassemblies, which correspond to strong discrepancies that necessitate 

a correction, and scaffold misassemblies, which correspond to breakpoints between contigs 

that can be presumably ignored since we explicitly want to correct them. The differences 

between metric values for the GRAAL assembly, generated without any manual correction, 

and the polished instaGRAAL assembly provided an estimate of the correctness gap and of 

the improvements made. 

The polished instaGRAAL assembly was of better quality than both the pseudochromosome 

assembly and the GRAAL assembly (Table 1 and Figure S1). The polished assembly 

incorporated 795 of the reference genome scaffolds (96.8% of the sequence data) into the 

27 chromosomes compared to 531 of the reference genome scaffolds (90.5% of the 

sequence data) for the pseudochromosomal assembly based on the high density genetic 

map [19]. Moreover, this assembly contained fewer misassemblies, retained more 

annotations and was more complete (both in terms of k-mers and BUSCO ortholog content). 

For some metrics the differences were marginal, but always in favour of the instaGRAAL 

assembly. BUSCO completeness was similar (76.2%, 76.9%, 77.6% for the GRAAL, 

pseudochromosomal and instaGRAAL assemblies, respectively, Figure S1), and an 

improvement over the 75.9% of the reference, but the absolute numbers were quite low, 

although this could be due to the lack of a set of orthologs that are well adapted to brown 

algae. All values for quantitative metrics such as N50, L50 and cumulative length distribution 

increased dramatically when compared with the reference genome (Table 1). N50 increased 



more than tenfold, from 496,777 bp to 6,867,074 bp following the initial scaffolding, and to 

6,942,903 bp after the polishing steps. Similarly, 99.4% of DNA sequence of the 1,018 

contigs was integrated into the 27 largest scaffolds after instaGRAAL processing. The 

GRAAL assembly had a large number of misassemblies compared to the reference genome 

but these were efficiently removed during the subsequent steps, which corrected all 1,334 

misassemblies and reinstated 8,302 genomic features, so that 357,754 of the 362,919 

annotations (99.96 %) were transferred from the reference genome to the final assembly 

(Table 1). It should be noted that scaffold misassemblies, i.e. discrepancies between contigs 

(as opposed to within contigs) from the reference assembly and those in the polished 

instaGRAAL assembly, may not necessarily represent errors in the latter for the simple 

reason that Hi-C scaffolding is usually carried out because the reference genome is thought 

to contain scaffolding assembly errors. Nevertheless, this analysis indicated that many of 

the rearrangements found in the pseudochromosome assembly were potentially errors, and 

that both GRAAL and instaGRAAL were more efficient at placing large regions where they 

belong in the genome, albeit less accurately in the case of GRAAL in the absence of 

polishing. These statistics underline the importance of the post-scaffolding polishing steps, 

and the usefulness of a program that automates these steps.  

 

Comparison between the Ectocarpus InstaGRAAL and pseudochromosomal 

assemblies 

Compared to the pseudochromosomal assembly, the instaGRAAL assembly lost 23 

scaffolds but gained 287 that the genetic map failed to anchor to the chromosomes (Table 

S2). We observed a very limited number of conflicts between the two assemblies. One major 

difference is that instaGRAAL was able to link the 4th and 28th pseudochromosomes which 

were considered to be separate in the genetic map [24]. The lack of detection of this link in 



the genetic map was likely due to the limited number of recombination events observed in 

the 80 lines used. The fusion in the instaGRAAL assembly is consistent with the fact that 

the 28th pseudochromosome is the smallest of the linkage groups, with only 54 markers over 

41.8 cM and covering 3.8 Mbp. Moreover, the 28th pseudochromosome had a very large 

gap, which might reflect uncertainty in the ordering of the markers. Interestingly, the gap is 

located at one end of the linkage group, precisely where instaGRAAL now detects a fusion 

with the 4th pseudochromosome. Furthermore, the fact that there is no mix between the 

scaffolds of the 4th and 28th pseudochromosome on the merged instaGRAAL chromosome 

but rather a simple concatenation, suggests that the genetic mapping process was simply 

unsuccessful in joining those two linkage groups and that instaGRAAL correctly assembled 

the two pseudochromosomes (see Table S3 for correspondences between 

psuedochromosomes and instaGRAAL super scaffolds). 

InstaGRAAL was more efficient than the genetic map in orientating scaffolds (Table S2). 

Among the scaffolds that could be oriented in the pseudochromosomal assembly, about half 

of the ‘plus’ orientated were actually ‘minus’ and vice versa. The overall limited number of 

markers detected in the scaffolds anchored to the genetic map was likely the reason for this 

high level of misorientation. 

 

Comparisons with existing methods 

To date, only a limited number of Hi-C based scaffolding programs have been made publicly 

available. To benchmark our algorithm, we ran SALSA2 [29] on the same Ectocarpus 

reference genome and Hi-C reads. SALSA2 is a recent program with a promising approach 

that directly integrates Hi-C weights into the assembly graph. The program ran for nine 

iterations and yielded 1,042 scaffolds, with an N50 of 6,552,506 (L50 = 11). Its BUSCO-

completeness was 77.6%, identical to instaGRAAL’s. Overall the metrics are satisfactory but 



still outperformed by instaGRAAL after polishing. Interestingly, the genome is more complete 

than the raw GRAAL output, underlining yet again the importance of polishing. The contact 

map of the resulting SALSA2 assembly, however, still showed noticeably unfinished 

scaffolds (Figure S3). This, coupled with a lower N50 value, indicates that instaGRAAL is 

more successful at merging scaffolds when appropriate. 

 

Discussion 

InstaGRAAL is a Hi-C scaffolding program that provides a solution for genome assembly 

projects involving Hi-C libraries. Below we discuss the improvements we have made to the 

program, its remaining limitations and the steps to tackle them when using instaGRAAL in a 

genome assembly project. 

 

Reference-based polishing 

Our main improvement relates to post-scaffolding polishing. A small number of assembly 

artefacts are expected to be generated initially as a consequence of the algorithm’s most 

erratic random walks. These defects mainly correspond to local inversions, or disruptive 

insertions of small scaffolds within bigger ones. These caveats are more prevalent than 

other kinds of noise because they result in only minor disruptions in terms of contact data: 

bin inversions do not markedly change the relative distance of their constituent fragments 

relative to their neighbours, and small scaffolds typically carry little signal due to their size 

and therefore have a greater variance in terms of acceptable positions. The prevalence of 

such assembly artefacts can be estimated by examining the orientation of bins relative to 

their neighbours. A single fragment that has been placed in the opposite orientation 

compared to all neighbouring fragments is likely to represent an error. Depending on the 

degree to which one trusts the initial reference contigs, one may be less willing to tolerate 



“partial translocations” created by instaGRAAL, whereby a contig is split across two 

different scaffolds creating a false breakpoint at a restriction site. The polishing procedures 

implemented here tackles these issues. Depending on how much one trusts the initial 

reference genome, one or more of the procedures may be applied. They aim at 

reconstructing the initial contig structure and orientation while preserving scaffold junctions 

when applicable. 

In addition to reorganizing the position and orientation of fragments within the assembly, 

fragments that are removed during the initial filtering process are reintegrated into the 

assembly using positional information (contig sequences) derived from the reference 

genome. For example, for a fragment corresponding to the end of a sequence contig, a 

specific polishing step, which we call tail filtering, reintegrates the fragment into the same 

contig based on the original structure of that contig in the reference assembly. Removal of 

small fragments corresponding to contig ends is the most common occurrence of fragment 

filtering because the size of these end fragments depends arbitrarily on the position of the 

restriction sites within the contig. Another common occurrence is repeated sequences that 

failed to be mapped in the first place. 

 

We believe that coupling of a probabilistic algorithm and deterministic polishing is what 

lends credence and robustness to our program; the MCMC method finds a high-likelihood 

family of genome structures, making few prior assumptions and allowing it to almost always 

find the correct global scaffolding. The polishing combines this result with prior assumptions 

made about the initial contig structure and refines the genome within each scaffold. In order 

to give the user a fine-grained degree of control over the polishing, the implementation itself 

is split into modules that each make an assumption about the initial contig structure 

necessary to perform the correction, e.g. the ‘reorient’ module assumes that the initial 



contigs do not have inversions, the ‘rearrange’ module assumes that there are no 

relocations within contigs, etc. 

 

Genetic map based polishing 

Genetic maps have been the traditionally go-to method for generating pseudo-

chromosomes until new technologies came along over the last decade. Although they 

provide a simple way of ordering contigs, they do not always achieve a one-to-one mapping 

between pseudomolecules and actual chromosomes. Moreover, the linkage desequilibrium 

(LD) data can be disrupted if a chromosome has unusual features such as an abnormally 

large non-recombining regions; large stretches can be thus unresolved. Hi-C maps are thus 

more suited for multi-scale scaffolding. Nevertheless, the insight genetic maps provide as 

to the ordering of different loci makes them a very good candidate for integration with Hi-C 

data. In line with our previous reasoning about the probabilistic nature of our algorithm and 

its need for in fine polishing, we believe that if conflicts arise between LD-based and 

contact-based orderings, the genetic map should be given precedence. On the other hand, 

if no such conflicts are found, our Hi-C based scaffolding is all the more strengthened. 

 

Sparse data handling 

The implementation of a sparse data storage method in instaGRAAL allows much more 

intense computation than with GRAAL. Because the majority of map regions are devoid of 

contacts, instaGRAAL essentially halves the order of magnitude of both algorithm 

complexity and memory load, i.e. they increase linearly with the size of the genome instead 

of geometrically. This improvement potentially allows the assembly of Gb-sized genomes in 

five to six days using a desktop computer (and faster with a larger computational resource). 

 



Filtering 

Coverage and GC distributions have been a long-standing limiting factor in Hi-C based 

scaffolding methods. Raw Hi-C data is not uniform in %GC content and read coverage 

across the genome and these variations are a problem when interpreting the data to 

generate Hi-C contact maps. Correction and attenuation procedures were developed some 

years ago to alleviate these biases ([30–32], but these are not compatible with instaGRAAL’s 

way of estimating the contact distribution (for more on this distribution, see [33]. Moreover, 

they do not handle the problem of fragments with no coverage, such as repeated sequences. 

A filtering step is therefore needed to remove short and/or low-coverage Hi-C RFs that are 

likely to disrupt the distribution estimation. Maintaining these RFs would not improve the 

accuracy of the scaffolding and poor or no filtering may lead to incorrect deduction of 

genome structure and chromosome number. Indeed, their small size or coverage results in 

a low-information vector with few contacts with the rest of the genome, while nevertheless 

influencing model parameter estimation. The remaining RFs provide a more robust 

foundation to compute and fit the contact distribution. In practice, we found that most of the 

RFs that were removed by the filtering were either entire small scaffolds that are very difficult 

to link to the rest of the genome, repeated sequences, or the extremities of larger scaffolds. 

The scaffold end fragments arise due to restriction sites sometimes occurring very near the 

ends of scaffolds. These disruptive RFs represent a negligible fraction of the total genome, 

as shown with our present example (< 3% of the total genome size). Importantly, scaffold 

extremities are incorporated back into the assembly as part of the polishing steps, since 

their origin is known. Small, isolated scaffolds, on the other hand, cannot be reinserted 

during the polishing steps as there are no neighbouring sequences in the assembly. Such 

scaffolds fail to be integrated in most assembly projects, and their integration remains an 



problem. Additional analyses, including the use of independent types of data such as long 

reads or linked reads, could be needed to integrate such scaffolds into the genome. 

 

Resolution 

The binning procedure will influence the structure of the final assembly as well as its quality. 

For example, low level binning (for instance one bin = three RFs) will lead to a large, sparse 

contact map with a low signal-to-noise ratio in which many of the bins have poor read 

coverage. This is because, on average, such bins have relatively few contacts beyond their 

immediate neighbours. As a result of the low signal-to-noise ratio, an invalid prior model will 

be generated and, when referring to this model, the algorithm will fail to scaffold RFs 

properly, if at all. Indeed, our attempts to assemble at high resolutions (low level binning) 

failed to converge in a timely manner. Moreover, due to its probabilistic nature, the algorithm 

will generate a number of false positive structural modifications such as erroneous local 

inversions or permutations of bins. These errors occur as a result of the multiple operations 

performed between each and every bin across the genome. The number of operations 

increases with the resolution, since the total number of bins increases geometrically when 

lower levels of the matrix are being used. In addition, the larger the number of bins, the more 

genome structure spatial dimensions are generated to handle all the potential combinations 

of bins. Exploring this space therefore takes longer, and converging toward a correct 

genome in a timely manner becomes difficult with reasonable computational resources. An 

optimal resolution ensures that the genome structure is consistent with the original contig 

structure, while allowing for flexibility at higher scales. We conjecture that a sufficiently 

powerful machine operating on an extremely contact-rich matrix would be more successful 

at any level. However, it is unclear whether such resources are necessary when our present 

assembly demonstrated that good quality metrics can be obtained after a day’s worth of 



calculations on a standard desktop computer. Moreover, as noted previously, convergence 

was qualitatively evident after a few cycles. This suggests that more computational power 

yields diminishing returns, and therefore that appropriate polishing is a more efficient 

approach to correct any remaining misassemblies.  

 

Lingering missassemblies 

We should stress that all these assemblies still contain errors. Thanks to validation tools, 

we know that our final genome is the most gene-complete and has no discrepancy with the 

initial reference or the genetic map, making it the highest quality available assembly for 

Ectocarpus sp. Nevertheless, it is still imperfect due to the limitation of our reference 

material and the technologies used. If the reference contigs themselves are faulty, or the 

genetic map itself proves inaccurate, polishing may be faulty as well, and this will be 

reflected in the final assembly. However, renouncing any kind of polishing exposes the 

assembly to the same problems encountered by the original GRAAL software. This is why 

the polishing library is broken down into several procedures described in the 

implementation and documentation. Indeed, suggestions of potential missassemblies can 

be found in the final contact map, with the presence of extraneous signal (so-called 

‘speckles’) outside the typical distribution; it is, however, non-trival to estimate how they 

should be corrected if they are indeed misassemblies. Consequently, we have chosen to 

remain entirely faithful to the reference contigs, given that our stats still show the best 

improvements and the speckles are few and far between. 

 

Fragmentation 

The fragmentation of the starting assembly used to generate the initial contact map has 

obviously a substantial effect on the quality of the final scaffolding. Because binning cannot 



be performed beyond the resolution of individual contigs, however small they may be, there 

is a fixed upper limit to the a scale at which a given matrix can be binned. A highly 

fragmented genome with many small contigs will necessarily generate a high-noise, high-

resolution matrix. Attempts to reassemble a genome based on such a matrix will run into 

the problems discussed above (resolution). This limitation can be alleviated, to some 

extent, by discarding the smallest scaffolds, assuming the remainder covers enough of the 

initial genome. The contigs that are removed can then be then reintegrated into the 

assembly during the polishing steps. This ensures an improved Nx metric while retaining 

genome completeness. It should be noted, however, that the size of the contigs is only 

important insofar as they need to contain sufficient restriction sites, and each of the 

restriction fragments must have sufficient coverage. The choice of enzyme and the 

frequency of its corresponding site is thus crucial. For instance, with an average of one 

restriction site every 600 to 1,000 bp for DpnII, contigs as short as 10 kb may contain 

enough information to be correctly reassembled. The restriction map therefore strongly 

influences both the minimum limit on N50 and genome fragmentation. 

 

Integrating information from the Hi-C analysis with other types of data 

Aggregating data from multiple sources to construct a high-quality assembly remains a 

challenging problem with no systematic solution. As long read technologies become more 

widespread, there is increasing demand to reconcile the scaffolding capabilities of 3C-

based methods with the ability of long reads to span regions that are difficult to assemble, 

such as repeated sequences. The most intuitive approach would be to perform Hi-C 

scaffolding on an assembly derived from high-coverage and corrected long reads, as was 

done for several previous assembly projects [14,34]. Alternative approaches also exist, 

such as generating Hi-C and long-read-based assemblies separately and merging them 



using programs such as CAMSA (Aganezov et al., 2017) or Metassembler (Wences et al., 

2015). Lastly, pipelines such as PBJelly (English et al., 2012) have proven successful at 

filling existing gaps in draft genomes, regardless of origin, with the help of long reads. Our 

scaffolder shows that high quality metrics can still be attained without the help of long reads, 

but it can nevertheless integrate them when necessary or available. 

Long reads are not the only type of data that may be used to improve assemblies. Linkage 

maps, RNA-seq, optical mapping and 10X technology all provide independent data sources 

that can help improve genome structure and polish specific regions. The success of future 

assembly projects will hinge on the ability to process these various types of data in a 

seamless and efficient manner. 

 

Methods 

Preparation of the Hi-C libraries 

The Hi-C library construction protocol was adapted from [7,35]. Briefly, partheno-sporophyte 

material was chemically cross-linked for one hour at RT using formaldehyde (final 

concentration: 3% in 1X PBS; final volume: 30 ml). The formaldehyde was then quenched 

for 20 min at RT by adding 10 ml of 2.5 M glycine. The cells were recovered by centrifugation 

and stored at -80°C until use. The Hi-C library was then prepared as follow. Cells were 

resuspended in 1.2 mL of 1X DpnII buffer (NEB), transferred to a VK05 tubes (Precellys) 

and disrupted using the Precellys apparatus and the following program ([20 sec – 6000 rpm, 

30 sec – pause] 9x cycles). The lysate was recovered (around 1.2 mL) and transferred to 

two 1.5 mL tubes. SDS was added to a final concentration of 0.3% and the 2 reactions were 

incubated at 65°C for 20 minutes followed by an incubation of 30 minutes at 37°C. A volume 

of 50 µL of 20% triton-X100 was added to each tube and incubation was continued for 30 

minutes. DpnII restriction enzyme (150 units) was added to each tube and the reactions 



were incubated overnight at 37°C. Next morning, reactions were centrifuged at 16,000 x g 

for 20 minutes. The supernantants were discarded and the pellets were resuspended in 200 

µL of NE2 1X buffer and pooled (final volume = 400 µL). DNA extremities were labelled with 

biotin using the following mix (50 µL NE2 10X buffer, 37.5 µL 0.4 mM dCTP-14-biotin, 4.5 

µL 10mM dATP-dGTP-dTTP mix, 10 µL Klenow 5 U/µL) and an incubation of 45 minutes at 

37°C. The labelling reaction was then split in two for the ligation reaction (ligation buffer – 

1.6 mL, ATP 100 mM – 160 µL, BSA 10 mg/mL – 160 µL, ligase 5 U/µL – 50 µL, H2O – 13.8 

mL). The ligation reactions were incubated for 4 hours at 16°C. After addition of 200 µL of 

10%, SDS 200 µL of 500 mM EDTA and 200 µL of proteinase K 20 mg/mL, the tubes were 

incubated overnight at 65°C. DNA was then extracted, purified and processed for 

sequencing as previously described (Lazar-Stefanita et al., 2017). Hi-C libraries were 

sequenced on a NextSeq 550 apparatus (2 × 75 bp, paired-end Illumina NextSeq with the 

first ten bases acting as barcodes; Marbouty et al., 2014).  

 

Contact map generation 

Contact maps were generated from reads using the hicstuff pipeline for processing generic 

3C data, available at https://github.com/koszullab/hicstuff. The backend uses the bowtie2 

(version 2.2.5) aligner run in paired-end mode (with the following options: --maxins 5 –very-

sensitive-local). Alignments with mapping quality lower than 30 were discarded. The output 

was in the form of a sparse matrix where each fragment of every chromosome was given 

an unique identifier and every pair of fragments was given a contact count if it was nonzero. 

Fragments were then filtered based on their size and total coverage. First, fragments shorter 

than fifty base pairs were discarded. Then, fragments whose coverage was less than one 

standard deviation below the mean of the global coverage distribution were removed from 

the initial contact map. A total of 6,974,350 bp of sequence was removed this way. An initial 



contact distribution based on a simplified a polymer model [25] with three parameters was 

first computed for this matrix. Finally, the instaGRAAL algorithm was run using the resulting 

matrix and distribution.  

For the Ectocarpus sp. genome, instaGRAAL was run at level 4 (n = 81 RFs), 5 (n = 243 

RFs) and 6 (n = 729 RFs). Levels 5 and 6 were only used to check for genome stability and 

consistency in the final chromosome count. Level 4 was used for all subsequent analyses. 

All runs were performed for 250 cycles. The starting fragments for the analysis were the 

reference genome entirely fragmented into restriction fragments. The MCMC was run with 

3 burn-in cycles. 

 

Polishing of genome assemblies 

The assembled genome generated by instaGRAAL was polished to remove misassemblies 

using a number of simple procedures that aimed to reinstate the local structure of the initial 

contigs where possible. Briefly, bins belonging to the same initial contig were juxtaposed in 

the same relative positions as in the starting assembly contig. Small groups of bins were 

preferentially moved to the location of larger groups when several such groups were present 

in the assembly. The orientations of sets of bins that had been regrouped in this manner 

were modified so that orientation was consistent and matched that of the majority of the 

group, re-orientating minority bins when necessary. Both steps are illustrated in Fig. 4. 

Finally, fragments that had been removed during the filtering steps were reincorporated if 

they had been adjacent to an already integrated bin in the initial assembly. The remaining 

sequences that could not be reintegrated this way were appended as non-integrated 

scaffolds. 

 

Validation metrics 



Initial and final assembly metrics (Nx, GC distribution) were obtained using QUAST-LG [28]. 

Misassemblies were quantified using QUAST-LG with the minimap2 aligner in the back-end. 

Ortholog completeness was computed with BUSCO (v3) [27]. Assembly completeness was 

also assessed with BUSCO. The evolution of genome metrics between cycles was obtained 

using instaGRAAL’s own implementation. 

 

Validation with the genetic map 

The validation procedure with respect to linkage data was implemented as part of 

instaGRAAL. Briefly, the script considers a set of pseudochromosomes where regions are 

separated by SNP markers, and a set of Hi-C scaffolds where regions are bins separated 

by restriction sites. It then finds best-matching pairs of pseudochromosomes/scaffolds by 

counting how many of these regions overlap from one set to the other. Then, for each pair, 

the bins in the Hi-C scaffold are rearranged so that their order is consistent with that of the 

corresponding pseudochromosome. Such rearrangements are parsimonious and try to alter 

as little as possible. Since there isn’t a one-to-one mapping from restriction sites to SNP 

markers, some regions in the Hi-C scaffolds are not present in the pseudochromosomes, in 

which case they are left unchanged. When the Hi-C scaffolds are altered this way, as was 

found in the case of the raw GRAAL assembly, the script acts as a correction. When the 

scaffolds are unchanged, as was the case with the instaGRAAL assembly, the script acts as 

a validation. 

 

Software tool requirements 

The instaGRAAL software is written in Python 3 and uses CUDA for the computationally 

intensive parts. It requires a working installation of CUDA with the pycuda library. CUDA is 

a proprietary parallel computing framework developed by NVIDIA, and as such requires an 



NVIDIA graphics card. The scaffolder also requires a number of common scientific Python 

libraries specified in its documentation. 

 

List of abbreviations 

RF: Restriction fragment 

MCMC: Markov Chain Monte Carlo 

LD: Linkage desiquilibrium 

IQR: Inter-quartile range 

3C: chromosome conformation capture 

GRAAL: genome (re)assembly assessing likelihood from 3D 
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id_frag_a id_frag_b n_contact 
0 0 1368 

0 1 21 

0 2 7 

0 3 3 

0 4 5 

0 7 5 

0 8 1 

0 9 1 

0 12 2 

0 15 1 

0 22 1 

0 23 1 

0 26 1 

0 27 1 

0 33 2 

0 36 2 

0 37 1 

0 51 1 

0 69 1 

0 74 2 

0 76 1 

0 97 1 

0 99 1 

0 107 1 

 
 

Table S1: example of a sparse matrix. 
 
 
  



 

  
Reference 
genome 

Pseudochromosomal 
assembly 

instaGRAAL 
assembly 

Scaffolds integrated into 
pseudochromosomes (out of 1561) 

325 531 793 

Percent sequence data Integrated 
into pseudochromosomes 

70.10 % 90.50 % 96.80 % 

Integrated oriented scafflolds in the 
(pseudo)chromosomes 

12 % 49 % 100 % 

Number of (pseudo)chromosomes 34 28 27 

 

Table S2: comparison of the integrated sequences between the different assemblies and 

the reference genome. 

 

  



instaGRAAL Pseudochromosomal assembly 

1 1 

2 21 

3 4 and 28 

4 5 

5 13 

6 6 

7 12 

8 7 

9 27 

10 26 

11 3 

12 2 

13 8 

14 14 

15 10 

16 11 

17 19 

18 16 

19 9 

20 15 

21 18 

22 20 

23 24 

24 23 

25 17 

26 25 

27 22 

 

Table S3: correspondences between instaGRAAL super scaffolds and 

pseudochromosomes. 

 



 
 
Figure S1: estimates of BUSCO-completeness for the three assemblies and the reference 

genome. 

 

  



 



Figure S2: Normalized contact map of Ectocarpus chromosomes 1 to 16 (left) and 17 to 

31 (right). 

  

Contact maps are binned in 200 Kb. The colour scale represents the normalized interaction 

frequencies as in Fig 5. Percentage of gene sequence (blue) or transposable elements (TE 

– orange) are indicated under each contact matrix. Putative centromere sequences 

(rectangle) were called with centroid.  



 

Figure S3: Contact map of the SALSA2 scaffolding. Large signal discrepancies have been 

marked. Smaller discrepancies are comparable to those obtained with instaGRAAL. 

 

 
 



3 Genome assembly and uncovering intra-species genome dynamics

3.2 Assembling and detecting chromosomal rearrangements
After presenting our framework for Hi-C based scaffolding and its direct implementation,
we present two use cases for investigating chromosome dynamics as revealed by joint
assemblies:

• The first subsection concerns our published work on two lineages of Trichoderma
reesei (QM6A and RUTC30). We successfully scaffolded both, yielding high qual-
ity chromosome-level assemblies. With that information, we identify a large-scale
rearrangement.

• The second subsection concerns our main results on two lineages of Cataglyphis
hispanica. Likewise, we scaffolded both genomes and revealed a chromosomal fu-
sion. Work is still ongoing on the annotation of both assemblies and linking our
newly acquired structural information to functional mechanisms underlying the
peculiar hybridogenetic reproduction strategy of that species.

3.2.1 Rearrangements between two lineages of Trichoderma reesei
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Abstract 

Background: The presence of low complexity and repeated regions in genomes often results in difficulties to assem-

ble sequencing data into full chromosomes. However, the availability of full genome scaffolds is essential to several 

investigations, regarding for instance the evolution of entire clades, the analysis of chromosome rearrangements, 

and is pivotal to sexual crossing studies. In non-conventional but industrially relevant model organisms, such as the 

ascomycete Trichoderma reesei, a complete genome assembly is seldom available.

Results: The chromosome scaffolds of T. reesei QM6a and Rut-C30 strains have been generated using a contact 

genomic/proximity ligation genomic approach. The original reference assembly, encompassing dozens of scaffolds, 

was reorganized into two sets of seven chromosomes. Chromosomal contact data also allowed to characterize 

10–40 kb, gene-free, AT-rich (76%) regions corresponding to the T. reesei centromeres. Large chromosomal rear-

rangements (LCR) in Rut-C30 were then characterized, in agreement with former studies, and the position of LCR 

breakpoints used to assess the likely chromosome structure of other T. reesei strains [QM9414, CBS999.97 (1-1, re), and 

QM9978]. In agreement with published results, we predict that the numerous chromosome rearrangements found in 

highly mutated industrial strains may limit the efficiency of sexual reproduction for their improvement.

Conclusions: The GRAAL program allowed us to generate the karyotype of the Rut-C30 strain, and from there to 

predict chromosome structure for most T. reesei strains for which sequence is available. This method that exploits 

proximity ligation sequencing approach is a fast, cheap, and straightforward way to characterize both chromosome 

structure and centromere sequences and is likely to represent a popular convenient alternative to expensive and 

work-intensive resequencing projects.
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Background
Trichoderma reesei is one of the main industrial enzyme 

producers [1]. This Ascomycota naturally produces a full 

set of lignocellulosic biomass degrading enzymes, and 

carries high stakes for the food, textile, and bioenergy 

industries. Over the years, the enzyme production has 

been boosted through cycles of random mutageneses, 

with highly performing strains secreting up to 100 g L−1 

of the natural enzyme mix [2]. T. reesei is also increas-

ingly used as a versatile heterologous protein producer [3, 

4]. In contrast to its industrial interest, the genetic tools 

available in T. reesei have developed at a slower pace than 

in other model filamentous fungi such as Neurospora 

crassa partly because of the small research community 
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sometimes constrained by industrial confidentiality 

imperatives. In addition, until recently [5], neither sexual 

crossings nor any annotated karyotype were available for 

this fungus.

Trichoderma reesei, described from a single wild-type 

isolate called QM6a, was believed to be devoid of a sexual 

cycle, whereas its teleomorph, Hypocrea jecorina, under-

goes an heterothallic sexual cycle involving MAT1-1 and 

MAT1-2 loci [6]. The identification of a MAT1-2 locus in 

the QM6a followed by a sexual crossing with a natural 

isolate of a MAT1-1 type resulted in fertilized stromata 

and mature ascospores [5]. QM6a and its derivatives (of 

which QM9414, NG14, Rut-C30 [7]) are female sterile 

but male fertile and could nevertheless be crossed with 

a MAT1-1 natural isolate acting as female partner, pav-

ing the way to the development of sexual crossing tools 

to generate genetic diversity, genetic cleanup, and strain 

improvement. Several groups have since built on this 

original finding by characterizing the receptor/phero-

mone system [8], uncovering the causes for female steril-

ity [9] and studying meiosis [10] in this species. The latter 

study have demonstrated the biotechnological interest of 

crossings different industrial strains but also underlined 

their limits by pointing at the presence of segmental ane-

uploidies and chromosome rearrangements resulting in 

non-viable ascospores.

Chromosomal rearrangements in mutagenized T. ree-

sei strains have been first described in the nineties [11, 

12]. The karyotypes of industrial strains descending 

from the parental QM6a strain by several rounds of ran-

dom mutagenesis displayed massive rearrangements, as 

revealed by pulse-field gel electrophoresis (PFGE). How-

ever, the relatively low resolution of the PFGE technique 

for chromosomes of similar sizes led to discrepancies 

between the original studies, and the precise karyotypes 

of the strains remained elusive. Years later, the draft 

sequence of the QM6a strain genome was released as 

a set of 89 scaffolds [13]. Subsequent efforts to obtain 

genomic wide information of other strains of the same 

lineage used either genome walking [14], oligonucleotide 

arrays [15], or short-reads sequencing platform [16–19] 

but did not improve the assembly. Even though the posi-

tions of chromosomal breakpoints were identified for 

several derivative strains [15], the impact on the chromo-

somal structure was difficult to assess because of the lack 

of a complete assembly. In addition, centromeres and 

telomeres positions remained unknown, as these regions 

are typically difficult to sequence and assemble because 

of their low complexity and, for centromeres, the lack of 

universal conserved sequence patterns. However, reach-

ing at a full genome scaffolds remains an important goal 

for these model fungi [20]. In the case of T. reesei, getting 

the sequence and exact position of centromeres would 

provide invaluable information for the emerging sexual 

crossing field in this species. More broadly, information 

on centromeres in filamentous fungi remains sparse, and 

these sequences would bring interesting highlights onto 

their evolution and metabolism [21].

Using chromosome conformation capture data (3C; or 

also dubbed proximity ligation data) [22] and the home-

made program GRAAL (Genome Re-Assembly Assess-

ing Likelihood from 3D), our groups recently published 

the first proximity ligation scaffolding of an incomplete 

eukaryotic genome sequence. The 89 scaffolds of the T. 

reesei QM6a strain were re-scaffolded into seven chro-

mosomes [23, 24]. In addition, the “Rabl” structure of 

chromosomes in fungi nuclei, where centromeres are 

clustered together at the microtubule organization center 

(spindle pole body in yeast), generates contacts enrich-

ment between these sequences. When quantified, we also 

showed that the signal resulting from these 3D contacts 

allows the identification of centromere positions [25]. 

Although the QM6a contact map displayed such sig-

nal, we did not at the time characterize precisely these 

sequences. The published sequence from this past work 

was not thoroughly integrated within the JGI reference 

genome database, though it was nevertheless exploited in 

independent analyses by others [26].

Here, we provide an updated version of the QM6a 

chromosome scaffolding using an extra polishing step 

after GRAAL output. GRAAL is a scaffolding pipeline 

that processes pre-assembled contigs; as a result, the 

resulting assembly displays the same sequence as in the 

original genome. We also exploited the 3C contact map 

to identify the position and sequences of the QM6a 

centromeres [25], providing insight about T. reesei cen-

tromeres. The same pipeline was applied to the QM6a-

derived strain Rut-C30, resulting in a genome scaffold 

in perfect agreement with previously identified chromo-

somal rearrangements between the two genomes [14, 15]. 

This result prompts us to put forward predictive karyo-

types for several other T. reesei strains and to discuss the 

impact of such karyotypes on the emergence of segmen-

tal aneuploidy during crossing experiments [10].

Results
Improved QM6a chromosome assembly

The T. reesei QM6a genome was scaffolded into super-

scaffolds using the reference assembly from Martinez 

et  al. [13] and the chromosome contact reads from 

Marie-Nelly et al. [23]. Scaffolding was performed using 

the latest version of GRAAL [27] run for 100 iterations. 

The scaffolding remains nearly identical to the one pub-

lished previously, with seven superscaffolds matching the 

seven chromosomes [23]. Again, a fraction (0.5%) of the 

original assembly was not included in the superscaffolds, 
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as a result of low 3C sequencing coverage (lack of restric-

tion sites and/or highly divergent GC content could 

account for such low coverage).

Because the resolution of the GRAAL scaffolding is lim-

ited by the distribution of restriction sites along the chro-

mosome and the read coverage, a manual curation was 

necessary to complete the assembly. This step includes 

reinserting missing scaffold fragments, checking telomere 

repeats’ orientations, and slightly shifting split locations 

to remain consistent with the presence of N gaps in the 

reference genome (see “Methods”). The resulting QM6a 

GRAAL scaffolding is fully consistent with the JGI ref-

erence genome, containing exactly the same sequences 

than original scaffolds. 65 scaffolds, comprising 99.5% of 

the genome, were scaffolded along seven chromosomes 

(Fig.  1). 22 scaffolds, representing 0.5% of the genome, 

were either too small (not enough restriction sites along 

their sequences) or insufficiently covered (not enough 

reads during 3C library sequencing) to be scaffolded 

within the chromosomes. We did not sequence the gaps 

between reassembled scaffolds, and instead 100 Ns were 

intercalated between scaffolds as a marker of GRAAL 

scaffolding position. Additional sequencing work would 

therefore be required to reach a final fully continuous 

genomic sequence. In a simultaneous and independ-

ent study from Ting-Fang Wang’s team, a QM6a rese-

quencing was performed (Wan-Chen Li et  al. personnel 

communication). We agreed on the chromosome nomen-

clature (order by decreasing size, numbering with Roman 

numerals, and orientation with left arm shorter than right 

arm) so as our works are consistent.

Most scaffolds from the reference genome remained 

intact in the reassembly (in gray Fig. 1b). However, four 

scaffolds (1, 2, 5, and 28) were misassembled in the ref-

erence genome and were split by GRAAL into several 

segments in the new scaffolding (Fig. 1b) [23]. The split 

location of scaffold 28 and its reassembly with scaf-

folds 27 and 36 is consistent with deep sequencing of 

the CBS999.97 (1-2, wt) strain, whose genome is similar 

to QM6a [10]. We previously suggested that a fragment 

of scaffold_9 (≈1020–1045  kb) containing the riboso-

mal DNA units was duplicated on chromosome VI [23]. 

However, we were not able to determine the precise 

number of copies (probably three or four) and the exact 

sequence to assemble these copies, and we preferred to 

leave the exact sequence of scaffold_9 as in the JGI refer-

ence genome. Therefore, chromosome VI is in fact longer 

than chromosome VII (Wan-Chen Li et  al. personnel 

communication).

Table  1 shows statistics on chromosome sizes, num-

ber of genes, and gene densities. Gene density in T. 

reesei is much more uniform than suggested [26], rang-

ing from 0.26 to 0.28 genes per kb. Additional files 1, 2, 

3, contain details on this reassembly (scaffold assembly, 

final sequence, gene annotation).

Centromere locations

Fungi chromosome organization typically follows a 

“Rabl” pattern, with the centromeres colocalizing at the 

microtubule organizing center. For instance, the strong 

trans contact signal between centromeres of Saccharo-

myces cerevisiae reflects this organization, resulting in 

discrete dots over the contact map of this species [28]. 

We have previously shown that centromere–centromere 

3D contacts can be used to infer the positions of these 

regions along the 1D sequence [25]. The bright dots 

clearly visible in the contact map of the T. reesei QM6a 

0 1 2 3 4 5 6 7
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4(+) 
55(?) 

21(-) 
43(-) 

12(-) 7(-) s5a(-) 

25(+) 10(-) 8(+) 

34(-) 

26(+) 14(-) 23(-) 27(-) 

2a(-) 
2c(-) 40(+) 

13(+) 
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1a(+) 18(+) 

11(-) 6(-) 

15(+) 1b(-) 22(+) 9(-) 
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29(-) 
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a

b

Fig. 1 T. reesei scaffold reassembly in seven chromosomes. T. reesei 

scaffolds from the JGI reference genome have been reassembled 

using chromosomal conformation capture (3C) sequencing data. a 

Contact matrix resulting from GRAAL reassembly. Red bars indicate 

the boundaries of the seven chromosome; centromere positions are 

represented by blue dots. b Order and orientation of the reassembled 

scaffolds in the seven chromosomes. Orientation uncertainties are 

noted with a question mark. Scaffolds 1, 2, 5, and 28 that were misas-

sembled in the reference genome are shown in green, blue, orange, 

and red, respectively. Centromere positions are represented by blue 

dots
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genome unveiled a clear Rabl organization (Fig.  1a), 

pointing at the centromeric regions in this species, and 

allowing us to identify their positions along the seven 

chromosomes (Table  2). These centromere signatures 

pointed at a set of 11 small scaffolds ranging in size from 

11 to 43 kb (total length of 270 kb). Three of them (57, 58, 

and 65) could not be assigned to specific chromosomes 

(they are part of the 22 unassembled scaffolds), but the 

eight others were scaffolded within six of the seven chro-

mosomes. For chromosome III, the centromere signature 

was found at the frontier between scaffolds 2 and 40, but 

we were not able to identify which centromere scaffold 

among scaffolds 57, 58, or 65, should be reassembled at 

this place. The centromeres of chromosome I, VI, and VII 

are metacentric, whereas the four others (chromosomes 

II to V) are submetacentric, with the longer (right) arm 

of the chromosome roughly twice as long as the shorter 

(left) arm.

AT content in centromeres

The average AT content of these centromere scaffolds is 

76%, a much higher value than the average AT genomic 

content (48% [13]), and consistent with other fungal cen-

tromeres [21]. We checked whether this high AT con-

tent was specific to centromeres or telomeres by looking 

for AT-rich regions (%AT >65% and length >4 kb) in the 

whole genome. In addition to the 270  kb centromere 

scaffolds, 776 kb AT-rich regions were identified over the 

genome (98  kb at telomeres; 604  kb split over 72 intra-

chromosomal regions; 74  kb in 12 unassembled scaf-

folds). Most AT-rich regions were positioned at the end 

of scaffolds, which may explain the previous assembly 

failures.

Genes in and around centromeres

Seventeen genes were annotated in these 11 scaffolds but 

all seems to be dubious Coding DNA Sequences (CDS) 

with many or very large introns, and their products are 

all annotated as putative proteins of unknown function. 

Using previously generated RNA-Seq data ([29] and 

Pirayre et al. to be published), we checked for transcrip-

tion in these centromere scaffolds and we did not observe 

any transcription event. So it seems that most probably 

no gene is present on these scaffolds involved in T. ree-

sei centromeres. Function enrichment analysis in close 

proximity to the centromeres (in a 50-kb window around 

centromeres) revealed significant enrichments in genes 

involved in nucleosome assembly (5 genes annotated 

with the GO term GO:0006334) and in genes linked to 

the respiratory chain (15 genes in the metabolic path-

ways of coenzyme Q biosynthesis, adenosine ribonucleo-

tides de novo biosynthesis, and respiration). We can only 

make assumptions on the significance of this finding, but 

Table 1 Size (bp) , number of genes, and gene density (nb 

of genes per kb) of T. reesei QM6a chromosomes

Gene annotation was based on the JGI Filtered Models set of genes

Genetic element Size Number of genes Gene density

Chromosome I 6,647,935 1817 0.27

Chromosome II 5,980,447 1701 0.28

Chromosome III 5,112,650 1336 0.26

Chromosome IV 4,337,413 1162 0.27

Chromosome V 3,979,336 1092 0.27

Chromosome VI 3,567,305 983 0.28

Chromosome VII 3,660,386 1022 0.28

Unassembled scaffolds 163,868 16

Total 33,449,340 9129

Table 2 T. reesei QM6a centromeres

Chromosomal contact data were used to identify the location of the centromeres on the chromosomes. Centromeres were all identified in small scaffolds, not in the 

middle of well-assembled scaffolds

Chr Location on chr (Mb) Between scaffolds Scaffolds involved Size (kb) %AT Nb of genes (gene IDs)

Scaffolds with centromere signature reassembled in chromosomes

 chr I 3.12 21(−) and 4(+) 55 34 77.9 4 (112,674, 112,675, 112,676, 112,677)

 chr II 1.93 10(−) and 8(+) 66 + 59 30 70.0 3 (71,146, 43,199, 42,942)

 chr III 1.71 40(+) and 2a(−) Unknown

 chr IV 1.48 17(+) and 20(−) 56 32 74.2 2 (112,678, 112,679)

 chr V 1.12 18(+) and 28a(−) 60 + 61 32 77.0 1 (112,683)

 chr VI 1.67 37(+) and 39(+) 51 43 76.3 2 (112,649, 73,103)

 chr VII 1.73 16(−) and 3(−) 52 41 76.7 1 (112,651)

Other scaffolds with centromere signature but not reassembled

57 26 76.6 0

58 21 78.7 3 (112,680, 112,681, 112,682)

65 13 81.7 1 (112,689)
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it could be that their presence in a zone of pericentric 

repression of crossover is a sign of their importance for 

the organism robustness and fitness [30]. Interestingly, 

the CenH3 (centromere-specific histone H3) encod-

ing gene 57870 (orthologue of N. crassa NCU00145 and 

S. cerevisiae CSE4) was found on chromosome I at only 

30  kb from the centromere (0.5% of the chromosome 

length). This feature is not conserved in other species, for 

example, Schizosaccharomyces pombe Cnp1 is found at 

1.93 Mb from the centromere [31].

Inverted repeats

Although aware that centromeres were not fully assem-

bled, we checked their sequences for homologies or 

repeats. We did not observe any sequence homol-

ogy between centromere regions, which is consistent 

with the now accepted finding that most centromeres 

are epigenetically and not genetically maintained [32]. 

Remarkably, in four cases [scaffolds 51 (chr. VI), 56 (chr. 

IV), 57 and 58], we observed an inverted repeat struc-

ture with a central core region of 1–2 kb surrounded by 

an inverted repeat of 2.5–5 kb, which is quite similar to 

the centromere structure of S. pombe [31, 33, 34], Can-

dida albicans [35], Candida tropicalis [36], and Komaga-

taella phaffii (formerly Pichia pastoris) [37]. Details on 

this observation are available on Additional file  4 but a 

complete study on T. reesei centromeres structure would 

require a full assembly, and chromatin immunoprecipita-

tion sequencing experiments.

Rut‑C30 chromosome assembly

In order to get a chromosomal map of T. reesei Rut-

C30, a 3C library of the Rut-C30 strain was generated, 

sequenced, and the resulting reads exploited to rescaf-

fold the QM6a genome. Although a genomic sequence 

was available for T. reesei Rut-C30 strain [17], the JGI 

reference sequence of T. reesei QM6a strain was used to 

demonstrate that the approach could be applicable to any 

other non-sequenced strain, even if significant chromo-

somal rearrangements are expected.

GRAAL identified three chromosomal translocations 

and one large deletion (Table 3) present in Rut-C30 com-

pared to the QM6a, in agreement with previous work 

[14, 15]. By design, and as stated before, GRAAL iden-

tifies rearrangement events with a precision limited by 

the sequencing coverage and the restriction pattern of 

the region (in this case, a couple of dozens of kb; “Meth-

ods”). Besides the rearrangements listed in Table  3, the 

two genome assemblies of Rut-C30 and QM6a were 

compared and did not present major differences: the 

reordering of the scaffolds not involved in chromosomal 

rearrangements (including the splitting of the misassem-

bled scaffolds 1, 2, 5, and 28), as well as centromere posi-

tions, were fully consistent between the two assemblies 

(the Rut-C30 reassembly is available in Additional file 5). 

The fully scaffolded genomes of these two strains can 

then be compared in an attempt to have a better under-

standing of the evolutionary trajectories of the evolved 

Rut-C30 genome (Fig.  2). Different scenarios are possi-

ble from QM6a to Rut-C30, depending on the order of 

occurrence of the three translocation events, leading to 

the same chromosome structure. One possible scenario 

is shown Fig. 2c.

The three translocations resulted finally in the right 

arm of chromosome I (3′ end of scaffold 48 and main 

fragment of scaffold 5: 1.63 Mb and 442 genes in total), 

to be swapped with the right arm of chromosome I (3′ 

end of scaffold 22: 402 kb and 114 genes). But also in two 

fragments of chromosome I (one with a fragment of scaf-

fold 4, and the other one with another fragment of scaf-

fold 4, scaffold 49, and a small fragment of scaffold 48) 

to be inserted head to foot in the middle of the chromo-

some V (1.13  Mb and 310 genes in total for both frag-

ments). Therefore, the whole sequence of chromosome 

III is still found on chromosome III. The 85 kb deletion 

is closed to the telomeric region of chromosome VI and 

Table 3 Translocation and large deletion events found in GRAAL reassembly of T. reesei Rut-C30 with respect to QM6a

Newly acquired 3C-seq data of T. reesei Rut-C30 strain were used to reassemble the reference genome. Comparison with QM6a reassembly allowed the identification 

of three chromosomal translocations and one large deletion. The position of these rearrangements is consistent with former work [14, 15]

Translocation Location on scaffolds (this study) Location on scaffolds [15] Mapping on QM6a chromosomes

n° 1 scaffold_2: 556 ± 22 kb scaffold_2: 546,703 bp chr III: 3,166,447

scaffold_4: 1,197 ± 25 kb scaffold_4: 1,204,862 bp chr I: 4,342,096

n° 2 scaffold_4: 750 ± 27 kb scaffold_4: 748,277 bp chr I: 3,885,511

scaffold_22: 138 ± 31 kb scaffold_22: 139,515 bp chr VI: 3,165,364

n° 3 scaffold_22: 138 ± 31 kb scaffold_22: 139,476 bp chr VI: 3,165,325

scaffold_48: 0 ± 35 kb scaffold_48: 1667 bp chr I: 5,018,020

Large deletion Location on scaffold (this study) Location on scaffold [14] Mapping on QM6a chromosome

85-kb deletion scaffold_15: 0–85 ± 25 kb scaffold_15: 1,555–86,603 chr VI: 52,198–137,246
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therefore one of its flanking is an AT-rich region as pre-

viously described [14]. Except for the breakpoint chr I: 

5,018,020 localized inside an AT-rich region, the %GC in 

a 1-kb window around the breakpoints displayed a simi-

lar or higher level than in the genome. The four events 

listed in Table 3 for Rut-C30 strain were already present 

in its ancestor NG14 [14, 15], so the chromosome struc-

ture of NG14 strain is most likely identical to Rut-C30 

chromosome structure (Fig. 2b). The chromosomal rear-

rangements identified previously by the CGH array stud 

[15] and a genomics analysis [17] are in line with the con-

tact map results obtained in this study. So it should be 

possible to reconstitute the karyotypes of other T. reesei 

strains for which this kind of information is available.

Inferring the chromosome structure of other T. reesei 

strains

We then confronted the QM6a chromosome struc-

ture with translocation events characterized in other T. 

reesei strains to reconstitute their expected karyotypes. 

Table 4 shows translocation breakpoints for the QM9414, 

QM9123 [15], CBS 999.97(1-1, re) [10], and QM9978 

(Ivanova et al. to be published) strains, and their mapping 

on QM6a chromosomes. For each strain, the possible 

chromosome structure was assessed from these trans-

location events (Fig. 3). In QM9414 strain (Fig. 3b), two 

translocations involved chromosomes I, II, and VI, with 

among others, one fragment of chromosome II and one 

fragment of the VI being translocated onto chromosome 

I. In QM9978 (Fig.  3c), a reciprocal translocation event 

involved chromosomes V and VII, with the chromosome 

V breakpoint positioned 1.6 kb upstream the gene 54675 

that encodes for the transcription factor VIB1. This rear-

rangement, by modifying the transcription of this gene, 

is responsible of the cellulase-negative phenotype of this 

strain (Ivanova et al. to be published). Finally, the trans-

location event in the diploid strain CBS 999.97 involved 

chromosomes II and IV, and resulted in the isolation of 
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Fig. 2 Chromosome maps of T. reesei QM6a and Rut-C30 strains. Chromosome maps of T. reesei QM6a (a) and Rut-C30 and NG14 (b) strains were 

identified by reassembly of the JGI reference genome using 3C sequencing data for each strain. For Rut-C30 map, the colors of chromosome frag-

ments are consistent with their colors in QM6a map to clearly show chromosomal rearrangements. Some emblematic genes were chosen along the 

sequence to be used as location markers (list available in Additional file 6). The Rut-C30 85 kb deletion event on chr. VI is shown by the lack of pks1 

gene. Centromere locations are shown by restricted width. c Possible scenario (among others) from QM6a to Rut-C30. Translocations are numbered 

according to Table 3
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Table 4 Translocation breakpoints of various T. reesei strains genomes

Translocation breakpoints were mapped on the superscaffolds generated by GRAAL

Translocation breakpoints Location on QM6a  
scaffolds [15]

Mapping on QM6a 
chromosomes

QM9414 & QM9123 n°1 scaffold_4: 1,190,139 chr I: 4,327,373

scaffold_14: 118,472 chr II: 4,693,330

n°2 scaffold_9: 787,779 chr VI: 2,237,971

scaffold_27: 140,159 chr II: 5,788,998

CBS 999.97 (1-1, re) Resulting in D-segment scaffold_36: 54,323 chr II: 5,441,472

Resulting in L-segment scaffold_33: 33,249 chr IV: 4,304,165

QM9978 n°1 scaffold_1: 96,633 chr V: 1,604,851

scaffold_16: 631,551 chr VII: 1,076,804
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Fig. 3 Genealogy and likely chromosome structure of various T. reesei strains. Translocation breakpoints (Table 4) and QM6a chromosome assembly 

(Fig. 2) were used to infer the likely chromosome structure of various T. reesei strains. Chromosome fragment colors and marker genes are consist-

ent to QM6a map (Fig. 2: chromosome maps of T. reesei QM6a and Rut-C30 strains). a Genealogy of T. reesei strains. b Likely chromosome map of 

QM9414 and QM9123. c Likely chromosome map of QM9978. d Likely chromosome map of CBS999.97 (1-1, re)
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haploid strains either of WT or recombinant (re) karyo-

types (Fig. 3d) [10].

Essentiality of the chromosomes fragments

When crossing CBS999.97 (1-1, re) with either CBS999.97 

(1-2, wt) or QM6a, Chuang et al. showed that L-segment 

aneuploidy (containing 11 genes in our reassembly) is not 

lethal but results in a “white spore” phenotype because of 

the loss of the polyketide synthase 4 gene (tpks4, gene ID 

82208) located on this segment [10]. On the other hand, 

loss of the D-segment (containing 167 genes in our reas-

sembly) is not viable, most probably because essential 

genes are present on this segment. For each of the trans-

locations listed in Tables 3 and 4, we computed the length 

and number of genes of the resulting chromosome frag-

ments, from the breakpoint to the telomere (or to the next 

breakpoint in the case of QM9414 chromosome II and 

Rut-C30 chromosome I) (Table  5). Then we looked for 

essential genes in each of these chromosome fragments to 

verify whether their loss will be lethal or not.

In QM9414 strain, the fragment of chromosome II 

which has been translocated to chromosome VI contains 

only 63 genes, in which the ribosomal protein RPS24 

(gene ID 81713) has been shown to be essential for 40S 

ribosomal subunit assembly in HeLa cells [38]. In Rut-

C30 strain, the fragment of chromosome VI which has 

been translocated on chromosome I contains 114 genes, 

among which the acetyl-CoA carboxylase (geneID 81110) 

is presumably essential (its orthologue cut6 is essential in 

S. pombe [39]). All other chromosome fragments listed 

on Table 5 contain at least 290 genes. Assuming 18.7% of 

essential genes as in S. cerevisiae [40], the probability that 

these fragments do not contain an essential gene is below 

 10−26. Therefore, the only translocated fragment which is 

not essential is the small previously described CBS999.97 

(1-1, re) L-segment [10].

Inferring lethal segmental aneuploidy in F1 progenies

Using the chromosome maps described in Figs. 2 and 3, 

we typically enumerated the possible chromosome struc-

tures in the F1 progeny for different crossing experiments 

(already described or not) involving as MAT1-1 part-

ner either CBS999.97 (1-1, re) [10] or a QM6a MAT1-1 

strain with restored female fertility [9] and checked for 

each structure whether it contains lethal segmental aneu-

ploidy or not. An example of the enumeration is given on 

Fig.  4 for a MAT1-1 female fertile QM6a strain crossed 

with Rut-C30 strain, and the results for other crossings 

are shown in Table 6.

When crossing CBS999.97 (1-1, re) with industrial 

strains QM9414 and Rut-C30, Chuang et  al. observed 

much more meiotic lethality (asci with no or only four 

viable ascopores) than when crossing with QM6a. Our 

theoretical results are consistent with their experimental 

results: while enumerating the viable chromosome struc-

tures, we observed that whereas 75% of the possible chro-

mosome structures are viable when crossing CBS999.97 

(1-1, re) with QM6a, only 25–28% are viable when cross-

ing with QM9414 or Rut-C30, respectively (Table 6). For 

Table 5 Statistics on chromosome fragments

For each of the breakpoint described in Tables 3 and 4, the size and number 

of genes of the resulting chromosome fragment (from the breakpoint to the 

telomere or to the next breakpoint) were calculated. The only dispensable 

fragment is the L-segment described in CBS999.97 (1-1, re) [10]

Strain Chromosome Fragment 
size (kb)

Nb of genes

CBS 999.97  
(1-1, re)

chr II => chr IV 
(D-segment)

539 167 genes

chr IV => chr II 
(L-segment)

33 11 genes

QM9414 &  
QM9123

chr I => chr II 2321 634 genes

chr II => chr I 1096 322 genes

chr II => chr VI 192 63 genes

chr VI => chr I 1329 369 genes

QM9978 chr V => chr VII 2374 644 genes

chr VII => chr V 1077 290 genes

Rut-C30 chr I => chr III 1133 309 genes

chr I => chr VI 1630 442 genes

chr III => chr III 1976 485 genes

chr VI => chr I 402 114 genes

Chromosome structure     Diploidy Aneuploidy Viability Type

Ø Ø viable
QM6a parental type

IQM IIIQM VIQM

lethal
Non-parental type

IQM IIIQM VIRut

Ø viable
Non-parental type

IQM IIIRut VIQM

lethal
Non-parental type

IQM IIIRut VIRut

lethal
Non-parental type

IRut IIIQM VIQM

Ø lethal
Non-parental type

IRut IIIQM VIRut

lethal
Non-parental type

IRut IIIRut VIQM

Ø Ø viable
Rut-C30 parental type

IRut IIIRut VIRut

Fig. 4 Possible chromosome structures in F1 progeny resulting from 

a crossing between a MAT1-1 female fertile QM6a strain and Rut-C30 

strain. Using the chromosome structure of QM6a and Rut-C30 strains, 

we enumerated the possible chromosome structures in F1 progeny 

(only chromosomes I, III, and VI are shown here with colors consistent 

to Fig. 3c). For each possible structure, the fragmental diploidy or ane-

uploidy is shown. Since the chromosome fragments contain essential 

genes, segmental aneuploidy results in inviable progeny
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the not yet described crossings involving a MAT1-1 female 

fertile QM6a strain, we similarly noticed that only 25 and 

38% of the possible structures are viable when crossing 

with QM9414 and Rut-C30, respectively (Table 6). When 

crossing with Rut-C30, only one non-parental chromo-

some structure is viable (Fig.  4). When crossing with 

QM9414, the only possible chromosome structures are 

the two parental structures (Table  6). Using CBS999.97 

(1-1, re), Chuang et al. had suggested that crossing should 

be used cautiously to improve industrial strains [10]. Our 

analysis shows that this is not due to the specific chromo-

some structure of this strain: using QM6a as a MAT1-1 

partner for crossing with industrials strains will result in 

almost the same meiotic lethality.

Discussion
Chromosome assembly

Chromosome contact data resulting from the sequencing 

of 3C/Hi-C libraries represent powerful information to 

improve or complete genome scaffolding [23]. Genome 

reassembly algorithms like GRAAL are based on polymer 

physics principles, and as such, give trustworthy, statis-

tically sound, information about the relative position of 

each pair of fragments along each chromosome sequence, 

even when the fragments’ regions are separated by gaps 

which had failed to be sequenced and assembled previ-

ously. In that regard, this pipeline based on contact data 

outperforms current deep sequencing when trying to 

prove that two sequences are neighboring. For instance, 

GRAAL successfully integrated 63 pairs of such scaffold 

fragments into the QM6A reassembly which had failed 

to be assembled during the initial sequencing. Moreo-

ver, it was able to identify six misassemblies in the ini-

tial genome. Here, we showed that GRAAL was able to 

reassemble the Rut-C30 chromosomes using the QM6a 

sequence as a reference, and to correctly identify the 

six breakpoint locations specific to Rut-C30 (in addition 

to the misassemblies commonly found in QM6a). The 

pipeline can therefore identify a chromosome structure 

even when its sequence is not precisely known or when 

numerous chromosomal rearrangements occur. It could 

be applied with great potential to other strains, e.g., 

ones resulting from sexual crossing, without the need 

to get a sequence of these strains beforehand. Because 

the Rut-C30 contact map reflects the average genome 

organization of this strain (independently of the QM6a 

chromosome structure since only the reference scaf-

folds were used), the data could also be used for a more 

in-depth investigation of variations in the chromosomal 

contacts/interactions pattern between the two strains. 

However, since GRAAL is a reassembly pipeline, it does 

not give new information about the sequence in itself, so 

additional sequencing or computational work is required 

to fill-in the gaps between reassembled scaffolds. Misas-

semblies or translocation breakpoints are here identified 

with a  ≈10  kb precision, which is sufficient here given 

the precise breakpoints have already been sequenced. In 

the case of a new strain, a chromosome walking iterative 

alignment of 3C-seq reads on the sequence should prob-

ably allow the identification of translocation breakpoints 

with the same base-pair precision.

Centromere location and composition

Centromeres are defined as “chromosomal elements that 

are both necessary and sufficient for chromosome segre-

gation” [32]. These regions display a remarkable diversity 

in size and structure, ranging from the so-called point 

125-bp centromeres in S. cerevisiae to several megabases 

Table 6 Analyses of possible chromosome structures for different crossing experiments

The first three cases have already been experimentally described [10]. The next 3, involving a MAT1-1 female fertile (ff) QM6a strain, have not yet been described. We 

assumed that crossing-over were possible but not in translocated parts

Crossing experiment Nb ≠ chr Total possible 
structures

Non‑
viable

Viable Possible viable structures different 
from parental ones

CBS999.97 (1-1, re) × CBS999.97 (1-2, wt) 
or × QM6a

2 22 = 4 1 3 (75%) 1 structure with chr II fragment (D-segment) 
diploidy

CBS999.97 (1-1, re) × QM9414 4 24 = 16 12 4 (25%) 1 structure with chr II fragment diploidy

1 structure with chr II fragment diploidy and 
chr VI fragment diploidy

CBS999.97 (1-1, re) × Rut-C30 5 25 = 32 23 9 (28%) 1 haploid with QM6a structure,

1 crossed-haploid,

4 structures with 1 chr fragment diploidy,

1 structure with 2 chr fragment diploidy

QM6a (MAT1-1, ff ) × QM6a 0 1 0 1 (100%) None

QM6a (MAT1-1, ff ) × QM9414 3 23 = 8 6 2 (25%) None

QM6a (MAT1-1, ff ) × Rut-C30 3 23 = 8 5 3 (38%) 1 structure with chr I fragment diploidy
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sequence of satellite DNA in plants and animals. Fungal 

centromeres typically range from 30 to 450  kb in size. 

While the point centromeres sequences seem sufficient 

to provide centromeric function, bigger centromeres 

seem to be defined epigenetically. The lack of sequence 

consensus even between centromeres of the same organ-

ism, and the low complexity of these AT-rich sequences 

have made identification and sequencing of centromeres 

challenging. The discovery of the centromeric histone 

CenH3 as the landmark of centromere regions has made 

chromatin immunoprecipitation the method of choice to 

functionally distinguish centromeric regions from other 

low complexity repeated regions. Here, the “Rabl” pattern 

of chromosomal structure in T. reesei observed in our 

previous work [23] prompted us to take advantage of the 

physical proximity between centromeres in this specific 

spatial chromosome organization for the identification of 

their location along the sequence [25]. The chromosomal 

contact data are therefore a functional proof of the cen-

tromeric nature of these sequences. As expected, the cen-

tromeric regions we determined were nearly devoid of 

coding sequences [21].

Interestingly, we observed in four centromeric regions 

(scaffolds 51, 56, 57, 58) a 7- to 10-kb long inverted repeat 

regions, reminiscent of inverted repeats organization 

found in yeasts C. albicans, C. tropicalis, K. phaffii, or S. 

pombe [31, 33–37]. To our knowledge, such an organiza-

tion has not been described in filamentous fungi, as most 

data come from the study of N. crassa, whose centro-

meric region are 150–300 kb long and consist in degen-

erate transposon sequences. This raises the question of 

whether at least some centromeres in Trichoderma are 

sequence- or at least inverted repeat-defined, as recently 

hypothesized for C. tropicalis [37] and not only epigenet-

ically defined. Such observation could have an influence 

on efforts to develop a plasmid transformation system in 

this fungus. Apparently, these large inverted repeat fea-

tures are not unique to Trichoderma, as we were able to 

make similar observations in Fusarium graminearum 

by analyzing the latest genome sequence [41] (see Addi-

tional file 4).

Importance of chromosome structure for analyses 

of crossing experiment

Knowing QM6a karyotype and chromosome transloca-

tions in some of its derivatives, we were able to predict 

the karyotypes of other T. reesei strains, from three lin-

eages different from the NG14/Rut-C30 lineage, and to 

infer the possible chromosome structure in the F1 prog-

eny for different crossing experiments involving these 

strains. Doing so, we managed to explain the higher mei-

otic lethality observed by Chuang et  al. when crossing 

CBS999.97 (1-1,re) with industrial strains QM9414 and 

Rut-C30 compared to crossing with the natural isolate 

QM6a [10]. Chromosomal rearrangements resulted in 

chromosome structures which are not completely com-

patible any more in the two parents, producing lethal 

segmental aneuploidy in F1 progeny and conversely 

producing viable F1 progeny with a limited diversity in 

chromosome structure. This will obviously result in a 

limited diversity of sequence in the viable F1 progeny, 

since translocated fragments will undergo much less 

crossing-over, if any, than other parts of the genome. This 

imbalance may be an issue for genetics analysis-based 

experiments like bulk segregant analysis and for indus-

trial strains improvement.

Conclusions
In this work, we exploited chromosome contact data and 

the program GRAAL to both complete the assembly/

scaffolding of the T. reesei reference genome, and iden-

tify its centromeres positions. That the method is robust 

was supported by performing the same analysis on the 

Rut-C30 strain, a derivative of the reference strain, which 

confirmed both centromeres identification and previ-

ously identified chromosome translocations in this strain. 

Finally, given chromosomal translocations occurred in 

different strain lineages of this fungus, we illustrated the 

importance of our data by showing predicted karyotypes 

of several strains and predicted consequences on cross-

ing experiments between strains. The recent possibilities 

offered by strain crossings in T. reesei will possibly make 

such data and similar analyses essential in future indus-

trial fungal research.

Methods
Strain and cultures

Trichoderma reesei Rut-C30 (strain ATCC 56765) strain 

was cultured in bioreactor as described previously [29].

Construction of 3C libraries

For T. reesei QM6a, the construction of 3C library has 

already been described previously [23]. For Rut-C30 

strain, the 3C library was constructed following exactly 

the same protocol and restriction enzyme (DpnII).

GRAAL assembly

Genome (Re)Assembly Assessing Likelihood from 3D 

(GRAAL) is an algorithm which uses chromosome 

conformation capture (3C) data to rescaffold contigs 

and improve genome assembly [23]. Briefly, the origi-

nal genome is first split into bins containing the same 

number of restriction fragments (a restriction fragment 

is a genome region between two restriction sites of the 

enzyme used for the 3C library construction), then the 

reads from the 3C library are mapped onto these bins 
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so as to compute an initial contact matrix, each entry 

therein representing the contact frequency between each 

bin pair and bins being ordered along the initial genome 

assembly. This matrix shows contact discrepancies 

since the original genome is not fully assembled. Finally, 

GRAAL reorders the bins so as to get the most likely 

matrix based on what contact frequency distribution is 

expected from chromosomes according to a standard 

polymer physics model [42]. The T. reesei QM6a chromo-

some sequence we previously published is an example of 

the raw output from the algorithm.

Manual corrections

Several GRAAL computations were performed with dif-

ferent bin sizes to assess the assembly’s robustness. Then 

manual corrections were performed to go beyond the 

limitations of GRAAL and other reassembly programs. 

Since scaffolds were split into bins with the same num-

ber of restriction fragments, scaffold ends were too small 

(sequencing coverage too low) to be included in the 

computation, so were lost in the raw output sequence. 

We manually added them so as to get the entire scaf-

folds in the reassembly. When a scaffold is misassem-

bled in the original genome, GRAAL is able to find the 

splitting location at an accuracy depending on the size of 

bins involved in the splitting (around 10–50 kb depend-

ing on the definition of the bins, and on the location of 

the restriction sites). We checked the sequence around 

the splits and most of the time we noticed nearby the 

presence of ≈1 kb NNN sequences, so we manually cor-

rected the split location to be consistent with this gap 

location. Reassembly programs like GRAAL easily reor-

der bins using contact data, but they may fail in finding 

the correct bin orientation, so many bins were switched 

(by comparison with the neighboring bins from the same 

original scaffold) in the raw output sequence. We manu-

ally corrected them to get the scaffolds as in the original 

assembly without switching bins. However, some scaf-

folds were too small to get a reliable orientation, in this 

case, we arbitrarily chose the forward direction for the 

sequence available in Additional file  2. Seven telomere 

repeats were identified in the original sequence [13] 

and six of them were assembled in the chromosomes, as 

noticed previously [26] although they were not at chro-

mosome ends in the raw output sequence. We checked 

their presence at chromosome ends, and used them three 

times to identify the correct bin directions (for scaffold 

45, 46, and 64 in chromosomes III, V, and IV, respec-

tively). As for scaffold 31 on chromosome VI, we deleted 

7 kb at the 3′ end because they were duplications of the 

telomere sequence. Around 20–30 bins (<4% of the total 

number of bins) had not been reassembled because their 

signature in the contact matrix was not strong enough for 

GRAAL. We manually checked the contact matrix and 

reassembled these bins in the final sequence depending 

on their contact signature (telomere, centromere, stand-

ard). Finally, the gene annotation from the JGI (gtf file for 

the Filtered Models set of genes, [43]) was mapped to the 

reassembled sequence in order to get the coordinates of 

the 9129 genes on the chromosomes.

Centromere positions

Centromere positions along the chromosomes have been 

manually identified using the contact data (see Addi-

tional file  7 for raw data contact frequencies over the 

entire genome). Because of their Rabl organization, cen-

tromeres have stronger interaction with each other than 

with their neighboring sequences.

Gene enrichment analysis

To calculate the enrichment in genes close to the cen-

tromeres, we used the gene annotations (GO terms and 

EC numbers) from the JGI [43] and from the FungiPath 

database [44–46], and performed the enrichment analy-

sis with the Pathway Tools software [47]. A 50-kb win-

dow was defined around the centromeres, which resulted 

in a set of 238 genes (2.6% of the genome).
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T. reesei  QM6a reassembly

65 scaffolds from the JGI reference genome (33.3Mb - 99.5% of the genome) have been reassembled in 7 chromosomes, as follows :

CHR I

start end direction

7 full 1 1 429 972 -1

12 full 1 1 022 062 -1

43 full 1 74 996 -1

21 full 1 576 034 -1

55 full 1 33 670 ? centromere - direction uncertainty

4 full 1 1 832 615 1

49 full 1 46 304  -1? direction uncertainty

48 full 1 48 367 1

5 fragment 1 1 583 115 -1 split location identified by Ns gap

size : 6 647 935 (with 100bp Ns spacers between each scaffold)

CHR II

start end direction

31 fragment 1 224 034 -1 telomere repeats (4 duplications of the telomere sequence have been deleted, 7kb)

41 full 1 80 626 -1

25 full 1 439 677 1

68 full 1 10 734 1

10 full 1 1 156 739 -1

66 full 1 11 200 ? centromere - direction and order uncertainty

59 full 1 18 517 ? centromere - direction and order uncertainty

8 full 1 1 408 331 1

34 full 1 166 473 -1

26 full 1 433 400 1

14 full 1 861 070 -1

23 full 1 512 080 -1

54 full 1 34 758 1? direction uncertainty

36 full 1 136 855 -1

27 full 1 433 262 -1

28 fragment 367 024 407 093 ? split location identified by Ns gap - direction uncertainty

67 full 1 11 021 1? direction uncertainty

size : 5 980 447 (with 100bp Ns spacers between each scaffold)

CHR III

start end direction

45 full 1 65 952 -1 telomere repeats OK

69 full 1 10 696 ? direction uncertainty

35 full 1 152 537 1

32 full 1 230 370 -1

11 full 1 1 155 933 -1

40 full 1 89 857 1

centromere position (no centromere scaffold reliable assembled)

2 fragment 154 748 2 007 204 -1 split location uncertainty (154 748 was chosen here after alignment with fragment 1-98434)

2 fragment 1 98 434 -1 split location identified by Ns gap

6 full 1 1 455 714 -1 telomere repeats OK

size : 5 112 650 (with 100bp Ns spacers between each scaffold)

CHR IV

start end direction

64 full 1 14 482 1 telomere repeats

19 full 1 663 018 -1

17 full 1 797 352 1

56 full 1 32 194 ? centromere - direction uncertainty

20 full 1 629 213 -1

1 fragment 2 981 735 3 756 989 1 split location identified by Ns gap

5 fragment 1 584 116 1 729 360 1 split location identified by Ns gap

13 full 1 891 309 -1

2 fragment 99 435 154 747 -1 split location uncertainty (around 152 to 158 kb, 154747 chosen after alignment of the 2 other fragments)

38 full 1 125 035 -1

33 full 1 207 997 -1

size : 4 337 413 (with 100bp Ns spacers between each scaffold)

CHR V

start end direction

46 full 1 62 252 1 telomere repeats

30 full 1 247 268 1

42 full 1 78 584 1

53 full 1 36 593 1

18 full 1 685 578 1

61 full 1 15 406  -1? centromere - direction and order uncertainty

60 full 1 15 714  1? centromere - direction and order uncertainty

28 fragment 1 366 023 -1 split location identified by Ns gap

1 fragment 1 2 471 118 1 telomere repeats - split location identified by Ns gap and presence of telomere repeats

size : 3 979 336 (with 100bp Ns spacers between each scaffold)

scaffold

scaffold

scaffold

scaffold

scaffold



CHR VI

start end direction remarks

47 full 1 50 543  -1? direction uncertainty

15 full 1 837 556 1

44 full 1 66 247 -1

62 full 1 15 337  -1? direction uncertainty

1 fragment 2 471 169 2 980 271 -1 split location identified by Ns gap and presence of telomere repeats on the other side

50 full 1 45 663 -1

37 full 1 132 540 1

51 full 1 43 169 ? centromere - direction uncertainty

39 full 1 105 148 1

9 full 1 1 219 543 -1

22 full 1 541 456 1

size : 3 567 305 (with 100bp Ns spacers between each scaffold)

CHR VII

start end direction

29 full 1 382 182 -1

24 full 1 501 049 -1

16 full 1 824 923 -1

52 full 1 41 083 ? centromere - direction uncertainty

3 full 1 1 910 749 -1

size : 3 660 386 (with 100bp Ns spacers between each scaffold)

>scaffold_57

start end direction

57 full 1 25 756 1 centromere signature but not reliably assembled

>scaffold_58

start end direction

58 full 1 21 040 1 centromere signature but not reliably assembled

>scaffold_63

start end direction

63 full 1 14 539 1

>scaffold_65

start end direction

65 full 1 12 580 1 centromere signature but not reliably assembled

>scaffold_70

start end direction

70 full 1 8 513 1

>scaffold_71

scaffold start end direction

71 full 1 6 846 1

>scaffold_72

start end direction

72 full 1 6 811 1

>scaffold_73

start end direction

73 full 1 6 421 1

>scaffold_74

start end direction

74 full 1 5 890 1

>scaffold_75

scaffold start end direction

75 full 1 5 683 1

>scaffold_76

start end direction

76 full 1 5 459 1

>scaffold_77

start end direction

77 full 1 5 371 1

>scaffold_78

start end direction

78 full 1 5 154 1

>scaffold_79

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold



start end direction

79 full 1 4 691 1

>scaffold_80

start end direction

80 full 1 4 619 1

>scaffold_81

start end direction

81 full 1 4 614 1

>scaffold_82

start end direction

82 full 1 4 370 1

>scaffold_83

start end direction

83 full 1 3 796 1

>scaffold_84

start end direction

84 full 1 3 468 1

>scaffold_85

start end direction

85 full 1 3 089 1

>scaffold_86

start end direction

86 full 1 3 000 1

>scaffold_87

start end direction

87 full 1 2 158 1

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold



Additional file 4 : identification of inverted repeats in T. reesei and F. 

graminearum centromeres 

 

In 4 cases (scaffolds 51 (chr I), 56 (chr IV), 57 and 58), we observed in centromere scaffolds an inverted 

repeat structure with a central core region of 1 to 2 kb surrounded by an inverted repeat of 2.5 to 5 kb 

(Figure S2A). This structure seems quite similar to the centromere structure of S. pombe [1–3], Candida 

tropicalis [4] and Komagataella phaffii (formerly Pichia partoris) [5] (Figure S2B). 

We annotated these sequences “mid” for the central cores and , “LR” for the left repeat, and “RR” for the 

right repeat, consistently with C. tropicalis and K. phaffii [4, 5], followed by the chromosome or scaffold 

number (Figure S2A below). The LR4 and RR4 sequences of the inverted repeat of chr IV centromere 

(scaffold 56) share 92% identity on 4kb without any gaps. In the 3 other cases, the LR and RR sequences 

share ≈58% identity but with large gaps (identity reaches 84 to 92% while excluding gaps). 

While these observations could result from a misassembly of these AT-rich regions, they suggest that 

centromere structure in Trichoderma is significantly different from what is described in Neurospora and 

other filamentous fungi  [6], and share some similarities with structures observed in Taphrinomycotina and 

Saccharomycetales. 

Moreover, using the latest Fusarium graminearum genome release [7], we observed undescribed similar 

inverted repeats in the centromeres of F. graminearum chromosomes 1 and 2 (Figure S2B). 

 

 
Figure S2A: Inverted repeats found on centromere-involved scaffolds 

Four similar structures with a central core (mid) region surrounded by an inverted repat (LR and RR) sequences were identified on 4 

scaffolds involved in T. reesei centromeres ( scaffold 56 in chr IV centromere, scaffold 51 in chr VI centromere, and scaffolds 57 and 

58 with centromere signature but not assembled). 

 

 



Figure S2B: Sequence alignment of centromeres on themselves 

Core centromere sequences (containing LR, mid and RR sequences) have been aligned against themselves using the LASTZ software 

[8, 9] with default parameters, in order to show the inverted repeats. This figure includes the 4 sequences from T. reesei, and 

arbitrary chosen sequences from S. pombe, K. phafii, C. tropicalis and F. graminearum. 

Strain and location Sequence alignment on itself using LASTZ 

T. reesei CEN4 

 

9,130 bp 

 

Scaffold_56:19,652-

28,781 

 

 
T. reesei CEN6 

 

7,287 bp 

 

Scaffold_51:8,571-

15,857 

 
T. reesei CEN57 

 

10,548 bp 

 

Scaffold_57:4,556-

15,103 

 



T. reesei CEN58 

 

6,812 bp 

 

Scaffold_58:8,532-

15,343 

 
Schizosaccharomyces 

pombe CEN2 

 

41,139 bp 

 

Chromosome II: 

1,602,264-1,6447,747 

 
Komagataella phaffii 

(Pichia pastoris) CEN2 

 

6,655 bp 

 

Chromosome 2 

(FR839629.1): 

843,845-850,499 

 
Candida tropicalis 

CEN5 

 

10b113 bp 

 

Supercontig3.5 

(GG692399.1): 

718,785-728,897 

 

 



Fusarium 

graminearum CEN1 

 

9,818 bp 

 

Chromosome 1: 

8,976,756-8,986,573 

 
Fusarium 

graminearum CEN2 

 

11,796 bp 

 

Chr2: 

3,288,357-3,330,152 

 

 

References 

1. Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, et al. The genome sequence of 

Schizosaccharomyces pombe. Nature 2002;415:871–80. doi:10.1038/nature724. 

2. Nakaseko Y, Adachi Y, Funahashi S-i, Niwa O, Yanagida M. Chromosome walking shows a highly 

homologous repetitive sequence present in all the centromere regions of fission yeast. The EMBO 

Journal 1986;5:1011–21. 

3. Fishel B, Amstutz H, Baum M, Carbon J, Clarke L. Structural organization and functional analysis of 

centromeric DNA in the fission yeast Schizosaccharomyces pombe. Molecular and Cellular Biology 

1988;8:754–63. 

4. Chatterjee G, Sankaranarayanan SR, Guin K, Thattikota Y, Padmanabhan S, Siddharthan R, Sanyal K. 

Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast 

Candida tropicalis. PLoS Genet 2016;12:e1005839. doi:10.1371/journal.pgen.1005839. 

5. Coughlan AY, Hanson SJ, Byrne KP, Wolfe KH. Centromeres of the Yeast Komagataella phaffii (Pichia 

pastoris) Have a Simple Inverted-Repeat Structure. Genome Biology and Evolution 2016;8:2482–92. 

doi:10.1093/gbe/evw178. 

6. Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M. Centromeres of filamentous fungi. 

Chromosome Research 2012;20:635–56. doi:10.1007/s10577-012-9290-3. 



7. King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE. The completed genome 

sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics 2015;16:1–21. 

doi:10.1186/s12864-015-1756-1. 

8. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, et al. Human–Mouse Alignments with 

BLASTZ. Genome Research 2003;13:103–7. doi:10.1101/gr.809403. 

9. Harris RS. Improved pairwise alignment of genomic DNA [PhD thesis]: Pennsylvania State University; 

2007. 



Additional file 5

T. reesei  Rut-C30 reassembly (based on genome sequence from T. reesei  QM6a)

65 scaffolds from the JGI reference genome (33.3Mb - 99.5% of the genome) have been reassembled in 7 chromosomes, as follows :

CHR I

start end direction comment

7 full 1 1 429 972 -1

12 full 1 1 022 062 -1

43 full 1 74 996 -1

21 full 1 576 034 -1

55 full 1 33 670 ? centromere (consistent with QM6a)

4 translocation 1 748 277 1 manual correction according to (Vitikainen et al. 2010)

22 translocation 139 515 541 456 1

size : 4 287 553 (with 100bp Ns spacers between each scaffold)

CHR II

start end direction comment

31 fragment 1 224 034 -1 split location corrected as in QM6a reassembly

41 full 1 80 626 -1

25 full 1 439 677 1

68 full 1 10 734 1

10 full 1 1 156 739 -1

66 full 1 11 200 ? centromere (consistent with QM6a)

59 full 1 18 517 ? centromere (consistent with QM6a)

8 full 1 1 408 331 1

34 full 1 166 473 -1

26 full 1 433 400 1

14 full 1 861 070 -1

23 full 1 512 080 -1

54 full 1 34 758 1?

36 full 1 136 855 -1

27 full 1 433 262 -1

28 fragment 367 024 407 093 ? split location corrected as in QM6a reassembly

67 full 1 11 021 1?

size : 5 980 447 (with 100bp Ns spacers between each scaffold)

CHR III

start end direction comment

45 full 1 65 952 -1

69 full 1 10 696  -1?

35 full 1 152 537 1

32 full 1 230 370 -1

11 full 1 1 155 933 -1

40 full 1 89 857 1

centromere location consistent with QM6a (no scaffold realiably assembled)

2 translocation 546 704 2 007 221 -1 manual correction according to (Vitikainen et al. 2010)

4 translocation 748 278 1 204 862 -1

4 translocation 1 204 863 1 832 615 1 manual correction according to (Vitikainen et al. 2010)

49 1 46 304 ?

48 translocation 1 1 666 1

2 translocation 154 748 546 703 -1 manual correction according to (Vitikainen et al. 2010)

2 fragment 1 98 434 -1 split location corrected as in QM6a reassembly

6 full 1 1 455 714 -1

size : 6 245 475 (with 100bp Ns spacers between each scaffold)

scaffold

scaffold

scaffold



CHR IV

start end direction comment

64 full 1 14 482 1

19 full 1 663 018 -1

17 full 1 797 352 1

56 full 1 32 194 ? centromere (consistent with QM6a)

20 full 1 629 213 -1

1 fragment 2 981 735 3 756 989 1 split location corrected as in QM6a reassembly

5 fragment 1 584 116 1 729 360 1 split location corrected as in QM6a reassembly

13 full 1 891 309 -1

2 fragment 99 435 154 747 -1 split location corrected as in QM6a reassembly

38 full 1 125 035 -1

33 full 1 207 997 -1

size : 4 337 413 (with 100bp Ns spacers between each scaffold)

CHR V

start end direction comment

46 full 1 62 252 1 telomere repeats

30 full 1 247 268 1

42 full 1 78 584 1

53 full 1 36 593  -1?

18 full 1 685 578 1

61 full 1 15 406 ? centromere (consistent with QM6a)

60 full 1 15 714 ? centromere (consistent with QM6a)

28 fragment 1 366 023 -1 split location corrected as in QM6a reassembly

1 fragment 1 2 471 118 1 split location corrected as in QM6a reassembly

size : 3 979 336 (with 100bp Ns spacers between each scaffold)

CHR VI

start end direction comment

47 full 1 50 543 -1

15 deletion 1 1 555 1 manual correction according to (Seidl et al. 2008)

15 deletion 86 603 837 556 1

44 full 1 66 247  -1?

62 full 1 15 337 ?

1 fragment 2 471 169 2 980 271 -1 split location corrected as in QM6a reassembly

50 full 1 45 663 -1

37 full 1 132 540 1

51 full 1 43 169  -1? centromere (consistent with QM6a)

39 full 1 105 148 1

9 full 1 1 219 543 -1

22 translocation 1 139 476 1 manual correction according to (Vitikainen et al. 2010)

48 translocation 1 667 48 367 1

5 fragment 1 1 583 115 -1 split location corrected as in QM6a reassembly

size : 4 710 394 (with 100bp Ns spacers between each scaffold)

CHR VII

start end direction comment

29 full 1 382 182 -1

24 full 1 501 049 -1

16 full 1 824 923 -1

52 full 1 41 083 ? centromere (consistent with QM6a)

3 full 1 1 910 749 -1

size : 3 660 386 (with 100bp Ns spacers between each scaffold)

>scaffold_57

start end direction

57 full 1 25 756 1 centromere signature but not reliably assembled

>scaffold_58

start end direction

58 full 1 21 040 1 centromere signature but not reliably assembled

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold



>scaffold_63

start end direction

63 full 1 14 539 1

>scaffold_65

start end direction

65 full 1 12 580 1 centromere signature but not reliably assembled

>scaffold_70

start end direction

70 full 1 8 513 1

>scaffold_71

scaffold start end direction

71 full 1 6 846 1

>scaffold_72

start end direction

72 full 1 6 811 1

>scaffold_73

start end direction

73 full 1 6 421 1

>scaffold_74

start end direction

74 full 1 5 890 1

>scaffold_75

scaffold start end direction

75 full 1 5 683 1

>scaffold_76

start end direction

76 full 1 5 459 1

>scaffold_77

start end direction

77 full 1 5 371 1

>scaffold_78

start end direction

78 full 1 5 154 1

>scaffold_79

start end direction

79 full 1 4 691 1

>scaffold_80

start end direction

80 full 1 4 619 1

>scaffold_81

start end direction

81 full 1 4 614 1

>scaffold_82

start end direction

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold

scaffold



82 full 1 4 370 1

>scaffold_83

start end direction

83 full 1 3 796 1

>scaffold_84

start end direction

84 full 1 3 468 1

>scaffold_85

start end direction

85 full 1 3 089 1

>scaffold_86

start end direction

86 full 1 3 000 1

>scaffold_87

start end direction

87 full 1 2 158 1

scaffold

scaffold

scaffold

scaffold

scaffold
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Following publication of the original article [1], the 

authors reported a problem in the drawing of Rut-C30 

chromosome III in Fig. 2b of the original article [1]. The 

two fragments of chromosome I inserted inside chro-

mosome III should be swapped, and the direction of the 

fragment containing rim101 and cel1a genes should be 

inverted. This reversed insertion indicates that at least 2 

rearrangements occurred simultaneously, so the possible 

scenario proposed in Fig.  2c of the original article was 

inaccurate. The corrected  Fig. 2 with modified panels b 

and c is available in this erratum. The detailed description 

of Rut-C30 assembly in the Additional file 5 of the origi-

nal article is correct.

The authors also noticed two mistakes in chromosome 

numbering in the description of these translocations. The 

correct description is

“The three translocations resulted finally in the right 

arm of chromosome I (3′ end of scaffold 48 and 

main fragment of scaffold 5: 1.63 Mb and 442 genes 

in total), to be swapped with the right arm of chro-

mosome VI (3′ end of scaffold 22: 402  kb and 114 

genes). But also in two fragments of chromosome I 

(one with a fragment of scaffold 4, and the other one 
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with another fragment of scaffold 4, scaffold 49 and 

a small fragment of scaffold 48) to be inserted head 

to foot in the middle of the chromosome III (1.13 Mb 

and 310 genes in total for both fragments).”
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3 Genome assembly and uncovering intra-species genome dynamics

3.2.2 Joint assembly of two Cataglyphis hispanica lineages reveals
chromosome fusion

In this section we discuss the scaffolding project of the desert ant Cataglyphis hispanica
and the rearrangements it unveiled.

3.2.2.1 Overview of Cataglyphis hispanica

Nearly all ants species (and many other species from the order Hymenoptera such as
bees or wasps) are eusocial and live in large colonies where the reproductive function is
monopolized by one or a select few females called queens. Sex determination is unique
in Hymenoptera in that it is determined by ploidy: females are diploid while males are
haploid. Almost all individuals within a colony are female; the non-reproducing ones are
called workers, while males, whose lifespan is usually limited to a reproductive season
and die off soon after mating, are called drones [350]. Many species are polymorphic,
with distinct morphological differences between workers, queens and drones, as figure 51
shows. Reproductive individuals often have wings, in which case they are called alates.
This is a only broad descriptive outline, as ants as a taxonomic group are extremely
diverse in behavior, societal organization, and reproductive strategies [351].

Figure 51: Polymorphism in C. hispanica individuals: a winged male (left), a queen
surrounded by workers (center) and a worker (right).

Source: Taken with permission from Hugo Darras at https://www.flickr.com/people/fourmis/

The Cataglyphis genus is especially notable for its diversity in breeding systems, in-
cluding hybridogenesis. In this system, females and males from close species or lineages
reproduce, but the males’ chromosomes are discarded in germinal cells. Males only
transmit their genetic material on the somatic level. A unique variant of this system,
called social hybridogenesis, was observed in Cataglyphis species, among which features
the desert ant C. hispanica [352]. It is illustrated in figure 52.
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3 Genome assembly and uncovering intra-species genome dynamics

Figure 52: Social hybridogenesis in C. hispanica.

Source: Adapted from Darras et al., 2012, [352].

In this species, individuals are split into two lineages, and workers are produced
from the interbreeding between a male and a female from either lineage. Sexual males
and females themselves are ”pure-breeds”, stemming from asexual reproduction though
parthenogenesis and only bearing maternal genetic material. Social hybridogenesis can
be therefore thought of as a ”generalization” of standard hybridogenesis to the caste
level (as opposed to the somatic/germinal distinction within a single individual).

This strategy is relatively rare, only documented in a few other Cataglyphis species
and taxa, such as Solenopsis fire ants and Pogonomyrmex seed harvester ants [353]. It
is however remarkably consistent, as figure 53 shows that C. hispanica is widespread
over Spain and Portugal and this behavior was observed among all such colonies [354].
Moreover, the exact mechanisms are not well known at the genomic level. Part of this
lack of knowledge stems from the absence of a chromosome-level genome, so that any
structural dynamics underlying such mechanisms would go unnoticed.
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3 Genome assembly and uncovering intra-species genome dynamics

Figure 53: Geographical habitat of C. hispanica.

Source: Adapted from antmaps.org.

Here we present preliminary results in our attempt to solve the question. They can
be articulated into three steps:

• Obtain high-quality chromosome-level assemblies for both lineages of C. hispanica,
complete with extensive validation and metrics assessment

• Investigate potential large-scale chromosome rearrangements between both lin-
eages

• Match this newly acquired structural data to functional annotations so as to form
a comprehensive picture of the mechanisms behind social hybridogenesis

We have decisive results on the first two steps and work is still ongoing for the third.

3.2.2.2 Joint Hi-C based scaffolding

Preliminary assembly We first set out to assemble the genomes of two individual
queens, one for either lineage (subsequently referred to as lineages 1 and 2). The strategy
we used includes both Hi-C and long reads; a complete workflow is illustrated in figure
54. The following preliminary steps had been performed prior to our Hi-C based work:

• A set of nanopore reads assembled with the Flye, a long read based assembler. Flye
includes a polishing step, whereby long reads are aligned onto the final assembly
to correct errors. It is an iterative process, as the reads can be aligned again onto

162



3 Genome assembly and uncovering intra-species genome dynamics

Figure 54: C. hispanica reassembly workflow.

the updated assembly for further corrections until no visible increase in quality is
observed. Six rounds of this polishing were performed.

• A set of Illumina short-reads was used for additional polishing on the long read
assembly with the help of Pilon. Eight rounds of polishing were perfomed onto the
first lineage assembly, and five rounds onto the second lineage.

This assembly (subsequently referred to as the nanopore or hybrid assembly) served as
the reference for comparative and validation purposes. In addition, a previous assembly
solely based on short read data was available (subsequently referred to as the short read
or Illummina assembly.

Hi-C mapping and scaffolding We mapped 64,691,140 paired-end reads onto the Dp-
nII restriction fragments of the nanopore assemblies of lineages 1 and 2, respectively,
using our own Hi-C pipeline 1 with Bowtie 2 in the back-end (using the option --very-
sensitive-local). Alignments with mapping quality below 30 were discarded. This
resulted in 4,417,135 (resp. 2,944,341) Hi-C contacts. We then filtered some fragments
out of the contact map distribution prior to binning: fragments below 50 bp were dis-
carded, as well as fragments with coverage below the mean standard deviation. They
were kept aside so as not to disrupt the global contact distribution, with the intent of
re-integrating them later during the polishing step. Then, each contact map was recur-
sively sum-pooled fragment-wise five times (as described in section 1.4.4.3) so that each
bin comprised 35 = 243 times.

We then ran instaGRAAL for 100 cycles on both lineages. We reasoned that the
initial nanopore assembly structure was a good starting point and didn’t split it prior to
reassembly. This resulted in 26 (resp. 27) main scaffolds above 1 Mb. We then polished
each assembly using instaGRAAL’s own implementation as explained in the methods of
section 3.1. Briefly, the internal structure of contigs is reconstructed internally so as to
correct artifact inversions or relocations within each newly formed scaffold. Lastly, we
manually corrected all remaining discrepancies with the reference that weren’t due to
mapping issues (i.e. presumably false breakpoints).The cumulative length of each newly
formed scaffolding (compared to the reference) is shown in figure 55.

1HiC-Box, available at https://github.com/koszullab/HiC-Box
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3 Genome assembly and uncovering intra-species genome dynamics

Figure 55: Cumulative lengths of C. hispanica lineage assemblies (lineage 1 on the left,
lineage 2 on the right): the raw GRAAL assembly, the instaGRAAL polished
assembly and the instaGRAAL polished assembly with manual corrections
are compared with respect to the hybrid/long-read assembly as reference.

We then re-mapped the Hi-C reads onto the final assembly, after the manual correc-
tions. The final contact maps before and after reassembly are shown in figure 56.

3.2.2.3 Investigating rearrangements

A striking feature arising from a comparison of both lineages is the apparent fusion of
two chromosomes. This is shown in a similarity dotplot between both genomes (figure
57).

Overall, and except for the fusion, the dotplot shows a rough one-to-one mapping
between chromosomes from one lineage to the other. Smaller-scale rearrangements are
less clear and could be due to artifacts. Notably, regions with a lot of disorderly arranged
small sequences are repeated (or otherwise homologous) stretches typically found in
telomeric regions. Additional polishing could be needed to properly resolve them.

On the other hand, the fusion is confirmed by comparing the Hi-C contact maps
themselves (figure 58). The signal is strong enough that the rearrangement could not
have arisen from an instaGRAAL artifact alone. Moreover, subsequent re-runs of the
software consistently showed this modification. On the other hand, the presence of
extraneous repeated sequences confined in one scaffold is also confirmed in figure 58.
Overall, similarity data is consistent with contact data.

These results strongly suggest a physical fusion between chromosomes 5 and 8 of
lineage 2, which would become chromosome 1 of lineage 1. However, the presence of
artifacts in scaffold 9 of lineage 1 (resp. scaffold 10 of lineage 2) also suggests an extensive
validation of all genomes involved is required in order to confirm our assemblies are indeed
high-quality and suitable for comparative analysis.
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3 Genome assembly and uncovering intra-species genome dynamics

Figure 56: C. hispanica contact maps at different stages of the workflow: Illumina short-
read based (left), long-read/hybrid based (center) and after instaGRAAL
scaffolding and polishing (right).

Figure 57: Similarity plots of scaffoldings for each C. hispanica lineage. The apparent
fusion has been marked on the top right corner.
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3 Genome assembly and uncovering intra-species genome dynamics

Figure 58: Evidence of chromosome fusion on Hi-C contact maps between both lineages
of C. hispanica. Merged chromosomes are indicated by arrows, whereas po-
tential artifacts caused by repeated sequences have been marked in green.

3.2.2.4 Genome validation

We performed a comparative validation of all assemblies at our disposal. For each
lineage, we had at our disposal an old short read based assembly and a long read/hybrid
assembly. We first performed a preliminary scaffolding work with an early version of
GRAAL; we later implemented GRAAL polishing and an additional number of features
that would transform it into instaGRAAL, and applied it to the assembly. We then
corrected by hand all discrepancies between the instaGRAAL scaffolding and the long
read/hybrid assembly. In summary, we did a comparative analysis on the following:

• The preliminary short-read assemblies

• The long read/hybrid assemblies

• The raw GRAAL assembly, without polishing

• The instaGRAAL assembly, with polishing

• The instaGRAAL assembly, with polishing and manual error correction

The main metrics to be assessed were Nx (and related), discrepancy with the long
read assemblies and BUSCO completeness (using a database of n = 4415 orthologs from
ODBv9), as shown in table 1. We also considered (and included) k-mer completeness.

Overall, we observed in each case a tenfold improvement in N50. As cumulative
plots in figure 55 have shown, more than 99% of each genome’s lineage was successfully
reintegrated into the main 26 (resp. 27) scaffolds. These 26/27 chromosome counts were
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Short-read Long-read GRAAL instaGRAAL Manual
Total length (Mb) 211.6 202.5 202.2 202.5 202.5

Contig/scaffold count 6039 439 223 224 222
NG50 (Mb) 0.24 4.4 8.25 8.34 8.18
NG75 (Mb) 0.104 2.5 5.87 5.95 5.98

L50 245 17 9 9 9
Misassemblies/discrepancies N/A 0 537 22 0

K-mer completeness (%) 100 100 99.79 99.92 99.92
BUSCO completeness (%) 94.5 98.1 97.7 97.9 97.9

Table 1: Assembly metrics for lineage 1 genomes. Discrepancies are accounted with
respect to the long-read based reference assembly.

Short-read Long-read GRAAL instaGRAAL Manual
Total length (Mb) 221.3 204.7 201.6 204.7 204.7

Contig/scaffold count 14930 880 304 392 392
NG50 (Mb) 0.22 1.44 8.15 8.18 8.1
NG75 (Mb) 0.079 0.609 5.64 5.54 5.56

L50 264 42 10 10 10
Misassemblies/discrepancies N/A 0 688 19 1

K-mer completeness (%) 100 100 98.48 99.89 99.89
BUSCO completeness (%) 94.1 97.3 97.3 97.6 97.6

Table 2: Assembly metrics for lineage 2 genomes. Discrepancies are accounted with
respect to the long-read based reference assembly.
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observed in repeated control instaGRAAL runs, strongly indicating that they are the
actual number of chromosomes for each lineage. This overall shows instaGRAAl was
successful at scaffolding the genome of either lineage.

Because we trusted the initial long-read based assembly enough not to induce artifact
breakpoints with our scaffolding, we performed extensive polishing. This decreased
discrepancies by an order of magnitude in each lineage (537 to 22, resp. 688 to 19).
After manually reviewing each of the remaining discrepancies, we set out to correct
them by hand if they were not due to mapping issues, thus resulting in the 0 (resp. 1)
discrepancies in the final assembly. Corresponding Nx metrics show these modifications
had little, if any, impact on the global scaffolding structure.

Lastly, completeness metrics (k-mer and BUSCO orthologs) were found to be overall
satisfactory or otherwise unchanged. In lineage 1, the GRAAL scaffolding induces a
slight loss in BUSCO completeness, presumably due to artifact breakpoints. Polishing
(automatic or manual) alleviates this somewhat, although a 0.2% decrease (9 orthologs)
is still observed with respect to the initial long-read assembly. In lineage 2, the scaffolding
did not alter the initial completeness, and polishing actually improved it. This stresses
the importance of re-injecting initial data into one’s scaffolding when it is considered
trustworthy enough. Notably, all assemblies were markedly more complete than the
Illumina short-read based one, thereby validating our entire workflow based on long
reads and Hi-C.

3.2.2.5 Ongoing work

In this section we have presented our main results on the joint study of C. hispanica
lineages:

• We have successfully obtained high quality, chromosome-level assemblies for both
lineages, complete with extensive validations

• We have very strong evidence from Hi-C data that two chromosomes in one lineage
have been merged in the other.

Current work is still ongoing for the annotation of either genome: we need to link the
structural genomics results to functional data so as to identify the genes of interest that
could be responsible for the mechanisms underlying the social hybridogenesis.

Our genomes, although the best available quality for C. hispanica, still contain errors
and a number of artifacts, notably among repeated sequences that could be potentially
misplaced: additional data is necessary to further polish the assemblies. Lastly, addi-
tional verifications on a cytological level could be needed to confirm the chromosome
counts inferred from Hi-C data.
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4 Metagenome assembly and network
dynamics

In the introduction we have underlined the potential of a 3C based approach for metagenome
binning and assembly as a necessary step for understanding genome dynamics among
complex communities. In this section we present our main results, published and sub-
mitted respectively, showcasing our approach:

• We first demonstrate the effectiveness of the meta3C framework with the first 3C
experiment on an in vivo sample; the method builds upon the proof-of-concept
works detailed earlier as well as 3C-based scaffolding. We successfully scaffold
more than a hundred bacterial genomes, identify features of interest within the
genomes, and isolate phage-host relationships.

• Then, we implement the design we have built into a full-fledged pipeline, dubbed
metaTOR. We benchmark it against state-of-the-art traditional methods and prove
it outperforms all of them in terms of completeness and contamination. The suc-
cessful application of this pipeline yields again more than a hundred bacterial
genomes.

4.1 Scaffolding bacterial genomes and probing host-phage
interactions
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Scaffolding bacterial genomes and probing host-virus
interactions in gut microbiome by proximity ligation
(chromosome capture) assay

Martial Marbouty,1,2 Lyam Baudry,1,2 Axel Cournac,1,2 Romain Koszul1,2*

The biochemical activities of microbial communities, or microbiomes, are essential parts of environmental and
animal ecosystems. The dynamics, balance, and effects of these communities are strongly influenced by phages
present in the population. Being able to characterize bacterium-phage relationships is therefore essential to in-
vestigate these ecosystems to the full extent of their complexity. However, this task is currently limited by (i) the
ability to characterize complete bacterial and viral genomes from a complexmix of species and (ii) the difficulty to
assign phage sequences to their bacterial hosts. We show that both limitations can be circumvented using
meta3C, an experimental and computational approach that exploits the physical contacts between DNA mole-
cules to infer their proximity. In a single experiment, dozens of bacterial and phage genomes present in a complex
mouse gut microbiota were assembled and scaffolded de novo. The phage genomes were then assigned to their
putative bacterial hosts according to the physical contacts between the different DNA molecules, opening new
perspectives for a comprehensive picture of the genomic structure of the gut flora. Therefore, this work holds far-
reaching implications for human health studies aiming to bridge the virome to the microbiome.

INTRODUCTION

High-throughput DNA sequencing technologies developed over the
past decade have set a milestone for the analysis of microbial commu-
nities in natural environments. Metagenomic approaches provide an
overview of the diversity of DNA or RNA molecules directly isolated
fromnaturalmixes of species (1–4). Large-scale exploratory studies have
revealed that complex communities are ubiquitous in all environments
(5, 6), where they hold diverse and important roles, including contribu-
tions to animal and plant metabolisms (7–10). These developments
have greatly accelerated the discovery of new bacteria (3, 4, 11–14), plas-
mids (15, 16), and virus/phages (17–20). However, some limitations
persist despite constant technological improvements. Notably, the dif-
ficulty to assemble complete genomes and full episome sequences (21)
and the inability to characterize the interactions between those different
molecules impair the full resolution of the genomic structure of these
populations. For instance, bacteria-phage relationships remain poorly
characterized, despite the impact of phages on the balance of microbial
communities (22, 23). The presence of phages, which are considered the
most abundant anddiverse biological entities on earth (24), in these eco-
systems, has far-reaching consequences beyond particular pairwise in-
teractions (25), influencing everything from bacterial virulence (26) to
cell physiology (27). However, the characterization of a phage genome
from sequencing data is usually not sufficient to identify its bacterial
host(s). As a result, understanding the interplay between phages and
the overall microbial community remains limited or out of reach (28).
Therefore, new approaches alleviating these limitations are needed to bet-
ter understand phage-bacteria relationships in complex ecosystems (29).

One way to address this challenge is to exploit the physical collisions
experienced by DNA segments along one and/or between multiple
DNA molecules. The frequencies of cis contacts between pairs of loci
within a chromosomearehigher than the trans contacts between segments
located in different chromosomes. These contacts generate a predictive

three-dimensional (3D) signature that can be exploited to improve
chromosome scaffolding (21, 30, 31). Recent studies suggest that meta-
genomic analyses could also benefit from these approaches (32–35). A
blind clustering analysis of the contacts experienced by DNAmolecules
isolated from controlled or seminatural mixes of microorganisms
showed that most contacts involve pairs of DNA regions coming from
the same genome (34). These contacts were quantified using meta3C
(34), a derivative of the chromosome conformation capture method
(3C; Materials and Methods) (36). Briefly, DNA molecules within a
mixture of microbial species are frozen in space with a cross-linking
agent. The DNA trapped within cross-linked protein complexes is then
digested with a restriction enzyme. The resulting restriction fragments
(RFs) are then religated together. Ligation eventswillmostly involve RFs
thatwere in close vicinity in space before the fixation step and, therefore,
that were very likely to share the same cell compartment. The quantifi-
cationof these events is done usingpaired-end (PE) sequencing.Meta3C
reads can be used to perform a de novo assembly that will generate
contigs reflecting the genetic content of the community, as well as the
clustering and scaffolding steps that will provide a glimpse of the ge-
nomic structure of the population [reviewed byMarbouty andKoszul
(35)]. Fortuitous hints have suggested that chromosomes and other
kinds ofDNAmolecules, such as plasmids (34), could be identified from
themeta3C data and assigned to their host cells. However, no large-scale
exploration of the genomic structure of a truly natural complex commu-
nity had been undertaken so far using this approach.

Here, we investigated the ability of meta3C to bring new insights
into the genomic structure of a natural and complex mammalian gut
microbiota, including its phage-host interactions. Starting with a
single, unknown natural complex microbial ecosystem, a computa-
tional workflow was designed to allow the de novo assembly and scaf-
folding of dozens of bacterial genome scaffolds.Moreover, the pipeline
also leads to the assembly of large bacteriophage sequences, including
a large genomephylogenetically close to the phiKZphage family (37, 38)
and never fully characterized before in themammalian gut (39). Finally,
these phage sequenceswere assigned to bacterial chromosome scaffold(s)
based on their physical contact frequencies, providing information

1Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale
des Génomes, 75015 Paris, France. 2CNRS, UMR 3525, 75015 Paris, France.
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about the coexistence of bacteriophages within multiple species and/or
strains. These results show that DNA collisions allow the tracking of
mobile genetic elements of interest within complex microbial popula-
tions, opening the way to high-resolution monitoring of horizontal
transfer events within populations and dynamic studies of microbiota
genomic structure.

RESULTS AND DISCUSSION

Applying meta3C to a mice gut microbiota
To investigate the genomic structure of the mouse gut microbiome, a
single feces sample from a healthy controlmalemouse (C57BL/6) from
the Institut Pasteur animal facility was collected, split, and processed
through twometa3C protocols that solely differed by the restriction en-
zyme being used: either Hpa II [C′CGG] or Mlu CI [′AATT] (Fig. 1A
and Materials and Methods). As discussed before (34, 35), using en-
zymes differing in the GC content of the corresponding restriction sites
(RSs) is expected to improve contact coverage for GC- and AT-rich ge-
nomes. TheHpa II andMluCI libraries were sequenced on an Illumina
NextSeq machine [2 × 75 base pairs (bp)], with 114 and 71 million PE
reads recovered, respectively. Reads from both libraries were pooled
and assembled into contigs using the IDBA-UD program (40), result-
ing in 374,363 contigs (cumulated size, 580 Mb; N50, 3783 bp; maxi-
mum size, 490 kb; mean size, 1402 bp). Translated coding sequences
resulting from this assembly [594,648 open reading frames (ORFs)
detected—MetaGeneMark; (41)] were analyzed at the taxon and func-
tional levels using the metagenomics RAST (MG-RAST) pipeline
(Materials and Methods) (42). As expected from a gut metagenome, the
major clades in the sample were Firmicutes (70%) and Bacteroidetes
(15%) (Fig. 1B) (43). An analysis of DNA sequences using the Kraken
program (44) (Materials and Methods) confirmed these results with,
also as expected, ~80% of the sequences not attributed to a specific
genome (43). Coding sequences were then annotated for essential
genes, phages, and conjugative elements using repository databases
(14, 45, 46), and the annotated contigs were then split into 1-kb frag-
ments. This step has two objectives: first, to limit the impact of misas-
sembly errors (such as chimeric contigs) arising during the assembly
step, and second, to normalize the contact signal with respect to the in-
fluence of contig size on their representation during the segmentation of
the network. Contigs under 500 bp were discarded, leading to a global
set of 553,310 contigs (513 Mb total). An internal control for the net-
work segmentation stepwas implemented by introducingmeta3C reads
of a chosen mix of three bacterial species (Materials and Methods and
fig. S1A), resulting in a final set of 569,146 contigs (526 Mb total). The
contact network was then generated by aligning meta3C PE reads
against the contigs. Whereas in most (75%) instances both reads of a
pair mapped within the same contig, in 46 million instances each read
of a pair aligned along a different contig, resulting in a pair of contigs
bridged by at least one contact. Contact frequencies between contigs
were then normalized by the read coverage of the contigs (Materials and
Methods), resulting in a large network of 569,146 nodes and 20,557,427
weighted edges. Contigs showing enriched contacts are likely to corre-
spond to DNA molecules sharing the same cell compartment (34).

Iterative segmentation of the meta3C contact map into
core communities
The global networkwas then segmented into communities (in a network
analysis sense) using the Louvain clustering algorithm (Materials and
Methods) (47). A community is a subnetwork, or partition, of contigs

having enriched contacts with each other as opposed to the other
contigs. After one clustering step, 515 Mb (>98%) of the total DNA was
spread among 93 communities ranging in size from 500 to 61,000 contigs.
By design, the Louvain algorithm cannot attribute a node to multiple
communities and is nondeterministic: When a segmentation is per-
formed twice on the same network, some nodes will be assigned to
distinct partitions if these communities share the elements repre-
sented by these nodes. We reasoned that this inherent property could
be exploited to strengthen the analysis and identify DNA sequences
shared by two or more large communities. To do so, we performed
the segmentation independently 100 times, delineating core commu-
nities (CCs)made of contigs that systematically cluster together for each
of these iterations (Fig. 1C, fig. S2, and Materials and Methods). The
distribution of the sizes of CCs recovered after iterative segmentation
was computed, showing that the number of CCs larger than 500 contigs
(that is, of approximately 500 kb ormore) quickly converges toward 124
clusters encompassing ~90% of the total DNA (Fig. 1, C andD, and table
S1). The iteration procedure also led to a reduction of the contact back-
ground between communities of contigs, suggesting a better resolution of
the network (Fig. 1E). The control contigs containing three bacterial spe-
cies were segmented into three well-defined CCs (black triangles in fig.
S1B), confirming that the Louvain iterative procedure conveniently seg-
regates genomes from the meta3C network. The presence of very large
CCs containingmore than 10,000 contigs nevertheless suggests that some
CCs encompass more than one genome of closely related species, poten-
tially due to the presence of numerous shared sequences (below). Finally,
the influence of the choice of the restriction enzyme on the contig rep-
resentation is made clear when the contact map is binned into a fixed
number of RFs for each enzyme, illustrating the interest of combining
two different restriction enzymes to cover both AT- and GC-rich se-
quences (fig. S1C).

Characterization of meta3C CCs
To investigate the genetic nature of CCs, we computed gene ontology
distribution based on contig annotation for different classes of genetic
elements (Fig. 1F). Contigs carrying essential genes (n = 24,896) (48)
or lineage-specific markers [single genes copy (SGCs), n = 7104] (49),
all specific of bacterial chromosomes, were predominantly found in
the larger CCs. On the other hand, contigs carrying genes related to
conjugative elements (n = 4676) (50) and phages (n = 4796) (20) were
significantly enriched in small CCs as opposed to the previous categories.
Thisanalysis indicates that largeCCscontaincontigsof sequencesbelonging
to bacterial chromosomes (table S1) and mobile elements (table S2),
whereas small CCs represent mostly independent episomes or mobile
elements, such as plasmids and phages (table S3).

Metagenomic data are often analyzed in light of covariance analyses
of genetic elements overmultiple samples (14, 43, 48). These approaches
have led to the characterization of co-abundance groups of genes (CAGs)
(14, 43), which are clusters of genes whose sequencing coverage covaries
within the samples. Among CAGs, groups containing more than 700
coding sequences have been dubbed metagenomic species (MGS). It
was suggested that MGS clusters represent species-specific groups of
genes. To compare both approaches, meta3C reads were aligned against
the gene catalog of mouse microbiota MGS (43). Genes were then
clustered, either through their MGS index or through the Louvain
iterative procedure, and contactmapsof the 100 largestMGSandmeta3C
CCs were generated (fig. S2). A strong diagonal revealed important con-
tact signal withinMGS, confirming that, to a large extent,MGS do group
together DNA molecules belonging to the same cellular compartment,
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thus the same species. This map also immediately pointed at MGS exhi-
biting potent physical contacts with each other, strongly suggesting that
these groups of sequences share at least one cellular compartment in the
population and hence belong to the same species. On the other hand,

meta3C CCs hardly exhibit any contacts between each other, as expected
if these CCs correspond to phased genomic sequences of discrete species.
A comparison of bothmethods reveals that aroundhalf of the genes pres-
ent in a given MGS are found in a CC, a difference that may result from
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the fact that MGS are computed over more than a hundred samples,
whereas CCs are generated with a single sample. Therefore, the two
approaches complement each other for well-studied ecosystems for
which many samples are already available.

De novo assembly and scaffolding of bacterial genomes
The content of large CCs was then investigated qualitatively. First,
contigs fromeach of the 121CCs encompassingmore than 500 contigs
(excluding the 3 control CCs) were used as an index to align all raw
meta3C reads using Bowtie2 (mapping parameters: -local -sensitive,
ambiguous matches allowed -parameters a-; Fig. 2A and Materials
andMethods).When at least one member of a read pair mapped onto
one of these contigs, both sequences were retained. All PE reads with a
good quality score (Materials and Methods) recovered for each CC
were then assembled de novo with IDBA-UD to generate a new set
of contigs (no precorrection option, default parameters). For each final
assembly above 500 kb, all contigs above 500 bp were retrieved. The
quality of bacterial genome assemblies can be assessed by looking for
the presence of a standardized set of marker genes (51). The pools of
contigs generated for each CC were therefore screened using the
CheckM pipeline for these markers (49). Most assemblies had a
marker gene content typical of what is expected from a single bacterial
genome, although some of the largest communities containedmultiple
copies of marker genes, suggesting that they contained more than one
genome (see below).

The contigs from each of the 121 CCs were then scaffolded using
the program GRAAL (Fig. 2B) (30). Briefly, GRAAL exploits contacts
betweenDNA regions to assess for their colinearity. The program pro-
gresses by successive iterations to converge toward the 1D genome
structure that best accounts for the 3Ddata. For instance, the 3264 contigs
present in CC #63 were reordered by GRAAL into a large, 3.2-Mb
scaffold (Fig. 2B). These scaffolds can then be compared to chromo-
somal contact maps of single species, which have been described
before and are schematically represented in Fig. 2C (34, 52). These
maps display typical patterns. First, a main diagonal reflects enriched
local contacts all along the chromosome, a consequence of neighboring
DNA regions interacting more often together than distant ones. Sec-
ond, a strong signal in each corner of themap indicates a circular chro-
mosome (pink arrowheads in Fig. 2C). Finally, secondary features that
are specific to bacterial chromosome metabolism are also sometimes
visible, notably a secondary diagonal (Fig. 2C) (53). This feature reflects
the cohesion of replichores initiated at the origin of replication and has
been described inCaulobacter crescentus (52),Bacillus subtilis (53), and
Vibrio cholerae (54). It is present in other species as well but not in
Escherichia coli (35). GRAAL was run for 100 iterations on each newly
assembled CC (Fig. 2, D and E; fig. S4; table S1; and Materials and
Methods). Two-thirds (80) of the 121 assemblies resulted in a marked
increase in the N50 of the sequences present in the corresponding CC,
with the generationof one (ormore) large,megabase-scaled scaffold(s).
The resulting contact maps of these large scaffolds were inspected for
any potential remaining inconsistencies left out by the probabilistic
nature of GRAAL’s algorithm (fig. S5 and Materials and Methods).
The features displayed by these contact maps were often highly
consistent with published contact maps of bacterial genomes. Nota-
bly, the continuous main diagonal and the presence of a circularization
signal suggest that no large DNA regions are missing in many of the
scaffolds. In addition, a secondary diagonal was often present on some
of the maps (Fig. 2, i, ii, iv, and v; see also fig. S4). Finally, dnaA homo-
logs were often identified at the crossing between this secondary and

the main diagonal (Fig. 2, i, ii, iv, and v). dnaA is found at the origin of
replication (ori) in most bacteria, and its presence at the edge of the
secondary diagonal is highly consistent with recent analyses describ-
ing the role of the replication origin during the cell cycle of B. subtilis
in chromosome folding (53, 55). Moreover, the position of these pu-
tative ori sites correlates with the highest coverage in PE reads of the
scaffold (Fig. 2, i, ii, iv, and v), suggesting that this procedure also
allows one to infer the growth status of these species. The recovered
scaffolds and the assembled large CCs were again analyzed through
the CheckM pipeline (table S1), revealing a clear improvement in the
quality, with respect to both completeness and contamination level,
of the recovered genomes. For instance, each of the two large scaf-
folds retrieved after processing CC #6 (Fig. 2E, v) shows a nearly
complete bacterial gene catalog, pointing at the presence of two in-
dividual genomes belonging to the same clade. The global conserva-
tion of gene order between these two scaffolds (Fig. 2F) suggests that
these two species are closely related, and therefore highlights the
potential of the meta3C approach [see also CC #22 for another ex-
ample; Fig. 2, E (vi) and F].

Annotation and analysis of prophages in bacterial genomes
The annotation of the large scaffolds, using the Phaster pipeline (56),
also pointed at the presence of putative prophage sequences integrated
within bacterial genome scaffolds (Fig. 2, D and E, small red and green
rectangles on the right side of all matrices). Here, again, our recent work
(53) proved convenient to interpret the corresponding contact maps
(Fig. 3A). The prophages present within the B. subtilis genome appear
in the contactmap as discrete regionswith peculiar contact patterns [fig.
S6A; see Marbouty et al. (53) for discussion]. The SPb prophage
sequence is particularly apparent in the contact maps of exponentially
growing cells. This prophage appears to get activated upon exposition of
the cells to the rifampicin drug, as revealed by the increase in read cov-
erage of the phage genome, resulting in a strong increase in 3C contact
signal (fig. S6B) (53). In addition, enriched contacts between the extre-
mities of the phage genome were also characterized, suggesting a pos-
sible circular form. The phage sequences encompassed within the
genomic scaffolds retrieved after GRAAL processing display contact
patterns reminiscent of these observations (see, for instance, CC #25;
Fig. 3A). This observation suggests that the contact map patterns could
be exploited to refine predictions from the Phaster pipeline and to help
in the characterization of prophage sequences. For CC #25, the contact
pattern and read coverage of the two prophage loci are consistentwith a
silent pattern (fig. S6A). On the contrary, one of the two scaffolds re-
trieved from CC #6 (Fig. 2E, vi; scaffold 2 in red) exhibits a peculiar
locus, isolated from the rest of the scaffold,more covered and annotated
as an incomplete prophage. The contact pattern and read coverage of
this region are consistent with an active phage similar to B. subtilis SPb
in the presence of rifampicin (fig. S6B). More analyses will be needed to
further validate the presence and activity of these phages in these
bacteria, but this analysis nevertheless suggests the meta3C data point
at silent and active prophages among complex communities. However,
one must note that it remains unclear whether the approach has the
ability to trap phage genomes present in phage particles outside the
bacteria cellular compartment or if it traps virulent phages infecting
and killing bacteria in a short amount of time; more experiments will
be needed to answer these important questions.

In some instances, the scaffolding step results in multiple scaffolds
that do not seem to correspond to large, fully individualized bacterial
chromosomes. These scaffolds sometimes display contact patterns
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Fig. 2. De novo scaffolding of bacterial genomes from large CCs. (A) Pipeline describing the computational processing of CCs. Contigs pooled together within a CC are

used to build a genome index (step 1). All PE reads frommeta3C libraries are aligned against this index (step 2). If one read of a pair maps onto these contigs, then both reads are

retained for the de novo assembly using IDBA-UD (step 3). If the cumulated size of the newly assembled contigs of 5 kb ormore reaches at least 500 kb, then they are processed

with the GRAAL scaffolding program (step 4). For each CC, the resulting scaffolds and/or contigs are then annotated for taxonomy or the presence of phage sequences (step 5).

(B) Example of CC63: The 3264 newly assembled contigs [step 2 in (A)] are processed by GRAAL [step 4 in (A)]. Left: Contact map of the newly assembled contigs. Right: Contact

map of the 3.2-Mb scaffold obtained after GRAAL processing. Pink triangles point at the circularization signal in the map, consistent with a bacterial circular chromosome.

(C) Schematic representation of the typical primary and secondary features found on a bacterial contact map (left), alongside a diagram of the corresponding chromosome

organization (right). Beside the circularization signal (purple triangles), a secondary diagonal is often found (dotted black lines) as a result of contacts between the left

(violet) and right (green) replichores. The secondary diagonal crosses the main diagonal at the origin of replication (blue triangles). (D) Contact maps (10-kb bins) of the

largest (>500 kb) GRAAL scaffolds retrieved in four CCs, displaying patterns characteristic of bacterial chromosomes [with (i, ii, and iv) or without (iii) a secondary diagonal].

Taxonomic annotation, distribution of read coverage, and position of dnaA (blue triangles) are indicated for each scaffold. The read coverage distribution can be used to

infer the growth state of the corresponding bacterium. When present, putative prophage loci are represented on the right vertical axis with green (complete prophage) or

red (incomplete prophage) rectangles. (E) Same analysis as in (D) but for two CCs each containing two large and distinct scaffolds [core 22 (v); core 6 (vi)]. Scaffold 2 from

core 6 (vi) exhibits a discrete, more covered (see red rectangle on the coverage distribution) region annotated as an incomplete prophage. (F) Comparison of the positions

of orthologous genes in the scaffolds obtained in (E). Orthologous genes are displayed as dots based on their position along scaffolds 1 and 2 represented in the x and y axes,

respectively (top, core 22; bottom, core 6). The conservation of synteny between the two scaffolds is apparent from the higher density of orthologous genes (dots) in the

diagonal of the graph.
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Fig. 3. Analysis of phage-bacteria interactions. (A and B) Putative prophage sequences in bacterial scaffolds. Magnification of the main diagonal and annotations of

the two genomic loci characterized as intact prophages by Phaster in the core 25 scaffold (green rectangles, Fig. 2D). GC content, read coverage distribution, and the

predictedORF annotations (six-frame translation) are indicated under eachmatrix. Orange genes encode for hypothetical proteins and are enriched in this genomic region.

The peculiar contact signals displayed by prophages in contact matrices (see fig. S6) suggest that the border of the prophage locus predicted by Phaster (green double

arrows) can be refined because of themeta3C data (dotted black lines and blue double arrows). (C andD) Representative contact maps between large independent phage

contigs (cores 129 and 151) and bacterial scaffolds of interest either (i) display enriched contacts or (ii) present clustered regularly interspaced short palindromic repeats

(CRISPR) spacer sequences also found in the phage sequence (scaffold labeled with an asterisk). The read coverage of the bacterial scaffolds and the normalized contact

frequencies between the phage contigs and the bacterial scaffolds are plotted under the maps (black and blue graphs, respectively). “#” indicates a set of contigs not

scaffolded by GRAAL. (E and F) Cis contact map and read coverage distribution for the candidate phage contigs from (C) and (D), respectively. A circularization signal

appears on the large (235 kb) core 129 contig. The corresponding coverage also points at the possible multiplication of this genomic structure from a discrete position.
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consistent with the presence of small genomic entities (for instance, see
the squares in the upper left corner of cores 11 and 14, contact maps in
fig. S4; table S2 and data set S3), leaving room for unexpected or
surprising results, such as the identification of new viruses or genetic
elements (28). However, the exploration of this “dark matter” will re-
quire deeper analyses.

Phage assembly and analysis
The annotation of the contigs contained in the small CCs revealed an
enrichment in phage sequences, suggesting that some of these pools of
contigs correspond to viral genomes. To further investigate these com-

munities, we performed a new round of assemblies (Fig. 2A) on these
CCs (see Materials and Methods for details; no GRAAL scaffolding
was performed at this stage). Contigs above 10 kbwere annotated with
a BLASTP search against two National Center for Biotechnology
Information (NCBI) databases of viral sequences [Phage Orthologous
Group (POG) and Viral databases; E < 10−4; Materials and Methods]
(57). Forty-three contigs ranging from 10 to 235 kb displayed at least
one significant hit against the POGdatabase (table S3) andmultiple hits
against the Viral database (table S3). For instance, 11 putative encoded
proteins from the 218ORFs identifiedwithin the largest contig (235 kb,
core129 contig0) presented a similarity with proteins from the POG
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Fig. 4. Overview of phage-bacteria interactions through meta3C. Normalized contact map between the 40 candidate phage contigs in the x axis (obtained from

the reassembly of small CCs) and the 47 bacterial genome scaffolds/assemblies in the y axis. An interaction had to represent at least 10% of the total contacts made by

a candidate phage with a bacterial genome scaffold/assembly to be retained. Bacterial genome scaffolds/assemblies were ordered according to their phylogeny
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database, including a genetic marker associated to the phiKZ giant
phage family known to infect Pseudomonas aeruginosa (POG 3254)
(table S3 and fig. S7) (37, 38, 58). This contig’s genomic organization
is typical of phage genomes, with ORFs that are largely co-oriented and
organized in sizable blocks encoded on the same strand (fig. S7) (28, 59).
The contact map of this contig displays a circularization signal, as well
as a skewed read coverage, suggesting that bidirectional replication is
taking place (Fig. 3E). This large contig was not present in its full
length in the first assembly (95% of the sequence was contained within
three large contigs), confirming the interest of our approach to assem-
ble and scaffold metagenomes.

Phage-host interactions
As discussed above, assigning phages to their bacterial hosts remains a
challenge in metagenomic studies. To see whether quantifying DNA
collision events between the phage and the host genome could allevi-
ate this limitation, we computed the normalized contacts between the
phiKZ-like contig and the 140 bacterial genome scaffolds (that is, from
large CCs). A single bacterial scaffold belonging to the Clostridiales
phylum (core7 scaffold1) presented enriched contacts with this long
contig (Fig. 3C). This result suggests that this phage genome has fre-
quent contacts with the genome of this bacterial species; hence, this
bacterial species hosts the phage. We performed the same analysis
of several other putative phage contigs (Fig. 3, D and F, and fig. S8).
Notably, we identified a contig (core151 contig0) harboring typical
markers from the Caudovirales family and exhibiting several enriched
contacts with reconstructed bacterial genomes (Fig. 3D). A refined
analysis of those contacts indicates the existence of hot interaction
spots of this contig with different loci and points to possible multiple
integration sites into the bacterial scaffolds (core33 scaffold1, Clos-
tridiales and core40 scaffold1, Clostridiales). In parallel, we searched
for CRISPR spacers found in the different bacterial scaffolds that would
present a match on the candidate phage contigs (fig. S9) (23, 28, 29).
We identified 1575 putative spacers and 55 significant blastmatches in
our candidate contigs (table S4). With only one exception, none of the
bacterial scaffolds detected by this analysis displayed enriched contacts
with the phage contigs (Fig. 3, C and D, and fig. S8, A and B; bacterial
cores labeledwith asterisks). For instance, a perfectmatchwas found for
a spacer present on the phiKZ-like contig and on the scaffold retrieved
fromCC#85, but no contacts between the two sequences were detected.
One possible explanation is that this bacteriummaintains this spacer in
its genome as a defense against future infections and therefore contacts
between the two genomes are very limited. CRISPR spacer–based pre-
dictions are known to detect high rates of false positives, especiallywhen
only one hit is detected between the host and its phage (29). Additional
meta3C data will help to understand these observations and to provide
new insights into the ecology of phages and bacteria in the gut.

To broaden the analysis, we studied the contacts between the 43
candidate phage contigs and all 140 bacterial CCs. A host-phage in-
teractionwas considered significant when it accounted for at least 10%
of all contacts made by the phage sequence. All but three phage candi-
dates displayed at least one, sometimesmore, preferred bacterial scaffold(s).
An “infection heatmap”was generated to represent the contacts between
thephage genomes and theputativehost genomes (47potential hostswere
detected), ordered according to their phylogenetic relationship (CheckM
pipeline; table S1 and Fig. 4). The infection spectrumof phages in this bac-
terial community emerges from this representation. Boundaries between
clades are consistentwith previous studies (60).Overall, this first viral-host
contactmap illustrates the approach’s interest and enables further analyses

of phage infection dynamics as well as mobile element propagation in
complex communities.

CONCLUSION

Overall, the first meta3C experiment performed on a truly complex
natural microbiome highlights the power of contact genomics/
proximity ligation approaches to study phages and bacterial interac-
tions (21). It is worth noting again that this approach does not require
multiple experiments: A singlemeta3C library generated with a single
restriction enzyme will bring an important amount of information.
Therefore,meta3C could significantly contribute to the full character-
ization of the genomic structure of complex environmental microbial
communities and the analysis of their dynamic changes. The experi-
ment so far does not provide an exhaustive overview of the phage pop-
ulation, mostly because virulent phages that kill bacteria quickly were
not sought for. In the future, the present experiment could be backed by
the sequencing and genomic analyses of the population of viral particles.
Thatway, onewould expect to be able to confront viral particle genomes
and phage genomes in contact with bacterial chromosomes, to reach a
truly exhaustive characterization of the entire population. Performed
over time, the genomes of the different species within a population
and the dynamics of mobile elements within the population could be
generated, providing valuable insights into the adaptation/evolution
of the species present in the ecosystem.

MATERIALS AND METHODS

Generation of meta3C libraries
Feces from a C57BL/6 male mouse were recovered and immediately
suspended in 30 ml of 1× tris-EDTA buffer supplemented with 3% of
fresh formaldehyde. Fixation proceeded for 1 hour under gentle agi-
tation. Tenmilliliters of glycine (2.5M) was added to the tube, and the
quenching was performed for 20 min. The pellet was recovered by
centrifugation and stored at −80°C until use. Meta3C libraries were
then prepared and sequenced (2 × 75 bp, Illumina NextSeq, 10 first
bases as index), as described by Marbouty et al. (34).

Metagenome assembly
Raw reads were filtered using the QIIME software, as described by
Bokulich et al. (61). A de novo assembly was generated using
IDBA-UD v1.0.9 (40) with default parameters but without any pre-
correction option (raw reads, 193 million PE reads; filtered reads,
169 million PE reads) (resulting assembly, 374,363 contigs; cumu-
lated size, 580 Mb; N50, 3783 bp; maximum size, 490 kb; mean size,
1402 bp). After filtration of contigs of sizes under 500 bp, the total
assembly was 521 Mb.

Metagenome analysis
Contigs from the metagenomic assembly were analyzed with the
MG-RAST andKraken pipelines. TheMG-RAST server (42) allowed
automated annotations of complete or draft microbial genomes and
provided information on phylogenetic and functional classification
of the contigs. Kraken (44) is a program that assigns taxonomic
labels to short DNA sequences using exact k-mer alignments.

Generation of internal control
Concurrentlywith themice gutmeta3Cprocess, 4million PE reads from
a previousmeta3C experiment performed onto a controlledmix of three
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bacteria (E. coli,V. cholera, and B. subtilis) (34) were used to perform an
assembly using the same parameters as above. The resulting contigswere
added to the final set of 553,310 contigs from themice gut assembly, pro-
viding a set of 569,146 contigs corresponding to an assembly of 526Mb.

Identification of CCs
An approach based on the Louvain algorithm (v0.3) (47) was used to
pool contigs into CCs (fig. S2). Before clustering, contigs were split into
1-kb chunks (without a sliding window). Again, contigs smaller than
500 bp were discarded at this stage (this process resulted in a small loss
of 8Mb of sequences, with a total assembly left of 513Mb). The resulting
553,310 contigs covered ~90% of the initial assembly (569,146 contigs
with the ones from the control experiment, corresponding to an assem-
bly of 526Mb).Rawreads (plus the 4millionPE reads of the control)were
then independently realigned against this set of contigs using Bowtie2
(parameters: –very-sensitive-local) coupled with an iterative procedure,
and no ambiguousmatcheswere allowed (53). PE informationwas then
included:Whereas two reads of a pair oftenmappedonto the same contig,
46 million contig pairs were nevertheless bridged by at least one pair of
reads. For eachpair of contigs, theweighted interactionwas normalized by
the square root of the product of their respective read coverages.

The Louvain algorithm was run 100 times independently. Its non-
deterministic heuristics were exploited to weigh and improve the reli-
ability and stability of the clustering. Each group of contigs that
systematically clustered together over the 100 iterations defined a
CC (fig. S2). Topologically, this means that the Jaccard distance be-
tween every contig index vector (that is, a vector whose components
are the indices of the Louvain community to which the vector’s contig
was assigned for that Louvain iteration) belonging to a single CC is 0.

Contig annotations
Putative coding sequences on the assembled contigs were determined
using the MetaGeneMark v3.26 software (41) and annotated using
BLASTP v2.2.30 and two protein databases (ftp://ftp.ncbi.nlm.nih.
gov/pub/kristensen/extendedPOGs-10/blastdb/ and ftp://ftp.ncbi.
nih.gov/refseq/release/viral/), as well as published hidden Markov
models (HMM) [CONJscan (47) and MultiMetaGenome (48)] and
the HMMER software (62). Positive hits (+1 positions) were then as-
signed to the processed contigs (500 bp to 1 kb). Sequences from con-
tigs (>5 kb) recovered after the reassembly of small CCswere annotated
using the same databases and HMMmodels. Among those sequences,
the 43 contigs carrying at least one homolog contained in the POG
database were considered to be a candidate phage contig (57).

Comparison with CAGs
A catalog of mice microbiota genes was retrieved from Xiao et al. (43)
and used as a genome index to map the reads from the two meta3C
libraries. Consistent with this work, approximately 60% of PE reads
could be aligned unambiguously to this index. Geneswere then clustered
on the basis of either their CAG index (43) or their CC indexes. Contact
matrices of the 100 largest groups for each category were then generated
(contact scores were normalized by the coverage of each gene).

Assembly of CCs
Contigs from each CCwere used as an index to align all meta3C reads
with Bowtie2 (mapping parameters: -local -sensitive, ambiguous
matches allowed -parameters a-). When at least one member of the
PE reads mapped onto one of these indexes, both read sequences were
retained. Raw PE sequences recovered for each CC were quality-

filtered (see above) and then processed using IDBA-UD v1.0.9 (same
parameters as above) to generate a de novo assembly. For each CC, if
the cumulated assembly size was larger than 500 kb, then all contigs
above 500 bpwere retrieved and processed by the scaffolding program
GRAAL (30). For assemblies smaller than 500 kb, which, for instance,
can represent a poorly assembled chromosome because of low cover-
age, the resulting contigs were directly annotated (see above).

GRAAL scaffolding
GRAALwas run for 100 iterations on the set of contigs (>500 bp) pres-
ent in a given CC, as described by Marie-Nelly et al. (30). Briefly, the
algorithm fitted the contact data onto a classic DNA polymer model
(63) and then altered the relative positions and orientations of pairs of
DNA sequences to gradually converge toward the most likely 1D ge-
nome according to the said model. The model was then readjusted to
better fit the new data, and a new iteration began. The duplication
mode described byMarie-Nelly et al.was not activated. Table S1 sum-
marizes the outcome of this scaffolding step and the generation of
large (>500 kb) scaffolds exhibiting the properties of bacterial ge-
nomes. The contact signal generated by some of these idiosyncratic
properties, such as circularity or the presence of a secondary diagonal,
was not predicted by GRAAL’s general polymer model. It can some-
times induce scaffolding errors (such as flips of large blocks) readily
visible because of the incongruous signal they generate in the con-
tact map of the scaffold (see Marie-Nelly et al. for more examples).
Hence, manual corrections were added. These are mainly simple
modifications of the same nature as GRAAL’s (that is, inversions
and transpositions) that alleviate incongruities in a self-evident way
on the contact map [fig. S5 shows how two modifications (one in-
version and one transposition) alleviate all incongruities from a
GRAAL scaffold].

Genome completion analysis
The scaffolds generated byGRAALwere analyzed usingCheckM (49).
This program assesses the quality of a genome assembly by checking
for the presence of lineage-specific gene markers. This pipeline was
also used to build phylogenetic trees and assign taxonomy annotation
to the CCs and scaffolds retrieved. Scaffolds/assemblies with less than
10 characterized geneticmarkers were removed from the phylogenetic
tree construction.

Bacterial genome comparison
Scaffolds ranging from CC #6 to CC #22 were annotated and com-
pared using RAST v2.0 (http://rast.nmpdr.org/) (64).

Genome annotations
Bacterial scaffolds obtained after GRAAL processing were screened
for prophage sequences using the Phaster software (56). The putative
coding sequences of the phiKZ-like genome (core129 contig0) were
annotated using BLASTP v2.2.30 and theNCBI nonredundant RefSeq
protein database.

Phage-host prediction through CRISPR spacer analysis
The pilecr v1.06 program was used to screen the different assembled
bacterial genomes and to identify 1575 CRSIPR spacers. The candi-
date phage contigswere then screened for the presence of these spacers
using BLASTN v2.2.30 with short query parameters (28, 29). Hits with
E values lower than 0.1 were retained and are displayed in fig. S9 and
table S4.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Marbouty et al. Sci. Adv. 2017;3 : e1602105 17 February 2017 9 of 11
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fig. S1. Generation of raw CCs.

fig. S2. Iterative Louvain procedure and characterization of CCs.

fig. S3. Comparison of CAGs and meta3C approaches.

fig. S4. Scaffolding of dozens of bacterial chromosomes.

fig. S5. Example of post-GRAAL scaffold correction.

fig. S6. Structural behavior of phage SPb in B. subtilis genome.

fig. S7. Schematic representation of the phiKZ-like genome.

fig. S8. Interactions of phages with bacterial genomes.

fig. S9. CRISPR spacers’ blast output.

table S1. Description of the 140 largest genomic structures (>500 kb) detected in the mice gut

microbiome and their assembly/scaffolding statistics.

table S2. Description of the 59 contigs corresponding to candidate phages hailing from the

unscaffolded output of the GRAAL software.

table S3. Description of the 43 contigs hailing from the reassembly of small CCs and

corresponding to candidate phages.

table S4. CRISPR spacers’ blast output (format #6).

data set S1. Contig data (contigs_id, contig_name, GC content, coverage,

core_community_index, core_size).

data set S2. Normalized contig network (contig_1, contig_2, normalized interaction).

data set S3. This file contains all the GRAAL scaffolds larger than 300 kb (FASTA format).

data set S4. This file, in complement of data set S3, contains all the contigs not included in the

scaffolds larger than 300 kb (FASTA format).

data set S5. This file contains all the CC assemblies (contigs >5 kb, FASTA format) that were not

scaffoldedbyGRAALbecauseof their small size (cumulated size, <500 kb; see steps 4 and5 in fig. S2).
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fig. S1. Generation of raw CCs. (A) Workflow of the original assembly process. The meta3C 

reads from an in vitro mixture of 3 species are processed concurrently with the meta3C gut 

library. Contigs from both libraries are pooled together before the segmentation of the 

network. (B) Contact map of the 100 largest CCs obtained after 100 Louvain iterations  

(1 vector = 200kb). The x and y axis are labeled with the cumulated DNA size and the index  

of the community, respectively. Black triangles point to the three control species  

(1 vector = 50 kb). (C) Illustration of the “visibility” of the communities with respect to 

different restriction enzymes. The biggest meta3C CCs carrying more than 1,000 contigs after 

one Louvain iteration on the pooled datasets are represented using HpaII (left) and MluCI 

(middle) restriction patterns and contact data. Contact maps are binned at the kb scale and 

combining both datasets (right) .Red triangles: extreme example of a community carrying 

AT-rich contigs. This community is being split into multiple small pieces by the MluCI enzyme 

that recognizes AATT sites. 
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fig. S2. Iterative Louvain procedure and characterization of CCs. Starting from an invariant 

network of contig, Louvain segmentation was independently performed 100 times (contigs 

are represented as colored circles). The distribution of colors in the middle panel represent 

the groups (a.k.a. communities) of contigs characterized at each the iterations. Results from 

these independent iterations were then combined to characterize core communities, i.e. 

contigs that always cluster together during the 100 iterations (right panel). Dark triangles 

point at contigs that jump from one community to another over the iteration. As a result, 

these contigs cluster into small and isolated CCs after compilation of the 100 iterations.  

  





fig. S3. Comparison of CAGs and meta3C approaches. (A) Workflow used to compare both 

methods and generate the contact matrices. First, DNA sequences from the mice 

microbiome genes catalog (http://www.cbs.dtu.dk/databases/CAG/mouse/) were used as an 

index to map all meta3C reads. Genes were then pooled according to their CAGs or CCs 

indexes. (B) Left: raw contact map of the 100 most covered CAGs described in Xiao et al. 

2015 (43). Right: 100 largest CCs obtained through the Louvain iterative procedure (right). 

(C) Same contact maps as above, after normalization by the reads coverage.  

  





fig. S4. Scaffolding of dozens of bacterial chromosomes. 60 contact maps displaying the 

scaffolds recovered after GRAAL processing of large CCs. These maps correspond to 

assemblies where the largest scaffold was larger than 300kb (10 kb bins; all scaffolds > 50 kb 

are represented). CCs indices are indicated above each map. Y-axis: cumulated DNA size. 

  





fig. S5. Example of post-GRAAL scaffold correction. (A) Contact map of a scaffold retrieved 

from CC #54 after GRAAL scaffolding. The inconsistencies in the signal delimit four regions in 

the heatmap (oriented colored arrows numbered from 1 to 4). (B) Swapping regions 3 and 4 

(purple and orange arrows) eliminates the long-range incongruities between the two 

regions. (C) Inverting region 3 (purple arrow) eliminates all incongruities in the map, 

unveiling the secondary diagonal. (D) The resulting scaffold is centered on the crossing 

between the principal and secondary diagonal (circular permutation). As a result, a strong 

signal appears clearly in the map corner, indicating that the scaffold is circular. 

  





fig. S6. Structural behavior of phage SPβ in B. subtilis genome. (A, B) Normalized contact 

maps of the chromosome of Bacillus subtilis cultures (strain HM1320) in the absence (A) or 

presence (B) of rifampicin (data from Marbouty et al., 2015; 53). Purple bars: prophage Spß. 

Aside each contact map, a magnification of the region containing the Spß sequence in purple 

and its flanking sequences is presented with a 90 CCW rotation. Dashed lines delimit the 

borders of the phage sequence. In both conditions, the sequence of the Spß is clearly 

recognizable on the contact map and well-separated from the rest of the B. subtilis genome. 

Whereas the differential GC% content between prophage sequences and the B. subtilis 

genome may disturb the regular pattern of interaction of this region, treatment with 

rifampicin clearly induces a different response. The prophage SPβ exhibits a striking self-

interaction pattern in the presence of rifampicin. The read coverage is plotted under the 

magnification panel, illustrating how the rifampicin treatment induces a multiplication of the 

phage locus, suggesting activation of replication of the phage is occuring. (C) Distributions of 

contacts made by 100bp bins over a 1kb window within the left and right extremities (black 

lines) of the Spß sequence show a enrichments in long-range contacts between the two 

extremities, near the site-specific recombination att loci (green and blue marks). This 

enrichment shows that these extremities are in a close vicinity to each other for in a 

subpopulation of the phage sequences, most likely present as circular molecules 

(alternatively, the formation of a stable loop bridging the two extremities of the phage at its 

basis could also explain, to some extent, this signal, but the uneven distribution towards the 

phage sequence suggests this is not the case). Because these long-range contacts stop 

precisely at the opposite att site, one can assess that they result most likely from a 

recombination event between att sequences and excision of the prophage. (D) Illustration of 

the contact patterns observed (left; blue and orange arrows illustrate the long-range 

contacts between the phage extremities) and the molecules likely to generate them (right). 
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fig. S7. Schematic representation of the phiKZ-like genome. (A) Circular representation of 

the phiKZ-like genome. The 218 putative open reading frames predicted with Metagenemark 

(see Materials and Methods) are indicated as squares. Depending on their orientation they 

are indicated in the upper part (forward strand) or the bottom part (reverse strand). Purple 

squares indicates hit against the high quality Phage Orthologous Groups (POG) database. 

Red squares indicate hits against the viral database from NBCI. Putative functions of the 

encoded proteins were determined using blastp against the refseq database from NCBI with 

an E-value threshold of 1.10-4. GC content (2kb bins) is indicated on a diagram at the center 

of the circle (green: average GC content above 50%; purple: average GC content under 50%). 

Genomic coordinates are also indicated in the periphery of the circle representation. 

Annotation points to a relation of these sequences with the phiKZ-like phage family. 

  





fig. S8. Interactions of phages with bacterial genomes. (A–D) Analyses of additional 

candidate phage contigs (core 153 contig 0 and core 163 contig 0) interactions with bacterial 

scaffolds, similar to the data described in Fig. 4. 
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fig. S9. CRISPR spacers’ blast output. Screenshot of the blast output for CRISPR spacer 

searches against core129 contig0, core151 contig0 and core153 contig0. 
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Abstract 

Characterizing the full genomic structure of complex microbial communities is a key step towards 

the understanding of their diversity, dynamics and evolution. These investigations are typically done 

through the analysis of millions of short DNA sequences directly extracted from the environment. 

Computational tools exploiting these metagenomics data display intrinsic limitations or constraints, 

such as assumptions regarding the genomic content of the genomes being investigated, and/or the 

need for multiple samples to accurately bin the interleaved metagenomic sequences according to their 

covariant characteristics. Here we present MetaTOR, an open-source and transparent computational 

solution that exploits meta3C, i.e. proximity ligation experiments (3C, Hi-C) performed on 

metagenomic samples, to bin the resulting sequencing reads into individual genomes according to 

their 3D contact frequencies. MetaTOR was applied on a combination of 20 newly generated meta3C 

libraries of mice gut microbiote sampled over time. We quantified the ability of the program to 

recover high-quality metagenomics-assembled genomes (MAGs) from metagenomics assemblies 

generated directly from the meta3C libraries. Whereas 16 MAGs are identified in the 148Mb 

assembly generated using a single meta3C library, MetaTOR identifies 122 MAGs in the 763Mb 

assembly generated from the merged 20 meta3C libraries, corresponding to a ~40% increase 

compared to MAGs recovered using current, state-of-the-art hybrid binning programs. Overall, the 

completion and contamination of meta3C bins were also improved. These results underline the 

potential of meta3C (and 3C based approaches) in metagenomics projects. 

 

1. Introduction 

 

Microbial communities hold important roles in the maintenance of multiple ecosystems (Philippot et 

al. 2013), including the human gut (Cho and Blaser 2012). Understanding the complexity of these 

ecosystems is a complex task, and recovering complete gene set for each microorganism present in 

these ecosystems represents an important if not essential step towards this objective (Quince et al. 

2017). Supported by dropping costs of high-throughput sequencing technologies and backed by 

increasingly powerful computational resources, the field of metagenomics aims at exploring 

ecosystems through the analysis of DNA sequences extracted directly from the environment, to gain 

insights on the diversity of microbial population and their dynamics (Alberti et al. 2017; Hug et al. 

2016). Characterizing complete or near complete genomes remain however difficult to tackle and 

dependent on the popularity of the ecosystem studied and the amount of data generated (Olson et al. 

2017). The development of new metagenome binning techniques, that aims at solving this limitation, 
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has therefore accompanied the development of metagenomics studies in recent years (Albertsen et al. 

2013; Alneberg et al. 2014; Frank et al. 2016). 

Most computational approaches rely on the composition and/or co-abundance of sequences recovered 

from multiple samples to pool (bin) them together (Wu et al. 2014; Laczny et al. 2017; Nielsen et al. 

2014; Alneberg et al. 2014; Kang et al. 2015). Composition based methods group together sequences 

that display similar metrics, such as GC content and/or tetra- and/or penta-nucleotides frequencies. 

Co-abundance approaches trace the relative amount of sequences over multiple samples and group 

together those with similar coverage variation. Co-abundance is very effective when multiple samples 

of the same ecosystem are available under different conditions. Nowadays, however, most 

metagenomics binning pipeline consists in hybrid approaches that combine these two strategies to 

improve the confidence of the resulting sequences bins (Kang et al. 2015; Alneberg et al. 2014; Wu 

et al. 2014). Some caveats and limitations remain. First, grouping sequences based on their 

composition implies a strong assumption regarding the genomes themselves, namely that they are 

relatively uniform with respect to the metric used to bin their constituent sequences. This hypothesis, 

though often reliable, is not valid when horizontal transfer or introgression of genetic material take 

place between species with (highly) divergent sequence compositions. The GC content of prophages 

and of their host bacterial genomes can differ, impairing the efficiency of sequence composition based 

binning approaches (Edwards et al. 2016; Arndt et al. 2016). In addition, co-abundance based 

methods require multiple samples to be fully effective, which can be impractical and/or costly. 

Moreover, these methods generally encounter problems with small contigs (<1,000 bp) limiting the 

exploration of genomic diversity whereas reaching at a comprehensive characterization of this 

diversity is a prerequisite to understand the dynamics underlying the network of interactions found 

within communities. 

Novel technologies such as single-cell sequencing (Ji et al. 2017), long reads (Frank et al. 2016) or 

proximity ligation/chromosome conformation capture (3C) (reviewed in Marbouty and Koszul 2015; 

Flot, Marie-Nelly, and Koszul 2015), hold the potential to address some of these limitations. The 

latter approach, dubbed meta3C from the original 3C approach (Dekker et al. 2002), aims at 

quantifying and exploiting collisions between the DNA loci over a population of species to identify 

those that share the same cellular compartment. Sequences belonging to the same genome display 

enriched contact frequencies than those belonging to different genomes, as demonstrated by applying 

meta3C on controlled mixes of species (Burton 2014; Beitel 2014; Marbouty et al. 2014). Besides 

controlled mixes, meta3C successfully reconstructed genomes from truly unknown complex 

ecosystems as well (Marbouty et al. 2014; Stewart et al. 2018). Not only near complete genomes from 

microorganisms can be recovered from a single experiment, but additional information about the 
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genomic structure of these microbial populations can be recovered as well, including plasmid 

(Marbouty et al. 2014; Press et al. 2017) and phage-host infection spectrum (Marbouty et al. 2017). 

These studies suggest that meta3C (and derivate approaches) hold the potential to 1) accurately bin 

genomes and episomal DNA molecules and 2) assign episomal DNA molecules to their respective 

hosts. However, comprehensive, end-to-end computational pipelines to process raw meta3C datasets 

remain sparse (DeMaere and Darling 2019; Marbouty et al. 2017). Most analyses so far have focused 

on single mock communities, and quantifiable metrics are lacking to see how meta3C-like approaches 

truly compare – and possibly complement – traditional binning methods, notably regarding the 

quality, completeness and accuracy. 

To address this need we developed MetaTOR (Metagenomic Tridimensional Organisation-based 

Reassembly), a lean and scalable tool to investigate single or multiple proximity ligation 

metagenomics experiments, from raw 3C reads to bins. MetaTOR was applied on meta3C libraries 

of mouse gut samples collected over time. This first dynamic meta3C study allowed us to reconstruct 

a high number of complete genome sequences, and to compare the genomic bins recovered using 

MetaTOR with bins generated by the state-of-the-art binning software MetaBat (Kang et al. 2015) 

and CONCOCT ((Alneberg et al. 2014). In each test case, MetaTOR compared favourably with the 

two aforementioned programs, both regarding the number of nearly complete genomes recovered and 

the amount of sequences binned. Therefore, 3C/Hi-C based metagenomic binning is a robust solution 

when seeking to reconstruct a comprehensive picture of a whole microbial community found in 

various microbial populations, regardless the number of samples processed.  

 

2. Materials and methods 

2.1. Faeces sampling and meta3C libraries generation 

The faeces of three groups of two mice were sampled during twenty days as follow: day 2, 5 and 9 

for cage n°1; day 2, 4, 5, 6, 7, 9, 10, 12, 16 for cage n°2; day 2, 5, 6, 7, 9, 11, 12, 16 for cage n°3. The 

samples were immediately suspended after collection in 30 mL of 1X tris-EDTA buffer supplemented 

with formaldehyde at a final concentration of 3%, then fixated for one hour under shaking. 10 mL of 

glycine 2.5 M was added to the mix for quenching during 20 min. A centrifugation recovered the 

resulting pellet for −80°C storage and awaiting further use. The libraries were then prepared and 

sequenced using pair-end (PE) Illumina sequencing (2 × 75 bp NextSeq) as described (Marbouty et 

al. 2014).  

The Institut Pasteur ethics committee (CETEA) approved all the experiments performed on mice 

(Project dha170005). 
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2.2. Read processing and assembly 

The first 10 bp of each read, corresponding to custom-made amplification primers, were removed, 

and the resulting 65 pb sequences were filtered and trimmed using cutadapt (Martin 2011). Quality 

was controlled with fastqc and a total of 813 million PE reads were kept in total (over the 20 samples). 

Reads were then used to perform three independent assemblies using MEGAHIT (Li et al. 2015) with 

default parameters. Contigs under 500 bp were discarded from further analyses. 

 

2.3. Alignment step and network generation 

Reads were aligned independently in single-end mode using bowtie2 (option –very-sensitive-local). 

For each sample, both alignment files were sorted and merged using the samtools and pysam libraries. 

Alignments with mapping quality under 20 were discarded. All pairs of reads for which both reads of 

the pair aligned on two different contigs were kept to generate the network. Contigs were considered 

as nodes, and the values of the edges (i.e. the weight) of the network were determined by counting 

the number of non-ambiguous alignments bridging two different contigs. Normalization is computed 

by dividing the edge value by the geometric mean of the nodes’ coverage (i.e. contigs’ coverage). 

Contig coverage was calculated using MetaBat script: jgi_summarize_bam_contig_depths with a 

contig size limit of 500 bp for every set of reads. 

 

2.4. Louvain clustering 

We showed before that the updated implementation of the Louvain community method provided in 

(Blondel et al. 2008) was a promising approach to identify subnetworks of contigs in the meta3C 

network that display enriched contacts between themselves (Marbouty et al. 2014). The Louvain 

algorithm was run 400 times on each network, using the classical Newman-Girvan criterion. Nodes 

that systematically clustered together for each of the first 100 iterations were pooled together in Core 

Communities (CCs), as described previously (Marbouty et al. 2017). 

 

2.5. Bin and genome validation  

CCs above 500 kb were evaluated for completeness and contamination using CheckM (Parks et al. 

2015). CheckM was also used to assign taxa to these sequences. A CC was validated as a bin if its 

contamination rate range under 20%. Among those validated bins, a bin is said to be highly complete 

if it is at least 95% complete and no more than 5% contaminated, nearly complete if it is 90% complete 
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and less than 10% contaminated and partially complete if it is between 70% and 90% complete and 

below 10% of contamination. 

 

2.6. Recursive Louvain Clustering 

Partially complete CCs (> 70% completion) with high levels of contamination (> 20% contamination) 

were selected for recursive binning. Briefly, the partition step was re-run 10 times on these 

contaminated CCs (i.e. on their corresponding sub-network), yielding groups of smaller core 

communities (i.e. sub-CCs) that are then re-processed in the binning step to assess for their quality.  

 

2.7. Pipeline comparison 

CONCOCT and MetaBat 1 were run on the same set of reads and assemblies, using the different time 

samples for differential coverage. The resulting bins above 500 kb were retrieved and compared with 

MetaTOR’s for completeness and contamination using CheckM. CONCOCT was run with the 

following parameters --r 65 -s 100 -k 6. Metabat 1 was run with default parameters. 

 

3. Results 

 

3.1. Algorithmic principles underneath the MetaTOR pipeline 

MetaTOR (https://github.com/koszullab/metaTOR) aims at providing the most accurate overview of 

genome content of a population, starting from as little as one meta3C library, while taking full 

advantage as the availability of more libraries if possible. It is structured around four main steps: 

alignment, partition, annotation and binning (Figure 1). MetaTOR was purposely designed to 

maintain a high level of modularity and flexibility, so that users can supply their own intermediary 

inputs and tweak parameters to their liking at every step, to save time and resources. If starting from 

the raw data, all needed is the meta3C pair-end (PE) files and an assembly of the microbial community 

obtained either directly from the meta3C reads (as described in Marbouty et al. 2017, 2014) or from 

a DNA library generated independently (Figure 1A). 

 [align] (Figure 1B): first, meta3C reads are aligned independently along the contigs of the 

metagenome assembly using bowtie2 (as aligners tend to leave out far-off alignments when 

run in pair-end mode). Contigs are then sorted, filtered for mapping quality and merged into 

a global alignment file. The alignment is converted into a contact network stored in a plain 
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text file [network.txt: column 1 – node 1 / column 2 – node 2 / column 3 - weight] to facilitate 

further third-party analyse. In the network, each node represents one contig and each edge 

(a.k.a. weight) represents the contacts score found between two contigs. This step integrate 

modifiable parameters such as enforcing a lower size limits for contigs or a normalization 

step. A normalization of the network typically use the coverage of the contigs, but other 

normalization can be implemented as well. 

 [partition] (Figure 1C): an iterative Louvain procedure is applied on the network file to 

partition the network into groups of contigs that consistently cluster together, i.e. “see” each 

other’s in space more often than their neighbors’ (Marbouty et al. 2015, 2017; DeMaere and 

Darling 2016; Blondel et al. 2008). These clusters, or “core communities” (CC) constitute the 

matrix of the metagenomic binning. The number of iterations is a free parameter of the 

pipeline, but the number of groups stabilizes after a while with small oscillations around a 

fixed value. 

  [binning] (Figure 1D): CCs are then extracted (Fasta file) and their gene content is assessed 

for completeness and contamination using CheckM (Parks et al. 2015). In parallel, the pipeline 

also extracts sub-networks for each CCs (i.e. network between the contigs that composed each 

CC) Extraction of each sub-network allows the user to perform, if needed, a recursive 

procedure at this step on the defined groups of contigs (i.e. CCs) (see Figure 1 – "recursive 

procedure”). Indeed, some CCs exhibit a high rate of completion but also a high degree of 

contamination suggesting that they may contain several genomes. By applying, the partition 

step only on their corresponding sub-network, it becomes possible to re-partitionnate this CCs 

into smaller ones (i.e. sub-CCs) that could present better CheckM statistics. Indeed, the 

partition step using the Louvain algorithm can be applied on any network provided by the 

user. This step generally results in breaking down the most contaminated CCs into smaller, 

low-contaminated sub-CCs. The retrieved sub-CCs can also be evaluated using CheckM and 

validated as bins. 

 [annotation] (Figure 1F): the metagenome assembly is annotated. Gene prediction is 

performed using Prodigal (Hyatt et al. 2010) and genes of interest are detected using various 

HMM models publicly available (Albertsen et al. 2013; Guglielmini et al. 2014; Grazziotin, 

Koonin, and Kristensen 2017). However, this step is independent from the other ones and 

allow users to introduce any type of annotation tool in the pipeline. 

Overall, MetaTOR generates a set of metagenomic annotated bins and their corresponding fasta 

sequences (in addition to the contact network) (Figure 1E). 
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3.2. Construction of meta3C libraries and generation of metagenomes assemblies 

To validate and compare the pipeline to classical metagenomics binning algorithm, we investigated 

the gut microbiota of various mice using meta3C libraries. Faeces were sampled from three group of 

two mice from the Institut Pasteur animal facility, over 20 days (Materials and Methods) (Figure 2). 

Twenty meta3C libraries (3 from cage n°1, 9 from cage n°2 and 8 from cage n°3 were then generated 

as described (Marbouty et al. 2017) (Materials and Methods) using HpaII as restriction enzyme. The 

libraries were sequenced using PE Illumina 2x75 bp kits (Table 1) (NCBI BioProject SUB5459608). 

After trimming and quality filtering, between 25 and 100 millions of PE reads were recovered for 

each samples (~813 million PE reads in total). 

Meta3C sequences can be directly used to generate a de novo assembly without notable increase of 

false/chimeric contigs (Marbouty et al. 2014). Three assemblies (1, 2, and 3) using reads collected 

from cage 3/day 2, cage 3/all samples and all cages/all samples, respectively, were generated using 

MEGAHIT (Li et al. 2015) (Materials and Methods). After discarding contigs below 500 bp, these 

three assemblies generated 61,600, 167,810, and 237,868 contigs for a cumulated sizes of 146, 475 

and 763 Mb, respectively (Table 2). These three assemblies and their corresponding set of reads were 

then used to test various binning pipeline (MetaTOR, MetaBAT and CONCOCT) and their output 

(Material and Methods).  

 

3.3. Binning of metagenomes using MetaTOR 

PE meta3C reads from each of the libraries used to generate the three assemblies were aligned 

independently on their respective assembly to retrieve pairs of reads with each end aligning on a 

different contig (parameters: MQT = 20; contigs size limit = 500 bp). Contact scores between contigs 

where then normalized by dividing the weight of each contact by the root square of the product of the 

coverage of each contigs involved in the interaction. This step generates networks of weighted 

connections bridging contigs of the different assemblies (Table 3). These three datasets were used for 

further analysis. The next steps of the MetaTOR pipeline are illustrated for the assembly n°3 and its 

corresponding network in the Figure 3. Each network was partitioned into Core Communities (CCs) 

through iterative Louvain partitioning. After ~100 cycles the number of large CCs (> 500Kb) reached 

a plateau for the three networks and this number of iterations was retained to recover the CCs (Figure 

3A). The resulting “reordering” of contacts matrix (Figure 3B) showed a low level of noise between 

the different CCs, suggesting Louvain successfully clustered together contigs displaying preferential 

contacts with each other’s. 
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The gene content of CCs containing more than 500 kb of sequences, corresponding to 17, 33 and 125 

CCs for the 3 different datasets, was analysed using CheckM (Parks et al. 2015). The analysis showed 

that most of these CCs display completion and contamination levels above 80% and under 10 %, 

respectively (Figure 3C), suggesting that they contain nearly complete bacterial genomes and could 

therefore be annotated as validated bins or MAGs (metagenome-assembled genomes). However, a 

subset of CCs displayed more than 80% of completion but also more than 20% of contamination 

(respectively 4, 24 and 25 for assemblies 1, 2 and 3, respectively), with some exhibiting a 

contamination rate as high as 1,000% (Figure 3C). These CCs were processed through a recursive 

procedure: 10 extra Louvain clustering steps performed on their respective sub-network partitioned 

them into sub-CCs (Figure 3D). A CheckM analysis of these sub-CCs showed that they often display 

high quality signatures of bacterial genomes, suggesting that the large, contaminated CCs correspond 

to mixes of near complete bacterial genomes (Figure 3F). Regarding the assembly n°3, the overall 

procedure generated 1,001 bins (bins > 10 kb – 724 Mb in total) with 269 bins containing more than 

500 kb of sequences each and representing 687 Mb of sequences (90% of the filtered assembly) 

(Figure 3E). Results obtained after the recursive procedure show a clear decrease in term of 

contamination (mean value decrease from 61.4 % to 1.9 %). This improvement was accompanied by 

a slight, but acceptable, loss of completion compared to results obtained without (mean value 

decreases from 88.4 % to 61.1 %) and validates the application of an iterative procedure on the largest, 

contaminated CCs. Among the characterized bins for the assembly n°3 92 represent highly complete 

MAGs (< 5% contamination and >= 95% complete, 31 near-complete MAGs (=< 10% contamination 

and >= 90% complete) and 33 were substantially complete MAGs (=< 10% contamination and >= 

70% complete). The final results for the three datasets are presented in Table 3. 

 

3.4. Comparison of MetaTOR with hybrid binning algorithm 

To evaluate how MetaTOR compares to established and popular binning approaches, we also ran 

MetaBAT (versions 1) (Kang et al. 2015) and CONCOCT (Alneberg et al. 2014) on assemblies 1, 2 

and 3 using the same filtered PE reads, allowing each pipeline to take advantage of the information 

from differential coverage across the independent experiments when several samples were used. The 

results were then compared with the ones generated by MetaTOR (Figure 4 and Table 3). For 

assemblies 1, 2 and 3, MetaTOR retrieved 16, 61 and 123 nearly complete MAGs, respectively (>90% 

completion, <10% contamination), compared to 11, 43, and 87 with MetaBAT and 5, 37 and 85 with 

CONCOCT. Overall, MetaTOR resulted in more high-completeness, low-contamination bins than all 

tested pipelines. In each case, the number of highly complete genomes (>95% completion, <5% 

contamination) recovered was equal or higher when using 3C data and our clustering approach. The 
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difference was even more pronounced when using the 20 libraries as MetaTOR was able to retrieved 

123 near complete genomes representing 426 Mb and corresponding to 55% of the total assembly. 

The mean contamination rate of bins characterized by MetaTOR was also lower than the two other 

approaches regardless the number of libraries used. Finally, MetaTOR also allowed to recover more 

bins and assigned bigger amount of sequences than the two other approaches. 

 

 

4. Discussion 

 

MetaTOR is a lean and scalable pipeline that exploits metagenomic proximity ligation experiments 

(meta3C) to partition the resulting contigs into individual genomes according to their 3D contact 

frequencies. We and others showed previously that meta3C reads can be use on a single sample with 

very good results compared to other binning methods (Press et al. 2017; Marbouty et al. 2017; 

DeMaere and Darling 2019). In the present study, we extend our original analysis algorithm on 

multiple datasets to evaluate its efficiency and compare it to classical binning methods. Compared to 

state-of-the-art binning methods, MetaTOR retrieves more complete MAGs, with significantly lower 

contamination rates. Therefore, physical collisions between DNA sequences represent an objective, 

quantitative way, to cluster these molecules together, compared to indirect, commonly used 

approaches involving correlations between sequence composition or abundancy co-variation. This 

was true even when 20 independent experiments were used, highlighting the interest to include at 

least some meta3C experiments in planned future metagenomics projects, and this regardless of the 

number of planed libraries. 

The large networks derived from our different meta3C experiments contain a certain number of highly 

connected sub-networks poorly connected to each other. These kind of highly modular networks are 

known to be well-suited to community detection algorithm like Louvain (Blondel et al. 2008). 

Moreover, the ‘iterative Louvain’ procedure allows us to identify sets of sequences that contact each 

other’. However, there are limits to the current iterative Louvain implementation. First, all modularity 

optimization algorithms tend to over-cluster nodes when the network reaches a certain size threshold, 

regardless of the underlying patterns. This well-documented property is known as the ‘resolution 

limit’ (Fortunato and Barthélemy 2007).  However, it can be sidestepped by running the partitioning 

process recursively on the network corresponding to the studied sub-network. Since it should be 

comparatively small and under the scale at which the aforementioned limit becomes visible, the 

clusters found inside will separate again and yield bins as normal. The recursive procedure appears 
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as highly effective with a clear increase in the number of nearly complete MAGs retrieved. The 

second limit comes from our stringent nature of bin definition, as we only retain sequences that 

always, systematically cluster together. As a result, a unique ‘jump’ of a contig outside the main 

cluster during one of the iterations has for consequence to exclude this contig from the final bin. 

While this ensures a reduction in bin contamination, a number of meaningful sequences are likely to 

be excluded from the bin. For instance, mobile elements (e.g. phage or plasmids) shared by different 

genomes will most likely be excluded from the corresponding bins. However, using MetaTOR and 

annotation pipelines such as VirSorter or PlasFlow, this limitation can be overcome to investigate and 

infer a posteriori the hosts of these elements using the contact network (Marbouty et al. 2017) or the 

Louvain clustering score (computed from the iterative procedure, and corresponding to the number 

of times two CCs are grouped together). A detailed analysis of so-called overlapping communities 

(Wang et al., 2012) would be very useful in the future to study such associations and bring a new tool 

in the study of interactions between genomic entities in microbial communities. 

Our pipeline is flexible and, though we developed it taking advantage of the Louvain algorithm 

(Blondel et al. 2008), other clustering algorithms yielding to nondeterministic community identifiers 

(e.g. a community detection algorithm with a different modularity) can be used instead with no side 

effects on the rest of the pipeline. 

Proximity ligation assays were originally developed to capture the 3D folding of microbial or 

metazoan chromosomes (Dekker et al. 2002; Lieberman-Aiden et al. 2009). Proximity ligation 

approaches were developed as a side derivative of this original purposes, and applied to various 

genomics limitations including chromosome scaffolding (Marie-Nelly, Marbouty, Cournac, Flot, et 

al. 2014; Burton 2014; Kaplan and Dekker 2013), haplotype reconstruction (Selvaraj et al. 2013), and 

centromere prediction/genome annotation (Marie-Nelly, Marbouty, Cournac, Liti, et al. 2014), 

besides metagenomic binning. Haplotype phasing is an especially interesting application since strains 

of the same species are remain challenging to characterize. Improving the resolving power of 3C-

based methods by combining metagenomics with haplotype approaches could help address this 

limitation. Future work should therefore involve back-and-forth interaction between wet and in silico 

experiments. 

  

 

  



 12 

5. Conflict of Interest 

 

The authors declare that the research was conducted in the absence of any commercial or financial 

relationships that could be construed as a potential conflict of interest. 

 

6. Data accession 

 

The datasets generated for this study can be found on SRA database : BioProject SUB5459608. 

 

7. Author Contributions 

 

MM and RK conceived the study. LB, TFR and MM wrote the pipeline MetaTOR. MM, TFR and 

AT performed the experiments. LB, TFR, MM and RK analyzed and interpreted the data. LB, TFR, 

MM and RK wrote the manuscript.  

 

Funding 

 

Lyam Baudry is supported by an AMX fellowship from the French Ministry of Higher Education, 

Research and Innovation. Théo Foutel-Rodier is supported by an ENS fellowship by the French 

Ministry of Higher Education, Research and Innovation. This research was supported by funding to 

R.K. from the European Research Council under the Horizon 2020 Program (ERC grant agreement 

260822) and from the Agence Nationale pour la Recherche (JPI-EC-AMR STARCS ANR-16-JPEC-

0003-05). 

 

8. Acknowledgments 

 

We thank Corinne Fayolle and Xavier Montagutelli for their help in the sampling process. We thank 

our colleagues from the lab for discussions, feedback and comments on MetaTOR. 

 

  



 13 

9. References 

 

Alberti, Adriana, Julie Poulain, Stefan Engelen, Karine Labadie, Sarah Romac, Isabel Ferrera, 
Guillaume Albini, et al. 2017. “Viral to Metazoan Marine Plankton Nucleotide Sequences from 
the Tara Oceans Expedition.” Scientific Data 4: 170093. https://doi.org/10.1038/sdata.2017.93. 

Albertsen, Mads, Philip Hugenholtz, Adam Skarshewski, Kåre L. Nielsen, Gene W. Tyson, and Per 
H. Nielsen. 2013. “Genome Sequences of Rare, Uncultured Bacteria Obtained by Differential 
Coverage Binning of Multiple Metagenomes.” Nature Biotechnology 31 (6): 533–38. 
https://doi.org/10.1038/nbt.2579. 

Alneberg, Johannes, Brynjar Smári Bjarnason, Ino de Bruijn, Melanie Schirmer, Joshua Quick, Umer 
Z. Ijaz, Leo Lahti, Nicholas J. Loman, Anders F. Andersson, and Christopher Quince. 2014. 
“Binning Metagenomic Contigs by Coverage and Composition.” Nature Methods 11 (11): 1144–
46. https://doi.org/10.1038/nmeth.3103. 

Arndt, David, Jason R. Grant, Ana Marcu, Tanvir Sajed, Allison Pon, Yongjie Liang, and David S. 
Wishart. 2016. “PHASTER: A Better, Faster Version of the PHAST Phage Search Tool.” Nucleic 

Acids Research 44 (W1): W16-21. https://doi.org/10.1093/nar/gkw387. 
Beitel, C. W.; Froenicke, L.; Lang, J. M.; Korf, I. F.; Michelmore, R. W.; Eisen, J. A.; Darling, A. E. 

2014. “Strain- and Plasmid-Level Deconvolution of a Synthetic Metagenome by Sequencing 
Proximity Ligation Products.” PeerJ 2: e415. https://doi.org/10.7717/peerj.415. 

Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. “Fast 
Unfolding of Communities in Large Networks.” Journal of Statistical Mechanics: Theory and 

Experiment 2008 (10): P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008. 
Burton, J. N.; Liachko, I.; Dunham, M. J.; Shendure, J. 2014. “Species-Level Deconvolution of 

Metagenome Assemblies with Hi-C–Based Contact Probability Maps.” In G3 (Bethesda), 4:1339–
46. 7. https://doi.org/10.1534/g3.114.011825. 

Cho, Ilseung, and Martin J. Blaser. 2012. “The Human Microbiome: At the Interface of Health and 
Disease.” Nature Reviews. Genetics 13 (4): 260–70. https://doi.org/10.1038/nrg3182. 

Dekker, Job, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. 2002. “Capturing Chromosome 
Conformation.” Science (New York, N.Y.) 295 (5558): 1306–11. 
https://doi.org/10.1126/science.1067799. 

DeMaere, Matthew Z., and Aaron E. Darling. 2019. “Bin3C: Exploiting Hi-C Sequencing Data to 
Accurately Resolve Metagenome-Assembled Genomes.” Genome Biology 20 (1): 46. 
https://doi.org/10.1186/s13059-019-1643-1. 

Edwards, Robert A., Katelyn McNair, Karoline Faust, Jeroen Raes, and Bas E. Dutilh. 2016. 
“Computational Approaches to Predict Bacteriophage-Host Relationships.” FEMS Microbiology 

Reviews 40 (2): 258–72. https://doi.org/10.1093/femsre/fuv048. 
Flot, Jean-François, Hervé Marie-Nelly, and Romain Koszul. 2015. “Contact Genomics: Scaffolding 

and Phasing (Meta)Genomes Using Chromosome 3D Physical Signatures.” FEBS Letters 589 (20 
Pt A): 2966–74. https://doi.org/10.1016/j.febslet.2015.04.034. 

Fortunato, Santo, and Marc Barthélemy. 2007. “Resolution Limit in Community Detection.” 
Proceedings of the National Academy of Sciences 104 (1): 36–41. 
https://doi.org/10.1073/pnas.0605965104. 

Frank, J. A., Y. Pan, A. Tooming-Klunderud, V. G. H. Eijsink, A. C. McHardy, A. J. Nederbragt, and 
P. B. Pope. 2016. “Improved Metagenome Assemblies and Taxonomic Binning Using Long-Read 
Circular Consensus Sequence Data.” Scientific Reports 6 (May): 25373. 
https://doi.org/10.1038/srep25373. 

Grazziotin, Ana Laura, Eugene V. Koonin, and David M. Kristensen. 2017. “Prokaryotic Virus 
Orthologous Groups (PVOGs): A Resource for Comparative Genomics and Protein Family 
Annotation.” Nucleic Acids Research 45 (D1): D491–98. https://doi.org/10.1093/nar/gkw975. 

Guglielmini, Julien, Bertrand Néron, Sophie S. Abby, María Pilar Garcillán-Barcia, Fernando de la 



 14 

Cruz, and Eduardo P. C. Rocha. 2014. “Key Components of the Eight Classes of Type IV Secretion 
Systems Involved in Bacterial Conjugation or Protein Secretion.” Nucleic Acids Research 42 (9): 
5715–27. https://doi.org/10.1093/nar/gku194. 

Hug, Laura A., Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. Probst, 
Cindy J. Castelle, Cristina N. Butterfield, et al. 2016. “A New View of the Tree of Life.” Nature 

Microbiology 1 (5): 16048. https://doi.org/10.1038/nmicrobiol.2016.48. 
Hyatt, Doug, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, Frank W Larimer, and Loren J 

Hauser. 2010. “Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site 
Identification.” BMC Bioinformatics 11 (March): 119. https://doi.org/10.1186/1471-2105-11-119. 

Ji, Peifeng, Yanming Zhang, Jinfeng Wang, and Fangqing Zhao. 2017. “MetaSort Untangles 
Metagenome Assembly by Reducing Microbial Community Complexity.” Nature 

Communications 8: 14306. https://doi.org/10.1038/ncomms14306. 
Kang, Dongwan D., Jeff Froula, Rob Egan, and Zhong Wang. 2015. “MetaBAT, an Efficient Tool 

for Accurately Reconstructing Single Genomes from Complex Microbial Communities.” PeerJ 3: 
e1165. https://doi.org/10.7717/peerj.1165. 

Kaplan, Noam, and Job Dekker. 2013. “High-Throughput Genome Scaffolding from in-Vivo DNA 
Interaction Frequency.” Nature Biotechnology 31 (12): 1143–47. 
https://doi.org/10.1038/nbt.2768. 

Laczny, Cedric C., Christina Kiefer, Valentina Galata, Tobias Fehlmann, Christina Backes, and 
Andreas Keller. 2017. “BusyBee Web: Metagenomic Data Analysis by Bootstrapped Supervised 
Binning and Annotation.” Nucleic Acids Research 45 (W1): W171–79. 
https://doi.org/10.1093/nar/gkx348. 

Li, Dinghua, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. 2015. 
“MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics 
Assembly via Succinct de Bruijn Graph.” Bioinformatics (Oxford, England) 31 (10): 1674–76. 
https://doi.org/10.1093/bioinformatics/btv033. 

Lieberman-Aiden, Erez, Nynke L. van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, 
Agnes Telling, Ido Amit, et al. 2009. “Comprehensive Mapping of Long-Range Interactions 
Reveals Folding Principles of the Human Genome.” Science (New York, N.Y.) 326 (5950): 289–
93. https://doi.org/10.1126/science.1181369. 

Marbouty, Martial, Lyam Baudry, Axel Cournac, and Romain Koszul. 2017. “Scaffolding Bacterial 
Genomes and Probing Host-Virus Interactions in Gut Microbiome by Proximity Ligation 
(Chromosome Capture) Assay.” Science Advances 3 (2). https://doi.org/10.1126/sciadv.1602105. 

Marbouty, Martial, Axel Cournac, Jean-François Flot, Hervé Marie-Nelly, Julien Mozziconacci, and 
Romain Koszul. 2014. “Metagenomic Chromosome Conformation Capture (Meta3C) Unveils the 
Diversity of Chromosome Organization in Microorganisms.” ELife 3 (December): e03318. 
https://doi.org/10.7554/eLife.03318. 

Marbouty, Martial, and Romain Koszul. 2015. “Metagenome Analysis Exploiting High-Throughput 
Chromosome Conformation Capture (3C) Data.” Trends in Genetics: TIG 31 (12): 673–82. 
https://doi.org/10.1016/j.tig.2015.10.003. 

Marie-Nelly, Hervé, Martial Marbouty, Axel Cournac, Jean-François Flot, Gianni Liti, Dante Poggi 
Parodi, Sylvie Syan, et al. 2014. “High-Quality Genome (Re)Assembly Using Chromosomal 
Contact Data.” Nature Communications 5 (December). https://doi.org/10.1038/ncomms6695. 

Marie-Nelly, Hervé, Martial Marbouty, Axel Cournac, Gianni Liti, Gilles Fischer, Christophe 
Zimmer, and Romain Koszul. 2014. “Filling Annotation Gaps in Yeast Genomes Using Genome-
Wide Contact Maps.” Bioinformatics (Oxford, England) 30 (15): 2105–13. 
https://doi.org/10.1093/bioinformatics/btu162. 

Martin, Marcel. 2011. “Cutadapt Removes Adapter Sequences from High-Throughput Sequencing 
Reads.” EMBnet.Journal 17 (1): 10–12. https://doi.org/10.14806/ej.17.1.200. 

Nielsen, H. Bjørn, Mathieu Almeida, Agnieszka Sierakowska Juncker, Simon Rasmussen, Junhua Li, 
Shinichi Sunagawa, Damian R. Plichta, et al. 2014. “Identification and Assembly of Genomes and 
Genetic Elements in Complex Metagenomic Samples without Using Reference Genomes.” Nature 



 15 

Biotechnology 32 (8): 822–28. https://doi.org/10.1038/nbt.2939. 
Olson, Nathan D., Todd J. Treangen, Christopher M. Hill, Victoria Cepeda-Espinoza, Jay Ghurye, 

Sergey Koren, and Mihai Pop. 2017. “Metagenomic Assembly through the Lens of Validation: 
Recent Advances in Assessing and Improving the Quality of Genomes Assembled from 
Metagenomes.” Briefings in Bioinformatics, August. https://doi.org/10.1093/bib/bbx098. 

Parks, Donovan H., Michael Imelfort, Connor T. Skennerton, Philip Hugenholtz, and Gene W. Tyson. 
2015. “CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single 
Cells, and Metagenomes.” Genome Research 25 (7): 1043–55. 
https://doi.org/10.1101/gr.186072.114. 

Philippot, Laurent, Jos M. Raaijmakers, Philippe Lemanceau, and Wim H. van der Putten. 2013. 
“Going Back to the Roots: The Microbial Ecology of the Rhizosphere.” Nature Reviews. 

Microbiology 11 (11): 789–99. https://doi.org/10.1038/nrmicro3109. 
Press, Maximilian O., Andrew H. Wiser, Zev N. Kronenberg, Kyle W. Langford, Migun Shakya, 

Chien-Chi Lo, Kathryn A. Mueller, Shawn T. Sullivan, Patrick S. G. Chain, and Ivan Liachko. 
2017. “Hi-C Deconvolution of a Human Gut Microbiome Yields High-Quality Draft Genomes 
and Reveals Plasmid-Genome Interactions.” BioRxiv, October, 198713. 
https://doi.org/10.1101/198713. 

Quince, Christopher, Alan W. Walker, Jared T. Simpson, Nicholas J. Loman, and Nicola Segata. 
2017. “Shotgun Metagenomics, from Sampling to Analysis.” Nature Biotechnology 35 (9): 833–
44. https://doi.org/10.1038/nbt.3935. 

Selvaraj, Siddarth, Jesse R Dixon, Vikas Bansal, and Bing Ren. 2013. “Whole-Genome Haplotype 
Reconstruction Using Proximity-Ligation and Shotgun Sequencing.” Nature Biotechnology 31 
(12): 1111–18. https://doi.org/10.1038/nbt.2728. 

Stewart, Robert D., Marc D. Auffret, Amanda Warr, Andrew H. Wiser, Maximilian O. Press, Kyle 
W. Langford, Ivan Liachko, et al. 2018. “Assembly of 913 Microbial Genomes from Metagenomic 
Sequencing of the Cow Rumen.” Nature Communications 9 (1): 870. 
https://doi.org/10.1038/s41467-018-03317-6. 

Wu, Yu-Wei, Yung-Hsu Tang, Susannah G. Tringe, Blake A. Simmons, and Steven W. Singer. 2014. 
“MaxBin: An Automated Binning Method to Recover Individual Genomes from Metagenomes 
Using an Expectation-Maximization Algorithm.” Microbiome 2 (1): 26. 
https://doi.org/10.1186/2049-2618-2-26. 

 

  



 16 

10. Figures legends 

 

Figure 1: MetaTOR pipeline 

Schematic representation of the main steps of the MetaTOR pipeline. A. MetaTOR is initialized with 

an assembly and a set of 3C/Hi-C PE reads. B. The first [align] step aligns, sorts and merges reads 

and deliver a network of contigs interactions. C. Then, the [partition] step deconvolves the defined 

network using a Louvain iterative procedure and D. [binning] allows to retrieve CCs (Fasta file and 

corresponding sub-network) of selected partition in order to evaluate them using CheckM. At this 

step, it is possible to perform a recursive procedure on selected CCs in order to partitionate them 

further into sub-CCs. F. [annotation] is an optional step that use HMM models to provide final 

annotations. E. The final output of the pipeline is a set of annotated bins. 

 

Figure 2: Experimental design 

Three groups of two mice were sampled during twenty days as follow: day 2, 5 and 9 for the cage 

n°1; day 2, 4, 5, 6, 7, 9, 10, 12, 16 for the cage n°2; day 2, 5, 6, 7, 9, 11, 12, 16 for the cage n°3. 

Samples were then processed for meta3C sequencing. The resulting sequences were used to generate 

de novo assemblies and test the different binning methods. 

 

Figure 3: MetaTOR partitioning of a complex microbial community 

A. Evolution of the number of CCs, ordered by size categories, during 400 Louvain iterations for the 

assembly n°3 (20 samples). Blue: CCs encompassing between 10 kb and 100 kb of sequences. Red: 

CCs encompassing between 100 kb and 500 kb of sequences. Green: CCs encompassing more than 

500 kb of sequences. B. Contact matrix encompassing the 224 largest CCs ordered by size, after 100 

Louvain iterations (1 pixel = 200 kb). Y-axis: cumulated DNA size. C. Completion (red) and 

contamination (blue) of the 129 CCs containing more than 500 kb of sequences after 100 Louvain 

iterations. Dashed lines: thresholds used to process the CCs through a recursive procedure 

(completion threshold: upper 70%; contamination threshold: upper 20%). D. Contact map of a highly 

contaminated CC (CC #3 – 100% complete – 1400% contaminated) before (left) and after (right) the 

recursive procedure (10 iterations; 1 bin: 20kb). Left map: contigs are ordered by size. Right map: 

sub-CCs are ordered by size. E. Completion and contamination of the 269 bins larger than 500 kb 

defined after the whole procedure. Red: completion. Blue: contamination. F. Completion (red) and 
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contamination (blue) levels of the sub-CCs retrieved from the original CC #3 treated with 10 iterations 

of recursive process. 

 

Figure 4: Comparison of MetaTOR, MetaBAT and CONCOCT. 

Comparison of the three methods’ outputs applied on the 3 datasets tested in this work. A. dataset #1 

(1 library). B. dataset #2 (8 libraries). C. dataset #3 (20 libraries). Box plot of completion (left), box 

plot of contamination (middle) and histogram of retrieved MAGs (right) are presented for the three 

methods. Only MAGs over 500 kb are analyzed (thresholds used to draw the histogram: dark red: 

95% completion – 5% contamination; red : 90% completion – 10% contamination; orange: 70% 

completion – 10% contamination; yellow: other MAGs). 
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11. Tables 

 

Table 1: Meta3C libraries constructed and sequenced 

 

sample raw paired-end reads 

cage1-day 1 79 868 626 

cage1-day2 38 728 350 

cage1-day3 33 173 429 

cage2-day1 40 380 356 

cage2-day2 62 424 123 

cage2-day3 31 436 086 

cage2-day4 34 124 320 

cage2-day5 48 472 570 

cage2-day6 36 129 310 

cage2-day7 32 608 370 

cage2-day8 43 473 731 

cage2-day9 67 768 796 

cage3-day1 108 114 353 

cage3-day2 39 719 377 

cage3-day3 37 792 067 

cage3-day4 36 805 550 

cage3-day5 34 529 306 

cage3-day6 59 092 136 

cage3-day7 28 833 461 

cage3-day8 30 521 091 
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Table 2: assembly metrics 

Only the metrics concerning assemblies filtered for the contigs above 500bp are shown. 

 

 
PE reads 

(filtered) 

total size                

(contigs > 500 bp) 
contigs > 500 bp 

N50                 

(contigs > 500 bp) 

assembly #1               

(cage 3 – day 2) 
100,258,683 146,319,508 bp 61,666 6,176 bp 

assembly #2               

(cage 3 – samples x 8) 
330,324,521 475,681,220 bp 167,810 7,578 bp 

assembly #3             

(samples x 20) 
813,376,239 763,455,888 bp 237,868 12,339 bp 
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Table 3: Networks features 

 

 
PE reads 

(filtered) 

mapped          

PE reads 

intercontigs 

interactions 

weighted 

interactions 

assembly #1 100,258,683 67,994,798 6,457,842 1,322,003 

assembly #2 330,324,521 215,768,714 30,206,795 8,505,609 

assembly #3 813,376,239 541,384,131 96,546,376 77,577,924 
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Table 4: comparison of MetaTOR, CONCOCT and MetaBAT results. 

(*near completes MAGs correspond to bins with a completion higher than 90% and a contamination 

lower than 10%) 

 

  assembly #1 (148 Mb) assembly #2 (483 Mb) assembly #3 (763 Mb) 

  nb size (bp) nb size (bp) nb size (bp) 

MetaTOR 

10 Kb < bins < 

100 Kb 
284 7,537,821 807 21,139,528 617 15,175,457 

100 Kb < bins 

< 500 Kb 
43 11,319,827 144 30,749,287 106 22,963,515 

bins > 500 Kb 56 119,111,306 183 399,972,204 269 685,955,810 

near complete 

MAGs* 
16 61,643,887 61 222,857,936 122 426,281,987 

MetaBat 

10 Kb < bins < 

100 Kb 
0 0 0 0 0 0 

100 Kb < bins 

< 500 Kb 
18 5,703,905 55 17,583,986 65 24,087,225 

bins > 500 Kb 36 82,290,484 126 284,973,235 172 420,081,339 

near complete 

MAGs* 
11 36,209,901 43 129,221,658 87 262,912,014 

CONCOCT 

10 Kb < bins < 

100 Kb 
11 432,808 25 1,040,872 24 1,122,733 

100 Kb < bins 

< 500 Kb 
7 1,351,308 23 6,275,583 6 5,193,580 

bins > 500 Kb 29 120,778,514 126 412,598,588 195 673,338,423 

near complete 

MAGs* 
5 13,959,215 37 122,970,516 85 304,517,832 
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5 Discussion and conclusion
In this work we have presented a range of results on (meta-)genome assembly and un-
veiled deep implications in terms of chromosome rearrangements, DNA transfers and
general chromosome dynamics. In this chapter we will discuss the main results and lim-
its of our work, the perspectives that should guide further attempts at developing the
underlying biological questions, as well as the future of assembly projects.

5.1 Limits and improvements on our framework
Hi-C based genome assembly and dynamics analysis involves a number of concepts and
methods borrowed from diverse fields ranging from cell biology to polymer physics to
graph theory. While we cannot possibly hope to examine each individual aspect in its
entirety, in this section we will briefly summarize the strengths, limits and potential
improvements in each possible direction.

Hi-C based protocols The 3C, Hi-C and meta3C protocols are in constant evolution
and refinement. However, as we have seen, a number of novel protocols exploiting the
3D conformation of the genome are being explored. The most prominent limitations to
overcome are the following:

• Working with single cells instead of whole populations. As the ergodicity of chro-
matin behavior (or indeed if this property would change at all from one species or
condition to another) remains an open question, it is crucial to verify that models
and interpretations derived from data observed at the population level are consis-
tent with the individual level. Current attempts at single-cell Hi-C have shown
the inherent variability in chromosome dynamics and organization from cell to cell
[250] [251].

• Resolution limits are set by the restriction enzymes being used and prevent a fully
homogeneous, fine-grained analysis of an entire genome at every scale. Experi-
mental efforts have been undertaken to understand what Hi-C data drawn from a
fully ’unbiased’ genome could look like, such as re-engineering large stretches from
a yeast genome so that restriction sites are evenly and shortly spaced [263].

These theoretical constraints are compounded by practical ones, such as the cost of
sequencing or expertise needed to perform the protocol. These bottlenecks could be
removed as costs keep decreasing and optimized commercial kits make the technique
popular and accessible to all. Expectations of results from Hi-C data are thus going to
rise.
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Chromosome modeling The models we have used throughout this work to represent
chromosome dynamics were relatively simple and straightforward. We essentially relied
on the fact that:

• Inter-chromosomal interactions are always lower than intra-chromosomal interac-
tions.

• Intra-chromosomal interactions can be approximated with a power law function of
the genomic distance.

As we have hinted at in the introduction, more sophisticated models have been intro-
duced in order to account for the higher-order organization of chromatin folding. We
have shown that our assembly framework is quite robust to deviations from the initial
model, as long as the above two assumptions were satisfied.

However, a better understanding of chromosome dynamics should eventually be able
to successfully integrate these mechanisms into the base model. There are a number of
difficulties, as the biological features such as TADs, loops, and compartments are not
easily represented by simple analytical functions; moreover, there tends to be different
polymer behavior depending on the species of interest [309]. This indicates that these
features are specific to each case study and can’t be extrapolated for other species that
are not model organisms, which most of our work focused on. Hopefully a multi-scale,
unified representation of all higher-order chromosome folding levels will be elucidated,
possibly through the use of alternative technology such as single-cell imaging. These
techniques should sidestep the limitations that are inherent to most 3C-based protocols.

Assembly method As we have seen, there exists an number of other Hi-C based as-
sembly methods. Most of them are based on an ’error-based’ point of view, seeking to
’correct’ misjoins as a human might do. On the other hand, the MCMC method we used
assesses the entirety of the contact map and is able to fully explore genome space for
an heuristically optimal family of solutions. It has been formally shown to eventually
converge to the ’correct’ genome [341], and was successfully demonstrated in practice.
The combination of scaffolding and polishing from instaGRAAL lets us narrow down
a whole range of high-likelihood families to the most correct one with the re-injection
of initial assembly data. Since the qualities of assemblies and Hi-C libraries can be
highly variable, our implementation allows for flexibility, but in the long term our ap-
proach should let us scaffold and polish an assembly from beginning to end with little
to no manual intervention. This is an important draw in current assembly projects that
become increasingly complex.

However, other promising approaches have been undertaken. SALSA2 [337] directly
integrates Hi-C weights into the initial assembly graph, so that one ideally avoids a
two-pass method (shotgun assembly followed Hi-C scaffolding). Not only does this help
alleviate biases in the initial assembly graph (which Hi-C based scaffolding cannot cor-
rect), it also makes independent data integration easier, as there is no longer any need
to reconcile Hi-C based scaffolding with other scaffoldings obtained from independent
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sources. Instead, a fully integrated Hi-C/shotgun based assembly serves as the baseline
for further scaffolding.

Integrating independent data sources Assembly projects have recently grown enor-
mous in size, complexity and costs. When resources allow, scaffolding often needs inde-
pendent validation from multiple sources, whether it be Hi-C, optical mapping, genetic
maps or linked reads. To that effect, it is crucial to design a strategy reconciling these
sources. Moreover, the implementation of such a method in a scalable and seamless way
cannot be understated when dealing with large genomes with many chromosomes. Cur-
rently most polishing and conflict handling is done manually, with various detrimental
consequences.

In our work, we have implemented a simple strategy with respect to genetic map data,
which is given precedence over Hi-C data. In doing so, we acknowledge the shortcomings
of Hi-C based techniques and the probabilistic nature of our framework: while there may
be a number of reasons Hi-C scaffolding conflicts with pseudochromosomal structures
from genetic maps, it is much more likely that any error is incurred from the limitations
of Hi-C data. We note, on the other hand, that no such conflict was found in the case of
Ectocarpus sp., and thus the Hi-C scaffolding was in fact further validated by existing
genetic maps. More work is needed to refine this strategy and attempt to integrate other
types of data that is commonly used for genome scaffolding.

The advent and popularizing of long-read technology has introduced an additional
data channel into assembly project pipelines. We have covered in the introduction the
various ways short and long reads can be reconciled to yield high-quality hybrid assem-
blies, and our Hi-C framework seamlessly integrates into such pipelines. Indeed, we have
successfully demonstrated its use on both short-read based reference assemblies (Ecto-
carpus sp. and Trichoderma reesei) and long-read based ones (Cataglyphis hispanica).
On the other hand, interesting avenues for improvements could involve the design of
long-read and short-read specific algorithms. For instance, any reference genome based
polishing is going to be more prone to error if it involves a long read based reference
(as opposed to a short read based one). The construction of super-reads mentioned in
the introduction was also shown to be fruitful and presumably Hi-C contacts could be
integrated into such graphs.

Assessing the correctness of rearrangements A crucial question is whether the re-
arrangements we uncovered through genome scaffolding can be trusted, notably in C.
hispanica where the chromosomal fusion was relatively unexpected. The first step was
to extensively validate each lineage genome, but a number of artifacts are expected to
remain, among which the fusion could figure. Certainly the Hi-C data remains remark-
ably consistent with the fusion, and more independent data is needed to confirm it with
absolute certainty. On the other hand, if a fusion did not occur, the abnormal, intra-like
levels of contacts between both chromomsomes warrants further investigation.

The mechanism under which a fusion could occur remains an open question as well.
Our scaffolding has confirmed that all chromosomes of C. hispanica were acrocentric,
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and presumably two centromeres located on far ends of chromosomes could have merged
in a Robertsonian translocation. More work is needed in order to understand the pre-
cise mechanism under which two chromosomes could become linked, and whether this
structural change could underlie the reproduction strategy of C. hispanica.

Metagenomics The metagenome assembly and binning method we have put forward
has allowed the reconstruction of hundreds of genomes, but so did traditional binning
approaches on the same datasets we used. However, these do not necessarily overlap;
in that respect, 3C based binning is complementary with other binning methods, and
does not intend to supersede them. In order to get a comprehensive picture of a whole
metagenome, several independent approaches are presumably necessary and 3C acts as
an additional tool in the available range of options.

On the other hand, phage-host relationship predictions with 3C contacts are relatively
unique. While many other methods exists, our approach lets us identify new relationships
without any prior bias about either the phage or the bacterial host. On the other hand,
successfully identifying these relies on relatively high coverage and successful scaffolding
of all genomes involved, a result that can be difficult to achieve in practice for all species
of interest. Likewise, a combination of existing methods are necessary to fully understand
the dynamics between phages and bacteria in complex communities.

5.2 Future perspectives
Assembly projects are thriving in the community. As the low-hanging fruit gets solved,
the complexity of genomes being tackled in the coming years is expected to increase:

• They will be larger, requiring more and more efficient methods and implemen-
tations to process the relevant data. A recent landmark was achieved with the
chromosome-level assembly of the 32 Gb axolotl genome [355], and we can expect
future assembly projects to reach comparable sizes.

• The amount of repeated sequences and other such problematic regions will increase;
as we have mentioned, Hi-C based methods tend to struggle when not coupled with
other data such as long reads or linked reads. We should expect such data to be
more and more prominent in future Hi-C based assembly projects.

• Issues of ploidy will arise: we have seen that so-called homology patterns are easily
discernible in Hi-C contact maps, but the problem will be compounded in the
case of polyploid species. These are very common among plants, including staple
crops; the recent chromosome-level characterization of the wheat genome [202] was
a crucial landmark in that respect.

Alongside complexities, ambitions will grow as well:

• The advent of single-cell technologies will facilitate the study of many cell lines in
a single species, or even a single individual.
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• Large-scale projects such as the Vertebrate Genomes Project or the i10k Genomes
Project will involve chromosome-level assemblies from dozens of species, and mul-
tiple lineages from each species. Our joint reassembly studies could be expected
to generalize to many such lineages to be scaffolded de novo and investigated for
rearrangements.

• Expectations for quality will further increase. With so many data sources to draw
from, and long reads becoming cheaper, many projects will focus on the telomere-
to-telomere reassembly of every single chromosome in a genome, thus giving access
to unparalleled resolution for the purpose of chromosome dynamics.

• More refined structural rearrangements could be detected. The implications are
crucial for comparative studies involving multiple cell lines, as such structural
variants could be cancer-inducing and their study could unveil the potential mech-
anisms underlying cancer formation.

In summary, genome assembly and chromosome dynamics are expected to grow more
and more complex with ever more ambitious scopes. While our framework is fit for
tackling today’s problems, more sophisticated methods should be necessary to keep
up with the rising expectations and technological progress as more discoveries further
expand the field.
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